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Preface

This volume of Stem Cell Biology and Regenerative Medicine aims at covering the 
current knowledge on the role of lipids in stem cell pluripotency and differentiation. 
We would like to thank all the authors to this volume who have shared their expertise.

We also wish to thank Dr. Kursad Turksen for his support during the process of 
compiling this book. Finally, a special thank you goes to Michael Koy for his help 
during the preparation of the volume.

Melbourne, VIC, Australia� Alice Pébay 
Melbourne, VIC, Australia� Raymond C.B. Wong 
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Chapter 1
Lysophosphatidic Acid and Sphingosine- 
1-Phosphate in Pluripotent Stem Cells
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1.1  �Introduction

Lipidomics refers to the analysis of lipids in cells, tissues, or organisms. Lipids are 
one of the main classes of biomolecules necessary to life, yet are probably the least 
understood and studied biomolecules. It is estimated that there are between 9,000 
and 100,000 different lipid species [1, 2]. This massive range reflects how little is 
known about this class of biomolecules. Few techniques are currently available to 
the study of lipids, and it is very difficult to isolate and analyze lipids, explaining 
why lipidomics somehow lags behind the study of other biomolecules. Lipids are 
the major compounds of the biological membranes that serve as the physical barrier, 
giving structural integrity to the cell and its components. They also play an impor-
tant metabolic function in terms of energy storage. Lipids are also integral to mem-
brane trafficking and can be found in vesicles such as exosomes. Lipids with cell 
signaling functions are often referred to as bioactive lipids, as opposed to lipids that 
form the structural composition of cell membranes or those used for energy, and 
have an array of biological functions, including mediating inflammation; regulating 
cell growth and polarity; and determining cell fate decisions. This essential signal-
ing feature of bioactive lipids occurs in a variety of different pathways; lipids can 
engage with specific receptors to activate a cascade of downstream signaling path-
ways, or through indirect means, i.e., via membrane trafficking or as lipid rafts.

1.2  �Lipid Homeostasis in Stem Cell Biology

A stem cell is a cell that is capable of self-renewing by undergoing indefinite sym-
metrical cell divisions, giving rise to daughter cells that are genetically identical to 
the original parent cell. Under the right conditions, stem cells can also differentiate 
into specialized cells that have specific functions in the body. Adult stem cells are 
generally of multipotent potential, meaning they are capable of differentiating into 
restricted lineages. Pluripotent stem cells, on the other hand, are capable of giving 
rise to all cell types of the body. There are two main sources of pluripotent stem 
cells: embryonic stem cells (ESCs), which are derived from the inner cell mass of a 
preimplantation blastocyst; and induced pluripotent stem cells (iPSCs), somatic 
cells that have been reprogrammed into a pluripotent state, and exhibit functional 
similarities to ESCs. Pluripotency is maintained by the expression of particular 
genes, which is intricately controlled by the homeostasis of a range of regulatory 
signaling molecules and epigenetic factors. Subtle changes in cellular conditions 
ultimately determine the fate of pluripotent stem cells. Historically, scientists have 
focused on the role of signaling proteins and genetic factors in the maintenance of 
pluripotency; however, more recently, signaling lipids have surfaced as potential 
regulators of stem cell maintenance and differentiation.

Lipid homeostasis is fundamental to development and cellular homeostasis, 
and lipid dysregulations can lead to developmental abnormalities as well as 
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neurodegeneration [3–5]. It is likely that changes in the lipidomic signature of a 
cell from pluripotency to differentiation will reflect a change in substrate avail-
ability during these events and may also give rise to a predictive model of differ-
entiation and maturity. For instance, there is evidence that specific lipids play 
fundamental roles in neural development [6–8] but less is known about the gen-
eral profile of lipids in pluripotency and upon differentiation. There are in fact a 
limited number of large lipidomic studies that have been performed within the 
stem cell field. Nonetheless, there is some suggestion that depending on their 
level of pluripotency or differentiation, cells will show a different distribution of 
heterogenous lipids [9]. Further, the lipidome is also modified upon mouse ESC 
differentiation [10]. Interestingly, Wang et al. [11] demonstrated in a landmark 
publication that in C. elegans, germ line stem cell longevity is regulated by an 
active control of lipid metabolism [11]. Further, the lipidomic profiling of mouse 
retinal stem cells identified a distinct glycerophospholipid signature, which when 
altered, participates in the regulation of proliferation or differentiation [12]. 
Similarly, the peroxisome proliferator-activated receptor (PPAR) pathway acts as 
a metabolic switch to control hematopoietic stem cell maintenance or differentia-
tion, by regulating the oxidation of fatty acids [13], thus suggesting a direct impact 
of lipids on cell fate. Human iPSCs are composed of less saturated fatty acids than 
human (h)ESCs, which may indicate metabolic differences in these two cell types 
[14]. This exemplifies how lipid homeostasis is most likely fundamental to pluri-
potency and differentiation.

1.3  �LPA and S1P Synthesis and Degradation

Lysophospholipids are bioactive lipids consisting of one O-acyl chain, generated 
by the hydrolytic cleavage of fatty acids from glycerophospholipids by phospho-
lipases. Two main categories of lipids form lysophospholipids: those derived from 
glycerol, glycerophospholipids (including LPA) and those with a sphingomyelin 
backbone, sphingolipids (including S1P). Both these classes of lipids play an inte-
gral role in cell fate, including in regulating pluripotency and differentiation of 
various types of stem cells. LPA and S1P are the most characterized lysophospho-
lipids in terms of effects in pluripotent stem cells, and will thus be the major focus 
of this chapter.

1.3.1  �LPA

LPA can be synthesized and degraded through a variety of pathways [8, 15]. 
Autotaxin/ectonucleotide pyrophosphatase phosphodiesterase 2 (ENNP2) is respon-
sible for most of the production of extracellular LPA. This secreted enzyme has a 
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lysophospholipase D domain able to cleave lysophospholipids, in particular lyso-
phosphatidylcholine, into LPA. Other enzymes can also generate extracellular LPA: 
secreted phospholipases A1 and A2, which can deacylate phosphatidic acid. 
Intracellular LPA, on the other hand, can be generated by other enzymatic pathways 
that include activities of intracellular phospholipases A1 and A2; glycerol 3-phosphate 
acyltransferase, which acylates glycerol 3-phosphate; or monoacylglycerol kinase, 
which phosphorylates monoacylglycerol. LPA degradation is then mediated by lipid 
phosphate phosphatases 1–3, which dephosphorylates LPA to monoacylglycerol.

1.3.2  �S1P

Sphingolipids are acyl (fatty acid) derivatives of the amino alcohol, sphingosine, 
and encompass a range of bioactive lipids, including S1P. In contrast to LPA synthe-
sis, S1P can only be generated by one pathway, involving the phosphorylation of 
sphingosine by sphingosine kinases (SphK) 1 and 2. S1P can then be degraded by 
S1P lyase, or dephosphorylated into sphingosine by S1P phosphatases and nonspe-
cific lipid phosphatases, or converted to ceramide by ceramide synthase [15, 16]. 
S1P is synthesized intracellularly and thus needs to be excreted in order to act as an 
extracellular ligand. This export is likely to occur through ATP-binding cassette 
(ABC) transporters [16]. S1P is also present in the nucleus and in the mitochondria, 
where it is synthesized by SphK2 [17, 18].

1.4  �LPA and S1P Signaling

LPA and S1P act extracellularly mainly through the binding to their specific G protein-
coupled receptors. There are currently six confirmed LPA receptors (LPA1–6) and five 
S1P receptors (S1P1–5) [19]. Other extracellular receptors have been implicated as 
LPA receptors, including the purinergic receptors P2Y5 and P2Y10, GPR87 and the 
TRPV1 channel [8]. LPA and S1P receptors are known to act through Gq and G12/13, 
Gi and potentially Gs, to modulate multiple signaling pathways including: stimulation 
of phospholipase C/protein kinase C and modification in intracellular calcium con-
centration; stimulation of the phosphoinositide 3-kinase (PI3K)/AKT pathway; stim-
ulation of Ras/mitogen-activated protein (MAP) kinase pathways including of 
extracellular signal-regulated kinases (ERK) 1/2; inhibition and potential stimulation 
of adenylate cyclase pathways; activation of small G proteins and subsequent stimula-
tion of the Rho/ROCK pathway; and activation of phospholipases A2 and D [19].

Both LPA and S1P can thus act as extracellular mediators by binding their cel-
lular membrane receptors, but they can also act as intracellular receptors. Some 
research indeed suggests that the nuclear receptor PPARγ can also bind LPA [8]. As 
for S1P, it is now clearly demonstrated that it is an intracellular nuclear mediator, 
with direct interaction with key molecules that are not S1P receptors [20]. 
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Intracellularly, S1P is known to counteract the pro-apoptotic effects of ceramide, 
contributing to the S1P-ceramide rheostat [20]. Intracellular S1P has also been 
shown to modulate NF-κB signaling by interacting with protein kinase Cδ and TNF 
receptor-associated factor 2 (TRAF2) [20]. It can also directly interact with events 
controlling mitochondrial respiration [18]. Finally, within the nucleus, S1P has been 
shown to bind and inhibit histone deacetylases (HDACs) 1/2, which most likely has 
consequences on gene regulation and epigenetics [17]. This could be particularly 
relevant to pluripotency.

Given the complexity of LPA and S1P signaling, it is not surprising that these 
molecules induce pleiotropic biological effects in different cells, including stem 
cells [21, 22].

1.5  �Role of LPA and S1P in Pluripotent Stem Cells

LPA and S1P have been implicated in events regulating survival, autophagy, apop-
tosis, proliferation, differentiation, cytoskeleton rearrangements, polarity, and 
migration. Lysophospholipids also control events of pluripotency and differentia-
tion in both adult and embryonic stem cells and in various species (as reviewed in 
[8, 15, 23, 24]). Both mouse and human pluripotent stem cells express LPA and S1P 
receptors, with some variations. Mouse ESCs express LPA1,2,3 [25] and S1P1–5 [26–
29] although S1P4 expression depends on the mESC lines [30]. Human ESCs and 
iPSCs express LPA1–5 and S1P1–5 [23, 31–33] with some expression variation 
depending in cell lines, as observed with mouse ESCs. These differences could be 
artifacts of cell culture methods. Although unlikely - given the redundancy in sig-
naling pathways modulated by the various receptors - the difference in receptor 
expression between pluripotent stem cell lines might indicate some potential varia-
tion in these bioactive lipids’ cellular effects.

Both LPA [25] and S1P [29, 30] stimulate proliferation of mESCs. LPA’s effect 
is dependent on the activation of the phospholipase C pathway, leading to modifica-
tions of intracellular calcium concentration, itself inducing expression of the early 
gene c-myc and subsequent proliferation [25]. LPA also induces Erk phosphoryla-
tion and downstream c-fos activation in the pluripotent stem cells [34]. Given the 
role of c-myc in pluripotency and reprogramming of somatic cells into iPSCs [35], 
it is interesting to note that LPA is able to induce its expression in ESCs. Likewise, 
S1P stimulates mESC proliferation, at least through its receptor-mediated activation 
of the Erk pathway [29, 30]. Other pathways might intervene. In particular, Ryu 
et  al. [29] suggest that S1P promotes mESC proliferation by the S1P1/3-induced 
transactivation of the vascular endothelial growth factor (VEGF) receptor, Flk-1, 
and subsequent phosphorylation of Jnk and Erk [29]. Together with the demonstra-
tion that S1P induces VEGF expression in mESCs [29], this data suggests an impor-
tant interaction between S1P and VEGF in mESC pluripotency. Finally, the knocking 
down of S1P lyase in mESCs is accompanied by a large increase in S1P levels, 
increased proliferation and expression of the mouse pluripotency markers sse4 and 
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oct4, as well as an increase in stat3 signaling, all suggestive that endogenous S1P 
metabolism is highly regulated in mESCs and is key to pluripotency [28].

In hESCs, we reported that we did not observed an effect of LPA alone (up to 
10 μM) on their maintenance [31], which was similarly reported by others using a 
different culture medium [36]. LPA has however been described as blocking Wnt 
pro-differentiation effects in hESCs [36]. Of note, it was also described that low 
concentrations of LPA (up to 100 nM) slightly increases the number of pluripotent 
cells in conditions favoring differentiation (mTeSR without basic fibroblast growth 
factor), while 1 μM induces death of hESCs [32]. This data is at odds with the previ-
ous reports, which could be partially explained by the fact that LPA was reconsti-
tuted and prepared in water in place of solvents (generally chloroform or ethanol/
water) necessary for LPA solubilization. Together, these data suggest that LPA may 
be important for the maintenance of pluripotency, most likely as a “counter actor,” 
an anti-differentiation agent, rather than a direct pro-pluripotency factor.

Recently, LPA was shown to modulate the Hippo pathway in both hESCs and 
human iPSCs, by activating YAP/TAZ [37, 38]. This is interesting in terms of pluri-
potency and differentiation, as the Hippo pathway is fundamental to development 
and is key to stem cell pluripotency and differentiation (for review of the pathway, 
see [39]). Indeed, when active, the YAP/TAZ transcriptions factors would be 
involved in self-renewal of hESCs and iPSCs, while inactivation of the pathway was 
shown to be linked to differentiation [37]. Interestingly, the activation of YAP by 
LPA results in the stimulation of a naïve state in hESCs and human iPSCs [38], 
allowing the generation of transgene-free human naïve pluripotent stem cells, 
clearly indicative of a fundamental role of LPA in human pluripotency.

On the other hand, S1P, in combination with platelet-derived growth factor 
(PDGF), was shown to maintain hESCs undifferentiated, in Gi-, ERK-, and SphK-
dependent mechanisms [31]. This maintenance of pluripotency was observed with 
cells cultivated on feeder and feeder-free, and in the absence of serum, thus demon-
strating a direct effect of S1P on hESCs. Interestingly, S1P alone was not able to 
maintain hESCs undifferentiated, and PDGF was shown to stimulate SphK, thus 
allowing the generation of intracellular S1P [31]. It is thus feasible that the presence 
of both extracellular S1P- and intracellular S1P-mediated effects contribute to the 
maintenance of pluripotency and further work to clarify this point would be interest-
ing. S1P was also shown to be anti-apoptotic in hESCs, through the phosphorylation 
of ERK 1/2, but independent of the PI3K pathway [40]. S1P can also induce the 
phosphorylation of p38 and to a lesser extent of c-jun N-terminal kinases (JNK) in 
hESCs, but the significance of these activated pathways remains to be established 
[23]. Finally, S1P does not induce intracellular calcium modification, suggesting 
that the phospholipase C pathway is not essential to hESC pluripotency and survival 
[40]. This pro-survival effect of S1P was also observed by an increased expression 
of anti-apoptotic genes and cell cycle-related genes, and a down-regulation of pro-
apoptotic genes [41].

Little is known on the basal levels of LPA and S1P in pluripotent stem cells. High 
performance liquid chromatography—mass spectrometry revealed that many sphin-
golipid intermediates are present in hESCs, in particular ceramide and low levels of 
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intracellular S1P [42]. It was recently demonstrated that hESCs and human iPSCs 
express cilia that are regulated by the ceramide/sphingomyelinase pathway [43]. 
Given the close relationship between ceramide and S1P, it is possible that intracellular 
S1P might also be involved in ciliogenesis, a fundamental process of developing cells.

1.6  �Discussion and Conclusion

Little is known of the role of lipids, their interactions, catabolism, metabolism and 
how these modulate many diverse biological processes, including in stem cells. The 
world of lipids is complex, in terms of functions, diversity, and numbers, and is 
probably the least understood “-ome” of biology. With today’s technology and given 
the extremely large numbers of lipids per cell, it is still not possible to assess the 
entire lipidome of a cell. However, lipidomics is now emerging because tools and 
strategies used for genomics and proteomics are being applied to the study of lipids. 
For instance, high performance liquid chromatography, electrospray ionization 
mass spectrometry, coupled with bioinformatic analysis will allow for large-scale 
system-level analysis of lipids and pathways involved [44]. These techniques might 
help answer important questions, such as: are there modifications in the lipidome of 
cells upon cellular fate? If so, are these a consequence of the cellular transition or 
are they a driving force behind change?

In terms of signaling lipids, it is clear that these play fundamental role in stem cell 
biology. In particular, LPA and S1P modulate various effects in various stem 
cells, both pluripotent and multipotent (as reviewed in [15]). In pluripotent stem 
cells, there seems to be some difference in effects of LPA and S1P between species, 
but it is clear that these molecules positively influence pluripotency and survival. A 
further understanding of the role played by intracellular S1P in pluripotency, epi-
genetics, and on the Hippo pathway would most likely be very informative. 
Likewise, a clearer picture of the interactions between LPA and Wnt signaling in 
pluripotent stem cells and upon differentiation would provide new knowledge in our 
understanding of the complexity of lysolipid signaling in pluripotency.

Acknowledgements  This work was supported by an Australian Postgraduate Award Scholarship 
(GL), an Australian Research Council (ARC) Future Fellowship (AP, FT140100047), the 
University of Melbourne and Operational Infrastructure Support from the Victorian Government.

References

	 1.	van Meer G (2005) Cellular lipidomics. EMBO J 24(18):3159–3165
	 2.	Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M (2008) Informatics and computational strate-

gies for the study of lipids. Mol Biosyst 4(2):121–127
	 3.	Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid media-

tors. Nat Chem Biol 6(7):489–497

1  Lysophosphatidic Acid and Sphingosine-1-Phosphate in Pluripotent Stem Cells 



8

	 4.	Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist’s guide to lipidomics. Nat Rev 
Neurosci 8(10):743–754

	 5.	Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 
9(2):162–176

	 6.	Kraut R (2011) Roles of sphingolipids in Drosophila development and disease. J Neurochem 
116(5):764–778

	 7.	Rotstein NP, Miranda GE, Abrahan CE, German OL (2010) Regulating survival and develop-
ment in the retina: key roles for simple sphingolipids. J Lipid Res 51(6):1247–1262

	 8.	Frisca F, Sabbadini RA, Goldshmit Y, Pebay A (2012) Biological effects of lysophosphatidic 
acid in the nervous system. Int Rev Cell Mol Biol 296:273–322

	 9.	Martin MC et  al (2013) 3D spectral imaging with synchrotron Fourier transform infrared 
spectro-microtomography. Nat Methods 10(9):861–864

	10.	Park H et  al (2010) Transcript profiling and lipidomic analysis of ceramide subspecies in 
mouse embryonic stem cells and embryoid bodies. J Lipid Res 51(3):480–489

	11.	Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and 
longevity in C. elegans. Science 322(5903):957–960

	12.	Li J, Cui Z, Zhao S, Sidman RL (2007) Unique glycerophospholipid signature in retinal stem 
cells correlates with enzymatic functions of diverse long-chain acyl-CoA synthetases. Stem 
Cells 25(11):2864–2873

	13.	 Ito K et al (2012) A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic 
stem cell maintenance. Nat Med 18(9):1350–1358

	14.	Panopoulos AD et al (2012) The metabolome of induced pluripotent stem cells reveals meta-
bolic changes occurring in somatic cell reprogramming. Cell Res 22(1):168–177

	15.	Pebay A, Bonder CS, Pitson SM (2007) Stem cell regulation by lysophospholipids. 
Prostaglandins Other Lipid Mediat 84(3–4):83–97

	16.	Olivera A, Allende ML, Proia RL (2013) Shaping the landscape: metabolic regulation of S1P 
gradients. Biochim Biophys Acta 1831(1):193–202

	17.	Hait NC et  al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-
phosphate. Science 325(5945):1254–1257

	18.	Strub GM et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mito-
chondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB 
J 25(2):600–612

	19.	Kihara Y, Maceyka M, Spiegel S, Chun J  (2014) Lysophospholipid receptor nomenclature 
review: IUPHAR Review 8. Br J Pharmacol 171(15):3575–3594

	20.	Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling 
and its role in disease. Trends Cell Biol 22(1):50–60

	21.	Bieberich E (2012) It’s a lipid’s world: bioactive lipid metabolism and signaling in neural stem 
cell differentiation. Neurochem Res 37(6):1208–1229

	22.	Ghasemi R, Dargahi L, Ahmadiani A (2016) Integrated sphingosine-1 phosphate signaling in 
the central nervous system: from physiological equilibrium to pathological damage. Pharmacol 
Res 104:156–164

	23.	Pitson SM, Pebay A (2009) Regulation of stem cell pluripotency and neural differentiation by 
lysophospholipids. Neurosignals 17(4):242–254

	24.	Kobayashi NR, Hawes SM, Crook JM, Pebay A (2010) G-protein coupled receptors in stem 
cell self-renewal and differentiation. Stem Cell Rev 6(3):351–366

	25.	Todorova MG, Fuentes E, Soria B, Nadal A, Quesada I (2009) Lysophosphatidic acid induces 
Ca2+ mobilization and c-Myc expression in mouse embryonic stem cells via the phospholi-
pase C pathway. Cell Signal 21(4):523–528

	26.	Kleger A et al (2007) The bioactive lipid sphingosylphosphorylcholine induces differentiation 
of mouse embryonic stem cells and human promyelocytic leukaemia cells. Cell Signal 
19(2):367–377

	27.	Lee CW, Rivera R, Gardell S, Dubin AE, Chun J  (2006) GPR92 as a new G12/13- and 
Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J  Biol Chem 
281(33):23589–23597

G.E. Lidgerwood and A. Pébay



9

	28.	Smith GS, Kumar A, Saba JD (2013) Sphingosine phosphate lyase regulates murine embry-
onic stem cell proliferation and pluripotency through an S1P(2)/STAT3 signaling pathway. 
Biomolecules 3(3):351–368

	29.	Ryu JM et al (2014) Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse 
embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. 
Stem Cell Res 12(1):69–85

	30.	Rodgers A et al (2009) Sphingosine 1-phosphate regulation of extracellular signal-regulated 
kinase-1/2 in embryonic stem cells. Stem Cells Dev 18(9):1319–1330

	31.	Pebay A et al (2005) Essential roles of sphingosine-1-phosphate and platelet-derived growth 
factor in the maintenance of human embryonic stem cells. Stem Cells 23(10):1541–1548

	32.	Ermakov A et al (2012) A role for intracellular calcium downstream of G-protein signaling in 
undifferentiated human embryonic stem cell culture. Stem Cell Res 9(3):171–184

	33.	Kleger A, Liebau S, Lin Q, von Wichert G, Seufferlein T (2011) The impact of bioactive lipids 
on cardiovascular development. Stem Cells Int 2011:916180

	34.	Schuck S, Soloaga A, Schratt G, Arthur JS, Nordheim A (2003) The kinase MSK1 is required 
for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells. BMC Mol Biol 
4:6

	35.	Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by 
defined factors. Cell 131(5):861–872

	36.	Blauwkamp TA, Nigam S, Ardehali R, Weissman IL, Nusse R (2012) Endogenous Wnt signal-
ling in human embryonic stem cells generates an equilibrium of distinct lineage-specified pro-
genitors. Nat Commun 3:1070

	37.	Hsiao C et al (2016) Human pluripotent stem cell culture density modulates YAP signaling. 
Biotechnol J 11((5)):662–675

	38.	Qin H et al (2016) YAP induces human naive pluripotency. Cell Rep 14(10):2301–2312
	39.	Yu F-X, Guan K-L (2013) The Hippo pathway: regulators and regulations. Genes Dev 

27(4):355–371
	40.	Wong RC, Tellis I, Jamshidi P, Pera M, Pebay A (2007) Anti-apoptotic effect of sphingosine-

1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells 
Dev 16(6):989–1001

	41.	Avery K, Avery S, Shepherd J, Heath PR, Moore H (2008) Sphingosine-1-phosphate mediates 
transcriptional regulation of key targets associated with survival, proliferation, and pluripo-
tency in human embryonic stem cells. Stem Cells Dev 17(6):1195–1205

	42.	Brimble SN et  al (2007) The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not 
essential for human ESC pluripotency. Stem Cells 25(1):54–62

	43.	He Q et al (2014) Primary cilia in stem cells and neural progenitors are regulated by neutral 
sphingomyelinase 2 and ceramide. Mol Biol Cell 25(11):1715–1729

	44.	Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895

1  Lysophosphatidic Acid and Sphingosine-1-Phosphate in Pluripotent Stem Cells 



11© Springer International Publishing AG 2017 
A. Pébay, R.C.B. Wong (eds.), Lipidomics of Stem Cells, Stem Cell Biology and 
Regenerative Medicine, DOI 10.1007/978-3-319-49343-5_2

Chapter 2
Morphogenetic Sphingolipids in Stem Cell 
Differentiation and Embryo Development

Guanghu Wang and Erhard Bieberich

Abbreviations

Akt	 AK strain transforming (Akt kinase)
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NPC	 Neural precursor cell
nSMase	 Neutral sphingomyelinase
OPC	 Oligodendrocyte precursor cells
PAR-4	 Prostate apoptosis response 4
PDGF	 Platelet-derived growth factor
PDMP	 N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenylethyl]-decanamide
PHB2	 Prohibitin 2
PI3K	 Phosphatidyl inositol 3 kinase
PIP	 Phosphatidyl inositol phosphate
PKC	 Protein kinase C
PLC	 Phospholipase C
PP2a	 Protein phosphatase 2a
S18	 N-oleoyl serinol
S1P	 Sphingosine-1-phosphate
Shh	 Sonic hedgehog
SphK	 Sphingosine kinase
SPL	 S1P lyase
Spns2	 Spinster homolog 2
Stat3	 Signal transducer and activator of transcription 3
Wnt	 Wingless type MMTV

2.1  �Ceramide and Its Derivatives

In this section, we will focus on the function of ceramide and derivatives known to 
regulate stem cell differentiation, namely, sphingosine-1-phosphate (S1P), ceramide-
1-phosphate (C1P), and glycosphingolipids (GSLs) (Fig. 2.1). We will not discuss 
sphingolipid metabolism or the function of sphingolipids in general cell-signaling 
pathways. There are excellent reviews and the reader is encouraged to attend to these 
resources [1, 2]. Instead, we will highlight most recent studies showing the function 
of sphingolipids in cell-signaling pathways critical for regulation of cell polarity and 
morphogenesis as part of the stem cell differentiation program.

2.1.1  �Ceramide and Ceramide-Enriched Compartments

A morphogenetic lipid will induce a specific stem cell differentiation program and 
regulate embryo development and morphogenesis. We have proposed that ceramide 
is such a morphogenetic lipid based on the observation that it is critical for the api-
cobasal patterning of the primitive ectoderm in embryonic stem (ES) cell-derived 
embryoid bodies and for promoting neural differentiation [2–6]. Compartmentalization 
into ceramide-enriched compartments, CECs, allows for localized metabolic release 
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of ceramide derivatives such as ceramide-1-phosphate (C1P, Fig. 2.1) or sphingosine-
1-phosphate (S1P, Fig. 2.1), and formation of local sphingolipid-protein complexes 
that regulate cell polarity. Several years ago, we have termed these hypothetical 
complexes “sphingolipid-induced protein scaffolds” or SLIPs and proposed their 
critical function for remodeling of the cytoskeleton and distribution of cell polarity 
proteins [7]. Recent studies in our and other laboratories support this hypothesis and 
open the possibility to engineer morphogenesis by changing the composition and 
compartmentalization of sphingolipids in stem cells.

Our studies and those from other laboratories have demonstrated that sphingolip-
ids including ceramide are organized in lipid microdomains or rafts and CECs 
[2, 8–18]. In addition, various lipids are distributed in a gradient with cholesterol 
and sphingomyelin enriched in the cell membrane, while ceramide appears to be 
enriched in the endosomal compartment [19–21]. Based on these observations, we 
hypothesize that the lateral anisotropy of sphingolipids leads to raft formation 
(X-axis in Fig. 2.2), which is integrated with a lipid gradient orthogonal to the mem-

Fig. 2.1.  Structure and metabolism of morphogenetic sphingolipids and effectors/analogs. 
Ceramide is a metabolic hub for the generation of morphogenetic sphingolipids. Myriocin is a 
serine palmitoyltransferase (SPT) inhibitor. Note the structural difference between C18:0 ceramide 
(N-oleoyl sphingosine) and C24:1 ceramide (N-nervonoyl sphingosine). Fumonisin B1 (FB1) is a 
ceramide synthase inhibitor. FTY720 (fingolimod) is an S1P pro-drug analog. N-oleoyl serinol 
(S18) is a soluble ceramide analog developed in our laboratory. The two β-hydroxy methyl groups 
(circled) of the polar, serine-derived head group are a common structural motif of all ceramide 
analogs and many other effectors of sphingolipid metabolism
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brane (Y-axis in Fig. 2.2). This integration leads to compartmentalization that regu-
lates intracellular vesicle traffic and polarity similar to a road map directing car 
traffic (Fig. 2.2, bottom panel). Previous studies noted that sphingolipids are sorted 
into specific vesicle populations and enriched along distinct trafficking pathways 
[22–27]. The vesicular identity is even preserved during mitosis when many com-
partments such as the Golgi apparatus and the nuclear envelope are disintegrated 
into a myriad of vesicles and yet reassemble in the daughter cells to their original 
organelles. While only little is known about the sorting mechanisms that direct dis-
tinct sphingolipid trafficking pathways toward specific lipid-enriched compartments 
(including CECs) when exported from the Golgi apparatus/trans-Golgi network or 
internalized by endocytosis [25, 28–30], one may speculate that they are intimately 
connected to our model of a lipid road map guiding establishment of cell polarity 
and ultimately, asymmetric division of progenitor cells and embryo morphogenesis. 
Our group has shown that two distinct compartments, cilia and exosomes, are 
enriched with ceramide and directly linked to cell polarity in differentiating stem 
cells and secretion of growth factors. Formation of these CECs is stimulated by 
exogenously added ceramide or compromised by inhibitors of enzymes that gener-
ate ceramide. Ceramide is enriched at the base and in the membrane of cilia, a cell 
compartment with sensory and motility functions [4, 11, 31]. It is also enriched in 
exosomes, lipid vesicles generated in the endosomal compartment and then secreted 
to transfer cell signaling and growth factors between cells [32].

Fig. 2.2.  Lipid road map in vesicle trafficking and compartment identity. Integration of lateral 
membrane anisotropy (lipid rafts or microdomains, here along X-axis) with orthogonal lipid 
gradients (anterograde and retrograde trafficking pathways, here along Y-axis) generates a map 
of vesicles and compartments with distinct lipid composition critical for cell polarity and 
morphogenesis
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2.1.1.1  �Ceramide and Cilia

Primary cilia are important for stem cell differentiation because they are endowed 
with growth factor receptors controlling sonic hedgehog, Wnt, FGF, and PDGF cell-
signaling pathways [33–53]. Sonic hedgehog binding to its receptor Patched releases 
the co-receptor Smoothened that is then transported into the cilium and activates the 
transcription factor Gli, a cilium-controlled process that has been termed “Gli shut-
tle” [54]. In the neural tube, this mechanism is critical for ventral pattering of the 
neuroepithelium [33]. In adult neural stem cells and oligodendrocyte precursor cells 
(OPCs), this mechanism induces the differentiation to neurons and oligodendro-
cytes, respectively [44, 51, 52]. Factors that regulate ciliogenesis or cilium function 
are likely to affect and edit these cell-signaling pathways (readers interested in the 
developmental function of cilia and cilia disorders (ciliopathies) in brain, bone, kid-
ney, and heart are prompted to the following excellent reviews on these topics: [37, 
49, 55–61]). While most of research focused on proteins in the regulation of cilia, 
only very little is known about the function of lipids in ciliogenesis and cilium-
induced cell-signaling pathways for stem cell differentiation.

Ceramide is critical for primary cilium formation in mouse and human ES cell-
derived neural progenitors [4]. When undifferentiated ES cells were incubated with 
the ceramide synthase inhibitor Fumonisin B1 (FB1, Fig. 2.1) or the neutral sphin-
gomyelinase (nSMase) inhibitor GW4869, the number and length of primary cilia 
in neural progenitors were reduced. However, levels of Sox2 and Pax6, two tran-
scription factors expressed in neural progenitors, were not affected. Despite under-
going neural differentiation, progenitors were not able to form rosettes, indicating 
that loss of ceramide disrupts morphogenesis of the neural tube and ventricular zone 
during embryonic brain development. Indeed, the fro/fro mouse carrying a deletion 
in nSMase shows reduced number and length of ependymal cell motile cilia [31]. 
Using various inhibitors for ceramide generation including myriocin (Fig. 2.1), FB1 
(Fig. 2.1), and GW4869, our group has found that ceramide is not only critical for 
ciliogenesis, but it is also involved in establishing apicobasal polarity of primitive 
ectoderm cells and neural progenitors [3, 6].

One of the questions currently investigated in our group is how ceramide reg-
ulates the cell-signaling pathways for apicobasal polarity and ciliogenesis. Our 
working hypothesis is that ceramide enriched in CECs interacts with polarity 
proteins and the cytoskeleton. Candidate proteins are atypical protein kinase Cζ 
and ι/λ (aPKC) and glycogen synthase kinase 3β (GSK3), two protein kinases we 
have shown to bind to ceramide and to regulate acetylation of tubulin in neural 
cell cilia [3, 10, 31, 62–64]. aPKC as well as GSK3 are also critical for maintain-
ing pluripotency and editing lineage commitment [65–72]. Ceramide binding to 
these two kinases may very well regulate differentiation of stem cells of various 
origins. Since ceramide distribution is anisotropic within cellular membranes 
and even polarized in neural progenitor cells, modulation of aPKC and GSK3 
may act through sequestration to CECs and modulation of kinase activity. We 
have found that the addition of exogenous ceramide, in particular very long chain 
fatty acid (C24:1) ceramide (Fig. 2.1), increases tubulin acetylation and rescues 
cilia in neural progenitors with inhibited ceramide biosynthesis [4]. Intriguingly, 
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acetylated tubulin-labeled processes in ES cell-derived neurons were elongated 
far beyond 500 μm, indicating that ceramide drives neural differentiation and 
process formation.

Another ceramide target is protein phosphatase 2A (PP2A). Protein phospha-
tases were among the first enzymes shown to be activated by ceramide [73–76]. 
Recent research suggests that ceramide functions to sequester and inactivate the 
PP2A inhibitor protein I2PP2A in the holoenzyme complex [77]. The significance 
of the endogenous ceramide–PP2A interaction for stem cell differentiation has not 
been investigated yet. However, inhibition of PP2A has been reported to sustain 
self-renewal of stem cells and activation of PP2A by exogenous C2 ceramide has 
been shown to promote neural differentiation [78, 79]. These observations suggest 
that activation of PP2A by endogenous ceramide promotes stem cell differentiation 
toward neural cell fate. PP2A has also been found to increase dephosphorylation of 
aPKC and GSK3 in Drosophila neuroblasts and mammalian cells [79, 80], indicat-
ing a synergistic effect with direct binding of these two kinases to ceramide by 
inactivating (sequestering) aPKC and activating GSK3. In addition to direct effects 
by binding to PP2A, ceramide can upregulate GSK3 activity by inhibiting the phos-
phatidylinositol 3 kinase (PI3K)-to-Akt pathway, a major GSK3-inactivating cell-
signaling pathway known to sustain self-renewal of stem cells [80, 81]. Taken 
together, regulation of GSK3 by ceramide involves a variety of cell-signaling net-
works including aPKC (inactivates GSK3 unless sequestered by ceramide), PI3K/
Akt (inactivates GSK3 unless inhibited by ceramide), PP2a (activates GSK3 when 
activated by ceramide), suggesting that ceramide is a bona fide drug target for 
enhancing neural differentiation in regenerative medicine.

On a separate note, ceramide appears to be important for both, neuronal and glial 
differentiation of ES cells, since studies in our laboratory have shown that the com-
bination of exogenously added ceramide (or the ceramide analog N-oleoyl serinol, 
S18, Fig. 2.1) and S1P (or the S1P pro-analog FTY720, Fig. 2.1) directs neural cell 
fate toward oligodendroglial lineage [82] (for more information on S1P, see follow-
ing section). In addition, ceramide is critical for primary and motile ciliogenesis in 
astrocytes and ependymal cells, respectively [4, 31]. In summary, these results sug-
gest that ceramide regulates neural cell fate by a common mechanism that involves 
ciliogenesis and cell-signaling pathways activated by cilia. Therefore, sonic hedge-
hog and PDGF are likely candidates to be regulated by ceramide.

2.1.1.2  �Ceramide and Exosomes

Exosomes belong to the population of extracellular vesicles (EVs), lipid vesicles 
that are secreted as intercellular carriers by transporting and transferring proteins, 
lipids, and RNAs (including microRNAs). In addition to exosomes that are gener-
ated in multivesicular endosomes, microvesicles or ectosomes blebbing off the cell 
membrane constitute another portion of EVs. Ceramide has been shown to be 
required for the formation and secretion of a particular population of exosomes 
(ESCORT-independent exosomes) although it is not clear whether there is a specific 
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function of ceramide-dependent exosomes vs. other EV fractions [32, 83–85]. Our 
laboratory has shown that exosomes enriched with ceramide, particularly C18:0 
ceramide (Fig. 2.1) play important functions in the etiology of Alzheimer’s disease 
[32, 86]. It is not known if stem cells are involved in this process. Cancer stem cells 
have been shown to secrete exosomes or shed microvesicles to reprogram the host 
tissue and accommodate metastases [83, 87–90]. This is mainly achieved by the 
transfer of mRNAs, microRNAs, and enzymes breaking down the extracellular 
matrix such as matrix metalloproteases.

In principle, stem or progenitor cells could adopt a similar mechanism to either 
reprogram the tissue in which they differentiate or to receive instructions for dif-
ferentiation into a particular tissue. In tissue damage and subsequently tissue regen-
eration, EVs were found to activate stem cells and induce tissue repair [91–95]. In 
addition, “instructive” exosomes can be custom-made for the use of stem cells in 
regenerative medicine [96]. In this case, ceramide may primarily be used for boost-
ing instructive exosome formation. It should be noted that the “ciliogenic” C24:1 
ceramide (Fig. 2.1) is structurally different from the “exosomogenic” C18:0 
ceramide (Fig. 2.1) and that biophysical studies using synthetic lipid vesicles gener-
ated with these two ceramide species showed remarkable differences in shaping 
membranes. While C18:0 ceramide induces spherical shapes, C24:1 ceramide trig-
gers formation of tubules [97, 98]. In astrocyte-derived exosomes, the major cerami-
des were C18:0 ceramide (ca. 60%) and C24:1 ceramide (ca. 30%) [32]. Therefore, 
by being enriched in the exosomal membrane, ceramide (especially neuronal 
process-inducing C24:1 ceramide) may also participate in induction of stem cell 
differentiation, particularly toward neural lineage as described in the previous sec-
tion. It should be noted that exosomes are exquisite lipid carriers comparable to 
liposomes because of their higher surface (membrane)-to-volume ratios, which is 
dictated by geometry. Currently, the most promising examples for therapeutic use of 
(stem cell-derived) EVs are cardiovascular wound repair and protection against 
ischemia-reperfusion injury in heart and kidney [91, 95, 99–102].

2.1.2  �Sphingosine-1-Phosphate

Sphingosine-1-phosphate (S1P) is a metabolic derivative of ceramide and another 
morphogenetic sphingolipid that has a widespread range of biological effects, 
including regulation of pluripotency and differentiation, survival and proliferation, 
migration, and homing. S1P regulates the pertinent cell-signaling pathways in vari-
ous stem cell types, such as pluripotent stem cells, neural stem cells, mesenchymal 
stem cells, hematopoietic stem cells, endothelial stem cells, and cardiac precursor 
cells [2, 103–107].

S1P has a short half-life and its tissue levels are maintained by numerous 
enzymes and factors [103–105]. S1P is mainly generated intracellularly by two 
enzymes, sphingosine kinase 1 (SphK1) and 2 (SphK2); irreversibly degraded by 
S1P lyase (SPL); and hydrolyzed by lipid phosphate phosphatases and S1P-specific 
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phosphatases. It is also exported out of cells by transporter proteins, such as ABC 
transporters and Spns2 [106, 108–112]. S1P exportation from red blood cells, acti-
vated platelets, and endothelial cells comprises most of the extracellular S1P pool, 
which is usually found at a several-fold higher concentration than that of tissues 
[112]. SphK1 can also be secreted out and generate S1P outside of cells [112].

Extracellular S1P exerts its function through five cell surface G protein-cou-
pled receptors (GPCRs) S1P1–S1P5 [113] (Fig. 2.3). It stimulates different sig-
nal transduction pathways in different cell types depending on the receptors 
expressed. For example, S1P receptor 1 (S1P1) is coupled exclusively via Gi 
protein to activate Ras, mitogen-activated protein kinase (MAPK), PI3K/Akt, 
and phospholipase C pathways [113] (Fig. 2.3). Extracellular S1P has been used 
to derive or maintain mESCs and hESCs in experimental settings [114–117], 
demonstrating stimulation of stem cell self-renewal and pluripotency by extra-
cellular S1P. In mESCs, the main pathway allowing maintenance of pluripotency 
appears to be through the activation of the JAK/STAT3 pathway [117–119]. This 
notion is supported by studies showing that silencing of the S1P-degrading 
enzyme, SPL, leads to an increased S1P level concomitant with increased prolif-
eration, and elevated expression of pluripotency markers Ssea1 and Oct-4  in 
mESCs [120]. The S1P2/Stat3 signaling has been identified to be the major path-
way in SPL knockdown-mediated pluripotency. Besides pluripotency mainte-
nance, extracellular S1P plays other crucial roles in stem cells, including 
proliferation, migration, and homing of various types of progenitor cells (see 
reviews by [109, 121–124]), and it is critical for vascular development ([109, 
125, 126] and reviews by [123, 124]). Extracelluar S1P signaling is important for 
tumorigenesis and holds great potential as target for disease treatment [105]. S1P 
promotes cancer stem cell generation and expansion, which contributes greatly 
to drug resistance, metastasis, and relapse in multiple cancer types [127, 128]. 

Fig. 2.3.  Signaling pathways regulated by extracellular S1P. Extracellular S1P is a ligand for five 
specific G protein-coupled receptors S1P1–S1P5 . Each S1P receptor is coupled to different G pro-
teins; Gi,Gq, G12–13, which regulates stem cell pluripotency, self-renewal, and differentiation through 
various kinases such as ERK (extracellular signal-regulated kinases), PI3K (phosphatidylinositol-
4,5-bisphosphate 3-kinase), AC (adenylyl cyclase), PLC (phospholipase C), and Rho GTPase
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On the other hand, S1P-primed human mesenchymal stem cells enhance thera-
peutic potential for pulmonary artery hypertension [129].

Intracellular S1P carries out its function in a receptor-independent manner 
[104], by either mediating calcium release from the endoplasmic reticulum, or by 
interacting with its intracellular targets, such as PKCδ, histone deacetylases 
(HDACs), prohibitin 2 (PHB2), Grp94, and Hsp90α [130, 131] (Fig. 2.4). The 
intracellular S1P target, PKCδ, is essential for stem cell maintenance and differ-
entiation. Activation of PKCδ mediates cardiac differentiation from ESCs and 
hematopoietic stem cells [132, 133]. Further, PKCδ activity is required for 
Jagged-1 induced osteoblast differentiation in hESCs together with canonical 
Notch signaling [134]. With respect to the function of PKCδ in stem cell pluripo-
tency, it has been found that treatment with PKCδ inhibitors, GF 109203X and 
rottlerin, prevents early differentiation of mESCs undergoing hypoxia by increas-
ing levels of leukemia inhibitory factor (LIF) receptor and phosphorylated Stat3 
[135]. These studies were validated in human pluripotent stem cells by a kinase 
inhibitor library screening, which identifies PKC inhibitors capable of enhancing 
pluripotency [136]. Another intracellular target of S1P is histone deacetylase 
(HDAC). It is known that epigenetic landscapes determine stem cell fate (see 
reviews [137, 138]). HDACs form the core catalytic component of co-repressor 
complexes that epigenetically regulate gene expression. Deletion of HDAC1 and 

Fig. 2.4.  Signaling pathways regulated by intracellular S1P. Intracellular S1P regulates stem cell 
fate through intracellular targets ceramide, HDAC (histone deacetylases, nuclear), Hsp90 (heat 
shock protein 90, cytosolic), Grp94 (glucose-regulated protein 94, ER), PHB2 (prohibitin 2, mito-
chondria), PKCδ (protein kinase C δ, cytosolic), and potentially TRAF2 (TNF receptor associated 
factor 2, cytosolic)
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HDAC2 in ES cells caused cell death specifically in undifferentiated cells, con-
comitant with drastic reduction of pluripotency factors Oct-4, Nanog, Esrrb, and 
Rex1, indicating that HDAC1 and HDAC2 are essential for pluripotency and 
renewal of embryonic stem cells [139]. During stem cell differentiation, HDAC 
inhibition increases expression of neuroectodermal markers and enhances the 
neuroectodermal specification once neural differentiation is initiated, thereby 
leading to more neural progenitor cell generation.

In addition to HDACs, other intracellular target proteins of S1P have been identi-
fied. S1P activates Prohibitin 2 (PHB2). PHB2 is a pleiotropic factor mainly local-
ized in mitochondria. PHB2 is highly expressed in pluripotent mESCs and decreased 
during differentiation. Knockdown of PHB2 leads to significant apoptosis, whereas 
its overexpression results in enhanced proliferation. These results suggest that 
PHB2 is a crucial regulatory factor for homeostasis and differentiation in mES cells 
[140]. Similarly, in flat worms (planarians), silencing of PHB2 greatly reduced the 
number of proliferating neoblasts, which severely impairs tissue regeneration [141]. 
The Hsp90 family members Hsp90α and Grp94 are newly identified intracellular 
S1P target proteins [131]. S1P specifically interacts with the N-terminal domain of 
heat shock proteins during ER stress [131]. Both Hsp90 and Grp94 are essential 
regulators of stem cell fate. Pharmacological inhibition and genetic knockdown of 
Hsp90 leads to pluripotency loss in mESCs, which is rescued by Hsp90 re-expression 
[118]. Hsp90 associates with Oct-4 and Nanog and protects them from degradation 
by the ubiquitin proteasome system [118]. Hsp90 inhibition predominantly leads to 
mesoderm differentiation. Because of these effects, Hsp90 inhibitors have been 
used to specifically eliminate cancer stem cells in a wide range of cancer types [142, 
143]. On the other hand, Grp94 deletion leads to defects in mesoderm formation in 
mice as well as mESCs [144]. Liver-specific deletion of GRP94 leads to hyperpro-
liferation of progenitor cells and acceleration of tumor development in a PTEN-
dependent manner, including both hepatocellular carcinoma and cholangiocarcinoma, 
suggestive of progenitor cell origin [145]. In summary, both intra- and extracellular 
S1P play profound roles in stem cell biology, which in turn contributes significantly 
to normal development, morphogenesis, and disease initiation and treatment.

2.1.3  �Ceramide-1-Phosphate

Ceramide-1-phosphate (C1P) is synthesized from ceramide by ceramide kinase 
(Fig. 2.1). It has been shown to induce migration of mesenchymal and hematopoi-
etic stem cells although studies on embryonic stem cells or embryo development are 
not yet available [146–148]. Its potential as sphingolipid being important for stem 
cell differentiation (and potentially, morphogenesis) may emerge from its ability to 
activate phospholipase A2, an enzyme generating lysophosphatidic acid (LPA) and 
arachidonic acid, the precursor of eicosanoids [149–151]. Both LPA and eico-
sanoids involved in stem cell differentiation will be discussed in other chapters of 
this book.

G. Wang and E. Bieberich



21

2.1.4  �Glycosphingolipids

Glycosphingolipids (GSLs) are a major class of ceramide derivatives important for 
differentiation of stem and progenitor cells. Their biosynthesis starts with glyco-
sylation of the C1 hydroxyl group of ceramide using activated glucose or galac-
tose, which can then be followed by the addition of other sugar residues that are 
either neutral (neutral GSLs) or modified by acidic groups (sulfatides and complex 
GSLs) (Fig. 2.1). Galactosylceramide is the main (neutral) GSL in brain and com-
prises about 23% of the total mass of myelin lipids [152]. Galactosylceramide is 
also known as O1 epitope, a marker for immature oligodendrocytes and the meta-
bolic precursor for galactosulfatide (O4 epitope), a marker for OPCs [153–155]. 
Determination or isolation of OPCs and oligodendrocytes is achieved by detecting 
and separating cells with O4(+)/O1(−) and O4(+)/O1(+) epitopes, respectively. 
Interestingly, the O4 (but not O1) antibody can block terminal differentiation of 
oligodendrocytes, indicating a functional role of galactosulfatide in differentiation 
[156, 157].

Galactosulfatide has been suggested to mediate axon-glial contact at the node of 
Ranvier, a site were the myelin sheath attaches to the axon and leaves a gap for salta-
tory conduction of the electrical current along the nerve fiber [158–160]. The role of 
galactosulfatide in OPC differentiation is unclear, while the function of its precursor 
galactosylceramide is better characterized. It has been reported that galactosylce-
ramides form lipid microdomains or rafts with two other lipids, cholesterol and 
sphingomyelin in the membrane of the endoplasmic reticulum of OPCs and other 
cells [161–163]. These lipid rafts interact with sigma receptors important for OPC 
differentiation. It is not known if galactosulfatide forms lipid rafts as well [161].

In contrast to galactosulfatide, the function of other GSLs, particularly globo-
sides and gangliosides in the regulation of growth factor receptors by lipid rafts is 
well investigated. Globosides and gangliosides are synthesized from glucosylce-
ramide by first adding galactose (forms lactosylceramide) and then other sugar resi-
dues with modification, particularly N-acetyl residues (Fig. 2.1). A rather simple 
ganglioside termed GD3 has been found to be highly enriched in neural stem cells 
and to activate EGF receptors in lipid rafts of the plasma membrane [164–169]. 
Another more complex ganglioside, GM1, has been shown to activate calcium 
influx into nuclei, which is likely to involve lipid rafts and interaction of Na/Ca 
exchangers with GM1 in the nuclear membrane [170–174]. While GD3 promotes 
self-renewal of neural stem and progenitor cells, GM1-induced calcium influx trig-
gers neural differentiation and sustains function of mature neurons. Consistent with 
consecutive stages of neural differentiation, ganglioside biosynthesis switches from 
simpler to more complex gangliosides at gestational day E14.5 (mouse), a time 
point when neural progenitor cells start to divide asymmetrically and give rise to 
one self-renewing daughter stem cell and one intermediate progenitor eventually 
undergoing terminal differentiation [175, 176]. We have found that at this time point 
in brain development, ceramide is also upregulated, suggesting integration of sphin-
golipid metabolism with neural differentiation [177].
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Consistent with the importance of sphingolipid metabolism for neural differen-
tiation, knockout mice for enzymes in ceramide or ganglioside biosynthesis show 
defects in brain development or function [16, 178–183]. Due to metabolic and func-
tional redundancy (several enzymes can generate the same lipid or different lipids 
have similar functions), the phenotypes of these knockout mice are not always as 
severe as predicted by functions determined in  vitro. In fact, it appears that the 
severity of ceramide synthase and glycosyltransferase knockout mice in ceramide 
and ganglioside biosynthesis is more visible during adult neural differentiation and 
function than in embryo development. The knockout mice described for deletion of 
ceramide synthase 1 and 2, glucosylceramide synthase, and alkaline ceramidase 3 
are deficient in cerebellar function, particularly due to Purkinje neuron defects or 
loss [184–189]. The phenotype of the ceramidase synthase 1-deficienct mouse 
resembles that of the alkaline ceramidase 3 knockout, suggesting that ceramide 
imbalance is detrimental for adult neural differentiation and function [184, 188]. 
However, in the ceramide synthase knockout mice, deficiency of a particular 
ceramide species is accompanied by accumulation of the immediate metabolic 
ceramide precursors, the long chain bases sphingosine and dihydrosphingosine 
[188, 190]. Most recently, it was shown that expressing ceramide synthase 2 in the 
background of ceramide synthase 1 knockout leads to normalization of the long 
chain bases sphingosine and dihydrosphingosine, while total ceramide levels were 
not affected [190]. This observation suggests that the phenotype of ceramide syn-
thase knockouts is rather caused by accumulation of long chain bases than lack of 
ceramide. Interestingly, neurotoxicity of long chain bases has already been described 
decades ago when the fungus toxin fumonisin B1 (FB1) was found in Fusarium-
contaminated corn or food for kettle and horses [191–194]. FB1 is a specific inhibi-
tor of ceramide synthases, which leads to reduction of total ceramide and increase 
of long chain base concentration. In rural areas of South America, eating tortillas 
contaminated with Fusarium leads to a high rate of birth defects, particularly neural 
tube closure defects and spina bifida [195]. This phenotype resembles genetic defi-
ciencies in the Shh pathway, which we already discussed to be activated by primary 
cilia, and potentially ceramide as regulator for ciliogenesis [196–198]. Currently, it 
is not known why increased levels of long chain bases or decreased ceramide levels 
affect neural development, but the phenotypes of the respective knockout mice and 
effects of inhibitors in ceramide biosynthesis clearly indicate that regulation of 
sphingolipid metabolism is critical for neural differentiation and function.

2.1.5  �Sphingolipids in Stem Cell Therapy and Regenerative 
Medicine

The plethora of developmental processes regulated by sphingolipids suggests that 
they are useful in regenerative medicine, particularly for the controlled differentia-
tion of stem cells. Currently, there are three potential avenues tested or hypotheti-
cally useful for the application of sphingolipids in stem cell differentiation and 
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regenerative medicine: (1) direct administration of sphingolipids or analogs; (2) 
generation and administration of sphingolipid-enriched exosomes; and (3) adminis-
tration of effectors for enzymes in sphingolipid metabolism. Sphingolipids/analogs, 
exosomes, and enzyme effectors can be added to stem cells in vitro prior to grafting 
or in vivo, directly into the recipient organism prior to, after, or without stem cell 
transplantation. Research in our laboratory has focused on in  vitro treatment of 
pluripotent stem cells with ceramide and S1P analogs prior to transplantation into 
brain. In many ES cell-derived progenitor cell preparations, residual pluripotent 
stem cells pose the risk of teratoma or other tumor formation after transplantation 
[199]. We discovered that escaping from apoptosis is one of the reasons why resid-
ual pluripotent or progenitor cells (termed “Zombie cells”) continue to proliferate 
[200]. Once apoptosis is reactivated by incubation of progenitors with ceramide 
analogs, particularly N-oleoyl serinol or S18 (Fig. 2.1), the risk of teratoma forma-
tion is dramatically reduced. In follow-up studies, we observed that incubation of 
S18-treated stem cells with the S1P pro-analog FTY720 (Fig. 2.1) directs neural 
differentiation toward oligodendroglial lineage [5, 82]. Our results suggest that the 
expression level of prostate apoptosis response-4 (PAR-4), a sensitizer toward 
ceramide-induced apoptosis, is critical for this specificity. In contrast to residual 
pluripotent cells with higher PAR-4 expression levels, neural progenitors express 
only little of PAR-4, while they express the S1P and FTY720 receptor S1P1 (Edg-1), 
which promotes oligodendrocyte differentiation [5].

The use of FTY720 in improving oligodendrocyte differentiation or function has 
been hypothesized to be in part responsible for the beneficial effect of fingolimod, 
the medical preparation of FTY720, in treating multiple sclerosis (MS). The main 
effect of FTY720 is induction of endocytosis and proteolytic degradation of S1P1 in 
peripheral T-cells that account for the autoimmune response destroying myelin in 
MS patients [201]. However, recent research suggests that FTY720 has additional 
effects on the central nervous system due to its ability to penetrate the blood–brain 
barrier. For one, it has been found to downregulate S1P1  in reactive astrocytes, 
which suppresses neuroinflammation aggravating MS. [202, 203] Secondly, it has 
been shown to protect NPCs and OPCs due to its activating effect on S1P1 [5, 204, 
205]. Most likely, the outcome of FTY720 depends on the effective dose and dura-
tion of incubation. At low nanomolar concentration and short incubation time, it 
will activate S1P1 and protect and promote differentiation of OPCs, while at higher 
concentration and longer incubation time, it will induce S1P1 receptor degradation 
and prevent neuroinflammation. More recently, several additional molecular targets 
of FTY720 have been identified, including ceramide synthase (inhibited by FTY720) 
and PP2A (activated by FTY720), turning this drug into a promising “magic bullet” 
for treatment of several CNS diseases and cancer [206–210].

While direct administration of sphingolipid analogs to stem cells or in vivo is one 
potential application, the use of exosomes is another one that rapidly gains interest 
in regenerative medicine. So far, two avenues have been tested: (1) administration 
of exosomes to stem cells prior to grafting, and (2) direct injection of exosomes into 
the blood stream. Exosomes can be stem cell-derived (“stem cell therapy without 
stem cells”) or they can be custom-made and produced by any other appropriate cell 
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type [91–95, 211]. Of the >100 papers currently published on the topic of exosomes 
in regenerative medicine, the majority focuses on designing exosomes carrying spe-
cific microRNAs to reprogram stem cells in vitro and in vivo. Only little is known 
on the use of sphingolipids in exosome therapy.

Last not least, effectors of sphingolipid metabolism can be directly used in stem 
cells to “metabolically reprogram” their identity, enhance safety, or boost differen-
tiation toward a particular lineage. While promising in theory, this approach has 
not yet found significant practical application. The reason maybe twofold: (1) most 
known effectors of sphingolipid metabolism are enzyme inhibitors that prevent 
biosynthesis of sphingolipids useful for stem cell differentiation such as ceramide, 
S1P, and gangliosides; and (2) once biosynthesis of a particular sphingolipid is 
inhibited, a wealth of important metabolic derivatives of this sphinoglipid are also 
depleted. Enzyme inhibitors have not found widespread use to manipulate sphin-
golipid metabolism in stem cells. However, there are anecdotal reports that may 
change this. D-PDMP, a specific inhibitor of glucosyltransferase, the enzyme that 
converts ceramide to glucosylceramide, has been applied to neural progenitor cells, 
but without significant effect on neural differentiation [212]. The non-inhibitor ste-
reoisomer L-PDMP, however, was shown to stimulate neural progenitor prolifera-
tion in  vitro and in  vivo [213–215]. It has been suggested that in contrast to 
D-PDMP, L-PDMP stimulates glucosylceramide and ganglioside biosynthesis, but 
it is not known if this compound can be used to enhance stem cells for therapy. In 
principle, a combination of enzyme inhibitors and sphingolipid analogs can be 
used to tailor the sphingolipid composition in stem cells and control differentia-
tion. Future studies are needed to determine if this approach is beneficial in stem 
cell therapy and regenerative medicine.

2.2  �Other Lipids

Apart from sphingolipids, many other lipids are known to regulate stem cell differ-
entiation and embryo morphogenesis. These lipids can be post-translational modifi-
cations of cell-signaling proteins (e.g., palmitoylation), receptor ligands (e.g., 
eicosanoids), or cell-signaling lipids to activate or inhibit cell-signaling pathways 
(e.g., phosphatidylinositol phosphates or PIPs) that sustain self-renewal or promote 
differentiation of stem and progenitor cells [2]. These lipids often form lipid micro-
domains or rafts together with sphingolipids due to membrane anisotropy. Therefore, 
they can cooperate with sphingolipids in editing cell-signaling pathways for stem 
cell differentiation and morphogenesis. Among lipid modifications of cell-signaling 
proteins, palmitoylation and cholesterylation of Shh is probably the most prominent 
example [216, 217]. Cholesterol derivatives such as steroids, as well as eicosanoids 
and retinoic acid almost exclusively act through receptors. PIPs activate protein 
kinases in the stem cell survival pathway and promote differentiation toward spe-
cific lineages [218, 219]. Similar to ceramide, PIPs are not only cell signaling but 
also polarity lipids in that their asymmetric distribution recruits and locally activates 
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kinases in the regulation of cell polarity and migration. The integration of cell dif-
ferentiation and polarity is vital for germ layer formation and embryo morphogen-
esis. Similar to sphingolipids, generation and localization of other lipids, including 
cholesterol, eicosanoids, and PIPs is controlled by enzymes in the respective lipid 
metabolism, which allows for metabolic integration of stem cell metabolism and 
differentiation.

2.3  �Concluding Remarks

The effect of sphingolipids on stem cell differentiation is far more diverse than one 
could do justice in just one single review or book chapter. However, in order to 
define an overarching function for lipids in differentiation and development one 
should let go of discussing these effects for individual lipid classes. We believe that 
after finishing this chapter, one conclusion can be safely drawn: unlike many pro-
teins with narrowly defined functions, lipids often have overlapping functions and 
can complement or substitute for each other, regardless of being sphingolipids or 
other lipid classes. So, what is the “bigger picture” in the role of lipids for stem cell 
differentiation and development? Why do different lipids have similar effects and 
can complement or even substitute for each other? And how is this overarching 
function useful in regenerative medicine to improve stem cells?

In contrast to most proteins, the biosynthesis of which is initiated outside of the 
membrane, lipids are intrinsic constituents of cellular membranes. Many lipids do 
not have to be made and then inserted, they are of membrane origin. To change lipid 
composition, membranes are fused or membrane-resident lipids converted by 
enzymes. Therefore, lipids are the root cause for determining membrane fluidity 
and anisotropy, even if regulated by localized enzyme activation or spatially directed 
vesicle transport. This membrane anisotropy can show itself by localized clustering 
as in lipid rafts or even asymmetry as in apicobasal polarity or localized membrane 
protrusions such as cilia and neuronal processes. Membrane anisotropy may rely on 
lipids in self-organized domains or rafts, involve cytoskeletal and motor proteins 
that move rafts and vesicles, or endow proteins with lipid moieties to attach to rafts 
and form spatial gradients and locally defined cell-signaling platforms. Based on 
these few considerations, one may conclude that the main contributions of lipids to 
stem cell differentiation and embryo morphogenesis is to endow stem and progeni-
tor cells with polarity, a spatial cue that gives cells orientation in a bigger complex 
made of constantly morphing layers and tissues during development. Therefore, the 
term “morphogenetic lipids” is about the function of lipids in the integration of stem 
cell differentiation and embryo morphogenesis.

How can this function of lipids be utilized in designing differentiation protocols 
that improve stem cell therapy for regenerative medicine? The linchpin of lipid-
regulated stem cell differentiation and its integration with morphogenesis is the 
association of membrane anisotropy with regulation of the cytoskeleton and cell 
polarity. Membrane anisotropy is initiated by the formation of lipid microdomains 
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or rafts. Lipid rafts can be self-organized by the biophysical properties of lipids; this 
has been shown by a plethora of experiments using synthetic vesicles made of pure 
lipid compositions [15, 98, 220–224]. However, the way rafts morph, move, and 
interact with other membrane components needs the participation of proteins in a 
mutually regulating process.

Interestingly, the consequence of this rather inclusive view is that “next gen-
eration design” of stem cells in regenerative medicine will rely on reagent cock-
tails that include effectors for lipid metabolism as well as the associated protein 
signaling. In a somewhat surprising way, this has already been done from the very 
beginning of stem cell research. Colchicine, a microtubule-destabilizing drug, has 
been used to prevent neural differentiation of P19 teratocarcinoma and other types 
of undifferentiated stem cells [225–227]. Once commitment to neural progenitors 
is initiated by incubation with retinoic acid, cells become resistant due to acetyla-
tion- and detyrosination-induced stabilization of microtubules and incorporation 
of neurofilaments and microtubule-associated proteins [225, 227, 228]. Retinoic 
acid induces a several-fold increase in the levels of ceramide in teratocarcinoma 
cells, which has previously been considered a pro-apoptotic signal [229]. However, 
we have discovered that very long chain C24:1 ceramide is upregulated during 
neural differentiation of human ES and iPS cells and promotes acetylation of 
microtubules due to downregulation or inhibition of HDAC6 [4] (see also above 
for discussion of ceramide in ciliogenesis). Hence, ceramide may act through a 
dual effect on promoting neuronal differentiation and concurrent stabilization of 
microtubules by inhibiting deacetylation. Likewise, another ceramide target 
recently discovered, GSK3, may promote differentiation through the canonical 
Wnt/β-catenin cell-signaling pathway as well as increased outgrowth of neuronal 
processes through the non-canonical pathway and tubulin acetylation through 
inhibition of HDAC6, respectively.

The GPCR-to-PI3K/Akt-to-GSK3 cell-signaling pathway is one of the major 
signaling hubs interfacing induction of stem cell differentiation by growth factors 
with sphingolipid metabolism. Recent studies from our and other laboratories 
show that this pathway is a node for integrating sphingolipid (S1P and ceramide) 
and LPA with PIP signaling since S1P and LPA act on GPCRs and inactivate GSK3 
through activation of Akt by PIP3 (Fig. 2.5). S1P or LPA counteract ceramide-
mediated inhibition of Akt by GPCR-mediated activation of PI3K/Akt. Based on 
these observations, we conclude that Akt and GSK3-regulated differentiation of 
stem cells and embryo morphogenesis is balanced by S1P (leads to activation of 
Akt, inactivation of GSK3, and self-renewal) and ceramide (leads to inactivation of 
Akt, activation of GSK3, and differentiation). Pharmacological inhibition of Akt 
with LY294002 and GSK3 with bio/indirubin monoxime has been shown to pro-
mote differentiation and pluripotency, respectively [69, 81]. It should be noted, 
however, that the effect of Akt and GSK3 inhibitors is differential and has opposite 
effects depending on the duration of incubation or developmental stage. Long-term 
inhibitor incubation or inhibition of Akt and GSK3 at more committed progenitor 
stages will prevent differentiation and self-renewal, respectively [65, 230–232]. 
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The outcome of the GPCR-to-PI3K/Akt-to-GSK3 cell-signaling node is mostly 
modulated by two growth factors, LIF and fibroblast growth factor-2 (FGF-2), and 
the pertinent downstream activation of additional cell-signaling pathways, particu-
larly the JAK/STAT3 (via LIF) and ERK (via FGF-2) pathways [66, 81, 233]. 
Because mouse and human stem cells differ in their response to these growth fac-
tors, it is difficult to predict and requires empirical testing to determine which 
combination of growth factor and modulator of lipid cell-signaling pathways will 
direct stem cell fate to a desired cell type.

Our research has shown that ceramide may bind and activate GSK3 and in turn, 
promote acetylation of microtubules and neuronal process formation [4, 31]. On the 
other hand, we have also found that during differentiation of neural stem cells to 
OPCs, S1P and ceramide or its analog N-oleoyl serinol (S18, Fig. 2.1) may act syn-
ergistically once progenitors are committed to glial cell fate [2, 5, 82] (Fig. 2.5). 
Since S1P can be metabolically derived from ceramide (and vice versa) (Figs. 2.1 
and 2.5), sphingolipid metabolism will play an important role in the regulation of 
stem cell differentiation. The metabolic balance between S1P and ceramide, once 
predominantly linked to the decision between cell survival and death, has gained a 
far more subtle and novel function in stem cell differentiation and embryo morpho-
genesis. Therefore, sphingolipids, particularly S1P and ceramide are morphogenetic 
lipids and potential drug targets for regenerative medicine.

Fig. 2.5.  Lipid-regulated GPCR-to-PI3K/Akt-to-GSK3 cell-signaling pathways modulate cell 
fate decisions in stem cells and morphogenesis. The balance between ceramide and S1P regulates 
cell fate decision between self-renewal and differentiation in stem cells through different signaling 
nodes in the GPCR-to-PI3K/Akt-to-GSK3 cells-signaling pathway
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Chapter 3
Autotaxin in Stem Cell Biology 
and Neurodevelopment

Babette Fuss

Abbreviations

ATX	 Autotaxin
CNS	 Central nervous system
ENPP2	 Ecto-nucleotide pyrophosphatase/phosphodiesterase 2
LPA	 Lysophosphatidic acid
LPC	 Lysophosphatidylcholine
LysoLPD	 Lysophospholipase D
MORFO	 Modulator of oligodendrocyte differentiation and focal adhesion 

organization
PD-Iα	 Phosphodiesterase Iα

3.1  �Introduction

Autotaxin, also designated ecto-nucleotide pyrophosphatase/phosphodiesterase 2 
(ENPP2), phosphodiesterase Iα/autotaxin (PD-Iα/ATX), or lysophospholipase D 
(lysoPLD), was originally discovered as an autocrine motility-stimulating factor 
released by human melanoma cells [1]. This functional property was the foundation 
for its name autotaxin, which remains its most commonly used designation despite 
the realization that most of the functions assigned to autotaxin are mediated by its 
enzymatic activity, now known to generate the lipid signaling molecule lysophospha-
tidic acid (LPA) [2–5]. The gene encoding autotaxin has been described to give rise 
to five alternatively spliced protein products, referred to as autotaxin α, β, γ, δ, and ε 
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[6–8]. These isoforms of autotaxin display characteristic expression patterns, 
whereby autotaxin γ, originally identified as phosphodiesterase Iα (PD-Iα), is con-
sidered a brain-specific isoform [6, 9, 10]. The functional consequences of autotax-
in’s alternative splicing events are largely unknown; even though, an insertion 
uniquely found present in autotaxin α and ε has been described to mediate recruit-
ment to the cell membrane through interaction with heparin sulfate proteoglycans 
[11]. Unless stated otherwise, the term autotaxin is used in this chapter collectively 
for all isoforms.

Autotaxin has been established as a secreted protein that is expressed by a 
large variety of tumor cells and within a number of different tissues during normal 
development and in the adult [6, 9, 10, 12–16]. Furthermore, high protein levels 
of autotaxin have been observed in biological fluids such as plasma and cerebro-
spinal fluid [3, 4, 17]. Given the historical discovery of autotaxin as a tumor cell 
motility-stimulating factor, it is of no surprise that a major focus in the research 
related to autotaxin has long remained in tumor cell biology. More recently, how-
ever, a plethora of additional functions have emerged including roles in stem cell 
biology and neurodevelopment. The following paragraphs will review the major 
characteristics of autotaxin from a historical perspective, autotaxin’s major struc-
ture–function relationships, and autotaxin’s evolving roles in stem cell biology 
and neurodevelopment.

3.2  �A Historical Perspective

Autotaxin was originally characterized as a secreted “autocrine motility factor” of 
100–130 kDa due to its ascribed function in stimulating both random and directed 
migration of human melanoma cells at picomolar concentrations [1]. Subsequent 
cDNA cloning revealed homology to PC-1, a pyrophosphatase/type I phosphodi-
esterase, and led to the classification of autotaxin as an ecto-/exo-enzyme possess-
ing 5′-nucleotide phosphodiesterase/ATP pyrophosphatase activity [18–20]. 
Recognition of a conserved structural relationship between the catalytic domains 
of B10/gp130RB13-6/PD-Ibeta [21, 22], PC-1, and autotaxin prompted a change 
in nomenclature and led to the creation of the family of nucleotide pyrophospha-
tases/phosphodiesterases (NPPs) or ecto-NPPs (ENPPs) [23, 24]. To date, this 
protein family encompasses seven human genes, which are numbered according 
to the order of their discovery, whereby autotaxin is referred to as ENPP2 [25].

As eluded to above, ENPPs were originally characterized to hydrolyze pyrophos-
phate or phosphodiester bonds in (di)nucleotides and their derivatives. However, it is 
becoming increasingly apparent that some of the family members prefer other sub-
strates. In this context, autotaxin has been uncovered to act primarily as an extracel-
lular lysophospholipase-D (lysoPLD) generating the lipid signaling molecule 
lysophosphatidic acid (LPA) [2–5], and it is now broadly accepted that autotaxin’s 
role as nucleotide phosphodiesterase is, if at all, of minor physiological importance 
[3–5, 26, 27]. Consistent with this point of view, autotaxin’s initially discovered 
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tumor cell motility-stimulating function has been found to require not only its cata-
lytic activity but to also be largely mediated via the generation of LPA [4, 13, 28] and 
activation of one or more of LPA’s cognate G protein-coupled receptors [29, 30]. 
Interestingly, a critical role of G protein-coupled receptors in mediating motility 
responses stimulated by autotaxin had already been indicated in the initial studies in 
which the protein was discovered [1]. A prominent role of autotaxin as LPA-
producing enzyme could be further corroborated through findings made in geneti-
cally modified mice, in which plasma LPA levels were seen critically affected by 
deletion of the gene encoding autotaxin or by transgenic overexpression of the enzy-
matically active protein [27, 31, 32]. Next to LPA, sphingosine-1-phosphate [33] and 
cyclic phosphatidic acid [34] have been reported as enzymatic products of autotax-
in’s catalytic activity; their physiological importance, however, remains unclear.

Fig. 3.1  Scheme of the structure–function domains of autotaxin and assigned functions in stem 
cell biology and neurodevelopment. The N-terminal hydrophobic sequence of autotaxin is a 
signal peptide, thus resulting in the secretion of the protein. Two somatomedin B-like domains 
are located at the N-terminal end of the protein. The catalytic domain of autotaxin functions as 
lysoPLD generating LPA, which, in turn, exerts its effects through binding to its cognate G 
protein-coupled receptors. Catalytic activity is dependent on the catalytic site residue T210. At 
the C-terminal end, the Modulator of Oligodendrocyte Remodeling and Focal adhesion 
Organization (MORFO) domain entails the nuclease-like domain, which is enzymatically inac-
tive, and an EF hand-like motif. Functions assigned to autotaxin’s domains are listed at the bot-
tom. ? indicates functions for which solid experimental evidence is lacking or for which the 
respective domain has not yet been identified
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From a functional point of view, autotaxin has been implicated in a number of 
physiological and pathophysiological processes (Fig. 3.1). In light of its long estab-
lished role in cancer development and metastasis [8], it is of no surprise that the 
autotaxin-LPA axis has gained much attention as a potential therapeutic target for 
cancer treatment [35–43]. With regard to more physiological functions, first insights 
came from the characterization of autotaxin knockout mice, i.e., mice in which criti-
cal parts of the gene encoding autotaxin are deleted leading to an ubiquitous lack of 
autotaxin expression [27, 31, 44]. These mice display an embryonically lethal phe-
notype with most noticeable deficits in blood vessel maturation and/or stabilization, 
which are caused primarily by a lack of autotaxin’s catalytic and LPA-producing 
activity [27, 44–46]. Additional studies in the zebrafish substantiate such a role of 
the autotaxin-LPA axis [47], and they provide support for evolutionary conservation 
of autotaxin’s physiological functions. An interesting logistic follow-up of these 
findings lies in the projection that autotaxin’s angiogenic role may also contribute to 
its tumor progression enhancing effects [48, 49]. Physiological roles in addition to 
the above have emerged for autotaxin [50, 51], and they point toward critical func-
tions during stem cell biology and nervous system development.

3.3  �Structure and Functional Domains

Autotaxin has been characterized as a multifunctional and multi-modular protein 
consisting, next to its catalytic domain, of two repetitive N-terminal somatomedin 
B-like domains and a domain involved in the regulation of adhesion, the so-called 
modulator of oligodendrocyte differentiation and focal adhesion organization 
(MORFO) domain, which entails an inert (catalytically inactive) nuclease-like 
domain and a single EF hand-like motif [8, 52–54] (Fig. 3.1). Autotaxin represents 
a phylogenetically conserved protein with 93% sequence identity between human 
and mouse and a high conservation of functionally important residues [55]. As 
introduced above, autotaxin is best known for its catalytic activity, whereby a threo-
nine residue located in the middle of the catalytic domain (T210 in human; T209 in 
rat and mouse) serves as a point of transient binding of reaction intermediates and 
is, thereby, essential for catalytic activity. Structurally, this site is located within a 
hydrophilic binding groove shown to accommodate the glycerol backbone of the 
lipid products [55, 56]. The catalytically active domain also includes two essential 
zinc ions for which the coordination shell is constructed by conserved aspartate and 
histidine residues [26, 33, 57]. The multitude of residues involved in the catalytic 
domain fold point toward a very compact 3D architecture of autotaxin. Indeed, crys-
tal structure analysis revealed that the central catalytic domain interacts with both 
the N-terminal somatomedin B-like domains and the C-terminal nuclease-like 
domain [55, 56, 58–60]. This arrangement is stabilized by an N-linked glycan chain 
and a disulfide bridge between the catalytic and nuclease-like domains both of 
which were found to be essential for enzymatic activity [61–63]. Such insights 
gained from the structural analysis of autotaxin explain the involvement of large 
parts of the protein in its function as lysoPLD as well as the observed preference of 
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autotaxin for acyl chain length and saturation of its lysophosphatidylcholine (LPC) 
substrates (18:0 << 16:0 < 14:0 and 18:0 << 18:1) [3, 55, 64]. In addition, they pro-
vide new inspiration for the design and selection of modulators with high selectivity 
and potency for autotaxin’s enzymatic activity [65–72].

It has been suggested that LPA is generated by autotaxin in the proximity of the 
LPA-activated cell surface receptor [73–75]. Such a localized synthesis would be 
compatible with the observed low concentrations of LPA in plasma and could be 
involved in targeting LPA to distinct LPA receptors. Integrin-dependent association 
of plasma autotaxin with activated platelets initially pointed toward the integrin-
binding RGD motif located within the second somatomedin B-like domain [12] as 
an underlying mechanism. Interestingly, however, mutation analysis revealed that 
binding occurs in an RGD-independent manner and involves the solvent-exposed 
surface of autotaxin’s second somatomedin B-like domain [56, 76]. Functionally, 
autotaxin’s ability to bind to integrins has been proposed to critically contribute to 
the protein’s effects on rapid directional cell migration [77].

Autotaxin has initially been thought to represent a type II transmembrane pro-
tein; however, it is now well recognized to be synthesized as a pre-pro-protein that 
is secreted upon removal of the N-terminal signal peptide and further trimming by 
a furin-type protease [78, 79]. Interestingly, there is evidence that autotaxin secre-
tion requires N-glycosylation and is dependent on amino acid residues located 
within autotaxin’s C-terminal nuclease-like domain [62, 80]. Despite the likely 
physiological significance of regulatory mechanisms controlling autotaxin secretion 
and expression, a comprehensive picture still needs to be developed [81–88].

As becomes evident from the above, a major focus has been on the enzymatic 
activity of autotaxin. Notwithstanding its critical role in a plethora of biological 
activities assigned to autotaxin, there is increasing evidence for nonenzymatic func-
tions of the protein. For example, cell positioning in the ventricular zone of the CNS 
has been found regulated by non-catalytic activities of autotaxin [89]. In addition, 
the MORFO domain was found to be critical for promoting the morphological mat-
uration of oligodendrocytes [90–93]. As such nonenzymatic functions have been 
primarily reported to affect neurodevelopmental processes in the CNS, they will be 
discussed in more detail below.

3.4  �Functional Roles in Stem Cell Biology

In a multicellular organism, different cell types have to be established during devel-
opment and maintained in the adult in well-balanced numbers and proportions. A 
critical component of this intricate process lies in the ability of stem cells to undergo 
symmetric divisions to expand the stem cell pool and asymmetric divisions to pro-
duce, in addition to self-renewed stem cells, daughter cells that will differentiate 
[94–96]. The decision of whether to undergo symmetric or asymmetric division and 
the cell fate identity of the differentiating daughter cell is controlled by a number of 
intrinsic as well as extrinsic cues [97]. One of the latter that has emerged as a critical 
factor in stem cell regulation is LPA [98, 99]. Given autotaxin’s well-established 
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identity as a prominent LPA generating enzyme, functional roles of autotaxin in 
stem cell biology are seemingly apparent; yet, we are only at the beginning of 
understanding the potential importance of autotaxin in regulating stem cells and 
their progenies.

3.4.1  �Embryonic Stem Cells

Embryonic stem cells have the ability to proliferate and replicate themselves indefi-
nitely (self-renewal) while still maintaining the developmental potential to form any 
cell type of the body; they are thus considered pluripotent [100, 101]. Their pro-
jected promise in cellular therapy has prompted intense research into their regula-
tion and biology [102, 103]. In this context, it is of note that totipotency, defined as 
the ability to develop into a complete organism by not only generating all the cells 
of the body but also organizing them in a specific temporal and spatial sequence, is 
not a typical feature of an embryonic stem cell [104–107].

As mentioned above, recent evidence suggests that LPA and its downstream sig-
naling pathways play significant roles in the regulation of various aspects of stem 
cell biology. With regard to embryonic stem cells, the expression of LPA receptors 
by these cells is highly suggestive of LPA as a physiologically relevant signal [108–
110]. This point of view may be further supported by the observation that LPA can 
induce calcium signals and early gene c-fos and c-myc expression in embryonic 
stem cells [110–112]. Consistent with a thus anticipated role of LPA signaling dur-
ing early development, LPA was shown to promote preimplantation development of 
mouse embryos from the four-cell to blastocyst stage possibly via the stimulation of 
cell division at the pronuclear and/or 2-cell stage [113]. In accord with the above, 
LPA treatment of mouse embryonic stem cells was described to increase their pro-
liferation and DNA synthesis rate [110]. Somewhat controversially, however, LPA 
was found to not affect the size or morphology of human embryonic stem cell colo-
nies [108]. The mechanistic underpinnings for these apparent differences still need 
to be determined.

In contrast to the receptors of the LPA signaling axis, the LPA generating enzyme 
autotaxin does not appear to be expressed by embryonic stem cells [114], and its 
reported developmental expression pattern does not include the early preimplanta-
tion stages [14]. Thus, any LPA effects at these early developmental stages likely 
involve autotaxin expression in the uterus during early pregnancy [115–117] and/or 
may rely on an autotaxin-independent LPA synthesis pathway [116, 118].

3.4.2  �Tissue-Specific Stem Cells

Tissue-specific stem cells, i.e., stem cells that produce only a limited set of spe-
cialized cells characteristic of a particular tissue, are found in the developing and 
adult organism within specialized microenvironments, so-called niches [119–121]. 
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Such niches are considered anatomically defined sites of communication between 
stem cells and their respective tissues, and they are thought to enable a coordi-
nated control over various stem cell activities, ranging from dormancy and activa-
tion to migration and differentiation. Related to tissue-specific stem cells, roles 
for autotaxin have been investigated in association with hematopoietic and hair 
follicle stem cell niches. In addition, autotaxin functions have been implicated to 
regulate neural stem and progenitor cells; these will be discussed below under the 
topic of neurodevelopment.

Within the hematopoietic stem cell niche located in the bone marrow, popula-
tions of “long-term” hematopoietic stem cells and “short-term” hematopoietic 
stem/progenitor cells interact with a complex multicellular microenvironment that 
includes hematopoietic stem cell progenies and non-hematopoietic cell types 
[122]. Importantly, the hematopoietic niche is considered to be dynamic and able 
to respond to bone marrow stress, such as cell loss induced by for example toxic 
substances, including chemotherapeutic agents [123, 124]. In a study published by 
Ortlepp et al. [125], autotaxin was described to be expressed by human hematopoi-
etic stem/progenitor cells, as defined by the expression of the cell surface marker 
CD34. In addition, autotaxin was found to stimulate proliferation and motility of 
these CD34-positive cells via the generation of LPA and a likely autocrine mecha-
nism [125]. While CD34 is predominantly regarded as a marker for hematopoietic 
stem/progenitor cells, it is also present on myeloid/erythroid progenitor cells [126–
128]. Importantly, recent studies indicate a more widespread expression of CD34, 
including an expression by mesenchymal stem/stromal cells [129]. Mesenchymal 
stem/stromal cells are considered part of the hematopoietic stem cell niche. They 
can in vitro be stimulated to differentiate into osteoblasts, chondrocytes, and adi-
pocytes; the in  vivo differentiation hierarchy, however, appears to still be only 
hypothetical [130, 131]. Thus, the primary in vivo function of mesenchymal stem/
stromal cells may lie in their ability to provide a microenvironment for other stem 
cells. In the context of the abovementioned effects of autotaxin on CD34-positive 
cells, it is of interest that primary bone marrow-derived mesenchymal stem/stromal 
cells have been described to express autotaxin [132]. In addition, autotaxin was 
found to enhance the migration of human umbilical cord blood-derived mesenchy-
mal stem/stromal cells in a wound repair model system [133], and LPA was shown 
to function as a chemoattractant for bone marrow-derived mouse mesenchymal 
stem/stromal cells [134]. These findings would be consistent with the previously 
described motility-stimulating effects toward CD34-positive cells [125]. On the 
other hand, LPA treatment of culture-expanded mesenchymal stem/stromal cells 
from human bone marrow has been described to inhibit cell migration through the 
activation of intracellular Rho and increased actin stress fiber formation [135]. The 
role of the autotaxin-LPA signaling axis in regulating mesenchymal stem/stromal 
cells appears thus rather confusing, a situation that may be explained by cellular 
heterogeneity within the utilized mesenchymal stem/stromal cell populations and/
or a lack of well-established and reliable surface markers [136, 137]. With regard 
to hematopoietic stem cells, a critical role of autotaxin is supported by the finding 
that LPA, potentially generated by autotaxin [132], triggers enhanced cell motility 
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and invasion of primitive hematopoietic cells into stromal cell layers [138, 139]. 
More recent data revealed that LPA-mediated in vitro stimulation of CD34-positive 
human hematopoietic progenitors induces myeloid but not lymphoid differentia-
tion [132]. In these studies, LPA was additionally characterized as an enhancer of 
myeloid progenitor cell migration and proliferation. Given the relative high expres-
sion of autotaxin by perivascular stromal cells, it was proposed that autotaxin-
derived LPA may mediate anatomical partitioning of the bone marrow 
microenvironment and, thereby, regulate myeloid differentiation during hemato-
poiesis. Thus, the current data point toward a role of autotaxin and its enzymatic 
activity in regulating hematopoietic stem cells and hematopoiesis via mostly para-
crine effects through the expression of autotaxin by stromal cells.

The hair follicle stem cell niche has emerged as an important paradigm to study 
stem cells in quiescence and in action due to the unique synchronized cycles of 
extended periods of rest and brief bouts of activation [121, 140]. Hair (re)generation 
is fueled by hair follicle stem cells, which are located in the outer layer of the bulge 
at the very bottom of each hair follicle, and a small cluster of cells beneath it, known 
as the secondary hair germ. During the phase of activation, specialized mesenchy-
mal cells, referred to as the dermal papilla, stimulate cells of the secondary hair 
germ. This event leads to the generation of the hair follicle transit amplifying cell 
matrix, which consists of cells that divide a finite number of times until they become 
differentiated [141, 142]. Interestingly, autotaxin has been described to represent 
one of the highest expressed signature genes in the dermal papilla of growing hair 
follicles [143], thus suggesting a potential critical role of autotaxin during hair fol-
licle morphogenesis. Surprisingly, however, conditional autotaxin knockout studies 
revealed no effect on follicle numbers, lengths, and sizes, but rather identified lipase 
H, also known as phosphatidic acid (PA)-selective phospholipase A1α, as an LPA-
producing enzyme that could functionally compensate for the genetic deletion of 
autotaxin and/or represent the physiologically more prominent LPA generating 
enzyme in the hair follicle [144]. The latter may be supported by studies demon-
strating a critical role of lipase H in regulating the formation of the inner root sheath 
[145, 146]. However, there may also still be room for functionally redundant roles 
of lipase H and autotaxin in the regulation of for example secondary hair germ and/
or hair follicle stem cells.

3.4.3  �Cancer Stem Cells

Even though still to some extent controversial and possibly not applicable to all 
tumors, the cancer stem cell model has provided a conceptual framework for 
explaining functional and phenotypic heterogeneity among cells within a tumor 
[147–151]. In this model, cancers are organized into a hierarchy of subpopula-
tions of tumorigenic cancer stem cells and their non-tumorigenic progeny, 
whereby it is the cancer stem cell that is thought to drive tumor growth and disease 
progression, possibly through therapy resistance and metastasis [148, 149, 152]. 
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Given autotaxin’s well-documented role in tumorigenesis, it is of no surprise that 
autotaxin has been implicated in regulating cancer stem cell biology. In this con-
text, cancer stem cells have been described present within primary human ovarian 
tumors [153], and the expression of autotaxin has been associated with chemore-
sistance of ovarian tumor cells [154, 155]. More recently, it was shown that auto-
taxin can confer stem cell-like properties to ovarian carcinoma cells and that 
silencing of autotaxin expression can lead to increased susceptibility to chemo-
therapy drugs [156]. These findings suggest that the autotaxin-LPA axis could 
present a promising target for the development of therapeutic strategies directed 
at ovarian cancer stem cells within epithelial ovarian tumors.

The other type of cancer stem cell for which the autotaxin-LPA axis has been 
proposed as a therapeutic target are those present in glioblastoma multiforme, the 
most highly malignant type of brain tumor [43]. The evidence here, however, is 
indirect and complicated by the complexity of LPA signaling in glioblastoma [157]. 
Autotaxin has been found highly expressed in glioblastoma multiforme, and its 
expression and enzymatic activity have been implicated in facilitating tumor cell 
invasion and possibly neovascularization [28, 158, 159]. In addition, inhibition of 
autotaxin’s enzymatic activity has been proposed to enhance radiosensitivity of 
glioblastoma multiforme cells [159]. The idea of a potential role of autotaxin-LPA 
signaling in glioblastoma cancer stem cells comes from the observation that the 
LPA receptor LPA1 is highly expressed in CD133 (prominin1)-positive glioblas-
toma cancer stem cells presumably leading to enhanced migratory responses to LPA 
[43, 160]. Even though cancer stem cells have been described present in glioblas-
toma multiforme, tumorigenic cells can be found in both CD133-positive as well as 
negative cell population [161, 162]; CD133’s role as sole marker for cancer stem 
cells has thus been questioned [148, 161, 162]. Consequently, much more research 
will be necessary to establish the extent to which there may be a role for autotaxin-
LPA signaling in regulating what is thought to represent a cancer stem cell.

3.5  �Functional Roles in Neurodevelopment

During development of the vertebrate embryo, the process of neural induction, 
which occurs at gastrulation, leads to the generation of the neural plate, which con-
sists of cells that are derived from the ectoderm and restricted to giving rise to neural 
tissue [163]. Folding of the neural plate and subsequent closure at the dorsal end 
leads to the formation of the neural tube in a process that is referred to as neurula-
tion. At this early stage, four primary brain regions can be distinguished; these will 
give rise to the spinal cord, hindbrain, midbrain, and forebrain. First evidence for a 
critical role of autotaxin in these early neurodevelopmental events came from the 
characterization of autotaxin knockout mice. Next to the previously mentioned vas-
cular defects, large cavities or effusions in the future forebrain region and a lack of 
proper neural tube closure were observed in the majority of autotaxin knockout 
embryos at embryonic day 8.5 and 9.5, respectively [27, 31, 44]. These 
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neurodevelopmental phenotypes were found associated with a decrease in prolifera-
tion and an increase in apoptosis [44, 164]. Importantly, they are thought to be 
caused primarily due to a lack of autotaxin’s enzymatic function. First, mice 
expressing enzymatically inactive but not fully functional autotaxin were reported 
to display early embryonic lethality similar to autotaxin knockout mice [46]. 
Second, addition of LPA to autotaxin knockout embryonic explant cultures was 
found to restore explant size to wild-type levels [44]. Third, inhibition of LPA 
receptors in ex vivo whole embryo cultures has been described to lead to head cavity 
formations similar to the ones seen in autotaxin knockout mice [165]. The latter 
study also provides some mechanistic insight by demonstrating that inhibition of 
Rho/ROCK as well as actin polymerization also results in the formation of head 
cavities. A crucial role of autotaxin in brain development could be further under-
scored by studies done in the developing chick embryo in which silencing of endog-
enous autotaxin expression was found to affect the integrity of the diencephalon 
(posterior part of the forebrain)-mesencephalon (midbrain) boundary and the prolif-
eration of caudal diencephalon-mesencephalon neuroepithelial cells. Autotaxin 
expression has been observed during early development in both mouse and chick 
embryos [14, 164, 165]. This expression includes cells of the floor plate, a region 
located at the ventral midline of the embryonic neural tube and known to release 
factors important for the formation of a fully functional nervous system [14, 15, 
165]. Thus, it has been proposed that the neurodevelopmental defects seen upon 
genetic deletion of autotaxin are due to local autotaxin deficiency and not secondary 
to circulatory failure [27]. Such a vascular deficiency independent effect of auto-
taxin knockout on neurodevelopment may be supported by a lack of neural tube 
defects in Gα13 knockout mice, which have been described to phenotypically dis-
play vascular deficiencies similar to the ones seen in autotaxin knockout embryos 
[44, 45]. Nevertheless, to clearly define the roles of autotaxin during neurodevelop-
ment and to unequivocally dissect neural and vascular phenotypes, conditional dele-
tion of autotaxin in well-defined cell types and/or tissues will be necessary.

3.5.1  �Neural Stem Cells and Neurogenesis

Neurogenesis, the generation of neurons from neuroepithelial stem cells, occurs 
during early vertebrate development in the embryonic neural tube. Receptors for 
LPA have been described to be expressed by neural stem/progenitor cells, and 
LPA has been implicated in regulating their morphological rearrangements, pro-
liferation, and differentiation. However, the effects of LPA on neural stem/pro-
genitor cells seem to be dependent on a complex set of factors, including the 
region of origin, species, and developmental stage [98, 99]. Thus, correlating any 
of the early developmental phenotypes seen upon autotaxin knockout in the 
mouse with existing data about LPA signaling in neural stem/progenitor cells is 
currently challenging.

B. Fuss



51

At the onset of neurogenesis, the neural tube wall of the developing cerebral 
cortex of the forebrain, termed the ventricular zone, is occupied by neural stem/
progenitor cells which are referred to as radial glia [166–168]. These cells initially 
span the entire thickness of the wall by extending processes to both the ventricular 
(inner) and pial (outer) surfaces of the developing brain. Once neurons are gener-
ated from these stem cells, they migrate along the processes of radial glia toward the 
pial surface to form a series of distinct layers, ultimately forming the cerebral cortex 
[163]. During this developmental time period, autotaxin has been described to be 
expressed by cells located within the ventricular zone as well as the cortical plate 
occupied by newly generated neurons [15, 16, 89]. Interestingly, downregulation 
(knockdown) of autotaxin expression or conditional autotaxin gene deletion specifi-
cally at this developmental stage was found to lead to a distorted cellular morphol-
ogy with most cells appearing round instead of elongated and in some cases lacking 
an association of their processes or endfeet with the ventricular surface [89]. It is of 
note that this developmental stage is past the survival time for conventional auto-
taxin knockout embryos. In addition, at this developmental stage, cells located 
within the ventricular zone are characterized by apical (ventricular) and basal (pial) 
subcellular regions leading to what is being referred to as polarization [169]. This 
polarization has been proposed to be critical for regulating proliferation and neuro-
genesis. In this context, downregulation of autotaxin expression was found to dis-
rupt cellular polarity and to result in an increase in the number of cells located 
within the ventricular zone associated with a decrease in the percentage of cells 
expressing a postmitotic neuronal marker (Tuj1). Most remarkably, these pheno-
types could be rescued by the expression of catalytically inactive autotaxin [89]. 
These findings highlight that during neurodevelopment at least some functions of 
autotaxin are mediated by domains other than its catalytically active site. In future 
studies it will be important to establish which of autotaxin’s domains are involved 
in the regulation of neurogenesis and the establishment of neuronal stem/progenitor 
cell polarity. Potential candidates may be the integrin binding somatomedin B-like 
domain or the MORFO domain. In addition, it will be crucial to dissect functions 
mediated by non-catalytic and catalytic activities. In this context, it is worth men-
tioning that the role of LPA in regulating early developmental neurogenesis is still 
puzzling. On the one hand, LPA has been found to inhibit neuronal differentiation 
of neural stem/progenitor cells derived from human embryonic stem cells or induced 
pluripotent stem cells [109, 170], while on the other it has been described to induce 
neuronal differentiation from mouse cortical neuroblasts and rat embryonic neural 
stem cells [171, 172].

3.5.2  �Oligodendrogenesis

Oligodendrocytes, the myelinating cells of the CNS, originate from distinct regions 
of the ventricular zone as well as from the so-called subventricular zone located 
postnatally within the developing cerebral cortex of the forebrain [173, 174]. 
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Temporally, several waves of oligodendrocyte differentiation have been described, 
whereby the early wave typically involves more ventral sources. Interestingly, solu-
ble factors derived from the floorplate have been implicated in driving oligodendro-
genesis in the developing spinal cord and hindbrain during the first wave [175]. 
Thus, the high expression of autotaxin observed in the floorplate prompted studies 
toward the elucidation of autotaxin in oligodendrogenesis. These studies were done 
in the developing zebrafish, and they revealed that indeed downregulation of auto-
taxin expression or mutation of the autotaxin gene inhibits the appearance of early 
stages of the oligodendrocyte lineage in the hindbrain [176, 177]. Importantly, the 
oligodendrogenesis promoting function of autotaxin was found to be mediated by 
its enzymatic activity [177]. In addition, and from a mechanistic point of view, auto-
taxin, via its LPA generating activity, was found to induce epigenetic changes that 
had previously been shown to be crucial for oligodendrogenesis [178]. Based on 
these findings, the following model has been proposed: LPA, generated via the lyso-
PLD activity of autotaxin, activates one (or more) of its cognate LPA receptors, 
which have been found expressed by cells of the oligodendrocyte lineage [179–
183]. Activation of the above autotaxin-LPA axis initiates a downstream signaling 
cascade leading to the activation of histone deacetylation, which in turn mediates 
repression of transcriptional inhibitors of oligodendrocyte differentiation, thereby 
promoting gene expression changes that are associated with the transition from an 
oligodendrocyte progenitor to an early-stage differentiating oligodendrocyte [177]. 
Notably, while this model was initially characterized in the zebrafish, its validity for 
rodent oligodendrogenesis could be established, suggesting an evolutionarily con-
served mechanism [177].

Once oligodendrocyte progenitor cells have been generated in the respective 
regions of the ventricular zone or the postnatal subventricular zone, they migrate 
into prospective white matter regions where they undergo discrete steps of dif-
ferentiation, which are characterized by typical changes in morphology and gene 
expression [184, 185]. Autotaxin has been found expressed by oligodendrocytes 
during this process of differentiation/maturation, thus suggesting the existence 
of potential autocrine regulatory functions. In this regard, autotaxin has been 
described to facilitate the morphological maturation of post-migratory, premye-
linating oligodendrocytes [92], a process that is characterized by the transition of 
cells that extend a few processes to cells that generate a highly complex process 
network. Remarkably, this functional property of autotaxin was found to be inde-
pendent of its enzymatic activity and to be mediated by its MORFO domain 
[90–92, 186]. In early studies, the MORFO domain was described to antagonize 
adhesion of oligodendrocytes to naturally occurring extracellular matrix mole-
cules such as fibronectin in an active fashion involving pertussis toxin-sensitive 
G-proteins and a reorganized assembly of focal adhesions, i.e., macromolecular 
complexes linking the extracellular matrix with the cell surface and the underly-
ing actin cytoskeleton [90–92]. This finding classified autotaxin as a matricellu-
lar protein, i.e., a protein that mediates an intermediate adhesive state and, 
thereby, supports cellular remodeling [187]. Subsequently, expression of the 
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purinergic receptor P2Y12 was identified as a critical component of the mecha-
nism mediating the effects of autotaxin’s MORFO domain on the morphological 
maturation of differentiating oligodendrocytes. Taken together, the picture is 
emerging that autotaxin regulates oligodendrocyte differentiation via the con-
certed action of its enzymatic activity and its functions mediated by the MORFO 
domain. This dual domain mechanism may be crucial for the complex coordina-
tion of gene expression and morphological changes as seen during a well-con-
trolled maturation from an oligodendrocyte progenitor cell to a fully functional 
oligodendrocyte.

3.6  �Conclusion

Much research has been conducted since the initial discovery of autotaxin. 
Nevertheless, there are a number of critical outstanding questions. With regard to 
autotaxin’s enzymatic activity for example, little is known about how its activity is 
regulated and targeted to specific cell surface receptors of the LPA receptor family. 
In addition, few details are known about the regulation of autotaxin expression and 
secretion. Such questions become particularly relevant in the context of pathologi-
cal conditions in which autotaxin expression and secretion are upregulated. Related 
to stem cells and the nervous system, glioblastoma multiforme comes into mind 
[43]. However, other pathologies have been identified. For example, it has been 
shown that autotaxin is strongly upregulated in reactive astrocytes following neu-
rotrauma [16]. In addition, an upregulation of autotaxin expression has been impli-
cated in nerve injury-induced neuropathic pain [188–190]. Interestingly, in contrast 
to autotaxin’s critical roles during development, its expression appears largely dis-
pensable for homeostatic maintenance in the adult [191], an observation that is 
encouraging in the context of therapeutic interventions designed to inhibit auto-
taxin and its enzymatic activity.

Most functions of autotaxin, whether physiologic or pathological, have been 
assigned to its enzymatic activity. However, there is increasing evidence for non-
catalytic functions of autotaxin. Interestingly, these have so far been identified pri-
marily in mechanisms related to nervous system development and targeting central 
nervous system cells [89, 186]. These findings raise new questions related to the 
extent of such non-enzymatic functions and their interrelationship with autotaxin’s 
ability to generate LPA. In the long term, it is the hope that better understanding the 
biology of autotaxin will not only advance our understanding of developmental and 
homeostatic processes, including those involving stem cells and the nervous system, 
but also aid in the development of innovative strategies to counteract pathological 
effects of autotaxin as seen under conditions where its expression is upregulated.
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Abbreviations

5-HT	 Serotonin
ATX	 Autotaxin
Ca2+	 Calcium
cAMP	 Cyclic adenosine monophosphate
CNS	 Central nervous system
CSF	 Cerebrospinal fluid
DAG	 Diacylglycerol
E	 Embryonic day
EDG	 Endothelial differentiation gene
EGF	 Epidermal growth factor
Enpp2	 Epidermal growth factor receptor phosphodiesterase family mem-

ber 2
FABP	 Fatty acid binding protein
GPAT	 Glycerophosphate acyltransferase
GPCR	 G protein-coupled receptor
GRK2	 G protein-coupled receptor kinase 2
HIF-1α	 Hypoxia inducible factor-1 alpha
IZ	 Intermediate zone
LCAT	 Lecithin cholesterol acyltransferase
LP	 Lysophospholipids
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LPA	 Lysophosphatidic acid
LPA1–6	 Lysophosphatidic acid GPCR 1–6
LPAAT	 Lysophosphatidic acid acyltransferase
LPAR1–6	 Human Lysophosphatidic acid GPCR genes 1–6
Lpar1–6	 Mouse Lysophosphatidic acid GPCR genes 1–6
LPC	 Lysophosphatidylcholine
LPP	 Lipid phosphate phosphatases
MAG	 Monoacylglycerol
MAP	 Microtubule-associated protein
NGF	 Nerve growth factor
NPC	 Neuroprogenitor cell
P2Y	 Purinergic family genes
PA	 Phosphatidic acid
PC	 Phosphatidylcholine
PCD	 Programmed cell death
PHH	 Post-hemorrhagic hydrocephalus
PL	 Phospholipids
PLA1	 Phospholipase A1
PLC	 Phospholipase-C
PS	 Phosphatidylserine
PSA-NCAM	 Polysialylated neural cell adhesion protein
PS-PLA1	 Phosphatidylserine-specific phospholipase A1
S1P	 Sphingosine-1-phosphate
SOX2	 Sex determining region Y-box 2
sPLA2	 Secretory phospholipase A2
SVZ	 Subventricular zone
TrkA	 Tyrosine kinase receptor type 1
VEGF	 Vascular endothelial growth factor
VZ	 Ventricular zone

4.1  �Introduction

Lysophosphatidic acid (LPA) is a simple glycerophospholipid (molecular weight: 
430–480 Da) present at low levels in all major cell types as well as in blood. LPA has 
intracellular and extracellular metabolic pathways and signals through class A, rho-
dopsin-like G protein-coupled receptors (GPCRs). Identification of the first high-
affinity GPCR (LPA1) in 1996 [1] quickly leads to deorphanization of other LPA as 
well as sphingosine-1-phosphate (S1P) receptors, particularly those of the endothe-
lial differentiation gene (EDG) cluster and later, those of the P2Y purinergic family 
genes [2]. Each LPA receptor couples with one or more of four heterotrimeric Gα 
(G12/13, Gq/11, GI/O, and Gs) proteins and has distinct tissue expression and patterning. 
In view of the heterogeneity of receptor expression, G proteins activated, and 

W.S. McDonald and J. Chun



67

downstream signaling cascades, LPA receptor activation can lead to diverse, perva-
sive, redundant, and sometimes antagonizing outcomes in biological processes.

4.2  �LPA Structure, Distribution, and Metabolism

4.2.1  �Structure

All LPA molecules have a phosphate head group attached to a glycerol backbone ester 
linked to a single aliphatic chain; each species of LPA has a distinct length and satura-
tion of the acyl chain. Species with a phosphate monoester and an aliphatic chain of 
more than 12 carbons are biologically active LPA [3, 4]. Common LPA species 
detected in the brain and biological fluids include palmitoyl (16:0), stearoyl (18:0), 
oleoyl (18:1), and arachidonoyl (20:4). Acyl groups LPA 18:1 is most commonly used 
in laboratory settings [5–10]. Although the structure of LPA is fairly simplistic, stud-
ies found that structural differences in LPA species underlie the relative potency of 
LPA receptor activation and downstream signaling effects; unsaturated LPA (18:1) 
species are more bioactive than saturated LPA (18:0) species [11–13].

4.2.2  �Distribution

LPA is ubiquitously present in most fluids including plasma, serum, and cerebrospi-
nal fluid (CSF) at bioactively potent concentrations [9, 14]. In physiological condi-
tions, blood LPA levels are detected at ~10 μM in serum, ~0.1 μM in plasma [15, 16], 
and low nanomolar to micromolar levels in the CSF [9]. The brain is reported to 
have the highest concentration of LPA [17] expressed at low micromolar levels in 
the CSF, choroid plexus, neural tube, meninges, and blood vessels of the developing 
brain [9]. Although the spatiotemporal distribution of LPA during neurogenesis 
remains elusive, advanced technologies in chromatography, mass spectrometry, and 
laser capture can be useful diagnostics to map LPA expression throughout CNS 
development [16, 18].

4.2.3  �Metabolism

LPA is produced by many different cell types including neurons, activated platelets, 
tumor cells, and adipocytes [19–23].The species of LPA that are generated reflect the 
structure of the precursor phospholipid (e.g., lysophosphatidylcholine 18:1 creates 
LPA 18:1) [14]. LPA metabolism has intracellular and extracellular enzymatic path-
ways. The extracellular metabolic pathway for LPA is mediated by Autotaxin (ATX, 
also known as lysophospholipase D, gene name Enpp2) activity in the blood and is 
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perhaps the most well-defined mechanism for LPA production. In plasma, phospho-
lipids such as phosphatidylcholine (PC) and phosphatidylserine (PS) are converted to 
their lysophospholipid (LP) forms through phospholipase A1 (PLA1)/lecithin cho-
lesterol acyltransferase (LCAT) activity and through secretory phospholipase A2 
(sPLA2), calcium-independent phospholipase A2 (cPLA2), or phosphatidylserine-
specific phospholipase A1 (PS-PLA1) activity, respectively [24, 25]. ATX converts 
those LPs to LPA [26–28] and it can act as a signaling molecule through LPA recep-
tors on the plasma membrane [29] (Fig. 4.1). ATX activity is crucial for maintaining 
vascular and neuronal embryonic development by inducing vascular endothelial 
growth factor (VEGF), endothelial migration and proliferation [30, 31], and matrix 
remodeling in angiogenesis [20, 32]. Knockout of the ATX gene (Enpp2) produces 
major neural and vascular deficits and subsequent death at embryonic day (E) 9.5 
[33, 34]. Conditional deletion of Enpp2 in Sox2-positive epiblasts results in neural 
tube deficits [35], and Enpp2 heterozygous null mice survive into adulthood with 
~50% lower LPA levels in the plasma as compared to the wild type [33, 35]. These 
studies suggest that extracellular LPA metabolism through ATX is crucial for CNS 
development.

Fig. 4.1  Intracellular and extracellular LPA metabolism and signaling. LPA lysophosphatidic 
acid, PLs phospholipids, PLD phospholipase D, PLA phospholipase A, PA phosphatidic acid, 
LPAAT LPA acyltransferase, MAG monoacylglycerol, LPP lipid phosphate phosphatase, FABP 
fatty acid binding protein, LPC lysophosphatidylcholine, ATX autotaxin, DAG diacylglycerol, 
LPARs lysophosphatidic acid receptors 1–6, PLC phospholipase C, PIP2 phosphatidylinositol 
4,5-bisphosphate, IP3 inositol 1,4,5-trisphosphate, DAG diacyl glycerol, AC adenylyl cyclase, 
PKC protein kinase C, PI3K phosphatidylinositol-4,5-bisphosphate 3-kinase, AKT protein kinase 
B, RAC Ras-related C3 botulinum toxin substrate, MAPK mitogen-activated protein kinases, AC 
adenylyl cyclase, cAMP cyclic adenosine monophosphate, ROCK Rho-associated protein kinase, 
MLCK myosin light chain kinase. Solid black arrow indicates metabolism; dashed black arrow 
indicates catabolism; solid red arrows indicate signaling cascades
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Intracellular LPA is an intermediate in the synthesis of glycerolipids [29]. In 
cancer cells, intracellular LPA appears to be transported extracellularly by fatty acid 
binding proteins (FABP) as well as gelsolin to activate cell surface receptors and 
produce morphological changes [26] (Fig. 4.1). Intracellular LPA is produced by 
making phospholipids (PLs) like phosphatidic acid (PA), from diacylglycerol 
(DAG) and the actions of diacylglycerol kinase or phospholipase D. LPA is then 
generated from hydrolysis of PA by phospholipase A1 and A2 (PLA1 and PLA2) 
[24]. LPA is also synthesized by monoacylglycerol (MAG) kinase phosphorylating 
MAG. The intracellular metabolic pathway for LPA occurs in neurons [36] within 
the endoplasmic reticulum and the mitochondria by the acetylation of glycerol-3-
phosphate through glycerophosphate acyltransferase (GPAT) [14, 24, 37, 38] and at 
the leading edge of migrating monocytes through calcium-independent PLA2 activ-
ity [39, 40]. LPA metabolism thus influences DNA synthesis, progenitor population 
expansion, and migration.

4.2.4  �Catabolism

Dephosphorylation of intracellular LPA by LPA acyltransferase (LPAAT) is a major 
pathway that terminates LPA’s signaling processes and synthesizes complex glycero-
phospholipids [14, 29]. Extracellular LPA is hydrolyzed by lipid phosphate phospha-
tases 1–3 (LPP1–3) and phospholipid phosphatase and is converted into MAG (Fig. 
4.1). This process can be reversed when MAG is rephosphorylated by MAG kinase to 
produce LPA and subsequent LPA metabolites and signaling. The myriad mechanisms 
for LPA synthesis and degradation suggest that the presence of LPA is tightly regulated 
and disruption of this system may initiate and exacerbate cellular pathologies.

4.3  �Lysophosphatidic Acid Receptor Signaling 
and Downstream Pathways

The first LPA GPCR (LPA1) was discovered in 1996, which was cloned as a gene 
(Lpar1) in the proliferative zone of the developing brain [1, 41, 42]. Since this dis-
covery, five other LPA receptor genes (human: LPAR1–6; mouse: Lpar1–6) have 
been cloned and these six receptors (LPA1–6) play a plethora of roles in embryonic 
cortical development. These include cellular apoptosis, proliferation, migration, 
adhesion, differentiation, morphology, electrophysiological changes, and signaling. 
Each LPAR couples to one or more of the four heterotrimeric Gα (G12/13, Gq/11, GI/O, 
and Gs) proteins that initiate an array of cascades with diverse effects in physiology 
and pathophysiology [9, 23, 43–45]. Normal brain development is dependent on the 
intricate spatiotemporal patterning of LPARs [8] and disrupted LPAR expression 
results in major phenotypes including embryonic and postnatal fatalities.
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4.3.1  �LPA1

LPA1 (previously known as VZG-1 and EDG-2) couples with three Gα proteins 
(G12/13, Gq/11, and GI/o); G12/13 activates the Rho/ROCK pathway, Gq/11 activates the 
phospholipase-C (PLC) pathway, and GI/o activates the RAS/mitogen-activated pro-
tein kinase (MAPK) pathway. During CNS development, LPA1 spatiotemporal pat-
terning is highly regulated. In particular, LPA1 is highly expressed in the neurogenic 
ventricular zone and was thus discovered to mediate NPC proliferation and differen-
tiation [46–48]. LPA1 activation is considered one of the primary signaling systems 
in cortical development [180]; Lpar1 knockout caused ~50% perinatal lethality and 
the surviving mice demonstrated significant neurodevelopmental deficits such as cra-
niofacial defects [23], smaller bodies [46, 49–51], altered pain sensation [52, 53], 
and increased death of Schwann cells [54] and neurons of the cortex [55, 56] and 
hippocampus [57]. Lpar1 null neuronal cultures have impaired synaptic transmission 
and altered neurotransmitter release indicating that Lpar1 expression is also impor-
tant for neuronal function [58]. Lpar1 signaling can be antagonized by receptor tyro-
sine kinases and GPCR complexes such as a neurotrophic tyrosine kinase receptor 
type 1 (TrkA) and LPAR1 integrated signaling complex [59, 60]. TrkA typically 
binds nerve growth factor (NGF) which activates the beta-arrestin-dependent ERK1/2 
pathway [59, 61] and causes neurite extension. Active LPA1 in the TrkA–LPAR1 
complex enhances the ERK1/2 response by creating more Gαβ dimers for TrkA to 
use. LPA binding to LPA1 can dissociate this complex [60], thus antagonizing the 
effects of NGF on cells and causing neurite retraction, counteracting NGF-induced 
neurite extension [62]. These studies suggest that tightly regulated Lpar1 expression 
and LPA signaling is crucial for normal CNS development and indicates a possible 
link between aberrations in the LPA system with neurodevelopmental disorders.

4.3.2  �LPA2

LPA2 (previously known as EDG-4) is highly expressed in the embryonic brain and 
couples with G12/13, Gq/11, and GI/O to produce cellular responses such as neuronal dif-
ferentiation [48, 63, 64], cell migration [65, 66], survival, and altered immune func-
tion [8, 67–69]. Although Lpar2 null mice are phenotypically normal at the pre- and 
postnatal stages, Lpar1 and Lpar2 double knockout mice have an exacerbated pheno-
type of Lpar1 null mice [70, 71]. In addition, embryonic exposure to LPA ex vivo 
causes increased neurogenesis in an LPA1- and LPA2-dependent manner [68], sug-
gesting functional redundancy within the Lpar1 and Lpar2 signaling system.

4.3.3  �LPA3

LPA3 (previously known as EDG-7) is less sensitive to LPA species with saturated 
acyl chains and prefers unsaturated fatty acid chains in the SN-2 position. LPA3 cou-
ples to Gi/o and Gq [42, 72, 73]. LPA3 activation is associated with neurite elongation, 
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PLC activation, Ca2+ mobilization, and MAPK activation [23, 74, 75]. During embry-
onic cortical development, Lpar3 is primarily expressed in the lateral nasal and maxil-
lary process as well as the optic vesicle [76]. Lpar3 null mice develop normally with 
viable litters. However, the reproductive system of female Lpar3 null mice is affected, 
resulting in substantially delayed embryo implantation and spacing defects [77, 78].

4.3.4  �LPA4

LPA4 (previously known as purinergic G protein-coupled receptor 9; p2y9/GPCR 
orphan receptor 23; GPR23) is a non-EDG receptor that interacts with Gαs proteins 
in addition to G12/13, Gq/11, and GI/o [79, 80]. There is no clear phenotypical distinc-
tion between LPA4 knockout and wild-type mice although Lpar4 knockout mice 
have decreased prenatal survival [81]. Signaling through LPA4 mediates Ca2+ mobi-
lization and cAMP accumulation, and modulates cell morphology, migration, 
aggregation, and angiogenesis [2, 8, 9]. LPA4 signaling can also antagonize tradi-
tional LPA signaling, such as LPA1- and LPA2-induced cell motility by enhancing 
chemorepulsive cues [82].

4.3.5  �LPA5

LPA5 (previously known as GPR92/GPR93) is expressed throughout the developing 
CNS and signals via G12/13 and Gq proteins [76, 79]. LPA5 activation mediates neurite 
retraction, stress fiber formation, and increased intracellular Ca2+ levels [83]. Lpar5 
is also involved in neuropathic pain [84], as well as immune function [10, 85].

4.3.6  �LPA6

LPA6 (previously known as P2Y5) is the latest deorphanized LPAR that utilizes 
G12/13 and signals through the Rho pathway. LPAR6 is the first gene found to mediate 
human hair growth and was found to preferentially respond to 2-acyl-LPA rather 
than 1-acyl-LPA [86]. LPAR6 activation also produces increased intracellular Ca2+ 
through Gs stimulation of cAMP and ERK1/2 pathways [87].

4.4  �Lysophosphatidic Acid Signaling in Embryonic 
Corticogenesis and Neurodevelopmental Disease

Studies of LPAR expression and LPA bioactivity in the developing CNS have 
shown myriad effects on LPA signaling during fetal corticogenesis and neural 
progenitor cell (NPC) survival and function. Altered LPA signaling has been 
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identified as a potent mediator of NPC function and one of the primary mecha-
nisms in the resulting neurodegenerative and neuropsychiatric disorders, such 
as hydrocephalus [55, 88], gliomas [7, 89], Alzheimer’s disease [90, 91], neu-
ropsychiatric disorders [8, 92–94], neuropathic pain [95–97], and hypoxia [49, 
98, 99].

4.4.1  �Fetal Corticogenesis

During early embryonic development, neuroepithelial (NE) cells of the ectoderm 
proliferate and invaginate to form the neural tube. The highly regulated process of 
symmetric and asymmetric divisions of NE cells forms several distinct embryonic 
layers: the ventricular zone (VZ), subventricular zone (SVZ), intermediate zone 
(IZ), cortical plate (CP), and marginal zone (MZ). Radial glial cells in the VZ 
migrate and proliferate to form distinct pools of NPCs, to provide migratory support 
for nascent neurons through the cortical layers and to form functional connections 
in the cortex [100]. The basic cellular components and functional connections of the 
cortex are generated from NPC proliferation, migration, differentiation, and pro-
grammed cell death. Astrocytes, oligodendrocytes, and other supportive cell types 
such as ependymal cells, microglia, and meninges are formed in late embryogenesis 
to early postnatal stages [101–103].

4.4.2  �LPA Is a Potent Neuromodulator

LPA has neurotransmitter-like effects on NPCs and preferentially modulates cal-
cium and chloride conductance in cortical neuroblasts [104, 105]. Whole-cell 
patch clamp of E11 cortical neuroblasts demonstrates the striking effect of 
altered membrane potential (depolarization) immediately after LPA exposure 
and no response to l-glutamate or GABA, suggesting that embryonic NPCs are 
preferentially responsive to LPA [104]. Even after embryonic cortical NPC 
growth in culture for up to 12 h, the majority of cells produced were LPA respon-
sive; some GABA and l-glutamate responsive cells were also produced but those 
cells preferentially depolarized to extracellular LPA even after a short refractory 
period of GABA or l-glutamate activation [104]. Calcium conductance changes 
[104, 105] and inward chloride current from RhoA activation [106] underlies the 
LPA-induced changes in the membrane potential of cortical NPCs. Fluctuations 
in membrane potential are known to influence NPC survival, proliferation, dif-
ferentiation, morphology, and migration, all of which are also mediated by LPA 
signaling [104–111]. These studies provide compelling evidence that anomalies 
in LPA signaling during cortical development may have significant physiological 
consequences.
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4.4.3  �LPA in Mitogenesis and Neurogenesis

Mitogenesis is typically triggered by proteins; however, LPA signaling through its 
GPCRs promotes cell cycle progression and survival of mitogenic NPCs to increase 
cellular output. LPA1 was originally identified in the major proliferative and neuro-
genic regions of the embryonic brain: the cortex, ventricular zones, and olfactory 
bulbs [1, 41]. Wild-type embryonic mouse cortices exogenously exposed to LPA 
had enhanced cortical folding and thickness through terminal mitosis of NPCs; this 
cortical response was lost in LPA1/LPA2 double knockout mice [68]. Enhanced pro-
liferation and neural cluster formation was also observed in embryonic cortical cell 
cultures exposed to LPA. The effects of LPA signaling on NPC population expan-
sion and neuronal fate commitment during corticogenesis suggest that multiple fac-
tors such as developmental stage, species, LPA levels, and LPA receptor expression 
may contribute to neurogenesis and cortical organization. In the rat, high concentra-
tions of LPA (10 μM) inhibit proliferation [112] and lower concentrations (up to 
1.0  μM) promote proliferation of cortical NPCs [113]; similar effects are also 
observed in human embryonic stem cells mediated by the Rho/ROCK pathway 
[114]. Alternatively, high concentrations (10 μM) of LPA promote proliferation of 
mouse NPCs [48]. Similar controversies are also evident with regard to LPA-
induced neuronal differentiation. NPC differentiation is caused by LPA1-Gi-
dependent activation [115]. LPA1 and LPA3 activation of PI3K/AKT and the Rho/
ROCK pathway also inhibits neuronal differentiation [114], suggesting LPAR func-
tional antagonism as was observed in the cortex [116] and distinct expression pro-
files may modulate progenitor cell fate determination. Compelling studies using a 
spontaneously occurring Lpar1 null mutant mouse, termed maLPA [46], displayed 
loss of cortical layers, altered neuronal marker expression, increased cell death, and 
a reduced VZ population, suggesting that reducing LPA signaling through Lpar1 
may also attenuate neurogenesis [56, 57].

4.4.4  �LPA in NPC Survival and Programmed Cell Death

NPCs express multiple LPAR subtypes [6]; the effects of LPA signaling on NPC 
survival are dependent on receptor specificity and G protein activation. Some stud-
ies suggest that LPA’s pro-survival activity is dependent on LPA1- or LPA2-mediated 
Gi activation of GSK-3, Akt, and beta-catenin [54, 117]. Conversely, LPA’s pro-
apoptotic effects are due to LPA1-, LPA2-, and LPA4-mediated G12/13 activation of 
GSK-3 [118]. Ex vivo culture of embryonic cortices with LPA shows an LPA1- and 
LPA2-dependent abrogation of NPC death and increased terminal mitosis of NPCs, 
resulting in an expanded neuronal population and gyri-like formations of the murine 
cortex [68]. During corticogenesis, the spatiotemporal expression of LPAR1 coin-
cides with programmed cell death [119, 120], suggesting that LPA signaling may 
modulate programmed cell death pathways in the developing brain.
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4.4.5  �LPA and NPC Migration

One integral facet of embryonic cortical development is the movement of NPC nuclei 
between the apical ventricular surface and more basal positions, referred to as interki-
netic nuclear migration (INM) [121, 122]. Within the highly compact brain, INM is 
thought to provide adequate physical space for mitosis, which permits the expansion 
of progenitor pools that later populate each cortical layer. During this process, NPCs 
elongate and extend lamellipodia to sense the surrounding environment for chemoat-
tractive, chemorepulsive, and growth factor cues. Through an LPAR1-dependent 
manner, exogenous addition of LPA can disrupt INM [181], inhibit fiber extension, 
and cause mitotic displacement [99]. Consistently, studies have also shown that LPA 
is a chemorepulsive signaling molecule and causes neurite retraction, cell rounding, 
and modulates neuronal migration in a Rho-dependent manner [22, 113, 123–125]. 
Under certain conditions, LPA indirectly affects NPC function and causes axonal 
extension [126–128]. In co-cultures of cortical neuroblasts and astrocytes primed with 
LPA, the astrocytes induced neuronal differentiation and axonal outgrowth in the neu-
roblasts, a process mediated by epidermal growth factor (EGF) and MAPK pathways 
in an Lpar1- and Lpar2-dependent manner [126, 127, 129]. Although further research 
is needed, the evidence suggests that LPA signaling may have significant control of 
NPC migration during cortical development, effectively causing cortical disorganiza-
tion when the spatiotemporal patterning of LPA is altered.

4.5  �LPA Signaling and Neurodevelopmental Diseases

Hypoxic and hemorrhagic injury in the developing brain are two major risk fac-
tors for neurodevelopmental pathology that can result in neurological and neuro-
psychiatric disorders [99, 116, 130–132]. Malfunctioning and reduced progenitor 
cell populations in the developing brain are among the primary pathologies in 
neurodevelopmental diseases. Abnormal LPA signaling during cortical develop-
ment is correlated with abnormal NPC function, hypoxic or hemorrhagic events, 
and downstream effects such as hydrocephalus and schizophrenia. Further study 
is needed to gain mechanistic insight into the role of LPA signaling in develop-
mental injury regarding changes in neurogenesis and NPC function in these dis-
ease states.

4.5.1  �Hypoxic Injury

Hypoxic injury is commonly associated with developmental nervous system disor-
ders. In the developing brain, hypoxia causes mitotic displacement, inflammation, 
and decreased cholinergic and serotonergic fiber formation [133, 134]. Cortical 
exposure to hypoxia causes overactivation of Lpar1 and downregulation of G 
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protein-coupled receptor kinase 2 (GRK2) [99], both of which are also caused by 
LPA signaling in NPCs [68, 99]. Hypoxic injury enhances expression of LPA-
induced hypoxia inducible factor-1 alpha (HIF-1α) in cancer cells and VEGF in the 
vasculature [98, 135], indicating that LPA signaling is directly linked to injury 
mechanisms produced by the hypoxic brain.

4.5.2  �Schizophrenia

Neuropsychiatric disorders like schizophrenia are often initiated by fetal exposure 
to hypoxia, hemorrhage, and/or infection [99, 116, 136]. The pathology of schizo-
phrenia includes deviations in cellular, molecular, and neurotransmitter pathways 
that result in psychological and cognitive deficits, most of which are also linked 
to LPA signaling [58, 99, 116]. Perturbed glutamatergic and serotonergic (5-HT) 
signaling are major hallmarks of a schizophrenic brain [137, 138]; LPA signaling 
through LPA1 is also known to attenuate glutamatergic signaling pathways [139]. 
In addition, LPAR1 null mice have altered 5-HT levels and reduced glutamate 
synapses [58, 140]. Fetal intraventricular exposure to LPA was found to recapitu-
late neurochemical, behavioral, and genetic hallmarks of schizophrenia [116] and 
altered Lpar expression is linked to the cellular pathologies in schizophrenia 
including loss of parvalbumin-positive cells in the frontal cortex, reduced neuro-
genesis in the hippocampus, and behavior related to anxiety, depression, and cog-
nitive decline [92, 93, 141]. Interestingly, an LPA or serum-dependent model of 
neuropsychiatric disease produced by fetal brain exposure recapitulated nearly 
50% of genes previously identified in schizophrenia study [116]. Overall, this 
provides compelling evidence that abnormal LPA signaling during fetal brain 
development can have persistent detrimental outcomes evident in adult brain 
function.

4.5.3  �Hemorrhagic Injury and Hydrocephalus

Fetal intracranial hemorrhage (ICH) is a major risk for hydrocephalus (post-
hemorrhagic hydrocephalus, PHH) [131, 142, 143]. PHH is a common neurological 
disorder characterized by increased head size, cortical thinning, ventricular cerebro-
spinal fluid accumulation, and ventriculomegaly. The cellular pathologies of PHH 
include ependymal cell denudation, neurorosette formation, and NPC displacement 
[144–146]. The etiology of PHH remains unclear and the prognosis reflects a range 
of debilitating neurodevelopmental and psychiatric sequelae. The pathogenesis of 
PHH is possibly mediated by enhanced LPA signaling from blood exposure in the 
developing brain. Blood is known to contain LPA many fold over the Kd of various 
LPARs; these high levels can be exacerbated by ATX-mediated conversion of lyso-
phosphatidylcholine (LPC) into LPA and/or degranulation of platelets during a 
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hemorrhagic event [49, 50, 147]. The cellular pathologies of hydrocephalus can be 
initiated by intraventricular exposure to LPA or blood components in the fetal mouse 
brain [55]. The effects of blood or LPA exposure were prevented using an LPA1/LPA3 
selective antagonist as well as in Lpar1 and Lpar2 double null mutant mouse.

The basic mechanisms behind PHH remain unclear. However, clinical evi-
dence indicated that chromosome segregation deficits—aneuploidies—predict a 
higher risk for poor clinical outcomes of hydrocephalus and development of 
other associated neurological disorders (i.e., schizophrenia, Down syndrome, 
and brain tumors) [148–157]. In the healthy developing brain, aneuploidy is 
associated with programmed cell death (PCD), synaptic transmission, differen-
tiation, and gene expression [155, 158–162]. While large deviations in chromo-
some number undergo PCD, smaller aneuploidies evade this process, integrate 
into the brain circuitry, and become functional neurons [162]. The effects of 
these abnormal cell karyotypes on brain function remain unknown although evi-
dence suggests that genomic mosaicism in the brain is associated with neurode-
generative [163–167] and neuropsychiatric [166, 168–170] diseases. LPA 
signaling, such as through RhoA, alters normal NPC mitosis and consequently 
enhances aneuploidies [171–176]. LPA signaling often results in mitotic deregu-
lation, altered survival, migration, and fate of developing neurons [22, 88, 177, 
178]. We speculate that intraventricular exposure to LPA may alter forms of 
genomic mosaicism including aneuploidies and CNVs [171–176, 179]. In view 
of LPA’s genomic effects on NPCs, the pathogenesis of LPA-induced PHH may 
be a consequence of LPA-induced aneuploidies or smaller genomic changes in 
the progenitor population of the developing cortex, which remains to be exam-
ined in future work.

4.6  �Conclusion

LPA signaling is highly regulated during corticogenesis which influences a vast 
array of NPC functions including proliferation, survival, migration, morphology, 
fate, and karyotype. Perturbations to the normal spatiotemporal expression of 
LPARs and LPA during development have significant functional consequences in 
the brain, as demonstrated by the many effects relevant to neurodevelopmental dis-
orders that have been linked to LPA signaling. There are currently no medical treat-
ments for the neurodevelopmental and neuropsychiatric disorders that arise from 
fetal hypoxic or hemorrhagic insults. Interrogating potential genomic and molecular 
mechanisms underlying LPA’s effect on corticogenesis after fetal brain injury may 
help develop effective therapeutics for neurodevelopmental disorders that target 
LPA metabolism and signaling.
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3xTg-AD		  Triple transgenic Alzheimer’s disease
AA		  Arachidonic acid
AD		  Alzheimer’s disease
Apo		  Apolipoprotein
AraC		  beta-cytosine arabinoside
ATP		  Adenosine triphosphate
aNSC		  Active neural stem cell
BBB		  Blood–brain barrier
BLBP		  Brain lipid binding protein
BrdU		  Bromodeoxyuridine
CSF		  Cerebral spinal fluid
DCX		  Doublecortin
DESI		  Desorption electrospray ionization
DG		  Dentate gyrus
DHA		  Docosahexaenoic acid
DNA		  Deoxyribonucleic acid
DPA		  Docosapentaenoic acid
EGF		  Epidermal growth factors
EPA		  Eicosapentaenoic acid
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FA		  Fatty acid
FABP		  Fatty acid binding protein
FAO		  Fatty acid oxidation
FASN		  Fatty acid synthase
GABA		  Gamma-aminobutyric acid
GC		  Granule cell
GFAP		  Glial fibrillary acid protein
GLAST		  Glutamate aspartate transporter
ICV		  Intracerebroventricular
IMS		  Imaging mass spectroscopy
LC		  Liquid chromatography
LDLR		  Low-density lipoprotein receptor
MALDI		 Matrix-assisted laser desorption ionization
MRS		  Magnetic resonance spectroscopy
MS		  Mass spectroscopy
NeuN		  Neuronal nuclei
NMR		  Nuclear magnetic resonance
NSC		  Neural stem cell
OA		  Oleic acid
OB		  Olfactory bulb
PA		  Palmitic acid
PET		  Positron emission tomography
qNSC		  Quiescent neural stem cell
RNA		  Ribosomal nucleic acid
ROS		  Reactive oxygen species
SA		  Stearic acid
SCD-1		  Stearoyl CoA desaturase-1
SGZ		  Subgranular zone
SIMS		  Secondary ion mass spectrometry
SVZ		  Subventricular zone
TAG		  Triacylglycerol
TAP		  Transit-amplifying progenitor
TLC		  Thin layer chromatography
VLDLR		 Very low density lipoprotein receptor
WT		  Wild type

5.1  �Neural Stem Cells and Adult Neurogenesis

The discovery of dividing cells in the brains of adult mammals during the mid-
1960s changed our perception of brain plasticity and the potential for brain repair. 
It is now accepted that postnatal proliferation persists in two main brain regions, the 
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subventricular zone (SVZ) of the lateral ventricles and the dentate gyrus (DG) of 
the hippocampus, in virtually all mammals studied, including rodents [1], primates 
[2, 3], and humans [4, 5]. In these locations, pools of infrequently dividing neural 
stem cells (NSCs) maintain populations of highly proliferative transit amplifying 
progenitors (TAPs) that ultimately give rise to fate-committed neuronal or glial pro-
genitors. These TAPs migrate to their final destinations and differentiate into func-
tional postmitotic neurons and glial cells important for various aspects of cerebral 
function and plasticity [6–10].

Specialized microenvironments, or niches, control NSC activity during adult-
hood. Within these niches, combinatorial extrinsic signals arising from NSCs, 
TAPs, neuroblasts, ependymal cells, microglia, extracellular matrix molecules, the 
cerebrospinal fluid (CSF), and the vasculature interact with cell-intrinsic mecha-
nisms to control proliferation, self-renewal capacity, fate determination, migration, 
differentiation, and survival (Fig. 5.1) [11–14]. Although NSC pools appear to be 
conserved throughout life in the SVZ and DG, NSC output declines during adult-
hood and aging, as well as in the context of multiple neurodegenerative diseases. At 
the cellular level, it remains unclear whether these alterations involve changes in 
NSC pool size and/or activity, and at the molecular level, the mechanisms involved 
in these declines likewise remain poorly defined. Nevertheless, important progress 
has been made in understanding the control of where, how, and why adult neurogen-
esis normally occurs.

Fig. 5.1  Adult neurogenic niches. Combinatorial signals arising from neurotransmitter innerva-
tions (Acetylcholine (ACh), Serotonin (5-HT), Dopamine (dA), Norepinephrine (NE), and 
GABA), circulating blood factors, and within the cerebral spinal fluid (CSF) regulate the behaviour 
of neurogenic niches. Quiescent neural stem cells (qNSCs) are found beneath a border of ciliated 
ependymal cells (Type E) in the SVZ of the lateral ventricle and in the subgranular zone of the 
dentate gyrus. Upon mitogenic signals, neural stem cells become activated (aNSC), giving rise to 
transit-amplifying progenitors (TAP, Type C). After several rounds of division, progenitors differ-
entiate into neuroblasts (Type A), oligodendrocytes, and astrocytes. Abbreviations: BV blood ves-
sel, LV lateral ventricle, GZ granular zone, SGZ subgranular zone
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5.1.1  �NSC Niches: Form and Function

In this section, we present an overview of the SVZ and DG niches. While additional 
sites of neurogenesis may exist within the adult brain, in regions such as the hypo-
thalamus [15, 16] and primate striatum [17], the SVZ and DG remain the primary 
and best-studied NSC niches, and have provided the clearest insights into the regu-
lation and biological roles of NSCs.

5.1.1.1  �Subventricular Zone

NSCs in the SVZ of the forebrain lateral ventricles are ideally positioned to be regu-
lated by environmental signals (Fig. 5.1). Pockets of astrocyte-like NSCs are embed-
ded within the ventricular walls, in intimate association with the ventricle-lining 
ependymal cells. At their apical surface, these pockets of NSCs contact the ventricu-
lar lumen at the centre of ependymal pinwheel structures, allowing them to be regu-
lated by ependymal cell paracrine signals, by factors within the CSF, and by contacts 
with serotonergic fibres that densely innervate the ventricular surface [18, 19]. At 
their basal surfaces, NSCs contact the underlying SVZ vasculature, allowing for 
potential regulation by blood-borne molecules and circulating cells and by vascular 
endothelial cells [20, 21]. NSCs are also regulated by neighbouring cell types within 
the SVZ, including by their TAP and neuroblast progeny [22], by the resident 
immune cells, microglia [23], and by innervation from multiple local and distant 
neuronal populations [24–28]. Taken together, these studies reveal that NSCs are 
subject to diverse types and sources of regulation, including local signals from the 
SVZ itself, brain activity-associated neurotransmitters, and long-range circulating 
signals.

NSCs in the SVZ have been implicated in the production of both neurons and 
various glial cell populations. More than 30,000 neuroblasts exit the rodent SVZ 
each day [29], to begin tangential migration towards the olfactory bulbs (OB) via 
the rostral migratory stream [30, 31]. About half of these neuroblasts survive, dif-
ferentiate into periglomerular and granule olfactory interneurons [31, 32], and inte-
grate into the OB circuitry [33, 34]. By genetically blocking the production of 
newly generated neurons, these have been shown to play a functional role in fine 
olfactory discrimination, olfactory sensitivity, and more generally, olfactory plastic-
ity [35–37].

SVZ NSCs have also been shown to produce oligodendrocytes, ependymal cells, 
and astrocytes. A subpopulation of TAPs within the SVZ are olig2-expressing 
migratory progenitors that enter into the adjacent corpus callosum and striatum to 
differentiate into oligodendrocytes [38]. Ependymal cells of the lateral ventricle are 
generated from NSCs during development [39] and show little if any proliferation 
in the non-injured adult; aging-related ependymal loss is compensated for by SVZ 
NSCs that proliferate and incorporate within the ependymal layer, eventually dif-
ferentiating into new ependymal cells [40]. Generation of differentiated (non-
neurogenic) astrocytes within the SVZ is less clear under physiological conditions, 
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as NSCs themselves possess an astrocytic phenotype. However, NSC-derived 
astrocytes are abundantly produced in the SVZ following brain injury, migrate to 
the lesion site, and participate in protective astrogliosis [41]. Thus, adult SVZ 
NSCs produce all principal neural cell types of the CNS, and participate in the 
homeostatic maintenance, regeneration, and repair of the brain.

5.1.1.2  �Dentate Gyrus

NSCs in the DG are subject to many of the same local and longer-range regulatory 
mechanisms as in the SVZ, but with notable differences resulting from the distinct 
anatomy of the DG niche [42, 43]. Most obviously, the DG niche does not directly 
border the ventricular system, and thus DG NSCs are not in physical contact with 
ependymal cells or the CSF. Rather, DG NSCs are located in the subgranular zone 
(SGZ) of the DG, adjacent to the dense concentration of excitatory granule cells and 
Gamma-aminobutyric acid (GABA)-ergic interneurons found within the dentate 
granule layer. Indeed, tonic activation of GABA(A) receptors on NSCs by 
parvalbumin-expressing GABAergic interneurons has been shown to be a major 
NSC quiescence signal [44]. In addition to the local circuitry, inputs to the DG from 
the entorhinal cortex link the overall activation state of the DG to levels of cortical 
activity [11–14, 45, 46]. One consequence of these DG-specific features is that hip-
pocampal neurogenesis is particularly sensitive to life experience, including factors 
such as physical activity and stress [47–50].

The physiological roles of adult hippocampal neurogenesis have now been inves-
tigated using many complementary and increasingly precise approaches to suppress 
neurogenesis, including irradiation, pharmacological, and genetic tools. For exam-
ple, a tag and ablate strategy has been used to selectively eliminate a population of 
predominantly mature, adult-generated neurons either before or after learning and 
without affecting ongoing neurogenesis; this revealed that removal of these neurons 
after learning, but not before, resulted in degradation of existing contextual fear and 
water maze memories, without affecting non-hippocampal-dependent memory 
[51]. Suppression of adult neurogenesis impairs population coding of similar con-
texts [52], and it appears that young DG neurons mediate pattern separation while 
old DG neurons facilitate pattern completion [53–55]. At present, there are multiple 
functional roles identified for adult hippocampal neurogenesis including learning 
[2], spatial memory and pattern separation [54, 56–61], and regulation of stress and 
emotion [62, 63].

5.1.2  �Heterogeneity Within the NSC Continuum

There is now evidence for considerable heterogeneity within the NSC compartment 
itself. Recent studies indicate that “NSCs” might actually represent a collection or 
hierarchy of distinguishable cells that have partially overlapping functional charac-
teristics and, importantly, distinct physiological requirements.
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NSCs were originally identified in the SVZ, based on the ability of a rare sub-
population of SVZ cells to grow in vitro into free-floating colonies of undifferenti-
ated cells called “neurospheres” in the presence of epidermal growth factor (EGF) 
[64]. While some groups define EGF-induced formation of self-renewing multipo-
tent neurospheres as a characteristic unique to NSCs, others attribute this character-
istic to the early TAP stage of the neurogenic lineage [65]. Moreover, while NSCs 
are generally considered niche-anchored cells, a subset of cells migrating following 
brain lesions retain neurosphere-forming characteristics [66], possibly suggesting 
retention of NSC properties in some migratory progenitors. Recent transcriptomic 
studies of the NSC population have identified significant genetic differences and 
similarities during the continuum from quiescent NSC (qNSC) to activated NSC 
(aNSC) to TAP (discussed further in relation to lipid metabolism below). Layered 
onto this blurred line between stages of the NSC lineage are dorsoventral, medio-
lateral, and anteroposterior patterning signals, which program NSCs with a regional 
specification that delimits the neural cell types they can ultimately differentiate into 
[67–69]. Interestingly, adult NSCs are derived embryonically from an Oct4-
expressing “primitive” NSC, and a recent study has also found evidence for persis-
tence of small numbers of such primitive NSCs in the adult brain [70]. Overall, the 
heterogeneity within the NSC compartment is likely responsible for the surprising 
functional differences observed between cells expressing different combinations of 
classical NSC markers (i.e. nestin, GLAST, GFAP, and BLBP) [71–74].

Thus, while individual cells within the NSC lineage may be distinguishable on 
the basis of anatomical or genetic criteria under control conditions, their partially 
overlapping functional characteristics complicate the assignment of strict defini-
tions in different physiological and pathological situations. Notably, the transcrip-
tomic differences between cells within the NSC lineage have helped revealed that 
regulatory processes act preferentially at particular stages of the NSC lineage; as 
discussed later, fatty acid (FA) metabolism is an example of one of these 
processes.

5.1.3  �Human Neurogenesis

Creative strategies have been used to study neurogenesis in humans over the past 
two decades, and these have provided evidence that neurogenesis likewise occurs in 
the adult human brain. Initial studies analysed hippocampal tissues from deceased 
cancer patients that had received injections of the thymidine analog, bromodeoxy-
uridine (BrdU), prior to tumour removal. Co-labelling of post-mortem tissues from 
these patients using neuronal markers such as doublecortin (DCX) and neuronal 
nuclei (NeuN) revealed the presence of BrdU-positive newly generated neurons 
within the DG [4, 75]. Kukekov and colleagues subsequently isolated multipotent 
neurospheres from surgical biopsy specimens containing SVZ or hippocampus of 
adult human brains, suggesting the presence of NSCs in these regions [5]. 
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Importantly, while studies based on BrdU or neurosphere formation revealed the 
presence of adult neurogenesis and NSCs in humans, they could not provide a quan-
titative measure of their occurrence: neurospheres reflect NSC potential rather than 
activity, while interpretation of human BrdU incorporation studies is limited by 
factors such as sub-saturating dosages and aged and/or diseased patients.

Immunohistochemical studies of the primate and human SVZ have revealed 
important similarities and differences compared to rodents. The human SVZ 
possesses a hypocellular gap beneath the ventricle-lining ependymal layer, but 
maintains a sub-ependymal neurogenic niche containing neural precursors and neu-
roblasts [76–78]. Three distinct subtypes of astrocytes have been identified along 
the lateral wall of the lateral ventricles. These astrocytes are located at different 
locations along the anterior-posterior length of the ventricle, and vary in size, ultra-
structure, and relationship to the ependymal zone [77]. A subpopulation of these 
astrocytes proliferate in vivo and behave as multipotent precursor cells in vitro [78], 
implying that SVZ astrocytes of the adult human brain indeed are NSCs. Consistent 
with this, cells expressing neuronal markers TuJ1 and DCX have been observed in 
the SVZ and the majority of these cells have an elongated morphology suggesting 
they are in migration [17, 77–80]. However, controversial conclusions have been 
reached concerning the fate of SVZ neurogenesis, with some authors reporting 
abundant proliferation and neuroblast migration to the human OBs [81–83], and 
others finding little or no evidence of a rostral migratory pathway [84]. The current 
consensus from these studies is that SVZ-derived olfactory neurogenesis is abun-
dant during developmental periods and rapidly declines during the first few years 
postnatally [84].

Recently, the Frisen group has developed an innovative cellular birth-dating 
technique based on measurement of deoxyribonucleic acid (DNA) concentrations 
of 14C, whose atmospheric levels spiked during the 1960s as a result of nuclear 
bomb testing. Using this technique, cells in various human tissues have been carbon-
dated, including neurons and glial cells in multiple brain regions. In the human OB, 
neuronal age corresponded precisely to an individual’s age, providing no evidence 
for ongoing incorporation of new neurons within the adult OB [85]. In contrast, 
substantial levels of adult hippocampal neurogenesis were detected, estimated at 
approximately 700 new neurons per day per hippocampus [86]. Modelling of these 
data suggests that a remarkable 100% of dentate gyrus granule neurons are replaced 
postnatally (compared to 15% in mice), with roughly one-third of these neurons 
being replaced regularly. Interestingly, while adult human olfactory neurogenesis is 
not detected, there are similar levels of proliferation in the human SVZ and the 
human DG, raising the question of the fate of new SVZ cells. Carbon dating of 
neurons in the SVZ-adjacent striatum revealed that approximately 25% of striatal 
interneurons are newly generated postnatally [17, 87], suggesting that the striatum 
may represent a major target of SVZ neurogenesis in primates. Furthermore, ongo-
ing production of oligodendrocytes was likewise detected.

Together, this work suggests that NSCs and adult neurogenesis are retained in the 
adult human brain. Approaches to test the physiological functions of adult human 
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neurogenesis remain to be developed. However, given the important roles of the 
primate hippocampus and striatum in higher cognitive processes, including learning, 
memory, and emotional regulation, human neurogenesis is likely to play significant 
roles in higher brain functions. Notably, NSCs can still be isolated from the SVZ of 
elderly subjects, including those with severe neurodegeneration, such as Alzheimer’s 
disease (AD) [76]. This gives hope that when the precise regulation of NSCs is 
understood, endogenous regeneration will be feasible.

5.2  �Neutral Lipid Metabolism in the Adult Brain

Lipids are one of the fundamental classes of biomolecules, along with nucleic acids 
[contributing to DNA/ribonucleic acid (RNA)], amino acids (contributing to pro-
teins), and sugars (contributing to carbohydrates). Lipids are molecules constituted 
of chains of hydrocarbons (CH2) whose wide-ranging cellular and physiological 
functions include (but are not limited to) membrane structure, energy metabolism 
and storage, second messengers for growth/proliferation/survival signals, transcrip-
tional regulation, intercellular signalling, inflammation, electrical insulation, and 
protection [88, 89]. To execute such tasks, the body absorbs, synthesizes, and modi-
fies all major classes of lipids. Here, we have focused on “neutral” or simple lipids, 
which are non-polar species that will break down into no more than 1–2 types of 
lipid molecules. Neutral lipids include free FAs, the FA storage form as triglycer-
ides (glycerol + 3 FA), as well as sterols (predominantly cholesterol) (Fig. 5.2). 
Below, we highlight some of the key players explored in this review (Fig. 5.3).

5.2.1  �Fatty Acids

FAs are composed of a carboxylic acid with a hydrocarbon chain usually of even 
number of carbon atoms, ranging from 4 to 28. FAs can be classified according to 
the length of the hydrocarbon chain: short—(2–5C), medium—(6–12C), long—
(13–22C), and very long chain (>23C). They can also be classified according to the 
presence of C-C double bonds: saturated FA (SFA) have no C-C double bonds; 
unsaturated FA have either one C-C double bond (monounsaturated, MUFA) or 
multiple C-C double bonds (polyunsaturated, PUFA). Cytoplasmic FAs are bound 
to amphipathic transport proteins (fatty acid binding proteins, FABPs) that target 
them to different cellular compartments. In addition to existing as monomers and 
triglycerides, FAs can also be incorporated into a wide range of more complex 
membrane-associated lipids (Fig. 5.2), including glycerophospholipids (glycerol + 
2 FA + 1 phosphate group), ceramides (sphingosine + 1 FA), phosphosphingolipids 
(sphingosine + 1 FA + 1 phosphocholine group), and glycosphingolipids (sphingo-
sine + 1 FA + 1 oligosaccharide).
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5.2.2  �Triacylglycerides

Excess intracellular FAs are converted into triacylglycerols (TAGs) (glycerol + 3 
FA) within the endoplasmic reticulum, and these TAGs are subsequently packaged 
within a hydrophilic phospholipid shell called a lipid droplet [90–92]. The mobili-
zation of FAs from TAGs is carried out by lipid droplet-associated lipases, which 
sequentially release the FAs [93] (Fig. 5.3). FA metabolites formed from the break-
down of TAGs are ultimately used for a variety of purposes, such as signal transduc-
tion pathways, membrane biosynthesis, adenosine triphosphate (ATP) production 
through β-oxidation, or generation of inflammatory eicosanoids.

Fig. 5.2  Lipid classification. Fatty acids (FAs) and sterols provide the building blocks for all major 
lipid classes. Intracellular saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) 
can be stored as triglycerides (a glycerol with 3 FA chains) or incorporated into structural mem-
brane lipids. Membrane lipids can be divided into two subgroups, glycerophospholipids (a glycerol 
with 2 FAs and a phosphate) and ceramides (a sphingosine with one FA). Ceramides can be further 
modified into phosphosphingolipids (by addition of phosphocholine) or into glycosphingolipids (by 
addition of an oligosaccharide)
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Fig. 5.3  Fatty acid metabolism. Circulating fatty acids (FAs) are bound to albumin or in triacylglyc-
eride (TAG) form within lipoproteins. Lipoproteins dock with various families of plasma membrane 
receptors, allowing lipoprotein lipase (LPL) to release the FA cargo. These free FAs can subse-
quently enter the cell by passive diffusion or via transporters such as CD36 or FATP, or alternatively 
can activate lipid sensing G-protein-coupled receptors such as the GPR120 family. Cytoplasmic 
FAs are bound by fatty acid binding proteins (FABPs) during intracellular transport. FAs at the 
endoplasmic reticulum can enter the glycerolipid synthesis pathway for storage in lipid droplets. 
This occurs by sequential FA addition by (1) GPAT (glycerol-3-phosphate acid acyltransferase) 
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5.2.3  �Lipid Droplets

Our current understanding of lipid droplet biology comes mainly from studies in 
peripheral tissues. Under physiological conditions, excess TAGs and cholesterol are 
stored in lipid droplets in order to buffer their toxicity and to provide a reserve for 
periods of diminished nutrient availability. In times of lipid deficiency, lipases break 
down these stores to provide membrane building blocks, such as FAs or sterols, for 
cellular division and integrity [91]. This protective function is probably the reason 
for the abundant accumulation of lipid droplets in many disease states characterized 
by aberrant lipid supply and metabolism, such as obesity, atherosclerosis, and fatty 
liver disease [94–96], as well as cancer and neurodegeneration [95, 97, 98]. 
Interestingly, recent studies in Drosophila have shown that reactive oxygen species 
(ROS) and mitochondrial defects, which are critical factors in many neurodegenera-
tive diseases, trigger accumulation of lipid droplets in glial cells; depending on the 
context, these glial lipid droplets can be either neuroprotective or a source of dam-
aging peroxidated lipids for adjacent neurons [99, 100].

5.2.4  �Apolipoproteins

Cholesterol and triglycerides, as well as cholesterol esters and phospholipids, are 
shuttled through the body by carrier proteins called apolipoprotein (Apo), which 
regulates their metabolism and distribution [101, 102]. Lipoproteins dock with 
plasma membrane receptors that have tissue-specific expression patterns. In the 
central nervous system, the main lipoprotein receptors are SR-B1 (sterols and 
phosphatidyl-choline), low-density lipoprotein receptor (LDLR) (cholesterol), very 
low density lipoprotein receptor (VLDLR) and ApoER2 (triglycerides), and LRP1 
(cholesterol and triglycerides), although the lipid cargo specificity of these recep-
tors is only partially known.

Fig. 5.3  (continued) yielding LPA (lysophosphatidic acid), (2) AGPAT (acylglycerol-3-phosphate 
acyltransferase) and Lipin, yielding DAG (diacylglycerol) via a PA (phosphatidic acid) intermedi-
ate, and (3) DGAT (diacylglycerol acyltransferase), yielding TAG.  When FAs are needed, lipid 
droplet TAGs undergo lipolysis by (1) Fig. 5.3 (continued) ATGL, adipose triglyceride lipase yield-
ing DAG, diacylglycerol (2) HSL, hormone-sensitive lipase yielding MAG, monoacylglycerol, and 
(3) MAGL, monoacylglycerol lipase, yielding free FAs at each step. FAs are attached to Acyl-CoA 
by Acyl-CoA synthase (ACS). FA-acyl-CoA enters the mitochondrion for β-oxidation via a carni-
tine shuttle is used. Acyl-CoA is transferred to the hydroxyl group of carnitine by carnitine palmi-
toyltransferase I (CPT1), located on the cytosolic face of the outer mitochondrial membrane. 
Acyl-carnitine is shuttled inside by carnitine-acylcarnitine translocase as carnitine is shuttled out. 
Acyl-carnitine is converted back to acyl-CoA by carnitine palmitoyltransferase II (CPT2), located 
on the interior face of the inner mitochondrial membrane. Acyl-CoA is shuttled into the TCA cycle 
for β-oxidation, producing adenosine triphosphate (ATP), carbon dioxide (CO2), and water (H2O). 
De novo lipogenesis produces palmitic acid from acetyl-CoA and Malonyl-CoA by the action of 
fatty acid synthase (FASN). Palmitic acid can be elongated by elongases (elovl) to produce stearic 
acid, which can be desaturated to oleic acid by stearoyl-CoA desaturase (SCD-1)
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The majority of Apos do not cross the blood–brain barrier (BBB), a selectively 
permeable interface that comprises astrocytes, endothelial cells, smooth muscle 
pericytes, and fibroblasts [103]. Peripheral FAs are thought to be able to cross the 
BBB. However, the mechanism of how they do so is still relatively unknown. It has 
been proposed that FAs can cross the lipid bilayers by a flip-flop mechanism or by 
passive diffusion [104]. Longer chain FAs are less soluble, but are able to cross cel-
lular membranes via FA transporters such as CD36 and FATP (Fig. 5.3) [105–107]. 
On the other hand, about a quarter of the body’s cholesterol (the most common 
sterol in the body) is found in the brain, but cholesterol does not cross the BBB. Brain 
cholesterol is virtually entirely locally synthesized by astrocytes and oligodendro-
cytes. Within the brain, lipids are carried principally by ApoE (large lipoproteins), 
ApoA-1 and ApoD (smaller lipoproteins), and ApoJ (less specific). ApoE, ApoD, 
and ApoJ are mainly synthesized by astrocytes and other glial cells, while ApoA-1 
appears to be principally derived from the periphery.

5.3  �Neutral Lipids Are Physiological Regulators 
of Adult NSCs

5.3.1  �Neutral Lipid Carriers Are Required for NSC 
Maintenance and Neurogenesis

Several lines of evidence implicate neutral lipids as important physiological modu-
lators of NSC activity. Initial evidence for a role of neutral lipids in NSC regulation 
comes from expression patterns and knockout analyses of FABPs and Apos.

5.3.1.1  �FABPs

FABPs-3, -5, and -7 are expressed within the adult brain, and FABP5 and FABP7 in 
particular are expressed by NSCs and their downstream progenitors [108]. A marked 
decrease in hippocampal NSCs and proliferating neural progenitors was observed 
when FABP5, FABP7, or both were knocked out.

5.3.1.2  �ApoE

The identification of polymorphism at the APOE locus as the primary genetic risk 
factor for AD has led to many studies on the effects of ApoE2/3/4 on the brain; 
however, few studies have focussed on neurogenesis. ApoE elimination resulted in 
an increase in neural precursor proliferation in the DG niche followed by a prema-
ture depletion of GFAP and nestin-expressing NSCs. ApoE directly mediated this 
effect, as retroviral re-expression of ApoE rescued the phenotype [109]. Li et al. 
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studied ApoE knockout mice as well as mice with knock-in alleles for human 
ApoE3 or ApoE4 (ApoE4 being the major AD risk factor), and showed that hippo-
campal neurogenesis is reduced in both ApoE knockout mice and ApoE4 knock-in 
mice [110]. Interestingly, when ApoE knock-in mice were exposed to environmen-
tal enrichment, which is a well-known stimulator of DG neurogenesis [47, 111], 
WT and ApoE3 mice showed a significant increase in proliferation and neurogene-
sis while ApoE4 mice did not increase neurogenesis and instead exhibited increased 
apoptosis [112]. Together, these studies suggest that lipids transported by ApoE 
regulate NSC activity, but the precise lipid species involved remain unidentified.

5.3.2  �Fatty Acid Metabolism Is Required for Proliferation 
of NSCs

More recent studies have linked the process of FA metabolism to NSC behaviour. 
Knobloch and colleagues performed a series of innovative experiments to reveal 
that de novo FA synthesis is required for maintaining NSC proliferation and neuro-
genesis [113]. They found that mRNA of both fatty acid synthase (FASN, a key 
enzyme in de novo lipogenesis, Fig. 5.3) and the Spot14 enzyme (a negative regula-
tor of malonyl-CoA synthesis, which is used by FASN during de novo lipogenesis) 
is expressed within NSCs in the SVZ and DG niches. FASN inhibition using orlistat 
or cerulenin led to a dose-dependent reduction of DG proliferation. Conversely, 
Spot14+ nestin-GFP cells proliferated slower than the Spot14− subpopulation. These 
studies revealed that adult NSCs/progenitors have a cell autonomous requirement 
for FASN-dependent FA synthesis in order to proliferate, and that Spot14, a gene 
highly enriched in more quiescent cells, limits proliferation by inhibiting FA syn-
thesis. Along these lines, Chorna et al. showed that voluntary exercise up-regulates 
hippocampal FASN expression, as well as levels of palmitic acid (PA) and stearic 
acid (SA), and that injection of the FASN inhibitor C75 disrupted exercise-induced 
increases in hippocampal proliferation and cognitive enhancement [114].

Soon after these pioneering studies, multiple transcriptomic studies were pub-
lished that identified lipid metabolism genes (and FA metabolism in particular) as 
among the most differentially expressed gene categories between purified popula-
tions of quiescent and activated NSCs. Codega and colleagues used a multistep 
FACS strategy to separate qNSCs and aNSCs from the SVZ; interestingly, microar-
ray comparison of these two populations showed that the lipid metabolism differ-
ences included 17-fold higher expression of stearoyl-CoA-desaturase (SCD-1, 
rate-limiting enzyme in MUFA synthesis, Fig. 5.3) and fourfold higher expression 
of ApoE in qNSCs compared to aNSCs [72]. In a second study, Lorens-Bobadilla 
and colleagues studied the SVZ NSC population at the single-cell level using RNA-
Sequencing, and found that genes expressed in quiescent and active NSC subpopu-
lations were enriched for FA metabolism and lipid biosynthesis (e.g. Fasn) [115]. 
Similarly, Shin and colleagues performed single-cell RNA-Seq on hippocampal 
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NSCs and identified multiple lipid metabolism-related gene categories that were 
enriched in qNSCs and down-regulated in aNSCs, including FA degradation and 
sphingolipid metabolism. This included the previously mentioned Spot14, as well 
as Acyl-CoA synthetases involved in the first step of FA β-oxidation (Acsl3, Acsl6, 
and Acsbg1), further supporting a novel role for active β-oxidation of FAs in the 
qNSC subpopulation [116].

5.3.3  �Distinct Effects of Fatty Acid Classes on NSCs 
and Neurogenesis

The previous studies indicate that appropriate regulation of FA metabolism is likely 
to be necessary for normal transition of NSCs from a quiescent to an active state. 
Lipidomic studies of these early stages of the NSC lineage have yet to be per-
formed, so the individual lipid species involved in this process have yet to be deter-
mined. However, in vitro and (rare) in vivo studies show that different classes of 
FAs can have distinct effects on survival, proliferation, and differentiation of neural 
precursors.

5.3.3.1  �Polyunsaturated Fatty Acids (PUFAs)

Omega-3 PUFAs such as docosahexaenoic acid (DHA, 22:6), eicosapentaenoic 
acid (EPA, 20:5), and docosapentaenoic acid (DPA, 22:5) have been studied most 
frequently because of their association with enhanced learning and memory. 
Neurospheres derived from the embryonic brain and differentiated in the presence 
of DHA have fewer apoptotic cells, fewer proliferating cells, and produce signifi-
cantly more numerous and complex neurons [117, 118]. Building on their previous 
work, Katakura and colleagues went on to show that DHA, EPA, and DPA, but not 
the omega-6 PUFA arachidonic acid (AA, 20:4) or MUFA oleic acid (OA, 18:1), 
arrested the cell cycle of neural precursors and promoted neuronal differentiation 
[119, 120]. In a similar vein, Sakayori and colleagues found that DHA, but not 
AA, increased neurosphere numbers and neuronal differentiation, while AA selec-
tively increased the number of astrocytes [121]. In vivo adult neurogenesis studies 
have been largely limited to in vivo high fat diet paradigms. It was shown that 
postnatal feeding with diets enriched with AA, but not DHA, increased overall cell 
proliferation in the DG [122], and that dietary administration of DHA in adult rats 
significantly increased the number of BrdU+/NeuN+ newborn neurons in the DG 
[118]. However, such studies are inevitably complicated to interpret due to indirect 
and systemic effects. Together, these studies demonstrate that omega-3 FAs sup-
port survival and neuronal differentiation, at least from embryonic neural 
precursors.
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5.3.3.2  �Saturated Fatty Acids (SFAs)

Saturated FAs, such as palmitic acid (PA, 16:0), have been linked to AD [123]. PA 
is the most abundant SFA in the body and is central to numerous cellular processes: 
for example, it is the precursor to longer chain SFA, MUFA, and PUFA, it is used 
for de novo synthesis of apoptosis-associated ceramides, and it is used for protein 
modification via palmitoylation. Treatment of neural precursors with PA dose-
dependently increases c-jun N-terminal kinase phosphorylation, alters bax and 
bcl-2 levels, and increases caspase-mediated apoptosis [124, 125]. At non-toxic lev-
els, PA increased Stat3 signalling and astrogliogenesis [124].

5.3.3.3  �Monounsaturated Fatty Acids (MUFAs)

MUFAs are produced by the enzyme SCD-1 via the desaturation of PA into palmi-
toleic acid (16:1) and stearic acid (SA, 18:0) into oleic acid (OA, 18:1), the most 
abundant MUFA in the body. Our group recently identified OA-enriched lipid drop-
lets within the SVZ and we demonstrated that OA can regulate NSC proliferation in 
the adult brain [126]. We modified the neurosphere assay to determine whether OA 
regulates NSCs, NSCs and progenitors, or only progenitors. We treated adult neural 
precursors with 50 μM or 100 μM of OA either on the day of plating (Day 0; mea-
sure of NSC activation) or after 4 days of neurosphere growth (Day 4; measure of 
progenitor cell expansion). Interestingly, we found that when OA was administered 
on D0, 50 μM increased neurosphere number while 100 μM inhibited it by over 
50% without changing neurosphere size. Importantly, this was not accompanied by 
an increase in TUNEL+ apoptotic cells. In contrast, when OA was administered on 
day 4, it had no effect at either concentration. These findings suggested that OA was 
impacting NSC activation specifically. We then performed a self-renewal assay by 
manually picking neurospheres that had been treated with vehicle or 100 μM of OA 
and re-plated them under standard neurosphere conditions. When secondary neuro-
spheres were counted, we found that the neurospheres that had been previously 
treated with OA had significantly fewer NSCs per original neurosphere, demon-
strating an inhibition of NSC self-renewing divisions. To study OA in  vivo, we 
intracerebroventricularly (ICV) infused OA in WT mice using mini osmotic pumps 
for 7 days. Quantification of total proliferation, proliferation NSCs, neuroblasts, 
and proliferation neuroblasts as well as number of pinwheels and neurospheres, all 
showed no significant difference. This confirmed our in vitro study, showing that 
OA does not have a widespread effect on neural precursor proliferation and neuro-
genesis. However, given that NSCs proliferate rarely and our in vitro data showed 
that OA selectively altered NSC proliferation, a 7-day paradigm was not appropri-
ate to detect changes in NSC proliferation specifically. Therefore, to selectively 
study NSC activation, we used a classical SVZ repopulation assay using beta-cyto-
sine arabinoside (AraC) [8]. When OA was co-infused with AraC, it inhibited the 
ability of GFAP+ NSCs to divide and regenerate the SVZ. To study the signalling 
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mechanism by which OA inhibits NSC proliferation, we performed OA experiments 
using both in vitro treatment and ICV injections. In both cases, OA increased AKT 
phosphorylation. When LY294002, an AKT-inhibitor, was combined with OA 
in vitro, it normalized phosphorylation of AKT and converted the negative effects 
on neurosphere formation to positive (i.e. an increase in neurosphere number com-
pared to vehicle). We then assessed this in vivo using a combination of fate-map-
ping of GFAP+ NSCs by in vivo electroporation and OA administration by ICV 
osmotic pumps. As anticipated, when GFAP-cre was electroporated into flox-YFP 
mice followed by ICV OA pump implantation, OA selectively inhibited the number 
of YFP+ NSCs. Importantly, when cells were co-electroporated with a kinase dead 
AKT plasmid, this prevented the decrease in YFP+ NSCs. These data implicate 
AKT signalling as an important effector of OA’s effects on NSCs. Taken together, 
our study showed that a single FA, OA, can regulate NSC proliferation in the adult 
brain.

Given that most studies on FAs and NSCs have been performed in vitro, it is 
important to consider the limitations of their interpretation. Cells are dramatically 
affected by the culturing process, culture media are minimal and do not replicate the 
in vivo milieu, and key molecules and cell types found within the stem cell niche 
may not even be represented in vitro. Moreover, given the active processing of indi-
vidual FAs within multiple biological pathways, it is uncertain whether particular 
in vitro and in vivo effects are due to the applied lipid itself or to one of its many 
metabolites/derivatives. Nevertheless, the preceding studies show that the FA pro-
file of the stem cell microenvironment impacts neural precursor behaviour in sig-
nificant and complex ways.

5.4  �Aberrant Neutral Lipid Metabolism in Brain Disease

Abnormalities in neutral lipid metabolism are beginning to be linked to brain disor-
ders associated with cognitive impairments or neurodegeneration. Below, we dis-
cuss emerging evidence that lipid-mediated alterations can cause NSC dysregulation 
during diseases of adulthood (AD) or development (autism). Interestingly, these 
examples highlight that disturbances in NSC behaviour can be caused by lipid 
metabolism abnormalities within NSCs themselves (cell autonomously, in the case 
of autism) or within their surrounding niche cells (non-cell autonomously, in the 
case of AD).

5.4.1  �Alzheimer’s Disease (AD)

AD is the principal cause of dementia, an aging-related degenerative neurological 
disease associated with premature deterioration of multiple cognitive modalities 
including learning, memory, and personality. Overall, brain degeneration and 
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synaptic loss proceed in a region-specific and temporally determined manner, 
beginning in the entorhinal cortex and advancing to the hippocampus and posterior 
temporal and parietal cortices [127–129]. NSC activity is also deregulated in a wide 
range of mouse models of AD [126, 130–132] and in the few superficial assess-
ments of human AD neurogenesis [133, 134]. Symptom onset is largely determined 
by genetic risk factors that separate AD into two forms: familial/early-onset familial 
(onset <60 years old) and sporadic/late-onset (onset >60 years old). Intriguingly, in 
both familial and sporadic forms of AD patients display the same cognitive symp-
toms and pathological hallmarks.

There is strong evidence to support a role for abnormal lipid metabolism in the 
pathogenesis of AD. German pathologist Alois Alzheimer was the first to describe 
the neuropathology of AD, uncovering five neuropathologies including focal depos-
its (amyloid plaques), intraneuronal fibrils (neurofibrillary tangles), blood vessel 
abnormalities (cerebrovascular amyloidosis), glial reactivity (gliosis), and lipoid 
deposits within non-neuronal cells (lipid accumulations) [135]. In recent years, 
genetic and genome-wide association studies have solidified the importance of the 
five initial AD pathologies, showing clusters of genetic mutations related to amyloid 
processes and storage (PS1, PS2, APP, APOE, SORL1, CLU, CRI, PICALM, BIN1, 
ABCA7), immunity/inflammation (CLU, CRI, EPHA1, ABCA7, MS4A4A/
MS4A6E, CD33, CD2AP) and lipid transport and metabolism (APOE, CLU, 
ABCA7, SORL1) (reviewed in [136, 137]). Notably, polymorphism at the APOE 
locus is by far the strongest genetic risk factor for sporadic AD, and there is con-
vincing evidence linking aberrant lipid metabolism to neurodegeneration in AD 
[138–142]. Furthermore, peripheral metabolic conditions such as insulin resistance, 
obesity, and dyslipidemia have been identified as major AD comorbidities and risk 
factors (reviewed in [143]).

In spite of these compelling data, the nature and cellular targets of the pathologi-
cal lipid species in AD have remained obscure. This has been largely due to the 
technical complexity involved in localizing, identifying, and determining the bio-
logical functions of individual lipid species in the adult brain. Recently, we uncov-
ered evidence for a novel FA-mediated mechanism suppressing endogenous NSC 
activity in AD [126]. Using the neutral lipid dye Oil Red O, we identified a highly 
specific accumulation of lipid droplets surrounding the brain’s ventricular system 
in AD. These lipid droplets were present within ependymal cells, the main support 
cell of the adult forebrain NSC niche, and were in both post-mortem human AD 
brains and triple-transgenic Alzheimer’s disease (3xTg-AD) mice. Imaging mass 
spectrometry (I-MS) revealed these neutral lipids to be 12 TAG species whose side 
chains were enriched with OA. I-MS was further used to trace the incorporation of 
the infused OA with a sensitive in vivo metabolic labelling procedure that uses OA 
comprised entirely of heavy 13C (13C OA). Uptake of 13C OA into each of the 12 
AD-associated triglycerides showed that 11 of the 12 AD-associated triglycerides 
were replicated in WT mice simply by infusion of OA. For example, 13C OA 
shifted the TAG 50:1 by exactly 18.060 atomic units (incorporation of one OA side 
chain). These metabolic labelling experiments also demonstrated that some 
AD-associated triglycerides contained 13C OA that had been elongated (56:4 and 
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56:5), reduced (52:2 and 52:3), saturated (52:2 and 54:2), and/or desaturated (54:4, 
56:4, and 56:5), revealing that OA at the brain-CSF interface can be used as a pre-
cursor to locally generate longer chain PUFAs. To attempt to identify the sources 
of these AD-associated triglycerides, we perform untargeted LC-MS on plasma 
samples of the same WT and 3xTg-AD mice. Interestingly, we found no differ-
ences in any of the 12 triglycerides species or their associated free FA chains, sug-
gesting that the brain itself might be the source. Indeed, microarray analysis of 
microdissected SVZs from WT and 3xTg-AD mice revealed enrichments for lipid 
metabolism and FA biosynthesis genes. Of particular interest was an increased 
expression of SCD-1, the rate-limiting enzyme in OA synthesis. As mentioned ear-
lier, exogenous OA was sufficient to selectively suppress proliferation of wild-type 
NSCs both in vitro and in vivo. We therefore used a pharmacological approach to 
SCD-1 activity in 3xTg-AD mice in vivo, and succeeded in reactivating NSCs and 
restoring overall levels of neural precursor proliferation in both adult neurogenic 
niches. These studies support a pathogenic mechanism whereby AD-induced per-
turbation of niche FA metabolism suppresses the homeostatic and regenerative 
functions of NSCs.

5.4.2  �Autism

Dietary or genetic disturbances in lipid metabolism are closely linked with the 
pathogenesis of autism [144], a spectrum of neurodevelopmental disorders that 
manifest as abnormalities in social interaction, language, communication, and 
behaviour. Recent studies have found that genetic mutations associated with autism 
can cause prominent, cell-autonomous alterations in NSC lipid metabolism that are 
likely to perturb normal brain development [145, 146]. For example, Xie and col-
leagues showed that reductions in NSC FA metabolism in embryonic mice resulted 
in diminished NSC pool size within the developing cortex. This was demonstrated 
by shRNA-mediated knockdown of TMLHE (an autism risk gene involved in syn-
thesis of carnitine, an acyl carrier necessary for FAs to be imported into the mito-
chondria). Similar results were obtained by knocking down expression of the 
mitochondrial enzyme CPT1 (also required for FA import into the mitochondria) or 
by overexpressing a non-phosphorylatable form of the lipid droplet protein 
Perilipin-1 (which normally must be phosphorylated in order to allow lipolysis of 
lipid droplet TAGs). These authors went on to show that TMLHE knockdown causes 
NSC depletion by promoting symmetric differentiating divisions that generate two 
progenitor daughter cells, and that this could be countered by supplementation with 
exogenous carnitine [146].

Links between lipid metabolism and NSC regulation in brain diseases are thus 
beginning to be uncovered, but we have likely barely scratched the surface. More 
work is clearly needed to define the roles of individual lipid classes and species that 
mediate alterations in NSCs under pathological conditions. To accomplish this goal, 
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it will be essential to adopt novel research strategies, harnessing the power of recent 
technological advances in lipidomics, and adapting them to the brain. Below, we 
outline tools and strategies for studying lipids in the brain and in NSC biology.

5.5  �Techniques to Measure Neutral Lipids in the Brain

The measurement, identification, and localization of lipids has been revolutionized 
by recent advances in lipid analysis methodologies, including lipid extraction pro-
tocols, internal standard availability, instrumentation, and bioinformatic tools and 
software (reviewed by [147]). These tools have enabled scientists to tackle ques-
tions that once were impossible and hold great potential for uncovering novel mech-
anisms of disease.

Since the equipment and expertise required for more advanced lipid measure-
ment techniques are not readily present in neuroscience labs, an informative place 
to begin is with simple, cost-effective techniques that enable the detection of gen-
eral lipid classes (Fig. 5.4). Lipid dyes are cheap, quick and afford the advantage of 
spatial resolution that thin layer chromatography and most MS techniques do not. 
The most common dyes for neutral lipids include Nile red, BODIPY, Oil Red O, 
Sudan black, and Filipin. Generally, the staining procedures are easily adapted for 
use on brain tissues and take less than an hour from start to finish. Thin layer chro-
matography (TLC) requires some specialized equipment for extracting lipids from 
homogenized, whole, or microdissected brain tissues but is otherwise relatively 
straightforward. TLC separates lipids using a “stationary phase” (normally silica 
gel) made possible by the differences in polarity of the various lipid classes and can 
be analysed to gain semi-quantitative measures of all major lipid classes. The major 
limitation of lipid dyes and TLC is the inability to resolve individual lipid species, 
which can only be achieved by mass spectrometry (MS) or nuclear magnetic reso-
nance (NMR) techniques.

Determining changes in broad lipid classes is a good start towards understanding 
lipid composition and distribution. However, since individual lipid species can have 
vastly different and highly specific biological roles, digging deeper into the indi-
vidual lipid species may be required. To accomplish this, mass spectrometry (MS) 
experiments are usually required. The first decision to make when deciding to per-
form MS is whether a targeted or untargeted approach is desired (reviewed by 
[148]). For example, is the goal to investigate members of a specific lipid class 
(targeted approach) or the global lipid profile (“lipidome”) of a sample? (untargeted 
approach). The approach used dramatically affects the conclusions and interpreta-
tions that can be drawn. On one hand, a targeted approach can be useful when a 
specific hypothesis is being tested or when there is a limited quantity of the species 
of interest within the global sample. Targeted approaches increase sensitivity by 
making use of a biased lipid extraction method, which enriches specifically for the 
lipid class of interest. On the other hand, the main advantage of an untargeted 
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approach is that it allows for an unbiased screen of your sample’s global lipidome, 
offering the opportunity for discovery of novel species.

Lipidomic experiments generally consist of three key steps: extraction, separa-
tion, and detection (Fig. 5.4). The extraction method chosen and the solvents used to 
run the samples can greatly affect the classes of lipids that can be analysed. Since 
lipids are non-polar compounds that are insoluble in water, they are usually enriched 
by extraction with organic solvents that removes interfering agents, such as proteins, 
saccharides, or other compounds. Currently, the most widely used extraction method 
is a derivative of the Folch method [149], which uses chloroform/methanol as the 
extraction solvent and was later amended by Bligh and Dyer [150]. In addition, 

Fig. 5.4  Techniques to study lipids. Lipidomic studies have three main steps: extraction, separa-
tion, and detection. Simple techniques such as lipid dyes (e.g. Oil Red O (ORO) for neutral lipid 
classes) can reveal spatial distribution of lipid accumulations on sections. Thin layer chromatogra-
phy (TLC) requires lipid extraction and chromatography separation to detect major classes of lip-
ids in biological samples. In order to identify and measure individual lipid species, more complex 
techniques such as mass spectrometry (MS) are required. Shotgun-MS directly injects isolated 
lipid extracts into the mass spectrometer for detection. Liquid chromatography (LC) or gas chro-
matography (GC)-MS separates lipid extracts prior to injection into the MS for detection. 
Imaging-MS (I-MS) on tissue sections can determine the identity, location, and quantity of lipid 
species. Lipid changes can be studied in living subjects using positron emission topography (PET) 
and magnetic resonance spectroscopy (MRS), which can detect and quantify changes in lipid 
metabolism and lipid species, respectively
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many other lipid extraction methods have been developed [151]. For example, for 
unbiased plasma and CSF lipid extractions, we recently used a methyl-tert-butyl 
ether extraction protocol [126, 152] that is gaining in popularity due to its lower 
density than water. This makes the organic phase the upper layer (in contrast to 
chloroform-based procedures), avoiding the need to cross the other phases when 
collecting the lipid extract. A key consideration when performing lipid extractions 
and lipidomic studies is the use of internal standards. It is important to use spiked-in 
standards during the workflow of the experiment, both before the extraction (to 
ensure that the lipid classes of interest are successfully extracted) and after the 
extraction (to confirm that the classes of interest can be detected).

Following lipid extraction from the sample, the next steps are to separate and 
detect the individual lipid species. MS is the most widely used technique for 
detection due to its precision in lipid identification with high sensitivity and through-
put. There are three main groups of MS approaches for lipidomic studies: shotgun, 
chromatography-coupled, and imaging (Fig. 5.4). Shotgun-MS [153, 154], in which 
lipid extracts are directly infused into the MS without pre-separation, is relatively 
fast and reproducible [154]. However, disadvantages of this approach are increased 
competition for ionization within the mass spectrometer (“ion suppression”) that 
results in a reduced signal-to-noise ratio, as well as a reduced ability to distinguish 
between structural isomers. This strategy is generally more appropriate for targeted 
lipidomic analyses that focus on only one class of lipid. Coupling MS with a prior 
chromatographic step, such as gas chromatography (GC) or liquid chromatography 
(LC), allows for the pre-separation of lipids according to their biophysical or struc-
tural characteristics; this approach provides more detailed and reliable predictions 
of lipid identities that is useful in untargeted lipidomic analyses. LC-MS has become 
one of the most widely used methods for total lipidome analysis, while GC-MS is 
more suited to profiling FAs and some less polar lipids [155, 156]. During MS, the 
lipids will then be ionized in either positive or negative ionization mode, depending 
on ionization tendency of different lipid classes.

The above techniques are increasingly being used in biomarker discovery and 
disease characterization in the brain [139, 157]. However, a limitation of these 
more traditional MS techniques is the absence of spatial resolution. This is not an 
issue when dealing with homogeneous samples, such as plasma or CSF, but can be 
a significant disadvantage when studying compartmentalized or anatomically com-
plex organs such as the brain. Imaging-MS (I-MS) offers the potential to overcome 
this limitation by allowing visualization of the spatial distribution of individual 
species across a thin tissue section. Three main ionization techniques are used with 
I-MS, including matrix-assisted laser desorption ionization (MALDI) [158], 
desorption electrospray ionization (DESI) [159], and secondary ion mass spec-
trometry (SIMS) [160]. MALDI can probe deeper into the tissue samples as com-
pared to other techniques (e.g. SIMS) and provides better spatial resolution in 
comparison to DESI. Compared to MALDI and SIMS, DESI performs the analysis 
under ambient conditions, allowing for the recording of spectra in a native tissue 
environment without sample preparation or pre-separation [161, 162]; this is 
advantageous in clinical practice for real-time analyses, but yields lower spatial 
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resolution than MALDI or SIMS. Currently, imaging with MALDI-based methods 
can reach a lateral spatial resolution of 5 μm while SIMS can reach 1 μm, the latter 
thus being able to resolve lipid alterations in subcellular compartments and mem-
brane domains [163].

The output of MS experiments are mass-over-charge identifications that allow 
database-aided predictions of species identity. Although MS lipidomic methodology 
has come a long way, there can still be significant ambiguity in definitive identifica-
tion of molecules that elute at the same mass-to-charge ratio. MS studies can thus be 
further strengthened by the addition of a second round of ionization (tandem MS or 
MS/MS). Tandem MS fractionates parent molecules into their component ions, 
enabling confirmation of their predicted identities.

The next frontier in studying brain lipid metabolism is the use of non-invasive 
approaches in living subjects. Functional brain imaging approaches are based on 
the measurement of metabolic changes that occur rapidly with brain activity. 
Techniques such as Positron Emission Tomography (PET) and Magnetic Resonance 
Spectroscopy (MRS) are being developed to track and measure lipid fluxes in vivo. 
PET measures accumulations of short-lived radio-labelled molecules that are meta-
bolically active, traditionally 18F-fluoro-deoxyglucose (FDG). More recently, how-
ever, radio-labelled long-chain FAs such as 11C-arachidonic acid, 11C-palmitic 
acid, and 18-fluoro-6-thio-heptadecanoic acid (FTHA) have also been used suc-
cessfully for PET studies. Although only rarely applied to the brain, PET imaging 
of FA metabolism holds promise for understanding and diagnosing brain lipid 
metabolism alterations in neurodegenerative diseases. For example, Karmi and col-
leagues used 11C-palmitate and FTHA to demonstrate that the brains of patients 
with peripheral metabolic syndrome have increased uptake of circulating FAs [164]. 
MRS is also widely used in both clinical and preclinical research [165]. Mobile 
lipids, including cholesterol esters and triglycerides, have enough rotational free-
dom to generate signal on MRS [166]. Given the findings of defects in FA synthesis 
and mobilization in neurodegenerative diseases such as AD [126] and autism [146], 
further development and optimization of brain imaging approaches may provide a 
means of early identification of presymptomatic populations, diagnostics, and 
tracking of clinical outcomes.

5.6  �Conclusion

To enhance and sustain appropriate levels of neurogenesis throughout life and fol-
lowing damage or degeneration, it will be critical to reveal the cocktail of NSC 
regulators present under normal and pathological conditions. The arrival of tech-
niques allowing scientists to better identify, measure, and localize lipids has led to a 
deeper understanding of global lipid metabolism. Even though these techniques are 
only beginning to be adapted to studies on the brain, current data has shown that 
NSCs appear to have enhanced sensitivity to lipid regulation. Further studies are 
needed to extend our knowledge of lipid metabolism in the brain in general and in 
NSC regulation.
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NP	 Neural progenitor
SGZ	 Subgranular zone
SVZ	 Subventricular zone
THC	 Δ9-tetrahydrocannabinol

6.1  �Cannabinoids

The term cannabinoid was first used to describe a class of substances with similar 
chemical structures extracted from the plant Cannabis sativa. More than 100 cannabi-
noids have been identified in this plant, including Δ9-tetrahydrocannabinol (THC), the 
one responsible for its main psychological effects, and cannabidiol (CBD), the major 
non-psychotomimetic compound [1]. The observation that the activity of psychoac-
tive cannabinoids was intrinsically related to its chemical structure [2] raised the 
hypothesis that cannabinoid receptors would be present in the organism. In the late 
1980s, the endocannabinoid (ECB) system started to be described with the identifica-
tion of a specific receptor for THC in the central nervous system (CNS, [3]) that was 
subsequently cloned and named cannabinoid CB1 receptor [4].

CB1 receptors are now considered the most abundant metabotropic receptor in the 
mammals’ CNS and are also present in peripheral tissues. The CB1 receptors are 
widely expressed in presynaptic terminals, where they regulate the release of several 
neurotransmitters (e.g., GABAe, glutamate, serotonin, acetylcholine, dopamine) [5, 6]. 
A second cannabinoid receptor, named CB2, was described in 1993 by Munro and 
colleagues [7]. Although initially thought to be expressed mainly in cells of the hema-
topoietic and immune systems, more recent studies have challenged this notion dem-
onstrating that CB2 receptors may be expressed in neurons and is present in microglia 
and neural stem cells [8–10]. Of note, despite their different localization and, appar-
ently, functions, both CB1 and CB2 receptors are coupled to a Gi/o protein [11].

In addition to CB1 and CB2 receptors, their endogenous ligands (termed endo-
cannabinoids) were also isolated in mammals. The most extensively investigated 
are those derived from arachidonic acid, arachidonoyl ethanolamide (anandamide-
AEA), and 2-arachidonoyl glycerol (2-AG), which are degraded by specific enzymes 
(Fig. 6.1, [12, 13]). AEA and 2-AG can also interact with other receptors such as 
proliferator-activated receptors (PPAR- α and γ). Moreover, AEA interacts with 
GPR55 and the Transient Receptor Potential Vanilloid Type 1 (TRPV1) [14].

Cannabinoids decrease neurotransmitter release by inhibiting calcium (Ca2+) 
and activating potassium channels [15]. They also affect short-term neuronal activ-
ity by reducing the depolarization-induced suppression of inhibition (DSI), mainly 
in GABAergic synapses, and the depolarization-induced suppression of excitation 
(DSE), in synapses that release glutamate and the neuropeptide cholecystokinin 
[16–18]. Moreover, cannabinoids display neuroprotective actions, being involved 
in the control of glutamate-induced excitotoxicity [19], and are critical regulators 
of neurodevelopment and adult neurogenesis [20].
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In this chapter, we summarize the main pieces of evidence indicating that can-
nabinoid signaling on neural stem/progenitor cells affects their proliferation, matu-
ration, and survival. These effects can modify CNS functions, being a potential new 
avenue for the development of novel therapeutic strategies for neurodegenerative 
and psychiatric disorders.

6.2  �The Neurodevelopmental Role of the Endocannabinoid 
System

An extensive literature has addressed the consequences of developmental exposure 
to phytocannabinoids, mostly THC, and also to potent synthetic cannabinoid ago-
nists. These studies have demonstrated that exposure of the immature nervous sys-
tem to THC, in perinatal stages and/or the adolescence, is associated to numerous 
behavioral alterations [21]. Experimental evidence indicates that the developing 
brain is more sensitive to exogenous cannabinoid-induced plastic adaptations. 
These findings prompted the search of the neurobiological substrate of phytocan-
nabinoid actions.

Fig. 6.1.  Schematic representation of the endocannabinoid system in the brain. (?) Putative 
expression of CB2 receptor in neurons. *Microglial cells express CB1(constitutive) and CB2 (acti-
vated state) receptors. Endocannabinoids are produced in astrocytes, microglia, and neurons
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6.2.1  �Expression of the Endocannabinoid System

The ECB system is present and functional since early stages of development, includ-
ing the primordium of the nervous system, as well as in the restricted neurogenic 
areas of the adult brain (the hippocampal subgranular zone-SGZ and subventricular 
zone-SVZ). Along neuronal differentiation, CB1 and CB2 receptors show opposite 
patterns of expression, being increased and decreased, respectively [10, 22]. CB1 
receptors are expressed, although at low levels, in neuroepithelial progenitor cells 
from early embryonic stages, and their levels increase along neural differentiation 
[20]. In addition, CB1 is enriched in white matter areas in embryonic stages, until 
the acquisition of its final expression pattern in the adult nervous system [23]. In 
vivo, CB1 receptor levels are associated with higher expression of differentiation 
markers of various neuronal lineages. CB1 receptor activity is more prominent in 
differentiated pyramidal projection neurons, interneurons, or cholinergic neurons 
than in their respective undifferentiated progenitor cells [20]. Little is known about 
the mechanisms controlling CB1 receptor expression during neurodevelopment. 
CB1 is induced during neuronal differentiation by neurotrophins such as brain-
derived neurotrophic factor (BDNF) [24]. In mature GABAergic interneurons, CB1 
expression is controlled by the 67-kDa isoform GABA-synthesizing enzyme gluta-
mate decarboxylase [25] and in striatal neurons is regulated by the transcription 
factor REST via RE1 sites [26].

The CB1 receptor regulation by ECBS during development is poorly understood. 
2-AG and AEA can be synthesized on-demand by surrounding differentiated neurons 
in response to neuronal activity. In addition, ECB can be produced in a paracrine/auto-
crine manner by neural progenitors (NPs) [27, 28]. The extracellular or intrinsic mech-
anisms responsible for ECB production in active neurogenic niches are not entirely 
understood. NPs produce and release the two major ECB compounds, namely, AEA 
and 2-AG, in response to increased intracellular Ca2+ concentration, and the ECB tone 
contributes to basal and stimulus-induced NP proliferation via CB1 receptors [27, 29, 
30]. 2-AG levels in neurogenic niches are precisely regulated by diacylglycerol lipase 
(DAGL) and monoacylglycerol lipase (MAGL) activity. Ablation of DAGLα, but not 
of the β isoform, interferes with hippocampal and SVZ-derived neurogenesis [31] and 
pharmacological inhibition of DAGL activity in NP cultures reduces cell proliferation 
[32]. NPs express FAAH, the primary enzyme involved in AEA degradation, and its 
genetic ablation or pharmacological inhibition promote NP proliferation [27, 33].

The role of extracellular signaling cues promoting ECB production is solely known 
for 2-AG generation, whereas signals driving AEA levels remain elusive, as the 
expression pattern of NAPE-PLD (N-acyl phosphatidylethanolamine phospholipase 
D) and FAAH (fatty acid amide hydrolase) enzymes responsible for AEA synthesis 
and degradation, respectively, during brain development remains unknown. Fibroblast 
growth factor (FGF) in coordination with neural cell adhesion molecule increases 
2-AG levels via DAGL coupled with PLCγ activation. Alternatively, NGF via TrkA 
enhances 2-AG production during neurite outgrowth of cholinergic neurons by con-
trolling the levels of MAGL [14]. In NPs, the high expression levels of DAGLα have 
been shown to rapidly decrease along their differentiation into GABAergic neuronal 
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cells [34], through a mechanism that relies on the regulation of the transcriptional 
regulator specificity protein 1. On the contrary, retinoic acid-induced neuronal-like 
differentiation of neuroblastoma cells increases first DAGLα expression and later 
DAGLβ [35].

A variety of neuroactive molecules acting via ionotropic and metabotropic recep-
tors have the potential to engage ECB generation via increased Ca2+ levels or Gq-PLC 
activation. These responses may occur after neurotransmitter-mediated neuronal 
activity and are also associated with spontaneous neuronal activity during cortical 
development. However, the contribution of spontaneous neuronal activity (during 
brain development) or neuronal synaptic activity (in adult neurogenic niches) in NP 
cell fate regulation, via ECB production, remains unknown. In addition to CB1 recep-
tors, CB2 receptor activity regulates NP cell proliferation, cell cycle maintenance, 
and neural differentiation [10, 32, 36]. Whereas CB2 receptor regulation clearly regu-
lates stem/progenitor cell responses, its expression levels and the identity of neural 
cells expressing it remain obscure.

6.2.2  �Cannabinoid Signaling Consequences in the Developing 
Brain

6.2.2.1  �Proliferation

The first pieces of evidence for an active role of cannabinoid signaling in NP cells 
came from studies on the regulation of adult neurogenesis by pharmacological can-
nabinoid manipulation or genetic ablation of the CB1 receptor [20, 37]. These stud-
ies evidenced that ablation of CB1 receptor expression reduced hippocampal and 
SVZ NP cell proliferation in vivo. Likewise, CB1 receptor absence in vitro inhibits 
self-renewal and NP proliferation [27]. Recent findings suggest that the positive role 
of CB1 receptor signaling in adult neurogenesis is reminiscent of its role in NP pro-
liferation and identity during cortical development Fig. 6.2a [38].

CB1 receptor signaling controls neural cell fate decisions during CNS develop-
ment by regulating the expression of genes responsible for neural identity [39]. In 
differentiating neuroblasts, CB1 activation regulates the homeodomain containing 
transcription factor Pax6 post-translationally via PI3K/Akt-dependent phosphoryla-
tion, and this is in turn responsible for its positive actions in neurite outgrowth [40]. 
In addition, CB1 activation increases Pax6 expression in cortical progenitors, driv-
ing the expansion towards basal intermediate progenitors by inducing the expres-
sion of the transcription factor Tbr2/eomes [38].

6.2.2.2  �Neuronal Differentiation and Morphogenesis

CB1 receptor signaling also affects neuronal differentiation acting in post-mitotic 
cells and, in an independent manner of its regulatory role, in undifferentiated NPs. 
CB1 signaling activates NP cell proliferation and pro-survival signaling pathways 
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that contribute to the regulation of cell cycle maintenance and the switch between 
cell proliferation and differentiation/migration. On the other hand, post-mitotic con-
ditional CB1 receptor ablation does not affect cortical progenitor expansion but only 
neuronal differentiation (Fig. 6.2b) [41]. CB1 regulates the balance between the 
expression of Ctip2 and Satb2, two transcriptional regulators that are involved in the 
decision switch of deep- versus upper-layer cortical neurons. Ctip2 drives deep-
layer cortical neuronal identity and corticospinal connectivity, whereas Satb2 is 
involved in intracortical projection neurons selectively arising from upper cortical 

Fig. 6.2.  The endocannabinoid system exerts a regulatory role on neural cell fate at different lev-
els. Cannabinoid signaling regulates (a) NP proliferation and identity of progenitor cells, (b) neu-
ronal and glial differentiation, and (c) neuronal morphogenesis and migration
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layers [42]. Deletion of CB1 during mouse cortical development lowered Ctip2 
expression and generation of deep-layer V neurons, and this is reflected in the 
reduced ability for skilled motor activity of CB1-deficient mice [39].

Cannabinoid signaling also exerts a crucial regulatory role in axon guidance 
and morphogenesis (Fig. 6.2c) [14]. CB1 receptor located in axon growth cones 
of differentiating neurons induces its collapse in response to DAGL-derived 
2-AG, [43]. A tight spatiotemporal regulation of 2-AG availability has been sug-
gested accordingly to the differential subcellular localization of 2-AG metaboliz-
ing enzymes [44]. MAGL is enriched in tubulin-consolidating axon shafts while 
DAGL accumulates in actin-rich motile axon tips, thus generating a 2-AG gradi-
ent that triggers axonal growth cone collapse. In cortical and retinal neurons, 
CB1 regulates axonal growth cone by controlling the plasma membrane localiza-
tion of the Dcc (deleted in colorectal cancer) receptor [45], whereas in GABAergic 
interneurons the monomeric G protein RhoA is involved [43]. CB1 receptor regu-
lation of growth cone collapse and neurite retraction relies on its ability to 
regulate actomyosin cytoskeleton via RhoA/ROCK signaling and Rac1/WAVE 
complex [46, 47].

CB1 receptor regulation of growth cone dynamics is responsible for its role in the 
establishment of long-range subcortical projections. Ablation or pharmacological 
blockade of CB1 receptors in utero alters corticothalamic projections and induces 
axon fasciculation deficits [48]. The complementary expression pattern of DAGL in 
thalamocortical axons and of MAGL in corticothalamic and thalamocortical devel-
oping axons contribute to the generation of spatially restricted 2-AG pools. It has 
therefore been suggested a potential role for 2-AG as one of the molecules respon-
sible for the timely developmental coordination between corticothalamic and thala-
mocortical projection “hand-shaking” [49]. The CB1 receptor thus exerts an acute/
short-term regulation of growth cone signaling in neurite tips, as well as long-lasting 
changes in neurogenic gene expression that affect neuronal wiring and connectivity.

In postnatal stages, cannabinoid receptor activity regulates astroglial and oligoden-
droglial differentiation (Fig. 6.2b). CB1 receptor activity increases astroglial differentia-
tion and GFAP expression in the developing cortex [50]. In oligodendrocyte progenitor 
cells CB1 and CB2 activation promotes the expression of Olig-2 in a PI3K/Akt/mTORC1-
dependent manner [51], and their activation by 2AG or WIN55,212-2 administration 
favors white matter recovery and oligodendrocyte differentiation [52, 53].

Noteworthy, ECB signaling in oligodendrocytes via CB2 receptors can contribute 
to neuron axon pathfinding by modulating Slit/Robo signaling in corticothalamic 
neurons expressing CB1 receptor [54].

6.3  �Pathological Implications of Cannabinoid Signaling 
in the Developing Brain

The neurodevelopmental role of the ECB system and its ability to regulate neural 
cell fate has important implications in regard to its potential contribution to neu-
rodevelopmental disorders. Likewise, exposure to plant-derived cannabinoids, 
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cannabinergic drugs interacting with the ECB system (i.e., modulators of ECB 
synthesis and degradation), or pollutants interfering with the ECB system can 
induce functional alterations in the adult progeny. Extensive literature exists 
regarding the consequences of cannabinoid-exposure during adolescence indicat-
ing that this is a critical period of susceptibility to deleterious actions produced by 
these compounds [21]. Less is known about the consequences of prenatal canna-
binoid administration or embryonic manipulation of cannabinoid signaling [54, 55]. 
Cannabinoid-induced alterations of the nervous system development have been 
demonstrated in different experimental models. In early embryonic chick devel-
opment, administration of a THC analogue disrupts neurogenesis and affects 
brain, somite and spinal cord primordium development, indicating that the ECB 
system is active in early cell fate decisions of neural tube progenitor cells [56]. In 
pregnant rats, administration of WIN-55,212-2 during the gestational period 
induces changes in dorsal pallial migrating neuroblasts and marginal zone inter-
neurons [57]. Unfortunately, the impact of WIN-55,212-2 treatment in the prog-
eny’s brain was not investigated.

6.3.1  �Neuronal Hyperexcitability and Epileptogenesis

Constitutive absence of CB1 receptors in null mice results in increased seizure 
susceptibility that is mostly attributed to the lack of the neuromodulatory role of 
presynaptic CB1 receptors [58]. In addition, the neurodevelopmental alterations 
associated with the loss of CB1 receptors in early stages, i.e., during embryonic 
development when synaptic activity is still absent or emerging, can shed new light 
on the cellular mechanisms responsible for epileptogenesis and the appropriate 
balance of excitation/inhibition (E/I). Alterations of neurogenesis and changes of 
excitatory and inhibitory neuronal cell populations are, therefore, essential for 
coordinated activity. Considering the evidence that the ECB via CB1 receptors 
regulates both excitatory projection neuron specification and GABAergic inter-
neuron morphogenesis and local microcircuits, these alterations can contribute to 
the higher susceptibility and severity to seizures as a consequence of CB1 signal-
ing manipulation. In agreement, embryonic THC administration exerts a deleteri-
ous impact in deep-cortical layer projection neurons and increases seizure 
susceptibility via CB1 receptors [59]. In this study, the impact of THC in interneu-
rons and particularly in CCK basket cells was not investigated, but selective neu-
ronal lineage rescue of CB1 receptor expression [60] revealed that CB1 receptors 
expressed in projection neurons and the GABAergic lineage contribute to seizure 
susceptibility. Likewise, prenatal THC administration, by interfering with cyto-
skeleton stability via c-Jun N-terminal kinase and Superior Cervical Ganglion 10/
stathmin-2 protein levels, decreases Schaffer collateral-induced long-term depres-
sion and perisomatic basket cell surrounding pyramidal cell somata [61]. 
Interference with the correct generation of different neuronal subpopulations can 
be responsible for embryonic THC-induced E/I unbalance. In addition to CB1 
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receptor regulation of neuronal differentiation, cannabinoid signaling actions in 
neuronal migration can contribute to developmental epileptogenesis. Genetic 
ablation of CB1 receptors during cortical development exerts a radial migration 
blockade that results in ectopic projection neurons resembling subcortical band 
heterotopias (Díaz-Alonso, de Salas-Quiroga, Galve-Roperh, personal communi-
cation). Noteworthy, transient CB1 receptor knockdown restricted to embryonic 
stages exerts long-lasting migration blockade that persists in the adulthood and 
induces increased seizure susceptibility. The promigratory role of CB1 receptors 
during brain development (Fig. 6.2c) is in agreement with the described role of 
the ECB system regulating neuroblasts migration in the adult rostral migratory 
stream [62]. These findings support the notion that cannabinoid signaling controls 
the appropriate E/I balance by additional mechanisms to the canonical CB1 recep-
tor neuromodulation.

6.3.2  �Neuropsychiatric Disorders

Experimental evidence described herein reveals that defective ECB signaling or 
developmental exposure to phytocannabinoids can induce alterations in neuronal 
number, specification and functional properties, or morphological changes that 
may be responsible not only for seizure susceptibility but also for neuropsychiat-
ric actions of cannabinoid signaling. The neurobiological substrate responsible 
for the emotional, social interaction, and cognitive changes induced by phytocan-
nabinoid consumption or by an unbalanced ECB signaling during brain develop-
ment remains largely unknown [54, 55]. In agreement with previous evidence of 
CB1 regulation of CCK development, a recent study showed that embryonic THC 
administration correlated with selective changes in the development of CCK bas-
ket cells, but not other interneuron populations. Embryonic THC administration 
compromised feedforward and feedback inhibition in the progeny [63]. The per-
sistent inhibitory deficits in the adult progeny was associated with deficient social 
interaction, but not increased anxiety, as reported in many studies where THC was 
administered in the adolescent period [21]. The impact of THC in CCK develop-
ment raises the hypothesis of a potential interaction between cannabinoid signal-
ing and autism. Noteworthy, autism-related mutations of neuroligin 3 are 
associated with changes in CB1 constitutive activity [64]. THC administration 
during adolescence, but not later, interferes with GABA maturation and function-
ality in the prefrontal cortex, highlighting the importance of developmental 
actions in cannabinoid effects [65]. On the other hand, CB1 receptor blockade in 
the adult can counteract several phenotypic markers of the Fragile X model (based 
on the loss of fragile X mental retardation protein FRMP) [66]. The consequences 
of manipulating CB1 receptor signaling during brain development in autism mod-
els remain to be investigated. Furthermore, the role of CB1 in interneuron devel-
opmental changes underlying the pathogenesis of schizophrenia constitutes an 
expanding field of research [67].
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6.4  �Adult Neurogenesis

At the beginning of the twentieth century, independent researchers reported what 
they believed to be the first description of mitotic figures in the adult nervous system 
of mammals [68]. However, this finding was not recognized because of the accepted 
dogma based on Santiago Ramon y Cajal’s view that, reflecting the limitations of 
the techniques available at that time, it was impossible to identify dividing neurons 
in the adult brain [69].

For more than 100  years, evidence of adult neurogenesis was denied, as the 
accepted view was that this process could only happen during embryonic periods, 
stopping just after birth. In the early 1960s, Joseph Altman, a scientist of the 
Massachusetts Institute of Technology, using tritiated thymidine administered intra-
peritoneally in adult rats, reported that “a proliferative region of granule cells was 
identified in the dentate gyrus of the hippocampus” [70, 71]. Almost 15 years later, 
Dr. Michael Kaplan presented additional evidence that new neurons are added in 
specific regions of the young and adult rat brain, including the neocortex, hippo-
campal formation, and olfactory bulb [72–74]. However, it was the work of [75], 
which reported that new neurons are indeed generated in the hippocampus of adult 
humans that established one of the most exciting recent fields in neuroscience: adult 
neurogenesis.

Adult neurogenesis is a complex process that evolves from the initial division of 
precursor cells until the effective differentiation and generation of a new functional 
and integrated neuron. In the words of Dr. G. Kempermann: “Neurogenesis is a 
process, not an event.”. It can be more precisely defined as an in vivo process that 
involves cell division, survival (not all cells that divide will survive), migration, dif-
ferentiation, and maturation [76–78]. Neural proliferative capacity has been reported 
in different brain regions, such as the hypothalamus and the cell layers surrounding 
the third ventricle [79]. However, the best characterized neurogenic areas in the 
adult brain are the SVZ of the lateral walls of the lateral ventricle and SGZ of the 
dentate gyrus (DG) of the hippocampal formation [80]. Both regions have a resident 
population of neural stem/progenitor cells that can originate neurons, astrocytes, 
and oligodendrocytes [81].

Despite the half-century of research separating the initial findings of Altman from 
our current knowledge, the particular function/physiological role of adult neurogene-
sis, as well as the key regulators of this process, remain under debate. So far, it seems 
to be a consensus that experience modulates neurogenesis in the adult brain either 
positively or negatively. Voluntary exercise or enrichment environment enhances pro-
liferation in neurogenic niches [82]. Conversely, chronic stress exposure decreases 
neurogenesis. However, due the different neurobiological nature of the two main neu-
rogenic niches, it is reasonable to infer that neurogenesis in SVZ and SGZ might be 
recruited differently and consequently exerts distinct or complementary roles on brain 
functions [77].

In the SVZ, neurogenesis is regulated by the olfactory experience of the animals 
[83, 84]. Odor exposure can increase the survival of newborn neurons and improve 
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memory in a learned odor discrimination task, suggesting that neurogenesis in the 
olfactory bulb is recruited during learning and memory processes related to olfac-
tory stimulation [85]. However, due to the relevance of the hippocampus for several 
brain functions and its implication on the genesis of neuropsychiatric disorders, 
much closer attention has been paid to SGZ than SVZ neurogenesis [86, 87].

Hippocampal neurogenesis is proposed to be important for at least some forms 
of learning and memory. Positive associations between them have been replicated 
by independent groups in rodents and humans [88–90]. For example, voluntary run-
ning and exposure to enriched environments improve learning and memory process 
with a concomitant increase in cell proliferation and survival of new DG generated 
neurons [82, 91, 92].

In addition, decreased adult hippocampal neurogenesis has been associated with 
psychiatric disorders such as anxiety, schizophrenia, and mood disorders. Stressful 
experiences that can precipitate symptoms of anxiety and mood disorders down-
regulate hippocampal neurogenesis [33, 93, 94]. Snyder et  al. [95] showed that 
impaired SGZ, but not SVZ, neurogenic capacity facilitates stress-induced depressive-
like symptoms and disrupt the essential negative feedback of hippocampus in hypo-
thalamic-pituitary-adrenal (HPA) axis [95]. Adult hippocampal neurogenesis has 
also been implicated in the mechanism of pattern separation [96, 97]). Pattern sepa-
ration is a complex concept that involves CA3 region as an associative network 
between a spatial location and a situation or an object that allows completion of 
memory during recall [98]. It has been hypothesized that this event is highly regu-
lated by new neurons formed in the DG. In addition, several authors have demon-
strated that neurogenesis is relevant for the perception of an event as stressful or not 
[99]. In the light of psychiatric conditions that involve an initial exposure to a trau-
matic event, such as posttraumatic stress disorder, the intact capacity of DG to pro-
duce new neurons has been associated with a poor ability of fear discrimination and 
overgeneralization (Besnard and Sahay 2015).

Of note, drugs used in the clinical practice for the treatment of psychiatric disor-
ders, such as antidepressants or lithium, normalize or even facilitate hippocampal 
neurogenesis [94, 100]. Moreover, compounds with therapeutic potential for psy-
chiatric conditions, such as cannabinoids, also impacts positively in adult hippo-
campal neurogenesis [33, 101].

6.4.1  �Cannabinoids and Adult Neurogenesis

Several independent groups around the world have demonstrated the importance of 
the ECB system in the modulation of different steps required for neurogenesis: cell 
proliferation, differentiation, maturation, and survival (Fig. 6.3, [37, 86]). Indeed, 
activation of CB receptors regulates intracellular pathways involved in cell prolif-
eration, differentiation, survival, and the integration of new cells in already estab-
lished circuitries, such as the MEK/ERK/CREB and PI3K/Akt/mTOR and BDNF 
production [14, 37]. Also, voluntary exercise seems to increase adult hippocampal 
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neurogenesis through a facilitation of CB1-mediated neurotransmission. Finally, a 
positive association between cannabinoid-induced neurogenesis and behavioral 
improvement has been observed in animal models of anxiety, psychosis, depression, 
and memory impairment (as further discussed in item 1.5 of this chapter). Chronic 
(10  days), but not the acute administration of HU-210, a synthetic cannabinoid, 
induces neurogenesis in mice. A very similar picture is found after repeated admin-
istration of WIN55,212-2, a CB1/CB2 agonist [27, 32, 101, 102].

The two main compounds of the plant Cannabis sativa, THC and CBD, also affect 
adult hippocampal neurogenesis. Repeated treatment with CBD for 15-days prevented 
β-amyloid-induced neurotoxicity via activation of the proliferator-activated receptor-γ 
(PAAR-γ), suggesting a mechanism for CBD neuroprotective effects [103]. Wolf et al. 
[30] suggested that chronic treatment with CBD (42 days) decreases cell proliferation 
but stimulates cell survival. These responses were mediated by CB1 receptors, as CBD 
effects were absent in CB1 receptor knockout mice. Also, repeated CBD (30 mg/kg) 
treatment for 14 days prevented a stress-induced decrease in cell survival and differ-
entiation in mice. In non-stressed mice, CBD increased the number of double-labeled 
BrdU/NeuN cells in the dentate gyrus [33]. These results were associated with 
increased levels of AEA, but not 2-AG, in the hippocampus of mice treated with CBD 
[33]. On the other hand, THC, a partial CB1 receptor agonist, decreased proliferation 
and, at the same time, spatial memory [30].

The participation of ECB in the modulation of neurogenesis has also been inves-
tigated. For example, hippocampal cell proliferation is increased in FAAH deficient 

Fig. 6.3.  Complex modulation of the endocannabinoid system during the process of adult hippo-
campal neurogenesis. Blue arrows facilitation of the formation of new cells/new neurons, N.A data 
not available or inconclusive. Based on in vivo studies
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mice and in animals treated with URB597, an FAAH inhibitor [27]. On the other 
hand, the ECB uptake inhibitor, AM404, reversed the trimethylthiazoline (TMT)-
induced decrease of neurogenesis [104]. Finally, the genetic ablation of the enzyme 
responsible for 2-AG synthesis reduced cell proliferation, the number of doublecor-
tin (a neuroblast marker) positive cells, and decreased the survival of newborn cells 
in the DG [31, 105].

The facilitation of CB2 signaling also influences adult neurogenesis. Repeated 
administration of HU-308, a CB2 receptor agonist, during 5 days, induces neural 
precursor cells proliferation in the DG. This effect seems to recruit Akt/mTORC1 
pathway [36]. In the opposite way, the administration of CB2 inverse agonist 
(JTE907) or antagonists (SR144528 or AM630) reduces cell proliferation and the 
number of BrdU labeled cells in the SVZ and SGZ [10, 32, 36]. The involvement of 
CB2 receptors in these results was confirmed by the failure of a CB2 agonist to 
induce any change in neurogenesis in animals deficient for this receptor [10, 36].

In the case of studies using pharmacological and genetic regulation of CB1 recep-
tors, the results are controversial. CB1-deficient mice exhibit low rates of prolifera-
tion, astrogliogenesis, and neurogenesis in the DG and SVZ [27]. Also, repeated 
administration of the CB1 antagonists/inverse agonists, SR141716A, and AM251, 
decreased neurogenesis in some studies [106]. Other groups, nevertheless, sug-
gested that these drugs facilitate neurogenesis [30, 104, 107]. Interestingly, the 
effects of some of these cannabinergic drugs were preserved in CB1 but not in 
TRPV1-deficient mice [107]. These discrepancies may be related to the use of dif-
ferent animal species, strain or gender, cannabinergic drugs, and doses employed. In 
addition, contradictory results may be the consequence of different BrdU-
administration schedule, and time-point of analysis, which may induce alternative 
interpretations. For example, Wolf et al. [30] found increased cell proliferation 1 
and 24 h after treatment with AM251, but a decrease in cell maturation 48 h and 
7 days later.

6.4.2  �Neurogenesis, Cannabinoids, and Neuropsychiatric/
Neurodegenerative Disorders: What’s the Correlation?

Considering that the ECB system modulates adult neurogenesis and that this process 
is impaired in neuropsychiatric and neurodegenerative disorders, it is plausible that 
cannabinoids may induce beneficial or detrimental effects in the brain and influence 
behavior by controlling newly generated neuron-induced plasticity. Cannabinoids 
are effective in modulating neurogenesis in various animal models of depression, 
anxiety disorders, Alzheimer’s disease, and cerebral ischemia. Some of these studies 
are not only based on associative results, but suggest causality, once the direct abla-
tion of hippocampal neurogenesis by different methods prevented the therapeutic 
effects induced by distinct cannabinoids tested.

Acute treatment with AM404, an ECB uptake inhibitor, reversed the 
trimethylthiazoline-induced decrease of hippocampal cell proliferation and pro-
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moted anxiolytic-like effect [104]. In the same sense, sub-chronic treatment with 
the CB1/CB2 agonist HU210 induced anxiolytic- and antidepressant-like effects 
accompanied by an increase in neurogenesis [101]. Although a controversial find-
ing, authors suggested that neurogenesis ablation through hippocampal X-ray irra-
diation prevented HU210-induced behavioral responses [101]. In agreement, 
repeated injections of CBD reversed the anxiogenic-like responses and the neuro-
genesis impairment produced by chronic stress in a CB1-dependent manner [33]. 
These effects were completely lost after ganciclovir administration to transgenic 
mice that express thymidine kinase under the control of the GFAP promoter, a 
method used to ablate only adult dividing precursor cells. In accordance, a recent 
study showed that the enhancement of 2-AG-induced neurotransmission by the 
MAGL inhibitor, JZL184, also prevented the anxiogenic- and pro-depressive-like 
effects, as well as the decrease in neurogenesis, induced by chronic stress [108]. 
Strengthening this hypothesis, the antidepressant-like effect produced by a single 
injection of the CB1 antagonist SR141716A was lost after sub-chronic administra-
tion of the drug, probably due to the reduction in neurogenesis observed in these 
animals [106].

Several studies in the literature show that (1) neurogenesis is altered in some 
neurodegenerative diseases, and (2) cannabinoids can improve behavioral responses, 
as memory impairment, and brain damage, in animal models of these disorders. For 
example, Esposito et al. [103] showed that chronic administration of CBD in rats 
that previously received β-amyloid injection in the hippocampus, an animal model 
of Alzheimer’s disease, decreases reactive gliosis, neuronal damage and facilitates 
adult hippocampal neurogenesis through PPAR-γ receptors. Also, cannabinoids can 
ameliorate age-related reduction in neurogenesis, suggesting that these compounds 
could replenish damaged/death neurons during neurodegeneration [32, 102]. In the 
middle cerebral artery occlusion rat model, widely used to evaluate cerebral isch-
emic injury, daily injections of oleoylethanolamide, a monounsaturated analog of 
anandamide, improved the spatial cognitive impairment concomitant to an increase 
in BDNF and hippocampal neurogenesis [109]. Also, CB2 receptor regulation coun-
teracts alcohol-induced decline in neurogenesis [110].

Taken together, these pieces of evidence suggest that cannabinoids could exert 
anxiolytic- and antidepressant-like effects as well as neuroprotection through an 
enhancement of adult neurogenesis. New studies using cannabinergic drugs that 
modulate the ECB tone in long-term studies of animal models of mood, cogni-
tive, or neurodegenerative disorders are urgently needed to clarify these impor-
tant aspects.

6.5  �Conclusions and Perspectives

In this chapter, we have presented evidence indicating that cannabinoids exert an 
important neurodevelopmental regulatory role on and mediate plastic events in the 
adult brain (Figs. 6.2 and 6.3). Important unanswered questions, however, remain. 

A.C. Campos et al.



131

For example, is the modulation of neurogenesis by endocannabinoid signaling 
always positive, or can it be deleterious in some pathological conditions? What are 
the precise mechanisms by which cannabinoid regulate neurogenesis, neurodevel-
opment, and cell fate? What is the role of non-cannabinoid mediated mechanisms 
(e.g., TRPV1, GPR55, PPAR-γ receptors) in cannabinoid modulation of neurogen-
esis? What intracellular pathways are involved? These open questions indicate that 
we are only at the beginning of our journey. However, the results so far clearly sup-
port the perspective that new knowledge in this area could bring important contribu-
tions to the therapy of neuropsychiatric and neurodevelopmental disorders.
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PGE2	 Prostaglandin E2
PI3-K	 Phosphatidylinositol 3-kinase
PLD	 Phospholipase D
S1P	 Sphingosine-1-phosphate
SDF-1	 α-Chemokine stromal-derived factor 1
SMase	 Sphingomyelinase
VSEL	 Very small embryonic-like stem cell

7.1  �Introduction

Ceramide-1-phosphate (C1P) belongs to the sphingolipids which are important 
components of cell membrane, and some of them are playing also critical function 
in regulation of key cell processes. In particular, sphingosine-1-phosphate (S1P) 
and ceramide-1-phosphate (C1P) were shown to be involved in regulation of cell 
proliferation [1–5], apoptosis [6, 7], survival [8, 9], cell migration [10–12], embry-
onic development [13], or inflammation [14]. Unlike S1P, which has been shown to 
be secreted from normal activated cells as an extracellular signaling molecule, C1P 
is mainly released from damaged cells and tissues due to irradiation, toxic effect of 
chemotherapy, myocardial infarction, or ischemia [11, 12, 15, 16].

C1P is a direct metabolite of ceramide, and its biosynthesis occurs in the Golgi 
apparatus from which C1P can be transported to plasma membrane and probably 
other organelles mainly by specific ceramide phosphate transfer protein [17]. So far 
only one enzyme, known as a ceramide kinase (CERK), has been identified to 
directly phosphorylate ceramide resulting in formation of C1P [18, 19]. Interestingly, 
mice with CERK knockout have only slightly decreased level of C1P in comparison 
to wild-type littermates, thus suggesting the presence of other pathways that leads to 
C1P synthesis [20, 21]. Transfer of fatty acyl chain to S1P or degradation of sphin-
gomyelin by phospholipase D (PLD) could also result in C1P formation and thus 
become additional source of this bioactive lipid in cell [22]. However, so far no S1P 
acyl transferase has been identified in living organism [1, 21]. In contrast, sphingo-
myelinase D (SMase D) activity has been detected in the toxins of some bacteria and 
the venom of a variety of arthropods including spiders of the gender Loxosceles but 
so far there is no evidence that SMase D exist in mammalian cells [22].

Although in vitro studies indicate that SMase D can generate C1P from sphingomy-
elin [23], it can also hydrolyze lysophospholipids such as lysophosphatidylcholine 
(LPC), lysophosphatidylinositol, or lysophosphatidylglycerol resulting in generation 
of lysophosphatidic acid (LPA) [24, 25]. Moreover, recent studies indicate that SMase 
D from venom of spiders catalyze exclusively transphosphatidylation rather than 
hydrolic reaction thereby forming cyclic ceramide phosphate (1,2) instead of C1P or 
LPA [26]. Alternatively, similarly to S1P for which two sphingosine kinases were iden-
tified, we cannot exclude the presence of additional isoforms of ceramide kinases with 
overlapping activity that could lead to phosphorylation of ceramide. This hypothesis 
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can be supported by some studies indicating the involvement of CERK-like kinase in 
murine retina development [27]. Recently, human CERK-like enzyme was also identi-
fied in retina [28]; however, in standard in vitro studies this enzyme was unable to 
phosphorylate ceramide, and therefore its role in cell biology remains unclear [29]. 
Specific C1P phosphatases or promiscuous lipid phosphate phosphatases (LPP1-3) 
dephosphorylate C1P to ceramide and thus participate in its degradation.

Unlike ceramide which is often pro-apoptotic, C1P has been reported to promote 
cell growth, survival, glucose uptake, and cell migration through unknown plasma 
membrane receptor/s that does not bind other sphingolipids including ceramides, 
S1P, or sphingomyelin [10]. Interestingly, however there are not identified C1P 
receptor/s yet, putative C1P receptor is pertussis toxin sensitive therefore most likely 
belongs to Gαi protein-coupled receptor family [10]. In macrophages, the C1P recep-
tor seems to be of low affinity since relatively high concentration (5–20 μM) of C1P 
are needed to induce its activation [10, 30]. However, increase in intracellular cal-
cium concentration in pulmonary endothelial cells was observed at much lower con-
centration of C1P (0.6 nM) [31], and since these changes were observed within few 
seconds post C1P stimulation of cells, it suggests that this effect is rather receptor 
mediated. Relatively lower concentration of C1P (0.5  μM) was also needed for 
induction of calcium mobilization and elevation in inositol (1,4,5)-triphosphate level 
in Jurkat cells [32]. Interestingly, such concentrations seem to be still within physi-
ological range since in murine serum concentration of C1P up to 20  μM were 
observed [33]. In contrast, in serum of human individuals 0.5 μM or lower concentra-
tions of C1P were detected and obtained values varied from ~0.2–~0.6 μM depend-
ing on methodology of sample processing [34]. Interestingly, the same authors 
observed a decrease in long chain C1P level (C26-C1P) in response to fasting [34].

Unlike serum, in which mostly C18-C1P and C26-C1P are detected [34], the major 
intracellular form of C1P is C16-C1P [35]. The intracellular level of C1P was 
reported to be ~ 2 pmol/106 cells [33, 36] but it can reach concentration of up to 
45 pmol/106 in macrophages (C16-C1P) [20]. Moreover, the level of intracellular 
C1P can increase after stimulation with different factors, e.g., after exposure of rest-
ing macrophages to macrophage colony-stimulating factor [2]. Intracellular C1P 
concentration can also be increased upon treatment of cells with pro-inflammatory 
agonists such as ATP or A23197 [35]. Extracellular increase in C1P level is rather 
the effect of organ/tissue injury and was observed in response to ischemia [11], 
myocardial infarction [16], irradiation [12, 15], or as a result of chemotherapy [12].

The first reported biological effect of C1P stimulation was induction of rat fibro-
blast proliferation [1] which was later confirmed in other cell types [2–4]. Further 
studies revealed that CERK activity and thus exogenous C1P concentration might 
affect proliferation of some cancer cells [36, 37] as well as normal mesangial cells 
and fibroblasts [38]. Molecular studies indicate that C1P potently stimulates intra-
cellular calcium mobilization [31, 39] and glucose uptake [39]. Subsequent studies 
demonstrated C1P involvement in cell survival [8] and inhibition of apoptosis 
mainly due to blockage of ceramide synthesis [6, 40]. The list of biological effects 
of C1P also includes stimulation of phagocytosis [41], degranulation [42], and regu-
lation of inflammation [14] as well as regulation of cell migration and invasion, 
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which in more details will be discussed below in this chapter. Table 7.1 provides 
working concentration of C1P for different cell types as well as downstream-
activated pathways that play a role in migration of normal and malignant cells that 
will be discussed in this chapter.

7.2  �C1P Stimulates Migration of Macrophages

One of the first studies indicating the potential role of exogenous C1P in stimula-
tion of migration of different cells was performed studying its effect on macro-
phages using Transwells [10]. Increased migration of these cells was observed 
when C1P was added to the lower chamber in concentration of 30–50 μM and was 
dependent on activation of pMAPK42/44 and PI3-K/Akt pathways, as inhibition of 
these pathways completely abolished C1P-induced macrophage chemotaxis [10]. 
Further studies revealed that stimulation of macrophages with C1P and phosphory-
lation of pMAPK42/44 and Akt led to release from cells of macrophage chemoat-
tractant protein-1 (MCP-1) [30]. In addition, C1P also stimulate the binding of 
nuclear factor kappa B (NF-κB) to DNA and blockage of this transcription factor 
resulted in complete inhibition of MCP-1 release and macrophage migration [10]. 
MCP-1 was also shown to be involved in C1P-induced migration of THP-1 cells 
and in addition to already known signaling pathways, MAPKp38 also had been 

Table 7.1  List of cell types for which C1P-induced migration was observed with corresponding 
effective C1P concentration and possible signaling pathways involved in this process

Cell type
C1P 
concentration

Signaling pathways 
involved in 
migration References

Immune 
cells

Macrophages (Raw264.7 
and J774A.1)

5–50 μM pMAPK 44/42, 
MAPKp38, PI3K/
AKT, NF-κB

[10, 30]

Stem cells HSCs 10–100 μM pMAPK 44/42, 
MAPKp38, AKT, 
Stat-3, Stat-5

[15]

MSCs 0.5–50 μM
priming: 
100–200 μM

pMAPK 44/42, 
AKT

[11, 4]

EPCs 0.1–50 μM pMAPK 44/42, 
AKT

[11]

VSELs 50 μM pMAPK 44/42, 
AKT

[11]

Cancer 
cells

Rhabdomyosarcoma 
(ARMS and ERMS)

0.5–10 μM pMAPK 44/42, 
PI3K/AKT

[12]

Pancreatic cancer 5–30 μM PI3K, PI3K/AKT, 
mTOR, RhoA

[65]

THP-1 monocytes 20–30 μM pMAPK 44/42?, 
MAPKp38?, PI3/
AKT?, NF-κB?

[30]
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shown to be important downstream effector of C1P stimulation both in macro-
phages and THP-1 cell line [30].

Sequestration of MCP-1 with a neutralizing antibody or treatment with MCP-1 
siRNA abolished C1P-stimulated cell migration of macrophages and THP-1 cells. 
Similarly, inhibition of the pathways involved in C1P-stimulated MCP-1 release 
completely blocked C1P-directed cell migration. This suggests that C1P promotes 
MCP-1 release in different cell types and that this chemokine might be a major 
mediator of C1P-stimulated cell migration [30]. Moreover, migration of macro-
phages in response to C1P was also associated with increase in expression of metal-
loproteinases (MMP) -2 and -9 as well as induction of actin polymerization and 
increased phosphorylation of focal adhesion protein—paxillin [43]. Blockage of 
any of these proteins either by pharmacological tools or with specific siRNA reduced 
C1P-induced migration of macrophages [43].

Another interesting finding was identification of phosphatidic acid (PA), which 
is structurally related to C1P, as a potential natural antagonist of the C1P receptor 
[44]. Although PA alone did not affect macrophage migration significantly, it was 
able to displace radiolabeled C1P from its membrane-binding site and thus to inhibit 
C1P-stimulated macrophage migration. Moreover, treatment of macrophages with 
exogenous PLD, an enzyme that produces PA from membrane phospholipids, also 
inhibited C1P-stimulated cell migration [44].

7.3  �C1P Regulates Hematopoietic Stem/Progenitor Cells 
Trafficking

For many years, it was believed that the α-chemokine stromal-derived factor 1 (SDF-
1) was the major chemoattractant in peripheral blood to regulate trafficking of hema-
topoietic stem/progenitor cells (HSPCs). SDF-1 binds to its Gαi protein- coupled 
receptor CXCR4 which is present at the surface of HSPCs [45, 46]. However, this 
explanation has been challenged by several observations supporting SDF-1–CXCR4-
independent homing and mobilization mechanisms [15, 47–49]. Additionally, SDF-1 
was shown to be a potent chemoattractant for HSPCs when used in supraphysiologi-
cal doses. Moreover, myeloablative conditioning for transplantation induces a highly 
proteolytic microenvironment in the bone marrow (BM) that leads to degradation of 
SDF-1; therefore, its level is not optimal to stimulate homing of HSPCs [28]. In sup-
port of this notion, new potent chemoattractants for HSPCs, such as proteolytic 
enzyme-resistant sphingophospholipids S1P and C1P have been identified [15, 50] 
(Fig. 7.1). By employing liquid chromatography electrospray ionization tandem mass 
spectrometry, it has been shown that the level of C1P measured in BM microenviron-
ment increases after conditioning for hematopoietic transplant by lethal irradiation 
[15]. Moreover, C1P, in a similar way as S1P, induces several signaling pathways in 
murine Sca-1+ cells that are enriched for HSPCs, including pMAPK 42/44, MAPKp38, 
AKT, and several Stat proteins, as well as strongly chemoattracts murine HSPCs [15].

Interestingly, at the same time C1P does not affect the clonogenecity of murine 
progenitors from all major hematopoietic lineages [15]. C1P stimulation also 
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increased adhesion of HSPCs to BM-derived fibroblast [15]. However, despite the 
fact that the overall SDF-1 level decreases in murine BM after lethal irradiation, the 
responsiveness of HSPCs to an SDF-1 gradient can be significantly enhanced by 
some factors such as prostaglandin E2 (PGE2) [51] and an additional effect of C1P 
on engraftment of HSPCs may be related to an increase of PGE2 level in BM and an 
increase of PGE2-mediated pro-homing activities [51, 52]. In support of this, C1P 
induces activity of cytosolic phospholipases A2, which regulates production of ara-
chidonic acid, a substrate for PGE2 synthesis [53].

7.4  �C1P Regulates Migration of Mesenchymal Stem/Stromal 
Cells (MSCs), Endothelial Progenitor Cells (EPCs), 
and Very Small Embryonic-Like Stem Cells (VSELs)

It has been demonstrated in several animal and clinical models that stem cells are 
mobilized into peripheral blood after organ or tissue injury and supposedly play a 
role in regeneration of damaged organ/tissues [54–60]. These circulating stem cells 
could potentially contribute to tissue repair directly like EPCs that support forma-
tion of new blood vessels [54, 56] or VSELs that differentiate and replace damaged 
cells [60]. It is also possible that some stem cells could act indirectly as a source of 
several growth factors and microvesicles/exosomes (e.g., MSCs) that provide tro-
phic signals that inhibit cell apoptosis and stimulate vascularization of damaged 
tissues [61, 62].

Interestingly, S1P and C1P levels increase in response to tissue/organ injuries 
in biological fluids [11, 12, 15, 16], which led to the question of whether these 
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Fig. 7.1  Role of C1P in homing of HSCs. As a result of conditioning for hematopoietic transplant 
by lethal irradiation, there is an increase in C1P level in BM environment. C1P chemoattracts 
HSCs, which has been given to recipients and increases their homing to their final destination
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bioactive lipids can play a role in trafficking of non-hematopoietic stem cells to 
damaged tissues. Indeed, C1P similarly to S1P is a potent chemoattractant for 
MSCs, EPCs, [16] endothelial cells (HUVEC), and VSELs [11] (Fig. 7.2). 
Moreover, response of cells to biologically relevant doses of C1P was much stron-
ger than to other bioactive lipids such as LPA and LPC or to already known che-
moattractants such as SDF-1. Importantly, SDF-1 induces migration of cells in 
experimental models only when used at supraphysiological doses, whereas lower, 
more physiological doses do not induce cell migration [11].

As observed in macrophages and HSPCs, stimulation with C1P induces activa-
tion of AKT and pMAPK42/44 signaling pathways both in MSCs and HUVEC 
[11]. Moreover, in MSCs, C1P induces expression of SDF-1 at the level of mRNA 
[11]. This has been further confirmed at the protein level in cell extracts as well as 
in conditioned media obtained from MSCs [11]. Moreover, C1P also enhances 
expression of cyclooxygenase-2 both at mRNA and protein levels in MSCs [11]. 

VSELs
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Mobiliza�on 
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Damaged 
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Circula�on

Damaged �ssue/organ

Blood 
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Fig. 7.2  Role of C1P in chemoattracting MSCs, EPCs, and VSELs to damaged tissue/organ. C1P is 
released from damaged tissues and attracts several stem cell population such as MSCs, EPCs, or 
VSELs. These stem cells can participate in regeneration directly (angiogenesis, differentiation into 
cells of damaged tissue) or indirectly (paracrine effect, release of microvesicles). Since organ or tis-
sue injury may be the result of ischemia or hypoxia in growing tumor, C1P effect can be both positive 
and negative. On the one hand, it will play a role in physiological process of regeneration, on the other 
hand, MSCs and EPCs recruited to growing tumor may support cancer growth and expansion
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This suggests that similarly to the observations in HSCPs, C1P additional effect on 
cell migration is through induction of expressions of already identified chemoat-
tractant factors such as SDF-1 and PGE2 [51], which play together an important role 
in chemoattracting circulating stem cells to the damaged organs [63, 64].

More detailed studies revealed that C1P does not only stimulate migration of 
HUVECs but also triggers capillary-like structure formation in 3D-Matrigel assay, 
more potently than fibroblast growth factor-2 (FGF-2) [11]. This was further con-
firmed in vivo where vascularization of Matrigel implants was analyzed, demon-
strating a potent vascularization effect of C1P in vivo at least comparable to the 
effects of FGF-2 [11].

Recently, published data have indicated a possible role of C1P as a priming agent 
for MSCs [4] which might be explained by chemokinetic properties of this bioactive 
lipid [12]. Accordingly, pretreatment of MSCs with C1P improved migration activ-
ity in Transwell assays compared to non-primed MSCs. This effect correlated with 
activation of pMAPK42/44 and AKT signaling cascades. C1P priming had little 
effect on expression of cell surface markers and multipotency of MSCs but it poten-
tiated proliferation of these cells, grow of colony-forming unit-fibroblast, and their 
anti-inflammatory activities [4]. Moreover, in an in vivo animal model of pulmo-
nary artery hypertension (PAH) induced by monocrotaline, a single administration 
of human MSCs primed with C1P significantly attenuated the PAH-related increase 
in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of 
α-smooth muscle actin-positive cells residing around the vessel wall [4]. Thus, this 
study showed that C1P priming increases the effects of MSC therapy by enhancing 
the migratory, self-renewal, and anti-inflammatory activities of these cells. To sum-
marize this exciting data, priming of MSCs by C1P could be implemented in the 
clinic as a novel promising option for the treatment of PAH patients [4] and most 
likely patients with other disorders.

7.5  �C1P Modulates Migration and Invasion of Cancer Cells

Bioactive lipids such as LPA, LPC, or S1P have already been reported to stimulate 
migration of cancer cells in wide variety of experimental studies. They were also found 
to stimulate cell resistance to chemotheraphy, stimulate cell proliferation, and promote 
angiogenesis so crucial for malignant growth [65–67]. However, for a long time there 
was no evidence on whether C1P could also modulate migration of cancer cells.

Recently, it was shown that C1P, similarly to S1P, is a potent chemoattractant for 
rhabdomyosarcoma and pancreatic cancer cell lines [12, 68] (Fig. 7.3). This effect is 
Gαi protein-coupled receptor dependent since pretreatment of both cell types with 
pertussis toxin completely abolished migratory responses to a C1P gradient [12, 68]. 
C1P, as already discussed above, was also shown also stimulate migration of immor-
talized THP-1 cell line, and this effect was associated with the release of MCP-1 [30]. 
It was also reported that C1P-induced migration of cancer cells depends on activation 
of AKT and pMAK42/44 pathways, as addition of appropriate inhibitors efficiently 
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inhibit C1P-induced migration of rhabdomyosarcoma and pancreatic cancer cells [12, 
68]. In the case of pancreatic cancer, the mammalian target of rapamycin 1 (mTOR1) 
signaling as well as RhoA small GTPase were found to be involved in regulation of 
migration of these cells [68]. Interestingly, C1P and S1P are upregulated in response 
to radio-chemotheraphy in different tissues and C1P contributes to the induction of 
unwanted prometastatic environment as a side effect of this therapy [12]. Therefore, 
there is a need to identify C1P receptor/s and to develop antagonists for these recep-
tors as well as to employ C1P binding/inactivating agents which could be used in 
clinic to ameliorate the metastatic effects of C1P.

It is also worth mentioning that the activity of CERK which plays a role in C1P 
synthesis also correlates with cell migration since overexpression of CERK in pan-
creatic cancer cells enhances spontaneous migration of these cells [65, 68]. This 
activity was potently blocked in control experiments with selective CERK inhibi-
tors or specific siRNA [65, 68]. Similar studies showed that CERK is also required 
for migration of mouse fibroblasts, which show elevated level of C1P during the 
early stages of wound healing [66, 69]. This suggests that by appropriate control of 
CERK activity in cells we could on the one hand decrease dissemination of cancer 
cells (CERK inhibition) and on the other we could improve wound healing after 
injury (CERK activation).
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Fig. 7.3  C1P plays a role in formation of a prometastatic environment. With damages due to radio/
chemotheraphy, cells release C1P, which chemoattracts cancer cells that survive the initial treat-
ment. Cancer cells migrate (metastasize) to distant locations where they can form secondary tumors
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7.6  �Conclusions

Over the recent years, bioactive lipids, including C1P, have emerged as important 
regulators of stem cell trafficking. C1P stimulates egress of HSPCs as well as MSCs, 
EPCs, and VSELs from bone marrow into peripheral blood. C1P has also been shown 
to be involved in the stimulation of migration of macrophages and trafficking of 
cancer cells. Moreover, in contrast to peptide-based chemoattractants that induce 
migration in supraphysiological concentrations, the pro-migratory effect of C1P is 
observed within physiological values present in peripheral blood, lymph, or intersti-
tial tissue fluid.

The level of C1P increases due to tissue or organ damage in response to different 
injuries. Therefore, C1P released from damaged tissues might chemoattract stem 
cells which could then participate in tissue regeneration. However, the increase of 
C1P levels as a result of the cytotoxic effect of chemotherapy and radiotherapy can 
create a prometastatic environment and stimulates cancer cells that survived initial 
treatment to metastasize to these C1P-enriched places. Therefore, there is an impor-
tant need to identify C1P receptors and to develop small-molecule compounds that 
could inhibit C1P-C1P receptor axis and thus modulate migratory properties of nor-
mal stem cells as well as malignant cells.
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Abbreviations

ALDH1	 Aldehyde dehydrogenase 1
AML	 Acute myeloid leukaemia
BCSC	 Breast cancer stem cell
C1P	 Ceramide-1-phosphate
CERT	 Ceramide transport protein
CSC	 Cancer stem cell
EGFR	 Epidermal growth factor receptor
ENL	 Eleven-nineteen-leukaemia
ER	 Endoplasmic reticulum
ERK	 Extracellular signal-regulated kinase
FLK-1	 Foetal liver kinase-1
GCS	 Glucosylceramide synthase
HDAC	 Histone deacetylase
HSC	 Haematopoietic stem cell
HSPC	 Haematopoietic stem and progenitor cells
MEF	 Mouse embryonic fibroblast
MLL	 Mixed lineage leukaemia
MSC	 Mesenchymal stem cells
PDGF	 Platelet-derived growth factor
ROS	 Reactive oxygen species
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S1P	 Sphingosine 1-phosphate
S1P1–5	 S1P receptors 1–5
SK	 Sphingosine kinase
TMZ	 Temozolomide

8.1  �Introduction

Prior to the paradigm shifting cancer stem cell (CSC) work by Bonnet and Dick [1], 
it was unknown how reformation of tumours occurred following eradication of the 
tumour population to undetectable levels. In these studies, the sorting of acute 
myeloid leukaemia (AML) patient cells based on CD34+ and CD38− expression led 
to the isolation of a small population of functionally and morphologically distinct 
leukaemia cells that alone could form human leukaemia in immune-compromised 
mice: the leukaemia CSC [1]. This initial finding accelerated the discovery of func-
tionally similar cell populations in a number of solid tumours [2–4] and propagated 
the theory that many tumours are organised into a functional hierarchy whereby a 
small number of CSC alone can generate the bulk of the tumour population [5].

8.1.1  �Criteria Defining Cancer Stem Cells

By definition, CSCs are classified by several criteria that distinguish them from the 
bulk of the tumour population. Isolated CSCs are capable of generating a xenograft 
in immune-compromised mice that recapitulates the heterogeneity observed within 
the primary human tumour based on comparative genetic analysis. From the propa-
gating CSC population, daughter cells can acquire further mutations, forming sub-
clonal populations that vary through the bulk population. However, each of these 
cells should retain the mutational profile of the initiating CSC population. Directed 
sequencing approaches have shown patient material and xenograft samples retain 
similar mutational landscapes [6] suggesting this model recapitulates primary dis-
ease with genetic drift akin to that observed in relasped patients [7].

As the head of a hierarchical organisation, CSCs must exhibit the ability to self-
renew and undergo differentiation to maintain the bulk tumour population. CSCs 
produce daughter cells that lack the ability to form tumours when transplanted into 
immune-compromised mice. Pioneering work by Bonnet and Dick showed that 
when flow cytometry isolated CD34+, CD38− leukemic stem cells were transplanted 
into immunocompromised mice they were able to form human AML [1]. However, 
purified CD34+, CD38+ AML cells were unable to engraft confirming that the forma-
tion of human leukaemia in immunocompromised mice arose purely from the CD34+, 
CD38− population. Confirmation of the leukaemia propagating ability of the CD34+, 
CD38− population was performed by serial transplantation of sorted human AML 
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cells harvested from the primary recipient. Recently, Reinisch et al. utilised an ele-
gant in vivo model where a humanised bone marrow microenvironment was gener-
ated by subcutaneous injection of human bone marrow-derived mesenchymal stromal 
cells [8]. Using this model, single cell engraftment could be achieved using CD34+, 
CD38− cells isolated from AML patient samples reaffirming the CSC as the head of 
the hierarchy.

8.1.2  �Markers for the Isolation of Cancer Stem Cells

Since the initial discovery by Bonnet and Dick identifying the CD34+, CD38− leuke-
mic stem cell [1], other markers such as CD123 have further enhanced the characteri-
sation of the leukemic stem cell population [9]. These findings also propagated the 
discovery of similar cell populations in other cancers including, breast, prostate, glio-
blastoma, and lung cancer replicating the initial findings and proposing this cell 
population is a common player across many cancer types [5]. Cell surface markers 
such as CD44 and CD133, as well as aldehyde dehydrogenase 1 (ALDH1) have been 
identified across multiple cancer types as cancer stem cell-specific markers, as sum-
marised in Table 8.1 [2, 3, 10–12]. Whilst there are a range of cell surface markers 
that can be employed to isolate CSCs from the majority of patient samples 
(Table 8.1), there are problems that require consideration when sorting for CSCs. 
Among those issues noted by Medema, sorting CSCs based on cell surface markers 
requires a set of optimal markers such as CD34+, CD38−, and CD123+ in the case of 
AML [13]. However, identifying optimal sets of cell surface markers for other malig-
nancies remains an issue with variables such as methylation patterns and certain 
mutations capable of affecting cell surface expression [13]. Indeed, using mouse 
models of lung cancer, Curtis et  al. noted that sorting cells by Sca1 cell surface 
expression resulted in varying rates of secondary transplantation [14]. Variations in 
transplantation success were proposed to be dictated by driver mutation status such 
as K-Ras, p53, or epidermal growth factor receptor (EGFR). These findings question 

Table 8.1:  Summary of cancer stem cell markers. A list of markers commonly used to identify 
and isolate CSCs

Cancer type Marker Reference

AML CD34+, CD38−, CD123+, CD47+, CLL-1+, CD96+, 
TIM-3

[1, 9, 110–113]

Breast CD44+, CD24low, ALDH1+, CD133+ [2, 12, 114]
Cervical CD49f, ALDH1+ [115, 116]
Colorectal CD24+, CD44+ [117, 118]
Glioblastoma CD44+, CD133+, ALDH1+ [3, 97, 119]
Liver CD24+, CD133+, ALDH1+ [120–122]
Lung CD44+, CD133+, ALDH1+ [123–125]
Pancreas CD24+, CD44+, CD133+ [11, 123, 126, 127]
Prostate CD44+, CD24−, CD133+, ALDH1+ [126, 128, 129]
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whether isolating CSCs by cell surface markers is the most suitable selection criteria, 
although since these observations were generated using mouse models, it remains 
important to assess whether similar a situation occurs with primary patient samples.

Low levels of reactive oxygen species (ROS) are associated with low metabolic 
activity, typical of quiescence, a common feature of cancer stem cells. In light of 
this, recent studies have suggested the use of redox-sensitive probes to sort leuke-
mic stem cells based on their ROS levels [15]. Leukemic stem cells associated with 
low ROS exhibited a greater level of engraftment compared with leukemic stem 
cells with higher ROS [15]. These findings with AML warrant investigation in other 
malignancies. Kreso and Dick also eluded to the potential idea of using miRNA 
signatures to identify CSCs based on the findings from two separate studies [16, 17]. 
The proof-of-principle concept arose from findings by Lechman et al. with long-term 
haematopoietic stem cells (HSCs) isolated based on mir-126 levels alone exhibit-
ing engraftment potential [17]. Recently, the same group further expanded this phe-
nomenon to AML whereby leukemic stem cells exhibited high mir-126 levels in 
patient samples when compared to normal HSCs [18]. Collectively, this utilisation 
of metabolic state as well as miRNA signatures provides impetus to investigate 
other novel, non-surface markers for isolating CSCs.

8.1.3  �Cancer Stem Cells May Not Occur in All Cancers

The concept of the cancer stem cell is still debated, with many questions remaining 
to be answered. Some groups favour a stochastic model whereby each cell has the 
potential to form a tumour [19]. Stochastic models provide an argument against the 
work by Bonnet and Dick by suggesting that the self-renewal ability is applicable to 
all cells as tumour cells have overcome the Hayflick limit resulting in limitless rep-
licative potential [20]. Thus, whilst there is some acceptance that AML follows a 
classical hierarchical CSC model, some tumours appear to lack this hierarchy 
although it should be noted that establishing a hierarchical organisation in patient 
samples of epithelial origin is difficult with a current lack of CSC-specific markers 
for a number of solid tumour types.

Intriguingly, B-cell acute lymphoblastic leukaemia appears to not fit with the 
hierarchical model, with a high level of cancer stem cell frequency noted by several 
groups [21, 22]. In the absence of a hierarchy, tumour cell plasticity as a conse-
quence of selective pressures and mutation gain may explain how the tumour popu-
lation can be replenished [23]. Activation of stem cell genes, commonly through 
changes in the epigenetic landscape, can revert a differentiated cell to a stem-like 
state [24]. For example, murine multi-potent progenitors can be transformed with 
the Mixed Lineage Leukaemia (MLL) oncogene, a histone methyltransferase and 
positive global regulator of gene transcription [25]. The acquisition of MLL-ENL 
(Eleven-nineteen-leukaemia) fusion protein confers self-renewal properties to com-
mitted progenitors, allowing tumour formation [24]. Similar findings have been 
reported with other MLL fusion partners suggesting this is a common feature in 

A.C. Lewis et al.



155

MLL-driven leukaemogenesis [24, 26–28]. Similar approaches using viral trans-
duction of oncogenes, such as human telomerase, into human mammary epithelial 
cells have shown to induce spontaneous de-differentiation into CD44+ CD24lo breast 
cancer stem cells [29]. Similar observations have been seen using colon cancer 
models with NF-κB signalling inducing de-differentiation through β-catenin activa-
tion of stem cell genes in intestinal epithelial cells [30].

In each of these cases, acquisition of certain oncogenes can de-differentiate nor-
mal cells into CSCs, supporting a stochastic model where every cell is capable of 
sustaining tumour growth. Yet if one were to analyse the overall tumour population, 
a hierarchical organisation may still be present, as the transformation event may 
occur in a single clone, positioning it at the head of the hierarchy. Furthermore, in 
cases where the resistant clone after selection exhibits a stem-like phenotype, the 
bulk of the tumour population may be phenotypically and functionally similar to a 
CSC, thus resembling a stochastic model. With this is mind, the amalgamation of 
these models proposed by Kreso and Dick deserves considerable thought with the 
idea that a model is not static but rather a dynamic process that may favour one 
model over another under certain conditions or different malignancies [5]. The com-
plexity is such that this represents one point of contention at this stage. Whilst this 
chapter is unable to expand on the intricacies of the CSC debate, this area has been 
summarised well by Kreso and Dick [5].

8.2  �Sphingolipids

Sphingolipids are a highly diverse class of lipids, defined by the presence of a sphin-
goid backbone, that serve biological roles both as structural components of cell 
membranes and as mediators of cell signalling [31]. Ceramide is a central sphingo-
lipid that cellular levels can be altered in response to stimuli such as growth factors 
and chemotherapy (Fig. 8.1) [32]. As a potent inducer of cell cycle arrest and apop-
tosis, maintaining non-lethal levels of ceramide in the cell is required [33]. Three 
main mechanisms appear to control the maintenance of ceramide levels in cells: a 
degradation pathways involving sphingosine kinase (SK), glycosylation via gluco-
sylceramide synthase (GCS), and conversion to sphingomyelin (Fig. 8.1) [32, 34]. 
In addition to ceramide, a number of the other sphingolipids function as second 
messengers, with the most well-studied example being sphingosine 1-phosphate 
(S1P) produced by SK [35]. S1P functions as a ligand for a family of five G protein-
coupled receptors (S1P1–5) to activate a number of signalling responses including 
survival, proliferation, migration, and differentiation [36–38]. Sphingomyelins and 
glucosylceramides are also indirectly involved in signal transduction by aggregating 
in the plasma membrane with protein receptors to form lipid rafts [39, 40]. Although 
the processes by which sphingolipids activate the various signalling pathways has 
been mapped out, much of their roles in both normal and cancer stem cell biology 
are only beginning to emerge.
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8.3  �Maintenance of “Stemness” and Self-Renewal 
by Sphingolipids

Much of our understanding of the role of sphingolipids in stem cell biology has 
come from studies examining their contribution in normal homeostasis. For exam-
ple, S1P along with platelet-derived growth factor (PDGF) have been shown to 
collectively maintain the primitive state of human embryonic stem cells and the 
expression of stem cell markers such as OCT-4 [41]. PDGF and S1P were found to 
maintain stemness through activation of extracellular signal-regulated kinase (ERK) 
signalling which in turn activates SK [41]. There is also some evidence to suggest a 
role for S1P in preservation of neural stem and progenitor cells [42]. S1P treatment 
of neural progenitor cells from rat embryos could also induce upregulation of ERK 
and telomerase activity suggesting a similar role for stem cell maintenance across 
different species [43]. In mouse embryonic stem cells, S1P can activate β-arrestin 

Fig. 8.1:  Overview of sphingolipid metabolism and its roles in stem cell biology. Ceramide func-
tions as an intermediate and can be metabolised in response to stimuli to induce specific cellular 
outcomes. Maintaining non-lethal levels of ceramide revolves around three main pathways involv-
ing conversion to other sphingolipids such as sphingomyelin, degradation into sphingosine 
1-phosphate (S1P), and modifications such as glucosylation. Phosphorylation by ceramide kinase 
can promote a migratory role by ceramide 1-phosphate acting as a chemoattractant in a similar 
fashion to S1P. In addition to its chemoattractant role, S1P can act as a second messenger to pro-
mote stem cell biology such as self-renewal, proliferation, and drug resistance. Synthesis of com-
plex glycosphingolipids such as gangliosides via glucosylceramide can also indirectly promote 
stem cell pathways. Targeting of multiple enzymes such as SK and GCS can promote the accumu-
lation of ceramide as well as block stem cell-signalling pathway and consequently apoptosis
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and c-Src through S1P1 and S1P3 to promote proliferation [44]. S1P-induced prolif-
eration was dependent on the accumulation of S1P1 and S1P3 and foetal liver 
kinase-1 (FLK-1) in lipid rafts, enabling ERK activation [44]. ERK also appears to 
have a pro-proliferative role in mesenchymal stem cells (MSC) with inhibition of 
S1P2 associated with proliferation and differentiation of MSCs [45]. Whilst not 
explicitly mentioned, inhibition of S1P2 has been previously reported to enhance the 
migration of mouse embryonic fibroblasts (MEFs) towards PDGF [46]. Furthermore, 
knockdown of S1P1 inhibited the migratory response in S1P2 knockout MEFs impli-
cating crosstalk between S1P1 and S1P2 [46]. Thus, it could be suggested that inhib-
iting S1P2 in other stem cell types may exhibit similar signalling responses, by 
promoting S1P1 signalling such as self-renewal and proliferation. Notably, many 
other stem cell types express S1P receptors although their function in the biology of 
these cells remains largely unknown at present [47]. Based on the findings eluci-
dated thus far, it appears that S1P1 and S1P3 appear to promote self-renewal and 
proliferation pathways in normal stem cells.

Despite the evidence for the contribution of sphingolipids in normal stem cell 
biology, their contribution towards maintaining CSCs is only just emerging. CSCs 
exhibit traits similar to normal stem cells in that they show self-replicative potential 
essential for long-term maintenance of the tumour population [48]. Therefore, it is 
likely that many of the pathways extensively characterised in normal tissue mainte-
nance can be hijacked in malignancy. Maintaining a stem cell-like state requires a 
number of signalling pathways such as those involving Wnt/β-Catenin, Notch, and 
Hedgehog [49]. Liu et al. first reported that in breast cancer cell lines, increases in 
GCS and ganglioside production upregulated β-catenin signalling in response to 
doxorubicin treatment [50]. Following on from these findings, this same group 
observed that doxorubicin treatment resulted in expansion of the CD44+ CD24lo 
breast cancer stem cell (BCSC) population in vivo using cell line xenografts [51]. 
Further investigation into the mechanism behind this phenomenon revealed GCS 
increases ganglioside synthesis upon doxorubicin treatment, promoting β-catenin 
signalling and activating stem cell program genes such as CD44 and Oct-4 to ulti-
mately promote BCSC expansion [52].

Similar signalling responses were also seen in ovary, cervical, and colon cancer 
cells suggesting this pathway may be highly expressed in CSCs irrespective of 
tumour type [53]. The observed increase in GCS expression in BCSCs suggests that 
resistant cells may revert to a more stem-like state by upregulating stem cell pro-
gram genes through GCS and consequently creating a more stem cell-based tumour 
population. As the initiating step of ceramide glycosylation, GCS not only lowers 
cellular ceramide levels to enhance cell survival, but is also essential to the forma-
tion of gangliosides which have documented roles in both normal and cancer stem 
cells [54]. Gangliosides are thought to assemble in sites of signal transduction as a 
complex of glycosphingolipids and receptor tyrosine kinases and have been touted 
to be essential to signalling responses [55]. Changes in the lipid composition and 
structure of these “rafts” have been proposed as the mechanism as to how receptors 
activate signal transduction in response to ligand binding [40]. Mass spectrometric 
analysis of the changes in glycosphingolipid profiles revealed distinct preferences 
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for gangliosides GD2 and GD3 [56] in BCSC. Sorted GD2+ cells were highly 
enriched for CD44+, CD24lo BCSCs suggesting GD2 to be a BCSC marker [57]. 
Battula et al. also identified GD3 synthase, upstream of GD2, as essential to mam-
mary tumour formation with shRNA knockdown completely abolishing tumours 
in vivo [57]. With the necessity of GCS in forming these gangliosides, this has the 
potential to make GCS a novel CSC-specific target.

Although ceramide glycosylation represents one mechanism by which cancer cells 
maintain ceramide levels at non-apoptotic levels, a potential role for other sphingo-
lipid enzymes such as SK has also been reported in breast cancer. For instance, S1P 
can promote ligand-independent Notch signalling through S1P3 to expand ALDH1+ 
BCSCs [58]. Enforced expression of SK1  in ALDH1+ BCSCs enhanced tumour 
development in vivo with blockade of S1P3 signalling reducing tumour size [58]. In 
addition, both SK1/ALDH1+ and S1P3

+/ALDH1+ CSCs could be isolated from breast 
cancer patient samples suggesting S1P3 to be a BCSC marker [58]. The role of S1P3 
in breast cancer stem cells was further expanded upon recently with the carcinogen, 
benzyl butyl phthalate promoting breast cancer stem cell tumourigenesis through 
BCSC expansion by aryl hydrocarbon receptor-driven expression of S1P3 [59].

Whilst the majority of above work has been performed in breast cancer, it is pos-
sible that sphingolipids play a similar role in other solid tumours. Analysis of glio-
blastoma patient samples found S1P to be secreted by glioma stem cells [60], and 
acts in both an auto- and paracrine manner to promote expression of stem cell mark-
ers such as CD133, implicating a role for S1P in maintaining “stemness” in glioma 
stem cells [60]. Interestingly, heterogeneity between isolated glioma stem cells 
from different patients was observed particularly in metabolic processing of sphin-
golipids [60], with increased S1P production associated with a greater level of gli-
oma stem cell proliferation. Whilst the small number of patient samples may 
question the validity of these findings (n = 2), it prompts the question as to whether 
enhanced processing of ceramide or SK activity is associated with more aggressive 
disease by expansion of the cancer stem cell pool.

The activation of stem cell program genes by S1P suggests that the sphingolipids 
could play a role in cell plasticity. Whilst sphingolipids can maintain “stemness” of 
cancer stem cells, whether or not they can induce de-differentiation into a stem cell 
is unknown. As a point of interest, sphingosine kinase 2 (SK2) has demonstrated in 
acute lymphoblastic leukaemia to promote Myc expression through histone deacet-
ylase (HDAC)1/2 inhibition [61]. This raises the possibility that SK2 may elicit 
large-scale epigenetic changes [62]. Although the targets regulated by SK2 through 
HDAC1/2 inhibition have been largely unexplored, activation of stem cell program 
genes allowing de-differentiation of mature cells to more stem-like cells is worth 
consideration. Of those characterised thus far, Myc is known to have a crucial role 
in both self-renewal and de-differentiation in normal stem cells. Myc target genes 
such as human telomerase reverse transcriptase (hTERT) are essential to the self-
renewal capacity of both normal and cancer stem cells suggesting in may activate 
other stem cell genes [63]. CSC marker CD133 has been demonstrated to upregu-
late Myc in glioma stem cells suggesting it may have a role in CSC biology [64]. 
Recently, SK2 has also demonstrated to enhance telomerase stability in A549 lung 
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cancer cells, albeit through a transcriptional independent mechanism [65]. Yet is 
conceivable that SK2 could transcriptionally upregulate hTERT through HDAC 
inhibition and Myc transcription. Whilst the initial findings into understanding 
stem cell maintenance by sphingolipids have focussed on breast cancer and glio-
blastoma, these findings provide an impetus to examine this system in other solid 
tumour stem cells.

8.4  �Altered Sphingolipid Metabolism as a Mechanism 
of Drug Resistance

Being responsible for long-term maintenance of the tumour population, CSCs 
maintain a quiescent state by self-renewal and differentiate when necessary. 
Conventional chemotherapeutics such as DNA-damaging agents and microtubule 
poisons target rapidly dividing cells that compose the bulk of the tumour. The 
inability for these agents to effectively target the CSC population, however, pro-
vides a reservoir of drug resistance [66]. Many of the chemotherapeutics in use 
promote cell death, in part, by increasing pro-apoptotic ceramides [67]. Although 
not studied as extensively in CSCs specifically, increases in SK1 expression enhance 
chemotherapeutic resistance in numerous solid and haematological cancers [34, 
68–70]. Interestingly, a study into glioma stem cells revealed S1P as a mechanism 
of resistance to the chemotherapeutic, temozolomide (TMZ), independent of the 
DNA repair protein MGMT [71]. Whilst enhanced processing of sphingosine as 
well as S1P transporter activity were implicated as mediators of S1P-mediated TMZ 
resistance, this avenue of investigating was not further explored [71]. Given exog-
enous S1P could reverse TMZ cytotoxicity, the involvement of the S1P receptors in 
TMZ resistance warrants consideration [71].

Ceramide glycosylation provides a rapid mechanism to escape cell death by 
blocking the accumulation of ceramide and the activation of pro-apoptotic path-
ways. Notably, GCS was shown to promote the expansion of BCSCs in response to 
doxorubicin as previously mentioned. Doxorubicin-resistant MCF7 cells were re-
sensitised to doxorubicin by knockdown of GCS, which also reduced the ability of 
these cells to form colonies in soft agar [52]. Reductions in CD44+, CD24− BCSCs 
were also observed in the doxorubicin-resistant cell population following GCS 
knockdown. These findings also translated to reductions in CD44+, CD24− BCSC 
numbers in  vivo when combining GCS knockdown with doxorubicin treatment 
[51, 52].

Retrospective meta-analysis of clinical trials revealed GCS as well as the ceramide 
transport protein (CERT) as potential markers of triple negative breast cancer patient 
response to the chemotherapeutic paclitaxel [72]. CERT is important in the mainte-
nance of homeostatic levels of ceramide species via promoting the transport of 
ceramide from the endoplasmic reticulum (ER) to the golgi for conversion to sphin-
gomyelin [73]. As a marker of paclitaxel sensitivity, upregulation of CERT likely 
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contributes to the ability of malignant cells to bypass the apoptotic effects by pre-
venting the accumulation of lethal levels of ceramide. Other potential targets such as 
sphingomyelin synthase the enzyme that converts ceramide to sphingomyelin have 
also demonstrated to govern resistance to ceramide-induced apoptosis when sorted 
CD55hi BCSCs were treated with C2-ceramide [74].

Whilst much of the contribution of sphingolipids towards drug resistance in 
CSCs has been largely overlooked, it is reasonable to suggest that some of the path-
ways described above could be present in other malignancies given their role in both 
cell lines and primary patient samples [72].

8.5  �Sphingolipids in Normal and CSC Migration: 
Following the Lipid Drops

Over the past decade, much of the work involving sphingolipids and their contribu-
tion towards cell migration has focussed on the S1P receptors. In particular, the 
importance of the S1P receptor 1 (S1P1) has been demonstrated to facilitate lym-
phocyte egress following development within the lymphoid organs. Upregulation of 
S1P1 allows lymphocytes to respond to the circulating S1P in the peripheral blood 
as a chemotactic factor with S1P1 knockout lymphocytes accumulating within lym-
phoid organs due their inability to respond to the S1P gradient [75]. Similar findings 
have also been reported with a requirement of S1P1 in the trafficking of haematopoi-
etic stem and progenitor cells (HSPC) from the tissues and into the lymphatics as 
part of normal immune surveillance [76]. Complement activation can promote 
HSPC egress from the bone marrow by complement cascade-dependent release of 
S1P from erythrocytes into the peripheral blood [77]. Forced overexpression of 
S1P1 in human CD34+ haematopoietic progenitor cells promoted chemotaxis 
towards an S1P gradient as well as preventing in vivo homing to the bone marrow 
by preventing the expression of inhibitory receptors such as CD69 [75, 78]. 
Conditional knockout of SK1 in bone marrow cells, displayed a homing and engraft-
ment defect implicating a role for S1P in bone marrow homing of circulating hae-
matopoietic cells [79]. Enhancement of this defect was observed when HSPCs from 
CXCR4 knockout mice exhibited short- and long-term defects in bone marrow 
engraftment in agreeance with its role as an adhesion molecule for retention of hae-
matopoietic cells in the bone marrow [79].

The initial findings into the involvement of the S1P receptors in cell migration 
stemmed from the use of the S1P receptor modulator, FTY720. Normally, engagement 
of S1P1 by S1P results in internalisation of the receptor followed by rapid recycling 
back to the cell surface. Engagement of S1P1 by FTY720, however results in intracel-
lular retention and degradation of the receptor, preventing cells from responding to the 
S1P gradient [80]. The use of FTY720 to study cell migration recapitulates the pheno-
types using S1P1 knockout haematopoietic cells with lymphocyte accumulation within 
the lymph nodes [75] as well as retention of HSPCs in the bone marrow [76]. Due to 
the role of S1P1 in HSPC egress from the bone marrow, S1P1 agonists in combination 
CXCR4 antagonists exhibit therapeutic potential for transplantation purposes [81].
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The interplay between sphingolipids, ceramide-1-phosphate (C1P) and S1P con-
trols the movement of HSPCs in a bidirectional manner. Ratajczak and Kim pro-
posed a potential mechanism whereby myeloablative conditioning can induce the 
release of C1P, attracting circulating HPSCs to home to the bone marrow [82]. 
Homing of circulating HSPCs was dependent on the activation of the complement 
cascade and the membrane attack complex in a retrograde manner in contrast to the 
mechanism described above [83]. C1P has also been reported to be induced in 
response to radiation, promoting a pro-metastatic environment away from the site of 
radiation [84]. These findings support the notion that C1P may function as a che-
moattractant, as well as its generation acting as a pro-survival pathway via reducing 
the accumulation of ceramide induced in response to radiation [85].

In the context of cancer biology, S1P as a chemotactic factor appears to have a 
more sinister role particularly within the tumour microenvironment and as a pro-
moter of metastasis [86, 87]. Tumour cells respond to S1P as a chemotactic factor to 
migrate from the primary tumour site promoting secondary metastasis [88]. What 
remains unknown is how sphingolipids can influence CSCs in the context of migra-
tion and metastasis. Many of the studies involving sphingolipids as mediators of 
migration, homing, and metastasis in cancer have predominantly used cell lines. S1P 
has been shown to induce migration in multiple cancer types including ovarian, gli-
oma, and thyroid [89–91]. As normal stem cells can respond to S1P as a chemotactic 
factor, it is conceivable to suggest CSCs may also respond in a similar fashion.

What is known thus far is that secreted S1P from both the stroma and tumour cells 
themselves appear to induce structural changes in the microenvironment as well as the 
production of enzymes such as matrix metalloproteases [92, 93]. CD133+ glioblas-
toma stem cells isolated from U87 glioblastoma cells exhibited elevated levels of S1P 
receptors 1 and 2 with an enhanced migratory response to S1P [86]. Enhanced migra-
tion of CD133+ glioblastoma stem cells was coupled with increases in membrane type 
1 matrix metalloprotease (MT1-MMP) production to collectively promote migration 
and metastasis [86]. Knockdown of MT1-MMP was shown to block S1P-induced 
migration of glioma stem cells, which may have applications for secondary organ 
metastasis given the role of MT1-MMP in the breakdown of extracellular matrix [86, 
94]. Interestingly, SK1 has shown to induce expression of CSC marker CD44 in colon 
cancer [95], a known target of MT1-MMP protease activity [96]. The expression of 
CD44 in other solid tumours (Table 8.1) including glioblastoma [97] proposes that 
SK1 may also have a role in promoting both CD44 and MT1-MMP in glioblastoma.

As the majority of disseminated tumour cells succumb to anoikis, there is a per-
ception that the ability to successfully metastasise is exclusive to CSCs [98]. The 
success of metastasis also hinges on the ability of immune cells such as myeloid 
suppressor cells to provide a permissive microenvironment for secondary tumour 
growth [99]. S1P has shown to promote the invasion of myeloid-derived suppressor 
cells in secondary pre-metastatic sites, essential for the successful metastasise of 
tumour cells [87]. Given the roles of S1P in the modelling of the microenvironment 
[86] as well as migration [89–92], it is tempting to speculate that secreted S1P from 
secondary metastatic sites creates an environment permissible for CSC propagation. 
With the diverse roles sphingolipids regulate, it comes as no surprise that deletion 
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of S1P1 in CD11b+ myeloid cells, reduced secondary metastasis [87, 88] although 
further work is required to determine the stage of metastasis that is impacted on 
most by deleting of these genes. Clearly analysis of whether S1P is a significant 
chemotactic factor for CSCs requires further investigation.

8.6  �Modulating Sphingolipid Metabolism to Target CSCs

The future implementation of CSC-specific therapies is predicted to greatly increase 
the percentage of patients that could achieve complete and deep molecular responses 
[100]. Thus given the number of roles sphingolipids appear to play in CSC biology, 
it is conceivable that the modulation of sphingolipid metabolism could play a cru-
cial role in effectively targeting the CSC population. Ultimately, targeting sphingo-
lipid metabolism focusses on increases in lethal levels of pro-apoptotic ceramides to 
induce cell death. Refractory responses towards CSCs in patients require develop-
ment of rationale drug combinations to effectively increase ceramides and prevent 
their modification. As a proof of principle, targeting GCS prevents the accumulation 
of BCSCs in vivo when mice were treated with doxorubicin [51, 52], suggesting this 
approach may be effective in breast cancer patients. Tamoxifen whilst exclusively 
utilised in oestrogen receptor-positive breast cancer, displays off-target activity by 
inhibiting GCS [101]. With this in mind, Morad and Cabot proposed the addition of 
tamoxifen to the standard chemotherapeutics used in breast cancer such as doxoru-
bicin and paclitaxel [101]. Based on the in vitro and mouse model findings, GCS 
inhibition has the potential to enhance patient response and 5-year survival by effec-
tively targeting the BCSC population. As mentioned previously, GCS has been 
identified as a marker of paclitaxel sensitivity in breast cancer patients further advo-
cating the use of tamoxifen in oestrogen receptor negative breast cancer.

As SK can cooperate to prevent ceramide accumulation, the use of SK inhibitors 
alongside chemotherapy could provide added stimuli to more effectively induce 
apoptosis in the CSC population. Indeed, several groups have shown synergistic 
killing when combining sphingosine kinase inhibitors with chemotherapeutics [34, 
68, 102]. Currently, evidence for combining SK inhibitors with chemotherapy to 
effectively target CSCs remains largely unexplored. In glioblastoma, combining the 
SK/dihydroceramide desaturase inhibitor, SKI-II with TMZ, induced synergistic 
cell death in glioblastoma stem cells [71].

FTY720 has displayed anti-cancer activity against glioma stem cells by blocking 
S1P-induced cell cycle progression [71]. Combining FTY720 with TMZ also dis-
played enhanced survival in vivo using orthotopic intracranial glioblastoma xeno-
graft models resulting in enhanced mouse survival [103]. S1P receptor modulators 
such as FTY720 may also inhibit CSC metastasis by blocking responses to the S1P 
gradient that promotes the migration of metastatic potential, particularly in glioblas-
toma [86]. Furthermore, FTY720 has also displayed anti-cancer activity independent 
of the S1P receptors by eradicating chronic myeloid leukaemia stem cells, through 
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a mechanism reported to be mediated by the reactivation of protein phosphatase 2 
by repressing the negative regulators of this enzyme [104–106], although FTY720 
has numerous other cellular targets that may contribute to this effect [107].

The ability of S1P to invoke many of the signalling responses through the S1P 
receptors has attracted interest of drug development to target these receptors. Currently, 
several S1P receptor antagonists are in phase I/II clinical trials for a number of malig-
nancies [108]. Indeed, targeting S1P3 was shown to block the self-renewal pathways 
invoked by SK1 in BCSCs [58]. Similar findings were reported with knockdown of 
either SK1 or S1P3 blocking the expansion of BCSCs upon benzyl butyl phthalate 
treatment [59].

S1P receptor antagonists also may be utilised to reduce the incidence of metas-
tasis particularly in glioblastoma. Whilst the targeting of MT1-MMP in CD133+ 
glioma stem cells reduced the migratory response to S1P, the elevated levels of S1P1 
and S1P2 receptors suggest receptor antagonists could reduce the incidence of 
metastasis in glioblastoma [86].

8.7  �Perspectives and Future Directions

Whilst extensively studied for their contribution towards biological signalling 
responses, there is an underappreciation for the potential roles of sphingolipids in 
CSC biology. The majority of studies investigating sphingolipids in the context of 
cancer biology have focussed predominately on in vitro studies using laboratory 
adapted cell lines that show little resemblance to CSCs. Although they provide an 
insight into basic biological processes, translating these potential findings into 
CSCs requires the use of patient biopsies. However, the handful of studies per-
formed have exhibited similar trends in both cell lines and cancer stem cells such 
as the discovery of GCS as a mechanism of drug resistance by preventing fatal 
accumulation of ceramide species in response to chemotherapy. Do CSCs upregu-
late genes such as GCS as seen in breast cancer to prevent ceramide accumulation 
and does this represent an “oncogenic addiction”? Future investigation of potential 
roles of sphingolipids in cancer stem cells will likely require high throughput 
screenings such as those used by Hirata et al. to discover the role for S1P3 in main-
taining breast cancer stem cells [58]. Based on the findings thus far, GCS appears 
to present the most promising target in terms of stem cell-specific therapies. The 
implementation of GCS inhibitors, which include tamoxifen [109] alongside che-
motherapy, would likely induce a deeper molecular response by preventing 
ceramide glycosylation and simultaneously preventing BCSC expansion [51, 52]. 
Whilst much of the work focussing on sphingolipid metabolism has focussed pre-
dominately on a handful of enzymes such as SK, ceramidase, and GCS in cancer, 
future research should encompass a broader examination of sphingolipid metabo-
lism as a whole. Dysregulation of multiple enzymes can equally contribute to cell 
survival such as increased GCS and SK activity to collectively reduce ceramide 
accumulation in response to drug treatment. Thus, targeting of multiple enzymes in 
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sphingolipid metabolism may prove to be the most beneficial approach. In the 
coming era of novel drug combinations, understanding how targeting certain 
aspects of sphingolipid metabolism and the changes in cell signalling associated 
with it will assist in targeting the CSC and inducing deeper and sustained molecu-
lar responses in cancer therapy.
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RMS	 Rostral migratory stream
S1P	 Sphingosine 1-phosphate
SVZ	 Subventricular zone
TMZ	 Temozolomide

9.1  �Introduction

Tissue-specific stem cells are a rare subpopulation of cells that are defined as having 
the ability to self-renew and differentiate into all cell types in that tissue (Fig. 9.1) 
[4–7]. Initial reports regarding stem-like cancer cells in haematopoietic malignancies 
(leukaemia) described a rare subpopulation of cells possessing the characteristics of 
stem cells [8–10]. The CSC theory attempts to explain intratumoural heterogeneity 
based on the existence of stem-like cells within solid tumours [11, 12]. Subsequent 
discoveries led to the description of stem-like cells within solid tumours such as breast 
cancer, paediatric neuro-malignancies (such as medulloblastoma), and GBM [11–17]. 
The discovery that NSCs exist within the RMS and SVZ of the lateral ventricle has 
aroused a major shift in neuroscience research [13, 18–31]. With respect to GBM, 
GFAP-positive NSCs residing within the SVZ have been suggested to more readily 
undergo neoplastic transformation [32–36]. There have been clinical studies 

Fig. 9.1.  Glioma stem cell theory. Normal neurogenesis displayed on the left. On the right, de-
differentiation and/or dysregulation of NSCs/progenitor cells are shown as competing origins of 
glioma stem cells [1–3]. Black lines, normal progression of activity; red lines, mutational events 
leading to abnormal progression. BTSC, brain tumour stem cell; NSC, neural stem cell
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suggesting a close relationship between GBM tumours and the SVZ, but some 
tumours are still found along the radial glial ‘tract’ (from SVZ to pial/cortical sur-
face), suggesting that such stem cells may also migrate from the SVZ to the site of the 
tumour [4–7, 20, 37–40]. These concepts may be tied together by the radial glia theory 
which suggests that the radial glia cells (rather than the SVZ cells) are the source of 
adult NSCs [8–10, 18, 34, 39, 41–43]. A competing concept (de-differentiation) that 
attempts to explain intratumoural heterogeneity describes cells as existing in a con-
tinuum from stem cell to intermediate/progenitor cell to mature/differentiated cell 
with appropriate triggers altering their state within this continuum (Fig. 9.1) [11, 12, 
40, 44–49]. Therefore, the origins of the GSCs are not yet fully elucidated [11–24, 
50–54].

Regardless, the discovery of CSCs suggests cancer treatment failure occurs 
because certain cancers contain a rare subpopulation of stem-like cells which are 
able to fuel the tumour’s immortality and recurrence [13, 18–31, 55, 56]. There is 
good evidence that higher levels of CSCs correlate with more aggressive tumours 
and poorer outcomes [11, 32–36, 57–59]. Therefore, dysregulation of pathways that 
can influence stem cell migration, motility, differentiation, growth, and proliferation 
are likely to be involved in gliomagenesis. LPA signalling is involved in normal 
CNS development through modulating cell processes such as cell migration, adhe-
sion, apoptosis, and proliferation [60].

9.2  �Lysophosphatidic Acid Signalling in the CNS

LPA is a species of lipid involved in LPL signalling, and there are a number of path-
ways that produce LPA from LPC; the ATX pathway appears to be the key enzy-
matic pathway [60–64]. LPA normally signals in an autocrinic/paracrinic fashion 
[61, 62, 65]. LPA negatively regulates its own production (feedback inhibition of 
ATX), such that under physiological conditions only small amounts of LPA (<1 μM) 
are present in tissues [66–68].

LPA signalling is mediated through 6 recognised G protein-coupled LPA recep-
tors (collectively LPAR; individually LPA1–6) that are collected into two families: 
Endothelial differentiation gene (Edg) and non-Edg (purinergic) [65, 69]. LPA1 
(Edg2), LPA2 (Edg4), and LPA3 (Edg7) are members of the Edg family and are the 
best characterised to date with LPA1 being the dominant LPA receptor in the CNS 
[61, 70, 71]. Whilst LPA2 is expressed in embryonic brain, there is little expression 
of LPA2 in the adult CNS [72]. LPA3 is expressed in brain and enhances cell motility 
[64, 73, 74].

The non-Edg or purinergic family of LPARs are genetically distinct from the Edg 
family [70]. An important functional difference lies in this family’s preference for 
alkyl side chained LPA species compared to the acyl variants preferred by the Edg 
family [69, 70]. Current members of this family include LPA4 (P2Y9), LPA5 (GPR92), 
and LPA6 (P2Y5). LPA4 probably plays an inhibitory role in cell motility/migration 
and so it has been suggested that it might suppress LPA1-mediated signalling [70, 75]. 
Therefore, the dominant LPARs involved in mediating cell migration appear to be 
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LPA1 and LPA4, with cell migration being an important function in some cancer cells 
[60, 75]. As yet there is no reported role for LPA5 (GPR92) in tumourigenesis; how-
ever, LPA6 (P2Y5) may play an indirect role in gliomagenesis via putative effects on 
vascular development [64, 69, 70]. LPARs signal by activating a myriad number of 
G-proteins that are coupled to a range of second messenger systems.

9.3  �The Role of Lysophosphatidic Acid Signalling 
in Glioblastoma Multiforme

Since the discovery that ATX has promotile effects on melanoma cells, the LPA 
pathway has been investigated for its role in tumour invasion and metastasis [76–79]. 
Further, LPA signalling has been shown to have complex interactions with other 
cancer signalling pathways (including PI3K/MAPK/Rho/YAP/FAK) in ovarian, 
cervical, pancreatic and colorectal cancers, and osteosarcoma [64, 65, 80–92].

Studies suggest that LPA’s effects on cell shape and motility may play a role in 
tumour cell invasiveness, and in the case of glioma, may play a role in tumour-
associated epilepsy by modulating synaptic transmission through astrocytic cell 
shape and therefore synaptic cleft shape changes [93]. LPA’s effects at a cellular 
level (modifying cell adhesion and cell shape) may also be important in GBM where 
the BBB has been shown to be less privileged [94–98].

LPAR overexpression has been described in sex hormone-linked cancers such as 
prostate and ovarian cancers [99]. This overexpression has been shown to occur 
concurrently with overproduction of LPA in ovarian cancer mouse models and has 
been postulated to create an autocrine loop promoting proliferation and suppressing 
apoptosis [100]. LPA1 has been linked to increased stem cell apoptosis, astrocytic 
differentiation of stem cells, and inducing astrocyte proliferation via induction of 
GFAP [101–104]. LPA also has actions leading to differentiation of stem-like cells 
into neuronal and oligodendroglial lineages; however, there are reports that LPA can 
inhibit neuronal differentiation of embryonic-derived stem cells [102, 105–109]. 
The action of LPA in astrocytes appears to be mitogenic, but LPA1 has also been 
linked to motility of glial tumour cells in vitro [93, 110]. LPA1 has been found to be 
the predominant receptor subtype in GBM cells (SNB-78, SNB-75, SF-268, SF539, 
and SF-295) [110]. When ATX and LPA1 are overexpressed (particularly ATX) in 
GBM, autocrine stimulation of GBM clearly contributes to increased cell motility 
[110]. The motile response of GBM cells can be completely abolished with the 
LPA1/3 receptor antagonist, Ki16425 [110].

Knockdown studies of atx in atx-null murine embryos have a profound effect on 
vessel maturation in these embryos resulting in uniform lethality at day 9.5–10.5 
[60, 111, 112]. This effect was probably exacerbated by the absence of ATX’s other 
metabolite, sphingosine 1-phosphate (S1P) [60]. CNS-specific effects of murine atx 
knockdown included massive neural tube defects (due to the contribution of ATX 
and LPA to cell motility), supporting a role for ATX and LPA in neurogenesis. 
Atx levels were highest in the brain, and it was found to be secreted by secretory 
epithelial cells such as those in the choroid plexus [60]. In the adult brain, ATX levels 
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are highest in white matter regions (associated with oligodendrocyte precursor cells), 
choroid plexus, and leptomeninges [93, 113]. This may relate to the putative SVZ from 
which neural stem/progenitor cells arise [114–118]. There is also evidence of a 
functional LPAR in the SVZ regulating cortical neurogenesis and apoptosis [93]. 
This might not be true of normal adult brains as there are some reports that LPARs are 
absent in the subventricular and ependymal zones [72]. Regardless, ATX and/or LPA 
blockade represents a novel opportunity for treating the grossly invasive GBM.

9.4  �LPA Can Influence EGFR/PI3K Signalling

It is now well recognised that the development of GBM, like other cancers, depends 
on a series of alterations in key (tumour suppressor or onco-) genes. Gain of chro-
mosome 7 and loss of chromosome 10 appear to be common events in molecular 
analyses of GBM [119, 120]. The EGFR pathway is a major growth factor signal-
ling pathway that promotes malignancy by enhancing cell proliferation and survival 
via the Ras/MAPK and PI3K downstream signalling pathways, respectively [64, 65, 
80–83]. EGFR signalling may be affected by these chromosomal abnormalities. 
EGFR is commonly amplified in GBM, and some mutations in EGFR result in a 
constitutively active receptor (designated EGFRvIII) [121–126]. EGFR, p53, and 
PTEN are amongst the most common mutations in GBM, and these genetic events 
have been suggested to be important in GBM maintenance and recurrence [120, 
125–127]. EGFR has been reported as being overexpressed in up to 50% of GBMs 
and its signalling is upregulated in 40–60% of GBMs [128–130]. Further, anti-
EGFR monotherapies have shown efficacy in the subgroup of GBM patients whose 
tumour cells depend on EGFR signalling [131–137]. However, results from phase II 
trials assessing EGFR targeting in GBM patients with erlotinib failed to show any 
significant improvement in OS [129, 136, 138]. These phase II trials demonstrated 
inconsistent inhibition of EGFR phosphorylation and no modulation of downstream 
Akt/MAPK signalling [125, 139, 140]. Whilst inadequate dosing or lack of BBB 
penetration can’t be ruled out, the results when taken in conjunction with the results 
of the bevacizumab and cilengitide trials suggest that using targeted inhibitors in 
mechanistic isolation may be prone to failure [141–143].

Within the EGFR pathway, up to 70% of GBM patients have lost their PTEN 
tumour suppressor gene (via loss of chromosome 10q). PTEN normally downregu-
lates PI3K signalling [144–148]. PTEN may also have transcriptional functions 
related to apoptosis in cells exposed to oxidative damage [125, 149]. PI3K muta-
tions in GBM (PIK3CA, PIK3CB, PIK3CD, PIK3R1 mutations) lead to its consti-
tutive activation in signalling [125, 127, 150–152]. It is likely that the EGFR, PTEN, 
and PI3K mutations interact in ways that limit success with monotherapies which 
target individual pathway components (Fig. 9.2) and partly explains why EGFR 
inhibition alone has not yielded more positive clinical trial results [129, 138].

Akt is a major intracellular signalling hub that is also a downstream signalling 
component of EGFR signalling, thus Akt has the potential to be a powerful target 

9  Lysophosphatidic Acid Signalling Enhances Glioma Stem Cell Properties



176

in treating malignancies such as GBM [153–162]. For example, two new Akt 
inhibitors (KP-372-1 and KP-372-2) have shown effective in vitro retardation of 
glioma growth and invasion [163]. Akt is downstream from the often times mutated 
EGFR/PTEN/PI3K components [120, 140, 163]. The EGFR/PI3K pathway is 
thought to act as a major conduit that phosphorylates Akt and has been reported to 
influence both glioma cell migration and survival (resistance to treatment) [120, 
127, 140, 149]. In addition to the EGFR and Akt inhibitors, PI3K/mTOR inhibitors 
have also been developed for the treatment of GBM [164, 165]. The anti-tumour 
efficacy of PI3K inhibitors (e.g. BKM120) and dual PI3K/mTOR inhibitors (e.g. 
BEZ235, XL765) in GBM patients are currently being assessed in ongoing phase 
I/II clinical trials (clinicaltrials.gov NCT00704080, NCT01240460, NCT01339052, 
NCT01349660, NCT01870726, NCT01576666).

Much of the preclinical evidence supporting a role for EGFR/PI3K modulation 
in GBM has been conducted in traditional glioma cell lines that have a poor transla-
tional record. Although the translatability of the GSC model is yet to be validated, 
there are now some reports of testing within patient-derived tumour models [119, 
154, 165–168]. In these studies, small molecule inhibitors appear only to be cyto-
static, being mostly effective by sensitising cells to apoptosis-inducing treatments 

Fig. 9.2.  EGFR signalling. CREB, cAMP response element-binding protein; EGF, epidermal 
growth factor; EGFR, EGF receptor; MAPK, mitogen activated protein kinase; mTOR, mammalian 
target of rapamycin; PI3K, phosphoinositide 3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; 
PIP3, phosphatidylinositol 3,4,5 trisphosphate; PTEN, phosphatase tensin homologue
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such as irradiation and chemotherapy [119, 120, 125, 169]. PI3K inhibitors appear 
to sensitise GBM cells to chemotherapy, regardless of PTEN mutational status [143, 
170]. The PI3K inhibitors are probably best tested in combination with cytotoxic 
drugs such as TMZ or in combination with EGFR or mTOR inhibitors. Alternatively, 
interaction of the EGFR pathways with lipid signalling pathways (such as LPA) 
may be important.

LPA-mediated transactivation of EGFR upregulates cell proliferation via MAPK 
dependent mitogenic signalling and enhances cell survival via PI3K signalling 
(Fig. 9.3) [171, 172]. LPA can transactivate EGFR signalling independently of EGF 
and may also be involved in cleaving and activating growth factors like EGF [80–
82, 173, 174]. LPA1 has been putatively described as activating the MAPK and 
PI3K/Akt pathways, with LPA being reported to directly activate Akt and promote 
cell migration [60, 175]. This interaction appears to occur via the Gai-protein cou-
pled to the EGFRvIII receptor [173]. Intracellular cross-communication (transacti-
vation) integrates the myriad cellular signals [80]. It has been reported that the 
p110b/g subunits of PI3K may be involved in the Gi-protein transactivation of 
PI3K, a process also influenced by LPA [176].

In contrast to PI3K transactivation, G protein-dependent MAPK transactivation 
appears to be dependent on simultaneous agonistic activation of EGFR [81, 82, 90, 177]. 

Fig. 9.3.  Interactions in LPA and EGFR signalling. ATX, autotaxin; EGF, epidermal growth factor; 
EGFR, EGF receptor; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; MAPK, mitogen 
activated protein kinase; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase; 
PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5 trisphosphate; PTEN, 
phosphatase tensin homologue; Rho, Rho GTPase; ROCK, Rho-associated kinase. Red boxes: 
key proteins and enzymes; green boxes: cellular processes; red arrows/blockheads: key pathway 
interactions; green plus signs: overexpressed proteins/enzymes
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Transactivation of EGFR signalling by LPA may also be linked to PI3K activation 
[90]. However, transactivation of MAPK by LPA appears to be more tightly regu-
lated than PI3K and in fact may also require concurrent MMP activity which is also 
upregulated in gliomas [174, 178]. MMPs are involved in cleaving membrane bound 
precursors of the active ligand (EGF) for EGFR [174]. Inhibition of MMPs or EGFR 
have both been shown to reduce phosphoactivation of EGFR [174]. Also, invadopo-
dia have been implicated in invasion and metastasis and are enriched with MMPs 
[179–183]. MMPs have been extensively studied and implicated in invasion and 
metastasis by providing a favourable milieu for cells to invade and are also involved 
in cleaving and activating growth factors such as EGF [174, 178, 183]. LPA4 has 
been shown to promote invadopodia formation in HT1080 fibrosarcoma cells [184]. 
ATX overexpression has also been shown to enhance the invasion of U87 and U251 
GBM cells (autocrine effect) through in vitro oligodendrocyte monolayers whilst 
simultaneously reducing the adhesiveness of oligodendrocytes (paracrine effect) 
[185]. The in vitro effects of ATX to increase GBM cell motility and reduce oligo-
dendrocyte (white matter cells) adhesiveness are consistent with the in vivo propen-
sity of GBM to invade along white matter tracts [185]. Depletion or inactivation of 
ATX ameliorates the invasion of GBM cells through oligodendrocyte monolayers 
in vitro [185].

It has also been confirmed that ATX-induced motility in melanoma cells is medi-
ated via the p110g subunit of PI3K and that PI3K inhibitors inhibit this response in 
a dose-dependent manner [176]. Also, simultaneous knockout of Akt1 and Akt2 
abolishes LPA-induced motility in mouse embryonic fibroblasts [175]. Only re-
expression of Akt1 following the double knockout restored the cell’s motile response 
to LPA [175]. Both a pan-PI3K inhibitor (LY294002) and an LPAR antagonist 
(Ki16425) also completely abolished the motile response [175]. This suggests that 
PI3K activates Akt1 to mediate cell migration [175].

Recent reports also suggest that LPA signalling enables the murine glioma cell 
line GL-261 to be more radioresistant [186]. Inhibition of LPA signalling resulted 
in impaired survival in response to irradiation (3 gray); and knockdown of LPA1 and 
LPA3 with siRNA resulted in reduced phosphorylation of Akt, correlating with 
reduced tumour cell survival [186].

LPA also appears to mediate cell migration via Rho signalling [61, 187, 188]. 
Rho-dependent cytoskeletal rearrangement has been associated with producing dis-
cohesive (reduced adhesion) cells by causing cell rounding [188]. However, there 
have been some contradictory reports with regard to Rho-related LPA signalling. 
For example, LPA-induced glioma cell migration can be ameliorated by blocking 
Rho activation [92]. In contrast, stimulation of Rho activity has also been shown to 
cause immobilisation of glioma cells [189]. The Edg and non-Edg families of LPA 
receptors are evolutionarily distinct and therefore signalling differences between 
these families of LPAR may explain these inconsistencies. Activation of LPA5 was 
recently reported to inhibit B16 melanoma cell migration, further supporting the 
notion that non-Edg family LPARs (LPA4–6) may mitigate cancer cell properties 
whereas Edg family LPARs (LPA1–3) are more likely to enhance tumourigenic 
effects [190].
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ATX overexpression can be differentially higher at a glioma tumour’s invasive 
edges [185]. Currently, there are no reports to address which tumour cell subpopula-
tions overexpress ATX/LPAR. In glioma, there are suggestions that microglia are 
recruited to the invasive edge by various chemokines (including LPA) and subse-
quently facilitate invasion by producing ATX, LPA, and EGF [191]. As yet, there are 
no in vivo reports investigating the efficacy of LPA inhibition in GBM. There are 
however, reports that overexpression of ATX correlates with increased invasiveness 
of breast cancer cells compared to normal breast cells [192]. Nude (nu/nu) mouse 
metastatic breast cancer models have shown that in vivo treatment with a selective 
LPA1–3 receptor antagonist (Ki16425) can safely retard tumour growth [193, 194].

9.5  �Conclusion and Future Directions

GBM is a grossly heterogeneous solid malignancy, whose hallmark is its aggressive 
and invasive biology. Glioma stem cell theory has significantly altered our approach 
to discovering efficacious treatments for GBM by postulating that a subpopulation 
of cells exist that are both difficult to kill and also give rise to the heterogeneity. 
Research that seeks to address the biology of glioma stem cells and modulation of 
pathways that can induce their death is still relatively new. EGFR signalling has 
been well documented to play an important part in gliomagenesis. However, there 
are also reports that having a simplistic single pathway approach to GBM treatment 
is unlikely to lead to a significant breakthrough to improving patient outcomes. LPA 
signalling is a complex signalling pathway that has been shown to have a putative 
role in gliomagenesis and has also been shown to interact with EGFR signalling. 
Currently, there is a dearth of published reports of LPA signalling in glioma stem 
cells. This represents an exciting opportunity moving forward.
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PIPs	 Phosphatidylinositol phosphates
PKC	 Protein kinase C
PL	 Phospholipase
PtdIns(4,5)P2	 Phosphatidylinositol (4,5) bisphosphate
SM	 Sphingomyelin
SNARE	 Soluble N-ethylmaleimide-sensitive factor activating protein 

receptor

10.1  �Introduction

The staggering diversity of lipids, currently exceeding 40,000 species, underpins 
their critical importance in all aspects of cellular life. The specific distribution of 
lipids in cells is related to their distinct properties in membranes, their polarity, 
fluidity and curvature, which characterise different organelles such as the ER, Golgi, 
and mitochondria (Fig. 10.1).

Phospholipids are the building blocks of cell membranes, and contain different 
polar head groups defining their function, location and properties in the cell. For 
example, phosphatidylcholine (PC), sphingomyelin (SM) and glycolipids mostly con-
stitute the outer leaflet of the membrane bilayer in eukaryotes, while the negatively 

Golgi
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Early endosomes

Late endosomes

Endoplasmic Reticulum

Plasma Membrane
Outer: 
PC, SM, glycolipids 
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PtdIns(4,5)P2 
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PtdIns(3,4,5)P3 
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Fig. 10.1  The functional diversity and localisation of lipids within different membrane compart-
ments outlines the specific role of molecular species at the cellular level. The figure shows the site 
of synthesis of the major phospholipids and other lipids that are involved in signalling and organ-
elle recognition pathways. Adapted from [1–5]
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charged phosphatidylinositol phosphates (PIPs) localise on the inner leaflet to recruit 
proteins kinases to the plasma membrane, and lipid microdomains enriched with 
sphingolipids and cholesterol are important to stabilise protein complexes, underpin-
ning their dynamic role [6]. Very little is known about the significance of the diversity 
in the lipid acyl chains, arising from the degree of unsaturation and chain length. 
Nevertheless, some proteins have evolved to recognise specific lipid features to modu-
late their activity, e.g. PH domains, cholesterol consensus motifs in GPCRs [7], or 
sphingolipid-binding motifs [8].

No longer regarded as bystanders, lipids modulate the function of proteins through 
lipid–protein interactions. Accordingly, changes in membrane lipid composition can 
affect membrane-associated proteins, membrane fusion, vesicle transport, neu-
rotransmitter uptake, and have been implicated in the pathophysiology of many neu-
rodegenerative disorders [9, 10]. Although lipids are major constituents of the brain, 
their roles in the pathogenesis of several neurodegenerative disorders are not fully 
understood. Lipid mediators such as prostaglandins, leukotrienes, lysophosphatidic 
acid (LPA), and sphingosine1-phosphate play essential roles in immune regulation, 
brain function, cell proliferation and development [11]. Therefore, understanding the 
role of lipids in neuronal communication has important implications for human 
health, drug development and early diagnosis and treatment of disease.

Membrane lipid composition and lipid-based signalling are fundamental to neu-
ral function. Chemical synaptic transmission between neurons relies on the fusion 
of neurotransmitter-containing secretory vesicles with the plasma membrane upon 
influx of calcium (Ca2+) ions, following an action potential. This process forms the 
basis of neuronal communication and the formation of memory. Secretory vesicles 
are storage compartments for neurotransmitters such as neuropeptides and 
hormones. The exocytic mechanism which lead these vesicles to release their con-
tent into the extracellular space includes a series of trafficking, tethering, docking, 
priming and fusion events, underpinned by complex protein–protein interactions 
(e.g. N-ethylmaleimide-sensitive factor attachment proteins receptors (SNARE) 
proteins). The role played by protein–lipid interactions in this process is not yet 
fully understood. The lipid composition of secretory vesicles and the plasma mem-
brane are both important for neurotransmitter release, as they control the spatial 
coordination of proteins and the fusion reaction. Recent reports point to the dys-
regulation of lipid metabolism as triggering factors in a number of neurological 
disorders such as Alzheimer’s [10] and Parkinson’s diseases [9]. These insights are 
advancing our understanding of the action of lipids in cellular processes. Several 
categories of lipids have been implicated in exocytosis, including polyunsaturated 
fatty acids [12], phosphatidic acids [13], cholesterol [14] and phospholipids [15]—
particularly sphingolipids [16] and low-abundance signalling lipids such as phos-
phoinositides [17–24] .

To understand the lipidome, and how lipids affect diverse cellular processes, it 
is important to characterise and quantify them, both collectively and individually. 
We therefore turned to a rapid and sensitive monitoring of the lipid composition in 
of complex tissue extracts such as cells and brain tissue using mass spectrometry 
(MS) as the method of choice for lipidomics. Exocytosis is defined as the fusion of 
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an intracellular trafficking vesicle with the target plasma membrane and is a 
fundamental cellular process involved in many physiological functions including 
neurotransmission and hormone release. Regulated exocytosis occurs when an 
appropriate secondary messenger, such as an increase in intracellular Ca2+, triggers 
their fusion with the plasma membrane [25]. Secretory vesicles formed at the 
trans-Golgi network are transported to the plasma membrane through various 
stages. Among the docking and priming stages, a number of protein–protein and 
protein–lipid interactions are involved [20, 26]. The two main groups of protein 
families involved are SNARE proteins and Sec1/Munc18 proteins [27]. These 
groups of proteins are evolutionarily conserved and are involved in all known 
membrane fusion events of eukaryotic cells [28]. As the primary constituents of the 
plasma membrane, lipids are intrinsically linked to the modifications required for 
membrane fusion during exocytosis. The plasma membrane is made up of a com-
bination of glyco-sphingolipids, glycerophospholipids, cholesterol and protein 
receptors organised in glycolipoprotein domains termed as lipid rafts [29–31]. 
These specialised domains serve as organising centres for the assembly of signal-
ling molecules capable of regulating several essential functions such as neurotrans-
mission [30]. The key role of lipid rafts in regulated exocytosis is evidenced by 
their association with the SNARE proteins [32]. Several categories of phospholip-
ids present in lipid rafts have been implicated in exocytosis, including phos-
phoinositides [18, 33], or polyunsaturated fatty acids [34] that are clipped from 
phospholipids by different types of phospholipases A. Moreover, the addition of 
exogenous lipids also affects membrane fusion reactions [35, 36]. Hence these 
observations clearly point to the involvement of phospholipids and phospholipases 
in controlling the exocytic mechanism. It appears that cells have developed com-
plex mechanisms where proteins regulate phospholipids and phospholipases, 
which in turn regulate proteins, to provide a precisely controlled exocytosis pro-
cess, where and when it is needed [26]. Moreover, a precise understanding of the 
regulation of the lipid environment during exocytosis is critical because changes in 
the dynamic balance of lipids and the cascade of downstream events could affect 
fundamental processes such as learning and memory [37], as well as pathophysi-
ological conditions such as in Parkinson’s [9] and Alzheimer’s diseases [10]. 
Therefore, we aimed to unravel the changes in the membrane lipid landscape asso-
ciated with neuroexocytosis.

10.2  �Role of Phospholipases and Their Lipid Products 
in Exocytosis

Phospholipases (PL) are hydrolysing enzymes that hydrolyse various components of 
membrane phospholipid molecules. There are four major classes of PL, A, B, C and D, 
among them PLA2, PLC and PLD are known to be involved in membrane exocytosis 
[34, 38–40]. PLA1 and PLA2 cleave the fatty acyl chain at the sn-1 and sn-2 position of 
glycerophospholipids the membrane phospholipid leading to the release of free fatty 
acids (FFAs) [41–43]. PLD catalyses the cleavage of the terminal phosphodiester bond 
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of phosphatidylcholine to release phosphatidic acid [44]. PLC hydrolyse PtdIns(4,5)P2 
on the glycerol side of the phosphodiester bond for the formation of diacylglycerides 
(DAG) and inositol triphosphate (IP3) [45]. Here we will review the literature on what is 
known about the role of phospholipases and their products in exocytosis.

10.3  �Phosphatidic Acids (PA)

Phosphatidic acids are a class of glycerophospholipids, which have a small and nega-
tively charged head group. They are the precursors of many other lipids but are only 
present in small amounts in mammalian cells and were shown as key metabolites in 
lipid biosynthesis [46]. PA can be synthesised through three alternative pathways: 
first by breaking the phosphatidylcholine through a PLD enzyme, second by the 
phosphorylation of diacylglycerol through a diacylglycerol kinase enzyme, and third 
by the acylation of LPA through LPA acyl transferase (LPAAT) [47]. Among them, 
PLD is the only phospholipase to be involved in the late stages of exocytosis [48]. 
PLD knockdown studies have shown the inhibition of secretory vesicle fusion to the 
membrane [44], which suggests that phosphatidic acid synthesis is closely related to 
membrane fusion. A possible explanation comes from the accumulation of phospha-
tidic acid at the fusion site with the SNARE complex that has been associated to it 
[49]. When the associated SNARE protein region is mutated (i.e. the polybasic jux-
tamembrane region of syntaxin-1), the binding of phosphatidic acid is prevented 
[49]. With the help of PLA2 enzyme catalysis, phosphatidic acids can be the precur-
sors of polyunsaturated fatty acids such as arachidonic acid, another potentiator of 
exocytosis that also interacts with the SNARE proteins [41]. In addition, phospha-
tidic acid can be hydrolysed to be a precursor for diacylglycerol [34], a secondary 
messenger involved in regulating Munc-13 proteins with high affinity [50], suggest-
ing a complex interaction between proteins and lipids during exocytosis.

10.4  �Diacylglycerides (DAG)

DAG contain two fatty acyl chains covalently bonded to a glycerol molecule through 
ester linkages. DAG are important intermediates in the synthesis and degradation of 
triglycerides, glycerophospholipids and glycerol-glycolipids [50]. Unsubstituted dia-
cylglycerol is an essential secondary messenger in mammalian cells. Diacylglycerol 
can be synthesised by hydrolysis of phosphatidic acid [34] and cleavage of PtdIns(4,5)
P2 by PI-PLC enzyme [45]. This can regulate several target proteins, one of which 
belongs to the calcium-dependent protein kinase C (PKC) family [50, 51] and this 
PKC family protein is known to phosphorylate Munc-18 upon stimulation [52]. 
Diacylglycerol also regulates Munc-13 proteins with high affinity at the C1 domain 
[50]. Mutation to this C1 domain decreases vesicle priming by inhibiting neuronal 
exocytosis [53]. Rolling blackout protein, which is enriched at the neuromuscular 
junction, can also regulate diacylglycerol [54].
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10.5  �Free Fatty Acids: Polyunsaturated Fatty Acids

Fatty acids are the primary building blocks of more structurally complex lipids such 
as triglycerides, phospholipids and cholesterol esters. Polyunsaturated fatty acids are 
considered to be beneficial to human diets due to their role in human health and 
disease. The brain contains large amount of fatty acids, 50% of which are polyunsatu-
rated fatty acids [55]. Polyunsaturated fatty acids such as arachidonic (AA) and doco-
sahexaenoic (DHA) acids are presumed to be present in equal amounts in the brain 
and also linked in neuronal exocytosis [55]. The interaction and incorporation of fatty 
acids with the cell membrane leads to membrane fluidity, membrane-bound enzyme 
activity, ion channel permeability, membrane fusion and neurotransmitter release 
[56]. The release of fatty acids in the cell membrane is catalysed by PLA2 [34]. 
Examples of such mechanisms are seen in secretory cells where they release fatty 
acids from the sn-2 position of glycerophospholipids [26]. PLA2 can occur in multiple 
ways, either cytosolic or secretory or Ca2+-dependent [38, 57, 58]. Among them, Ca2+-
dependent stimulus is the major external signal for the PLA2 enzyme to catalyse ara-
chidonic release. Although polyunsaturated fatty acids are linked to neurotransmitter 
exocytosis [12], the molecular mechanisms underlying this process have been under 
intense scrutiny, and this also involves fatty acid-mediated protein-lipid interactions. 
Interestingly, early studies revealed that stimulation of exocytosis was accompanied 
by a parallel increase of arachidonic acid in chromaffin cells, also showing that AA 
was not found to be directly linked to exocytosis, but through an alternative pathway 
[59]. Later, AA was linked to Munc-18a and syntaxin 1a binding, which prevents the 
formation of a stable SNARE complex and subsequent membrane fusion [17].

Another example is docosahexaenoic acid (DHA), which is most abundant in the 
cortex [60, 61]. The main source of the DHA for neural cells is through diet and bio-
synthesis from essential linolenic acid. It can also be obtained from the cleavage of 
membrane phospholipids by phospholipases. DHA is the precursor for neuroprotec-
tin D1 [62], which activates neurotrophins [63, 64], suggesting DHA’s role in modu-
lating cell signalling and survival [61, 65]. Since the discovery of the significance of 
polyunsaturated fatty acids in exocytosis, there has been great interest into the mecha-
nisms underlying their involvement, including fatty acid-protein interactions.

10.6  �Lysophospholipids in Exocytosis

Lysophospholipids (LPLs) are bioactive lipids with detergent properties, composed of 
a single fatty acid bound to glycerol and a polar phosphatidyl head group. LPLs are 
generated along with FFAs following cleavage of glycerophospholipids by various 
phospholipases activity of phospholipid substrates. There is good evidence that the 
activity of PLA2 is required for the generation of LPLs during exocytosis, by hydrolys-
ing phospholipids at the sn-2 position [41, 66, 67]. Phosphatidylcholine (PC) is a 
major substrate for the PLA2 enzyme, which cleaves PC by releasing FFAs and lyso-
phosphatidylcholine (LPC) [22, 67, 68]. These LPCs are inverted cone shaped lipids 
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capable of generating positive curvature in the membrane bilayer, which either facili-
tate or inhibit exocytosis [42, 43]. However, LPCs are known to remain confined to the 
leaflet of the membrane bilayer in which they are produced and distributed asymmetri-
cally with relevance to membrane dynamics, whereas the free FFA generated can 
equilibrate between the two sides of the membrane bilayer [22]. Examples of such 
mechanisms are seen in the snake presynaptic PLA2 neurotoxins (SPANs), which 
hydrolyse the sn-2 ester bond of PC to generate AA and LPC and lead to progressive 
paralysis at the neuromuscular junction by stimulating exocytosis and blocking endo-
cytosis [22]. Importantly, the combined addition of LPC with FFA such as oleic 
acid shows similar effect as SPANs at the nerve terminals and mimics its paralytic 
effect [67, 68], suggesting the necessity of the LPLs in the outer leaflet for the fusion 
pore formation.

In recent years, PLD1 has emerged as a major player in several cellular processes 
including the production of phosphatidic acids (PA) through hydrolysis of PC dur-
ing membrane trafficking and cell signalling [44]. PA are central bioactive lipids 
that have been shown to promote negative curvature in plasma membranes [41, 44], 
and can be further metabolised into LPA by phospholipases and LPAAT activity 
[69]. PLA2 and PLA1 produce either 1-acyl-2-LPL or 2-acyl-1-LPL that are linked 
to the glycerol backbone either in the sn-1 or sn-2 position of phospholipid, respec-
tively. Importantly, it has been shown that phosphatidic acid-specific PLA1 uses PA 
as a preferred substrate to generate LPA [70, 71]. Moreover, LPL receptors are able 
to discriminate between 1-acyl and 2-acyl LPL species [72], suggesting that these 
pathways are likely to strongly impact on the landscape of phospholipids and LPLs, 
thereby significantly altering the fusogenicity of secretory vesicles.

10.7  �Emergence of Lipidomics Impact

Understanding the role of the highly heterogeneous array of lipid species that are 
involved in multiple and sometimes overlapping biological functions is a huge and 
technically challenging task [73, 74]. The emerging field of lipidomics, based on 
advances in mass spectrometry, is starting to provide some answers to this problem 
through detection and characterisation of all lipid classes and species in cells, organ-
ism tissue and even subcellular fractions. Mass spectrometry (MS) has acquired a 
well-deserved importance in biology, particularly since the development of ‘soft’ 
ionisation techniques such as electrospray (ESI), an invention duly rewarded with 
the Nobel Prize in Chemistry in 2002 attributed to John Bennett Fenn and Koichi 
Tanaka [75]. Their work enabled the characterisation of intact biomolecules particu-
larly proteins and peptides, as well as lipids. The advantages of electrospray com-
bined with tandem MS can be summarised by its high specificity and sensitivity 
(down to fmol). Molecules are ionised in the gas phase and selected according to 
their mass-to-charge (m/z) ratio. A typical mass spectrum shows the relative abun-
dance of detected ions as a function of their m/z ratio. As a result of the mass overlap 
of many lipids, accurate mass alone is not sufficient to identify species, and collision-
induced fragmentation is used to characterise their structure. This provides a very 
specific mass signature.
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A tandem mass spectrometer consists of three main components, ion source, 
mass analyser and detector. The ion source converts molecules to ions, which can be 
manipulated by alternating electric fields along a quadrupole, and stabilised by res-
onance (depending on m/z). A mass spectrum typically gives the abundance of ions 
across the mass range. Additional structural information is obtained using an inter-
mediate collision cell filled with an inert collision gas, such as nitrogen or argon, to 
break down the molecule into smaller characteristic mass fragments. This feature 
enables a series of scanning modes for lipid profiling experiments (Fig. 10.2).

Thanks to the development and advances in mass spectrometry, the field has 
started to move from an inferably biased view of particular lipid molecules to a 

Fig. 10.2  Schematic representation of tandem mass spectrometry experiments. Adapted from 
[76]. Product scan (a) can help determine the fatty acyl fragments of phospholipids in the negative 
ion mode. On the other hand, a precursor scan (b) or neutral loss scan (c) can be used to profile a 
large number of phospholipid precursors, which contain any particular fatty acid fragment, or a 
specific head group [77]. A targeted approach using specific mass pairs can be used to identify 
several lipids of interest concomitantly (d)
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comprehensive and deeper profiling of the lipidome, which will ultimately lead to 
a better understanding of the phenotypes and molecular mechanisms of disease 
[10, 78, 79].

10.8  �State of Affair for the Detection of Free Fatty Acids

Profiling and quantification of carboxylic acid-containing lipid intermediates such as 
fatty acids and their metabolites (e.g. eicosanoids) is of major significance to under-
stand a number of diseases involving phospholipases. Therefore, identification and 
characterisation of these compounds has both important physiological and clinical 
implications. Traditionally, FFAs are measured as their methyl esters (FAME) by gas 
chromatography/mass spectrometry (GC/MS) using electron impact ionisation [81–
85] because FFAs are too polar and GC/MS is better suited for volatile compounds. 
Advantages of this technique are the high resolution of gas chromatography and the 
large number of species analysed concomitantly [84–86]. However, electron impact 
ionisation leads to substantial fragmentation, where the molecular ion is mostly 
absent and identification is based on matching the mass spectrum fingerprint to a 
database. Recently, liquid chromatography mass spectrometry (LC/MS) and the 
advent of soft ionisation (electrospray), has allowed the analysis of many lipid classes 
including FFAs by identifying the intact molecular ion or its adduct [87, 88]. 
Nevertheless, the LC/MS analysis of FFAs in their native form is deceiving due to 
their high polarity and their tendency to lose water or decarboxylate, and limited 
ionisation of the carboxylic group leading to poor sensitivity [89–92]. Moreover, 
analysing samples separately and comparing signal intensities of different conditions 
could result in inter-assay variability from differences in injection amounts, analyte 
stability and instrument sensitivity [93]. Therefore, several recent studies have con-
centrated on chemical derivatisation of carboxylic group of fatty acids to improve the 
LC/MS detection, specificity and sensitivity [80, 93–96]. The advantage of the deri-
vatisation approach is that internal standards have the same chromatographic proper-
ties as the analytes but can still be differentiated from the analyte of interest on the 
basis of the isotopic mass difference. However, these methodologies are not amena-
ble to multiplexing and were limited to the comparison of two separate conditions. 
As a result, we developed a multiplex approach aiming at providing both absolute 
and relative measurements of more than two samples simultaneously in complex 
matrices with internal standards in one analytical run [97].

10.9  �State of Affair for the Detection of Lysophospholipids

LPLs are composed of a glycerol backbone connected to a polar phosphatidyl head 
group and a single fatty acid, differing in either its chain length and/or degree of 
unsaturation [72]. The phospholipase enzymes such as PLA1 and PLA2 produce 
either at the sn-1 or sn-2 position of glycerophospholipids, respectively (Fig. 10.3). 
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These bioactive lipids can either facilitate or inhibit exocytosis [42, 43] according to 
their biophysical properties defining membrane curvature (head group, acyl chain 
composition and position).

Conventional methods used to measure phospholipase activity in biological sam-
ples include bioassays using radiolabelled substrates [98], indirect measurement of 
LPL by analysing hydrolysed fatty acids by GC/MS after thin layer chromatography 
(TLC) purification [99], ESI-MS through syringe infusion [73] and two-dimensional 
TLC [100]. LC/MS methods have been developed for more targeted sensitive and 
reproducible procedures to quantify LPLs, although they do not provide information 
about the regioisomers of LPLs [101, 102]. This is mainly due to the high diversity 
of molecular species in each LPL class and co-elution of the 1- and 2-acyl isomers 
on reverse phase (C18) columns, even by 2D chromatography [103, 104]. However, 
it was discovered that their separation could be achieved by hydrophilic interaction 
liquid chromatography (HILIC) [105, 106]. This type of chromatography is particu-
larly well suited for the analysis of polar lipids such as LPLs. LPLs are labile and 
prone to intramolecular acyl conversion between sn-1 and sn-2 positions within min-
utes [72], which means care is necessary when handling them (snap freezing in liquid 
N2 and acidified extraction). A novel LC/MS method was developed to measure LPL 
species and to determine their fatty acyl chain composition and sn-position on the 
glycerol backbone with high accuracy, adapted from a method previously described 
[105]. This procedure also utilises the recent procedure developed by Baker and col-
leagues to efficiently recover and preserve the LPL content [107]. We adapted this 
unbiased method to carry out a comprehensive profiling of different LPLs and FFAs 
during neuroexocytosis [97, and unpublished results]. The role of PA-PLA1 and 
2-acyl-1-LPLs has been discussed in terms of regulating vesicle formation and traf-
ficking, although the exact mechanisms of inducing membrane curvature remain 
unclear [34]. This underpins the importance to accurately measure the levels of LPL 
and FFA to understand which and how these species might recruit effector proteins 
to the membrane and modify membrane properties to induce vesicle fusion [108].

Fig. 10.3  Specificity of phospholipases in the hydrolysis of glycerophospholipids. PLA1 and 
PLA2 release free fatty acids (FFAs) by hydrolysing the sn-1 and sn-2 fatty acyl ester bonds leading 
to 2-acyl- and 1-acyl-lysophospholipids, respectively, while PLC cleaves the glycerophosphoester 
bond to form diacylglycerols (DAG) and the phosphorylated head group (p-X), and PLD hydroly-
ses off the head group (X) to release phosphatidic acids (PA)
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10.10  �Conclusion

Exocytosis is a multidimensional process involved in the release of neurotransmitters 
but also a myriad of other intra- and intercellular communication processes such as 
exosome release. It involves a complex series of protein–protein and protein–lipid 
interactions. Our understanding of the exocytotic mechanisms has been hampered 
by the lack of specific lipid changes occurring during this process. Recent findings 
suggest that LPA appears to play a major role in the fusogenicity of secretory 
vesicles. MS lipid profiling is likely to play a critical role in unravelling the changes 
occurring in the lipidome during stimulation of neuroexocytosis. Furthermore, MS 
lipid profiling is increasingly seen as a powerful tool to gain a deeper understand-
ing of physiologic and pathogenic mechanisms affecting neuronal and more gener-
ally cellular functions. With neurodegenerative diseases on the rise, research in this 
field has tremendous physiological and clinical implications.
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