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Preface

It is a privilege to introduce “Advances in Applied Strategic Mine Planning”, a
collection of technical papers addressing core aspects of the sustainable, responsible
and optimal development and utilization of Earth’s mineral resources. In a world of
uncertain markets, mismatches between demand and reserve base growth (supply),
emerging technologies, and new technical challenges and solutions, this book aims
to support knowledge dissemination and mobilization of new concerns, concepts,
methods and technologies. These support step changes in the broader area of
strategic mine planning while stressing technical risk management. Arguably,
strategic mine planning is the most intricate, demanding and fundamentally
important technical aspect of mining ventures, the industry and our profession.
Strategic planning has a profound impact on the value of mines and metals pro-
duced, as well as shaping the technical plan to be followed from mine and mineral
value chain development to closure. It is important to stress that education
underpins the transfer of new technologies to both the current and, notably, the next
generation of mining professionals and is the reason for this book.

This volume is unique in many ways starting with the contribution of papers
from international experts, several of them from the younger generation of pro-
fessionals in the field, who show great promise in enhancing and further developing
the field. It also showcases the extraordinary contribution, support and involvement
of the global mining industry, which is an indispensable part of progress in the field.
Lastly, it recognizes the exceptional and continued collaboration of the major
national mining institutes towards enriching professional excellence in the field:
The Australasian Institute of Mining and Metallurgy (AusIMM), Canadian Institute
of Mining Metallurgy and Petroleum (CIM), Society for Mining, Metallurgy and
Exploration (SME), and the Southern African Institute of Mining and Metallurgy
(SAIMM).
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This volume comprises 45 papers under the following key themes:

• Early Concerns and Innovative Responses
The volume opens with a discussion on the limits of conventional optimization
for strategic planning and the issues faced in a real and uncertain world. It
continues with global optimization of mining complexes which aim to capitalize
on synergies between the components of a mining complex, mining optimiza-
tion and management of multiple objectives. This is followed by a review of the
major limitations imposed by the conventional approaches to modelling mineral
deposits and their properties of interest. The section concludes by stressing the
paradigm shift to stochastic mine planning optimization and technical risk
management.

• Increasing Value and Technical Risk Management
This section presents early work that explores various aspects of optimization
developments from additional drilling that add value through mine planning
optimization, followed by several aspects of and approaches to geological risk
management. Interestedly, the stochastic mine planning approaches summarized
here show the resulting counter-intuitive aspect of related mine production
schedules where economic value is higher for lower risk in meeting the fore-
casted production targets, when compared to schedules generated with con-
ventional approaches. The section ends with papers addressing issues of
flexibility in mine planning and design.

• Simultaneous Optimization of Multiple Operations and Processes
This section emphasizes new developments for and approaches to strategic mine
planning and mine production scheduling where different components of a
mining complex or mineral value chain are optimized simultaneously and within
the framework of mineral reserves to market products. The approaches pre-
sented here also lay the ground for the evolution of concepts and methods
presented in subsequent sections.

• Stochastic Simulation for Strategic Mine Planning
This section is concerned with the detrimental effect of the representation/
modelling of mineral deposits on strategic planning and optimization. The series
of papers included focus on several aspects and applications of stochastic or
geostatistical simulations that stress both the quantification of geological
uncertainty and practical aspects such as the ability to model the local variability
of materials mined and their pertinent properties. They document, along with
several papers from previous sections, a major contribution to technical risk
management within mine planning optimization approaches.

• Other Aspects of Open Pit Mine Planning
This section presents a collection of critical and pertinent topics related to
optimizing mine production and performance, including geological, geometal-
lurgical and geotechnical modelling applications, all complementing the topics
presented in other parts of this volume.
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• Optimization of Underground Mine Planning
The rapid growth in the application of optimization approaches in various aspect
of underground mining, from sublevel stope mine optimization and related
grade risk analysis quantification to strategic mine access design and ventilation,
as well as mining methods for deep orebodies is presented here.

• Advances and Applications in Mine Optimization
The application of new technological advances and innovative concepts is the
focus of this section. This includes the elaborate applications of stochastic mine
planning and the solution of relatively large stochastic optimization formula-
tions, to multistage approaches and excavating operations, equipment utilization
and aspects of waste dump management.

• Contributions to Strategic Innovation
The concluding section addresses the changing world. It stresses major new
concepts, future directions, frameworks and applications. It starts with the
simultaneous stochastic optimization of mineral value chains and continues with
sensor-based real-time mining for production control. Then, new contributions
in the spatial simulation of geometallurgical properties of mineral deposits and
the new high-order stochastic simulation framework needed for strategic mine
planning are presented. The section concludes with a paper on the optimization
of a mineral supply chain under supply (geological) and demand (market)
uncertainty.
This book is thanks to the long-standing combined efforts of several colleagues
over numerous years. I would particularly like to thank our colleagues and
international experts: Gavin Yeates, Jean-Michel Rendu, Wynand Kleingeld,
Jeff Whittle, Brian Baird, Vaughan Chamberlain, Edson Ribeiro, Peter Stone,
Ian Douglas, Larry Allen, David Whittle, Malcolm Thurston, Rick Allan,
Richard Peattie, Olivier Tavchandjian, Jean-Yves Cloutier, Brett King, Peter
Ravenscroft, Allen Cockle, Peter Monkhouse, Martin Whitham, Salih Ramazan,
Snehamoy Chatterjee, Kadri Dagdelen, Erkan Topal, Jorg Benndorf, Waqar
Asad, Marcelo Godoy, Peter Dowd, Andre Journel and our colleagues involved
with the COSMO—Stochastic Mine Planning Laboratory.
The invaluable, long-standing support and collaboration of AngloGold Ashanti,
Barrick Gold, BHP, De Beers, Kinross Gold, Newmont Gold and Vale is
thankfully acknowledged. Special thanks to AusIMM, for the papers in this
book originate from the international symposium “Orebody Modelling and
Strategic Mine Planning” organized by AusIMM since 2004, as well as the
long-standing support, contribution and involvement of its staff that has been
widely appreciated by all of us.

Montreal, Canada Roussos Dimitrakopoulos
COSMO—Stochastic Mine

Planning Laboratory
http://cosmo.mcgill.ca/
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Beyond Naïve Optimisation

P. H. L. Monkhouse and G. A. Yeates

Abstract Most practitioners would regard the maximising of the net present value
(NPV) of a mine by changing mining schedules, push-backs, cut-off grades, ulti-
mate pit shells and stockpile rules and procedures as encompassing current best
practice in mine planning. This optimisation is typically carried out for a single set
of assumptions about:

• orebody tonnes and grade,
• processing methods and costs,
• maximum sales volumes in the case of bulk commodities,
• commodity prices, and
• discount rates.

About the only thing we can be sure of is that the assumptions on all these factors
will be wrong, yet we continue to naïvely optimise our mine plan. This paper argues
that this approach is inherently flawed. Recognising that our assumptions will be
wrong, and that our actions can alter over time as new information is made
available, means that the mine plan that is ‘optimal’ under a single set of
assumptions may well be suboptimal in the real and uncertain world.

P. H. L. Monkhouse (&)
Business Strategy for Carbon Steel Materials, BHP Billiton Limited,
PO Box 86A, Melbourne, VIC 3001, Australia
e-mail: peter.hl.monkhouse@bhpbilliton.com

G. A. Yeates
Mineral Resource Development, Business Excellence,
BHP Billiton Limited, PO Box 86A, Melbourne, VIC 3001, Australia
e-mail: gavin.yeates@bhpbilliton.com

© The Australasian Institute of Mining and Metallurgy 2018
R. Dimitrakopoulos (ed.), Advances in Applied Strategic Mine Planning,
https://doi.org/10.1007/978-3-319-69320-0_1
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Introduction

Best practice is a fuzzy term; when applied to mine planning it can mean many
things. Current best practice in mine planning, as viewed by most practitioners,
encompasses the maximising of the net present value (NPV) of a mine by changing
mining schedules, push-backs, cut-off grades, ultimate pit shells and stockpile rules
and procedures. This analysis is typically performed for a single set of assumptions,
which we can almost guarantee will be wrong. Assumptions typically cover: ore-
body tonnes and grade; processing methods and costs; maximum sales volumes in
the case of bulk commodities; commodity prices; and discount rates.

Planning for a single set of assumptions that turn out to be incorrect will result in
a suboptimal, or naïve, mine plan. There are two possible responses to this. The first
is to try harder to correctly estimate (forecast) the future. The second response is to
recognise that the future is in many respects unknowable, and to subsequently
develop mine plans that have the flexibility to respond to changes to assumptions in
the future. This flexible—or robust—mine plan will continue to give high mine
values over a wide range of input assumptions (both optimistic and pessimistic),
rather than a plan that only gives optimal results over a very small range of
assumptions.

The key to addressing these issues is understanding uncertainty and risk, and
developing methods to incorporate them into the mine planning process. This
allows us to value flexibility and the benefit derived from robust mine plans. Whilst
acknowledging that this is difficult, we propose that solutions can be found by
combining the research from two broad but quite different areas, those of mine
planning and real options. Even if robust or flexible plans are developed, the
organisational challenge is to act effectively. For example, how many copper mines
changed their mine plans when the copper price doubled over a relatively short
period of time? How many of these operations are still working to the cut-off, the
schedule and ultimate pit that were in place when the copper price was half what it
is today? A mine with flexibility, with exposed ore and with surplus stripping
capacity would be able to respond by raising the cut-off, raising the head grade and
thereby producing more copper during periods of higher prices and hence capturing
value during the price spike. How much value is being destroyed by not changing
our current operating plans in light of new information?

In this paper, current industry practice in regard to mine planning is briefly
reviewed and the generic assumptions that strongly influence the final mine plan are
then discussed. Two key sources of uncertainty—orebody uncertainty and price
uncertainty—are then reviewed in some detail. A discussion follows regarding
current practices within BHP Billiton before concluding with some suggestions for
future developments in this area.

4 P. H. L. Monkhouse and G. A. Yeates



Current Industry Practice

The current practice in industry is to take a single estimate (model) of the orebody,
using a single set of mining assumptions, along with a single set of deterministic
external economic assumptions, to come up with an ‘optimal’ ultimate pit design,
extraction sequence, and schedule. The term ‘optimal’ usually means the max-
imising of a single variable, usually NPV or its proxy, for a given set of assump-
tions. The optimised model typically defers stripping, brings forward revenue (high
grade) and often extends mine life by dynamically changing cut-off grade over time.
Sometimes additional effort is applied to look for the potential of additional value in
the stockpiling of low-grade material.

The first step in a mine optimisation typically involves coming up with final pit
limits. The tool commonly used is the Whittle pit optimisation, the nested pit
version of the Lerchs-Grossmann algorithm (Lerchs and Grossmann 1965; Whittle
1988; Muir 2007). The mine planner’s dilemma in using these techniques is that
they focus on the final limits. Given that the decision about the final limit is usually
far into the future and heavily reliant on external economic assumptions, such as the
price at the time the final pushback will be mined, the decision is fraught with
difficulty. While this decision is likely to be refined during mine life, key invest-
ment decisions are often made on the basis of this information. The next steps in
mine optimisation are encapsulated in the seminal book in this area, The Economic
Definition of Ore (Lane 1988) with the general approach being considered as
established practice in the industry.

Unfortunately, the big picture is often lost and the mine planning process blindly
followed in the beliefs that the assumptions are right and that the resultant plan is
optimal in reality. The key concept regarding all of these factors is that they are only
optimal for a given set of assumptions (inputs)—today’s optimised mine plans have
no flexibility to respond to changed circumstances. This is usually due to the
stripping being deferred, all exposed ore being minimised, all stockpiles cut to near
zero by the accounting drive to minimise working capital, and material movement
matched to the fleet capacity thereby eliminating sprint capacity. Further, if we
consider current practice in use at most of our mining operations, the mine plan is
often not revised, even when we have significant changes to external assumptions.

Sources of Uncertainty or Key Assumptions

The key sources of uncertainty that affect the final mine plan are as follows:
Orebody uncertainty: The three-dimensional distribution of grade over the

orebody is estimated by relatively limited drill hole data coupled with a geological
interpretation, which may or may not be correct. This uncertainty, however, is often
ignored in the mine planning process. This issue is discussed in more detail in a
subsequent section.

Beyond Naïve Optimisation 5



Processing uncertainty: Just as methods for modelling grade now exist, so do
advances in the modelling of what is now called ‘geometallurgical’ performance. It
is now possible to deterministically model variables such as ore hardness, flotation
or leach recovery, concentrate grade, and ultimately dollars per hour through the
mill (e.g. Wooller 1999). Ultimately, these variables can also be simulated to
describe the range of possible outcomes that may be encountered in the future
operation. This is essentially modelling the current performance through a given
process plant (Flores 2005).

Uncertainty in changing technologies: Another significant uncertainty far more
difficult to model is a major technology change; these step changes could well have
major impacts on future mine plans. Examples include atmospheric leaching of
nickel ores, leaching of chalcopyrite ores, and the use of high phosphorous iron ore
in steel plants. The key uncertainties for these particular changes are threefold: Will
the breakthrough occur? If so, when will it occur? If it occurs what will be the size
of the step change in cost, recovery and therefore reserve definition?

Volume uncertainty: London Metals Exchange (LME) commodities effectively
exhibit no volume uncertainty, as product can always be sold and delivered to LME
warehouses. However, non-LME commodities, such as coal and iron ore, can only
be sold to traders or customers, thereby introducing volume or sales uncertainty.
The ability to sell the material is also influenced by its quality.

Price uncertainty: The price forecast we enter into our computer models is
problematic, especially when the only certainty is that the price forecast we use will
be wrong. This will be discussed in more detail later.

Discount rate uncertainty: The issue of interest rate uncertainty is more subtle,
but no less important, in that it affects what discount rate we use. It affects the
trade-off decision between future benefits versus current benefits. Again, the only
thing we know about our forecast of interest rates, and hence discount rates, is that
they will change over time. Political risk, often allowed for in the discount rate,
further complicates this issue. Should we allow for a country risk premium on our
annual discount rate that declines with time, as we learn to operate in a country? Or
does country risk keep growing exponentially, as is implied in a constant per period
discount rate?

Orebody Uncertainty

The traditional approach has been to provide mine planners with a single ‘best’
interpretation of the orebody. This single geological interpretation is then treated as
fact. This approach gives no indication of the uncertainty in the interpretation, nor
does it communicate the risk that the interpretation could be wrong or the likely
range of possible outcomes. Geologists are dealing with imperfect knowledge, they
know that the data on which the interpretation is based is incomplete, imprecise and
inaccurate. They also know that there are multiple possible interpretations, each of
which is valid. Some may have greater probability than others, but each is valid if it

6 P. H. L. Monkhouse and G. A. Yeates



can explain the available data. It is now possible to quantify and model some
aspects of the geological uncertainty. The use of simulation techniques is
well-developed for modelling the grade uncertainty, but also well known is the
critical nature of geological interpretation that controls the grade. There are limited
examples of quantifying the range of geological interpretations and hence the grade
(e.g. Jackson et al 2003; Khosrowshahi, Shaw and Yeates 2017, this volume;
Osterholt and Dimitrakopoulos 2017, this volume).

Dimitrakopoulos, Farrelly and Godoy (2002) illustrate a case where, for a range
of equally probable geological outcomes, the mine plan developed on a single
estimate of the orebody is excessively optimistic. This is partly driven by any
misestimation of grades—resulting in a loss of value either by ore being classified
as waste and an opportunity loss suffered—or waste being classified as ore and
additional processing costs incurred. This resulting ‘bias’ is what makes many
deterministic plans optimistic. It should be noted, however, that the opposite may
also occur unpredictably, to stress the limits of the current modelling and optimi-
sation technologies. This finding has been confirmed by internal research at BHP
Billiton Technology (Menabde et al 2017, this volume). Further, and more
importantly, this work shows consistently that a mine plan can be developed
considering the uncertainty in the geological input assumptions, and this mine plan
will have a higher NPV on average (i.e. over a wide range of inputs), a finding
independently observed in Godoy and Dimitrakopoulos (2004); and Ramazan and
Dimitrakopoulos (2017, this volume).

Price Uncertainty

To illustrate the problems with current best practice, the following hypothetical
mine development is used.

A Simplified Example

Consider a mining company that requires an optimal mine plan for a copper ore-
body shown (simplistically) in Fig. 1.

Waste

For the high-grade block, assume:

1. A grade of 1.25% copper and containing 20 million pounds of copper. At a
copper price of US$1/lb this block will produce US$20 M revenue.
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2. The total cost of mining and processing for this high-grade block is US$12 M,
split US$6 M for the waste removal and US$6 M for the mining and treatment
of the ore. Mining and processing should occur in year 1.

For the mid-grade block, assume:

1. A grade of 1% copper and containing 12 million pounds copper. At a copper
price of US$1/lb it will produce US$12 M revenue.

2. The total incremental cost is US$12 M, split between additional waste removal
(US$2 M) and mining and processing mid-grade. If mining were to be under-
taken, the mining and processing should occur in year 2.

For the low-grade block, assume:

1. The low-grade block is not drilled because the Promoter wants the orebody open
at depth, but George the Geologist is convinced it has a grade of 0.65 Cu,
containing 12 M pounds copper, for revenue of US$12 M.

2. The incremental cost of removing the low-grade block is estimated at US$14 M,
split US$2 M for additional waste removal and US$12 M for mining and
processing the ore. If undertaken, the mining and processing of this low-grade
block should occur in year 3.

Furthermore, assume that all the waste must be extracted in year 0, and that once
this decision is made it is very expensive to go back, in either cost and/or time, and
re-strip the additional waste.

The Problem Facing the Company

The problem for the mining company is that a decision needs to be made today on
what to mine. If the company forecasts the copper price to be US$1/lb:

Waste

Low Mid High Mid Low

Fig. 1 A simplistic hypothetical copper orebody
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• Should the company only mine the high-grade block?
• Should it mine the mid-grade block?
• Should it trust George the Geologist and plan to mine the low-grade block?

If our assumption was that the forecast copper price was US$1/lb then we would
apply the approach outlined by Lane (1988). Primarily because of the effects of
discounting—with cost of waste removal being incurred in year 0 and revenue in
years 1, 2 and 3—we would only extract the high-grade block. An alternate
approach may be to use a break-even cut-off (and ignore the effects of discounting),
where at US$1/lb copper and for the costs outlined previously, a break-even cut-off
grade for the high-grade block is 0.75% copper, the mid-grade block is 1% copper,
and the low-grade block is some 0.76% copper. Accordingly, using this approach
the company would have mined the high- and mid-grade blocks.

Under what circumstances would the company plan on mining all the blocks?
How would the company develop a robust (or flexible) mine plan that allows them
to respond to changing circumstances? To highlight the impact of price uncertainty,
discount rate uncertainty and geological uncertainty, how would the decision
change if:

• Analysis of the futures market indicated there was a 50% chance the copper
price would exceed US$1.50 in three years’ time?

• The deposit was located in a country with a corrupt dictator that may expropriate
the operation at any time?

• An independent review of George the Geologist’s work indicated there is a 95%
chance he is right.

Intuitively, all these assumptions should change the optimal mine plan, yet
current best practice would struggle to include these assumptions. It is suggested
that the ‘best’ mine plan should be one that maximises value over a ‘reasonable’
range of input assumptions.

Framing the Questions in the Language of Real Options

To determine what we mean by ‘best’ and a ‘reasonable’ range of assumptions, the
previous example will be re-stated.

For the high-grade block, assume:

1. A grade of 1.25% copper containing 20 million pounds of copper. At a copper
price of US$1/lb this will produce US$20 M revenue.

2. Total cost of mining and processing the high-grade block is US$12 M, split US
$6 M for waste removal and US$6 M for mining and treating the ore. The waste
removal will occur in year 0 with mining and processing to occur in year 1.
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For the mid-grade block, assume:

1. A grade of 1% copper containing 12 million pounds copper. At a copper price of
US$1/lb it will produce US$12 M revenue.

2. For the cost of additional stripping in year 0 of some US$2 M, we have the
option to mine and process the mid-grade block in year 2 at a cost of some US
$10 M.

For the low-grade block, assume:

1. The low-grade block is not drilled because the Promoter wants the orebody open
at depth. George the Geologist is convinced the grade is at least 0.65% copper,
and contains 12 million pounds of copper, which would produce revenue of US
$12 M if he is correct.

2. For the cost of additional stripping in year 0 of another US$2 M, we have the
compound option to mine and process the low-grade block in year 3 at a cost of
some US$12 M. It is a compound option because it is conditional on us mining
the mid-grade block in year 2. In this example, the low-grade block is only
mined if the mid-grade block is already mined. Compound options are highly
non-linear and the effects are complex. In general, the second option (on the
low-grade block) has the effect of increasing the value of the first option (on the
mid-grade block). However, compound options are not that difficult to value.

Considering this scenario, does the company now mine the high grade block?
Does the company now buy the (real) option for US$2 M to mine and process the
mid-grade block in two years hence? Does the company buy the (real) option over
the low-grade block costing a further US$2 M? Unless the options (or flexibility)
can be valued, or the benefits of a robust mine plan can be valued, it is unlikely that
mine planning will be successful in moving forward. The keys are properly mod-
elling uncertainty and risk, and understanding the value of preserving options and
flexibility.

In our example the two key questions are: What options should be purchased?
When, if at all, should options be exercised? To answer the first question the
company must know the cost of purchasing the option—in the above example this
is US$2 M to undertake the additional stripping. The harder question is: What is the
value of acquiring this option, or flexibility? If the option is worth more than it
costs, then the company will want to purchase it, and develop a flexible, or robust
mine plan. Yet there are limits to the amount of flexibility that should be acquired.
To answer the second question about when to exercise the options, the company
needs to know the value of keeping the option alive, and the value of exercising the
option. Again, we will exercise the option, or mine the mid- and possibly the
low-grade blocks if the value of exercising the option is greater than the value of
keeping the option alive. The harder issue is valuing the option, not the value of
exercising it (developing the mine).
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Valuing the Real Options for Price Uncertainty

Price uncertainty can be modelled in a real options framework by building a price
tree. To simplify the mathematics in this example, it is assumed that the prices will
be constant for one year, and then may vary. It is further assumed that the price
distribution is log-normal1 and that the volatility of the copper price is 20% per
annum. It is also assumed that this price tree is a risk-neutral price tree, as obtained
from futures data. It is not the price tree of expected copper price movements. This
distinction is very important to ensure price risk is handled properly. With these
assumptions, the up price factor is 1.2214 and the down price factor is the recip-
rocal, or 0.8187. Assuming a 5% per annum risk-free rate (continuously com-
pounded) and these up and down factors it follows that the risk-neutral probability
of an up price movement is 0.5775 and the risk-neutral probability of a down price
movement is 0.4225.

Copper Price Tree

Given the above assumptions, and assuming the current copper price is US$1/lb,
the copper price tree is shown in Table 1.

Value of High-Grade Block

Given there are 20 M pounds of copper and the mining and processing costs are US
$6 M, the cash flows from mining the high-grade block (assuming the waste
removal has already occurred in year 0) is shown in Table 2.

Table 1 Copper price tree
with and copper price at US
$1/lb

Now Year 1 Year 2 Year 3

1.82

1.49

1.22 1.22

1.00 1.00

0.82 0.82

0.67

0.55

1This assumption is discussed in detail in corporate finance textbooks (eg., Brealey and Myers
2003, Chap. 21; Hull 2000, Chap. 9).
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Assuming the risk-free interest rate is 5% per annum (continuously com-
pounded) and that the waste removal has already occurred, the value tree is shown
in Table 3.

After spending US$6 M on waste removal we should have a value of US
$14.29 M. Thus, before we even start the project it has a value of some US$8.29 M
and indicates that the high-grade block should be mined.

Value of Mid-Grade Block

Using the same price tree as above and given there are 12 M pounds of copper and
the mining and processing costs are US$10 M, the cash flows from mining the
mid-grade block (assuming the waste removal has already occurred in year 0) are
shown in Table 4.

Assuming the risk-free interest rate is 5% per annum (continuously com-
pounded) and that the waste removal has already occurred, the value tree is shown
in Table 5.

Table 2 Cash flows from
mining the high-grade block
(assuming the waste removal
has already occurred in year 0)

Now Year 1 Year 2 Year 3

18.43a

10.37
aCalculated as (1.2214 * 20)−6.0

Table 3 Value tree,
assuming the risk-free interest
rate is 5% per annum
(continuously compounded)
and that the waste removal
has already occurred

Now Year 1 Year 2 Year 3

18.43

14.29a

10.37
aCalculated as (18.43 * 0.5775 + 10.37 * 0.4225)/exp(0.05).
The exponential term is because the interest rate is expressed
on a continuously compounded basis

Table 4 Cash flows from
mining the mid-grade block
(assuming the waste removal
has already occurred in year 0)

Now Year 1 Year 2 Year 3

7.90

2.00

−1.96

Table 5 Value tree,
assuming the risk-free interest
rate is 5% per annum
(continuously compounded),
and that the waste removal
has already occurred

Now Year 1 Year 2 Year 3

7.90

5.14

3.27 2.00

1.10

0.00
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Spending US$2 M on additional waste removal should give us a value of US
$3.27 M. Thus the project, before we start, has a value of some US$1.27 M and
means the company should at least undertake the prestrip for the mid grade block.
However, we will only mine the mid-grade zone if the copper price is US$1/lb or
above. We will not mine the mid-grade zone if the copper price is the low price in
year 2 of US$0.67/lb. Ultimately, it is the ability to defer this mining decision that is
creating the value, and thus facilitating the mining of the mid-grade zone in some
circumstances.

A possible counterintuitive result is also evident from this example. Consider the
case where the copper price remains at US$1/lb through the mine life. In this case
the company will end up mining the mid-grade block because:

• the option analysis commits the company to undertake the prestrip, as the copper
price might rise; however

• when the company gets to make the mining decision it decides to mine even if
the copper price is only US$1/lb because the prestripping is now a sunk cost
and is excluded from the analysis.

More of the deposit is mined if the copper price turns out to be a constant US$1/lb
under the robust mine planning framework compared to a current ‘best practice’
framework. This is despite the fact that if we had perfect foresight we would not have
committed to this prestripping and the mining of the mid-grade block. This is of
obvious benefit to the host country.

Value of Low-Grade Block

Now let us repeat this procedure for the low-grade block. The price tree is the same
as in the previous example. Given that there are 12 M pounds of copper and the
mining and processing costs are US$12 M, the cash flows from mining the
low-grade block (assuming the waste removal has already occurred in year 0) are
shown in Table 6.

Assuming the risk-free interest rate is 5% per annum (continuously com-
pounded), and that the waste removal has already occurred, the value tree is shown
in Table 7.

Spending US$2 M on additional waste removal should give us a value of US
$2.60 M. The project, before we start, therefore has a value of some US$0.60 M.
This means the company should do the prestrip for the low-grade block as well, but

Table 6 Cash flows from
mining the low-grade block
(assuming the waste removal
has already occurred in year 0)

Now Year 1 Year 2 Year 3

9.87

2.66

−2.18

−5.41
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will only mine the low-grade zone if the copper price is above US$1.22/lb. The
low-grade zone will not be mined if the copper price is only US$0.82/lb or less. At
the risk of labouring the point, it is the ability to defer this mining decision that is
creating the value, and thus facilitating the mining of the low-grade zone in some
circumstances.

Note that more of the deposit is mined under the robust planning framework than
under the current ‘best practice’ framework. The expected amount of material
mined at the start of the mining operation is greater under the robust mine planning
framework than any other framework, with significant benefits to the company,
shareholders and the host country.

Introducing Additional Sources of Uncertainty
in the Analysis

The simplified example shown previously introduced an additional source of
uncertainty. Should the company trust George the Geologist’s intuition and plan to
mine the low-grade block? What about the risk that George is wrong? Should this
risk be allowed for in the analysis? Before discussing this in more detail we need to
introduce another concept from corporate finance, namely diversifiable risk and
non-diversifiable risk. The key issue is that some (non-diversifiable) risks are priced
(investors will pay to avoid them, e.g. commodity price risk, interest rate risk), and
other (diversifiable) risks are unpriced (investors are indifferent about bearing them,
e.g. geological uncertainty). This concept forms the bedrock of the Capital Asset
Pricing Model or CAPM (Brealey and Myers 2003, Chaps. 7 and 8).

If George’s estimate of the grade is truly a central estimate then because geo-
logical risk is, at least to a first order approximation, unpriced, we should not
introduce any additional value reduction because of the ‘risk’, even if the distri-
bution of possible outcomes is incredibly wide. The key issue is whether George’s
estimate is a central estimate because, unlike copper price, the risk of the possible
outcomes does not enter the valuation.

Table 7 Value tree,
assuming the risk-free interest
rate is 5% per annum
(continuously compounded)
and that the waste removal
has already occurred

Now Year 1 Year 2 Year 3

9.87

6.49

4.15 2.66

2.60 1.46

0.80 0.00

0.00

0.00
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More General Comments on Uncertainty and Risk

The latter example has introduced two key corporate finance concepts: namely real
options,2 and diversifiable and non-diversifiable risk, but this paper cannot do
justice to these concepts.3 Together these two concepts allow for the classification
of risks into priced and non-priced risks, and where they are priced an analytical
tool to evaluate them is provided. It allows the valuation of mine plans (and risk)
from the perspective of shareholders and allows the company to then compare the
cost of acquiring flexibility, versus the value of having flexible mine plans.

Failure to adequately address risk (such as using expected spot prices instead of
risk-neutral prices) means that we get the garbage-in-garbage-out problem, a very
large problem. Properly valuing the risk introduced by real options is complex. We
can quickly end up in the world of stochastic differential equations, or large-scale
numerical methods. Yet failing to properly value risk means we are wasting our
time. The authors believe that we are better off relying on our intuition than doing
some pseudo-maths that does not properly allow for risk.

Possible Criticisms of the Proposed Approach

In these examples, a flexible or robust mine plan means removing all the waste in
year 0, which goes beyond standard practice in the industry. One possible criticism
of this approach is that the decision to prestrip is made up-front and is artificial. In
practice you could go back and prestrip for the mid- and the low-grade blocks if the
price spiked. While this is to some extent correct, it can be argued that:

1. going back and undertaking additional prestripping will contribute to cost and
time penalties, although these can be modelled if considered appropriate;

2. in a real-world approach you need to model mean reversion in the commodity
prices, which means that any time delays suffered could well cause a significant
value loss; and

3. in any mining operation, the time taken to do any additional stripping is mea-
sured in years.

In any event, the mere fact that we are thinking how we will respond to changed
economic circumstances is the whole point of this paper. The aim, in real options

2The Nobel Prize in Economics in 1997 was awarded to Scholes and Merton for adequately
handling risk in (financial) option valuations. The earlier tool of the Capital Asset Pricing Model—
while important and underpinning all NPV analysis – does not allow risk to be accurately valued
when we have option-type pay-offs. The seminal option paper by Black and Scholes (1973)
effectively provided a numerically quantifiable way of handling non-diversifiable (or priced) risk
in option-type pay-offs. This concept has since been extended to real options.
3The application of real options is discussed in Copeland and Tufano (2004). The application of
real options to a mining example is discussed in McCarthy and Monkhouse (2003).
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talk, is to acquire flexibility for less than its inherent value—if that can be done by
alternative and lower cost means then so much the better. It could be argued that all
this is too hard and that sensitivity analysis will get us most of the way there, but at
a fraction of the complexity. To the extent that sensitivity analysis builds intuition,
then that is a great outcome. But of itself, sensitivity analysis will have limited
benefit in generating a robust or flexible mine plan as it will be unable to justify the
cost of investing in flexibility. This can only be achieved by implementing real
options analysis as described previously.

State of Play in Bhp Billiton

Within BHP Billiton it is well-recognised that there are limitations to optimising a
mine plan for a given set of assumptions that will inevitably turn out to be incorrect.
Further, it is accepted that this approach will lead to suboptimal outcomes, for both
our shareholders and the host country. Overcoming this deficiency is crucial; it
requires the development of new mine planning techniques, and—just as impor-
tantly—it requires the development of management systems to facilitate changes to
the mining operations in response to changing economic conditions. At BHP
Billiton we are developing robust and flexible mine plans, and we have adjusted
budgets and incentives to reflect changed economic circumstances. We believe we
already have a competitive edge in this area, but we are the first to admit that there
is a lot more work to be done.

Concluding Remarks

This paper has discussed current best practice in mine planning and has identified a
key shortcoming. The fact that the key assumptions underpinning our mine plans
will inevitably prove to be incorrect means that our mine plans are no longer
optimal over a reasonable range of real world outcomes. Possible sources of
uncertainty were highlighted and discussed. The paper then focused on two key
sources of uncertainty: price uncertainty and geological uncertainty. By using a
simplified example it was shown that mine plans will change if price uncertainty is
explicitly recognised. The issue of geological uncertainty was also introduced in the
simplified example and it was indicated that plans will likely change to extract more
ore. Perhaps counterintuitively, it was argued that the risk of geological uncertainty
did not affect the mine plan and was of a fundamentally different character to that of
commodity price risk. Possible criticisms of the proposed approach were also
discussed.
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What needs to be remembered is that every day mine planners are making
decisions about:

• What is waste and what is ore?
• How much exposed ore should we carry?
• When should we run down our levels of exposed ore?
• What sequence of push-backs should we use?
• What stockpiles should we carry?
• How much ‘excess’ mining capacity we should carry?

We cannot stop the mining operations to perform the analysis. We have
uncertainty regarding geology, processing, new technologies, market, prices and
discount rates; the opportunity cost of suboptimal mine plans is large. At BHP
Billiton we are mindful of the limitations of conventional optimisation techniques,
and are developing methods and tools to assist us in valuing flexibility and
ultimately developing robust mine plans.
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Optimal Mining Principles

Brett King

Abstract Picture yourself responsible for the exploitation of a world class deposit,
creating staggering quantities of products for global consumption over decades,
employing thousands of people, about to spend billions of dollars on infrastructure
and you are going to design this project. Should it be surface or underground (or
both), how big should the processing plants be, what technology should be utilised,
what happens if more resources are found or the price forecast changes? This paper
aims to help guide engineers faced with the prospect of determining optimal mining
policies for large projects. It draws on experiences at some of the largest mining
projects and mining companies in the world, including the Bingham Canyon Mine
(USA), Freeport (Irian Jaya), Escondida (Chile), Chuquicamata (Chile), Hamersley
Iron (Australia), Ekati Diamond Mine (Canada) and several Hunter Valley coal
mines (Australia). The paper outlines some important areas to put in place before
starting, principles to guide the planning process and suggestions for finding
additional value.

Introduction

Terminology

One of the first sources of confusion in strategic planning arises due to the definition
of terms (or lack thereof). The terms used in this paper are based on Ken Lane’s
cut-off grade optimisation work (Lane 1964, 1988), which was based on Richard
Bellman foundational dynamic programming methodology (Bellman 1957). Over
the last ten years of working with major mining projects and feasibility studies, I have
found these definitions useful and applicable in mining and other industries. Mining
projects have many choices and therefore many decisions to make. A specific
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decision that is made in every period is grouped and called a policy. For example, an
open pit copper mine may have a decision on mill cut-off grade to be made in every
period. When the same decision is made at every time period, the result is a constant
policy. Typically, different decisions are made over time, in which case a variable
policy is formed. Other operating policies that may change over time would normally
include how much material is moved from a certain area, SAG mill grind size and
flotation residence time; each needs to be made in every period.

Mining studies must typically determine many different policies during the
project life. A group of policies is referred to as a strategy. For example, mining
policies for a number of pushbacks could be described as a mining strategy. By
combining a number of mining and processing policies, we can arrive at the
strategy for the project, or a strategic plan. A decision, policy or strategy does not
imply any optimisation criteria have been used to define them—it simply defines a
number of decisions. Sadly, in real projects, many ‘strategic’ plans also have very
little optimisation applied. In order to ‘optimise’ a decision (or policy or strategy),
we need to have an objective or objective function. The objective will be discussed
later in this paper, but for now, let’s assume it is some definition of shareholder
value. An optimisation process is a way of making decisions to achieve the project
objective. For example, a cut-off grade optimisation process will optimise the
cut-off grade policy so that the Net Present Value (objective function) is maximised.

There is a subtle distinction between optimising and maximising. Decisions,
policies and strategies are optimised (not maximised), Net Present Value (NPV),
cash flow or value is maximised (not optimised). If one were to maximise the cut-off
grade (to an extreme), then no ore would be sent to the mill and the maximum NPV
is unlikely to be achieved. On occasion, maximising a policy may also maximise the
objective—it is better to use the right terminology and sound like an expert!

The focus of this paper will be to utilise optimised strategies to create optimised
strategic plans. Given that all strategies discussed in this paper will refer to optimal
mining plans, a Strategic Plan in this paper is defined as the process of making a
number of operating decisions over the project life, to achieve the project objective.
There is clearly a need in the industry to standardise our terminology and develop
an optimal mining practice for the community. Ideally, this will be a collaborative
effort between mining companies and the service companies that support them.
These groups need to span the industry, to help reduce the misunderstanding that
often leads to poor exploitation of the earth’s finite resources (King 2008). The
paper demonstrates these principles using open pit metalliferous projects, although
these are actually generic principles that are appropriately applied to coal, iron ore,
diamonds, bauxite, gold and also many non-mining projects.

Objectives

The first issue that needs to be clarified at the start of a planning exercise is the work
objective. Although there would appear to be a clear and simple answer to the
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objective, the reality is often blurred by conflicting instructions. Maximising
shareholder value is normally the objective of large and small mining companies
(and non-mining companies). This objective is clarified by the major mining houses
as maximising the NPV, subject to a number of constraints such as safety and good
stewardship of the environment:

• NPV is a sound basis for evaluating companies outside of the mining world. For
example, stock market analysts will often value the share price for a company
(in any industry) by calculating the NPV of all of the company assets, then
dividing it by the number of shares issued (Brealey and Myers 2000). NPV
includes a balanced valuation of short- term value (which receives very little
discounting) and long- term value (which receives greater discounting), making
it an appropriate instrument for the commercial valuation of most businesses.
The main difficulties reported with valuing a project based on NPV include
uncertain information and Net Present Value versus present value.

• With regards to uncertain information, typically there is substantial uncertainty
in key drivers of the NPV including prices, costs, reserves and productivities.
For example, price is normally a huge driver of value, and financial analysts
recognise that price is related to supply and demand. Theoretically, as different
strategies are evaluated with different quantities of metal produced, the prices
could change for each case. The complexity does not stop here—the price is
dependent on the supply from competitors, which would require an analysis of
what they are doing as well. If this is not complex enough, the price is also
dependent on the demand for end products. This means that a comprehensive
estimate of price also requires analysis of what competitors and customers are
planning. A risk/reward analysis would normally indicate that a comprehensive
competitor/customer analysis is not valuable. Although specific aspects of risk
are often incorporated using sensitivity studies of targeted issues, there is a still
substantial development required to turn this analysis into useful decision
making tools for the mining industry. Option value, and the ability to use
variability to add value and control risk, is regularly missing from project val-
uation analysis. Advances in mathematical formulation and simulation
methodologies can reveal a more complete understanding of project value.
Incorporation of uncertainty and risk needs to become common place in the
industry for fair valuation between investment alternatives.

The effort required to truly calculate a ‘Net’ Present Value means that often
important components are ignored and a present value is used instead. Key aspects
such as period costs, expansion capital, sustaining capital and closure costs are not
able to be incorporated in some optimisation algorithms. Ignoring such issues or
modelling them inadequately means that the results are crude, and value destroying
decisions can be made.

While both of these difficulties appear to limit the suitability of using NPV to
value a project or different scenarios within a project, NPV still remains at the heart
of project valuations and is normally superior to the other financial instruments such
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as internal rate of return, payback period and simple cash flows. Care should be
taken when using other measurements to approximate the value of a project. People
not aware of NPVs balancing of short- and long-term cash flows may be presented
with some of the following alternatives for the planning objectives:

• product quantity—especially in the budgeting period (e.g. gold or copper pro-
duced in the first three to five years,

• mineral resources or reserves (especially stated to the stock market),
• smooth production schedules (e.g. constant material movement and constant

grades for processing),
• minimising costs or maximising short-term cash flow, and
• maximising employment.

Using the above alternatives for the objective will normally result in a different
plan than the one created by maximising NPV and so will have a lower NPV. Take
the objective of maximising cash flow as an example. Waste stripping incurs
substantial costs that reduce the cash flow. If waste stripping is suspended, cash
flow for the first few years may be improved. Eventually, there will be no ore
available to process, the mill capacity will not be utilised, and the cash flows (and
NPV) rapidly fall. The NPV can be used to balance the early costs of waste
stripping with the benefit of having the mill capacity continuously utilised. All
aspects of mining and downstream processing that involve costs or revenue are
captured directly in the objective function (NPV). The better our estimates of these
costs and revenues, the better our estimates of NPV, which will in turn help bring
value to shareholders.

Constraints

If an aspect of the project does not have a cost or revenue it will not directly be
added to the project NPV, hence the inevitable constraints that must be considered.
There are many issues to be considered in strategic planning that are not captured
directly in the objective function. Safety and environmental care are two priorities
of modern responsible mining that have important issues that are not always evident
in cost or revenue. These and many more issues are captured in the optimisation
process as constraints to bound the schedules that are considered valid, and are
known as the feasible solutions. Many processes have a combination of costs,
revenue and constraints. The safe operation of a mine or processing plant will
involve additional cost components and constraints on how the activities can be
undertaken. Typically the constraints will involve restrictions in productivity rates.
Good environmental stewardship may involve continual ground rehabilitation and
water treatment costs—it may also require some constraints such as tailings dam or
waste dump footprints. Some care is needed to make sure a cost is not mistakenly
implemented as a constraint.
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Creating ‘unconstrained’ schedules may be of some temporary benefit to
understand the value drivers for a project, but be wary of releasing such plans to a
wider audience as it may generate unrealistic expectations. For example, when
considering the size of a process plant expansion, the mining rates may initially be
left unconstrained. This unconstrained case may be used to get the maximum size of
the truck and shovel fleets. However, the best process plant capacity, when
unconstrained, may not be the best process plant capacity when constrained. The
unconstrained cases would tend to over-expand the mill capacity since it does not
consider the purchase costs for the mining equipment. These ‘unconstrained’
schedules and their ‘imaginary’ values are not achievable and so would only be
used for finding the boundaries for analysis.

Plan the Planning

There could well be only one chance to determine the best value of a project, then
acquisition, disposal or operation. Time, staff, consultants, computing power and
budgets are all limited resources that need to be used wisely. Much like the opti-
misation process we apply to a project, we need to identify the resources needed for
some analysis and make sure that key people and support is available during the
study. Experience suggests that very few people have been exposed to this field of
the business, and so the need for training before the study is necessary, as well as
support for when things do not simply fall into place. One of the problems with
using inexperienced people is that they often do not know when additional value is
possible from a project. The new planner can make assumptions that are not easily
seen in the resulting schedules and so may not be picked up by management or peer
review.

The unrealised value ‘left on the table’ by inexperienced analysis can easily be
several percentage points of the NPV, and for large multi-billion dollar projects
these are substantial values. It is therefore essential to have the best people working
on these projects and have them reviewed by strategic planning specialists (internal
and/or consultants). Real world strategic planning is normally constrained by time.
The time spent designing a model, collecting and validating inputs, building the
model, running cases, analysing the cases and then presenting the results, these
activities consume precious and finite time resources. Experience would suggest
that gathering and validating inputs often increases as input data is collected and
checked. Using available information such as budget costs might initially appear to
rapidly provide optimisation inputs, but they may need to be substantially re-
categorised into fixed and variable components for strategic planning purposes.
A planned work program will have a contingency for some unforseen data col-
lection issues and changes in direction due to initial analysis. Typically, a Strategic
Planning Work Program would have the components in Table 1.

For new greenfield or acquisition projects, approximately half the available time
is typically used to collect appropriate data, validate it and get it into the appropriate
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format for use by the planning software. Once a model is validated, a new
expansion study, or the incorporation of additional reserves, requires much less data
validation and the emphasis shifts to the analysis of results. Several of the tasks in
Table 1 are done in parallel due to the iterative nature of the planning process. Note
that Table 1 does not include the training time to ensure people understand what to
do in each of the phases.

Given how long data validation and analysis takes, it is critical to plan a realistic
scope. ‘Dry run’ strategic planning exercises can help identify training require-
ments, holes in data requirements, streamline data acquisition and align scope
expectations. There are typically too many options to evaluate and not enough time,
so the planned activity should focus on identifying the highest value controllable
drivers. For example, although blasthole initiation systems may be expensive and
have room for reduction, they may not be as important to consider as shovel
productivity as a driver of project value. Some value drivers may not be control-
lable, such as taxation, statutory compliance fees, award wages, cost of power and
possibly even the commodity price. Although these uncontrollable drivers are fixed
in the analysis, they should be considered in the NPV calculations, since they may
influence decisions.

Simplifying Assumptions

Large mineral resources may take many years or even decades to fully exploit and
have more decisions to make than there are electrons in the universe (approximately
1079). The currently available algorithms for mine design, scheduling and pro-
cessing require simplifying assumptions to find a solution and substantial compu-
tational power to do any sort of partial optimisation. For example, the
Lerchs-Grossman (LG) algorithm, used in finding ultimate pit limits (Lerchs and
Grossmann 1965)—fundamentally, this algorithm uses the assumption that we
know the value of every block in a model. This is somewhat difficult when we do
not know when the block is to be mined, what the price will be at that time, what
other blocks are being mined with this one, what processes are available or whether
the ideal process will have capacity for the block. This is a simplification in order to
estimate the shape of the mine when completely mined.

Table 1 Summary of typical strategic planning effort

Tasks New model (%) Existing model (%)

Scoping and understanding the existing project 10 10

Gathering, validating and transforming data 50 20

Model building 10 10

Running scenarios and analysing the results 20 50

Reporting on results 10 10
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If the value is dependent on time or capacity-related issues, then this casts doubts
as to just how ‘optimal’ the LG results are. This is not to say that the algorithms
cannot be used to guide the best location of the ultimate pit limits, it must however
be taken into account when interpreting the results. Phrases with ‘optimise’ and
‘plans’ should be regarded with a healthy scepticism—we should also realise that
we can rarely claim to have the optimum plan, rather something closer to the
highest value plan we could deliver in the time allowed. The algorithms underlying
all currently available software tools have limitations due to their assumptions—
skilled engineers are able to use them appropriately in spite of these limitations.
Some other simplifications typically made in strategic planning include:

• mineral resource estimates accurately reflecting what mining and processing will
deliver;

• annual equipment productivity, utilisation and availability estimates;
• predictable costs and prices over the life of the project; and
• pretax and post-tax optimisation leading to the same decisions.

For annual plans that cover the entire life of a major mineral resource, we will
not typically model individual salaries, weekly maintenance schedules, shovel
loading configurations or the extra day that occurs in leap years. We must draw the
distinction between different planning time frames (real time, shift, weekly,
monthly, quarterly and annual) and the appropriate level of detail for the analysis.

As a general procedure, it is advisable to start off with a simple model of the
entire project, then add complexity if required. Once you have a simple model it
can be used and its results analysed. When a component of the cash flow calculation
is found to be poorly approximating the real value, it can be modelled in greater
detail. For example, an initial model of a mine may start with the simple mining
cost per mass of material moved. This model then may be broken down into
components and their drivers, such as drilling ($/t), blasting ($/t), loading ($/m3)
and hauling ($/truck_operating_hour). The haulage component may require further
detail by modelling the source elevation, destination of the material and the height
of the dumps and so on. The objective is to arrive at a good estimate of the NPV for
several different alternatives. If a simple model provides a good estimate, then there
is no need to pursue a complex model. Another advantage of this approach is that
some analysis can be done quickly into the project—this may enable the project
scope to be tailored to the value drivers as they are better quantified. It is often
surprising how simple models can estimate value so accurately and drive the
decision process appropriately.

Knowledge and Understanding—Keys for Discovering Value

This section of the paper aims to point people in directions to find more value for
their projects. It appears that no one person or company has exclusive access to
value creating ideas. It is my conviction that many high value ideas will flow
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through people who intimately understand a project, not just through the industry
expert who comes in for a three day review. A sound knowledge of the project,
value drivers and optimisation assumptions are all important to unlocking greater
value from a mining project. The variety of geological resources, mining methods
and philosophies employed at major projects around the globe mean that value
discovered in one project may not be found in another. The following suggestions
are general areas that are regularly neglected and so may be sources of additional
value.

Project Optimisation

Of all the optimisation analysis that is undertaken in geology, mining, processing
and marketing, it seems that very little analysis spans all of these disciplines.
Although the same detail cannot be applied for global project analysis as can be
applied to detailed component analysis, we need to start with the big picture to
make most effective use of our finite resources (such as time, people and budgets).
The project analysis allows for determination of where the most important value
drivers are, allowing prioritising of analysis effort. The project optimisation can also
provide context and scope for a more detailed analysis.

Working Out of Your Discipline

Concentrated and isolated analysis within geology, mining, processing, environ-
mental, marketing and financial can easily develop silos of knowledge and
understanding. While this may start at university and a natural affinity with one’s
discipline, it is essential for project optimisation that some people come to
understand the whole project. Many fields are interrelated—for example, problems
in the processing plant could well stem from fundamentally different geological ore
genesis. The cut-off grade of material mined has substantial implications on pro-
cessing and marketing parameters.

Multidisciplinary Teams

Major mining projects are well beyond the technical skills of any one individual.
Creating teams to look for value has often led to unrealised value. The quantity of
information to be absorbed and translated often works well with a multidisciplinary
team. Teams would normally include geology, mining, processing, environ- mental
and financial members and it is essential that some of the team members should also
have a strong optimisation capability. Well-run teams can encourage innovation and
building on each other’s ideas—they are also often able to quickly discard options
unlikely to add value.
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Removing Constraints

Because constraints place substantial limits on the value of a project, what is the
value of removing these constraints? The concept of de-bottlenecking or using
constraints theory may be used, as long as it is in conjunction with value analysis
and not just for gaining additional capacity. If the primary crusher is a major
bottleneck, would the value obtained by adding capacity cover the new capacity?

Constraints or Targets

The direction of a project can easily take on the preconceived ideas of an influential
manager. Creating smooth ore-grade profiles has a cost to the mine—what is the
value implication if the processing plant accepted more variability? Marketing
‘constraints’ may be little more than market predictions; are these creating ceilings
on increasing the value of a project? Many of these issues are quickly identified by
multidisciplinary teams.

Full Value Focus

Focus on the corporate objective of what adds value, even if that does not suit some
parties. Utilise the whole of the resource rather than just the first 20 to 30 years (it
will help demonstrate the value of expansions). Making an open pit bigger should
be considered in the light of the alternate underground options. How can the project
realise the greatest value from one of these options? Don’t just use average
quantities—know the value of:

• a truck of ore,
• a hole of explosives,
• a conveyor belt,
• SAG steel balls, and
• acid and wheel motors.

The more people understand the value, the more they are likely to make
appropriate value based decisions. Break-even cut-off grade costs calculations for
reclaiming stockpiles are presented in an appendix of this paper to illustrate the
need and value of understanding optimisation assumptions.

Conclusions

This paper has provided guidance to help strategic planning engineers to fully and
profitably exploit the resources in their care. Shareholder value within a constraint
framework is normally the objective for optimal mine plans—the key is to not get
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so distracted by details that focus is lost on what really adds value. These are finite
resources that we normally only get one chance to exploit—let’s make the most of
them while achieving the best value for shareholders.

Appendix—Applying Break-Even Cut-off Grades

The following example has been presented to show how care must be exercised
when determining what costs should be included in calculating operational cut-off
grades. This example highlights a number of scenarios involving reclaim from
stockpiles and which costs should be included in each case. Consider the costs that
are used to calculate a mill cut-off grade—should the mining (drill, blast, load and
haul) and G&A (General & Administration, $/year) type costs be included for
material going to or coming from a stockpile?

First, take the example of a project that is ‘mine constrained’—the project is
struggling to use the processing capacity due to mining capacity restrictions (truck
or shovel capacity, sinking rates, etc.). This will typically occur at the beginning of
a project when the high value material is only located at depth. It also may occur
after mining one high grade area before the next high grade area is available. Even
when using all the mining equipment, there may not be sufficient high grade ore to
fill the mill capacity.

What is the minimum grade that can be sent for processing? The question can
easily be answered by considering the two options possible for a region of ground:

1. What is the value of sending the material to the mill?
2. What is the value of sending the material to waste (Waste value will be a

negative number since all components are negative value costs)?

Since the material is being mined, when the value of sending the material to the
mill is greater than sending it to the waste dumps, it should be processed. Using
variable definitions as used by Lane (1988) where possible, such as the period cost
(f, $/year), processing cost (h, $/t ore), mining cost (m, $/t rock), selling cost (k, $/t
metal), price (p, $/t metal), recovery (y, recovered metal/in situ metal), mining
capacity (M, t rock/year), mass above cut-off grade (x, t ore/t rock) and grade
(g, in situ metal/t rock), the following relationships are clear:

VORE ¼ ðp� kÞ:y.g.x� f/M� h.x�mORE

VWASTE ¼ �f/M�mWASTE

The mining cost of processing material as ore (mORE) could be different to that
when the same material is processed as waste (mWASTE). For example, some
operations will blast the material more coarsely if it is being sent to waste, and the
haulage costs are often different between ore and waste. The mine constrained
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cut-off grade for material mined from the pit (gMP) is determined when
VORE = VWASTE as follows:

gM ¼ h þ mORE �mWASTE

ðp� k):y

Apparent from the derivations and the formula for gM above, the period costs do
not have to be covered in this situation. This observation makes sense when one
considers that the period costs will be incurred irrespective of the destination of the
material. When the ore and waste mining costs are identical, they also drop out of
the calculation and it becomes the same equation that Ken Lane formulated (1988,
page 28). This shows that material mined in a pit will incur mining costs regardless
of its final destination. The decision can simply be made depending on whether the
project makes more money from processing the rock than sending it to the waste
dump. Where a stockpile exists during the same mine constrained period, the
following equation to calculate the mine constrained stockpile break-even cut-off
grade (gMS) simplifies to:

gMS ¼
hþmORE

ðp� kÞ:y

The mORE cost for a stockpile normally only includes the reclaim loading and
haulage costs, since drilling and blasting costs are not necessary. Notice that here
the waste mining cost does not incur any costs since the material can simply be left
on the stockpile. The stockpile re-handling costs must be covered by the processing
revenue in this case. This means that higher grade material would need to be
reclaimed from the stockpile than what could be sent directly from fresh material
mined in the pit. Ore ranking grades need to be updated (such as the cash flow
grades, King 1999) to take this into account as material is moved from the pit into a
stockpile.

A subtle assumption in the above cut-off grade derivations is that the material
will be processed. Let’s consider a stockpile at the end of the project life. If the
material is not processed, it is left on the ground and the project abandoned
(ignoring closure costs and reclamation for the moment). It is also assumed that the
environment is no longer mine constrained, but rather we are processing con-
strained (H, t ore/year), and all the material mined from the stockpile is ore (x = 1).
In this case we consider the following equations:

VORE ¼ ðp� kÞ:y.g� f/M� h�mORE

VWASTE ¼ 0

The stockpile cut-off grade (gs) at the end of the project life is again determined
when VORE = VWASTE as follows:
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gS ¼
hþmORE þ f

H

ðp� kÞ:y

This is an interesting result because now the break-even cut-off grade for pro-
cessing the last material from the mine stockpile must include the mining costs and
also the period costs. If material is added to a stockpile using mine constrained
cut-off grades, then there could be substantial uneconomic material mixed in with
the economic material and it is likely impossible to separate. The situation has more
issues to be considered when the material mined is not at the end of the project life
and an opportunity cost exists. There is an opportunity cost to reflect which material
is required to fill the limited processing capacity, and the timing to access the
remaining material. For a processing constrained stockpile, a formulation of the
opportunity cost defines an economic cut-off grade (gE) as:

gE ¼ hþmORE þ f þF
H

ðp� kÞ:y

In practice, this formulation is very simplistic since it needs to take into account
multiple sequences, several processes, interaction between several ore processing
constraints, revenue from multiple elements and time varying issues. It does show
that there is not one simply universal answer for the inclusion of period and mining
costs in determining what material should be mined from, or deposited to, a
stockpile. By taking the time to understand the project situation and algorithm
assumptions, appropriate material can be sent to stockpiles and reclaimed. Although
opportunity costs or remaining value estimates are implemented in modern cut-off
grade optimisation software tools like Comet (Wooller 2007), they may not find the
additional value without a model constructed to look for this value.
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The Global Optimiser
Works—What Next?

J. Whittle

Abstract The Global Optimiser used by Whittle Consulting has gone through
three major versions to date. The first was based on the Milawa optimisation
algorithm; it worked, but had many shortcomings. The second, known internally as
ProberA, had a different approach to optimisation in that it used a series of random
starting points and found the nearest local NPV maximum to each. It did this a
sufficient number of times to give us some confidence that the best result found was
close to optimal. ProberB was an enhanced version of ProberA, with the ability to
handle a wider range of constraints, particularly with regard to limits on the dif-
ferences in depth between adjacent areas of a pit. ProberB has been used suc-
cessfully for some time now. It has produced excellent Life of Project schedules for
a wide range of very large mining complexes. However, like any piece of software,
it has its limitations. For example, it only copes directly with three steps—mining,
processing, and blending.

It is possible to ‘fool’ the program into handling other steps, but only by using
mental and mathematical gymnastics. This paper reviews the mechanisms behind
the Prober series and describes the plans for the next version—ProberC.

Keywords Global optimisation � Long-term scheduling � Net Present Value

Introduction

For some years now a global optimiser has been used to produce long-term mining
and processing schedules which maximise the Net Present Value (NPV) of the
whole project, taking account of all cash flows including capital expenditure. There
have been three versions of this optimiser, known internally as Z3, ProberA and
ProberB. Further details can be found in Whittle and Whittle (2007) and in Whittle
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(2007). This paper explains the methods used in Prober and describes the plans for
the development of a new optimiser—ProberC.

Modelling

In order to use a computer to optimise any system it is necessary to create a
mathematical model of the system. This model must represent the system as
accurately as possible, but must also be amenable to optimisation. In theory any
mathematical model can be optimised by throwing enough computer power at it.
However, as the size of models increases, some types can get rapidly out of hand.
There are mathematical problems which are quite easy to describe but could not be
fully optimised by using all the computers in the world for a million years.
However, it is sometimes possible to find very good near-optimal solutions to
problems that defy full optimisation. Occasionally this can be done by simplifying
the model, or by using approximate optimisation methods. The Prober approach
uses both these techniques to obtain good, long-term schedules for large mining
complexes. Keep in mind that all models are wrong but some are useful
(Box 1979).

A large mining complex with 20 or more pits with associated processing plants
and infrastructure would defy Life of Project NPV optimisation if modelled in
day-to-day detail. It is therefore necessary to simplify the model to some degree.
The main simplification is to concentrate on long-term scheduling. If a large
expense is delayed by five years, this could have a significant effect on the NPV. If
the same expense is delayed by a week, the effect will be small. Long-term
scheduling decides what will be mined, processed, blended and sold in each year of
the life of the complex. Expenses are delayed and revenues are brought forward,
while meeting all the required constraints. In short-term scheduling, practicality and
convenience are more important than the timing of cash flows. There is also the
consideration that the data required for short-term scheduling differs from that for
long-term scheduling. For long-term scheduling what matters is the total volume of
dirt a truck can move in a year; however, there is no need to consider its detailed
movements.

For Prober, the resource is modelled as a number of ‘sequences’ of ‘panels’, and
the rule is that mining of a panel can’t start until the panel before it in the sequence
has been completely mined. These panels usually represent benches in a push-back,
but can also represent parts of an underground mine that must be accessed in a
particular order. A panel consists of one or more ‘parcels’ of material, each of
which will typically have a material type, a tonnage and a number of grades. If
Prober mines only a fraction of a panel in a particular year, it uses the mathematical
fiction that the same fraction of every parcel in the panel will be mined in that year.
Of course, this is not what will happen in the day-to-day scheduling, but the
necessary adjustments should have little effect on the NPV.
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The main data input to Prober consists of a ‘resource tree’ showing all possible
things that can happen to material after it has been mined. For each parcel, it gives
the alternative processing paths that can be taken (e.g. mill or heap leach). For each
processing path, it gives the products that the outputs from processing can be
blended into, etc. The remainder of the data details cost and price factors which
apply to the whole complex, together with the various operational constraints.
When modelling the constraints on the operation of the complex, it is not necessary
to simplify much at all. Limits can be set on mining and processing throughputs,
which can depend not only on tonnage but on grades or other characteristics (e.g.
how much power or acid is required to process material). Upper and lower limits
can be set for the average grades input to processing and in products, as well as on
the depth separation between sequences.

The Problem of Local Maxima

The aim is to find the mining and processing schedule which gives the highest
NPV. Consider just one sequence and one year with no blending. This might result
in the situation illustrated in Fig. 1. Sequence A has some panels, some of which
are ore and others are waste. As mining proceeds through the ore, the value goes up;
as it proceeds through waste, it goes down. The result in this case is that there are
two peaks. Figure 2 illustrates the same idea for another sequence. Each peak is a
maximum in its own part of the graph, but it is a local maximum. Only one is the
global maximum. Figure 3 shows what happens if the complexity is increased to
two sequences, but still only over one year. Now there are four local maxima. In
practice, with a few dozen pits, blending constraints and many years, there can be
thousands of local maxima. This can be equated to the search for the highest point
in the Himalayas rather than the highest point of Mount Fuji. Merely going uphill
from a random start point will get you to a ‘nearest’ local maximum. It is unlikely to
be the highest point, that is, the global maximum. Because of the multiplicity of

Fig. 1 The total value of
material mined from sequence
A plotted against depth
mined, where some benches
are ore and some are waste.
The two peaks are local
maxima; the left peak is the
global maximum
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local maxima, this is not a linear problem in the sense of linear optimisation—it is a
‘mixed integer’ problem.

Although linear optimisation methods are very fast for large problems, the
introduction of integers—which is necessary to deal with the multiple local maxima
—slows the process down by several orders of magnitude. Indeed, schedules for
very large mining complexes are effectively unobtainable using mixed integer
software.

How the Prober Series of Programs Work

The Prober series of programs break the problem down into a number of smaller
problems which can each be solved quickly using linear optimisation software.
Prober first produces a random feasible mining schedule consisting of a year-end
depth in each sequence for each year in the life of the project. Thus, for 20
sequences and 15 years, there would be 300 depths. This schedule is produced by
using pseudo-random numbers to calculate the depths while taking account of all
the constraints on mining throughput and on depth separation. This fixes the

Fig. 2 The total value of
material mined from
Sequence B plotted against
depth mined, where some
benches are ore and some are
waste. The two peaks are
local maxima; the right peak
is the global maximum

Fig. 3 The total value of
material mined when both
sequence A and Sequence B
are mined to various depths.
There are four peaks. Only the
rear left peak is the global
maximum. This shows just
two sequences and one year.
In real cases with many
sequences and many years,
there can be thousands of
local maxima
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material available for processing in each year. There is no optimisation in this step,
and this is not necessarily a good schedule. Indeed, it is usually very poor, but it is
feasible from a mining point of view, so it gives us a starting point. You can think
of this schedule as a random point on the ground somewhere in the Himalayas.
Given the material made available in each year, it is a straightforward matter to use
standard linear optimisation to determine what to process, blend and sell so as to
maximise the NPV obtainable by processing the material subject to the throughput
constraints.

As explained earlier, the assumption is made, so far as the model is concerned,
that parcels within a panel are all mined in the same proportion. This means that
changes in mining depth within a panel have linear effects on the quantities of
material available for processing and so on. Consequently, in addition to having the
linear optimisation package control what to process, blend and sell, it is possible to
let it control the depths mined, providing that those depths are constrained to stay
within the panel that they started in. The result is the best mining and processing
schedule for a given set of year-end panels. Having obtained such a result, the depth
details suggest changes to the year-end panels. For example, if the year-end panel
for a particular sequence and period is set to three, but the optimisation does not
mine any of Panel 3, the program will change the year-end panel to two and try
again. If the NPV improves, the process is repeated. The program is effectively
going uphill in the NPV landscape, and this process is repeated until a maximum is
reached. This is the nearest local maximum to the initial random feasible schedule.
One of the peaks in the Himalayas has been found.

The Prober series of programs works by repeatedly creating a random feasible
solution and then finding the nearest local maximum. The various NPVs that the
program finds are kept track of, and the run is usually stopped when the top ten
values lie within 0.1% of each other. This does not guarantee optimality, but it does
give confidence that the best results are pretty close. Most projects that we worked
on had a distribution of local maximum NPVs that is pretty flat near the highest

Fig. 4 500 NPVs obtained by moving from 500 random schedules to the nearest local maximum
have been sorted into ascending order of value. The curve is relatively flat at the high end and 11
of the local maxima have NPVs that are within 0.1% of the best
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values as illustrated in Fig. 4, which is from a real case. That is, many different
schedules are found that have NPVs which are very similar to the best. In this case,
11 of the 500 local maxima found are in the top 0.1% and over 200 are in the top
1%. This can be an advantage because it gives managers the opportunity to choose
the schedule that best suits less measurable considerations such as social, political,
environmental and project risk effects. To date, many projects have been success-
fully completed with the current version of Prober (ProberB) and very significant
NPV gains have been made totalling billions of dollars.

ProberC

ProberC uses the same optimisation system but operates on a greatly enhanced data
structure. It can be regarded as a generalisation of ProberB. Grades are expressed as
quantities, so that a grade of 1.2 grams/tonne of gold in a 2000 tonne portion of
material would be expressed as 2400 grams. Thus, a portion of material, be it
run-of-mine or the output from processing, is described by the quantities associated
with it. Any of these quantities can be involved in throughput limits, costs, rev-
enues, etc. In ProberC, everything that is done to material is done by a ‘procedure’.
Mining, processing, smelting, blending, etc. are all procedures. There can be as
many procedures as required and any procedure can provide input to another
procedure, with the restriction that material cannot ‘loop’ through the system and
thus provide input to the procedure that produced it. Thus, there is an arbitrary tree
structure of procedures, starting with a mining procedure and going through as
many steps as required to the point(s) of sale or to waste. This contrasts with
ProberB, which handles only mining, processing and blending for sale. Delivery of
material from a procedure to stockpile, sale, discard or another procedure is much
more explicit in ProberC than ProberB and has its own cost structure. For example,
long distance delivery costs can be handled explicitly rather than having to be
included in the processing cost as in ProberB.

All costs and revenues are calculated as the sum of one or more of three com-
ponents, multiplied by a scaling factor. The components are:

1. a cost or revenue proportional to one or more of the quantities, which describe
the portion of material involved;

2. a cost or revenue proportional to the difference between a grade (ratio between
two quantities) and a base grade multiplied by a third quantity; and

3. a constant attached to each portion of material in the resource tree each time it
can be processed or delivered.

All the factors and base grades in components 1 and 2 can vary independently
with the year. Any number of components of types 1 and 2 can apply. Type 3
components are attached to each portion of material operated on and can be cal-
culated to suit that portion, but are fixed in time. The scaling factor by which the
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sum of these components is multiplied can vary with the year. This system allows
almost any cost or revenue structure to be modelled. Setting up such costs and
revenues might appear somewhat daunting, but it is important to remember that the
data is always set up by a specialist consultant, not the end user. Costs and
throughput limits can be applied to both the inputs and the outputs of procedures.
Despite the great increase in complexity of the processing and cost structures that
can be modelled, the problem steps can each still be handled by a standard linear
optimisation package as in ProberB. ProberC is currently under development and it
is expected to be completed in 2009.

Conclusions

ProberB has established itself as a powerful and flexible tool. ProberC will have the
same power as ProberB, but will handle a much wider range of project and costing
complexity.
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Blasor—Blended Iron Ore Mine Planning
Optimisation at Yandi, Western Australia

P. Stone, G. Froyland, M. Menabde, B. Law, R. Pasyar
and P. H. L. Monkhouse

Abstract A new mine planning optimisation software tool called Blasor has been
developed and implemented at BHP Billiton’s Yandi Joint Venture operation in the
Pilbara. Blasor is specifically configured for designing and optimising the long-term
pit development plan for the multi-pit blended-ore operation at Yandi. It is used for
optimal design of the ultimate pits and the mining phases contained within those
pits. In designing the mining phases, Blasor ensures that all market tonnage, grade
and impurity constraints are observed whilst maximising the nett discounted cash
flow (DCF) of the joint venture operation.

Introduction

In undertaking a life-of-mine development plan for multi-pit blended-ore mining
operations, the mine planner is faced with difficult decisions regarding both the extent
of ultimate pits and the design and precedence of themining phases in each pit. Various
commercially available optimisation tools are capable of determining optimal extrac-
tion sequences for existing blended-ore pit phase designs—for example NPV
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Scheduler, Minemax, ECS Maximiser and Whittle Consulting—but planners are
usually forced to rely on amixture of common sense heuristics and personal experience
to design the ultimate pit boundary and the mining phase polygons, e.g. Dincer and
Peters (2001) and Noronha and Gripp (2001). A typical pit and mining phase design
procedure will require the planner to make arbitrary judgments on in-ground block
value—an assumed cut-off grade decision—and then apply a Lerchs-Grossmann
algorithm to obtain approximate pit and phase boundaries. These types of approaches
become far less tractable when dealing with large multi-pit operations.

The result is that the design of mining phases in blended-ore operations depends
largely upon the expertise and experience of the particular mine planner rather than
being an objective and repeatable procedure. Once the ultimate pits and mining
phases are put in place the flexibility and value attributable to a mining operation
over its lifetime is in many ways constrained—no matter what sophistication is
applied in optimising panel extraction sequences, the consequences of suboptimal
mining phase design can never be overcome.

The mine planning optimisation group within BHP Billiton Technology has
developed a mine planning optimisation software tool called Blasor. The concept of
Blasor is to use an optimal extraction sequence to design the ultimate pits and
mining phases, not the other way around as is the typical approach.

Blasor is specifically designed to optimise the life-of-mine pit development plan
for the eleven pits constituting the Yandi Joint Venture operation. It provides Yandi
mine planners with a strategic planning tool that can be used throughout the mine
life to reconfigure pit development plans as market conditions change. It also
enables the operation to rapidly, accurately and optimally value different future
market scenarios and/or expansion options using forward pit development plans
that are sympathetic to those scenarios and options.

In this paper, we describe the concept and structure of Blasor. The structure of
the optimisation problem and the types of constraints applied are outlined before the
major design steps are discussed in more detail.

Blasor Implementation

Blasor has been developed as a PC based (Windows 2000 or XP) integrated
stand-alone software package that has the following input/output features:

• Block models are supplied as flat ASCII files.
• Optimisation parameters are entered by the planner through a purpose-built

graphical user interface.
• Intermediate data, including all block attributes calculated or assigned by

Blasor, can be rapidly viewed in a dedicated 3D visualisation tool.
• Schedule output data, including full tonnage movement and financials, is

reported via a number of specialised databases automatically generated by
Blasor. A 2D graphical display tool is also provided within the Blasor interface
for rapid display of the schedule data on an area and pit-wise basis.
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Optimisation Parameters and Setup

Blasor’s ultimate objectives are to determine the boundaries of the ultimate pits and
the best phase designs for those pits so as to maximise the DCF over the life of the
operation. In doing so, Blasor uses the commercially available CPLEX
mixed-integer linear programming (MILP) optimisation engine from ILOG Inc to
determine the optimal extraction sequence contingent upon a number of constraints
being strictly observed.

The parameters Blasor uses to constrain the optimisation of the multi-pit
development plans are:

• the constraints imposed by practical mining—respecting maximum slopes and
mining rates;

• capacity of the downstream supply chain infrastructure; and
• market tonnage, blended ore quality and grade constraints.

A complete list of the constraints applied in the optimisation is given in Table 1.
Other limits to the optimisation model of the real operation are:

• Initial stockpiles are allowed (one for each area). No strategic stockpiling
capability is allowed throughout the mine life. Blasor attempts to find an
extraction sequence that avoids stockpiling between years.

• No material in the pits is designated as waste a priori—the optimiser makes the
decision as to how to best blend the material extracted from the pits to make
marketable ore. Only blended ore that meets all market grade and quality
constraints can have a positive revenue attributed to its extraction.

Table 1 Constraints applied in optimisation

Constraint class Constraint

Mining Maximum slope angles enforced at the selective mining unit block size
level

Maximum mining rate for the operation, each mining area and each pit
(variable per annum)

Earliest start year for pits

Smooth mining constraint—large jumps in operation mining rate can only
occur after a prescribed duration of near constant mining rate

Maximum sinking rate (benches/year)

Transport Maximum conveying rate for multiple transport paths (variable per
annum)

Crushing and
screening

Maximum crusher capacity for mining areas and pits (variable per
annum)

Market Target tonnages for fines and lump product individually (variable per
annum)

Maximum and minimum per cent Fe for fines and lump product (variable
per annum)

Maximum and minimum % SiO2, % Al2O3, % P, % Mn and % S for
fines and lump product (variable per annum)
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• Mining and transport costs are attributed to each block—according to their
position in the pit different blocks will have different mining and transport costs.

• All material in the pits is allocated a bin number. Material may be assigned to
bins on the basis of any combination of grade and impurity dimensions.

• Within each bin of an AGG (an ‘AGG’ is an aggregation of blocks), the material
is assumed to be of homogeneous quality. The optimiser may extract any pro-
portion of an AGG in any year, contingent on other constraints being obeyed.

• The extraction precedence of each AGG is determined by the extraction
precedence of its constituent blocks. No part of any AGG may be extracted
before all its precedent AGGs have been totally extracted. The rules of prece-
dence are simply that if a block lies above another block (precisely if its centroid
lies within the ‘cone’ transcribed by the maximum slope line for the underlying
block), then the overlying block must be extracted before the underlying block.

• Prices for both fines and lump material may be specified to change from year to
year.

• All net cash flows are discounted at an appropriate rate.
• The optimisation objective is to find an extraction sequence that obeys all

constraints explicitly and results in a maximum nett discounted cash flow.
• The optimisation is global, over the full life-of-mine.

Blasor Optimisation Procedure

The Blasor optimisation procedure is summarised in Fig. 1, illustrating the major
steps:

• aggregation of blocks including binning,
• calculation of optimal extraction sequence and ultimate pit limits,
• mining phase design, and
• valuation of the optimal panel extraction sequence.

In the following section, we describe each step of this procedure in more detail.

Aggregation

For the large block models encountered at Yandi (containing >100 000 blocks), it is
necessary to aggregate blocks before they can be tractably scheduled using any
linear programming approach. To provide the optimiser with valuable selectivity,
binning is used to allow blocks of similar quality to be extracted together by the
optimiser. A common method used to aggregate blocks is to re-block the model into
a larger block size—this is not the method used in Blasor. The aggregation method
used is a proprietary fuzzy clustering algorithm that has the following character-
istics, where the term ‘AGG’ is used to refer to an individual aggregation:
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Fig. 1 Blasor pit development optimisation procedure

• blocks that are spatially connected and with similar properties are predisposed to
belong to the same AGG, and

• the AGG boundaries respect the maximum slope constraints encoded in the
selective mining unit block models.

The user may choose to present Blasor with block models that are already cut
back to some nominal ‘ultimate pit’ surface or to allow Blasor to aggregate a larger
volume. Each AGG in the larger volume would be presented to the optimiser as a
candidate for extraction over the life-of-mine.

After this step, each pit is described by a set of AGGs. Each AGG contains
material which is classified in bins. Each bin is allowed to be extracted indepen-
dently of other bins in the same AGG. A set of AGG precedence rules is also
created. These rules, represented as a set of arcs, force the optimiser to extract
material in a valid order.

AGG Extraction Optimisation

This is the vital step in the Blasor design process whereby an optimal AGG
extraction sequence is calculated and the blocks in each pit are assigned a period of
extraction. The scheduled entities are bins within each AGG and the final AGG
extraction sequence will obey all mining, slope precedence, processing and market
constraints. The typical size of this optimisation problem for Yandi is:
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• 1000 AGGs in total from 11 pits, each AGG containing five bins; and
• 20 time periods over the life-of-mine.

A problem of this size will take between six and ten hours to converge within a
0.5% bound of optimality using the CPLEX MILP engine running on a powerful
laptop computer. This optimisation also provides an estimate of the AGG extraction
sequence life-of-mine discounted cash flow, which can be used as a benchmark for
the DCF of the panel extraction schedule (see below) in assessing the practical
optimality of the mining phase design step.

Mining Phase Design

The mining phase design is performed individually on each pit in the operation. The
design procedure uses a proprietary algorithm, which uses the ‘period of extraction’
block attribute to prioritise the phases within each pit. Some user input is required
to assist the algorithm in designing mineable phases—so-called ‘rat-holing’ can be
controlled or overcome through the judicious selection of phase design parameters.
Because this step cannot be completely automated, a tool is provided which allows
the planner to make practical modifications to the automatically generated mining
phases. The interface that allows manual modification of phase designs in Blasor is
shown in Fig. 2.

Fig. 2 Interface for the manual phase adjustment tool in blasor
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Panel Extraction Optimisation

Having designed the mining phases for each pit, the planner then uses Blasor to
generate the panel attributes (where a ‘panel’ is the intersection of a mining phase
and a bench). Panels are represented in the same way as AGGs—via tonnes of all
attributes in each bin. The optimal panel extraction sequence is calculated in the
same way as for the AGG extraction sequence and uses the same mining, pro-
cessing and marketing constraints. The final optimal sequence provides the user
with a direct estimate of the DCF over the life-of-mine. For the Yandi operation, the
optimal panel extraction sequence DCF is usually very close to the optimal AGG
extraction sequence DCF, showing that the Blasor phase design process is efficient
at preserving the value of the mining operation despite the inevitable compromises
that must be made in constructing mineable phases.

The panel extraction optimisation process requires a similar processing time as
the AGG extraction sequence optimisation, the final result being an attribution of
period of extraction for each block in each pit. An example of the block extraction
sequence, illustrated as a colour-coded period of extraction section through the
centre line of a single pit, is shown in Fig. 3.

Conclusion

Blasor provides an efficient and integrated long-term pit development planning and
evaluation tool for the Yandi Joint Venture operation. It enables mine planners to
design ultimate pits and mining phases that are based upon a globally optimal
multi-pit life-of-mine extraction sequence and then to generate an optimal panel
extraction sequence from which the practically realisible maximum DCF for the
operation can be reliably estimated.

Fig. 3 Optimal period of extraction according to blasor panel schedule
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Roadblocks to the Evaluation of Ore
Reserves—The Simulation Overpass
and Putting More Geology into Numerical
Models of Deposits

A. G. Journel

Abstract Many factors including data scarcity, volume support effects, informa-
tion effect, accessibility and pervasive uncertainty, make the early prediction of
recoverable reserves a challenge that cannot be addressed by mere estimation or
interpolation algorithms. There is the illusion that as long as one uses the ‘best’
estimation algorithm based on quality data and sound geological interpretation, one
would provide the best possible evaluation.

Introduction

Many factors including data scarcity, volume support effects, information effect,
accessibility and pervasive uncertainty, make the early prediction of recoverable
reserves a challenge that cannot be addressed by mere estimation or interpolation
algorithms. There is the illusion that as long as one uses the ‘best’ estimation
algorithm based on quality data and sound geological interpretation, one would
provide the best possible evaluation. Unfortunately, a set of locally accurate (‘as
best as they can be’) estimated values does not generally make for a good, or even
an unbiased base on which to assess future recoverable reserves. The dichotomy
between local accuracy and global representation is at the source of many argu-
ments and severe prediction errors. A discussion on the various factors affecting the
reliability of reserves prediction may help in focusing efforts on what matters,
marking common pitfalls, then stress what must be done, such as building into the
deposit numerical models geological interpretation beyond mere variogram models.
It is suggested that the essential components of a mining operation could be sim-
ulated from such numerical models, like the performance of the wings of a future
plane is simulated in a wind tunnel.
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Local Versus Global Accuracy

The illusion that a sound estimation algorithm suffices for ore reserves evaluation
comes from the lack of understanding of the trade-offs involved when defining the
goodness criterion of any estimator. No estimation algorithm, unless trivially based
on exhaustive accurate data, can be good for all purposes. Most estimation algo-
rithms, and kriging is no exception, aim at local accuracy, that is providing an
estimate z*(ui) as close as possible to the true and unknown value z(ui), irrespective
of its relation with any other estimated value z*(uj), j 6¼ i. The attribute z could be
any variable, say the mineral content of a given volume centred at a location of
coordinates vector ui. Local accuracy would suffice if the estimation was so good as
to allow the approximation: z*(ui) � z(ui) and z

*(uj) � z(uj), in which case the pair
of estimated values {z*(ui), z

*(uj)} would reflect the continuity in space of the true
values {z(ui), z(uj)}. Or, more generally, the estimated map would reflect accurately
the true patterns of spatial continuity. Unfortunately, the data available at the time
of mine planning and reserves prediction are never sufficient to assume that the map
of estimated values accurately reflects the spatial variance of the true values. This is
the well known smoothing effect of estimation, a smoothing effect made worse by
being non-stationary. This effect is minimal next to the data locations, maximal
away from the data and may create patterns that are artefacts of the drill hole
locations. An example of a potentially misleading effect on mine planning of
otherwise locally accurate orebody models is shown in Dimitrakopoulos et al.
(2002).

What makes a mine feasible is not only the tonnage of potential payable ore but
also how that potential is distributed in space, allowing economical recovery.
Hence, a correct assessment of the actual spatial distribution of grades and relevant
morphological properties of the deposit is critical, more critical than local accuracy.
Local accuracy is critical only at the time of selection, when the mine is already
operating. In addition, that selection is typically performed from different data not
available at the time of reserves prediction. Thus, for recoverable reserves esti-
mation, one should trade, or at least balance, the local accuracy criterion for a
criterion ensuring accurate depiction of the patterns of heterogeneities prevailing
over the actual study area, whether that area is the entire deposit, a bench or a
mining panel, within which selective mining will take place. In geostatistics, the
traditional measure of spatial variability is the variogram model c(ui−uj). Thus, we
should require that the estimated values reproduce that model; the qualifier ‘sim-
ulated’ is then used instead of ‘estimated’. In advanced geostatistics, we aim at
reproducing patterns of heterogeneities involving multiple locations at a time, as
opposed to reproducing a mere variogram, the latter being but a two-point (ui, uj)
statistic. The name multiple-point (mp) geostatistics is therefore given to that
advance, see Appendix and Strebelle (2002).

Stochastic simulation trades poorer local accuracy for a better global or ‘struc-
tural’ accuracy as defined by a prior model of spatial variability, whether that model
is limited to a histogram plus a variogram as in traditional geostatistics, or that
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model is given as a training image as in mp geostatistics. In the presence of limited
data, it is suggested to forfeit any attempt at locating precisely each ore block or
Selective Mining Unit (SMU). Instead, one should aim at providing a spatial rep-
resentation of the grades distribution that mimics the spatial patterns of the true
grades, those patterns that may affect the mine plan and recovery. Since stochastic
simulation trades off local accuracy, any one of the simulated patterns is likely,
though probably not at its true location. Hence simulation should provide many
alternative representations or realisations of that spatial distribution, all consistent
with the few local data available. No result taken from any single simulated real-
isation should be used as a local estimate. By definition, results should be collected
from multiple simulated realisations, that is, a distribution of results should be
provided. A single simulated realisation should not be used, in lieu of say a kriging
map, for any local decision; yet a set of simulated realisations could replace that
kriging map for such a local decision, which then leads to a probabilistic decision
(Srivastava 1987).

Although it is unreasonable, from sparse data, to try locating and hence esti-
mating any single recoverable SMU, estimation of large panels or homogeneous
zones can be attempted because one could capitalise on the averaging of errors over
large volumes. However, within-panel or within-zone recovery should be approa-
ched through simulation of the spatial patterns of grades distribution within each
panel or zone. No localisation of the within-panel recovery is yet possible, nor is
such detail needed for mine planning.

Data Scarcity

In a simulation approach data are needed for two purposes:

1. delineation of homogeneous mineralisaton zones, each defined such that its
grade distribution could be characterised by a stationary model, typically limited
to a histogram and variogram, or better by a training image that includes the two
previous statistics; and

2. rough localisation of ore patches within the previous zones.

The data required for the first purpose does not need to all come from drilling;
they can be structural and interpretative in nature. The delineation of homogeneous
zones is typically guided from geological interpretation, possibly borrowing
structural information from outcrops or similar formations mined elsewhere. In
modern geostatistics, multiple-point statistics can include information beyond the
variogram by borrowing from geological drawings (training images), the patterns of
grade variability deemed to prevail in the actual deposit. In the presence of
uncertainty about the style of variability, alternative training images can be con-
sidered, each leading to a possibly different recovery of the same global tonnage.
This is tantamount to varying the variogram model.
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Each simulated realisation is then anchored to whatever local data are available.
However, here a shortage of data is less consequential because no local accuracy is
required, nor should any single simulated result be used as a local estimate.

The Volume Support Effect

Future mining selection will operate on selective mining units whose geometry and
volume support may vary considerably. The volumes are typically beyond the
resolution of the data available at the time of mine planning and reserves estimation.
Within each large homogeneous zone, a histogram of SMU grades is needed to
evaluate the proportion of such SMUs that could be recovered as ore. However, that
histogram cannot be built from estimated SMU grades because of the smoothing
effect of estimation. The solution is not to attempt an awkward analytical correction
of the histogram of estimated values, but to simulate the grade distribution at the
quasi-point support volume of the data composite used. These simulated point
values can then be averaged into simulated grades for SMUs of possibly different
sizes, then the selection process can be simulated on the spatial distribution and
histogram of the simulated SMU grades. Sensitivity of ore recovery to SMU size
and more generally to the mine selection process can then be easily performed. The
utilisation of a common quasi-point support realisation ensures consistency of all
results, no matter which SMU size is chosen.

The Information Effect

Possibly the most important contribution of the simulation approach is the
assessment of the impact of misclassification on recovery. No present
estimation-based geostatistical approach, whether by indicator kriging or uniform
conditioning, offers that flexibility. Selective mining calls for small SMUs of
varying support volumes, far below the resolution of the data available at the time
of mine planning. Indeed, SMUs will be sorted on their ultimate estimated values
based on future data not yet available, but it is the corresponding true grades that are
sent to the mill and contribute to actual recovery. Misclassification is an
unavoidable and often critical aspect of any selective mining; its rigorous evaluation
cannot be ducked.

One can simulate the future selection data, for example blasthole data, together
with the SMU grades zv

(s) from the point-support simulated grade realization z(s),
The simulated blasthole date are then combined into “simulated future” SMU
estimated values zv

(s) *, The superscript (s) stands for simulated, a star * is added for
estimated, and subscript v represents the SMU support volume. Availability of the
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simulated pairs {zv
(s)(u), zv

(s)*(u)}, true SMU grade and selection estimate, at any
location u, allows an assessment of the impact of misclassification. Again, sensi-
tivity analysis to various aspects of that information effect can be easily performed,
say the type and density of the future data available for ore/waste selection, the
geometry of the mine dig lines, etc. Consistency of the various results is ensured by
the common quasi-point support of any one of the simulated base realisations.

A lot of heat in the debate about the cause and remediation for ‘conditional bias’
would be reduced if the information effect was better understood. Any set of
estimates, kriging being no exception, is conditionally biased if used to predict a
recovery that is performed on another set of estimates. What is needed is the joint
distribution of the actual selection estimates versus the true values, these are yet
unknown but can be simulated and were previously denoted as {z (s)(u), z (s)*(u)}.
Improving the kriging procedure, say by culling some data or increasing the search
neighbourhood, or designing yet another estimator, say through indicator or dis-
junctive kriging, would not solve the problem.

Accessibility

There is rarely, if ever, free selection: the economic worth of a block in situ depends
not only on its metal content but also on the cost of accessing it and then mining it,
the total cost involved being shared with other neighbouring blocks. The decision to
mine a block as ore or waste depends on the mine plan, which itself depends on the
estimated grades at the time of selection. Estimation of recoverable reserves and
mine planning are closely related endeavours that call for a difficult optimisation
problem.

Unfortunately, with some notable exceptions (Godoy and Dimitrakopoulos
2004), that optimisation is rarely fully addressed. Instead, and too often, mine plan
and design are based on rough, large-scale estimates of grade distributions, with
little or no account for the impact of the smoothing effect and future misclassifi-
cation. Fortunately, such large-scale estimates are not significantly affected by the
smoothing effect if based on sound prior geological zoning. As for the impact of
future misclassification, it usually is dealt with through dilution factors.

I suggest that simulated realisations of both the distributions of mineral zones
and their mineral grades could provide the data bases necessary for testing and
fine-tuning alternative mining scenarios, accounting for the all-important support
and information effect. There will come a time when mine planning will reach the
level of rigour and scientific repeatability of the design of a new aircraft. At that
time, simulated numerical models of the distribution of grades and rock properties
will be needed, and once again global or structural accuracy of the model will
prevail over its local accuracy; that is, stochastic simulation will prevail over
estimation.
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Uncertainty Assessment

Evaluation of recovered reserves from early development data, not the data used for
actual selection, is an extremely challenging task fraught with uncertainty at each
step. Not only should it be ensured that all known biases are avoided, but a final
assessment of uncertainty about the reserves figures should be provided. It is clear
that such uncertainty assessment is beyond any estimation or combined kriging
variance, because:

1. Kriging variances are independent of the data values; they are no different
whether the SMU is selected as ore or sent to the waste.

2. A variance does not suffice to characterise a distribution unless an arbitrary, and
here inappropriate, Gaussian-related distribution is assumed. Simulation
approaches can, however, provide this uncertainty assessment.

Conclusion

There is no practical alternative to a simulation approach if critical biases are to be
avoided and if the uncertainty about global reserves figures is to be assessed. The
paradigm is simple, but its application is difficult. One generates alternative data
sets, called simulated realisations, on which the process of imperfect selection is
simulated. Provided that the simulated realisations mimic reasonably those traits of
the actual grade distribution that most affect the recovery of reserves, and provided
that the simulation of the future selection process and its related misclassification is
possible, a probabilistic distribution (histogram) for the simulated recovery numbers
can be obtained, thus providing a model of uncertainty and confidence intervals.
Note that for both simulation processes (geology and mining) various scenarios can
and should be considered. Given an early and sparse data set, there can be alter-
native geological scenarios/interpretations and many alternative options for the
mining plan.

All previous provisos render the simulation approach extremely demanding, but
correspondingly rewarding, an endeavour that befits the critical importance of
reserves assessment.

Acknowledgements This paper borrows from a recent book co-authored by this author, Journel
and Kyriakidis (2004). Thanks to Roussos Dimitrakopoulos who has been persistent in calling me
back to my mining geostatistics roots.
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Appendix: Putting More Geology into Numerical
Models of Deposits

Most reserves evaluation and mine planning start with a numerical model of the
spatial distribution of the deposit mineral zones. Yet no model is better than the
algorithm from which it is built, the algorithm that relates the data to the unknowns.
Should the estimation or simulation process include explicitly additional structural
information indicated but not included in the data? We suggest that it is that
additional information, beyond the actual drill hole data, which determines the
quality of a mine model, and hence of its reserves forecasts. Local data, particularly
when sparse in an early development stage, are less consequential than the
structural/geological information used to tie them to the unsampled locations.

Research in mineral deposit modelling should focus on developing algorithms
capable of including more geology in the numerical models. Ignoring prior geo-
logical interpretation on grounds that it is uncertain or too subjective is not only
counterproductive, it is also conceptually wrong. Better an inaccurate geology than
an automatic interpolation algorithm, whether geostatistical or not, that replaces all
geology by its own canned universal structure, one that is most often maximum
entropy forbidding geological organisation. Accordingly, the major source of
uncertainty is the geological interpretation.

Recent developments on multiple-point geostatistics have adopted that route
(Strebelle 2002; Remy 2004), replacing the two-point variogram by pattern
statistics lifted directly from prior training images proposed by geologists to rep-
resent their prior concept about facies or rock type geometry and spatial
distribution.

These conceptual geometrical patterns are morphed and anchored to the actual
local data. Only when the architecture of the deposit has been built on sound
geological considerations can grade interpolation or simulation be performed using
the traditional variogram-based algorithms.

An eye opener example

Figure 1 gives images of three different binary facies distributions, say the dark
grey facies represent the high-grade mineralisation. The three images are condi-
tioned to the same 30 sample data shown at the left of the figure. Although the three
facies distributions are clearly different leading possibly to different mining dilution
hence recovery, their exhaustive (indicator) variograms in both EW and NS
directions are about the same. Had those variograms been calculated from the 30
sample data they would be all identical! The point made is that a variogram, and
more generally two-point statistics, does not suffice to characterise complex spatial
patterns.
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These three images are now used as training images for conditional simulation
with an algorithm based on multiple-point (mp) statistics; conditioning is to the
same 30 samples. The results are shown at the top of Fig. 2: mp simulation has
succeeded to distinguish the three types of spatial patterns; as for variogram
reproduction (bottom of Fig. 2) it is as good as, or better than, what would be
provided by any traditional variogram-based simulation algorithm. In mp geo-
statistics, the variogram structural function is replaced by multiple-point spatial
patterns lifted from a training image and anchored to the hard conditioning data.
The challenge for the geologist is to provide such training images corresponding to
their geological interpretation of the data available; alternative geological scenarios
could and should be considered. This challenge is no different from that of inferring
a variogram model.

1 32

same proportion  p = 0.2830 sample values

same variogram

Fig. 1 Widely different patterns, same statistics up to order two
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Quantification of Risk Using Simulation
of the Chain of Mining—Case Study
at Escondida Copper, Chile

S. Khosrowshahi, W. J. Shaw and G. A. Yeates

Abstract Quantification of risk is important to the management team of any
rapidly expanding mining operation. Examples of areas of concern are the likeli-
hood of not achieving project targets, the impact of a planned drilling program on
uncertainty and the change in the risk profile due to a change in the mining
sequence. Recent advances in conditional simulation and the practical use of such
models have provided the opportunity to more fully characterise mineral deposits
and to develop empirical estimates of the recoverable resources and ore reserves.
This allows meaningful quantification of risk (and upside potential) associated with
various components of a mining project. This paper presents an approach referred to
herein as ‘simulation of the chain of mining’ to model the grade control and mining
process. Future grade control sampling, mining selectivity and other issues that
impact on the final recoverable tonnes and grades are incorporated. The application
of this approach to Escondida, a large-scale open pit copper mining operation in
Chile, provided a definitive way to assess the expected risk of a number of alter-
native development strategies on operational performance of the project. This
approach is gaining acceptance as one of the most important steps in developing
short-term mining models. The concepts developed here also have implications for
assessing the ore that will be recovered from ore reserves during mining.
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Introduction

The Escondida open pit copper mine is located 140 km south east of Antofagasta,
Chile. The mine started production in the late 1990s and by 2004 the annual
production reached 82.4 Mton of sulfide ore; generating 1,005,200 ton of copper
concentrate, 152,300 ton of cathode copper, 179,800 oz of gold and 4.5 Moz of
silver. The orebody is a porphyry copper formed by two major stages of sulfide and
one stage of oxide mineralisation. The supergene enrichment blanket of the deposit
is defined by chalcocite and minor covellite with remnant chalcopyrite and pyrite
that reaches a thickness of several hundred metres in places. The largest contributor
of mineralised tonnage in the deposit is an Oligocene porphyritic intrusive hosted
by andesites, combined with less significant hydrothermal and igneous breccias
occurring throughout the deposit.

This study was conducted to assess the risk associated with the use of the
Escondida resource model as a basis for developing mine schedules, forecasts and
budgets of mineable ore. In addition, it was used to define the impact of risk for the
first five years of the Phase IV Expansion and identify the alternative mine
schedules that present less risk. The study was based on the construction of a large
conditional simulation model, covering a significant part of the Escondida copper
mine and the analysis of this model through a ‘transfer function’ or mining process
termed the Chain of Mining (CoM).

More specifically, a geostatistical conditional simulation (CS) model was
developed for a large part of the Escondida sulfide resource that contained five
years of scheduled mining from the start of year one to the end of year five. The CS
model consisted of 50 realisations that independently defined the lithology (andesite
or non-andesite), the mineralisation zones (High Enrichment, Low Enrichment and
Primary) and the grade (per cent copper as total copper and soluble copper)
dependent on the previous two geological variables. A Chain of Mining approach
was then used to model the errors impacting upon the translation of the in situ
resource to a recoverable ore reserve. A number of CoM models were developed
and analysed to determine the parameters that would match actual mining perfor-
mance at Escondida. The impact of various contributing errors was modelled using
parameters for blasting movement, sampling and assaying precision, sampling and
assaying bias, and mining selectivity. The CoM models were examined in relation
to all available reconciliation results. From available production data it was evident
that the Escondida resource model available at that time significantly over-predicted
the tonnage that was realised during mining. A base case Chain of Mining model
was selected that appeared to best capture the real performance indicated by the
production data. This case was used to predict the performance of the current
mining practice within the volume defined by the planned next five years of mining.
The analysis was done on a quarterly basis and a pushback basis for two alternative
(north and east) mining options.

The approach presented herein is based on sequential conditional simulation
(e.g. Journel and Huijbregts 1978; Goovaerts 1997; Benndorf and Dimitrakopoulos
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2017, this volume; Nowak and Verly 2007, this volume) and the concept of ‘future’
grade control data for recoverable reserve estimation detailed in Journel and
Kyriakidis (2004). Related aspects are discussed in the next sections, which start
with the description of available data and conditional simulation modelling at
Escondida, followed by the CoM approach (Shaw and Khosrowshahi 2002), a
calibration of the resulting models and a comparison with production. Conclusions
and comments follow.

Data and Data Analysis

Data sets used for analysis were based on 15 m bench composites for exploration
data and grade control data. Subsequent analysis was based on the High Enrichment
(HE), Low Enrichment (LE) and Primary (PR) zones. The lithology was considered
as two domains, Non-Andesite porphyry/breccia and Andesite. Thus, there were six
modelling domains for preliminary analysis, including univariate statistics of
exploration and grade control data for total copper (CuT) and soluble copper (CuS).

To assess continuity trends for the characterisation of anisotropies in the data
prior to variography, maps of grade and grade indicators were constructed. The
interpolated maps were not constrained by the lithology or mineralogical zones and,
therefore, reflect an isotropic interpolation of the data in 3D. The maps were used
for the preliminary identification of grade continuity trends in order to further the
definition of domains and for variographic analysis. The plan view maps indicated
different grade continuity trends on either side of the north–south line at 16,300 E.
On the eastern side, grade continuity has a NE orientation. This differs from the
western side, which shows a NW continuity. An indicator defining the samples
coded as andesite or non-andesite was also mapped in the same way.

Variography of the exploration and grade control data sets for total copper and
for the ratio of soluble copper to total copper (ratio) was carried out for each of the
HE, LE and PR mineralogical zones with subdivision by lithology (andesite and
non-andesite, i.e. porphyry) that was separated into east and west at 16,300 E.
Preliminary variograms of exploration data did not provide a good definition of
short-scale structures. This is mainly due to the exploration data density, which
does not allow accurate and detailed variogram definition over small distances. The
exploration variograms generally characterised large-scale structures, but these are
not as critical to risk assessment as the characterisation of short-scale continuity. It
was found that variograms of grade control data generally showed less continuous
behaviour, and a far clearer definition of short-scale variability. Accordingly, it was
decided to model variograms of grade control data for all domains containing
sufficient data to characterise this short-scale variability for simulation purposes.
Exploration variograms were also modelled to determine the sensitivity of the study
to this approach. For the Primary zone, grade control data was scarce and the
variograms were based on exploration data, although this generally produced
poorly defined variograms for the west domains.
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The enrichment surfaces were based on the HE, LE and PR codes in the
exploration and grade control data (Fig. 1). For this analysis, it was considered
necessary to use a combined grade control and exploration hole surface data set for
each of HE, LE and PR for variographic purposes to ensure that maximum coverage
was provided of the spatial data.

Generation of the Conditional Simulation Models

First, the enrichment surfaces were simulated using sequential Gaussian simulation,
followed by the simulation of the two lithologies, andesite and non-andesite, using
sequential indicator simulation. These models were merged resulting in simulated
models, each with its own lithology and enrichment surface. Next, these models
were populated with simulated CuT and CuS grades.

Simulation of the Enrichment Surfaces

An example of the final simulated enrichment surfaces are provided in Fig. 2. The
influence of the conditioning data is evident when comparing the simulated images
of the HE, LE and PR surfaces. The lower number of conditioning data points for
the PR surface leads to greater variability in the simulated surface. Variography was
carried out for the mineralogical contacts described by the geological interpretation
(enrichment surfaces). Variography of the surfaces was performed in 2D (Fig. 3)
with the variable analysed being the RL coordinate.

Fig. 1 Typical cross-section at escondida copper
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Simulation of Lithological Data

The dominant rock type for the Escondida deposit is porphyry. Grades in the
andesite west of the 16,300 coordinate line are generally recognised to be lower
than those in the porphyry lithologies and metallurgical recoveries are lower. The
data was examined and it was decided, for the purpose of this study, to define two
lithologies, namely andesite and non-andesite (or porphyry), which is used for
porphyry/breccia and all other non-andesite lithologies. The lithology variography
was based on indicators for andesite (and porphyry) for all data below the top of the
HE zone. The indicators were defined from the drill log codes in the grade control
and exploration data sets. As for the grade variography, the lithology variography
was carried out for separate populations east and west of 16,300 E.

The lithological data was simulated as a categorical variable (Fig. 4). The
presence of andesite was defined in the drill hole data using an indicator value of 1

Fig. 2 Example of simulated image of the enrichment profiles

Fig. 3 Example of high enrichment elevation contour and associated variogram map
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with the absence of andesite (i.e. the presence of porphyry) assigned an indicator
value of 0. The conditioning data set used for simulation of this categorical variable
was the 15 m composited exploration data combined with the grade control 15 m
blasthole data. The coded lithology data and the indicator variogram parameters
were used to generate a sequential indicator simulation 3D model of the lithology as
defined by the distribution of the andesite indicator.

Generation of the Geological Conditional Simulation Model

The 50 two-dimensional simulated realisations of each of the three enrichment
surfaces and the 50 three-dimensional simulated realisations of andesites in two
separate domains (east and west) were then merged into a single geology condi-
tional simulation model comprising all simulated outcomes. Thus, there were 50
simulations each with a different lithology and Minzone outcome (Fig. 5).

Simulation of Grades for CuT and CuS

Twelve separate domains were considered for simulation of the percentage of
copper as CuT and CuS grades. The conditioning data for each domain was the
15 m exploration composite data set. For each domain, appropriate data belonging
to that domain was extracted. The sequential Gaussian simulation approach was
used to simulate grades (Fig. 6) and simulated realisations for each domain were
validated by checking the reproducibility of the weighted histogram of the explo-
ration data, and the normal score variogram model from the grade control data.

It is impossible to produce a perfect representation of any deposit as a resource
model since the geological knowledge, the sampled data, and the assumptions made

Fig. 4 Various simulated lithological data with associated probability map
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during estimation are all imperfect. If a model was perfect it could be used as the
basis for mining without any requirement for further mapping or sampling.
Collectively, these imperfections are termed the information effect and can never be
overcome completely. During mining, decisions are made based on similar
imperfect data. Geological mapping, sampling and assaying are used to provide a
basis on which the ore boundaries are defined and mined. Estimates of grades
within the ore blocks must be made from the best available data. The impact of such
estimates causes dilution (material below the cut-off grade being sent to the mill)
and ore loss (ore incorrectly being sent to low grade stockpiles or waste dumps).
Imperfect knowledge of the deposit again plays a part, but to this is now added
imperfect mining practices. Even if the cut-off grade boundary could be defined
perfectly it could not be mined perfectly every time at a practical mining scale.

Fig. 5 Example of combined simulated geological data

CuT

CuT

CuT

CuT

Fig. 6 Typical simulated image for CuT and associated probability map
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To differentiate between the impact on resource modelling and the impact on
mining, these imperfections are collectively termed the grade control effect and,
again, can never be overcome completely.

The Chain of Mining Approach

For any measurable value, the term error can be used to indicate the difference
between an estimate and the true value. During the process of defining an ore block
for mining, a number of measured values are used, such as the location of the ore in
3D space, the representativity of the sample, the quality of the sample, the grade of
the sample, and the cut-off boundary of the ore block boundary to be mined. For
each of these attributes a ‘true’ value and an ‘estimated’ value can be defined.

Mining decisions are in all cases based on the estimated value. However, the
results of mining are in all cases determined by the true value. For example, the
placement of an ore block boundary and the predicted grade of that ore block might
be defined solely by the sampled grades in and around that block. Errors in the
sampling process (which leads to imperfect delineation of boundaries) and during
mining (which leads to imperfect mining of the planned boundaries) both result in
dilution and ore loss such that the grade of the ore delivered to the mill is invariably
lower than that predicted by the estimated values. This is because the application of
a cut-off grade alters the impact of the distribution of errors. Waste incorrectly sent
to ore is by definition always of lower grade than ore incorrectly sent to waste.

There are various approaches that can be taken to solving this nexus between
‘predicted’ and ‘actual’ mining performance. For the present study, a series of
parameters that model the differences between the predicted and actual mining
performance were measured. To define these parameters, the various stages where
errors can occur in measured values were considered. The mining process as a
whole was considered to be a chain of events with the consequences of each event
impacting on the next measurement in sequence. The term Chain of Mining is used
to underscore the dependence of the eventual mining result on each link in the
process (Shaw and Khosrowshahi 2002; Shaw et al. 2002; Khosrowshahi and Shaw
1997). Figure 7 provides a schematic of the process to characterise the generation
of recoverable resource estimates.

Sources of Error During Mining

It was apparent that there were four possible sources of error that contributed to the
grade control effect and which could be modelled, namely, sampling and assaying
errors of precision, sampling and assaying errors of bias, movement due to blasting
as lateral displacement or heave, and mining selectivity. It was recognised that it
would be impractical to attempt to define parameters in detail for every possible
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source of error at Escondida. In addition, due to the large and very complex nature
of such a mining operation, there is always the possibility that one or more practices
will change in time. Instead, an empirical approach was taken. Error models were
developed where observation on site indicated that this would be appropriate and
these various error models were tested to determine their impact.

Error Due to Sampling and Assaying Precision

The grade control sampling at Escondida is done using vertical blastholes. The ore is
blasted and dug on 15 m high benches. The blastholes are drilled with large rotary
air blast equipment, drilled to a depth of 15 m (one mining bench) plus subdrill of
approximately 2.5 m. Sampling errors that will lead to a difference between the
actual grade of the material in the cone of blasthole cuttings and the true grade of the
ore in the ore block are not quantifiable (since they are frequently not repeatable).
Nevertheless, these errors exist and include both the sample delimitation error due to
subdrill material remaining in the cuttings cone, and sample extraction error due to
contamination and loss during the open hole rotary drilling, and due to dust loss.
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Fig. 7 Using the chain of mining process on a simulation model to characterise recoverable
reserve estimates
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The subsampling of the spoil cone is done manually after drilling using a tube
sampler and eight increments are collected. The sample is then further crushed and
subsampled in the MEL site laboratory. The errors that impact on the predicted
grade include:

1. the grouping and segregation error that is due to splitting of the spoil cone (in
this case due to the tube splitter); and

2. error due to the relationship between particle size and grade, known as the
Fundamental Sampling Error (Gy 1979) that results from the process of split-
ting, crushing and pulverising to reduce the 2 t sample spoil cone to a 200 g
pulped sample submitted for assay.

The first type of error is not quantifiable, and every subsampling system incurs
the second type of error. The total impact of all these errors was modelled in two
scenarios:

Low Sampling Error

A relative sampling precision of ±20% was assumed as the base case. This
incorporates the measured precision of ±10% demonstrated by repeat sampling and
assaying of blasthole cones (Fig. 8). An allowance for additional error was made
due to the drill sampling method. This scenario assumes high quality grade control
sampling is available.
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66 S. Khosrowshahi et al.



High Sampling Error

A relative sampling precision of ±60% was assumed as the high error case to
indicate the typical level of sampling repeatability that occurs in twinned blasthole
drill sampling. No data for this estimate was available. The nearest such data was
paired blasthole and resource hole estimates where a precision of ±40% was
obtained. The high error case was adopted to allow for the impact of the blasthole
subdrill and accounts for the local variability typically seen in blasthole sampling.

Error Due to Blasting

Ore movement can result in the predicted ore being displaced so that the material
eventually mined is different from that which was planned. The degree of dilution
and ore loss that this causes is dependent on the lateral displacement of the ore
block boundaries, and the vertical heave resulting in mixing across horizontal
mining levels. Heave is not an issue at Escondida since the ore is blasted and mined
on a single mining bench. It was decided to model two scenarios, one where the
lateral blast movement was negligible and one where the movement was 3 m in
both the east-west and north-south directions, this being the movements observed
on site for a number of blasts.

Mining Selectivity

Perfect mining of any orebody is always impossible due to two factors; the
availability (and quality) of data to define boundaries, and the ability of the
equipment to dig a defined boundary, which decreases with the production scale of
the operation. The effective minimum mineable block size can be expected to relate
in some way to these factors and, consequently, in a resource model the point
estimates of grade, interpolated from drill hole (quasi-point) data, may be aggre-
gated to a mineable block size.

The degree of mining selectivity represented by a resource block model is
defined as the selective mining unit (SMU). This SMU block size may be regarded
as the minimum viable size of a mining block, although of course, the average size
of the mined blocks may be much bigger. The degree of misclassification that
generally occurs along any block boundary during mining is directly related to the
production rate and size of the mining equipment. The concept of the SMU block
size can assist in understanding the impact of the mining method on the orebody
and how well this can be represented by the resource model.
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Calibration of the Chain of Mining Models and Comparison
with Production

The conditional simulation model developed for the Escondida deposit was used to
test the impact of various mining selection parameters and the impact of the various
expected errors. A series of ten cases was developed using the parameters defined in
Table 1 to address misclassification errors likely to arise during mining. These CoM
models were then tested against production records and compared to the Escondida
resource model.

Analysis of the results for the different scenarios indicated that Case 6 (presented
in bold in Table 1) was the closest to the Production data total of 100,294 Mt at
2.11% CuT. The selected case used no blasting movement, a high sampling error
consistent with blasthole samples, and an 8 � 8 m SMU block area. The smaller
SMU size provided better selectivity at the cut-off grade, producing a lower tonnage
and higher grade than that predicted by the resource model. Case 6 was regarded as
the base case. Various models were intersected with each wire-frame defining the
mine plan, and the results were aggregated by both quarterly period and major
pushback increment. For the Chain of Mining cases, each of the 50 simulations was
separately intersected with each wire-frame to provide a risk profile of the chance of
not achieving the scheduled tonnes and grade for the period that the wire-frames
represented. The tonnages and grades within each simulation realisation were
determined for the quarterly and pushback increments for the base case (8 � 8 m
SMU with high sampling error). The results are presented in graphical form in
Figs. 8, 9, 10, 11 and 12. In assessing the relative risk using this graphical data,
occurrences below the horizontal line indicate where the expectation of tonnes or
grade was not reached, i.e. periods when the resource model is at risk under the
assumed mining scenario.

Table 1 Parameters used in the chain of mining (CoM) analysis for the various CoM models
examined, with results for the reconciliation period

Case Blasting
movement

Sampling
error

SMU (15 m
high)

Mt Grade %
CuT

Comment

1 0 Low 16 � 16 109.4 1.875

2 0 Low 8 � 16 107.5 1.893

3 0 Low 8 � 8 103.3 1.929

4 0 High 16 � 16 108.0 1.885

5 0 High 8 � 16 105.3 1.907

6 0 High 8 � 8 99.0 1.953 closest to mine
production data

7 3 Low 16 � 16 109.4 1.861

8 3 Low 8 � 16 107.5 1.873

9 3 High 8 � 16 105.3 1.887

10 3 High 8 � 8 99.0 1.921
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Analysis of risk for Tonnes by quarter for 5 year plan
Chain of mining case: 8 x 8 m high sampling error

Tonnes: Comparison of 50 simulations to Feb2000 model North and East options

Tonnes: Difference of simulations to Feb2000 model North and East options
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Fig. 9 Risk associated with tonnes in the five year plan by quarters
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Analysis of risk for CuT Grade by quarter for 5 year plan
Chain of mining case: 8 x 8 m high sampling error

Grade: Comparison of 50 simulations to Feb2000 model North and East options

Grade: Difference of simulations to Feb2000 model North and East options
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Analysis of risk for Tonnes by pushback for 5 year plan
Chain of mining case: 8 x 8 m high sampling error

Tonnes: Comparison of 50 simulations to Feb2000 model North and East options

Tonnes: Difference of simulations to Feb2000 model North and East options
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Analysis of risk for CuT Grade by pushback for 5 year plan
Chain of mining case: 8 x 8 m high sampling error

Grade: Comparison of 50 simulations to Feb2000 model North and East options

Grade: Difference of simulations to Feb2000 model North and East options
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Conclusions

The five-year schedule options adequately fit with the in situ resource. However, the
Chain of Mining case (8 � 8 m SMU, high error) selected to best emulate the
production data indicates a significant expected shortfall in tonnes. What had not
been evident until this study, and could only be demonstrated using the exhaustive
data set provided by a conditional simulation study, is that there was considerable
risk of a shortfall in tonnes. This was because the selectivity evident in the actual
mining strategy differed significantly from that inherently assumed in the resource
model. High quality grade control practices on site were effectively providing
higher selectivity than that assumed in the resource model. This lead to a scenario
of ‘vanishing tonnes’ (David 1977), a concept demonstrated in this study that is
familiar to many large mines. This problem can be related to attempts to improve
the head-grade to unrealistic targets applied on a short-term (sometimes daily) basis.
Visual grade control and other decisions to remove small parcels of contaminating
material in order to maintain a high mill head grade may lead to an artificially small
effective mining selectivity that is not related to the SMU block size assumed in the
resource modelling.

The quantification of risk using simulation of the Chain of Mining is a technique
that can be used to identify a potential shortfall in tonnes or grade for a given
mining scenario. Alternative plans can then be developed and tested before the
shortfall impacts production. An approach such as the one demonstrated here for
Escondida can determine if a plan is realistic and the predicted results will be
obtained. Hence, the risk inherent in a given plan can be quantified. Testing
alternate mining scenarios, operating practices and policies to determine if they will
indeed deliver as intended, therefore, provides considerable advantages to both
mine planners and operators.

Acknowledgements The authors would like to acknowledge the input of site personnel into this
study. Minera Escondida Limitada and BHP Billiton granted permission to publish the results of
this study once its direct commercial relevance was superseded by other ore reserve and mine
planning studies.

References

Benndorf J, Dimitrakopoulos R (2017) New efficient methods for conditional simulation of large
orebodies, in this volume

David M (1977) Geostatistical ore reserve estimation, 364 p. Amsterdam, Elsevier
Goovaerts P (1997) Geostatistics for natural resources evaluation, 483 p. Oxford University Press,

New York
Gy P (1979) The sampling of particulate materials—theory and practice, 431 p. Amsterdam,

Elsevier
Journel AG, Huijbregts CJ (1978) Mining geostatistics, 600 p. Academic Press, London

Quantification of Risk Using Simulation … 73



Journel AG, Kyriakidis PC (2004) Evaluation of mineral reserves: a simulation approach. Oxford
University Press, New York

Khosrowshahi S, Shaw WJ (1997) Conditional simulation for resource characterisation and grade
control—principles and practice. Proceedings world gold ‘97. The Australasian Institute of
Mining and Metallurgy, Melbourne, pp 275–282

Nowak M, Verly G (2007) A practical process for geostatistical simulation with emphasis on
Gaussian methods. In: Dimitrakopoulos R (ed) Orebody modelling and strategic mine
planning, 2nd edn. The Australasian Institute of Mining and Metallurgy: Melbourne, pp 69–77

Shaw WJ, Khosrowshahi S (2002) The use of the chain of mining method, based on conditional
simulation models, to quantify mining risk—a reality check for resource estimates. In:
Proceedings symposium on quantifying risk and error. Geostatistical Association of
Australasia, pp 111–118

Shaw WJ, Khosrowshahi S, Bertinshaw RG, Weeks A, Church P (2002) Beyond grade control:
broken links in the Chain of Value. In: Proceedings value tracking symposium. The
Australasian Institute of Mining and Metallurgy, Melbourne, pp 85–89

74 S. Khosrowshahi et al.



A Risk Analysis Based Framework
for Strategic Mine Planning and Design—
Method and Application

M. Godoy

Abstract Assessment and management of orebody uncertainty is critical to
strategic mine planning. This paper presents an approach that consists of a series of
procedures for risk assessment in pit optimisation and design. Multiple block grade
simulations are processed in Whittle Software to produce a distribution of possible
outcomes in terms of net present value. Examples from an open pit mine are used to
illustrate the practical application of the methodology.

Introduction

Traditionally, determination of the spatial distribution of grades in an orebody
model is based on geostatistical estimation. The main drawback of estimation
techniques, be they geostatistical or not, is that they are unable to reproduce the
in situ spatial variability as inferred from the available data. Ignoring such a con-
sequential source of risk and uncertainty may lead to unrealistic production plans
(e.g. Dimitrakopoulos et al. 2002). In dealing with uncertainty on the spatial dis-
tribution of attributes of a mineral deposit, several models of the deposit can be
generated based on and conditional to the same available data and their statistical
characteristics. These models are all constrained to:

• reproduce all available information and their statistics, and
• represent equally probable models of the actual spatial distribution of grades.

The availability of multiple equally probable models of a mine deposit enables
mine planners to assess the sensitivity of pit design and long-term production
scheduling to geological uncertainty. This approach has been proposed by many
authors over the last 20 years (David 1988; Journel 1992; Ravenscroft 1992;
Dimitrakopoulos 1998; Godoy 2002; Dimitrakopoulos et al. 2007; Kent et al. 2007;
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and others). Figure 1 illustrates the difference between the traditional process used
to convert a mineral resource into an ore reserve and the risk based approach based
on the technique of conditional simulation.

The goal of this paper is to provide mining planning engineers a series of
procedures that can be used to consider the effects of grade uncertainty in mine
planning studies. Four cases have been selected to illustrate different types of
applications:

1. uncertainty analysis of an ultimate pit shell—Net Value (NV), costs, tonnage,
grade and metal;

2. identification of areas of upside potential and downside risk;
3. trade-off analysis for cut-back depletion strategies; and
4. assessment of uncertainty related to ore blocks driving the increment between

the successive pit shells.

In the following sections, each application is developed separately and includes a
step-by-step description of the procedure and a discussion of the results obtained in
a real case application.

Uncertainty Analysis for an Ultimate Pit Shell

The objective of this analysis is to evaluate the sensitivity of key pit optimisation
results to grade uncertainty. The process known as pit optimisation is traditionally
carried out based on the estimated resource model and using the nested pit
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Fig. 1 Conversion of a mineral resource into an ore reserve, traditional and risk oriented views
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implementation of the Lerchs-Grossmann algorithm of the Whittle Software
(Lerchs and Grossmann 1965; Whittle 1999). The result of the optimisation process
is a series of incremental pit shells. Different criteria can be used to select the
ultimate pit shell including net pit value and the net present value based on a
referential mining sequence. This ultimate pit shell is then used as the basis for pit
design and planning. Using conditionally simulated models as input, Whittle’s
analysis program (FDAN) may be used allowing the quantitative assessment of risk
due to uncertainty on the real, but unknown, distribution of grades. In the procedure
proposed below an ultimate pit shell produced in Whittle is evaluated against a
series of simulated models of the orebody.

To assess uncertainty on the main parameters driving the selection of the ulti-
mate pit shell the following procedure is proposed:

• From the Whittle result file produced by the pit optimisation process, generate a
Whittle pit list file containing information about the smallest numbered pit that
each block is part of.

• Apply the pit list file produced in Step 1 to each one of the simulated orebody
models.

• Run the analysis program configured to generate the same information, previ-
ously generated by analysis on the original pit optimisation. The analysis must
be carried out for each one of the available simulated models.

The above procedure generates a range of alternative outcomes for the original
optimisation process. This allows the planner to evaluate the likely range of con-
tained ore, metal and a series of key economic indicators. Figure 2 shows the
predicted ore tonnage produced by risk analysis. Up until pit 27, the cloud of
cumulative tonnages derived from the simulated models present an average
decrease of approximately 9.76% in relation to the tonnage predicted by the esti-
mated model. At pit 27 the estimated model indicates approximately 180.3 Mt
against an expected value of 164.6 Mt derived from the simulations. The expected
outcomes of contained ore go from 163.3 to 166.1 Mt, which corresponds to a range
of −0.83 to +0.92% in relation to the expected value derived from the simulations.
The same type of analysis carried out on the average mill feed grade (Fig. 3) shows
a decreasing overestimation in grades of the estimated model in relation to the
simulated models. At pit shell number 1, the estimated model predicts an average
mill feed grade of 2.6 g/t, while the simulations indicate an expected grade of 2.2 g/
t. At pit 27 the estimated model indicates approximately 1.98 g/t against an
expected value of 1.95 g/t derived from the simulations. The risk profile on mill
feed grade goes from 1.93 to 1.98 g/t, which corresponds to a range of −1.24% to
+1.32% in relation to the expected value. Figure 4 shows the predicted recovered
metal produced by the analysis. Up until pit 27, the cloud of cumulative recovered
ounces derived from the simulated models present an average decrease of
approximately 17.41% in relation to the ounces predicted by the estimated model.
This result indicates that the estimated model is potentially overestimating grades as
an effect of excessive smoothing. At pit 27 the estimated model indicates 9.84 Moz
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against an expected value of 8.85 Moz derived from the simulations. The risk
profile on recovered ounces goes from 8.72 to 8.98 Moz, which corresponds to a
range of −1.4 to +1.58% in relation to the expected value.

The combination of the overestimation in ore tonnage and mill feed grade has a
direct impact on the performance of the pit by pit Net Value. Figure 5 presents the
results obtained for the pit Net Value.

Ore Quantity

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Pit Number

O
re

 (M
t)

ResSim1 ResSim2
ResSim3 ResSim4
ResSim5 ResSim6
ResSim7 ResSim8
ResSim9 ResSim10
ResSim11 ResSim12
ResSim13 ResSim14
ResSim15 EstMod

Fig. 2 Uncertainty in ore tonnes for incremental pit shells

Mill Feed Grade

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Pit Number

G
ra

de
 (g

/t)

ResSim1 ResSim2
ResSim3 ResSim4
ResSim5 ResSim6
ResSim7 ResSim8
ResSim9 ResSim10
ResSim11 ResSim12
ResSim13 ResSim14
ResSim15 EstMod

Fig. 3 Uncertainty in mill feed grade for incremental pit shells

78 M. Godoy



It suggests that the estimated model overestimates the pit value over all opti-
mised pit shells. Up until pit 27, the cloud of cumulative Net Value derived from
the simulated models present an average decrease of approximately 33.39% in
relation to the Net Value predicted by the estimated model. It also indicates a
downside potential for pit 27 with expected NV equivalent to $951.6 M or a
26.12% decrease in relation to the $1288 M obtained for the analysis on the esti-
mated block model. It is interesting to note that if Net Value was to be used as the
criterion for the selection of the ultimate pit shell the simulations would agree with
the estimated model by indicating pit 27. The range of expected Net Values goes
from $890 to $1013 M, which corresponds to −6.47 to +6.41% in relation to the
expected value.

Identification of Upside and Downside Potential

The goal of this analysis is to explore the possible downside/upside potential of the
selected ultimate pit shell regarding the available grade uncertainty models. To
achieve this independent pit optimisation runs are carried out on each simulated
model. The analysis is divided into two parts:

1. First, each optimisation output is evaluated in terms of contained ore, grade,
metal and pit value. This provides a quantification of the project potential given
realistic scenarios of the spatial distribution of grades.

2. The second part looks into the spatial extends of a specific pit shell as produced
for each independent optimisation. The comparison of this ‘cloud’ of pit shells
against a given pit design provides an assessment of areas with upside/downside
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potential and can be used to define targets for additional drilling. It also provides
an indication on the robustness of a given pit design in relation to grade
uncertainty.

The procedure proposed for the development of this analysis is the following:

• Create a new project in Whittle and import each one of the simulated models.
Next, set the optimisation parameters for the optimisation run.

• Apply the same parameters to each model and run the optimisation. The process
will generate a series of Whittle result files, one for each simulated model. This
step usually requires a large amount of disk space.

• Run analysis program configured to generate the relevant summary information.
The analysis must be carried out for each one of the available simulated models.

• Produce cross-sections for a selected pit number over all optimised models.

Contrary to developing a risk analysis on a given ultimate pit shells, as carried
out in the previous section, the above procedure generates alternative sets of
incremental shells, one set for each simulated model. Figure 6 shows the total rock
contained on each incremental shell as produced by each independent optimisation.

The thick orange line corresponds to the results obtained from the analysis on the
incremental shells optimised on the estimated model, hereafter termed estimated pit.
The thin lines correspond to the results obtained from the analysis on the incre-
mental shells optimised on each one of the simulated models, hereafter termed
simulated pits. The figure shows that up to pit shell 24 the estimated and simulated
pits present an equivalent quantity of contained rock, that is, they have approxi-
mately the same volume. From around pit shell 25, there is a clear separation with
the simulated pits showing a progressive increase in comparison to the estimated
pit. This scenario remains the same until pit shell 39, when the estimated pit starts to
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converge to the cloud of simulated pits. Pit shell 27 is of particular interest as it
corresponds to the pit selected as a basis for pit design. For pit shell 27, the average
contained rock over the simulated pits is 925 Mt against 828 Mt in the estimated pit,
which corresponds to an increase of approximately 11.7%. Figure 7 presents the
results obtained for the total contained ore. In this case, estimated and simulated pits
show similar behaviour as the total rock, only that the magnitude of the differences
is smaller. For pit shell 27, the average contained ore over the simulated pits is
183.9 Mt against 180.3 Mt in the estimated pit, which corresponds to an increase of
approximately two per cent. The risk profile on the contained ore goes from 174 to
195 Mt, which corresponds to a range of −5.92 to +6.06% in relation to the
expected value. In terms of mill feed grade, the estimated pit starts with 2.61 g/t
against an average 2.43 g/t over the simulated pits. This difference decreases with
incremental pit shells and become equivalent at pit shell 27 (Fig. 8).

The risk profile on mill feed grade goes from 1.95 to 2.02 g/t, which corresponds
to a range of −1.61 to +1.92% in relation to the expected value. Figures 9 and 10
present the results obtained for recovered metal and total pit value.

As expected, the recovered metal for estimated and simulated pits follow the
same trends seen on the ore tonnage graphs. For pit shell 27, the recovered gold
over simulated pits is 10.03 Moz against 9.84 MOz in the estimated pit, which is an
increase of approximately 0.9%. This combination of slightly higher metal with
considerable more rock tonnage in the simulated pits translates into a reduced net
pit value when compared to the estimated pit. The estimated pit presents a con-
sistently higher Net Value until pit shell 39 when the total rock tonnage becomes
equivalent to that shown on the simulated pits. For pit shell 27 the average Net
Value over simulated pits is 1159 million dollars against 1288 million in the
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estimated pit (approximately 10% less). The risk profile on Net Value goes from
$1068 to $1292 M, which corresponds to a range of −7.86 to +6% in relation to the
expected value. It is interesting to note that as for the estimated model the maximum
Net Value over all simulated pit corresponds to pit shell number 26. This shows that
pit shell 26 is quite robust with regards to grade uncertainty. Another conclusion

Ore Quantity

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Pit Number

O
re

 (M
t)

ResSim1 ResSim2
ResSim3 ResSim4
ResSim5 ResSim6
ResSim7 ResSim8
ResSim9 ResSim10
ResSim11 ResSim12
ResSim13 ResSim14
ResSim15 EstMod

Fig. 7 Total ore tonnage contained on incremental pit shells. Estimated pit is depicted by the
thick orange line and the remaining coloured thin lines correspond to simulated pits

Gold Grade

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Pit Number

G
ra

de
 (g

/t)

ResSim1 ResSim2
ResSim3 ResSim4
ResSim5 ResSim6
ResSim7 ResSim8
ResSim9 ResSim10
ResSim11 ResSim12
ResSim13 ResSim14
ResSim15 EstMod

Fig. 8 Average grade contained on incremental pit shells. Estimated pit is depicted by the thick
orange line and the remaining coloured thin lines correspond to simulated pits

82 M. Godoy



that can be drawn from these results, which is coherent with the results obtained in
the analysis presented in the previous section, is that there is a global overestimation
of grades and ore tonnage by the estimated model as compared to the simulated
models.

A series of cross-sections were produced for pit shell 27 over all optimised
models and for a pit design. These cross-sections were overlaid and are presented in
Fig. 11. The main conclusions drawn from the analysis of these cross-sections are
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Fig. 10 Total pit value of incremental pit shells. Estimated pit is depicted by the thick orange line
and the remaining coloured thin lines correspond to simulated pits
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Fig. 11 Cross-sections produced for pit shell 27 over all optimised models overlaid with actual pit
design
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the following. The simulated pits closely honour the eastern wall of the current pit
design, showing that the eastern slope is stable with relation to grade uncertainty. In
general, there is a more pronounced fluctuation in the western wall which indicates
higher levels of grade uncertainty. The current design has an extension of the
western wall, which is not included in the optimisations of both estimated and
simulated pits. This extension represents a major downside potential zone and goes
from the actual pit surface to the lowest levels of the pit. The simulated pits indicate
an upside potential region at the southwest zone of the pit where the simulated pits
reach levels that are deeper than the current pit design. The spread of cloud of
simulated pits is shown to be low from the surface down to level-350. Bellow that
the spread increases considerably. This reflects the increasing uncertainty on the
distribution of grades at depth and is directed related to the lack of drilling.

Trade-off Analysis

The goal of this analysis is to quantify the impact of grade uncertainty to tonnage,
grades, metal and Net Value of two different mining strategies. Scenario ‘A’ con-
siders the depletion of a cut back as a single stage, while scenario ‘B’ defines two
separate stages. The analysis consists on the quantification of uncertainty on key
mining physicals and economic parameters for the two mining scenarios consid-
ered. The objective is to evaluate if one of the scenarios is any better in terms of the
compromise between Net Value and risk exposure. The procedure proposed to
develop the analysis is the following:

1. generate a wireframe describing the cut-back,
2. filter the block model against the wireframe and retain the blocks lying inside

the cut-back as new block model,
3. export the block model produced above into a Whittle Model File,
4. repeat steps 2 and 3 for each one of the simulated models,
5. for each model produced in the previous steps calculate the relevant summary

information, and
6. repeat steps 1 to 6 for stages 1 and 2 that correspond to another mining scenario.

The procedure was carried out for a total of 16 models, corresponding to 15
grade simulations plus the estimated model. Figure 12 presents a 3D view of the
cut-back showing its position in relation to the current pit design. Figure 13 shows
the results in terms of contained ore for each mining scenario:

• the first profile corresponds to the scenario ‘A’, which corresponds to the
cut-back depletions as a single stage; and

• the other profiles correspond to the first and second stages of scenario ‘B’.

The expected combined ore tonnage of scenario ‘B’ is 2.3% higher than scenario
‘A’ (28.2 Mt against 27.6 Mt). The risk profile for scenario ‘A’ shows a range of
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variation that corresponds to 5.2% of the expected ore tonnage. For the two stages
of scenario ‘B’, these ranges correspond to 5.19% and 6.51% respectively. For
scenario ‘A’, the contained ore predicted by the estimated model is 4.16% higher
than the expected tonnage derived from the simulations. For the first and second
stages, this difference corresponds to 4.63% and 9.89% respectively. Figure 14
shows the results in terms of recovered gold.

The expected recovered metal of scenario ‘B’ is approximately 1.7% higher than
in scenario ‘A’ (1.63 Moz against 1.60 Mt). The risk profile for scenario ‘A’ shows a
range of variation that corresponds to 7.1% of the expected tonnage. For scenario
‘B’ this ranges correspond to 8.5% and 12.3%. For scenario ‘A’ the recovered gold
predicted by the estimated model is 10.43% higher than the expected tonnage
derived from the simulations. For the first and second stages of scenario ‘B’, this

Fig. 12 View of the cut-back aganst the pit design. The colours indicate different incremental pit
shells
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Fig. 13 Risk profiles on contained ore of two mining scenarios
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difference corresponds to 16.70% and 3.61% respectively. Figure 15 summarises
the results in terms of Net Value.

The expected Net Value of scenario ‘B’ is approximately 22.3% lower than in
scenario ‘A’ ($76.5 M against $98.4 M). The risk profile for scenario ‘A’ shows a
range of variation that corresponds to 50% of the expected Net Value. For scenario
‘B’ the ranges correspond to 68.61% and 141.2% for the first and second stages
respectively. The combined expected range of variation for scenario ‘B’ corre-
sponds to 67.4%. For scenario ‘A’ the Net Value predicted by the analysis on the
estimated model is 76.85% higher than the expected tonnage derived from the
simulations. For the first and second stages this difference corresponds to 162.47%
and −2.48% respectively. The results obtained in terms of the risk profiles indicate
that both scenarios present high risk of not achieving predicted Net Value. In
addition, it was clearly identified that the volume related to stage 1 of the scenario
‘B’ is the one with all the risk.

It is important to note that this analysis is rather simplistic in the sense that the
time effect of money is not included. Ideally, a mining schedule should be
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developed in order to account for the mine sequencing. However, the second
scenario roughly accounts for the sequencing by developing the depletion in two
stages. The analysis indicated that the risk of missing the target when mining the
volume related to the first stage of the second scenario is extremely high. This
warrants a detailed review of the estimated grades in this volume.

Risk Analysis on Ore Blocks Driving a Pit Increment

The aim of this analysis is the quantification of uncertainty on the ore blocks
driving the increment between two successive Whittle pit shells. To assess uncer-
tainty on the main parameters driving increment between two successive pit shells,
the follow procedure is proposed:

1. From the Whittle result file produced by the pit optimisation process generate a
Whittle pit list file containing information about the smallest numbered pit that
each block is part of.

2. Use the re-blocking program—apply the pit list file produced in step 1 to each
one of the simulated block models. This will create a set of results files.

3. Produce cross-sections for the incremental pit shells.
4. Generate the summary pit information for the two pits. The analysis must be

carried out for each one of the available simulated models. Derive the infor-
mation referent to the incremental volume by subtracting the cumulative mining
physicals (ore and metal quantities) and economic values (Net Value, processing
cost and mining cost) between the two successive pit shells.

The above procedure is similar to the procedure used in the first section of this
paper. The difference is that here the analysis is limited to two specific pit shells.
The increment from pit 26 to pit 27 contains approximately 53 Mt of rock and is
located in the southern end of the pit. Table 1 presents the results obtained by the
analysis of the pit increment.

The risk profile on the contained ore shows a range between 5.7 and 6.2 Mt,
with an expected tonnage of approximately 5.9 Mt. Low ranges of variation are also

Table 1 Risk profile for mining physicals and economic parameters for the increment between
pits 26 and 27

Expected Minimum Maximum Range

Ore (�1000t) 5925 5706 6222 516

Metal (oz) 341,739 309,451 362,982 53,531

Grade (g/t) 1.95 1.93 1.98 0.05

Mcost (�1000$) −103,594 −103,716 −103,521 195

Pcost (�1000$) −70,783 −74,285 −68,238 6047

Net value (�1000$) 7381 −8164 17,685 25,849
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shown for the risk profiles on grade, metal content and costs. The main issue here is
in relation to the Net Value, which has a chance of being negative. Its risk profile
goes from approximately $-8.2 M to $17.7 M. The reason for the increase in the
risk profile the mining cost associated to a high stripping ratio (*9), which makes
the Net Value oversensitive to possible variations on the recovered gold. It is
important to notice that the risk profile indicates an expected Net Value for this
increment of $7.4 M. In fact, only one out of 15 simulated models presented a
negative value for the Net Value. The results indicate a relatively low uncertainty in
tonnages and grades contained between pits 26 and 27. However, this relatively low
uncertainty becomes a critical issue due the high stripping ratio which makes the
increment’s Net Value very sensitive to grade uncertainty as well as gold price.

Several cross-sections have been generated to show the pit region relative to the
increment between pits 26 and 27. These sections show the incremental shells, the
current pit design and ore blocks contained inside the increment. The main con-
clusions drawn from the analysis of these cross-sections have four components.
First, the major difference between the incremental Whittle pit shells $550/oz and
$560/oz corresponds to a region located at the southern end of the pit. Most of the
incremental ore blocks have an expected value inside the range of 1.5–2.5 g/t.
Moreover, most of the incremental ore blocks have more than 60% chance of being
above the cut-off. The increment contains a high quantity of waste and the pit
design has considerably more waste than pit shell 27.

Conclusions

The goal of this work was to illustrate different applications of risk analysis on the
effects of grade uncertainty to various aspects of pit optimisation and design. Four
cases have been carried out to illustrate different types of applications:

1. The first case consisted of an uncertainty analysis on pit optimisation results—
Net Value, tonnage, grade and metal. The procedure consisted in applying a set
of incremental pit shells, as produced by the pit optimisation process, to a set of
simulated resource models. The subsequent analysis on each model produced a
set of equally probably outcomes for the mining physicals and economic
forecasts given the initial set of incremental pit shells.

2. The second case identified areas were grade uncertainty has major impact to the
definition of the ultimate pit limits (upside/downside potential). Rather than
developing a risk analysis on a given set of incremental pit shells, this procedure
consisted in the generation of alternative sets of incremental shells, one set for
each simulated model.

3. The third case aimed at quantifying the impact of grade uncertainty to tonnage,
grades, metal and Net Value of two different mining scenarios for a given
cut-back. The main objective was to evaluate if one of the scenarios was any
better in terms of the compromise between Net Value and risk exposure.
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4. The fourth case consisted of a risk analysis related to pit increments. The
objective of this analysis is the quantification of uncertainty on the ore blocks
driving the increment between two successive Whittle pit shells.

The results were presented in two steps:

1. first, each optimisation output was evaluated in terms of contained ore, grade,
metal and pit value; and

2. the second step of the analysis consisted on the generation of a series of
cross-sections.

These cross-sections were taken over all optimised models and included the
actual pit design. Several conclusions have been drawn from these graphs indi-
cating areas of upside and downside potential.

This paper presented a set of procedures that enable mine planning engineers to
carry out a series of analysis, which can be used to evaluate the sensitivity of
incremental pit shells and pit designs to grade uncertainty. The results obtained
from the analysis have shown to provide valuable information, which can be used to
develop mining strategies that are risk resilient in relation to grade uncertainty.
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Mining Schedule Optimisation
for Conditionally Simulated Orebodies

M. Menabde, G. Froyland, P. Stone and G. A. Yeates

Abstract Traditionally the process of mine development, pit design and long-term
scheduling is based on a single deterministic orebody model built by the interpo-
lation of drill hole data using some form of spatial interpolation procedure, e.g.
kriging. Typical steps in mine design would include the determination of the ulti-
mate pit, the development of a number of mining phases (pushbacks) and then the
development of a life-of-mine schedule. All of these steps would have the aim of
maximising the mine’s net present value (NPV), along with meeting numerous
other business and physical constraints. There are a number of software packages
commercially available and widely used in the mining industry that deal with some
or all of these issues. The methods employed by all of these packages treat the
process described above in a strictly deterministic way. In reality, given the sparse
drill hole data, there is usually significant and variable uncertainty associated with a
single or unique deterministic block model. This uncertainty is not captured or used
in the planning process. This paper describes work undertaken by the Exploration
and Mining Technology Group within BHP Billiton to develop a new mathematical
algorithm for mine optimisation under orebody uncertainty. This uncertainty is
expressed as a number of conditionally simulated orebody models. This optimi-
sation algorithm is implemented in a new software package. The software uses a
number of proprietary algorithms along with the commercially available mixed
integer-programming package ILOG CPLEX. The development targets all phases
of mine optimisation, including the NPV optimal block extraction sequence,
pushback design, and simultaneous cut-off grade and mining schedule optimisation.
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Introduction

This paper describes the development and implementation of a new software
package for open pit mine development and scheduling optimisation under con-
ditions of orebody uncertainty and is based on the mixed integer programming
method. The approach uses multiple conditionally simulated realisations of the
orebody as input to characterise the orebody along with the uncertainty in the
estimate.

Traditionally open pit mine planning, pit design and long-term scheduling is
based on a block model of the orebody built by interpolation techniques such as
kriging from the drill hole sample data. This single model is assumed to be a fair
representation of reality and is used for mine design and optimisation. The design
process consists of four main steps:

1. Determining the ultimate pit shell to define the scheduling universe.
2. Finding the block extraction sequence which produces the best net present value

(NPV) whilst satisfying the geotechnical slope constraints.
3. Designing the practically minable mine phases (pushbacks) which are roughly

based on the optimal block sequence.
4. Optimising the mining schedule and cut-off grades (COG) within a set of

business and operational constraints. The NPV of this ‘optimal’ schedule is
considered as a main criterion of the economical viability of the project.

In reality, there are many uncertainties in the models and parameters used in
optimisation. Thus, the adoption of a single economic criterion for a project can be
very questionable. One of the most important sources of uncertainty is the block
model itself. The drill hole data for a mining project is typically sparse, particularly
at the scale of the selective mining unit and could support a range of possible
outcomes for the orebody. A unique deterministic block model will often be a good
representation of the global resource, but will not be representative of the potential
local variability or the uncertainty in the estimate. An approach that quantifies both
the local variability and the potential uncertainty is to use multiple conditional
simulation realisation to represent the orebody (see Dimitrakopoulos 1998). This
approach allows the generation of a number of equally probable realisations of the
block model, at the selective mining unit (SMU) scale, with all of them honouring
the drill hole data along with the first and second order statistics of the orebody
represented, respectively, by the probability distribution and variogram (e.g. Isaaks
and Srivastava 1989).

The simplest and most straightforward use of this set of orebody realisations is to
estimate the variability in the project NPV associated with the orebody uncertainty
by valuing the ‘optimal’ schedule obtained from the kriged deterministic model
through each of the conditionally simulated realisations.

The more interesting question is whether it is possible to use the set of condi-
tionally simulated realisations to produce a better mine design and production
schedule. By ‘better’ we mean here a higher expected NPV (which becomes a
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random variable in case of multiple realisations of the orebody model) and/or less
variability from one realisation to other (i.e. lower variance of NPV). A new
promising approach to this problem is presented in Ramazan and Dimitrakopoulos
(2007, this volume); Jewbali (2006).

In this paper we address one particular aspect of the optimisation under uncer-
tainty, namely the simultaneous optimisation of the extraction sequence and COG.
The use and importance of optimal (variable) COG to mining projects has been
known for a long time (e.g. Lane 1988). It will be demonstrated here that the use of
variable COG optimised under uncertainty, using the set of equi-probable realisa-
tions of the orebody can provide a substantial improvement in terms of expected
NPV. The approach based on mixed integer programming techniques can provide a
truly optimal schedule, as opposed to various heuristic methods used in most of the
commercially available mining optimisation software packages.

Mining Schedule Optimisation as a Mixed Integer
Programming Model

Typically, the orebody block model contains between 50,000 and 5,000,000 blocks,
which must be scheduled over a period of say 5–25 years. The objective of any
scheduling procedure is to find the block extraction sequence, which produces the
maximum possible net present value (NPV) and obeys a number of constraints. The
latter include:

1. geotechnical slope constraints, which are modelled by a set of precedence arcs
between individual blocks;

2. mining constraints, i.e. total maximum amount of rock which can be mined in
one time period (usually one year);

3. processing constraints, i.e. maximum amount of ore which can be processed
through a given processing plant in one time period; and

4. the market constraints, i.e. the maximum amount of metal that can be sold in one
time period.

The mathematical formulation of the scheduling procedure in terms of binary
decision variables describing in which period the particular block is extracted and
what its destination is (either processing plant, stockpile or waste dump), is quite
straightforward. The size of the problem is, however, prohibitively large. Apart
from the computational difficulties, the hypothetical optimal block extraction
sequence may be completely impractical due to the requirements for the mining
equipment access and relocation.

Because of these problems the mine scheduling is done using much bigger
elementary units that are typically aggregations of hundreds or even thousands of
blocks. The aggregation of blocks is a nontrivial problem. For example, simply
combining rectangular blocks into a larger rectangular block with dimensions
multiples of that of individual blocks can effectively reduce the size of the problem
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but will provide a very poor approximation for the geotechnical slopes. An inter-
esting approach to block aggregation based on the concept of ‘fundamental trees’
has been recently developed by Ramazan (2007, this volume). In this method the
aggregations of blocks—fundamental trees—obey the slope constraints and can
substantially reduce the number of integer variables required for the scheduling
model. However, the number of these aggregations is not user controllable and in
many cases the problem can be still too big to be solved by a direct application of
the mixed integer programming techniques.

We have recently developed a new algorithm for block aggregation, which
preserves the slope constraints, and is very flexible allowing the user to fully control
the size and shape of these aggregations. The details of this algorithm will not be
discussed here. The optimisation procedure, however, can be applied to any
aggregation of blocks with a set of precedence arcs, prescribing which blocks
should be extracted before the given one. As an example we consider here the
scheduling of mining phases.

In practice, the open pit mine is divided into a number of mining phases, which
are mined bench by bench, each bench represented by a horizontal layer of blocks
within the given mining phase and having the same elevation. A bench within a
mining phase is sometimes referred to as a “panel”. The mining phases can be
mined one by one from top to bottom, however this kind of schedule is usually
suboptimal. Mining several phases simultaneously and applying variable COG can
produce much better results in terms of NPV. There are several commercially
available packages, which use proprietary (and undisclosed) heuristics to optimise
the schedule and COG. It is difficult to estimate their effectiveness, as the upper
theoretical limit on NPV remains unknown. Moreover, these methods can only be
used on a single orebody representation and cannot be directly used on a set of
conditionally simulated orebody realisations.

The standard optimsation technique widely used in many industrial applications
is the leanear and integer programming (e.g. industrial applications is the linear and
integer programming (e.g. Padberg 1995). The main difficulty in its application to
mining scheduling is that the optimsation with variable COG in its direct formu-
lation leads to a non-linear problem, which is much harder to solve. Our approach
provides an effective linearsation of this problem, making it possible to use a mixed
integer programming (MIP) formulation for a simultaneous optimization of the
extraction sequence and COG for a number of conditionally simulated orebody
models. The MIP formulation we use here is similar to the one used by Caccetta and
Hill (2003) but is generalised to include the multiple realisations of conditional
simulations and variable cut-off grades. This approach also allows one to estimate
the gap between the obtained solution and the upper theoretical limit.

We consider the simplest case when we have one rock type containing one metal
type, which can be processed through one processing plant. Generalisation to the
case of multiple rock types, metals and processing streams is cumbersome but
straightforward. For simplicity we consider here only the case of a discrete set of
COGs, though it is possible to generalise the results to the continuous COG case.
We use the following notations:
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T is the number of scheduling periods
N is the number of simulations
P is the total number of panels
G is the number of all possible cut-off grades
Rn
i is the total rock in the panel i in simulations n

Qn
ij is the total ore in the panel i, simulation n, when mined with the COG j

Vn
ij is the value of the panel i, simulation n, when mined and processed with the

COG j
R0
t is the maximum mining capacity in period t

Q0
t is the maximum processing rate in period t

Si is the set of panels that must be removed before starting the panel i
dt is the time discount factor
Xijt is the fraction of the panel i is extracted with the COG j in period t
Yit is a binary variable equal to 1 if the extraction of the panel I has started in

periods 1 to t, and equal to 0 otherwise;
djt is a binary variable controlling the selection of the COG applied in period t

The MIP formulation is:

Maximise
1
N

XN

n¼1

XP

i¼1

XG

j¼1

XT

t¼1

Vn
ij xijtd

t

 !
ð1Þ

Subject to the following constraints:
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xijt � djt; for all i; j and t ð8Þ

The objective function (1) represents the discounted cash flow. Constraints (2)
and (3) enforce the mining and processing limits on average. Constraints (4)–(6)
enforce the panel extraction precedence constraints, and constraints (7) and (8)
ensure that the same COG is applied to all panels extracted in any given time
period.

This MIP formulation is solved by the commercially available software package
CPLEX version 9.0, by ILOG Inc.

Case Study

To test the algorithm we have chosen ten conditional simulations of a block model
containing one type of metal and using one processing plant. Because of confi-
dentiality requirements, all the economic parameters were rescaled and do not
represent reality. All of the relative characteristics which demonstrate the potential
of this new method are not affected by this rescaling. The ultimate pit for the design
is chosen by applying the Lersch-Grossmann algorithm (Lersch and Grossmann
1965) in a procedure similar to that used in Whittle Four-X software. The ultimate
pit contains 191 million tonnes of rock and 62.9 ± 2.7 million tonne of ore (above
the marginal COG = 0.6%). The undiscounted value in the ultimate pit (if pro-
cessed with the marginal COG) is $(1316 ± 99) million. It was divided into six
mining phases and scheduled over 12 years. The mining rate was set to 30 Mtpa
and the processing rate to 5 Mtpa. The initial capital investment was assumed to be
$300 million, and the discount rate 10%. The base case optimisation was done
using the marginal COG applied individually to all conditional simulation.
The NPV for this case was $(404 ± 31) million. The mining schedule is shown in
Fig. 1. The second optimisation was done using the variable COG, but was based
on the mean grade block model, i.e. it was similar to an optimisation generated by
using a single deterministic model. This schedule was evaluated against all ten
realisations of orebody model and produced the NPV = $(485 ± 40) million, an
increase of 20% over the base case. This mining schedule is shown in Fig. 2. The
third optimisation was done using the algorithm described in earlier, using all
orebody realisations as input to the optimisation and produced the
NPV = $(505 ± 43) million, a further increase of 4.1% over the case of mean
grade based optimisation. This mining schedule is shown in Fig. 3. The relative
variability of NPV in all cases was roughly the same, about 8%. The cumulative
NPV graphs for the three different schedules are shown in Fig. 4, and the com-
parison between expected NPVs and their variability is shown in Fig. 5. Another
important result of the variable COG policy is that the pay-back period (defined
here as the time when the cumulative NPV becomes equal to zero) is decreased
from five to three years (see Fig. 4).
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The increase of 4.1% in NPV may be not seen as a very substantial, but it should
be mentioned that the block model considered does not have a high variability. The
relative variance in the undiscounted value of the ultimate pit is only 7.6%. There
are many deposits that have variability of the order of 20–30%. For these kind of
deposits the potential improvement in the expected NPV may be substantially
higher.

Fig. 1 Mining schedule optimised with the marginal COG

Fig. 2 Mining schedule optimised with the mean grade model
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Fig. 3 Mining schedule optimised with the set of conditional simulations

Fig. 4 Cumulative NPV for different missing schedules (solid line-variable COG on conditional
simulations; dashed line-variable-COG on the mean grade model; dotted line-marginal COG)
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Conclusions

A new method for simultaneous optimisation of the extraction sequence and cut-off
grade policy for a set of conditionally simulated orebody realisations has been
developed and demonstrated. This method is based on the mixed integer pro-
gramming model and uses the commercially available software package CPLEX by
ILOG Inc. The goal of the optimisation is to find the extraction sequence and cut-off
grade policy, which, when evaluated through the whole set of conditionally sim-
ulated orebodies (representing the range of possible outcomes), will produce the
best possible expected NPV. The degree of accuracy of this optimised schedule can
be estimated precisely, in contrast to a number of heuristic routines used in current
commercially available mining optimisation software packages. A fully functional
software prototype that uses the new optimisation method has been developed.

In this study, we were using the expected NPV as the objective function and the
mining and processing constraints were applied to the mean rock and ore tonnages.
Some of the possible extensions of this method may include some kind of penalty
functions in the objective function in order to find a schedule with a reduced
variability in NPV, defining hard constraints bounding the NPV from below, or
defining a lower bound on the annual cash flows. Another very interesting gener-
alisation may include a stochastic price model for metals and adjustable cut-off
grade policy.

Fig. 5 Comparison of expected NPVs and their variability for different mining schedules
(circle-variable COG on the conditional simulations; square-variable COG on the mean grade
model; traingle-marginal COG)
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Stochastic Mine Planning—Methods,
Examples and Value in an Uncertain
World

R. Dimitrakopoulos

Abstract Conventional approaches to estimating reserves, optimising mine plan-
ning and production forecasting result in single, often biased, forecasts. This is
largely due to the non-linear propagation of errors in understanding orebodies
throughout the chain of mining. A new mine planning paradigm is considered
herein, integrating two elements: stochastic simulation and stochastic optimisation.
These elements provide an extended mathematical framework that allows mod-
elling and direct integration of orebody uncertainty to mine design, production
planning, and valuation of mining projects and operations. This stochastic frame-
work increases the value of production schedules by 25%. Case studies also show
that stochastic optimal pit limits:

• can be about 15% larger in terms of total tonnage when compared to the
conventional optimal pit limits, while

• adding about 10% of net present value (NPV) to that reported above for
stochastic production scheduling within the conventionally optimal pit limits.

Results suggest a potential new contribution to the sustainable utilisation of
natural resources.

Introduction

Optimisation is a key aspect of mine design and production scheduling for both
open pit and underground mines. It deals with the forecasting, maximisation, and
management of cash flows from a mining operation and is the key to the financial
aspects of mining ventures. A starting point for optimisation in the above context is
the representation of a mineral deposit in three-dimensional space through an
orebody model and the mining blocks representing it; this is used to optimise
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designs and production schedules (e.g. Whittle 1999). Geostatistical estimation
methods have long been used to model the spatial distribution of grades and other
attributes of interest within the mining blocks representing a deposit (David 1988).
The main drawback of estimation techniques, be they geostatistical or not, is that
they are unable to reproduce the in situ variability of the deposit grades, as inferred
from the available data. Ignoring such a consequential source of risk and uncer-
tainty may lead to unrealistic production expectations (e.g. Dimitrakopoulos et al.
2002). Figure 1 shows an example of unrealistic expectations in a relatively small
gold deposit. In this example (Dimitrakopoulos et al. 2002), the smoothing effect of
estimation methods generates unrealistic expectations of net present value in the
mine’s design, along with ore production performance, pit limits, and so on. The
figure shows that if the conventionally constructed open pit design is tested against
equally probable simulated scenarios of the orebody, its performance will probably
not meet expectations. The conventionally expected NPV of the mine has a 2–4%
chance to materialise, while it is expected to be about 25% less than forecasted.
Note that in a different example, the opposite could be the case.

For over a decade now, a traditional framework has been used when dealing with
uncertainty in the spatial distribution of attributes of a mineral deposit, as well as its
implications to downstream studies, planning, valuation, and decision-making.
Now, a different framework than the traditional has been suggested and is outlined
in Fig. 2. Instead of a single orebody model as an input to optimisation for mine
design and a ‘correct’ assessment of individual key project indicators, a set of
models of the deposit can be used. These models are conditional to the same
available data and their statistical characteristics, and all are constrained to repro-
duce all available information and represent equally probable models of the actual
spatial distribution of grades (Journel 1994). The availability of multiple equally

Fig. 1 Optimisation of mine design in an open pit gold mine, NPV versus ‘pit shells’ and risk
profile of the conventionally optimal design

102 R. Dimitrakopoulos



probable models of a deposit enables mine planners to assess the sensitivity of pit
design and long-term production scheduling to geological uncertainty (e.g. Kent
et al. 2007; Godoy 2010, in this volume) and, more importantly, empower mine
planners to produce mine designs and production schedules with substantially
higher NPV assessments through stochastic optimisation. Figure 3 shows an
example from a major gold mine presented in Godoy and Dimitrakopoulos (2004),
where a stochastic approach leads to a marked improvement of 28% in NPV over
the life of the mine, compared to the standard best practices employed at the mine;
note that the pit limits used are the same in both cases and are conventionally
derived through commercial optimisers (Whittle 1999). The same study also shows
that the stochastic approach leads to substantially lower potential deviation from
production targets, that is, reduced risk. A key contributor to substantial differences
is that the stochastic or risk-integrating approach can distinguish between the
‘upside potential’ of the metal content, and thus economic value of a mining block,
from its ‘downside risk’, and then treat them accordingly, as further discussed
herein.

Figure 2 represents an extended mine planning framework that is stochastic (that
is, integrates uncertainty) and encompasses the spatial stochastic model of geo-
statistics with that of stochastic optimisation for mine design and production
scheduling. Simply put, in a stochastic mathematical programming model devel-
oped for mine optimisation, the related coefficients are correlated random variables
that represent the economic value of each block being mined in a deposit, which are
in turn generated from considering different realisations of metal content. Note that

Fig. 2 Traditional (deterministic or single model) view and practice versus risk-integrating
(or stochastic) approach to mine modelling, from reserves to production planning and life-of-mine
scheduling, and assessment of key project indicators
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the second key element of the risk-integrating approaches is stochastic simulation;
the reader is referred to Mustapha and Dimitrakopoulos (2010, in this volume) for
the description of a new general method for high-order simulation of complex
geological phenomena. The further integration of market uncertainties in terms of
commodity prices and exchange rates is discussed elsewhere (Abdel et al. 2011;
Meagher et al. 2010).

The key idea in production scheduling that accounts for grade uncertainty is
relatively simple. A conventional optimiser (any one of them) is deterministic by
construction and evaluates a cluster of blocks, such as that in Fig. 4a, so as to
decide when to stop mining, which blocks to extract when, and so on, assuming that
the economic values of the mining blocks considered (inputs to the optimiser) are
the actual/real values. A stochastic optimiser, also by construction, evaluates a
cluster of blocks, but as in Fig. 4b, by simultaneously using all possible combi-
nations of economic values of the mining blocks in the cluster being considered. As
a result, substantially more local information on joint local uncertainty is utilised,
leading to much more robust schedules that also can maximise the upside potential
of the deposit (e.g. higher NPV and metal production) and at the same time min-
imise downsides (e.g. not meeting production targets and related losses).

To elaborate on the above, the next sections examine a key element in the
risk-integrating framework shown in Fig. 2, that of stochastic optimisation. The
latter optimisation is presented in two approaches, one based on the technique of
simulated annealing, and a second based on stochastic integer programming.
Examples follow that demonstrate the practical aspects of stochastic mine mod-
elling, including the monetary benefits.

Fig. 3 The stochastic life-of-mine schedule in this large gold mine has a 28% higher value than
the best conventional (deterministic) one. All schedules are feasible
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Stochastic Optimisation in Mine Design and Production
Scheduling

Mine design and production scheduling for open pit mines is an intricate, complex,
and difficult problem to address due to its large-scale and uncertainty in the key
parameters involved. The objective of the related optimisation process is to max-
imise the total net present value of the mine plan. One of the most significant
parameters affecting the optimisation is the uncertainty in the mineralised materials
(resources) available in the ground, which constitutes an uncertain supply for mine
production scheduling. A set of simulated orebodies provides a quantified
description of the uncertain supply. Two stochastic optimisation methods are
summarised in this section. The first is based on simulated annealing (Godoy and
Dimitrakopoulos 2004; Leite and Dimitrakopoulos 2007; Albor et al. 2009); and the
second on stochastic integer programming (Ramazan and Dimitrakopoulos, in this
volume, 2013; Menabde et al. 2017, in this volume); Leite and Dimitrakopoulos
2014; Montiel et al. 2016; Goodfellow and Dimitrakopoulos 2017a, b).

Fig. 4 Production scheduling optimisation with conventional versus stochastic optimisers.
a Single representation of a cluster of mining blocks in a mineral deposit as considered for
scheduling by a conventional optimiser; b a set of models of the same cluster of blocks with
multiple possible values considered simultaneously for scheduling by a stochastic optimiser
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Production Scheduling with Simulated Annealing

Simulated annealing is a heuristic optimisation method that integrates the iterative
improvement philosophy of the so-called Metropolis algorithm with an adaptive
‘divide and conquer’ strategy for problem solving (Geman and Geman 1984).
When several mine production schedules are under study, there is always a set of
blocks that are assigned to the same production period throughout all production
schedules; these are referred to as the certain or 100% probability blocks. To handle
the uncertainty in the blocks that do not have 100% probability, simulated
annealing swaps these blocks between candidate production periods so as to min-
imise the average deviation from the production targets for N mining periods, and
for a series of S simulated orebody models, that is:

MinO ¼
XN
n¼1

Xs
s¼1

h�nðsÞ � hnðsÞ
�� ��þ Xs

s¼1

x�
nðsÞ � xnðsÞ

�� �� !
; ð1Þ

where hn(s) and xn(s) are the ore and waste production targets, respectively, hn(s)
and xn(s) represent the actual ore and waste production of the perturbed mining
sequence. Each swap of a block is referred to as a perturbation.

The probability of acceptance or rejection of a perturbation is given by:

probfacceptg ¼ 1; if 0new � 0old
e 0old�0new

T ; otherwise

�

This implies all favourable perturbations (Onew � Oold) are accepted with
probability 1 and unfavourable perturbations are accepted based on an exponential
probability distribution, where T represents the annealing temperature.

The steps of this approach, as depicted in Fig. 5 are as follows:

1. define ore and waste mining rates;
2. define a set of nested pits as per the Whittle implementation (Whittle 1999) of

the Lerchs-Grossmann (1965) algorithm, or any pit parameterisation;
3. use a commercial scheduler to schedule a number of where: simulated realisa-

tions of the orebody given 1 and 2;
4. employ simulated annealing as in Eq. 1 using the results from 3 and a set of

simulated orebodies; and
5. quantify the risk in the resulting schedule and key project indicators using

simulations of the related orebody.
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Fig. 5 Steps needed for the stochastic production scheduling with simulated annealing; S1 … Sn
are realizations of the orebody grade through a sequential simulation algorithm; Seq1 … Seqn are
the mining sequences for each of S1 … Sn. Mining rates are input to the process

Stochastic Integer Programming for Mine Production
Scheduling

Stochastic integer programming (SIP) provides a framework for optimising mine
production scheduling considering uncertainty (Dimitrakopoulos and Ramazan
2008). A specific SIP formulation is briefly shown here that generates the optimal
production schedule using equally probable simulated orebody models as input,
without averaging the related grades. The optimal production schedule is then the
schedule that can produce the maximum achievable discounted total value from the
project, given the available orebody uncertainty described through a set of
stochastically simulated orebody models. The proposed SIP model allows the
management of geological risk in terms of not meeting planned targets during
actual operation. This is unlike the traditional scheduling methods that use a single
orebody model, and where risk is randomly distributed between production periods
while there is no control over the magnitude of the risks on the schedule.

The general form of the objective function is expressed as:

Max
Xp
t¼1

Xn
i¼1

EfðNPVÞtigbti �
Xm
s¼1

ðctou dtosu þ cto1 d
to
s1 þ ctgu d

tg
su þ ctg1 d

tg
s1Þ

" #
; ð2Þ

where:

p is the total production periods
n is the number of blocks
bi
t

is the decision variable for when to mine block i (if mined in period t, bit is 1 and
otherwise bit is 0)
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The c variables are the unit costs of deviation (represented by the d variables)
from production targets for grades and ore tonnes. The subscripts u and l corre-
spond to the deviations and costs from excess production (upper bound) and
shortage in production (lower bound), respectively, while s is the simulated orebody
model number, and g and o are grade and ore production targets. Figure 6
graphically shows the second term in Eq. 2.

Note that the cost parameters in Eq. 2 are discounted by time using the geo-
logical risk discount factor developed in Dimitrakopoulos and Ramazan (2004).
The geological risk discount rate (GRD) allows the management of risk to be
distributed between periods. If a very high GRD is used, the lowest risk areas in
terms of meeting production targets will be mined earlier and the most risky parts
will be left for later periods. If a very small GRD or a GRD of zero is used, the risk
will be distributed at a more balanced rate among production periods depending on
the distribution of uncertainty within the mineralised deposit. The ‘c’ variables in
the objective function (Eq. 2) are used to define a risk profile for the production,
and NPV produced is the optimum for the defined risk profile. It is considered that
if the expected deviations from the planned amount of ore tonnage having planned
grade and quality in a schedule are high in actual mining operations, it is unlikely to
achieve the resultant NPV of the planned schedule. Therefore, the SIP model
contains the minimisation of the deviations together with the NPV maximisation to
generate practical and feasible schedules and achievable cash flows. For details,

Fig. 6 Graphic representation of the way the second component of the objective function in Eq. 2
minimizes the deviations from production targets while optimizing scheduling. This leads to
schedules where the potential deviations from production targets are minimized, leading to
schedules that seek to mine first not only for high grade mining blocks, but also with high
probability to be ore
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please see Ramazan and Dimitrakopoulos (2008) and Dimitrakopoulos and
Ramazan (2008).

Examples and Value of the Stochastic Framework

The example discussed herein shows long-range production scheduling with both
the simulating annealing approach in Sect. “Simulated annealing and production
schedules” and SIP model in Sect. “Stochastic integer programming and production
schedules”. Section “Stochastically optimal pit limits” focuses on the topic of
stochastically optimal pit limits. The application used is at a copper deposit com-
prising 14,480 mining blocks. The scheduling considers an ore capacity of 7.5 M
tonnes per year and a maximum mining capacity of 28 M tonnes. All results are
compared to the industry’s ‘best practice’: a conventional schedule using a single
estimated orebody model and Whittle’s approach (Whittle 1999).

Simulated Annealing and Production Schedules

The results for simulated annealing and the method in Eq. 1 are summarised in
Figs. 7, 8, 9 and 10. The risk profiles for NPV, ore tonnages, and waste production
are respectively shown in Figs. 7, 8, and 9. Figure 10 compares with the equivalent
best conventional practice and reports a difference of 25% in terms of higher NPV
for the stochastic approach.

Fig. 7 Risk based LOM
production schedule
(cumulative NPV risk profile)
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Stochastic Integer Programming and Production Schedules

The application of the SIP model in Eq. 2, using pit limits derived from the con-
ventional optimisation approach, forecasts an expected NPV at about $238 M.
When compared to the equivalent traditional approach and related forecast, the
value of the stochastic framework is $60 M, or a contribution of about 25%
additional NPV to the project. Note that unlike simulated annealing, the scheduler
decides the optimal waste removal strategy, which is the same as the one used in the
conventional optimisation with which we compare.

Figure 11 shows a cross-section of the two schedules from the copper deposit:
one obtained using the SIP model (bottom) and the other generated by a tradi-
tional method (top) using a single estimated orebody model. Both schedules

Fig. 8 Risk based LOM
production schedule (ore risk
profile)

Fig. 9 Risk based LOM
production schedule (waste
risk profile)
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Fig. 10 NPV of conventional and stochastic (risk based) schedules and corresponding risk
profiles

8

Mining Periods
1
2
3
4
5
6
7

Fig. 11 Cross-sectional views of the SIP (bottom) and traditional schedule (TS—top) for a copper
deposit
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shown are the raw outputs and need to be smoothed to become practical. It is
important to note that:

• the results in the second case study are similar in a percentage improvement
when compared to other stochastic approaches such as simulated annealing; and

• although the schedules compared in the studies herein are not smoothed out,
other existing SIP applications show that the effect of generating smooth and
practical schedules has marginal impact on the forecasted performance of the
related schedules, thus the order of improvements in SIP schedules reported here
remains.

Stochastically Optimal Pit Limits

The previous comparisons were based on the same pit limits deemed optimal using
best industry practice (Whittle 1999). This section focuses on the value of the
proposed approaches with respect to stochastically optimal pit limits. Both methods
described above consider larger pit limits and stop when discounted cash flows are
no longer positive. Figures 12 and 13 show some of the results. The stochastically
generated optimal pit limits contain an additional 15% of tonnage when compared
to the traditional (deterministic) ‘optimal’ pit limits, add about 10% in NPV to the
NPV reported above from stochastic production scheduling within the conven-
tionally optimal pit limits, and extend the life-of-mine. These are substantial dif-
ferences for a mine of a relatively small size and short life-of-mine. Further work

Fig. 12 LOM cumulative cash flows for the conventional approach, simulated annealing and SIP,
and is compared to results from conventionally derived optimal pit limits
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shows that there are additional improvements on all aspects when a stochastic
framework is used for mine design and production scheduling.

The new approach yielded an increment of *30% in the NPV when compared
to the conventional approach. The differences reported are due to the different
scheduling patterns, the waste mining rate, and an extension of the pit limits which
yielded an additional *5.5 thousand tonnes of metal.

Conclusions

Starting from the limits of the current orebody modelling and life-of-mine planning
optimisation paradigm, an integrated risk-based framework has been presented.
This framework extends the common approaches in order to integrate both
stochastic modelling of orebodies and stochastic optimisation in a complementary
manner. The main drawback of estimation techniques and traditional approaches to
planning is that they are unable to account for the in situ spatial variability of the
deposit grades; in fact, conventional optimisers assume perfect knowledge of the
orebody being considered. Ignoring this key source of risk and uncertainty can lead
to unrealistic production expectations as well as suboptimal mine designs.

The work presented herein shows that the stochastic framework adds higher
value in production schedules in the order of 25%, and will be achieved regardless
of which method from the two presented is used. Furthermore, stochastic optimal
pit limits are shown to be about 15% larger in terms of total tonnage, compared to
the traditional (deterministic) optimal pit limits. This difference extends the
life-of-mine and adds approximately 10% of net present value (NPV) to the NPV
reported above from stochastic production scheduling within the conventionally
optimal pit limits.
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Fig. 13 Stochastic pit limits are larger than the conventional ones; physical scheduling differences
are expected when bigger pits are generated
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Part II
Increasing Value and Technical Risk

Management



The Value of Additional Drilling
to Open Pit Mining Projects

G. Froyland, M. Menabde, P. Stone and D. Hodson

Abstract The value of a mining project is based upon a quantitative model of
material of value in the ground, a block model of the deposit, and a schedule for
extracting this material including relevant revenues and costs. The schedule usually
attempts to maximise the net present value (NPV) of the project over the life of the
mine. Frequently, a block model is the result of a smooth interpolation, such as
kriging, of data collected from holes drilled throughout the orebody. More drill
holes will lead to greater certainty in the contents of block models and from these
‘more accurate’ block models, schedules of greater ultimate value may be realised.
We discuss how conditional simulations can assist with rigorously valuing the
trade-off between the cost of extra drilling and the schedules of greater value that
may be constructed from the resultant block models of greater accuracy.

Introduction

In today’s competitive world the push to extract ever more value from mining
projects continues to increase. Initiatives to decrease costs and increase revenue are
being pursued. One of the most attractive options is the application of optimisation
tools to schedule the mining operation with the explicit objective of maximising the
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net present value (NPV) over the life of the operation. At present such tools are
applied on a short-term basis to cut costs of daily operations through efficiencies,
and on a long-term or life of mine basis to maximise NPV. In the latter case, NPV is
increased through:

1. Delaying or eliminating waste stripping.
2. More efficient routing of ore through the network of trucks, crushers, conveyors

and beneficiation plants.
3. More efficient resource use through better blending and cut-off grade decisions.

The promise is that the resulting plan will deliver pure value increases for little
or no cost.

The value of all of this number crunching depends upon the reliability of the
input data. The valuation of a mine project depends critically upon the accuracy of
the geological block model. On the one hand, we will never know precisely what
material is deep in the ground until we have excavated that material. On the other
hand, we must make plans for the future with the best information available to us at
the present time. While realising that information is not perfect, having a plan is
better than having no plan; this much is generally accepted as reasonable.

However, what if a planner were given the option of obtaining more information
with which to construct his or her plan? In this paper, additional information will
take the form of block models with increased accuracy, but the same principles may
be applied to other forms of information. Intuition suggests that if one’s block
model were more accurate, then one could construct a mine plan of greater value by
exploiting this additional knowledge (via a different mining sequence or cut-off
grade policy, for example). But how much would one be prepared to pay for this
additional knowledge? Clearly, the cost of the additional data should be less than
the expected increment in value that can be obtained with this new data, otherwise
the planner would construct a mine plan with the data already available. This is
common sense—the real problem is how to quantify, and value in a rigorous way,
the increment in project value that a mine planner can expect from this additional
information. If we can do this, then we will have valued the option of obtaining
additional information and have put ourselves in a position of making a decision on
quantifiable grounds.

We begin with some background on the numerical construction of block models
from drill hole data and the process of kriging. We then formalise what is meant by
optimising NPV using a kriged block model as the geological input. For optimi-
sation and valuation purposes the mining schedule is modelled as a mixed integer
linear program (MILP); see Johnson (1968), Caccetta and Hill (2003) and Ramazan
and Dimitrakopoulos (2004) for prior related work and surveys. We introduce the
option of undertaking an additional drilling program and briefly explain why this
may or may not increase NPV. Conditional simulations are introduced as a way of
quantifying uncertainty and we discuss how to optimise with multiple conditional
simulations. We detail a formalism that clarifies the notion of additional knowledge
and describe a method of determining the maximum value that one should pay for
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any additional drilling program. All of the introduced concepts and numerical
calculations are illustrated throughout via an example of a simple open pit mine.

Estimated Geological Block Models and Kriging

The information in a block model is gathered from a series of drill holes. Typically,
many long, narrow holes are drilled into the ground in the vicinity of the orebody,
and their cores are extracted and analysed for mineral concentrations. For sim-
plicity, in the sequel we will assume that the only relevant information contained in
the block model is the total tonnage of each block, and the concentration in per cent
of mass of a single metal element. Thus, one knows precisely1 the density of the
rock in the drill hole core and the concentration of the element (the grade) along the
core. The drill hole cores provide a sparse set of data from which we must construct
a full three-dimensional model of rock tonnage and percentage by mass of the metal
element in each block. This construction is commonly performed using a process
known as kriging. The kriged estimate of the block model is derived as a local
linear interpolation of the measured drill hole grades. If one assumes that the linear
correlation of the grades of pairs of blocks depends only on the distance between
the blocks and the direction in 3D from one block to the other, then the kriged
estimate of blocks grades is the best linear estimator of the block grades (‘best’ in
the sense of minimum variance); see Cressie (1991) for further details.

Long-Term Production Scheduling with Estimated (Kriged)
Block Models

We now describe how one creates an NPV optimal life-of-mine schedule using a
single estimated block model as input data. To simplify the notion of the value of an
open pit mine, we shall make several assumptions.

Assumptions for Scheduling Process

1. The infrastructure is fixed throughout the life of the mine. For example, process
plant capacities and mining capacities are fixed.2 By using additional binary
variables to encode a small finite number of possibilities, it is relatively

1To within error bounds typical of lab analyses.
2Truck fleet sizes are varied to maintain a constant mining capacity allowing for changes in haul
distance with depth. The cost of these truck fleet size variations are not considered.

The Value of Additional Drilling to Open Pit Mining Projects 121



straightforward to include the variation of infrastructure in an optimisation. For
example, what size process plant is optimal; when should the plant be expanded
or shut down; when should truck fleet sizes be altered to change mining
capacity? For clarity we do not include these additional variables in the problem
formulation.

2. The selling price of the product is known perfectly into the future. The price and
market volume limits (if relevant) may fluctuate over time, but in a completely
predictable manner. This is of course not reality; more realistic considerations of
price and volume are additional complications that should be modelled properly
and subjected to a rigorous analysis that is beyond the scope of this paper.

3. Grade control is assumed to be perfect. That is, once a block has been blasted,
its contents are precisely known. This means that a block with concentration
below a cut-off grade will never be sent to product and a block with concen-
tration above a cut-off grade will never be sent to the waste dump. This is not
realistic; errors in grade control do occur and may be significant. These errors
should be modelled as best they can with the available data and incorporated
into the valuation model. For simplicity, we do not consider this issue here.

The Objective

Our objective is to maximise the net present value (NPV) of the project. Suppose
that a project has annual cash flows c1, c2, …, cT. The NPV of the project is:

NPV ¼
XT

t¼1

Ct

ð1þ r=100Þt;

where:

r is the discount rate

Our mining project will receive a cash flow from every block that is excavated.
We assume that at any given time each block can take on one of two values:

Value ¼
�MiningCost; if the blocks is waste;
�MiningCost � Processing Cost if the blocks is Processed:
þ Sales Price X Metal Tonnes;

8
<
:

We assume that there are N blocks under consideration in our block model. Thus
there are N possible cash flows denoted vi for i = 1, …, N. We will apply our
discount rate on an annual basis, so all blocks taken in the same year receive the
same discount rate. Using the formula above, we arrive at:
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NPV ¼
XT

t¼1

PN
i¼1 vi;tvi

1þ r=100ð Þt ; ð1Þ

where:
vi,t is a 0,1 variable which takes the value 1 if block i is excavated in period

t and 0 otherwise
The binary numbers vi,t encode the order in which blocks are taken over the life

of the mine. We call this collection of binary variables a mining schedule.

Mining and Processing Limits

An operation can generally only mine and process certain tonnages each year,
depending on the capital invested in the mining and processing capacities. Let M
denote the maximum amount that can be mined in one year in tonnes and let P
denote the maximum amount that can be processed in one year in tonnes. If ri and oi
denote the amount of rock (ore and waste) and ore (feed tonnes to a process plant)
contained in block i, then we can set upper limits on mining and processing rates as
follows:

XN

i¼1

vi;tri �M; for all t ¼ 1; . . . ; T ð2Þ

XN

i¼1

vi;toi �P; for all t ¼ 1; . . . ; T ð3Þ

Wall Slope Considerations

The blocks should be removed in such a way that at the end of each year, the slopes
formed by the blocks remaining in the pit are lower than safe upper limits pre-
scribed by geotechnical studies. In reality, these pit slope limits are observed every
day; however, as we only track which blocks are taken in which year, and not when
a block is taken within a particular year, we only consider slopes at the end of each
year. This tracking is accomplished by:

vi;t �
Xt

s¼1

vj;s; t ¼ 1; . . . ; T: ð4Þ
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whenever slope conditions insist that block j must be removed prior to the removal
of block i.

Optimising NPV

Our formulation of this deterministic optimisation problem is not new; see, for
example, Caccetta and Hill (2003). The objective and constraints on mining and
processing limits are all linear, so that in principle we may employ a mixed integer
linear program engine to solve our problem. In practice, there are usually too many
blocks and periods for such a formulation to be solved in a reasonable amount of
time. The results that we will describe in this paper have been constructed using
aggregations of blocks as units to be scheduled. It is standard practice in these sorts
of problems that blocks be aggregated into larger units; see Ramazan (2007) for
example. These aggregations are built in such a way as to attempt to minimise the
effect of the loss of resolution. The algorithm used is proprietary information and
cannot be elaborated upon in this forum. Certainly, there is no loss in accuracy of
slopes with the aggregations that we use. We have used the optimiser CPLEX9.0 to
perform the optimisations.

An Example Pit

We will illustrate the concepts in this paper with a single product base metal mine.
Our input data is in the form of a kriged block model and 25 conditionally simu-
lated block models. The realdiscount rate used is r = 10%. A metal price is given
(assumed known and fixed), and fixed mining and processing rates are given (30
million tonnes/annum and 5 million tonnes/annum respectively). A cut-off grade
has been preselected and applied to the block models to generate a value for each
block. It is possible, and desirable, to perform the current analysis with variable
optimised cut-off grades and variable optimised mining and processing rates,
incorporating capital costs, but for simplicity we have not included such consid-
erations. The block models have around 30,000 blocks; for the optimisation pro-
cess, the blocks were aggregated into larger units in a way that preserves slopes and
minimises errors in accuracy. Figure 1 displays a representation of block value for a
vertical slice through our example pit. The blocks are grey shaded so that light grey
represents the lowest value and dark grey represents the highest value. Figure 1
shows block values for the kriged block model.
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Realising Optimised NPV and Perfect Block Models

The previous section makes things sound as though the problem of producing a
long-term schedule to maximise project NPV is all sewn up, apart from a few
approximations with aggregating blocks. In fact, a major assumption is that the
block model actually reflects reality in the ground. If the block model contains
errors (and it most certainly will) then what have we optimised? We’ve produced a
schedule that maximises project NPV for an incorrect block model. Wherever
reality deviates from our block model, our computed NPV will differ from the NPV
that will ultimately be realised from the project. It is clear that the closer the block
model is to reality, the closer the optimised NPV will be to a value that can be
realised. It also seems intuitive that the realised NPV will be greater if one has a
more accurate block model to base one’s optimisations on. Obtaining a more
accurate block model usually involves further drilling to create drill hole data with a
finer resolution. Extra drilling costs money, and how can one balance this additional
cost against this vague idea that realised NPV increases with more accurate block
models? We now embark upon proving and quantifying this intuition that extra
knowledge has a real value.

Conditional Simulations and Block Model Uncertainty

We will use the notion of conditional simulations to model the uncertainty in our
block model. A conditional simulation (e.g. Goovaerts 1997; Dimitrakopoulos in
press) is a stochastically generated block model that is consistent with the drill hole
data and their spatial continuity. Consistency with the drill hole data primarily
means two things:

Fig. 1 Kriged block values for a vertical slice through our example pit
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1. Each conditional simulation’s block attributes (mass, grade, etc.) for blocks
wholly contained in the drill hole cores are identical to those block attributes
measured in the drill hole cores.

2. Each conditional simulation is generated so that its block model would generate
a variogram identical to one constructed from the drill hole data. The con-
struction process guarantees that the first order and second order statistics of
each conditional simulation agrees with the first and second order statistics of
the drill hole data (e.g. The grade-tonnage curves of each conditional simulation
are identical to the grade-tonnage curves of the drill hole data).

Existing computer software (Deutsch and Journel 1997; Remy 2004) and newer
specialised algorithms (Godoy 2002; Boucher and Dimitrakopoulos 2012) can
produce as many conditional simulations possible; that is, different equally probable
block models of a deposit, all consistent with the drill hole data. Why should this be
done? Our intention is to think of each of these conditional simulations as an
‘alternate reality’. We recognise that our drill hole data will always be incomplete
and there will always be uncertainty about the contents of blocks that have not been
drilled. By creating multiple random block models we build up a probability dis-
tribution on the space of block models. For example, if we generated 25 conditional
simulations then block i would have 25 different grades assigned to it (one for each
simulation), and 25 different net values vi,k, k = 1, …, 25. If block i lay along a drill
hole core, then the vi,k, k = 1, …, 25 would all equal the net value computed from
the measured grade in the core sample. However, if block i lay away from a drill
hole, then the vi,k, k = 1, …, 25 could all take on different values.

Figure 2 displays a representation of block values for a vertical slice through our
example pit. As in Fig. 1 the blocks are grey shaded so that light grey represents the
lowest value and dark grey represents the highest value. Figure 2 shows the values
constructed from one of the 25 conditional simulations that we produced. Notice

Fig. 2 Conditional simulation block values for a vertical slice through our example pit
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that the kriged block model in Fig. 1 has a very smooth value or grade distribution,
while the conditionally simulated block model in Fig. 2 has a much more hetero-
geneous distribution of value (and therefore grade).

Project Valuation with Conditional Simulations

The underlying idea that each conditional simulation represents an alternate equally
likely reality of what is actually in the ground rests upon two assumptions. These
are that the drill hole data and the derived variogram are:

1. completely true (reality will always agree with the drill hole data and obey the
derived variogram), and

2. represent complete information (there is no further information available right
now beyond the derived variogram that may help to focus our random sampling
further).

If one accepts this idea of alternate realities, which reality should one optimise, if
any? Our goal is to determine a schedule

S ¼ fxi;tg t ¼ 1; . . . ; T
i ¼ 1; . . . ;N

that performs will on all onnr most possible realities. We argue that if one is
interested only in maximizing NPV (without trying to control risk or uncertainty)
then the appropriate thing to do is to find a schedule that achieves the greatest
expected NPV. To be precise, let NPV(k, s) denote the NPV obtained when the
block values in the kth conditional simulation is used to evaluate using the
schedule s. Formally

NPVðk; sÞ ¼
XT

t¼1

PN
i¼1 xi;tvi;k

ð1þ r=100Þt ð5Þ

Define the expected NPV for a schedule s as:

EðNPVðsÞÞ :¼ 1
k

Xk

k¼1

NPVðk; sÞ: ð6Þ

We propose that one should aim to find the schedule s* such that:

E(NPV(s�)) [E(NPV(s) for all feasible schedules s ð7Þ
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The schedule s* will be known as the schedule that maximizes expected NPV. IF
one had the opportunity to run the mining project K times, each time using the same
schedule but calculating the NPVs on the K different realities (different conditional
simulations), then the expected NPV is the natural quantity to maximize. In real life,
one only gets tone chance to dig up the mine, and the expected NPV will never be
realized. What will be realized in NPV (k*, s*) where k* represents the real block
model, which is probably different to any of the conditional simulations computed.
Nevertheless, we maintain that expected NPV is the best quantity to maximise. To
emphasise the fact that this expected NPV is computed using only information
available at the present time, we denote E(NPV(s*)) by NPVpresent knowledge.

Optimising Expected NPV

Since E(NPV(s)) is a linear combination of the linear functions NPV(k,s), E(NPV(s))
is also a linear function of

S ¼ fxi;tg t ¼ 1; . . . ; T
i ¼ 1; . . . ;N

and so we might try to use a mixed integer linear programming engine to maximize
expected NPV. Our objective is:

EðNPVðsÞÞ
¼ 1

k

Pk

k¼1

PT

t¼1

PN

i¼1
xi;tvi;k

ð1þ r=100Þt

¼ PT

t¼1

PN

i¼1
xi;t 1

k

Pk

k¼1
vi;k

� �

ð1þ r=100Þt ¼ PT

t¼1

PN

i¼1
xi;tvi

ð1þ r=100Þt
ð8Þ

The term on the far right-hand side indicates that the expected NPV may be
calculated using the mean values of each black Vi computed as

vi ¼ ð1=kÞ
X

vi;k

This seems natural as we are taking an average. Note that we are averaging the
dollar value of blocks, and not the grade of blocks. It is important that one uses
the individual block grades gi, k (for block i in conditional simulation k) to compute
the block values vi,k and then averages the vi,k (do not average the vi,k and then
copute and ‘average’ value).

Equation 8 takes the place of Eq. 1 when maximizing expected NPV. We now
need to find constraints to replace Eqs. 2–4. Equation 4 may remain the same as all
conditional simulations have the same slope conditions. Equations 2 and 3 are
problematic as the rock ri and ore oi will vary from simulation to simulation. In the
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optimisation results reported in this paper, we replace the rock and ore tonnages ri
and oi in Eqs. 2 and 3 with their mean values calculated as

ri ¼ ð1=KÞ
X

ri;k

and

oi ¼ ð1=KÞ
X

oi;k

This is an approximation that may result in some schedules being infeasible in
terms of mining or processing rate for some individual conditional simulations.
We believe that the numerical results reported in this paper are relatively insensitive
to this approximation.

The schedule obtained by optimising expected NPV is shown in Fig. 3.
The expected NPV obtained was $761.8 M; a value that is guaranteed to be within
0.2% of the true optimum by our mixed integer linear programming engine
CPLEX. Figure 3 is a plan view of our example pit with blocks grey shaded
according to their year of excavation; those blocks coloured light grey are

Fig. 3 Plan view of our example pit with blocks coloured according to the schedule obtained by
optimising expected NPV
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excavated first, while those coloured dark grey are excavated last. The white blocks
around the edge of the pit are never excavated.

Project Valuation with Perfect Geological Knowledge

So far we have been able to compute a schedule s* that maximises the expected
NPV of our mining project based on our current knowledge of the orebody. We will
now compute the best expected NPV we could achieve if we had complete
knowledge of the orebody. Complete knowledge of the orebody is the extreme
situation where we drill so much that we know exactly what is in the ground in
every block.

Because we know the block model exactly before excavation begins, we can
tailor our schedule to that block model. At this stage, we only have the K condi-
tional simulations as possible realities. Complete drilling to resolve exactly what is
in the ground is equivalent to knowing exactly which conditional simulation is
reality (drawing from our limited selection of K alternate realities). If it turns out
that simulation k is reality, we can produce schedule s(k) with the property that:

NPVðk; sðkÞÞ�NPVðk; sÞ for all schedules s ð9Þ

Let’s look at these schedules s(k) for our example pit. Figures 4 and 5 show
vertical slices through 2 of the 25 conditional simulations; their simulation numbers
are 20 and 8, respectively. The two chosen are the simulations with the highest total
block value (#20, Fig. 4) and lowest total block value (#8, Fig. 5). As before, light
grey represents low-value blocks and dark grey represents high-value blocks. Each

Fig. 4 Conditional simulation block values for a vertical slice through our example pit. This
simulation has the highest total block value

130 G. Froyland et al.



of these two block models was individually optimised to produce schedules s(20)
and s(8) each satisfying property (9). These schedules are displayed in Figs. 6 and 7,
whereas before, light grey represents those blocks taken early in the mine life and
dark grey represents those blocks taken latest in the mine life. In this example, there
are subtle differences between the schedules, but no dramatic difference in how one
should excavate the two orebodies.

Returning to our discussion, one must bear in mind that we cannot control which
simulation is reality, we only know which one it is. We therefore still need to
perform an average. If we know before excavation begins which simulation is
reality, then on average we can achieve an NPV of:

NPVPerfect Knowledge ¼ ð1=KÞ
XK

k¼1

NPVðk; sðKÞÞ ð10Þ

where each s(k) has the property (9) for k = 1, …, K.
NPVperfect knowledge denotes the expected value of the project if we are able to

‘wait-and-see’ which conditional simulation is reality before making our schedule
(our schedule is based on ‘perfect’ geological information). For each simulation, we
tailor our schedule to that block model, and can have different schedules for dif-
ferent simulations, because we know beforehand which block model is reality.
Contrast this to Eq. 7 where we had to choose a single schedule upfront. For our
example pit, we performed 25 separate optimisations to find the 25 individually
optimal schedules s(k). Using Eq. 10, we computed that NPVperfect

knowledge = $769.36 M.

Fig. 5 Conditional simulation block values for a vertical slice through our example pit. This
simulation has the lowest total block value
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The Value of Infill Drilling Information

We now have two NPVs; one representing the best expected NPV achievable with
no extra drilling and our present state of knowledge, and the other representing the
best expected NPV achievable assuming perfect knowledge of the orebody prior to
producing a schedule. These values are NPVpresent knowledge = $761.8 M and
NPVperfect knowledge = $769.36 M respectively. Thus the value of having perfect
orebody knowledge prior to scheduling is:

VOIDI: = NPVperfect knowledge � NPVperfect knowledge ð11Þ

where VOIDI stands for ‘Value of Infill Drilling Information’. We will show that
VOIDI represents an upper bound for the NPV increment (not including drilling
costs) achievable through additional drilling.

It is relatively straightforward to see that VOIDI is always non-negative:

Fig. 6 Plan view of our example pit with blocks coloured according to the schedule obtained by
individually optimising the conditional simulation shown in Fig. 4
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NPVperfect knowledge

¼ ð1=KÞ P
K

k¼1
NPVðk; sðkÞÞ

� ð1=KÞ P
K

k¼1
NPVðk; s * Þ by property ð9Þ

¼ NPVperfect knowledge

How is VOIDI related to the cost of future drilling programs? Any additional
drilling will result in the conditional simulations being updated. The spread of block
values will generally lessen between simulations because we have more drill holes
and we are more certain about the block values. Every extra hole drilled has the
potential to add value to the project because we might be able to use that extra
information to change our schedule and create greater project NPV. The option to
embark on additional drilling can be valued as:

Value of Additional Drilling ¼ ðNPVadditional drilling�NPVpresent knowledgeÞ�Drilling Cost

At present we can value NPVpresent knowledge and Drilling Cost, but we cannot
value NPVadditional drilling. What we do know is that

Fig. 7 Plan view of our example pit with blocks coloured according to the schedule obtained by
individually optimising the conditional simulation shown in Fig. 5
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NPVadditional drilling � NPVperfect knowledge. This is because we can never achieve
perfect knowledge through additional drilling, and we will never actually realise
NPVperfect knowledge. Thus:

Value of Additional Drilling�ðNPVadditional drilling �NPVpresent knowledgeÞ�Drilling Cost
¼ VOIDI�Drilling Cost:

The conclusion that one can draw from this is that one would never embark on
an additional drilling program if the drilling costs exceed VOIDI.

Voidi for Our Example Pit

In the case of our example pit, VOIDI = 769.36-761.8 = $7.56 M. As a fraction of
total project value, VOIDI is around one per cent; a very low figure. This indicates
that it is probably not worthwhile performing any further drilling on our example
resource.3 While we will show in Fig. 8 that there is a significant variation in block
values between different conditional simulations, and therefore, significant uncer-
tainty in our block model, the NPV-optimal schedules that are tailored to each
conditional simulation are not very different. Thus, knowing which block model is
reality does not change your decision about how to excavate the pit, and therefore
does not generate any additional value for the project. Additional information only
creates value if value-creating decisions are changed in light of the new
information.

Let us review the results of our optimisations in greater detail. Let NPV(k, s(m))
denote the optimal schedule for simulation m evaluated using simulation k, where
m = 1, …, 25, and k = 1, …, 25. The grey shaded lines in Fig. 8 plot the
25 � 25 = 625 NPVs corresponding to NPV(k, s(m)), where the y-axis is NPV(k, s
(m)), and the x-axis is k. Thus each vertical column corresponds to a single sim-
ulation k. It is clear from Fig. 8 that the dominant value differences arise from
different simulations, not different schedules. In fact, relative to variations between
simulations, the values are insensitive to schedule differences.

The highlighted red (dark grey) dots are the 25 values of NPV(k,s(k)), namely,
an optimal schedule for simulation k evaluated with its corresponding simulation.
Thus the dark grey dots should appear at the top of the vertical spread of points. The
value of NPVperfect knowledge is the mean value of the dark grey dots.

The highlighted light grey dots are the 25 values of NPV(k,s*), k = 1, …, 25.
The value NPVpresent knowledge is the mean value of the light grey dots. The
value of VOIDI is therefore the average difference in value between corresponding
light grey and dark grey dots. As the spread for each simulation is relatively small,

3Bear in mind that VOIDI has been calculated under specified conditions of mining rate, pro-
cessing rate and cut-off grade and is dependent on these parameters.
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and the light grey dots are mostly at the upper side of this small spread, the
difference between dark grey and light grey is small (the average difference is
$7.56 M).

Conclusions

We have described a rigorous computational method of determining the largest
amount that should be paid for a program of additional infill drilling on an existing
resource. This method required the construction of K conditional simulations, each
of which was consistent with the existing drill hole data. These K conditional
simulations were used to produce K individually optimised schedules s(k). A single
maximum expected NPV schedule s* was also generated via a single optimisation.
These K + 1 NPVs were then combined to produce VOIDI: = NPVperfect
knowledge –NPVpresent knowledge. In the case of our example pit, VOIDI clearly
demonstrated that it was highly unlikely that any additional drilling would create
further project value, saving the company money on extra drilling. The lesson to be

Fig. 8 Valuations of schedules: (i) individually optimised, (ii) optimising expected NPV
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learnt here is that high block variability in conditional simulations does not always
imply that there is value in further drilling to decrease this variability.

The notion of VOIDI is an extremely useful quantification tool that formalises
thinking on the matters of risk and uncertainty, and knowledge and information.
Without such formal quantities, one’s thinking can become very fuzzy. Of course,
this analysis is only as good as the conditional simulations are at representing the
true uncertainty in our current state of knowledge. If the conditional simulations do
not capture the full uncertainty and provide an accurate sample of the full allowable
variation of block values, then VOIDI will appear smaller than it really is.

Some Final Observations

1. An infill drilling program may delay the starting of mining.This will mean that
NPV perfect knowledge may be lowered due to this delay. We have not taken
this delay into account in our analysis, although any effect will be to reduce the
value of NPVperfect knowledge, and therefore lower the value of VOIDI.

2. One should bear in mind that VOIDI is a function of parameters such as:

i. mining rate;
ii. processing rate; and
iii. cut-off grade, and that under different conditions, the potential value of a

drilling program may be more or less valuable.

a. For example, a doubling of mining and/or processing rates will increase
NPV through a more rapid mine exploitation. VOIDI will increase in
proportion to the NPV increase; that is, both expected NPV and VOIDI
will increase by a roughly equal percentage.

b. The effect of changing cut-off grade may have a non-trivial impact on
VOIDI.

3. We have assumed that the resource is contained within the boundary of outer
drill holes. Clearly we cannot say anything about further value to be gained on
extra drilling of resources which are not well contained within the existing drill
hole boundary.

4. The conditional simulations we used were based on prescribed geological
regions in the block model. Within each of these distinct geological regions a
different variogram was used and the block grades were simulated indepen-
dently of block grades in other regions. The regions arose from a single geo-
logical interpretation of the drill hole data. In order to capture the full variability,
we require a rigorous method of computing multiple randomly generated vol-
umes and boundaries for each geological region. Within each of these volumes
we should conditionally simulate grade values as before. To our knowledge, the
problem of properly performing conditional simulation of volumes has not been
solved.
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5. Our optimisation process produces a block schedule while in practice, blocks are
removed as benches in phases or pushbacks. The block schedules that we have
evaluated in this paper are valid in the sense that all slope precedence constraints
are enforced; however, it is unlikely that our block schedules would be mineable
in practice. A full analysis would require constructing phases or pushbacks from
our K + 1 optimised block sequences and then optimising a panel or bench
schedule for each of the K + 1 pushback designs.

6. In practice, one would not drill the entirety of the orebody to fully achieve the
NPV increment promised by VOIDI. Rather, one wishes to target those blocks
that if drilled, would lead to the greatest increment in NPV. Ideally, one would
like to balance the drilling cost against the NPV increment and arrive at an
optimal drilling program that is different to ‘drill everywhere’. There are some
rules of thumb about which blocks you might choose to selectively drill (e.g.
those blocks with high grade variability and a mean grade around the cut-off
grade,4 or those blocks that are extracted in different periods when the different
conditional simulations are individually optimised). To formulate the problem
rigorously as an optimisation problem is difficult. One could for example:

(i) select blocks to be drilled based on the above rules of thumb;
(ii) turn to each of the K conditional simulations and fix the grades of those

blocks;
(iii) for each of the K conditional simulations, produce another K simulations

using variograms constructed from the additional hypothetical drill holes,
leading to K2 simulations in all; and

(iv) calculate VOIDI in an analogous way to that described earlier.

This procedure would value a putative additional drilling program. To identify
rigorously optimal locations for future drill holes is a far more difficult problem. In
this paper we have presented a rigorous valuation method that gives an idea of the
‘size of the prize’ if additional drilling were undertaken. Our method is a
decision-making aid. On the basis of VOIDI, the decision of whether to drill further
may become very simple.

Acknowledgments Clearly the project value also depends critically upon fundamental inputs
such as the product sales price and the market volume. We do not treat these dimensions in this
paper, but they may be considered and quantified in an analogous way.

4Rendu (1970) used the mining block kriging variance to estimate the likelihood of a block being
re-allocated to ore or waste in light of further drilling information. His work showed that there is
little point in drilling a regular drill pattern for areas of ‘known’ waste or ‘known’ high-grade ore.
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Stochastic Optimisation of Long-Term
Production Scheduling for Open Pit Mines
with a New Integer Programming
Formulation

S. Ramazan and R. Dimitrakopoulos

Abstract Conventional approaches to optimising open pit mine design and pro-
duction scheduling are based on a single estimated orebody model, which does not
account for geological variability. Conditional simulation can be employed to
quantitatively address the resulting grade uncertainty. Multiple simulated orebody
models provide a suitable input for stochastic integer programming (SIP), a type of
mathematical programming that generates the optimal result for a defined set of
objectives under uncertainty. In the case of production scheduling, the objectives
are to maximise the total net present value (NPV) and to minimise unsatisfied
demand for processed ore. Using a set of multiple simulated orebody models as
input into an SIP model allows for the integration of in situ deposit variability and
uncertainty directly into the production scheduling optimisation process.

Introduction

Stochastic integer programming (SIP) is a type of mathematical programming and
modelling that considers multiple equally probable scenarios and generates the
optimal result for a set of defined objectives within the feasible solution space
bounded by a set of constraints. SIP is defined as an extension of mixed integer
programming (MIP) with uncertainty in one or more of the related coefficients
(Escudero 1993). This tends to increase problem size and complexity when com-
pared with scheduling formulations based on MIP (Ramazan 2001). Different
approaches in SIP formulations are discussed in (Birge and Louveaux 1997);
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however, the existing developments in the technical literature are not directly
applicable to mining problems.

The effects of orebody uncertainty and in situ geological variability on approaches to
optimising open pit mine design have been shown in recent studies. Dimitrakopoulos
et al. (2002) show the substantial conceptual and economic differences of risk-based
frameworks. Dowd ( 1997) proposes a framework for risk integration in surface mining
projects. Ravenscroft (1992) discusses risk analysis in mine production scheduling,
where the use of stochastically simulated orebodies shows the impact of grade uncer-
tainty on production scheduling, and states that conventional mathematical program-
ming models cannot accommodate quantified risk. The need for optimisation methods
that can integrate uncertainty raises the need for efficient simulation methods, as dis-
cussed in Boucher and Dimitrakopoulos (2007), this volume, Godoy (2003) and
Dimitrakopoulos and Luo (2004). Pursuing this line of thought, Ramazan and
Dimitrakopolous (2004a) developed efficient MIP formulations to generate feasible
mining patterns of optimised probabilistic production schedules.

Although all these studies represent substantial developments in the field, they do
not directly integrate uncertainty in the optimisation process. Dimitrakopoulos and
Ramazan (2004) propose a probabilistic long-term scheduling optimisation method
based on linear programming to deal with uncertainty. The proposed method accounts
for risk through probabilities of being above or below a cut-off; however, it still does not
directly and explicitly account for orebody uncertainty. Godoy and Dimitrakopoulos
(2004) developed a new risk-inclusive long-term production scheduling approach
based on simulated annealing and achieved significant improvement in the total NPVof
a large gold mine project. Their model does not consider the issues of grade blending
and controlling the risk distributions for production targets; although it does minimise
the risk of not meeting periodical ore production targets.

This paper presents an efficient new SIP mathematical model that generates
optimum long-term production schedules for open pit mines for a defined objective
function, considering the operational requirements at the mine. The SIP model takes
multiple simulated orebody models, without averaging the grades, and maximises
the total NPV when considering geological uncertainty caused by grade variability.
The geologic risk discounting concept Dimitrakopoulos and Ramazan (2004;
Dimitrakopoulos, in press) is incorporated within the SIP model to control the risk
distribution between production periods. The penalty parameters for deviations
from targets are implemented to control the geological risk distribution in terms of
magnitude and variability. This SIP model has been developed as part of an
ARC-Linkage project, initially reported by Ramazan and Dimitrakopoulos (2003).

Stochastic Integer Programming Model

The SIP model developed herein accounts for uncertain inputs by considering
simulated grade realisations in the optimisation process. It can thereby minimise the
risk of a mine not meeting production targets as a result of geological uncertainty.
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The model contains an objective function and a set of constraints representing the
operational requirements of the mine. Within these constraints, the model performs
the necessary calculations to reach the objective. The objective function is defined
as the maximisation of the total NPV of the project minus the cost of deviations
between the planned amount of ore tonnage, grade and quality and the amount of
those produced from the actual operation. The NPV values of individual blocks in
the objective function are calculated from the average of the undiscounted eco-
nomic values in the simulated orebody models (Godoy and Dimitrakopoulos 2004),
not from the average of the grade. The parameters that are included in the objective
function to account for deviations are assigned for each simulated orebody model
and for each time period for each type of production target, such as maximum
periodical grade of ore, minimum grade of ore, maximum ore processing capacity
and minimum ore tonnage that has to be processed. These deviation factors are
calculated in the related constraint formulations that consider individual simulated
orebody models for each of the production periods.

Definition of Symbols and Terms

Two basic concepts for the set-up of the SIP program and model are:

• ‘Variable’ is a factor whose value will be determined by solving the mathe-
matical model. The solver CPLEX is used to solve SIP/MIP/LP type mathe-
matical models in this study.

• ‘Constant’ is a factor whose value has to be provided to the mathematical model
by the user.

The variable and constant factors used in the SIP model are defined below:

P is the total number of production periods, or mine life; constant
N is the number of blocks considered in modelling; constant
bti is a variable representing the percentage of block i mined in period

t; if a bti variable is defined as binary (0 or 1), it is assigned 1 if
block i is mined in period t and assigned 0 otherwise; variable

M is the total number of simulated orebody models; constant
dtosu is the excess amount of ore tonnage produced below a desired

tonnage, or lower limit, in period t if the deposit has the same
characteristics defined by the orebody model s variable. Note that
g instead of o in this term refers to grade and q to metal quantity.

ctou is the unit cost of dtosu for the objective function; constant. Note that
g instead of o in this term refers to grade and q to metal quantity
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dtosl is the deficient amount of ore tonnage produced below a desired
tonnage, or lower limit, in period t if the deposit has the same
characteristics defined by the orebody model s; variable. Note that
g instead of o in this term refers to grade and q to metal quantity

cto1 is unit cost of dtosl for the objective function; constant. Note that
g instead of o in this term refers to grade and q to metal quantity

fl is the orebody risk discounting rate used to calculate cto1 and ctg1
values; constant

fu is the orebody risk discounting rate used to calculate cto11 and ctgu
values; constant

f is used in this project as the orebody risk discounting rate:
f = fl = fu; constant

R is the periodical economic discount rate, which is set to 10% in this
case; constant
Ef (EV)0i g is the expected economic value to be generated in the
future time t if block i is mined in period t; constant. The expected
value of block i is calculated as follows:

EfðEVÞ0i g ¼ EVið Þ01 þ EVið Þ02 þ � � � þ EVið Þ0M
� �

=M

Ef (NPV)tig is the expected discounted value to be generated if
block i is mined in period t; constant. It is calculated as follows:

EfðNPVÞtig ¼ E EVð Þoi
� �

= 1þRð Þt.

Vt
i is a representation of Ef NPVð Þt1g; constant

Gsi is the grade of block i in orebody model s; constant
Osi is the ore tonnage inside block i in orebody model s; constant
Gmin andGmax are the targeted minimum and maximum average grade of the ore

material to be processed in a period; constant
mto

s1 is the dummy variable used to balance the equality constraints
when the ore tonnage produced is more than the minimum required
amount for the orebody model s; variable. Note that g instead of
o in this term refers to grade and q to metal quantity

mto
su is the dummy variable used to balance the equality constraints

when the ore tonnage produced is less than the maximum amount
for the orebody model s; variable. Note that g instead of o in this
term refers to grade and q to metal quantity

Yi number of blocks overlying ore block i considered for setting the
slope constraints; constant.
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The Objective Function

The objective function of the SIP model is constructed as the ‘maximisation of a
profit function’. The profit function is defined as the total expected NPV minus the
cost of deviations from planned production targets. It is expressed as follows:

Max
XP
t¼1

XN
i¼1

Vt
i b

t
i

|fflfflfflffl{zfflfflfflffl}
Part1

2
6664 �

XM
s¼1

ctou d
to
su þ cto1 d

to
sl þ ctgu d
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su þ ctgl d

tg
sl þ ctqu d
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tq
sl
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3
7775 ð1Þ

Part 1 of the objective function is used for maximising the total discounted
economic value while Part 2 is used for managing the risk of not meeting pro-
duction targets using conditionally simulated orebody models. Traditionally, one
orebody model, a smooth image of the deposit, is used for maximising NPV.
However, when the expected deviations from the planned amount of ore tonnage
having a planned grade and quality in a schedule are high in actual mining oper-
ations, the traditional model is unlikely to achieve the resultant NPV of the planned
schedule. So, the NPV to be generated from actual mining can be far from optimal
even if the schedule is optimised using a traditional true optimiser, MIP model
(Ramazan2001; Ramazan and Dimitrakopoulos 2004a, b). Therefore, the SIP
model is developed to consider the minimum of the deviations together with
maximisation of NPV to generate achievable NPV.

For constructing the objective function, initially, a constant value is assigned for
each of the cost parameters representing the cost at time 0 (base cost). Then, the risk
discounting parameter (f) is introduced to determine the cost at different time
periods by discounting the base cost using f (Dimitrakopoulos and Ramazan 2004).
The risk-discounting concept is then incorporated into the SIP model (Ramazan and
Dimitrakopoulos 2003; Dimitrakopoulos, in press).

If f is set to 0, the deviations in production targets can be expected to result in
more or less the same level between different production periods because the cost of
a unit deviation will be the same in all periods. However, the distribution of
deviations will also depend on how the variability in grade and ore tonnage is
distributed over the deposit and on how the relative magnitude of the costs for the
deviations used in the SIP model compare with the economic values of the blocks.

The Model Constraints

The deviation parameters are calculated within the SIP model by using the related
constraints that consider each of the simulated orebody models. In this paper,
equality-type constraints that use simulated multiple orebody realisations are called
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‘stochastic constraints’ or, more specifically, ‘soft stochastic constraints’ because
they are feasible for any value of the decision variables (bit).

Stochastic constraints related to grade blending are used to satisfy not only the
grade requirement at the mill but also the requirements for quality parameters, for
example, the combination of elements like aluminium and magnesium in nickel
mines, or silica in iron ore mines. This type of constraint can be expressed by:

XN
i¼1

Gsi � Gminð ÞOsib
t
i þ dtgsl � mtg

sl ¼ 0 Lower Bound ð2aÞ

XN
i¼1

Gsi � Gmaxð ÞOsib
t
i þ dtgsu � mtg

su ¼ 0 Upper Bound ð2bÞ

These constraints are written for each of the M—equally probable orebody
models (s = 1, 2,…, M) and P—time periods (t = 1, 2,…, P). The stochastic
constraints for ore tonnage and metal can also be written in a similar way as grade
constraits (Ramazan and Dimitrakopoulos 2003). Other operational constraints
(Ramazan and Dimitrakopoulos 2004a) are also included in the model although not
discussed in this paper.

Tests on a Hypothetical Two-Dimensional Data Set

This section presents applications of the SIP scheduling model using different cost
parameters for the deviation factors on a hypothetical two-dimensional
single-element gold deposit. The deposit considered herein is a subvertical ore-
body model that requires mining with a 45° slope angle. The model contains 200
square blocks, 20 and 10 along the horizontal and vertical axes, respectively. The
gold deposit is simulated by generating 50 orebody models that represent the
deposit with equal probabilities (Ramazan et al. 2004). The grades in these simu-
lated orebody models are then averaged, generating an orebody model referred to
herein as the ‘e-type’ orebody model. This orebody model is the equivalent of an
estimated model that is a smoothed image of the deposit, which is often used as
input in traditional optimisation methods. The grade distribution of three simulated
orebody models and the e-type model are shown in Fig. 1. The figure shows that,
although there are some similarities in the general characteristics of the grade
distribution, there are local differences between the simulated equi-probable ore-
body models. All the simulated models have the same histogram and spatial
continuity.
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Implementation of the SIP Model

The artificial deposit is scheduled to be mined for three years of production using
the SIP model. During the tests performed, two different cost parameters are used:
one aims to penalize the deviations in ore production (cto) in period t and the other
aims to penalise the deviations in the average grade of the ore produced (ctg) in
period t. In this study, the excess ore production (dtosu) and grade (dtosl ), and shortage
in ore production (dtosl ) and grade (dtgsl ) are penalized equally (cto = c1

to = cu
to and

ctg = c1
tg = cu

tg). The orebody risk discount rate (f) of 8% is used to distinguish the
cost of the deviations over the production periods. All the blocks in the deposit
model are considered for the scheduling. Even the blocks at the edges are assumed
to be mineable for the purpose of illustrating the new SIP concept, although they
would not be feasibly mined in actual operation.

The average grade of the ore tonnage mined in each period is constrained to be
between 4.7 and 5.2, and the minimum and maximum periodical ore tonnage
production is limited to be between 260 and 290 tonnes.
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Fig. 1 Grade distributions of the hypothetical 2D deposit in three simulated realisations of the
orebody and the e-type orebody model generated from the averaging of 50 simulated realisations
(at bottom right)
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Generating Multiple Schedules with Different Risk
Distributions

Table 1 shows the values calculated from the e-type orebody model corresponding
to the summary information of the schedules obtained assigning different values for
the c0o and c0g parameters. The first column, S, shows the schedule number, which
corresponds to a schedule generated by using the cost parameters given in the table.
The values for cost parameters are selected by trial and error. Initially, zero is
assigned as the cost of deviations from both ore production and grade targets. Then,
the values are randomly increased to generate different risk profiles. In some cases,

Table 1 Summary of the six different SIP schedules generated with different cost parameters.
Schedule S7 is the traditional schedule

S c0o c0g Period Value NPV Grade Ore Waste Sum

1 0.00 0.00 1 354.6 328 4.592 340 270 610

20.0 0.0 2 193.2 166 5.269 310 460 770

3 −14 −11 4.946 180 370 550

Sum/Mean 533.8 483 4.921 830 1100 1930
2 0.0 0.5 1 −550 −509 0.000 0 550 550

2 333.8 286 4.949 310 280 590

3 750 595 4.905 520 270 790

Sum/Mean 533.8 372 4.921 830 1100 1930
3 20.0 0.1 1 63.9 59 4.688 290 480 770

20.0 0.2 2 187.1 160 5.066 270 360 630

20.0 0.3 3 272.8 217 5.028 270 270 540

20.0 0.4 Sum/Mean 523.8 436 4.921 830 1110 1940
4 20.0 0.5 1 53.8 50 4.773 290 500 790

2 291.4 250 5.192 280 290 570

3 188.6 150 4.795 260 310 570

Sum/Mean 533.8 449 4.921 830 1100 1930
5 25.0 0.0 1 87.07 81 4.647 300 470 770

30.0 0.0 2 234.6 201 5.237 260 310 570

3 211.5 168 4.923 270 320 590

Sum/Mean 533.8 450 4.921 830 1100 1930
6 10.0 0.5 1 77.4 72 4.804 290 480 770

2.0 0.1 2 267.8 230 5.160 280 310 590

3 188.6 150 4.795 260 310 570

Sum/Mean 533.8 451 4.921 830 1100 1930
7 – – 1 388.4 360 4.718 280 140 420

2 52.0 44 4.930 280 500 780

3 173.4 138 5.125 270 380 650

Sum/Mean 613.8 542 4.921 830 1020 1850
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such as models 1, 3, 5 and 6, the same scheduling result is generated by using
different cost parameters for ore and grade deviations in the objective function.
Although it is possible to calculate the actual cost of not producing a certain amount
of metal in this case, it is not the best way of using the SIP model proposed. The
purpose of the SIP model is to generate scheduleswith optimal NPV and control the
risk distribution. This is because of the fact that different mines may have different
preferences of risk distribution, and management should be able to decide the most
suitable risk distribution for the specific mine. For example, if there is budget for
more exploration drilling after a few years, it may be preferable to mine the risky
part of the deposit later; if the mine’s overall profit is not very high, it may be best
to keep the risk as low as possible, but if the mine’s profit looks reasonably high, it
may be better to tolerate some risk if it has a significant potential in generating
higher NPV. Therefore, there is no method available to determine optimal values
for the cost of deviations for any mine. The important issue is to generate a schedule
that will produce the optimal NPV for a desired risk distribution rather than the
optimality of the costs for deviations.

In this paper, Schedule S7 is generated by applying a general form of MIP
formulations with the NPV maximisation objective in a single estimated orebody
model that is considered as traditional scheduling.

The first schedule S1 is generated by assigning 0 to both of the cost parameters
(c0o = 0 and c0g = 0), which makes the ore tonnage and grade constraints inactive.
Schedule S1 violates ore processing capacity constraints in all the periods by large
amounts, and grade constraints significantly. The resultant NPV from the mathe-
matical model cannot be achieved through the actual operation due to the high
deviations. This scheduling model is considered to be infeasible and unrealistic due
to the resulting high deviations.

The schedule S2 is also not realistic due to the fact that it produces no ore in the
first period for two main reasons. The first reason is that the cost of grade devia-
tions, c0g, is too high, dominating and destroying the effect of the NPV parameter in
the objective function. The second reason is that assigning zero base cost for
deviations in ore tonnage disables the processing capacity constraints. Schedules S1
and S2 show that cost parameters are crucial, and assigning wrong values to them
may generate infeasible schedules.

The scheduling periods of the schedules S3, S4, S5, S6 and S7 are depicted in
Fig. 2. The figure shows that the traditional schedule (S7) mines fewer blocks than
the other schedules. This occurs because, in the SIP models, a block is classified as
ore if it is considered to be ore in more than 40% of the simulated orebody models,
and this has resulted in the classification of more blocks as ore than are so classified
in the e-type model in this case.
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Quantification of Uncertainty Within Schedules

In a schedule, average deviations, average of non-zero deviations and probability to
deviate from the production targets according to the simulated orebody models are
considered as the uncertainty measurement parameters in this study. Table 2 shows
the percentage of deviations for each of the schedules. The third column
‘Deviations (per cent) e-type’ is the per cent deviations with respect to the e-type
orebody model.

The values reported in the fourth column are determined with respect to simu-
lated models as follows:

1. Assuming the values in the actual deposit are exactly the same as the simulated
orebody model 1, calculate the resultant ore tonnage (Ro) and the resultant
average grade of that ore tonnage (Rg) within each production period.

2. Calculate the percent deviations Do for ore tonnage and Dg for grade per period:
3. Repeat Step 2 for all the remaining simulated orebody models.
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Fig. 2 Cross-sectional view of the schedules at 45° slope constraint
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4. Find the average of the calculated Do and Dg values for each period and report
under ore and grade columns in the table, respectively.

The third column ‘deviations (per cent) e-type’ in Table 2 is calculated by
determining the Ro and the Rg values for e-type orebody model and using the
equations in Step 2.

The fifth column ‘Average of non-zero deviations (per cent)’ is generated as
follows:

1. Perform the above Steps 1 through 3.
2. Count the number of simulated orebody models that deviations are greater than

0, for ore (No) and grade (Ng) for each period.
3. Sum up the deviations, Do and Dg values, and report sum(Do)/No and sum(Dg)/

Ng under ore and grade columns.

Table 2 Deviations in ore production in scheduled periods and average grade

S Period Deviations (%)
e-type

Average
deviations (%)

Average of
non-zero
deviations (%)

Probability to
deviate

Ore Grade Ore Grade Ore Grade Ore Grade

1 1 18.22 −1.7 13 8 26 16 86 82

2 7.3 2.11 20 3 35 11 86 58

3 29.1 0.0 16 6 37 17 86 64

2 1 94.5 −95.0 79 26 79 46 100 88

2 7.3 0.0 13 3 25 12 76 48

3 83.6 0.0 80 4 80 13 100 54

3 1 0.0 0.0 10 8 28 17 66 80

2 0.0 0.0 5 4 22 15 50 48

3 0.0 0.0 9 2 23 10 76 52

4 1 0.0 0.0 10 5 25 16 78 64

2 0.0 0.5 7 4 21 10 60 68

3 0.0 0.0 8 4 24 11 66 58

5 1 3.6 −0.6 11 8 28 17 64 82

2 0.0 1.4 4 4 17 14 46 22

3 0.0 0.0 9 3 23 11 76 60

6 1 0.0 0.0 8 5 23 17 76 62

2 0.0 0.0 7 3 22 11 62 68

3 0.0 0.0 8 4 24 11 66 58

7 1 0.0 0.0 8 8 23 20 60 80

2 0.0 0.0 14 4 27 14 86 58

3 0.0 0.0 9 3 27 13 64 46
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This fifth column ‘average of non-zero deviations (per cent)’ provides a quantity
in terms of actual magnitudes of the deviations by not including the orebody models
with 0 deviations in the averaging process.

The last column ‘probability to deviate’ shows the probability of each schedule to
deviate in each production period. Since there are 50 simulated orebody models used
here, the values of ore (Po) and grade (Pg) in the table are calculated as follows:

Po = 100 No/50, Pg = 100 Ng/50
The SIP scheduling model is designed in such a way that it does not take ore

production and average grade constraints in the last period into consideration,
because this doesn’t affect the optimality of the schedule (Ramazan and
Dimitrakopoulos 2004b). Therefore, the schedules are compared and analysed on
the basis of the first and the second periods only, which leads to the infeasible
schedules S1 and S2 being excluded from further discussion.

Analysis of the Results

Table 2 shows that traditional schedule S7 has the highest total deviations in ore
production, 22%, for the first and the second periods among the schedules con-
sidered. The total average deviations in ore production in SIP schedules S3, S5 and
S6 are about 15, and 17% in schedule S4. Total average of the non-zero deviations
in ore production are 45% in schedules S5 and S6, and 46% in S4, which are
slightly less than the 50% in the stochastic schedule S3 and traditional schedule S7.
Traditional schedule S7 also has the highest total non-zero grade deviations, 34%.
The average probability of having the deviations in ore tonnages and grades is
highest in the traditional schedule, at 73 and 69% respectively on average for the
first two periods. Stochastic schedules S5 and S3 have lower average probability to
deviate in ore production at 55 and 58% respectively, while schedules S4 and S6
have 69% average probability during the two periods. These results illustrate that
the traditional schedule, which uses a single estimated input orebody model, per-
forms poorly compared with the stochastic scheduling models. The poor perfor-
mance of the traditional model is the result of its lack of ability to incorporate grade
uncertainty in the optimisation process and of a single input orebody model not
being able to represent the grade variability.

Schedule 5 seems to perform better than other schedules in terms of meeting the
grade and ore production targets as shown in Table 2. Table 1 shows that schedule
S5 is assigned higher cost for deviating from the ore production targets than the
other SIP schedules. Although zero cost is assigned for the deviations in average
grade, the grade deviations are similar to the deviations in the other schedules, and
the probability to deviate in grade as an average of the first two periods is lower
than in the other methods. This may be due to the fact that this schedule produced
more balanced ore tonnage between periods with the blocks that have higher
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probability for being ore. In this specific case study, producing ore tonnage with the
risk-robust ore blocks may have resulted in low-grade variations.

Figure 3 presents the production of ore tonnes from simulated orebody models,
the average of these ore tonne, and the minimum (LO) and maximum (UO) limits of
ore production constraining each of the schedules being considered for the first and
the second periods. It is shown that the average of the expected ore tonnes using the
traditional scheduling method is less than the lower limit, indicating a higher risk in
falling short in the first period. Since stockpiling is not considered in these
schedules, producing more ore tonnage than the maximum processing capacity, as
is the case in schedules S3 and S5 in the first period, should also be considered as
undesirable and costly. Schedules S4 and S6 can be considered better than the
others from the analysis of ore production in the first period. The variations in the
possible ore production of schedules S4, S6 and S7 are slightly less than those of
schedules S3 and S5 in the first period. However, schedule S7 should be considered
undesirable due to its higher possibility of not producing sufficient ore to feed the
mill.

The variations in the ore tonnage production during the second period indicate
that schedules S3 and S5 have relatively less risk of producing less than the lower
limit, or more than the upper limits of ore. The variability is not particularly large
among the stochastic schedules, but it is very large in the traditional schedule. The
traditional schedule also has a high probability of exceeding the maximum mill
capacity during the second period. Figure 3 indicates that the traditional schedule
S7 has the highest risk of deviating from the planned ore production.

There is not a significant difference in the total NPV of the project among the
simulated orebody models. The difference is that since the traditional model is not
likely to produce the planned amount of metal, the NPV may not be realised, but the
proposed method is likely to achieve the planned NPV.
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Fig. 3 Possible outcomes of ore tonnages generated by the schedules S3, S4, S5, S6 and
traditional schedule S7. LO and UO shown in the two horizontal lines represent lower and upper
bounds of ore production per period and are 260 and 290 tonnes, respectively
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Conclusions and Further Work

This paper has presented a new and efficient SIP model formulation that can
consider multiple simulated orebody models to optimise long-term production
scheduling. The objective function in this model is constructed as maximising NPV
of the mining operation, with a managed risk of not meeting production targets in
terms of ore tonnes, grade and quality. The scheduling method developed here
allows the decision-maker to define a risk profile based on the existing uncertainty
quantified by simulated orebody models. The decision-maker has the option of
minimising the risk in each of the production periods, or tolerating some risk in
certain periods, or all periods. In the traditional scheduling model, geological risk is
randomly distributed over the periods and can be significantly large. The new SIP
model allows the selection of the best mine design based on the resultant NPV and
the risk profile defined. The SIP method contains substantially less binary variables
than traditional MIP mine scheduling models and the SIP model is efficient in terms
of solution time. Although a hypothetical data set has been used to illustrate the
strength of the new SIP model in this paper, the model is applicable to large open
pit mines.

SIP models are proven to have significant economic benefits compared with
traditional models that use deterministic inputs (Birge and Louveaux 1997;
Ramazan and Dimitrakopoulos 2003; Ramazan et al. 2004; Dimitrakopoulos in
press). A recent example from applications with substantial monetary benefits from
the use of the stochastic models presented in this paper are available in (Jewbali
2006). The stochastic programming and modelling concept is useful not only for
optimising the production scheduling process, but also for investigating various
stages of the whole mining process, such as finding the value of an additional
drilling campaign as discussed in (Froyland et al. 2007, this volume).
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Stochastic Long-Term Production
Scheduling of Iron Ore Deposits:
Integrating Joint Multi-element Geological
Uncertainty and Ore Quality Control

J. Benndorf and R. Dimitrakopoulos

Abstract Meeting production targets in terms of ore quantity and quality is critical for
a successful mining operation. In situ grade variability and uncertainty about the spatial
distribution of ore and quality parameter cause both deviations from production targets
and general financial deficits. A stochastic integer programming formulation (SIP) is
developed herein to integrate geological uncertainty described by sets of equally
possible scenarios of the unknown orebody. The SIP formulation accounts not only for
discounted cashflows and deviations from production targets, discounts geological
risk, while accounting for practical mining. Application at an iron ore deposit in
Western Australia shows the ability of the approach to control risk of deviating from
production targets over time. Comparison shows that the stochastically generated mine
plan exhibits less risk in deviating from quality targets that the traditional mine
planning approach based on a single interpolated orebody model.

Keywords Stochastic integer programming � Mine scheduling
Joint-simulation � Iron ore

Introduction

Long-term mine planning and production scheduling aim to define the “best” mine
plan subject to the constraints imposed by physical and geological conditions,
policies and the operational mining approach. The term “best” is defined by
management objectives. These typically include maximising the monetary value of
the mining project as well as meeting customer expectations and guaranteeing a
safe operation. The expectations of customers are defined largely in terms of ore
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tonnage and ore quality characteristics to be delivered. In the case of multi-element
deposits, ore quality characteristics are defined by multiple inter-correlated ele-
ments. For example, in iron ore deposits, the elements iron (Fe), phosphorus (P),
silica (SiO2), alumina (Al2O3) and loss of ignition (LOI) are critical for ore quality.
Additionally, in many cases ore is produced out of multiple pits with different ore
characteristics. The goal of any global, long-term mine planning approach is to send
the most homogeneous ore blend out of multiple pits, meeting customer specifi-
cations, while guaranteeing optimal pit development and maximizing the utilization
of available mineral resources. In practice, however, when implementing a mine
plan, differences frequently occur between the produced ore quantity and quality
characteristics. It is well recognized that uncertainty in the description of the spatial
distribution of grades of various pertinent elements in the orebody as well as their
in situ variability are major contributors to these differences.

Traditional approaches to mine planning optimization are based on a single
estimated model of the orebody that is unable to account for in situ variability and
uncertainty associated with the description of the orebody (David 1977, 1988).
Contrary to estimation techniques, a different set of techniques provide a tool to
address shortcomings of estimation methods, termed conditional simulation
(Goovaerts 1997; Chiles and Delfiner 1999; Dimitrakopoulos 2007). Based on
drill-hole data and their statistical properties, conditional simulations generate
several equally probable models (or scenarios) of a deposit, each reproducing
available data and information, statistics and spatial continuity, that is, the in situ
variability of the data. The difference between the equally probably scenarios are a
quantitative measure/description of uncertainty. The subsequent integration of this
grade uncertainty and local variability into mine planning optimization allows for
the understanding and control of geological risk. This in turn aims to decrease
project risk and increase profitability.

The detrimental effects to mine planning optimization from ignoring in situ
grade variability and uncertainty in the description of orebodies are well docu-
mented (Ravenscroft 1992; Dowd 1997; Dimitrakopoulos et al. 2002, and others).
For example, Dimitrakopoulos et al. (2002) show the danger of relying on estimated
(average type) orebody models when optimizing. In their example, net present
value (NPV) assessment of the conventionally generated life-of-mine schedule
using simulated scenarios of the orebody shows the most likely NPV to be mate-
rialized standing at 25% lower than forecasted. The substantially positive contri-
bution of accounting for grade uncertainty through multiple simulated scenarios and
new stochastic optimization approaches is also well documented. Godoy and
Dimitrakopoulos (2004) show a long-term production scheduling approach based
on simulated annealing applied to a gold mine to result in a 28% increase of project
value compared to the conventional approach. Leite and Dimitrakopoulos (2007)
show the same order of improvement using this approach at a copper deposit.
A more general and flexible long-term production scheduling method that allows
the control of geological risk between production periods in terms of magnitude and
variability is based on stochastic integer programming or SIP (Birge and Louveaux
1997), and it is documented in Ramazan and Dimitrakopoulos (2013).
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An application of the SIP formulation to the long-term production scheduling of a
single-element deposit demonstrates its effectiveness and advantages in terms of
additional project value and associated risk management even for a relatively short
life of mine.

This paper contributes a mine planning optimization approach that addresses
joint multi-element grade uncertainty, as common in many mineral deposits, such as
iron ore. More specifically, the stochastic integer programming approach of
Ramazan and Dimitrakopoulos (2018, this volume) is expanded to (a) multi-element
deposits, and (b) includes new mineability constraints to facilitate accessibility and
equipment size constraints. In addition, the formulation developed herein is
exhaustively tested in an application at an open pit iron ore mine in Western
Australia, and within the context of multi-pit production planning. Testing includes
the ability of the SIP to control the risk of deviating from production targets in terms
of ore quality characteristics. In the next sections, the stochastic mathematical
programming formulation is first presented. The application and testing of the
formulation are presented, along with a comparison between the SIP and a tradi-
tional approach based on one estimated orebody model. Discussion and conclusions
follow.

Stochastic Production Scheduling

Global optimization of long-term production scheduling addresses issues of optimal
sequencing considering multiple pits, multiple elements, blending issues, stock-
piling options and alternative processing or product options (Whittle 2007). The
task of long-term production scheduling in a multi-pit operation can be divided into
two stages. The first stage is a multi-pit scheduling approach, which defines ulti-
mate pit outlines as well as proportions and element qualities, where each pit and
period contribute to the global target in order to optimize the global asset. In the
second stage the physical extraction sequence of blocks in each single pit is defined
as constraints to production rates and targeted element grades implied by the
multi-pit scheduling approach. This contribution concentrates on the long-term
scheduling of a single pit; multi-pit scheduling approaches have already been
successfully implemented, e.g. BLASOR, developed in BHP Billiton’s Technology
group (Stone et al. 2007).

The goal of long-term production scheduling under grade uncertainty of single
pits is to define a physical extraction sequence of blocks over periods so as to meet
multiple goals. These goals include (a) best mine development and best use of
available mineral resources for a maximization of the monetary value of the asset,
(b) control of risk of deviating from production targets, and (c) guarantees of a safe
operation. In this context, controlling the risk of deviating from production targets
is a major contribution and involves controlling probabilities and magnitudes of
deviations from production targets, as well as fluctuation of produced grades over
periods. The underlying geological uncertainty is captured by a set of conditionally
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simulated orebody models. Generally, production targets may be in terms of pro-
duced ore and waste tonnes and grades of different elements. Constraints are in
terms of practicality of the schedule guaranteeing equipment accessibility, mining
capacity, processing capacity, geotechnical aspects as well as blending
requirements.

Stochastic Formulation for Long-Term Production
Scheduling

A general formulation for long-term production scheduling under geological
uncertainty for multi-element deposits based on SIP is presented next. It is based on
the single element formulation in Ramazan and Dimitrakopoulos (2008). The
objective function and relevant constraints are explained in detail.

Objective Function

The SIP objective function, presented here for scheduling multi-element single
deposits, combines several goals. It aims to generate a production schedule that
optimizes the economic pit development considering constraints imposed by the
global multi-pit approach, while minimising deviations from production targets in
terms of tonnages and ore-quality as well as minimising costs of non-smooth
mining. Equation (1) presents the three parts of the objective function,

Maximise
PP

t¼1

PN

i¼1
cti � xti

�PS

s¼1

PP

t¼1

PR

r¼1

squtr � yutr þ sqltr � yltr
� �

�PP

t¼1

PK

j¼1
cSM � Y1tj

� �
ð1Þ

where P is the number of periods, N denotes the total number of blocks to schedule,
S represents the number of simulated orebody models used to capture geological
uncertainty, R is the number of targets including grade targets for different elements
and ore tonnage targets; ci

t represents the economic contribution of block number i
when mined in period t and is a representation of the expected economic value over
all values of block i at time t derived from each realisation s E{(NPV)i

t}; xi
t is a

variable representing the percentage of block i mined in period t; if an xi
t variable is

defined as binary (0 or 1), it is assigned 1 if block i is mined in period t and assigned
0 if not; squr

t is the upper deviation from production target r at time t considering
orebody model s, yur

t is the unit cost of squr
t to penalise excess production; sqlr

t is the
lower deviation from production target r at time t considering orebody model s, ylr

t
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is the unit cost of sqlr
t to penalise a deficit in production. Y1j

t is the number of
surrounding blocks, which are not mined in the period t or earlier when mining
block j. Surrounding blocks are those, which are no more than 3 blocks apart in
each direction (Fig. 1). The costs cSM are penalties associated with Y1j

t. Note that
this penalty only applies to a subset K of all blocks N. To avoid overlapping, only
every third block in each direction is considered to be the central block j.

The first part of the objective function is used for maximising the discounted
economic value in the context of the global optimization. Note the global multi-pit
approach accounts for interactions between different pits and aims to maximise
usage of resources and global value. The first part in Eq. (1) maximises the local
NPV of the single pit under consideration aiming to define an optimal mine
development constricted by the global plan. It accounts for profit-defining aspects,
such as stripping ratio. The discounted economic block value is calculated as
expected value from each realisation. The second part of the objective function
handles the deviations from production targets imposed by the multi-pit scheduling
approach for each simulated orebody model s including grades of all elements and
ore tonnage. By optimising over S possible scenarios, captured through multiple
equally probable orebody models, this part of the objective function aims to control
uncertainty and variability of the produced grades and ore tonnage. The magnitude
of grade variability in the generated schedule is controlled for each element e
considered and time period t by penalties associated with deviations sqlr

t and squr
t.

Note that deviations for each target and period yur
t and ylr

t are calculated by the
corresponding constraints, which are the grade constraint and the ore tonnage
constraint. Part three of the objective function controls smooth mining by penalising
not mining adjacent blocks in same period, the central block j is scheduled, or
earlier (Fig. 1). Y1j

t represents hereby the percentage of the 8 directly adjacent
blocks and the 25 blocks that are two block-widths distant, which have not been
mined in the same period as block j. Deviations of smooth mining for each con-
sidered block j and period t Y1j

t are calculated in the smooth mining constraint. The
priorities of the three competing parts in the objective function are controlled by the
magnitude of corresponding cost parameters for each part relative to each other.

j

Fig. 1 Inner and outer
window around block j in
smooth mining constraint
(after Dimitrakopoulos and
Ramazan 2004)
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The mine planner has to adjust these parameters so to define the best schedule that
compromises his objectives, for example the level of risk the planner is willing to
accept.

Constraints

The reserve constraint ensures that each block i is only being mined once over all
periods P and is given by

Xp

t¼1

xti¼ 1 ð2Þ

By setting the sum of binary variables of one block over all periods equal to one,
the block must be mined during the life of the mine.

All overlaying blocks mi must be mined before mining a given block i. This can
be implemented using cone templates representing the required wall slopes. One
possible formulation is given through

mi � xti �
Xmi

l¼1

Xt

r¼1

xrl � 0 ð3Þ

where l is the counter for the mi overlaying blocks.
Grade deviations squr

t from the upper bound and sqlr
t from the lower bound for

each element, period t and simulated orebody model s are defined by grade con-
straints given in Eqs. (4a) and (4b).

Xn

i¼1

ðgesi � Ge
maxÞ � Oi � xti �s qutr ¼ 0 ð4aÞ

Xn

i¼1

ðgesi � Ge
minÞ � Oi � xti þ sqltr ¼ 0 ð4bÞ

where gsi
e is the grade for element e of block i considering orebody model s,

Gmin
e and Gmax

e are the targeted minimum and maximum average grades of element e
of the ore material to be processed in a period t, Oi is the ore tonnage inside block i.

Ore tonnage deviations squr
t from the upper bound and sqlr

t from the lower bound
of the target at each period t are defined by

Xn

i¼1

ðOi � xtiÞ � qutr = PCmax ð5aÞ
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Xn

i¼1

ðOi � xtiÞ + qltr = PCmin ð5bÞ

where PCmin and PCmax are the targeted minimum and maximum ore tonnage to be
mined limited by the processing capacity.

The absolute tonnage of handled material, ore and waste, at period t is modelled
through constraint

Xn

i¼1

ðOi + WiÞ � xti �MCmax ð6Þ

where Wi is the waste tonnage inside block i and MCmax denotes the maximum
mining capacity.

A practical mining requirement is equipment access and mobility realised
through smooth mining patterns, which determine a feasible mining sequence. The
percentage deviations related to smooth mining as introduced in the objective
function (Y1j

t) are calculated through a smooth mining constraint,

�
Xnb1

k¼1

2 � xtk�
Xnb2

k¼1

1 � xtk + (nb1 � 2 + nb2 � 1Þ � xtj - Y1tj � 0 ð7Þ

Here, nb1 is the number of blocks directly adjacent (inner window) to block j to
mine and nb2 is the number of blocks which are two block-width distant to block j
(outer window) as illustrated in Fig. 1. Note that blocks in the inner window are
penalised twice as much as blocks in the outer window. This setup indicates that it
is more desirable to mine blocks in the inner window together with block j than
blocks in the outer window. If possible, blocks in the outer window are mined
together with block j; however, the solver has enough flexibility to mine those
blocks in other periods.

Controlling Risk Over Time for Different Objectives

As presented in the previous section, penalties associated with deviating from
production targets introduced in the objective function aim to control risk of
deviation for each element. These penalties can be defined in different magnitudes
for each element and period. This enables the mine planner to control the risk for
each element over time. The ability to control the risk over time is a concept
introduced by Dimitrakopoulos and Ramazan (2004) using a geological risk dis-
count rate. This discount rate is directly applied to penalties and thus controls the
risk distribution between periods. A high geological discount rate indicates that the
SIP formulation herein is emphasised to generate a schedule that is less risky in
early periods than in later periods. This may be useful when the operation aims to
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mine less risky parts of the deposits in early periods and more uncertain parts in
later periods. As mining progresses, more information about those uncertain parts
will become available in form of operational exploration. A geological discount rate
of 0% generates schedules that are expected to exhibit a similar level of risk in all
periods. The difference between penalties applied to upper deviations and lower
deviations defines the priority of upper and lower deviations from targets. For
example, it may be more important in an operation to keep the deficit in production
as low as possible while excess production may not be of importance.

Production Scheduling Under Uncertainty: An Application
at Yandi Central 1 Iron Ore Deposit, WA

Next, mine production scheduling under multi-element grade uncertainty is applied
to the Yandi Central 1 iron ore deposit in Western Australia. The first part describes
the Yandi Central 1 deposit focusing on geology, mining operation and current
production scheduling practice. The problem specification and description of input
data are discussed subsequently, in particular the process of incorporating the
stochastic production scheduling approach of a single deposit into the global
multi-pit scheduling problem. The input in terms of simulated ore body models is
presented as well as the operational, economical and risk controlling parameters.
Following, the practical approach of scheduling Yandi Central 1 is detailed,
including the practical implementation of the scheduling formulation and the
manual mine design to convert results to a practical schedule. A comparison
between schedules generated using a stochastic formulation to those using a
deterministic formulation considering one estimated ore body model is found at the
end of this section and demonstrates the benefit of the stochastic approach.

Yandi Operation and Current Production Scheduling Practice

The Yandi Central 1 deposit is part of the larger Yandi channel iron deposits (CID),
which occurs alongside the Marillana–Yandicoognica Creek system about 120 km
northwest of Newman, Western Australia. This deposit is part of the Yandi joint
venture operation, which includes multiple pits. The fundamental objective of this
complex operation is the achievement of customer defined on-grade shipments at
lowest costs by optimally blending from different pits with a diverse range of
resource grades. Critical geochemical parameters when evaluating the deposit are
iron content (Fe), silica content (SiO2), alumina content (Al2O3), phosphorus
content (P) and the water and organic content measured as loss on ignition (LOI), as
they influence the physical and chemical properties of the product and the per-
formance of the beneficiation process.
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For the global multi-pit optimization of the Yandi joint venture operation, BHP
Billiton’s Technology group developed a scheduling-algorithm, termed BLASOR
(Stone et al. 2004). Among other details BLASOR assigns targets in terms of
produced ore tonnes and grades for each period to each pit as contributing to the
global target. Although BLASOR, as used here, accounts for multiple elements, the
approach is based on a single estimated orebody model and does not incorporate
local uncertainty and in situ variability.

Problem Specifications and Input for Scheduling

The in situ variability and the incomplete knowledge of the spatial distribution of
the elements in the orebody are most critical for meeting customer specifications. In
order to incorporate in situ variability and uncertainty of geochemical parameters in
mine production scheduling, techniques for optimization under uncertainty can be
employed. The application of stochastic mine production scheduling to Yandi
Central 1 is based on stochastically simulated orebody models generated using the
computationally joint direct block simulation approach (Boucher and
Dimitrakopoulos 2009). Operational, economic and risk defining parameters are
explained in subsequent sections in more detail.

Stochastic Orebody Models at Yandi Central 1

The basis for mine production scheduling under geological uncertainty is a series of
simulated orebody models of the deposit. For this case study, 20 simulated orebody
models of the main ore zone (MOZ) are used, generated by Boucher (2003). This
joint-simulation of the five considered elements Fe, P, SiO2, Al2O3 and LOI
guarantees the local reproduction of cross-correlation between the elements. Note
that Fe is strongly correlated with the elements SiO2 and Al2O3. Each of the
resulting orebody models contains 3049 blocks in total. Block dimensions are 25 m
by 25 m by 12 m, representing typical mining units. Each block contains the
attributes total tonnage, ore tonnage as well as total content of each element Fe, P,
SiO2, Al2O3 and LOI. As an example, a map of the spatial distribution of Fe grades
in the orebody model is presented in Fig. 2 for the case of simulated realisation
number five.

Operational Parameters

Operational parameters, including ore production and required qualities are defined
by the global multi-pit scheduling approach undertaken by BLASOR. BHP Billiton
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Iron Ore provided scheduling results defining the contribution of Yandi Central 1 to
the global target for the following five years referred to as periods. For confiden-
tiality reasons, BLASOR results are scaled (Table 1).

Ideally, shipping grades are to be delivered with nearly zero variability. Since
this is unlikely, the industry sets target bands limited by an upper and lower bound.
Grades should not fall outside this band. Table 1 summarises initial ore tonnage and
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Fig. 2 Spatial distribution of Fe-grades in realisation number five for the lower, middle and upper
bench

Table 1 Ore tonnage and grade constraints for scheduling Yandi Central 1

BLASOR scheduling results of Yandi Central 1 for first periods

Period
No

Ore tonnage
(wt)

Fe (%) P (%) SiO2
(%)

Al2O3

(%)
LOI
(%)

1 14,000,000 57.1–
59.4

0.032–
0.038

4.6–5.2 0.90–
1.05

9.5–
11.0

2 10,000,000 57.1–
59.4

0.032–
0.038

4.6–5.2 0.90–
1.05

9.5–
11.0

3 10,000,000 57.1–
59.4

0.032–
0.038

4.6–5.2 0.90–
1.05

9.5–
11.0

4 9,000,000 57.1–
59.4

0.032–
0.038

4.6–5.2 0.90–
1.05

9.5–
11.0

5 7,200,000 57.1–
59.4

0.032–
0.038

4.6–5.2 0.90–
1.05

9.5–
11.0

Note Ore/Waste cut-off grade is Fe � 56%
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grade limits. The differentiation between ore and waste prior to the optimization is
realised through an Fe grade cut-off of 0.56%. Further, it is assumed that the
operation is flexible enough to account for different ore and waste production rates
between periods. For this reason, the maximum mining capacity, including ore and
waste production, was set to 20,000,000 t, which is about 5,000,000 t more than the
maximum rate. Due to the flat geometry of the deposit, one slope region is sufficient
to characterise the geotechnical constraints. The general slope angle is set at 45°.

Economical and Risk-Controlling Parameters

Table 2 presents the economic parameters, including price, mining and processing
costs and discount rates. Mining costs include blasting, extraction and transporta-
tion costs; processing costs account for crushing, conveying and stockpiling. Two
discount rates are identified, the economical discount rate and the geological dis-
count rate. The economical discount rate discounts cash flows over periods, while
the geological discount rate controls the risk of producing grades that fall outside
the limits over the periods. Recovery is 100%.

The stochastic scheduling approach applied in this case study is concerned with
the risk of not meeting production targets of produced element-grades. Penalties for
deviating from production targets are set initially to 1$/unit of deviation.

The Practical Scheduling Approach

Initial Run and Practical Mine Design

The upper part of Fig. 3 shows results of an initial run using above specified
parameters. The extraction sequence appears smooth and feasible, however there
are few blocks scheduled surrounded by blocks scheduled in different periods. To
generate a practical mining schedule that guarantees minimum mining width and
equipment accessibility, results of the stochastic formulation are refined using
manual mine design and haul road construction. These standard tools are available

Table 2 Economical
parameters for long-term
production scheduling of the
Yandi Central 1 iron ore
operation

Parameter Costs/Price

Price per ton recovered metal $30

Mining costs per ton $5

Processing costs per ton $5

Economical discount rate 10%

Geological discount rate 10%
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in commonly used mine scheduling software packages. In this study open pit design
from Earthworks Datamine is used (Datamine manual 2002). The schedule gen-
erated by the formulation can be used as a guideline to construct polygons for each
period and bench. These polygons, in combination with haul roads and ramps,
define the pit design for each period and provide a mineable production schedule.
Parameters used in this designing process are a 12 m bench height, 45° slope angle
and a 5 m berm between two toe and crest string, a road width of 25 m and a 8%
ramp incline. The lower part of Fig. 3 shows a south-east isometric view of the
resulting smooth schedule. Benndorf (2005) demonstrated that this type of
smoothing has no significant impact on the results, which means that the smoothed
schedule is still near to optimal.

Evaluating Results

In addition to produced ore and waste tonnage, results are evaluated in terms of risk
profiles of produced grades per period, in particular for Fe, SiO2, Al2O3, P and LOI
(Fig. 4). For each period the grades are shown considering each simulated orebody
realisation, which represent possible scenarios based on information available. The
spread of the different realisations provide an indication about uncertainty in

500 m
Period 1
Period 2
Period 3
Period 4
Period 5

500 m
Period 1
Period 2
Period 3
Period 4
Period 5

Fig. 3 Stochastic schedule in
ultimate pit—before (upper
part) and after (lower part)
smoothing using manual
design
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produced grades per period when extracting the deposit according to the generated
schedule. Analyzing the risk profiles of Fe, P and LOI results concludes that there is
no risk of deviating from production targets. SiO2 and Al2O3 appear to be more
critical in meeting production targets. For example, four out of twenty simulated
orebody models for SiO2 indicate a deviation from the lower target in period one.
Thus, there exists a 20% chance of not meeting production targets for SiO2 in
period one.

The Ability to Control Risk

A major contribution of the presented scheduling formulation is the ability to
control risk of deviating from production targets considering different quality
parameters. As experienced in the initial run, SiO2 and Al2O3 appear most critical in
meeting targets. To investigate the ability to decrease risk, three different schedules
were generated applying different penalties to both critical elements. The three
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Fig. 4 Results of stochastic scheduling in terms of ore and waste tonnages and risk profiles for Fe,
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Stochastic Long-Term Production Scheduling of Iron … 167



schedules were generated using low (1$ per unit deviation per ton), medium (10$
per unit deviation per ton) and high penalties (100$ per unit deviation).

Figure 5 shows the extraction sequence of the lower bench for each schedule. In
the case of each schedule, the deposit would be extracted in a different sequence.
The dispersion of the schedules increases with the magnitude of the penalties. In the
case of low penalties, the extraction sequence is smooth. Although medium
penalties generate a more dispersed schedule, it is still smooth enough to be con-
verted to a feasible schedule using manual mine design. High penalties generate a
very dispersed schedule, which could hardly be efficiently realised. The dispersion
is an expression of a higher selectivity, necessary in order to produce a homoge-
neous product in a tight quality band. Figure 6 shows the risk profiles for SiO2 and
Al2O3 for the three generated schedules. In case of SiO2, the effect of increasing
penalties already becomes obvious in the case of medium value penalties.
Compared to the low penalty case, the fluctuation of grades between periods
decreases significantly and there exists only a slight probability of deviating from
targets in period 2, 3 and 4. Higher penalties improve the result only marginally. In
the case of Al2O3, a decrease in probability of deviating from targets is recognizable
with higher penalties, however, there still exists a certain amount of risk. This is an
expression of a high in situ variability and uncertainty of the element, which cannot
be avoided by blending in the pit. A solution here, to decrease the risk, could be to
blend the ore with ore from different mines, where Al2O3 is less variable and
uncertain.

Generally, this evaluation of the scheduling formulation demonstrates that less
risk of deviation comes with a cost of higher selectivity, which is caused by the two

Lower bench

Period 1
Period 2
Period 3
Period 4
Period 5

Low penalties ( 1 per unit deviation)

High penalties (100 per unit deviation)

Medium penalties (10 per unit deviation)

Fig. 5 Different extraction schedules depending on the magnitude of penalties for the lower
bench
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competing objectives in the objective function: minimize risk of deviating from
production targets and generate a smooth schedule.
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Comparison to Traditional Production Scheduling
Approaches

To demonstrate the benefit, stochastic modelling generates compared to an
average-type based scheduling formulation, two production schedules are com-
pared; one generated using 20 simulated orebody models referred to as the
stochastic schedule and the second schedule is generated using a single
average-type orebody model referred to as E-type model. The E-type orebody
model is calculated by averaging block values of the 20 simulated orebodies for
each element. The same scheduling formulation with parameters comparable to the

Period 1
Period 2
Period 3
Period 4
Period 5

Fig. 7 Extraction sequence for the stochastic schedule (left) and the E-type based schedule (right)
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Fig. 8 Risk profiles for produced grades (silica and alumina) for the stochastic schedule (left) and
the E-type based schedule (right)
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stochastic approach generates the E-type schedule. Figure 7 shows the extraction
sequence for the stochastic schedule and the E-type schedule for the lower bench.
Both schedules show a relatively smooth sequence, which can be practically rea-
lised after manual open pit mine design. Figure 8 presents risk profiles for the
critical elements SiO2 or Al2O3 of both schedules. From the risk profiles presented
in Fig. 8, it is evident that the E-type based schedule is not able to account for
geological uncertainty. Although the mean values of the element grades produced
in a period are inside the production targets, considerable deviations from upper and
lower production limits for SiO2 or Al2O3 are visible. In the stochastic schedule
SiO2 deviates only slightly in periods two and five with a probability of 5 and 20%
respectively. The E-type schedule shows SiO2 deviations from targets in each
period with an average probability of 30%. The probabilities of deviating from
upper and lower limits are almost twice as high for the E-type schedule compared to
the stochastic based schedule, especially for Al2O3.

Conclusions

A new stochastic integer programming based mine production scheduling
approach, which considers jointly multi-element geological uncertainty, is pre-
sented and successfully applied to production scheduling at the Yandi Central 1
deposit, WA. It is demonstrated that the SIP formulation presented, can be
implemented as part of a multi-pit scheduling approach. In this application, results
from BLASOR, a multi-pit scheduling optimization approach, are used to define the
contribution of the Yandi Central 1 deposit, Western Australia, to the global target
per period in terms of desired grades of elements and ore tonnages.

Results demonstrate the ability of the stochastic approach to control risk of
deviating from production targets for critical quality defining elements.
A comparison between the stochastically generated production schedule and a
schedule generated using one estimated orebody model illustrated the benefit,
stochastic models can generate. The stochastic schedule shows a higher probability
in meeting production targets, which decreases overall project risk and can increase
project value.
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Stochastic Mine Planning—Example
and Value from Integrating Long-
and Short-Term Mine Planning Through
Simulated Grade Control, Sunrise Dam,
Western Australia

A. Jewbali and R. Dimitrakopoulos

Abstract A new multistage stochastic mine production scheduling approach is
developed and tested in a large operating gold mine. The proposed approach takes
short-scale orebody information in the form of grade control data into account. As
simulated orebodies used in stochastic long-term mine planning are based on sparse
exploration data and while grade control data are unavailable at the time of pro-
duction scheduling, the short-scale information is first simulated stochastically and
then serves as input to the optimisation process. Stage 1 of the approach generates
high density future grade control data for incorporation into the production
scheduling process based on sequential co-simulation and pseudo cross-variograms
between exploration data and grade control in previously mined out parts of a
deposit. In Stage 2, the technique of conditional simulation by successive residuals
enables pre-existing simulated orebody models to be updated using the simulated
future grade control information. Stage is based on a stochastic programming mine
scheduling formulation that handles multiple simulated orebody models from Stage
2 and accommodates both maximising Net Present Value (NPV) and minimising
deviations from production targets. Stage 4 includes quantification of risk in the
produced schedules generated, comparison of schedules and reporting. The appli-
cation at a large operating gold mine demonstrates that the proposed approach is
practical and adds value to the operation. The approach is shown to deliver addi-
tional ore (3.6 Mt more) and metal (2.6 million grams) which matches the mined
reconciliations and results in a cumulative NPV which is on average A$7.7 M
higher than that of a stochastic schedule without the simulated grade control data
and substantially higher (about 30%) compared to the NPV from the actual
schedule of the mine.
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Introduction

Stochastic mine planning is a relatively recent development aimed at addressing
uncertainty in ore supply from an orebody, commodity prices and metal demand, as
well as expanding to other issues of uncertainty in mine planning. The existing
work focuses largely on open pit mine design and production scheduling with
uncertain grades/metal content and geological conditions. It includes life-of-mine
(LOM) production scheduling based on optimal mining rates and simulated
annealing (Godoy and Dimitrakopoulos 2004), simulated annealing with constant
mining rates (Leite and Dimitrakopoulos 2007), stochastic integer programming
formulations including a stochastic stock pile (Ramazan and Dimitrakopoulos
2013), further tests of this last approach (Leite and Dimitrakopoulos 2007, 2014, in
this volume), expansion for multiple elements (Benndorf and Dimitrakopoulos
2018, in this volume) and others. The two key aspects of all the above mentioned
approaches and related example case studies are that the derived long-term
production schedules:

1. Have substantially higher present value than the traditionally used approaches
with differences between 20 and 30%, and

2. Minimise the potential deviations from production targets set given the available
drilling and orebody models.

Recent work further considers integrating market uncertainty in choosing from
different mine designs which also consider geologic uncertainty and show further
monetary benefits of quantifying and integrating uncertainty (Dimitrakopoulos and
Abdel Sabour 2007). Meagher et al. (2010) explore the effects of optimising pits in
a new approach that assesses the combined effect of metal and price uncertainties
using a network flow approach; their study shows once again the value of stochastic
approaches and the integration of key uncertainties to mine planning.

The work above is all based on two elements, in addition to new stochastic mine
design and scheduling methods. Firstly, the ability to simulate sets of equally
possible representations of the orebody being assessed. This set of orebodies is the
input to the above mentioned stochastic optimisers and represents the geological
uncertainty and local grade variability of the orebody, as understood from the
available drill hole data—this drastically differs from the conventional single esti-
mated (smoothed out or average type) input to conventional mine design and
optimisation methods and is the major reason for improved results from the
stochastic scheduling methods discussed. Secondly, the ability to assess cash flows
using evaluation methods based on multiple simulated realisations of the related
commodity price, rather than single average and typically constant, over the LOM
and metal price forecasts. Both this second element and the use of uncertainty in
metal content leads to improvements in the last two studies above.

A limit of both stochastic and conventional long-term planning and optimisation
of production planning is that short-term schedules may frequently deviate from the
expectations of long-term ones. While long-term production scheduling is used to
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maximise the Net Present Value (NPV) of a project, short-term production
scheduling focuses on meeting short-term production demand within the long-term
plan, given the processing capacity of the mill and managing the quality of ore
being processed. Both short- and long-term scheduling are usually based on
exploration-scale orebody models, whereas the actual short-term production per-
formance is controlled by local, blasthole-scale data used for grade control and ore/
waste selection, usually not available at the time of scheduling. As a result,
short-term production sequences deviate from the long-term plans and are adjusted
to meet mill demand or the production performance may substantially deviate from
forecasts. In short, discrepancies occur between what is forecasted and what is
actually mined.

A solution to the above is to consider production scheduling approaches that are
capable of reflecting short-scale behavior of the orebody beforehand, that is, at the
planning stage and through grade information available before the actual grade
control drilling. High density grade control information offers tighter controls on
geology and mineralisation characteristics and predicts qualities and quantities
closer to what is actually being mined. Although not available prior to blasthole
drilling, grade control data can be simulated in different ways. Simple random
sampling errors added to simulated realisations from exploration data, have been
used to assess production schedules reported in a feasibility study (Guardiano et al.
1995) and a conceptually similar more sophisticated approach is considered for
assessing mineral resources by Journel and Kyriakidis (2004). In operating mines,
errors from field duplicates or from nearest paired grade control holes and drill
holes have been used to simulate realisations of future grade control data and assess
short-term production schedules at Escondida copper mine, Chile (Khosrowshahi
et al. 2017). Multiple simulations of correlated sampling errors using data from
previously mined parts of the deposit have been used at Morila gold deposit, Mali
(Peatie and Dimitrakopoulos 2013) with excellent results in reconciliations. With
the exception of the last one, past approaches are relatively simplistic. All existing
work in this area assesses potential risks in production schedules or potential
reserves—however, it does not address the major question: How to improve or
reduce deviations of forecasts from actual production at the time of planning while
maximising the present value of an asset. This can be effectively addressed only by
technically integrating short-scale orebody variability and grade control with, short-
and long-term LOM production planning into one approach.

Short-scale information is the core element in the above-mentioned integration.
As this information is unavailable and needs to be stochastically simulated at the
time of LOM planning, the way to utilise a range of possible scenarios is through
the stochastic optimisation formulations used in stochastic mine planning as
reviewed above. This paper contributes a new multistage approach to production
scheduling that incorporates, short-scale deposit information and related grade
uncertainty into the scheduling process. The approach allows for the realistic
integration of short- and long-term mine production schedules, as well as the
generation of more reliable mine production forecasts. A case study at an operating
gold deposit demonstrates the approach, provides comparisons between the
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traditional schedules of the mine, accounts for stochastic schedules before and after
simulated dense grade control information and quantifies the expected monetary
value of the method. In the next sections, the proposed approach is first outlined,
the case study presented, results are analysed and conclusions follow.

A New Multistage Approach to Production Scheduling

The multistage approach to production scheduling proposed here is as sequence of
steps employing separate techniques for each stage. The approach differs concep-
tually from the traditional approaches in many aspects. A major difference is that it
requires multiple, equally probable representations of the orebody, which are
generated from spatial Monte Carlo simulation methods and at two different levels.
The first level is that of exploration-type data sets and information; the second level
is that of grade control data. This simulation-based framework assists in quantifying
and generating risk managing schedules as well as accommodates the interaction of
information at different scales, both in space and time. Different scales in space refer
to the:

• Local variability of the deposit and local classification of materials selected as
ore and waste through a grade control process, and

• Physical parts of the orebody that are mined over long periods of time as
individual pit units (cut-backs) and parts of individual pit units that correspond
to the parts of cut-backs mined over short periods of time from the same mining
front.

Different scales in time refer to the:

• Yearly time units on which the long-term plans are reported, and
• Relatively shorter time periods in short-term planning (weekly, monthly or

quarterly).

As a result of the ability to link information at different scales in space and time,
short scale variability, short- and long-term schedules are integrated. The proposed
approach or process has four stages shown in Fig. 1, which also shows how this
compares to the four steps followed in the existing stochastic LOM planning:

1. Stage 1: Generate high density future grade control data for incorporation into
the production scheduling process. This data is not yet available at the time of
planning and is simulated.

2. Stage 2: Update pre-existing simulated orebody models using the simulated
future grade control information and a suitable stochastic simulation technique.

3. Stage 3: Generate production schedules using a stochastic optimisation method
handling multiple simulated orebody models from Stage 2, which accommo-
dates both maximising net present value and minimising deviations from pro-
duction targets.
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4. Stage 4: Quantify grade risk in the produced schedules, compare schedules with
and without simulated short scale orebody information, and report mine
schedules as needed.

These four stages are discussed next in greater detail.

Stage 1—Simulation of Future Grade Control Drilling Data

High density future grade control data can be simulated using several approaches,
such as those reviewed in the introduction. A more elaborate and effective method
is outlined here and is used in the case study that follows. The method, schemat-
ically shown in Fig. 2, assumes that there are mined out parts of an orebody with
grade control information of comparable quality and characteristics to the remainder
(as yet un-mined) of the orebody being studied.

Simulation of orebody models from 
exploration data

Stochastic optimization and 
generation of production schedules

Existing Stochastic LOM 

Scheduling Process

Updating of the existing orebody 
models with the future data

Stage 1

Schedules
• Quantification of risk and analysis in schedule 
• Comparisons 

o Stochastic mine schedule derived from simulations based on 
simulated grade control information (Stage 2) 

o Stochastic mine schedule derived from simulations based on 
exploration data only

• Reporting 

Stage 4

Simulation of high density ‘future’
grade control data

Stochastic optimization and generation 
of production schedules 

Proposed Multistage Approach with 

Short-scale Information

Stage 2

Stage 3

Fig. 1 Schematic presentation of the proposed multistage mine scheduling approach
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Exploration drilling and grade control data from a mined out section or bench of
a deposit is used to quantify the spatial relationship between the two types of data.
As it is not physically possible to have exploration and grade control information
available at the same location, their spatial cross-correlation (relationship) is
quantified through the so-called pseudo cross-variogram (Myers 1991). Having
quantified this spatial relationship, a method such as the sequential Gaussian
co-simulation of two variables (Goovaerts 1997) can be used to generate the future
grade control data in un-mined sections of an open pit. The co-simulation approach
ensures that the simulated future grade control data have the same distribution as
past grade control information and the same auto- and cross-correlation (with
exploration data).

Stage 2—Updating of Existing Simulations with Future
Grade Control Data

The second stage of the production scheduling approach presented herein involves
the updating of pre-existing simulated orebody models. This is because orebodies
under study have frequently already been simulated for other purposes, or because
there can be more than one scenario of possible sets of future data to consider, and
so on. Generally the ability to update pre-existing realisations of an orebody is
useful in improving the efficiency of the process. The only known simulation
technique that is capable of providing updating capabilities to accommodate the
updating of pre-existing simulations with new data such as grade control is the
technique of conditional simulation by successive residuals or CSSR
(Vargas-Guzman and Dimitrakopoulos 2002). The end result of the use of CSSR is

Bench/section of pit already mined out
Exploration data
Grade control data

 Define relationship

Exploration data
Simulate grade control data

Bench/Section of pit NOT yet mined out

Fig. 2 Simulating future grade control data
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a set of simulated orebody models that are conditioned on both the known
exploration data and the simulated future grade control data. Note that new infor-
mation for updating may also be additional data from near mine exploration dril-
ling, or in fill drilling.

Stage 3—Stochastic Integer Programming Formulation

To generate production schedules, a stochastic optimisation formulation based on
Stochastic Integer Programming (SIP) is used, and it is a simpler version of the one
developed in Ramazan and Dimitrakopoulos (2013, 2017) as well as discussed in
Leite and Dimitrakopoulos (2014). The objective function of this formulation
maximises the expected discounted cash flows while minimising the cost of devi-
ating from the set production targets and it is:

Max
Xp

t¼1

XN

i¼1
E NPVÞtiXt

i�
� XS

s¼1

XP

t¼1

XR

r¼1
sCutrYu

t
r þ sC1trY1

t
r

� � ð1Þ

where:

P is the number of periods to schedule
N is the total number of blocks to schedule
S refers to the number of simulated orebody models
R is the number of targets
Xi is a binary variable indicating block i mined in period t (1 = mined/

0 = not mined)
E(NPV)i is the expected NPV to be generated if block i is mined in period t
Yutr is the excess amount produced compared to the target (grade/tonnage) r

in period t for orebody model s
sCutr is the unit cost to penalise Yutr in period t
Y1tr is the deficient amount produced in relation to target (grade/tonnage) r in

period t for orebody model s
sCutr is the unit cost to penalise Y1tr in period t

The first component in Eq. 1 maximises the total discounted cash flow and the
expected Net Present Value (NPV) is determined by calculating economic values
for each simulated model, then averaging them. This component reflects the con-
ventional goal of optimising total discounted cash flow over the LOM. The second
component minimises the deviations between expected productions as these are
described by simulated orebody models used as input and a set of mine production
targets and minimises the risk of not meeting targets due to grade uncertainty. The
deviations are calculated over the set of simulated orebody models and are pena-
lised with costs. This second component reflects the goal of short-term production
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scheduling, and its use together with the first component provides the means to
integrate long- and short-term planning, in the context of the approach proposed
herein. It should be noted that a novelty of this formulation is that the costs can be
discounted for each subsequent period using a geological discount rate. As a result,
the cost related to not meeting mill requirements can be set higher in the first period
than in subsequent periods, allowing the risk distribution between production
periods to be managed.

Stage 4—Quantification of Uncertainty

Stage 4 aims to quantify grade risk in the produced schedules that have been
generated. Any schedule can be assessed against possible scenarios of orebodies, be
they constructed from exploration datasets only or in combination with future grade
control data. This allows comparisons and assessments, including an evaluation of
effects from potential short-scale orebody variability.

Case Study at a Gold Mine

The Gold Deposit and Mine

The gold deposit in this case study lies along a shear zone and the general trend of
the gold mineralisation is parallel to this zone. Gold mineralisation can be both
secondary and primary. Secondary mineralisation is related to iron oxidation fronts
and water tables and to aggregation within paleochannels, while primary mineral-
isation can roughly be related to high strain shear zones by low strain
stockwork-vein zones. Based on the deposit geology, 17 domains are inside the
open pit (sections of which are shown in Fig. 3). Mining is done using four
excavators which load into 25 rear dump trucks. Since opening, the mine has
produced more than two million ounces of gold. The pit is about 2.1 km long and
1.1 km wide with a final depth of 450 m to be reached at end of its life. The total
amount of waste mined in 2004 was about 43 Mt, which drops to about 26 Mt in
2005 and again to 11 Mt in 2007. This will necessitate a resizing of the equipment
fleet sometime in mid-2005. Figure 3 depicts the long-term (yearly) production
schedule in use at the mine. The mine’s schedule proceeds one layer at a time and
indicates that the pit will be exhausted by the end of the fifth year. At this mine,
blasting occurs on 7.5 m benches and grade control is done using reverse circu-
lation drilling on 5 m � 7 m spacing. The plant capacity is 3.6 Mt/a and the mill
circuit consists of crushing and grinding after which the gold is recovered through a
Carbon in Leach (CIL) circuit.
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Generation of Future Grade Control Data

Within the mined out section of the pit, 75,789 grade control drill holes were
available. These were separated based on the geological domain they belonged to.
In addition, 3934 exploration diamond and reverse circulation holes were available
within the same section of the pit. These were also divided based on geological
domains. For each geological domain these two sets of information were used to
derive the relationship between exploration and grade control data. This relation-
ship can than be extended to unmined sections of the pit where only exploration
data is available. For the purposes of this study, twenty future grade control data
simulations were generated, using the sequential cosimulation method discussed
earlier, on 5 m � 7 m � 2.5 m spacing in the unmined sections of the pit (the
volume displayed in Fig. 3).

Updating Existing Simulations with Future Grade
Control Data

Stage 2 of the production scheduling approach involves using conditional simu-
lation by successive residuals to update pre-existing orebody models. The 20
available simulations (on 2 m � 2 m � 2.5 m spacing) conditioned on exploration
data were updated with the 20 simulated future grade control data generating a set
of 400 simulations that are conditioned on both the known exploration data and the
simulated future grade control data scenarios. Twenty updated simulations are
chosen at random for further study. For reasons of comparison and processing, the
simulations are reblocked to 15 � 30 � 7.5 m3 blocks, which is the block size
used at the mine. Grade tonnage curves are shown in Fig. 4. It is apparent from the
figure that for the model based on exploration data, the average grade above cutoff
is higher at all cutoffs. The amount of tonnes above cutoff is lower compared to the
updated models.

Figure 5 displays the ore tonnes and metal recovered when mining is done
according to the mine’s yearly schedule (as shown in Fig. 3) when short scale
deposit information is taken into account. The risk profiles were generated by
running the 20 updated models through the mine’s yearly schedule. During this
process the tonnes of ore/metal produced and NPV generated by each updated
model was recorded and plotted on Fig. 6. The updated models indicated that the
amount of ore tonnes produced is not enough to fill the plant to capacity (3.6 Mt/a)
for all the years from 2005 to 2009. They also indicate a 50% chance of negative
NPV in 2005 when insufficient metal is produced.
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Deriving Production Schedules using the SIP Formulation

The following section describes the process, as given in Fig. 1, used to derive the
production schedules. First the 20 simulated orebody models conditioned on
exploration data are put through the SIP formulation in Eq. 1. Next, the 20 updated
orebody models are then run through the SIP formulation and a production schedule
accounting for short-scale orebody information is derived. This methodology
allows for a comparison of the schedules derived using orebody models based on
two sets of information. As a result, it provides a look at the consequences of not
taking closer spaced grade control information into account when performing
production scheduling.

The production schedules were generated for four month periods (short-term
schedules). The production capacity for each four month period was set at 1.2 MT
and the targeted grade constraints between 2 and 7 g/t. To make the schedules
practical for equipment mobility and space, the schedules were smoothed. After
smoothing, the simulated orebody models are run through their respective schedules
to generate risk profiles for ore, metal and NPV. Each short-term schedule was
regrouped to generate the yearly LOM schedule of the mine. The risk profiles of the
production schedule derived from the 20 exploration based models for ore, metal
and NPV are shown in Fig. 6. As the figure shows, the yearly production target of
3.6 Mt/a is met for 2005–2007. Note that this schedule predicts that the pit will be
exhausted by 2008. Figure 7 describes the schedule derived from the updated
models. This schedule extends the life of mine by another year to 2009. As the
figure shows, the short-term schedule has no problem delivering 3.6 Mt/a of ore in
all years except in 2009, when the last of the ore will be mined.
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Risk profile for NPV
Schedule derived from simulations based on exploration data
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Risk profile for ore production
Schedule derived from updated models
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The schedules based on updated models produce 3.6 Mt more ore and as a
consequence 2.6 million grams more metal, which results in a cumulative NPV that
is A$7.7 M higher. The production schedules based on orebody models derived
from exploration data (that do not account for local orebody knowledge and
characteristics) underestimate the actual tonnes of ore mined from the orebody. The
derived exploration based schedules are a conservative option. Taking local grade
control information into account indicates that there is probably sufficient ore to
extend the life of mine to 2009 compared to 2008 when only exploration data is
used. Figure 8 displays the production schedules for the exploration based simu-
lations and the updated simulations. As Fig. 8 shows, the two schedules are dif-
ferent in that different sections of the pit are mined out in different time periods.
However, when compared to Fig. 3, both of the SIP derived schedules mine the pit
out in a series of successive cones, while the mine’s yearly schedule proceeds in
layers (Table 1).
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Conclusions

A new multistage stochastic mine production scheduling approach presented herein
includes four stages:

1. Stage 1: generates high density future grade control data for incorporation into
the production scheduling process. It is based on sequential Gaussian
co-simulation of exploration and grade control data from previously mined out
parts of a deposit.

2. Stage 2: employs conditional simulation by successive residuals to update
pre-existing simulated orebody models with the simulated future grade control
information from Stage 1.

3. Stage 3: uses a stochastic integer programming mine scheduling formulation and
balances both maximising net present value and minimising deviations from
production targets.

4. Stage 4: includes quantification of risk in the produced schedules generated and
reporting.

The application at a large operating gold mine demonstrates that the proposed
approach is practical and adds value to the operation. The approach is shown to
deliver 3.6 Mt of additional ore and 2.6 million grams more metal—which matches
better with the mine’s reconciliations. The approach also results in a cumulative
NPV which is on average $7.7 M higher that that of a comparable stochastic
schedule without the simulated grade control data and substantially higher when
compared to the NPV from the actual schedule of the mine.

Acknowledgements The authors are grateful to AngloGold Ashanti for funding and multifaceted
support, Rio Tinto for funding, as well as additional support from NSERC grants and McGill’s
COSMO Stochastic Mine Planning Laboratory.

Table 1 Cumulative averages for ore tonnes, metal and NPV over all simulated orebody models
(both exploration data based and updated models)

SIP and simulations
with exploration data

SIP and updated
simulations with
‘future’ data

Mines schedule
performance with updated
simulations

Ore
tonnes
(million
grams)

14 18 10

Metal
tonnes
(million
grams)

52 55 38

NPV
(million
AUD)

552 560 330
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A New Methodology for Flexible Mine
Design
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Abstract Uncertainty and risk are invariably embedded in every mining project.
Mining companies endeavouring to maximise their return for shareholders make
important strategic decisions which take years or even decades to ‘play out’.
Therefore, developing a model that analyses the potential payoff of a decision based
on current fixed assumptions is severely flawed. A model that incorporates
uncertainty and is able to adapt, almost certainly will help deliver a design with a
better risk-return profile. In this paper, a new approach is developed in order to have
a design that is flexible and able to adapt with change. This is achieved by
developing a mixed integer programming model that determines the optimal design
for simulated stochastic parameters. This research has incorporated optionality
(flexibility) in relation to mining, stockpiling, processing plant and port capacity.
The results are promising and are helping decision makers to think in terms of
value, risk and frequency of execution.
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Introduction

Mining projects are characterised as being highly uncertain and variable mainly due
to the volatile nature of commodity prices and uncertainty around geological
conditions encountered in ore bodies. Uncertainty can arise from many different
sources including; market prices, grade distribution, ground conditions, equipment
reliability, recovery of ore, human capital and legislative change (Topal 2008). The
mining industry will be more sustainable if projects are developed in a manner that
increases flexibility to respond to uncertainties the business cycle. For example, the
global minerals industry has seen an unprecedented demand for its products in
recent years, however the industry has struggled to change its level of supply in
response to price movements. Being able to design an operation that has flexibility
to respond to this change quickly will deliver better returns to stakeholders.

Geological uncertainty and risk have been incorporated in optimummine planning
and design by a few studies to date. Ramazan and Dimitrakopoulos (2004) develop a
stochastic based mixed integer programming (MIP) model for multiple element that
uses several simulated orebodies in order to minimise the grade uncertainty in the life
of the mine schedule. The model also takes into account risk quantification, equip-
ment access and mobility and other operational requirement such as blending, mill
capacity and mine production capacity. Godoy and Dimitrakopolus (2004) develop a
new set of way to generate a mine production schedule under geological uncertainty.
The first stage of the method generates a stable solution domain which shows the
possible ore and waste extraction rates for a given open pit. The second stage gen-
erates optimum ore production and waste removal under uncertainty. The third stage
generates a series of physical schedules which obey slope constraints, maximise the
equipment utilisation and meet mill requirements while matching the mining rates
previously derived by the optimisation. The last stage generates a single mining
sequence from alternative sequences produced in the third stage by using a new
algorithm based on the simulated annealing method. Leite and Dimitrakopoulos
(2007) develop a stochastic based optimisation model for open pit mines and apply it
to a copper deposit for risk analysis. The study shows the stochastic approach gen-
erates 26% higher NPV than the conventional schedule. Also, the study suggests that
life of mine schedules which incorporate geological uncertainty lead to more
informed investment decisions and improved mining practice.

A developing decision making tool aimed at increasing the flexibility of an
engineering system is Real Options ‘in’ projects. Significant research into this
method has been undertaken by Wang and de Neufville (2005, 2006) and his col-
leagues with applications in various industries. This method is located midway
between financial Real Options analysis (which does not deal with system flexibility)
and traditional engineering approaches (which does not to deal with financial flex-
ibility). A popular example used to explore the concept of Real Options ‘in’ projects
is that of a multi-story car park. Flexibility in this situation is in the design of the
footing and columns of the building so that additional levels can be added at a later
date. This flexibility comes at a cost, and the designer must determine if this is
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warranted. An example of the opportunity this technique poses is applied by
Cardin et al. (2008) in conjunction with Codelco, to a Chilean mine in the ‘Cluster
Toki’ region. In this example, a staged development of the Real Option ‘in’ projects
methodology is used where different operating plans are designed to respond to
changing prices. Truck fleet capacity and crusher size were altered in the different
operating plans. The application of this method resulted in approximately 30–50%
more accurate project value than current estimates. This approach provides a strong
basis on which to grow Real Options ‘in’ projects theory for mining. However, there
are several deficiencies in the current model. First, the initial scenario construction
used in the model, limits the flexibility up front in the model and prevents the optimal
design being chosen. Therefore, how useful is this technique for valuing flexibility?
Secondly, the model fails to deal with variations in grade and recovery in a trans-
parent manner; one of the key drivers. Finally, the model does not incorporate
options at all stages of a typical mine value chain (de Neufville et al. 2005; Wang and
de Neufville 2005, 2006; Cardin 2007; Cardin et al. 2008). This paper outlines a new
methodology to evaluate the flexibility of strategic mine design under uncertainty,
using Mixed Integer Programming (MIP) and Monte Carlo Simulation (MCS). An
application of this methodology to a hypothetical case study will be undertaken in
order to show the power of the model to handle complex strategic decisions.

Methodology

In order to evaluate the flexibility in strategic mine design, this research employs
MIP and MCS. In particular, MIP allows for ‘go’ or ‘no go’ decisions to be
modelled for the optimal execution under a set of uncertainties. Uncertainties (or
stochastic parameters) can be simulated using MCS. In this way, each model (or
trial) represents a single path of a lattice tree (or binomial tree).

Description of Model Components

The model consists of three main components which feed the MIP model; resource
model, design options and stochastic parameters (Fig. 1). Running the model
multiple times generates a database of optimal designs for a given
‘state-of-the-world’. This dataset then provides a pathway to determine the flexi-
bilities that provide the best risk-return profile.

Overview of Resource Model

Resource characteristics are a driving force in mine design. The MIP model uses a
resource model to provide a representation of material that is available for
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processing through the life of mine (both ore and waste is considered). The rep-
resentation of the resource is carried out by parcels of material. A parcel of material
can be defined as a quantity of material with an average grade determined by the
weighted average of the grade bins contained within the parcel. A parcel may be
made up of one or more grade bins. A grade bin represents a quantity of material at
a specified grade. This is incorporated to provide a higher level of detail to the
model which will alter the decisions on how material is processed, whilst min-
imising the number of integer variables. These parcels are designed to represent a
physical constraint on the resource. The most common physical constraint is the
vertical mining constraint which is included in the model through parcel depen-
dency. Mining of the grade bins within a parcel can occur in any order as long as
the average parcel grade (within a nominal deviation) is extracted each period. This
forces the model to take waste and ore in the same proportion.

Overview of the Design Options

Flexibility is included through various design options in the MIP model. Solving
the MIP models will determine which options are executed and when. A full set of
design option are dynamically incorporated in the model which determine if and
when these options should be executed. These options are broken into four cate-
gories; mine, pre-processing stockpiling, processing plants and port capacity. More
than one option type can be executed in each period, hence these are not mutually
exclusive decisions. An illustration of the material flow and points where design
options may occur is shown in Fig. 2. Some assumptions have been made to
simplify the model at this early stage of development. These assumptions can be
removed with further refinement to the model; one type of circuit exists in each
plant with one set of beneficiation characteristics; port stockpiles are not available
in the model. This means the model must ship material as soon as it is processed.

Fig. 1 Conceptual diagram
of how the various model
components feed the Mixed
Integer Programming model
and the result set

194 B. Groeneveld et al.



Available Mine Options in the Model

Mine options are incorporated in the model to reflect mining capacity constraints
that exist in an operation. It is not feasible to have unlimited mining capacity, due to
the high capital cost associated with additional capacity and/or technical pit con-
straints (geotechnical and equipment interaction). Mine options can be modelled to
reflect truck capacity or shovel capacity. This type of decision is repeatable many
times in each period (i.e. you can purchase more then one truck of the same type),
thus mine options are represented as integers. This allows for one or more trucks of
the same type to be purchased in each period.

Available Stockpile Options in the Model

Stockpiling is used in mine operations for many reasons including; blending of
material, storage of excess mine production and storage of low grade ore for future
production. Long-term stockpiling is included in the model allowing material to be
stored on a stockpile in time (t) and removed in subsequent periods (t + 1… t + N).
A further ability of the stockpile option is its ability to represent long-term waste
dumps. This functionality allows the model to consider waste movement and
dynamically changes the cut-off grade. Waste dumps are developed by entering an
option that is similar to a stockpile but has no plants for the material to flow too,
forcing it to remain on the waste dump.

Available Plant Options in the Model

Plant flexibility is incorporated to model the options managers have around pro-
cessing of mined ore through varying plant designs. A plant option is characterised
by its capacity, capital cost, fixed operating cost, recovery characteristics and grade
limits. A processing plant is the link between the mine and the port in the flow of

Fig. 2 Material flow in the model and the location of the design options

A New Methodology for Flexible Mine Design 195



material in the model. Plant options can also be dependent on other plant options
being built, allowing the idea of modular plant capacity to be modelled. That is
where a high initial capital cost is incurred to allow for expansion at a later date
with a smaller capital cost.

Available Port Options in the Model

Port options allow the sale of material to customers in the model. Enough port
capacity must exist in a period in order for any plant production to occur in that
period. For example, if we have two million tonnes of plant capacity and no port
capacity in the first period then the production from the plant is forced to be zero.

Overview of how Mine Scheduling work in the Model

Resource characteristics are a driving force in mine design. The MIP model uses a
resource model to provide a representation of material that is available for pro-
cessing through the life of mine (both ore and waste is considered).

The representation of the resource is carried out by parcels of material. A parcel
of material can be defined as a quantity of material with an average grade deter-
mined by the weighted average of the grade bins contained within the parcel.
A parcel may be made up of one or more grade bins. A grade bin represents a
quantity of material at a specified grade. This is incorporated to provide a higher
level of detail to the model which will alter the decisions on how material is
processed, whilst minimising the number of integer variables. These parcels are
designed to represent a physical constraint on the resource. The most common
physical constraint is the vertical mining constraint which is included in the model
through parcel dependency.

Mining of the grade bins within a parcel can occur in any order as long as the
average parcel grade (within a nominal deviation) is extracted each period. This
forces the model to take waste and ore in the same proportion.

Options in the Model to test best Plant or Stockpile location through
varying Mining Costs

The optimal location for a processing plant varies with time as the resource is mined
in different regions. Therefore, determining the best location for a plant or a
stockpile is not a simple case and must consider these multiple uncertainties as it
will most likely change over the life of the project. Different plant locations and
stockpile locations can be tested by developing a mining cost which varies by
parcel and destination in the model.
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Overview of what Stochastic Parameters Are Included

Uncertainty in the mining process is incorporated through the market price, cost
(capital and operating), utilisation of equipment, plant recovery and time to build an
option. Values for these various inputs are simulated through a MCS process.

Model Formulation

The developed MIP model optimises the available mine, stockpile, plant and port
flexibility for a simulated scenario. These various design options dictate how the
system is configured and consequently the amount of production that can occur.
They also dictate the financial viability of the operation and drive both revenue and
operating costs. An outline of the mathematical formulation is provided below.

Objective Function

The objective function seeks to maximise before tax net present value (NPV):
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5

Where;

r� is the rate of return on the project
St is sale price in time period t (in $/metal unit)
Ml;t is the metal units exiting plant l in time t
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Cm;Cs;Cl;Co is the capital cost of mine m or stockpile s or plant l or port o
Im;t is the execution integer on mine option m in time t.

0 is no execution of option;
otherwise, is the number of times the option is executed in time t.

Ys;t; Yl;t; Yo;t is the execution binary on stockpile s or plant l or port o.
0 is no execution of option;
otherwise, the option is executed in time t.

Dm;Ds;Dl;Do is the disposal cost of mine m or stockpile s or plant l or port o
IDm;t is the disposal integer on mine option m in time t.

0 is no disposal occurs in time t;
otherwise, is the number of options disposed of in time t.

IDl;t; IDo;t is the disposal integer on plant l or port o.
0 is no disposal occurs in time t;
otherwise, is option is disposed in time t.

Vm;t;Vs;t;Vl;t;Vo;t is the variable cost of mining a tonne of ore from mine m or
stockpile s or plant l or port o in time t

Xm;t;Xs;t;Xl;t;Xo;t is the tonnage processed through mine m or stockpile s or plant
l or port o in time t

Fm;t;Fl;t;Fo;t is the fixed cost of mining from mine m or plant l or port o in
time t

FRm;t;FRl;t;FRo;t is the reduction in fixed cost of disposing of an option in time t
Ll is the cost of mining a tonne of ore to plant l
Ls is the cost of mining a tonne of ore to stockpile s
Xp;b;l;t is the tonnage mined from parcel p bin b to plant l in time t
XIp;b;s;l;t is the tonnage mined from parcel p bin b to stockpile s at plant

l in time t

The objective function represents the following:

The revenue from the sale of the ore less the capital cost of building an option less the
disposal cost of reducing capacity less the variable cost of processing ore less the fixed cost
of maintaining an option; all multiplied by the relevant discount factor for the cash flow in
time t. The model seeks to maximise this relationship.

The constraints in the model can be divided into five categories: production,
mining, stockpiling, processing plant and port constraints.
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Production Constraints

Resource Constraint

This constraint makes sure the total amount of material extracted from a mining pit
has an upper bound based on the resource. This constraint is applied at a parcel and
bin level in the model:

XT
t¼1

Xp;b;t � Rp;b � 0 8p; b

Where;

Xp;b;t is the tonnage mined from parcel p bin b in time t
Rp;b is the resource of parcel p bin b

Sequencing Constraint 1

This constraint in conjunction with the next constraint forces the binary value to be
one in the period the parcel is fully mined. This then allows the model to mine any
successor parcels of ore:

XB;t
b¼1;tt¼1

Xp;b;tt �Rp * Yp;t 8p; t

Where;

Rp is the resource of parcel p

Sequencing Constraint 2

This constraint ensures that a parcel’s predecessor is mined before the successor is
mined:

XB;t
b¼1;tt¼1

Xpþ 1;b;tt �Rpþ 1 *
Xt

tt¼1

Yp;tt 8p; t

Where;

Rpþ 1 is the resource of the successor parcel p + 1
Xpþ 1;b;tt is the tonnage mined from the successor parcel p + 1 bin b in time tt
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Sequencing Constraint 3

This constraint is a set packing constraint that forces a parcel to only be fully mined
once:

XT
t¼1

Yp;t � 1 8p

Equal Mining of a Parcel

This constraint forces the model to take high grade ore, waste and low grade ore in
equal proportions. This prevents the model taking high grade in the first period,
followed by low grade in the second period and waste in the following period.
A minimal deviation (c) of 2% was allowed to prevent an infeasible solution:

XB
b¼1

Xp;b;tGp;b �
XB
b¼1

Xp;b;t

" #
Gp * 1� c%ð Þ 8p; t

XB
b¼1

Xp;b;tGp;b �
XB
b¼1

Xp;b;t

" #
Gp * 1þ c%ð Þ 8p; t

Where;

Gp;b is the grade of parcel p and bin b
Gp is the grade of parcel p

Flow Balance Constraint

This constraint links the flow paths in the model and ensures that the material
available to the processing plant and stockpiling options originates from the
resource:

Xp;b;t ¼
XL
l¼1

Xp;b;l;t þ
XS;K;L

s¼1;k¼1;l¼1

XIp;b;s;k;l;t 8p; b; t
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Mining Constraints

Mining Requirements

The constraint makes sure that mining includes all movement to plant options,
stockpile options and movement off stockpiles:

XM
m¼1

Xm;t ¼
XP;B

p¼1;b¼1

Xp;b;t þ
XS;L

s¼1;l¼1

XOs;l;t 8t

Where;

XOs;l;t is the tonnage sent from stockpile s at location l in time t

Mining Capacity Limit

This constraint ensures that mining only occurs if there is sufficient capacity in a
period to handle the movement. Capacity is determined dynamically based on when
mining options are executed:

Xt

u¼1

Am;u;tIm;u �
Xt

u¼2

Am;u;tIDm;u �Xm;t 8m; t

Where;

Am;u;t is the capacity of mine option m that was executed in period u in time t

Mine Option Disposal Constraint

This constraint ensures disposal of an option can only occur if the option has been
built. For example, if a mine option is built in period one and in period five there is
no more material to mine, then the model can dispose of this capacity in order to
reduce the fixed cost incurred:

IDm;t �
Xt

tt¼2

Im;tt�1 8m; t

Xt

tt¼2

IDm;tt �
Xt

tt¼2

Im;tt�1 8m; t
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Maximum Execution

Since the mine option can be modelled as an integer variable, limits on how many
times it can be applied in the model may be included. This is an optional constraint
which can be turned on or off when running the model.

Period Constraint

This constraint restricts the number of mine options built in a period to the period
constraint maximum:

Im;t �PCm 8m; t

Overall Constraint

This constraint restricts the total number of mine options built over the life of a
mine:

XT
t¼1

Im;t �OCm 8m

Where;

PC is the period constraint limit or the maximum number of times an option can
be executed in any period;

OC is the overall constraint which is the maximum number of times an option can
be executed over the life of the project.

Stockpiling Constraints

Total Inflow Constraint

This constraint makes the total amount of material that is entering a stockpile equal
the material entering each stockpile bin:

XIs;l;t ¼
XK
k¼1

XIs;k;l;t 8s; l; t
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Where;

XIs;l;t is the total tonnage sent into stockpile s at plant l in time t

Flow Balance Constraint

This constraint restricts the total amount of material coming into each bin in the
stockpile to be equal to the material sent from the each parcel to the bin:

XIs;k;l;t ¼
XP;B

p¼1;b¼1

XIp;b;s;k;l;t 8s; k; l; t

Where;

XIs;k;l;t is the tonnage sent into stockpile s grade bin k at plant l in time t
XIp;b;s;k;l;t is the tonnage from parcel p bin b sent into stockpile s grade bin k at

plant l in time t

Stockpile Capacity Constraint

This constraint makes sure the tonnage of material stockpiled across all plant
locations does not exceed the stockpile capacity:

XL;t
l¼1;tt¼1

XIs;l;tt �
XL;t

l¼1;tt¼2

XOs;l;tt �
Xt

tt¼1

AsYs;tt 8s; t

Where;

XOs;l;t is the total tonnage sent from stockpile s to plant l in time t
As is the total capacity of stockpile s

Stockpile Grade Constraint on Bins

This constraint applies the grade limits of the stockpile bins to material entering
each stockpile bin:

Xt

tt¼1

Gp;bXIp;b;s;k;l;tt �
Xt

tt¼1

GUs;kXIp;b;s;k;l;tt 8p; b; s; l; t
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Xt

tt¼1

Gp;bXIp;b;s;k;l;tt �
Xt

tt¼1

GLs;kXIp;b;s;k;l;tt 8p; b; s; l; t

Where;

GUs;k is the upper grade limit of stockpile s bin k
GLs;k is the lower grade limit of stockpile s bin k

Bin Removal Constraint

The constraint ensures material moved from the stockpile has been added to the
stockpile at least one period ago and that material removed from the stockpile is not
removed again:

XOs;k;l;t �
Xt

tt¼1

XIs;k;l;tt þ
Xt

tt¼2

XOs;k;l;tt�1 8s; k; l; t

Where;

XOs;k;l;t is the tonnage removed from stockpile s bin k to plant l in time t

Bin Extraction

This constraint makes the total tonnage of material that is extracted from each
stockpile bin equal the overall extraction from the stockpile:

XK
k¼1

XOs;k;l;t ¼ XOs;l;t 8s; l; t

Metal Extraction

This constraint ensures the total amount of metal units extracted from a stockpile
equals the metal units extracted from the individual grade bins:

MOs;l;t ¼
XK
k¼1

GAs;kXOs;k;l;t 8s; l; t
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Where;

MOs;l;t is the metal units removed from stockpile s at location l in time t
GAs;k is the average grade of stockpile s grade bin k

Opening Limit

This constraint ensures that a stockpile can only be opened once:

XT
t¼1

Ys;t � 1 8s

Processing Plant Constraints

Grade Limits (Upper and Lower)

This constraint applies the grade limits on a given plant in each time period. This
ensures every plant processes material it can handle:

XS
s¼1jdel

MOs;l;t þ
XP;B

p¼1;b¼1

Gp;bXp;b;l;t �GUl

XS
s¼1

XOs;l;t þGUl

XP;B
p¼1;b¼1

Xp;b;l;t 8l; t

XS
s¼1jdel

MOs;l;t þ
XP;B

p¼1;b¼1

Gp;bXp;b;l;t �GLl
XS
s¼1

XOs;l;t þGLl
XP;B

p¼1;b¼1

Xp;b;l;t 8l; t

Where;

GLl is the lower grade limit of plant l
GUl is the upper grade limit of plant l

Plant Capacity Constraint

The constraint ensures that the total tonnage of material processed in a period shall
is less than the capacity of plant options built and disposed:

XS
s¼1

XOs;l;t þ
XP;B

p¼1;b¼1

Xp;b;l;t �
XT
u¼1

Al;u;tYl;u �
XT
u¼2

Al;u;tIDl;u 8l; t
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Where;

Al;u;t is the capacity of plant option l built in u in time t

Plant Disposal Constraint

This constraint ensures that a plant option is only disposed if the plant has been
built in a previous period. This will result in a fixed cost saving, however an
additional disposal cost will be incurred in the objective function:

YDl;t �
Xt

t¼1

Yl;t � 0 8l; t

Xt

t¼1

YDl;tt �
Xt

tt¼1

Yl;tt � 0 8l; t

Tonnage Produced

This constraint restricts the tonnage exiting the plant to be equal to the material
entering the plant multiplied by the plant recovery:

Xl;t ¼
XP;B

p¼1;b¼1

El;tXp;b;l;t þ
XS;T

s¼1;t¼2js2l
El;tXOs;l;t 8l; t

Where;

El;t is the recovery of plant l in time t

Metal Units Produced

This constraint calculates the metal production of a plant option by multiplying the
metal units into the plant by the recovery and grade multiples for the plant. This is
used to calculate the revenue of the mine:

Ml;t ¼
XP;B

p¼1;b¼1

El;tGMl;tXp;b;l;t þ
XS;T

s¼1;t¼2js2l
El;tGMl;tMOs;l;t 8l; t
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Where;

GMl;t is the grade multiple of plant option l in time t

Plant Option Dependency

Plant option dependency dictates the relationships that occur between options. Two
types of relationships are available; one-for-one and one-for-many.

One for One Relationship

This constraint makes sure a successor option is built prior to the predecessor option
being built in an equal ratio. For example, this can be used to model a modular plant
design where an initial investment can be made in plant capacity that has the ability
to be expanded easily for a lower capital than if the initial investment was not made
(this later expansion is optional):

Xt

tt¼1

Yl;tt �
Xt�DT

tt¼1

Yc;tt 8l; c; tjc 2 l

One for Many Relationships

This constraint allows a successor option to be built if its predecessor option has
been built at least once. This can be used to model a rail link to a plant location
where an initial capital investment is required. However, once this has been built
numerous plants can be built at the same location:

Yl;t �
XT�DT

t¼1

Yc;t 8l; cjc 2 l

Where;

C is the predecessor plant option of plant option l
DT is the lead time on the relationship
Yc;tt is the execution variable of the predecessor plant c of plant l in time tt.
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Port Constraints

Port Production Constraint

The constraint ensures the total tonnage of material processed through all plant
options is less than or equal to the total port capacity:

XL
l¼1

Xl;t �
XO
o¼1

Xo;t 8t

Capacity Constraint

The constraint requires the total tonnage of material shipped in a period to be less
then the port capacity:

Xo;t �
Xt

u¼1

Ao;u;tYo;u �
Xt

u¼2

Ao;u;tIDo;u 8o; t

Where;

Ao;u;t is the capacity of port option o built in u time t

Disposal Constraint 1

Disposal of a port option may only occur if the option has previously been built:

IDo;t �
Xt

tt¼1

Yo;tt 8o; t

Xt

tt¼1

IDo;t �
Xt

tt¼1

Yo;tt 8o; t

Port Option Dependency

Port option dependency may occur in one for one or one for many relationships.
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One for One Relationship

This constraint makes sure a successor option is built prior to the predecessor option
being built in an equal ratio:

Xt

tt¼1

Yo;tt �
Xt�DT

tt¼1

Yc;tt 8o; tjc 2 o

One for Many Relationships

This constraint allows a successor option to be built if its predecessor option has
been built at least once. This relationship can be used to model a rail link that must
be built before any port can be built:

Yo;t �
Xt�DT

tt¼1

Yc;tt 8o; tjc 2 o

Where;

DT is the lead time on the relationship
Yc;tt is the execution variable of the predecessor port c of port o in time tt.

Non-negativity, Binary and Integer Restrictions

Non-negativity

The following variables are restricted to taking on positive values as a negative
would represent an infeasible situation:

Xp;b;t;XIp;b;s;k;l;t � 0 8p; b; s; k; l; t

Xm;t;Xl;t;Xo;t � 0 8m; l; o; t

XOs;l;t;XOs;k;l;t;XIs;k;l;tXIs;l;t � 0 8s; k; l; t

Integers

The following variables must take on integer values in the model:
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Im;t; IDo;t; IDm;t; IDl;t 8m; l; o; t

Binaries

The following variables must take on binary values; integers with an upper bound
of one and lower bound of zero:

Yc;tt; Yp;t; Yo;t; Yl;t; Ys;t 8p; o; l; s; t; c; tt

Case Study: Open Pit Mine

An application of the methodology was implemented to a hypothetical mining
scenario. The problem is similar in nature to an iron ore mine, although it could be
applied to any open cut mine. A single mine site is used in this example.

The Problem

The operation consists of three mining pits (two high grade and one low grade), two
plant locations with associated rail infrastructure, stockpiling and waste storage
capabilities at each location and two port options with associated rail requirements
(Fig. 3). In this diagram, the rectangular boxes represent different plant locations
(note that location A has the shortest haul for pit 1 and location B has the shortest haul
for pit 3 whilst pit 2 has an equivalent haul to either location). In order to process
material through a plant at location A, a rail link of 35 km with a capital of $65 M
needs to be built. Likewise, at location B a rail link of 10 km needs to be built for a
capital of $30 M. Finally, in order to process any material through the port, a rail link
from the junction of A and B to the coast needs to be built for a capital of $20 M. The
analysis will look at the system configuration over five periods.

The Model Inputs

Multiple options were included in the model of this problem as summarised in
Table 1. A full list of the fixed costs, variable costs and grade constraints is not
provided for simplicity purposes. In order to simulate the different processing plant
locations available to the model, a differential mining cost was used based on the
destination of material. A summary of the different costs associated with each
location is outlined in Table 2.
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The Stochastic Variables

In this problem, it was determined that seven stochastic parameters would be
included. These were price, recovery, capital cost, operating cost and utilisation for
mine, plant and port options.

Choice of underlying distributions was done through discussions with profes-
sionals. No detailed analysis of the underlying nature of the stochastic variables has

Fig. 3 Conceptual layout of hypothetical mine

Table 1 Options available in
hypothetical example

Type Cost
($M)

Mine options

1 Mt/a unit 3

2 Mt/a unit 4.5

Stockpile options

Waste stockpile (500 Mt capacity) 0

Low-grade (30 Mt capacity) 0

Plant options

5 Mt/a fixed (lead 0.5 yr) 50

10 Mt/a fixed (lead 1.5 yr) 92

5 Mt/a flexible (modular, lead 0.5 yr) 75

Additional 5 Mt/a flexible (modular, lead
0.5 yr)

30

Port capacity

10 Mt/a (lead 0.75 yr) 100

20 Mt/a (lead 1.5 yr) 175
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been carried out, as detailed research in other papers is available which was not the
primary purpose of this paper (Dimitrakopoulos and Abdel Sabour 2007; Godoy and
Dimitrakopoulos 2004; Lima and Suslick 2006; Morley et al. 1999; Topal 2008).

A summary of the values used for each distribution is as follows:

• Price follows a lognormal distribution with a mean of $85, standard deviation of
$25 and a correlation of 0.30 between periods;

• Recovery follows a triangular distribution with a maximum value of 90%, likely
value of 80%, minimum value of 70% and a correlation of 0.05 between
periods;

• Capital cost multiple follows a normal distribution with a mean of 1.08, standard
deviation of 0.20 and a correlation of 0.40 between periods;

• Operating cost multiple follows a normal distribution with a mean of 1.03,
standard deviation of 0.10 and a correlation of 0.10 between periods;

• Mine equipment utilisation follows a triangular distribution with a maximum
value of 95%, likely value of 75%, minimum value of 60% and a correlation of
0.22 between periods;

• Plant utilisation follows a triangular distribution with a maximum value of 95%,
likely value of 80%, minimum value of 65% and a correlation of 0.21 between
periods; and

• Port utilisation follows a triangular distribution with a maximum value of 95%,
likely value of 80%, minimum value of 65% and a correlation of 0.34 between
periods.

Results Analysis

Based on the input parameters 200 trials were run, with CPLEX™ used to solve the
MIP model. In total it took 3 h to process the model, which was deemed a good
solution time for this model size. The raw data from the results exceeds four
gigabytes. A results analysis process has been developed which summarises this
data. After processing of the model, the frequency of execution for each options
was analysed (Table 3). Frequency of execution is calculated by dividing the count
of the number of times an option is executed by the maximum number of times it
could be executed. Some categories of options (plant, port, mine) sum to more than
100% because multiple expansions of that type can occur in the same time period as
the options are not mutually exclusive.

Table 2 Differential mining
costs to handle different
locations in the model

Cost ($/t) Pit 1 Pit 2 Pit 3

Plant location A 0.2 0.6 1.8

Plant location B 2.2 0.6 0.4

Waste location A 0.1 0.3 0.9

Waste location B 1.1 0.3 0.2
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From examining Table 3 several conclusions can be developed. First, it is evi-
dent that larger port capacity options should be investigated as the execution fre-
quency is over 50% for the 20 Mtpa port option (the largest in the model) for three
periods. Second, the mine option with 1 Mtpa capacity and the plant with 5 Mtpa at
location B are not valuable options as there execution is lower than 20%. Finally,
location A is preferred over location B as the rail link options which dictate which
locations can be used are executed 94% and 45% for A and B respectively.

A value at risk graph (VARG) shows the risk to return relationship. Figure 4 dis-
plays the VARG for this example with the base case representing a fixed mine design
with no optionality. The design chosen for the base case was based on the 50th per-
centile design when the model with optionality was run. This design was then fixed in
theMIPmodel and reprocessedwith the same uncertainties. This shows the outcome of
management not changing the operating policy of the mine. The meanNPV of the base
case was $702 M and for the case with options was $1298 M, an 85% increase.

Further to these analysis methods, experimentation is currently underway with
using various data mining techniques. An open source software package called
Rapid Miner is currently being used. An example (from a different problem set) of
the output generated is shown in Fig. 5. This example shows a decision tree with
the associated percentages of times the decision paid off highlighted in the Yes/No
boxes at the bottom of the nodes.

Table 3 Frequency of execution for all options in the model

Period
1 (%)

Period
2 (%)

Period
3 (%)

Period
4 (%)

Period
5 (%)

All
periods
(%)

Mine 1 Ml/a 18 4 5 0 0 5

Mine 2 Mt/a 98 32 9 3 1 29

Rail link to A 94 0 0 0 0 19

Rail link to B 45 1 0 0 0 9

Plant 5 Mt/a (A) 69 26 14 6 2 23

Plant 10 Ml/a (A) 66 14 5 1 0 17

Plant 5 Mt/a
modular (A)

90 41 13 2 0 29

Additional 5 Mt/a
modular (A)

0 82 35 16 1 27

Plant 5 Mt/a (B) 19 4 1 1 0 5

Plant 10 Mt/a (B) 44 19 6 2 0 14

Plant 5 Mt/a
modular (B)

41 15 4 2 0 12

Additional 5 Mt/a
modular (B)

0 35 14 3 2 11

Port 10 Mt/a 98 1 0 0 0 20

Port 20 Mt/a 91 84 53 28 8 53
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Conclusions

In conclusion, this paper has developed a methodology to evaluate the strategic
mine design flexibility under stochastic environment. The proposed methodology is
a unique approach that allows flexible mine designs to be justified. The decision
maker is supported in their choice of and refinement mine design. Increasing
flexibility in mine designs would be advantageous for responding to changing
business conditions across the full economic cycle.

Fig. 4 Value at risk for hypothetical example

Fig. 5 Sample of Decision Tree output from Data Mining
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For the sake of comparison, the proposed methodology has been implemented to
a hypothetical mining scenario. The results demonstrated that the value of expected
NPV increases by 85% with flexible mine design compared to without flexibility.
The paper illustrates how to incorporate design options (flexibility) into a strategic
mine plan in a manner that proactively manages inevitable uncertainties. It is hoped
this research will help in justifying more flexible mine designs and further the
sustainability of the industry.

Recommendations

Whilst the model handles a simple case, currently further research and model
improvements continue in the following areas:

• More detailed modelling which considers multiple process options and multi
product options;

• Handling of grade variability through the use of conditional simulation methods
will greatly improve the power of the model (Dimitrakopoulos and Ramazan
2004);

• Further investigation into appropriate results analysis techniques is required to
fully understand how the primary question of flexibility is answered;

• MIP performance improvement algorithms need to be investigated, these
methods may include reducing the feasible region with additional constraints
and/or developing a node selection routine for the branch and bound algorithm
that exploits some of the nuances in the model; and

• Application of this technique to underground mining is needed to fully capture
the options available to mine management. In particular, incorporating the
process to optimise the open cut and underground transition point would be
highly beneficial. This would assist in strategic planning for the entire orebody.
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Direct Net Present Value Open Pit
Optimisation with Probabilistic Models

A. Richmond

Abstract Traditional implementations of open pit optimisation algorithms are
designed simply to find a set of nested open pit limits that maximise the undiscounted
financial pay-off for a series of commodity prices using a single ‘estimated’ orebody
model. Then, the maximum Net Present Value (NPV) open pit limit is derived by
considering alternate (usually only best and worst-case) mining schedules for each
open pit limit. Divorcing the open pit limit delineation from the NPV calculation in
this two-step approach does not guarantee that an optimal NPV open pit solution will
be found. A new open pit optimisation algorithm that considers themining schedule is
proposed. As a consequence, it can also account explicitly for commodity price cycles
and uncertainty that can be modelled by stochastic simulation techniques. This
state-of-the-art algorithm integrates Monte Carlo-based simulation and heuristic
optimisation techniques into a global system that directly provides NPV optimal pit
outlines. This new approach to open pit optimisation is demonstrated for a large
copper deposit using multiple orebody models.

Introduction

Several open pit optimisation techniques such the Lerchs–Grossman algorithm
(Lerchs and Grossman 1965; Whittle 1999), network flow (Johnson 1968), pseu-
doflow network models (Hochbaum and Chan 2000) and others, involve a 3D grid of
regular blocks that is converted a priori into a pay-off matrix by considering a 3D
block model of mineral grades and economic and mining parameters. These algo-
rithms rely on the block pay-offs averaging linearly, as is the case when undis-
counted block pay-offs are considered. However, the Net Present Value (NPV) of the
block pay-offs is a non-linear function of the undiscounted block pay-offs that
depends explicitly on the discount to be applied to the individual blocks, which in
turn depends on the block mining schedule. To overcome the issue of discounting
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block pay-offs, traditional implementations of open pit optimisation algorithms are
designed simply to find a set of nested open pit limits that maximise the undis-
counted financial pay-off for a series of constant commodity prices using a single
‘estimated’ orebody model. Then, the maximum NPV open pit limit is derived by
considering alternate (usually only best and worst-case) mining schedules for each
open pit limit. This two-step approach to finding the maximum NPV open pit limit
raises three significant issues:

1. Divorcing the open pit limit delineation from the NPV calculation does not
guarantee that an optimal (maximum) NPV open pit solution will be found;

2. NPV calculations are based on a constant commodity price that fails to consider
its time-dependant and uncertain nature; and

3. The single ‘estimated’ orebody model is invariably smoothed, thus it fails to
consider short-scale grade variations.

Consequently, the block model does not accurately reflect the grade and tonnage
of ore that will be extracted and processed during mining.

To overcome the inadequacy of undiscounted pay-offs in commonly used
algorithms for open pit optimisation, it is proposed to embed a scheduling heuristic
within an open pit optimisation algorithm. This may be seen as an alternative
avenue to that taken by mixed integer programming approaches (eg. Caccetta and
Hill 2003; Ramazan 2007; Stone et al. 2018; Menabde et al. 2007) that may become
numerically demanding in the case of large deposits. As a consequence, uncertain
and time-dependent variables such as commodity prices can also be incorporated
stochastically into the optimisation process. This permits strategic options for
project timing and staging to be assessed as discrete optimisation problems and
compared quantitatively and is more advanced than other recent approaches
(Monkhouse and Yeates 2018 in this volume; Dimitrakopoulos and Abdel Sabour
2007). It is also proposed to consider multiple conditional simulations in the
optimisation process such that the mining and financial implications related to
small-scale grade variations are honoured (Menabde et al. 2018 in this volume;
Ramazan and Dimitrakopoulos 2013, 2017 in this volume; Leite and
Dimitrakopoulos 2007; Godoy and Dimitrakopoulos 2004; Ravenscroft 1992). By
considering discounted block pay-offs, stochastic models of commodity prices and
short-scale grade variations a more accurate discounted pay-off matrix (revenue
block model) is generated, which in turn will yield an open pit limit that will be
closer to the true optimum.

NPV Calculations with Uncertain Variables

Calculation of the NPV for a given open pit limit relies on estimates of numerous
parameters, including (but not restricted to) the mineral grades, extraction sequence
and timing, mineral recovery, prevailing commodity price and capital and operating
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costs. All of these parameters are uncertain and should be modelled stochastically.
For example, mineral grade values by geostatistical simulations, operating costs
with growth functions and commodity prices using long-term mean reverting
models that account for periodicity. Consequently, the cumulative distribution of
total financial pay-offs for an open pit limit can be derived from the combination of
a series of stochastic models of mineral grades, costs, prices, recoveries, etc.

Given L potential NPV outcomes for a block (related to L realisations of grade
values, commodity prices, etc), we can calculate the NPV for any realisation l:

NPVl ¼
XB

j¼1

dl bj
� �

ij ð1Þ

and the expected NPV for L realisations:

NPVL ¼ 1
L

XL

l¼1

NPVl

( )
ð2Þ

where:

B is the number of blocks under consideration
dl(bj) is the discounted value for block bj for the lth realisation
ij = 1 if bj falls within the open pit limit and 0 otherwise

The idea being to find the open pit limit that maximises NPVL. Additional
financial goals, for example minimising downside risk (Richmond 2004a) could
also be considered, but are outside the scope of this paper.

Accounting for Multiple Orebody Models

Pit optimisation algorithms found in the literature invariably consider an orebody
block model with a single grade value for each block (or parcel). In such an
approach, a simple decision rule is used where block bj is processed using option
k if gk � z*(bj) < gk+1, where:

gk is the cut-off grade for processing option k (by convention g1 = 0 and k = 1
indicates waste)

z* is the estimated grade value
To account for grade uncertainty in open pit optimisation, Richmond (2004a)

proposed incorporating L grade values for each block. In this approach, multiple
grade values zl(bj), l=1,…,L were generated by conditional simulation and a pro-
cessing option kl(bj) was determined for each realisation. Alternatively, conditional
simulation provides short-scale grade variations that permit local ore loss and
mining dilution to be readily accounted for in open pit optimisation by (Richmond
2004a):
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• Generating geometrically irregular dig-lines (that separate ore and waste) based
on small-scale grade simulations with a floating circle algorithm, and

• Assimilating the dig-lines into large-scale geometrically regular blocks by a
novel re-blocking method.

This two-step approach accounts for short-scale grade variation, but also pro-
vides ‘recoverable’ grade and tonnage information for large regular blocks suitable
for open pit optimisation. In other words, the simulated grade models are com-
pressed without loss of accuracy so that optimisation is computationally tractable.

An NPV Open Pit Optimisation Algorithm

For the vast majority of open pit optimisation techniques a directed graph is super-
imposed onto the pay-off matrix to identify the blocks that constitute an optimal open
pit limit. To paraphrase Dowd and Onur (1993)—each block in the grid, represented
by a vertex, is assigned a mass equal to its net expected revenue. The vertices are
connected by arcs in such a way that the connections leading from a particular vertex
to the surface define the set of vertices (blocks) that must be removed if that vertex
(block) is to be mined. A simple 2D example is shown in Fig. 1. Blocks connected by
an arc pointing away from the vertex of a block are termed successors of that block, ie.
bi is a successor of bi if there exists an arc directed from bi to bi. In this paper, the set of
all successors of bj will be denoted as Cj. For example, in Fig. 1, C8 = {2, 3, 4}.
A closure of a directed graph, which consists of a set of blocks B, is a set of blocks
Bp�B such that if bj2Bp then Cj2Bp. For example, in Fig. 1, Bp = {1–5, 7–9, 13} is a
closure of the directed graph. The value of a closure is the sum of the pay-offs of the
vertices in the closure. As each closure defines a possible open pit limit, the closure
with the maximum value defines the optimal open pit limit.
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Fig. 1 Directed graph representing 2D vertical orebody model
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For simplicity of notation, the algorithm proposed in this paper is described for a
single orebody model. The undiscounted pay-off matrix {w(b), b2B} typically used
for open pit optimisation is calculated as:

w bð Þ ¼ tonbðvz bð Þrk � ckÞ ð3Þ

where:

tonb represents the tonnage of block b
v is the commodity (attribute z) value per concentration unit
rk is the proportion of the mineral recovered using processing option k
ck is the mining and processing cost for k ($/ton)

In practice, rk and ck commonly vary spatially and v and ck temporally. The
discounted pay-off matrix {d(b|S), b2B}, conditional to a mining schedule S, that is
required for NPV open pit optimisation is calculated as:

d bjSð Þ ¼ ½tonbðvtz bð Þrk � ck;tÞ�=ð1 þ DRÞt ð4Þ

where:

t is the time period in which block b is scheduled for extraction and
processing

vt ck, t are the prevailing commodity price and operating cost at time t
DR is the discount rate

In Eq. 4, discounted pay-offs are conditional to the mining schedule as alternate
schedules can be derived for the same open pit closure. It is also important to note
that, cut-off grades and consequently the processing option k, may change in
response to commodity price and operating cost fluctuations over time. Does not
imply that the discounted value for is positive.

The traditional floating cone algorithm decomposes the full directed graph
problem into a series of independent evaluations of individual Cj and if the sum of
the pay-offs associated with Cj is positive, then bj is added to Bp. However, a
positive undiscounted value for Cj. does not imply that the discounted value for Cj

is positive. In other words, negatively-valued successors bj or block bj that may be
mined significantly earlier in the mining schedule and receive substantially less
discounting may not be carried by a more heavily discounted positively-valued bj.
Furthermore, the modified schedule may have shifted more profitable bj into later
periods and additional wasted blocks into earlier periods, reducing the discounted
value of the pit. As traditional independent evaluation of locally decomposed Cj.

To allow for discounting, it is proposed that a Direct NPV Floating Cone
algorithm (DFC) proceeds as follows:

1. Select the time for initial investment (start of construction) tI;
2. Define a cone that satisfies the physical constraints of the desired open pit slope

angles;
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3. Define an ordered sequence of visiting blocks [1,2,…#<B] with positive w(b),
by ordering the blocks bi firstly on decreasing elevation, and then for blocks
with identical elevations on decreasing value in w(bi);

4. Set the open pit closure counter n = 0, the initial open pit closure Bn
p to a null set

of blocks, and the Net Present Value of initial open pit closure NPVn = 0;
5. Set j = 0;
6. Set j = j + 1;
7. Float the cone to bj to create a new closure Bnþ 1

p = Bn
p + Cj (excluding from Cj

any block that currently belongs to Bn
p);

8. Determine the schedule S for the new closure Bnþ 1
p ;

9. Calculate the discounted pay-off matrix {d(b|S), b2Bnþ 1
p } using Eq. 4 and the

Net Present Value of the new closure using Eq. 1;
10. Accept the new closure if NPVn + 1−NPVn > 0, whereupon the current closure

is updated into a new optimal closure, ie. n = n + 1 and go to step 5; and
11. if j < #, the number of blocks with positive pay-offs w(b), then go to step 6.

The deterministic floating cone algorithm presented above is heuristic in nature
and not be optimal. Alternate Bp can be generated by varying the initial investment
timing (step 1), the ordered path (step 3) and/or the mining schedule (step 8).

Investment timing to satisfy corporate constraints or to take advantage of
cyclical commodity prices can be investigated as mutually exclusive opportunities
by varying tI, which modifies implicitly the mining schedule in step 8 above. For
example, given a schedule S commencing at t = 0, the modified schedule t′ = t + tI.
For delayed investment, the NPV for many potential production assets will typically
be reduced unless maximum production/grade happens to coincide with the peak in
cyclical commodity prices. However, for a risk averse and capital constrained
company, the shift of the capital cost into future years may be strategically
advantageous when considered in conjunction with other mining assets.
Re-initiating the test sequence from the top of the mineral deposit each time a
positively-valued cone is found and added to the closure is generally regarded to
estimate the heuristic maximum undiscounted pay-off solution (Lemieux 1979).
Computational experimentation on the ordering of blocks in step 3 above suggested
that this also holds true for the discounted case when tI is fixed. Note that, due to
re-initiation of the test sequence it is p common for Bnþ 1

p = Bn
p in step 7 above. For

such instances, steps 8–10 above are ignored.
It is well known that the floating cone algorithm may not return the maximum

undiscounted pay-off solution. However, it is used in the algorithm presented above
to generate physically feasible solutions. The author has not investigated whether
the Lerchs–Grossman and network flow algorithms could be substituted for the
floating cone algorithm, but the non-linearity of the proposed objective function
may present some difficulty. The computational efficiency of the proposed algo-
rithm is enhanced significantly when a simple scheduling algorithm in step 8 above
is employed. However, more complex risk-based scheduling algorithms to account
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for multiple orebody models and production goals (eg. Godoy 2002; Richmond and
Beasley 2004) could be considered.

Application to a Copper Deposit

This section demonstrates the proposed concepts for a large subvertical copper
deposit. The geometry and contained copper per level are variable, but there is no
strong trend. The options considered in this study were:

• Two processing options (ore and waste), ie. K = 2;
• 60 Mt/year mill constraint;
• 25 realisations of copper grades by Sequential Gaussian Simulation (SGS);
• 25 stochastic simulations of future copper prices with a two factor Pilipovic

model that was modified to account for periodicity and cap and collar aversion
(Fig. 2);

• 25 stochastic simulations of operating costs with a growth model (Fig. 3);
• Monthly copper recoveries randomly drawn from normal distribution with mean

of 80% and a standard deviation of 1%;
• A fixed annual discount rate of 10%; and
• Initial investment timings at discrete yearly intervals for five years.

Figure 2 shows 25 stochastic simulations of future copper prices. The assump-
tions in this study were:

• A long-term copper price of $1.30/lb,
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Fig. 2 Thirty year future copper price simulations with mean reversion and collar and cap
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• The present time ($2.50/lb) was near the peak of the price cycle,
• An average eight year copper price cycle, and
• $0.50/lb and $3.00/lb lower and upper aversion values.

Note that, as time increases uncertainty in the simulated copper price increases
and the deviation of the average simulated value to the long-term price decreases.
The average copper price does not fluctuate symmetrically around the long-term
copper price due to the asymmetrical aversion limits. Figure 3 shows 25 stochastic
simulations of waste and ore processing costs.
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To assess the potential improvement in NPV against the traditional two-stage pit
optimisation approach a base case scenario ($1.30/lb—80% recovery, $1.90/t waste
cost and $8.50/t milling cost) was run to generate a series of nested pits using a
FCA. The E-type (or average) of the 25 SGS realisations was adopted as the single
grade model as it is known to be smoothed. The NPV for this series of pits using the
base case assumptions are shown in Fig. 4 as crosses. The maximum NPV under
the base case scenario is associated with a pit closure of 26,402 blocks. Note that,
the capital cost, which could also be modelled stochastically, was not included in
this study.

The NPV for the FCA nested pits were also calculated using the simulated
grades, metal prices, costs and recoveries for the six annual investment timings,
shown in Fig. 4. Note that:

• These curves vary substantially from the base case.
• In all instances the maximum NPV pit is significantly larger (49,239–85,093

blocks) than the base case and the maximum NPV is higher than for the base
case.

• Delaying the investment from Year 3 to Year 5 results in a higher NPV ($3.02
billion versus $2.88 billion). At first this relationship appears counter-intuitive
as costs are greater and discounting greater. However it is related to higher Cu
prices in key production periods.

The NPV of the proposed DFC approach for the six annual investment timings
are also shown in Fig. 4. Note that, considering the mining schedule explicitly in
the optimisation process was successful in finding the maximum NPV pit in a single
run. Whilst the improvement over the maximum NPV pit from the two-step
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approach that considered the stochastic inputs was limited (usually <0.5% in NPV),
there was often some difference in the pit dimension. It is likely that these differ-
ences would be reduced further if additional pit closures had been generated for
evaluation in the two-step approach. Computationally, it was more efficient to post
process a finite series of pit closures than embed the scheduler in the pit optimi-
sation process. In the example shown, the DFC approach that generated a single pit
required around the same computational time as that required in generating 36
nested pits by a simple FC approach.

Figure 5 shows the distribution of potential NPVs for the set of nested FCA pits
without any investment delay. As expected, the uncertainty increases with pit size
with some possibility of negative NPVs for large pit closures. If minimising
downside financial risk is of greater importance than maximising the NPV then the
financially efficient set (frontier) of open pit limits could be determined under a
stochastic framework (Richmond 2004a).

Conclusions

A novel method for working with discounted pay-off matrices during open pit
optimisation was proposed. The approach used in this study embedded a simple ore
scheduler in a floating cone-based heuritic algorithm. It was a trivial exercise to
further consider multiple orebody models, local ore loss and mining dilution,
time-dependent commodity prices and costs and variable metal recoveries during

-1

0

1

2

3

4

5

6

7

8

9

0 20000 40000 60000 80000 100000 120000 140000
Pit Size (blocks)

NP
V 

(b
ill

io
n 

$)
average
simulation

Fig. 5 Pit size versus NPV distirbution

226 A. Richmond



optimisation. As a consequence, alternate project development timings could be
strategically assessed. Traditional evaluation of a set of nested pit shells with
constant metal prices and operating costs failed to determine the maximum NPV pit
under uncertain conditions. However, provided that sufficient pit shells were gen-
erated and evaluated with the same stochastic price and cost input as for the
proposed algorithm there was little difference in the maximum NPV shell derived.
Further experimentation should be undertaken to determine whether this observa-
tion holds for more complex mining schedule algorithms and geometrically irreg-
ular orebodies, as well as when a smoothed block model other than the E-type of
the stochastic grade model is used to generate a series of nested closures.

This study demonstrated that uncertainty in future metal prices and operating
costs cannot be adequately captured in open pit optimisation by simply
post-processing a series of nested pit closures with constant values. Stochastic
modelling of mineral grades, mineral recovery, commodity prices and capital and
operating costs provide an ideal platform to:

• Generate an optimal pit to maximise the overall project NPV considering
geological and market uncertainty,

• Determine the optimum investment and project start up timing, and
• Quantify the multiple aspects of uncertainty in a mine plan.

The example studied in this paper indicates periods of potential financial
weakness that could benefit from management focus (eg. forward selling strategies
and placing the mine on care and maintenance) prior to difficulties arising.
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Part III
Simultaneous Optimisation of Multiple

Operations and Processes



Simultaneously Optimizing Open-Pit
and Underground Mining Operations
Under Geological Uncertainty

L. Montiel, R. Dimitrakopoulos and K. Kawahata

Abstract A method that optimizes mining complexes which are comprised of
multiple processing destinations, open pits and underground operations is pre-
sented. Mining, blending, processing and transportation decision variables are
simultaneously optimized while accounting for geological uncertainty. The method
uses a simulated annealing algorithm at different decision levels in order to generate
a stochastic-based extraction sequence and processing policies. A case study shows
its ability to generate a higher NPV while facing a reduced amount of risk when
compared to traditional optimization methods.

Introduction

A mining complex is a value chain with multiple components: deposits, stockpiles,
processing destinations and transportation systems. Optimizing a mining complex
demands the simultaneous optimization of all its components, a problem known in
the mining literature as global optimization of mining (Whittle 2007, 2018). Several
methods have been developed to incorporate multiple components of the value
chain during the optimization. Hoerger et al. (1999) formulate the problem of
optimizing the simultaneous mining of multiple pits and the delivery of ore to
multiple plants as a mixed integer program. The model groups blocks into incre-
ments and accounts for multiple stockpiles. The authors implement the model at
Newmont’s Nevada operations where 50 sources, 60 destinations and 8 stockpiles
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are present, and leads to an increase of profitability by taking advantage of the
synergies. Stone et al. (2018, this volume) present the Blasor optimization tool
developed by the mine planning optimization group within BHP Billiton technol-
ogy. Blasor formulates the problem of determining the optimal extraction sequence
of multiple pits as a mixed integer linear program and solves it using ILOG CPLEX
(Ilog 2011). Blasor aggregates spatially connected blocks that have similar prop-
erties and generates nearly-optimal solutions in practical times in large-scale
operations: Yandi (1000 aggregates, 11 pits, 20 periods) and Illawarra Coal mine (8
domains) (Rocchi et al. 2011). Zuckerberg et al. (2007) present
Blasor-InPitDumping (Blasor IPD) that is an extension of Blasor that accounts for
waste handling; that is, it incorporates refilling mined-out areas with waste.
Zuckerberg et al. (2011) introduce Bodor to optimize the sequence of extraction of
bauxite ‘pods’ at Boddington bauxite mine, south-western Australia. Pods are
distinct bodies of modest-sized ore that are lying close to the surface. Chanda
(2018, this volume) formulates the delivery of material from different deposits to a
metallurgical complex as a network linear programming optimization problem. The
model attempts to minimize the costs through the network that encompasses mines,
concentrators, smelters, refineries and market regions. Wooller (2007) describes
COMET, software used to optimize mill throughput/recovery and cut-off grade.
COMET uses an iterative algorithm to define operating policies and process routes;
e.g., heap leach versus concentration. Whittle (2007) introduces the global asset
optimization tool incorporated in Whittle software. The tool is designed to optimize
the sequence of extraction of multiple deposits considering complex processing and
blending operations.

The methods described above ignore the uncertainty associated with different
parameters. Groeneveld et al. (2018, this volume) incorporate uncertainty in market
price, costs, utilization of equipment, plant recovery and time for building options
(infrastructure) while simultaneously optimizing mining, stockpiling, processing
and port policies. Bodon et al. (2017, this volume) models the problem of supplying
exports in a coal chain as a discrete event simulation model (DES). The model is
able to asses various operating practices, including maintenance options and capital
expenditure to determine the best infrastructure for a given system. In both meth-
ods, geological uncertainty is discarded, which is the major contributor of not
meeting production targets and NPV forecasts. Although efficient and able to
incorporate several components of the value chain, the methods available in the
technical literature have at least one of the following limitations when globally
optimizing mining complexes: some decisions are fixed when they should be
dynamic (operating modes, destinations of mining blocks, etc.); component-based
objectives are imposed, which may not coincide with global objectives; many
parameters are assumed to be known when they are uncertain (Whittle 2007).

Several methods have been used to incorporate geological uncertainty for the
open pit production scheduling problem (Ravenscroft 1992; Dowd 1994; Godoy
2002; Dimitrakopoulos and Ramazan 2004; Albor and Dimitrakopoulos 2009,
2010; Ramazan and Dimitrakopoulos 2013, 2018 in this volume; Lamghari and
Dimitrakopoulos 2012; Menabde et al 2018 this volume; Lamghari et al. 2013);
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however, little work has been done regarding the production scheduling of
underground mines. Grieco and Dimitrakopoulos (2018, this volume) implement
probabilistic programming in stope design optimization. The authors evaluate the
probabilities of the different rings of being above specified cut-offs. However, the
probabilistic programming formulation discards the compound relationship
between rings whereas stochastic formulations make full use of joint local uncer-
tainty. Bootsma et al. (2018, this volume) present sublevel stope mine optimisation
based on simulated mineral deposits.

Global (simultaneous) stochastic optimization formulations for mining com-
plexes is a new development (Montiel and Dimitrakopoulos 2015; Goodfellow and
Dimitrakopoulos 2016, 2018 this volume) and is explored herein. This paper
describes a method for the simultaneous stochastic optimization of different com-
ponents of a mining complex comprised of open pits and underground operations.
The method is described in the next section, its implementation at a gold complex is
then displayed and finally conclusions are presented.

Optimizing the Components of the Value Chain

Preliminaries

The components of a mining complex are strongly interrelated (Fig. 1). Any
decision taken in a particular component affects the decisions taken at the others. To
optimize a mining complex the different components must be optimized simulta-
neously. Mineral deposits are the sources of material. Different types of ore are
extracted via open pits or underground mining methods. Open pits are discretised
into mining blocks whereas underground mines are comprised of development,
preparation and production activities. Different underground mining methods have
different activities; however, regardless of the mining method, the mine design can
be discretised in activities and dependencies; that is, each activity has a set of
successor and predecessor activities, similar to slope constraints in an open pit.

Fig. 1 Components of a
mining complex
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Mining blocks in open pits and activities in underground mines are named as
‘units’ in this article. Each unit can be sent to a particular processing destination or a
stockpile. There may be as many stockpiles as metallurgical ore types available
from the deposits. Stockpiles contain potential ore, contribute to the blending
operation and serve as a backup supply of material. Each processing destination
may have operating modes that determine the operating costs, metallurgical
recoveries, operational blending limits for the metallurgical properties and
throughputs. For example, the capacity, operating cost and recovery of a milling
plant change if it operates to generate fine material (80 µm) or coarse material
(120 µm). The choice of operating mode at a processing destination should be
made by accounting for the decisions taken at the other components of the value
chain. In some cases, the quality of the material extracted from different deposits
does not meet the specific blending requirements at a given processing destination.
To meet the quality targets, external blending materials are added to specific des-
tinations (Fig. 2). These materials come from external sources and have very
specific qualities. For example, in an autoclave, external material with high sulphide
and low carbonate may be added to meet the SS/CO3 ratio if the ore extracted from
the deposits have low sulphide.

The output material from the processing destinations is transported to final
stocks or ports using available transportation systems (Fig. 3). It is important to
account for transportation systems when optimizing a mining complex given that
they can limit the overall throughput of the system (bottleneck). Each transportation
system has its associated cost and capacity.

Mathematical Model

The goal is to maximize expected NPV while minimizing deviations from targets
associated with the different components of the value chain. The objective function

Fig. 2 Processing destination
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(Eq. 1) has two terms: discprofit(s, t) is the discounted profit in period t under
scenario s; penalty(s, t) is a term that accounts for the penalized deviations from the
targets at different components in period t under scenario s. Each scenario is a
combination of orebody simulations of the deposits.

maximizeO ¼
XS
s¼1

XT
t¼1

discprofit s; tð Þ � penalty s; tð Þð Þ ð1Þ

The discounted profit at each period and scenario is calculated by accounting for
the revenue obtained by selling the different products, the cost of mining at all
deposits, the cost of processing the material at all destinations, the cost of stock-
piling the material, the cost of sending material from the stockpiles to the available
processing destinations and the transportation costs.

discprofit s; tð Þ ¼ revenue s; tð Þ � minecost s; tð Þ � procost s; tð Þ � stockcost s; tð Þ
� rehandlecost s; tð Þ � transcost s; tð Þ

ð2Þ

The second term of the objective function, penalty s; tð Þ, accounts for the
penalized deviations, and is evaluated as.

penalty s; tð Þ ¼ penalmine s; tð Þþ penaltrans s; tð Þþ penalpro s; tð Þþ penalmetal s; tð Þ
ð3Þ

where penalmine(s, t) are the penalized deviations from the capacities of the dif-
ferent mines, penaltrans(s, t) are the penalized deviations from the capacities of the
different transportation systems, penalpro(s, t) are the penalized deviations from the

Fig. 3 Transportation systems
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capacities at the different processing destinations and penalmetal(s, t) are the
penalized deviations from the operational ranges of some operational properties.

Three sets of decision variables are used to evaluate revenues, costs, production
and deviations at the different components of the value chain. Xitd is a binary
variable that represents whether or not a particular unit i is mined in period t and
sent to processing destination d. Ytdo is a binary variable that represents whether or
not an operating mode o is used in destination d during period t. Ztdr represents the
proportion of output material from destination d transported using transportation
system r during period t. The following equations show the evaluation of tonnages
at different components using the decision variables described above.

mineproduction s; tð Þ ¼
XI

i¼1

XD
d¼0

Xitd � mis ð4Þ

tonneoutprocess s; t; dð Þ ¼
XO dð Þ

o¼1

tonneprocess s; t; dð Þ � Ytdo � Pdoð Þ ð5Þ

tonnetransport s; t; rð Þ ¼
XD
d¼1

tonneoutprocess s; t; dð Þ � Ztdrð Þ ð6Þ

The amount of material extracted from the deposits can be evaluated using
Eq. 4, the output material from a given destination can be evaluated using Eq. 5 and
the amount of material transported using a particular transportation system using
Eq. 6. The set of all units from the deposits is represented by I, D is the set of
processing destinations, mis is the tonnage of unit i under scenario s, O(d) is the set
of operating modes available at destination d, tonneprocess(s, t, d) is the tonnage
sent to destination d from the deposits and the stockpiles in period t under scenario
s and Pdo is the proportion output/input tonnage in destination d using operating
mode o.

A mining complex may contain a large number of units which leads to a
complex optimisation model that is hard to solve. Hence, it is necessary to find
solution methods that overcome this limitation.

Solution

Any solution of the optimization model must answer the questions associated with
the three main sets of decision variables: (i) which units are going to be extracted in
each period and where are they going to be sent? (Xitd variables); (ii) which
operating modes are going to be used at the different processing destinations? (Ytdo
variables); (iii) which transportation systems are going to be used? (Ztdr variables).
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Given a particular solution, it is possible to modify the objective value by
generating perturbations at the three different decision levels. These perturbations
should be done towards improvements in the objective value. Given the monetary
value associated with time due to discounting, profitable units should be pushed to
be extracted in early periods and non-profitable ones should be pushed to later
periods. Operating and transportation decisions should minimize processing and
transportation costs and deviations.

The Perturbation Mechanism

For each unit u, it is possible to calculate the cumulative profit of u in every
destination by accumulating the economic value in each scenario (Fig. 4). The
cumulative profit provides a guidance of the most profitable destinations for a
particular unit and controls the iterating process when swapping periods and des-
tinations of a mining unit (Fig. 5). If the greatest cumulative profit of a unit is
positive, extracting that unit in an earlier period will be favoured; otherwise, the
iterating process will favour extracting the unit in a later period. The candidate
destinations include the destinations with positive cumulative profit if the unit is
profitable, or the less unprofitable destination in the opposite case.

The iteration process over the candidate periods and destinations of a mining
unit is designed to increase the expected NPV given the time value of money.
However, the objective value of the perturbed solution is also affected by the

Fig. 4 Cumulative profit of a unit
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penalized deviations, therefore, there might be cases when pushing a profitable unit
to a later period or an unprofitable one to an earlier period increases the objective
value given the lower deviations in the new solution. In these cases, the objective
function can be seen as trade-off between maximizing the expected NPV and
minimizing the penalized deviations.

The perturbations at an operating decision level consist in swapping operating
modes at different processing destinations towards improvements in the objective
value. The perturbations at the transportation decision level consist in modifying the
transportation proportions of the output material from the different processing
destinations; for example, changing the transportation of the output material from a
mill from 50% trucks/50% pipeline to 70% trucks/30% pipeline. The transportation
perturbation mechanism seeks for minimizing transportation costs and deviations.
At any level, perturbations are accepted or rejected using Eq. 7 from the Metropolis
algorithm (Metropolis et al. 1953; Kirkpatrick et al. 1983).

Fig. 5 Perturbation of units
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P DOð Þ ¼ P Onew � Ocurrentð Þ ¼ 1 ifDO� 0
e
�DO
T otherwise

�
ð7Þ

where T is the annealing temperature. The probability of accepting an unfavourable
perturbation is greater at higher temperatures. As the optimization proceeds, the
temperature is gradually lowered by a reduction factor. When the temperature
approaches to zero, the probability of accepting an unfavourable swap tends to zero.
This allows the algorithm to converge to a final solution.

The Method

The method proposed to optimize a mining complex has three stages (Fig. 6). The
first stage consists in assigning periods and destinations to the mining units from an
initial solution. In the second stage the method evaluates the profits, productions
and deviations at the different scenarios. It also evaluates the cumulative profit of
the mining units at the different destinations. The last stage is the perturbation
mechanism at the three different decision levels. The algorithm stops when it
reaches a user-specified number of iterations or poor improvement is presented in
the objective value after a certain number of perturbations (Fig. 6).

Fig. 6 Method

Fig. 7 Gold mining complex
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Case Study: A Gold Operation

The method is implemented at a gold mining complex comprised of one open-pit
and one underground mine (Kawahata et al. 2013). Higher-grade oxide ore is
processed at a mill, lower-grade is treated on heap leach pads. Refractory ore is
processed at one autoclave. The open pit provides both oxide and refractory ore
whereas the underground mine just provides refractory ore for the autoclave.
Twenty orebody simulations for gold, sulphide sulphur, CO3 and organic carbon
are provided for the open-pit, generated using the direct block simulation method
for correlated variables (Godoy 2002; Boucher and Dimitrakopoulos 2009). The
higher concentrations of gold are located in the north-east part of the deposit where
the current mining phases are located (Fig. 8). The gold and sulphide sulphur
grades are controlled by the mineralized domains whereas the carbonate and
organic carbon are spread in all the area of the deposit.

The underground mine uses underhand-cut-and-fill due to the relatively low rock
quality in the ore zones. Intensity of gold mineralization is related to structural
complexity and the location of rocks chemically receptive to mineralization. The
production zones are located in the high grade areas (Fig. 9). Twenty orebody
simulations are generated for the underground deposit using direct block simulation
by considering the drillhole data within the mineralized domain (Godoy 2002;
Benndorf and Dimitrakopoulos 2017 in this volume). Figure 10 shows the vali-
dation of the orebody simulations generated. It can be observed that the simulations
respect the statistics of the drillhole data as they reproduce its histograms and
variograms at the main directions of anisotropy. The simulated values at each unit
are calculated by averaging the simulated points that fall inside; that is, given the
different shapes and sizes of the underground mining units, there is no single
support size as in the open pits where the mining blocks have the same size.
Figure 11 shows three different orebody simulations and the production zones of
the mine.

Fig. 8 Three orebody
simulations of the open pit
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The autoclave has tight operating ranges for SS/CO3, SS, CO3 and organic
carbon. To help metallurgical blending, concentrates from other plants are added to
the process (Fig. 12). In the three processing destinations the metallurgical recovery
of gold follows non-linear curves. In the autoclave the recovery curve is a function
of the gold grades and the organic carbon whereas in the oxide mill and the heap
leaching plant the recovery is a function of gold grades only.

Initial Solution

An initial solution for the optimization of the gold complex was generated by:
(i) Considering the current mining plan in the underground mine that was devel-
oped by the mine planners using Enhanced Production Scheduler (EPS) software;
(ii) using Milawa scheduler in Whittle software for the open-pit using the e-type of

Fig. 9 Gold grades (left) and production zones (right) in the underground mine: a Plan view;
b Cross section
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the orebody simulations; that is, the average grades of the mining blocks at the
different realizations.

The amount of external blending material used in the autoclave is considered
when evaluating the results of the implementation of the initial solution over the
different scenarios (combinations of orebody simulations of both deposits).

Fig. 10 Validation of the simulations in the underground mine: a Drillhole data; b Histogram
reproduction; c Variogram reproduction

Fig. 11 Orebody simulations and production zones of underground mine
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The productions of the two mines, the autoclave and the oxide mill are shown in
Fig. 13. It can be observed that the underground mine operates below the capacity
whereas the open-pit operates very close to its capacity until the depletion of the
reserves. Although external blending material is added to the autoclave, given the
tight blending constraints imposed to this processing destination, the conventional
scheduler can only find blended material to fill the capacity in three periods of the
life of the mine (LOM). There is a big shortfall in production in the autoclave in
year 4, and after year 9 the tonnage sent to this processing destination is very
marginal. Regarding the oxide mill, the production is going to be close to the
capacity in years 2–4 but deficient production is observed in the rest of the periods
of the LOM. However, most of the oxide ore filled to this processing destination
comes from another pit that is not considered in this study.

The SS is below the operational ranges in most of the years whereas the SS/CO3

ratio falls below the operational ranges in the last years (Fig. 14). The CO3

increases with time and falls inside the operational ranges in most of the years.

Fig. 12 Sage autoclave

Fig. 13 Productions with the initial solution
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The organic carbon is well controlled in all the different scenarios. The risk profile
of the NPV is displayed in Fig. 15. It is observed that after year 9 the cumulative
NPV starts to decrease given the marginal tonnage sent to the autoclave. It will be
more profitable to stop the operation after year 9. However, there is another pit that
is not considered in this study, which can add more years of profitable operation.

Optimisation Parameters

Different tests are performed to define the optimization parameters that lead to the
largest improvement of the objective value. Different initial temperatures, reducing
factors and number of perturbations were evaluated. Figure 16 shows the evolution
of the objective value with the number of perturbations for six different initial
temperatures. The largest improvement in the objective value is obtained with an
initial temperature of the order of 1 million.

Fig. 14 Operational properties with the initial solution

Fig. 15 NPV with the initial
solution
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Other important parameters to define are the per-unit penalty values associated
with the targets at the different components. The magnitude of the penalties must be
defined so as to balance the two terms of the objective function. Too high penalty
values will improve the reproduction of the targets ignoring the first term of the
objective function generating poor improvement of expected NPV. Conversely, too
small penalty values will generate impractical solutions with large and non-realistic
NPV forecasts given the large violations of the targets.

Stochastic Solution

The method is next implemented after setting up the optimization parameters. It is
possible to observe from Fig. 17 that the solution asks for operating the under-
ground mine very close to its target except in year 12 where there is a big shortfall.
However, the productions at the autoclave and the oxide mill are below their
capacities in all the periods of the LOM. Regarding the blending properties, a
similar behaviour is observed when compared with the deterministic initial solution
(Fig. 18). Given the low sulphide sulphur presented in the simulations, the method
is not able to accommodate the sulphide sulphur inside the operational ranges. The
expected NPV is 14% greater than the one obtained with the deterministic initial
solution (Fig. 19).

The method is implemented considering different amounts of external blending
material input to the autoclave. In particular, the amount concentrate A fed to the
autoclave is increased five times given its high sulphide sulphur. The productions at
the underground mine and the autoclave and the sulphide sulphur with the new
stochastic solutions are displayed in Fig. 20. It can be observed that by increasing
the amount of concentrate A the method is able to find more material to blend in
order to increase the production in the autoclave. Furthermore, the sulphide sulphur
approaches the operational ranges by increasing the external blending material
given its large sulphide sulphur content compared to the material extracted from the

Fig. 16 Evolution of the
objective value with different
temperatures
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Fig. 17 Productions with the stochastic solution

Fig. 18 Metallurgical properties with the stochastic solution

Fig. 19 NPV with the
stochastic solution
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deposits. However, the content of sulphide sulphur is still below the operational
ranges given the low grade in the orebody simulations.

The expected NPVs of both stochastic solutions are very similar (Fig. 21).
However, the availability of concentrate A is a strong assumption. The shortfall in
production in the autoclave in year 4 in both stochastic solutions suggests that the
method got trapped in a local optimum. To overcome this situation, a diversification
strategy in the perturbations at the unit decision level is desired. A better control of
the operational ranges and the capacity of the autoclave are obtained with the
stochastic approach when considering a set of initial stockpiles. These results are
displayed in Appendix 1.

Fig. 20 Productions with the new stochastic solution: a Concentrate A; b Concentrate A � 5

Fig. 21 Expected NPVs of
stochastic solutions
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Conclusions

This paper presents a method to simultaneously optimize different components of
mining complexes comprised of open pits and underground operations. The method
can be easily adapted to different underground mining methods. At the different
processing destinations, the method accounts for operating modes and external
sources of material used for blending purposes. The implementation of the method
at a gold mining complex shows substantial improvement in expected NPV and in
meeting operational targets for the autoclave. The perturbations at operating and
transportation decision levels act as a diversification strategy for the unit-based
perturbations. However, as in the case study, no operating modes and transportation
systems are considered, a stand-alone diversification strategy for the unit-based
perturbations must be included to explore better the solution domain.

Future extensions of the method may consider stochastic stockpiles, geotech-
nical and environmental aspects of the underground activities and the optimal
consumption rate of external blending material.
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Combining Optimisation and Simulation
to Model a Supply Chain from Pit to Port

P. Bodon, C. Fricke, T. Sandeman and C. Stanford

Abstract An export supply chain, beginning with the extraction of ore from a pit
and ending with the loading of this ore onto vessels at a port, is a key component of
many mining operations. These supply chains are comprised of a number of
complex subsystems such as mining, ore processing, transportation, stockyard
management and vessel loading. Typically, the operation and performance of each
of these subsystems is analysed in isolation, with little consideration of their
interaction with upstream and downstream subsystems. In reality, stochastic and
dynamic influences that affect one of these subsystems will have flow on effects for
all other subsystems in the supply chain. Hence, evaluation of the performance of
the total integrated system needs to capture the interaction of these subsystems.
Discrete Event Simulation (DES) has proved to be a powerful tool in modelling
supply chains, capturing the system dynamics and interactions, and evaluating the
overall performance of the integrated system. The primary objective of mining
export supply chains is typically to maximise production capacity, i.e. tonnes of ore
loaded onto vessels at the port. In some mining operations, the extracted ore is
blended into a variety of products with differing characteristics before being
exported. This can be the case for ores such as coal, iron and manganese. In these
operations, an additional objective, in the form of achieving a predetermined quality
of material on the vessels, is equally important as a measure of system performance
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as production capacity. The objective of delivering a certain quality of product often
conflicts directly with the objective of maximising production capacity, resulting in
an increased level of complexity within the supply chain. In these supply chains, the
decision-making process of planning the movement and blending of ore through the
system is paramount to the overall system performance. Capturing this complex
planning process in a DES modelling language is possible, but proves to be a very
difficult and time-consuming task. Since planning problems are often modelled and
solved using an optimisation framework, an alternative approach is to decouple the
decision-making process from the simulation model, develop a stand alone opti-
misation model for it, and then integrate the two to create a holistic model of the
supply chain. This paper describes the approach taken and presents a case study of a
successful implementation on the export supply chain of PT Kaltim Prima Coal
(KPC) in Indonesia.

Discrete Event Simulation and Optimisation

Discrete event simulation (DES) modelling is the process of emulating real world
operations in a controlled environment on a computer. This DES provides a rational
and quantitative process for increasing understanding of the potential consequences
of alternate proposals. This may range from a change in operational philosophies
through to the commissioning of new infrastructure. Hence DES modelling is a
useful tool for both long-term strategic decision-making and short-term planning
and operational decisions.

Zeigler et al. (2000) describe a method for simulating a system using a discrete
event system specification. These models are constructed by considering each
physical item (train, car dumper, reclaimer, ship, etc.) as a discrete entity, with its
own uniquely defined set of properties or attributes (speed, material type, reliability,
carrying capacity, etc.). These entities act out the operational activities that make up
the processes being modelled. They consume discrete periods of time for each
activity, and incur delays that can be logically induced (e.g. bin empty, no rake,
etc.). They also use stochastic methods to generate randomly induced delays (e.g.
breakdown, failures, etc.), all of which are dependent on the data and operational
rules that are defined for that particular process or piece of equipment. This com-
bination of logical and random events is designed to reflect the most likely oper-
ational environment. Each system within a DES model has individual operating
rules and parameters which need to be accurately defined. In the context of a mining
operation, an export supply chain involves the movement of ore from pit to port, via
any number of subsystems. In many mining supply chains, the operational rules
regarding the movement of ore are simply defined (e.g. lump material goes to a
lump stockpile, fines material goes to a fines stockpile). The lack of product
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diversification in these instances means that there are little or no blending
requirements throughout the supply chain. These simple operational rules are able
to be incorporated into DES models of the mining supply chain relatively easily,
allowing the DES model to provide a realistic representation of the export supply
chain as a whole. However, in some mining supply chains, the process of moving
ore from pit to port is significantly more complicated. This is particularly the case
when the ore is blended into a variety of products with differing characteristics
before being exported, which can be the case for ores such as coal, iron and
manganese. For operations such as these, day-to-day movements of ore are typi-
cally planned and executed by groups of experienced individuals, who match
current mining stocks and stockpile levels with a shipping plan. The decision
process by which they do so is complex, and cannot be described using a simple set
of rules. This limits the ability of a DES modelling language to precisely replicate
the decision-making process that is used in practice, and hence provide an accurate
representation of the export supply chain.

Optimisation modelling is ideally suited for analysing complex decision-making
processes, where any number of (possibly conflicting) objectives have been iden-
tified as being desirable, though subject to constraints such as system capacity,
operational limitations and time. One of the most powerful features of an optimi-
sation model is its ability to consider hundreds of thousands of possibilities and
determine the optimal decision in a very short period of time. In the mining
industry, optimisation modelling has been widely applied in long-term mine
planning, particularly production scheduling problems and ultimate pit design. It is
also possible to apply optimisation modelling to the problem of planning the
movement and blending of ore through a complex export supply chain, such as
those described above. This optimisation component can then be integrated into a
DES model of the entire supply chain, enabling a holistic model of the system to be
developed. There are a number of advantages to modelling a complex export supply
chain in this manner. Automating the process of generating the plans and carrying
them out in the simulation reduces the need for human input, and aids in the process
of knowledge capture and retention. In addition, a stand-alone optimisation model
provides the ability to easily modify and test alternative planning strategies in
isolation. Optimisation models also have the ability to evaluate multiple criteria
(e.g. product quality, demurrage, amount of ROM rehandling), as well as explore
the effect of changing priorities on each of these objectives.

Recently, the authors developed an automated optimisation planning engine
(APE) for use in DES models of complex export supply chains. The APE plans the
movement and blending of ore through the system and interacts with the DES
model, which attempts to enact this plan under realistic conditions, hence providing
an accurate representation of the system dynamics of the export supply chain. The
design of the APE is described below.
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Development and Implementation of the Automated
Optimisation Planning Engine

Generally, a DES model of a supply chain will consider the performance of the
system over a one year time period, using a mine plan and shipping plan for one
year as inputs. The APE is used to plan material movements on a more frequent
basis, such as fortnightly, weekly, or a number of days in advance. The time
horizon used for the planning process is an important factor in determining the
complexity of the planning problem, hence the computation time required to solve a
problem instance with the APE. Once a short-term plan is produced, it has to be
translated into ‘tasks’ to be carried out by the simulation. The DES model then
attempts to carry out these tasks as close as possible to the plan, subject to real life
conditions and variability. A small amount of intelligence is required within the
simulation for dealing with unexpected occurrences such as bad weather shutting
down pits, or pieces of equipment failing. At the end of the planning period, control
is passed back to the optimisation model with an updated set of inputs for the next
planning period. This process is then repeated. A diagrammatic representation of
the interaction between the simulation and optimisation models is presented in
Fig. 1.

The aim of the APE is to plan movements of ore from pit to ship via intermediate
subsystems such as processing plants, transportation systems (rail networks or

Fig. 1 Process of interaction between the simulation and optimisation models
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conveying systems) and stockyards. A feature of export supply chains in the mining
industry is the inclusion of buffers (stockpiles and queues) between these subsys-
tems to mitigate the impact of subsystem performance variability on overall system
performance. In the case of a multi-pit, multi-product blended ore mining operation,
intermediate stockpiles are used for blending the ore into products to be shipped, as
well as for buffering purposes. It follows that inputs to the APE are short-term mine
and shipping plans and the current levels in the intermediate stockpiles. The APE
will then determine the manner in which material is to be moved through the system
via the intermediate buffer stockpiles to attempt to satisfy the shipping plan. The
objective is to maximise the throughput of material while keeping shipped quality
as close to target as possible, subject to equipment availability constraints. It is
formulated as a mixed integer linear program involving multiple time periods.
Specific complicating concepts related to the formulation used in the APE are
discussed below.

Non-linear Constraints

A direct formulation of a planning problem involving blending will typically fea-
ture a number of non-linear constraints. This was the case in the original formu-
lation proposed for use in the APE. A period of experimentation in the use of
non-linear solvers was undertaken with little success, as solution times tended to be
unwieldy. To overcome this issue, a small number of simplifying assumptions are
made to enable the formulation to be linearised, so that the solution time of the APE
is reduced considerably without losing significant detail in the plans produced.

Variation in Stockpile Quality Over Time

The major complicating factor in this area is the variation in stockpile quality over
time. The quality of material extracted from a stockpile in any time period is
dependent on the quality and quantity of material added to that stockpile in the
preceding time periods. This relationship is inherently non-linear in nature.
Assuming a fixed quality in each stockpile throughout the planning period under
consideration enables this relationship to be modelled linearly. In addition, this
assumption leads to the possibility of a further level of planning which is more
tactical than operational, i.e. setting the target stockpile qualities for each time
period.

Through Loading

Many port operations in mining export supply chains allow for through loading of
material onto vessels. Through loading occurs when material arrives at the port and
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is loaded onto a vessel berthed at the port immediately, effectively bypassing the
buffer stockpiles in the stockyard. From a modelling perspective, this is achieved by
including a splitter at the port, which allows a variable amount of feed to be directed
to stockpiles in the yard, and the remainder to be sent directly to the ship loading
operation. Initial modelling of the decision of the quantity of material to send to
each respective destination resulted in non-linear constraints. This non-linearity was
overcome by assuming that through loading is always carried out when a vessel is
at berth, and that when this occurs, a fixed proportion of the feed is split between
the through loading operation and the yard stockpiles.

Building Stockpiles to Completion Before Being Turned Over

Ideally, each port stockpile is built to completion before being turned over and
reclaimed from to load vessels. This constraint is included in the APE by applying a
penalty for turning over a stockpile before it is full. An integer variable is included
in the formulation to represent the state of each stockpile (stacking or reclaiming),
and a fixed penalty is applied when a stockpile is turned over before it is in a
reclaim state.

Solution Time

Even the most sophisticated optimisation engines generally require a significant
amount of time to determine the optimal solution to a complex mixed integer linear
programming problem with a large number of decision variables and constraints.
One of the drawbacks of the techniques used to linearise the formulation used in the
APE is that additional decision variables and constraints are added to the formu-
lation. The purpose of the APE is to improve the decision-making processes within
a DES model and facilitate the generation of realistic outputs by the DES model.
Since it is used to solve many instances of the planning problem throughout a single
simulation run, it is imperative that the solution time for the APE is not excessive.
One approach explored in an attempt to reduce solution times was to split the
planning problem in two (planning from mine to an intermediate buffer, then taking
this solution and planning from the intermediate buffer to the vessels). While this
resulted in a small decrease in overall solution time, the loss of the ability to
effectively plan for ships earlier in the supply chain operation resulted in a decrease
in the quality of products loaded to vessels. Therefore, this approach to the planning
problem was abandoned.
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Case Study—PT Kaltim Prima Coal Supply Chain

PT Kaltim Prima Coal (KPC) operates a coal mine near Sangatta in East
Kalimantan, Indonesia. Coal is mined at various grades and blended through a
series of intermediate stockpiles that are linked by a 13 km overland conveyor
(OLC) before being loaded as multiple products onto a ship. To determine the
potential consequences of increased production and alternative production scenar-
ios, KPC required an understanding of the interaction between throughput and
quality, and how these are impacted by any changes in infrastructure and/or
operating policy. The nature of planning the KPC operation to achieve contracted
coal qualities involves multiple objectives including throughput, blending and on
time delivery onto ships. An APE was constructed that incorporated these multiple
objectives, as well as the ability to interact with the DES model. The optimisation
replicates the planning activity that is regularly performed on site to enable the DES
model to operate for an extended duration (anywhere from one week to several
years). The integration of the optimisation within the simulation allowed KPC to
link the effects of real life uncertainties to the strategic plans being developed. The
addition and integration of the APE within the simulation model was a complex
task. In isolation, the three key elements of this model (quantity model, quality
model and planning) are well established, however the incremental addition of each
of these elements into an integrated DES and optimisation model exponentially
increases the model complexity. The insights gained from this complex modelling
system hold the potential to revolutionise the way the KPC operation is planned and
operated.

Overall Benefit

The integrated DES model has helped KPC in making strategic long term decisions,
short-term planning decisions and also provides the possibility of aiding the
operational decisions of creating and evaluating weekly plans.

Strategic Decision-Making

The primary purpose of building the integrated DES model was to help KPC
understand the likely impacts of increased production, identify bottlenecks in the
system and evaluate the effect and feasibility of various potential future expansions
of the operation. The ability to easily change the inputs of the model enables KPC
to quickly understand the effect of upgrades to equipment, such as increasing
crusher capacity, improving conveyor rates and reliability, and increasing ship
loading capacity. In addition, the integrated DES model provides the flexibility to
test different stockpiling configurations and examine the effect of reducing the
amount of through loading.

Combining Optimisation and Simulation to Model … 257



Short-term Planning

The ability to take a short-term marketing plan in terms of shipping demand for
tonnes and quality, and evaluate the potential of the operation to supply these
tonnes given a mine plan, has been of great benefit to KPC. The DES allows KPC
to see which plans are harder to achieve, as well as indicating the potential bot-
tlenecks and areas which are causing problems.

Operational Decision-Making

The optimisation component of the integrated DES model is able to operate in
stand-alone mode. This provides the ability to easily modify and test alternative
planning strategies in isolation. In addition, further detailed modelling of the
planning process that occurs on a day-to-day or even hour-to-hour basis could be
included in this stand-alone model. This could provide sufficient detail to enable the
optimisation component to be used in the weekly planning sessions that are held on
site, where the daily movements of ore for the next week are determined.

The Integrated DES Model

The KPC Coal Chain Integrated DES model is a large, complex model that
incorporates many features to enable it to accurately replicate the real operation.
The inputs for this model include the: key plant and equipment capability/capacity,
equipment configuration, equipment reliability (planned and unplanned downtime),
mine plan, and shipping plan (forecast). Equipment capacity and reliability is
determined through analysis of the existing operation. Equipment configuration is
based on the current operation and may be manipulated to simulate different
operating conditions. Mine and shipping plans are supplied by KPC in the form of
mine log files and the current shipping program spreadsheet. Scenarios are arranged
by manipulating these key input parameters to test the system under different
configurations. To enable the estimation of maximum system capacity and to
identify and quantify system bottlenecks, it is necessary to scale the demand and
supply components to ensure that the model is tested to its capacity. The supply
(mine plan) is scaled by simply scaling the coal quantity of each block in the mine
plan, while the demand (shipping plan) is scaled by adding ships to, or removing
them from the plan. The primary aim of the APE used within the integrated DES
model is to determine a sequence of tasks to deliver the required coal to the waiting
vessels. The DES model then follows the list of tasks developed by the APE until
such time that the tasks are completed or replanning is required. The following is an
outline of the functionality of the APE used in the integrated model of the KPC
Coal Chain.
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Planning Horizon

The planning horizon used by the APE is able to be varied. Following a testing
phase it was established that a planning horizon of 21 shifts (seven days), with plans
updated every nine shifts (three days), provided realistic results and did not require
significant solution times. This configuration enabled the APE to provide planning
based on a seven day look ahead to ensure that both near term and longer term
(seven day) objectives could be optimised, but also meant that the DES model was
unlikely to become significantly out of synchronisation with the plan.

Optimisation Formulation

The optimisation is a general linear program as described by Winston (1987). As
such, it has an objective function which in this case is a maximisation, subject to a
number of constraints, of the general form:

Maximise
X

Xi

Subject to
X

ai:xi\ ¼ bi

The model is formulated in Lingo using a combination of the techniques
described by Schrage (2003).

Objective Function

The following is a list of objectives that the APE has to optimise against, given the
constraints listed below. The importance of each of these objectives is controlled by
weighting multipliers in the solver:

• Maximise throughput. Primarily this means to maximise the tonnage down the
OLC, however it is extended to also maximise tonnes mined and tonnes shipped.

• Minimise deviation of both crushed ore and port stockpiles from their assigned
lower and upper bounds. Quality deviance is calculated by creating a variable
which is the difference between the desired and actual quality, then including
this variable in the objective with a negative value to penalise this deviance.

• Minimise deviation from each vessels’ target quality.
• Minimise deviation of each vessels’ loading time from its arrival time.

Constraints

The following are the list of constraints that the APE must operate within when
finding a solution that optimises the objective function.
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Pits

• Only mine blocks that are available: blocks must be mined in sequence. This is
achieved by limiting the number of blocks that are available to be planned,
based on the provided mine plan sequence. For example, blocks nominated to be
mined in the month of September cannot be mined in August unless all of
August’s blocks have been mined. Changing the bucket size for the blocks
affects how closely the model tracks the provided mine plan. Whilst in the
short-term the order that the blocks are mined is critical, as the model moves
further into the future, so the need for strict adherence diminishes due to
uncertainties in the orebody mapping. The ore blocks are ‘binned’ by month—
finer resolution would require more accurate mine plans extending possibly for a
number of years.

• The APE is allowed to mine blocks that are assigned to a following time period
in the input mine plan, but a penalty is incurred. Essentially, blocks assigned to
an upcoming period would only be mined to deal with a quality issue.

• Precedence constraints between blocks are not explicitly modelled. It is assumed
that precedence requirements have been handled in the mine plan, and excursion
from the mine plan is allowed only on a quality issue.

• Do not exceed shovel capacity in any pit and across all pits in any shift.
• Do not mine more than the tonnage of any given block.

Crusher Stockpiles

• Do not exceed crusher rates.
• Physical configuration constraints regarding which crusher feeds to which

crusher stockpile.
• Do not exceed each crushed ore stockpiles’ capacity.
• Do not exceed each crushed ore stockpiles’ maximum reclaim rate.
• Aim to have each stockpiles’ quality within its nominated quality range at all

times.

Overland Conveyor

• Do not exceed the maximum OLC rate.
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Port Stockpiles

• Do not exceed each port stockpiles’ capacity.
• Aim to have each stockpiles’ qualitywithin its nominated quality range at all times.
• Do not exceed total port capacity.

Vessels

• Load vessels to their stated tonnage.
• Do not load vessels prior to their arrival time.
• Do not exceed the rated capacity of the ship loader.
• Aim to have each vessel within its nominated quality range.

Outputs

The following data is output from the APE to the DES model. The DES model then
uses these outputs to control (direct) the flow of coal.

• Tonnes to crusher stockpiles: number of tonnes from each block in the mine
plan to be sent to each crusher stockpile in each planning period. There is the
potential that a block may be split across more than one crusher stockpile.

• Crusher stockpile to port stockpile: number of tonnes to be sent from each
crusher stockpile to each port stockpile via the OLC in each planning period. It
is possible to have more than one crusher stockpile feeding a port stockpile and
more than one port stockpile being fed from the same crusher stockpile.

• Port stockpile to vessel: number of tonnes to be sent from each port stockpile
and loaded onto each vessel in each planning period. The APE also determines
which planning period the vessels in the queue will be loaded in.

Example of Scenario Analysis

DES modelling is a complex process that has the ability to generate a significant
quantity of output results. The interpretation of these results requires an in depth
knowledge of the model and its outputs. To best describe the performance of the
operation under varying operating scenarios requires a statistical comparison of
results and an understanding of statistics in general. To simplify this process, a
reduced number of key performance indicators (KPIs) have been identified that
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enable a simplified and more manageable understanding of the outputs. Just as the
real system has variability associated with its performance (due to varying equip-
ment reliability, varying times to perform tasks and variances in the quality of ore),
so too does the DES model. For this reason, no two actual or simulated years will
ever be the same. To cope with this fact, it is necessary to run the DES model for
the same simulated period a number of times and then calculate the mean and
standard deviation of the results for this period. Calculating the standard deviation
quantifies the effect of variability on the process, and enables the range of results
that could be expected to be produced by the operation under similar circumstances
to be gauged. System performance is a combination of the KPIs that describe the
performance of the system in terms of its ability to load coal onto ships in the
correct quantity and quality within reasonable time frames. Hence system perfor-
mance cannot be described alone by any one performance indicator, but rather is a
combination of KPIs. Furthermore, testing the system at a single throughput is not
sufficient to enable the successful identification of system bottlenecks and ineffi-
ciencies. To enable a complete under-standing of the system performance, the
combination of the following two KPIs is the focus of the integrated DES model of
the KPC Coal Chain:

1. Quantity: tonnes moved from mine to ship and the utilisation of the intermediate
stockpiles.

2. Quality: the match between the customers’ contracted shipments and the coal
that is actually loaded onto their vessels. Quality is measured by the gross
calorific value (GCV) of the coal.

Quantity

DES modelling allows the user to quantify the amount of extra production from a
proposed capital expansion, as well as providing valuable insight into the auxiliary
effects from any actions. This is particularly valuable in systems that contain many
interacting components, such as the KPC Coal Chain. Testing the sensitivity of the
system performance to varying equipment rates allows the potential benefit of
changing the operating philosophies used in this area of the supply chain to be
determined, and also provides a means of evaluating whether each piece of
equipment is, or could potentially be, a restriction or bottleneck on the overall
system. The following is an example of the analysis that is able to be undertaken
using the integrated DES model of the KPC Coal Chain. In this case, the aim is to
examine the effect of modifying the ship loading rate, both in isolation and in
conjunction with the option of increasing the OLC rate.

To establish system performance sensitivity, the model is run at a number of
throughput levels, i.e. using shipping plans and mine plans with different levels of
demand for, and supply of, tonnes of coal. This establishes a response curve for the
system. The response curve describes the system performance as the demands on it
are increased, and provides a visual quantification of the benefit of differing system
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configurations at varying levels of throughput, as shown in Fig. 2. As can be seen,
increasing ship plan tonnes will increase the quantity moved through the system,
however beyond a certain tonnage, it becomes harder to meet quality targets. This
causes increased penalty payments, meaning profit eventually suffers. Figure 3
shows that increasing ship loading rate in isolation yields very little increase in the
number of tonnes shipped at the lower throughput levels. This indicates that the
ship loading configuration is sufficiently capable of meeting the shipping plan at
these lower throughput levels. As the throughput is increased, it becomes clear that
increasing the ship loading rate on its own yields no significant increase in shipped
tonnes. When the increased ship loading rate is combined with an increased OLC
rate, the higher throughput levels show measurable increases over the base case
configuration, although it would appear that the majority of the gain is provided by
the increase in OLC rate.

System Performance
Supplied Tonnes vs Demand Tonnes

Revenue and Profit vs Demand Tonnes
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Fig. 2 System response to increasing demand

Fig. 3 Effect of ship loader and overland conveyor rates on shipped tonnes
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Inspection of the stockpile levels (CPP = crusher stockpiles, TBCT = port
stockpiles) with the increased ship loading rate in Fig. 4 reveals that the port
stockyard is running empty, particularly towards the end of the year. The results
from increasing ship loader rates indicate that the system is unable to supply
sufficient coal to maintain adequate inventories in the port stockpiles. This is evi-
denced by inspection of the scenario with OLC rate increased only (Fig. 5). This
chart shows that the system was far more capable of maintaining adequate port
inventory levels, and thus able to ship more tonnes and more easily match quality
targets.
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Fig. 4 Effect of increasing ship loader rate on stockpile levels
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Fig. 5 Effect of increasing overland conveyor rate on stockpile levels
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Quality

The two critical elements of the KPC Coal Chain are its ability to deliver the correct
quantity and quality of coal onto ships. In the KPC Coal Chain operation, quality of
coal is measured by gross calorific value (GCV). The integrated DES model
incorporates the tracking of coal quality through the system and so has the ability to
measure the quality of coal loaded onto ships. To quantify the effectiveness of the
operation under various scenarios, it is necessary to compare the contracted con-
signment quality of coal with the loaded quality. Each dot in Fig. 6 represents a
ship. The y axis indicates the error in the quality of the material that was loaded
onto each ship. Therefore a positive value indicates the model has shipped too much
of a given quality.

Continuing with the previous example of increasing the ship loading rates, Fig. 7
shows the shipped qualities from the increased ship loading rate scenario. As a
result of the low levels of port stockpiles, it has become difficult to provide each
ship with the quality of material requested. This mismatch of quality has a direct
impact on profits, either from loss of potential revenue when providing higher
quality than required, or penalties from customers when providing lower quality
than requested. As can be seen from this small example, there are a large number of
outputs that can be produced by a DES model, describing each aspect of the
simulated process.
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Fig. 6 Difference between quality of coal shipped and quality of coal demanded over a one year
time period
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Conclusions

The application of a properly developed DES model provides a range of significant
benefits in assessing an integrated export supply chain. These benefits include the
ability to assess various operating practices, including maintenance options,
through quantification of performance. In addition to operating practices, various
capital expenditures can be compared to determine the best infrastructure for a
given system. By analysing all of these options, the optimal capacity of the supply
chain can be determined along with the robustness of this capacity under uncer-
tainty. The ability of DES to investigate outcomes over many situations makes it
ideal for risk analysis. Finally, quantification removes the ‘gut feel’ approach and
replaces it with ‘what if’ fact based analysis.

In the case of operations that have multiple, conflicting objectives, such as
delivering a certain quality of product while also maximising production capacity,
an increased level of complexity is added to the export supply chain. In a mining
context, examples of ores for which this may be the case include coal, iron and
manganese. The decision-making process of planning the movement and blending
of ore through the supply chain is paramount to the overall system performance for
operations such as these. Capturing this complex planning process in a DES
modelling language is possible, but proves to be a very difficult and
time-consuming task. Since planning problems are often modelled and solved using
an optimisation framework, an alternative approach is to decouple the
decision-making process from the simulation model, develop a stand-alone opti-
misation model for it, then integrate the two to create a holistic model of the supply
chain.

GCV Error - TBCT SL Berth
Increased SL Rate

Time

G
C

V 
Er

ro
r

Fig. 7 Effect of increasing ship loader rate on quality of coal shipped
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The case study of a successful implementation on the export supply chain of PT
Kaltim Prima Coal in Indonesia shows the benefits of taking this approach to
modelling for project evaluation and strategic mine planning purposes.
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Network Linear Programming
Optimisation of an Integrated Mining
and Metallurgical Complex

E. K. Chanda

Abstract Mining companies seek to mine, route and process ore to make the most
efficient use of capital equipment during the life of the mine. The situation analysed
in this paper relates to optimisation of medium-term production strategy for a group
of mines and metallurgical plants. Typical operations under this scenario involve
mining of crude ore from shafts and/or open pits; transportation of ore to the milling
plants, run-of-mine stockpiles and leach-pads. The concentrate from the mill(s) is
sent to the smelters and refineries, from where the finished metal is sent to the
markets. If one assumes that the grade of run-of-mine ore varies according to source
and that the milling plants are designed to handle different types of ore, plus the fact
that mines and plants may separate by considerable distances, optimisation of the
production plan becomes imperative. Most of the publications dealing with the
subject of mine production planning are limited to mine scheduling optimisation
and do not include metallurgical plants. However, the nature of the problem
requires the application of a model that incorporates all the elements of the mineral
production system. The methodology outlined in this paper is based on a Network
Linear Programming formulation of the production-planning problem for a mining
and metallurgical complex. Network LP models are particularly useful in analysing
production-distribution type systems such as the one involving a group of mines
and metallurgical plants. The problem is formulated using the theory of dual-primal
relationships in linear programming. The solution algorithm finds the minimum cost
of production and distribution, hence the optimal production and material routing
plan for a group of mines and metallurgical plants. The graphs of optimality con-
ditions for each arc in the network could be exploited as a tool for strategic mine
planning. The advantages of this formulation are outlined and its application is
demonstrated using a hypothetical situation involving an integrated mining and
metallurgical complex, specifically six mines, five concentrators, three smelter and
two copper refineries. A computer program called Linear Integer Discrete Optimiser
(LINDO) is used to solve the network linear programming model. This program
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allows the user to quickly input an LP formulation, solve it and perform ‘what if’
type analyses.

Introduction

The practical mine planning problem analysed in this paper relates to the optimi-
sation of a medium-term production strategy for a group of mines and metallurgical
plants (concentrators, smelters and refineries). Most of the publications dealing with
the subject of production planning focus on mine scheduling optimisation and do
not include metallurgical plants (Thomas 2001). However, the nature of the
problem requires a model that incorporates all the elements of the production
system. Hoerger et al. (1999) have described a mixed integer/linear programming
model for long-term scheduling that includes material tonnage flows between
mines, stockpiles and process plants. The resulting Linear Programming (LP) model
is very large in terms of the number of variables. The methodology outlined in this
paper is based on a network linear programming formulation of the problem of
production planning optimisation for a mining and metallurgical complex. Models
called network LPs are particularly useful in analysing production-distribution type
systems such as the one discussed in this paper.

The section entitled ‘Linear programming and network techniques’ introduces
the structure of network LPs, primal-dual relationships and complementary slack-
ness conditions. This review of relevant principles sets the scene for their appli-
cation to the problem of production planning for a mining and metallurgical
complex, presented in the section entitled: ‘Network LP formulation of mining and
metallurgical production planning problem’. Finally, the section entitled ‘A
hypothetical mining and metallurgical complex’, presents results of LINDO opti-
misation of the production planning for a typical mining and metallurgical complex.

Linear Programming and Network Techniques

Linear Programming (LP) is a mathematical procedure for determining optimal
allocation of scarce resources. LP has been used to solve a variety of practical
planning problems in the industry including agricultural, banking, government
services, manufacturing and transport problems. Application of this technique in
mining dates back over 40 years. Linear programming is the most widely applied
operations research technique in the mining industry. Linear programming princi-
ples have successfully been used for production scheduling in open pit and
underground mining environments, each with their own specific needs (Ricciardone
and Chanda 2001; King 2001; Chanda 1990; Saul 1990; Dagdelen et al. 2000;
Scheepers and Wellbeloved 1992; Graham-Taylor 1992; Ramazan 2001; Ramazan
and Dimitrakopoulos 2004). The approach adopted in this paper is to combine the
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concepts of duality in linear programming and network flow to model the
production-planning problem as discussed in the introduction. Network LPs are
particularly useful in analysing production-distribution type systems. These models
have the following advantages:

• they are describable using simple graphical figures (networks),
• they have integer answers and one may find a network LP a useful device for

describing and analysing mine-mill production and material routing strategies,
and

• they are frequently easier to solve than general linear programs.

In this section, a brief overview of duality in linear programming and the for-
mulation of equivalent network flow (minimal cost) is provided. Though there are a
number of techniques for finding the optimal flow through a network, the algorithm
in LINDO (Schrage 1999) is employed because of its simplicity and use as a
strategic tool in production planning. This is demonstrated in the section entitled:
‘Network formulation of mine production planning problem’. For more details on
the theory of network LPs the reader is referred to Ahuja et al. (1993) and Bazaraa
et al. (1990).

Theoretical Background

Each linear programming problem called the primal has a closely related associated
linear programming problem called the dual problem (Fulkerson 1961). The fol-
lowing example illustrates how linear programming duality can be used to analyse
production-planning problems in the minerals industry. Consider a copper/cobalt
mining operation with six sources of ore (shafts).

Table 1 presents the mine planning data for this operation. It is desired to
optimise the mining plan for the month using linear programming. It is assumed
that shaft capacities are sufficient to handle the planned mine production. The
budget targets production of 20,000 and 200 tonnes of finished copper and cobalt
respectively during the period.

Table 1 Mine planning data for a copper/cobalt mining operation

Parameter Ore source (shaft)

1 2 3 4 5 6

Copper grade (%) 2.70 5.00 3.50 4.50 0.90 3.90

Cobalt grade (%) 0.40 0.70 0.07 0.08 0.60 0.20

Unit cost ($/tonne ore) 7.00 5.00 6.00 8.00 4.00 6.50
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The Primal Problem

The LP formulation of this problem is presented as follows:
Let:

xi = unknown tonnes of ore to be produced from shaft j

The objective is to minimise the total cost of mining. This optimisation criterion
will ensure that the mining contribution to profit over the quarter will be maximised.
Thus, the objective function is:

Minimise Z ¼ 7x1 þ 5x2 þ 6x3 þ 8x4 þ 4x5 þ 6:5x6

Metal production targets are formulated as constraints:

(i) 0.027x1 + 0.050x2 + 0.035x3 + 0.045x4 + 0.009x5 + 0.039x6 � 20,000
(ii) 0.004x1 + 0.007x2 + 0.0007x3 + 0.0008x4 + 0.006x5 + 0.002x6 � 200

Non-negativity constraint ensures that production from each shaft is positive:

xj � 0 8j

The Dual Problem

The dual problem to the above primal problem is formulated as follows:
Let:

y1 = price of copper on the world market ($/tonne)
y2 = price of cobalt on the world market ($/tonne)

The objective function is to maximise metal sales value in dollars:
Maximise t = 20,000 y1 + 200 y2
The objective function is subject to the following constraints:

(i) 0.027 y1 + 0.004 y2 � 7.0
(ii) 0.050 y1 + 0.007 y2 � 5.0
(iii) 0.035 y1 + 0.0007 y3 � 6.0
(iv) 0.045 y1 + 0.0008 y2 � 8.0
(v) 0.009 y1 + 0.006 y2 � 4.0
(vi) 0.039 y1 + 0.002 y2 � 6.5

Non-negativity constraints:

yj � 0 8j
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Complementary Slackness Optimality Conditions

The necessary and sufficient conditions for a feasible solution of primal and dual to
be optimum is they satisfy:

(1) Y(AX − B) = 0
(2) X(C − YA) = 0

where:

X decision variables in the primal problem (vector)
Y decision variables in the dual problem (vector)
C coefficients of the objective function in the primal problem (vector)
B coefficients of the objective function in the dual problem (vector).

Network LP Formulation of the Mining and Metallurgical
Production Planning Problem

The above concepts can be applied to production planning for a mining and met-
allurgical complex. To illustrate the practical application of complementary
slackness conditions, the following problem is presented. Consider a simple
mining-processing-marketing system as shown in Fig. 1. Formulation of an LP
model to optimise the production strategy for the system follows.

The following notation is used for the labels in Fig. 1 [e.g. (1, 5/4)]:

ðlij; uij=cijÞ

Fig. 1 Mining-processing-marketing business system
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where:

lij lower bound of material flow through arc (i, j)
uij upper bound of material flow through arc (i, j)
cij cost per unit flow of material through arc (i, j)

Figure 1 is in fact a network representation of movement of ore from the mine
(node one) to the plants (nodes two and three) and marketable product to the
market. In certain network formulations, the principle of conservation of flow has to
be maintained at all nodes. Closing the circuit from node four to node one with a
negative unit cost does this. The objective here is to optimise flow through the
network, i.e. minimise the total cost of the production-distribution system. The
out-of-kilter formulation of the primal-dual minimal cost network flow problem for
the system is presented as follows.

Let:
Xij = amount of material processed in process (i, j) of the system
The objective function is to minimise total cost of flow through the network.

Minimise Z ¼
X
i;j

ci;j xi;j ð1aÞ

There are three types of constraints in this LP system:

1. Conservation of flow through each node:

X
i

xi;j �
X
j

xj;i ¼ 0 8i; j ð1bÞ

2. Lower bound flow through the arcs:

xi;j � li;j 8i ð1cÞ

3. Upper bound on flow through the arcs:

�xi;j � � ui;j 8j ð1dÞ

The above formulation is equivalent to the minimal cost flow problem.
Equations 1a–1d are taken over existing arcs only. It is assumed that cij, 1ij and uij
are integral, although this is not a requirement in practice.

For the dual problem, the following dual variables are defined:

274 E. K. Chanda



p dual variable for the conservation of flow at each node (node potential)
/ dual variable for the lower bound on flow constraint
w dual variable for the upper bound on flow constraint

For a given set of node potential p, the reduced cost of an arc is defined as:

cpij ¼ cij � pi þ pj ð2aÞ

The objective function for the dual problem is:

Maximiset ¼
X
i;j

/i;jlij �
X
i;j

wi;jui;j ð2bÞ

The general equation for the dual constraints is as follows:

pi � pj þ/i;j � wi;j ¼ ci;j ð2cÞ

Non-negativity:

/i;j � 0; wi;j � 0 ð2dÞ

The complementary slackness conditions for optimality of the OKA formulation
are the following:

pi
X
i;j

xi;j �
X
j;i

xj;i

" #
¼ 0 ð3aÞ

/ xi � lð Þ ¼ 0 ð3bÞ

w ui;j � xi;j
� � ¼ 0 ð3cÞ

ci;j � pi � pj þ/i;j � wi;j

� �� �
xi;j ¼ 0 ð3dÞ

As mentioned earlier, any conservation of flow that satisfies the above equations
will be optimal. The problem, then, is to search over value of pi; and conserving xi;j
until these conditions are satisfied. The complimentary slackness optimality con-
ditions can be stated simply as follows (Ahuja et al. 1993):

Ifxij ¼ lij; then cpij � 0 ð4aÞ

Iflij\xij\uij; then cpij ¼ 0 ð4bÞ

Ifxij ¼ uij; then cpij � 0 ð4cÞ
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This is the basis for the solution procedure called the out-of-kilter algorithm. The
name out-of-kilter reflects the fact that arcs in the network either satisfy the com-
plimentary slackness optimality conditions (are in kilter) or do not (are out-of-kilter).
The so-called ‘kilter diagram’ is a convenient way to represent these conditions
(Ahuja et al. 1993). As shown in Fig. 2, the kilter diagram of an arc (i, j) is the
collection of all points (xij; cijp) in the two dimension plan that satisfy optimality
conditions. For every arc (i, j), the flow xij and reduced cost cijp define a point (xij,
cijp) in the two-dimensional plane. If the point lies on the thick lines in Fig. 2, it is
in-kilter, otherwise out-of-kilter. One can define a kilter number kij of each arc (i, j)
as the magnitude of the change in xij required making the arc an in-kilter arc while
keeping cijp fixed. As expected, the kilter number of any in-kilter arc equals zero.
The three-kilter states marked by a (non-profitable), b and c (profitable) in Fig. 2
correspond to arc states satisfying the complimentary optimality conditions
(Eqs. 4a, 4b and 4c). Any arc (processing path) (i, j) for which (xij, cij) lies on c, is a
profitable arc and is therefore, appropriately at its upper bound, and any arc (i, j) for
which (xij, cij) lies on a is a non-profitable arc (and is therefore appropriately at its
lower bound. From a mining economics point of view, it is preferable for all pro-
cessing paths to be profitable. This concept is not investigated further here.

A Hypothetical Mining and Metallurgical Complex

Model Development

Suppose that a mining company has a number of ore sources (open pits, under-
ground mines and stockpiles) producing copper ore for delivery to a number of
concentrators for downstream processing. The following assumptions are made for
the hypothetical copper mining and metallurgical complex (number of facilities):

ππi-πj

cij

uij xij
lij

β

γ

α Nonprofitable

Profitable

Fig. 2 Graph of optimality conditions for arc (i, j)
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• underground mines (UG) = 5
• open pits (OPT) = 1
• concentrators (CT) = 5
• smelters (SM) = 3
• refineries (RF) = 2

Each mine has a concentrator located in the vicinity of the mine. The copper
concentrate is transported to smelters located in the vicinity of the mine(s). Some of
the concentrate is transported to smelters located beyond a radius of more than 50
km from the concentrators. The copper anodes from the smelters are transported to
the two refineries for electrowinning of copper. Copper cathodes are shipped to
various markets from the refineries. The basic business structure is shown in Fig. 3,
while Fig. 4 shows the network model of the system. The model shown in Fig. 4
has the following types of nodes:

1. Mine nodes, representing various ore sources.
2. Plant nodes representing concentrators, smelters and refineries.
3. Intermediate nodes corresponding to each material type processed at a plant. In

this application, it is assumed that there is no differentiation in material
(ore) types.

4. Market nodes corresponding to each market region. There are two types of arcs
in the model:

• Production arcs—they connect a mine or plant node to an intermediate node.
The cost of this arc is the cost of ore mining ($/tonne ore). Production control
may place upper and lower bounds on these arcs.

• Transportation arcs—connect intermediate nodes to plant nodes in accordance
with the copper production process. The cost of such an arc corresponds to the
cost of transporting the process product from one plant to the other.

Fig. 3 Basic mining and metallurgical business complex
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The problem is to generate a medium-term (quarterly) production plan for the
mining and metallurgical complex with the objective of minimising the total unit
cost of production and transportation.

Looking at Fig. 4, it is quite clear that there are several combinations of routes
along which the material can flow. Each of the routes has a different cost structure,
and therefore an opportunity to generate revenue. Clearly, the production and
transport plans for the mining and metallurgical complex correspond in a
one-to-one fashion with the feasible flows in this network model. Consequently, a
minimum cost flow would yield an optimal production and shipping plan.

Let Xij represent the equivalent tonnage of ore that flows along route (i, j). For
each arc in the network the lower bound on material tonnage is lij and the upper
bound is uij. The unit cost of production/transportation is cij ($/tonne ore). Unless
otherwise stated, the lower bound on the flow through an arc is assumed zero and
the upper bound infinity. The unit costs are made of the following:

• production cost at source i,
• production cost at destination j, and
• transport cost from source i to destination j.

Considering the hypothetical mining and metallurgical complex the following
costs in $/tonne of ore apply:

• mining cost at each ore source,
• ore transport cost from mine to mill,
• milling cost at the concentrator,
• transport for concentrates from the concentrator to the smelter,
• smelting cost,
• transport cost for copper anodes from smelter to refinery,

Fig. 4 Network model of the hypothetical mining and metallurgical complex
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• refining cost, and
• shipping cost for wire-bars from the refinery to markets.

Table 2 presents the mine production planning criteria for the hypothetical
mining and metallurgical complex. Tables 3 and 4 list the cost elements for the
production facilities and different routes respectively. For consistence, all costs are
expressed in $/tonne ore equivalent.

Modelling in LINDO

Schrage (1999) describes the application of LINDO (Linear INteractive Discrete
Optimiser) software in solving Network Linear Programming models. This software
was chosen for this analysis because it is easy to use and is easily understandable to
an average mine planner. The essential condition on an LP for it to be a network
problem is that it is representable as a network. In this example, there are four levels
of nodes and several arcs between nodes.

The following simplifying assumptions are made:

• mining capacity is a major consideration;
• milling capacity is not very critical, as the plants are running at 70% capacity;
• only one type of ore (oxides) is considered, hence simplifying the network;
• unless otherwise specified the lower and upper bound on the arcs equal to zero

and infinity respectively;
• two market destinations for finished copper; demand as indicated in the model;

and
• material flow as shown in Fig. 4, except for the market destinations.

Table 2 Production planning criteria

Mining UG1 UG2 UG3 UG4 UG5 OPT
Run-of-mine grade (% Cu) 3.6 4.2 3.0 3.3 3.8 5.2

Contained copper (kg Cu/t
ore)

36.0 42.0 30.0 33.0 38.0 52.0

Mining capacity (ore tonnes/
quarter)

750,000 500,000 1,000,000 575,000 624,000 375,000

Milling CT1 CT2 CT3 CT4 CT5
Mill feed grade (% Cu) 3.6 3.6 3.6 3.6 3.6

Mill recovery (%) 85.0 87.0 85.0 87.0 84.0

Copper recovered in mill
(kg/t ore)

30.6 31.3 30.6 31.3 30.2

Smelting SM1 SM2 SM3
Smelting loss (kg Cu/t ore) 0.10 0.15 0.20

Refining RF1 RF2
Refining loss (kg Cu/t ore) 0.09 0.09
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Defining variables in an obvious way, the general LP describing this problem is:
! Group Mine/Plant Production Plan—Linear Programming System
! 2nd Quarter 2004
! Analyst: Senior Mining Engineer
! Run: 15/6/04
! Note: coefficients of each variable in the objective function equals
! the sum of production and transport costs
! Objective Function
MIN
2.9XUG1CT1+5.5XUG2CT2+6.1XUG2CT3+3.9XUG3CT3+2.
8XUG4CT4+5.8XUG5CT4+4.7XUG5CT5+3.1XOPTCT4+2.3X OPTCT5

+25.07XCT1SM1+25.04XCT1SM2+30.07XCT2SM1+30.05XCT2SM2
+16.01XCT3SM2+16.05XCT3SM3+22.06XCT4SM2+22.01XC T4SM3
+23.1XCT5SM3+12.1XSM1RF1+12.04XSM1RF2+15.3XSM2RF1
+15.1XSM2RF2+10.5XSM3RF1+10.5XSM3RF2+5. 09XRF1$$1+5.05XRF1$$2
+7.9XRF2$$1+7.05XRF2$$2

SUBJECT TO
! Constraints
! Mining Capacity
2) XUG1CT1=750000
3) XUG2CT2+XUG2CT3=500000
4) XUG3CT3=1000000
5) XUG4CT4=575000
6) XUG5CT4+XUG5CT5=624000
7) XOPTCT4+XOPTCT5=375000
! Flow balance Constraints
! Concentrators
8) -XUG1CT1+XCT1SM1+XCT1SM2=0
9) -XUG2CT2+XCT2SM1+XCT2SM2=0
10) -XUG2CT3-XUG3CT3+XCT3SM2+XCT3SM3=0
11) -XUG4CT4-XUG5CT4-XOPTCT4+XCT4SM2+XCT4SM3=0
12) -XUG5CT5-XOPTCT5+XCT5SM3=0
! Smelters
13) -XCT1SM1-XCT2SM1+XSM1RF1+XSM1RF2=0
14) -XCT1SM2-XCT2SM2-XCT3SM2-XCT4SM2+XSM2RF1+ XSM2RF2=0
15) -XCT3SM3-XCT4SM3-XCT5SM3+XSM3RF1+XSM3RF2=0
! Refineries
16) -XSM1RF1-XSM2RF1-XSM3RF1+XRF1$$1+XRF1$$2=0
17) -XSM1RF2-XSM2RF2-XSM3RF2-XSM3RF2+XRF2$$1+X RF2$$2=0
! Market demand
18) -XRF1$$1-XRF2$$2=-1000000
19) -XRF1$$2-XRF2$$2=-2000000
END
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There is one constraint for each node that is of the ‘sources = uses’ form. For
example, constraint number three states that the amount transported out, minus the
amount transported in, must equal zero.

Table 5 presents the base case optimal production plan. Note that the optimal
solution is in terms of equivalent ore tonnes flowing through the network. For
example, the mine should haul 750,000 from UG1 to CT1. The minimised cost of
production and transport is $156,375,700. For arcs connecting the concentrators
and smelters, the amount of concentrate flowing through can easily be calculated
from the concentration ratio, which is a function of run of mine and concentrate
grades. Similar calculations can be carried out to determine the equivalent tonnes of
copper anodes and cathodes flowing through the arcs connecting the smelters and
refineries.

Table 5 Optimum computer
solution

Variable Value Reduced cost

XUG1CT1 750,000 0

XUG2CT2 0 0

XUG2CT3 500,000 0

XUG3CT3 1,000,000 0

XUG4CT4 575,000 0

XUG5CT4 0 0

XUG5CT5 624,000 0

XOPTCT4 375,000 0

XOPTCT5 0 0.29

XCT1SM1 750,000 0

XCT1SM2 0 3.0

XCT2SM1 0 10.4

XCT2SM2 0 13.44

XCT3SM2 74,000 0

XCT3SM3 1,426,000 0

XCT4SM2 0 0.09

XCT4SM3 950,000 0

XCT5SM3 624,000 0

XSM1RF1 0 4.62

XSM1RF2 750,000 0.000000

XSM2RF1 0 4.76

XSM2RF2 74,000 0.0

XSM3RF1 3,000,000 0.0

XSM3RF2 0 3.34

XRF1$$1 1,000,000 0

XRF1$$2 2,000,000 0

XRF2$$1 824,000 0

XRF2$$2 0 13.93
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Analysis of Results and Sensitivity Analysis

Sensitivity analysis involves the study of the responsiveness of the conclusions of
an analysis to changes or errors in input values used to generate a particular solution
to the LP network. This is equivalent to answering ‘what if’ type of questions by
interrogating the model. As an example, the impact of reducing the number of
refineries to one is considered, i.e. remove refinery RF2 from the model. This action
results in an optimal solution of $139,696,240 (being the minimum cost of pro-
duction and transport). Of course, the flow of material through the network changes,
but the single refinery produces enough copper to satisfy the market. Such types of
analysis can be easily performed on any business decision that the company makes,
in order to evaluate the impact of the decision on the business.

Conclusions

The Network LP formulation of the problem of optimising the production planning
for a mining and metallurgical complex results in a solution procedure that is easier
to solve compared to the general Linear Programming model. There are three types
of data required for the Network LP model:

1. for each node (facility) the amount of material available or its capacity;
2. for each arc or route, the cost per unit of material transported along that route;

and
3. the lower and upper bound for the quantity of material along that route.

For the hypothetical mining-metallurgical complex presented here, the base case
optimum production plan costs $156,375,700, which is the absolute minimum
under the given set of economic and technical data. The material flows through the
network of mines and metallurgical plants are thus optimised and satisfy all the
capacity, demand and flow constraints.

Computerised modelling and optimisation allows one to investigate various
business decisions prior to actual implementation. For example, shutting down
refinery RF2 would result in the total cost of production and transportation reducing
to $139,696,240 for the quarter, a saving of $16 million compared to operating the
two refineries.
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Open Pit Transition Depth Determination
Through Global Analysis of Open Pit
and Underground Mine Production
Scheduling

K. Dagdelen and I. Traore

Abstract This paper presents an iterative Net Present Value (NPV) maximization
method to determine the optimum surface to underground transition depth for an
ore body to be mined by multiple open pits and an underground mine. The
determination of transition depth from open pit to underground mining is based on
global production scheduling optimization of open pit and underground mines
using Mixed Integer Linear Programing (MILP). The method is applied to a case
study coming from a gold mining complex with six open pits and a large under-
ground mine using long hole open stoping. The results indicate potential
improvements of the NPV of global operations when compared to the traditional
techniques based on independently optimized open pit first, followed by the
underground mining.

Introduction

In recent years, a certain number of open pit mines have transitioned to under-
ground. The open pit to underground transition problem is one of the important
topics in the mining industry that has not been mathematically solved yet. Currently
there is no mathematical algorithm that can successfully optimize the transition
depth by considering the life of the mine schedule of both open pit and underground
combined. Due to the complexity of the problem and its size, often the transition
depth is defined by considering the open pit and the underground separately.
Usually the transition depth is defined by comparing the cost of mining using open
pit vs underground methods. As the pit gets deeper the stripping ratio increases and
the transition depth is defined when the cost of mining the open pit is equal to the
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underground mining cost. Defining the transition depth by comparing the costs of
these two mining methods, the underground development work and the value of the
underground mine are not appropriately considered therefore the economics of the
mining project may not be optimized in terms of the net present value of the overall
project.

The transition depth when correctly defined can significantly improve the dis-
counted net present value of the project. In this paper, the transition depth from
open pit to underground is determined by an iterative process of optimizing the life
of the mine production schedules of both the open pit and underground mines using
Mixed Integer Programing (MILP). Using Whitlle software from GEMCOM, a
series of pits are generated by constraining the Lerchs and Grossmann pits to a
given pit bottom elevation. The underground mining lodes and stopes are
sequenced using Studio 5D and EPS software from CAE. For each pit depth
scenario, a permanent crown pillar of 30 m is left between the open pit bottom and
the underground workings, the reserves are updated, and both the open pit and the
underground mine are rescheduled by maximizing Net Present Value (NPV) using
OptiMine® software developed at Colorado School of Mines. The combined values
of both open pit and underground production schedules are evaluated using dis-
counted cash flow analysis. The optimum transition depth is determined by com-
paring the life of mine NPV of each scenario.

Gold Mine Case Study

The case study gold mine is a complex mining operation that includes six open pits,
namely: Main (the biggest pit), Pak1, MH2, Pam3, Kom4 and Ses5 and one
underground mine below Main open pit (see Fig. 1).

There are 3 phases in the initial base case Main pit, 3 phases in the Pak1 pit and
the other pits consist of one phase. The material mined from the pits can be sent to
different destinations such as waste dumps, stockpiles, and the processing plant.
There are three different material types in the open pits named oxide, transition and
fresh. The case study gold operation is modeled as a large scale, multi-mine,
multi-time period scheduling problem with multiple material types, multiple grade
intervals, and mining capacities.

Main Deposit

The Main deposit is the biggest deposit and is mined using a combination of open
pits and underground mining methods. As shown in Fig. 2, for accessing the
underground ore zones, twin declines of about 1400 m and a vertical shaft of 750 m
are driven. Some ore material will be transported by truck via the twin declines to
the surface. The transportation of ore from the ore passes to the crusher is done
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through the transportation level. The ore is loaded from an ore pass and the material
is dumped through a grizzly into the crusher. The crushed material is transported by
conveyor into the skips and hoisted to the surface for processing.

The underground mine consists of 11 lodes, namely 5103, 9101, 5102, 9105,
5105, 9102, 3102, 5107, 5005, 3101, and 9003 (Fig. 3). Transverse longhole
stoping is used for mining part of the orebody that is approximately flat (less than
50) and with a thickness greater than 20 m and will take place in lodes 5103, 5102,

Fig. 1 Case study—gold mine overview

Fig. 2 Main underground mine
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5105, 9101, 9102, and 9003 (Fig. 4). Longitudinal longhole stoping method is used
where the dip of the orebody is approximately steep (greater than 50°) and the
thickness is less than 20 m and takes place on 5103 lower zone, 5102 upper zone,
5105, 5107, 9101 lower, 9102 lower and 9105 (Fig. 5). Advance transverse face
will take place in 9101 and 9102 upper part (Fig. 6).

Transversals stopes are organized by phase, stope type and lift. For example, the
Lower 5103 is divided into two phases. Phase1 consists of stopes located in the
lower part and phase2 consists of stopes in the upper part. Each mining phase
consists of primary and secondary stopes and there are a certain number of lifts
within each stope (see Fig. 4).

Fig. 3 Underground mining lodes

Fig. 4 Lower 5103—transversal (long view)
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The sequence is as follows:

• Phase1 has to be mined and backfilled before mining of Phase2 can start.
• In a given mining phase, Primary stopes have to be mined before secondary

stopes.
• In a given stope, lift1 has to be mined before lift2 and lift2 before lift3, etc.
• In a given phase, primary and secondary stopes can be mined independently.
• Primary stope height cannot exceed 4 levels and secondary stopes cannot exceed

3 levels due to geotechnical constraints.

For longitudinal stope the sequencing is as follows:

• Stope1 is to be completed before stope2 and stope2 before stope3.
• In each stope, lift1 has to be mined before lift2 and lift2 before lift3, etc.

The Upper 9101 and the Upper 9102 are mined using advance transverse long
hole stoping.

The sequence is as follows:

• All of phase1 has to be completed before phase2 and phase2 before phase3, etc.
• Stopes located in different raw in a given phase can be independently mined
• In each stope, lift1 has to be mined before lift2 and lift2 before lift3, etc. For the

long term sequencing purposes lifts located in the same stopes are merged.

Transition Depth Determination Through Life of Mine
Production Scheduling Optimization of Open Pits
with the Underground Mine

For defining the transition depth through life of mine production scheduling opti-
misation, the Mixed Integer Linear Programming (MILP) based optimization
software OptiMine® is used. The Optimine® software is a multi mine, multi time
period production schedule optimizer that maximizes NPV of cash flows coming
from the open pit and underground operations subject to operational constraints.
The OptiMine® program needs the pit reserves information organized by pit phase,
bench, material type and grade intervals for each pit. The underground reserve
information needs to be organized by the lode, section and stope for each under-
ground lode and must then be entered into the program. The special sequencing
requirements between open pits and the phases of open pits needs to be identified
and entered into the program. The special sequencing requirements between the
lodes, between the sections of a given lode and between primary and secondary
stopes also needs to be identified and entered into the program. The program takes
into account all the material sources available from open pit phases and under-
ground lodes and determines the open pit and underground yearly mine production
schedules for life of Mine (LOM) by maximizing net present value of cash flows
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considering all the revenues, mining and processing capacities, and the related costs
associated with mining, stockpiling and processing during the life of the project.
The OptiMine® program provides results that not only optimizes LOM production
schedules in terms of yearly mined sequences from the open pits and underground
but also results that optimizes cutoff grades for the material coming from these
sequences to be directed to waste dumps, stockpiles, and the processing plant by
period (Fig. 1).

Approach for Determining the Optimum Transition Depth

The methodology used for defining the best transition depth is an iterative process
that consists of two parts. The general steps for the first part are as follows:

1. Perform the base case ultimate pit limit analysis of the effected pit by con-
straining Lerch-Grossman pits to base case pit bottom depth using Whittle
software from GEMCOM.

2. Design the underground mine using Studio 5D and EPS from CAE by locating
the crown pillar at this depth.

3. Choose the mining and processing capacities and determine open pit and
underground mining costs and the discount rate.

4. Optimize the life of mine production schedules for combined open pit and
underground operations using OptiMine® software and determine the yearly
cash flow and resulting net present value.

In the second part of the analysis, the optimum transition depth that achieves the
maximum net present value is determined. The steps can be written as follows:

1. Strategically increase the constraining open pit depth and perform the ultimate
pit limit analysis by using Whittle software.

2. Adjust the underground mine reserves by excluding the material that will now
be mined by open pit and for the areas that will be left in the crown pillar.

Fig. 5 Lower 9105—longitudinal stope (long view)
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3. Strategically increase the open pit mining rate and adjust the underground
mining rate

4. Optimize the combined life of mine production schedules for both open pit and
underground using Optimine® software and determine the cash flow and
resulting net present value.

5. If the net present value is more than the previous one, GO TO step 0.
6. If the net present value is less than the previous one, the best transition depth is

reached. END the iteration.

Main Pit Bottom Depth and Crown Pillar Elevations

Before analyzing any scenario, a baseline schedule was developed using
OptiMine®. This was done so that the Net Present Value (NPV) for different
scenarios would be comparable to the initial plan developed. The base case pit
bottom is chosen to be at 5685 m elevation (Fig. 7).

Fixing three different crown pillar locations between Main pit and the under-
ground mine created three different scenarios. The 5620 m elevation scenario, the
5585 m elevation scenario, and the 5545 m elevation scenario were developed
respectively by lowering the Main open pit depth from base case elevation to
elevation 5620 m (about 65 m deeper than the base case), to elevation 5585 m
(about 100 m deeper than the base case), and to elevation 5545 m (about 140 m

Fig. 6 Lode 9101—Transverse advance facing (plan view)
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deeper than the base case) and optimizing the production schedule of the life of
mine open pit and underground plans. During that process, the open pit mining rate
was increased, the underground mine was adjusted by excluding those stopes that
will be included in the open pit and left in the crown pillar, and the NPV was
generated. During these studies, the major underground development design, such
as declines, vent raises, ore passes and shafts (as shown in Fig. 2) was kept intact
since they were assumed not to be affected by the open pit depth scenario analyzed.
However, the access drifts and cross cuts of impacted lode stopes were excluded.
For determining the best transition depth from Main open pit to underground,
different scenarios are investigated through life of mine production scheduling and
cutoff grade optimization including: the base case scenario, 5620 case scenario,
5585 case scenario, 5545 case scenario. The Main pit transition depth case sce-
narios investigated are presented in Fig. 7.

Impact of the Transition Depth on Open Pit
and Underground Reserves

Deepening the Main open pit affects both the open pit and the underground
reserves. The open pit reserve will increase and the underground reserve will
decrease. Some underground stopes will be mined by open pit and others will be
left in the crown pillar. During this study a permanent crown pillar of 30 m between
the open pit and the underground mine was assumed.

Prior to deciding the transition depth, the location of the crown pillar must be
very closely analyzed.

Base case 5620 5585

Underground 
Stopes

UG Stopes that will be 
included in open pit

5545

Fig. 7 Main grade model with base case, 5620, 5585, 5545 case scenarios (cross section)
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Comparative Study of Different Case Scenarios

As shown in Fig. 8, the yearly ore produced in the base case appears to achieve
the highest ore production, followed by: 5620 case scenario, 5585 case scenario
and 5585 revised case scenario, and 5545 case scenario, respectively. The lower
ore production in each of the those cases (5620 case scenario, 5585 case scenario
and 5585 revised case scenario and 5545 case scenario) is explained by the impact
of deepening the Main pit. By increasing the open pit depth through relocation of
the crown pillar, the open pit reserve increases and the underground reserve
decreases.

Economic Comparison of Different Case Study Scenarios

Using a US$1200 gold price and a discount rate of 10%, the before tax net
present value of each case is shown in Fig. 9. The costs used includes all the
open pit mining costs, transportation costs, stockpiling costs, re-handling costs,
processing cost and the underground capital and operating costs (as shown in
Fig. 8). The maximum net present value is reached in the Main 5585 case revised
scenario.
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Conclusion

The determination of open pit to underground optimum transition depth requires the
consideration of many parameters such as the deposit geology, reserves, the loca-
tion of the pit bottom and the crown pillar, the open pit and underground mine
sequencing, the costs of mining for open pit and underground, cost of processing,
the mining and process rates and the discount rate and revenues. These parameters
interact with one another in a complex process, defining the financial outcome of
the project. This paper provides an iterative method to determine open pit to
underground optimum transition depth by incorporating all the interactions between
critical geologic, mining and economic parameters in a combined production
scheduling optimization model using Mixed Integer Linear Programing (MILP).
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Consideration for Multi-objective
Metaheuristic Optimisation of Large Iron
Ore and Coal Supply Chains,
from Resource to Market

J. Balzary and A. Mohais

Abstract Dynamic market and operating conditions coupled with an environment
in which multiple objectives and trade-offs are common, pose major challenges for
planners and schedulers working in any mining entity. Many mining companies
recognise the need to shift from a siloed mining-focused push model to an inte-
grated value chain, demand-driven approach but there are still fundamental barriers
in business process and the supporting technology preventing a consideration of
end-to-end optimality. This paper presents some elements of experiences working
with companies to adopt such advanced approaches. In addition to algorithmic
elements, an approach to phased and gradual deployment of progressively more
sophisticated optimisation models is described. From a practical software adoption
perspective, it is believed that this last concern is also of primary importance. Next
generation approaches to the optimisation of complex bulk commodity demand
chains; namely iron ore and coal are presented, with case studies in the world’s
largest integrated operations in Western Australia and Queensland from the raw
material mined through to market. Utilising accurate simulation models supported
by metaheuristic optimisation techniques, a range of ways to engineer a dynamic
decision support framework that can adapt and change with the inevitable changes
in commodity markets is explored. Objectives such as total revenue, margin, cost,
NPV, throughput, asset utilisation, contractual penalties and bonuses, and energy
consumption can be managed simultaneously across the mine, plant, logistics
network, port operation, shipping and sales domains.
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Introduction

The Resource-to-Market mining supply or demand chain can be represented most
broadly from the pre-extracted, in situ resource through to the point at which an
organisation can invoice upon sale. Much effort is placed on systems facilitating
mathematical and computational improvements in decision making at various
points in this value chain. Technologies exist to assist in optimal mining operations
sequencing, and also in subsequent material handling and logistics processes down
the chain. According to current mathematical knowledge, for the class of problem
represented by the full Resource-to-Market supply chain and all of its complexities,
there is no known method of solution that would give an absolute and irrefutable
optimal planning or scheduling outcome. Whilst this is a mathematical reality that
businesses must come to terms with, from an opportunistic point-of-view, it pre-
sents stakeholders with the ever-present possibility that they can continually
improve decision support and modelling technologies and do better.

With this opportunity as a motivator and using of practical and real-world
learnings as atomic components, this paper presents a next-generation optimisation
framework that would deliver further benefit and profit to mining organisations
globally. Included is a brief overview of the nature of bulk mining supply chains,
conceptualised from a software point of view—from available raw material,
through beneficiation, transport, storage and onto vessels. Within this supply chain,
we will identify a number of important component segments that can be treated as
silos, or preferentially, should be treated as integrated parts of a larger global
operation. Standardised key performance indicators are described, with targets set
for each as reward-based fitness measures. Methodologies for the utilisation of
advanced science solutions involving modern heuristic optimisers and metaheuristic
algorithms are described guiding the search efforts of the lower-level searches.

Supply Chain Objectives

Companies seeking to optimise the planning and scheduling of their
Resource-to-Market supply chains express their view of an optimal solution in
terms of certain objectives that they would like to achieve. These objectives are
often either to maximise or minimise a particular measure of performance in the
supply chain, or sometimes to keep a measure confined to a targeted band of values.
Although we can identify typical objectives that are common across mining entities,
different companies often would attribute different degrees of importance to these
objectives, in effect weighting their contribution to the overall evaluation of a plan
or schedule. Typical objectives encountered in the mining industry are:
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1. Increase margin
2. Maximise cash inflow
3. Minimise cash outflow
4. Maximisation of asset utilisation, fixed and mobile plant
5. Maximisation of sequenced activities—e.g. vessels berthed per tide
6. Maximisation of efficiency—e.g. direct train to vessel loading
7. Minimisation of variability—e.g. quality through processing
8. Minimisation of penalty—e.g. demurrage
9. Achieve target tonnage value e.g. rail and shipped.

Conflicting Objectives

Typically in mining supply chains, and in fact every business, objectives conflict
with each other. These conflicts involve the interrelationships of complex business
rules, processes, constraints and performance measures. Take for example the desire
to maximise fixed asset utilisation in a port operation. Maximising asset utilisation
is in direct conflict with a common objective to maximise direct train to vessel
loading. A model of these activities seeking to keep car dumpers, stackers and
reclaimers in continual use would like come up with a sequence that schedules and
dumps trains as soon as there is an available time slot on any of these pieces of
equipment. The alternate view is to delay arrival of a train so that it coincides with
the berthing of a vessel therefore allowing for direct loading, but possibly at the cost
of keeping the aforementioned pieces of equipment idle.

There are many other such examples of conflicting objectives. It is inherent in
any company’s expression of their optimisation wishes.

Handling Multiple Objectives

In the literature a common theoretical construct that is proffered for managing
situations with multiple conflicting objectives is to use the notion of Pareto fronts
(citation), but limited application of this exists in decision support in production
environments (citation). Under this approach, instead of seeking a single optimised
solution, a collection of solutions is retained, forming a so-called Pareto front of
non-dominated solutions. Any solution in this set has the characteristic of being
better than all the others on at least one of the objectives.

The philosophy behind this approach is that the value of the work done by the
optimisation software should be retained in the form of the Pareto front, and then
this set of high-quality solutions should then be passed to a human expert for final
analysis and evaluation, and the human expert would make the final decision on
which should be selected. In some situations, this approach is feasible. However,
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we believe that in the Resource-to-Market context, the number of possible conflicts
is reasonably high, and the presentation of a Pareto front to a human expert by the
software would be of limited value because of the number of potential solutions that
would be expected in such a set, and the work required to make a final decision
would not at all be straightforward.

Another factor that currently weighs against purely multi-objective algorithms in
the Resource-to-Market space is that when the magnitude of the supply chain,
coupled with the number of data elements and the time horizon are taken into
consideration, the potential running time of such an algorithm is infeasible for the
decision making timeframe. A more appropriate methodology given these consid-
erations is the relative weighting of each objective, and their combination into a
single unified evaluation measure. A downside to this approach is the fact that the
scales on which different objectives are measured could vary dramatically Therefore
trying to combine them using appropriate weights would often require re-tuning to
get the right values. A possible approach to eliminate this variability is to allow an
authorised end-user to state their weighting preferences using a unit-free normalised
scale, and to let the science and software experts to devise and tune appropriate
multiplicative factors to compensate for the inherent scale differences of the dif-
ferent objectives.

Objective Function

Although each mining operation would have idiosyncrasies necessitating modifi-
cations to the objective function used by an optimisation algorithm, it is still pos-
sible to provide in closed mathematical form, an expression of that function, using
typical and common terms. This is illustrated below for the case of a scheduling
problem:

Let X be an element of the unconstrained solution space. Then X can be
expressed as a collection of scheduled activities, across train loading, railing, car
dumping, stacking, reclaiming, conveyance, ship loading and berthing. Hence X
can be expressed as the union of disjoint subsets of activities in each of these areas
as follows:

X ¼ XTLO [XR [XCD [XS [XRE [XC [XSL [XB

where XTLO is a set of train loading activities, XR is a set of railing activities, XCD is
a set of car dumping activities, XS is a set of stacking activities, XRE is a set of
reclaiming activities, XC is a set of conveyance activities, XSL is a set of ship loading
activities, and XB is a set of berthing activities. These discrete activities are the
required steps move excavated material from the pit onto a ship at berth at the port.

The elements contributing to the objective function would be:
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Revenue $R ¼ P

x2XSL

saleprice xð Þ

Costs $C ¼ P

x2X
cost xð Þ

Resource utilisation
(fraction)

RU ¼ P

Y2 XTLO ;XR ;XCD ;XS ;XRE ;XC ;XSL;XBf g

constrained capacity�
P

x2Y duration xð Þ
constrained capacity

Demurrage costs $D ¼ P

x2XB

demurrage penalty xð Þ

Silo constraint
violations

CV ¼ P

Y2 XTLO ;XR ;XCD ;XS ;XRE ;XC ;XSL ;XBf g

P

x2Y
constraint violation severity xð Þ

Target shipped
tonnes penalty

TSTP ¼ shipped tonnage target � P

x2XSL

tonnage xð Þ

Target railed tonnes
penalty

TRTP ¼ railed tonnage target � P

x2XR

tonnage xð Þ

Using these contributing elements as representative, the objective function can
then be expressed as:

f Xð Þ ¼ w1$R� ðw2$Cþw3$DÞ � w4RUþw5CV þw6TSTPþw7TRTPð Þ

The coefficients w1; . . .;w7 are weights that are configurable by users with the
right access privileges. The first three terms of the function are intuitive dollar
values which are readily justified. The last four terms are penalties due to violations
of constrains and operating rules, or for un-achieved targets. To justify the a simply
numeric difference with the dollar values requires human input into the weightings
so that their relative importance is correctly judged in relation to the hard dollar
values.

Literature Survey

Although Supply Chain Modelling and Supply Chain Management are heavily
researched areas, the published literature addressing resource-to-market optimisa-
tion in the mining context is relatively small. Bodon et al. (2017, in this volume),
describe the challenges of using a discrete event simulation language to model the
complexities of a pit to port coal supply chain, and propose a de-coupling of the
simulation aspect of the model from optimisation aspects. They used a general
linear program as an optimiser, and couple this with discrete event simulation, and
presented their results on scenarios from a real-world coal mining operation in
Indonesia. Further related work is available in Bodon et al. (2011). Peng et al.
(2009) provide an analysis of an integrated coal supply chain, and apply the model
to the Xuzhou coal mine in China. They present results showing that not only
optimal profit is obtained, but that a level of customer satisfaction is achieved. Their
results enabled recommendations to be made for the mine operations, and assisted
in decision making.
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Montiel and Dimitrakopoulos (2013) look at a coper mining supply chain, with
emphasis on global optimisation from the point of view of taking into account the
output of multiples mines and products in a given mining complex. Their work also
focuses on the variability of orebody models, and deals with their stochastic nature
by producing stochastic mine production schedules. Montiel and Dimitrakopoulos’
work was based on using Simulated Annealing, a metaheuristic approach, for
producing mine schedules. Their results showed that a stochastic schedule produced
expected deviations from mill and waste production targets smaller than 5%, versus
that of conventionally generated schedules which was 20%. Although their work
did not focus on the Resource-to-Market supply chain as it has been outlined in this
paper, their model nevertheless considers a large subset of the mining supply chain,
particularly around the details of excavation, waste haulage, milling, and further
value-adding preparation and handling of the product.

Singh et al. (2012) provide a detailed elaboration of a mathematical model
constructed to represent the operations of the Hunter Valley coal chain in eastern
Australia. Their goal was to create a model that could find a supply chain schedule/
plan that would meet a given demand profile, whilst concurrently suggesting any
capacity increases or new equipment that would be required to support that solu-
tion. Singh et al’s model was not built into an end-user enterprise application, and
their results potentially could take up to several hours to compute, which would
make it challenging for the kind of software implementations that Schneider
Electric’s SDO is interested in. However, their work is remarkable to us because of
the level of detail that was built into the model in certain places, and because of the
hybrid nature and multi-phase approach to their solution.

Their model was developed around assumptions for a demand-driven,
cargo-assembly type operation. Historical demand profiles were used to drive the
model and optimisation process. The main goal of the optimisation model was to
minimise the cost of running the terminal for that demand profile. The
cargo-assembly approach required that all products required for loading a vessel be
delivered and already stacked at the port before loading begins. Hence, direct
loading was not considered in their model. Rail was modelled around the key
factors of a limited number of consists (potential trains) per day, and a limited
number of paths through rail junctions at the mine and at the port.

They explored using Genetic Algorithms, and Squeaky Wheel heuristics to
generate individuals with representation components involving job sequences, and
capacity/equipment increments. The solutions produced by these algorithms are
then passed to a CPLEX algorithm to generate a final solution. Singh et al. con-
cluded that it was a challenging problem that could not be easily solved by
then-currently available MILP (mixed integer linear programming) commercial
software or straight application of general metaheuristics like genetic algorithms.
Some of their other approaches (squeaky wheel and another called large neigh-
bourhood search) produced somewhat better results, but they acknowledged room
for improvement, possibly by exploring alternative or more closely coupled
hybridisations between the MILP approach and heuristic search methods.

302 J. Balzary and A. Mohais



Live Software Implementation Experience with Mining
Companies

Enterprise level software solutions in the Resource-to-Market domain for iron ore
and coal mining have been deployed into live use for major Australian mining
companies over the last three years. Some experiences, modelling and algorithmic
details from these implementations are provided utilising two scenario sections of
the paper. In each case, a future extension of the approach is described, which seeks
to apply meta-level optimisation in an effort to further improve on the results that
have been previously achieved in practice.

Two scenarios are presented to illustrate different time horizons, one of which
necessitates a finer-grained “scheduling” approach, and the other a more
coarse-grained “planning” approach. There are substantive differences between the
approaches, and the algorithms used must be tailored accordingly. As an added
benefit, the cases described were chosen so as to reflect both iron ore mining and
coal mining.

Scenario #1—Scheduling System for Iron Ore

Fortescue Metals Group (FMG) is Australia’s third largest iron ore producer
operating 3 mines, a dedicated rail line and port in Western Australia. In this
scenario the model manages several silos from post-beneficiation to vessel. Focus is
placed on important elemental aspects of the algorithms used in the software with
an outline of a future-state meta-level algorithm proposed. This progression in
algorithmic complexity follows a prescribed staged approach where initial
deployment of optimisation technology is managed in a step by step fashion,
beginning with simplified acceptable techniques and migrating to more advanced,
automated decision support paradigms.

The deployed decision support model focuses on the modelling of trains and the
rail network between the various train load-out (TLOs) and the port. The system is
configured with a fixed number of rakes or consists (a collection of wagons
assembled to carry an iron ore product) that need to be scheduled in order to meet
demand at the port. Queuing of rakes at the TLOs is an important factor in the local
scheduling decisions considered when looking at the rail silo. For the iron ore
scheduling problem, two elements of the deployed algorithm that are particularly
important include (i) the demand-driven nature of the algorithm, and (ii) the
technique of disruption propagation. These are both used as baseline elements of
the current and future version of the algorithm.
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Components of a Scheduling Solution

In the scheduling (versus planning) domain, the emphasis is on very detailed and
comprehensively-specified activities scheduled with a start and an end time. Many
details of each activity in question, such as the equipment utilised and inventory
produced must be modelled and calculated. The computational effort is often
prohibitive and the respective granularity and accuracy of data diminishes over a
long time horizon, making long term decisions on highly detailed models infeasible.
The need to manage the level of detail and the importance of these finite elements in
the scheduling horizon naturally focuses attention in the short-term (hours, shift,
days).

In a typical mining Resource-to-Market requirement for a scheduling purpose,
the following activities are specified (as examples):

Train (rake/consist) service

• Rake/Consist ID
• Train destination (mine)
• Port depot departure time
• Selected loader at mine (TLO)
• Product to be loaded (type, tonnage,
quality)

• Queuing time at mine
• Loading duration
• Journey time
• Queuing time at port
• Selected unloader at port
• Optional periodic maintenance at port

Train loading activity

• TLO ID
• Product type
• Product tonnage

• Product quality
• Loading start time
• Loading end time

Car dumping activity

• Car Dumper ID
• Rake ID
• Product type
• Product tonnage
• Product quality
• Conveyor route ID

• Stockpile destination ID (if applicable for
stacking)

• Shiploader ID (if applicable for direct loading)
• Dumping start time
• Dumping end time

Stacking activity

• Car Dumper ID
• Stacker ID
• Stockpile ID
• Conveyor route ID
• Product ID

• Product tonnage
• Product quality
• Stacking start time
• Stacking end time

Reclaiming activity

• Reclaimer ID
• Stockpile ID
• Shiploader ID
• Conveyor route ID
• Product ID

• Product tonnage
• Product quality
• Reclaiming start time
• Reclaiming end time

(continued)
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(continued)

Ship berthing/de-berthing activity

• Vessel ID
• Berth ID
• “Pilot on board” (POB) time
• “First line” time

• “All fast” time
• “Ready to load” time
• Depart berth time

Ship loading activity

• Shiploader ID
• Berth ID
• Conveyor route ID
• Product ID

• Product tonnage
• Product quality
• Loading start time
• Loading end time

Demand-Driven Solution Generation

This iron ore case study uses a demand-centric perspective to drive the optimised
solution generation with primary demand based on vessel nominations and the
associated attributes for contractual fulfilment.

The market factor is very important in this model, as it is the primary deter-
minant in the schedule produced. The client organisation provides data on future
sales for the time horizon under consideration. This consists of firm orders, which
are ones which have already been confirmed by the end buyers, as well as tentative
orders, which are indications of intention to buy. This data is provided to the
scheduling software by means of direct data integration. The scheduling software
has a data exchange interface with other software systems used by the client
organisation, and the latest variations are always available for use in generating new
and updated schedules. The data is provided in the form of Vessel Nominations,
which are contracts for the sale of iron ore commodities to be loaded at a designated
port by a particular vessel. The data contains the Estimated Time of Arrival
(ETA) of the vessel at the anchor point associated with a port. This date and time is
used by the scheduling algorithm to determine possible choices for a time of
berthing for that vessel.

During simulation, when a particular instant in time is being considered, a vessel
that has been tentatively selected for berthing at that time is examined to see what
its nomination is, i.e. which products, their respective volume and quality are
required for loading once it is berthed at the port. This demand triggers a
backward-looking analysis agent that retraces the steps along the supply chain that
are needed for the required amount of the right products to be available at the port at
the time of the vessel’s arrival. This then creates precursor demands within
upstream silos in the supply chain, which must be optimised concurrently with
other scheduled activities in those silos.
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Disruption Propagation

When a certain magnitude of change occurs to a scheduled activity, for example the
berthing of a vessel an hour earlier than planned, it is possible to locally propagate
the effect of those changes and quickly get the overall schedule back into a correct
feasible state without having to undergo a computationally expensive re-building of
the entire schedule. An understanding of the implications of this propagation
without optimisation is managed via constraint handling which references the
available capacity and buffer between each related activity and determines if vio-
lations have occurred that are infeasible.

Assuming stockpiles that were intended to be used to load the vessel were
already at their required inventory levels several hours before, the fact that the
vessel is early does not cause any problem with loading. Alternatively, it may be
that a sequence of trains that were scheduled to arrive throughout the duration of the
vessel being at berth are now out of sync with this shift in time, and the problem
could be fixed by shifting the train schedules all by one hour earlier. We would
have to check how this triggers knock-on effect higher up the supply chain, and also
potentially look at effects like congestion or conflict on the rail network, if the
supply chain is being modelled to that extent.

The key thing to note is that it is possible for small disruptions in one silo to be
relatively easily absorbed by adjacent silos in the supply chain, and it is a wise
tactic to attempt to use this propagation opportunity to quickly absorb these changes
as opposed to attempting brute force re-optimisation.

Realities of Global Optimisation

It is important to note that within the confines of the decision making timeframe, it
would be impractical to create a problem representation that encompasses the entire
supply chain, and then use a population-based algorithm that simply treats the
individuals as candidate solutions to this massive problem. In practice the com-
putational power required to process that magnitude of scope and complexity would
be infeasible, and so would the required computing time under current hardware
constraints. Furthermore it would be naïve to expect that simple operators (such as
intra-silo mutations, or crossovers across silos, or even across the global repre-
sentation) working on a massive representation would be able to effectively or
efficiently find the truly high-quality solutions that human experts are seeking.

It is important to recognise that although the global context must be considered,
and the desired solution would have less-than-optimal sub-solutions within silos,
we should nevertheless respect the local logic and intelligence that exists within the
silos (human or modelled). It is through judicious use of this intelligence that we
can arrive at a solution that can be considered globally optimised.
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Hybrid Global Optimisation

We propose that a hybrid approach is needed, which acknowledges the fact that a
truly optimised solution must take into account the global, multi-silo nature of the
problem, but which also intelligently operates on the representation so that infea-
sible solutions are avoided, and also that natural heuristic corrections to adjacent
silos are carried out in response to an evolutionary disruption in a target silo.

Consider for example a change in the vessel-loading activities at the port,
wherein a particular ship loader requires more material than is currently scheduled,
and thus draws upon a stockpile to an extent surpassing its current stock. (This is
not possible in physical reality, but can certainly be considered as part of an
individual representation). This shortfall in inventory at that stockpile is a natural
impetus for the adjacent rail module to undergo an amount of re-optimisation,
whether it be a small or a large change remains to be determined). This principle
gives rise to a multi-silo algorithm which can be called “Disruption Dampening and
Transmission”. Changes in one silo may cause nudging on an adjacent silo, which
may be accommodated by slight movement, i.e. a dampening of the disruption, or it
may be necessary to completely re-adjust the neighbour to try to align its endpoints
with the disruption, i.e. a full transmission of the disruption.

Figure 1 illustrates the concept of disruption dampening and transmission, using
the analogy of sitting on a bench. To get a better understanding of how this
proposed algorithm would be implemented, Fig. 2 provides a pseudo-code outline.
The key idea of this algorithm is to choose a most influential silo (or weight them in
importance and choose probabilistically), and run a full optimisation routine on it,
but after each iteration, as individuals are modified, the effect of their modifications
either get dampened by virtue of adjacent silos being able to absorb the impact of
the change with small-scale modifications, or get transmitted with a more disruptive
effect into the adjacent silo, triggering a full re-optimisation of the current state
within that neighbouring silo.

If this approach is contrasted with a more straightforward approach to global
optimisation, one could imagine that a change in a silo would be followed
immediately by an evaluation of the overall individual. The resulting individual is
likely to contain multiple constraint violations and task misalignments. These could
be handled by penalty components in the fitness evaluation of the individual, but
the likelihood of this being able to successfully guide the algorithm is very low.

The above proposed approach could be likened somewhat to repair algorithms
from evolutionary computation. What is substantially different however, is the
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Fig. 1 Disruption
dampening and transmission
between silos
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possibility of complete local re-optimisation of certain silos, and also phased
propagation of the disruption of a change throughout the supply chain.

Case Study #2—Planning System for Coal

Glencore (previously Xstrata) Coal is a major global energy materials producer.
This example includes a multi-mine operation centred on raw coal management,
coal handling and preparation through the plant, rail logistics to vessel loading
using two berths at the Abbott Point Coal Terminal in Queensland, Australia.

In this model, attention was paid to the maximisation of the potential total
revenue by not only relying on the supplied data on contracts for Month 1–3 years,
but also considering the more detailed addition of place-holder vessels in order to
make enable recommendations to the Sales department, highlighting where addi-
tional product is available to be sold. The importance of shipping data for capacity
assessment is elaborated by Boland et al. (2011).

The fact that the Australian coal industry often fails to meet demand due to inade-
quate planning, infrastructure deficiencies and other reasons is outlined by Bayer et al.
(2009) and represents a primary driver for organisations to look at exploiting latent
value associated through improved planning and optimisation. Previous work in
optimising anAustralia coal supply chain with respect maintenance activities presented
in Boland et al. (2011). As before with the iron ore case study, the coal case study is
described from an abstract point of view, all the way to a vision of future algorithmic
approach. For the coal planning problem, a few elements of the current
production-implemented model and associated optimisation algorithm that are

Fig. 2 Disruption dampening and transmission algorithm outline
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particularly important include (i) a stock accumulation-based representation for vessel
loading, (ii) quality up-building and down-building heuristics, and (iii) upstream
heuristic plan completion based on the vessel-loading driver. These elements form the
baseline optimisation improvements upon which enhanced future state optimisation is
considered. The main realisations that are used when proposing the future-state algo-
rithm is that heuristic construction of seed individuals is important for a modern
heuristic algorithm, therefore a simplified heuristic approach as a foundation element to
optimised plan generation is a feasible. There is a careful balance that is needed between
those kinds of individuals and more randomly generated ones in order to find an
appropriate balance between biased and free range exploration of the search space.
A meta-level algorithm is part of the proposal to find this appropriate balance.

Solution Representation for a Planning Context

In contrast to the level of model complexity in scheduling (minutes, hours, shifts,
days), planning systems (days, weeks, months) are orientated towards a higher-level
summary view of what can be achieved, and safely planned for, in a long-term time
horizon—for example 1 month to several years. Similar to heavily constrained
activity scheduling relationships, the planning requirement must take into consid-
eration numerous parameters and hard and soft constraints, in order to ensure that
the results are valid. Whereas a schedule would consist of a number of discrete
activities assigned to different resources, planning models are generally defined
around summarised aggregated activities or capacities within a fairly large time
bucket, in this case monthly. Plans are created starting at month 3 (from the current
time), out to 3.5 years. The initial period of 3 months is not covered because this is
considered to be within the scheduling period, not planning. For each month of the
planning horizon, the following information must be generated:

Haulage Plan:

• Aggregated tonne-hours for movement between ROM and stockyards,
inter-stockyard, and stockyard to CHPP. Individual journeys are not
modelled.

Field Stockyards Plan:

• The total tonnes of each product type on field stockpiles for that month.
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ROM Stockyard Plan:

• The total tonnes of each product type on a ROM stockpiles for that month.

CHPP Operation Plan:

• Tonnes of each coal type sent to each CHPP module, and bypass.
• Output tonnes for each coal type for each CHPP module, as well as new

ash %, and reject tonnes.

CHPP Clean Coal Plan:

• Tonnes of each clean coal product added to each stockpile.
• Stockpile tonnes and % capacity.
• Quality attributes of each blended stockpile.

Rail Plan:

• Train-hours—Tonnes of each coal type transported by train from each
mine

Port Stockyard Plan:

• Tonnes of each Brand
• Quality attributes for coal assigned to a Brand

Shipping Plan:

a. The number of satisfied ‘TBC’ (to be confirmed) shipments, including
tonnage and product quality attributes. TBC shipments are derived using a
typical vessel size and accounting for customer contracts (i.e. tonnage and
quality requirements)

b. Number of non-contracted proposed shipments of coal brands, including
tonnage and product quality attributes. This is coal that is not linked to a
contract. This provides a view of how much additional coal product is
produced by the mines and needs to be sold by Marketing.

310 J. Balzary and A. Mohais



Optimisation Algorithm

Part of the local optimisation heuristic for a vessel stock accumulation plan is the
tuning of the selected components for blending to achieve a shippable product type,
i.e., one which is within the target quality specification bandwidths. The repre-
sentation of an individual in this algorithm consists of a set of ordered pairs, where
each pair consists of a viable stockpile id, and a desired tonnage to be reclaimed
from that stockpile (Fig. 3).

Low-Grade Up-Build Blending Sub-algorithm

The approach of the Low-Grade Up-Build blending algorithm is to initialise an
individual in a deficient sub-space of the coal blending selection space. Such
individuals would be of a low grade, and a search algorithm would need to be
structured so that overarching directional vectors of the search tend towards
sub-spaces that are richer in terms of coal quality. It is important to control the
velocity of movement so that there is an increased likelihood of discovering suitable
blends within the required quality tolerances at an early stage within the search
process, without exploring too deeply within the high quality areas of the search
space.

High-Grade Down-Build Blending Sub-algorithm

The High-Grade Down-Build blending algorithm uses a converse approach, which
is to initialise an individual in an adequate or rich sub-space of the coal blending
space. Such individuals would be of a high grade, and a search algorithm would
need to be structured so that the direction of the search moves at low velocity
towards lower quality regions. The objective being to have a high likelihood of
settling in a region that maximises the use of lower grades, whilst still remaining
within the required quality tolerances.

(Stockpile-ID, tonnes)

(Stockpile-ID, tonnes)

(Stockpile-ID, tonnes)

. .
 .

Fig. 3 Individual
representation for stock
accumulation
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For both blending algorithms, evolutionary operators are used to gradually bring
an individual to within tolerance, the main operator being a swap of a small tonnage
of ore, exchanging low with high grade, or vice versa.

Upstream Scheduling Building Based on Ship Loading
Profile

Once a candidate vessel berthing sequence has been determined, a
heuristically-built individual representing a schedule for the entire supply chain can
be constructed by working backwards, upstream in the supply chain, to create
nominal activities to match the requirements of the vessel at berth within a given
period of time. This gives rise to a so-called heuristically built individual that
contains elements of a good-quality solution, but has not yet been optimised.

The Evolution to Metaheuristic Optimisation

Evolutionary algorithms often can be made to produce excellent results on prob-
lems in a particular domain, but one of the issues that arises is that there are often
several algorithmic parameters involved, and these parameters need to be correctly
tuned in order to achieve positive results. In certain situations, it is the case that a
meta-algorithm, or metaheuristic, can be engineered to run at a higher level and
perform the tuning of the lower-level evolutionary algorithm. Thus, any human
manual intervention in the finding of high-quality solutions is minimised, and the
work can be relegated mostly to the computational machinery and software.

Since we are considering primarily Population-Based Modern Heuristic (PBMH)
optimisation algorithms as the key tools for optimising the supply chain, we will
describe the concept of a metaheuristic optimiser in this context. For the Coal
Planning problem under consideration, in order for the PBMH to operate effec-
tively, it is critical that it be seeded with candidate solutions that have already been
placed into reasonably feasible sub-spaces of the search space (Fig. 4). This is
accomplished by using a percentage of the seeded individuals that are passed
through a local optimisation routine to achieve some moderate level of fitness
before entering into the PBMH algorithm. Furthermore, there is another percentage
(typically quite small) of individuals that are heuristically built, but which have not
been subjected to the local optimisation. There are also introduced into the seed
population for the purpose of maintaining genetic diversity.

Details of how the Initial Seeding component of the algorithm would work are
illustrated in Fig. 5. The V1 and V2 local searches referenced in that diagram refer
to the Low-Grade Up-Build and High-Grade Down-Build heuristics defined earlier.
The initial population of the main population-based modern heuristic (PBMH)
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optimisation algorithm is divided into 3 parts: (i) individuals that have gone through
V1 local optimisation, (ii) individuals that have gone through V2 local optimisation
and (iii) individuals that have not gone through any local optimisation. Each part
can be thought of as being of a particular percentage.

For the PBMH operating at a meta-level, the goal is to find an optimised
combination of these percentages (two would suffice), such that when used to seed
the lower-level PBMH, the best possible planning solution results (Fig. 6). To get a
better understanding of how this proposed algorithm would be implemented, Fig. 7
provides a pseudo-code outline.

Population-
Based Modern 

Heuristic
(PBMH) 

Optimisation 
Algorithm

Initial 
Seeding

Final 
Local 
tuning

Optimised
Solution

Fig. 4 Pre and post processing needed for a population-based modern heuristic optimisation
algorithm

Heuristically - Built Individuals
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Modern
Heuristic 

Optimisation 
Algorithm 
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- Built 

Individuals

Local
SearchV1

Local
SearchV2

Final
Local 
tuning

Fig. 5 Use of local search algorithm for coal blending, pre PBMH
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Conclusions

Any mining value chain scheduling problem involves the assignment of a high
number of variable activities to a set of resources. From a computational complexity
perspective, this problem is known to be NP-Complete, effectively indicating the
Resource-to-Market scheduling problem is currently amongst the most challenging
problems known. Furthermore, many of the constraints that exist within that
domain are non-linear in nature. Due to these complexity characteristics it is
expected that population-based modern heuristic methods are highly appropriate for
finding high-quality solutions, as opposed to methods premised on linear con-
straints and linear models as they can inherently manage more complex business
rules and non-linear constraints.

Meta-Level PBMH Algorithm

Optimised
Solution

Proportion
parameters for 
Sub PBMH 
instance

Optimised 
proportion 
parameters

Fig. 6 Each individual of the meta-level algorithm is a set of parameters for a base-level PBMH

Fig. 7 Meta-level PBMH algorithm for parameter tuning
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The planning problem appears to be less complex in nature than detailed
scheduling since jobs are not being assigned to resources, but rather aggregated
capacity is being consumed against those resources in less-granular time buckets.
Nevertheless, this apparent reduction in complexity is usually offset by the practice
of considering much longer time horizons—many months or years into the future.

The Resource-to-Market problem is currently managed in the real world pro-
duction environment by predominantly talented human experts who, together with
various rudimentary tools, for example spreadsheet models, and very limited-scope
and narrowly-focused software applications such as discreet event simulators, are
coping with the task of keeping businesses running by finding suitable, though
arguably sub-optimal solutions to the problem. The mining business community has
a strong appetite for advanced software solutions using novel and innovative
mathematics, science and technology to improve in this area.

Considerable care must be taken when embarking upon the journey of making
major changes to how scheduling and planning tasks are carried out by all mining
organisations. The deployment of software that instantaneously and dramatically
shifts the scheduling/planning paradigm in place, even if this does hold the potential
for much higher-quality results, more often than not is a sure recipe for immediate
reticence, incomprehension, doubt, overall inertia, and eventual rejection of the new
system. Despite the potential of advanced scientific software solutions, it is
important to recognise and respect that the process of adoption of such systems is in
no small part a human activity. It is important to carry out such an endeavour as a
staged process, using a roadmap of checkpoints that guides the organisation and its
experts in an incremental fashion. At each step, clearly-understood solutions must
be produced by the software in a manner that the human expert would feel com-
fortable signing-off on. Especially in the early stages of the roadmap, it is critical
that the actions of the software be explainable and comprehendible.

Modern heuristic algorithms have been discussed and applied at length in the
research community for more than 30 years. In the last ten years however, there has
been a noticeable emergence of commercial-grade enterprise level software that
incorporates these kinds of algorithms though arguably their uptake has been
limited in production environments.

Currently implemented elements in existing clients for Schneider Electric are
presented as components of a framework for meta-level optimisation. These
baseline elements are designed to be expanded, scaled and enhanced as the
understanding and acceptance of their output is trusted. The benefit that would be
achieved from any optimisation technique needs to be carefully weighed against the
increase in runtime that would ensue. The continual increase in power and capa-
bility of computer hardware, including the ability to leverage parallel computation
diminishes the impact of this downside.

It is expected that these approaches will yield higher quality solutions than the
perceived state-of-the-art production models in use today, whilst remaining
amenable to implementation in enterprise software designed for mining supply
chain experts who are not necessarily mathematical modelling and optimisation
specialists.
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Application of Conditional Simulations
to Capital Decisions for Ni-Sulfide
and Ni-Laterite Deposits

O. Tavchandjian, A. Proulx and M. Anderson

Abstract Prior to the acquisition of data from production drilling and grade control
sampling, the spatial density of data is usually insufficient to properly address issues
related to short-scale variability. Grade interpolation, whether conducted through
ordinary kriging or other linear or non-linear regression techniques, usually suffers
from significant over-smoothing or conditional bias. Four examples presented in
this paper show that conditional simulations provide a viable and powerful alter-
native in assessing the sensitivity of key variables that are critical to the decisions
made prior to moving forward with significant capital expenditures. These variables
include the selection of the most appropriate mining method and mining equipment,
the optimum cut-off strategy and the short-term variability constraints on process
plant feed. The results also demonstrate that conditional simulations can be used to
assess the risk associated with many of the technical aspects of the project and its
financial performance.

Introduction

Traditional approaches to mineral deposit appraisal use non-geostatistical and/or
geostatistical estimation methods to provide optimal local block grade estimates.
When the drilling density is too sparse for the level of detail required for mine
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planning, these methods fail to properly represent the spatial variability of the
estimated grade. Mining decisions made using the resulting smooth estimates may
lead to false assumptions about the mineral deposit. Alternative interpolation
strategies aimed at reducing the smoothing effect, such as using fewer samples in
the search ellipsoid or interpreting geology in a deterministic model, usually result
in a grade distribution with significant conditional bias (Krige 1996).

As with many other metal deposits, the success or failure of a Ni-sulfide or a
Ni-laterite mining project is highly dependent on a few key variables, all ultimately
related to metal price and metal grade. A proper characterisation of the spatial
variability in the grade distribution can lead to more realistic mining and/or pro-
cessing assumptions and reduced project risk. Project evaluations, which can
demonstrate to the company management and investors that the risk is recognised
and quantified, and that the implementation plan includes a strategy to manage that
risk, have a better chance of advancing to the construction and production stages.

Conditional simulation (‘CS’) methods aim at reproducing the in situ grade
variability as opposed to obtaining optimal local estimates. The end results are
models of equal probable realisations, which reproduce the input sample data
histogram and variogram and are conditioned to local sample point values. A proper
characterisation of the spatial variability of the grade provides mining engineers and
metallurgists with realistic models for mine planning and the information required
to address processing issues related to short-term variability in the feed grade to the
processing plant (e.g. Abzalov and Mazzoni 2007; Audet and Ross 2007).

This paper presents four examples of practical applications of CS in both
Ni-sulfide and Ni-laterite deposits conducted by Inco over the past seven years.
These examples cover a wide range of projects from the optimisation of open pit
and underground mining plans to the risk assessment on the variability of the daily
feed grade to both mineral beneficiation and chemical processing facilities. The
successful deepening of the Birchtree mine in Northern Manitoba, was dependent
on the selection of optimum mining cut-off and production rate together and on a
flexible mining schedule. A reliable model was also required to properly assess the
risk-weighted benefits of raising the cut-off in an orebody with significant
short-scale variability. Similar challenges were faced in the deepening of the
Thompson 1D orebody in the same mining camp. In this case, CS were also used
early in the evaluation process to compare the economic performance of bulk and
selective mining methods. During the feasibility study of an open pit operation at
Voisey’s Bay in Northern Labrador, the short-scale variability of the feed to the
concentrator was identified as an area of risk for the project. In particular, signif-
icant variations in the Cu to Ni ratio on a daily, weekly or monthly basis could
result in processing recovery losses. The optimisation of the number of concurrent
mining faces, the size of stockpiles and the mining sequence was investigated based
on CS results in order to minimise the impact of feed variability on milling
recovery.

At the Goro Project in New Caledonia, the Ni ore mined from the laterite profile
will be processed by a high-pressure acid leaching technology (HPAL).
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The performance of the HPAL technology is dependent on the chemistry of the feed
including Ni and Co content as the two minerals of economic interest but also other
major elements such as Mg, Fe and Al oxides because of their impact on acid
consumption and Ni-Co recovery. Since the chemistry is highly variable between
the various layers of the alteration profile and even within some layers between
various size fractions, a proper characterisation of the short-scale variability in both
layer geometry and layer composition was recognised as a key factor for a suc-
cessful feasibility study of this project.

Conditional Simulation Methodology

Geostatistical CS were developed over 30 years ago in order to perform sensitivity
and risk analysis. In a conditional simulation, reproducing certain statistical char-
acteristics of the global population takes precedence over local accuracy. In addi-
tion to respecting the histogram, a geostatistical simulation model reproduces the
variogram (i.e. reproduction of spatial correlation) and honours the actual existing
data (i.e. conditioning).

In addition to the original turning bands method (Journel and Huijbregts 1983),
there are now several established methods of carrying out geostatistical simulations
including the Sequential methods (Gaussian and Indicator), the LU decomposition
algorithm, (Goovaerts 1997; Armstrong and Dowd 1993; Chiles and Delfiner
1999), and more recently, generalised sequential simulation (Dimitrakopoulos and
Luo 2004; Benndorf and Dimitrakopoulos 2007, this volume). It is not the intent of
this report to detail the pros and cons of each technique. Comparisons can be found
in a number of publications. Gotway and Rutherford (1993) make a comparison of
six different simulation methods performed on a variety of datasets. This study
revealed the sensitivity of results to particular simulation algorithms and demon-
strated some advantages of the conditional Gaussian based algorithms (i.e. turning
bands and Sequential Gaussian) over the other methods. The turning bands
approach was selected for this study. Some authors (Deutsch and Journel 1992;
Ravenscroft 1993) have qualified the method as being computer intensive with
built-in limitations, i.e. number and orientation of bands, number of discretisation
points along the bands, rotation of anisotropy axis. Gotway and Rutherford (1993)
indicate that most of these problems are related to the improper algorithms used and
not to the turning band method itself. The algorithm used in this study is slightly
modified from Lantuejoul (1993). The program used for the four projects presented
in this paper is not affected by any of the above listed limitations.

The turning band algorithm involves a series of steps including the recognition
of different geological domains, the selection of the variables to be simulated, the
gaussian transformation of these variables, the non-conditional simulation of these
gaussian variables and their linear combination, the conditioning to the actual data
by Simple Kriging and their post-processing to reconstitute the original variables. In
addition, the simulations presented in this paper benefit from the application of an
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unfolding algorithm (Datamine 1997) in order to better simulate the geological
controls on grade distribution. At each step, a series of checks is performed and to
successfully validate the model.

Calibration and Validation of Conditional Simulations

In order to validate the conditional simulations, a calibration exercise is undertaken
wherever production data are available either in a mined out portion of the same
deposit, or in an analogue deposit. The areas selected for these back analyses are
usually well drilled and benefit from extensive mapping of underground openings.
The record of the mill-credited production may also be used if available. The
methodology applied is as follows:

• create an exploration-based data set by removing all infill production drilling;
• perform polygonal, kriging and CS modelling from the exploration data set and

assess recoverable resource at various cut-off grades;
• perform polygonal, kriging and CS modelling from the production data set and

assess recoverable resource at various cut-off grades;
• compare historical credited production, polygonal, kriging and CS results based

on both the exploration dataset and the production dataset; and
• compare actual detailed mapping in the mine openings to spatial patterns pro-

duced by all models.

The DATAMINETM Floating Stope Optimiser (FSO) is used at Inco operations
to quickly assess the recoverable resource from all orebody and simulated models at
various cut-off grades. The FSO is analogous to the floating cone algorithm used in
open pit situations. The FSO does not provide a final mining plan but rather a ‘close
to finished’ product, which requires refinement but provides an effective tool for
comparing alternative mining scenarios in a conceptual planning exercise. In order
to validate the parameters used in the FSO, a manual exercise of mine planning is
performed on one of the simulations. Comparing the FSO runs to manual planning
verifies the FSO parameters. All subsequent FSO runs on the simulation models and
estimation models use these same parameters.

Examples of successful results indicating the benefit of conditional simulation
over traditional interpolation techniques and polygonal method are shown on
Figs. 1 and 2 for two Ni sulfide deposits. When an exploration dataset is used, the
spatial patterns created by CS are more realistic and better represent the anticipated
internal dilution. The results show that when little information is available for
estimation, the spatial continuity of both the high-grade and low-grade minerali-
sation is overstated in the polygonal and MIK models. This results in an overes-
timation in recoverable grade and in an underestimation in recoverable tonnage.
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Fig. 2 Compared assessment of actual ore mapping, polygonal (NN), MIK and CS in the
calibration zone
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Application of CS to the Selection of the Optimum Mining
Method for Underground Ni-Sulfide Deposits

The first application of CS to Ni sulfide deposits is related to prefeasibility studies
conducted at two Inco mines in Northern Manitoba, Canada. In both cases, the
studies aim at assessing the economic viability of mining deeper in existing deposits
and assessing different mine plans and production schedules in the deposit exten-
sion based on advanced exploration drilling only. The Birchtree Mine 83 orebody
and the Thompson Mine 1D orebody are located in the Thompson Nickel Belt.
Orebodies in this belt consist of nickel sulfides with varying amounts of ultra mafic
inclusions hosted in Proterozoic-aged metasedimentary units.

Only per cent Ni is simulated in these two cases since it is the only metal of
economic significance. Domains of mineralisation are identified using conceptual
geological ore genesis models with lithology and structure as the most important
features controlling the final emplacement of the mineralisation.

Comparison of Mining Methods in the 1D Lower Orebody

Figure 3 summarises the results of a comparative study performed on the lower
portion of the 1D deposit between a bulk and a selective mining method. For
reference, the results obtained with the polygonal and Multiple Indicator Kriging
(MIK) models are also plotted on these graphs.

The series of grade and tonnage curves shown on Fig. 3 are obtained by per-
forming a FSO analysis of each simulation and interpolation model with a con-
sistent set of parameters including the minimum stope dimensions, the stope
increments, the minimum pillar waste dimensions, the target headgrade and the
maximum internal waste allowances. These parameters have been calibrated on a
selection of sections and plans against manual interpretation done by experienced
mine engineers.

The MIK model provides globally a similar estimate to the CS for the
bulk-mining scenario but a significant different estimate for the selective mining
scenario. As expected, applying the FSO to a polygonal model also yields signif-
icantly different results. The differences obtained from the various methods are
related to their different handling of short-scale variability and therefore of internal
dilution between mineralised zones. While polygonal techniques clearly overstate
the continuity of the high grade mineralisation as expected, the MIK model also
underestimate internal dilution when the drill spacing is too large for the level of
details required for mine planning as it is the case in the assessment of selective
mining. These results imply that making a development decision based on a MIK
model only would present a significant risk of incorrectly selecting the most ben-
eficial mining method for the project.
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Based on the CS results, mechanised cut and fill mining was selected as the best
suited mining method for the deepening for the 1D orebody. A set of sections and
plans from selected simulations were further investigated by a team of experienced
geologist and mine engineers with production experience in this orebody to perform
some sensitivity studies and to optimise the proposed mine plan including ore and
rock handling systems, ventilation, etc. The economic and technical parameters
were then used as inputs in discounted cash flow analysis. Based on the CS results,
a range of ROR and NPV were calculated in order to quantify the risk associated
with the base case assumptions together with potential downsides and upsides.

Comparison of Production Profiles in the Birchtree 83
Orebody

For the deepening of the Birchtree 83 deposit, the comparison of mining methods
provided similar results to the 1D Lower deposit but the high-grading potential was
not deemed sufficient and the risk too high to justify a selective mining approach. In
this prefeasibility study, the benefit of CS was realised by revisiting the production
profile. Due to the large drill hole spacing at depth, the MIK and polygonal models
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suffer from significant conditional bias. As a result, large areas of high-grade
mineralisation are artificially created. A production plan based on these models aim
at mining these deep high-grade zones first. The CS produce a radically different
model of the deposit showing a much more consistent grade distribution from top to
bottom (Fig. 4). Based on the CS results, the production profile was modified to
both increase the production rate and to mine the orebody both bottom-up and
top-down. This orebody has now been in production for two years and operating
results have confirmed the validity of the CS results and the bias in the MIK and
polygonal estimates.

As in the case of the 1D deposit, mine planners were able to complete a
pre-feasibility study including estimates on capital costs, mining rate, mining
sequence and production profile based on the CS results. These estimates do not
suffer from an under-estimation of the spatial variability in the metal grade distri-
bution and therefore provide more realistic estimates than previous estimates based
on polygonal and MIK models.

BLOCK MODEL SIMULATION No 1 SIMULATION No 2

% Ni
From To
0.0 0.3
0.3 1.0
1.0 2.0
2.0 100.0

Fig. 4 Comparison of MIK and CS models in the deepening of the Birchtree 83 orebody
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Application of CS to the Modelling of Short-Term
Variability in a Sulfide Concentrator Feed

The second application of CS in Ni sulfide deposits is an investigation into the
optimisation of the mining sequence and the validation of the concentrator design at
the Inco Voisey’s Bay project in Northern Labrador. The objective is to validate the
mining sequence in order to ensure the short-term variability in the composition of
the concentrator feed remains within an acceptable range.

Mineral Domains and Simulation Process

The Voisey’s Bay concentrator will be supplied for the first 16 years of operation
by open pit production from the Ovoid deposit. This deposit is hosted by a troctolite
intrusive complex, which is divided into three different domains with variable ratios
of massive and disseminated sulfides. In each domain, the massive and dissemi-
nated zones were simulated separately. The turning band approach is constrained by
a model of linear coregionalisation (Wackernagel 1998) to maintain the spatial
correlations observed in the input data between per cent Ni, per cent Cu, per cent
Co, per cent S and per cent Fe.

Short-Term Variability in the Concentrator Feed

In order to maximise Ni recovery in the concentrator, it is typically desirable to
homogenise the chemistry of the feed on a short-range basis. In particular, the Cu to
Ni ratio variability will influence the recovery of the two metals in their respective
concentrate. Twenty CS realisations were generated over the three domains of the
Ovoid deposit and were used to simulate the daily, weekly and monthly variability
in the chemistry of the concentrator feed based on the initial mine plan and pro-
duction profile (Fig. 5).

The preliminary results obtained were used to validate and to modify the initial
mine plan, including the mining sequence and the number of operating faces in the
disseminated and massive sulfides. These simulations also demonstrated the
validity of the design of the concentrator and its ability to cope with the anticipated
daily variability in mine production. The use of CS also provided a range in the
production rate, metal grade and processing recoveries required to conduct
Monte-Carlo simulations on the discounted cash flow analysis of the project.
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Application of CS to the Optimisation of the Life of Mine
Plan for a Ni-Laterite Project

Conditional simulations were extensively used for the Goro Ni-Laterite Project
located on the French island of New Caledonia in order to optimise and validate
several aspects of the life of mine plan. These aspects included the estimation of
bottom ore recovery, grade control as well as the short-term variability in the
process plant feed chemistry.

Geological Setting and Simulation Process

The Goro laterite deposit hosts three geological layers of significant economic
interest. During the mine planning process, it was recognised that the transition and
saprolite layers, when screened at an appropriate size fraction, were entirely rep-
resenting ore-grading mineralisation. Due to the reduced thickness of these layers,
they would likely be mined with one bench. As a result, only 2D simulations were
conducted for these two layers. Due to its greater thickness and the presence of a
variable portion of the top of the layer grading below the selected cut-off, 3D
simulations were required in the yellow laterite layer.

The simulation methodology used for the Goro deposit can be summarised as
follows:

1. 2D simulation of the five layers in the profile;
2. 2D simulation of the average chemistry for the yellow laterite, transition and

saprolite layers, i.e. per cent Ni, per cent Co, per cent Fe, per cent SiO2, per cent
MgO, per cent Al2O3, per cent Cr2O3 and per cent MnO;
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Fig. 5 Short-scale variability in concentrator feed composition at VBN
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3. linear regression of the vertical drift in chemistry based on 2D simulation and
unfolded position of node within the simulated yellow laterite layer; and

4. 3D conditional simulation of residuals to the linear regression done in the
previous step and creation of a full 3D simulation of chemistry for the yellow
laterite layer.

The use of the unfolding process was critical to produce a realistic laterite profile
and vertical grade distribution, however, added complexity to the simulation pro-
cess, since each 2D simulation of the layer profile originated from a new reference
system.

Models of linear coregionalisation were used both for the 2D simulations, to
maintain the spatial correlation between the physical and chemical properties of the
various layers, and for the 3D simulations in the yellow laterite layer to maintain the
vertical correlation between the different chemical elements.

Application to Mine Planning

An initial application to mine planning was to use the 2D simulations to target the
areas with the highest probability of combining high-grade nickel, with high mining
recovery and large thickness of saprolite. The most favourable area would be
preferentially selected as the start up zone for the open pit. The combination of
results obtained from layer thickness, saprolite recovery and grade simulations
clearly indicated that the southwest extremity of the deposit presents the best
economic mineralisation for the first years of production.

The 40 simulations completed for the Goro deposit were rank by increasing
variance of bedrock topography, i.e. bottom of the saprolite layer. Figure 6 shows a
cross-section of the interpreted profile for various drill spacing (i.e. 2 m, 12 m,
24 m and 100 m, respectively) for simulation number 29, selected as the median
case for the variance criteria.

A dramatic decrease in the variability of the layer geometry is observed as the
drilling density decreases. This variability would impact the recovery and the
dilution of the three mineralised layers and also the risk of misclassification of
limonitic and saprolitic mineralisation for the purpose of stockpiling. Since the
resource model is based on 100 m spaced drill holes, it will suffer from a high level
of over-smoothing for layer geometry.

These preliminary findings indicate the value conditional simulations provide in
the conceptual mine planning of the deposit (‘desktop mining’) to assess the impact
and the applicability of cut-off grades, bench heights, size of equipment and
limonite/saprolite sorting for stockpiling and measure the mining dilution and ore
loss factors. Two east-west cross-sections and two north-south cross-sections sliced
through these simulations were provided to mine engineers to be used as a basis for
planning. These four sections were reproduced using the second worst, the median
and the second best simulations ranked according to the variance criteria.
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Application to Grade Control

In the yellow laterite layer, a variable Ni cut-off had initially been proposed in order
to maintain a consistent limonite/saprolite ratio for the process plant feed on an
annual basis. The proposed cut-off ranged between 1.15 Ni and 1.45% Ni. The
method suggested in the initial mine plan to define the top of the ore was applied to
the simulations assuming a 25 m grade control grid. From simulated drill holes the
top of the ore was defined by the first intersection down the hole of two consecutive
metres grading above the proposed cut-off. The volume and average grade recov-
ered between the top of the ore and the bottom of the layer were compared in each
case with the average of all the simulated nodes, i.e. assumed reality.

Figure 7 shows the results obtained for Ni cut-off ranging from 1.15 to 1.50%.
This figure clearly shows that applying a cut-off grade higher than 1.3% Ni would
result in an unrealistic estimation of the production headgrade, and produce in a
significant reduction of the recoverable volume. Although this approach can be
used to increase the combined production headgrade of limonite and saprolite by
lowering the limonite/saprolite ratio, it also results in the significant loss of ore
grading material. This ore-grading limonite would be treated as overburden and
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Fig. 6 a Examples of S-N cross-section for 2 m drill hole spacing; b examples of S-N
cross-section for 12 m drill hole spacing, c examples of S-N cross-section for 24 m drill hole
spacing; d examples of S-N cross-section for 100 m drill hole spacing
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used as backfill. Alternatives should consider stockpiling to use this mineralisation
as incremental ore. Based on these results, a new grade control strategy was adopted
to use a cut-off grade no higher than 1.3% Ni in defining the top of the ore in the
yellow laterite layer.

Application to Predicting and Managing the Autoclave
Feed Variability

Another important application of the 2D simulations at Goro was to estimate the
process plant feed variability. In order to meet the planned production, availability
of the saprolite mineralisation with the proper chemistry profile is key. Conditional
simulations provide a tool to assess the variability in the plant feed at any given
scale (e.g. weekly, monthly, annually). With the proposed mining pushback and 20
simulation realisations, the variability of recoverable metal sent to the preparation
plant for each year is assessed.

As expected, the average of the 20 simulations indicate similar results to those
obtained from the kriged model for the entire simulated domain. On shorter pro-
duction periods however, the results presented on Fig. 8 indicated that without
stockpiling, a potential shortfall in saprolite would exceed ten per cent for 25% of
the simulations. The choice of the period to evaluate feed availability is critical as
this potential shortfall becomes even more important for a two-month period. The
only way to mitigate this potential problem is through stockpiling, blending and
through careful scheduling of saprolite production at the mining face. It is critical
for mining projects to identify these potential issues at the planning stage rather
than having to fix them in an ongoing operation.

The 2D and 3D CS of the entire profile were also used to generate combined
simulation of the mine production on a daily basis using three different scenarios
based on four concurrent mining faces on a test area representing approximately
one year of production. The test area was selected as being representative of the first
eight years of production according to the most current mine plan. The daily feed
was used to simulate stockpiles and daily autoclave feed. Results were used to
validate the production plan with respect to acid requirements and Ni production
targets.
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block model
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20 simulations

1  1.1  1.2  1.3  1.4  1.5
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Fig. 7 Comparison of
estimated Ni headgrade for
various per cent Ni cut-off
from block model and
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Conclusions

In the four applications presented in this paper, emphasis is put on demonstrating
how the use of conditional simulations has led to the ability to make better business
and technical decisions than those from models based on traditional interpolation
methods. A proper life-of-mine plan relies on having a good understanding of the
grade variability, CS allow the spatial grade variability to be properly characterised.

CS allows practitioners to quantify risk and to perform meaningful sensitivity
analyses on project financials. CS used as an additional tool in mineral project
assessments enable senior management to better assess the risk associated with
mining projects.

In order to gain confidence in the simulation results, seven years of applications
of CS at Inco Limited operations have highlighted two fundamental keys to success:

1. to recognise that conditional simulations are only models and to constantly
challenge the stationarity and other model assumptions; and

2. whenever possible, to conduct calibration studies based on back analysis of
orebodies with production history.
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Simulation of Orebody Geology
with Multiple-Point Geostatistics—
Application at Yandi Channel Iron
Ore Deposit, WA, and Implications
for Resource Uncertainty

V. Osterholt and R. Dimitrakopoulos

Abstract Development of mineral resources is based on a spatial model of the
orebody that is only partly known from exploration drilling and associated geo-
logical interpretations. As a result, orebody models generated from the available
information are uncertain and may require the use of stochastic or geostatistical
simulation techniques. Multiple-point methods have been developed for petroleum
reservoir modelling enabling reproduction of complex geological geometries for ore
bodies. This paper considers a multiple-point approach to capture the uncertainty of
the lithological model at the Yandi channel iron ore deposit, Western Australia.
Performance characteristics of the method for the application are discussed. It is
shown that the lithological model uncertainty translates into considerable
grade-tonnage uncertainty and variability that is now quantitatively expressed.

Introduction

Geological controls of physical-chemical properties of ore deposits are important,
thus, understanding and modelling the spatial distribution of deposit geology is
critical to grade estimation, as well as the modelling of any pertinent attributes of
orebodies (e.g., Sinclair and Blackwell 2002; King et al. 1986). In iron ore deposits,
for example, geological domains typically include lithology, weathering, ore and
contaminant envelopes. Domains for other physical properties such as density,
hardness and lump-fines yield may be required. The traditional approach to model
geological domains is the drawing of outlines of the geological units by the geol-
ogist, resulting in an over-smoothed subjective interpretation. Automatic interpre-
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tations are rare and include solids models that are, however, also inherently smooth.
Furthermore, such single “best-guess” interpretations do not account for uncertainty
about the location of boundaries and corresponding volumes, leading to inconsis-
tencies between mine planning and production.

Stochastic simulation techniques address the above type of challenges in mod-
elling the geology of, or the uncertainty about, a deposit. Unlike in the petroleum
industry, stochastic simulation of geological units of mineral deposits has been
limited in the mining industry due to the above-mentioned traditional practices,
despite early efforts (David 1988). The principle behind stochastic simulation is
interpreting the occurrence of a geological unit at a location as the outcome of a
discrete random variable. This probabilistic approach honours the fact that the
geology at any location cannot be known precisely from drilling data. All available
information including data, data statistics/geostatistics, and geological interpreta-
tions are included in such an approach to yield the most realistic models. Stochastic
simulation methods have been developed and tested on geological models of
mineral deposits. Methods mainly consist of sequential indicator simulation or SIS
(Goovaerts 1997) type approaches and the truncated pluri-Gaussian simulation
approach or PGS (Le Loc’h and Galli 1997; Langlais and Doyle 1993). Various
implementations and applications include the modelling of mineralized envelopes
with a predecessor to SIS approach (David 1988), simulating geologic units with
nested indicators (Dimitrakopoulos and Dagbert 1993), generation of ore textures
with “growth” (Richmond and Dimitrakopoulos 2000), simulation of oxidisation
fronts with PGS (Betzhold and Roth 2000), ore lenses in an underground mine
(Srivastava 2005), uranium roll-fronts (Fontaine and Beucher 2006) and kimberlite
pipes (Deraisme and Field 2006). Alternative approaches include methods based on
Markov transition probabilities (Carle and Fogg 1996; Li 2007) and object based
methods (e.g., Seifert and Jensen 2000).

The main drawback of the above methods is their inability to capture non-linear
geological complexities, and it becomes obvious when curvilinear features such as
faults, multiple superimposed geological phases, fluvial channels, or irregular
magmatic bodies are simulated. The reason for this limit is that conventional
methods represent geological complexity in terms of second order (two-point)
statistics. Variograms describe the variability of point-pairs separated by a given
distance and, although they capture substantial geological information (David
1988), there is a limit to the information they can convey (Journel 2018, in this
volume). Figure 1 illustrates the limits of variograms in fully characterizing geo-
logical patterns. Figure 1 shows three geological patterns with different spatial
characteristics where the variograms of the three patterns cannot differentiate
between the three geological patterns.

In advancing from the above limits, substantial efforts have been made to develop
new techniques that account for the so-called high-order spatial statistics. These
include the most well established multiple-point (multi-point or MP) approach
(Strebelle 2002; Zhang et al 2006), as well as Markov random field based, high-order
statistical approaches (Daly 2004; Tjelmeland and Eidsvik 2004) or computer gra-
phic methods that reproduce multiple-point patterns (Arpat and Caers 2007). These
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efforts replace the two-point variogram with a training image (or analogue) so as to
account for higher order dependencies in geological processes. The training image is
a geological analogue of a deposit that describes geometric aspects of rock patterns
assumed to be present in the attributes being modelled and reflects the prior geo-
logical understanding of a deposit considered.

The multiple-point or MP simulation approach examined herein and adopted for
the modelling of the geological units of an iron ore deposit is based on the MP
extension of SIS (Guardiano and Srivastava 1993; Strebelle 2002; Liu and Journel
2004), where MP statistics are inferred by scanning a training image (TI). The TI is
regarded as a geological analogue, forms part of the geological input, and it should
contain the relevant geometric features of the units being simulated. Until recently,
the MP simulation approach has mainly been used for modelling of fluvial petro-
leum reservoirs. It is logical to extend its application to modelling mineral deposits,

1 2 3

Fig. 1 Vastly different patterns show same variogram (modified from Journel 2017, in this
volume)
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where the TI can be derived from geological interpretations of the relatively dense
exploration or grade control drill hole data, and/or face mappings.

This paper revisits multiple-point simulation as an algorithm for the simulation
of the geology for mineral deposits. In the next sections, the MP method is first
reviewed and outlined. Subsequently, an application at the Yandi channel iron ore
deposit is detailed. Implementation issues, the characteristics of the resulting sim-
ulated realisations and the resource uncertainty profile are also discussed. Finally,
conclusions from this study are presented.

Simulation with Multiple-Point Statistics Revisited

Definitions

Multiple-point or MP statistics consider the joint neighbourhood of any number
n of points. As indicated above, the variogram can be seen as a MP statistic
consisting of only 2 points; hence, it can not capture very complex patterns.
Using MP statistics sequentially on difference scales, large and complex patterns
can be reproduced with a relatively small neighbourhood size n of about 20 to 30.
MP statistics can be formulated using the multiple-point data event D with the
central value A. The geometric configuration of D is called the template sn of size
n. Figure 2shows an example of a data event on a template with n = 4.

The size n of the template and its shape can be adjusted to capture any data
events informing central value A. As MP statistics characterise spatial relations of
closely spaced data, they may not always be calculated directly from drilling data.
The method used for this study defines MP statistics on a regular grid, and are
inferred from the TI, a regular cell model that serves as a 3D representation of the
geological features concerned. The geometries contained in the TI should be con-
sistent with the geological concept and interpretation of the deposit. In practice, this
can always be confirmed by a geologist familiar with the deposit.

A

DFig. 2 Naming conventions
to define MP statistics
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A Stochastic Simulation Algorithm

Consider an attribute S taking K possible discrete states sk; k ¼ 1; . . .;Kf g, which
may code lithological types, metallurgical ore types, grindability units, and so on.
Let dn be a multiple-point data event of n points centred at location x. dn is
associated with the data geometry (the data template sn) defined by the set of
n vectors ha; a ¼ 1; . . .; nf g and consists of the n data values
s xþ hað Þ ¼ s xað Þ; a ¼ 1; . . .; n. While traditional variogram-based simulation
methods estimate the corresponding conditional distribution function (ccdf) by
somehow solving a kriging system consisting on the two-point covariances, the MP
ccdf is conditioned to single joint MP data events dn

f x; skjdnð Þ ¼ E I x; skð Þjdnf g ¼ Pr S xð Þ ¼ skjdnf g; k ¼ 1; . . .;K ð1Þ

Let Ak denote the binary random variable indicating the occurrence of category
sk at location x:

Ak ¼
1 ; if S xð Þ ¼ sk
0 ; otherwise

(
ð2Þ

Similarly, let D be a binary random variable indicating the occurrence of data
event dn. Then, the conditional probability of node x belonging to state sk is given
by the simple indicator kriging (SIK) expression

f x; skjdnð Þ ¼ Pr Ak ¼ 1jD ¼ 1f g ¼ E Akf gþ k 1� E Df g½ � ð3Þ

where, E Df g ¼ Pr D ¼ 1f g is the probability of the conditioning data event dn
occurring, and E Akf g ¼ Pr S xð Þ ¼ skf g is the prior probability for the state at x to
be sk. Solving the simple kriging system for the single weight k leads to the solution
of Eq. 3

f x; skjdnð Þ ¼ E Akf gþ E AkDf g � E Akf gE Df g
E Df g ¼ Pr Ak ¼ 1;D ¼ 1f g

Pr D ¼ 1f g ð4Þ

Therefore, given a single global conditioning data event, this solution is identical
to Bayes’ definition of the conditional probability. However, one might consider
decomposing the global event DJ into more simple components whose frequencies
are easier to infer. From its definition, it is obvious that DJ can be any one of the 2J

joint outcomes of the J binary data events Aa ¼ A xþ hað Þ; a ¼ 1; . . .; J with
Aa 2 0; 1f g. Equivalent to the common SIK estimate, the conditional probability of
the event A0 ¼ 1 can be written in a more general form as a function of the
J conditioning data (Guardiano and Srivastava 1993).
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Pr A0 ¼ 1jAa ¼ si ; a ¼ 1; . . .; J ; i 2 1; . . .;Kf gf g

¼ E A0f gþ
XJ
a1¼1

kð1Þa1 Aa1 � E A0f g½ � þ
XJ
a1¼1

XJ
a2[ a1

kð2Þa1a2 Aa1Aa2 � E A0f g½ �

þ
XJ
a1¼1

XJ
a2[ a1

XJ
a3[ a2

kð3Þa1a2a3 Aa1Aa2Aa3 � E A0f g½ � þ � � � þ kðJÞ
YJ
a¼1

Aa � E
YJ
a¼1

Aa

( )" #

ð1Þ

The 2J � 1 weights k ið Þ
aj call for an extended system of normal equations similar

to a simple kriging system that takes into account the multiple-point covariances
between all the possible subsets D0

J ¼
Q
b2J 0

Ab; J 0� 1; . . .; Jf g of the global event DJ .

These multiple-point covariances are inferred by scanning the training image for
each specific configuration. For the case when all J values aa are equal to 1, Eq. 4 is
identical to Bayes’ relation for conditional probability. The decomposition of the
global event DJ illustrates that the traditionally used two-point statistics loose their
exclusive status in an extended simple kriging system.

The numerator and denominator of Eq. 4 are inferred by scanning a training
image and counting both the number of replicates of the conditioning data event c
(dn), and the number of replicates ck(dn), among the c previous ones, with the
central value S xð Þ ¼ sk . In the Single Normal Equation Simulation or SNESIM
algorithm (Strebelle 2002), these frequencies are stored in a search tree enabling
fast retrieval. The required conditional probability is then approximated by

f x; skjdnð Þ ¼ Pr Ak ¼ 1jD ¼ 1f g � ck dnð Þ
c dnð Þ ð6Þ

To simulate an unknown location x, the available conditioning data forming the
data event dn is retained. The proportions for building the ccdf (Eq. 6) are retrieved
from the search tree by searching the retained data event and reading the related
frequencies.

The SESIM algorithm and the options provided in the implementation have been
covered elsewhere (Strebelle 2002; Remy 2004; Liu 2006) and will not be repeated
here in detail. An overview of the general steps of the simulation is given below:

1. Scan the training image and store occurrences of all data events D. This may be
seen as building a database of jigsaw puzzle pieces of different shapes (D) and
their central values (A) from the TI.

2. Define a random path and visit nodes one by one.
3. Simulate each node by

(a) Retrieving all data events (jigsaw puzzle pieces) fitting the surrounding data
and previously simulated nodes.
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(b) Derive the local probability distribution from stored frequencies of central
values; the probability of finding a certain lithology at the node given the
surrounding data event D is given by Bayes relation for conditional
probability.

(c) Pick randomly from the distribution and add simulated node to the grid.

4. Start again at (1) for the next realisation, as may be needed.

Case Study

Geology of the Yandi Channel Iron Ore Deposit

A number of operations in the Pilbara region of Western Australia produce iron ore
from clastic channel iron ore deposits (CID) formed in the Tertiary. These deposits
contribute a significant portion of the overall production from the region. Their
formation in a fluvial environment with variable sources and deposition of the
material as well as post-depositional alteration resulted in very large high quality
but complex iron orebodies. The CID consists of an incised fluvial channel filled
with detrital pisolite ore that is affected by variable clay content. Ore qualities
depend on lithological domains that are modelled using sectional interpretations
and grade cut-offs. Defining and modelling boundaries to low-grade over-burden
and to internal high-aluminous areas cause problems in the current resource esti-
mation, assessment and modelling practices.

Figure 3 shows a schematic cross-section through the CID showing the various
lithologies: ALL—Alluvium, ECC—Eastern Clay Conglomerate, WCH—
Weathered Channel, GVU—Goethite-Vitreous Upper, GVL—Goethite-Vitreous
Lower, LGC—Limonite-Goethite Channel, BCC—Basal Clay Conglomerate, WW
—Weeli Wolli Formation. The erosional surface of the incised channel is covered
by the BCC. From bottom to top, LGC, GVL, GVU, WCH and ECC sequentially
fill the channel. ALL covers the whole channel sequence including the surrounding
WW bedrock. The GVU and the GVL are the only units that currently fall within
economic mining parameters. The WCH is a high SiO2 waste unit with a grada-
tional uncertain boundary to the GVU below. These two ore bearing lithologies and
the transitional WCH are encapsulated by high Al2O3 waste (WAS), which consists

Fig. 3 Schematic cross-section through CID showing the various lithologies
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of various clay-rich low-grade strata in both the hanging wall and the foot wall
(ALL, ECC, LGC, BCC and WW).

The study area is located at Junction Central deposit of the Yandi CID (Fig. 4)
and consists of the so-called Hairpin model area. The existing Hairpin resource
orebody model is rotated by 45°. To accommodate for this rotation, this case study
was performed in a local grid with North oriented to 285°. All results are presented
in this rotated grid.

The study area has been drilled out in various campaigns to nominal spacing of
100 m by 50 m. This data and the knowledge of absence of CID outside the drilled
area are used to interpret the deposit. To introduce the knowledge about un-drilled
areas into the simulations, the areas around the drilled CID was ‘infilled’ using
50 m by 50 m spaced data points with WAS code assigned (Fig. 5).

Deriving a Training Image

The training image (TI) has to contain the relevant geological patterns of the
simulation domain. In the context of the Yandi CID, this means that the TI has to
characterise the shape of the channel and of the internal boundaries within the study
area. The geological model of the mined out initial mining area (IMA) is the best
available source for this information:

Fig. 4 Location map of the study area
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1. The model is based on relatively dense exploration drilling on a 50 m � 50 m
grid.

2. It consists of a straight section of the CID thus having a constant channel axis
azimuth.

The TI was generated as a regular geological block model of the IMA prospect
into 10 m � 10 m � 1.25 m blocks. This resulted in 80 � 80 � 125 or 800,000
blocks in total. Four slices of the training image are depicted in Fig. 6and show the
main direction of the channel (EW) and the slight undulation of the channel axis.
The boundaries between the various units are smooth, reflecting the wireframe
model upon which the TI was based.

As such, ensuring that the training image is consistent with the available data
within the simulation domain is a measure needed to assess the validity and limits
of the TI. Here, the variograms and cross-variograms of the geological categories
are used for this validation. Two data sets will be compared with the TI:

1. The data at IMA that was used for constructing the geological model; this shows
the differences of two-point statistics occurring between exhaustive 3D data and
sparse drillhole data.

2. The data available in the simulation domain (HPIN) then serves the validation of
the TI for use within that domain.

Note that this procedure checks the change of the two-point statistics between
the data in the TI-domain (IMA) and the simulation domain (HPIN). The statistics
of the TI help to evaluate this change: If the differences between the TI-statistics
and the HPIN-statistics are grossly larger than those between the TI and the IMA
statistics, one will have to consider the reasons for and consequences of these
differences.

Fig. 5 Drill hole data set (left) and infilled grid data (right)
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Overall, the variograms of the four categories perform well in this validation
(Fig. 7). For unit WAS (please refer to the geological unit abbreviations in the
previous section), the HPIN variogram coincides more closely with the TI than the
IMA. The WCH variogram of the HPIN data shows larger values at lags up to
350 m than both IMA data variograms and TI. However, these differences are
relatively small. The GVU variograms follow a very similar structure; only at short
lags do the HPIN variograms have slightly larger values. For the GVL, both data
variograms have almost the same values but they are smaller than the TI variogram,
suggesting stronger continuity.

Fig. 6 Bench sections (channel bottom to the top) of the lithological interpretation at Yandi IMA
used as training image
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Simulation Results

To assess the geological uncertainty 20 realisations were generated. Each realisation
of the 3.6 m nodes took 7.5 min on a 2.4 GHz personal computer, making the
process very practical in terms of computational requirements.

Figures 8 and 9 show bench 490RL and a cross-section of the channel,
respectively; each figure includes two realisations along with the interpreted
deterministic model (wireframe). The bench view shows that the overall shape of
the channel has been well reproduced. The incised shape of the channel was
generated on a large scale and the stratigraphic sequence has been reproduced. The
continuation of the tributary in the North-East was not generated due to very widely
spaced drilling in the area. The proportion of GVL in this bench is higher in the
simulations than in the interpreted model however, globally, proportions were
reproduced. Boundaries in the simulations are less smoothed for both the
GVL-GVU and the GVL-WAS contacts. In some areas, channel material was
generated in small pods outside the continuous channel. The cross-section view
supports these observations. However, on the channel margins, holes and saw-tooth
shaped contacts are inconsistent with the depositional environment of the deposit.

Bench 490RL (Fig. 8) crosscuts the boundary of GVL and GVU. The boundary
is undulating and shows an increased irregularity in comparison with the geological
model WIREFRAME MODEL. Furthermore, the overall proportion of GVU in
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Fig. 7 Variograms of the four categories parallel to the channel axis for the TI, the data (at HPIN)
and the data at the IMA, i.e., the area of the TI. The x-axis shows the lag in m, the gamma values
are given on the ordinate
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bench 490RL is larger in the realisations than in the HIY model. On average
probability for unit GVU (P(GVU)), the locations of the lowermost parts of the
GVU are related to the wireframe model. However, there are areas in the northern
part of the channel where the realisations contain GVU, while the wireframe model
consists mainly of GVL. At the southern end of the channel, the GVU patches in the
realisations have an increased extension compared to the wireframe model. The
outline of the GVU to the surrounding WAS in the realisations is very fuzzy,
overall, compared with the wireframe model. This higher disorder occurs on two
scales:

1. On a very fine scale of a few blocks, the outline is strongly undulating;
2. On a larger scale of about 15–25 blocks, the undulations are less extreme.

However, they are still present and not consistent with the TI.

Geological units (top figures)  Probabilities (bottom figures) 

Sim1 Sim2 Wireframe

P(WAS) P(WCH) P(GVU) P(GVL)

Fig. 8 Two simulations and wireframe interpretation (top); probability maps (bottom) for bench
490 mRL—units WAS, WCH, GVU, and GVL
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In the cross-section in Fig. 9, the shapes of the channel margins are not well
reproduced. Instead of an expected rather smooth outline as in wireframe model, the
appearance is sharply stepped (left margin of Sim1 and Sim2). The top part of the
channel is very fringy. All the sections depicted in Fig. 9show saw-tooth shaped
features at the channel margins, indicating slight problems of the algorithm to
reproduce the patterns of the channel margins.

Reproduction of Two Point Statistics

The validation takes the major direction of continuity, EW or along the channel
axis, into account: Fig. 10 shows the experimental variograms of the data (black
diamonds), of the TI (dark grey line), and of the 20 simulations (bright grey lines).
The consistency of the data and the TI was described earlier. Two interesting
aspects are compared here: (a) simulations versus TI; and (b) simulations versus
data.

Sim1

Sim2

Wireframe

P(WAS)

P(WCH)

P(GVU)

P(GVL)

Fig. 9 Two simulations and interpretation and indicator probability for an E-W cross section
(please see Fig. 8 for color coding)
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The WAS variograms are well reproduced in the main direction (EW), but the
experimental data variograms suggest less continuity of lags up to 350 m, although
this difference is not excessive. For WCH, the variogram reproduction is mediocre
and suggests more continuity of the simulations compared to the data. The simu-
lations deviate for lags larger than 50 m and reach the sill of the TI-variogram only
at a lag of about 450 m. GVU and GVL variograms are well reproduced and
correspond to the experimental data variograms. Cross-variogram reproduction for
WAS/GVL and GVU/GVL is good regarding the TI however the is inconsistency
with the data.
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Fig. 10 Variogram and cross-variogram reproduction of simulations versus TI and data for
various units
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Volumetric Differences with Deterministic Wireframes
and Uncertainty in Grade Tonnage Curves

The intersection of stochastic realisations and estimated grades allows an assess-
ment of uncertainty due to uncertain geological boundaries. For example, Al2O3 is
chosen here to show the differences between simulated geology and conventional
wireframing, because Al2O3 is not a well understood variable in the resource model
of the deposit. Grade-tonnage curves below Al2O3 cut-offs are generated to reflect
ore cut-offs. Blocks were selected only within the limits of the ultimate pit as
optimised for the deposit at Harpin and below the WCH/GVU boundary that serves
as the hanging-wall ore limit. The grades used in the comparisons are estimated
conventionally (ordinary kriging) and within each of the 20 simulated lithology
models.

A 2% Al2O3 cut-off was applied to the Yandi Hairpin block grades to generate a
product of about 1.35% Al2O3. Figure 11 shows the grade—tonnage curve of
Al2O3 for the resource within the ultimate pit limits and the uncertainty profile for
Al2O3 grade and resource tonnage. The two figures compare results based on the
simulated lithology models (solid lines) and the deterministic (wireframe) lithology
model (dashed line). The grade uncertainty appears relatively small. However, the
resource tonnage indicated by simulations is on average 12 Mt (9%), smaller than
the tonnage indicated by the best-guess wireframe model. The simulations allow for
estimating a tonnage confidence interval. With 70% confidence, the final pit at the
Hairpin deposit contains 95-97 Mt of ore within Al2O3 specifications. This shows
that the contribution of the geological uncertainty to the overall grade uncertainty is
considerable.

Fig. 11 Al2O3 Grade-tonnage curves between WCH and the ultimate pit limits (left) and
uncertainty profile @2% Al2O3 (right) where bars depict the mean of the simulation ±1r. Note
that the grade variability (<1%) is not significant. (T—tonnage, Al—Al2O3, Sim—simulations;
HIY—wireframe)
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Conclusions

Multiple-point simulation provides a practical and powerful option to assess
uncertainty in the geologic units of mineral deposits. The application of the MP
method at Yandi utilises geometric information from a mined-out area. The gen-
erated realisations are easily comparable to the existing geological model and
reproduce general channel shapes and the rotation of the channel axis. Geometries
borrowed from the mined-out area are, in general, well reproduced. The position of
boundaries in between drillholes changes from realisation to realisation, thus
reflecting the uncertainty about the boundaries’ exact shape. On the margins of the
channel, the generated patterns are not always geologically meaningful. The MP
method can incorporate information from dense drillhole data as available in typical
mining applications.

The visual validation showed inconsistencies of the algorithm, reproducing
patterns at the margins of the channel. In bench views, the outline of the GVL, the
GVU, and the WCH undulates on a scale of 15–25 blocks. Additionally, the
simulations show a strong, short-scale fuzziness for the GVU and the WCH. This
visual impression is underpinned by the larger perimeter-to-volume ratio of the
realisations compared to the TI. In the cross-sections, the major critical observation
is that the erosional contact to the Weeli-Wolli formation is not consistent with
observations in the pit nor with geological knowledge originating from modern
geomorphologic analogues. Two sources for these issues with pattern reproduction
have to be considered, i.e., the TI and the algorithm.

It was shown that the TI and the data in the simulation domain are not fully
consistent with respect to two-point statistics. The extent to which this influences
the quality of reproduced patterns is difficult to assess. Using a set of different
training images can provide further insight.

Resource grade and tonnage uncertainty due to uncertain lithological boundaries
was assessed by combining probabilistic realisations of the geology with a standard
grade estimation technique. At an alumina cut-off of 2.0%, the ore tonnage based on
the simulated geology ranges from 94.5 to 97.5 Mt (wireframe model: 107 Mt) with
bulk alumina grades below the cut-off ranging insignificantly between 1.357 and
1.37% (interpreted model: 1.37%). Using grade simulation instead of grade esti-
mation techniques would add realistic grade variability to this model and allow the
assessment of total grade tonnage uncertainty.

Potential areas of application are in areas of little geological understanding or
definition of boundaries by drilling. At Yandi, internal clayey high-aluminous waste
that cannot be defined with the 50–100 m spaced resource evaluation drilling and
simulation could create value by better defining grade tonnage curve with regard to
contaminants. Training images could be constructed from geological interpretation
and data gained in previously mined areas of the deposit.

Acknowledgements Special thanks to Micheal Wlasenko and Jim Farquhar from Rio Tinto Iron
Ore for their support of the case study at Yandi.
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New Efficient Methods for Conditional
Simulations of Large Orebodies

J. Benndorf and R. Dimitrakopoulos

Abstract The application of conditional simulation techniques for modelling
orebodies requires efficient algorithms, particularly due to the large number of grid
nodes required, often in order of tens of millions. In this paper, two new efficient
conditional simulation methods are reviewed: the generalised sequential Gaussian
simulation (GSGS) and the direct block simulation (DBSIM). Both methods gain
computational efficiency by simulating groups of nodes simultaneously, using a
local neighbourhood as the conditioning data set. The relationship between the
group and local neighbourhood sizes used is found to be important to both the
accuracy of results and processing efficiency, and it is assessed numerically through
a measure of the loss of accuracy.

Practical aspects of the GSGS are demonstrated and assessed in a case study at a
porphyry copper deposit. Computational efficiency is demonstrated in the case
study involving orebody models with up to 14,000,000 grid nodes, where the
method is up to 20 times faster than the well-established sequential Gaussian
simulation. At the same time, GSGS maintains a high level of accuracy. The
practical aspects of DBSIM are demonstrated in simulating the same copper deposit
in a comparable way to GSGS. In the case study, the computational efficiency of
DBSIM is marginally better than GSGS; however, there are two major improve-
ments. First, the application of DBSIM results in a substantial reduction of storage
requirements and leads to improved data management. Second, the validation of the
reproduction of variogram models is performed at the block support scale, which
leads to a substantially more efficient variogram validation process than at the point
support scale. Both methods, GSGS and DBSIM, provide efficient and reliable tools
for practitioners to assess geological uncertainty in large mining applications.
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Introduction

Conditional simulation techniques are being applied more often in the mining
industry, realising the value of information these techniques can generate along the
chain of mining (Dimitrakopoulos 2004). However, applications in mining present
their own challenges, including the size of simulations, computational efficiency
and data management in a range of applications from resource/reserve classification
to mine design, production scheduling and production reconciliations, and financial
analysis. Large orebody models, frequently discretised by up to 108 grid nodes,
need to be generated (e.g. Omre et al. 1993; Godoy 2002; Kent et al. 2007). Using
conventional conditional simulation techniques, such as sequential Gaussian sim-
ulation (Isaaks 1990), the simulation process can be substantially time demanding.
In addition, data management becomes an issue when large size simulated reali-
sations are needed. The application of conditional simulation would be enhanced if
practical and computationally efficient methods were available, as already noted in
the technical literature (e.g., Ravenscroft 1994; Godoy 2002).

There are several conditional simulation methods available (e.g. Goovaerts
1997; Chiles and Delfiner 1999). A frequently used method is the sequential
simulation (Scheuer and Stoller 1962; Journel 1994), which is based on the
decomposition of the multivariate probability density function of a stationary ran-
dom function, Z(x), x 2 Rd, into a product of univariate conditional probability
density functions (Rosenblatt 1952). When Z(x) is Gaussian, the method is termed
sequential Gaussian simulation or SGS (Isaaks 1990), which is a frequently used
method due to its relative computational efficiency. Dimitrakopoulos and Luo
(2004) suggest the generalisation of this method, termed generalised sequential
Gaussian simulation or GSGS, to enhance computational efficiency. The general-
isation is founded upon the observation that adjacent nodes share a common
neighbourhood (Fig. 1), and therefore the GSGS simulates groups of clustered
nodes simultaneously instead of node-by-node. The use of groups of nodes amounts
to the decomposition of the multivariate probability density function of Z(x) into
groups of products of univariate conditional probability density functions. This
group decomposition is general and includes as “end member” cases the SGS,
where each group has one node only, and the LU simulation method (Davis 1987),
where all nodes to be simulated are in one group. A major extension of the GSGS is
the direct block simulation, or DBSIM, presented by Godoy (2002, 2017 in this
volume). DBSIM generates realisations directly on a block support to substantially
reduce storage requirements. The method is based on averaging internal nodes of
one group during the simulation process. The latter process represents a joint
point-block LU-type approach. Both GSGS and DBSIM can be extended to the
efficient joint simulation of multi-element orebodies using minimum/maximum
autocorrelation factors (Desbarats and Dimitrakopoulos 2000; Dimitrakopoulos and
Fonseca 2003). Further discussion of multivariable joint simulation is presented in
this volume by Boucher and Dimitrakopoulos (2009).
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This paper first reviews the theoretical background of GSGS and DBSIM. Then,
using GSGS as an example, practical aspects of efficient conditional simulation
methods are linked to accuracy in terms of the neighbourhood sizes used and how
they are assessed. Subsequently, computational efficiency is demonstrated in an
application of the method to a porphyry copper deposit. The application of DBSIM
at the same deposit and a comparison with GSGS conclude the paper.

Efficient Generation of Conditional Simulation

Following the geostatistical terminology, a geological attribute under consideration
is conceptualised as a random function Z(xi). Consider the stationary random
function Z(xi), xi 2 Rd, indexed on a discrete grid DN of N grid nodes at location xi,
i = 1,…,N, and a set of conditioning data dn = {d(xa), a = 1, … n} representing
exploration data. In addition, consider the set including conditioning data and
previously simulated nodes Ki for each location xi such that, K0 = {dn} and Ki =
{Ki−1 [ Z(xi)}, for example K1 = {dn, Z(x1)}. Following this notation, the
conditional simulation on DN is based on sampling from the N-variate distribution
conditioned on the data set K0

Fðx1; . . .; xN; z1; . . .; zNjK0Þ ¼ PðZ(x1Þ� z1; . . .;Z(xNÞ� zNjK0Þ ð1Þ

The sequential conditional simulation is based on the decomposition of the
multivariate probability density function into a product of univariate conditional
distribution functions (Rosenblatt 1952; Scheuer and Stoller 1962; Journel 1994).

3

1 2

4

1

 data location

 node to be simulated

Fig. 1 Shared
neighbourhood of
group-nodes (from
Dimitrakopoulos and Luo
2004)
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f ðx1; . . .; xN; z1; . . .zNjK0Þ ¼ f ðx1; z1jK0Þ � f ðx2; z2jK1Þ . . . f ðxN; zNjKN�1Þ ð2Þ

The decomposition, described in Eq. (2), is general and well established in the
general field of simulation (e.g. Law and Kelton 1999).

Generalised Sequential Gaussian Simulation

As mentioned in the introduction, grids DN that are to be simulated have, in
practice, overlapping neighbourhoods between adjacent grid nodes. It is therefore
reasonable to consider the use of groups of nodes simultaneously instead of
node-by-node as in the common simulation process. This sequential Gaussian
conditional simulation of groups of nodes is described in Dimitrakopoulos and Luo
(2004) and briefly outlined here.

The simulation starts with the partitioning of the simulation grid DN into k
groups of mj, j = 1,…, k clustered nodes and define Nj as number of nodes in the

first j groups Nj¼
Pj
i¼1

mi; j = 1,. . .; k; N = Nk: Then, the decomposition of the

conditional density in Eq. (2) into conditional densities for k groups becomes

f ðx1; . . .; xN; z1; . . .zNjK0Þ ¼
YN1

i¼1

f ðxi; zijKi�1Þ . . .
YNk

i¼Nk�1 þ 1

f ðxi; zijKi�1Þ ð3Þ

In the implementation of Eq. (3) the exhaustive neighbourhood Ki−1 is replaced
by a local neighbourhood ki−1, resulting in Eq. (4)

f ðx1; . . .; xN; z1; . . .zNjK0Þ �
YN1

i¼1

f ðxi; zijki�1Þ . . .
YNk

i¼Nk�1 þ 1

f ðxi; zijki�1Þ ð4Þ

where ki−1 denotes the local conditioning data set, including sample data and
previously simulated nodes. The nodes of group j are generated using Cholesky
decomposition (Davis 1987) of the conditional covariance matrix of one group into
an upper U and lower triangular L matrix, and are computed by the following
operation

Z xNji jki�1

� �
¼ mj þCjkj�1C

�1
kj�1kj�1

ðZkj�1 �mkj�1ÞþLwj ð5Þ

where mj and mkj−1 are the vectors of prior means of group Z(xi
Nj) and the set of

data in kj�1;C�1
kj�1kj�1 denotes the inverse of the prior covariance matrix of con-

ditioning data, Zkj−1 denotes the vector of the conditioning data set kj−1, Cjkj−1 is
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the prior covariance between Z(xi
Nj) and kj−1, wj is a vector of identically and

independently distributed N(0,1) random numbers. It is obvious that, if the number
of nodes in one group m is equal to one, the algorithm is identical to SGS. And if the
number of nodes in one group is equal to the whole grid size, the algorithm is
identical to LU-decomposition. The implementation of the algorithm includes the
following major steps:

1. Define a path visiting each group j of the grid and a path visiting each node in a
group.

2. Define the local neighbourhood of the current group.
3. Calculate the conditional mean vector and conditional covariance matrix.
4. Generate the simulated values of one group using Eq. (5).
5. Add the simulated data values of the current group to the conditioning data set.
6. Loop through steps 2–5 until all groups are simulated.

Direct Block Simulation

A natural extension of the GSGS algorithm is the direct block simulation detailed in
Godoy (2002) and briefly reviewed here. When simulating large grids, values
simulated need to be retained as conditioning information. This generates increased
memory requirements, issues of data management and, in general, leads in practice
to performance decline. A new simulation algorithm is developed to simulate
directly at the block support scale based on GSGS, whereby the group of nodes
discretises a block.

Consider a normal score transformation of the random function Y(xi) to Z(xi).
The regularised random function over a block support Zv(xj) with xj2Rd, can be
expressed as a linear average of Z(�) over the volume V, centred at the block centre
xj, and approximated by averaging the m internal nodes from a group:

ZvðxjÞ¼ 1
V

R
x2v

Z(uÞdu � 1
m

Pm
i¼1

Z(xiÞ. Since the objective is to simulate block values

yv(xj) in data space and not Gaussian space zv(xj), after simulation a
back-transformation from the Gaussian space into the data space needs to be per-
formed. However, since the normal score transformation was done using point
values, there is no back transformation for blocks of type yvðxjÞ¼U�1

v ðzvðxjÞÞ
available, unless restricting distribution assumptions are made. A solution to this

problem is given by the approximation yvðxjÞ � 1
m

Pm
i¼1

U�1ðz(xijkj�1ÞÞ, which is an

averaging of all back-transformed internal nodes y(xi| kj-1) for i = 1, …, m of one
group. To derive these values, the group Z(xi

Nj) = (Z(xi),i = 1,…,m) is first simu-
lated, which corresponds to simulating the m internal nodes discretising the block.
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After simulation of the internal nodes of a group and back-transforming these, the
simulated block value is calculated as the average of the point values in Gaussian
space and in data space, and subsequently point values are discarded. The simulated
Gaussian block value is then added to the conditioning data set, and the block value
in data space is added to the results.

Conditioning data come in two types: point values Ki and block values included
in the new subset KV

i With this definition, and considering the screen effect
approximation, the GSGS formulation in Eq. (4) can be rewritten in terms of point
and block conditioning

f ðx1; . . .; xN; z1; . . .zNjK0Þ �
YN1

i¼1

f ðxi; zijki�1Þ �
YN2

i¼N1 þ 1

f ðxi; zijki�1 [ kV1 Þ . . .

YNk

i¼Nk�1 þ 1

f ðxi; zijki�1 [ kVk�1Þ
ð6Þ

To integrate the block support conditioning data, the algorithm is developed in
terms of a joint-simulation. The second variable relates to the block value
sequentially derived throughout the simulation process. The parameters of the
successive conditional Gaussian distributions are obtained by solving a joint sim-
ulation system (Myers 1989), identical to joint LU-simulation. The simulation of
the internal nodes of each block is similar to GSGS. The only difference is the
inclusion of conditioning data of different support scale, namely point values and
block values. The implementation of the direct block simulation algorithm proceeds
as follows:

1. Define a random path visiting each of the blocks to be simulated.
2. Normalise data.
3. For each block, generate the simulated values in Gaussian space of the internal

nodes discretising the block.
4. Derive the simulated block value by averaging values of simulated nodes in one

group in Gaussian space and calculate the block value in data space.
5. Discard values of internal nodes and add the simulated block value in Gaussian

space to the conditioning data set; keep the block value in data space as the
result.

6. Loop through steps 3–5 until all blocks are simulated.

A major practical advantage of the algorithm above is the decrease in memory
allocation due to the discarding of the internal points. Furthermore, the method
takes advantage of the GSGS formalism and is thus a fast algorithm. Note that the
method does not call for a block transformation function, which is often based on a
global change-of-support model. Note also that the variogram validation at a block
support scale is substantially more efficient than at point support.

358 J. Benndorf and R. Dimitrakopoulos



Practical Aspects of GSGS

Computational costs of GSGS, implemented according to Eq. (5), may be assessed
in terms of the number of floating point operations (flops) required. Dimitakopoulos
and Luo (2004) show computational costs of GSGS to be

O
N
v

v3max þ v3
� �� �

ð7Þ

where O denotes the number of flops (“in the order of”), N is the number of grid
nodes, m is number of nodes in one group and mmax is the maximum size of the local
neighbourhood, including sample data and previously simulated nodes. The grid
size has a linear influence on the runtime behaviour of the algorithm. Critical
parameters in terms of efficiency are group size and local neighbourhood size, as
they influence the runtime behaviour to the power of three. Considering a grid of
N = 1,000,000 nodes, the number of flops required as a function of the group size m
and local neighbourhood size mmax, is shown in Fig. 2. For a fixed local neigh-
bourhood size mmax, minimum computational costs occur when m � 0.8 mmax.
Considering a fixed group size m, increasing the size of the neighbourhood drasti-
cally increases the runtime (number of flops). On the other hand, a smaller
neighbourhood size causes a larger difference between the simulated value condi-
tioned to the local neighbourhood and the “ideal” value conditioned to all available
information. This difference is the loss of accuracy due to the use of a finite
neighbourhood (screen effect approximation) and can be quantified using the
measure “relative screen effect approximation loss” (Dimitrakopoulos and Luo
2004), which is discussed in the next section.
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Successful application of GSGS requires an understanding of the interaction
between group size m and local neighbourhood size mmax and their effect on accuracy
and computational efficiency. As a convention in the following paragraphs, GSGS
with group size m will be denoted as group configuration GSGS i � j � k, where i
denotes the number of nodes in X direction, and j and k in Y and Z directions
respectively.

Group Size, Neighbourhood Size and Accuracy:
Theory and Practice

To assess the effects of group size and neighbourhood size, the relative screen effect
approximation loss (RSEAL) may be defined by the half of the expected value of
the squared difference between simulated values Z(xi) conditioned on a local
neighbourhood ki−1 and conditioned on all values Ki−1, standardised by the mean.
That is

qRðZ(xijki�1Ki�1Þ¼ ½Ef Z(xijki�1Þ � Z(xijKi�1Þg 2�
2 � E Z(xiÞjKi�1f g ð8Þ

The RSEAL depends on the local neighbourhood size mmax and on the group size
m. To understand the interaction between those two parameters and the accuracy of
the result, a relatively simple study can be carried out, as described here. This
experimental determination of the RSEAL is based on Eq. (8) and includes the
following two steps. (i) For the given dataset a base-case simulation is generated
using an exhaustive neighbourhood Ki−1, resulting in a grid containing values
Z(xi|Ki−1). (ii) Simulations are subsequently generated, using an incrementally
decreased local neighbourhood of size ki−1 and the same random seed, resulting in a
grid containing the values Z(xi|ki−1). A node-by-node comparison of the generated
simulation with the base case, in combination with the application of Eq. (8), gives
the RSEAL.

For illustration purposes, a test data set containing 100 data is used. The study
field represents the southwest area of the Walker-Lake data set (Isaaks and
Srivastava 1989). Simulations are performed on a 2D grid of 7,600 nodes, using the
inferred covariance structure of the data. Group configurations under investigation
are 2 � 2, 4 � 4, 8 � 8 and 16 � 16. Figure 3 summarises the results.

Results show a higher loss of accuracy for larger group sizes than for smaller
groups, when considering a fixed local neighbourhood size. A larger local neigh-
bourhood size has to be chosen for larger groups to maintain a certain level of
accuracy. By drawing a horizontal line at an acceptable loss of accuracy, e.g. 5%,
the appropriate local neighbourhood size can be obtained, as shown in Fig. 3.
Generally, when only a small local neighbourhood is used, internal nodes for large
groups no longer share a common neighbourhood. As well, adjacent groups only
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have a few neighbourhood data in common, which can cause non-continuous
transitions between adjacent groups, experienced as artefacts.

An approach as described above provides a general and relatively simple way to
obtain an understanding of the effects of neighbourhood sizes on accuracy.

Group Size, Neighbourhood Size and Computational
Efficiency: Theory and Practice

To understand the relationship between group size, neighbourhood size and com-
putational efficiency, the theoretical runtime behaviour of the GSGS algorithm will
be analysed in more detail, and practical aspects will be stressed.

Recall that Fig. 2 plots contour lines of the computational costs of GSGS as a
function of group size and local neighbourhood size, as in Eq. (7). The plot is
characterised by very dense contour lines at a group size of one. Thus, considering a
fixed local neighbourhood size, an increasing group size substantially decreases
computational costs up to a certain point. Following the contour lines, it can be seen
that, even if the neighbourhood size has to be increased by a few data when
increasing the group size, there is still a reduction of computational costs. The
theoretical runtime analysis of an algorithm considers the most expensive compu-
tations to be simulated, in the case of GSGS the solution of Eq. (5), which has a
linear relationship with the grid size N. The theoretical analysis does not consider
that there are more operations in the algorithm that are linear with problem size,
including handling of the irregular shape of the orebody or the neighbourhood
search. Larger group sizes will drastically reduce search time, since it is done
simultaneously for all nodes in a group. Then, the algorithm may in practice per-
form much faster (and does as demonstrated next) than Eq. (7) indicates, while still
maintaining a high level of accuracy.
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Fig. 3 Relative screen effect approximation loss (RSEAL) considering different GSGS group
configurations
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An application of GSGS to a porphyry copper deposit aims to demonstrate the
practical aspects of the technique. Key questions under investigation, in addition to
reproduction of data, statistics and variogram, are the computational costs and
performance using different group sizes. The deposit accounts for 185 drill holes in
total, and 1407 composites of 5 m length are taken from these drill holes. After
inferring declustered sample statistics and variography, simulated orebody models
are generated. To study the effect of different group sizes as a function of grid size,
the deposit is discretized by different density grids, as specified in Table 1. The six
resulting orebody model sizes range from 72,900 to 14,201,000 nodes.

Figure 4 shows exemplarily a plan view of orebody realisations for different
group sizes applied to orebody model three (discretisation: 2 m by 2 m by 5 m).
A visual inspection suggests that the algorithm performs well for all group sizes,
and no artefacts can be detected in the realisations. Figure 5 shows the excellent
reproduction of histogram and variogram models in normal space using GSGS
2 � 2 � 2. All other group configurations performed equally well on all consid-
ered orebody models.

To compare the runtime of GSGS for different group sizes, one realisation was
generated for all orebody models, as specified in Table 1, using GSGS with group
configurations 1 � 1 � 1, 2 � 2 � 1, 2 � 2 � 2, 3 � 3 � 2 and 4 � 4 � 2.
Suitable neighbourhoods were used for different GSGS group sizes, based on the
accuracy of results derived in the previous section. Table 2 summarises the
neighbourhoods used. Figure 6 and Table 3 shows the computing times for each
considered orebody model size. To make the comparison general, in Fig. 6 run-
times are standardised to GSGS 1 � 1 � 1 applied to model six. Figure 6 con-
cludes that when simulating small orebody models, say less than one million nodes,
there is limited benefit of using GSGS considering any of the group sizes. In this
case, the runtime of the algorithm can be reduced, by up to about 30% compared
with SGS, using small groups. When simulating large orebody models containing
several millions of nodes, the runtime can be reduced substantially, up to 20 times
in the case of GSGS 3 � 3 � 2. Results demonstrate that GSGS can substantially
reduce the computational costs, especially when simulating relatively large orebody
models. Experiments with GSGS show that small groups, such as 2 � 2 � 2 to
3 � 3 � 2 nodes, perform best and balance accuracy with efficiency.

Table 1 Orebody model definitions

Orebody model name Model size X-spacing (m) Y-spacing (m) Z-spacing (m)

Model 1 72,900 10 10 5

Model 2 291,600 5 5 5

Model 3 1,821,500 2 2 5

Model 4 3,590,300 2 1 5

Model 5 7,100,600 1 1 5

Model 6 14,201,000 1 0.5 5
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Group configuration: 1 x 1 x 1

Group configuration: 2 x 2 x 1

Group configuration: 2 x 2 x 2

Group configuration: 3 x 3 x 2

Group configuration: 4 x 4 x 2
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Fig. 4 Plan view of realisations of GSGS using different group sizes applied to model three
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Fig. 5 Reproduction of data histogram, variogram model and reproduction of experimental
variogram in normal space for the directions of anisotropy

Table 2 Neighbourhood sizes used for different GSGS group configurations

GSGS
1 � 1 � 1

GSGS
2 � 2 � 1

GSGS
2 � 2 � 2

GSGS
3 � 3 � 2

GSGS
4 � 4 � 2

Number of data
and previously
simulated nodes

20 30 45 60 90
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Aspects of DBSIM and Comparison

To demonstrate practical aspects of the direct block simulation algorithm, the data
from the porphyry copper deposit described in the previous section is used to
generate ten realisations of the orebody. Block dimensions are chosen to be 10 m
by 10 m by 5 m and are discretised by 10 � 10 � 1 internal nodes. The neigh-
bourhood used includes six previously simulated blocks and 12 sample data.
Figure 7 represents the reproduction of point-histogram and regularised variogram
for DBSIM. Both aspects indicate a good reproduction of data statistics.

To compare DBSIM with GSGS, for instance, in terms of reproduction of
sample statistics and the benefit in terms of storage requirements when simulating
direct block values, the following is performed. Ten realisations were generated
using GSGS 2 � 2 � 2 on a grid using a discretisation of 1 m by 1 m by 5 m.
The GSGS neighbourhood was chosen according to Table 2. Realisations were
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Fig. 6 Standardised experimental runtime of GSGS using different group sizes applied to
different large orebody models

Table 3 Runtime of GSGS using different group sizes relative to SGS applied to different large
orebody models

Model Group size

1 � 1 � 1 2 � 2 � 1 2 � 2 � 2 3 � 3 � 2 4 � 4 � 2

Runtime of GSGS relative to SGS

Orebody model 1 % 100.0 53.5 64.8 71.8 142.3

Orebody model 2 % 100.0 33.1 39.2 42.1 73.9

Orebody model 3 % 100.0 12.8 10.8 9.6 20.1

Orebody model 4 % 100.0 19.8 12.1 8.3 14.7

Orebody model 5 % 100.0 13.8 4.8 4.5 6.0

Orebody model 6 % 100.0 23.2 9.8 4.3 4.6
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re-blocked to a block size 10 m by 10 m by 5 m, to comply with the block size
used for the DBSIM generated realisations. Figure 8 compares realisation number
one of Cu % in the deposit for both methods. The results are indistinguishable and
both methods are “artefact free”.
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Fig. 7 Reproduction of point histogram and regularised variogram model for DBSIM applied to a
copper deposit
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The computing time for DBSIM was 20 h and 10 min compared with 21 h and
40 min in case of GSGS without reblocking (Pentium 4, 2 GHz processor). The
difference can be explained by differences in implementation details and the faster
neighbourhood search in the case of DBSIM, since only a few blocks need to be
considered instead of a number of point data. The difference in the storage
requirements of result files is substantial: 36 Mbytes in case of DBSIM and 3.65
Gbytes in case of GSGS, reflecting the block discretisation. In addition, the vali-
dation of the variogram on block support requires, on average, 33,000 pairs to be
calculated, on a point support about 3,300,000.

The above results demonstrate that a simulation done directly at block support
scale, as realised through DBSIM, meets industrial requirements for the
above-discussed reasons. It is more computationally efficient than point-by-point
methods and delivers reliable results. Note that issues on DBSIM neighbourhoods
are different from GSGS, and generally DBSIM is insensitive to the size used.
Experience shows that a neighbourhood with about six blocks and about twice as
much sample data is sufficient for excellent simulation results (Godoy 2002). An
application of the method is also shown in Godoy (2017, this volume)

Conclusions

The application of stochastic simulation techniques in mining generally requires
efficient algorithms for large size applications. In this paper, two new efficient and
practical methods for large applications are reviewed: the generalised sequential
Gaussian simulation, and the direct block simulation.

Fig. 8 Plan view and NS section of realisations generated by DBSIM and reblocked GSGS
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Using GSGS as an example, practical issues pertinent to computational effi-
ciency and accuracy were studied. Accuracy of results is predominantly affected by
the size of the local neighbourhood. The relative screen effect approximation
(RSEAL) is a measure that quantifies this accuracy and assists the selection of
suitable neighbourhood sizes for different group sizes. The results presented herein
on the size relationships are reasonably general. Results suggest that, when using
larger group sizes, larger neighbourhoods sizes need to be considered to maintain
the desired level of accuracy. The application of GSGS to a porphyry copper
deposit demonstrated the efficiency of the method. While maintaining a given level
of accuracy, GSGS can improve computational efficiency substantially, being up to
20 times faster.

A comparison of GSGS and DBSIM using the same deposit shows that both
algorithms are fast, due to the fact that both are based on the group decomposition
of the multi-variate probability density function. The application of DBSIM results
in a substantial reduction of storage requirements and leads to improved data
management. Both GSGS and DBSIM provide efficient and reliable tools for
practitioners to assess geological uncertainty in large mining applications.
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Transformation Methods for Multivariate
Geostatistical Simulation—Minimum/
Maximum Autocorrelation Factors
and Alternating Columns Diagonal
Centres

E. M. Bandarian, U. A. Mueller, J. Fereira and S. Richardson

Abstract To speed up multivariate geostatistical simulation it is common to
transform the set of attributes into spatially uncorrelated factors that can be simu-
lated independently. The main method in recent years has been minimum/maximum
autocorrelation factors, either based on the coefficient matrices of a two structure
linear model of coregionalisation (LMC) or on a pair of experimental covariance
matrices. In both cases there is an underlying assumption that the covariance
structure of the data set can be adequately modelled using a two structure LMC. We
consider an extension that removes the restriction imposed by this assumption by
using the experimental matrices for a larger set of lags. The method relies on an
iterative algorithm that approximately diagonalises a set of symmetric matrices, and
is referred to as the Alternating Columns-Diagonal Centres method. We use the Jura
data set to evaluate the extent to which factors obtained from each method are
spatially decorrelated and to assess the effect of the transformation method on the
simulated attributes.
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Introduction

The simulation of one or more attributes in a multivariate data set is enhanced
through the exploitation of the relationships between them. However, multivariate
modelling and simulation can be time consuming and computationally inefficient.
Some of the shortcomings of multivariate methods can be avoided by transforming
the spatially correlated set of attributes into a set of spatially uncorrelated factors.
These factors can then be modelled and simulated independently using univariate
geostatistical methods. The oldest method for obtaining uncorrelated factors is
principal component analysis (Wackernagel 2003). While this technique is easy to
implement, the factors are uncorrelated for all distances other than zero only in the
case of intrinsic correlation. In recent years the method of minimum/maximum
autocorrelation factors (MAF) has received much attention as the factors are
derived so that they are approximately spatially uncorrelated for all distances
(Desbarats and Dimitrakopoulos 2000; Boucher and Dimitrakopoulos 2012). This
method assumes that the data to be modelled are multivariate normal and so in most
cases the first step is to normalise the data. While the method of direct minimum/
maximum autocorrelation factors (DMAF) (Bandarian et al. 2008) removes the
requirement of normality of the data and so simplifies the MAF procedure, one still
requires the assumption of a two structure linear model of coregionalisation
(2SLMC) in order to determine the transformation coefficients. Extensions of MAF
to more than two structures are not possible (Vargas-Guzman and Dimitrakopoulos
2003), unless the model can be described as a nugget model together with an
intrinsic spatial component (Tran et al. 2006). The use of a 2SLMC to derive the
transformation matrix is largely of theoretical interest and while there are versions
of MAF that work directly with the model (Bandarian 2008), in most implemen-
tations it is common to work with experimental matrices directly as proposed by
Desbarats and Dimitrakopoulos (2000), thus cutting down on the effort spent in
finding a reasonably well fitting 2SLMC. As a trade-off however time needs to be
invested in choosing the lag spacing at which to calculate the experimental
semi-variogram matrix. Whichever approach is chosen, be it theoretical or exper-
imental, the factors calculated from the input data are only approximately spatially
orthogonal.

Because of the restrictions in the MAF-method, a more general approach such as
joint approximate diagonalisation (JAD) can be considered. JAD consists of finding
a transformation matrix that will approximately diagonalize a set of matrices. These
techniques have been developed for image-filtering and blind noise separation (see
for example Yeredor (2002) and references therein). JAD algorithms for approxi-
mate diagonalisation of symmetric matrices can be broadly split into two categories:
those that derive an orthogonal diagonalising matrix like that proposed by Manton
(2005) and those that weaken the orthogonality constraint to non-singularity of the
diagonaliser. The algorithm we will consider is of the latter type and is referred to as
the Alternating Columns Diagonal Centres (ACDC) method (Yeredor 2000, 2002).
For geostatistical applications the set to be jointly approximately diagonalised
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consists of experimental semi-variogram matrices. The transformation matrix
derived from this method will approximately spatially decorrelate the given attri-
butes, in the sense that the cross correlations between distinct attributes are
approximately equal to zero.

In the standard implementation, MAF is applied to normal scores data and the
resultant factors are subsequently simulated. There is no theoretical requirement to
apply MAF to standard normal data (Bandarian 2008) and we will be taking the
approach to calculating the required transformation matrices from standardised raw
data instead. The reason for this approach is partly the observation that the appli-
cation of MAF to normal scores can result in transformed data that are no longer
normally distributed, thus resulting in the need for a further normal scores transform
if a Gaussian simulation algorithm is to be used.

In what follows, we present a brief review of the MAF and ACDC methods and
illustrate them using a subset of the Jura data set (Goovaerts 1997). The transfor-
mations are calculated from the correlation matrix and semi-variogram matrices of
standardised data. The factors resulting from each of the methods are transformed to
normal scores in order to implement sequential Gaussian simulation (SGS). The
normal scores simulations are back-transformed to factors, then to the original data
space. The resultant simulations are assessed for reproduction of the spatial and
statistical characteristics of the sample.

Problem Data

A four variable subset of the Jura data set (Goovaerts 1997) consisting of Cd, Co,
Cr and Ni is used to illustrate each transformation method and the resultant sim-
ulations. Location maps (see Fig. 1) for the sample data show no obvious trends in
the spatial distribution of the data. The sample data have quite disparate means and
variances (see Table 1) and of the four metals, only Chromium is approximately
normally distributed (Bandarian 2008). The sample correlation coefficients indicate
varying strengths of linear relationships, with those between Cd–Cr, Co–Ni and Cr–
Ni having the stronger correlations (Table 2). For stability of implementation the
data are first standardised by subtracting the sample mean from each value then
dividing by the sample standard deviation.

Multivariate Transformation Methods and Simulation

Let Z(u) = [Z1(u), Z2(u), … ZK(u)]
T be a vector of K second-order stationary

random functions over a study region A, let z uð Þ ¼ z1 uað Þ; z2 uað Þ; . . . zK uað Þ�T ;�
a ¼ 1; . . . n; : be the corresponding isotopic sample vectors and let B denote the
correlation matrix of the random function.
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Fig. 1 Location maps for cadmium, cobalt, chromium and nickel. The colour scales are based on
the deciles of the respective sample data

Table 1 Summary statistics for the input data, for each attribute there are 259 values

Variable Mean Variance Skewness Minimum LQ Median UQ Maximum

Cd 1.31 0.84 1.50 0.14 0.63 1.07 1.72 5.13

Co 9.30 12.79 −0.18 1.55 6.52 9.76 12.00 17.72

Cr 35.07 120.07 0.29 8.72 27.44 34.84 42.32 67.60

Ni 19.73 67.78 0.16 4.20 13.72 20.56 25.44 53.20

Table 2 Correlation matrix
for sample data

Variable Cd Co Cr Ni

Cd 1.00 0.25 0.61 0.49

Co 0.25 1.00 0.45 0.75

Cr 0.61 0.45 1.00 0.69

Ni 0.49 0.75 0.69 1.00
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The general procedure for applying transformation methods for multivariate
simulation is:

Step 1 transform the data to approximately decorrelated factors,
Step 2 independently model and simulate factors, and
Step 3 back transform simulated factors to simulated attributes.

Step 1 includes the calculation of the transformation matrix from the data, in the
case ofMAF this requires in the first instance a decisionwhat lag spacing to choose for
the calculation of the experimental semi-variogram matrix, for ACDC a decision
needs to be made as to how many semi-variogram matrices are to be included in the
computation. In addition in step 1 an assessment needs to be made whether or not the
resultant factors are sufficiently well decorrelated. Assuming the spatial decorrelation
is satisfactory, then step 2 is only concerned with the univariate simulation of the
factors. Either a direct simulation algorithm, such as the sequential simulation pro-
posed by Soares (2001) or a standard Gaussian algorithm, such as Sequential
Gaussian Simulation can be used. In the latter case aGaussian anamorphosiswill need
to be carried out to compute normal scores for the factors. For both methods, Step 3
consists merely of the back transformation of the simulated factors via matrix mul-
tiplication. The resultant realisations are still standardised and so shifting and scaling
to restore the appropriate mean and variance respectively concludes the workflow.

Minimum/Maximum Autocorrelation Factors

For MAF it is assumed that the semi-variogram function C hð Þ, of the multivariate
random function Z(u) can be modelled by a two structure linear model of core-
gionalisation C hð Þ ¼ B1g1 hð ÞþB2g2 hð Þ, where the symmetric coregionalisation
matrices B1 and B2 contain the sills of the permissible semi-variogram models
g1(h) and g2(h), and B = B1 + B2 is the correlation matrix. Since B1 and B2 are
symmetric (therefore diagonalisable) and B2 is positive definite (has positive
eigenvalues), then B1 and B2 = B−B1 may be diagonalised simultaneously by
congruence (that is, there exists a non-singular matrix X, not necessarily orthogo-
nal, such that S = XTAX) and the diagonalising matrix is the solution to the
symmetric definite generalised eigenvalue problem (Datta 1995):

B1X ¼ ðB� B1ÞXK

The diagonal matrix K in the equation above is the matrix of generalised
eigenvalues and the matrix X is the matrix of generalised eigenvectors. The
equation may be rewritten as:

B1X ¼ BXK1

where: K1 = K(I + K)−1
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The generalised eigenvalue problem may be converted into a standard eigen-
value problem with a symmetric matrix on the left hand side of the equation using
the Cholesky factorisation of the matrix B where B = LLT and L is a non-singular
lower triangular matrix. If we put G = L−1B1(L

T)−1 and Y = LTX, then
GY = YK1.

The matrix G is symmetric by construction and so orthogonally diagonalisable.
The matrix X obeys XTBX = YTL−1B(LT)−1Y = YTL−1LLT(LT)−1Y = YTY = I
and the column vectors in X are B-orthonormal, that is XTBX = I. Furthermore,
XTB1X = YTL−1B1(L

T)−1Y = YTGY = K1

Thus the non-singular matrix X, whose columns are the generalised eigenvectors
xk,k = 1, … K, simultaneously diagonalises the matrices B1 and B by congruence
(Bandarian and Mueller 2008).

The MAF factors are derived by putting FMAF(u) = XTZ(u).
Since the matrix X is B-orthogonal the factor variances are equal to one and the

transformation ensures that the factors F(u) are uncorrelated for all hj j � 0 because:

CF hð Þ ¼ XTC hð ÞX
¼ XTB1Xg1 hð ÞþXTðB� B1ÞXg2 hð Þ
¼ K1g1 hð Þþ ðI� K1Þg2 hð Þ

Hence CF(h) is diagonal for all h.
The MAF transformation thus diagonalises the semi-variogram model of the

attributes exactly. However, the associated experimental semi-variogr ams of the
MAF-factors are only approximately diagonalised.

Where the theoretical LMC is not known the experimental semi-variogram
matrices Ĉ �ð Þ are used to calculate the MAF transformation coefficients. Assuming
that the semi-variogram function of Z(u) is fully characterised by a 2SLMC, an
experimental semi-variogram Ĉ h1ð Þ matrix calculated at lag spacing h1 can be used
to approximate C(h) at h1. In this care the MAF transformation matrix is derived
from the generalised eigenvalue problem reformulated in terms of the correlation
matrix B and the experimental semi-variogram matrix Ĉ h1ð Þ at lag h1 where
h1j j < a (a is the maximum range of the semi-variogram). Regardless of the suit-
ability of the 2SLMC the transformation matrix X simultaneously diagonalises
Ĉ h1ð Þ and B yielding factors which are orthogonal at lag spacings zero and h1j j
only.

A crucial assumption in the construction of the MAF factors is the requirement
that the covariance structure of the underlying random function is fully charac-
terised by a 2SLMC. This assumption is restrictive in practice and extensions to
more general models have been discussed in the literature (see for example the
discussion in Vargas-Guzman and Dimitrakopoulos (2003). However, in general,
for three covariance structures or more there exists a matrix X that diagonalises the
variogram only when all but (at most) one of the coefficient matrices in the LMC
are proportional to one another (Tran et al. 2006; Bandarian 2008).
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Alternating Columns Diagonal Centres

The Alternating Columns Diagonal Centres (ACDC) method (Yeredor 2002, 2004)
iteratively determines a matrix X that diagonalises a set of J symmetric K � K
matrices {B1,B2, …, BJ}

By minimising:

W XD1;D2; . . .; DJð Þ ¼
XJ
j¼1

Wj Bj � XDjXT
�� ��2

F ;

where k � kF �denotes the Frobenius norm, wj >0, j = 1, … J are (optional) weights
and {D1,D2, …, DJ} is a set of diagonal matrices. The algorithm consists of
alternating phases, the AC phase, where the objective function is minimised with
respect to the columns of X while the set {D1,D2, …, DJ} is kept fixed and the DC
phase, where the objective is minimised with respect to {D1,D2, …, DJ} while X is
kept fixed.

Given {B1,B2, …, BJ} the algorithm is initialised by specifying either an initial
set of diagonal matrices {D1,D2, …, DJ} or an estimate of the diagonalising matrix
X. The initial phase in the iteration is dependent on the specification made: if an
initial guess for the diagonalising matrix is made, then the algorithm starts with a
DC phase, otherwise the starting point is an AC phase. In the absence of either
specification the diagonalising matrix is set to the identity matrix and the algorithm
is initialised with a DC phase. Thus the standard iterations are as follows:

given {B1,B2, …, BJ},
put X̂ ¼ I .

DC Phase

1. Set G ¼ X̂
T
X� X̂

T
X

h i�1

2. For j = 1,… J

Set D̂j ¼ diag G diag X̂
T
BjX̂

� �� �
.

AC Phase

For k = 1,…K

Transformation Methods for Multivariate Geostatistical … 377



1: Set P ¼
XJ

j¼1
Wjk̂

j½ �
k Bj �

Xk
n ¼ 1
n 6¼ k

k̂ k½ �
n X̂nX̂

T
n

2
64

3
75

2. Find the largest eigenvalue l of P and an associated eigenvector of unit norm.

3. If l <0 set x̂k ¼ 0 otherwise put x̂k ¼ a
ffiffi
l

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ

j¼1
Wj k̂ j½ �

kð Þ2
q j:

The algorithm alternates between the two phases and halts once a prespecified
tolerance has been reached. The algorithm is applied to a sequence of
semi-variogram matrices, calculated at increasing distance from the origin. There
are no requirements other than real symmetry of the matrices. If X denotes the
matrix that approximately diagonalises the given semi-variogram matrices then the
ACDC factors are derived putting FACDC uð Þ ¼ X�1Z uð Þ. Thus for both methods the
factors are derived using a linear transformation, however neither of thematrices is
orthogonal, as would be the case for PCA. The transformations are both local
transformations, in that they act on the attributes at each location, but the matrix
coefficients are constant across the entire study region. Provided the factor scores
are sufficiently spatially orthogonal the factors may be independently modelled and
simulated. In this paper, a standard Gaussian algorithm will be used for the factors.
As a first step the factors are transformed to normal scores (Gaussian anamor-
phosis), then they are independently modelled and simulated using Sequential
Gaussian Simulation (100 realisations). The simulated attribute scores are retrieved
via Gaussian anamorphosis from normal scores to factor scores, then from factor
scores to standardised scores using the inverse MAF and ACDC transformation
matrices. Finally the sample means and standard deviations are reincorporated.

Performance

Spatial Decorrelation

The quality of the spatial decorrelation of the factors will be assessed both
graphically and numerically. For a graphical assessment the cross semi-variogram
for each factor pair will be graphed in order to detect any remaining spatial cor-
relation. Quantitative measures (Tercan 1999) used to assess spatial decorrelation
are the absolute deviation from diagonality f hð Þ; the relative deviation from
diagonality s hð Þ; and the spatial diagonalisation K(h).

The absolute deviation from diagonality, f(h) at lag h is define dto be the sum of
squares of the off-diagonal elements of the factor experimental semi-variogam
matrix at lag h:
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f hð Þ ¼
XK
k¼1

XK
j6¼k

ð!̂F h; k; jð ÞÞ2 hj j[ 0

where ĉF (., k, j) denotes the experimental cross-semi-variogram for the factors Fj
and Fj.

The function s hð Þ compares the absolute sum of off-diagonal elements of the
factor experimental semi-variogram matrix ĈF hð Þ with the sum of the absolute
values of the diagonal elements calculated at each lag h:

s hð Þ ¼
PK

k¼1

PK
j 6¼k !̂F h; k; jð Þ

��� ���
PK

k¼2 !̂F h; k; kð Þ
��� ��� ; hj j[ 0

Finally, the function K(h) compares the sum of squares of the off diagonal
elements of the factor experimental semi-variogram matrix ĈF hð Þ at a lag h to the
sum of squares of the off diagonal elements of the sample experimental
semi-variogram matrix Ĉz hð Þ:

k hð Þ ¼ 1

PK
k¼1

PK
j6¼k !̂F h; k; jð ÞÞ2PK

k¼1

PK
j6¼kð!̂2 h; k; jð ÞÞ2 ; hj j[ 0

Perfect spatial decorrelation occurs when f(h) = r(h) = 0 and j h) = 1 for all lag
vectors h. A set of factor semi-variogram matrices may be considered to be nearly
in diagonal form if j(h) � 0.9 for all h lags (Xie et al. 1995).

Global measures for the spatial decorrelation are the averages �f;�s and �K cal-
culated over J lag spacings:

�f ¼ 1
J

XJ
j¼1

f hj
� 	

;�s ¼ 1
J

XJ
j¼1

s hj
� 	

and �K ¼ 1
J

XJ
j¼1

k hj
� 	

Simulations and Reproduction of Sample Characteristics

For each attribute, the suite of realisations is assessed for reproduction of the
attribute (target) histogram, semi-variogram, mean, variance and correlation coef-
ficients. Qualitative analysis consists of visual inspection of the histogram and
semi-variogram swarms of the realisations and boxplots of the realisation means,
variances and correlation coefficients about the target statistic.

Quantitative measures for the reproduction of the target statistics are the
semi-variogram and histogram mean square deviation (VMSD and HMSD
respectively) which are calculated for each realisation. The HMSD is given by:
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HMSD ¼
ffiffiffi
1
P

r XP
p¼1

ðZp � Z1
p Þ2

where:

Zp is the pth percentile of the target cumulative distribution function (cdf)
Zl
p is the pth percentile of the lth simulated cdf

P denotes the total number of percentiles calculated

The VMSD is given by:

VMSD ¼
ffiffiffi
1
J

r XJ
j¼1

ð!̂j � !̂
1
j Þ2

where !̂j and !̂
1
j and are the target and the simulated experimental semi-variogram

values respectively calculated at the jth lag spacing and J is the total number of lags.

Results and Analysis

Transformations

For ACDC, the set of target matrices consists of thirteen experimental
semi-variogram matrices calculated at a lag spacing of 0.2 km with a lag tolerance
of 50%. The weight vector was set to be w = [10 10 1 … 1]T. The transformation
matrix is:

X�1
ACDC ¼

0:841 �0:048 �0:289 �0:152
0:049 0:782 0:525 �0:811
�0:382 �1:045 1:247 0:457
0:132 0:121 �0:966 1:939

2
664

3
775

The MAF transformation matrix, shown is obtained using the sample correlation
matrix B and an experimental semi-variogram

matrix Ĉ hð Þ1, calculated at hj j1¼ 0:220 km:

XT
MAF ¼

�1:082 0:215 �0:036 0:288
�0:663 �0:934 1:005 0:695
�0:114 1:062 1:062 �1:493
�0:152 �0:305 0:485 �0:955

2
664

3
775
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This spacing was chosen from a set of separation distances as it provided the best
overall decorrelation for the MAF (Bandarian 2008).

The cross semi-variograms for each factor set are displayed in Fig. 2. For ACDC
the spatial decorrelation is excellent with the majority of cross semi-variogram
values satisfying �0:15�!ik hð Þ� 0:15. For this method there are only three
instances where the factor pairs still show some correlations. For MAF, as expected,
the spatial decorrelation is perfect at jh1j ¼ 0:220 km, while for other lag spacings
the semi-variogram values are typically �0:2�!ik hð Þ� 0:2 (with the exception of
factors 2 and 4 at h1j j ¼ 1:199 km). These results are summarised in Table 3.

Plots of the measures of spatial decorrelation f hð Þ; s hð Þ and j hð Þð Þ are displayed
in Fig. 3 and the corresponding averages of these measures for all lags (0.037 to
2.407 km inclusive) and for the lower lags (0.037 to 1.199 km inclusive) are shown
in Table 4.

The plots of f hð Þ; s hð Þ and j hð Þð Þ reflect the excellent spatial decorrelation
achieved by ACDC, which outperforms MAF for all lag spacings other than
0.220 km. The average diagonalisation efficiency for ACDC is 0.975 for all lags

Fig. 2 Experimental cross semi-variograms of factors

Table 3 Summary of factor
pairs with remaining spatial
correlation

Method Factor
pairs

Lag spacing
(km)

cik

AC-DCAC-DC A3 –A4 0.797 0.227

1.199 0.228

2.407 −0.300

MAF D1–D3 0.595 −0.182

1.405 0.168

1.795 0.160

D2–D3 1.012 −0.163

D2–D4 0.797 −0.182

1.199 −0.221

D3–D4 2.196 0.178
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and 0.97 for the lower lags, which is slightly higher than that achieved by MAF
where the values are 0.97 for all lags and 0.96 for the lower lags.

The factor scores from each method are transformed to normal scores using a
Gaussian anamorphosis with 50 Hermite polynomials to approximate the factor
histograms, independently modelled then simulated using SGS. In order to avoid
spurious correlations resulting from the use of the same random paths for each
factor, the random number seeds were changed, so that corresponding factors for
the two methods used the same seed, but within the simulation of the factors the
seeds were distinct. The simulated attribute scores are retrieved via back transfor-
mation from normal scores to factor scores, then from factor scores to standardised
scores using the inverse ACDC and MAF transformation matrices:

XACDC ¼
1:258 0:416 0:277 0:207
�0:189 1:024 �0:131 0:4445
0:215 0:862 0:660 0:222
0:033 0:337 0:318 0:585

2
664

3
775

XT
MAF

� 	 ¼
�0:926 �0:247 �0:094 �0:271
0:030 0:009 �0:471 �0:882
�0:382 �0:592 �0:691 �0:164
�0:121 �0:621 �0:229 �0:740

2
664

3
775

Fig. 3 Plots of spatial decorrelation (f(h): ▄ ,s(h): * and j(h): ▲)

Table 4 Average n(h),s
(h) and j(h) for all lags and
lower lags (0.037 km to
1.199 km inclusive)

All Lower

n(h) s(h) j(h) n(h) s(h) j(h)

ACDC 0.065 0.157 0.975 0.055 0.166 0.970

MAF 0.076 0.202 0.968 0.071 0.201 0.957
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Finally the sample means and standard deviations are reincorporated.

Simulations

Mosaic maps for one of the realisations (picked at random) generated for each metal
are shown in Fig. 4. The mosaic maps are broadly similar. The spatial variability of
the sample data has been reproduced in the simulation.

Reproduction of the Target Statistics

The realisation cdf swarms overlaid with the corresponding sample cdf for each
attribute and transformation method indicate that the attribute distributions have
generally been reproduced (see Fig. 5). The most notable deviation from the target
cdf occurs for Co. For both methods the Co target cdf is poorly reproduced on the
interval from approximately 4–6 ppm with the realisation swarms being consis-
tently lower than the target cdf. This is more pronounced for ACDC than for MAF.

Boxplots of the HMSDs for each set of attribute realisations (Fig. 6) reflect the
overall reproduction of the target cdfs. For Cd and Co the HMSDs from MAF are
slightly lower than those for ACDC, for Ni and Cr, the situation is reversed. For Cd
the HMSDs are higher for ACDC than those for MAF, with the former having 75%
of values less than 0.209 while the latter has 75% of values less than 0.160. The
distribution of HMSDs for Co is similar for both methods although those for MAF
are generally slightly lower than for ACDC. For Cr the HMSDs for ACDC are
typically lower than those for MAF with the former having 75% of values less than

Fig. 4 Mosaic maps of realisation 25 for Cd, Co, Cr and Ni
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2.007 while the latter has 75% of values less than 2.238. Similarly for Ni where
ACDC has 75% of values less than 1.385 while MAF has 75% of values greater
than 1.507.

Figure 7 displays the boxplots of the realisation summary statistics. For both
methods and all attributes the target means have been reproduced with the majority
of realisation means being within ±5% of the target. For Cd, ACDC and MAF 80

Fig. 5 Histogram swarms
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and 84% of realisation means respectively lie within ±5% of the target. For Co this
increases to 98 and 97% respectively while for Ni the percentages are 96 and 97%
respectively. For Cr the realisation means are within ±5% of the target for both
methods. The MSD of the means for each attribute (Table 5) are generally lower for
MAF, with the exception of Co where ACDC is lower.

Fig. 6 Boxplots of histogram mean square deviation

Fig. 7 Boxplots of realisation means and variances
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Reproduction of the target variances is similar for both methods. In general the
realisation variances are lower than the corresponding targets, however the majority
of realisation variances are within ±15% of the target for both methods. For ACDC
Cd, Co, Cr and Ni have 84, 78, 100 and 62% of realisation variances within ±15%
of the target respectively. For MAF these percentages are 86, 84, 98 and 58%
respectively. The MSD of the variances for each attribute (Table 5) are generally
lower for MAF, with the exception of Ni where ACDC is lower.

Reproduction of the target correlation coefficients (see Fig. 8) between attributes
is similar for both methods. With the exception of Cd–Co the targets have been
reproduced with the majority of realisation correlations being within ±10% of the
target. For Cd–Cr, Co–Ni and Cr–Ni in excess of 96% of realisation correlations are
within ±10% of the target for both methods. For Cd–Ni the percentages are 78 and
75% for ACDC and MAF respectively, while for Co–Cr they are 84 and 69%
respectively. For Cd–Co the target correlation coefficient has not been reproduced
by either method, although to a lesser extent for ACDC than for MAF. ACDC
yields 27% of realisation correlations within ±10% of the target while for MAF

Table 5 Mean squarev deviation of realisation means and variances

MSD Cd Co Cr Ni

Means AC–DC 0.051 0.198 0.673 0.527

MAF 0.045 0.223 0.515 0.462

Variances AC–DC 0.091 1.635 8.198 9.827

MAF 0.088 1.485 7.439 9.974

Fig. 8 Boxplots of realisation correlation coefficients

Table 6 Mean square deviation of correlation coefficients

MSD Cd–Co Cd–Cr Cd–Ni Co–Cr Co–Ni Cr–Ni

Correlations AC–DC 0.065 0.029 0.040 0.035 0.040 0.026

MAF 0.072 0.028 0.041 0.043 0.038 0.024

386 E. M. Bandarian et al.



this percentage is only 19%. The MSD of the correlations for each attribute pair
(Table 6) are similar for both methods, with ACDC being slightly lower for Cd–Co,
Cd–Ni and Co–Cr while for the remaining attribute pairs MAF is slightly lower.

Reproduction of the Target Variograms

Experimental semi-variograms for the MAF and ACDC simulations in Fig. 9
indicate that both approaches have resulted in adequate reproduction of the
experimental sample semi-variograms. The variograms swarms are similar for both
transformation methods for each attribute and attribute pair.

In general the direct semi-variograms have been reproduced with the overall
shapes, ranges, nuggets and sills of the simulations being similar to those of the
target variograms. The most notable exception to this is the nugget for Cd (both
transformations) where the target is somewhat lower than those of the simulations.

For the cross semi-variogram swarms, the simulations obtained from both trans-
formation methods are again similar. In general, the target cross semi-variograms
have been reproduced (Fig. 10) with respect to the overall shapes, nuggets and sills
(except Cd–Co where the target sill is underestimated in both cases). With the
exception of Cd–Cr the target ranges have been overestimated. For Co–Ni, the cross
semi-variogram swarm from ACDC reproduces the target cross semi-variogram
slightly better than the swarm resulting from MAF, in particular for lag distances
between 1 and 1.5 km. However, for both methods the cross semi-variograms have
lower sills than the experimental data. This is also featured in the correlation coeffi-
cients for this attribute pair, for Co and Ni the correlation at lag 0 is lower than that of
the target.

The overall reproduction of the direct and cross semi- variograms is reflected by
the low values of the VMSDs for all attributes and attribute pairs for both trans-
formation methods (Table 7 and 8). The majority of VMSDs are less than 0.15,
with the exception of those for Co–Ni where the majority of VMSDs are less than
0.2. The distribution of VMSD values is generally similar for each transformation
method, with results for ACDC slightly better than for MAF.

For both ACDC and MAF, the transforms are constructed from omnidirectional
semi-variogram matrices. Of the data under consideration Ni and Co exhibit ani-
sotropy with direction of greatest continuity approximately E–W for Ni and SW–

NE for Co. A comparison of the average experimental semi-variograms of the
simulations and the standardised Co data indicates that both methods capture the
anisotropy and that there is almost no difference in the average directional vari-
ograms calculated from the realisations (Fig. 11). Similarly for Ni, the average
experimental semi-variograms reproduce the E–W anisotropy (Fig. 12). For Cr and
Cd, the average semi-variograms show the realisations to be isotropic. Thus at the
univariate level, the spatial features of the raw data are broadly reproduced, even
though the spatial decorrelation methods were based on omnidirectional
semi-variogram matrices.
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Fig. 9 Experimental semi-variogram swarms (grey lines) and corresponding targets (•)
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Fig. 10 Experimental cross semi-variogram swarms (grey lines) and corresponding targets (•)

Table 7 Mean square deviation of semi-variogram values

ACDC MAF

Cd Co Cr Ni Cd Co Cr Ni

Min 0.098 0.043 0.049 0.064 0.096 0.04 0.061 0.071

Lq 0.104 0.055 0.06 0.097 0.101 0.049 0.072 0.096

Med 0.108 0.062 0.066 0.109 0.104 0.056 0.076 0.106

Uq 0.111 0.07 0.073 0.122 0.108 0.064 0.08 0.117

Max 0.118 0.09 0.095 0.15 0.115 0.087 0.091 0.149

Mean 0.108 0.063 0.068 0.109 0.105 0.057 0.076 0.106

Variance 0 0 0 0 0 0 0 0
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Fig. 11 Directional experimental semi-variograms for standardised cobalt compared to mean
directional semi-variograms for Alternating Columns Diagonal Centres simulations and minimum/
maximum autocorrelation factors simulations

Fig. 12 Directional experimental semi-variograms for standardised nickel compared to mean
directional semi-variograms for Alternating Columns Diagonal Centres simulations and minimum/
maximum autocorrelation factors simulations
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Similarly, an inspection of the directional cross-semivario-grams for Co and Ni
and the corresponding realisations reinforces the observations from the omnidi-
rectional cross-semivariogram swams. There is good coincidence between the
average experimental cross variograms for both sets of realisations and the corre-
sponding data cross-variograms for shorter separation distances, while for distances
between 1 and 1.5 km the sills in directions SW–NE and E–W do not reach the data
sills, in direction SE–NW the averages fit well.

Conclusion

In this study, we have presented two approaches to the simulation of a multivariate
data set which rely on successful spatial decorrelation of the raw data, standardised
to unit variance and mean zero, prior to simulation. The approach differs from the
standard approach in that the data were not transformed to normal scores prior to
the application of the decorrelation algorithms. However, in contrast to the
implementation in Bandarian (2008), rather than using a direct sequential simula-
tion algorithm, the factors were simulated using sequential Gaussian simulation.
Thus, it was necessary to the convert each factor to normal scores and
back-transform after completion of the simulations, the latter operation being
automatic in sequential Gaussian simulation. The choice of a standard algorithm
was largely prompted by its ready availability in commercial software, even though
the need to use a non-linear transformation may well be regarded as a disadvantage.

The data used for our study were a subset of the Jura data set and the variables
chosen are linearly correlated, an aspect which is important as it is known that MAF
does not cope well with non-linear relationships between the data (see for example
Rondon and Tran 2008). The four variables in our subset provided a mix of iso-
tropic and anisotropic data, making the use of an algorithm such as sequential
Gaussian co-simulation unattractive as a parsimonious model of coregionalisation
would have had to be chosen for the simulation. For both methods the anisotropy in
the data is broadly reproduced, both at the univariate and the bivariate level, even
though omnidirectional semi-variogram matrices were used for the derivation of the
factor transformations.

The results show that both decorrelation methods are viable for the simulation of
the Jura data set. The results indicate that ACDC performs at least as well as MAF
for this set. Both decorrelation methods considered use approximate diagonalisation
via a congruence transformation. The main difference lies in the assumption that a
2SLMC describes the LMC for the data in the case of MAF, which is not needed for
ACDC. The ACDC method thus gives the user greater flexibility and is as easy to
use as the MAF decorrelation method. Given the performance for the Jura data, the
ACDC method for decorrelation has the potential to be used successfully with data
sets whose LMC is not fully characterised by two structures.
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Strategies for Mine Planning and Design

P. A. Dowd, C. Xu and S. Coward

Abstract This paper provides an assessment of the current challenges in strategic
mine planning and design and suggested approaches for addressing them. The
specific challenges covered are:

(1) Realistic quantification of downstream processes applied to orebody models to
provide an integrated approach to mine design and optimisation.

(2) Modelling, estimation and simulation of geometallurgical variables and their
integration into resource and reserve estimation and mine planning.

(3) Modelling, estimation and simulation of new variables for new forms of mining
—deep mining, particularly block caving, and solution mining.

(4) Flexibility in planning and design to manage risk and minimise its impact.
(5) IT infrastructure and platforms for rapid on-line data collection, storage, access

and processing.

Most of these challenges require new types of data, variables, modelling and esti-
mation methods. Foremost among the new types of variables and data are geomet-
allurgical and dynamic rock mass characterisation variables. New types of data and
data collection include rapid generation of very large amounts of on-line sensor data
and the consequent need for rapid processing and modelling of these data. This paper
outlines the challenges and strategies in each of these areas and uses examples of
models and outputs to illustrate approaches and potential solutions.

Introduction

The five challenges outlined in the Abstract are not all independent and a solution to
any one of them may require the simultaneous solution of part or all of another.
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Challenge (1) requires modelling specific processes (e.g., selection, loading,
blending, physical and chemical processing), integrating them with orebody models
and estimating the impacts of the processes at each stage of the mining operation.

Challenge (2) covers a wide range of new variables to be included in resource
and reserve modelling and estimation and requires integration with downstream
processes as in (1). Many of these variables are non-additive and, in some cases, are
measured indirectly by sensing and/or by proxy variables.

The fundamental requirement in (3) is a stochastic model of in situ fractures
together with a fracture propagation model and, for solution mining, a flow model.
The stability of excavations is also important requirement.

Challenge (4) requires an integrated orebody/extraction model that maximises
flexibility in design across a range of alternative optima for changes in prices, costs
and technical variables.

Whilst the infrastructure requirement in (5) is an IT and industry/government
investment problem, the adaptation of current resource and reserve estimation and
optimal production methods to massive volumes of continuously sensed proxy data
is highly relevant to the theme of the conference.

Two of the most significant issues for mining operations are cost reduction
(especially energy reduction) and geometallurgy (much of which is related to
energy reduction). An example of both is optimal fragmentation of rock in blasting
to minimise down-stream rock breakage costs, optimise packing in trucks, optimise
ore selection and reduce processing costs. Processing and breakage require
geometallurgical variables and modelling.

Another major area is the increasing focus on deep mining and, in particular,
large-scale block and panel caving. The deep mining focus is accompanied by
developments in deep exploration, such as those being led by the Australian
Co-operative Research Centre (CRC) for Deep Drilling Technologies. Both deep
exploration and deep mining require new approaches to resource/reserve modelling,
estimation and simulation and to process modelling.

Geometallurgy brings new challenges: non-additive variables often with very
little data; difficulty in correlating geometallurgical variables with the variable of
primary interest (usually grade); and the compositional nature of many variables.
Many of the deep mining resources are low-grade complex ores, which require the
spatial modelling and integration of complex geometallurgical relationships.

Integrating Orebody Models with Down-Stream Processes

In our view the largest gap in current approaches to quantitative strategic mine
planning, design and optimisation is the need for realistic models of downstream
processes to be applied to orebody models. In other application areas these pro-
cesses are often termed transfer functions to emphasise that there is an input (e.g.,
orebody model) to the process (e.g., a blast) and an output (e.g., blast profile of
fragmented ore and waste). The integration of the sequence of inputs to, and outputs
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from, staged processes is critical for mine optimisation and for optimising the
processes themselves. Orebody modelling, estimation and simulation are now well
developed, tested and widely used. But their integration into mining processes is
less developed. Where orebody models are integrated with mining processes it is
done, more often than not, in an over-simplified manner. For example, the usual
approach to estimating recoverability at different scales of selection is to assume
perfect selection of one well-defined geometrical shape from a larger, equally
well-defined, geometrical shape.

Here, for the sake of example, we demonstrate realistic quantification of ore
selection processes during mining. This requires modelling and estimation of spatial
rock breakage characteristics and spatial ore location indicators. In addition to
providing more accurate estimates of recovery, integrating the orebody model with
the selection process provides a means of optimising recovery, optimising blasting
and loading strategies and optimising fragmentation to reduce energy costs at
subsequent stages of the mining process (e.g., haulage, mineral processing).
Analogous quantitative approaches can be devised for other processes and incor-
porated into models for each stage of the mining process.

The method (Dowd and Dare-Bryan 2017 in this volume) comprises:

• generation of an in situ model of the orebody comprising the grade, geology,
geomechanical properties and grade control variables within sufficiently small
volumes determined by the smallest selectable volume within a blast profile;

• definition of a blast volume comprising a large number of the in situ model
volumes, and subjecting it to a blast simulator, which effectively moves each of
the component model volumes to its final resting place in the blast muck pile;
and

• application of selective loading processes to the simulated muck pile to deter-
mine the degree of selectivity that can be achieved by various sizes of loader and
types of loading and to quantify ore dilution and ore loss.

The in situ model, representing perfect knowledge at all relevant scales, is
obtained by geostatistical simulation. An in situ model that represents the reality of
knowing only the data and information that are available from specific grade control
drilling and sampling grids can be obtained by sampling the geostatistically sim-
ulated model on a specified grid. The volumes comprising the in situ model are then
populated by estimates based only on the data corresponding to the specified grade
control drilling and blast-hole sampling grids. Different drilling and sampling grids
can be used to generate different models, each reflecting the levels of data and
information available. Selectivity can then be assessed as a function of the drilling
and sampling grids as well as the size and type of loader. Performance is assessed
against the ideal selectivity achieved on the perfect knowledge model, comprising
simulated values of each component volume. Applying costs, prices and financial
criteria enables optimal selection of the grade control drilling grid, size of loader,
type of loading and blast design.
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An example is given in Fig. 1. Figure 1a and b show simulated copper grades
(‘reality’) for a mining bench of dimensions 80 m � 40 m � 10 m. The simulated
bench is then sampled on a specified scale, in this case 8 m � 6 m blast holes and
the blast hole sample grades are used to estimate the grades in the bench. The
simulated (‘reality’) and the estimated grade volumes are then subjected to a blast
simulator that generates the ‘actual’ blast profile in Fig. 1c and the predicted blast
profile in Fig. 1d. Selection and loading would be informed and guided by the
profile in 1d, which would deliver a significantly different recovery than applying
selection and loading to the profile in 1c; ore in 1c is much more dispersed through
the profile than in 1d. The difference between selecting and loading from 1c and d
quantifies the ore loss and ore dilution for the amount and location of sample data.

To illustrate further the consequences of using the over-simplified geometrical
shape approach to predicting recoverability, consider the two blast profiles (from a
different bench in the same orebody) in Fig. 2. Figure 2a is the actual blast profile
and Fig. 2b is the predicted blast profile based on grades estimated from samples
from a 8 m � 6 m blast-hole pattern. Figure 2c and d are the result of applying a
cut-off grade to define contiguous parcels of ore.

(b)(a)

(d)(c)

0.00                 %Cu                2.00

Fig. 1 a Simulated copper grades in bench: three horizontal sections; b simulated copper grades
in same bench: four vertical sections; c blast profile resulting from simulated blast applied to
simulated grades; d predicted composition of blast profile from simulated blast applied to in situ
grades estimated from samples taken from blast-holes on 8 m spacing
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Once the selection and recovery processes are quantified and integrated with the
orebody model they can be used to plan, design and optimise the processes. For
example, to determine a blast design that will optimise fragmentation and recovery
for a specified budget.

Geometallurgy

Geometallurgy originally referred to the incorporation of metallurgical variables
into spatial geological models of orebodies to provide an integrated predictive basis
for mine and mineral processing design and optimisation. The definition has
evolved over time to recognise the uncertainty of variables and to extend the
concept beyond the strict definition of metallurgy; for example, “the integration of
geological, mining, metallurgical, environmental and economic information to
maximize the Net Present Value of an orebody while minimizing technical and
operational risk” (SGS 2014). Geometallurgy may be viewed as a specific example
of the integration of down-stream processing as covered in the previous section.
However, the fundamental difference is that geometallurgical variables are spatial
variables that must be integrated in the block model whereas the processes covered
in the previous section are physical processes applied to the block model (including
geometallurgical variables).

(b)(a)

(d)(c)

Fig. 2 a Simulated (‘actual’) blast profile; b predicted blast profile; c ore zones in simulated
(‘actual’) profile; d ore zones in predicted blast profile
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Ignoring the effects of geometallurgical variables in mine planning (and oper-
ation) disregards a critical section of the value chain and, in many cases, leads to
sub-optimal mine plans and operations. The authors take a systems approach to
mine planning and operation by, for example, optimising processing routes for
blocks of ore based on their mineralogical composition and processing character-
istics. The approach is to optimise the system as a whole, rather than independently
optimising components of the system such as, for example, optimally scheduling a
block-grade model.

Coward and Dowd (2014) summarise the current general approach to geomet-
allurgical modelling as:

• identify the variables required to understand critical process responses;
• find ways to sample and measure these variables; and
• develop techniques to estimate and simulate these characteristics spatially at the

correct scale and incorporate the values into block models.

The missing components are the equivalent of the integrated transfer functions or
processes illustrated in the previous section, namely to integrate the spatial
geometallurgical model into a complete mine systems model to quantify the impact
of variable and uncertain rock properties on all stages of process performance, mine
design and optimisation. This aspect, with the addition of mining, environmental
and economic variables and processes, provides the basis for an integrated systems
approach to complex mining systems problems.

As an example, we provide some results from a geometallurgical study of a
polymetallic sulphide mineralisation in which surface alteration reduces progres-
sively with depth (Coward and Dowd 2014, 2015). The minerals of economic
interest are silver, lead, zinc, gold and copper. The oxidation state, determined from
core samples, is classified in six levels from fresh to extremely weathered. It is
planned to leach weathered material and float fresh material. The spatial block
model comprises the five grade variables and one geometallurgy variable in the
form of a weathering index. The weathering index is used to determine the pro-
cessing route for each block: direct leach; flotation followed by leaching tails;
waste. Figure 3 shows a process flow chart with the four possible routes, two of
which have two or more sub-routes. Experimental values were used to establish
recovery curves for each metal for each process. An estimated block model was
created by kriging the values of the variables for each block. Values of the variables
were also simulated at the block scale 100 times to provide 100 realisations of the
orebody. In addition, a second estimated block model was created by averaging the
100 simulations for each block. The expected recovery from each process was
calculated from the multivariate grades and recovery curves for each metal.

For each of the 102 models, the net smelter return (NSR) was calculated for each
route for each block. Any combination of block and route that returns a positive
NSR deems the block to be ore for that route; otherwise the block is deemed to be
waste. Each block was then assigned its optimal route together with the ranked
remaining positive routes. An optimal pit was generated for each of the 102 models
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and the blocks within each of these pits were scheduled by year for the mine-life of
the orebody. To simulate the operation, each individual block is processed in
sequence and, depending on the status of each processing route, the block may or
may not be sent through its optimal route. In cases where the optimal route is
unavailable (either due to being over fed or to full downstream product stockpiles),
the block is either stockpiled for later processing (incurring a re-handling cost) or
sent through an alternative route if its contribution is positive and less than the
re-handling cost. The process model thus reflects the actual decision-making that
would occur during mine operation. Schedules were generated in MineSight using
the expected NSR value and the qisk model was used to explore how dynamic
constraints might result in blocks not being treated through their optimal processing
route, at times that may differ from the mine plan.

Figure 4 shows the resulting optimal tonnes of combined metal in concentrate
for each year of the mine life for each of the 102 models and assuming no
uncertainty in the process recoveries. The variability in the 102 sets of plotted
values is a measure of resource uncertainty. To provide an indication of process
uncertainty, normal distributions of errors were assumed and 25 alternative
recovery values were simulated for each process and applied to the kriged block
model (i.e. certainty assumed for the block model and uncertainty for the process
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Fig. 3 Processing routes for a polymetallic sulphide deposit (Coward and Dowd 2015)
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models). The resulting combined metal in concentrate curves are also shown in
Figure 4.

From the plots in Fig. 4 it can be seen that in early years of operation the process
and resource uncertainties overlap and there is very little difference in the two sets
of curves. Beyond year 13 the two sets of curves begin to deviate significantly. The
resource uncertainty curves beyond year 27 indicate that higher grades will have
been mined and processed in the earlier years and production outputs become more
variable.

This brief summary of an extended case study (Coward and Dowd 2014) is
presented here as an example of the integrated systems approach to complete
geometallurgical modelling. In the full case study three different economic sce-
narios (different prices and costs) were also included. A more realistic approach
would be to include any interactions among the various uncertainties: in situ
variables, processes and economic variables (and also any environmental variables).
In the example summarised in Fig. 4 this would have entailed simulating the
process recoveries for each of the simulated block models. In the general case, for
in situ geological and geometallurgical variables, process models, economic vari-
ables and environmental variables the number of combinations and outcomes
rapidly increases. Further significant increases in outcomes are incurred if other
process models, such as blasting, stockpiling and blending are also included. The
associated computational issues are examples of the fifth challenge and are visited
again in the section on IT Infrastructure and platforms.

The remaining issues for geometallurgical modelling are identification and
collection of sufficient data for metallurgical variables that are currently either not
spatially sampled or are grossly under sampled; spatial modelling of these variables
and of their spatial relationships with primary variables such as grade; and, where
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Fig. 4 Tonnes of metal in concentrate by year for simulated and estimated block models and
simulated process recoveries
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relevant, adequate accounting for non-additivity and compositional constraints. The
most commonly quoted impediment in collecting and analysing geometallurgical
variables is cost. However, applications such as the case study quoted here clearly
demonstrate the added value that an integrated geometallurgical approach brings to
mine design, mine planning, scheduling and to optimising total system measures
(such as NSR).

Other Types of Variables

Many variables are not uniquely geological, geomechanical, or metallurgical in
nature. For example, in an orebody in which gold occurrence is associated with
small quartz veins and rock fractures, 90% of the ore in any mining block may be
contained in less than 25% of the rock mass, which may not be a single contiguous
volume and there may be insufficient data to identify the locations of veins and
fractures. This has important consequences for grade prediction, blast design, rock
fragmentation, selection, loading, crushing, grinding and processing—and each of
these processes cannot be considered independently of the others.

Figure 5 shows a schematic north-south cross-section through a low-grade,
east-west striking gold orebody in an open-pit operation (Dowd 1995). Due to the
low grade of the orebody most samples are from percussion drilling and record gold
in g/t and quartz in %; fracture and vein information are lost in the percussion chips.
A statistical analysis shows insignificant correlation between gold and quartz
assays; it is more likely that the correlation is between gold occurrence and the
numbers of quartz-granodiorite contacts, i.e. the numbers of veins and/or fractures,

Average cluster width 3m – 5m Average distance between clusters 20m – 25m

Fig. 5 Schematic cross-section of gold orebody with concepts of fracture and vein controlled
mineralisation and associated ore zones
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which cannot be determined from the samples. A geostatistical analysis yields a
north-south horizontal (i.e. perpendicular to strike and dip) gold variogram with a
nugget variance and two ranges: 4 and 20 m; and a quartz variogram with a nugget
variance and a single range of 3 m. There is no difference in the spatial variability
of gold from samples that contain gold and quartz and those that contain only gold.
Standard geostatistical analyses do not reveal any discernible spatial co-variation
between gold and quartz even though the latter is the best available ore location
indicator. A simple analysis of the samples in each drill-hole shows that 90% of all
significant gold assays are either directly associated with quartz or are within 4 m of
a quartz occurrence in the same hole; a down-hole distance of 4 m corresponds to a
horizontal distance of approximately 3 m. The variogram models are consistent
with the schematic model indicated in Fig. 5: veins and fractures occur in clusters
of 3–5 m with an average spacing of 20–25 m between the clusters; the smaller
range gold variability is associated with the small range quartz variability. Similar
models and interpretations (with different ranges) were found in the other principal
geological directions; the complete analysis and resulting variogram models can be
found in Dowd (1995).

This study enabled optimal blasting and selection strategies and maximised
quartz occurrence as a proxy ore location indicator. A specifically geometallurgical
extension would be to link crushing and grinding characteristics of major rock types
to the quartz indicator variable.

New Models for New Mining Methods

The process models (or transfer functions) for traditional mining methods are well
known and, in many cases, the modelling methods (e.g., blast simulation) are
readily available. However, as the industry transitions to different forms of mining
there is a critical need to develop new models that adequately characterise the
physical processes and their associated or inherent uncertainties. The most signif-
icant examples of new (either because of the scale and depth or the basic tech-
nology) mining methods are deep mining, particularly large-scale block caving, and
solution mining (or in situ recovery). Deeper mining and in situ recovery will
increase as current mineral resources are depleted.

Block Caving

There is an accelerating transition from surface mining to underground mining. The
transition is being driven by cost as well as access to deeper resources. According to
Moss (2012) block caving operating costs range from $US5 to $US7 per tonne
versus large open-pit operating costs of $US1.00 to $US1.20 per tonne. However,
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for the former each tonne is a tonne of ore whereas for the latter each tonne is a
tonne of material moved.

As an indication of the rate of transition from surface to underground mining,
Rio Tinto expects 43% of its copper production and 25% of the entire world’s
copper production to come from underground operations by 2021 (Moss 2012).

There is a significant increase in risk with large-scale caving not least because
around 70% of the capital cost is incurred before any revenue is generated (Moss
2012). McCarthy (2002) identifies two additional increased areas of risk associated
with deep mining. Firstly, the increased geological risk due to sparse data and
secondly, the increased technical risk in areas such as ground control, materials
handling and safety. To these could be added the additional types of data required
to characterise the rock mass for planning, designing and managing large caves and
the difficulty in obtaining direct measurements of the relevant variables. Brown
(2012) provides a comprehensive overview of the geotechnical risks associated
with caving.

The fundamental scientific and technical challenge is to quantify and manage the
rock mass behaviour under in situ, pre-conditioning (hydraulic fracturing or
blasting) and caving conditions. In each of these phases, there are many uncer-
tainties to be quantified and included in quantitative process models. There is also a
need to quantify and manage geomechanical risk—departure from optimum per-
formance of the cave as well as ground control risk.

The basis for a quantitative model is a realistic fracture network and a fracture
propagation model. For orebodies for which large block sizes are likely to result
from caving it may be necessary to precondition by hydraulic fracturing. In
designing fracture stimulation programmes it is essential to be able to predict
fracture propagation with some level of confidence. Ideally, the fracture stimulation
processes should be designed to optimise pre-conditioning outcomes; the more
difficult challenge is to design them to maximise the ability to control the cave or at
least to predict the cave with an acceptable level of reliability.

Solution Mining

Solution mining, or in situ leaching or in situ recovery, in which leaching solution is
injected into stimulated fracture networks and the dissolved mineral content is
pumped to the surface, will become a more widely used mining method as existing
deposits are depleted and deeper and/or lower grade deposits, for which conven-
tional mining methods are neither technically nor economically feasible, are
exploited. In 2011, 45% of world uranium production was from in situ leaching
operations (World Nuclear Association 2014), an increase from 16% in 2000.

Solution mining requires a low-permeability reservoir to be stimulated to create
a connected fracture network to enable fluid flow. The fundamental problem is to
induce flow through the stimulated fracture network to achieve effective, efficient
recovery at minimum cost and acceptably low environmental risk. Current models
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of flow through stimulated fracture-based reservoirs are inadequate. The critical
requirement is to develop a modelling technique that can solve large-scale problems
efficiently without compromising on sufficient fracture detail and fracture network
connectivity. There are many complex unresolved issues impeding a solution to this
problem and one of the most critical is the lack of a clear understanding of system
behaviour, output and performance. This is the direct consequence of the inability
of standard models to describe, effectively, realistically and efficiently, the fluid
flow in a fracture-based reservoir on multiple scales.

In situ leaching has significant potential due to its low cost, low surface footprint
and ‘greener’ operation. However, retrieval of solutions post-mining will almost
certainly become an environmental protection requirement. Again, adequate frac-
ture and flow models will be critical to the ability to comply with such
requirements.

Other

An additional area of application is in the conventional mining of deep deposits, in
which ground water invasion into the mine and the environmental impact of mining
on local aquifers will become critical. This requires tools for assessing leaching
fluid and ground water movement as well as chemical reactions within the leaching
field.

Stochastic Fracture Models and Fracture Propagation
Modelling

The characterisation of rock fracture networks is a very difficult problem not least
because accurate field measurement of a single fracture is difficult and measurement
of all fractures is impossible. Thus, in practice, the whole fracture system is not
observable on any meaningful scale and the only realistic approach is via a
stochastic model informed by sparse data and/or by analogues. In block caving and
solution mining applications, a realistic solution is even more difficult as the only
reference data related to the fracture system are from limited drill core samples,
geophysical borehole logs or sparse seismic events detected during hydraulic
fracture stimulation. For these reasons most of the standard models of fracture
systems for these applications are oversimplified representations of reality.

Recently, however, there have been some significant advances in the stochastic
modelling of fracture networks and fracture propagation for hot dry rock geothermal
reservoirs. These developments are transferable, with minimal adaptation, to block
caving and solution mining.
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The immediate problem in any application is the requirement for sufficient data.
Fracture networks in caving and solution mining systems are essentially the product
of hydraulic fracture stimulations that, together with ground conditions and the
local stress regime, determine how fractures are formed and propagated. Thus the
data requirements are measurements of in situ stress and fracture propagation.

The most obvious ways of collecting sufficient amounts of fracture data are from
geophysical sensing, measuring fracture proxies and/or fracture propagation:
acoustic impedance surveys, and recording of micro-seismic events triggered by
fracture stimulation during pre-conditioning tests, full-scale pre-conditioning and/or
production monitoring.

The recent advances in fracture network modelling and propagation, using
micro-seismic events triggered by fracture stimulation, can be broadly classified as
stochastic optimisation—optimal fitting of fracture shapes to clouds of seismic
points. The methods developed include Markov Chain Monte Carlo optimisation
(Mardia et al. 2007; Xu et al. 2013), spatial clustering (Seifollahi et al. 2013), the
Random Sampling Consensus (RANSAC) algorithm (Fadakar et al. 2013) and the
Point and Surface Association Consensus PANSAC) algorithm (Xu and Dowd
2014). All of these methods are available in a public domain software package (Xu
and Dowd 2010). The methods can be further classified into those that consider
only the locations of the seismic points and those that consider location and time
sequence of the events. The latter group provides the basis of fracture propagation
models.

By way of example, we present here a short overview of the PANSAC model
together with outcomes from applying it to the fracture stimulation of the
Geodynamics’ Habanero geothermal reservoir in the Cooper Basin. Full details of
the modelling methods and the specific application can be found in Xu and Dowd
(2014).

The fundamental assumption of the algorithm is that at least one fracture passes
through the location of any seismic event detected. This is a reasonable assumption
as seismic events occurring in the fracture stimulation process result from slips of
existing fractures, creation of new fractures or propagation of existing fractures.
Fitting surfaces through to a point cloud set is mathematically and computationally
difficult (Bercovier et al. 2002), particularly when the fracture surface profiles are
unknown and the data points are sparse. A further widely used simplification is to
assume that, as a first-order approximation, planar polygons can be used to rep-
resent actual tortuous fracture surfaces. The RANSAC approach fits random frac-
ture planes through the point cloud by minimising a cost function. The resulting
fracture model consists of a sequence of fracture planes with a number of associated
points arranged in descending order, implying the increasing uncertainty of frac-
tures fitted at later stages. RANSAC, and the earlier MCMC approach, ignore the
time sequence of the seismic events. Fracture stimulation begins near the stimu-
lation source and moves further away from the source as the stimulation intensifies.
In other words, different parts of the rock masses are stimulated at different times.
As fracture creation or propagation is highly dependent on any existing fracture
network (Kear et al. 2013), it is important to consider the sequence of fractures
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simulated at earlier stages when fitting fracture models to a set of seismic points.
Failure to do so could potentially produce a misleading fracture network model (Xu
and Dowd 2014). The PANSAC approach addresses this issue by taking every
individual seismic event in turn and optimising the association between the point
and the previously fitted fracture surfaces, taking into account the existing fracture
network, possible routes (connections) back to the stimulation source and prefer-
ential fracture propagation paths. The parameters used in the fitting process are
optimised using the fundamental principle that the most likely fracture propagation

H1 
H2 

H3

Fig. 6 Absolute hypocentre
locations of the seismic events

Fig. 7 Final PANSAC
fracture model for the
Habanero reservoir

408 P. A. Dowd et al.



path is the one that requires the least amount of energy. The final fracture network
fitted by PANSAC consists a sequence of fractures following closely the fracture
stimulation process from the stimulation source to the boundary of the stimulation.

Figures 6, 7, 8 and 9 illustrate the application of PANSAC to Geodynamics’
Habanero geothermal reservoir in Cooper Basin of South Australia. The targeted
hot granite is about 4 km below the surface with a temperature close to 250 °C.
Figure 6 shows the locations of 23,232 seismic events detected during the fracture
stimulation in 2003 using Habanero 1 (H1) as the stimulation well. Eight geophones
deployed in wells surrounding H1 at depths of 100–2300 m were used to record the
seismic signals generated by the stimulation process. Note that wells H2 and H3
shown in Fig. 6 were drilled later and did not contribute to the events shown in the
figure. The final fracture model generated by PANSAC is shown in Fig. 7.

Figure 8a is a view of the fractures in Fig. 7 looking north and Fig. 8b shows the
propagation sequence of the seismic points projected onto an east-west vertical
cross-section. Both figures clearly show that a significant number of fractures dip
gently to the west, that is the propagation of fractures trends upward as they
propagate towards the eastern part of the reservoir. The PANSAC model captures
correctly this feature.

Figure 9 shows a sequence from the fracture propagation model at different
times in the stimulation process. The time t is in units of days after 12:51 pm, 30
Oct. 2003, Central Australian time. Note that t from 12 to 18 corresponds to the first

Fig. 8 Dipping feature of the fractures in the east–west direction. a Three-dimensional view;
b north–south projection
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t = 10 t = 12 t = 14

t = 15 t = 16 t = 17

t = 18 t = 32 t = 33

t = 35 t = 36t = 34

t = 37 t = 40 t = 55

Fig. 9 Fracture propagation model generated by PANSAC
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major fracture propagation stage and t from 32 to 40 corresponds to the second
major fracture propagation stage. The fitted fracture propagation model correctly
captures these fracture propagation stages.

This example clearly shows the potential for the application of these models to
characterising fracture networks and modelling fracture propagation for block
caving and solution mining. With the help of seismic monitoring during the
pre-conditioning for block caving or ground stimulation for solution mining, these
models can be used to assess the effectiveness of the stimulation process, the degree
and the adequacy of ground fracturing for the intended operations and to help
optimise the stimulation process to minimise the associated costs.

Flow Modelling for Solution Mining

The additional component for solution mining is to model the flow through the
reservoir. Flow characteristics of a stimulated fracture network depend mainly on
the connectivity of the fractures in the network. This connectivity can be repre-
sented by channels (connection pathways) connecting the injection and recovery
wells through the fracture network. However, finding these channels is by no means
simple, especially for large size fracture networks. In our work we search for all
potential pathways and select on the basis of the shortest connection paths but even
so there are still significant numbers of potential flow pathways even for a moderate
size fracture network. Figure 10 shows an example of the identified flow channels
through the fracture network between the H1 and H3 wells for the MCMC model
described in Xu et al. (2015). There are 27,293 channels in this case and most of
these connection paths pass through more than 100 fracture planes. Clearly,
Habanero 1 is well connected to the surrounding rock through the fracture model,
which is expected because it is the source of the fracture stimulation. Habanero 3
has only a small number of connections to the reservoir, which is also expected, as
Habanero 3 plays no part in the fracture stimulation process.

H3

H1

Fig. 10 Connection channels
between Habanero 1 and 3
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For geothermal applications, once the detailed structure of the reservoir is
modelled, further analysis in terms of fluid flow and heat extraction is needed. For a
large-scale reservoir such as Habanero (approximately 2.0 � 2.0 � 0.5 km3) and
with detailed reservoir structures on the scale of metres, it is not possible to use
conventional numerical tools due to the computation cost (Bodin et al. 2007). We
have developed a simplified flow and heat extraction analysis tool, based on an
equivalent pipe network, which significantly improves the computational efficiency
and makes the reservoir scale analysis possible (Xu et al. 2015). Figure 11 shows
the temperature distribution of the Habanero reservoir after 20 years of heat
extraction based on H1–H3 doublet and 35 L.s−1 extraction rate. The temperature
drawdown and power produced can also be calculated accordingly.

The technique described here is readily applicable to solution mining where the
mine scale is, in general, significant and both flow and heat will play important
roles in the minerals impregnation and transport processes. The additional com-
ponent that has to be considered in this application is the chemical reaction, which
is relatively easier to model once the flow and temperature models are established.

Flexibility in Planning and Design

The ability to adapt mining operations to increasingly volatile external environ-
ments (e.g., prices, markets) and changing internal circumstances (e.g., geome-
chanical conditions, grades) is difficult but, nevertheless, critical for many projects.
It requires sufficient flexibility in models to enable plans to be adapted and to
manage risk and minimise its impact. Models that attribute value to system flexi-
bility (at strategic, mid-term and tactical levels) will lead to plans and designs that
can be adapted to deal with emergent risks and minimise their impact on the
operation.

The integrated model approaches advocated here provide a basis on which flex-
ibility can be valued. The integrated systems modelling of variables, processes and

H1 H3

Fig. 11 Reservoir temperature distribution after 20 years production
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their associated uncertainties allows options to be assessed, the system to be
re-optimised on the basis of changed circumstances, and risk to be quantified and
managed. In particular, the output for the polymetallic sulphide case study given
earlier in this paper is not only a fully flexible plan in terms of optimal processing
routes but also a fully flexible operational schedule that allows operators to choose
the best available route when the optimal route is not available, i.e. the plan includes
all relevant processing decision-making that would occur during actual operations.

The inclusion of quantified uncertainty in the modelling of variables and pro-
cesses during planning and design provides a sound basis on which to identify,
prioritise and manage risk and minimise its impact. As acknowledged by other
authors, (see, for example, Dimitrakoploulos et al. 2002), the quantification of
uncertainty and risk provides greater flexibility in mine planning and design and can
add significant value to projects.

The real options framework has been widely used to accommodate uncertainty
and flexibility in optimising mine planning see, for example, Dimitrakopoulos et al.
(2002), Dimitrakopoulos and Abdel Sabour (2007), Abdel Sabour et al. (2008),
Botin et al. (2012) and, in a broader context, Armstrong et al. (2004). Other authors
have used more traditional methods such as Monte Carlo simulation of scenarios
(prices, costs, recoveries, etc.) together with optimisation methods (see, for
example, Groeneveld and Topal 2011). Armstrong et al. (2013) also used real
options to reduce the number of scenarios in project valuation, which is a significant
issue when using large numbers of simulations.

Another area of flexibility is in the physical design of mining operations. This
work is best exemplified for underground 11 mine design by the output of Brazil
et al. (2003, 2004, 2009).

The case study presented in this paper together with the somewhat limited
overview of other work in this field is intended to give an indication of the
approaches that have been successfully applied to real mining operations.
A question that arises is the extent to which these approaches have been adopted
and meaningfully used in the mining industry. The question is particularly pertinent
to the current economic conditions for most mined commodities – a situation for
which the incorporation of uncertainty and flexibility in mine planning and design
is specifically intended.

IT Infrastructure and Platforms

There is a growing need for mining industry IT infrastructure and platforms for
rapid on-line data collection, storage, access and processing and to support the
increasing amount of automation in many stages of the mining process. The
increasing generation and use of large sets of remotely sensed data at mine and
exploration sites requires new platforms and infrastructure to realise the potential of
the data in short-term decision-making and longer term strategic planning. These
data range from down-hole sensing of mineralisation indicators and rock properties
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in deep exploration drilling to online sensing of blast-hole cuttings and blast profiles
to online sensing of truck performance. The effective use of these data requires
immediate, and often remote, access to very large data sets and rapid processing of
data to optimise processes such as drilling directions, blast design, selective loading
and choice of mineral processing routes.

Whilst the largest companies have established their own facilities, it makes sense
for others to come to collaborative arrangements for joint provision with appro-
priate protocols to ensure security of commercial data and information. Given the
key economic role that mining plays in many economies, governments may take the
view that this is essential infrastructure and provide support in establishing it.

The Collaborative Remote Operations Centre project funded by the South
Australian State Government’s Mining and Petroleum Services Centre of
Excellence (DMITRE 2014) is a good example of an industry/government/
university collaboration to provide an IT platform to support automation, remote
analysis, data storage and on-line access, and the testing of software and hardware
for remote mining operations. The Collaborative qualifier refers to the shared nature
of the Centre.

Collaborative centres such as this require ICT architectures that provide rig-
orously secure access to the IT systems of members so as to allow data integration
and analysis on the platform without compromising the security of a member’s
data. The University of South Australia, in collaboration with mining company OZ
Minerals Ltd, has led the development of a ‘test and trial’ Collaborative Remote
Operations Centre, that is intended to provide a future innovation hub for the
mining industry with longer term access for students, researchers and ICT com-
panies for research, teaching and testing of new products and services (Sriram
et al. 2014).

New real-time logging while drilling (LWD) technologies are being developed
in the Deep Exploration Technologies Co-operative Research Centre (DETCRC
2015). Almost all mine design and planning are based on analyses of core samples
and hence the modelling and optimisation methods used to deliver designs, plans
and schedules are, of necessity, largely limited to grades and tonnages. However,
cores limit the types of data that can be collected and they reduce productivity
because of time lost in transporting them to laboratories and analysing them. In
addition, cores limit the type of drilling technologies, which is one of the focus
areas of DETCRC. The potential of LWD for mine planning and design is
real-time information on geological controls on mineralisation, delineation of ore
zones, geotechnical characteristics and, possibly, geometallurgical characteristics
particularly those related to rock breakage. One of the key objectives of pro-
gramme 2 of DETCRC is to develop technologies to invert LWD sensed petro-
physical data for rapid updating of three-dimensional geological models. In the
deep exploration context, these very large LWD data sets are already available and
similar types of data are being generated in operating mines. In the context of
strategic mine planning, the challenge is to adapt modelling, design, estimation,
simulation and optimisation algorithms to real-time processing of these types of
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rapidly acquired, and very large, data sets so as to improve the speed and quality
of decision-making.

Conclusions

Most of the challenges outlined here do not require new models or new approaches,
they require adapting existing techniques to new applications (as in fracture mod-
elling for caving and fracture network and fluid flow modelling for in situ leaching)
and a systems approach to integrating resource/reserve models with mine processes
(as in geometallurgy and the more general mining response or transfer functions).
There is a need for more work on adequate spatial modelling of geometallurgical
variables, particularly in dealing with non-additive and compositional variables, and
in providing tested and validated response functions. There is also a need for the
computational speed of modelling, simulation and estimation algorithms to be
commensurate with the speed with which sensed data are collected and decisions on
them need to be made.

In the context of the integrated systems approach and the need for flexibility in
models and outcomes proposed here it may be more important to ensure that
outcomes are robust and resilient rather than strictly “optimal” for a rigidly spec-
ified set of geological, geometallurgical, operational and economic criteria.
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Part V
Other Aspects of Open Pit Mine Planning



Planning, Designing and Optimising
Production Using Geostatistical
Simulation

P. A. Dowd and P. C. Dare-Bryan

Abstract The full potential of geostatistical simulation as a tool for planning,
designing and optimising production is only realised when it is integrated within the
entire design and production cycle. In the planning and design stages this involves
the simulation of components of the production cycle that depend on (simulated)
grades and geology. In the production stage it involves integration with the mining
method and the type and use of equipment. This paper explores the general con-
cepts of integrated geostatistical simulation and illustrates them with particular
reference to blast design, equipment selection and the associated quantification of
ore loss, ore dilution and the ability to select ore on various scales. The critical
component of most metalliferous open pit mining operations is ore selection, i.e. the
minimisation of ore loss and ore dilution during extraction. In general, extraction
comprises drilling, blasting and loading, all of which are planned and designed on
the basis of uncertain models of geology and grade. The application describes the
integration of geostatistically simulated grade, geological and geomechanical
models with blast modelling to provide a link between the estimated in situ char-
acteristics of the orebody and the locations of the same (displaced) characteristics
following the blast. This approach provides a means of evaluating different types of
selection and thereby enables planners to optimise the selection process in terms of
blast design, type and size of loading equipment, maximisation of ore recovery and
minimisation of ore loss and dilution. This conversion of the in situ/block model
resource to a realistically recoverable reserve may, in many instances, be the most
significant source of uncertainty in reserve estimation.
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Simulation

Geostatistical simulation is rarely an exercise in its own right and is usually
undertaken to provide a model for further studies. In the simplest applications the
purpose may be to estimate ore reserves; or to assess the uncertainty associated with
mine planning based on specified drilling densities; or to assess the effect on
recoverability of various sizes of selective mining units. In more complex appli-
cations a simulated orebody model may be used to assess the effects of sequences of
downstream activities. All of these applications, in one way or another, are
assessing uncertainty and its operational consequence—risk.

An effective evaluation of risk must include adequate quantifications of all
sources of uncertainty. Too often in these applications the quantification of
uncertainty is limited to in situ grade and geological variables, with little attention
to the uncertainties that arise from the technical processes that are applied to extract
ore from the in situ material. The usual assessment of recoverable reserves, for
example, is limited to a simple volumetric exercise in which ore recovery is
assessed as a function of applying a range of selection volumes to a simulated
orebody. This simplistic approach ignores the practicalities of the actual mining,
selection and loading processes—blast design, behaviour and performance;
equipment type, size and operation; ore displacement during blasting and loading;
and ability to identify ore zones within a blast muck pile. In many applications, the
uncertainties introduced by these technical processes are at least as significant as
those that derive from the in situ spatial characteristics of grades and geology.

In mining applications, the full effectiveness of geostatistical simulation can only
be realised by integrating it with adequate and realistic simulations of the technical
processes. The authors demonstrate this argument with an application to selection
and recovery of ore in open pit mining. The in situ simulation of geology and
grades can be achieved by any of the standard algorithms. Ore, however, is not
selected and recovered from this in situ mass, but from the broken and displaced
components of the mass that results from the blasting process. The integration of the
simulation of blasting, selecting and loading with the simulation of in situ grade,
geology and geomechanical characteristics provides a realistic means of evaluating
selection and recoverability, as well as an effective basis for mine planning and
equipment selection.

The Method

The method comprises:

• generation of an in situ model of the orebody comprising the grade, geology,
geomechanical properties and grade control variables within sufficiently small
volumes determined by the smallest selectable volume within a blast muck pile;
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• definition of a blast volume comprising a large number of the in situ model
volumes, and subjecting it to a blast simulator, which effectively moves each of
the component model volumes to its final resting place in the blast muck pile; and

• application of selective loading processes to the simulated muck pile to deter-
mine the degree of selectivity that can be achieved by various sizes of loader and
types of loading and to quantify ore dilution and ore loss.

The in situ model, representing perfect knowledge at all relevant scales, is
obtained by geostatistical simulation. An in situ model that represents the reality of
knowing only the data and information that are available from specific grade control
drilling and sampling grids can be obtained by sampling the geostatistically sim-
ulated model on a specified grid. The volumes comprising the in situ model are then
populated by estimates based only on the data corresponding to the specified grade
control drilling and sampling grids. Different drilling and sampling grids can be
used to generate different models, each reflecting the levels of data and information
available. Selectivity can then be assessed as a function of the drilling and sampling
grids as well as the size and type of loader. Performance is assessed against the ideal
selectivity that can be achieved on the perfect knowledge model, comprising the
simulated values of each component volume. Applying costs, prices and financial
criteria enables an optimal selection of the grade control drilling grid, size of loader,
type of loading and even blast design.

Blast Simulation

A discrete block modelling approach was used in the work reported here. The
discrete block model is based on the SCRAMBLE code (Sophisticated CRA Model
of Blasting with Explosives) developed by CRA (now Rio Tinto PLC) Advanced
Technical Development from the ICI SABREX code (Scientific Approach to
Blasting Rock with Explosives) (Harries and Hengst 1977; Jorgenson and Chung
1987; Kirby et al. 1987; Chung and Tidman 1988; Mohanty et al. 1988). The code
has been revised to include, inter alia, a fragmentation model based on the Bond
Work Index. Details of the basis of the blast simulation are given in Appendix A.

A standard regular block model is input to the blast simulator, which then moves
each block to its final position within the muck pile. Although the block effectively
remains intact in the muck pile, it is assigned an estimated degree of fragmentation.
Movement and final position are determined from models of the behaviour of
explosive gases, energy release, heave mechanics, fragmentation, throw and
velocity of movement as functions of, inter alia, bench height, burden, hole spacing,
hole diameter, rock density and rock fracture density.

This approach becomes more realistic as the block size becomes smaller and
approaches the average size of particles in the muck pile. In principle, the block size
can be made as small as desired but in practice the size is limited by computing
constraints.
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Simulating the Loading Process

The Floating Stope Optimiser (FSO) routine in the Datamine mine planning soft-
ware was used to simulate an optimised selective loading process on the muck pile
block model generated from a blast design. The FSO procedure is similar to the
‘floating cone’ method of open pit optimisation and provides a flexible means of
locating optimal envelopes of block model grades (Randall and Wheeler 1998a, b).

To apply the FSO to a selective mining operation, the envelope size is defined as
the selective mining unit for the excavation of the muck pile. The subcell size,
which defines the grid spacing at which the envelope is successively positioned
throughout the block model, is determined by the minimum digging width of the
excavator used.

As an excavator works through a muck pile the broken rock continually recovers
the natural angle of repose. Thus, to recover a pocket of ore near the bottom of a
muck pile a ‘cone’ of material, projected up from the ore pocket, must be removed
with it. To incorporate this in the selection process a slope of 45° is applied to the
four vertical sides of the cube envelope from its base in the XY plane, generating
the envelope shape shown in Fig. 1.

The output from the FSO flags all blocks as ore or waste. These are then
processed to generate total tonnes mined, tonnes excavated as ore and waste, head
grade of ore and tonnes of metal in ore. Multiple runs are taken for each muck pile
over a range of cut-off grades to find the optimum.

Fig. 1 Envelope shape for floating stope optimiser
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Optimisation Procedure

A blast design is applied to the complete geostatistically simulated blast volume
(the ‘reality’) and to the estimated block models for the blast design. Once the block
models have been heaved to generate the corresponding muck piles, the muck pile
block models, with associated block grade values, are entered into the FSO to
evaluate the ore/waste excavation boundaries to give the optimum head grade based
on a selected cut-off grade and selective mining unit size. The region of the bench
that is to be excavated as ore is evaluated on the basis of the total tonnes of metal/
mineral within that region minus the portion of metal/mineral expected to be lost in
the processing operation.

The 80% passing size of the resulting muck pile (cf Appendix A) is then used to
adjust the standard cost per tonne values for the downstream processes of loading,
hauling and primary crushing. The total mining cost for the bench comprises the
drilling and blasting costs derived from the blast design, the revised loading and
hauling costs and the mining services costs, all as a cost per tonne blasted (cf
Appendix B). The total processing cost comprises the adjusted primary crushing
costs and the remaining processing operations costs, which are expressed as a cost
per tonne processed.

The value of the bench is thus the value of the concentrate output from the
processing plant less the mining and processing costs.

Case Study

The case study is based on the Minas de Rio Tinto SAL (MRT) open pit copper
mine at Rio Tinto, southern Spain, which is typical of a low-grade operation in the
later stages of its life. The application described here is to the low-grade Cerro
Colorado mineralisation. Ore/waste delineation for selective mining is particularly
difficult because the head grades are near the economic cut-off grade and there are
no clear geological controls on the mineralisation.

At the time of this study, the mine had been temporarily closed pending an
increase in the copper price. During operation the mine produced concentrate with an
average grade of 24% copper. The mine re-opened, under new management, in 2014.

Geological Setting

The Rio Tinto deposit lies in the eastern Iberian Pyrite Belt. Submarine volcanic
activity created an anticline structure, the edges of which formed pyroclastic rocks,
where the massive sulphide mineralisations are located. The volcanic mass is buried
under carboniferous slates, but subsequent folding has exposed the volcanic
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sequence locally in the eastern half of the anticline to form the Cerro Colorado
deposit (Pryor et al. 1972).

The Cerro Colorado mineralisation is a stockwork of sulphide accumulations,
fed by several near-vertical brecciated feeder pipes. The predominant sulphides are
pyrite and chalcopyrite, with galena, sphalerite, tetrahedrite, arsenopyrite and cas-
siterite present in much smaller quantities.

Mining Method

The operation at MRT used traditional drilling and blasting on 10 and 12 m benches
that were drilled with two Buycrus Eyre 45R rigs and one 60R rig drilling 250 mm
holes to a depth of 11.2 m or 13.7 m depending on the bench height. A square blast
pattern was employed with burden and spacing dimensions ranging from 5.5 m
6.5 m to 6.6 m � 8.0 m. The holes were charged with heavy ANFO because of
water problems in the lower benches. P&H 2100 BL electric face shovels and
Caterpillar 994 wheel loaders were used for loading and Caterpillar 789 dump trucks
used for hauling. Two blasts, B4053 and B4056, were selected for this study.

Generating Block Models

Experimental semi-variograms were calculated from the blasthole data using a
conical search. As no significant directional anisotropies were detected within the
two blast volumes, all directional semi-variograms for each blast were combined
into a single omni-directional semi-variogram for modelling purposes. For both
blast volumes a two-structure, spherical semi-variogram model was fitted to the
experimental semi-variograms as shown in Fig. 2.

Sequential Gaussian simulation (Journel and Alabert 1989, 1990), with the
blasthole grades as conditioning data, was used to generate a realisation of each
entire bench on a block grid of 0.5 m � 0.5 m � 0.5 m, the grid determined on the
basis of blast and selection criteria. The histograms of simulated values and con-
ditioning data are shown in Fig. 3a and b; corresponding statistics are given in
Table 1. There were no significant differences between the input variogram models
shown in Fig. 2 and those fitted to the simulation outputs for the two blasts.

The simulations for both benches used ordinary kriging and an octant search
strategy with an isotropic search radius of 60 m. A minimum of two and a maxi-
mum of ten conditioning values (original data plus previously simulated values)
were specified for each octant with a minimum of three informed octants. The
maximum proportion of previously simulated values in each set of conditioning
values was set to 70% and the coordinates of the original data were retained, i.e.
data was not assigned to simulation grid nodes. Linear extrapolation was used in the
upper and lower tails for back transformation of the Gaussian simulated values.
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C0 =  0.015
C1   =  0.042    a1 =  9m
C2   =  0.022    a2 =  51m

C0 =  0.027
C1   =  0.073    a1 =  16m
C2   =  0.020    a2 =  45m

Fig. 2 Experimental semi-variograms and two-structure spherical models for B4053 (left) and
B4056 (right) blasthole data
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Fig. 3 a—Histograms of blasthole grades for blast B4053; data (left) and simulated values (right),
b—Histograms of blasthole grades for blast B4056; data (left) and simulated values (right)

Table 1 Statistics of conditioning data and simulated values

Blast B4053 Blast B4056

Conditioning
data

Simulated
values

Conditioning
data

Simulated
values

Mean 0.403% 0.401% 0.494% 0.489%

Variance 0.075%2 0.072%2 0.113%2 0.105%2

No of
values

1440 288 000 1200 240 000
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The simulation provides a realisation of the grade distribution throughout the
bench on the scale required for the blast simulation. For each specified blast design,
new ‘sample hole data’ is taken from the simulation block model of the bench. This
sample data is then used to generate ordinary kriging estimates of the block grades
to produce an estimated block grade model of the bench. The semi-variogram used
for kriging is the model fitted to the experimental semi-variogram of the sample
‘data’ taken from the simulation block model.

Blast Modelling Parameters

The simulated heaving action and muck pile generation were adapted to replicate
the muck piles generated by the actual blasts, based on the data available for throw
and the overall shape of the muck pile profile.

The blast pattern specifications for the two blasts used in this study are shown in
Table 2 and the geomechanical data used is summarised in Table 3. The modelling
was calibrated against the original blast designs for B4053 and B4056 using the
input data in Tables 2 and 3 and the muck pile profiles from field data.

Selection of Ore/Waste Boundaries in Muck Piles

For the excavators used at MRT, with a bucket size of 13 m3, an FSO envelope of
8 m � 8 m � 8 m was selected with a subcell size of 2.7 m. More selective
loading was also assessed using a 6 m � 6 m � 6 m envelope.

Costs of the Blasting and Selection Processes

For a given blast design it is relatively straightforward to calculate the costs
associated with drilling and blasting, by summing the constituent costs. However,
the composition of the muck pile produced by the blast directly affects the
downstream processes of loading, hauling and primary crushing, and the overall

Table 2 Blast pattern specifications used in case study

Burden 6.5 m Main explosive charge 540 kg ANFO

Spacing 8.0 m Initiation sequence S1

Bench height 12 m Inter-hole delay 50 ms

Vertical blasthole length 13.7 m Inter-row delay 100 ms

Hole diameter 250 mm
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cost evaluation of a blast must include the costs of these processes. It is not possible
to quantify directly the effect of different quality blasts on the downstream pro-
cesses, and the best common variable for comparisons is the degree of fragmen-
tation achieved by the blast. It is generally recognised that the costs of the
downstream processes, including operation and maintenance, decrease as frag-
mentation improves (MacKenzie 1966). A common practice is to use a functional
relationship, formulated through in-pit operational assessment, to adjust the cost per
unit weight worked as a function of the degree of fragmentation. A summary of the
cost functions and their derivation is given in Appendix B.

Optimisation Procedure

The flow diagram in Fig. 4 shows the procedure applied to each bench. The chosen
blast design is applied to the standard geostatistical simulation and estimated block
models for that blast design.

Once the block models are heaved to generate the corresponding muck piles, the
muck pile block models, with their associated block grade values, are entered into
Datamine. Within Datamine, the FSO is applied to the block models to evaluate the
ore/waste excavation boundaries to give the optimum head grade based on a
selected cut-off grade and selective mining unit. The region of the bench that is to
be excavated as ore is evaluated on the basis of the total tonnes of copper within
that region, minus the portion of copper expected to be lost during processing.

The flow chart in Fig. 4 is an example of what might be termed a transfer
function that transforms the idealised/in situ/simulated, and/or estimated, block
grades into realistically recoverable grades and tonnages. These transfer functions
are not generally linear and in most cases their effects cannot be approximated by
simple dilution factors.

Ore reserve statements, or resource statements expressed in terms of production
units, that are derived by selecting blocks directly from in situ/block models ignore
some of the most significant sources of uncertainty. There may be other highly
non-linear transfer functions (e.g. some types of mineral processing operations) that
have significant effects on recoverability, but generally the extraction and loading
processes are the most significant.

Table 3 Geomechanical data
used in case study

Young’s modulus 750 kbars

Poisson’s ratio 0.25

Uniaxial compressive strength 1.2 kbars

Rock density 2.75 g.cm−3
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Results

By way of example, Fig. 5 shows colour-coded simulated grades of sections of the
0.5 m � 0.5 m � 0.5 m blocks that comprise bench B4056 and Fig. 6a shows the
muck pile generated by applying the blast modelling process to this bench.

Figure 6b shows the muck pile that results from applying the blast modelling to
the same bench but with the component block grades kriged from the simulated
grades on the 6.5 m � 8 m drilling grid. The smoothing effect of kriging is clearly
evident when comparing Fig. 6a and b. Figure 6a represents the muck pile given
complete information, whereas Fig. 6b is the interpretation of the composition of
the muck pile on the basis of the data. Selection is planned and implemented on the
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BLOCK MODEL
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DRILLING AND 
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LOADING AND
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LOSSES IN PROCESSING

VALUE OF CU
CONCENTRATE

Fig. 4 Flow chart for optimisation procedure
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basis of Fig. 6b but the volume selected will have the grade and tonnage of the
equivalent volume in Fig. 6a.

Figure 7 shows the corresponding muck piles generated from simulated and
estimated block grade models for B4053. Figures 6 and 7 clearly show the sig-
nificantly different spatial distribution of grades in the two muck piles with con-
sequent implications for selection.

Fig. 5 Representations of the simulated in situ bench grades for 84,056 showing colour-coded
grade ranges on a horizontal planes and b cross-sectional planes. Horizontal planes are top and
bottom of t 2 m bench and 6 m mid-plane. Vertical planes are extremities (0 and 80 m) and
intermediate planes at 26 m intervals
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By way of example, when selection is applied via the FSO to the two muck piles
shown in Fig. 7, the volumes selected are those shown in Figs. 8 and 9.

For each bench there are nine block models: the simulated block grades, taken as
‘reality’, and eight models of estimated block grades kriged from simulated values
on various drilling grids, together with variations in other blast design parameters as
summarised in Table 4.

Fig. 6 84056: Muck piles generated by blast design number one from (a) simulated bench grades
and (b) from kriged bench grades

432 P. A. Dowd and P. C. Dare-Bryan



The grades of the blocks that comprise the two benches are similar in terms of
histograms (cf Fig. 3) but they differ significantly in their spatial distributions within
the respective benches. It is the latter that has themajor effect on the spatial distribution
of the grades in the muck pile and consequently on the ability to load selectively.

Fig. 7 B4053: Muck piles generated by blast design number one from a simulated bench grades
and b from kriged bench grades
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Bench B4053 is subeconomic for some blast designs but must still be blasted to
allow continuing mine development. Having blasted this bench, any losses are
minimised by processing the ore in the muck pile. Bench B4056 is economic for all
blast designs and is mined and processed in the normal manner.

Fig. 8 Muck piles for B4053. a Muck pile generated from simulated block grades (reality).
b Muck pile generated from estimated block grades using blast design one. The darker shade
indicates exposed selected ore and the lighter shade is non-selected broken rock
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The financial performances of each blast design against the ‘reality’ of the
simulated block model are summarised in Fig. 10 for B4053 and in Fig. 11 for
B4056. These figures show the ideal or maximum bench values corresponding to

Fig. 9 Volumes of ore selected from muck pile for blast design 1, generated from a simulated
block grades and b from estimated block grades
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the simulated block grades, together with the actual bench values achieved by
selecting from the muck piles generated from the estimated block grades for the
various blast designs.

Figures 12 and 13 show the tonnages of copper within the ore selected from the
muck pile generated from the simulated block grades, together with the actual
tonnages recovered from the muck piles generated from the estimated block grades
for the various blast designs.

Numbers on the horizontal axes of Figs. 10, 11, 12 and 13 denote the blast
designs given in Table 1. Blast 1a (smaller FSO envelope) is a smaller selection
envelope applied to blast one, in which the envelope corresponds to smaller-scale
selection (6 m � 6 m � 6 m) using a wheel loader.

Table 4 Blast designs used in study for estimated block grades

Blast
design

Design changes Burden
(m)

Spacing
(m)

Powder factor (kg
tonne−1)

Hole
diameter
(m)

1 Control 6.5 8 0.31 0.25

2 Changing hole
diameter

6 7.5 0.31 0.23

3 7 9 0.31 0.27

4 8 9.5 0.31 0.30

5 Increasing
powder factor

6 7.5 0.37 0.25

6 5.5 7 0.43 0.25

7 Decreasing
powder factor

7.5 9 0.25 0.25

8 8.50 10.5 0.19 0.25
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Note that in some cases, more copper is recovered from the muck pile generated
from the estimated block grades than from the muck pile generated from the
simulated block grades (e.g. blast designs seven and eight in Fig. 12). This is,
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Fig. 12 B4053: simulated (‘actual’) copper in ore selected from muck pile and amounts recovered
on the basis of estimations from Design
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however, at the expense of diluting the ore with additional waste, which reduces
profit (e.g. as indicated by the bench values for blasts seven and eight in Fig. 10).

The differences between ideal selection and selection based on estimated block
grades are more significant for B4053 because the economic grades are more
widely dispersed through the bench and the muck piles than they are for B4056.
The differences are large and critical for B4053, as planning on the basis of the
estimated block grades leads, more often than not, to financial loss.

The real effects on the operation can be quantified by comparing the expected
performance against the actual performance. Figures 14 and 15 show, for each blast
design and for selection based on the estimated block grade models, the difference
between the estimated copper content and the actual copper content of the selected
ore regions, together with the difference between the estimated and actual financial
values of the selected ore regions. It is these differences between planned and actual
performances that have the greatest impact on the viability of the operation.

The results summarised in Figs. 14 and 15 are functions of the complex rela-
tionships among block grade values, heave mechanics of the blasting process, the
spatial distribution of ore and waste blocks in the muck pile and the method of
selecting from the muck pile. The absolute values of the bars shown in Figs. 14 and
15 are the deviations from planned outcomes and are measures of the ability to plan
the operation to acceptable levels of accuracy and of the consequences of not being
able to do so. The larger differences for B4056 (Fig. 15) are a function of the more
distinct ore/waste boundaries in the resulting muck pile, which in turn provide a
greater propensity for ore loss and ore dilution with small changes in the selection
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Fig. 13 B4056: simulated (‘actual’) copper in ore selected from muck pile and amounts recovered
on the basis of estimations from various blast designs
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volumes. By contrast, the greater dispersion of the ore throughout the muck pile
generated from B4053 offers less scope for selectivity and less adverse conse-
quences arising from changes in the selection volumes.

Summary and Conclusions

This study demonstrates the potential of geostatistical simulation in the optimisation
of blasting and loading in selective mining processes. In particular, it provides a
means of quantifying the effects of grade distribution smoothing on blast design and
the selection of ore regions within the resulting muck pile. It also provides a means
of assessing the financial consequences of ore loss and dilution arising from
planning and implementing specific blasting and loading practices on the basis of
various drilling grids.

Although a very specific blast modelling process has been used in this study, it
could readily be replaced by any other type of modelling, either to provide a more
realistic simulation of heave mechanics and fragmentation or to simulate other types
of blasting and selection. Similarly, other types of geostatistical simulation could be
used and multiple variables, including qualitative geological variables, could be
simulated and incorporated into the selection procedure, for example by selecting
gold-bearing ore on the basis of observable quartz veins and fracture networks in
the muck pile (Dowd 1995). The methods and approach used in this study do not
limit the generality and practical potential of the application.

A real-time, virtual reality version of the approach described here could also be
used to guide loader operators in making optimal selections from muck piles.
Real-time applications would require very rapid capture of accurate survey and
locational data, which could readily be provided by GPS.

More generally, the application described here demonstrates that the full effec-
tiveness of geostatistical simulation can only be realised in mining applications by
integrating it with adequate simulations of the technical processes that turn the
simulated in situ characteristics into mined products. This is an important issue in
determining and reporting reserves.

Appendix A: Blast Modelling

The adapted version of the SCRAMBLE/SABREX blast modelling code used in
this study is an energy-based approach comprising two separate models: heave
mechanics and fragmentation. The heave mechanics are based on the energy
released from the adiabatic expansion of the explosive gases following detonation.
Fragmentation is based on the powder factor (ratio of charge weight in kilograms to
mass in tonnes of rock broken by the charge) converted to an energy equivalent via
the Bond Index.
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The velocity of detonation for each blasthole is taken as infinite and the wall is
allowed to expand until it reaches a state of equilibrium determined by the isotropic
expansion characteristics of the quasi-static gas pressure and the elastic resistance of
the rock. The expanded blasthole sets up hoop stresses in the surrounding rock,
creating a system of radial cracks that, because of tensile failure, spread away from
the hole. The radial fractures, together with any pre-existing geological disconti-
nuities, define the damage created in the rock mass by the blast.

The gaseous detonation products flow into the fractured rock mass at the local
speed of sound until the gas vents through a free face; at this stage a rarefaction
wave travels back toward each blasthole decompressing the cracks. As the rar-
efaction wave travels through the rock, the pressurised crack system imparts an
impulse, which heaves the broken rock mass out from the bench.

In generating the muck pile, empirical routines are used to limit the angle of
repose whilst producing a smooth surface and adding swell factors.

Equation of State for Explosive Gases

The equation of state for the gaseous products of detonation is:

p ¼ aEqð1þ bqÞ3
100 1þ 2bqð Þ ðA1Þ

where:

p is the gas pressure in kbars
q is the gas density in g.cm−3

E is the available energy in J.g−1

a and b are dimensionless constants.

The available energy E is the work done by the explosive gases in expanding
adiabatically from the density q to ambient conditions, and is obtained from:

ln
E
E0

� �
¼ a

ðbqÞ2 þ 5bq
4

� ðbq0Þ2 þ 5bq0
4

þ 1
8
ln

q 1þ 2bq0ð
q0 1þ 2bqð Þ
� � !

ðA2Þ

where:

q0 is the initial gas density after detonation (equal to the explosive density)
E0 is the initial available energy

The values for E0, a and b can be obtained from an ideal or non-ideal detonation
model. An ideal detonation model is adequate for the large diameter holes used in
this study; more accurate data could be obtained from non-ideal models such as
CpeX (Leiper and Plessis 1987).
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Equation A1 reduces to the ideal gas law for small gas densities and, together
with Eq. A2, allows available energy and pressure to be generated as a function of
their density during the expansion process.

Heave Mechanics

All regions within the gas envelope have a common gas density and pressure. The
leading edge of the envelope is regarded as the gas front, which is assumed to move
at the local speed of sound (m.s−1) given by:

c ¼ 100000cp
q

� �1
2

ðA3Þ

where c is the adiabatic exponent for the gases at pressure p (kbar) and the density
q(g.cm−3), c is given by:

c ¼ 1þ að1þ bqÞ3
1þ 2bq

 !
þ 3bq

1þ bq

� �
ðA4Þ

and is derived from the equation of state given in Eq. A1.
To calculate the necessary density and pressure of the gas within the envelope

the volume of rock within the envelope is assumed to be in a state of hydrostatic
compression at pressure p. The resultant reduction in the volume of rock is given
by:

DV þ Vp
G

ðA5Þ

V is the initial volume (m3)
G is the bulk modulus
ΔV is the volume increase in the envelope contributing to the reduction in gas

density and pressure.

Another small increase in volume is associated with the gas pressure com-
pressing the rock below and behind the blasthole.

As the gas expands with the moving gas front, the local speed of sound in
Eq. A3 falls and a time-stepping loop is used to track the expansion of the gas. The
time steps used are defined by:

Dt ¼ bþDb
c

ðA6Þ

where:radius b + Db is the equilibrium radius blasthole.
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Equation A6 shows that, although the time steps can vary, the corresponding
spatial steps are constant and equal to the equilibrium borehole radius.

The time-stepping procedure is:

1. calculate the initial local speed of sound from Eqs. A3 and A4 prior to the
expansion of gas into the rock mass;

2. calculate the appropriate time step from Eq. A6 and generate the appropriate gas
front profile;

3. calculate the increase in volume from Eq. A5 and then calculate the new gas
pressure and density using Eqs. A1 and A2;

4. recalculate the local speed of sound using Eqs. A3 and A4; and
5. repeat the steps while keeping track of the total elapsed time.

Venting of the explosive gas begins when the gas front meets a free face. At that
time the gas fronts retrace their original paths and, during this period of contraction,
the gas density, pressure and speed of sound are assumed to be constant within the
volume of the gas envelope. The respective constant values are those that were
calculated at the time of venting, while the pressure beyond the gas fronts is
assumed to be insignificant.

At the time of venting, the rock mass is assumed free to move, reacting to a
momentum impulse that is imparted on the rock mass. The calculated impulse is
based on the assumption that the rock mass does not start to move until the gas
fronts have (kg.ms−1) is given by:

108
Zt0

tv

p tvð ÞA tð Þdt �M:v ðA7Þ

where:

tv is the time (s) at which gas venting takes place
t0 is the time (s) at which the contracting gas fronts reach their blastholes
p(tv) is the gas pressure (kbar) in the gas envelope
A(t) is the area (m2) over which the pressure is applied
M is the mass (kg) associated with each blasthole
v is the velocity (ms−1) with which the rock mass is heaved
t is the time (s).

To derive heave velocities from Eq. A7 an expression for M can be applied for a
vertical free face to calculate the mass of rock associated with each blasthole using:

M ¼ B:S:HqR:1000 ðA8Þ

where:

B is the burden (m)
S is the hole spacing (m)
H is the bench height (m)
qR is the rock density (g.cm−3).
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In practical situations the highwall of a bench is not vertical and the program has
an input variable for face angle to calculate the true mass of rock associated with the
first row of holes.

The momentum impulse for each blasthole is resolved into the vertical and
horizontal directions on the basis of the areas defined by the gas envelope. For the
vertical impulse the area at the base of the envelope is used in Eq. A7. However,
due to the angled highwall, the front row has an inconsistent burden and the area is
taken as an average of the areas at the top and bottom of the explosive column
length.

Two impulses are computed in the horizontal direction. The first is the section of
rock between the toe of the bench and the top of the explosive column, and the
second impulse is the region at the top of the bench where the blasthole is filled
with stemming material.

A similar averaging process is used to account for the effect of the front row of
holes in the calculation of the horizontal impulse, which results in three horizontal
heave velocities defining the heave velocity profile. On subsequent rows the
effective free face is assumed to be vertical.

For the heave action, the blocks comprising the block model are treated
sequentially within a time-stepping loop using a raster pattern starting at the toe of
the bench with priority given in order to z, x and then y. For each run through the
time-stepping loop all block positions and velocities are recalculated from ballistic
trajectory equations and the revised values are stored in three-dimensional arrays;
in-flight interactions with other blocks are not modelled. Each block remains in the
time-stepping loop until it travels to a point in space at which, ahead or below it,
another three-dimensional array describing the mine floor has a positive value,
defining that volume of space as containing a block.

When a block drops out of the time-stepping loop to form part of the muck pile it
immediately comes to rest on the ground and becomes part of the array that defines
the floor and the developing muck pile. The input value for maximum angle of
repose ensures that if the defined angle is exceeded in the generation of the muck
pile then the block is moved down the surface of the muck pile until it reaches a
point of stability.

When all blocks have come to rest, swell is applied to the muck pile by raising
each block by a pre-defined factor proportional to the change in vertical height the
block underwent in moving from the bench to the muck pile.

Fragmentation

The Bond Index equation from comminution theory is used to assess the effect of
different blasting practices on the degree of fragmentation resulting from a blast
(Van Zeggeren and Chung 1975; Nielsen 1983). The equation relating energy input
to degree of comminution is:
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W ¼ KB
1

P1=2
� 1
F1=2

� �
ðA9Þ

where:

W is the energy input to a machine reducing particle size (kWh.t−1)
F is the feed size, measured in microns (10−6 m), and defined as the mesh size of

a screen that allows 80% of the material to pass
P is the product size in microns also at 80% passing
KB is a constant determined for a specific feed material

The constant KB is determined by rearranging Eq. A10 to give:

KB ¼ W
P1=2F1=2

F1=2 � P1=2

� �
ðA10Þ

and the amount of energy required to reduce a known feed size to a given product
size is measured. For MRT the amount of energy needed to reduce the secondary
crushed product from −19 mm to a final product size of −210 microns was, on
average over a two-month period, 16.10 kWh.tonne−1. As the Bond Index works on
80% passing size, the feed and product sizes are taken as 16,300 microns
(16.3 mm) and 180 microns respectively. Substituting these values into Eq. A10
gives:

KB ¼ 16:10� 1801=2 � 163001=2

163001=2 � 1801=2

� �
¼ 241.4kWh� micron1=2:tonne�1

Equation A9 can also be rearranged to calculate the energy required to reduce an
infinite feed size (F = ∞) down to any product size P. This is referred to as the total
energy (Wt) and is given by:

Wt ¼ KB
1

P1=2
� 1
11=2

� �
¼ KB

P1=2
ðA11Þ

Based on Eq. A11, the Bond Work Index (Wi) is the amount of energy required
to reduce an infinite feed size down to an 80% passing size of 100 microns. This is
used as a common basis of comparison across different materials and processes and
is given by:

Wi ¼ KB
1

1001=2
� 1
11=2

� �
¼ KB

1001=2
ðA12Þ

Substituting the calculated KB in Eq. A12 gives:
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Wi ¼ 241:4
1001=2

¼ 24:1kWh:tonne�1

From Eqs. A11 and A12 it is possible to calculate the energy required to reduce
material from an infinite size down to the desired 80% passing size as:

Wt ¼ Wi
100
P

� �1=2
ðA13Þ

If it is assumed that the only factor that influences the degree of fragmentation in
blasting is the amount of energy imparted to the rock mass, and that the energy
distribution and initiation variables can be ignored, then Eq. A13 should give a
good representation of the energy input from the explosive in a blast, based on the
resulting fragmentation.

For the 6.5 m � 8 m MRT blast designs, the material in the resulting muck piles
had an 80% passing size of approximately 0.5 m. From Eq. A13 the energy
imparted by the explosive is:

Wt ¼ 100
5� 105

� �1=2
¼ 0:34 kWh:tonne�1 ¼ 1:23MJtonne�1

The energy supplied by the explosive acting on the rock mass can be derived
from the known powder factor (PF) at 0.31 kg.tonne−1 for the blasts and the energy
contained in the explosive used. The energy for the heavy ANFO used, with
specific density 1.2 g.cm−3, is 4.5 MJ.kg−1. The explosive energy per tonne is
therefore:

PF� Explosive Energy ¼ 0:31� 4:5 ¼ 1:40 MJ:tonne�1

This value of 1.40 MJ.tonne−1 compares favourably with the value of
1.23 MJ.tonne−1 derived using the Bond Index for comminution (Hustrulid 1999).
If it is assumed that the difference in values is due to slight differences in the
efficiencies of the two processes then it is reasonable to reconcile the two values by
applying a factor (a) that is appropriate over a range of energies.

By rearranging Eq. A13 and applying the correction factor a (Van Zeggeren and
Chung 1975) the equation for product size from the powder factor used in the blast
design is:

P ¼ Wi

Wt

� �
� a

� �2

ðA14Þ

where:

Wt is the energy equivalent of the powder factor.
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Appendix B: Costing the Blasting and Selection Processes

To simplify calculations, all process costs are calculated as cost per tonne worked.
Drilling Costs
Drilling costs are expressed as a cost per metre drilled (DCm) for the 250 mm

hole diameter used in this study. The tonnage of rock associated with each blast-
hole, taken as a standard for a specific hole pattern, is given by Eq. A8, divided by
1000 to give tonnes. Cost per tonne (DCt) is then:

DCt ¼ DCm � HL
M

ðB1Þ

where:

HL is the hole length (m), including subdrill.

Blasting Costs

The initial costs are calculated for a single hole and are divided into fixed costs per
hole—booster, detonator, surface connection and manpower costs—and the vari-
able cost of the main charge placed in the hole. The main charge costs (EXm) in
dollars are calculated using:

EXm ¼ EX � ðAh � EClÞ � qe ðB2Þ

where:

EX is the cost of the explosive ($.kg−1)
Ah is the cross-sectional area of the hole (m2)
ECl is the charge length of the explosive in the hole (m)
qe is the density of the explosive used (g.cm−3).

Loading Costs

The loading costs for the original blast design are taken as $0.14/tonne for a muck
pile with 80% passing size of 0.5 m. Within reasonable limits, as passing size
decreases loading costs decrease, due mainly to an increase in the ease of digging,
which leads to faster loading rates and reduced maintenance costs. MacKenzie
(1966) reports a linear relationship between cost per unit loading and degree of
fragmentation for Quebec Cartier’s 16-D iron ore mine. Van Zeggeren and Chung
(1975) found that their data followed a square root relationship and Nielsen (1983)
used a variable exponent selected by the user. For this application, with too few
operational data to derive an appropriate relationship, the linear equation is:
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Cl ¼ ðD80� aÞþ ðSCl � bÞ ðB3Þ

where:

Cl is the adjusted loading cost ($.tonne−1)
D80 is the calculated 80% passing size (m) using Eq. A14
SCl is the standard loading cost (0.14 $.tonne−1)
a, b are constants.

The incorporation of the standard loading cost (SCl) in Eq. B3 allows the
loading cost relationship to be adjusted for different loaders with different attributes.

Haulage Costs

Haulage costs also decrease with muck pile particle size because the truck is more
completely filled, providing the ore density allows it. The relationship used for
haulage costs, (Ch), in $/tonne is:

Ch ¼ v:eD80 ðB4Þ

where:

v is a constant.

Primary Crushing Costs

Because variations in feed size to the primary crusher affect power costs much more
than general maintenance and plate replacement costs, the Bond Index Eq. A9 was
used to calculate crushing costs:

Ccr ¼ d� 241:4� 1
163001=2

� 1
D801=2

� �
ðB5Þ

where:

Ccr is the adjusted crushing cost ($.tonne-1)
d is a constant.
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Costs Unaffected by Blasting Practices

Costs incurred in producing a saleable product that are not affected by blasting
practices include mining services and the entire mineral processing operation
downstream of the primary crushing. These values, also expressed as $/tonne, are
assumed to remain constant.

References

Chung SH, Tidman JP (1988) Effective modelling for cast blasting. In: Singhal RK
(ed) Proceedings international symposium for mine planning and equipment selection. A A
Balkema, Rotterdam, pp 357–360

Dowd PA (1995) Björkdal gold mining project, northern Sweden. Trans Inst Min Metall Sect A
Min Technol 104:A149–A163

Harries G, Hengst B (1977) Use of a computer to describe blasting. In: Proceedings 15th APCOM
symposium. Melbourne, The Australasian Institute of Mining and Metallurgy, pp 317–324

Hustrulid W (1999) Blasting principles for open pit mining. General Design Concepts, vol 1. A A
Balkema, Rotterdam

Jorgenson GK, Chung SH (1987) Blast simulation surface and underground with the SABREX
model. CIM Bull 80:37–41

Journel AG, Alabert F (1989) Non-gaussian data expansion in the earth sciences. Terra Nova
1:123–134

Journel AG, Alabert F (1990) New method for reservoir mapping. J Petrol Technol 42(2):212–218
Kirby IJ, Harries G, Tidman JP (1987) ICI’s computer blasting model SABREX—the basic

principles and capabilities. In: Boddorff RD (ed) Proceedings 13th conference on explosives
and blasting technique. Society of Explosives Engineers, pp 184–198

Leiper GA, Plessis MP (1987) Describing explosives in blasting models. In: Fourney WL,
Dick RD (eds) Proceedings second international symposium on rock fragmentation by blasting.
Society for Experimental Mathematics, pp 462–474

MacKenzie AS (1966) Cost of explosives—do you evaluate it properly? Min Congr J 32–41
Mohanty B, Tidman JP, Jorgenson GK (1988) Advanced computer simulations—the key to

effective blast designs in open pit and underground mines. In: Fytas K, Collins JL, Singhal RK
(eds) Computer applications in the mineral industry. Rotterdam, pp 41–48

Nielsen K (1983) Optimisation of open pit bench blasting. In: Proceedings first international
symposium on rock fragmentation by blasting, vol 2. Society for Experimental Mechanics,
pp 653–664

Pryor RN, Rhoden HN, Villalon M (1972) Sampling of Cerro Colorado, Rio Tinto, Spain. Trans
Inst Min Metall Sect A Min Technol 81:A143–A159

Randall M, Wheeler A (1998a) Balancing the books. Mining Magazine 337–342
Randall M, Wheeler A (1998b) Where did it go? Mining Magazine 245–249
Van Zeggeren F, Chung SH (1975) A model for the prediction of fragmentation, patterns and costs

in rock blasting. In: Hoskins ER (ed) Proceedings 15th symposium on rock mechanics. The
American Society of Civil Engineers, Reston, pp 557–569

Planning, Designing and Optimising Production … 449



Geometallurgical Modelling and Ore
Tracking at Kittilä Mine

D. La Rosa, L. Rajavuori, J. Korteniemi and M. Wortley

Abstract Geometallurgical modelling of an orebody provides benefits to a mine by
gaining a better understanding of the ore characteristics and how these affect the
performance of the concentrator. With this knowledge, plant operating conditions
can be adjusted to optimise throughput and recovery in advance of the arrival of
particular ore types. Therefore it is extremely important that the origin of the ore
being processed is known as accurately as possible. Depending on the homogeneity
of the ore characteristics, reliance on assumptions about stockpile residence times,
scheduling and material handling can render the best geometallurgical models
useless. The solution adopted at Kittilä was to utilise Metso SmartTags™ and
in-house expertise to develop a system that continuously and accurately links
geotechnical and lab data from the mine to the performance of the plant. This
application presented several unique opportunities and challenges. For example,
this was the first installation of a SmartTag™ system for geometallurgical mod-
elling in an underground mine. Challenges included the fact that the system
installation is routinely subjected to temperatures below −20 °C. The system was
installed and commissioned in early 2013 and has been operating continuously
since. Kittilä has begun to see the benefits of the system with an increased
understanding of how different ores are processed in the concentrator. Other
advantages include the ability to alert operators about the arrival of difficult ores and
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a better understanding of their ore handling systems. This paper describes the
installation and use of the system at Kittilä, and details some of the geometallurgical
relationships that have been developed using the data collected so far.

Introduction

Geometallurgical modelling of an orebody provides benefits to a mine by allowing
a better understanding of how different ore types—as defined by their strength,
structure and grade—respond to crushing, grinding and flotation processes.
Advance knowledge of how each part of the circuit will perform when a particular
ore type is treated allows overall plant performance to be optimised by adjusting
equipment parameters proactively. One issue that can arise in geometallurgy is the
uncertainty that surrounds linking the instantaneous properties of the circuit feed
measured in the mine with the performance of the plant. Assumptions in residence
times, scheduling and material handling can cause ambiguity in the actual mill feed
at any given time. Agnico Eagle’s Kittilä mine has overcome some of these issues
by using Metso Process Technology and Innovation’s (2013) SmartTag™ ore
tracking system. This paper describes how Kittilä utilise the SmartTag™ system
and details some of the benefits they have derived from it.

Background

Issues with Metallurgical Reconciliation

Two persistent issues reduce the effectiveness of even the best attempts at quality
metallurgical accounting, reconciliation and optimisation. Firstly ore must be reli-
ably tracked from its source to its destination or product, and secondly variable
process holdups inherent to most mining processes (e.g. stockpiles, feed bins, ROM
pads, muckpiles and ore silos) must be taken into account. Ore tracking is an
important aspect of reconciliation as it allows the quantity and quality of a particular
type of ore entering a processing plant to be determined at any given time. This
allows both plant operation optimisation and account of the material processed and
metal produced (Jansen et al. 2009).

Due to the inherent pseudo continuous nature of mining operations, highly
variable time delays may often exist in the flow of run of mine ore. In order to
determine the process inventory at a particular time and location these need to be
estimated as accurately as possible. Process holdups provide additional uncertainty,
not only through additional variable source to product time, but also due to the
potential for mixing or size and density classification in the material. In the coarse
holdups prior to grinding, segregation can occur based on size and density. This is
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difficult to quantify, making process performance difficult to predict, even when
testing in situ ore properties. Furthermore, whilst blending of ores may smooth out
production differences, it adds further complexity to reconciliation calculations
(Jansen et al. 2009).

The SmartTag™ system allows spatial ore characteristic data of a parcel of ore to
be linked with time based plant performance data, such as particle size distribution,
specific energy and throughput. This can be used to update block models in real
time with these temporal characteristics. Due to the increased accuracy in predicting
ore delivery characteristics, the plant will be advised in advance of the ore entering
the processing plant, and the number of routine ore characterisation tests required to
adjust processing strategy may be reduced due to the increased knowledge of the
feed at any given time (Lynch-Watson et al. 2013).

Issues with Tracing Ore Assays

Ore grade is generally determined by the assay of valuable components, in the case
of Kittilä, by gold content. The industry standard for obtaining gold and platinum
group element content of high grade ores is the lead collector fire assay. Lead
collection is the most definitive method for gold analysis in all samples including
drill core, soil and chip samples. However, this process is highly technical and time
consuming, requiring several preparation steps. As such, the turnaround time for
grade determinations can be lengthy.

The fire assay process is as follows. The ore to be assayed is sampled and
sub-sampled, pulverised, weighed and mixed with fluxing agents. These help the
sample to melt and fuse at lower temperatures, and promote gangue separation.
Lead is added as a collector and the material is placed in a crucible inside a furnace
preheated to 1000 °C for between 20 min to 1 h to fuse (SGS Mineral Services
2013; Juvonen et al. 2004). The lead and valuable materials separate into a button at
the base of the crucible. When cooled, this can be hammered from the gangue layer
that forms on top. The button then undergoes a process called cuppelation, whereby
the lead is oxidised at 960 °C and is absorbed into a ‘cupel’ (a porous container
used for assaying). This leaves a bead of the valuable material behind called a ‘prill’
(SGS Mineral Services 2013). The cuppelation process takes in excess of 20 min
(Austin 1907).

The gold content may then be determined through gravimetric weighing or
dissolution of the prill in acid for solution analysis. Dissolution may be conducted
in nitric or hydrochloric acid, with the prill usually hammered flat to speed the
process. Solution analysis techniques include flame atomic absorption, inductively
coupled plasma mass spectrometry and instrumental neutron activation analysis
(SGS Mineral Services 2013).

High sulphide concentrate in samples interferes with the fusion process,
requiring the prior roasting of samples. Furthermore, significant nickel, copper or
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cobalt content require removal between the fusion and cuppelation stages, as they
are unable to be removed before concentration or in the final material. A process
called scorification is utilised for the removal of these elements, and essentially
comprises a further re-fusion stage with added lead and flux (Juvonen et al. 2004).
The time for scorification is in the region of 30 min (Austin 1907).

From an overview of the process it can be seen that a gold fire assay can take in
excess of several hours to process, and whilst samples are likely be processed
concurrently, the time requirement is certainly high. Due to the time and resource
requirements of the fire assay procedure, it is not only lengthy but also costly.
Furthermore, due to the small sample size utilised for assay determination of each
sample, it is difficult to obtain representative information without a multitude of
samples. Using ore tracking to provide more accurate data regarding the ore
reporting to the plant, the number of samples required for certainty of grade and
value may be reduced, reducing overall turnaround time and cost while increasing
accuracy.

Previous Uses of the SmartTag™ System

The SmartTag™ system comprises tags, detection antennas, data collectors and a
central database. The tags themselves are built around robust passive radio fre-
quency transponders (RFID tags), and are available in a number of sizes. The tags
can survive the blasting, excavation and crushing processes, and do not utilise an
internal power source, meaning that they can remain in stockpiles and ROM pads
for extended periods of time (La Rosa et al. 2007).

Each tag is encoded with a unique ID which is scanned by a handheld computer,
which can be assigned to a specific location within the mine, for example, in the
stemming column of a blast hole or on a muck pile. The tag then flows with the
blasted ore as it travels through the process—from the muckpile, through the pri-
mary crusher and then into the grinding circuit. Antennas that detect the tags are
located at critical points in the process—for example at the primary crusher dis-
charge, and at the primary grinding circuit stockpile reclaim. An individual tag may
be detected several times at different antennas, providing valuable information
regarding material movement, particularly making it possible to link process data to
the ore properties (Lynch-Watson et al. 2013).

When a tag is detected the data logger assigns the detection time and location to
the event and sends this information to the database. This aggregates process his-
torian data such as throughput and recovery. This information is utilised to update
the mine block model. The process is illustrated in Fig. 1.

The SmartTag™ system has been utilised globally in a variety of commodities,
in permanent, temporary and trial installations.
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Overview of the Smarttag™ System at Kittilä

Agnico Eagle’s Kittilä operations are located in Lapland in Northern Finland.
Kittilä mines and processes approximately 3000 t of material per day. In 2013
Kittilä produced 146,421 oz. of gold, and at the time of writing this paper, mine life
will extend to 2034. As of November 2012 Kittilä is an entirely underground
operation and consists of three main ore bodies—the Rimpi zone, Roura zone and
Suuri zone. The ore body at Kittilä is complex and this was one of the major
motivations for installing the SmartTag™ system. Ore type can vary between each
loader bucket which makes reconciliation and scheduling very difficult.

The mining method used is open stoping followed by delayed back filling. Ore is
brought to the surface using haulage trucks via approximately 3 km of access
ramps. Figure 2 shows a simplified view of the mine.

Kittilä’s processing plant consists of a grinding circuit, flotation, pressure oxi-
disation and then leaching. Figure 3 shows the flow sheet of the Kittilä processing
plant.

Metso originally provided Kittilä with a temporary SmartTag system for a
3 month trial. After this proved successful, the system was purchased outright and a
second unit, for the expanded processing plant, was also purchased. The units are
installed on the primary crushed product conveyor belts before the surge bins and
SAG Mill. As the environmental conditions at Kittilä can be extreme with the

Fig. 1 SmartTag™ system data flow
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lowest recorded temperature in Finland, −51.5 °C, recorded not far from the mine,
Metso supplied the system with low temperature enclosures and tested the tags and
antennas down to −20 °C to ensure that the materials retained their strength.

The data loggers in the field enclosures communicate to the central SmartTag™
server via the Kittilä network. The server retrieves data from the field units and
inserts it into a SQL Server database. This is linked to the site’s lab network so
underground assays can be automatically linked to individual tags.

Fig. 2 Simplified mine diagram (after Agnico Eagle 2014)

Fig. 3 Processing plant flow sheet (after Agnico Eagle 2014)
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Smarttag™ Methodology

Inserting the Tags

Kittilä experimented with different methods of inserting the tags into their run of
mine ore. The final solution involved the following procedure:

1. Geotechnicians prepare labelled underground ore sample bags and link these to
SmartTag IDs.

2. Underground loader operators take a muck sample from the scoop approxi-
mately every 100 t, resulting in a material sampling rate of 1 sample per 100t of
material

3. At every 3rd muck sample, the operator also adds a SmartTag™. The sampling
frequency for the SmartTags™ is therefore one for every 300 t of material.

Each sample is then taken to the laboratory where the quality of the sample is
checked and paperwork completed. The samples are then analysed for gold, sul-
phur, and arsenic and the results entered into Kittilä’s laboratory information
management system (LIMS). The best case turnaround time, from sampling to
results reported, is 24 h.

The tags take a different path. Once they have been inserted into the bucket of
the underground loader they are loaded onto the trucks, hauled to the surface,
stockpiled, crushed and detected on the crusher product conveyor before flowing
through the surge bins, and ultimately into the SAG mill where they are consumed.
Tags can also be placed on surface stockpiles, as illustrated in Fig. 4.

Fig. 4 Surface tag placement
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Incorporating SmartTag Data into a Lab Database System

Each sample is assigned a unique ID when it is entered into Kittilä’s LIMS. This
unique ID is associated with the SmartTag ID (this is also globally unique) using
the hand held scanner. Once the tag information is loaded into the SmartTag™
database, Kittilä have developed in-house software to link the sample ID to
underground production information (e.g. stope location, tonnage etc.). The same
software then links this data to the SmartTag ID in the SmartTag database using the
sample ID. The combined data then resides in the SmartTag™ SQL Server
database.

Data Utilisation

There are three main uses for the data obtained using the SmartTag™ system:

Mill Grade Prediction

Once a tag is detected at the plant, the characteristics of the ore associated with it
are retrieved. This is compared to the ore that the plant is expecting, and if there is a
difference, changes can be made to the plant’s operating strategy in order to
maintain throughput and/or recovery. This type of feed forward or ‘heads-up’
control is very valuable to sites that have complex, heterogeneous ore bodies.
Without the advantage of physically tracking the ore from the mine, it is often only
when the plant starts performing poorly that the operators become aware that the
ore type has changed.

Figure 4 shows mill grade (Au ppm) predictions as estimated by tag arrivals
compared with mill feed daily samples. The process noise in the muck sample daily
average is due to the fact that muck samples are composed of individual rock
samples with very little blending or homogenisation that would be present in the
mill feed. The process noise can be reduced by the addition of a moving average of
course, but increasing the SmartTag addition rate from 1 tag per 1000 t to 1 tag per
700 t reduced the fundamental sampling error. This reduced the average absolute
error (in ppm) by about 50%. Further increases in tag addition rate to 1 tag per 300 t
should further decrease the prediction errors in mill grade.

Reconciliation

As discussed earlier, accurate reconciliation is often an issue on mine sites. The
differences between what is being reported as being sent from the mine, and what is
being received at the plant can be quite significant. At Kittilä these arguments have
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been reduced as they can use the SmartTags as proof of delivery. This is extremely
powerful, as it eliminates handling errors as a reason for poor reconciliation. In turn,
this allows the operation to look for other causes of incorrect ore delivery and to
then rectify them.

Geometallurgical Modelling

When the plant struggles to meet throughput and recovery targets, and the source of
those issues can be traced back to the ore type, this provides the basis for a
geometallurgical model of the ore body. In effect, each detected SmartTag™ is
linking the physical characteristics of the ore with its performance in the plant.
Once troublesome ore types are identified, plant feed with similar properties in the
block model or from physical sampling at the underground muckpiles can be
flagged as having the potential to negatively affect plant performance and remedial
actions taken prior to its arrival at the concentrator. In effect, by identifying trou-
blesome ores and adjusting the operating strategy of the plant, Kittilä are imple-
menting a geometallurgical model and continually improving their understanding of
the ore body.

Results

To date, statistics show that around 85% of tags dropped underground are detected
on the surface, with tags sometimes surviving for several years on surface stock-
piles, through the extreme cold of winter in Kittilä.

When tags are detected the geology team analysis the data and informs the plant
if the feed is a problematic ore. As the tag detectors are located before the mill silos
there is enough time for the analysis to be done and the information relayed. An
example of how this improves processing is that the plant can increase throughput
when low sulphur ore types are detected. This is due to the fact that sulphur content
determines how much ore the autoclave can process.

Estimations of mill feed based on SmartTag™ detections and their associated
sample characteristics match the actual analysed mill feed well (as determined by
the combination of daily samples). This gives confidence that the tags flow with the
ore and that no segregation takes place. Tags and analysis results are used on a daily
basis to evaluate and adjust mill feed (based on gold and sulphur grades).

At the end of each month SmartTags™ are used to reconcile the amount of mill
feed from each stope. Figure 4 shows the cumulative tonnage of extracted and
processed ore from a particular stope over about a one month period. As each tag
has a grade associated with it, this can be converted into a monetary value by
Kittilä. The variable time lag between when ore was excavated and processed is
also apparent in this figure.
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Potential Extensions to the Smarttag™ System

The SmartTag™ system allows ore to be tracked from the spatial domain in the
mine, to the temporal (time-based) domain in the plant. Figure 5 shows tags
inserted into blast holes in the spatial domain of an open cut operation, with the
geotechnical block model overlain. This could equally apply to a stope or a block
cave in an underground mine.

Once the tags are allocated to a blast hole or three dimensional coordinate (blast
hole, muck pile, loaded truck etc.), the SmartTag™ software assigns the nearest ore
block to it and all its associated characteristics (e.g. strength, structure and grade).
When the tag is then subsequently detected at the crusher or concentrator, time
based characteristics such as throughput and recovery can then be assigned back to
the ore block. This is illustrated in Fig. 6.

The physical tracking of ore from the mine, from both underground or open-pit,
gives a unique opportunity to correlate plant performance with the characteristics of
the ore as defined in the mine’s block model or from grab samples. Some examples
are mill throughput vs. hardness or structure rockmass parameters, recovery versus
grade or simply dilution, where tags associated with waste blocks appear in the
process stream (Figs. 7 and 8).

Fig. 5 Mill grade prediction
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Fig. 6 Loading and processing rates for Stope 425138

Fig. 7 SmartTags overlain with geotechnical block model
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Next Steps and Conclusions

In conclusion, the SmartTag system has been successfully implement at Kittilä and
provides ongoing benefits to the operation. The system has led to improvements in
Kittilä’s reconciliation and metallurgical accounting and is now providing a method
to predict head grades, in real time, without the need to wait for plant assay results.
The system also allows the Geologists to warn the plant about problematic ore types
before they cause processing issues.

Extending these last two benefits are now a priority at Kittilä as so far only
geologists have direct access to the information acquired from the SmartTag™
system. It is planned for metallurgists and mill supervisors to also have online
access to the information generated by the system to better utilise it. This will
increase the benefits of the system as the site will not have to rely on busy geol-
ogists to warn the metallurgists that problematic ore is about to be delivered to the
plant. Presentation of the data is also being improved, with graphs, trends, rolling
averages etc. to be added.
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Predicting Mill Ore Feed Variability Using
Integrated Geotechnical/Geometallurgical
Models

J. Jackson, J. Gaunt and M. Astorga

Abstract The Ban Houayxai Mine (BHX) is a relatively low grade, low cost, open
pit gold-silver deposit in Laos operated by Phu Bia Mining, a subsidiary of
PanAust. Ore production rate is 4.5Mt pa with direct tipping to a SAB mill with a
carbon in leach process plant. Approximately 100,000 oz of gold is produced per
annum. The operation is located in mountainous terrain with minimal ROM
stockpiling are which results is limited capacity for blending from stockpile with the
mill instead reliant upon direct feed ex-pit. Since commissioning in 2012, the plant
has seen significant variation in milling rates due to variability in the feed properties
of the oxide, transition and primary ores. As part of an ongoing continuous
improvement program, an integrated approach was initiated focussing on main-
taining and enhancing production in the future as the proportion of harder primary
ore increases with focus on direct blending from the loading face using the ore
properties and blast fragmentation to maintain mill throughput. This approach was
based on the concept of physical assets management, commencing with improving
information and knowledge of the condition of the ore body through modelling the
characteristics, variability and performance of the feed for processes relevant to
throughput. These models are used to support both mine and process plant pro-
duction planning. The key ore feed characteristics and parameters modelled for the
life of mine are blastability index (BI), powder factor, crushability or impact
resistance (A*b) and grindability (BWi). These predictive spatial models were
based on the data from diamond drill holes used in resource definition and
geotechnical drilling programs by integrating geotechnical, geological, geochemical
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and metallurgical data. Although, at the early stages of implementation, the models
are being utilised for ore blending decisions, to provide guidance and support for
budgeting, long term mine planning, blast design for mill feed and providing the
mill with an expectation of performance.

Introduction

Pan Aust’s Ban Houayxai Mine (BHX) is located in Laos approximately 100 km
north of the capital, Vientiane and 25 km from Phu Kham copper mine (Fig. 1).
The mine is an open pit operation with an SAB-CIL processing circuit, which
commenced production in May 2012. The mine is producing approximately
100,000 oz of gold and 600,000 oz of silver per annum.

Since commissioning the plant has seen significant variation in milling rates due
to variability in the feed properties of the oxide, transitional and result primary ores.
There is limited opportunity for short term stockpiling and blending to create a feed
with constant hardness over any significant timeframe. Impacts of this variability
may include inefficiencies in milling and mining, variation in mill throughput rates,
risk damaging SAG mill liners and lead to reactive mining and milling. As mining
progresses the proportion of primary ore will increase and a proactive management
program was initiated to focus on maintaining and enhancing production in the
future.

One aspect of this program focussed on throughput by applying a scaled down
concept of physical asset management through four components—predicting the
ore’s characteristics and performance; analysis and assessment of engineering
solution options; reacting to unexpected issues; monitoring review and feedback.

The goal of this paper is to outline the approach and the development, results and
initial implementation of the predictive spatial modelling of key parameters related
to throughput, for the life of mine (LOM). These key parameters are the feed size
and mill hardness in terms of crushing and grinding.

The predictive models are based on the data from diamond drill holes used in
resource definition and geotechnical drilling programs by integrating geotechnical,
geological, geochemical and metallurgical data types together with the associated
lithological model. The key parameters modelled are:

• blastability index (BI), index of the ease to blast the rock mass, and the required
powder factor (pF) for a constant mean fragmentation size using empirical
engineering models;

• crushability or resistance to impact breakage (A*b) through a relationship
between the geotechnical rock mass rating (RMR), the intensity of weathering/
oxidation and A*b from metallurgical SMC Tests.

• grindability, the bond ball mill work index (BWi), through relationships
between lithology, geochemistry, intensity of weathering/oxidation and bond
ball work index metallurgical tests.
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Fig. 1 Location of Ban Houayxai gold mine in Laos

Predicting Mill Ore Feed Variability Using Integrated … 467



Due to the data types and sampling density, the models of these parameters are a
combination of differing levels of granularity and resolution. They are not con-
sidered a precise reflection of reality but show likely spatial and performance
variability allowing options and controls to be considered in maintaining or
enhancing production in a proactive manner.

Although, at the early stages of implementation, the models are being utilised to
provide guidance and support for budgeting, long term mine planning, blast design
for mill feed and providing the mill with an expectation of performance.

Physical Asset Management

The standard definition of asset management is ‘the systematic and coordinated
activities and practices through which an organisation optimally and sustainably
manages its assets, their associated performance, risks and expenditures over their
lifecycle to achieve the strategic plan (BSI 2008; Woodhouse 2011). Although
historically the management of physical assets is strongly associated with equip-
ment maintenance, this concept can and has been extended to other physical assets
such as oil reservoirs or mineral deposits. Some companies within the oil and gas
industry, particularly BP and Shell, adopted this approach during the mid to late
1990s resulting in large improvements in project value such as 17% increased
output at 50% lower operating costs, rather than the business as usual case of
chasing efficiency gains through doing the same thing quicker and cheaper
(Woodhouse 2010). Elements which enable successful asset management include:
clear direction and leadership, cross functional coordination, staff awareness,
competency and commitment and importantly adequate information and knowledge
of asset condition, performance, risks and costs and the interrelationship between
these.

The approach adopted at BHX is a scaled down concept of the asset manage-
ment system which focusses on the enabling elements mentioned above in relation
to throughput mine production forecasts and the associated mine life cycle plan
only. The concept can be divided into four components of predict, control, react and
monitor as shown in Fig. 2.

The first component, prediction, develops models of the expected conditions and
performance of the orebody including spatial variability. This includes the rock
properties and process attributes associated with the key process such as blasting,
crushing and grinding within the block model. The prediction of performance is
developed under constrained conditions for each block, is not treated as a deter-
ministic outcome but as aid in the next component.

The second component, control, is where engineering solutions to manage or
optimise the predicted performance are developed together with management plans.
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This may include solutions such as blending, scheduling, alternative blast designs,
processing conditions, or simply nothing.

As all of the predictive models are estimates with uncertainty, there will still be a
need for reacting to unplanned/unexpected issues that could not be predicted. But
rather than dominating the operation, the focus switches to proactive prediction and
control with monitoring and review as a feedback loop.

Modelling and Use of the Models

There are many perspectives of models in the literature (Giere 2010; Knuuttila
2011). The standard view is that a model directly represents an object, however here
we take the more pragmatic perspective in that an agent intends to use the model to
represent part of the world for some purpose, so it is the agent that specifies which
similarities are intended and for what purpose (Giere 2010; Cunningham 2005).
Thus the success of a model depends not only on the direct accuracy of repre-
sentation to the real world, particularly given limitations on spatial resolution, input
data and process descriptions, but on the purpose for which the model is employed.
In this case the model needs to satisfy a distinct purpose—an improvement of
current method in spatially and temporally predicting the key rock properties and
the associated performance under constrained conditions for use by many agents—
mine planners, metallurgists, blasting engineers and geologists.

Fig. 2 Schematic of the proactive management system for BHX
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BHX Geology and Operations

The Ban Houayxai is a structurally controlled epithermal gold-silver deposit hosted
within an early Permian volcano-sedimentary sequence of the Trong Son Fold belt
in the south western extremity of the Phu Bia Contract Area (Manaka et al. 2014).
The deposit is located on a steep narrow north-south oriented ridge that protrudes
into the Nam Ngum 2 Reservoir, a recently filled hydro electric scheme. As at the
end of 2013, the published Mineral Resource at Ban Houayxai stood at 64Mt @
0.90 g/t Au and 7.1 g/t Ag for a total of 1.8Moz Au with Ore Reserves at 36Mt @
0.81 g/t Au and 8.0 g/t Ag (Aust 2014).

Gold and silver mineralisation occurs as structurally controlled narrow veins and
disseminations and within the volcano-sedimentary sequence. The most commonly
mineralised veins are quartz-pyrite+/-carbonate+/-electrum+/-native silver veins
with wall rock alteration of sericite, chlorite and adularia hosted (Manaka et al.
2014; Brost 2011). The disseminated mineralisation predominately is associated
with silicification of the feldspathic sandstone with higher grades in breccias. At
least three phases of deformation have been imposed on the deposit resulting in a
significant structural complexity in shearing, faulting, fracturing and jointing.

The life of mine plan comprises of 3 pits—north, central and south, with a LOM
stripping ratio of 1.5:1. Due to the topography, space is at a premium hence the
operation is a direct tip operation into the primary crusher with only a very small
stockpile capacity. The process plant consists of a 26 ft 6.5 MW SAG-Ball mill
circuit feeding a conventional carbon in leach (CIL) circuit.

Three ore types have been defined at Ban Houayxai based on the weathering
profile—oxide, transitional and primary. Average throughputs were assigned to
these ore types, based on test work within the feasibility study and during
construction/commissioning, and are a critical component of planning, scheduling
and forecasting. However since commissioning, the variability in throughput has
been high, both in terms of amplitude and period not only due to the mix of the
oretypes but also due to variability within the ore types.

Predictive Modelling Approach

The approach to the predictive modelling initially consists of decisions as to:

• Which key parameters to be predicted;
• What methodology is to be applied to predict key parameters and potential

performance;
• what input variables are suitable and relevant;
• the domaining methodology for each of the variables;
• the spatial modelling methodology for each variable and parameter
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based on (a) the type, quantity and quality of available data and (b) the purpose of
the models to improve and support mine and process plant production planning.
These decisions are often interrelated, developed iteratively.
Methods for the prediction of the key parameters include:

• direct tests including small scale tests;
• empirical ‘engineering’ models;
• empirical ‘proxy’ models—where a relationship is established between variables

or proxies and parameters from a limited set of direct tests.

In an ideal world, the most relevant, direct tests and measurements of the key
parameters would be undertaken at a sample density relevant to their spatial vari-
ability and spatially modelled. For geotechnical and geometallurgical parameters
this rarely the case as direct measures of a parameter are often problematic plus the
logistics, cost and time of obtaining and processing the relevant data is significant.
Hence the empirical engineering and proxy models are the more common. These
models require the input of many disparate data types at varying sample intervals
and density with varying sensitivities and thus the final outputs are multi layered
consisting of a mix of levels of model granularity and resolution. It is our preferred
approach to spatially model the primary input variables with the appropriate
methodologies, where possible, and then apply the empirical models to predict the
parameters (response) rather than vice versa. This approach better matches the
spatially modelling methodology to the data (Coward et al. 2009).

Domaining is a first order decision that partitions the dataset into spatially
coherent, geological and statistically acceptable ‘domains’ (Coombes 2009; Vann
2008). Some apriori knowledge of the key parameters is required to identify the
geological drivers of the parameter’s variability and performance that can be related
back to the drill hole. However this isn’t always possible and thus other domaining
options should be considered. Domaining methods include:

• value or grade based—the domains are based on selected cut off values;
• population based—the domains are defined on down hole zones that are stati-

cally similar;
• generic geological based—domains are based on geological units or model e.g.:

lithology/alteration
• process/variable geological driver based—domains based on the differing casual

geological drivers of the parameter’s performance.

For practical purposes the predictive models are required to have spatial repre-
sentation within a block model. For this initial model, a number of the input
variables were spatially modelling using relatively simple linear estimation
approaches. Although the block model implies a certain level of granularity this not
always the case and an understanding of the underlying data and model limitations
is required.
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Key Parameters

The key ore related parameters relevant to throughput for the BHX circuit are the
size distribution of the feed to the mill and the comminution or mill hardness.

The feed size is a function of the fragmentation from blasting and primary
crushing. Rather than predicting the feed size, the approach taken is to predict the
ease of which the rock breaks due to blasting (Blastability Index or BI) and the
required energy or powder factor to achieve a constant mean fragmentation to the
mill using empirical rock mass and fragmentation ‘engineering’ models.

The parameters relating to mill hardness consist of and grindability. As the
milling circuit at Ban Houayxai is an SAB circuit, the key comminution parameters
are crushability using the JK A*b derived from SMC tests and grindability using
the bond ball work index (BWi) derived from the bond ball mill test (Napier-Munn
et al. 1996; Morrell 2004). The approach to predicting these is via an empirical
proxy model for the BWi and a combination of empirical ‘engineering’ and proxy
models for the A*b as will be discussed later.

Dataset

The dataset used for the predictive models included the 330 diamond resource
definition drill holes with a nominal drill spacing of 50 � 25 m and 49 geotech-
nical drill holes. A number of data types were available as potential inputs into the
models including geological logging and models; geotechnical logging and testing;
geochemistry and metallurgical testing. The main data types associated with these
drill holes are shown in Table 1. Other data types used included:

Table 1 Main data types within the drilling database

Data Table Key data types

Collars East, north, RL, length

Survey Depth, azimuth, dip

Lithology Lithology, weathering, texture & deformation

Alteration Supergene type/mode/intensity, alteration type/mode/intensity

Assays Au, Ag, Zn with selected intervals assayed for a wide range of multi elements

Point Load Coresize, caliper, IS(50)MPA, failure on new or preexisting structure,
fracturetype, estimatedUCS

Geotech Rock quality designator (RQD%), # of sets, strength, fracture frequency (FF)

Structure Structural type, orientation and roughness

Veining Type and intensity

Mineralisation Oxide and sulphide minerals and quantity
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• 3D geology and grade models
• Pit design stages
• Geotechnical reports—including uni-axial compressive strength (UCS) tests
• Comminution test results—including SMC Tests for A*b, Bond Ball Work

Index, mineralogy and point load tests.

Blastability Index and Powder Factor Models

The approach adopted for the modelling of the powder factor (pF) is based on
Cunningham’s empirical Kuz-Ram fragmentation model (Cunningham 1986,
2005). This estimate the mean fragmentation (X) that would result from a known
energy factor used in specific rock mass conditions. Reworking of the model results
in the estimation of the required energy or powder factor (pF) to achieve a mean
fragmentation (X) as shown in Eq. 1. For BHX, analysis of mill and comminution
test results data indicated that a mean fragmentation of 150 mm was appropriate for
ore.

Required Powder Factor kg=m3� �
pF ¼ X= A �Q0:167� � � RWS

115

� ��0:633
 ! ! !�1:25

ð1Þ

The inputs into the Kuz-Ram model are:

• X = mean fragmentation diameter
• Q = mass of explosive per blast hole
• RWS = relative weight strength of the explosive
• A = rock factor-specific rock mass conditions.

The rock factor, A, is used to take into account variations in rock mass conditions.
This can be related to the Lilly’s blastability index (BI) through a simple multi-
plication factor of 0.12 (Lilly 1986, 1992; Widzyk-Capehart and Lilly 2001). The
blastability index model is shown in Eq. 2.

BI ¼ 0:5 � JPSþRMDþ JPOþRDIþ Sð Þ ð2Þ

The inputs into the BI are:

• JPS = Joint Plane Spacing Rating
• RMD = Rock Mass Description Rating
• JPO = Joint Plane Orientation Rating
• RDI = Rock Density Influence
• S = Rock Strength
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The JPS and RMD ratings are derived from the fracture frequency data with the
JPO rating derived from the orientation of structures in relation to the final pit
design. RDI expresses the influence the density of the rock while S is a function of
the uni-axial compressive strength (UCS) which was estimated from point load
data. An overview of the data quantity and quality of the input variables of fracture
frequency, structure, density and point load for the relevant inputs into the BI are
outlined below.

The blastability and powder factor estimates were calibrated for BHX through
blasting studies that were in progress as the model was developing.

Inputs

JPS and RMD

The level of fracturing within the resource development holes was recorded as the
number of fractures per drill run which was converted to fractures per metre.
Analysis indicated that the distribution of fracture frequency was very similar for all
lithologies indicating that lithology is not a control on fracturing, nor could the
existing structural model explain the fracture distribution. Hence the domaining
method selected was population based utilising the CuSum statistical method for
zoning the data based on changes in the data using a 5 m composite length down
the drill hole (Keeney and Walters 2011). The zones were then clustered into
groups based on the mean and standard deviation for each of the zones, to create
five spatially coherent FF domains. For the initial model, the FF was interpolated
into the block model using inverse distance weighting (IDW) methodology from
which the JPS and RMD rating was derived.

JPO

The structural database is dominated by data for veining which accounts for some
53% of the data followed by foliation and joints at 18% respectively. The structural
analysis of joints and faults/shears indicated that both have similar orientations and
are lithology independent. However there is a significant difference in orientation
between the northern and central pit areas. The northern pit is dominated by those
dipping steeply to the WNW-NW, whereas the majority in the central pit dip
steeply to the ENE-NE.

A total of 12 structural regions were defined based on the analysis of the
structural orientation against the slope and orientation of the final pit design. Within
the spatial model, each block within these regions were assigned a JPO rating based
on the dominant orientation in relation to the pit wall design using Lilly’s rating
system.
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S

As part of the geotechnical studies, a limited number (2–5) UCS tests had been
conducted on each of the main 6 lithologies. This data indicates a large variation
and overlap in UCS for the lithologies with ranges from 30-160MPA.

The database also contained single break point load data on drill core corrected
to 50 mm drill core(Is(50)). Point load tests are commonly used as an indirect test to
predict UCS (ASTM_International 2008). Although there were some 20,000 point
load results in the database, each was a single point break and over 50% were
recorded as failing on a pre-existing defect and of the remaining, only 1180 did not
record an associated defect. Thus in order to obtain an representative indication of
in situ rock strength, a more detailed analysis was undertaken by only considering
the data where the point load tests had not failed on a pre-existing structure, were
diametral tests, the fracture frequency (FF/m) was less than 2 and rock was fresh/
primary. This resulted in a significantly reduced dataset where individual lithol-
ogy’s were grouped based on their distribution of point load estimated UCS.

A total of 7 lithological based rock strength groups resulted in three groups of
volcanic lithologies with an average estimated UCS of 75, 80 and 175MPA and
four groups of sedimentary lithologies with average estimated UCS of 50, 80, 125
and 175MPA. Similar investigations based on a combination of alteration with and
without lithology did not identify distinct populations of rock strength suggesting
that lithology was a key geological driver. Due to the limited data and the simplified
3D lithological model rock strength was assigned to the block based on the average
estimated UCS for that lithology. The conversion factor from estimated UCS to the
S rating was increased to improve the calibration between the predicted BI and pF
to the site blasting studies. The estimates of UCS do not take into account any
anisotropy or rock strength at scales larger than drill core (Pierce et al. 2009).

RDI

As some 66,000 bulk density measurements were obtained from the drilling dataset
using the caliper method, there was sufficient data for interpolation of the densities
into the block model. The domaining of this data was based on lithology with
interpolation by IDW followed by the conversion to the RDI using the standard BI
rating system.

Q and RWS

The inputs for the mass of explosive per blasthole (Q) and the relative weight
strength of the explosive (RWS) were kept constant at 165 kg/hole and 95
respectively. These were based on assumptions of the blast engineering design with
respect to drill hole diameter, stemming height, explosive characteristics for a 10 m
bench height.
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Results

The application of Eq. 1 and Eq. 2 to the inputs at block level resulted in the
estimated BI and pF. Over the life of mine 65% of the ore is estimated to need
powder factors between 1.3 and 1.9 kg/m3 to achieve an X50 fragmentation of
150 mm (Fig. 3). The results for the primary ore suggest that 53% of the ore
requires powder factor greater than 1.6 kg/m3.

On a yearly basis from the current mine plan, 2015 and 2018 are expected to
require the most blasting energy with the model predicting that 10% of ore requires
a pF less than 1.3 kg/m3 and 25% greater than 1.9 kg/m3 whereas for 2017 and
2020 the estimates are 40% and 10% respectively.

An example of the spatial variability of the BI and pF for the North and Centre
pits at the 570 m level is shown in Fig. 4. The BI is shown for both ore and waste
within the pit design due its application either, whereas the pF X150 mm is shown
for ore blocks only. The relatively short range and large amplitude variability in
both Bi and pF can be observed in the Northern pit suggested that achieving a
constant size distribution will be difficult. The Centre pit appears to have less spatial
variability with larger more consistent zones however it is likely that blast areas will
straddle some of these boundaries.

Fig. 3 Histograms of Blastability Index (BI) and powder factor (pF) for ore over life of mine
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Comminution Models

The approach to predict the common measures of crushability and grindability, A*b
and BWi respectively, is through empirical proxy models. Relationships are iden-
tified and developed between A*b and BWi from ‘training’ datasets and commonly
logged or measured aspects of drill core such as geological logging, and assays.
Thus analysis of the training dataset is required with aim of identifying geological
drivers and related variability to the A*b and BWi parameters.

Analysis of Comminution Dataset

The initial comminution test work consisted of 32 drill core composites ranging in
intervals from 4 to17 m, that represented material from within the yearly production
periods 2013–2015, and were tested by SMC and bond ball mill tests. The results
from a further 25 samples were added to the dataset later in the project to represent
material from production periods 2015 to +2020. The data shows a wide range in
both impact resistance and grindability as shown in Fig. 5. The impact resistance as
indicated by A*b ranges from a very hard 25 to soft 118 although the majority are
between 30 and 55. Similarly, grindability as indicated by the bond ball mill work
index BWi ranges from 10 to 35 kWh/t with the majority between 15 and 27 kWh/t.

BI pF (kg/m3)

Fig. 4 Plan view of predicted BI and pF for an X50 of 150 mm within ore at the 570 mRL
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No clear relationships in terms of distribution of A*b and/or BWi can be
identified with geological aspects logged from the drill core such as weathering,
lithology, alteration, alteration intensity, veining or combinations of these. The best
correlation was between A*b and BWi themselves together with density.

The point load data was not considered as (a) the point load from the drill core
was very poorly correlated with the comminution parameters due to the low rep-
resentivity of the point load measurements from the drill core relative to the
composite length of the comminution samples and (b) the issues around the quality
of the point load data as outlined in the previous section.

In an attempt to understand the geological drivers, whole rock XRF and QXRD
mineralogy was obtained for the comminution dataset. In terms of A*b, the XRF
geochemistry shows poor correlations with no element >0.2. From the QXRD data,
mica correlated best with A*b at 0.4. The better correlations to BWi from the
QRDX data were again mica (−0.43) followed by chlinochlore, chlorite/kaolin and
calcite (0.1–0.2) and from the XRF dataset, Ba, K and Na at only 0.2.

The correlations improved when the dataset was partitioned by the logged
supergene type (oxidation) with correlation coefficients increasing to up to 0.75 in
the case of Mn and Mg for Supergene Type SLE and OSM. The variables with
correlations >0.3 (either positive or negative) are outlined in Table 2. This suggests
that oxidation and mineralogy (relating to subtle hydrothermal alteration) have an
influence on the comminution parameters.

Fig. 5 Summary of results
from comminution test work.
The colour indicates lithology
and shape oretype—oxide as
triangles, transition as circles
and primary as squares
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A*b

As the standard geological drivers of A*b parameters could not be determined
modeling using the geological based variables such as lithology or assays was not
possible. Hence an alternative approach was sought.

The crushability of a sample is a function of the physical properties of the rock
which includes the rock strength, the quantity and quality of any fractures or
discontinuities. This together with the correlations with FF and density for A*b
pointed towards the possibility of rock mass aspects having a significant influence
the parameter. A standard method of rating rock mass is through Bieniawski’s
empirical rock mass rating scheme or RMR (Bieniawski 1976, 1989; Karzulovic
and Read 2009). The parameters and calculation of the RMR is:

RMR ¼ SIRRatingþRQDRatingþDSRatingþCDRatingþGWRating ð3Þ

Where

SIR = Strength of Intact Rock
RQD = Rock Quality Designation
DS = Spacing of Discontinuities
CD = Conditions of Discontinuities
GW = Groundwater

The approach firstly calculates the RMR for the dataset at block level followed
by an adjustment factor based on supergene unit to create the comminution rock
mass rating or CRMR. The CRMR is then related to A*b from the SMC tests via
regression to create a predicted A*b. The model was created using a subset of the
A*b data from the comminution dataset.

Table 2 Summary of correlations of BWi and A*b with XRF whole rock geochemistry and
QXRD mineralogy

SuperGene type

SLE OSM SEC PRI

BWi Mg, Mn, P, K Mn, Mg, Fe, Si Ba, K Mn, Si

Clays, mica Amphibole, clays,
quartz

Mica Mica, quartz,
pyrite

Density Density Density, FF

Zn, Ag, S Zn, S Ag, Zn, S

A*b K, Mn, Mg P, Mn Fe, K, S, P (0.35) Fe

Mica, clays,
serpentine

Quartz, serpentine,
clays

Mica, quartz,
pyrite

Mica

Density Density FF FF, density

Zn Zn, S S

SLE = completely oxidised, OSM = partially oxidised, mixed oxides after sulphides,
SEC = transition zone with consistent presence of sulphides with iron oxides, PRI = primary
with no oxidiation
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Inputs

The SIR is a rating based on the estimated UCS with the DS rating based on FF.
Both of these are inputs in the BI as discussed earlier, the only difference being that
the RMR rating system was applied as compared to the BI rating system.

The RQD rating is based on the RQD measurements and similarly to the FF, a
population based approach using the CuSum method and manual clustering into
five domains based on the mean and standard deviation of the zones. For this initial
model, the FF was interpolated into the block model using the IDW methodology to
which the RMR rating system was applied.

CD is a function of the roughness of structures which is derived from core
logging using the International Society of Rock Mechanics Suggested Methods and
the Australian Standard AS 1726—1993 with the roughness classified by Stepped,
Undulating and Planar together with Rough, Smooth or Slickensides resulting in
nine categories (Phi-Bia-Mining 2010). The distribution of these roughness cate-
gories varies according to lithology. Hence the roughness rating was based on
lithology a where lithologies with a significant proportion of planar structures with
smooth or slickenslide structures received a lower rating compared to those dom-
inated by stepped rough structures.

GW rating related to the groundwater condition of the rock mass which for open
pit mines is assumed to be constant and damp with its associated RMR rating.

The predicted A*b verses measured A*b from all of the SMC dataset and not
just those used in the development dataset is shown in Fig. 6. The methodology
provides a prediction that is practical given that the purpose of the model is to
highlight regions of significant variability in A*b.

BWi

The analysis of the BWi data with respect to geological, geochemical and
geotechnical variables indicated that if domained by the oxidation/supergene then
density and FF together with Zn and Ag are the most correlated of the variables that
were consistently measured across the deposit. Thus the BWi was predicted using
linear regression of combinations of these variables for each supergene type. The
very high BWi’s >30 Kwh/t are excluded from the proxy models.

Due to the small number of samples in the SLE and OSM zones, the number of
variables within the regression was limited to a maximum of two. The regression
performed well for all supergene units in terms of R2 (>70), however the SEC had
the largest residuals which requires further investigation and refinement. As an
example, the prediction for the primary supergene zones is shown in Fig. 7.

The spatial modelling of two of the variables used in the proxy modeling of
BWi, density and FF, were discussed earlier as part of the BI. Silver and zinc, were
imported from the existing BHX resource model which has been estimated using
ordinary kriging. The regression was once again applied at block level resulting in a
predicted BWi.
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Fig. 6 Predicted A*b via the CRMR verses measured A*b from SMC tests using drill core samples

Fig. 7 Predicted BWi verses measured BWi for the primary supergene zone
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Results

The predictive models of A*b and BWi for each supergene zone were applied to the
inputs at block scale resulting in estimates of A*b and BWi for each block that
contained the relevant data. Analysis of the results indicate that for supergene zones
SLE and SEC, the range of the input variables within the block model were greater
than those used in the development of the regression models resulting in anomalous
values. These were set to null to avoid any misinterpretation by users. Of all the
parameter models, the BWi has the least confidence due to the limited development
dataset and variables sampled across the deposit.

The results of the predicted A*b and BWi within ore over the life of mine
indicates:

• that 60% of the ore has an A*b of 28–45 which is considered hard to moderately
hard material with only a small proportion in the very hard category (Fig. 8).

• Approximately 55% of the ore has a BWi greater than 20 kWh/t.
• That 50% of the ore is estimated to have an A*b of < 45 and BWi > 20 kWh/t

with 14% having an A*b < 35 and a BWi > 25 kWh/t.
• Approximately 50% of the primary ore is predicted to have an A*b less than 35.
• On a yearly basis from the current mine plan, 2018 consists of the hardest

milling ore with 65% predicted to have an A*b < 35 (hard ore) and 5% > 55
(moderately soft—very soft).

• Conversely, the softest ore milling conditions are expected in 2016 when only
15% of the ore is predicted to have an A*b < 35 (hard ore) and 40% > 55
(moderately soft—very soft).

Fig. 8 Histograms of A*b and BWi for ore over life of mine
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An example of the spatial variability of the A*b and BWi for the North and
Centre pits at the 570 m level is shown in Fig. 9.

Initial verification of A*b indicates that the model compares favourably with
material from belt cuts over a number of days. An indicative A*b was measured
with a modified RBT methodology (Shi et al. 2009).

Implementation of the Models

Although at the early stages of implementation, the model are being utilised in the
operation by mine planning, blasting and mill personnel.

As the models are for life of mine, their main function is supporting the life of
mine and medium term planning and budgeting. This not only includes mine
planning per se but also analysis of the likely impact of potential capital and
operational improvements in the mine and mill.

However, the models are also being utilised guidance in tactical operational
planning. The blasting related models, including fracture frequency, blastability
index and powder factor, are providing guidance:

• as to areas at risk of producing coarse fragmentation and hence impacting on
throughput;

• in the identification of areas where and how the planned blast design may be
modified to achieve an optimal fragmentation;

A*b BWi (kWh/t)

Fig. 9 Plan View of the predicted A*b and BWi within ore at the 570mRL
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• in the identification of at risk areas for interim and final walls and providing
guidance for the trim blast design.

The comminution parameters are currently used to provide an indication of
expected SAG and ball mill hardness and variability. Even at this relatively coarse
resolution, the information allows a more proactive control in terms of throughput
management within the operation.

Summary and Conclusions

The integration of geological, geotechnical and metallurgical data has enabled the
development of an integrated model of key geotechnical/geometallurgical param-
eters. The key parameters modelled were those that relate to the rock characteristics
relevant to estimating throughput for a SAB milling circuit - blast fragmentation for
feed size distribution, A*b and BWi. This has allowed the numeric and spatial
variability of those rock characteristics to be mapped. Although in the early stages
of implementation the models are being used to support mine and production
planning through:

• assessing the long term mine plan and identifying potential improvement
opportunities;

• to provide guidance and support for budgeting;
• blast design for mill feed;
• ore blending decisions.

The empirical ‘engineering’ models for blast fragmentation at present are pre-
dicting the mean fragmentation under a set of assumptions and do not attempt to
predict the full size distribution. Thus blast optimisation is required to increase the
proportion of the fines within the blast which improves throughput.

In any modelling, the model is constrained by the available data and in order to
overcome limitations in relating traditional data such as lithology/alteration/
geochemistry to A*b, a predictive model was developed based on the geotechnical
rating of rock mass, RMR. The RMR is an empirical based model to quantify rock
properties relevant to geotechnical engineering applications and considers proper-
ties such intensity and condition of fracturing, rock quality and rock strength. These
properties are also relevant to the ‘crushability’ of a rock and thus the RMR,
together with the intensity of oxidation/weathering of the rock, was used to create a
predictive model of A*b.

Further enhancements could include: the acquisition of data in under sampled
areas; improving the quality of key variables; the inclusion of a confidence or
uncertainty level; understanding the impact of upscaling point related data to blocks
(support); the conversion of the key parameters to processing performance and
further validation/calibration against field data.
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To facilitate further improvements in maintaining and enhancing production of
throughput, such as direct blending from the loading face using the ore properties
and blast fragmentation, a similar model is being developed with a higher granu-
larity and spatial resolution based on grade control drilling and pit mapping.

The life of mine models of mill ore feed variability are an improvement in
spatially and temporally predicting the key rock properties and the associated
performance at BHX and are being utilised by the by mine planners, metallurgists,
blasting engineers and geologists.
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Using Grade Uncertainty to Quantify Risk
in the Ultimate Pit Design for the Sadiola
Deep Sulfide Prefeasibility Project, Mali,
West Africa

S. P. Robins

Abstract In order to quantify the uncertainty in the grade estimate for the Sadiola
deep sulfide prefeasibility project, a conditional simulation model was generated
using the direct block simulation methodology. Compared to conventional
sequential Gaussian simulation, the direct block simulation algorithm produced a
reliable model in significantly less time, lending its application to a production
environment. Through application of a mining transfer function, risk pits were
generated for comparison with the deep sulfide prefeasibility pit. The results of this
study revealed that the prefeasibility pit is optimal at the applied gold price and cost
parameters, and that the risk of not achieving the project grade profile is low.
Should the gold price increase, or the operating costs of the project decrease sig-
nificantly, the deep sulfide reserve tonnage would realise significant upside
potential. Probability and uncertainty analysis revealed that the greatest risk to the
project is the confidence in the footwall grade estimate. At a drill spacing of
50 m � 50 m and a sample interval of 1 m, the probability of the footwall grade
exceeding the economic cut-off of 2.0 g/t is low, while the uncertainty in the grade
estimate is high. Although significantly lower in grade than the main zone, which is
the primary economic driver of the project, the footwall mineralisation is important
in terms of reducing stripping ratio and delivering ore tonnes to optimise the
treatment schedule. This zone is therefore a focus area for further drilling.

Introduction

Sadiola Hill Gold Mine is located at latitude 13°56′N, longitude 11°40′W, and
altitude 125 m above mean sea level, which places it approximately 500 km north
west of Bamako, the capital of Mali in West Africa (Fig. 1). The mine is operated
by the Societe d’Exploration des Mines d’Or de Sadiola SA (SEMOS SA), which
comprises a joint venture partnership between AngloGold Ashanti (38%),
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IAMGOLD (38%), the Malian Government (18%) and the IFC (six per cent).
Construction of the Sadiola plant began in March 1995 and was completed in June
1997. Gold production began in mid 1997 from the saprolite oxide orebody and
more recently from saprolite sulfide ore as mining has progressed through the
weathered profile towards the hard/soft boundary. The Sadiola orebody extends
substantially below the weathered horizons into the underlying hard sulfide
lithologies. However, the current Life of Mine plan (LOM) does not exploit this
material because the plant is unable to treat more than ten per cent hard material. In
2005, Sadiola treated approximately 5.3 Mt of ore at 2.83 g/t, accounting for a gold
production of 483 koz (Van der Westhuizen 2005). The Sadiola plant was designed
to treat this material, comprised almost entirely of saprolite and laterite. At a cut-off
grade of 1.42 g/t, the remaining Sadiola Main Pit Reserve (at the end of 2005) was
21 Mt at 3.35 g/t, accounting for 2.3 Moz. This reserve would accommodate
mining to the end of 2009.

The hard sulfide portion of the Sadiola main pit mineral resource at the end of
2005 was 48.5 Mt at 2.25 g/t, accounting for 3.5 Moz (at 0.70 g/t cut-off grade),
providing large upside potential for the mine. Should Sadiola be able to treat hard
sulfide material, mining could continue to the end of 2015 and the LOM extended
to 2024. SEMOS SA therefore initiated the deep sulfide prefeasibility project to

Yalea
Sabodala Loulou

Tabakoto
Bamako

GUINEA

MAURITANI

SENEGAL

MALISegala

Fig. 1 Locality map for Sadiola mine, Mali, West Africa
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optimise the exploitation of the hard sulfide component of its mineral resource. The
prefeasibility project focused on the pit expansion potential of the deposit, as well
as the options available to upgrade the current gold treatment plant to process the
hard sulfide material. As of June 2006, cost estimates indicated that a capital outlay
of approximately USD$145 million would be required to upgrade the treatment
plant to efficiently process hard sulfide material.

Given the large capital outlay required to commence with the deep sulfide
Project, it was necessary to quantify the technical risk of exploiting the Sadiola hard
sulfide resource. Quantification of the grade uncertainty was vital to providing focus
areas that required additional drilling before a reliable feasibility study grade model
could be obtained. The Sadiola mineral resource model used for the prefeasibility
study was comprised of a grade estimate, into 30 m � 30 m � 10 m blocks, using
ordinary kriging. This was followed by a change of support calculation, using
uniform conditioning, to an SMU support size of 10 m � 10 m � 5 m. The
sample information on which this model was built was comprised predominantly of
NQ (53 mm diameter) half diamond core, with 4.5 inch RC precollars through the
soft material. The final model comprised 13 independent estimation domains to
honour the stationarity requirements for kriging.

This model effectively generated a single grade outcome for planning purposes.
Questions remained as to how accurate this grade estimate was, and if there was a
practical method for determining the uncertainty in the grade estimate. Conditional
simulation was utilised to answer these questions. Conditional simulation, a Monte
Carlo-type simulation approach, generates multiple and equally probable realisa-
tions that provide a model of the spatial uncertainty of the grade in the in situ
orebody (Dimitrakopoulos et al. 2002). The resultant realisations are not only
conditioned to the available sample data, and therefore all reasonably match the
same sample statistics, but also reasonably duplicate the histogram and
semi-variogram model of the sample data (Goovaerts 1997). Spatial features are
deemed ‘certain’ if they are present in most of the simulated maps and ‘uncertain’ if
seen on a few simulated maps.

According to Goovaerts (1997), generating alternative realisations of the spatial
distribution of an attribute is rarely the goal. Rather these alternative realisations
serve as the input to other transfer functions, which in the open pit mining envi-
ronment would comprise a mining process such as a pit optimisation algorithm. In
assessing the uncertainty in the grade estimate for the Sadiola mineral resource
model, the goal was to generate a number of different grade realisations and run
each of these realisations through a pit optimisation algorithm in order to determine
where the prefeasibility design pit ranked. The challenge lay in selecting a simu-
lation method that was practical to use in an operating mine environment.
Sequential Gaussian simulation (or SGS) (Goovaerts 1997), the industry norm at
the time, proved impractical because of the computing time involved in generating
the 50 realisations required per estimation zone. The relatively new method of
direct block simulation was therefore selected.

Dimitrakopoulos et al. (2002), proposed the direct block simulation (DBSIM)
method as a viable alternative to conventional simulation methods that considerably
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reduces computational time. DBSIM detailed in Godoy (2003) and also outlined in
Boucher and Dimitrakopoulos (2009), Peattie (2005) simulates the internal points
of each block, and when the simulated block is calculated, the point values are
discarded. The simulated block value is then added to the conditioning dataset. To
integrate the block support conditioning data, the algorithm has been developed in
terms of a joint simulation, where the second variable relates to the block values
sequentially derived through the simulation process. The algorithm simulates sev-
eral hundreds of blocks per second and is considerably faster than any point con-
ditional simulation combined with reblocking. Furthermore, Godoy (2003),
Benndorf and Dimitrakopoulos (2007) and others show that in addition to being
substantially faster and more efficient in terms of computing requirements, the
DBSIM method is reliable in terms of reproduction of the sample statistics.

General Geology

The Sadiola deposit is located within the Malian portion of the
Kenieba-Kedougou window, a major Early Proterozoic—Birimian outlier along
the NE margin of the Kenema—Man shield (Fig. 2). The Birimian of the window
can be interpreted as a collage of at least two NS trending terrains of different
nature. To the west, an older (±2.2 Ga) tholeitic mafic volcanic unit with island
arc type volcanics, intruded by a major calc-alkaline batholith, belongs to the
Saboussire Formation. It is separated from the dominantly sedimentary sequence
of the Kofi Formation by a major north-to-northeast trending shear zone. This
sedimentary domain is significantly younger and is intruded by calc-alkaline
batholiths dated at 2.0–2.05 Ga. Within this domain metamorphic grade is
greenschist facies, with formation of metamorphic biotite and locally amphibolite
grade near major intrusions. The Kofi Formation is obliquely cut by the
approximately N–S to N10° trending Senegalo-Malian shear zone (SM), which is
punctuated by several gold deposits along its splays (Loulo, Yalea, Sadiola,
Yatela), (Robins et al. 2005).

The Sadiola deposit is located in the north of the window and is hosted by
sediments of the Kofi Formation, which have been intruded by numerous felsic
intrusives. The dominant sediments consist of fine-grained greywacke and impure
carbonates with minor tuffs and acid volcanics. At Sadiola, the intensely folded
impure carbonate packages comprise an alternation of limestone beds, a few mil-
limetres to several decimetres thick, with thinner, more detritic beds. The Sadiola
deposit occurs along the N10° striking Sadiola Fracture Zone (SFZ), which is
thought to be a brittle-ductile splay off the SM Shear at a sinistral releasing bend.
The SFZ follows the steeply westerly dipping contact between greywacke to the
west and impure carbonate to the east. Along the SFZ, both the greywacke and
impure carbonate are transposed. The SFZ and its wall-rock are injected by dis-
continuous diorite dikes. Silicified quartz-feldspar-porphyry (QFP) dikes often
intrude along later steep west dipping, N20° striking structures. The QFPs cross-cut
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the diorites and may show brittle fracturing. Post mineralisation deformation has
complicated structural relationships in the deposit.

Gold mineralisation at Sadiola occurs along the SFZ over a drilled strike length
of approximately 2500 m, and remains open to the north and south. N20° trending
fault splays off the SFZ are also well mineralised. The mine geological and grade
block model indicates the presence of 20°–25° south dipping ore shoots within the
plane of the SFZ. Mineralisation occurs in all of the four major rock types (marble,
greywacke, diorite, and quartz-feldspar porphyry) and is spatially associated with a
complex alteration pattern. Drilling of the (unweathered) primary mineralisation has
allowed detailed investigation of major and minor hydrothermal alteration pro-
cesses that were active during the formation of the deposit. Alteration assemblages
identified to date include calc-silicate, potassic, chlorite-calcite, carbonate and
silicification, and have allowed the deposit to be classified as a mesothermal-
shear-zone hosted deposit. Gold is associated with both arsenic and antimony
dominated sulfide assemblages including arsenopyrite, pyrrhotite, pyrite, stibnite
and gudmuntite (Robins et al. 2005). Deposits of this type world-wide exhibit good
continuity of mineralisation along the strike and extending to great depth.

LOULOU
YALEA
SEGALA
TABAKOTO

YATELA
SADIOLA

SABODALA

MEDINANDI

Senegalo-Malian Shear

Keniebandi

Diale

KENIEBA

Granitoids 

Faults and  
Shears

Saboussire

Dalema-
Kofi

Fig. 2 Geology of the
Kenieba-Kedougou window
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Structurally controlled, high grade pay shoots’ typically occur within a more per-
vasive lower grade halo. At Sadiola, the location and geometry of high grade
mineralisation appears to be controlled by the confluence of the SFZ with the N20°
splays, resulting in steeply to vertically plunging zones within the plan of the SFZ.
The geometry of the extensive soft ‘saprolitic’ oxide deposit at Sadiola relates
almost exclusively to the supergene weathering history of the primary mineralisa-
tion. The permeability of the rock formation, controlled mainly by faulting,
shearing and porosity, allows deep penetration of ground water, causing oxidation
of primary sulfides. Oxidation of pyrite (and other sulfide species) results in the
formation of sulfuric acid, further promoting the downward argillisation of the
bedrock to form the clay rich assemblages present in the saprolite. The irregular,
‘karst like’ soft rock/hard rock contacts can be related to the extent of faulting and
the original sulfide content of the overlying profile. The intense weathering has
resulted in a tropical climate forming a series of decarbonated- argillised troughs of
variable depth (up to 180 m depth) along the SFZ. This is the rich oxide orebody
currently being mined (Fig. 3).

SFZ

Fig. 3 Section 5600 N through Sadiola orebody. Mineralisation sits along the greywacke-marble
contact (Sadiola Fracture Zone). N20° faults are indicated in black. Section compiled by
Dr. A Smeesters, 2006
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Creation of the Simulation Model

Simulation Methodology

Although the deep sulfide project has focused specifically on the hard sulfide
component of the Sadiola resource, a significant amount of mineralised saprolite
material occurs between the hard/soft boundary and the current LOM pit design.
Since this material would contribute towards the economics of the project, it was
necessary to account for it in the simulation model. The laterite material only occurs
close to the original ground surface, and would have limited influence on the project
economics since most of the ore within this zone has already been mined. To speed
up the simulation process, the laterite estimation domains were excluded from the
study. All other estimation domains used in the Sadiola recoverable resource model
were honoured. Furthermore, the same densities as per the recoverable resource
block model were retained in the simulation model (Table 1). The determination of
the various estimation domains in the recoverable resource model was based on
trend analyses and sample statistics. This process is outlined in Robins et al. (2005).

Sample Data

Almost all the deep sulfide sample data comprised NQ diamond core at 1 m sample
intervals. However, since a significant amount of saprolite material—which was
drilled with 125 mm RC method and at 2 m sample intervals—would be included
in the Deep Sulfide Project, all conditioning (sample) data was composited to 2 m
sample intervals. To test for clustering, data was declustered using a moving
window method. It was found that there was no significant spatial clustering present
in the data and therefore declustering was unnecessary. This was likely a result of
domaining the data and therefore achieving a relatively regular sample grid per
domain. A sample input file was supplied with the conditioning data zoned
according to the estimation domains (ZONECODE), outlined in Table 2. The input
data comprised raw grade information that was converted to normal space by the

Table 1 Table of rock types
and their associated densities

Rocktype code Description Density (g/cm3)

1 Laterite and clay 1.97 (average)

2 Saprolite 1.80 (average)

3 Silicified oxide 2.57 (average)

4 Saprolite sulfide 2.00 (average)

5 Hard sulfide 1.55 to 3.03 (kriged)

6 Blast oxide 2.10 (average)

7 Blast sulfide 2.10 (average)
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DBSIM program during the simulation runs. During this process, DBSIM declus-
tered the data, and output ‘equal weighted’ statistics for the conditioning data,
simulated nodes and blocks.

Normal Score Semi-variogram Models

Double structured, normal score spherical semi-variogram models were calculated
per ZONECODE (Table 3). The search distances are those used for simulation in
the x, y, and z orientations. The general characteristics of the normal score vari-
ograms can be summarised as follows:

• The northern and southern mineralisation is separated by a WNW trending fault
that appears to have rotated the strike of the mineralisation so that to the north,
the mineralisation trends 030, and to the south, it trends 000.

• Most of the hard sulfide mineralisation (zones 5000, 6000 and 7000) is situated
in the south of the orebody and therefore their variogram structures resemble
that of the South Saprolite ore (zone 4000), for which the relatively low nugget
is attributable to supergene enrichment of the grade. The main ore high- and
low-grade variograms (zones 5000 and 6000 respectively) are similar in all
respects.

• The Far North (zone 1000) and North Saprolite (zone 3000) ore zones have
similar structure and orientation trending 030, in line with the change in strike of
the mineralisation. The Far North saprolite has significantly more continuity in
the y direction, though it was necessary to reduce the search distance in this
direction to minimise negative kriging weights.

The North Hard Ore (zone 8000) predominantly underlies the North Saprolite,
and has the same structure, though not the same orientation. This is most likely a
result of insufficient sample data to define a trend.

Table 2 Table of rock types and their associated densities

Zonecode Description Project

1000 Far north saprolite ore Main pit—oxide

2000 Saprolite waste Main pit—oxide

3000 North saprolite ore Main pit—oxide

4000 South saprolite ore Main pit—oxide

5000 Main ore—high grade Deep (hard) sulfide

6000 Main ore—low grade Deep (hard) sulfide

7000 Footwall/hangingwall ore Deep (hard) sulfide

8000 North hard ore Deep (hard) sulfide

9000 Waste Deep (hard) sulfide
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• All the hard sulfide variograms have isotropic horizontal structures, attributable
to the absence of close spaced grade control data necessary to define the
structures causing anisotropy.

• The waste variograms for the saprolite (zone 2000) and hard sulfide (zone 9000)
are similar because of a relative lack of grade variability between sample
locations. This is to be expected, considering that most of the mineralisation had
been included in the mineralised envelope.

Representative Number of Realisations

To determine the number of realisations that would be required to obtain a reliable
uncertainty model, the number of realisations were plotted against the progressive
mean and progressive Coefficient of Variation (COV) for each simulated domain.
The number of simulated blocks for each domain was greater than 95% of the total
number of available blocks. For the first few realisations, the mean and COV values
in the plots ‘bounced around’, but as the progressive values included more reali-
sations, they stabilised, and where they levelled sufficient realisations, they were
considered to have been used to model the variability. In this study, the grade for
five out of the nine simulation domains could have been considered sufficiently
simulated with up to 25 realisations, however, the remaining four domains required
additional realisations. Since it was easier to deal with 50 realisations than 25
realisations in the probability calculations, and most of the Deep Sulfide ‘ore’ zones
required more than 25 realisations, it was decided to use 50 realisations for all the
mineralised domains, and 25 realisations for the ‘waste’ domains. Thus the 25
realisations for ZONECODE 2000 and 9000 were repeated for the second 25 (26 to
50) mineralised domain realisations. In this way, the simulation time was reduced
by not performing unnecessary simulations on the ‘waste’ domains, while simul-
taneously achieving sufficient variability in the ‘ore’ domains, which were relatively
quick to simulate.

Initial Validations on Point Data

The internal nodes were estimated on 2.0 m � 2.0 m � 1.25 m centres for each
simulation, totalling 100 nodes per regularised (SMU) block. These were only
output for the first ten simulations in order to check that the results honoured the
conditioning data, the histogram of the normal score and raw data, and the vari-
ograms of the normal score and raw data. For the remaining simulations, only the
block values were retained. Raw grade values were input into the program.
The DBSIM algorithm transformed them to normal score values for simulation, and
then back-transformed the resultant normal score values to raw grade values. Both
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the raw and normal score data sets were output, though because they show the same
trends, only the raw data is presented below.

Statistical Validation

The base statistics for the raw grade data are summarised in Table 4.
From Table 4, the base statistics indicated that the mean grades and variances for

the saprolite material (ZONECODES 1000–4000) were generally slightly
under-estimated with the conditioning data, exhibiting values slightly higher than
the simulated values. Though the mean grades for the Saprolite waste
(ZONECODE 2000) and North Saprolite ore (ZONECODE 3000) were only
marginally lower, both the mean grade and variance for the South Saprolite ore
(ZONECODE 4000) were significantly lower than the corresponding conditional
data values. This was initially a cause for concern for the pit optimisation phase of
the project because the South Saprolite ore comprises the majority of the saprolite
material below the current LOM pit. However, the total saprolite ore only comprises
16 per cent of the total ore tonnes between the current LOM and Deep Sulfide pit
designs. The far north Saprolite (ZONECODE 1000) is relatively insignificant
regarding its ore tonnage contribution towards the Deep Sulfide Project.

From the base statistics, the simulation mean and variance for the main ore high
grade and low grade (ZONECODEs 5000 and 6000 respectively)—the primary
drivers for the Deep Sulfide Project—though marginally high, are reasonably close
to the mean and variance of the conditioning data, which fall within the range of
values of the ten realisations. Similarly for the Hangingwall and Footwall miner-
alisation (ZONECODE 7000), the conditioning data mean and variance are within
acceptable limits of the corresponding ten realisation values. The simulated mean
and variance values for the North Hard ore (ZONECODE 8000) are significantly

Table 4 Summary base statistics for raw grade point data

ZONECODE Conditioning data Simulation range in
mean value

Simulation range in
variance

Mean Variance Minimum Maximum Minimum Maximum

1000 1.65 7.27 1.44 1.62 4.87 6.55

2000 0.36 1.69 0.31 0.33 0.72 1.21

3000 2.03 25.74 1.86 2.02 17.01 23.36

4000 2.93 32.18 2.62 2.71 19.99 25.13

5000 2.84 8.73 2.82 3.03 8.84 16.43

6000 1.36 6.26 1.35 1.44 5.68 7.27

7000 1.14 6.94 1.17 1.33 6.24 10.65

8000 2.09 28.49 2.16 2.54 19.30 47.66

9000 0.26 0.54 0.50 0.54 0.54 0.73
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higher than the corresponding conditioning data. A poor result, however, is to be
expected since this domain has been insufficiently sampled. Furthermore, the North
Hard ore comprises a relatively insignificant proportion of the total Deep Sulfide
ore and therefore is not expected to have significant influence on the pit optimi-
sation runs. For the Hard Sulfide waste zone (ZONECODE 9000), the simulated
mean grade (0.50 g/t to 0.54 g/t) was significantly higher than the mean of the
conditioning data (0.26 g/t), though the variance is similar. This zone was expected
to remain largely subeconomic and was therefore unlikely to impact significantly on
the pit optimisation runs.

Histogram Validation

Histograms were generated for the first ten realisations of both the raw grade and
normal score simulation nodes. Since the two data sets are similar, only the raw data
is discussed. The raw grade histograms for the saprolite material (ZONECODES
1000 to 4000) indicated that, except for the North Saprolite ore (ZONECODE 3000),
the simulated grade for the saprolite material has been understated. The Saprolite
material (ZONECODES 1000 and 4000) was only marginally so, but the grade for
the Saprolite waste (ZONECODE 2000) has been significantly understated. Since
this is a ‘waste’ domain, with only five per cent of the conditioning data above an
economic cut-off grade to begin with, this grade understatement is not expected to
have a significant impact on the pit optimisation runs. For the primary drivers of the
Deep Sulfide Project, the Main Ore High Grade and Low Grade (ZONECODES
5000 and 6000 respectively), the raw grade histograms show good correlation
between the ten realisations and the conditioning data. Figure 4 illustrates this
deduction for the main high-grade mineralisation (ZONECODE 5000).

For the Hard Sulfide Hangingwall and Footwall mineralisation (ZONECODE
7000), the simulated grade appears to be marginally overstated between 3 g/t and
5 g/t. The same is evident for the North Hard ore (ZONECODE 8000) between 5 g/
t and 7 g/t. Both of these domains require additional drilling to ensure they are
representatively sampled. The histograms for the Hard Sulfide ‘waste’ domain
(ZONECODE 9000) show that the grade is significantly overstated up to about
2.5 g/t, however 94% of the conditioning data is below the lower marginal cut-off
grade of 1.20 g/t. The overstatement of grade is therefore unlikely to have a sig-
nificant impact on the pit optimisations. From a statistical perspective, the Sadiola
simulation model can be considered to be representative of the conditioning data.

Variogram Validation

The final test to determine the validity of the simulation model was to test the
reproduction of the spatial correlation between the simulated results and the
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conditioning data. Experimental variograms were calculated for the first ten reali-
sations and plotted against the semi-variogram model that was input into the
simulation process. To facilitate this process, the DBSIM program converted the
input semi-variogram models to block support and output the results. The resultant
normal score variogram model for the Main High-Grade mineralisation (zone 5000)
is presented in Fig. 5.

Although not an exact match, the normal score simulated experimental data
compares well with the regularised variogram model for the Main High-Grade
mineralisation (ZONECODE 5000). This was generally the case for the other zones,
particularly the Hard Sulfide mineralised domains (ZONECODES 5000–8000).

Post Simulation Processes

After the simulation process, the base statistics per block for all the realisations
were calculated. The following statistics were calculated for each block:

mean;m ¼
P

AU 1 to nð Þ
n
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where:
n is the number of realisations

variance; s2 ¼
PðAU � mÞ2

n� 1ð Þ

standard deviation, s ¼
ffiffiffiffi
s2

p
coefficient of variation, COV ¼ s

m
Similarly, the probability of each block grade being above 2.0 g/t was

calculated.

Fig. 5 Normal score variogram model for ZONECODE 5000
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probability;P AU [ 2:0 g=tð Þ ¼ No of realisations[ 2:0g=t
Total no of realisationsðnÞ

Next, for pit optimisation purposes, the laterite domains were added to the
simulation model, with each realisation adopting the estimated grade for the laterite
model blocks. The final simulation model was depleted by the saprolite life of mine
volume.

The final simulation model contained primary fields for 50 grade realisations,
coefficient of variation (providing an indication of uncertainty in the grade value),
and probability that the grade would be greater than 2.0 g/t. Secondary fields were
the remaining base statistics, the initial classification and rock type fields, and the
ZONECODE field. A representative section (EW-5550) is presented to illustrate the
primary fields of the final simulation block model (Figs. 6, 7 and 8). The $475/oz
prefeasibility pit shell is shown in white, and the models have been depleted to the
current ‘oxide’ LOM design.

From Figs. 6 and 7 it is evident that although realisation one shows significant
material within the prefeasibility pit shell above 2.0 g/t, the probability of the actual
grade being above 2.0 g/t is low. For this reason, one shouldn’t place too much
emphasis on the grade of a single realisation, but rather consider a number of
realisations simultaneously. The use of probability calculations provides a good
overview of the results of all the realisations simultaneously.

Figure 8 illustrates how the coefficient of variation calculation provides an indi-
cation of uncertainty in the simulated block grade. The diagonal white lines are

EW

Fig. 6 Simulated block grade for realisation 1 on Section EW-5550
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EW

Fig. 7 Probability of grade greater than 2.0 g/t on Section EW-5550

EW

Fig. 8 Block coefficient of variation on Section EW-5550
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borehole traces, and it is evident that zones of high confidence (low uncertainty)
correspond well with the borehole traces, while zones of high uncertainty correspond
with zones that have been insufficiently sampled. Since the coefficient of variation
provides a reliable indication of uncertainty in the simulated grade, it can also be used
as a tool for confirming, or even improving, the classification of the Deep Sulfide
mineralisation. Furthermore it has potential to direct drilling programs in zones that
require additional sample information, for example, the Footwall zone to the east.

Pit Optimisations and Data Processing

For each simulated orebody model, an ultimate pit shell, or maximum cash flow pit,
was derived using the Lerch-Grossman algorithm (Lerchs and Grossmann 1965).
The algorithm essentially begins at the model surface and ‘mines down’ into the
model making two basic decisions for each block:

1. Should the block be mined?
2. Does the material go to the treatment plant or the waste dump?

These two decisions are essentially based on the revenue generated by the block
at a defined gold price, which is offset against the cost of mining the block and the
cost of processing the material. Although valued individually, the decision to mine
a block or not is determined by considering the surrounding blocks in conjunction
with the block in question. For example, mining a high grade block below waste
blocks may in fact pay for the cost of mining the waste blocks and still generate a
profit. The ultimate pit is thus generated from all the blocks that the optimiser
decides to mine. The pit optimisation parameters were used to optimise the simu-
lation realisations (Tables 5 and 6).

The 50 NPV results for the various realisation ultimate pits were plotted with the
NPV for the recoverable resource model (Fig. 9). From Fig. 9 it is evident that the
NPVs for all the simulation realisations are greater than the NPV for the recoverable
resource model and that most of them are significantly greater. This indicates that
significant upside potential exists for the Deep Sulfide Project. Although this is
indicative of upside potential, it would be more useful to take this information a
step further and calculate probability or risk pits from the individual realisation pits.

Calculation of Probability/Risk Pits

The probability of mining each block was determined from the number of times it was
mined in each of the 50 ultimate pits. Each block was then flagged in the simulation
model, based on its probability of being mined, and risk pit shells were generated at
five per cent probability intervals from five per cent to 95% (Figs. 10 and 11).
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Table 5 Pit optimisation parameters

Gold price $475 (6% royalty + 1% management fee)

Selling cost 7%

Annual throughput 5.2 Mt

Rock type Mining Processing

Mining unit
cost

Mining
CAF

Processing unit
cost

Recovery

US$/t US$/t

Laterite (ox) 1.70 1.02 17.05 0.93

Saprolite oxide—soft 1.67 1.00 16.30 0.93

Siliceous oxide—hard 1.58 0.94 22.67 0.93

Saprolite sulfide—soft 1.50 0.90 21.01 0.8

Hard sulfides—hard 1.32 0.79 20.29 0.8

Intermediate oxide 1.59 0.95 17.05 0.93

Intermediate sulfide 1.59 0.95 21.76 0.8

Mixed oxide 1.59 0.95 22.67 0.93

Mixed sulfide 1.59 0.95 21.52 0.75

$/tonne/bench (10 m) Applicable to 160 level

Adjustments 0.0159

Table 6 Slope parameters for the pit optimisation

North/south division Slope angle Domain Slope

0 to 180 35 1 East oxides

180 to 359 40 1 West oxides

0 to 180 52 2 East sulfides

180 to 359 48 2 West sulfides
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Fig. 9 NPV for simulation realisations and recoverable resource model
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The $475/oz prefeasibility pit shell is shown as a white line in Figs. 10 and 11.
It is evident in both figures that the prefeasibility pit does not fetch a significant
amount of high probability/low risk material, and that in the east (Fig. 10), it mines
low probability/high risk Footwall material. The Footwall is known to be
under-drilled and is the target for the Phase 8 Deep Sulfide drilling program.

Generation of Grade Tonnage Curves

For each of the 50 realisations, and the recoverable resource (SMU) model, grade
tonnage curves were generated for the P05, P50, P80, P95, and prefeasibility
probability pit shells. Less variability than expected was achieved in each of the
grade tonnage curves:

• P05: At the approximate economic cut-off grade of 2.0 g/t, the SMU model
grade was 3.70 g/t, while the simulated realisation grades varied between
3.65 g/t and 3.87 g/t. The realisations indicated significant upside potential for
both grade and tonnage above cut-off.

• P50: At 2.0 g/t cut-off, the SMU grade of 3.76 g/t falls in the middle of the
realisation grade distribution (3.65 g/t to 3.93 g/t), though the tonnes above
cut-off show significant upside potential.

Fig. 10 Plan view (elevation −90 m) showing the probability of mining
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• P80: The grade tonnage curve is similar to that of P50 at 2.0 g/t cut-off, with the
SMU grade of 3.79 g/t falling in the middle of the realisation grade distribution
of 3.67 g/t to 3.93 g/t. Upside tonnage potential is indicated above cut-off.

• P95: Similarly indicates significant upside potential to the tonnage above
2.0 g/t, with the SMU grade of 3.83 g/t midway between the realisation grade
limits of 3.74 g/t and 4.0 g/t.

Except for P05—for which the average grade above 2.0 g/t cut-off is marginally
low—the above probability pit shells indicate that the SMU grade has been esti-
mated with reasonable accuracy, even though within all the shells, the tonnes above
cut-off have been understated in the SMU model. The tonnage and grade results are
not too dissimilar despite the different techniques. Within the prefeasibility pit shell,
a comparison of the simulation and SMU model grade tonnage curves indicates that
at 2.0 g/t cut-off, both the SMU grade and tonnage curves lay within the range of
the realisation distribution. This is illustrated in Fig. 12, where the tonnage curve
has been re-scaled to a maximum of 70 million tonnes. Although one may argue
that the SMU model is marginally too selective, Fig. 12 indicates that this selec-
tivity is acceptable. Above 2.0 g/t cut-off grade, the average grade above cut-off for
the SMU model is 3.82 g/t, while the realisation grade ranges from 3.75 g/t to
3.99 g/t. At the same cut-off grade, the SMU tonnage of 19.5 Mt falls within the
realisation distribution range of 19.0–21.0 Mt.

EW

Fig. 11 Section EW-5550 showing probability of mining
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Valuation of the Pit Shells

A pit value was calculated for each of the probability pits (P05 to P95 at 0.5
intervals) using the recoverable resource model. Since the extraction of the resource
within these shells was not scheduled, it was not possible to calculate an NPV for
each pit, but an open pit value was obtained for each scenario, based on the cost of
mining ore and waste, the cost of treating the different material types, and the
revenue generated at a gold price of $475/oz. The 2006 grade control cut-off grades
were used to define ore and waste material for the various rock types (Table 7),
with material above the cut-off categorised as ore.

The cut-off grades correspond with ‘break-even’ marginal grade material. The
various parameters of recovery, cost, and revenue that were used in the pit valuation
calculations are presented in Table 8. The cost values are those calculated by the
Sadiola long-term mine planner in February 2006. The rehabilitation (rehab) costs
had been included in the variable process costs and were therefore set to zero.

The calculated open pit values using the recoverable resource model for each of
the probability pits (P05 to P95 at 0.5 intervals) are presented below in Fig. 13. As
expected, an inverse relationship exists between the pit value and stripping ratio
with increasing mining volume. There is an interesting kink in both curves for
probability pit P80, which leads to its inclusion in further pit value analyses. These
additional analyses involved comparing the values for each of the simulation model
realisations with the SMU model value within selected probability pits. Open pit
values were calculated for selected probability/risk pits (P05, P50, P80, P95) and
the $475/oz prefeasibility pit using all 50 simulated realisations and the recoverable

Grade Tonnage curves for the Prefeasibility Pit Shell
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Table 7 Ore/waste cut-off grades

Rock type Cut-off (g/t) Rock type Cut-off (g/t)

Laterite 1.10 Hard sulfide 1.90

Saprolite 1.00 Intermediate oxide 1.10

Siliceous oxide 1.50 Intermediate sulfide 1.60

Saprolite sulfide 1.60

Table 8 Cost parameters applied during pit valuation

Item Material type Value

Mine call factor 100%

Recovery saprolite oxide 93%

Recovery saprolite sulfide 80%

Recovery hard sulfide 80%

Fixed mining ($/tonne treated) 2.40

Fixed process costs ($/tonne) 1.07

Variable process costs ($/tonne) Laterite (oxide) 9.84

Saprolite oxide—soft 9.09

Siliceous oxide—hard 15.46

Saprolite sulfide—soft 13.80

Hard sulfide—hard 15.58

Intermediate oxide 9.84

Intermediate sulfide 14.56

Admin costs ($/tonne) 3.59

Capital replacement ($/tonne) 0.46

Rehab costs ($/tonne) 0.00

Variable ore ($/tonne) Laterite (oxide) 2.089

Saprolite oxide—soft 2.058

Siliceous oxide—hard 1.938

Saprolite sulfide—soft 1.852

Hard sulfide—hard 1.825

Intermediate oxide 1.960

Intermediate sulfide 1.960

Variable Waste ($/tonne) Laterite (oxide) 2.083

Saprolite oxide—soft 2.051

Siliceous oxide—hard 1.933

Saprolite sulfide—soft 1.846

Hard sulfide—hard 1.820

Intermediate oxide 1.954

Intermediate sulfide 1.954

Gold price ($/oz) 475
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resource (SMU) model. Table 9 summarises the pit value base statistics for the 50
realisations and SMU model per pit shell, and Fig. 14 illustrates the distribution of
the realisation pit values.

From Fig. 14 and Table 9 it is evident that the $475/oz prefeasibility pit offers
the greatest profit margin but not the least risk. Probability pit P95, not surprisingly,
has the tightest distribution about the mean and would therefore offer the least risk
to achieving the indicated profit. However, considering the respective mean profit
values for the prefeasibility and P95 pits, the value offered by P95 is significantly
lower than that of the prefeasibility pit. Given the relatively minor additional risk,
the prefeasibility pit may be the preferred pit option. Figure 15 confirms that the
prefeasibility pit is the optimal pit for the Deep Sulfide project, given the $475/oz
gold price and cost parameters. The SMU model produces a profit of $112 million
and falls in the middle of the distribution of the simulated realisations. The risk does
exist that a profit of only $64 million may be realised, however a profit of $179
million is also possible, with the most likely profit ranging between $87 million and
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Table 9 Base statistics for the realisation pit values per pit shell

Pit SMU profit ($
million)

Mean profit ($
million)

Std dev ($
million)

Max profit ($
million)

Min profit ($
million)

P05 −78.010 −2.621 34.782 86.379 −67.288

P50 14.011 85.385 31.119 160.421 30.655

P80 21.745 82.204 24.921 139.124 37.691

P95 42.085 89.025 21.389 136.528 47.883

P-PF 112.889 108.036 24.400 179.400 60.870
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$148 million. It is evident from Fig. 15 that the profit curves flatten off significantly
from the P50 to the P95 risk pit, and that there is no insignificant difference in their
mean profit (Table 9). Though a marginal decision at a gold price of $475/oz,
mining an equivalent of the P80 or P50 pits could dramatically improve the Deep
Sulfide reserve ounces, and the P50 pit would most probably become a real option
should the gold price increase significantly.
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Conclusion

The final risk pits generated from the simulation model indicated that the prefeasi-
bility pit is generally conservative, corresponding with the 100 per cent probability
shell. There is however a certain amount of risk involved with mining the Footwall
mineralisation, where the prefeasibility pit digs on high-risk/low-probability mate-
rial. This is confirmed by the COV values in this zone, which indicate high uncer-
tainty in the grade estimate. Based on these results, an infill drilling program has
been planned to mitigate this risk. At the current economic cut-off grade of 2.0 g/t,
grade tonnage curves generated for selected risk pits have shown that although
upside tonnage potential exists for the Deep Sulfide Project, the recoverable resource
(SMU) model grade estimate is reliable. With the current cost information, and a
gold price of $475/oz, the prefeasibility pit is optimal. The calculation of economic
pit values for the realisations within the same selected risk pits indicated that the P50
to P95 pits and the prefeasibility pit are not significantly different. Therefore, there is
potential to add reserve ounces to the project without significantly decreasing its
value. An increase in gold price, or a decrease in operating costs, would make this
additional material available to the project. At a gold price of $475/oz, and with
current cost parameters, the prefeasibility pit shows maximum value for the project
with no significant additional risk.

This study has highlighted the potential to use the COV values as a reliable
classification method. It is recommended that the classification is re-run using the
simulation COV information, as proposed by Dohm (2005). This exercise would
eliminate unnecessary drilling and potentially save drilling costs. The gold price
used for this project was $475/oz (the recommended Anglogold Ashanti resource
reporting gold price for 2005). Anglogold Ashanti has since increased their resource
reporting gold price to $1000/oz, and at $720/oz, their reserve reporting gold price
is significantly greater than the gold price used for this project. Since the current
gold price provides significant upside potential for the Deep Sulfide Project, it is
recommended that the pit shell work is rerun using a suggested gold price of $700/
oz and the latest mining and processing costs derived from the prefeasibility project.
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Applicability of Categorical Simulation
Methods for Assessment of Mine Plan Risk

A. Jewbali, R. Perry, L. Allen and R. Inglis

Abstract The use of conditional simulation to characterize mine plan uncertainty
is gaining more use for assessment of risk in mining projects. While the develop-
ment of grade uncertainty profiles is relatively straightforward and can be validated
using standard geostatistical techniques, the addition of geological uncertainty to
evaluate total risk remains problematic. Some of the problems associated with
geological uncertainty methods include the clustering of data in favourable geologic
units, difficulty in training image definition, and the inability to address change of
support issues for categorical variables. Despite these obstacles the importance of
geological uncertainty as a contributor to total uncertainty has prompted Newmont
to explore and evaluate the use of various techniques (and combinations of tech-
niques) on different deposit types. Two orogenic deposits of different geological
complexity were selected for the study: Subika, a shear zone hosted deposit and
Merian, a deposit containing gold mineralisation associated with quartz vein zones
and stockwork within which are found higher-grade quartz breccia zones. Newmont
trialed various categorical simulation approaches to determine the applicability of
these methods for each deposit type and the effect of parameter choice on the width
of the uncertainty interval. Some of the techniques that were trialed include
Multiple Point Statistics (MPS) methods, Sequential Indicator Simulation using
local probabilities (SIS-lvm) as well as variations of these methodologies. Goals of
this study included: (1) an understanding of which techniques may work best in
which deposit types, (2) an understanding of the intricacies of each method, (3) and
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an understanding of the effect each method used has on total uncertainty analysis.
This paper presents a comparison of the various techniques and makes recom-
mendations for their use in uncertainty analysis.

Introduction

The use of conditional simulation to characterize mine plan uncertainty is gaining
popularity for assessment of risk in mining projects. While the development of
grade uncertainty profiles is relatively straightforward and can be validated using
standard geostatistical techniques, the addition of geological uncertainty to evaluate
total risk remains problematic. In general there is a lack of understanding of how the
different simulation methods affect the uncertainty profile. How geological uncer-
tainty is modeled also depends on the amount of geological knowledge available. If
very little is known about the deposit, modeling geological uncertainty should
include modeling the deposit with different geological concepts that all honor the
available drillhole data. For projects with good geological knowledge and a large
amount of data, modeling geological uncertainty considers uncertainty of contacts
between, and proportions of, the different geological units. This paper deals pri-
marily with the second case. Some of the problems associated with modeling
geological uncertainty for ore deposits are:

• The nature of the data collection process. Mining companies tend to collect
more information in mineralised geological domains. It is not uncommon for
non-mineralised geological domains to have no or very limited data. Data in
mineralised geological domains are usually clustered. While declustering tech-
niques can be used to derive declustered proportions of the different geological
units, this only addresses part of the problem as declustering is not applicable if
no data has been collected.

• Requirement of a training image for use of multiple point methods.
A training image is necessary to derive multiple point statistics. Developing
training images for a class of ore deposits is difficult because most ore deposits
tend to have unique characteristics and the resource model is typically used as
the training image. This is problematic because orebody models are seldom
stationary and may not contain repetitive features.

• Change of support issues. Generally geological information collected from
drillholes is on a different support compared to the resource model. Most
methods treat these two sets of information as if they are on the same support.

• The weighting given to the existing geological model. Most geological
simulation algorithms require the target proportions of the different geological
units. These proportions are unknown but are usually derived from the existing
geological model. Is this a reasonable assumption to make or should modeling
geological uncertainty include modeling the uncertainty in target proportions as
well?
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This paper presents two case studies involving deposits of different geological
complexity which were selected for modeling of geological uncertainty: Subika, a
shear zone hosted orogenic deposit and Merian, containing gold mineralisation
associated with quartz vein zones and stockwork within which are found
higher-grade quartz breccia zones. Newmont trialed various categorical simulation
techniques and variations of these techniques to determine the applicability of these
methods for each deposit type and the effect of parameter choice of the width of the
uncertainty interval. A description of the techniques trialed is provided below.

Methods

Sequential Indicator Simulation with Local Varying Mean
(SIS-lvm)

To determine uncertainty related to the geological interpretation, a Sequential
Indicator Simulation (SIS) approach was used. In SIS, each mutually exclusive
rocktype (category) is expressed as an indicator variable. These indicators are
simulated and for every location, a category is drawn according to the local con-
ditional distribution function determined through simple kriging. Drawbacks of the
SIS approach include the unstructured appearance of the simulations, the inability
to impose structural control over the simulations and its inability to handle the
non-stationary nature of rock type proportions. To partially account for these
drawbacks, a deterministic categorical variable model (usually the resource model)
is filtered to calculate local varying probabilities near the boundaries of the different
categories i.e. the contacts are uncertain (Deutsch 2006). The size of the filter
determines the width of the uncertainty region adjacent to the contact. Next, simple
kriging is used to derive the local conditional distribution.

I�LVM u; kð Þ � pk uð Þ ¼
Xn

/¼1

lska ua; kð Þ i ua; kð Þ � pk uað Þ½ �

where,

I�LVM u; kð Þ is the simple kriged estimate at location u for category k.
pk uð Þ is the probability of category k at location u.
lska ua; kð Þ are the simple kriging weights for data at location ua for category k.
i ua; kð Þ are the indicators for category k at data location ua.
pk uað Þ are the local probabilities for category k at location ua.

The estimates for each category are performed independently which can lead to
order relations deviations. Due to the noisy nature of the simulations a
post-processing step is usually applied to clean the simulations up (Deutsch 2006).
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CatSim

CatSim (Hardtke 2014) is a variation on the SIS method that incorporates the use of
a preferred orientation of continuity between different data values. During simu-
lation a weight is assigned to every existing data point (both original and simulated)
within the search area. The weight is very large when the point is on the preferred
orientation and decreases to a value of 1.0 when it is normal to that direction. The
user specifies a maximum number of points to be used for simulation so the points
with the largest total weight (weight divided by distance) are selected. The final
value for a node can be determined by either a random draw or a simple weighted
majority. There is no limit to the number of categorical values that are simulated.
Orientation is assigned for every node and different areas of the deposit can be
simulated using different preferred orientations. Depending on the degree of ani-
sotropy, a weighting factor is applied as an exponent to the total weight.

The original drillhole data are moved to nodes on the grid and the method does not
distinguish between original and simulated nodes. The simulations are typically better
when searches are not very long and the maximum number of samples is small, as the
method assumes that the most likely value for a node is the value of the nearest data
point along the preferred orientation. The search distance appears to be more
important when the random draw is used because if the search is too long, a value may
be selected that does not occur in the local area around the node being simulated.

Multiple Point Simulation (MPS)

A shortcoming of SIS is that it fails to reproduce complex non-linear geological
features as seen in mineral deposits. This is due to its reliance on the variogram,
which can only characterize the linear relationship between data points. Multiple
Point Simulation (MPS) (Strebelle 2002; Remy et al. 2009) is a technique which
characterizes the relationship between points with higher order statistics. In doing
so it is able to reproduce complex patterns and domain interactions (Strebelle 2002).
MPS requires the use of a stationary Training Image (TI) to extract the higher order
statistics at various scales. However storing and deriving the multiple point
statistics from the training image requires additional RAM and CPU time. For this
study SNESIM (Strebelle 2002) is used to generate multiple realizations of the
different mineralised domains.

Self-Healing Sequential Indicator Simulation

In order to generate more realistic simulations of geology, Self-healing Sequential
Indicator Simulation integrates the geological interpretation into SIS (Richmond
and Godoy 2006). The approach allows for a local correction of the indicator
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kriging estimate with the aid of a variable indicative of the confidence in the
geological interpretation such as, for example, the kriging variance which is
indicative of data density:

I u; kð Þc¼ 1� k uð Þð ÞI u; kð Þþ k uð ÞI u; kð Þg
where,

I u; kð Þ is the indicator kriged estimate at location u for category k.
k uð Þ is the confidence in the geological interpretation at location

u ð0�ðk uð Þ� 1Þ
I u; kð Þg¼ 1 is the geological interpretation at location u.

Leapfrog® Models

To further analyse uncertainty an indicator approach utilising Radial Basis Function
(RBF) was used to produce a range of results. The inputs to the RBF interpolant are
the categorical data in the form of a numerical indicator, the variogram and a
structural trend which is similar to locally varying anisotropy. The approach allows
for locally varying directions of continuity. Volumes were created at desired values
to represent probability shells. Leapfrog® software was used for this approach.

The RBF interpolant is similar to the general expression of dual kriging (Stewart
et al. 2014)

s xð Þ ¼
X

i

xiuð x� xij jÞ þ
XK

k

ckqk xð Þ

where,

xi are the data locations over which the interpolation is to be constrained.
xi are RBF coefficients (weights).
uk xð Þ is a spatial distance function (the RBF—from which the method takes its

name).

The term on the right refers to the set of K drift functions qk xð Þð Þ each having a
coefficient (ck) applied globally across all data.

Case Studies

Two deposits were used to develop case studies for testing and evaluating the
various geological uncertainty methodologies: (1) the Merian deposit in Suriname,
and (2) the Subika deposit at Newmont’s Ahafo mine in Ghana. While both
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deposits are orogenic in genesis, each has different types of controls on minerali-
sation from which to assess uncertainty.

Merian

The Merian deposit lies within Lower Proterozoic aged rocks of the Guiana Shield
in north-east Suriname, South America, approximately 100 km east of the capital
Paramaribo (Fig. 1). In Suriname the Guiana Shield is composed of distinct, east
west trending belts of low-grade metamorphic rocks which are separated by large
areas of granitic rocks and gneisses. Gold mineralisation within the Merian deposit
occurs as a vein type Proterozoic lode gold deposit; gold is found within and
immediately adjacent to quartz veins, quartz stockworks and irregular quartz
breccia bodies. Host rocks are composed of highly folded sandstones and siltstones.
Gold mineralisation at Merian occurs over a strike length of approximately 3.5 km,
elongate in a northwest-southeast direction and over a width of 200–600 m. Two
distinct structural styles of mineralisation exist:

• Gold mineralisation associated with northwest striking, shallow to moderately
northeast dipping sheeted and or tabular quartz vein zones and quartz
stockworks.

• Gold mineralisation associated with higher angle, northeast dipping veins and
irregular quartz breccia bodies.

Fig. 1 Location of the Merian deposit
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The Merian geologic model was constructed using the following attributes
collected from drill core logging:

• Stratigraphy, faults and folds
• Oxidation states (Saprolite, Fresh rock etc.)
• Quartz vein density
• Quartz breccia.

Simulation Methodology

Percent quartz vein content and quartz breccias have long been recognized to be a
primary control on the geometry and grade of gold mineralisation. These were used
to create a mineralised envelope for the Merian deposit. Figure 2 displays three
cross-sections of the Merian mineral envelope as coded in the Merian resource
model. It clearly illustrates the spatial continuity features of the the mineralisation.
In tightly drilled areas the drillhole spacing is approximately 25 m across and 25 m
along sections.

In order to assess the volumetric uncertainty of the mineralised envelope cate-
gorical simulations were generated using various methods:

1. 50 simulations using the CatSim approach. This approach only takes the con-
ditioning data as input (and geological directions of continuity).

2. 50 multiple point simulations using Snesim, where the resource model in Fig. 2
was used as the training image (servo system factor of 0.5).

Fig. 2 Mineralised envelope for the Merian deposit with drillhole data. The area outlined in red is
used for the study
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3. 50 simulations using the self-healing SIS approach. Here the kriging variance
(Fig. 3) was used as an indicator of the confidence in the geological
interpretation.

4. 50 simulations using the SIS-lvm approach where local varying probabilities
were calculated using the geological interpretation and moving window sizes of
12 � 12 m (0.5 times the tightest drillhole spacing), 25 � 25 m (the tightest
drillhole spacing), 50 � 50 m (twice the tightest drillhole spacing) and
75 � 75 m (three times the tightest drillhole spacing) (Fig. 4). It is expected
that larger filter distances will yield larger bands of uncertainty.

5. Leapfrog® models: in addition to the simulations three volumes were produced
using RBF indicator probability shells. Volumes were analysed based on
selecting volumes contoured from a range of interpolated values (P30 to P50),
Indicator statistics were analysed to determine the Balanced Shell (P38) which is
the volume that includes as many indicator data misclassified inside the shell as
it excludes indicator data misclassified outside the shell and to determine the
Russian Doll Shell (P30) where the next larger volume incrementally includes
data where the indicator mean is less than the probability of the shell. In order to
produce a range of results an arbitrary smaller volume was selected at P46
(Inglis 2013) (Fig. 5).

Fig. 3 Kriging variance as
input into the SIS self-healing
approach
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Uncertainty in the Volume of the Mineralised Envelope

Views of the generated simulations for the various methods are shown in Figs. 6
and 7. Out of all the methods tested, only CatSim and Leapfrog® are based on
conditioning data, they do not consider the existing resource model in any shape or
form. Both the Sequential Indicator Simulation (SIS-lvm) based models and Snesim
take the existing interpretation into account through local probabilities, proportions
or the use of a training image. The figures show that the simulations generated by

Fig. 4 Local varying probabilities to be inside the mineralised domain derived from the resource
model

Fig. 5 Models build using Leapfrog®
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Fig. 6 Simulation results for SIS-lvm-plan view

Fig. 7 Simulation results for SIS with self-healing, Snesim and CatSim-plan view

522 A. Jewbali et al.



SIS-lvm are noisier compared to the model. This is especially so, when a large
window is used to generate local probabilities. As shown in Fig. 4, this creates
lower probabilities in areas where the probability to be inside the mineralised shape
was previously high. This causes the simulations to have a dispersed appearance.
After clean-up, the simulations for the 25 � 25, 50 � 50 and 75 � 75 still do not
display the same level of continuity in the north-south direction seen in the resource
model. The Snesim and SIS-lvm simulations look very similar compared to the
resource models. The CatSim approach is based on the existing data and in areas of
limited information; blowouts can occur (southern point).

Figure 8 displays the uncertainty profile for the mineralised volume. It shows the
smallest, largest and average (over all 50 simulations) volume. Figure 9 shows the
width of the uncertainty interval (difference between the smallest and largest volume).
In general from these figures the following can be derived:

1. For most of the methods, the volumes fluctuate above or below the volume
defined by the resource model. Only three methods (SIS-lvm 75 � 75 m with
post-processing clean, Leapfrog® and self-healing SIS) contain the volume
defined by the resource model in their uncertainty interval. Whether simulation
volumes are above or below that defined by the resource model, appears entirely
arbitrary and depends on the chosen parameters.

2. As expected, for the SIS-lvm, the wider the uncertainty window used to generate
the local probabilities, the wider the uncertainty interval. The width of the
uncertainty interval for SIS-lvm (75 � 75 m) is wider compared to that of
SI-lvm (50 � 50 m). For this approach there appears to be a bias related to the
size of the window used to create the local probabilities. For larger windows the
simulations tend to generate more mineralised volume (that is also more
dispersed).

Fig. 8 Uncertainty profile for mineralised volume
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3. SIS with self-healing has the tightest uncertainty interval. Its uncertainty interval
is approximately 25–30% of the smallest uncertainty interval for SIS-lvm
12 � 12 m.

4. For Snesim the width of the uncertainty interval is approximately similar to
SIS-lvm 25 � 25 m.

5. The Leapfrog® approach delivers the widest uncertainty interval which none of
the other methods are able to match.

In general at Newmont, the approach has been to combine the simulations of
geology with simulations of grade to derive the uncertainty interval for tonnes of
metal, tonnes of ore and average grade for annual/quarterly production volumes. If
for example the SIS-lvm 12 � 12 m was chosen for the geological simulation, one
would tend to think that the resource model was too optimistic. The opposite can be
said for the use of SIS-lvm 50 � 50 m, i.e. the model is too pessimistic. If SIS with
self-healing was chosen for the geology simulations, one would possibly conclude
that the resource model is reasonable in terms of contained volume. Generation of
these simulations of geology is non-trivial and the end results very much depend on
the parameters and method chosen. It is therefore imperative that one understands
the impact the choice of method and parameters will have on the uncertainty profile.
Most of these methods (except for CatSim and Leapfrog®) are based on information
derived from the existing resource model whether through probabilities, proportions
or resource model as training image. By doing this there is an implicit assumption
that there is some level of confidence in the resource model. For pre-feasibility or
feasibility stage projects where there is a lot more data available this assumption
might be justified, however for early stage projects with far less data, these methods
might not be applicable.

Fig. 9 Width of the uncertainty profile for mineralised volume
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Subika

The Subika deposit is the southernmost of the known Ahafo deposits (Fig. 10) and
is hosted entirely within the granitoid package in the hanging wall of the Kenyase
Thrust. High-grade gold mineralization is focused in a dilatant fracture zone, locally
referred to as the Magic Fracture Zone (MFZ). This zone ranges from 1 to 60 m
wide with a halo of lower grade mineralization extending out to 30 m. A number of
higher grade ore shoots, which appear to be controlled by dilatant left lateral jogs in
the MFZ are recognized and plunge steeply to the southeast.

Quartz-Sericite-Pyrite and Iron-Carbonate (QSP-Fe) is the dominant alteration
associated with high grade mineralization. Alteration fluids appear to have accessed
the MFZ via a network of shallow angle, brittle fractures within an overall steeply
dipping shear zone. QSP alteration intensities are logged as 1, 2, or 3. The com-
bined QSP 2/3 alteration forms the basis of the higher grade population, while
QSP 1 alteration correlates well with a lower grade population. These two alteration
categories have been used to define the geologic framework used in the resource
estimates, and are the main focus of this study.

Simulation Methodology

Four methods were used for this case study, SIS-lvm, self-healing SIS, Snesim and
Leapfrog®. All the methods except for Leapfrog® used the interpreted geologic
model as input (Fig. 11), and attempted to reproduce the target input proportions.
For these three methods, the simulated volumes fluctuated slightly above the vol-
ume of the geologic model, with the exception of one MPS case.

Fig. 10 Location of the Subika deposit
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The SIS-lvm case was constructed using 2 � 2 � 2 m nodes and the window of
influence applied to the lvm was based on the average drill spacing (approximately
35 m) within the simulated area (Fig. 12). This parameter being based on drill
spacing allows block probabilities to be calculated within ranges equivalent to the
spacing of hard information, and will result in bands of uncertainty around geologic
features at a scale similar to the drill spacing. Large filter distances associated with
wide spaced drilling will yield large bands of uncertainty around interpreted geo-
logic features, while small filter distances associated with close spaced drilling will
yield tight bands of uncertainty around the same features. This coincides with the
idea that uncertainty should decrease as drilling density increases. In addition,

Fig. 11 Subika geologic framework
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anisotropy derived from the variogram model was applied to the calculation of the
lvm in order to preserve the preferred orientation of the structure and mineralisation.
The resulting SIS with the lvm used as control is shown in Fig. 13.

The self-healing SIS case was constructed on the same 2 � 2 � 2 m grid and
geologic interpretation as the above SIS-lvm case (Fig. 14). It has the tightest range
of uncertainty of all the methods tested. The Leapfrog® model on the other hand
delivers the widest range of uncertainty.

The MPS case was developed on 6 � 12 � 6 m blocks, using the interpreted
geologic model as the training image (Fig. 15). Three different scenarios were
developed, where the servosystem factor was modified in each run (0.1, 0.5 and
0.9). This parameter controls how Snesim reproduces the target input proportions
from the TI. The higher the factor, the better the reproduction of the input target
proportions. The selection of this value is somewhat subjective, and should be
chosen with the quality of the geologic model in mind. There are other parameters
that have an impact on the result, but they were not tested during this exercise.

Fig. 12 Block probabilities for alteration type (unaltered, QSP2 and QSP23)
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Fig. 13 Geologic model and BlockSIS results (Cleaning set to 1, Mild)
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Uncertainty in the Volume of the Geologic Domains (QSP1/QSP23)

Using the results from the above techniques uncertainty around the modelled
volumes within QSP1 and QSP23 were quantified. 50 realizations were generated
using both techniques and the results were compared to the input volumes from the
geologic model, as well as to each other.

The uncertainty profiles for QSP1 and QSP23 are shown in Figs. 16 and 17.
Note that the SIS-lvm and MPS 0.5 show similar results, while MPS 0.1 results in a
wider range of uncertainty and more volume than any of the other techniques. MPS
0.9 on the other hand has a much smaller range of uncertainty and appears to be
biased low on volume. It is understandable that the range of uncertainty would

Fig. 14 Geologic model and self-healing SIS results
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Fig. 15 Geologic model and Snesim (servosystem factors (SSF) = 0.1, 0.5 and 0.9)

diminish with an increasing servosystem factor, because we are more strictly
enforcing reproduction of the input target proportions, but the reduction in volume
is not so easily explained. The results from self-healing SIS indicate that there is
very little uncertainty around the geologic interpretation. The controls for this
technique need to be investigated further to determine the parameters that most
influence the outcomes. Figures 18 and 19 illustrate the differences between the
minimum and maximum volumes of each technique. This shows the variability of
ranges of uncertainty depending on technique and parameter selection.

All the techniques yield promising results, and given that it is reasonable to put a
fairly high level of confidence on the geologic interpretation, it seems acceptable to
try to achieve ranges of uncertainty that fluctuate around the interpretation. In earlier
stages of the Subika project this would not have been the case. Over time tonnages
at Subika have shown large fluctuations caused by the wide spaced drilling and
overall complexity of the geologic framework. With drill spacing at *35 m and a
significant amount of thought and effort placed on the geologic interpretation,
Newmont is to the point of applying these results to the risk associated with the
mine plan.
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Fig. 16 Uncertainty profile for QSP1

Fig. 17 Uncertainty profile for QSP23
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Conclusions

The two case studies have shown that simulating uncertainty in geological units is
non-trivial, the width and center of the uncertainty profiles are very dependent on
the method and the parameters selected. For the SIS-lvm approach, the size of the
uncertainty window has an impact on the width of the uncertainty profile, with
wider profiles resulting in wider uncertainty windows (not necessarily centred on
the input resource model) and more dispersed simulations. For MPS the servo
system factor also appears to control the width of the uncertainty interval with servo

Fig. 18 Width of Uncertainty profile for QSP1

Fig. 19 Width of Uncertainty profile for QSP23
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system factors closer to one delivering narrower uncertainty intervals (not always
centred on the target proportions). Out of all the methods, the SIS-self-healing
approach delivers the narrowest uncertainty intervals with proportions centred on
the input resource model. Most of the methods (except for CatSim and Leapfrog®)
require the existing interpretation as input through local probabilities, proportions
or the use of a training image.

Leapfrog appears to be a better tool at early stages because it allows for a more
complete testing of different geological concepts with a wider band of uncertainty.
In later stage projects where there is a fairly high level of confidence (due to the
amount of data collected) on the geologic interpretation, other methods that achieve
ranges of uncertainty around the interpretation likely provide a more realistic
assessment of uncertainty. The case studies have also shown that in order to get
ranges of uncertainty that fluctuate around the interpretation, the parameters for the
various methods need to be selected carefully.
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Cut-off Grade Based Sublevel Stope
Mine Optimisation

Introduction and Evaluation of an Optimisation
Approach and Method for Grade Risk
Quantification

M. T. Bootsma, C. Alford, J. Benndorf and M. W. N. Buxton

Abstract Research in the field of cut-off grade optimisation has shown a rela-
tionship between cut-off grade, project life and Net Present Value. Lane’s theory
demonstrates that cut-off grades can be optimised in order to maximise project
profitability. Although the theory forms the basis for many open pit mining projects,
application of the theory in underground mining remains limited to-date. The main
reason for this is the complex interaction between all processes in underground
mine planning which makes it difficult to apply Lane’s mathematical optimisation
approach. Recently a new Stope Optimiser product was released. The AMS Stope
Optimiser automates the design of underground stopes at user defined cut-off grades
and allows for rapid evaluation of mine designs at different cut-off grades. Using
this software, an optimisation approach was developed and validated on an
underground gold deposit in northern Sweden. Potential project NPV increased by
approximately 30% when using this new approach. Spatial grade uncertainty in
mineral resources was identified to be a major risk in underground stope design.
The optimisation approach was further extended to account for grade risk using
estimated and stochastic simulated resource models. The resulting optimisation
process accounts for grade risk early in the design process and reduces the risk of a
stope not meeting the cut-off grade with subsequent financial loss.
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Introduction

It has long been realised that mining simply every part of an orebody with a grade
higher than 0 is not economical and will not lead to a successful mining operation.
By selecting a cut-off grade it is decided what part of the orebody is economical to
extract and what material is to be considered as waste. In its most basic form the
cut-off grade is defined as a break-even grade which makes sure that each block of
ore pays for its own mining, processing and refining costs resulting in zero gains
and losses for a block of ore containing this grade (zero profit). It is the ambition of
mining companies to maximise the Net Present Value (NPV) of mining projects.
Simply using the break-even grade is in most cases not enough to accomplish this
goal and hence time and effort should be spent to determine the optimum cut-off
grade(s).

Lane (1988) described a relationship between cut-off grade, project life and Net
Present Value. The theory demonstrates that a cut-off grade (often higher than the
break-even grade) can be found that maximises Net Present Value. The work by
Lane forms the basis for the optimisation of many open pit mining projects within
the industry today but application of the theory in underground mine optimisation
remains limited to research projects to-date (Poniewierski et al. 2003; Gu et al.
2010; Elkington et al. 2010). This is caused by the complexity of underground
mining compared to open pit mining, which makes it more difficult to apply Lane’s
mathematical approach and to develop optimisation software.

This paper presents the findings of a nine-month research project (Bootsma
2013) carried out for Boliden Mineral AB, a Swedish mining company. The paper
analyses Lane’s theory and uses the theory to introduce a practical underground
mine optimisation method for sublevel open stope mines using automated stope
optimisation software. The method can be used to rapidly evaluate multiple project
scenarios in order to determine the optimum project strategy that maximises the
profitability of a mining project. Finally a method for risk-based stope design is
introduced to expand the optimisation method.

Cut-off Grade and Net Present Value

Lane’s methodology is based on maximising Net Present Value. The NPV takes
into account the time value of money based on the principle that money today is
worth more than the same amount of money tomorrow. The NPV presents the net
difference of all future cash inflows and all cash outflows in present value terms.

In the mining industry, investments in new mining projects are often large before
mining can actually start and the return on these investments takes place over long
periods of time. This means that the future returns (cash inflow) on the capital
investment of today (cash outflow) have to be discounted in order to calculate the
profitability of the project.
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The Net Present Value is the sum of the present value of all future cash flows and
is defined as:

NPV ¼
XN
n¼0

Fn

1þ ið Þn

in which;

N Life of project
Fn Cash flow in period n
i Discount rate

Lane developed the theory that a relationship exists between cut-off grade and
NPV. According to the theory there is a cut-off grade (that may vary over the life of
the mine) for which the Net Present Value is optimised. Lane’s theory is clarified by
the function defining Fn, the cash flow in period n.

The cash flow function for a period n is defined as:

Fn ¼ Mn s� rð Þ � �gny� m� p� o½ �

in which;

Mn Amount of material mined in period n (t)
s Selling price per unit of product (USD/unit)
r All smelting and Refining costs (USD/unit)
�gn Average grade of ore in period n (g/t)
y Yield or recovery (%)
m Mining Cost (USD/t)
p Processing Cost (USD/t)
o Overhead Cost (USD/t)

By substituting the cash flow function Fn into the NPV equation, the NPV
equation is rearranged into:

NPV ¼
XN
n¼0

Mn s� rð Þ � gny� m� p� o½ �
1þ ið Þn

Lane defined the average grade and size of the mineable reserve using the
grade-tonnage curve of the deposit. The grade-tonnage curve provides the average
grade and size of the mineable reserve based on a chosen cut-off grade. If the
production rate is assumed constant (regardless of the chosen cut-off grade and
resulting size of the reserve) then the life of mine (N in the NPV equation) is
defined as:

N ¼ Qm

M
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in which;

Qm size of the mineable reserve (t)
M Mine production rate (t/a)

Lane showed that a combination of cut-off grade and life of mine exists for
which the project NPV is maximised (Fig. 1).

However, in order to apply Lane’s theory to underground mining operations
much more complex algorithms are required. The main difficulty is the fact that the
whole mine plan for an underground operation depends on the reserves (stope
shapes) generated for a particular cut-off grade. Based on these stope shapes
development designs and mine schedules are evaluated to determine the optimum
mine plan for the particular cut-off grade. Because each mine plan only applies to a
particular cut-off grade, separate mine plans have to be developed for each cut-off
grade under consideration before the optimum can be determined.

It is because of the complex interaction between all processes in underground
mine planning that cut-off grade optimisation to maximise project NPV has not
progressed much since Lane introduced his theory. Many operations are designed
based on a break-even grade which is defined as the minimum grade that a tonne of
ore should have in order to pay for its own mining processing and refining (Rendu
2008). However, by using the break-even grade as the cut-off grade it is ques-
tionable whether the NPV is optimised (Alford and Hall 2009; Hall 2007; Hall and
Steward 2004; Hall and de Vries 2003). Lane has shown that the optimal NPV is
based on a combination of cut-off grade and the life-of-mine (as a function of
production rate) due to the implementation of a discount rate. In other words, using
the break-even grade as the cut-off grade is too simplistic and does not take into
account the complex relationships involved in underground mining.

Based on the cut-off grade theory by Lane, a practical underground mine opti-
misation method was developed that allows for the rapid evaluation of mining
project scenarios in order to find the optimum strategy that maximises project NPV.
The proposed optimisation method considers the underground mining constraints
that are not accounted for in Lane’s equations and is expanded to allow for
risk-based optimisation.

Fig. 1 NPV and LoM versus
Cut-off grade
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Underground Mine Optimisation—General Concept

The underground mine planning approach as shown in Fig. 2 (after Poniewierski
et al. 2003) is centred around a mineral resource block model and forms the basis of
the underground optimisation process.

The process starts with the application of a cut-off grade to the mineral resource
model. Often the break-even grade is used here to define the economic part of the
mineral resource. The chosen cut-off grade does not only separate ore and waste but
also determines the geometry of the mineral reserve. Based on the obtained orebody
shape, orientation and geology together with geotechnical conditions appropriate
production areas (comprised of multiple stopes) are designed. A feasible mine
design is created by connecting the production areas to the surface with basic access
development (shafts, declines, level development, ore drives). The mine design is
loaded into a scheduling package to produce a life-of-mine schedule for the
operation. Feasible mining sequences, development and production rates are
evaluated and the resulting production schedule is fed into a spread sheet based
Cash Flow Model. The Cash Flow Model uses the production data to calculate all
costs and revenues related to the mining operation on a monthly basis. It also
includes all other costs (e.g. capital expenditures) related to the mining operation.
The resulting cash flow can be discounted to obtain the project NPV for a selected
cut-off grade and production schedule.

Underground mine optimisation can be described as repeating the mine planning
process for a range of cut-off grades and production schedules in order to find the
best mine strategy. In other words, the more scenarios are evaluated, the more likely
it is that an optimum strategy is found. A helpful method to determine the optimum

Fig. 2 A typical approach to
underground mine planning
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strategy is to plot all the evaluated scenarios in a Hill of Value graph (Fig. 3). The
optimum strategy is found at the ‘top of the hill’.

Due to a lack of automated optimisation tools, the underground mine optimi-
sation process has been largely a manual and time-consuming process. Especially
the design of underground stopes and associated development can take a significant
amount of time when multiple cut-off grades are evaluated. As a result, under-
ground mine optimisation has in many cases been carried out with inadequate data,
potentially resulting in sub-optimal project performance and loss of potential profit.

Semi-automated Stope Optimisation

New techniques for stope optimisation have been advanced by Alford Mining
Systems (AMS) through two industry funded research projects, AMIRA P884
“Planning and Rapid Integrated Mine Optimisation” (2007–2010) and AMIRA
P1037 “Optimisation of Stope Design and Stope Layouts” (2011–2014). The
software has been commercialised by three mining software supplier sponsors of
these projects—CAE, Maptek and Deswik. While earlier work in 1995 led to the
concept of the ‘Floating Stope’ heuristics, the newer techniques produce rapid,
optimal and repeatable design shapes suitable for strategic and tactical mine
planning.

Fig. 3 Hill of value graph showing NPV as a function of cut-off grade and production rate (Alford
and Hall 2009)
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The AMS Stope Optimiser is a tool that assists in automating the design of
underground stopes. It optimises both the location and shape of the stope to
maximise the total value or metal above a set cut-off within the stope boundaries.
The output of the automated stope design process is a set of wireframes that can be
used for further mine design and scheduling. To control the optimisation process
and to ensure that the stope designs are technically viable, factors that control the
maximum allowable stope shape can be altered. These can be geotechnical stress
field conditions, faults and fractures, orebody characteristics and/or production
limitations (e.g. maximum production drill-hole lengths). The controlling factors
together result in constraints to the maximum stope dimensions and orientation that
are supplied to the optimisation software.

The stope optimisation process is block model driven and does not consider
geological wireframes whilst designing stopes. The quality of the optimisation is
therefore depending on the accuracy of the block model.

The approach taken in the stope optimisation process incorporates three stages;
slice evaluation, seed generation and stope shape annealing.

During the slice evaluation stage, the mineralisation is sampled on a regular grid
to identify the economic zone. Slices are placed within a regular optimisation
framework (depicting a sublevel of stopes) and represent the smallest mining unit
(the smallest volume that can be selectively mined). The optimisation algorithm
will then progress through the resource model in a direction perpendicular to the
optimisation framework whilst evaluation slices against the user supplied cut-off
grade.

The seed generation algorithm finds the best combination of slices whilst
respecting user-supplied constraints such as stope and pillar sizes, hanging and
footwall dips and the maximum internal waste percentage. The resulting seed shape
represents the approximate size and location of stopes that meet the both the cut-off
and design constraints. An annealing algorithm then explores adjustments to the
seed shapes to maximise the final value while continuing to satisfy the design
constraints.

The stope optimisation is solely economic, generating optimal stopes shapes that
would satisfy the cutoff grade, without immediate consideration for the mining
practicality and technical feasibility for the inventory of stopes and the final stope
layout required for access and sequencing.

Mineral Resource Models

Both estimated and simulated resource models can be used as an input to the AMS
Stope Optimiser. The required techniques to create such models are well described
in literature such as Goovaerts (1997). Both types of models and their differences
are briefly introduced, as the resource model determines the stope optimisation
method(s) that can be used.
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Estimated Models

Estimated resource models are created by use of estimation algorithms such as
Kriging. The Kriging algorithm minimises the error variance at each interpolated
location and ensures local accuracy of the interpolated grades.

A side effect in Kriging estimation is the smoothing effect. Typically, low grades
are overestimated whereas high grades are underestimated (David 1977, 1988). As
a result of this effect, spatial variability is not properly reproduced and the estimated
block model may not be the best representation of the grade distribution within the
orebody.

Conditional Simulated Models

The smoothing effect as present in Kriging estimation algorithms does not occur
when conditional simulation is used to model grades in a resource model. Whereas
Kriging estimation aims to minimise the local error variance, conditional simulation
reproduces available data, sample statistics and spatial variability (Goovaerts 1997).
The model resulting from conditional simulation therefore guarantees global
accuracy. By simulating multiple equi-probable realisations of the resource model
global grade uncertainty can be quantified and used in the stope optimisation
process.

Numerous conditional simulation algorithms are available of which sequential
Gaussian simulation is often used to simulate resource models. The method requires
a regular simulation grid and follows the following steps (after Goovaerts 1997):

Composited drill hole data is transformed into a Gaussian Random Field by
means of normal score transformation and placed onto the simulation grid at the
respective measured location. This assures that hard data is considered during
simulation (conditional) and measured values are reproduced in the final simulated
model. Next, a random path is defined visiting each node on the simulation grid
exactly once. At the first node, Simple Kriging is used to estimate the local mean
and variance. A conditional cumulative distribution function is created and the
Monte Carlo algorithm draws a random value between 0 and 1 to determine the
associated grade. This is the grade for the first node and is placed onto the grid.
Each successive node along the random path is subsequently visited and the esti-
mation process is repeated with inclusion of the previously simulated nodes as data
values in the Kriging process. Once all nodes along the random path are visited, the
simulated normal scores are transformed backwards into simulated values for the
original variable (the grade).

By repeating the simulation process using different random paths, a series of
equi-probable realisations of the mineral resource can be created. These
equi-probable realisations of the orebody provide a valuable insight of grade
uncertainty present within the mineral resource model and can be used in the stope
optimisation process.
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Stope Optimisation Methods

Depending on the available block model type the AMS Stope Optimiser can apply
one of two types of stope optimisation methods; Conventional and Risk-based.

Conventional stope optimisation is carried out using the estimated resource
model only. The stope optimisation software optimises both the location and shape
of the stopes (Fig. 4) for a user supplied cut-off grade.

Risk based stope optimisation using conditional simulated resource models is a
relatively new concept. A previous study was conducted by Grieco and
Dimitrakopoulos (2007) and uses multiple simulated models to optimise stopes
above a certain cut-off grades for a range of certainty levels.

A similar method was introduced to AMS Stope Optimiser as part of the
AMIRA P1037 project. The optimisation process is carried out using the estimated
resource model and all simulated resource models simultaneously. By the appli-
cation of a target confidence level to the desired cut-off grade, the underground
stopes are designed to meet the cut-off grade in the estimated model, as well as a
percentage of the simulated models.

As an example, optimising stopes at a cut-off grade of 2.0 g/t and a minimum
confidence level of 80% (based on 25 simulations) will result in stope shapes at or
above this cut-off grade in the estimated model as well as at least 20 of the 25

Fig. 4 Example AMS stope optimiser stope solids output in Deswik.CAD
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simulations. By increasing the minimum confidence level, the risk of
under-performance of the optimised stopes decreases, as the stopes must meet the
cut-off criterion for an increased number of simulations.

Another approach to reducing risk would be the option to increase the minimum
desired head-grade, but this was not explored in the current case study.

As a trade-off for increased confidence, the number of stopes and stope tonnages
are likely to reduce with increasing minimum confidence levels. The reduction of
the stopes and tonnages is a quantification of the spatial grade uncertainty in the
resource model. A confidence level of 100% requires all simulations to meet the
cut-off grade in each stope shape. This confidence level can never be achieved in
practice, as a degree of uncertainty will always remain in the sample collection,
variography and geostatistical modelling, and the number of simulations that might
be necessary. The analysis is a result of the spacing between drill-holes and number
of samples taken from drill-holes. As such, a 100% confidence level at the mine
production stage would require an infinite number of drill-holes, which is unreal-
istic. The acceptable confidence level should be a trade-off between exploration
costs and the cost of uncertainty (i.e. the range of possible project profit).

Case Studies

Two case studies were carried out to evaluate the principles of underground mine
optimisation using conventional and risk-based optimised stopes. As the aim of
these case studies was to illustrate the introduced principles rather than to conduct a
full mine optimisation, a limited number of cut-offs, production and development
rates were evaluated.

The Boliden Mineral AB owned Älgträsk gold deposit in Northern Sweden was
selected for the experiments. Originally considered for open pit mining, the
potential for a small-scale sublevel stoping operation to mine the high-grade zones
of the deposit was recently investigated.

The Älgträsk intrusive gold mineralisation consists of several ore lenses dipping
at an angle of circa 63 degrees in a north-westerly direction. The mineralisation is
both disseminated and in veins, hosted within a coarse-grained granodiorite
(Bejgarn 2009).

Case Study I—Conventional Optimisation

The goal of this case study was to prove the basic concept of underground mine
optimisation using the AMS Stope Optimisation software to generate input data and
was carried out using a Kriging estimated resource model.
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Cut-off Grade Based Mine Design

Basic costs and revenues related to the mining, processing and refining of the ore
coming from the Älgträsk deposit were determined based on company data and
similar mining operations within the area. Using these basic revenues and costs, a
break-even grade was estimated at 1.6 g/t Au. This grade was used as a starting
point for optimisation. Based on the break-even grade estimate, six cut-off grades
(1.5–1.6–1.7–1.8–1.9–2.0) were evaluated for the deposit.

The Modified Stability Graph method (Mathews 1980; Potvin 1988) together
with rock mechanical data as supplied by the Boliden geotechnical department was
used to determine a feasible and stable stope size and these parameters were used as
constraints in the stope optimisation process.

The AMS Stope Optimiser was used to design stopes at all user-defined cut-off
grades and the resulting stope shape solids were loaded into the Deswik.CAD
environment for further mine design. Basic infrastructure was designed to connect
and access the stopes whilst respecting geotechnical, economical and practical
constraints.

The design of infrastructure is still a manual process and the resulting design is
therefore not guaranteed to be optimal. Due to the relatively short stope lengths,
longitudinal stoping was selected as opposed to transverse stoping reducing the
overall development costs. A decline centralised between the three ore lenses fur-
ther reduced development costs.

An example of a resulting basic mine design is shown in Fig. 5.

Life of Mine Scheduling

The basic mine design was imported into a scheduling package. Interactive
Scheduler by Deswik was selected for life-of-mine scheduling as it is fully inte-
grated within the Deswik.CAD software package. The first step in scheduling is to
subdivide the development works in multiple tunnel sections (task solids) and to
assign an activity type to each task solid (i.e. decline-, level-, ore-development).
A similar approach was used for the stopes to which activity types for production
drilling, stoping and backfilling were assigned.

With the mine design broken down into many smaller individual task solids,
dependencies were created between these tasks. Dependencies are links between
two task solids that prevent the next task from starting before the previous task is
finished. In case of the development tasks this means that a level development task
cannot start before the decline has reached the specific level. Also, an ore drive task
cannot be started before the level development has reached the respective ore drive
starting point. In similar fashion dependencies exist for the stopes. Once the ore
drive for a specific mining area is finished, the stope production process can start
with drilling & blasting followed by the actual stoping (ore production). Finally the
stope is backfilled and left to cure for a certain period of time. During this curing
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period, production in adjacent stopes (laterally and vertically) within specified
distances cannot start.

To offset development costs and initial capital expenditures, an overall down-
ward mining progression was chosen using a longitudinal retreat type stoping
sequence. Dependencies were created between all tasks and visually checked by
animating the resulting sequence. Once a feasible development and production
sequence was determined, different development and production rates were eval-
uated. Task rates (i.e. development rate and production rate) were assigned to each
individual development or mining task as well as a resource (a piece of mining
equipment) to complete the task.

For each cut-off grade based mine design, two possible development rates and
two production rates were evaluated. The goal was to match development and
production rate as much as possible to retain a relatively constant production rate
over the life-of-mine whilst aiming to maximise resource utilisation. The resulting
production schedules indicated a life-of-mine ranging from circa five to three years
depending on chosen cut-off grade and task rates.

Fig. 5 Example optimised stopes and basic mine infrastructure in Deswik.CAD
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Cash Flow Analysis

Using the life-of-mine production schedules, four processing routes were evaluated
within a spread sheet based cash flow model, resulting in a total of 96 evaluated
scenarios. The resulting NPVs of these scenarios were systematically plotted in a
Hill of Value graph from which the optimum strategy was determined.

Optimisation Results

Figure 6 presents the net present values for processing route 3 (Gravity and
Flotation of Low Arsenic ore and Gravity and Leaching of High Arsenic ore).

The graph clearly shows that the optimal project strategy is a combination of
cut-off grade and life-of-mine (as a function of production and development rate).
This is in line with the cut-off grade theory by Lane. For the limited number of
cases evaluated, the optimum cut-off grade was found to be 1.8 g/t of gold at a
production rate of 1500 tonnes of ore per day and development task rate of 60
metres per tunnel face per month. For this production and development rate the
NPV of the optimal mining project increased by circa 30% compared to the
break-even mining scenario of 1.6 g/t.

A dip in the NPV curve is observed at a cut-off grade of 1.7 g/t which is caused
by an unfavourable production schedule resulting in a slightly delayed revenue

Fig. 6 Optimisation results for evaluated production and development rates—Älgträsk case study
I
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stream and increased refining penalty due to unfavourable Arsenic contamination of
the ore concentrate. The Älgträsk underground project proved to be marginally
profitable with a high risk. The project requires large investments compared to the
potential profit and payback period (payback period equals life-of-mine).
Marginally profitable projects require solid knowledge of the mineral resource to
reduce the risk of project failure. In other words, there should be a high level of
certainty about tonnage and grade of the ore that will be produced once the project
is taken into production.

Case Study II—Risk Based Optimisation

This case study consisted of two parts. First the grade uncertainty in the optimised
project strategy resulting from case study I was evaluated using conditionally
simulated resource models. Subsequently, the use of simulated resource models
during the underground mine planning process was investigated.

Grade Uncertainty Evaluation

In order to evaluate and quantify the grade uncertainty present in the optimised
mine strategy a series of conditionally simulated resource models were created. The
following process was adopted to create these models:

Data Analysis
Raw exploration drill-hole data was cleaned, composited and loaded into the

Stanford Geostatistical Modelling Software (Stanford University 2009a, b) for
statistical analysis. The grade distribution of the drill-hole data was determined after
which the dataset was normalised and variogram modelling was conducted to
describe the deposits’ directional grade anisotropy.

Block Model Simulation
GSLIB (Stanford University 2009a, b) was used to create 25 simulation based

block models. The Geostatistical Software Library is a set of freely available
software tools to perform Sequential Gaussian Simulations. A regular block size
was selected, as the Sequential Gaussian Simulation algorithm cannot deal with
sub-blocking. In order for the block model to resemble the orebody geology as
accurately as possible, a small block size of 2.5 � 2.5 � 2.5 was chosen. This
small block size ensures that the stope optimisation process (which assumes that the
block model represents true geological boundaries) is carried out as accurately as
possible. Ore lenses were individually simulated and the results were later com-
bined into one model. By simulating the lenses separately, grade contamination
between closely spaced ore lenses was avoided. Finally, the simulated grade data
was combined with the estimated grade data to create a model in which each
individual block has an estimated and 25 simulated grades assigned to it.
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Model Comparison
The grade tonnage curve and grade distribution of block model blocks for the

Kriging estimated model and 25 simulated models are shown in Fig. 7. Clearly
observable is the smoothing effect present in the Kriging estimate. Tonnages of both
low and high-grade material are under-estimated whilst mid-range grade material is
over-estimated. The average grade above cut-off is under-estimated for all cut-off
grades. The simulated models do not show this smoothing effect and retain the
grade distribution as observed in the composite drill-hole data.

When the Kriging model is compared to the simulated resource models (Fig. 8)
the smoothing effect is clearly observable in the estimated model. The
equi-probable simulated resource models do not show this effect but show a sig-
nificantly different distribution of high- and low-grade areas in the model. This
indicates that grade uncertainty is present in the Kriging model, which may affect
the likelihood of the designed stopes meeting the expected head grade when only
the estimated model is used for stope optimisation.

Stope Confidence Levels

To quantify the grade uncertainty in the estimation model-based optimised stopes, a
confidence level of achieving the estimated head-grade was assigned to each stope.
The optimised stope design was interrogated against the conditional simulated
resource models to obtain simulation based stope head-grades. These simulation

Fig. 7 Estimation/
Simulations grade-tonnage
curve and grade distribution
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based stope head-grades were evaluated against the estimation based stope
head-grade to determine the stope confidence level by the following equations:

Cn ¼ 1; Sn �AuOK
0; else

�

Confidence level ¼ 1
N

XN
n¼1

Cn

In which Sn is the nth simulated stope head-grade, Cn is an integer (0 or 1)
assigned to a simulated stope grade to define if it is equal to or exceeds the Ordinary
Kriging Estimated stope head-grade and N is the total number of simulations
considered. The confidence level is expressed as a number between 0 and 1.

Analysing the resulting confidence levels of the estimation based stope designs
(Fig. 9) it was found that in general the confidence levels are low. The estimated
model based stope designs show confidence levels that are rarely over 50% and the
majority of stopes show confidence levels between 0 and 30%.

Fig. 8 Kriging Estimated model (top left), Simulation 7 (top right) and Simulation 13 (bottom
left). Brighter areas are of higher grade
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This means that the likelihood that the mine will actually produce the ore ton-
nage and grade as expected based on the estimated resource model is very low.
With the project already being only marginally profitable based on the estimated
resource model, the likelihood of project failure (economic loss) is very high.

To further analyse the economic consequences of the high grade uncertainty in
the estimation model based optimised mining project, the estimated and all simu-
lated grades were used as inputs to the cash flow model (Fig. 10). The undiscounted

Fig. 9 Stope confidence level evaluation (simulated stope head grade equal to or higher than
estimated stope head grade)

Fig. 10 Cash flow analysis (Estimation model based project optimisation)

Cut-off Grade Based Sublevel Stope Mine Optimisation 553



cash flow analysis emphasises the project risk involved in the mining project when
only the estimated model is used to optimise mine plans. The range in which the
profit is to be expected is very large and shifted towards the negative ‘loss’ side
with only one simulation resulting in a profit on an undiscounted basis.

Based on this cash flow analysis, it was concluded that the project when opti-
mised on the estimated block model only, would not be profitable. A large
smoothing effect is present in the estimated resource model as a result of limited
availability of ‘hard’ drill-hole data. The underground mine optimisation based on
this smoothened model results in an over-estimation of the project profitability,
which is confirmed by the simulated cumulative cash flows.

Including Grade Risk in the Optimisation Process

The grade uncertainty evaluation showed that the decision to optimise a mine
design on the estimation model only might result in a high-risk project strategy,
especially when resource confidence is low as a result of limited exploration. It
would be of great benefit if the estimated block model and the simulated block
models could be used simultaneously whilst optimising the stope shapes for a given
cut-off grade. By assigning a minimum confidence level to the final optimised stope
prior to optimisation, the risk of a stope head-grade being below cut-off can be
reduced. If the grade uncertainty is minimised, there is increased likelihood that the
selected optimum project strategy will be successful once the mine is taken into
production.

The AMS Stope Optimiser was used to re-optimise the underground stope
designs at a cut-off grade of 1.8 g/t gold (the optimal cut-off grade based on the
estimated model optimisation) and multiple minimum target confidence levels. The
resulting optimised stope designs at 0, 20, 40, 60 and 80% minimum target con-
fidence are presented in Fig. 11. It is observed that with increased confidence
levels, the total number of stopes and therefore stope tonnage reduces rapidly. At a
minimum confidence level of 60%, the stope configuration has reduced to a
non-mineable situation where development costs are no longer offset by the stope
tonnage and grade. To evaluate the potential of risk-based stope optimisation and its
impact on project profitability, the 40% confidence level was chosen for further
analysis. Although this would still be considered high-risk (stopes are accepted
even if there is less than 50% chance for the stope to meet the cut-off grade) it is
expected that the economic risk of the project is reduced compared to the optimised
project based on the Kriging Estimated Model only.

Development was designed for the new set of optimised stopes in order to
develop life-of-mine schedules and perform subsequent cash flow analysis. The
resulting undiscounted cash flow analysis is presented in Fig. 12. Compared to
conventional project optimisation (based on the estimated model only) the eco-
nomics of risk-based optimisation are slightly more favourable. The potential
project profitability based on the Kriging estimated cash flow reduced as a result of
the increased confidence and hence reduced number of stopes and total stope
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tonnage. However, the increased grade confidence makes the project more likely to
produce up to expectation (therefore reducing economic risk). Besides the positive
cumulative cash flow based on the estimated block model, three out of the 25
simulation models also result in an undiscounted project profit. The range in which

Fig. 11 Optimised stope
designs at increased
confidence levels (cut-off
grade @ 1.8 g/t Au)

Fig. 12 Cash flow analysis (Risk-based project optimisation)
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the project profit is to be expected has slightly reduced and is shifted more towards
the positive ‘profit’ side. This is an improvement, compared to the project as
evaluated in Case Study I (Fig. 10) for which only one simulation resulted in a
positive cumulative cash flow.

Conclusion

Based on Lane’s theory, a practical cut-off grade based mine optimisation process
was developed. The process allows the rapid evaluation of different mine plans
based on user-defined cut-off grades, in order to determine the optimum project
strategy that maximises profitability. To speed up the design process, the AMS
Stope Optimiser was used to automatically design optimised stope shapes based on
user-supplied cut-off and design constraints. Further design and scheduling was
carried out using Deswik CAD and scheduling software after which a spread sheet
package was used for cash flow modelling.

The optimisation process was successfully tested on the Boliden Mineral AB
owned Älgträsk gold deposit in Northern Sweden for which it was found that the
optimal cut-off grade of 1.8 g/t increased the project NPV by circa 30% compared
to the break-even grade of 1.6 g/t when optimising on a Kriging estimated resource
model.

Conditional simulations of the Älgträsk gold deposit were created to quantify
grade uncertainty (grade-risk) as present in the optimised project. It was found that
a high grade uncertainty is present in the optimised project strategy due to limited
exploration drilling. The smoothing effect introduced by the Kriging algorithm
makes the project seem more profitable than is really the case.

The optimisation process was adapted to account for grade uncertainty by
optimising stopes using the estimated and simulated resource models simultane-
ously. By assigning minimum target confidence levels, it is assured that the opti-
mised stope is at or above a user selected cut-off grade in the estimated resource
model as well as a percentage of the simulated resource models. By subsequently
increasing the minimum confidence level, a trade-off can be made between potential
profit and the risk of under-performance of the optimised stopes.

Further research work is required to extend the results of this work to design
underground mines with varying cut-off grades over the life of the mine. This is a
fundamental insight in the cut-off grade theory of Lane but was not practically
applicable to the small sized Älgträsk deposit.
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Classification of Mining Methods for Deep
Orebodies

V. Oparin, A. Tapsiev and A. Freidin

Abstract Classifications of mining methods date back to the 1960s and use the
following criteria: type and size of a mineral deposit, mined-out space support, state
of a working excavation, type of a face, roof support, etc. Since that time mobile
mining machinery has appreciably advanced, and some mining methods have lost
their importance. Mobile mining equipment is effective in definite mining methods:
in open mined-out space, mining with backfill and combined schemes. The tran-
sition to deep mining inevitably results in the sharply worsened technical and
geomechanical conditions, and some well-established techniques for safe mining at
rock burst hazardous deposits can not be considered self-sufficient. This paper puts
forward a classification of deep mining methods, considering rock pressure control.
The classification involves three classes: mining with backfill, mining with caving
of overlying rocks and combined mining with backfill and caving.

Introduction

Many foremost Russian and foreign researchers and mining engineers have been
scrutinising methods of grouping existing underground mining methods. More than
60 published classifications have undergone critical analysis in fundamental
monographs by Trushkov (1947), Agoshkov (1965), Baikonurov (1969) and
Imenitov (1978). Trushkov conceded on inexpediency to try and embrace all coal
and ore mining methods in a uniform classification due to ‘crockness and incon-
sistency of these methods, and their not-hands-down use in practice’ (Trushkov
1947). Unlike coal formations, orebodies have multiple sizes and shapes, occurrence
conditions, physico-mechanical properties, mineral composition and mineral values,
which gave rise to a range of 170–200 variants of ore mining schemes applied in
underground mines in the 20th century (Trushkov 1947; Agoshkov 1965).
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The totality of underground ore mining methods caused difficulties with scien-
tific grouping, however, it also fostered many characteristics for classifying them.
Different researchers assumed different classification criteria (please refer to
Baikonurov 1969); for example, the type and size of a deposit (Crane, G J Young, I
Pokrovsky, G E Bakanov and L I Baron); mined-out space support (F W Sperr, Y H
Rayt, E C Mitke and V N Semevsky); working excavation support (J F Clelland, C
F Sackson and E D Gardner, USA Mining Bureau’s classification, N I Trushkov, N
A Starikov, G N Popov and V R Imenitov); working excavation state (M I
Agoshkov and R P Kaplunov); mined-out space support during mining and backfill
(V T Markelov); type of a face, roof support, block undercutting technique
(American Institute of Mining Engineers and Metallurgists); direction of mining
advance and backfill method (Baikonurov 1969); mining stages (Steshenko). The
above-listed criteria rank and characterise mining methods in varying degrees and

Fig. 1 Class I, Group A, Type 1: 1—inclined shaft; 2—entry; 3—levels; 4—stoping; 5—
backfilling; 6—level extraction; 7—roof safety layer (please refer to Table 1)

Fig. 2 Class I, Group A, Type 2: 1—inclined shaft; 2—ore chute; 3—cross adit; 4—stopes; 5—
air raise; 6—twin stope drifts; 7—air-fill raise; 8—filled levels (please refer to Table 1)
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yet are of little use in actual comparison and selection. In Russia, the classifications
by Agoshkov (1965) and Imenitov (1978) have found deserved recognition and
wide application in underground mine planning. Agoshkov grouped mining
methods by ‘the state of the working excavation in the course of actual mining’ and
Imenitov used the criterion of ‘working excavation support method in the course of
mining’. We acknowledge the effectiveness and advantages of both classifications,
though some comments should be made. First, these classifications appeared in the
mid-1960s. Mining methods have been continuously evolving since then, and many
of them have dwindled, especially for medium thick and very thick ore deposits.
These days, underground mining practice involves lively mobile machinery sets,
which has drastically simplified preparatory and development operations as well as
stoped excavation, boosted mining works and minimised hand-labour amount due
to the overall mechanisation.

1 3 4

2

Fig. 3 Class I, Group A, Type 3: 1—stope; 2—soft pillars; 3—backfill; 4—orebody (please refer
to Table 1)

3,
5

2 4

8 -12
5 3 1

8 -12

Fig. 4 Class I, Group A, Type 4: 1—entry; 2—extraction levels in a chamber; 3—temporary
pillar (secondary chamber); 4—orebody; 5—filling mass (please refer to Table 1)
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Highly laborious mining with portable equipment is now used in the excavation
of very thin orebodies with high useful mineral content. This method and equip-
ment may only be applied for actual mining of medium thick and very thick ore
deposits if low-paid manpower is in employment, mineral resources are of low
value and the total enterprise is of no consequence to be re-constructed or techni-
cally modernised. The analysis of the mobile machinery operation shows that they
are efficient in a limited number of mining methods, namely:

• mining with backfill (longwall and chamber mining, including the
chamber-and-pillar method);

• mining without backfill (chamber-and-pillar and flat-bottom- chamber mining);
• mining with ore and rock caving (block caving and, especially, sublevel caving

with frontal and frontal-areal ore drawing); and
• combined mining (with backfill and caving).

61
61

611

6

3 5

2

4

Fig. 5 Class I, Group A, Type 5: 1—gallery; 2—ore chute; 3—langwall; 4—scraper excavator; 5
—pack; 6—raise (please refer to Table 1)
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The gained engineering level of underground mining with mobile machinery and
successful robotic automation of ore excavation processes at some enterprises
(Bronnikov et al. 1982; Oparin et al. 2007) will lead to further universalisation of
mining methods. It is also important to consider that underground mining gets
deeper by 20–40 m annually, and now reaches nearly a 4 km depth in South Africa
and India. More than ten underground mines in USA, Canada and South Africa are
below 2.5 km depth. Deep mining conditions are very difficult: rock temperature is
higher, the physico-mechanical properties of rocks change, angles of rock mass
movement flatten and rock pressure grows and manifests itself dynamically. More
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À-À Á 3 7
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À 2 4 8

8-12
2 

Fig. 6 Class I, Group B, Type 6: 1—haulage heading; 2—drilling and haulage roadway; 3—air
ort; 4—ventilation connection; 5 and 6—air drifts; 7—orebody; 8—filling mass (please refer to
Table 1)

À Á-Á 46 5
Á À-À

8

2
2

9 À 10 1 7 Á 1 3

Fig. 7 Class I, Group B, Type 7: 1—haulage heading; 2—drilling roadway; 3—entry; 4—air and
backfill cross-drifts; 5—air and backfill ort; 6—filling holes; 7—raise; 8—broken ore; 9—filled
primary chamber; 10—secondary chamber (pillar) (please refer to Table 1)
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and more deposits acquire the category of rock burst hazardous. Mining theory and
practice have elaborated measures for minimising the hazard of rock pressure
(Bronnikov et al. 1982) to:

• prepare and develop orebodies in a minimum fractured rock mass so that no
stress concentration areas arise (pillars, overhangs) resulting in burst-like rock
failure;

• orient development workings and stopes along the maximal effective stresses;
and

• to advance stoped excavation as divaricated fronts, or as a single front towards
the wing of a level.

These measures collide with many methods of underground mining, for exam-
ple, with ‘ore shrinkage’ and ‘mining without backfill’ by Agoshkov (1965), or
‘mining with naturally supported working excavation’ by Imenitov (1978).

Different methods of mining with ore shrinkage that are in wide application in
thin and steep orebodies, involve ascending stoping towards a diminished pillar.
This is not permissible for us in rock burst hazardous rock masses. For instance, at
Yuzhny complex deposit (GMK Dalpolimetal Co), where thin and strong ore veins
occur in hard host rocks prone to elastic energy accumulation and dynamic failure
(Pilenkov et al. 1990), series of rock bursts with severe after-effects took place at a
depth of 150–200 m from the surface when mining with ore shrinkage approached
the crown pillar. The ground control is extremely limited when mining is carried out
without backfill, and the roof is supported with ore pillars and lining. In this case,
the growing mined-out space loses its equilibrium, dynamic rock failure conditions

8
40

À-À Á-Á
Á À

2
2

3

1

4

Á 50 À

Fig. 8 Class I, Group A, Type 1: 1—fan-patterned holes intended to cave safety shield; 2—main
fan-patterned holes; 3—drilling and haulage level; 4—ore chute (please refer to Table 1)
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originate and large-scale rock fall becomes highly possible. A representative
illustration of the above is the underground mines at Zhezkazgan cupriferous
sandstone deposit (Yun et al. 1997), where the chamber-and-pillar method involves
retaining enlarged inner-chamber and panel pillars (up to 40% and above of a panel
area). Nonetheless, starting from a 450 m depth, falls and burst-like failure of pillars
occur again and again. The calculations indicate that for chamber-and-pillar mining
at a depth of 1000 m, more than half-reserves should be left as pillars for roof
support safety (Bronnikov et al. 1982; Zamesov 1979).
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Fig. 9 a Class II, Group B, Type 2: sublevel caving with areal-frontal ore drawing: 1—haulage
roadway; 2—drilling and haulage cross-drift; 3—loading slopes; 4—broken ore; 5—air drift
(please refer to Table 1). b Class II, Group B, Type 2: sublevel caving with frontal ore drawing: 1
—ore chute; 2—incline shaft; 3—drilling and haulage cross-drift (please refer to Table 1)
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Method of Classification

An important point in Agoshkov (1965) and Imenitov’s (1978) mining method
classifications is the lack of the systems of chamber mining with backfill. These
systems are of use in longwalling and chamber-and-pillar working at 1000 m depth
and deeper. The underground chamber-and-pillar mining with backfill is applied

Fig. 10 Class II, Group B, Type 3: (A) mid-thick orebody; (B) thin orebody: 1—haulage heading;
2—subdrift; 3—holes; 4—under cantilever area; 5—crown pillar; 6—caved rock; 7—broken ore
(please refer to Table 1)

Fig. 11 Class II, Group B, Type 4: 1—haulage heading; 2—inclined shaft; 3—ore chute; 4—
haulage cross-drift (please refer to Table 1)
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extensively in Canada (Inco, Geco, Kidd Creek Mines), Finland (Outokumpu) and
Australia (Mount Isa) (Khomyakov 1984), as well as in the former USSR countries
(Gaisky, Leninogorsky, Zyryanovsky Mines, etc.). Some engineers think these
geo-technologies are useful in mining no deeper than 600–800 m, due to the
growing bearing pressure after the first chambers are extracted (Bronnikov et al.
1982; Zamesov 1979). Failure of pillars and excavations at ore drawing-off level
necessitates introduction of longwall chamber methods that proved themselves in
the Norilsk mines. Thus, for rock burst hazardous ore deposits, we think it is
possible to characterise the allowable mining systems by:

• the principal ground control method for the mined-out space,
• the stoping excavation advance direction, and
• the ore breaking and drawing method.

The ground control is the governing factor for any deep mining technology. It is
always present in the description and in the name of a mining method. We assume it
the basic classification criterion.

It is natural that the principal ground control method is contributed to by the
known design solutions oriented to enhance strain capacity of a rock mass and to
monitor stresses in the near-face area. Such supportive measures include, for
example, overworking (undermining) of the orebody, advance boring of larger
diameter holes, confined explosions, directional hydro- fracturing, etc. These
measures are feasible with any mining method and are not the attributes of a
particular recovery mechanism. The second-listed characteristic is often present in
the name of a mining method and gives a description of it. For example, the
horizontal slicing with backfill may be ascending and descending. Steep rock burst
hazardous ore veins are mined with sublevel stoping to the dip or on the strike. The
third characteristic in our list details the way of ore drawing, namely, areal (from
inclines), frontal or frontal-areal. Pillar mining may involve VCR, parallel or
fan-patterned boreholes. So, the second and third criteria can and must serve for the
grouping of the mining methods.

We are proposing a variant of classification of the mining methods for rock burst
hazardous ore deposits based on the following principles:

Backfill

Orebody

Caved

Fig. 12 Combined ground control; caving and backfill (please refer to Table 1)
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Table 1 Classification of mining methods for rock burst hazardous ore deposits

Class Group Mining method Application
conditions

Advantages Disadvantages

1 2 3 4 5 6

I. Ground
control
with
backfill

A.
Horizontal
slicing
with
backfill

1. Horizontal slicing
and ascending
mining

Any geometry of a
deposit. Medium and
greater thickness.
Average stability
ores, mid-stable to
unstable host rocks.
Medium to
high-grade ore.
Unlimited depth of
application

Simple geometry of
stoping faces, high
extraction index.
Mobile machinery
use. Sufficient
stoping productivity.
Possible separation
of dirt rocks for
backfill

Strict regulation of
slicing. In case of
high rock pressure,
overworking is
desirable, which is
highly laborious.
Organizational
difficulties in stoping
automation (Fig. 1)

2. Horizontal slicing
and descending
mining

Any geometry of a
deposit. Medium and
greater thickness.
Very unstable and
heavily dislocated
ores and host rocks.
High-grade ore.
Unlimited depth of
application. Open
cast and underground
mining

The same as in
ascending mining.
Safe mining in
heavily dislocated
orebodies

The same as in
ascending mining.
High labour intensity
and cost of
backfilling (Fig. 2)

3. Horizontal slicing
with pillars on soft
basis

Gently dipping
medium thick and
very thick orebodies.
Mid-stable to
unstable ores and
host rocks.
High-grade ore.
Depth of application
is to be determined

Ascending and
descending mining of
main reserves and
temporary pillars.
Increased mining
front and more stopes
under development.
High extraction
index

Driving and backfill
of extra mine
workings in the
bottom of temporary
pillars. Stoping in
stages (Fig. 3)

4. Room work and
slicing

Mid-thick to very
thick deposits. Any
dipping. Mid-stable
to unstable ores.
Mid-stable host
rocks. Medium to
high-grade ores.
Depth of application
is to be determined

Higher quality and
completeness of
pillar extraction

Mining in stages.
Higher labour
intensity and lower
stoping production
(Fig. 4)

5. Longwall mining Horizontal and
gently dipping
orebodies. Very thin
to 3–4 m thick ores.
Any stability ores,
mid-stable host
rocks. Paste backfill,
packs, stony and
artificial blocks.
High-grade ores.
Unlimited depth of
application

Selective mining.
Elongated stoping
front. High extraction
index

Arduous working
conditions and high
labour intensity. Use
of portable
equipment, limited
use of mobile
machinery (Fig. 5)

B. Room
work
mining

6. Continuous
chamber mining

Medium thick to very
thick deposits. Any
dipping. Medium
stable ores and host

High stoping
productivity.
Automation of

High ore dilution
with
cement-containing

(continued)
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Table 1 (continued)

Class Group Mining method Application
conditions

Advantages Disadvantages

rocks. Depth of
application is to be
determined. Medium
to high-grade ores

principal operations
in stoping

backfill. Limited
mining front (Fig. 6)

7. Chamber-
and-pillar mining
(areal, frontal and
frontal-areal ore
drawing)

Medium thick to very
thick deposits. Any
dipping. Medium
stable ores and host
rocks. Medium and
high-grade ores.
Areal, frontal and
frontal-areal ore
drawing depending
on the orebody
thickness

High stoping
productivity.
Automation of
principal operations
in stoping. Extracted
ore quality control

Mining in stages.
Higher requirements
to ore extraction
standards. Probable
failure of secondary
chambers (pillars) in
case of high pressure.
High ore dilution
(Fig. 7)

II.
Ground
control
with
overlying
rocks
caving

A. Block
caving

1. Block caving with
slicing and frontal
(frontal-areal) ore
drawing

Very thick, high dip
outcropping or close
to surface ores.
Limited application
in gently dipping and
inclined ore deposits
with weak and
unstable overlying
rocks. Hard medium
stable and stable, low
and medium grade
ores. Limited depth
of application.
Unstable and
medium stable host
rocks. Ores are
non-liable to
spontaneous ignition
and caking

High stoping
productivity.
Relatively low
mining costs. High
automation of
stoping and use of
mobile machinery.
Sufficient extraction
index with
frontal-areal ore
drawing. Ventilation
due to mine
depression

Probable hanging-up
of host rocks with
following burst-like
destruction of large
structural rocks.
Forced ventilation of
ore drawing-off
workings (Fig. 8)

B.
Sublevel
caving

2. Sublevel caving
with frontal
(frontal-areal) ore
drawing

Thick and very thick,
high dip outcropping
or close to surface
orebodies. Blind
deposits with
unstable overlying
rocks. Limited
application in gently
dipping and inclined
deposits. Medium
hard and hard ores,
non-liable to
spontaneous ignition
and caking. Low and
medium grade ores.
Depth of application
is to be determined

Separation of dirt
bands to backfill.
High stoping
productivity. Mining
in with many stoping
faces, extracted ore
quality control.
Automation of
stoping. Sufficient
extraction index with
frontal-areal ore
drawing. Ventilation
due to mine
depression

Probable hanging-up
of overlying rocks,
displacement and
burst-like failure of
large structural
blocks. Forced
ventilation of ore
drawing-off workings
(Figs. 9a, b)

3. Strike-line
sublevel stoping

Thin and medium
thick, high dip
orebodies. Mining
front divaricates.
Medium stable ores,

Use of mobile
machinery, high
productivity.
Automation

High ore losses. High
dilution, inclusive of
secondary dilution
(Fig. 10)

(continued)
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• the mining methods should be obligated to meet the stringent standards of
operations in the conditions of rock burst hazard;

• the classification is for industrial-scale mining, with only the exclusion of thin
ore deposits where portable mining equipment is unavoidable due to
space-limited environment;

• the secondary criteria should be disregarded, for example, when strike-line or
dip-line mining is governed not by the mining method, but by the parameters of
the deposit and its mining-technical and geomechanical conditions;

• the systems with support are withdrawn from the classification as all of the
known mining methods involve the support; and

• the basic classification criterion allows entering any new mining method to the
classification.

Thus, in accordance with the effective ground control methods, we divide deep
mining system into three classes:

1. Class I—mining with backfill,

Table 1 (continued)

Class Group Mining method Application
conditions

Advantages Disadvantages

stable host rocks.
Low and medium
grade ores. Depth of
application is to be
determined

4. Dip-line sublevel
stoping

Thin and very thin,
high dip orebodies,
medium stable ores,
stable host rocks.
Depth of application
is to be determined

Selective mining,
without nonmetallic
rocks, slot faces.
Comparatively high
ore extraction index

High labour
intensity. Great
amount of
preparatory driving.
Use of portable
equipment (Fig. 11)

III.
Ground
control
with
backfill
and
caving

A. Mining
with
alternating
backfill
and caving

1. Primary horizontal
slicing with
ascending
(descending) mining
and paste backfill
and secondary block
(sublevel) caving

Thick and very thick,
gently dipping and
weakly inclined
orebodies, unstable
and medium stable
ores, medium stable
overlying rocks.
Medium grade ore.
Depth of application
is to be determined

Overlying rock mass
stability. Lower costs
as compared with
Class I methods

Mining in stages.
Higher requirements
to ore extraction
standards. Lower
extraction index as
compared with
Class I methods
(Fig. 12)

2. Continuous room
work with primary
mining with backfill
and secondary
mining with block
(sublevel) caving

Thick and very thick,
gently dipping and
weakly inclined
orebodies. Medium
stable ores and host
rocks. Medium grade
ore. Depth of
application is to be
determined

Overlying rock mass
stability. Higher
stoping productivity
as compared with the
previous method

Mining in stages.
Higher requirements
to ore extraction
standards. Lower
extraction index as
compared with
Method 1 in Class II

table includes references to the corresponding figures
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2. Class II—mining with overlying (host) rock caving, and
3. Class III—combined mining with backfill and caving.

Classes I and II are commonly known from technical literature and the practice of
underground mining. We would only note the undesirable large-scale blasting
during mining with caving and frontal ore drawing at rock burst hazardous deposits.
Large-scale explosions release huge energy, which initiates displacement of large
rock blocks, causes dynamic events in the rock mass and failure of the weakened ore
drawing-off level. These events are frequent at the Tashtagol iron-ore deposit, where
the mining method includes block caving, vibration areal drawing of ore and
large-scale block breakage. The Kiruna Mine in Sweden has the same rock
mechanics and identical depth of mining, but with sublevel caving, slice breaking
and frontal ore drawing. As a result, dynamic pressure manifestations are absent
here. Therefore, we include only slice breaking with frontal and frontal-areal ore
drawing into our classification (Freidin et al. 2008).

The technologies involved with the combined ground control methods are as
follows:

• paste filling costs are expensive, and
• mining of low and mid-grade ores calls for cheaper methods.

In particular, partial backfill is admissible in thick and very thick gentle and
weak-inclined deposits, with the purpose of providing the roof support and smooth
sagging, limited displacements and strains of the host rocks. In this case, the filled
areas alternate with the areas of mining under the caved roof formed as a stable
dome. First, mining captures areas with artificial pillars, and secondly, the areas
with temporarily retained ore pillars. The smooth sagging of the roof is ensured
with the help of the artificial pillars, the sides of which are supported by caved
overlying rocks. Parameters of these pillars should limit the rate of the roof sagging
to the values of mining with full backfill. The width of the temporary ore pillars is
designed with allowance for the stable span. Depending on the stability of ore and
host rocks, and orebody thickness, mining with backfill may include horizontal
slicing with ascending (or descending) pillar mining, and the temporary pillar
mining may involve sublevel caving (for very thick orebodies) or block caving (for
thick deposits). The offered classification of the mining methods is presented in
Table 1. The information in this table in terms of mining methods is further
depicted in a series of related figures.

Conclusions

This classification of mining methods for deep orebodies has been offered for the
first time, and is based on the underground mining practice in Russia, in particular,
in Norilsk Region. The authors think the classification may successfully be used for
selecting and optimising the extraction of rockburst-hazardous ore and rock masses.
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Grade Uncertainty in Stope Design—
Improving the Optimisation Process

N. Grieco and R. Dimitrakopoulos

Abstract Decisions in the mining industry are made in the presence of uncertainty
whether it is in the form of technical, financial or environmental risk. In recent
years, the main focus of uncertainty has been the mineral resource. Methods for
assessing and quantifying grade risk in open pit operations has lead to the ability to
forecast problems and improve the design and planning process by integrating this
risk. This paper successfully implements these risk-based methods in an under-
ground stoping environment using data from Kidd Creek Mine, Ontario, Canada.
Risk is quantified in terms of the uncertainty a conventional stope design has in
contained ore tonnes, grade and economic potential. A mathematical formulation
optimising the size, location and number of stopes in the presence of uncertainty is
introduced and applied. The implementation of different geostatistical simulation
methods to the optimisation formulation is discussed briefly and observations made.

Introduction

Risk is present in all facets of mining be it technical, financial or environmental
(Rendu 2002). When determining the feasibility of a project the uncertainty asso-
ciated with all sources must be considered and contingencies made. Geological
uncertainty is a major component of technical uncertainty, along with mining, and
has been isolated as a primary source of risk affecting the viability of projects. This
uncertainty is recognised as the key factor responsible for many mining failures
(Baker and Giacomo 1998; Vallee 1999). Hence, the necessity to quantify geo-
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logical risk is well appreciated. Modelling geological uncertainty in a mineral
resource can be achieved through conditional simulation technologies. The last few
years in open pit mining these technologies have been coupled with mine design
optimisation methods to assess risk in conventionally generated mine designs and
production schedules. The approach allows planners to anticipate fluctuations in
key project parameters that would otherwise be impossible (Ravenscroft 1992;
Dowd 1997; Dimitrakopoulos et al. 2002). These studies have also documented that
conventional methods may be misleading in their forecasts as they assume cer-
tainty. Recent developments in open pit mining show that direct integration and
management of inherent grade risk in mine design and planning have begun
(Dimitrakopoulos and Ramazan 2004; Ramazan and Dimitrakopoulos 2013, 2017,
this volume; Menabde et al. 2017, this volume; Froyland et al. 2017, this volume).
The developments provide the opportunity to generate substantially more profitable
mine designs; for example, Godoy and Dimitrakopoulos (2004) report a 28% higher
NPV from managing geological risk. It is logical to consider how to develop
concepts and similar risk-based technologies for underground mining methods.

Optimisation in underground mine design has had less routine application than
open pit mines, which is attributed to the diversity of underground mining methods
that does not allow the production of general optimisation tools. Related in the
technical literature is the work of Ovanic (1998) who considers the economic
optimisation of stope geometry, a topic directly linked to the present study; and
work on conventional stope optimisers (Thomas and Earl 1999; Ataee-pour and
Baafi 1999). None of these approaches consider risk and hence assume the inputs
are certain. Limited initial work reported, combines simulated orebodies and grade
risk models with conventional optimisers (Myers et al. 2007, this volume); these
however, are limited in their assessment as optimisation formulations are, in gen-
eral, a non-linear process. Geological risk-based approaches to stope optimisation
that directly integrate risk have been recently introduced (Grieco 2004) and open
the possibility to further develop risk-based underground mine design. Current
efforts, however, focus on the issue of grade uncertainty. In the longer run these
developments need to be fused with geotechnical issues critical to underground
mining (Bawden 2007).

This paper stems from the need to explore the contribution of geological
uncertainty quantification and the direct integration to stope optimisation through a
new, risk-based approach to stope design. In the following sections a conventional
stope design in a part of Kidd Creek base metal mine, Ontario, Canada, is assessed
in terms of copper grade risk, to explore uncertainty in terms of upside potential as
well as downside risk. Subsequently, a probabilistic mathematical programming
optimisation formulation is outlined and applied. The question of the sensitivity to
the geostatistical simulation method is briefly visited. Finally, summary and con-
clusions follow.
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Quantifying Grade Risk in Conventional Stope Designs:
An Example

Grade risk quantification in a given underground stoping design is similar to that
used in the design and production schedule of an open pit mine (Dimitrakopoulos
et al. 2002). The quantification process requires two main components:

1. The design of a stoping outline generated using a conventionally estimated
orebody model; and

2. A series of simulated realisations of the orebody, quantifying the uncertainty
and in situ variability.

By putting each realisation through the stoping outline, as if the realisation is the
actual orebody being mined, and accounting for potential production from the
design, distributions or risk profiles for the pertinent project indicators are gener-
ated, thus allowing the quantification of geological uncertainty and risk assessment
for the design being considered.

The Deposit and Study Area

Applying the concepts outlined for quantifying the grade risk in a conventional
stope design is presented with a case study involving data from Falconbridge Ltd’s
Kidd Creek Mine. Kidd Creek is a volcanic massive sulfide deposit located in
Ontario, Canada and produces about 7000 tonne per day (Roos 2001) from two
major orebodies containing silver, copper, zinc and lead, the main commodities.
Production began in 1966 via an open pit mine and has extended into three
underground mines reaching depths of over 2000 m and employing various mining
methods including sublevel caving, open stoping and sublevel stoping.

The focus of this study is a densely drilled area located in the copper concen-
trated stringer ore 1400 m below the surface in Phase I of Mine No 3. The drill hole
configuration consists of 37 drill holes with 1.5 m copper composites in nine
vertical fans that are spaced approximately four metres apart. The resulting samples
show a high-grade zone in the central region. Statistics outlining the distribution of
declustered copper samples is given in Table 1.

Table 1 Declustered data
statistics of copper

Statistic Declustered data set

Number of samples 2723

Mean 2.43%

Standard deviation 3.17%

Maximum 27.59%

75th percentile 3.00%

Median 1.34%

25th percentile 0.54%

Minimum 0.0%
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Mining in this region is via open stoping methods with stope sizes typically
15 m wide by 20 m long by 40 m high. Blast rings are spaced generally every three
metres and have a copper cut-off of 3%.

Generating Estimated and Simulated Orebody Models

Estimation methods are by construction smoothing operations. Conditional simu-
lation methods aim at modelling the in situ spatial variability of a given attribute
and, unlike the equivalent estimation approaches, reproduce the data histogram and
spatial continuity. At Kidd Creek, the study area is first geostatistically estimated,
producing 16,236 blocks within the orebody model. Blocks are estimated with a
block size of 3.0 m � 3.0 m � 4.5 m, spanning 123 m in the east, extending 51 m
in the north and reaching 99 m in the vertical direction. A horizontal section of this
estimated model is shown in Fig. 1. The same area of the deposit is then geosta-
tistically simulated using the well-established sequential Gaussian simulation
method or SGS (Goovaerts 1997). Forty realisations of the deposit are generated on
a 1.5 m � 1.5 m � 1.5 m grid of 19,880 nodes. Figure 2 shows a simulated
realisation of copper grades of the same horizontal section as in Fig. 1. When
comparing the estimated and simulated models in Figs. 1 and 2, both reproduce the
regions of high-grade mineralisation in the drill hole configuration. The figures also
show the typically smooth representation of reality by the estimated model whilst
the simulated realisation reflects the likely in situ copper variability.

Fig. 1 Horizontal section of the estimated orebody model
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Risk Quantification

In establishing a conventional stope design, a conceptual stoping layout recognising
potential development and stoping levels must be first determined. Due to the
vertical extent of the orebody models, two potential stoping levels are configured
accounting for required drilling and hauling levels (Fig. 3). It is assumed that the
lower level will be mined and backfilled before the upper level is extracted.
Accounting for this stoping layout, a stope outline is produced given the estimated
copper grade model using the DATAMINE™ floating stope facility, hence pro-
viding a conventional design for which a risk quantification and analysis can be
performed. Figure 4 shows a three-dimensional view of the conventional outline
generated here incorporating both stoping levels.

For the quantification of copper grade risk in this conventionally generated
stope design, first, the simulated copper realisations are re-blocked into mineable
rings by averaging the nodes contained within consecutive ring dimensions
(15 m � 3 m � 40 m). Then, the conventional design outline is put through each
of the orebody realisations and values pertaining to copper grades are recorded. It is
subsequently simple to calculate for a set of realisations, such as the 40 here, the ore
tonnage, metal, average grade and revenues or any other project indicator, the
corresponding histogram of possible outcomes and from that histogram statistics of
interest such as the various percentiles and so on. The following discussion refers to
the risk profiles of some project indicators.

Figure 5 depicts the risk profiles for the upper and lower stoping outlines pro-
viding a means of quantifying copper grade risk in terms of the potential average

Fig. 2 Horizontal section of a simulated orebody model
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copper grade the conventional design could contain. The conventional design and
approach tend to underestimate the likely contained grade in the lower stoping
level, while in the upper level tends to overestimate copper grade.

For analysis purposes only, the rings within the design outline that are less than
3% copper are removed to uncover how the grade uncertainty within the orebody
model effects the amount of ore tonnes, metal and economic potential that could in
reality, be realised. Figures 6, 7 and 8 illustrate the resulting risk profiles of these
parameters respectively. Figure 6 also highlights the amount of material within the
original design outline before any waste rings are removed (black diamonds). This
demonstrates a potential for the conventional outline (both levels) to contain up to
32% waste, significantly affecting the tonnes expected to reach the mill. Both
Figs. 6 and 7 illustrate a generally small risk the conventional outline presents in the
amount of ore and metal tonnes expected from the upper level, as the extreme grade
values present a tight distribution in which the expected values fall.

Figure 8 shows the results of an economic evaluation of the stoping levels using
values representing the present value before tax. The figure illustrates significant
risk in the conventional outline’s ability to predict its potential economic value in
each level. In addition, the single estimate in the lower level is 17% less than the

Fig. 3 Stoping layout indicating two stoping levels
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Fig. 5 Quantifying the conventional stope envelope’s uncertainty in copper grade
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average predicted economic potential expected, while the estimate in the upper
level is 33% above this equivalent average value. Since each level will likely be
mined in separate periods, the profit made in the upper level cannot compensate for
the potential loss (7%) in the lower level. This potential to incur monetary losses on
production could, for example, affect monthly profits expected from this part of the
mine.
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Fig. 6 Quantifying the conventional stope envelope’s uncertainty in contained ore tonnes
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Fig. 7 Quantifying the conventional stope envelope’s uncertainty in contained metal
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The conventional stoping design in this specific example is generally straight-
forward and is found to provide a reasonable assessment of the average economic
value of the design. However, several points can be made, including the following:

1. The size of the study area is small and at the same time uncommonly well drilled
(nearly three times the density of fans normally expected), thus results are not
surprising;

2. If the ability to quantify risk was not available, the assessment would not be
possible; and most importantly

3. Conventionally, one is unable to foresee the significant upside potential and/or
downside risk the conventional design may actually produce (e.g. Table 2).

In the example presented here, quantifying the risk in terms of economic
potential recognises the potential to earn 62% more and the risk of earning 38% less
than expected. In dollar terms, this conventional design could be worth as little as
1.8 million dollars or as much as 5.9 million dollars. The above lead to consider-
ations such as:
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Fig. 8 Quantifying the conventional stope envelope’s uncertainty in economic potential

Table 2 Project indicators based on the conventional stope design

Model Ore (t) Metal
(t)

Cu
(%)

Economic
potential ($)

Economic potential %
difference

Estimate 196,830 9490 4.82 3,412,999 –

Realisation 3 191,909 8769 4.57 2,285,625 −33

Realisation 18 167,306 8228 4.92 1,858,484 −46

Realisation 31 216,513 11,187 5.17 5,905,110 +73

Realisation 35 211,592 10,492 4.96 4,820,407 +41
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1. Can grade uncertainty be not only quantified for a design, but also employed
during the design process to capture the upside economic potential of the deposit?

2. Can designs be based on a minimum acceptable risk? And generally, can the
design process manage grade risk directly and generate benefits?

In the last decades, major improvements have been made to the time-consuming
manual approach to stope design. However, these computer-aided tools are limited
in their ability to mathematically optimise the location of designs under uncertainty
similarly to the optimisation methods in open pit mine design. With a methodology
in place for quantifying grade risk in conventional mine design, the limitations of
existing computer planning and optimisation tools force the development of a new
optimisation approach based on and integrating grade uncertainty directly into the
optimisation process, essentially creating a more versatile computer-aided tool.

Generating Risk-Based Designs

Mathematical programming methods provide a means of optimising an objective
function subject to a set of constraints through a mathematical formulation. Such
methods allow the development of formulations that integrate grade uncertainty
directly into the optimisation process, as well as allow the consideration of a
user-selected minimum acceptable risk. In this section, a mathematical program-
ming formulation considering the above to optimise the location of stopes in the
presence of grade uncertainty is presented and used at Kidd Creek to produce a
risk-based design for comparison and analysis.

The Optimisation Formulation

A mixed integer programming (MIP) formulation with the aim of locating an
optimal stope layout is presented here. This optimal layout is defined by the size,
location and number of stopes within an orebody model. Such a model is described
as consisting of a series of layers, each of which is composed of a number of rows
referred to as panels, where the panels are made up of a series of rings. With
multiple simulated orebodies available, each ring can be identified by a probability
to be above any cut-off grade and have an average grade, hence introducing grade
risk into the process.

The objective function of the formulation focuses on maximising the grade
content within a layout in the presence of grade uncertainty, and is:

Maximise
Xm

j¼1

Xn

i¼1

gijpijBij ð1Þ
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where:

m is the number of panels within the orebody model
n is the number of rings within a panel
pij is the probability of ring ij being above a specified cut-off
gij is the expected grade of ring ij above the cut-off
Bij is a binary variable representing every ring within the model and identifies

whether it has been selected (Bij =1) or not (Bij = 0) in the optimal layout

Further to the above, the presence of simulated orebody models allows
risk-based designs to be generated for a given minimum level of acceptable risk
specified by the planner or decision-maker. The following constraint restricts the
total average probability of selected rings within a panel to be greater than or equal
to an assigned value representing the minimum acceptable level of risk (PL).

Xn

i¼1

ðpij � PLÞBij � 0 ð2Þ

By changing the value of the minimum acceptable level of risk, PL, a number of
different risk-based designs can be generated, compared and assessed. Risk profiles
can then be generated for the key project indicators by putting each outline through
all simulated realisations, in the same procedure that was used to quantify risk in the
conventional design of the previous section. A design that best suits the operational
requirements can be selected with the risk being quantifiably assessed (Grieco
2004).

The formulation above is also constrained by limitations on the stope size—both
minimum and maximum, which are a direct reflection of the geotechnical restric-
tions and production requirements of the area. These stope size constraints are
based on the number of consecutive rings allowed to form a single stope. The size
of the pillars between two primary stopes is also considered. This algorithm
determines the minimum number of rings to be left un-mined between stopes and is
directly related to the size of the stopes surrounding them. The larger a stope, the
larger the pillar is.

Application at Kidd Creek

The MIP formulation for optimising a stope as above is applied to the study area at
Kidd Creek mine. Geotechnical requirements in the region restrict a given stope to
consist of a minimum of two rings and a maximum of seven. Applying a cut-off
grade of 3%, each ring within the re-blocked orebody model (same configuration as
the one used in simulation) is represented by the probability of being above 3%
copper and the average copper grade above this cut-off. A risk-based design with a
minimum acceptable level of risk at 80% is generated. Figure 9 illustrates a
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three-dimensional aspect of the resulting design layout using the simulated model,
with dark grey rings representing primary stopes and light grey rings the recover-
able pillars. In comparing the size and shape of the conventional design outline
(Fig. 4) with the new, risk-based design, a notable difference in size is recognised.
Introducing the minimum acceptable level of risk has limited the amount of waste
(tonnes) contained within the new design as it forces the stopes within a given panel
to have an average probability above 80%. This approach grants the planner control
over the level of risk permissible within a given design.

The formulation constraints require the stopes and pillars to contain a minimum
of two rings and a maximum of seven, providing an optimal combination for
obtaining the most metal. The conventional approach produces an envelope of rings
for which some combination satisfies the minimum grade and size requirements and
further development of a mineable stope layout is needed.

The fluctuation in copper grade within the risk-based design can be predicted by
putting the outline through all simulated realisations generated with the SGS
method, similarly to the conventional design in a previous section. Figure 10
illustrates the amount of contained material within the primary stopes and recov-
erable pillars, and the potential grade variation within each. Although grade
uncertainty has been accounted for within these designs, the simulated realisations

15m

N 

Fig. 9 LP stope design layout based on SGS and 80% acceptable level of risk
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reflect the variability in grade within this area. Additional information shown in
Fig. 10 is discussed in the next section.

Effects of the Simulation Method

Conventional estimation approaches used for orebody modelling differ in their
formulations as well as orebody models they generate from the same original
dataset. Similarly, different implementations of the same method will result in
somewhat different representations of the orebody being modelled. The same is also
true for simulation methods and the orebody models generated, including the
average ring grades and probabilities above the cut-off considered in the stope
optimisation approach used here. Thus, it may be of interest to consider how the
stope optimisation results may differ, if the orebody used was simulated indepen-
dently and with a different simulation method. For this study, an alternative method
is the sequential indicator simulation method or SIS (Goovaerts 1997) and was
implemented independently from this study at Kidd Creek by Kay (2001). The
latter study provides 40 simulated realisations of the same broader domain.

Figure 10 compares the two designs (both with an 80% acceptable level of risk)
in terms of the contained tonnage and grade for both the primary stoping and pillar
recovery layouts. As expected, these design layouts contain the same amount of
tonnes with only slight variations in potential copper grade. The wider risk profile
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in the pillar recovery layout is not unexpected due to the limited selection of rings
remaining for the second pass of the optimiser. The limited extent of pillar recovery
can be explained using the same rationale. From the observations made from
Fig. 10, the difference in simulation method cannot be said to affect the stoping
optimising process.

Figures 11 and 12 illustrate, on a given section, the location and size of the
relative stoping (dark grey) and pillar (light grey) layouts based on the simulated
orebody with the two different methods at an 80% probability above cut-off set as
the minimum acceptable risk. The figures reflect how the central high-grade zone
evident in the drill holes is consistently reproduced by both simulation techniques,
as expected, and hence located by the optimisation process at the specified prob-
ability constraint. The lower level stoping layouts are almost identical. In the upper
level, the SGS-based layout considers a stope in the north-east part of the study area
not included in the layout shown in the figure based on SIS at the same 80%
probability. However, if the minimum acceptable level of risk governing these
designs is lowered to say, 70%, the same part of the study area is highlighted as the
location of a possible stope by the optimization based on the SIS models. This
stoping layout in the upper level based on the SIS models, recongnises a larger
stope in the sixth panel whose extent is not considered by the layout based on the
SGS models. These minor differences between designs are normal and not

Fig. 11 Horizontal section of the risk-based stope designs in the upper level from the orebodies
generated with SGS (left) and SIS (right), for 80% acceptable level of risk

Fig. 12 Horizontal section of the risk-based stope designs in the lower level from the orebodies
generated with SGS (left) and SIS (right), for 80% acceptable level of risk
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significant. Similarly to the various conventionally used estimation methods for
orebody modelling leading to variations in stope designs, different simulation
methods will perform somewhat differently from each other, as their specific
technical specifications and characteristics dictate. For example, SGS is based on
one grade variogram whilst SIS requires multiple variograms, each for a series of
grade cut-offs (Goovaerts 1997). The discrepancies arising from different methods
are more extensively documented in other areas of application of simulations such
as grade control that have long been in practice (Dimitrakopoulos, in press).
Independent implementations provide a source of variance for the results, because
the detailed specifications of the simulated orebody models and the parameters for
their generation are different. These deviations become apparent in the stoping
layouts generated.

Summary and Conclusion

This paper extends concepts and technologies used in managing geological risk in
open pit mines to underground mining methods. It shows that geostatistical sim-
ulation technologies allow grade risk quantification in a stoping design. The
example from the Kidd Creek mine, Ontario, Canada illustrates how conventional
technologies cannot quantify risk, thus are unable to foresee a significant upside
potential and/or downside risk for the conventionally produced designs. The
example shows a conventional design could be valued from as little as 1.8 million
dollars to as much as 5.9 million dollars. To provide the means of incorporating risk
in stope design, geological uncertainty is integrated into the design process through
a new mathematical programming formulation that uses risk grades above a cut-off
value for rings within a stope, as well as geometric and other traditional constraints.
An additional constraint introduced is the minimum acceptable risk allowed in a
design. The application shows that the risk-based approach has the ability to
generate different designs that meet the pre-specified minimum acceptable risk with
a desired risk profile accommodating the selection of designs with preferred upside/
downside profiles. Grade uncertainty quantification may be based on different
simulation methods. A comparison of orebody models constructed independently
with the sequential Gaussian and indicator simulation methods show stope designs
with some variation, which is not significant and considered normal when different
methods are used.

The work presented here could be further developed. Such developments could
include:

1. The formulation of a stope optimisation formulation that replaces the probability
of grades above cut-off with the direct use of all available simulated orebodies,
and thus integrate more geological information;
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2. Consider sequencing and thus accommodate risk management and/or geological
risk discounting as part of the stope design process; and

3. Extend to integrate geotechnical uncertainties starting from over-breaking and
under-breaking.
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Strategic Optimisation of a Vertical
Hoisting Shaft in the Callie Underground
Mine

M. G. Volz, M. Brazil and D. A. Thomas

Abstract The Callie underground mine, located in the Tanami Desert in the
Northern Territory, includes two parallel declines accessing a large orebody
extending some two kilometres below the surface. One of several ideas considered
in strategic mine planning is to incorporate a vertical hoisting shaft and an orepass
as an alternative to trucking material to the surface along the declines. In this work,
we use network optimisation techniques to investigate the feasibility of the pro-
posed system, and to mathematically determine the optimum positions and
geometry of the shaft, orepass and surrounding infrastructure. We propose a
modelling procedure taking aspects from a mathematical problem, called the
Fermat-Weber problem, which asks for a point minimising the sum of weighted
distances to a given set of points. We describe the implementation of the procedure
into a computer program for solving the problem iteratively, and present results
over a range of infrastructure and haulage costs, decline gradients and life-of-mine
(LOM) schedules.
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Introduction

Located in the Tanami Desert in the Northern Territory, approximately 550 km
north-west of Alice Springs, the Tanami operations comprise a processing facility,
several open pit mines, the Tanami Mill and the Callie Underground Mine. Gold
was discovered at Tanami in 1900 and modern mining began in 1983 following an
agreement with traditional landowners. Initial production came from the open pit
mines at the Granites, while current production comes from the high-grade Callie
underground mine at Dead Bullock Soak. The Callie underground mine services a
large orebody running approximately in an east-west direction, plunging into the
ground at an angle of about 45° towards the east (Fig. 1). The orebody is divided
into two major veins. At the time of the study, the orebody had been accessed by a
single decline, called the Callie decline, with material having been mined to a depth
of about 1000 m below the surface (Fig. 2). Rock is extracted from the orebody in
primary stopes, which are replaced with fill material to allow adjacent secondary
stopes to be subsequently extracted. Once loaded onto trucks, ore is hauled along
cross-cuts (horizontal tunnels) to the decline. Levels are at 40 m vertical intervals.
In addition to the planned extension of the primary Callie decline, a secondary
decline, called the Wilson Drill Decline (WDD), is to branch out from the Callie
decline about 950 m below the surface (Fig. 2). Both declines are to have fixed
gradients. Levels servicing the WDD are also at 40 m vertical intervals, however
they are offset from the Callie levels. The Callie decline services the Wilson shoot,
while the WDD is to service a second shoot called the Federation shoot.

One of several ideas considered in strategic mine planning is to incorporate a
vertical hoisting shaft and an orepass as an alternative to trucking material to the
surface along the declines. Using this system, ore is hauled to a common tipping

Fig. 1 Typical cross-section
through the orebody (looking
west)
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level, called the haul level, where it is crushed, loaded into a skip and hoisted to the
surface via the shaft. This method can provide significant reductions in operating
costs, although it requires a large capital cost associated with a hoisting shaft. In
addition to the shaft, it was proposed to include an orepass into the mine. An
orepass is a near-vertical chute down which ore from upper levels is dropped to the
haul level (which is three levels above the shaft base), and transported to the shaft in
one of several ways, for example:

• Ore is loaded into a truck by a load-haul-dump vehicle at the bottom of the
orepass. It is then trucked from the bottom of the orepass to the shaft.

• A load-haul-dump vehicle trams ore directly from the base of the orepass to the
shaft.

• If the horizontal distance between the orepass and the shaft is greater than say
300 m, a loading chute may be installed at the base of the orepass, allowing
trucks to be loaded automatically before transporting ore to the shaft. For
operational reasons the orepass is assumed to be constrained to the northing
9250 N, which is about halfway between the two declines in plan.

The primary goal of this investigation is to mathematically determine:

• the optimum position (depth and plan coordinates) of the hoisting shaft;
• the optimum position (top, bottom and plan coordinates) of the orepass and

identification of the levels which access the orepass; and
• the optimum geometry of the main haulage drive network at the tipping level

and shaft haulage level.

The analysis is undertaken over a range of infrastructure and haulage costs,
decline gradients and life-of-mine schedules.

Fig. 2 The Callie
underground mine (looking
north), including the existing
Callie decline (white), its
planned extension (red/blue)
and the proposed Wilson drill
decline (pink)
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Problem Data

The nominal data used for the purposes of this project is summarised here and
includes mine costs, decline gradients, access points, life-of-mine schedules and
no-go zones. Mine costs are listed in Table 1. A range of values have been provided
for some of the items, so that sensitivity analyses could be undertaken to examine
the effects of these parameters. All other costs are assumed to be fixed, in the sense
that they are invariant to the geometry of the shaft, orepass and surrounding
infrastructure. At the time this study was undertaken, the Callie and Wilson Drill
declines were designed to about 1400 m below the surface with gradients 1:8 and
1:7 respectively. It is assumed that both declines will continue downwards in the
same manner as the current design. An alternative scheme is to have the Callie
decline gradient equal to 1:7 and the WDD gradient set at 1:6.

Access points are locations where the nominal cross-cuts intersect the declines.
Each access point is designated a nominal level corresponding to its approximate
Reduced Level (RL). The surface is at approximately 1400 m RL, and access points
on the Callie decline extend from 340 to −660 m RL at 40 m vertical intervals (26
points), while access points on the WDD extend from 390 to 70 m RL, also in 40 m
vertical increments (nine points). Hence in total there are 35 access points. Their
associated declines, (X, Y and Z) coordinates and nominal levels are not provided
in this paper. Three life-of-mine production schedules for the Callie underground
mine were proposed. They are base, probable and best. Details of the three
schedules are provided in Table 2. The predicted tonnage to be accessed from each
of the 35 access points can be determined for the three schedules. To avoid dis-
ruption to the shaft over the life of the mine, it must avoid impinging on several

Table 1 Mine costs

Component Cost

Shaft development $25000/m, $50000/m or
$75000/m

Orepass development $1210/m

Level and haul drive development $3265/m

Haulage up decline and across levels $0.75/(t.km) or $1.05/(t.km)

Haulage down decline $0.85/(t.km) or $1.20/(t.km)

Orepass fit-out $1 M

Table 2 Base, probable and best life-of-mine schedules

Name Callie decline Wilson drill decline

Rate
(Mt/a)

Quantity
(Mt)

Final year Rate
(Mt/a)

Quantity
(Mt)

Final year

Base 2 10 2015 0.35 1.4 2014

Probable 2.5 17.5 2018 0.5 2.5 2015

Best 3.5 30 2019 0.5 3.5 2017
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no-go regions. Firstly, the shaft must not be too close to the orebody. The no-go
region is modelled as a barrier around the Wilson and Federation orebodies.
Polygons digitised around the boundaries of the orebodies were expanded 200 m in
any direction. Secondly, the shaft is required to avoid faults by at least 50 m. The
main haulage drive is allowed to pass through a fault so long as it does not travel
along (parallel) to it for any great length, say, no more than 15 m at a time. Thirdly,
the preferred area for the shaft collar is in a region south of the main entrance road.

After a preliminary analysis of the model, it was identified that the faults and
surface infrastructure constraints could be relaxed. For the remainder of this paper
we assume that the only the orebody standoff constraint is enforced.

Problem Formulation and Solution Procedure

Mathematical Network

Figure 3 shows: (i) a perspective view; and (ii) a plan view of the shaft, orepass and
surrounding infrastructure.

Fig. 3 (i) Perspective view
and (ii) plan view of the shaft,
orepass and surrounding
infrastructure
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Under this arrangement, ore from the lower levels is trucked up both declines to
a level, L1, from where it is transported to the base of the shaft via a horizontal
tunnel. Ore from the upper levels is trucked down both declines to another level,
L3, from which it is transported via a horizontal tunnel to the top of the orepass. It is
dropped down the orepass to L1 and transported to the shaft base. Ore from levels
between L1 and L3 on the secondary decline is either trucked up to L3 or down to
L1, whichever is closest. Ore from levels between L1 and L3 on the Callie decline
also has the option of being trucked to an intermediate level, L2, which is between
the top and bottom of the orepass. It is transported to a second tipping point to the
orepass at L2 via a horizontal tunnel, dropped down the orepass to L1 and trans-
ported to the shaft base.

Let p1, p2 be points on the Callie decline and WDD respectively at L1, p3 the
point on the main decline at L2 and p4, p5 points on the two respective declines at L3.
If levels L1, L2 and L3 are known, the five points are fixed points corresponding to
access points on the two declines. Denote the plan location of the orepass by x and
that of the shaft by p. While the orepass is allowed to be positioned anywhere on the
northing 9250 N (which runs between the two decline centrelines), the hoisting shaft
must avoid the orebody standoff no-go region. The boundary of this orebody
standoff zone is modelled by the straight line l. Clearly, the optimal position of pwill
be on l, rather than behind it, since in the latter case, the length of the tunnel
connecting the two points can be reduced by moving p onto l. The system of tunnels
can be modelled as a mathematical network T with a star topology, where x is the
centre of the star, p1,…, p5 are fixed and p is free to slide along l.

For a given LOM schedule, the quantities t1,…, t5 of ore (in tonnes) can be
computed for each fixed point p1,…, p5. For example, the quantity of ore assigned
to p1 is the sum of tonnages from the levels on the Callie decline below L1 and the
levels immediately above L1 on the same decline.

Let d denote the cost per unit length of developing a tunnel, and h the cost per
unit length of hauling a unit quantity of ore along a level tunnel. Then the sum of
development and haulage costs for the tunnel from p1,…, p5, to x is (d + hti)li,
where li is the length of the tunnel from pi to x.

Thus the associated weight is wi = d + hti. Similarly, the weight associated with
the tunnel from x to p is:

w6 ¼ dþ h
X5

i¼1

ti;

since that tunnel routes all the ore from the orepass base to the shaft base.
The total cost of the mine (ignoring fixed costs) has the following components:

• shaft development, which depends on the shaft depth (determined by L1);
• decline haulage, which depends on the levels L1, L2 and L3; and
• surrounding infrastructure development and haulage, which depend on the

levels L1, L2 and L3 and the plan positions of the orepass and shaft.
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Hence, the total cost of the mine can be minimised by determining an optimal
layout of the shaft, orepass and surrounding infrastructure.

The Fermat-Weber Problem

The problem of minimising the development and haulage costs associated with the
horizontal tunnels connecting the declines, orepass and shaft can be solved by
projecting everything onto a horizontal plane (Brimberg et al. 2002). Then the
problem reduces to positioning x and p so as to minimise the function:

f x; pð Þ ¼
X6

i¼1

wili

This is an extension of a well known mathematical problem called the
Fermat-Weber problem. The problem asks for a point, called a Fermat-Weber point,
minimising the sum of weighted distances to a set of given points in space. In this
case the orepass position is the Fermat-Weber point, while the points p1,…, p5 and
p are the fixed points.

An added complexity is that the shaft is not fixed, but is free to slide along the
line l. We can immediately state the following result. If x = x0 and p = pk minimise
the cost function f(x, p), then the line segment between x0 and pk is perpendicular to
l. Thus, the position of p is a function of the position of x. This can be seen by
noticing that if x0p is not perpendicular to l, then the length of x0p can be reduced
by moving p along l until it is. Hence, for given L1, L2 and L3, the optimum
network of tunnels interconnecting the declines, orepass and shaft can be obtained
by solving an extension of the Fermat-Weber problem. This problem can be solved
iteratively using a well known descent algorithm due to Weiszfeld (1937). For this
study, the algorithm was generalised to account for the fact that the shaft can lie
anywhere on the orebody standoff boundary and is not confined to a fixed point. We
do not give details of this amended algorithm in this paper.

Iterative Solution Procedure

Initially, we proposed a simplified procedure for determining the positions, lengths
and orientations of the shaft, orepass and main haulage drive. By this procedure, the
problem was broken down into two subproblems:

1. The optimum shaft depth was computed based on ‘vertical’ costs—decline
haulage, shaft development and orepass development—using a further extension
of the Fermat-Weber problem, called the gradient-constrained Fermat-Weber
problem (see Brazil et al. 2005).
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2. A minimum-cost network interconnecting the declines, orepass and shaft was
constructed at the level determined by the first subproblem. The optimum net-
work was computed based on ‘horizontal’ costs—haul drive development and
haulage—using the Fermat-Weber problem described above.

Although the simplified procedure seems to obtain good intuitive solutions, it
does not guarantee an optimal solution for a given problem. To see this, suppose the
haul level is placed at 100 m RL based on vertical costs. Numerical tests have
shown that moving the haul level to 140 m RL can reduce the cost of the network
of tunnels. If the reduction in horizontal costs outweighs the increase in vertical
costs, then the solution determined by the simplified procedure is not optimal.
Hence, we propose a rigorous procedure which guarantees an optimal solution for a
given problem. Refer to Fig. 3. Placing the haulage drive L1 at each of the 35 levels
(on both declines) from −660 m RL up to 390 m RL, the vertical costs can be
computed. If an orepass is used, it is tested at every level above the haulage drive,
and if an intermediate tipping point is added to the orepass, it is also tested at every
level between the haulage drive and the top of the orepass. For every possible
arrangement of L1, L2 and L3, a minimum-cost network interconnecting the
declines, orepass and shaft is computed using the amended Fermat-Weber problem.
Once the cost for every mine layout has been computed, the arrangement giving the
lowest cost is selected as the globally optimal solution.

Results

The mathematical model and algorithm described in the previous section were
implemented into a computer program for determining the optimum shaft, orepass
and surrounding infra-structure layout for a given set of infrastructure and haulage
costs, decline gradients and life-of-mine schedules. Thirty-six tests were undertaken
for each of three cases—no orepass, one orepass and one orepass with two tipping
points (108 tests in total).

The gradients and cost parameters were varied across the tests. Optimum haul
levels and costs for the three orepass configurations are compared in Table 3.

Analysis

In this section we analyse the results of Table 3.
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Shaft Depth and Location

The optimum haul level ranges from 390 to −340 m RL (1010 m to 1740 m below
the surface). A breakdown of minimum and maximum haul levels is shown in
Table 4. The shaft optimally lies on the orebody standoff boundary between points
(60097, 9043) and (60667, 8900), over 588 m.

Orepass Versus no Orepass

If an orepass is justified, it is always economical for it to have two tipping points.
For the ‘base’ schedule, an orepass is not justified, except if the shaft development
is $25,000/m, in which case it is generally more economical to include an orepass
with two tipping points. For the ‘probable’ schedule, an orepass with two tipping
points is justified in all cases except PR08 and PR09. In these latter cases an orepass
is not justified. For the ‘best’ schedule, an orepass with two tipping points is always
justified. The orepass optimally lies on 9250 N between 60250 E and 60755 E,
over 505 m.

Effects of Parameters

We now discuss the effects of changing various parameters on the output of the
model.

Shaft Development

A breakdown of costs, averaged over all 108 tests, was computed. This breakdown
showed that shaft development is by far the most significant cost component,
followed by decline haulage. This explains why varying the shaft development
from $25,000/m to $50,000/m to $75,000/m has such a significant impact on the
shaft depth and the total cost of the mine. On average, increasing the shaft
development from $25,000/m to $50,000/m causes the optimum haul level to move

Table 4 Optimum haul
levels

Schedule Minimum haul
level

Maximum haul
level

Range

Base −60 m RL 390 m RL 450 m

Probable −220 m RL 350 m RL 570 m

Best −340 m 310 m RL 650 m

602 M. G. Volz et al.



up by three 40 m levels. On average, increasing the shaft development from
$50,000/m to $75,000/m causes the optimum haul level to move up by one 40 m
level. Thus, increasing the shaft development causes a significant decrease in the
shaft depth, because the resulting increase in decline haulage is outweighed by the
decrease in shaft development.

Orepass

The following effects of including an orepass in the model were observed:

• on average, including an orepass with one tipping point causes the optimum
haul level L1 to move down by three levels;

• on average, including an orepass with two tipping points causes the optimum
haul level to move down by seven levels;

• including an orepass provides additional savings by reducing decline haulage;
and

• provision of a second tipping point introduces further savings.

Providing an orepass causes the optimum haul level to become lower. This is
because decline haulage is fixed for levels serviced by the orepass, i.e. the cost of
decline haulage for these levels is independent of the shaft depth and is ignored in
the model. Hence the shaft tipping level must be lowered to account for the
unbalanced haulage, shaft and orepass components. Including additional tipping
points causes the shaft depth to increase further. The more ore is dropped down the
orepass, the deeper the shaft will be.

Gradients

The effect of increasing the Callie and WDD gradients from 1:7 and 1:6 to 1:8 and
1:7 respectively is to increase decline haulage costs. If decline haulage costs were
very large compared to shaft development, the orepass and shaft tipping levels
would tend to space themselves out over the depth of the mine, so as to minimise
the average haulage distance. Consequently the shaft depth would increase. In this
study, shaft development is very large compared to decline haulage, and the effect
of increasing gradients has little or no effect.

The following observations were noted when the model was run with decline
gradients set to zero. For the no orepass case, the optimum haul level is 180 m RL.
If an orepass with one tipping point is used, the optimum haul level is −460 m RL,
the top of the orepass is 180 m RL, upwards haulage is from the level at −180 m
RL. If an orepass with two tipping points is used, the optimum haul level is −160 m
RL, the top of the orepass is 180 m RL (haul up from −20 m RL), and the second
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tipping point is at −180 m RL (haul up from −300 RL). It can be verified that, in all
three cases, the haul and orepass levels have positioned themselves so as to min-
imise the total haulage cost.

Haulage Costs

On average, increasing the decline haulage costs from $0.75/t.km and $0.85/t.km
for upwards and downwards haulage to $1.05/t.km and $1.20/t.km respectively has
the effect of lowering the optimum haul level by one 40 m level. The reasons are
similar to the reasons for the gradient effects.

One Versus Two Tipping Points

The provision of more than two tipping points could potentially result in further
savings, although the additional cost of developing tunnels from the declines to the
orepass must be considered. Moreover, experiments have indicated that having two
orepasses, one for each decline, reduces haulage and development costs associated
with the haulage drive which, on average, account for about 12% of the total
variable cost of the mine.

Confinement of Orepass to Fixed Northing

Confining the orepass to be fixed on the northing between the two declines has the
effect of increasing the main haulage drive development and haulage costs. The
increase, however, is not significant.

Conclusions

In this work, we have developed and a network model for the Callie underground
mine. An algorithm was developed to mathematically determine an optimum
location and depth of a vertical hoisting shaft in the Callie underground mine. The
algorithm was implemented into a software product for solving the problem iter-
atively. Results were analysed over a range of infrastructure and haulage costs,
decline gradients and life-of-mine schedules.
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Strategic Underground Mine Access
Design to Maximise the Net Present Value

K. G. Sirinanda, M. Brazil, P. A. Grossman, J. H. Rubinstein
and D. A. Thomas

Abstract To date, the scheduling and access design of an underground mine have
only been considered as two separate optimisation problems. First, access to the
mine is designed and then the scheduling is completed. One drawback of this
approach is that the costs of access construction fail to be reflected in the Net
Present Value (NPV) calculation. In this paper, designing the access and scheduling
its construction are formulated as a single optimisation problem. The underground
mine access construction process can be classified according to the number of faces
being developed concurrently. An underground mine with a single decline
branching at a junction point into two declines is considered. After construction
reaches the junction, the two faces of the decline can be constructed sequentially or
concurrently. This paper proposes an efficient algorithm for optimally locating a
junction point to maximise the NPV where two faces are being developed con-
currently. The NPV is defined by taking the locations of ore bodies and their values,
decline construction costs, decline development rate and discount rate into account.
The variation of the NPV and the optimal locations of the junction point for one and
two concurrent development faces for a range of discount rates are discussed and
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compared. The proposed algorithm is applied in a simulated case study based on
hypothetical values for an underground mine.

Introduction

Underground mine access design has previously been studied with the objective of
minimising the haulage and development costs (Brazil et al. 2004; Brazil and
Thomas 2007). However, maximising the Net Present Value (NPV) has not been
investigated. Current methods that are available design the underground access first
and then complete the scheduling. One weakness with this process is that the costs
of access construction are not reflected in the NPV calculation. This paper presents
a way of optimising the access design and scheduling its construction simultane-
ously to improve the NPV.

Lane (1988) applied optimisation techniques for underground mines to max-
imise the NPV. He formulated the cash flows for the complete underground mining
process. Nevertheless, his theory can only be applied to underground mines with a
given access geometry. In the past decade, mixed integer programming techniques
have been widely used in optimisation processes in (Nehring and Topal 2007;
Nehring et al. 2010; Newman and Kuchta 2007). However, in these papers different
techniques have been applied for different underground mines and it is always
assumed that the underground access is given. A review of this literature has
identified an opportunity to develop algorithms to design the underground mine
access to maximise NPV. Such algorithms have not been available prior to this
research. In this paper, a generic way of optimising the underground access network
is presented.

The underground mine access construction process can be classified according to
the availability of the mining equipment to develop a number of faces concurrently.
The simplest scenario is to complete one development face at a time. If an
underground mine is developed with one development face, then only a single
decline can be constructed at a time. This type of approach was first discussed in
(Sirinanda et al. 2014) in which the underground access network was designed to
maximise the NPV. The objective was to optimally locate a junction point when a
single development face is being deployed. The junction points are located in the
network to maximise the NPV. The authors emphasised that the time value of
money has a crucial effect on locating the junction points in the access network for
maximum value. The algorithm discussed in (Sirinanda et al. 2014) locates a
junction point to access ore bodies most efficiently so as to maximise the NPV. The
authors showed that in the maximum NPV network, the paths from the junction
point to the surface portal and the first resource point make equal angles with the
path from the junction point to the second resource point. The algorithm provides
higher NPV compared with the placement of the junction point at the location
where minimum development length occurs in the network. However, the present
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paper examines the way of locating a junction point where there is enough
equipment available to complete two development activities simultaneously.

The main advantage of using two development faces is to reduce the mining
equipment idle time because with two development faces two decline links can be
constructed at a time. As an example for drill and blast development, a jumbo is
typically the rate limiting piece of equipment. The jumbo can be moved to a nearby
second face, if it is not needed for e.g. rock bolting, during the sequence, drill, blast,
support, muck. In this paper, an underground mine with a single decline branching
at a junction point into two declines is considered. After construction reaches the
junction, the two faces of the decline can be constructed concurrently and so the
mining equipment idle time can be reduced. Machine placement is an important
aspect in an underground mine which is discussed in (Topal 2008; Newman and
Kuchta 2007) for the Kiruna underground mine in Sweden. However, in the present
paper more focus is given to utilising the available mining equipment rather than
the machine placement.

The Discounted Junction Point Algorithm (DJPA) proposed in this paper will
find the optimal location of a junction point. This algorithm can be applied to an
underground mine with declines. Once this point has been located, the access to the
mine can be designed by including the links between the junction point and each of
the given draw points and the surface portal or breakout point. In general, these
links should represent minimum length navigable paths between the end points.
However, in order to make the model as simple and general as possible the navi-
gability conditions in this paper are relaxed. The decline links are assumed to be
straight line segments. A consequence of this assumption is that the theory and the
algorithm outlined in this paper can only be directly applied to underground mines
where the terminal points lie in a near-horizontal plane and then gradient constraint
would be satisfied. This does match certain industry problems..

This paper consists of five sections. Section “Formulation of the Objective
Function” formulates and explains the optimisation problem. Section “Discounted
Junction Point Algorithm (DJPA)” introduces the discounted junction point algo-
rithm to solve the problem. Section “A Simulated Case Study—Designing the
Optimal Connector Between Two Underground Mines” investigates the perfor-
mance of the algorithm and applies the DJPA to a case study. The final section
contains the conclusions and future research work.

Formulation of the Objective Function

In this section, the objective function is formulated for an underground mine that is
being operated with two development faces. The total NPV is expressed as the sum
of development and production cash flows. The two development faces allow the
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construction of two decline links at a time. The problem is formulated as an
optimisation problem and an iterative approach is proposed to solve the problem.

Let p0 ¼ ðx0; y0; z0Þ; p1 ¼ ðx1; y1; z1Þ; p2 ¼ ðx2; y2; z2Þ be three given terminal
points as shown in Fig. 1. The point p0 is the surface portal or breakout point from
existing infrastructure. The points p1; p2, represent draw points for resources (ore
deposits) with values V1;V2 respectively. The aim is to locate a junction point s to
maximise the NPV.

The line segments p0s; sp1; sp2 are called decline links of the underground mine.
First the decline link p0s is constructed, then the decline links sp1; sp2 are con-
structed concurrently. The locations of the ore deposits and their values, the
development rate D m p.a., the cost rate C $/m and the discount rate d% p.a. are
assumed to be given. The lengths l0; l1; l2 are construction lengths from p0; p1; p2 to
s respectively which are given by Euclidean distances. The parameters r ¼ 1þ d,
Vc ¼ CD= ln r are used throughout this paper.

The expression for the discounted cost of constructing a decline link of length l
is now formulated. The time taken to construct a portion of the decline link of

length x is x=D: Therefore, the discount factor is 1þ dð Þ�x=D. The discounted cost
of developing the decline link can be written as:

Construction cost of the decline link ¼
Z l

0
C 1þ dð Þ�x=Ddx ¼ CD

ln r
1� r�l=D
� �

¼ Vc 1� r�l=D
� �

The construction costs define the total discounted costs involving the develop-
ment of the decline links p0s; sp1; sp2: The discounted cost for constructing each
decline link is expressed as above with an appropriate time discount factor.

Cost of the decline link p0s ¼ Vc 1� r�l0=D
� �

Cost of the decline link sp1 ¼ Vcr�l0=D 1� r�l1=D
� �

Cost of the decline link sp2 ¼ Vcr�l0=D 1� r�l2=D
� �

Fig. 1 A schematic representation of a simple underground mine
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The cash flows generated from the access construction are the sum of all the
negative discounted costs above and are given by NPVdev where,

NPVdev ¼ Vc 1� r�l0=D
� �

þ r�l0=D 1� r�l1=D
� �

þ r�l0=D 1� r�l2=D
� �h i

¼ Vc r� l0 þ l1ð Þ=D þ r� l0 þ l2ð Þ=D � r�l0=D � 1
� � ð1Þ

The total construction times taken to reach p1; p2 are t0 þ t1; t0 þ t2 respectively
where t0 ¼ l0=D; t1 ¼ l1=D; t2 ¼ l2=D. Therefore, NPV for ore production is
written as,

NPVpro ¼ V1r
� t0 þ t1ð Þ=D þV2r

� t0 þ t2ð Þ=D ¼ V1r
� l0 þ l1ð Þ=D þV2r

� l0 þ l2ð Þ=D ð2Þ

In this paper variable costs are formulated in terms of the location of the junction
point. The discounted variable costs are generated from the access construction
process and the ore production. These two discounted costs are formulated in (1),
(2). The total NPV is derived as the combination of both discounted fixed and
variable costs. The fixed costs include the equipment maintenance costs, environ-
mental management costs and fixed haulage costs, and these costs are assumed to
be given.

NPV ¼ NPVvariable þNPVfixed ¼ NPVdev þNPVpro þNPVfixed

¼ Vc r� l0 þ l1ð Þ=D þ r� l0 þ l2ð Þ=D � r�l0=D � 1
� �

þV1r
� l0 þ l1ð Þ=D þV2r

� l0 þ l2ð Þ=D þNPVfixed

¼ ðV1 þVcÞr� l0 þ l1ð Þ=D þðV2 þVcÞr� l0 þ l2ð Þ=D � Vc r�l0=D � 1
� �

þNPVfixed

ð3Þ

Equation (3) is the objective function for the problem of optimally locating the
junction point to maximise the NPV. Therefore, this problem can be expressed as
the following optimisation problem;

Maximise ðV1þVcÞr� l0þ l1ð Þ=DþðV2þVcÞr� l0þ l2ð Þ=D � Vc r�l0=D � 1
� �

þNPVfixed

such that l0; l1; l2�0

The objective function is differentiable in the problem domain with respect to
x; y; z except at the points p0; p1; p2. The distances l0; l1; l2 are functions of the
junction point coordinates x; y; z: A maximum exists as the NPV is bounded above
by V1 þV2. The feasible region is the interior of the triangle including the boundary
which is defined by the points p0; p1; p2. Apart from that there are additional
constraints on l1; l2 which are discussed in the appendix.

Strategic Underground Mine Access Design to Maximise the Net … 611



Discounted Junction Point Algorithm (DJPA)

The Discounted Junction Point Algorithm (DJPA) is proposed to locate a single
junction point given that two faces are being developed at a time in the underground
mine. The two discount Eqs. (21), (22) and two geometric Eqs. (23), (24) discussed
in the appendix are used in the iterative algorithm, to optimally locate the junction
point. Based on many numerical trials, the iterative process always appears to
converge rapidly and the results are independent of the initial conditions for h1; h2.

612 K. G. Sirinanda et al.



A Simulated Case Study—Designing the Optimal
Connector Between Two Underground Mines

In this section a case study is proposed. An underground mine (Mine A) with a
single decline is given as shown in Fig. 2. There is no infrastructure yet built in
underground Mine B where there are two draw points. These two draw points
connect to two ore bodies with significant values that are worth mining. The aim is
to design an underground connector between the Mines A and B so as to maximise
the NPV associated with that connector. The connector will break out from the
access infrastructure of Mine A and extend to Mine B. A set of potential breakout
points on the existing Mine A access, two draw points with values $V1; $V2 in
Mine B, the cost rate of constructing tunnels (C $/m), the rate of tunnel construction
(D m p.a.) and the discount rate (d% p.a.) are assumed to be given.

A junction is placed on the connector to allow two development faces which
reduces the idle time of the mining equipment. The algorithm developed in this
paper can be applied since the resource points and potential breakout point from
existing infrastructure lie in a plane that is nearly horizontal and hence the gradient
constraint would be satisfied. The DJPA is applied and used to obtain the optimal
location of the junction points and the corresponding NPVs for a range of discount
rates. Then, the optimal locations of the junction point for single and two faces
developed concurrently are compared. Next, several possible breakout points in the
Mine A to connect with the Mine B are considered in the optimisation.

Fig. 2 The connector that connects Mine A and Mine B
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The Connector Connects to a Single Breakout Point in Mine
A

The optimal locations of the junction points are obtained for a range of discount
rates for the data-set below.

V1 ¼ $60M; V2 ¼ $40M, C ¼ $6000=m; D ¼ 1560 m p.a, NPVfixed ¼ $500k,
d ¼ 5; 8; 10; 12; 15; 20% p.a.

This range of discount rates is often used in underground mine operations. The
coordinates of the location of the breakout point in Mine A and the draw points in
Mine B are 0; 400; 400ð Þ; 800; 800; 0ð Þ; 1000; 1000; 0ð Þ respectively.

Figure 3 illustrates the optimal locations of the junction point for a range of
discount rates when the mines are being operated with two development faces.
Table 1 shows the location of the junction point for a range of discount rates. When
the discount rate increases the construction of the third decline link starts earlier.
However, the construction lengths l1; l2 increase with the discount rate. The NPV is
reduced with increased discount rates.

NPV Comparison for One and Two Development Faces

Figure 4 shows the optimal locations of the junction point for a range of discount
rates when the mines are being operated with either a single or two faces developed
concurrently. For one development face, the optimal location of the junction is
obtained from the algorithm discussed in (Sirinanda et al. 2014). When the mine
operates with two development faces the optimal location of the junction point is
located closer to the breakout point whereas with one development face, it is closer
to the higher value resource. Moreover, in both the cases for higher discount rates,

Fig. 3 The optimal design of the connector for a range of discount rates
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the construction of the third decline link starts earlier. As seen in Fig. 5 two
development faces provide better NPV than a single face. The last column of
Table 2 shows that improvement of the NPV increases with the discount rate.

The Connector Connects to a Range of Possible Breakout
Points in Mine A

In this section, the optimisation is carried out by considering several possible
breakout points in Mine A. Figure 6 illustrates the optimal connector design for a
fixed discount rate of 10% p.a. and the draw points of Mine B are located at the
same places as before.

Table 3 shows the optimal locations of the junction point and the corresponding
NPVs. According to this table, NPV is maximised if the breakout point is designed
at the coordinates 0; 200; 200ð Þ. However, this is without considering the haulage
costs through the decline of Mine A.

Table 1 Variation of the NPV for a range of discount rates

Discount rate / % p.a Optimal location of the junction Optimal NPV / $M

5 (842, 898, 56) 89.542

8 (827, 879, 52) 87.919

10 (820, 868, 48) 86.872

12 (815, 860, 45) 85.853

15 (809, 849, 40) 84.372

20 (803, 836, 33) 82.030

Fig. 4 The optimal design of the connector for one and two development faces
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Fig. 5 NPV improvement for two development faces compared with one development face

Table 2 Improvement of the NPV for two development faces compared to one face

Discount rate
/ % p.a

NPV for two
development faces / $M

NPV for one
development face / $M

NPV improvement
/ $

5 89.542 89.391 151000

8 87.919 87.636 283000

10 86.872 86.499 373000

12 85.853 85.391 462000

15 84.372 83.782 590000

20 82.030 81.242 788000

Fig. 6 The optimal design of the connector for a range of breakout points in the Mine A
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Conclusions

This paper proposes an efficient algorithm to locate a junction point for an
underground mine when two faces are being developed concurrently. The proposed
optimisation technique is to design the underground mine access and schedule its
construction simultaneously to improve the NPV. The discounted junction point
algorithm allows the construction of the underground mine access to generate
maximum NPV during the life time of the mine. This algorithm locates the junction
point to access ore bodies most efficiently so as to maximise the NPV.

The discounted junction point algorithm is applied to a case study. In the pro-
posed case study, the connector that links two underground mines is designed to
obtain the maximum NPV. The junction is placed on the connector to allow two
development faces which reduces the idle time of the mining equipment. The
discounted junction point algorithm improves the NPV compared with the under-
ground mine operation with a single face. Also, the improvement of the NPV
increases with the discount rate. In the optimisation several breakout points are
considered and then the best location of the breakout point is identified to obtain the
maximum NPV.

In future research, a new algorithm will be developed to locate a single junction
point with more realistic constraints such as the gradient constraint, variable cost
rates, geo-mechanical conditions and potential spatial constraints on the junction
points, and then the optimal configurations will be studied. In addition, the dis-
counted junction point algorithm will be extended to locate a number of junction
points in a network of declines.

Acknowledgements The authors would like to thank Dr. John Andrews from Rand Mining and
Tribune Resources for his valuable comments and sharing his knowledge. This work was also
partly funded by a grant from the Australian Research Council.

Table 3 NPV variation of the possible breakout points in Mine A

The coordinates of the possible
breakout points in Mine A

The coordinates of the optimal
location of the junction point

Optimal NPV
/ $M

(0, 500, 500) (811, 846, 35) 86.959

(0, 400, 400) (820, 868, 48) 87.372

(0, 300, 300) (832, 893, 61) 87.611

(0, 200, 200) (846, 919, 73) 87.661

(0, 100, 100) (864, 946, 82) 87.526
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Appendix

In this section, the equations that are used in the discounted junction point algo-
rithm are derived.

To maximise the NPV, differentiate (3) with respect to x and set equal to 0:

�ðV1 þVcÞr� l0 þ l1ð Þ=D ln r
D

@l0
@x

þ @l1
@x

� �

� ðV2 þVcÞr� l0 þ l2ð Þ=D ln r
D

@l0
@x

þ @l2
@x

� �
þCr�l0=D @l0

@x
¼ 0

which can be simplified to,

AþB� Cð Þ @l0
@x

þA
@l1
@x

þB
@l2
@x

¼ 0 ð4Þ

where,

A ¼ V1 ln r
D

þC

� �
r�l1=D ð5Þ

B ¼ V2 ln r
D

þC

� �
r�l2=D ð6Þ

Similarly, differentiating (3) with respect to y; z and setting equal to 0 yields:

AþB� Cð Þ @l0
@y

þA
@l1
@y

þB
@l2
@y

¼ 0 ð7Þ

AþB� Cð Þ @l0
@z

þA
@l1
@z

þB
@l2
@z

¼ 0 ð8Þ

Equations (4), (7), (8) can be expressed in terms of gradients,

AþB� Cð Þrl0 þArl1 þBrl2 ¼ 0 ð9Þ

If the operating discount rate is zero then the corresponding junction point is
mapped to the location which minimises the total length of the network. When
d ¼ 0; r ¼ 1 and so,

A ¼ limr!1
V1 ln r
D

þC

� �
r�l1=D ¼ C ð10Þ
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B ¼ limr!1
V2 ln r
D

þC

� �
r�l2=D ¼ C ð11Þ

Therefore, A ¼ B ¼ C. By substituting this into (9),

rl0 þrl1 þrl2 ¼ 0 ð12Þ

From Eq. (12), the optimisation problem is reduced to a length minimisation
problem when the discount rate is zero. Therefore by standard Steiner tree theory an
angle of 2p=3 is generated between the junction point and each pair of adjacent
points.

Let u0; u1; u2 be the unit vectors directed from the fixed points p0; p1; p2 towards
the junction point as shown in Fig. 7. Let h0; h1; h2 be the angles between u0 and
u1; u1 and u2; u2 and u0 respectively. The unit vectors are expressed using the
corresponding gradients u0 ¼ rl0; u1 ¼ rl1; u2 ¼ rl2: Hence, Eq. (9) becomes,

AþB� Cð Þu0 þAu1 þBu2 ¼ 0 ð13Þ

Equation (13) can be rewritten,

A u0 þ u1ð ÞþB u0 þ u2ð Þ � Cu0 ¼ 0 ð14Þ

Also note that u0 � u1 ¼ cos h0; u1 � u2 ¼ cos h1; u2 � u0 ¼ cos h2 and since this
is a planar problem, h0 þ h1 þ h2 ¼ 2p and so h0 ¼ 2p� h1 þ h2ð Þ:

By taking the dot product of (13) with u0,

AþB� Cð Þu0:u0 þAu1:u0 þBu2:u0 ¼ 0

cos h1 þ h2ð Þ ¼ C� A� B� B cos h2
A

ð15Þ

By taking the dot product of (14) with u0 � u1,

A u0 þ u1ð Þ � u0 � u1ð ÞþB u0 þ u2ð Þ � u0 � u1ð Þ � Cu0 � u0 � u1ð Þ ¼ 0 ð16Þ

Note that u0 þ u1ð Þ � u0 � u1ð Þ ¼ u0j j2� u1j j2¼ 1� 1 ¼ 0.

Fig. 7 Vector representation
of the problem
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By substituting the result above into (16),

B u0 þ u2ð Þ � u0 � u1ð Þ � Cu0 � u0 � u1ð Þ ¼ 0

C � Bð Þ cos h1 þ h2ð ÞþB cos h2 � B cos h1 ¼ C � B ð17Þ

By substituting the value of cos h1 þ h2ð Þ into (17),

B cos h2 B� CþAð Þ � AB cos h1 ¼ C � Bð Þ 2AþB� Cð Þ ð18Þ

Similarly, by taking the dot product of (14) with u0 � u2 and following the same
steps as above,

A cos h1 þ h2ð Þ � A cos h1 þ C � Að Þ cos h2 ¼ C � A ð19Þ

Then, by substituting the value of cos h1 þ h2ð Þ into (19),

cos h2 C � A� Bð Þ � A cos h1 ¼ B ð20Þ

Equation (20) is multiplied by B and subtracted from (18),

cos h2 ¼ �1þ C C � 2Að Þ
2B C � A� Bð Þ ð21Þ

By substituting the value of cos h2 into (21),

cos h1 ¼ 1þ C C � 2A� 2Bð Þ
2AB

ð22Þ

Equations (21), (22) can be verified for zero discount rate as follows. For the
zero discount rate h1; h2 should be 2p=3.

If d ¼ 0; Eqs. (10), (11) imply A ¼ B ¼ C and so,

cos h2 ¼ �1þ A A�2Að Þ
2A A�A�Að Þ ¼ �0:5 h2 ¼ 2p

3

cos h1 ¼ 1þ A A�2A�2Að Þ
2AA ¼ �0:5 h1 ¼ 2p

3

Hence, Eqs. (21), (22) are correct in this case. Equations (21), (22) are called the
discount equations since h1; h2 depend on V1;V2 and d. These two discount
equations are used in the iterative process in the DJPA.

Let c0 ¼ \sp0p2; c1 ¼ \sp1p2; m ¼ \p0p1p2 as shown in Fig. 8. The distances
d0; d1 are from p0 to p2 and from p1 to p2: By applying the Sine rule to triangles
p0sp2; p1sp2,
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c0 ¼ sin�1 l2 sin h2
d0

� �
c1 ¼ sin�1 l2 sin h1

d1

� �

Also, by applying the Sine rule to the triangle p1sp2,

l1 ¼ d1 sin h1 þ c1ð Þ
sin h1

ð23Þ

Setting the sum of the angles in the quadrilateral p0sp1p2 equal to 2p and
substituting the values for c0; c1 the distance l2 can be shown to be,

l2 ¼ d0d1 sin h1 þ h2 þ mð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20sin

2h1 þ d21sin
2h2 þ 2 cos h1 þ h2 þ mð Þ sin h1 sin h2d0d1

q ð24Þ

Equations (23), (24) are called the geometric equations since l1; l2 depend on the
constants d0; d1; m that define the geometry of the network. These two geometric
equations are also used in the iterative process in the DJPA.

The Junction Point at One of the Vertices

The critical angle is the minimum angle for each vertex for which the junction point
coincides with the breakout point p0 or draw points p1; p2. The critical angles
associated with the degenerate point are calculated by using (21), (22), (23), (24).
The angles m; l; k are calculated by applying the cosine rule to the triangle p0p1p2.
The critical angles are given by w;x;u when the junction point is at the points
p2; p1; p0 repectively.

The Junction Point at the Breakout Point or Surface Portal p0

The conditions that need to be satisfied so that the junction point is at the breakout
point p0 are:

Fig. 8 The geometric
parameters
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l1 ¼ d2; l2 ¼ d0; h1 ¼ u: By substituting these values into (5), (6), (22)

A ¼ V1 ln r
D

þC

� �
r�d2=D ð25Þ

B ¼ V2 ln r
D

þC

� �
r�d0=D ð26Þ

cosu ¼ 1þ C C � 2A� 2Bð Þ
2AB

By substituting the values of A;B into the equation above, we get:

u ¼ cos�1 1þ CD CDð1� 2r�d2=D � 2r�d0=D � 2 V1 ln rþV2 ln rð Þ� �
2 V1 ln rþCDð Þ V2 ln rþCDð Þr� d0 þ d2ð Þ=D

 !
ð27Þ

The maximum NPV at this point is NPVs¼p0 where,

NPVs¼p0 ¼ ðV1 þVcÞr�d2=D þðV2 þVcÞr�d0=D � Vc þNPVfixed ð28Þ

The Junction Point at the Drawpoint p1

The conditions that need to be satisfied so that the junction point is at the draw point
p1 are:

l1 ¼ 0; l2 ¼ d1; h2 ¼ x: By substituting these values into (5), (6), (23)

A ¼ V1 ln r
D

þC

� �
ð29Þ

B ¼ V2 ln r
D

þC

� �
r�d1=D ð30Þ

cosx ¼ �1þ C C � 2Að Þ
2B C � A� Bð Þ ð31Þ

By substituting the values of A;B into (32),

x ¼ cos�1 �1þ CD CDþ 2V1 ln rð Þ
2 V2 ln rþCDð Þr�d1=D V1 ln rþ V2 ln rþCDð Þr�d1=Dð Þ

� �
ð32Þ

The maximum NPV at this point is NPVs¼p1 where,
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NPVs¼p1 ¼ ðV1 þVcÞr�d2=D þðV2 þVcÞr� d0 þ d2ð Þ=D � Vc r�d2=D þ 1
� �

þNPVfixed

ð33Þ

The Junction Point at the Drawpoint p2

The conditions that need to be satisfied so that the junction point is at the draw point
p2 are:

l2 ¼ 0; l1 ¼ d1; 2p� ðh1 þ h2Þ ¼ w: By substituting these values into (5), (6)

A ¼ V1 ln r
D

þC

� �
r�d1=D ð34Þ

B ¼ V2 ln r
D

þC

� �
ð35Þ

First, the value of cos h1 þ h2ð Þ is calculated in terms of A;B;C. By substituting
the values of cos h1; cos h2; into (19),

w ¼ cos�1 C � A� Bð Þ 4B C � Að ÞþC C � 2Að Þð ÞþC C � Að Þ C � 2Að Þ
2AB C � A� Bð Þ

� �
ð36Þ

where A;B are given in (35), (36) respectively.
The maximum NPV at this point is NPVs¼p2 where,

NPVs¼p2 ¼ ðV1 þVcÞr� d0 þ d1ð Þ=D þðV2 þVcÞr�d0=D

� Vc r� d0 þ d1ð Þ=D þ 1
� �

þNPVfixed ð37Þ

Let l�1; l
�
2; h

�
1; h

�
2 be the optimal values obtained from the DJPA. The distance l�0 is

calculated by applying the Sine rule to the triangle p0sp2.

l�0 ¼
d0 sin h2 þ c0ð Þ

sin h2
ð38Þ

Therefore, the maximum NPV is calculated using (3) and is given by NPV�

where,

NPV� ¼ ðV1 þVcÞr� l�0 þ l�1ð Þ=D þðV2 þVcÞr� l�0 þ l�2ð Þ=D � Vc r�l�0=D � 1
� �

þNPVfixed

ð39Þ
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Since l�0; l
�
1; l

�
2 are known, the junction point coordinates x; y; z can be calculated

by solving three quadratic simultaneous Eqs. (40), (41), (42).

l�20 ¼ x0 � xð Þ2 þ y0 � yð Þ2 þ z0 � zð Þ2 ð40Þ

l�21 ¼ x� x1ð Þ2 þ y� y1ð Þ2 þ z� z1ð Þ2 ð41Þ

l�22 ¼ x� x2ð Þ2 þ y� y2ð Þ2 þ z� z2ð Þ2 ð42Þ
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Advances and Applications in Mine

Optimisation



Production Schedule Optimisation—
Meeting Targets by Hedging Against
Geological Risk While Addressing
Environmental and Equipment Concerns

M. Spleit

Abstract A long-term production schedule for the LabMag iron ore deposit in
northern Quebec, Canada is derived using stochastic integer programming. The
optimization formulation maximizes the schedule’s net present value, while
simultaneously managing the risk of deviations in production tonnages and qualities
by considering stochastic simulations of the orebody instead of a single deter-
ministic model. The formulation also smooths and minimizes haul truck require-
ments and ensures that as mining progresses, space is created within the mined out
pit for the return of waste material.

Introduction

The LabMag iron ore deposit is part of the Millennium Iron Range, a 210 km belt
of taconite in northern Québec and Labrador, Canada. Taconite is a sedimentary
rock in which the iron minerals are interlayered with quartz, chert, or carbonate and
the iron content is commonly present as finely dispersed magnetite between 20 and
35% Fe. LabMag has significant economic potential: it contains 3.7 billion tonnes
of measured resources at an average total iron content of 29.8% and a low average
silica of 2.1%. However, the capital expenditure needed to build this project is
estimated at over 5 billion dollars (SNC-Lavalin 2014), which necessitates careful
evaluation of all sources of risk. Resource estimation is one of the main sources of
risk in a mining project since knowledge of the orebody is primarily based on
drilling, which is often sparse because it is expensive. If the expected ore tonnages
and qualities are not obtained when mining, the project cash flows are directly
affected. The expected quantities and qualities of ore and waste are defined by the
mine production schedule, which specifies the sequence of extraction and is
dependent on the resource estimation. The goal of mine production scheduling is
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thus to maximize the expected profit (while also meeting all production targets and
constraints) by creating an extraction schedule that is robust in the face of geo-
logical risk and has the highest chance possible of actually being realized.

Conventional mine planning optimization methods are based on a single
deterministic orebody model and can yield misleading results because they do not
account for the likely deviation from the model in reality (Ravenscroft 1992; Dowd
1997; Dimitrakopoulos et al. 2002; Godoy and Dimitrakopoulos 2004). In order to
consider the geological risk of an orebody, a set of different scenarios can be created
that are all equally probable representations of the orebody, and which all reproduce
the orebody’s spatial variability (Goovaerts 1997). Such geostatistical simulations
can be used to quantify the various elements of risk associated with a mining
project: operating costs, capital costs, royalties, commodity price, taxation, tonnage,
and grade (Dowd 1997; Godoy and Dimitrakopoulos 2011). Geological uncertainty
can then be managed by directly incorporating stochastic simulations within the
mine scheduling framework.

One flexible method for long-term production scheduling is based on stochastic
integer programming (SIP) (Birge and Louveaux 1997), a type of mathematical
programming and modelling that considers multiple equally probable scenarios and
generates the optimal result for a set of defined objectives within the feasible
solution space bounded by a set of constraints. SIP for mine scheduling is intro-
duced in Ramazan and Dimitrakopoulos (2013), Dimitrakopoulos and Ramazan
(2008), which proposes a formulation that maximizes the NPV while minimizing
deviations from production targets using a different penalty for each target. Leite
and Dimitrakopoulos (2014) apply the same formulation at a copper deposit and
produce a risk-robust NPV 29% higher than that of a conventional schedule.
Benndorf and Dimitrakopoulos (2013) applies a SIP formulation at an iron ore
deposit with a formulation that integrates joint multi-element geological uncer-
tainty. Additional considerations are easily incorporated into the modelling
framework: two other relevant studies use SIP to optimize the NPV while simul-
taneously optimizing the cut-off grades (Menabde et al. 2018 in this volume) and
incorporating simulated future grade control data at a gold deposit (Jewbali 2006).
Boland et al. (2008) demonstrate stochastic formulations for mine production
scheduling with endogenous uncertainty, in which decisions made in later time
periods can depend on observations of the geological properties of the material
mined in earlier periods, and most recently they characterize the minimal sufficient
constraints for such formulations so that solving them is more efficient (Boland
et al. 2014).

In this study, a SIP formulation similar to Benndorf and Dimitrakopoulos (2013)
is presented to control the risk profiles of the mine production in terms of four
underlying metallurgical properties: the head iron (FeH), Davis Tube weight
recovery (DTWR) (Schulz 1964), the concentrate iron (FeC) and silica
(SiC) grades. The existing conventional schedule has two classifications of ore,
where the lower grade ore is stockpiled. The stochastic optimization seeks to avoid
stockpiling and lower costs by deciding dynamically to which of two destinations to
send each block (the waste dump or the process plant) while still meeting grade
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constraints. Constraints are also included to smooth the annual haul truck fleet
requirements in order to avoid purchases that lead to under-utilized equipment. The
formulation also seeks to maximize the space available for in-pit tailings disposal
(roughly two thirds of the ore to be mined at LabMag) in order to reduce the
environmental footprint. LabMag is a stratigraphic deposit and its layers co me to
the surface at a low dip of only six degrees, which makes it amenable to this type of
tailings management strategy.

In the following sections, a SIP formulation for long-term production scheduling
with equipment and tailings management is presented. The case study at LabMag
follows, and the scheduling results are compared to conventionally scheduled
results. Finally, the results are discussed and conclusions follow.

Sip Formulation

The following objective function is defined as the maximisation of the NPV minus
various penalty terms that control the geological risk profile, minimize fleet
requirements, and promote mining adjacent blocks in the same period in order to
generate a practical schedule.

Notation

The constant and variable factors used in the SIP model are defined below:

P Number of periods
N Number of blocks in the orebody model
D Number of destinations
S Number of simulations
Q Number of metallurgical qualities
Vi;d;s Value of block i in simulation s going to destination d in time period t
THd;t Total truck hours in period t for destination d

Small differences in tonnage (and thus truck hours) can be expected due to
variations in the lithology and thus the density but are ignored here for simplicity.

CTH
t Operating Cost ($/hour) for trucking, discounted by period t

bi;d;t Binary variable with a value 1 if block i is mined in period t and
sent to destination d; and 0 otherwise.

Penconc The penalty per tonne deviation ($/t concentrate) from the target
concentrate production in each period; constant

Penq The penalty per tonne of quality content ($/t quality q) in each
perove or below the associated upper or lower limits respec-
tively; constant

Production Schedule Optimisation—Meeting Targets … 629



dev
conc
t

Concentrate tonnes in excess of the upper limit
devconct Concentrate tonnes less than the lower limit
dev

q
t

Tonnes of metal or mineral q in excess of the upper limit, where
q = 1,…,Q considered qualities

devqt Tonnes of metal or mineral q less than the lower limit
ct ¼ 1

1þ rð Þt�1 A function for discounting profits and costs with the discounting
factor r according to the period t when the block is mined

gt ¼ 1
1þGRDð Þt�1 A function for discounting geological risk with the discounting

factor GRD according to the period t when the block is mined

Mining Block Economic Value

The undiscounted value for each block is defined as:

Vi;d;s ¼ NRi;s�CONCi;s � PCost�ROMi;s � OCost�Wi;s �WCost; d ¼ 1
� ROMi;s þWi;s
� � �WCost ; d ¼ 0

�
ð1Þ

given that

CONCi;s ¼ ROMi;s ¼ �eWRi;s ð2Þ

where for block i and simulation s, NRi;s. Represents the net revenue, OCost and
WCost the mining cost of ore and waste respectively (excluding truck haulage,
which is penalized directly in the objective), PCost the processing cost (considers
crushing, concentration, filtration, pelletization, transportation, administration, etc.),
ROM the run-of-mine tonnage from the iron-bearing lithologies, W . The tonnage
from waste rock, and eWR the effective weight recovery (considers ideal Davis
Tube Weight Recovery as well as plant efficiency parameters).

Note that by having trucking costs in the objective function as opposed to the
block value, it is possible to consider trucking costs for a block that vary depending
on the period that block is scheduled to be mined. In future research, if mobile
crushers are considered rather than a fixed plant location, the haulage cost could
also be dependent on the variable distance to the crusher.

Objective function

The objective function of the SIP model is constructed as the maximization of a
profit function, defined as the total expected net present value minus penalties for
deviations from planned production targets and penalties for not mining the blocks
adjacent to a mined block (Ramazan and Dimitrakopoulos, 2013; Benndorf and
Dimitrakopoulos 2013).
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MaximizeObj ¼
XP
t¼1

XN
i¼1

1
S

XD
d¼1

XS
s¼1

ctVi;d;sbi;d;t ð3aÞ

�
XP
t¼1

XN
i¼1

XD
d

bi;d;tctTHd;tC
TH
t ð3bÞ

�gt
XP
t¼1

XS
s¼1

½Penconc dev
conc
st þ devconcst

� �þ XQ
q¼1

Penq dev
q
st þ devqst

� � ð3cÞ

�
XP
t¼1

XN
i¼1

Pensmoothdevsmooth ð3dÞ

This objective function includes four distinct terms. The term Eq. (3a) is the
imary term and represents the net present value of all blocks mined in the opti-
mization. The term Eq. (3b) represents the trucking operating cost, which is min-
imized. The term Eq. (3c) acts to penalize deviations from target concentrate
tonnes, and the target silica grade and weight recovery (see the next section for
more details). The variables for the deviations are determined by the optimization
process, based on the corresponding constraints that are set. The term Eq. (3d) is a
penalty for not mining adjacent blocks. It is desirable to mine blocks in groups in
order to generate a practical schedule. There is a trade-off between the penalty
terms, and it is the relative size of the penalties that determine this trade-off.

Constraints

Constraints are applied for ensuring equipment accessibility, processing capacity,
geotechnical aspects, and blending requirements, the details of which are described
in Benndorf and Dimitrakopoulos (2013). In addition, constraints are included here
to control the schedule sequence and the number of haul trucks in each period.

Sequencing constraints

In order to accommodate in-pit tailings disposal, each block is set to be mined only
if the block to the south-west (cross-dip, towards where the deposit daylights at
surface) is mined in the same or an earlier period.

For each i, where j ε {predecessors blocks of block i}
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XD
d¼1

bi;d;t �
Xt
k¼1

bj;d;k

 !
� 0 ð4Þ

Haulage capacity constraints

To avoid a truck being leased, or purchased and then left unused, a constraint is
added to enforce that the number of trucks in each period must be equal to or more
than in the previous period. Leeway of half the available working hours of one truck
in one period is given.

PN
i¼1

PD
d¼1

Hdbi;d;t �
PN
i¼1

PD
d¼1

Hdbi;d; t�1ð Þ

� � 1
2 Total working hours available for one truck in one period

ð5Þ

where t = 2,…,P; Hd is the total time (hours) required for transportatn of a block to
destination d (the cycle time for one truck is on the order of minutes, but since each
block can contain approximately half a million tonnes, many truck cycles are
needed).

Application at the Labmag Iron Ore Deposit

The formulation in the previous section is applied at the LabMag taconite iron ore
deposit in northern Labrador, Canada in order to create a mine production schedule
that considers multi-element grade uncertainty as well as equipment and tailings
requirements.

Stochastic Orebody Models at LabMag

Mine production scheduling here considers geological variability by using ten
stochastic conditional simulations. Each realization consists of a joint simulation of
the seven correlated layer thicknesses as well as the joint simulation of four corre-
lated ore characteristics in each layer. Each model consists of 13,400 blocks
(100 m � 100 m � 15 m). Since all ore lithologies are processed in the plant in the
same manner, scheduling considers the average qualities of all layers in each block.

The two primary waste-types for the LabMag deposit are overburden (OB) and
Menihek Shale (MS). The OB overlies the entire deposit and is minimal (the
underlying rock is commonly exposed at surface). The MS layer is present on the
north-east side of the deposit, overlying the iron layers and dipping parallel to them
at approximately 6° (see Fig. 1).
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Implementation

The SIP model described above was implemented in Visual C++ using the
ILOG CPLEX API. The initial attempts to solve the full orebody model for all 10
periods proved to be unsolvable in a reasonable amount of time (the optimization
had made little progress after several days, running on a 64-bit Dell Precision
M6500 Intel I7 quad-core @ 1.73 GHz and 16 GB of RAM). The initial 13,400
blocks considered are the blocks contained within the ultimate pit derived using the
nested Lerchs-Grossman algorithm. Since only the first ten years are scheduled
within the optimization and the LabMag ultimate pit contains more than twenty-five
years of ore at the planned capacity, the precise pit limit need not be discussed
further here. To reduce the number of blocks, a new pit was designed that takes as
many blocks as possible but avoided the MS waste layer. Since the optimization
targets the first 10 years and tries to minimize trucking hours as well as unnecessary
waste, it was evident that the optimization would avoid the MS region of the deposit
anyway. This brought the number of blocks down to 8411. The optimization is
broken down into four sub-optimizations (see Fig. 2) each set to stop once there
was less than 1% gap between the solution and the optimal solution.

The optimization uses DTWR and SiC bounds and penalizes values outside
those bounds. The process plant is designed for 27% DTWR, but an range around
this target that the plant can still handle is permitted to allow the optimization to
select the most economic material when also considering haul cycle times and the
other constraints. Scheduling higher DTWR has a trade-off with haul distance
however, because most of the higher grade DTWR material is located in the north
end of the deposit, which is further from the crusher. The silica range is selected to
be within the plant tolerance levels. The average silica of the single period (10 year)
optimization is 2.2%, so this became the new target for subsequent optimizations
because a consistent silica blend is desired across all periods.

Deviations from the targets are penalized in the objective function. The highest
weight penalty is given to the concentrate tonnage and is determined by increasing a
low initial value it until the expected scheduled concentrate tonnages meet the targets.
The other quality penalties are then set relative to the concentrate tonnage deviations
penalty. As discussed in Benndorf and Dimitrakopoulos (2013), high penalties for
tonnage and quality deviations relative to non-smooth mining penalties tend to yield

Fig. 1 LabMag typical cross-section
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schedules with more dispersion of the scheduled blocks. The non-smooth mining
penalty here are determined by setting it to zero initially, and then slowly increasing it
until the number of scattered blocks in each period are few enough that a feasible
schedule could be manually designed without too much difficulty.

Results

The results of the optimization provide the optimal period in which to mine each
block, and whether to send the block for processing or to the waste dump. An
interesting result is that the only blocks sent to the waste dump are located at the
surface of the deposit and contain mostly OB, and/or MS waste, which means that
all scheduled material within the 7 iron-bearing units is sent to the plant. Had ore
blocks with a low DTWR been sent to the dump, this would have promoted the
concept of stockpiling ore with a low weight recovery. However, this is not the case
so the only reason to stockpile ore would be to restrict the silica levels. In the
optimized schedule, the silica levels are managed without the need for such a
restriction.

A practical mining schedule was designed based on the block-scale optimization.
The optimization considers the first 10 years, and an additional 15 years were
scheduled manually to allow for full comparison against an existing conventional
schedule. The pit designs use a 15 m bench height, 45° slope angle for the pit sides
and hanging wall, and the pit bottom follows the natural inclination of the orebody
at approximately 6° (10.5%). Although this slope is not optimal for the haul trucks,
various truck manufacturers were consulted and they agreed that it is manageable.
Catch berms of 9.5 m with a face angle of 70° were included for additional safety
considerations. Since the orebody daylights at surface, the ultimate pit does not
require the design of a permanent access ramp to the pit bottom. The benches will
be mined flat and the pit access will be developed along the floor as the pit wall
advances towards the East.

(line art version) (picture (enhanced metafile))
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Fig. 2 Schematic representation of four-stage schedule optimization
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The evolution of the pit in the stochastic optimization schedule is along the full
length of the deposit, progressively deepening perpendicular to the strike. This
differs from the conventional design that is based on slots that are mined West to
East along the full width of the defined resource and mining at depth already in
early periods. The stochastic optimization schedule thus has shorter haul times in
earlier periods and less trucks since they can travel at near top-speed (30–35 km/h
on a straight-away), whereas the trucks are limited to 15 km/h or less when exiting
the deeper areas of the pit due to the incline of 8% with 2–3% rolling resistance.
Another advantage of mining along the length of the deposit is that the grades vary
primarily along the strike: higher DTWR material is found to the north, but with
higher SiC as well. Having open faces along the full length of the deposit allows for
more flexibility during operations to achieve the necessary blend.

Figure 3 shows that the truck productivity of the optimized schedule is at its
maximum in the earlier periods, and steadily declines with each period as the pit is
deepened and the cycle times increase. For the deterministic schedule, the pro-
ductivity moves up and down as each full-width slot is mined. The optimized
schedule ensures higher productivity in earlier periods and thus lower corre-
sponding operating costs.

Risk Management in the Stochastic Schedule

Beyond seeking the maximum NPV, the stochastic optimization schedules material
that has a high probability of meeting production targets, both in terms of qualities
and tonnages. Conventional scheduling consists of non-probabilistic approaches
that can produce misleading results.

In Fig. 4, the annual concentrate tonnages from a previous conventional
schedule designed based on a deterministic geological model are shown. The solid
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black line shows the target tonnages (22 million tonnes per year with a ramp-up).
The grey points show the estimated values when evaluating the schedule using the
conventional deterministic orebody model that the schedule was based on. There
are a few periods with excess tonnage due to the fact that inferred resources were
ignored in designing the original conventional schedule, but they are included in the
evaluation here to demonstrate the probability of schedule deviations when the
deposit is actually mined. In most periods, the values obtained using the deter-
ministic model are consistent with the targets. However, these single estimated
values are misleading. The dashed light blue line shows the expected value for each
year, which is the mean of the set of values obtained by evaluating the schedule
using each of the simulations. In addition, the uncertainty in these values is shown
in red. The range of values obtained by evaluating the schedule with each of the
simulations allows for estimating the probabilistic distribution of true values instead
of a providing a single estimated value. The probabilistic evaluation shows that the
deterministic model systematically over-estimates the quantity of concentrate
tonnes. This is due to differences in the head iron (FeH) in the simulations com-
pared to the FeH in the deterministic model. The densities of each lithology are
dependent (and calculated using regressions) on the FeH in each layer as deter-
mined in a previous density study (Milord 2012). The fact that the deterministic
model predicts slightly higher ROM tonnages per period indicates that the averaged
FeH values of the deterministic model result in overestimation of the tonnages.

In Fig. 5, the annual concentrate tonnages from the stochastic optimization
schedule are shown. The expected tonnages from the stochastic schedule are con-
sistent with the targets and also have a greatly reduced risk profile, which is shown
by how tight the 80% confidence range is.

The annual values for the stochastic schedule for the two primary qualities
(DTWR and SiC) are shown in Figs. 6 and 7 to demonstrate the effectiveness of the
stochastic schedule to control the qualities and their risk profiles. DTWR values
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(Fig. 6) vary by only 0.4% on average. An interesting result was that the DTWR
was not higher in earlier periods as expected. This was expected because a greater
weight recovery means less ore must be mined to produce the same tonnage of
concentrate, which means lower costs. This result can be explained by the benefit of
a higher DTWR compared to a higher cost of mining at depth. The optimization
seeks the greatest profit, so lower DTWR ore can be mined as long as the benefit of
mining nearer to the surface offsets the benefit of any potential material with a
higher DTWR. However, this may be an artificial result: processing costs and plant
efficiencies are variable with respect to feed material, yet they are assumed as fixed
in this study. With the inclusion of more detailed variable processing costs and
efficiencies, it is likely that higher DTWR material would be scheduled in earlier
periods before the process plant is fully commissioned and operating consistently.
The silica (SiC) range for each year in the stochastic schedule (Fig. 7) can be seen
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to fall within the specified upper and lower limits of 2.5% and 1.8% respectively,
hovering around the target of 2.2% and demonstrating the ability of the stochastic
modelling to ensure low risk of not meeting targets.

Financial Impact of Stochastic Scheduling

In addition to controlling the qualities and tonnages, the stochastic optimization
maximizes the discounted cash flows. This can be accomplished by minimizing
waste mining, minimizing haulage cycle times, and by scheduling higher grade
material. The stochastic optimization not only maximizes the discounted cash
flows, but by controlling the geological uncertainty it also ensures a greater cer-
tainty in the financial forecasts.

Compared to the stochastic optimization schedule, there is a significant amount of
MS waste mined in the conventional schedule as well as additional ore that is
stockpiled instead of being sent to the plant. Mining these two materials requires a
significant amount of additional equipment, which translates to higher costs than
those for the stochastic schedule. The expected annual waste and stockpile tonnages
(based on evaluating the schedule with the simulations) are shown in Fig. 8 for both
the conventional and stochastic schedule. Low grade ore is stockpiled in the con-
ventional schedule based on a fixed cut-off in order to ensure the desired ore qualities
going to the plant. There is no stockpile in the optimization schedule, which seeks
instead to meet the desired ore quality constraints by sending material only to either
the process plant or the waste dump. Figure 8 shows that the combined tonnage of
waste and stockpiled ore is roughly between 20–50 mtpy for all periods, whereas the
stochastic schedule has no stockpiled tonnes and only minimal waste. The stochastic
optimization was performed on a pit that purposely avoided the MS, and so there is
minimal stripping in all years. The very low amount of waste mining was intended,
and is a crucial component to minimizing costs in the first 10 years.
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Figure 9 shows a comparison between the fleet requirements of the two
schedules (conventional and stochastic) for haul trucks and the primary cable
shovels. Equipment calculations take into account a variety of factors including
mechanical availability, utilization, job efficiency, operating delays, payload, spot
times, dump times, load times, and cycle times. The new maximum number of
trucks required over the 10 year period is 20 trucks, as opposed to the previous 35
trucks. Less trucks are needed because the haul cycle times are shorter, so the trucks
are more productive. In addition, there is less waste mining, which also contributes
to the reduced number of equipment. The necessary cable shovels was reduced by
one, which is significant because each cable shovel costs almost four times as much
as one truck. The change in fleet requirements reduces the capital cost requirements
by 23.7% and a corresponding reduction in the operating costs by 26.2%.

The impact of these cost reductions and the reduction of geological variability
can be seen together in a comparison of discounted cash flows for both schedules
(Fig. 10). The dashed black line shows the estimated results from the conventional
schedule when it is evaluated using a single deterministic orebody model. All other
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results are shown relative to this. The pink zone shows the 80% confidence range of
the conventional schedule when it is evaluated with the stochastic simulations.
Almost all simulations result in a lower NPV and the expected value of the sim-
ulations is 14.9% less than the estimated value. This is directly related to the
overestimation of product tonnes by the deterministic orebody model. The 80%
confidence range spans 28.9% of reference conventionally estimated NPV, which
indicates significant uncertainty in the NPV.

The stochastic optimization schedule, however, has an expected NPV that is
16.9% higher than the reference conventionally estimated NPV. The 80% confi-
dence range is 2.5%, ranging from 15.6% to 18.1% more than the NPV of the
deterministic schedule, which represents a significantly reduced risk profile. This
indicates that a higher NPV is achieved with the stochastic schedule and that there
is a much greater probability of actually achieving this result.

Conclusions

A feasible mining schedule was derived for the LabMag iron ore deposit using a
SIP formulation that minimizes the risk of deviation of target concentrate tonnages
and product silica grades from their targets. The optimized schedule also yielded an
expected NPV 16.9% higher than that of a conventional schedule and has a higher
chance of being realized due to the reduced risk in concentrate tonnages. These
benefits are obtained because stochastic scheduling uses multiple simulations to
assess the risk of different block groupings, which is ignored by conventional
scheduling based on a single estimated orebody model. The SIP framework used
here also allows for easily balancing multiple goals simultaneously, which is
otherwise a challenging task. An even higher NPV could potentially be achieved if
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the optimization used a block selectivity closer to that of the equipment selectivity,
as there would be greater flexibility in the combinations of blocks for scheduling
purposes.

The presented scheduled formulation accounts for haulage distances by mini-
mizing trucking costs while also ensuring a smooth truck fleet with no sudden
jumps or drops in requirements. In comparison to the first ten years of the previous
life-of-mine schedule, the proposed schedule reduces the required number of trucks
by 15 (previous total of 35 trucks) to 20 total trucks and the required number of
shovels by 1–5 shovels total. This has a corresponding impact of 23.7% reduction
in capital costs, and 26.2% reduction in operating costs over the first 10 years. The
proposed schedule mines the orebody in a progressively deepening fashion,
maintaining a larger working area at any given time, rather than mining a slot that
reaches the full depth of the deposit. This also permits the eventual disposal of dry
tailings and waste inside the pit in order to reduce the environmental footprint.
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A Stochastic Optimization Formulation
for the Transition from Open-Pit
to Underground Mining Within
the Context of a Mining Complex

J. MacNeil and R. Dimitrakopoulos

Abstract As open-pit mining of a deposit deepens, the cost of extraction may
increase up to a threshold where transitioning to mining through underground
methods is more profitable. This paper provides an approach to identify an optimal
depth at which a mine should transition from open-pit to underground mining. The
value of a set of candidate transition depths is investigated by optimizing the
production schedules for each depth’s unique open-pit and underground operations.
By considering the sum of the open-pit and underground mining portion’s value
along with the cost of transitioning corresponding to each candidate transition
depth, the optimal transition depth can be identified. The optimization model pre-
sented is based on a stochastic integer program that integrates geological uncer-
tainty. As an input, the stochastic integer program utilizes a set of several stochastic
simulations that represent equally probable scenarios of the mineral resource. This
group of simulations describes the uncertainty in the deposit while the optimizer
aims to maximize value based on discounted profits of both the open-pit and
underground components of the deposit.

Introduction

The transition from open-pit (OP) to underground (UG) methods requires a large
capital cost for development and potential delays in production but can provide
access to a large supply of reserves and consequently extend a mine’s life.
Additionally, an operating mine may benefit from a transition because of the
opportunity to use existing infrastructure and equipment, particularly when in a
remote location. Any optimization approach to the open-pit to underground tran-
sition decision (or OP-UG) may be simplified by discretizing the space above and
below ground. For surface mining, material is typically discretized into mining
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blocks, while underground, material is frequently grouped into stopes of varying
size depending on the mining method chosen. From there and through production
scheduling optimization, the interaction between the OP and UG components can
be modeled to realistically value the asset under study.

Historically, optimization research efforts in mine planning have been focused
on open-pits as opposed to underground operations. Most commonly, the open-pit
planning process begins by determining the ultimate pit limits and industry standard
is the nested implementation of the Lerchs–Grossman’s (LG) algorithm (Lerchs and
Grossman 1965; Whittle 1988, 1999) which utilizes a maximum closure concept to
determine optimal pit limits while the nested implementation facilitates discounting.
Newer developments allow for the joint optimization of an extraction sequence
leading to optimal pit limits based on mathematical programming implementations,
such as those in BHP Billiton’s BLASOR (e.g. Stone et al. 2007; Zuckerberg et al.
2010). For underground mine planning, optimization techniques are less advanced
as when compared to those employed for open-pit, and heavily depend on the
mining method used. In practice, underground long-term planning is divided into
two phases: design and production sequencing. For stoping methods, the Floating
Stope algorithm (Alford 1995) is the oldest computerized design tool available,
although not an optimization algorithm. Mine optimization research has developed
methods that schedule the extraction of discretized units in underground mines (e.g.
Trout 1995; Nehring and Topal 2007) based on mixed integer programming
(MIP) approaches. Nehring et al. (2009) and Little and Topal (2011) extend MIP
approaches to reduce the solution times. Adaptation of open pit MIP approaches for
optimization of underground strategic mine planning are also known (Roberts and
Bloss 2014, in this volume).

Some of the world’s largest mines are expected to reach their ultimate pit in the
next 15 years (Kjetland 2012). Despite the importance of the topic, there is no
established algorithm to simultaneously generate an optimal mine plan that outlines
the transition from open-pit mining to underground (Fuentes and Caceres 2004).
From the early work described in Popov (1971), a movement towards optimization
is made by Bakhtavar et al. (2008) who present a heuristic method that compares
the economic value of mine blocks when extracted through OP versus their value if
extracted by UG techniques. The method iterates progressively downwards through
a deposit, concluding that the optimal transition is the depth is reached when the
value of a block mined by UG methods exceeds the corresponding OP mining
value. Drawback of this method is that it remains an idea applied to a small
two-dimensional case study. A main effort is presented in Newman (2013) where
the transition depth problem is formulated as a longest-path network flow. This
approach determines the optimal transition depth by creating a network that outlines
possible mining sequences, their corresponding transition depths along with the
associated net present value (NPV). Major limitation of this development is that it
amounts to a 2D solution of what is a 3D problem, as the orebody is discretized into
horizontal strata for the above and below ground mining components. At the same
time worst-case bench-wise mining schedule is adopted for open-pit production
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(Whittle 1988; Godoy 2002) and a bottom-up schedule for the underground block
caving component of the mine. The last aspects do not adequately value the asset,
since the schedule is far from optimal. More realistic selective mining units and an
optimized schedule can also provide a more accurate representation of a mine’s
value, and this is the approach taken by Dagdelen and Traore (2018; in this volume)
who further extend this to the context of a mining complex.

All above mentioned attempts to optimize the OP-UG transition depth discussed
above fail to consider geological uncertainty, the major source of failure in mining
projects (Vallee 2000). Stochastic optimizers integrate and manage geological
uncertainty (e.g. grades, material types, metal, rock properties) through the
scheduling process. Such scheduling optimizers have been long shown to increase
the net present value (NPV) of an operation, while providing a schedule that has a
high probability of meeting metal production and cash-flow targets (e.g. Godoy
2002; Ramazan and Dimitrakopoulos 2005, 2013; Jewbali 2006; Albor and
Dimitrakopoulos 2010; Whittle 2010; Goodfellow 2014; Montiel 2014; and others).

In this paper, a two-stage stochastic integer programming (SIP) formulation is
presented and is based on the one proposed in Ramazan and Dimitrakopoulos
(2013) but adopted to find the optimal transition depth by maximizing the value of
the operation while considering geological uncertainty. The proposed framework
discretizes the material above ground into blocks, and uses a SIP formulation that
accounts for uncertain supply to determine the long-term production schedule. For
the underground portion of the mine, a stope layout design is assumed and the stope
sequence is developed through the SIP proposed, but with added constraints
developed in Little et al. (2008). The method presented in the next section advances
the previously completed research by jointly deciding the transition depth in
three-dimensions as a stochastically optimal ultimate pit limit valuing the open-pit
and underground mining components based on optimal extraction sequences while
considering geological uncertainty.

Method

The General Set Up: Candidate Transition Depths

The method proposed herein to jointly determine the transition depth from OP to
UG mining is based on the discretization of the orebody space in different ways and
then assessing jointly the OP and UG mine scheduling optimizations, which follow
the discretization of the orebody space selected. More specifically, this leads to
several candidate transition depths being assessed in terms of production scheduling
and the depth generating the highest total discounted profit is chosen. SIP provides
the required optimization framework in dealing with stochastic representations of
geological uncertainty in generating the OP and UG long-term production sched-
ules needed.
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For the potential OP portion of a mine considered, the orebody space can be
discretized using the nested LG approach (Whittle 1988), noting that different
approaches may be used, to find possible truly three-dimensional transition depths.
Selected nested pit shells can then serve as the ultimate pit for a certain candidate
transition depth to be tested, which allows to eventually generate the subsequently
referred to as the transition pit. Below the transition pit lies the crown pillar, which
is a large portion of undisturbed host material serving as the first line of protection
between the lowest OP working and the highest UG levels. For each candidate
transition pit, the crown pillar location changes, thus also influencing the size and
dimension of portion of the orebody that can be accessed by underground mining
(Fig. 1). It follows that each candidate transition depth has a corresponding unique
OP and UG part of the orebody being considered.

To forecast the value of the mining asset through the interaction between the OP
and UG operations these two components viewed as separate but interacting enti-
ties. It is possible to consider different scenarios which would require the two
portions of the mine to be optimized simultaneously; however, here it is assumed
that underground mining will commence after open-pit production has finished. An
optimization solution producing a long-term schedule maximizing NPV, the OP
and UG operations are optimized separately, and considering each of the candidate
transition depths (and ultimate pit) being assessed. Once optimal extraction
sequences above and below ground have been derived for each depth, the value of
transitioning at a certain depth can be determined by summing the value of the OP
and UG components. From here, the combined NPVs at each depth can be com-
pared to easily identify the most favorable transition decision. This process is
outlined in Fig. 2.

Fig. 1 Generating candidate transition depths
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Stochastic Integer Programming: Mine Scheduling
Optimization

In general, the optimization procedures for the two portions of an orebody have
similar objectives but substantially different intricacies in their details and, impor-
tantly, constraints because of their disparate extraction procedures. OP optimization
produces a long-term schedule that outlines the optimal extraction sequence for the
mining blocks within a specific transition pit. The stochastic integer program aims
to maximize discounted cash-flow while producing a sequence that abides by the
relevant constraints. Operationally-specific constraints such as processing capacity,
mining capacity, blending requirements, as well the standard reserve and prece-
dence relationships are included. A two-stage stochastic programming approach
allows for the inclusion of recourse variables which penalize deviations from metal
and grade blending targets. The UG optimization adopts the same two-stage
stochastic programming approach to underground mining constraints. The
description of each of the formulations follow.

Indices:

g and o are target parameters, or type of production targets; g is for the grade
targets; o if for the ore production target;
i is the block identifier;
j is the stope identifier
l is the minimum target (lower bound);
s is a simulated orebody model;
t is a scheduling time period;
u is the maximum target (upper bound).

Fig. 2 Schematic representation of the proposed optimization approach
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Known Parameters:

COTz is the cost of transitioning at transition depth z;
Ch is the haulage cost during OP mining;
cOP;tou ; cOP;tol ; cOP;tgu ; cOP;tgl are unit costs for dOP;tosu ; dOP;tosl ; dOP;tgsu ; dOP;tgsl respectively in
the OP optimization’s objective function;
cUG;tou ; cUG;tol ; cUG;tgu ; cUG;tgl are unit costs for dUG;tosu ; dUG;tosl ; dUG;tgsu ; dUG;tgsl respectively
in the UG optimization’s objective function;
ej is the set of stopes horizontally and vertically adjacent to tope j;

E Vi=j

� � ¼ NRi=j �MCi=j � PCi=j if NRi=j [PCi=j

�MCi=j if NRi=j �PCi=j

�
is the economic value of a

block i/stope j;

E ðNPVt
i Þ

� � ¼ E EVð Þ0if g
1þ rð Þt is the expected NPV to be generated if the block i is pro-

duced in period t;

E ðNPVt
j Þ

n o
¼ E EVð Þ0jf g

1þ rð Þtþ u is the expected NPV to be generated if the stope j is pro-

duced in period t;
Gtar is the targeted grade of the ore material to be processed;
gsi=j grade of block i/stope j in orebody model s;

li is the set of predecessor for block i
M is the number of simulated orebody models;
MCapOPmin =MCapUGmin is the minimum amount of OP/UG material required to be
mined in a given period;
MCapOPmax =MCapUGmax is the maximum amount of OP/UG material that can possibly
be mined in a given period;
MCi ¼ Ce þCh is the cost of mining block i;
MCj ¼ Cde þ Cdr

1þ rð Þtde þ Ce

1þ rð Þðtde þ tdr Þ þ Cb

1þ rð Þðtde þ tdr þ teÞ is the cost of mining stope j;

NRi=j ¼ Ti=j � Gi=j � Rec� Price� Selling Costð Þ is the net revenue generated by
selling all the metal contained in block i/stope j in simulated orebody s;
N is the number of blocks within the OP portion of the mine;
Otar is the targeted amount of ore material to be mined in a given period;
Osi is the ore tonnage is block i in the orebody model s;
P is the number of periods to be scheduled;
PCi=j is the processing cost of block i/stope j;
Rec is the mining and processing recovery of the operation;
r is the discount rate;
Ti=j is the weight of block i/stope j;
V is the number of stopes within the UG portion of the mine;
W is the number of candidate transition depths considered.
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Variables to be determined:

bti ¼
1 Block i is mined through OP in period t;

0 Otherwise

�

atj ¼
1 UG mining activities begin at stope j in period t;

0 Otherwise

�

dtosu; d
tg
su are the excessive amounts for the target parameters produced above a

desired limit;
dtgsl ; d

to
sl are the deficient amounts for the target parameters produced below a desired

limit;
u is the year in which the transition is made from OP to UG mining.

OP Formulation:

Objective function

Max :
XP
t¼1

XN
i¼1

E ðNPVt
i Þbti

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Part 1

�
Xm
s¼1

cOP;tou dOP;tosu þ cOP;tol dOP;tosl þ cOP;tgu dOP;tgsu þ cOP;tgl dOP;tgsl

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Part 2

ð1Þ

The objective function for the OP SIP model in (1) is designed to maximize
discounted cash-flows while minimizing the deviations from targets, and is very
similar to the one in Ramazan and Dimitrakopoulos (2013). Part 1 of the objective
function represents a summation of profits of each block mined in a given period.
These profits are appropriately discounted based on which period they are to be
extracted in Part 2, is comprised of geological risk parameters that are used to
manage the uncertainty in the ore supply during the optimization. The second-stage
recourse (or d) variables are the gap above or below the mine’s ore and grade
targets. This optimizer discourages deviations from these targets by minimizing the
second part of the objective function. It is reasonable to suggest that if a schedule
markedly deviates from ore and grade targets, then it is unlikely that the resultant
NPV of the planned schedule will be realized. Therefore, including these param-
eters in the objective function and reducing deviations allows the SIP to produce a
practical and feasible schedule along with achievable cash-flow projections.

OP Constraints:

Grade blending constraints for each time period t

XN
i¼1

ðgsi � GtarÞOsib
t
i � dtgsu þ dtgsl ¼ 0 s ¼ 1; 2; . . .;M; t ¼ 1; 2; . . .;P ð2Þ
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Processing constraints

XN
i¼1

Osib
t
i � dtosu þ dtosl ¼ Otar s ¼ 1; 2; . . .;M; t ¼ 1; 2; . . .;P ð3Þ

Slope constraints

bti �
Xt

k¼1

bkj � 0 i ¼ 1; 2; . . .;N; t ¼ 1; 2; . . .;P; j 2 li ð4Þ

Reserve constraints

XP
t¼1

bti ¼ 1 i ¼ 1; 2; . . .;N ð5Þ

Mining capacity constraints

MCapOPmin �
XN
i¼1

Ti b
t
i �MCapOPmax t ¼ 1; 2; . . .;P ð6Þ

Constraints (2) and (3) are the main stochastic constraints while constraints (3),
(4), and (5) are operational constraints designed to model the logistics of the mining
process.

UG Formulation:

UG Objective Function:

Max :
XP
t¼u

XV
j¼1

ðNPVt
j Þatj

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Part 1

þ
Xm
s¼1

cUG;tou dUG;tosu þ cUG;tol dUG;tosl þ cUG;tgu dUG;tgsu þ cUG;tgl dUG;tgsl

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Part 2

ð7Þ
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The UG objective function is similar to the OP objective function, in that the UG
objective function’s goal is to maximize discounted profits, while minimizing
deviations from ore and grade targets. However, the details differ.

Note that the UG mining cost used for Part 1 in (7) displays a method to expense
these activities in the period they are executed in. Binary decision variable ati
designates the period in which extraction-related activities for each stope i. These
activities may be carried out in a predetermined sequence which is constant for all
stopes and often spans many periods of the life-of-mine. Tracking these incurred
costs in the proper period results in a more realistic NPV for the UG operation. The
cost of development, drilling, extraction, and backfilling are represented by the
variables Cde;Cdr;Ce; and Cb respectively shown in the definition of the UG
mining cost for a stope MCj defined ealyer. The time required to execute each
activity and the order in which they occur is considered to be constant. The con-
stants tde; tdr; te and tb shown in the definition of MCj represent the time required to
execute the development, drilling, extraction and backfilling required for a single
stope. The incurred costs are discounted based on the amount of time the previous
activities require.

It is important to also recall that the capital cost required to develop the
underground component of the mine considered is contingent on the transition
depth, as this will influence the development schemes. The mining costs for each
stope can also vary for each transition depth because as the depth varies, so does the
size of the pit and the shape of underground orebody to be mined. Having a unique
combination of OP and UG components of a mine, aims to result in a different
underground development scheme for the UG portion of the mine. For example, a
deep transition depth will have a large pit; this will affect the shaft location and
likely lengthen the size of the declines which need to be constructed to access ore.

UG Constraints:

Grade blending constraints for each time period t

XV
j¼1

ðgsj � GtarÞOja
t
j � dUG;tgsu þ dUG;tgsl ¼ 0 s ¼ 1; 2; . . .;M; t ¼ u; uþ 1; . . .;P ð8Þ

Processing constraints

XV
j¼1

Osja
t
i � dUG;tosu þ dUG;tosl ¼ Otar s ¼ 1; 2; . . .;M; t ¼ u; uþ 1; . . .;P ð9Þ
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Mining capacity constraints

MCapUGmin �
XV
j¼1

Tja
t
j �MCapUGmax t ¼ 1; 2; . . .;P ð10Þ

Backfill stability constraints

XP
k¼1

akj þ
XP
t¼k

ath � 2 j ¼ 1; 2; . . .;V ; h 2 ei ð11Þ

Adjacency constraints

atj þ ath � 1 j ¼ 1; 2; . . .;V ; h 2 ei ð12Þ

Constraints (11) and (12) are specific to underground stoping methods and are
originally presented by Little et al. (2008). The backfill stability constraint limits the
number of stopes that can be produced around a backfilled stope in a given time
period, since exposing several sides of a backfilled stope can cause stability issues.
The adjacency constraint prevents the simultaneous production of two adjacent
stopes.

Once the optimization for both the OP and UG components is completed for
each candidate transition depth, the optimal transition depth can then be identified
as the depth that leads to a maximum value of Eq. (13).

NPVOP
y þNPVUG

y � COTy ð13Þ

Conclusions and Future Work

A new method for the determination the optimal OP-UG transition depth was
presented. The proposed method improves upon previously developed techniques
by taking a true three-dimensional approach to determining the optimal OP-UG
transition depth, optimizing extraction sequences for both OP and UG, and con-
sidering geological uncertainty. There are many interesting opportunities to build
on the proposed model in the future by including: multiple operating mines in the
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mining complex, non-linear recovery functions on the processing streams and
variable cut-off grades. The current model also only considers a mine that is
transitioning from OP to UG. Cases with concurrent OP and UG operations would
also be of interest.
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An Open-Pit Multi-Stage Mine Production
Scheduling Model for Drilling, Blasting
and Excavating Operations

E. Kozan and S. Q. Liu

Abstract This paper proposes a new multi-resource multi-stage scheduling
problem for optimising the open-pit drilling, blasting and excavating operations
under equipment capacity constraints. The flow process is analysed based on the
real-life data from an Australian iron ore mine site. The objective of the model is to
maximise the throughput and minimise the total idle times of equipment at each
stage. The following comprehensive mining attributes and constraints have been
considered: types of equipment; operating capacities of equipment; ready times of
equipment; speeds of equipment; block-sequence-dependent movement times of
equipment; equipment-assignment-dependent operation times of blocks; distances
between each pair of blocks; due windows of blocks; material properties of blocks;
swell factors of blocks; and slope requirements of blocks. It is formulated by mixed
integer programming and solved by ILOG-CPLEX optimiser. The proposed model
is validated with extensive computational experiments to improve mine production
efficiency at the operational level. The model also provides an intelligent decision
support tool to account for the availability and usage of equipment units for drilling,
blasting and excavating stages.

Introduction

Mining activities have been carried out by humans for millennia. Nowadays,
mining activities take place all over the world and become a major source of a
country’s natural wealth, especially for Australia. Mining methods are mainly
divided into two groups: open-pit/surface mining and underground mining. In
underground mining, the mineral is able to be accessed and hauled to the surface
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through a network of tunnels. In comparison, open-pit mining method is imple-
mented when deposits of minerals are found near the surface or where mine
structure is inappropriate for tunnelling. This paper is concerned with short-term
open-pit mine production process including drilling, blasting and excavating stages.

In open-pit mining, the initial optimisation problem, called mine design planning
(MDP), aims to provide the optimal answer for the question at the strategic level,
that is, what to be mined or what is the ultimate pit contour that yields the maximum
total value based on the estimated geological information. As pioneers, Lerchs and
Grossmann (1965) presented to the mining community the methodology known as
the Lerchs-Grossmann approach. Caccetta and Giannini (1988) proposed several
mathematical theorems in order to improve the Lerchs-Grossmann approach.
Underwood and Tolwinski (1998) developed a dual simplex approach to solve the
integer-linear-programming (ILP) model of MDP. Hochbaum and Chen (2000)
presented a detailed study of the push-relabel network flow algorithm to solve
MDP.

After the determination of the ultimate pit contour, the next important optimi-
sation problem is called mine block sequencing (MBS). The purpose of MBS is to
answer the question at the tactical level, that is, which part of orebody will be mined
over mid-term periods. In the literature, the following important papers dealt with
MBS. Caccetta and Hill (2003) proposed a general mixed-integer-programming
(MIP) model and a branch-and-cut algorithm with LP relaxation to solve MBS.
Boland et al. (2009) developed a LP-based relaxation approach to solve large-size
MBS instances. Bley et al. (2010) relaxed this MIP formulation by adding
inequalities derived by combining the precedence and production constraints.
Ramazan (2007) proposed a method to aggregate a subset of blocks as branched
trees, which are able to reduce number of integer variables and number of con-
straints required within the MIP formulation. Many researchers indicated that
solving the MBS-MIP model is computationally intractable for large-size instances,
thus leading to the development of numerous heuristic algorithms. Kumral and
Dowd (2005) developed a simulated annealing metaheuristic combined with
Lagrangian relaxation. Ferland et al. (2007) modelled the MBS problem as a
resource-constrained project scheduling problem, which was solved by a particle
swam optimisation algorithm. Myburgh and Deb (2010) reported an application of
evolutionary algorithm for solving MBS. Cullenbine et al. (2011) recently devel-
oped a sliding-time-window heuristic for MBS. Chicoisne et al. (2012) developed
an efficient heuristic algorithm based on decomposition and topological sorting
techniques for solving MBS.

After the determination of blocks to be mined over mid-term periods, mining
practitioners need to determine how and when mining equipment at various oper-
ational stages (e.g., Drills, MPUs and Excavators) should be allocated to perform
the detailed operations (e.g., Drilling, Blasting and Excavating) over a short time
interval. This operational-level question will be answered by the short-term
multi-stage mine production scheduling methodology. Using the sequence of
blocks over mid-term periods (i.e., due windows of blocks), multi-stage mine
production scheduling (MPS) is prepared. This helps to optimise multi-resource
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multi-stage timetable at the operational-level and determine: how and when the
mining equipment will be allocated to the selected blocks to perform the mining
tasks at various processing stages over a short time interval. According to recent
comprehensive literature review (Newman et al. 2010; Kozan and Liu 2011) on the
applications of Operations Research approaches to mining industry, multi-resource
multi-stage scheduling methodologies have not been applied to mining optimisation
yet. In a sense, this paper would initially fill this gap to extend the boundary of the
development of more advanced MPS methodology at the operational level.

Mathematical Formulation

The MPS problem is defined according to the flow process of short-term mine
production processing stages under a real-life mining project. This flow process is
analysed based on observations, historical data and feedbacks from an Australian
ore mine site. In the block model at strategic exploration, a “block” is regarded as
the smallest element with 10m in width, 10m in length, and 15m in height. At the
operational level, a set of several same-grade blocks on the same bench in the same
pit are aggregated to be mined at the same production rate. In this paper, such an
aggregation of blocks is defined as a “mining job” in our MPS model. Each mining
job will be processed through several operational stages such drilling, blasting and
excavating. In the drilling stage, the blocks in each mining job are drilled in order to
collect the samples for blasting, which will be sent to laboratories for checking ore
properties such as ingredients and density. The sampling results will be used to
determine blasting patterns for achieving a good fragmentation after blasting.
Mobile Processing Units (MPUs) will provide exploding equipment and blasting
service. At the excavating stage, blasted blocks will be extracted by excavators
(shovels or front-end-loaders).

According to the above analysis a model is formulated to optimise open-pit
drilling, blasting and excavating operations for maximising throughput and
reducing the idle time of equipment units at each stage.

Indices and Parameters
I number of mining jobs.
i index of a mining job indexed from 1, i ¼ 1; . . .; I; i ¼ 0 is a dummy mining

job. The dummy job has zero quantity in volume, surface and drilling metres.
The purpose of adding a dummy job is to determine the movement distance
for the first/last mining job on an equipment unit at a stage in the
mathematical formulation model.

K number of operational stages.
k index of an operational stage from 0, k ¼ 0; . . .;K � 1.
Lk number of equipment units used at stage k.
lk index of an equipment unit at stage k indexed from 0, lk ¼ 0; . . .; Lk � 1.
ri ready time of mining job i.
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di due date of mining job i.
wi weighting factor associated the tardiness of mining job i.
siklk setup time of mining job i by equipment unit lk at stage k.
Xik workload for mining job i at stage k.
hlkk operating capacity of resource unit lk at stage k.
gi0i distance between mining job i0 and mining job i, in which i0 should be the

immediate predecessor of mining job i.
vi0iklk speed of the l th

k equipment unit at stage k from mining job i0 to mining job i,,
which may be asymmetric due to up-slope or down-slope.

U a constant large value

Decision Variables
Cik completion time of mining job i at stage k;

0�Cik �U; i ¼ 0; . . .; I; k ¼ 0; . . .;K � 1.
xiklk assignment variable which equals 1, if the lthk equipment unit is allocated to

mining job i at stage k; 0, otherwise;
xiklk 2 0; 1f g; i ¼ 0; . . .; I; k ¼ 0; . . .;K � 1; lk ¼ 0; . . .; Lk � 1.

yi0iklk immediate sequencing variable which equals 1, if mining job i0 just precedes
mining job i on the lthk equipment unit at stage k; 0, otherwise;
yii0klk 2 0; 1f g; i; i0 ¼ 0; . . .; Iji 6¼ i0; k ¼ 0; . . .;K � 1; lk ¼ 0; . . .; Lk � 1

MPS Model

Objective:

Minimise maxi Ci;K�1 þ
XI

i¼1
max ð0;Ci;K�1 � diÞ wi

� �
ð1Þ

Equation (1) defines the objective function of minimising the makespan and the
total weighted tardiness of mining jobs.

Subject to:

C0k ¼ ri; k ¼ 0; . . .;K � 1 ð2Þ

Cik �C0k þ
XLk

lk¼1
xiklk siklk þ

Xik

hlkk

� �
i ¼ 1; . . .; I; k ¼ 0; ð3Þ

Cik �Ci;k�1 þ
XLk

lk¼1

yi0iklkgi0i
vi0iklk

þ
XLk

lk¼1
xiklk siklk þ

Xik

hlkk

� �
;

i; i0 ¼ 1; . . .; Iji 6¼ i0; k ¼ 1; . . .;K � 1;
ð4Þ
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Equations (2–4) satisfy the processing routes of mining jobs.

XLk

lk¼1
xiklk ¼ 1; i ¼ 1; . . .; I; k ¼ 0; . . .;K � 1 ð5Þ

XLk

lk¼1
y0iklk ¼ 1; i ¼ 1; . . .; I; k ¼ 0; . . .;K � 1 ð6Þ

XI

i0¼0ji0 6¼i
yi0iklk ¼ xiklk ; i ¼ 0; . . .; I; k ¼ 0; . . .;K � 1; lk ¼ 0; . . .; Lk � 1 ð7Þ

XI

i0¼0ji0 6¼i
yii0klk ¼ xiklk ; i ¼ 0; . . .; I; k ¼ 0; . . .;K � 1; lk ¼ 0; . . .; Lk � 1 ð8Þ

Equations (5–8) satisfy the exclusive assignment relationship and immediate
sequencing relationship between each pair of mining jobs on each equipment unit at
each processing stage.

Cik þU 1�
XLk

lk¼1
y0iklk

� �
�C0k þ

XLk

lk¼1
xiklk siklk þ

Xik

hlkk

� �
;

i ¼ 1; . . .; I; k ¼ 0; . . .;K � 1;
ð9Þ

Cik þU 1�
XLk

lk¼1
yi0iklk

� �
�Ci0k þ

XLk

lk¼1

yi0iklkgi0i
vi0iklk

þ
XLk

lk¼1
xiklk siklk þ

Xik

hlkk

� �
;

i; i0 ¼ 1; . . .; Iji 6¼ i0; k ¼ 0; . . .;K � 1;

ð10Þ

Equations (9–10) satisfy the disjunctive relationship between each pair of
mining jobs at each processing stage.

Case Study

The model could be exactly solved by commercial MIP optimiser (e.g.,
ILOG-CPLEX) for small-size instances in a reasonable time. The proposed
approach has been applied to a case study based on the data collected from an iron
ore mine site in Australian, for the purpose of maximising the productivity of
short-term open-pit mine production process through several operational stages.

Due to confidentiality agreement, values are relatively modified and only some
parts of the case study data are given in Table 1.

In this case study, 54 mining jobs will be scheduled in an expected 18-week
scheduling horizon. Note that a mining job is an aggregated set of blocks each of
which has the identical size with 10 m in width, 10 m in length, 15 m in height,
about 100 m2 in surface and about 1500 m3. If a block is high-grade ore with the
density of 3 tons/cubic meters, then this block’s tonnage is about 4500 tons. For
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example in Table 1, mining job 1 has 8648 cubic metre, which means that it
consists of about three blocks. In total, these 54 mining jobs consist of 380 blocks
with 569,936 m3 in this case study. Each mining job will be processed consecu-
tively through drilling; blasting and excavating stage. The critical equipment type at
drilling stage is drill equipment with two units in this case study. The average
blast-hole-drilling rate of a drill is 50 m/h at this mine site. At blasting stage, the
critical resource type is mobile processing unit (MPU) with two units. Due to the
safety requirements for subsequent marking the blasted blocks, this mine site does
not allow personnel or equipment on a blast about 12 h. The critical resource type at
excavating stage is excavator (shovel or front-end-loaders) with 5 units and the
production rate of an excavator unit is 1200 m3/h on average. Based on the above
data, the processing times of each mining job are determined by the size (drilling
meter, surface, volume) of each mining job and the operating capacity of an allo-
cated equipment unit at each stage.

The MPS MIP model of this case study is solved by IBM ILOG-CPLEX 12.4
with the time limit of 36,000 s and thus a good feasible mine production timetable
that synchronises drilling, blasting and excavating operations of each mining job is
obtained and presented in detail in Table 2. IBM ILOG-CPLEX (a commercial MIP
optimiser) can indicate whether the proposed MIP model is solved or not. The
constraints are satisfied by evaluating the values of key variables in the model, that
is, whether only an equipment unit at each stage is assigned only to a mining job at
a time; and whether each pair of mining jobs has only one directed immediate
sequencing relationship on the assigned equipment unit at each stage. The obtained
timetable shown in Table 2 is constructed according to the values of completion
times Cik, equipment-assignment variables xiklk , sequencing variables yi0iklk obtained
by ILOG-CPLEX.

Conclusion

This paper is a pioneering work to optimise short-term mine production operations
due to the fact that most mining optimisation papers dealt with long-term mine
design planning at the strategic level and mid-term mine block sequencing prob-
lems at the tactical level. In this sense, it is innovative to model a short-term mine
production scheduling process as a multi-resource multi-stage scheduling problem.

In this paper, we define an operational multi-resource multi-stage mine pro-
duction scheduling problem based on the real-life mining data and mathematically
formulate by mixed integer programming that has been solved by ILOG-CPLEX
optimiser. A numerical case study is given for illustrating and validating the pro-
posed scheduling methodology with a practical implementation. As a result of the
application of the proposed methodology, mining practitioners can maximise the
mining productivity and the utilisation of mining equipment through multiple
processing stages.
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Optimising the Long Term Mine
Landform Progression and Truck Hour
Schedule in a Large Scale Open Pit Mine
Using Mixed Integer Programming

Y. Li, E. Topal and S. Ramazan

Abstract A mine landform progression plan can provide a clear outlook of the
entire mining operation. To produce such an output requires detailed placement
schedule of the mined material, including the volume (or tonnage) and the allocated
dumping location. However, current practise mainly focuses on the ore production,
over-simplifying the waste material scheduling. As a result, a rock dump is often
treated as a single point in long term planning, making it difficult to predict the
progression pattern over the life of mine. Without such a guidance, it is almost
impossible to carry out progressive rehabilitation of the waste rock dumps. The lack
of dumping schedule could cause delay in development construction, i.e., tailing
storage facility (TSF) and ROM-pad. Other downstream effect due to the
over-simplification is inaccurate estimation of required truck hours, which could
have huge financial impact on the operation. In this paper, mixed integer pro-
gramming (MIP) models of different objective functions, i.e., maximise truck pro-
ductivity by minimising the overall haulage distance, minimise required truck
deviation between adjacent years, and a hybrid between the two objectives, are
utilised to generate the long term optimum rock placement schedules under the
criteria of satisfying site specific conditions. All three MIP models are implemented
in a large scale open pit mine. The numerical solutions from the models forms three
different rock placement schedules, based on which, the yearly truck requirements
are easily calculated and compared. The graphical results show the three corre-
sponding landform progression patterns over the life of mine, providing the
optimised long term forecast of the operation.
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Introduction

In a large-scale open pit mine, waste stripping and hauling are as important as ore
mining and processing, because large quantity of earth moving is involved, hence
the material handling cost. However, current practice predominately focuses on
scheduling ore recovery, subsequently neglecting the waste scheduling in long term
planning.

The waste allocation is often decided by the production engineers based on day
to day site condition and personal experience. The rule of thumb is the shortest haul
principle, as illustrated in Fig. 1, to minimise the haulage cost (Wang and Butler
2007). The disadvantage of this approach is lacking long term vision, which was
challenged by Sommerville and Heyes (2009). It was claimed that shortest haul
strategy will incur 8% higher in cost compared to some other dumping schedule
when taking rehabilitation into account.

There are other dumping strategies available, such as long-haul then short-haul
and centred expansion strategy, as shown in Figs. 2 and 3, respectively.
A quantitative analysis is required to compare the three dump progression pattern,
which could be very time-consuming; nevertheless, there may be other better
sequences available that are more cost effective than the listed three.

An alternative method is to determine the optimum dumping schedule, i.e., the
material flow from its source location to the dumping location, according to the
requirement of the business. Once it is solved, the detailed landform progression,
and the required truck hours can be calculated.

To seek the most cost effective solution, the haulage cost from each waste block
to all possible dumping locations must be evaluated, as shown in Fig. 4. The extent
of the problem is proportional to the number of mining blocks and the possible
dumping locations, which is often too numerous to analyse by manual method.

Fig. 1 Waste rock dump progression with a shortest haul strategy

670 Y. Li et al.



In addition, the time cost for occupying each individual dumping location should
also be considered, as shown in Fig. 5. This is because the cost in different time
period has different money value.

Furthermore, the entire landform could involve many other structures, such as
tailing storage facility (TSF), run of mine (ROM) pad, growth medium
(GM) stockpile, and low grade dump. Some structures are required to be built in a
certain time frame, while some must be constructed using particular waste material.

In order to seek the optimum solution, which also satisfies multiple criterion,
mixed integer programming (MIP) models are proposed to aid the decision making.
The main objective of this paper is to demonstrate the use of the MIP models in
solving the long term dumping schedule problem in a large scale open pit mine. The
expected outcomes include the optimised landform progression and the estimated
truck schedule.

Fig. 2 Waste rock dump progression with a long-haul then short-haul strategy

Fig. 3 Waste rock dump progression with a centred expansion strategy
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Fig. 4 Selection of dumping location(s) for each mining block

Fig. 5 Evaluating the different time cost to occupy one dumping location
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Background Information and Problem Definition

A large scale open pit mine in Western Australia is to commence operation. It has
an estimated surface mine life of 10 years, and possible extension for underground
mining. The proposed life of mine landform design is illustrated in Fig. 6.

There will be three rock dumps, i.e., LTA, LEA and LWE, which are designed to
accommodate the majority of waste rock. The tailing storage facility (TSF) and
ROM-pad are to be built by the waste rock in the early stage of mining. In addition,
seven growth medium (GM) stockpiles will be used to store GM material for
rehabilitation, covering the top of three rock dumps by the end of mine life.

Fig. 6 Mine site layout and overall landform design
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According to the given design, the total waste rock (including GM material)
storage capacity is approximately 229.9 million loose cubic metre (LCM), which is
summarised in Table 1.

Low-grade stockpile (LMW) is also designed to segregate low-grade material
(MW) for future processing. Ore is to be stockpiled on the top of the ROM-pad,
from where it is transported to a processing plant nearby.

Each structure in the landform design is divided into smaller dump blocks. For
example, the rock dumps are first cut into smaller dump divisions by vertical cuts,
and then to dump blocks according to the lift height. Each dump block represents a
dumping location of certain capacity. The total number of possible dump blocks in
the design is 221, as summarised in Table 2.

The annual material movement from the production schedule is presented in
Fig. 7. A preliminary check shows that the overall volume to be removed from the
open pits is 234.8 million Loose Cubic Metre (LCM), which comprises the
following:

• 199.3 million LCM of waste;
• 3.2 million LCM of MW; and
• 32.3 million LCM ore.

Table 1 Landform capacity for waste rock

Dump name Capacity (million m3)

LTA 42.7

LEA 78.3

LWE 65.8

TSF 17.0

ROM pad 9.5

GM stockpile 16.6

Grand total 229.9

Table 2 Summary of dump block in given design

Waste dump Number of division Number of blocks

LTA 4 24

LEA 12 66

LWE 19 88

TSF 1 32

ROM_Pad 1 1

GM stockpile 7 7

LMW 1 2

Plant 1 1

Total 46 221
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Since the overall waste material from the pits is less than the designed capacity,
it is certain that all waste material from the operation can be fully contained within
the proposed landform design.

The production schedule in terms of mining blocks can be seen in Table 3.
These blocks are modified by grouping conventional mining blocks, based on their
attributes and spatial location, thereby reducing the total number of mining blocks
to 2454.

Given the number of dump blocks and mining blocks, it is estimated that
542,334 combinations are possible to schedule the mined material to the dumping
locations.

Additionally, the case study involves multiple pits, pit exit points, rock dumps
and dump entry points, which further complicates the problem. Take pit exit points
for example, the design specifies 20 different exits, as summarised in Table 4 and
illustrated in Fig. 8. Some exits are interim, which will disappear as pits expand.
These design information must be correctly modelled so that logical pit expansion
sequence is correctly reflected in the solution output.
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Fig. 7 Material movement schedule from operating pits

Table 3 Simplified schedule
of mining blocks

Period Waste MW Ore Yearly sum

1 14 11 25

2 92 28 248 368

3 105 37 278 420

4 100 45 281 426

5 30 20 109 159

6 46 24 132 202

7 41 21 144 206

8 35 15 97 147

9 26 17 116 159

10 31 24 154 209

11 18 18 97 133

Total blocks 538 249 1667 2454
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Problem Modelling and Implementation

MIP Modelling

The problem ismodelled inMIP form, which involves a series of variables, parameters,
objective functions, and a list of constraints. Then an optimisation engine is used to read
the model and the data in order to generate optimum solution.

Table 4 Summary of pit
exits

Pit(s) Exit name Number of exits

BS J, O 2

TP P, U, T, G, E, H, D, M 8

HA L, R, B, I, A, C, Q, S, N, F 10

Total 20

Fig. 8 Temporary and
permanent pit exits according
to the given design
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Main Variables and Parameters

V1 main variable to represent the ex-pit material flow from its source mining
block to the dumping location in a time period;

V2 variable to represent GM material re-handled in a time period;
B binary variable to control the sequence in each dump lift, and
D parameter that states the equivalent flat distance from the in-pit mining

block location to a dump block.

Objective Function

Three different objectives are set for the models, simply they are:

• Optimum productivity (OP) model to maximise truck productivity (LCM/km),
i.e., maximise

P
V1=DþV2=Dð Þ;

• Truck balance (TB) model to minimise truck requirement deviation
between adjacent years, i.e., minimise

P
D V1� DþV2� Dð Þj

between each adjacent yearj;
• Combo model to achieve a balance between truck productivity and

requirement, i.e. minimise
P

V1� DþV2� Dð Þþ P
D V1� DþV2� Dð Þj

between each adjacent yearj.

Constraints Modelling

According to the provided information, a framework of material flow for the mine is
constructed, as illustrated in Fig. 9. A list of rules are applicable:

NB. Waste Rock; Ore; MW

Fig. 9 Modified mining and dumping framework for the open pit project
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• Ore is to be stockpiled to the ROM-pad, which is constructed by waste rock.
• Low grade is to be stockpiled to LMW.
• Waste material are further catergorised into Azone material, GM material, and

other waste rock.
• Azone material is preferred to be sent to TSF to form an impermeable layer until

the completion of TSF by the end of time period 4.
• GM material is only allowed to be transported to the GM stockpile or to the top

of the main rock dumps.

The mentioned material flow obeys a series of generic constraint sets. The name
and functionality of each constraints are summarized in Table 5, and the further
details of the mathematical formulations were described by Li et al. (2013).

Apart from the generic constraints, some site specific constraints are also
introduced to model the site specific conditions:

• Waste rock dumping within the 5-year restriction zone, as indicated in Fig. 6 is
restricted, until after time period 5;

• Prioritising a two-staged ROM-pad construction, with phase one to be built by
the end of time period 2, and then completion in time period 3; and

• Prioritising a two-staged TSF construction, with phase one to be built by the end
of time period 2, and then completion in time period 4.

Table 5 Generic constraint sets and functionality

Constraint sets Functionality

Mining schedule To ensure a mining block is removed according
to the defined mining schedule

Dump block capacity To monitor the filling of a dump block in each time period

Logical lift sequence To model the logical lift-by-lift rock dump construction sequence

Non-negative To set non-negative value for all variable

Table 6 Problem size and solution time

Number of OP Model TB Model Combo Model

Problem size Linear variable 643,063 643,085 643,085

Binary variable 1,719 1,719 1,719

Constraints 12,537 12,547 12,547

Solving process Simplex iterations 335,094 51,550,326 8,184,228

Branch and bound cut 2,316 208 531

Solution time (min) 4.7 3557.4 244.3
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Solution Generation

The MIP models were written using a mathematical programming language
(AMPL) and the optimisation problems were solved using the optimisation engine
CPLEX 12.4, running on a computer of 2.8 GHz CPU and 24 GB RAM. The key
statistics of the problems are summarised in Table 6. It can be seen that each
problem involves more than 640,000 variables, which is impossible to be solved by
any manual methods.

It is noted that OP model required only five minutes to solve this scheduling
problem. The most time-consuming problem, generated by TB model, was solved
within two and half days.

Landform Footprint and Progression

Upon solving the problems, V1 and V2 are used to determine the dumping
sequence, enabling generating the yearly landform progression pattern.

The yearly landform progression, generated by the OP, TB and Combo models,
are illustrated in Figs. 10, 11, and 12, respectively.

The differences in the landform progression is resulted from the different
objectives in each MIP model.

It is noted that both ROM-pad and TSF are constructed as planned. The 5-year
dumping restriction zone is also properly followed. These outcomes indicate that
correct site specific constraints are modelled across the three MIP models.

Performance Factor Analysis

Apart from the graphical results, key performance factors for all three dumping
schedules, such as overall haulage distance, truck requirement, and truck produc-
tivity, are analysed for comparisons.

Haulage Distance Analysis

With an explicity dumping schedule, the haulage distance for completely mining
and hauling each block can be calculated. Table 7 summarises the overall return trip
haulage distance to be covered by each schedule, including the distance covered for
the GM material re-handling. A graphical comparison is presented in Fig. 13.
The OP model schedule specifies the least distance to be covered, i.e., 14.06 million
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Fig. 10 Landform progression according to OP model dumping schedule
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Fig. 11 Landform progression according to TB model dumping schedule
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Fig. 12 Landform progression according to Combo model dumping schedule
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km (equivalent flat based distance), which indicates the most efficient dumping
schedule of the three.

Estimated Truck Requirement

With known haulage distance, it is possible to estimate the required number of haul
trucks in each time period. This result is summarised in Table 8, along with the
deviation between adjacent time period. The overall deviation by TB models
schedule is the smallest among the three schedules.

It is evident in Fig. 14, that compared to the OP model schedule, the TB and
Combo model schedules yield smaller deviations in truck requirement over the
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Fig. 13 Overall haulage distance including re-handle by three dumping schedules

Table 7 Yearly return trip haulage distance (1000 km)

Period OP TB Combo

1 164.0 444.3 258.4

2 1238.5 1187.9 1371.7

3 1541.5 1620.0 1643.0

4 1663.5 1836.4 1975.8

5 2050.1 1949.6 1914.6

6 1692.9 1675.5 1876.1

7 1368.2 1505.0 1327.2

8 1505.2 1363.0 1418.5

9 1398.1 1293.1 1085.5

10 870.4 874.5 791.5

11 568.6 448.2 520.9

Sum 14,061.2 14,197.6 14,183.1
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time. This output aligns with the objectives that the two models additionally con-
sider truck deviation.

Truck Productivity Comparison

The total rock volume handled each year is divided by the total return trip distance
to calculate truck productivity, which is measured in LCM/km, or tonnes/km if
average density is applied. This indicates the efficiency of the haulage system.

The yearly truck productivity yielded by the three schedules is summarised in
Table 9, and is illustrated in Fig. 15. Over the life of mine, the average productivity
yielded by the OP, TB and Combo models are 17.9, 16.46 and 17.03 LCM/km,
respectively. It suggests that the OP model schedule will be the most efficient.
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Fig. 14 Yearly truck requirement by three dumping schedules

Table 8 Yearly truck hour requirement

Period OP DOP TB DTB Combo DCombo

1 1 3 2

2 9 8 8 5 10 8

3 11 2 12 4 12 2

4 12 1 13 1 14 2

5 15 3 14 1 14 0

6 12 3 12 2 13 1

7 10 2 11 1 9 4

8 11 1 10 1 10 1

9 10 1 9 1 8 2

10 6 4 6 3 6 2

11 4 2 3 3 4 2

Sum 27 22 24
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Conclusions

Three developed MIP models are utilised to solve the dump scheduling problem in
a large scale open pit mine. The optimised dumping schedule enables the generation
of optimised landform progression, and the estimation of required trucks.

The three landform progression sequences are produced under three different
objectives. The graphical results increase the confidence level in planning the waste
rock dumps over the life of mine. The two site specific constraints, i.e. ROM-pad
and TSF constructed, and the 5-year dumping restriction rule, are properly honored,
shows the advantage of using MIP models to reduce deviation from the plan.

The analysis of the dumping schedules proves that the OP model produces the
most efficient schedule. It will result in the lowest overall haulage distance,
14.06 million km, and the highest truck productivity, 17.9 LCM/km on average.
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Fig. 15 Yearly LCM/km performance by three options

Table 9 Yearly truck productivity in LCM/km

Period OP TB Combo

1 25.73 9.50 16.34

2 18.17 19.07 16.40

3 19.41 18.54 18.21

4 18.22 16.54 15.41

5 15.76 16.56 16.80

6 18.38 18.80 16.57

7 16.90 15.63 17.42

8 15.61 17.38 16.34

9 14.23 14.57 17.48

10 16.03 16.35 17.09

11 18.49 18.07 19.23

Average 17.90 16.46 17.03
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However, the truck requirement over the mine life will deviate severely. The
dumping schedules produced from TB and Combo models require longer haulage
distance to be covered, yet truck deviations over the mine life are smaller than those
of by the OP model.

An improvement to the Combo model is to apply impact factors to different
objectives, such that the dumping schedules could adjust its focus on either max-
imising truck productivity or minimising truck deviation.

The scope of the study is limited to optimise the long-term dumping plan, which
is a guideline, assuming all required equipments are available. However, the pro-
duction efficiency on daily basis is still dependant on the availability of the trucks,
dig units, and other auxiliary equipments.
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Solving a Large SIP Model for Production
Scheduling at a Gold Mine with Multiple
Processing Streams and Uncertain
Geology

M. de Freitas Silva

Abstract One of the main steps during the decision-making process of long-term
mine planning is the definition of the optimal sequence of extraction, which usually
is synonymous of maximizing the discounted cash flow of the project subjected to
several constraints arising from aspects of technical, physical, and economic limits.
The Open-Pit Mine Production Scheduling (OPMPS) comprises several intricacies
related to its size and uncertainty of input parameters. Due to its complexity and
prohibitive size, traditional mine planning usually relies on heuristic or meta-
heuristic methodologies which are able to provide good solutions in a reasonable
amount of time. However, most of the uncertainty that surrounds the mining
complex is ignored leading to non-realistic results. In this paper, a new heuristic
approach is explored in order to solve a stochastic version of the OPMPS problem
accounting for geological uncertainty in terms of metal content, multiple processing
streams, and stockpiling option. The methodology involves generating an initial
solution by solving a series of sub-problems and this initial solution is improved
using a network-flow based algorithm. The algorithm was applied to a relatively
large gold deposit with more than 119 thousands blocks. Results have shown that
the methodology is promising to deal with large-size mine instances in reasonable
time.

Introduction

Open-pit mine production scheduling (OPMPS) generates the optimal sequence of
extraction of mining units over the life-of-mine (LOM), given a set of physical and
technical constraints. Such a decision process needs to be made under conditions of
uncertainty, however, conventional approaches for optimizing OPMPS (e.g.,
Johnson 1969; Dagdelen and Jonhson 1986; Gershon 1987; Whittle 1988;
Tolwinski and Underwood 1996; Cacceta and Hill 2003; Hustrulid and Kuchta
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2006) tend to assume that parameter inputs are fully known, ignoring potential risks
and opportunities that might arise from the different sources of uncertainty
(Ravenscroft 1992; Dowd 1994, 1997). An example in Dimitrakopoulos et al.
(2002) shows that the results in key performance indicators of a conventional mine
design are misleading in the presence of geological uncertainty, highlighting the
limits of deterministic optimization techniques.

Spatial uncertainty of geological attributes can be modelled through stochastic
simulation techniques which are able to provide a series of equally probable sce-
narios of the orebody (Goovaerts 1997; David 1988). The availability of these
models leads to the development of stochastic optimization frameworks that are
able to integrate uncertainty into the decision process, minimizing downside risks
and maximizing potential upsides. During the last decade, a substantial focus has
been given for the development of new models and solution approaches for the
stochastic version of the OPMPS. For example, Godoy (2003) introduces a
stochastic framework where multiple schedules derived from each geological sce-
nario are firstly joined up. Thereafter, a combinatorial optimization problem is
solved by an algorithm based on simulated annealing in order to provide a single
schedule with a higher net present value (NPV) (improvements of 28%) and sub-
stantially lower deviations from production targets, when compared with the results
reported by the conventional schedule. Similar conclusions are drawn in Leite and
Dimitrakopoulos (2007) for an application of the framework in a copper deposit.
Albor and Dimitrakopoulos (2009) show for a specific case study that the appli-
cation of this stochastic framework leads to a larger ultimate pit with an NPV 10%
larger than the one obtained by constraining the schedule with a conventional pit
limit.

Menabde et al. (2018) develop a mathematical formulation to maximize the
expected NPV over several scenarios while minimizing deviations from production
targets in an average sense. Dimitrakopoulos and Ramazan (2008) bring a
stochastic integer programming (SIP) formulation which maximizes the expected
net present value (NPV) and incorporates recourse actions to tackle the uncertainty
modelled through stochastic simulations, by minimizing possible deviations from
production targets over the life-of-mine. Ramazan and Dimitrakopoulos (2013)
extend this SIP formulation to introduce a stockpile option, reporting an increase of
10% in the NPV if compared to the economic performance reported by a con-
ventional schedule. In addition, the method provides more realistic schedules that
minimize the chance of deviating from production targets, regarding geological
uncertainty. These results highlight the ability of stochastic schedules on simulta-
neously maximising economic returns and driving the mining sequence through
zones where the risk of not achieving the target ore production is minimised.

Other variants and applications of SIP have also shown significant improve-
ments over the deterministic OPMPS: Leite and Dimitrakopoulos (2014) show
through an application to a porphyry copper deposit that, even for a low grade
variability deposit, the NPV can be increased by 29%; Dimitrakopoulos and
Jewbali (2013) incorporate in the SIP model simulated future data information,
outperforming the NPV of the conventional mine design at a gold mine; Benndorf
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and Dimitrakopoulos (2013) extend the model to account for several elements of an
iron-ore operation, showing that the capability of the stochastic approach to con-
trolling risks of deviating from production targets for critical quality-defining ele-
ments. Boland et al. (2008) incorporate metal uncertainty via a multistage stochastic
programming approach in such a way that, decisions made in later time periods
might depend on observations of the properties of the material mined in earlier
periods.

The stochastic models proposed by Ramazan and Dimitrakopoulos (2004),
Menabde et al. (2007) and Boland et al. (2008), are all solved using a mixed integer
programming solver such as CPLEX (ILOG 1998), which limits their practical
application to instances of relative small sizes, typically accounting for less than 20
thousands blocks (Lamghari and Dimitrakopoulos 2012). As a result, over the past
few years, several authors have been seeking the development of new solution
approaches, which can efficiently tackle large instances of the stochastic OPMPS.
Lamghari and Dimitrakopoulos (2012) introduce a metaheuristic approach based on
Tabu search for solving large-scale SIP models within a few minutes up to few
hours (while a commercial solver would take days for some instances), with a
deviation of less than 4% from optimality for most of their runs. Comparable results
are obtained in Lamghari et al. (2013) who use two variants of a variable neigh-
bourhood decent algorithm and average deviations of less than 3% from optimality
for several instances.

The present paper focuses on an application of a heuristic approach introduced
by Lamghari and Dimitrakopoulos (2013) which incorporates geological uncer-
tainty, multiple processors, stockpiles, and is capable of solving large-size mining
schedule problems in a reasonable time. The solution approach can be seen as a
very large-scale neighbourhood search method (Ahuja et al. 2002) and it basically
involves two stages: (i) the generation of an initial solution and (ii) the application
of an improvement algorithm based on network flow. In the following sections, the
SIP formulation and the solution approach are revisited, followed by the application
at a gold mine employing two processing streams and one ‘grade’ stockpile.
Discussions and conclusions follow.

Stochastic Integer Formulation Revisited

The stochastic integer formulation proposed by Lamghari and Dimitrakopoulos
(2013) is briefly outlined in this section. The following notation is used:

• N, T , S and P are respectively the total number of blocks, periods, geological
simulations and processing facilities.

• Pred ið Þ is the set of predecessors for a given block i, which means that all blocks
in this set must be exploited before i in order to satisfy the slope constraints;

• dr is the economic discount rate over the time basis being considered;
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• dips is a parameter indicating the most profitable destination for a block i under
scenario s.

• wi is the total tonnage of a given block i;
• E BEVi½ � is the expected block economic value (BEV) of a given block i. This

value is calculated for each geological scenario, considering the best destination
of the block accordingly to the cut-off policy of the project, which is given by
the dips.

• SCt
P and RCt

P are both undiscounted costs related to stockpile activities for a
given process p during period t. The former cost stands for sending material to
the stockpile and the latter for reclaiming material from the stockpile.

• ~rtps is the discounted revenue returned, if a tonne of ore under a given scenario
s is reclaimed from the stockpile and sent to process p during production period
t.

• Wt and Ht
p are the maximum mining and processing capacities (for each pro-

cessing option p) respectively, for a given period t.
• Ip is the initial amount of material in the stockpile of processor p.
• Binary variables (xti) for each block i and period t. It is considered that x

t
i is equal

to one if the block i is already mined by period t, otherwise it assumes the value
of zero.

• Linear variables (yps) related to processing streams. In the model proposed, ytþps
and yt�ps represent the surplus and shortage of material in a given period t, for a
process destination p, regarding a specific scenario s. These variables are used to
model the stockpile streams related to each process p. In case of surplus under a
given scenario, ytþps is the amount of material that must be stockpiled in order not
to violate the processing capacity available. In case of shortage, yt�ps accounts for
the amount reclaimed from the stockpile to fulfil the processing capacity. Finally,
the variables ytps denote the amount of ore in the stockpile at the end of period t.

The mathematical model aims to maximise the discounted cash flow (Eq. (1))
given some physical and technical constraints related to the mining operation
(Eqs. (2–10)) as summarised below:

max
XT

t¼1

1
1þ drð Þt

XN

i¼1

E BEVi½ � xti � xt�1
i

� �þ 1
S

XS

s¼1

� PP

p¼1
~rtps þ SCt

P

� �
ytþps þ PP

p¼1
~rtps � RCt

P

� �
yt�ps

" #( )

ð1Þ

Subject to:

xt�1
i � xti 8i; t ð2Þ

xti � xtj 8i; j 2 Pred ið Þ; t ð3Þ
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XN

i¼1

wi x
t
i � xt�1

i

� ��Wt 8t ð4Þ

XN

i¼1

dipswi x
t
i � xt�1

i

� �� ytþps þ yt�ps �Ht
p 8t; p; s ð5Þ

yt�1
ps þ ytþps � yt�ps ¼ ytps 8t; p; s ð6Þ

xti ¼ 0 or 1 8i; t ð7Þ

x0i ¼ 0 8i ð8Þ

ytþps ; y
t�
ps ; y

t
ps � 0 8t; p; s ð9Þ

y0ps ¼ Ip 8p; s ð10Þ

As per Eq. (1), the objective function can be separated in two major terms: the
first one refers to the mining decisions, without having access to full information
about the material that is underground (scenario independent); the remaining is
associated to scenario dependent variables (stockpile actions), because once a block
is mined, the operation can take the most suitable decision about where to send a
given mined block, leading to different stockpile actions under each scenario. The
first part of the stockpiling term refers to the total approximated undiscounted cost
related to send exploited material from the mine to the stockpile of processor p in
period t under scenario s; and the second part refers to the total approximated
undiscounted net revenue after reclaiming material from the stockpile of processor
p in period t under scenario s. As one may note, the option of using the stockpile
incurs additional costs in the objective function. Thus, in an optimal solution the
use of the stockpile is minimised, which means that the risks of overproduction
regarding all geological simulations are also minimised.

In order to avoid the non-linearity that arise from the calculation of the
parameters ~rtps in the objective function (1), the set of average grades ~Gt

ps needed for
the calculation of ~rtps is iteratively approximated and may vary from period to period
and scenario to scenario. This iterative approximation is performed in the following
way: first, the schedule is solved using an approximated average grade, which
might come from the average grade of all blocks in the deposit which are candidates
to go to the destination related to the stockpile, or the average grade of materials
within the cut-off between its processor and the low-grade processor. After solving
the OPMPS with this approximation, the optimiser outputs the amount of material
going in and out of the stockpile (respectively given by the linear variables ytþps and
yt�ps ), but it does not track which blocks specifically are being stockpiled. Since no
blending constraints are considered, it is assumed that in each period, from the set
of blocks scheduled to be sent to a given destination, the ones that go to the
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stockpile are the ones with the lowest grades, because in an optimal solution, due to
the time value of money, the low-value material is stockpiled in order to leave room
for the processing of high-value material. By doing such an analysis, it is possible
to calculate the “expected” average grade of the stockpile for that given schedule.
These average grades by period are then fed as input to the optimiser to generate a
new schedule. The same process of approximating the grades and rerunning the
solver keeps looping until the difference between the input grade and the “ex-
pected” one is less than a threshold e (e.g., 10%). A similar approach is used by
Sarker and Gunn (1997) to solve nonlinear problems, where the authors iteratively
solve multiple linear programming problems approximating the quality of the
blended material at different locations in terms of sulfur, ash and BTU content. The
same authors show that, not only it is a simple and fast way of dealing with
nonlinear problems, it is able to provide solutions near optimality after few
iterations.

Constraints in Eq. (2) are the reserve constraints, which guarantee that each
block is mined at most once. Constraints in Eq. (3) are the slope constraints, which
entails that to access a given block, a set of predecessors must be mined before,
assuring the slope angles are predefined. Constraints in Eq. (4) are the mining
constraints which enforce that the total amount of material mined in a given period
t cannot be higher than the mining capacity available for that period. Constraints in
Eq. (5) are the processing constraints, which imposes an upper bound for the total
material sent for a given process, in period t and under scenario s. Constraints in
Eq. (6) are the stockpiling constraints which balance the mass flows of each
stockpile.

It is noteworthy that, although the model does not consider explicitly a lower
bound capacity for the processing streams in order to better control the ore feeding,
the optimiser always tries to use all the capacity available, mostly in earlier periods
as an attempt to increase the NPV of the project. From constraints (5) and (6) one
may also note that, in an optimal solution, either stockpiling or reclaiming is active,
since both incur costs in the objective function. Thus, in an optimal solution the use
of the stockpile is minimised, which means that the risks of overproduction
regarding all geological simulations are also minimised. These features are expected
to drive the optimiser to maximise value and minimise geological risk throughout
the life-of-mine.

A Review of the Solution Approach

For solving the OPMPS model introduced in the previous section, a multistage
heuristic algorithm described in Lamghari and Dimitrakopoulos (2013) is used. It
comprises two major steps: generation of an initial feasible solution and then its
improvement by using a network flow based algorithm which efficiently searches
for improving solutions over a large neighbourhood.
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Generating an Initial Feasible Solution

Two heuristics methodologies are used to test different initial solutions. Both of
them are based on the “divide and conquer” principle, by solving the model period
by period, and thus, each period composes a reduced sub-problem. As soon as an
earlier period is solved, the mining blocks scheduled to this period are taken out
from the model to reduce the problem’s size. The later periods are sequentially
solved in a similar way. After this sequential process, the solutions found are
merged, providing an initial feasible solution.

The differences existing between the two heuristic methods used are basically in
the way each one solves the sub-problems. In the first method, the solutions are
given by an exact mathematical programming method implemented in CPLEX. The
second method is a greedy heuristic procedure (GH) which at each iteration tries to
include in the set of mining blocks scheduled for a given production period t, a set
of blocks represented by a base block (i) and its predecessors (Pred(i)) not mined
yet, in such a way as to maximise the objective function of the sub-problem model,
respecting the mining capacity constraint and at the same time postponing the
extraction of waste and advancing the extraction of ore, thus, deferring costs and
advancing profits to earlier periods. This greedy heuristic incorporates a look ahead
feature, since it looks after blocks with all their unmined predecessors instead of
treating blocks separately one by one. In both methods for generating initial feasible
solutions, blocks that are not included in the sets of mined blocks in each period
until the last one (T) are left behind. To represent these unmined blocks, they are
included in a set corresponding to a fictitious period (T + 1).

Improving the Initial Solution with a Network Flow
Algorithm

It is well known that sequentially solving the mine production schedule does not
lead to an optimal solution of the long-term production schedule (Gershon 1983).
Therefore, in a second stage, the goal is to improve the initial solution generated by
any of the two heuristic approaches explained above, providing a new schedule
with a higher NPV. To achieve this, the improvement algorithm proposed basically
tries to postpone the extraction of blocks responsible to decrease the objective
function (1) and advance those which improve it.

The algorithm is based on a network-flow structure, where each problem is
defined on a graph G = (V, E) (V is the set of nodes and E is the set of arcs).
Different graphs are built according to the problem being solved: delaying (back-
ward pass) or advancing (forward pass) extraction of blocks. Only the construction
of the first case is shown henceforth, since the formulation of the forward structure
is straightforward. Thus, for the backward structure, the set of nodes represent
blocks which matches the following characteristics:
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• the total expected economic value of a given block and all its successors
scheduled for the same period t is negative, since NPV increases as the costs are
deferred, and;

• the total tonnage of this same group of blocks, summed to the total tonnage
already scheduled for the next period (t + 1), minus the total tonnage of a
candidate group of blocks scheduled to period (t + 1) which can be postponed to
(t + 2), must not exceed the mining capacity Wt + 1. This condition ensures that
the mining capacity is not violated when blocks are moved from one period to
another.

Each node of the graph is associated to a block and its predecessors scheduled
for the same period, respecting the conditions stated above. To complete the net-
work, an additional node is added to the fictitious period T + 1 which represents the
set of blocks that will not be extracted; for each period, one extra node is added for
fictitious blocks with neither weight nor costs, representing a path through where no
modifications are done to the current schedule. In addition, two extra nodes must be
added to the network referring to its source and sink. In this formulated graph, the
set of arcs E involves all possible connection between two nodes currently
scheduled in consecutive periods t and t + 1. In addition, some arcs are added
connecting the source to the nodes belonging to the first period and one more arc is
connected from the fictitious node in T + 1 to the sink. As a result, each path from
the source to the sink, passing through nodes in consecutive periods, represents a
new solution to the stochastic mine production schedule, where a given mining
block and its successors represented in a node has their extraction delayed to the
next period and so on. Blocks at the head of the arc are moved to the following
period and the blocks represented by the node at the tail of the arc are mined in their
place. Figure 1 shows a simplified illustration of graph G.

Thus, the goal is to find a single feasible path which improves the value of the
objective function as in Eq. (1). If no such path is found, the solution given by the
algorithm is the path which includes the set of fictitious nodes introduced before,
and no block would be moved from one period to the other and the value of the
objective function remains the same. To identify the feasible path which increases
the value of the objective function the most, each arc is weighted accordingly to the
feasibility of the delaying movement and the gain it brings to the objective function.
After weighting each arc the model becomes a longest path problem, which consists
in finding the simple path of maximum length, where the length in this case is
represented by the sum of the weighted arcs.

As mentioned earlier, once the graph is built, solutions are generated by solving
the longest path problem, associating each arc to a binary variable and sending a
unitary flow from the source to the sink, which guarantees that the solution pro-
vided is always a simple path. It is interesting to note that the constraint matrix
(nodes-arcs incidence matrix) of this integer programming problem is unimodular.
This property indicates that the integrality constraints can be dropped and only
restricts zij 2 [0, 1] 8 (i, j)2 E. Subsequently, the problem can be efficiently solved
using linear programming or network-flow techniques.
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In summary, the algorithm works in an interactive way such as the following:
first, it performs a backward pass (initial mode), trying to delay the extraction of
blocks. If the solution changes, a new network is built for the new current schedule
and another backward pass is carried out. Otherwise, if the longest path found
identifies the set of fictitious nodes, meaning that no improvement can be made, the
problem is switched to a forward pass, and the algorithm looks for blocks to
advance their extraction. In the same way as in the first, several passes are per-
formed until no improvement is achieved, and then the problem switches its mode
again. The algorithm stops when it executes two consecutive modes, that is,
backward and forward passes (and vice versa) without any improvement in the
value of the objective function.

Case Study at a Gold Mine

To demonstrate the application related aspects of the method previously described,
a case study at gold mine is presented here. The deposit being mined consists of an
intensely mineralized shear system localised in mainly steeply dipping, NNW to
NW striking lodes. Gold lodes can be up to 1800 m (5900 ft) long, have vertical
extents of 1200 m (3900 ft) and be up to 10 m (33 ft) wide. The mine feeds two
processing streams, a mill and a leaching facility, with the first having an associated
stockpile. Fixed stockpiling/reclaiming costs are used throughout the LOM and no
material is in stock for the first production period.

Fig. 1 Ilustration of the graph built for the network-flow improvement algorithm (backward Case)
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A set of 15 stochastic simulations, discretised in about 120 thousand blocks of
20 � 20 � 20 m3 and generated by direct block simulation (Godoy 2003), are used
to model the spatial uncertainty of grades through the deposit. This number of
scenarios is used because past works, such as in Leite (2008) and Albor and
Dimitrakopoulos (2009), indicate that after about such number of representations of
an orebody, the stochastic schedules tend to converge to a stable final schedule and
to provide stable forecasts of production performance. Such results are not sur-
prising because, despite the spatial uncertainty modeled over blocks with few cubic
meters, a production schedule of a mine represents a grouping of several hundreds
to thousands of these blocks in one mining period under different constraints. Thus,
with this significant increase of support (from blocks to production in mining
periods), the stochastic schedules tend to be less sensitive to additional scenarios
after a relatively small number of scenarios.

The general parameters for the stochastic mine production schedules are sum-
marised in Table 1.

The case study is split in two subsections in order to show the differences obtained
when using branch-and-cut (Wolsey 1998), an exact mathematical programming
method implemented in CPLEX (ILOG 2008) or a greedy heuristic to generate the
initial solution. The computations are performed in a Intel Xeon 5650 (2.66 GHz)
with 24 GB RAM. In both case studies, CPLEX is used to solve the longest path
problem over the network during the improvement stage of the algorithm.

Stochastic Schedules

Two different schedules are generated, each respectively using CPLEX and the
greedy heuristic (GH) to generate the initial feasible solutions. The risk profiles for
the ore throughput for the mill and the material stockpiled by the end of each period

Table 1 Technical and
economic parameters for
OPMPS

Mining cost $ 1.80/t Mining capacity 90 Mta

Metal price $ 730/oz Selling price $5.0/oz

Discount rate 8.0% Slope angle 45°

Mill—high grade

Recovery 90% Proc. cost $ 9.50/
t

Stockpiling
cost

$ 0.50/t Reclaiming cost $ 0.85/
t

Proc. capacity 22.0
Mta

Stockpile
capacity

20 Mt

Leaching—low grade

Recovery 50% Proc. cost $ 5.00/
t

Proc. capacity 1.0 Mta
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are respectively shown in Figs. 2 and 3. In these graphs, the black and gray solid
lines refer to the expected ore input to the mill in the schedules generated by
respectively using CPLEX and GH as initial solutions. The dashed lines represent
the percentiles P10 and P90 for the ore throughput over the different geological
scenarios.

The schedule using CPLEX as initial solution considers an additional year to the
LOM, shown in black (Fig. 2) and an ultimate pit 1.1% bigger than the schedule
using GH as initial solution. As seen in Fig. 2, the range of variability about the
expected value of throughput for the mill is quite low, which suggests that this
process is likely to operate with low uncertainty for the expected throughput. For
the schedule obtained using the initial solution from CPLEX, the mill will poten-
tially work at full capacity (22Mt) during the first sixteen years, while for the
OPMPS using the GH as initial solution, this period is shortened to eleven years.
During these time spans, the mill potentially works with almost no risks of over/
under production. This occurs because during those periods, the tonnage uncer-
tainty is somehow “shifted” to the stockpile, since for each scenario, the overpro-
duction is sent to the stockpile and in case of shortages, material can be reclaimed
from the stockpile. During the years for which the mill works below its capacity
(Fig. 2), the mine operates at full mine capacity (90Mt) and not enough material is
available in the stockpiles under all geological scenarios (Fig. 3). These factors lead
the optimiser to work below the mill’s maximum capacity, since the mining rate
entails in a bottleneck for the operation and no penalties are incurred for under-
production in the SIP formulation presented in a previous section. A way of dealing
with this would be to explicitly incorporate penalties for idle capacity (shortage in
production) in the formulation, in such a way that they do not compete with the
reclaiming variables, or allow a flexibility to the mine to increase its capacity during
later periods, through the acquisition of mining equipment.

Fig. 2 Expected ore tonnage throughput for the mill and related risk profiles, using CPLEX
(black) and GH (gray) to generate initial solutions

Solving a Large SIP Model for Production … 697



Figure 3 shows that, for both schedules generated, the first period is when most
of the material is sent to the stockpile, which allows the mill to advance the metal
production, by working with a high grade material as shown in Fig. 4. These results
show, as expected, the flexibility added to the project by the use of a stockpile: (i) it
allows the operation to reach high grade material earlier during the LOM and
(ii) ‘buffers’ the risks of oversupply of ore and/or having idle processing capacity,
with respect to geological uncertainty.

Regarding the differences between the two schedules generated, Fig. 2 shows
that the OPMPS using CPLEX to generate the initial solution is able to advance the
production of ore (see years 13–18) and to reach high grade areas during earlier
periods if compared to the solution by using the GH as initial solution. The metal

Fig. 3 Expected ore tonnage at the mill stockpile and related risk profiles, using CPLEX (black)
and GH (gray) to generate initial solutions

Fig. 4 Expected metal input to the mill and related risk profiles, using CPLEX (black) and GH
(gray) to generate initial solutions
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content for the ore input to this processor during the first year is about 40% larger in
the first production schedule than in the second. Figure 3 shows that these differ-
ences are mostly related to the fact that, in the first solution approach the greater use
of the stockpile provides a larger flexibility to the operation.

In contrast to the behaviour seen for the mill, Fig. 5 shows that the leaching
process will potentially work under its nominal capacity of 1Mt and with a much
more variable throughput. Such a result is expected because the SIP formulation
used in this paper, controls the geological risks exclusively through the use of a
stockpile associated to the mill, which is not the case for leaching. Figure 6 shows
the risk profile for the metal production of this same processing destination.

Regarding the economic performance of the project, the risk profiles of the
cumulative NPV are shown in Fig. 7. These curves show a very low uncertainty
about the expected NPVs for the project (less than 3% of upper/lower deviations
regarding the P10 and P90). In addition, Fig. 6 shows that, the OPMPS using the
GH as initial solution has an overall NPV of M$215 which is 7.9% lower than the
one obtained by using CPLEX as initial solution. In this specific case study, this
difference is mostly related to the ability of the latter solution to produce a larger
amount of metal during the first period. In this year, its NPV of M$245 is 56%
higher than the one achieved by the mine production scheduling obtained by using
GH as initial solution.

While CPLEX takes hours to generate an initial solution, the GH takes only
seconds. In addition, the final OPMPS using CPLEX as initial solution took a total
time of 32 h against the 38 h required for the generation of the final solution by the
approach using the GH as initial solution. This excessive time reported by this last
approach is related to the size of the neighbourhood found in each iteration when it
tries to make a backward move. In many of these iterations, the graph built has

Fig. 5 Expected ore tonnage throughput for the leaching and related risk profiles, using CPLEX
(black) and GH (gray) to generate initial solutions
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contained more than 2.7 thousands of nodes and 22 millions of arcs. This represents
a very large linear programming problem, requiring more than 30 min to be solved.
Thus, as one may observe, for this case study, besides providing a higher NPV, the
final schedule generated using CPLEX’s initial solution also demands a smaller
computational time than the approach using GH to generate an initial solution.

Figure 8 brings South-North cross sections of the schedules, illustrating the
differences in their physical sequence of extraction. Using CPLEX as initial solu-
tion produces a less smooth sequencing pattern than the one provided by employing
GH as initial solution. For this case study, this latter approach tends to maintain the
“clustered” structure intrinsic from its formulation.

Fig. 6 Expected metal input to the leaching and related risk profiles, using CPLEX (black) and
GH (gray) to generate initial solutions

Fig. 7 Expected cumulative NPV and related risk profiles, using CPLEX (black) and GH (gray)
to generate initial solutions
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Conclusions

The present study highlights the practical aspects and performance of a neighbor-
hood search method based on a network flow algorithm, developed to solve a
stochastic version of the open-pit mine production scheduling. A case study was
performed at a relatively large gold mine comprising about 120 thousand blocks,
two processing streams and a stockpile. This consists of a very large mathematical
programming model, with about 3 million integer variables. Two different ways of
generating initial feasible solutions to be input to the network flow algorithm were
tested. The first uses CPLEX and the second a greedy heuristic to sequentially solve
the mine production schedule period-by-period. For the specific case study,
although the greedy heuristic was able to find the initial solution in a few seconds
and the exact method demanded hours for the same task, the improvement stage
was much longer when using the greedy heuristic solution. This latter approach
took 38 h to generate a final schedule, against 32 h required by the optimiser when
the CPLEX initial solution is used. This behavior is different to the common trend
observed in previous tests (Lamghari et al. 2013). Note that, when CPLEX was
used to produce the linear relaxation of the stochastic integer programming model
of this case study, it could not provide an optimal solution after two weeks,
highlighting the advantages of looking for computationally efficient solutions, such
as the one used in this paper.

In this case study, the production schedules generated showed that by using the
initial solution from CPLEX, a better final solution can be achieved in terms of
NPV (7.9% higher than starting from the initial solution generated by the GH). All
results have shown that the stochastic mine production schedules have controlled
deviations in ore production for the processor with a stockpile associated to it, since

Fig. 8 South-North vertical cross-section of the physical sequences of extraction for the schedules
using different initial solutions a CPLEX and b GH
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the SIP formulation used in this paper, considers that the recourse actions to control
the geological risk are incorporated in the stockpiling actions. The overproduction
under any scenario is sent to the stockpile and shortages are only controlled if there
is material available in the stockpile. These actions imply costs associated to
rehandling of material and the opportunity cost of leaving valuable material in the
stockpile, and therefore, penalizing deviations related to uncertainty. The short-
coming is that, if in a giving production period, no material is available at the
stockpile, shortages are not explicitly penalised.

These observations highlight that the heuristic method tested in this paper is able
to tackle large SIP formulations for realistic mine environments, producing mine
production schedules with low deviations about expected production rates.
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Stochastic Optimisation of Mineral Value
Chains—Developments and Applications
for the Simultaneous Optimisation
of Mining Complexes with Uncertainty

R. Goodfellow and R. Dimitrakopoulos

Abstract One of the primary objectives when optimising a mining complex is to
maximise its value for the primary stakeholders. In order to achieve this objective, it
is necessary to holistically optimise all aspects of the mining complex, including
decisions of when to extract materials from the available sources, how to blend or
stockpile these materials, and how to best use the available processing streams to
satisfy customer demand. Existing methods for global, or holistic, optimisation
ignore the compounded effects that risk has on the performance of a mining
complex. Over the past decade, several stochastic optimisation approaches have
been proposed to integrate various forms of uncertainty into the open pit mine
design and production scheduling. These methods, however, are limited in their
ability to simultaneously optimise the production schedules for the portfolio of
mines, material destination policies, the use of the available processing streams and
the various products that are produced at each location of the mining complex. This
paper aims to discuss a new method for the global optimisation of open pit mining
complexes with geological uncertainty. The proposed generalised methodology is
capable of modelling and holistically optimising mining complexes, including
aspects related to production scheduling, blending, stockpiling and non-linear
interactions that often occur in practice, but are over-simplified in existing models.
Two case studies are discussed to highlight the need for these complex, stochastic
optimisers. First, a case study for a nickel laterite blending operation highlights the
need to integrate geological uncertainty into the optimisation in order to ensure
product quality constraints are respected. Second, a case study for a copper-gold
mining complex highlights the added value when simultaneously optimising the
production schedule and the stockpiling and treatment of extracted materials.
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Introduction

A mining complex, or a mineral value chain, is an integrated business that extracts
materials from open pit or underground mines, treats the extracted materials using a
set of processing facilities that are connected via various materials handling
methods, and generates a set of products that are sold to customers or on the spot
market. The primary objective when optimising a mining complex is to maximise
the value of the operation for the business and its stakeholders, while obeying the
technical constraints for each operation that limit the quantities of materials or
products extracted, treated and sold. Traditionally, this optimisation is performed
for each of the various components of the mining complex independently, leading
to the sub-optimal use of the mineral resource(s) and financial capital. The global
optimisation of mining complexes (Urbaez and Dagdelen 1999; Hoerger et al.
1999; Stone et al. 2017; Whittle 2007, 2017, this volume) aims to simultaneously
optimise aspects related to the long-term extraction sequence of materials from the
available mines, and the optimal use of the processing streams in order to maximise
the utility of the extracted materials while meeting contractual obligations related to
the quantity and quality of the products generated. One of the challenges associated
with the global optimisation of mining complexes is a result of non-linear opti-
misation models that arise from integrating stockpiling, blending and non-linear
transformations (e.g. grade-recovery curves, throughput-hardness relationships,
etc.) that occur in the various processing streams. In order to avert these challenges,
optimisation models are simplified in order to obtain a linear formulation. One of
the most common examples of these simplifications is the economic value of a
block (Lerchs and Grossmann 1965; Johnson 1968; Picard 1976; Dagdelen 1985;
Tolwinski and Underwood 1996; Caccetta and Hill 2003; Meagher et al. 2010).
Naturally, this definition assumes prior knowledge of the optimal processing
method for a block, and values each block independently of other blocks that may
be extracted, blended and treated in the same period. A more appropriate approach
is to consider the economic value of the products sold, which may be a function of
product quality, rather than the value of the materials extracted. A global optimi-
sation approach can avoid such simplifications by permitting the ability to model
these non-linear aspects that are commonly seen in practice, and provide efficient
optimisation methods and algorithms that can be tailored according to the objec-
tives, needs and constraints for each operation.

As the complexity of the mineral deposits increase, in terms of number of
elements and materials, a traditional approach for mine optimisation fails because it
only considers a single set of inputs (e.g. orebody models, metal prices and costs),
and does not consider the compounded effects that uncertainty may have on the
mineral value chain as a whole. The assumption of constant (deterministic) inputs
leads to an unrealistic assessment of the mining complex’s performance—partic-
ularly its ability to meet annual production targets and financial forecasts
(Dimitrakopoulos et al. 2002). Recently, stochastic optimisation models have been
developed in order to manage various forms of uncertainty, particularly geological
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uncertainty, directly into the optimisation of mining operations. Godoy (2002)
proposes a sequential optimisation method that first determines the appropriate level
of ore and waste production from an orebody, and creates a single production
schedule that manages the risk of not being able to meet ore and waste production
targets. Ramazan and Dimitrakopoulos (2013) propose a two-stage stochastic
integer program (SIP) (Birge and Louveaux 2011) that aims to generate a
life-of-mine (LOM) production schedule that maximises the net present value
(NPV) of the materials mined and simultaneously reduce the risk of not being able
to meeting production targets (e.g. ore production, total material movement and
metal production). This risk management is achieved by penalizing deviations from
targets using a set of penalty costs. A geological risk discount rate is used, similar to
that used in the calculation of the NPV, in order to impose high penalty costs at the
beginning of the mine’s life, and are relaxed over time. As a result, the optimiser
not only attempts to extract material with a high economic value earlier in time, but
it also blends levels of risk in order to ensure that production targets are met at the
beginning of the mine’s life and defers riskier material to later periods when more
information is available. This basic SIP model has been expanded upon and tested
(Albor and Dimitrakopoulos 2010; Benndorf and Dimitrakopoulos 2013;
Dimitrakopoulos and Jewbali 2013; Leite and Dimitrakopoulos 2014), and results
consistently demonstrate that stochastic designs are able to not only reduce the risk
of not meeting production targets, thus leading to improved reliability in financial
forecasting, but also result in designs with a higher NPV.

The aforementioned methods, however, are limited because: (i) they only con-
sider mining operations with a single mine; (ii) they assume an a priori definition of
the classification of ore and waste material, hence do not dynamically optimise the
destination policies (e.g. cut-off grades) that define where materials are sent
post-extraction; and (iii) do optimise the use of stockpiles and the downstream
processes. Stochastic optimisation of multi-mine operations is computationally
challenging because of the exponential increase in the number of joint scenarios
that occur with multiple, independent representations of the geological conditions;
for example, a mining complex that is comprised of two mines, each represented
using 20 orebody simulations, results in 400 joint scenarios to consider during
optimisation. The decisions of where to send material after extraction also increases
the size of the model, particularly when considering geological uncertainty. The
three main methods to integrate these destination decisions are to: (a) decide where
each block is sent for each scenario (Boland et al. 2008); (b) decide where each
block is sent, regardless of the scenario (Montiel and Dimitrakopoulos 2013); or
(c) define a policy, such as a robust cut-off grade, where blocks with similar grades
are sent (Menabde et al. 2017). The first two options are computationally chal-
lenging because the number of decision variables increase linearly with the number
of blocks in the model. While the second method reduces the number of decision
variables because it is scenario-independent, it is likely that the optimiser will
choose to send materials to incompatible processing streams (e.g. sending oxide
materials to a stream that only treats sulphide materials). The third option (a robust
cut-off grade policy) is appealing because it creates a scenario-independent policy
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that both reduces the number of decision variables by discretising the continuous
grade distribution into a small number of “bins” (decision units), but also avoids the
challenges of misclassification. Cut-off grade policies, however, are not always
ideal, particularly for multi-element mining complexes that impose product quality
or grade blending specifications on secondary elements. Finally, modelling the
downstream aspects of a mining complex often results in non-linear blending or
pooling (Audet et al. 2004), which are difficult to solve using mathematical pro-
gramming approaches. Recent work has investigated cutting plane approaches for
integrating stockpiles (Bley et al. 2012), however these methods have not been
extended for stochastic optimisation models or cases with multiple elements.

This work discusses recent developments and applications in the stochastic
global optimisation of open pit mining complexes, which simultaneously optimises
multi-mine production schedules, destination policies and the various processing
streams (Montiel et al. 2017). First, a generalised modelling approach is proposed
that permits a mine planner to model the material flow through a mineral value
chain, from the mines through to the final products, including the ability to integrate
non-linear transformations. A generalised two-stage SIP formulation is then dis-
cussed, which permits a modeller to integrate the unique objectives and constraints
for their own operation. These models are optimised using a combination of two
metaheuristic algorithms: particle swarm optimisation and simulated annealing.
Two applications of the developed methods are then discussed. The first application
is for the blending optimisation (ignoring production scheduling) for a nickel
laterite operation, which highlights the importance of considering uncertainty when
optimising mining complex with stringent blending constraints. The second
application for a copper-gold mining complex highlights the global optimiser’s
ability to not only reduce the risk of meeting production targets, but also increase
the NPV. Finally, conclusions and future extensions are presented.

Modelling and Optimizing Mineral Value Chains

A Generic Modelling Approach for Mining Complexes

Given the wide diversity in the types of mineral value chains, which often vary
depending on the type of commodity produced, geographical and geological con-
ditions, a generic modelling approach is developed and may be adapted to model
the unique intricacies of each operation. A material is a term used to describe a
product that is extracted from a mine or generated via blending, separation or
processing. Often, these materials have unique mineralogical or geometallurgical
characteristics that influence the decision of where it can be sent for further
blending or treatment in a processing stream. An attribute is a term used to describe
a property or characteristic of a material that is of interest to the modeller, and may
be categorised into two groups:
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• Primary attributes (p 2 P) are the variables of interest that are sent from one
location in the value chain to another (e.g. metal tonnage, total tonnage). The
values of primary attributes may be added together directly (i.e. adding total
tonnages for material received from two mines).

• Hereditary attributes (h 2 H) are the variables of interest at specific locations in
the value chain that are of interest to the modeller, but are not necessarily
forwarded between locations in the value chain. Some examples include mining,
stockpiling and processing costs, revenues from metal sale, throughput rate,
energy consumption and revenues from the sale of the product). These attributes
are calculated using (non-) linear equations, fh p; ið Þ, which are defined by the
modeller and are evaluated dynamically during optimization.

A mineral value chain, C, may be comprised of sets of mines (M), stockpiles (S)
or other destinations (D), i.e. C ¼ M[S [D, and operates in the set of contiguous
time periods, T. In order to simplify the description of the modelling and optimi-
sation methods developed herein, consider the case where each location in the
mining complex may receive products from multiple sources, but only generates a
single product. The more general case where multiple products are generated is a
minor extension. Let S represent a set of equally probable scenarios that are used to
describe the uncertainty in the mining complex. Only geological uncertainty is
considered in this work, whereby each block b 2 Bm at mine m 2 M has simulated
attributes and material types. The value of a block’s attribute (p 2 P) for each
scenario (s 2 S) will herein be denoted by bpb;s. The set of locations that send
material to a location i 2 S [D is denoted by I ið Þ. Alternatively, the set of loca-
tions that receive materials from i 2 C is denoted by O ið Þ. The value of a primary or
hereditary attribute in any scenario s and period t 2 T at a location i 2 C is given by
the state variables vpi;t;s and vhi;t;s, respectively. Similarly, the recovery of a primary
attribute is given by the variable rpi;t;s, which may either by a constant factor or equal
to the value of a hereditary attribute, which may, for example, be governed by a
grade-recovery curve (i.e. rpi;t;s ¼ vhi;t;s ¼ fh p; ið Þ).

The terms defined above are used to describe the material flow directions, and
the (potentially non-linear) transformations that occur at each location. In order to
quantify the flows through the mining complex, three types of decision variables are
defined:

1. Production scheduling decisions (xb;t 2 0; 1½ �) define whether (1) or not (0) a
block b is extracted in period t. It is noted that in order to safely extract a block
b, it is necessary to have first extracted its overlying blocks, O bð Þ.

2. Destination policy decisions (zg;j;t 2 0; 1½ �) define whether (1) or not (0) a subset
of materials with similar block attributes (referred to as a group), g 2 G, is sent
to destination j 2 O gð Þ in period t. The definition of these groups is similar to
the bins used to define robust cut-off grade policies (Menabde et al. 2017), but
consider multivariate distributions of primary attributes (e.g. multiple grades,
block density, etc.). See Fig. 1 for an example of the definition of destination
policies. These groups may be generated using a pre-processing step with the

Stochastic Optimisation of Mineral Value Chains … 711



k-means++ clustering algorithm (Lloyd 1982; Arthur and Vassilvitskii 2007),
whereby the number of groups per material type are defined by the modeller,
and the clustering is performed based on the block’s primary attributes, bpb;s. In
this pre-processing step, a parameter, hb;g;s is generated to define whether (1) or
not (0) block b belongs to the group g in scenario s. Given that these destination
policies are defined based on (possibly) multivariate distributions, they are more
adept for mining complexes with multiple elements and blending constraints.

3. Processing stream decisions (yi;j;t;s 2 0; 1½ �) define the proportion of a product
sent from a location i 2 S [D to a destination j 2 O ið Þ. It is noted that, unlike
the previous two decision variables, these variables are scenario-dependent
decisions, which may, for example, be used to define the quantity of material
processed from a stockpile, if there happens to be a shortfall in the quantity of
ore material sent directly from the mines.

Two-Stage Stochastic Optimisation Model

A two-stage SIP model (Birge and Louveaux 2011) is used to generate a LOM
production schedule, destination policies and the use of the available processing
streams. A generalised optimisation model is presented, which may be tailored to
accurately model the objectives and constraints that are unique to each operation.
Similar to the SIP defined by Ramazan and Dimitrakopoulos (2013), the primary
objective is to maximise the net present value, while simultaneously accounting for
deviations from production or targets.

Inputs and parameters:

a. Block attributes, bp;b;s.

Fig. 1 a Robust cut-off grades based on “bins”. b Extension to create destination policies based
on multivariate distributions of primary attributes (e.g. copper and gold grades). Note that a
block’s destination may change between simulations according to its simulated attributes
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b. Block extraction precedence constraints, O bð Þ, e.g. Khalokakaie et al. (2000).
c. Block sub-group memberships, hb;g;s.
d. A model of the mining complex, i.e. O ið Þ and I ið Þ8i 2 S [D[G.
e. A model of the hereditary attribute transformation functions, fh p; ið Þ.
f. Time-discounted price (or cost) per unit of attribute, phi;t. Often, this is only a

discount rate, and is used to calculate the net present value.
g. Upper- and lower-bounds for an attribute, Uh

i;t and Lhi;t, respectively. Often, these
will be required for tonnage, metal production and product quality constraints,
but may used to identify any potential bottleneck in the mineral value chain.

h. Penalty costs, ch;þi;t and ch;�i;t , which are used to penalise deviations from the
upper- and lower-bounds. These penalty costs may be time-varied to provide
geological risk discounting, i.e. ch;þi;t ¼ ch;þi = 1þ grdhi

� �t, where ch;þi is a base

penalty cost and grdhi is the geological risk discount rate for the attribute of
interest (h). For further discussion of this parameter, see Benndorf and
Dimitrakopoulos (2013).

Objective function:

max
1
Sj j
X
s2S

X
t2T

X
h2H

phi;t � vhi;t;s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Discounted costs and revenues

� 1
Sj j
X
s2S

X
t2T

X
h2H

ch;þi;t � dh;þi;t;s þ ch;�i;t � dh;�i;t;s

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Penalties for deviations from targets

Subject to:

I. Mine reserve and slope constraints—enforce slope stability and one-time
extraction of blocks.

X
t2T

xb;t � 1 8b 2 Bm;m 2 M

xb;t �
Xt
t0¼1

xu;t0 8b 2 Bm;m 2 M; u 2 O bð Þ; t 2 T

II. Destination policy constraints—ensure a sub-group of material is only sent to
a single destination.

X
j2O gð Þ

zg;j;t ¼ 1 8g 2 G; t 2 T
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III. Processing stream constraints—calculate the quantity of primary attributes at
each location and ensure mass-balancing.

vpj; tþ 1ð Þ;s ¼ vpj;t;s � 1�
X

k2O jð Þ
yj;k;t;s

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Material from previous period

þ
X

i2I jð ÞnG
rpi;t;s � vpi;t;s � yi;j;t;s

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Incomingmaterials from other locations

þ
X

g2I jð Þ [G

X
b2Bm

X
m2M

hb;g;s � bpb;s � xb;t
 !

� zg;j;t
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Materials sent directly frommines

8p 2 P; j 2 S [D; t 2 T; s 2 S

X
j2O ið Þ

yi;j;t;s ¼ 1 8i 2 D; t 2 T; s 2 S

X
j2O ið Þ

yi;j;t;s � 1 8i 2 S; t 2 T; s 2 S

IV. Attribute calculations—used to calculate the values of the hereditary attributes
based on the values of the primary attributes.

vpm;t;s ¼
X
b2Bm

bpb;s � xb;t 8m 2 M; p 2 P; t 2 T; s 2 S

vhi;t;s ¼ fh p; ið Þ 8h 2 H; i 2 S [D[M; t 2 T; s 2 S

V. Deviation constraints—calculates the amount of constraint violation from
upper- and lower-bounds imposed on hereditary attributes.

vhi;t;s � dh;þi;t;s �Uh
i;t 8h 2 H; t 2 T; s 2 S

vhi;t;s þ dh;�i;t;s � Lhi;t 8h 2 H; t 2 T; s 2 S

VI. Recovery calculations.
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rpi;t;s ¼ 1 8p 2 P; i 2 S; t 2 T; s 2 S

rpi;t;s ¼ vpi;t;s 8p 2 P; i 2 D; t 2 T; s 2 S

VII. End-of-year stockpile quantity calculations (optional).

vhi;t;s ¼ vhi;t;s � 1�
X
i2O ið Þ

yi;j;t;s

0
@

1
A 8h 2 H; i 2 S; t 2 T; s 2 S

VIII. Variable definitions.

xb;t 2 0; 1f g 8b 2 Bm;m 2 M; t 2 T

zg;j;t 2 0; 1f g 8g 2 G; j 2 O gð Þ; t 2 T

yi;j;t;s 2 0; 1½ � 8i 2 S [D; j 2 O ið Þ; t 2 T; s 2 S

vpi;t;s � 0 8p 2 P; i 2 S [D[M; t 2 T; s 2 S

vhi;t;s 2 R 8h 2 H; i 2 S [D[M; t 2 T; s 2 S

rpi;t;s 2 0; 1½ � 8p 2 P; i 2 S [D; t 2 T; s 2 S

dh;þi;t;s ; d
h;�
i;t;s � 0 8h 2 H; i 2 S [D[M; t 2 T; s 2 S

Given the possibility to use stockpiles and incorporate transformation functions
(e.g. grade-recovery curves), traditional mathematical optimisers are generable
unable to optimise over these non-linear aspects, particularly for large-scale and
real-world examples. As a result, a solver has been developed that uses a combi-
nation of metaheuristic algorithms to obtain solutions. Metaheuristics are algo-
rithmic optimisers that do not necessarily provide a mathematically optimal
solution, but are highlight adaptable for various types of problems, including
non-linear optimisation models, and have been successfully used in the past for
mine design and production scheduling models (Godoy 2002; Lamghari and
Dimitrakopoulos 2012; Goodfellow and Dimitrakopoulos 2013; Lamghari et al.
2015). The proposed approach combines two metaheuristics, simulated annealing
(Kirkpatrick et al. 1983; Geman and Geman 1984) and particle swarm optimisation
(Kennedy and Eberhart 1995). The simulated annealing algorithm is used to opti-
mise the multi-mine production scheduling and destination policy decision vari-
ables. The particle swarm optimisation algorithm is used to optimise the destination
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policy and processing stream decision variables. The two algorithms are used
alternatingly in order to improve the current solution and, ideally, converge on a
globally optimal solution.

Application 1—Blending Policy Optimisation for a Nickel
Laterite Mineral Value Chain

The first application that is discussed is for a nickel laterite mining complex.
Figure 2 provides an overview of the material flow through the value chain. The
purpose of this example is to highlight the importance of integrating geological
uncertainty into destination policy optimisation. The optimiser seeks to generate an
optimal definition of a multi-element destination policy (based on nickel, iron, silica
and magnesia grades, and a dry tonnage density factor), and the use of the stock-
piles and homogenization piles. It is noted that production scheduling is not per-
formed; the production schedule used is based off an existing plan. Using the
generalised modelling methodology, it is possible to model the flow of the materials
from the two mines to the processing plant. Rather than presenting the entire
mathematical model, the general goals for the optimiser are listed in order of
importance, as follows:

1. Maximise NPV.
2. Satisfy the plant feed’s silica-to-magnesia ratio (SiO2:MgO), which should lie

between 1.5 and 1.8.
3. Meet plant production target, which is withheld for confidentiality.
4. Satisfy plant feed iron grade blending constraints, which should lie between 12

and 16%.
5. Satisfy end-of-year stockpile capacity constraints, which are withheld for

confidentiality.

Fig. 2 Material flow diagram for the nickel laterite value chain
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Estimated orebody models are provided by the mine and are generated using
ordinary kriging. Twenty geological simulations have been generated using the
direct block min/max autocorrelation factor simulation method (Boucher and
Dimitrakopoulos 2009), which results in 400 scenarios in total. First, the limonite
and saprolite layer thicknesses are jointly simulated. The primary attributes (nickel,
silica, magnesia, iron and dry tonnage factor) are simulated for the within the
saprolite layer for each of the lithological simulations.

Using the estimated orebody model, a deterministic optimisation is performed
using the proposed methods. Figure 3 (left) shows a summary of the SiO2:MgO,
tonnage and iron grades for the material received at the processing plant from the
homogenization piles. Generally, the optimiser is able to satisfy the key quality
constraints on the SiO2:MgO and the iron grade, and is able to fill the processing
plant up to capacity over time. Using the set of orebody simulations, it is possible to
perform a sensitivity analysis of the destination policies generated by freezing these
decision variables, zg;j;t, which were generated using the deterministic-equivalent
optimiser, and re-optimising the processing stream (stockpile and homogenization

Fig. 3 Comparison of deterministic and stochastic risk profiles for the chemistry and tonnage at
the processing plant
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pile) decision variables for each of the scenarios. The results are summarised on the
same figure using a risk profile, which indicates the P-10, P-50 and P-90 excee-
dance probabilities (i.e. the value for which 10, 50 or 90% of the simulations lie
below). While the destination policies generated for the estimated orebody models
are able to satisfy the blending and production constraints, the risk analysis indi-
cates that these policies are not adequate when considering the spatial variability
and uncertainty in the saprolite layers, along with the variability of the primary
attributes of interest. As a result, this destination policy does not provide a feed to
the processing plant that satisfies the blended quality constraints, and generally
misclassifies ore and waste materials, which causes the plant feed tonnages to be
under or over the target tonnage. This is simply a result of the difference between
the distributions of the estimated and simulated orebody models, where a simulated
model is better able to capture the variability in the univariate distributions and the
spatial auto- and cross-correlations. It is noted, however, that this result does not
relate to the performance of the optimiser or the quality of the solution generated.
The risk profiles highlight the need to adopt stochastic approaches when optimising
mining complexes, particularly for operations that have multiple elements and a
large amount of variability, both in terms of materials and metal content.

A stochastic optimiser works with all geological simulations simultaneously, and
attempts to find a single destination policy, and the scenario-dependent processing
stream (stockpile) decision variables. Figure 3 (right) shows a summary of the risk
profiles for a stochastic design. It is noted that, unlike the risk profiles from the
deterministic design, the stochastic design is able to satisfy the key constraints of
interest, namely, the SiO2:MgO ratio, iron grade and plant feed tonnage. It is
interesting to note that in the first ten periods, there is more variability in tonnage
than in the later periods; this is largely attributed to two factors: (i) prioritizing a
consistent SiO2:MgO ratio over tonnages; and (ii) developing the quantities of
materials in the stockpiles, which act as a buffer between the highly variable in situ
saprolite material and the material sent to the processing plant. Not only is the
stochastic destination policy able to satisfy critical blending constraints, thus is
much more practical and realistic, the NPV (not shown for confidentiality purposes)
is 3% higher than the deterministic-equivalent depicts with the estimated orebody
model.

Application 2—Global Optimisation for a Copper-Gold
Mining Complex

The second application is related to the stochastic global optimisation of a
copper-gold open pit mining complex, which considers simultaneous production
scheduling, destination policies and processing stream decisions. Figure 4 provides
an overview of the material flows through the mining complex. The key destina-
tions of interest are the sulphide mill, which has a capacity of 3 Mtpa, and the
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sulphide heap leach, which has a capacity of 8 Mtpa. A stockpile may be used to
store additional sulphide material that is sent to the mill. All other locations are
considered to have an unlimited capacity. An interesting aspect of this study is the
use of non-linear grade-recovery curves (Fig. 5) for the copper and gold head
grades at the respective processing stream. Rather than specifying the recovery for
each block in each simulation, which assumes that each block is processed inde-
pendently, this approach considers the blended feed of all materials received from
the mine. The primary objectives of the optimisation are defined as follows, in order
of importance:

Fig. 4 Material flow through the copper-gold mining complex

Fig. 5 Non-linear grade-recovery curves for copper (left) and gold (right), based on the head
grade from the mine
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1. Maximise NPV.
2. Meet sulphide mill production target (3 Mtpa) and minimise associated risk.
3. Meet sulphide heap leach production target (8Mtpa) andminimise associated risk.
4. Obey mine production capacity constraint (25 Mtpa).
5. Obey end-of-year stockpile capacity constraints (1 Mtpa).

A set of 35 geological simulations and an E-type model (deterministic) have
been generated in order to compare the deterministic and stochastic designs. First, a
conventional design is generated using a commercial mine planning suite to gen-
erate an initial design. A “deterministic-equivalent” design, generated using the
proposed method, is then used to demonstrate the advantages of using the global

Fig. 6 Comparison of risk profiles deterministic designs and stochastic design for the copper-gold
mining complex

720 R. Goodfellow and R. Dimitrakopoulos



optimisation approach. Figure 6 (left) shows a comparison of the commercial,
deterministic-equivalent and the risk analysis for the deterministic-equivalent
design for the sulphide mill and sulphide heap leach tonnages and the cumulative
NPV. First, it is noted that the deterministic-equivalent design has an additional
year of mining, and is better able to meet the sulphide mill and heap leach pro-
duction targets. As a result, the deterministic-equivalent has a 4.5% higher NPV
than the design generated using commercial software, which is mostly a result of an
increase in tonnes sent to the sulphide mill and sulphide heap leach. However, when
testing the deterministic-equivalent design with a set of geological simulations, the
risk profiles indicate a substantial amount of risk related to meeting production
targets at both destinations. Despite this risk, the risk profiles for this design
indicate a 3% higher NPV than the deterministic model indicates, which is caused
by a slightly inflated given the excess amount of sulphide material in period 11 and
the difference in grade-tonnage distributions between the simulated and E-type
orebody models.

The stochastic optimiser generates a single LOM production schedule, desti-
nation policy and optimises the use of the stockpile using all simulations. Figure 6
(right) shows the risk profiles of this stochastic design using the 35 simulations.
Unlike the risk profiles from the deterministic design, it is apparent that the
stochastic design is better able to meet the production targets at the sulphide mill
and sulphide heap leach, and simultaneously reduce the risk in terms of the
quantities sent. As a result of being able to control ore production, particularly for
materials sent to the sulphide heap leach, the NPV of the stochastic design is 6.1%
higher than the risk profiles indicate from the deterministic-equivalent design
(measured from the P-50 values).

Conclusions

This paper discusses developments in the stochastic optimisation of mineral value
chains, with two applications. First, a generalised modelling methodology is dis-
cussed, which may be adopted and modified in order to create an accurate and
highly detailed model of a mining complex, including non-linear aspects such as
stockpiling, blending and non-linear processing transformations. Similarly, a gen-
eralised optimisation model is provided, which can be tailored to suit the objectives,
priorities and constraints that are unique to each operation. In this implementation,
these models are optimised using a combination of two metaheuristics: simulated
annealing and particle swarm optimisation.

Two applications are discussed. The first application is related to the definition
of a destination policy for a nickel laterite complex that has multiple stockpiles and
blending constraints. The results highlight the fact that ignoring the geological
uncertainty related to material and grades can lead to a sub-optimal policy that may
lead to severe deviations from product quality requirements. A stochastic approach
is better able to manage this risk, and is able to generate a blending policy that
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satisfies stringent constraints. The second application for a copper-gold mining
complex integrates LOM production scheduling with destination policies and
stockpile management. In this example, the deterministic-equivalent of the pro-
posed global optimiser is able to generate a design that is 4% higher than a com-
mercial design. When comparing the risk profiles between the deterministic design
and a stochastic design, the stochastic approach is better able to meet production
targets and manage the associated risk, while simultaneously generating a 6.1%
higher NPV than the deterministic design. Future work will seek to test the methods
developed herein on mineral value chains with more complex down-stream
(post-extraction) aspects.
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Sensor Based Real-Time Resource Model
Reconciliation for Improved Mine
Production Control—A Conceptual
Framework

J. Benndorf, M. Buxton and M. S. Shishvan

Abstract The flow of information and consequently the decision making along the
chain of mining from exploration to beneficiation typically occurs in a discontin-
uous fashion over long time spans. In addition, due to the uncertain nature of the
knowledge about the deposit and its inherent spatial distribution of material char-
acteristics actual production performance in terms of produced ore grades and
quantity and extraction process efficiency often deviate from expectations.
Reconciliation exercises to adjust mineral reserve models and planning assumptions
are performed with timely lags of weeks, months or even years. With the devel-
opment of modern Information and Communication Technology over the last
decade, literally a flood of data about different aspects of the production process is
available in a real-time manner. For example, sensor technology enables online
characterisation of geochemical, mineralogical and physical material characteristics
on conveyor belts or at working faces. The ability to utilise the value of this
additional information and feed it back into reserve block models and planning
assumptions opens up new opportunities to continuously control the decisions made
in production planning to increase resource recovery and process efficiency. This
leads to a change in paradigm from a discontinuous to a near real-time reserve
reconciliation and model updating, which calls for suitable modelling and optimi-
sation methodologies to quantify prior knowledge in the reserve model, to process
and integrate information from different sensor-sources and accuracy, back prop-
agate the gain in information into reserve models and efficiently optimise opera-
tional decisions real-time. This contribution introduces the concept of an integrated
closed-loop framework for Real-Time Reserve management (RTRM) incorporating
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sensor based material characterisation, geostatistical modelling under uncertainty,
modern data assimilation methods for a sequential model updating and mining
system simulation and optimisation. The effectiveness of the framework and the
value added will be demonstrated in an illustrative case study.

Introduction

Successful planning and operations management in mineral resource extraction is
based on a solid understanding of the spatial distribution of ore tonnages and grades
in the deposit. The knowledge about the deposit is often based on exploration data
and typically captured in a digital 3D resource model. Exploration data are gathered
in campaigns prior to operation, often undertaken decades ago. The sample spacing
is designed to capture major features of the deposit with the anticipated level of
accuracy while minimising expenditure. Although resource models are created
using sophisticated geostatistical modelling techniques, such as different types of
Kriging or conditional simulation (e.g. Chiles and Delfiner 2012), they can locally
exhibit significant deviations from in situ resource characteristics.

Short-term production scheduling in mining operations is based on the resource
model and aims to define an extraction sequence that meets short-term production
targets in terms of ore tonnage produced and associated grades. The scale of
short-term production targets can be as small as a train load in the order of 1000t
that is shipped to the customer; such a scale is not supported by data, gathered
during exploration. The consequences can be unexpected deviations from pro-
duction targets which may have significant economic impacts. Therefore the
understanding of short scale variability of ore characteristics is critical to control the
operation and to meet production targets.

As demonstrated in various case studies (e.g. Benndorf 2009; Zimmer 2012;
Benndorf 2013), short scale variability and uncertainty in prediction can be mod-
elled by conditional simulation and propagated through a transfer function to assess
the expected performance of a short-term mine plan. Although this methodology
allows the recognition of the magnitude and frequency of potential deviations, it
does not lead to an increase in knowledge, since no additional data are included in
the decision making process.

With the recent developments in Information- and Communication technology
(ICT) over the past decade, online data capturing of production performance pro-
vides an alternative source of information. Literally a flood of data is available.
Sensor technology for detecting the characteristics of raw materials on a conveyor
belt has been proven in industrial field tests in some operations. Documented
studies refer to the application of specific sensor technologies such as Near Infra
Red (e.g. Goetz et al. 2009) or Dual Energy X-Ray Transmission (Jong et al. 2003).
The application of sensors provides a high density of information on a short time
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scale with a reasonable precision. The example in Fig. 1 compares lab analyses and
sensor based measurements for coal ash content of train-car loads of approximately
100t. The correlation coefficient of 0.93 suggests high information content of the
sensor data.

To date sensor information are mainly utilised in feed forward loops applied for
downstream process control, such as supporting dispatch decisions, material sorting
or blending on stockpiles (e.g. Scholze and Köhler 2012; Sládková et al. 2011). An
immediate feedback of sensor information into the resource and planning
assumptions to continuously increase its certainty in prediction does not occur.
However, the ability to feed data back suggests a significant potential for
improvement an operational efficiency. With increased certainty of prediction of
grades for reserve blocks the frequency of misclassification and unfavourable dis-
patch decisions is expected to decrease. Buxton and Benndorf (2013) quantified this
value in the order of $5 Mio. per annum for an average sized operation.
A breakthrough towards a “self-learning mine” utilising all available data for
real-time feedback control and process optimisation requires fast integration and
processing of data, a back-propagation of process information into the models and a
real-time decision support. A similar framework was recently developed in petro-
leum reservoir management (Jansen et al. 2009) and demonstrated increased pro-
cess efficiency in the order of 6–9%.

This contribution introduces a new and innovative framework for real-time
reconciliation and optimisation for extractable reserves in continuous mining
operations. It consists of a closed-loop approach (Fig. 2), which feeds back
sensor-data into resource models and optimises operational decisions to account for
the gained information during production in real-time. First the concept is described
and the recent developments in the major pillars of the framework are documented.
Later selected aspects of the framework are demonstrated in an illustrative case
study.
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Fig. 1 Correlation between sensor-based measurements and lab analysis in coal samples
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Moving Towards Real-Time Reserve Management (RTRM)
—The Closed Loop Concept

Figure 3 illustrates the closed-loop-concept for Real-Time Reserve Management
(RTRM), which is defined by following steps.
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Fig. 2 Closed-loop concept for near-continuous process control and optimisation
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(1) Based on available exploration data a resource model is generated and reserves
are assessed as the basis for short-term mine planning and production control.
This model is referred to as prior model. In general, techniques can involve
geostatistical estimation as well as simulation.

(2) Short-term mine planning and operational decisions are optimised to ensure that
production targets are achieved most efficiently. These optimisation tasks may
be performed using mathematical optimisation techniques such as Mixed
Integer Programming or Stochastic Programming, meta-heuristic methods or
techniques of simulation based optimisation for more complex systems.

(3) Based on these optimised decisions and utilising the resource/reserve model,
model based expected process efficiency indicators and material characteristics
can be predicted at different locations in the extraction and material handling
process.

(4) When executing the mine plan sensor derived measurements about the process
efficiency and material quality can be taken generated at these different
locations.

(5) Differences between model-based prediction (Step 3) and actual measurements
(Step 4) may have two different causes, a resource/reserve model error and a
measurement error. Modern techniques of data assimilation are used to separate
the influence of these two causes and utilise this information of the difference to
update the prior resource/reserve model (Step 1) to obtain a posterior model.

(6) Go back to step 2 and optimise short-term and operational decisions based on
the updated posterior resource/reserve model.

The proposed concept of RTRM is the subject of current research and technical
development. Its maturation for industrial application requires further development
in three main pillars:

• sensor based material characterisation,
• a real-time feedback loop of sensor data for resource/reserve model updating

and
• simulation based optimisation for short-term production scheduling and pro-

duction control.

The following three subsections provide an overview of recent developments in
the areas of the three main pillars and propose algorithmic solutions and areas for
future development.

Online Sensor Based Raw Material Characterisation

For real-time updating of the reserve model and mine optimisation, sensor-derived
data are required to identify and discriminate raw material properties such as tex-
ture, mineralogy, geochemistry and physical properties prior to and during mining.
Specific sensor techniques that have the potential to be used to satisfy these
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requirements include Laser Induced Breakdown Spectroscopy (LIBS) (e.g. Death
et al. 2008), Visible Near Infra-Red (VisNIR), Short Wave Infra-Red (SWIR)
imaging for determining textures and mineralogy, X-Ray Fluorescence (XRF) for
geochemistry and thermal, Mid Wave Infra Red (MWIR) or Long Wave Infra-Red
(LWIR) (e.g. Harris et al. 2010) for assessing silica content. Imaging techniques are
required for size, volume and shape determination. These can contribute towards
mass and density determination. Infra red (VisNir, SWIR, LWIR), XRF, RAMAN
and LIBS methods require no pre-preparation of sample.

Infrared spectral techniques can be used to determine mineralogical parame-
ters for geological material by use of different spectral ranges including VisNir
(wavelength range 0.4–0.7 lm) and SWIR (wavelength range 0.7–2.6 lm).
The SWIR is an important range for providing mineral identification for hydroxyl,
water and carbonate bearing minerals. Commercial applications are available
including airborne scanners, real-time assessment of materials on conveyor belts
and monitoring of material during scheduling. Technologies such as the CSIRO
HyLogger suite have been developed to provide voluminous and automated point
data. These systems capture infrared data from drill core or chip samples. In a static
mode, hyperspectral imaging systems for logging of drill cores have been devel-
oped such as the SisuRock system by Spectral Imaging Ltd. (SPECIM) in Finland.
The LWIR (wavelength range 6–14 lm) is one of the most important regions for
mineralogy since direct detection and identification of rock forming silicates is
possible. Hyperspectral LWIR imaging systems for mineral detection are com-
mercially available for airborne scanners and static imagers. Applications for use in
high throughput environments have not yet been developed.

LIBS can be used for the analysis of solid, liquid and gaseous samples. An
analysis can be performed in a few tenths of ls simultaneously for all chemical
elements whose spectral lines lie in the detected spectral range of the spectrometer.
Using modern data acquisition electronics, up to 1000 LIBS measurements per
second are possible (Bette et al. 2005).

Mineral characterisation using Raman is well established. However, because
Raman spectroscopy is a molecular technique, it is seldom used to characterise
whole rocks such as those extracted during mining. With respect to Raman spec-
troscopy instrumentation, commercially available state-of-the art handheld instru-
mentation are designed for a specific task, which is in most cases pharmaceutical or
homeland security. Although the hardware may be applicable to whole rock sam-
ples from mines, the software is not. Issues regarding resolution and optical quality
in complex polymineralogical applications are not resolved.

Raman and LIBS can be combined to provide complementary detection
solutions. The combination is attractive for remote mineralogical characterisation
and has been increasingly studied by NASA and ESA for lunar and Mars explo-
ration (e.g. Sharma et al. 2003; Escudero-Sanz et al. 2008). LIBS shows high
sensitivity in detecting cations and trace elements but is less sensitive in detecting
anions. Raman can identify the anion groups in the crystals and crystal forms from
Raman active lattice modes (Sharma et al. 2007). LIBS/RAMAN combinations also
have potential for the mapping of heterogeneous minerals (Hoehse et al. 2009). But
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there is a technology gap between the highly portable systems designed for space
exploration, which are excessively expensive and highly overspecified for appli-
cations in a terrestrial industrial scenario and the current state-of-the-art bulky
laboratory systems. A portable combined Raman and LIBS system for high
throughput mining applications does not currently exist but is clearly required for
practical measurements in an operational environment.

For all sensor types, imaging techniques may be required for size, volume and
shape determination. These will contribute towards mass and density determination.
Sensor resolution and the ability to discriminate differ for each of the different
sensor types. Different sensor types generate different data outputs in terms of
response, precision, accuracy and format. One specific sensor cannot satisfy all
requirements.

There is no current application that integrates combinations of these sensors for
comprehensive material characterisation and discrimination in a highly variable and
large throughput environment. Current research and development activities of such
technology will enable real-time feed-back loops for reserve updating.

Real-Time Feed Back Loop for Reserve Model Updating

The part of the RTRM is designed as a back-propagation of process information
into the resource/reserve model. To account for different data originating from
different sources with a different data quality, density and support, the currently
used methods in geostatistical modelling and data fusion have to be extended.
Different data, e.g. from exploration holes and lab analysis, online responses of
sensors, GPS measurements of actually mined raw material or geodetic survey data
have to be integrated consistently to update the reserve model in a Bayesian
fashion. In addition, the material characterised at sensor locations may represent a
blend of material originating from multiple phases and locations of extraction. In
order to feed back the sensor information the influence of material originating from
each extraction face has to be separated.

To solve these challenges multiple solutions are possible. This contribution
proposes a modification of Kalman-Filter techniques. These are designed to
sequentially estimate the system states, in this case the local grades at excavation
locations, recursively on the basis of noisy measured input data. Kalman (1960)
introduced a method in the context of system and control theory describing a
recursive solution to estimate the state of a stochastic process Zt+1 at time t + 1
(Kalman 1960) based on a prior model of the state Zt at time t and observations l at
time t.

To update a spatial resource model, the system state is put in a spatial context
and represents the block model estimate ðxÞ. The observations correspond to sensor
measurements during a production period of a certain time span, e.g. 5 min or 1 h.
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The idea is to update the resource model, denoted with Ztþ 1ðxÞ as a linear
combination of the prior block model ZtðxÞ and the difference between model based
prediction and the vector of sensor based measurements l (Eq. 1).

Ztþ 1 xð Þ ¼ Zt xð ÞþK l� AZt xð Þð Þ ð1Þ

Matrix A is a design matrix and captures the contribution of each reserve block
per time interval to the raw material flow produced and observed at a sensor station.
The term AZtðxÞ represents the model-based prediction and integrates the operative
decisions (digging capacity and location of excavators at each time) in A and the
prior resource/reserve model ZtðxÞ. The objective is to determine the matrix K,
which is the unknown updating factor (Kalman-Gain) as a best linear and unbiased
estimator. A detailed derivation is out of scope for this paper and the reader is
referred to literature (e.g. Welsh and Bishop 1997; Benndorf 2014). It can be shown
that

K ¼ ATCt
ZZAþCll

� ��1
ATCt

ZZ ð2Þ

An interpretation of Eq. (2) reveals the integrative character of the Kalman-Gain.
The first term is the inverse of two error sources: (a) the model prediction error,
represented by the covariance matrix of the prior resource model Ct

ZZ, which is
propagated through the mining system by the design matrix and (b) the measure-
ment error, represented by the covariance matrix of the sensor-based measurement
Cll. The second term represents again the error source of the model-based predic-
tion. A comparison of potential magnitudes of the two error terms reveals that:

• if the model error is large and the measurement error small, the Kalman-gain
K tends towards 1. The application to Eq. (1) shows that the full difference
between model-based prediction and sensor-based measurement is taken into
account to update the resource/reserve model.

• if the model error is small and the measurement error large, the Kalman-gain
K tends towards 0. The application to Eq. (1) indicates that the difference
between model-based prediction and sensor-based measurement is not taken
into account to update the resource/reserve model. The precision of the sensor is
too low to add value to estimation of resources and reserves.

It is intuitive that with the integration of sensor-data in the resource/reserve
model the prediction uncertainty decreases. This is not only the case for reserve
blocks, which are currently excavated but as well for adjacent blocks to be exca-
vated, because these are spatially correlated. It can be shown that the improvement
in model prediction can be quantified by

Ctþ 1
ZZ ¼ Ct

ZZ � KACt
ZZ: ð3Þ
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Where Ctþ 1
ZZ is the updated posterior model covariance matrix, which is by

definition smaller than the prior model covariance matrix CZZ.
Due to the storage and propagation of the error covariance matrix, Kalman Filter

based approaches suffer from computational efficiency especially when applied to
large systems. To handle large problems with potential nonlinear dynamics, the
Ensemble Kalman Filter (EnKF) offers a solution (Evensen 2003). Instead of
propagating the covariance matrix in time using Eq. (3), a finite set of so called
ensemble members is generated representing realisations z(x) of the spatial random
function Z(x). Each ensemble member is an equally probable representation of the
spatial random field at time t. The initial set of ensemble members can be generated
using techniques of conditional simulation in geostatistics (e.g. Chiles and Delfiner
2012). Using Eq. (1) all ensemble members are propagated separately in time when
new data y are available (Fig. 4).

Instead of storing the complete Covariance matrix CZZ , only a finite set of
ensemble members is kept. If the number of ensemble members is sufficiently large,
the Covariance matrix can be approximated by

Ctþ 1
ZZ ffi 1

N

XN
i¼1

z xið Þ � z xð Þ
� �

� z xið Þ � z xð Þ
� �T

ð4Þ

Note that in order to maintain the variance and covariance structure of the
ensemble members, the observations have to be treated as random variables. For
this reason an error xr has to be added to the observations l used to update the
several ensemble members r with r = 1,…,N.

…

R realisations 
(Ensamble)

…

n updated realisations 
(updated Ensamble)

Fig. 4 The concept of the Ensemble-Kalman Filter (reproduced after Evensen 2003)
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Simulation Based Optimisation for Short-Term
and Operative Decisions

The updated model will lead to possibly new decisions in short-term operation
management such as production sequencing, digging capacity control or stock-pile
management. Methods of mathematical programming, such as Dynamic
Programming or Mixed Integer Programming, are well acknowledged in the field of
mine planning optimisation (e.g. Ramazan and Dimitrakopoulos 2004). Recent
research was successfully performed to integrate geological uncertainty (e.g.
Dimitrakopoulos and Ramazan 2008; Benndorf and Dimitrakopoulos 2013) leading
to an increase of 24% in NPV while reducing the risk of not achieving production
targets. Jewbali (in Jewbali and Dimitrakopoulos 2011) introduced a short-term
production scheduling optimisation based on geological uncertainty and updateable
models and demonstrates the benefit in the Australian gold mining industry. The
previous mentioned applications are small or moderate in size. Short-term pro-
duction scheduling in large open pit mines represents a problem, which is typically
complex and involves many interdependencies. These are difficult to model in a
closed form.

Most of the mathematical programming approaches are limited by the amount of
decision variables, as applications become large and suffer from reduced compu-
tational efficiency. In leading manufacturing process industries, such as aerospace,
chemical industry or petroleum engineering, the simulation approach is applied to
support making expensive decisions and optimisation during design and operation
of processes (e.g. Young Jung et al. 2004; Schulze-Riegert and Shawket 2007;
Subramaniam and Gosavi 2007). Simulation based optimisation methods (Fig. 5),
such as Response Surface Methods or Learning Automata Search, have been
proven to result in near optimal solutions for decision problems and are especially
applicable for scheduling complex and computationally large systems (Goshavi
2003), such as continuous mining operations. The concept of simulation based
optimisation is shown in Fig. 5. Using general system simulation techniques the

Fig. 5 The concept of
simulation based optimisation
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objective value J of a complex objective function can be evaluated for a given set of
decision variables. The optimisation part, such as response surface methods in
combination with gradient descent methods will explore the space of decision
variables to obtain a near to optimal set of these.

Stochastic process simulation, whether discrete, continuous or combined (Kelton
and Law 2000), provides a powerful tool for measuring performance indicators
summarised in an objective function of complex systems. In essence the simulator
assesses a complex objective function J. Hall (2000) presented the requirement for
successful simulation modelling, advantages and disadvantages of simulation as
well as pitfalls for mining related application in two case studies. The results
showed that simulation can be a powerful tool for the mining engineer. When used
in proper applications it is able to provide insights into complex system behaviour.
(Baafi and Ataeepour 1996) and (Askara-Nasab et al. 2012) used discrete event
simulation to investigate a truck-shovel system of discontinuous open pit mines.
The process simulation method is used to optimise the truck fleet size for the
system. For short-term mine planning (Soleymani Shishvan and Benndorf 2013)
presented for the first time a simulation based approach for continuous mining
applications integrating geological uncertainty. The objective is to evaluate the
performance in terms of producing the target quantity and quality in a large open pit
coal operation and assess the efficiency for alternative production schedules.
Different sets of decision variables are tested, including a shift schedule, block
sequencing and defined production rates. Results demonstrated the stochastic
approach provides the mine planning engineer with a valuable tool to foresee
critical situations affecting the continuous supply of raw material to the customers
and system performance. Comparing the outcome of different sets of decisions
provides a tool for improved decision making.

Having available powerful simulation tools for mining systems, the impact of a
set of short-term or control decision variables can be evaluated. Simulation based
optimisation is based on an iterative perturbation of decision variables and the
mapping of the corresponding objective value J. Utilising the Response Surface
Method the objective value can be mapped as a function of decision variables, even
if not all possible combinations are tested. The efficient exploration of combinations
of decision variables can be supported by stochastic gradient descent methods. The
maximum of the resulting response surface of the objective values leads to optimal
decision variables. Salama et al. (2014) used a combination of discrete event
simulation and Mixed Integer Programming (MIP) as a tool to improve decision
making in underground mining. The proposed method uses the simulation approach
to evaluate the operating costs of a set of different haulage system scenarios and
obtained the cash flows for input into the MIP model.

Further work is required to extend current applications to continuous production
control variables such as effective digging rates and include the short-term
sequencing problem in the optimisation phase.
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An Illustrative Example for Model Updating

The subsequent example investigates the performance of the proposed updating
methodology for different mining system configurations and sensor precisions. For
deeper insights into the continuous mine system simulation for short-term planning
and decision control under geological uncertainty, the reader is referred to
Soleymani Shishvan and Benndorf (2013). Here an artificial test case is presented,
which is built around the well-known and fully understood Walker Lake data set
(Isaaks and Srivastava 1989). The data set (Fig. 6) is interpreted as a quality
parameter of a coal deposit, e.g. as calorific value. It is sampled irregularly at a
spacing corresponding to an average of two reserve block length. The blocks were
defined with a dimension of 16 m � 16 m � 10 m. The block—variogram is
given with a spherical structure, range 50 m, nugget effect 0.4 and sill 0.6.

With an assumed density of 2t/m3, one mining block represents a tonnage of
5.120t. Ordinary Kriging was used to generate a resource block model and the prior
error covariance matrix, Generalised Sequential Gaussian Simulation was used to
derive the realisations or ensemblemembers for the EnKF application. For simplicity,
no dilution and losses were applied resulting in the reserve model being equal to the
resource model. The resulting block model (Fig. 6) was used as the prior model.

Without loss of generality the artificial block model will be mined with a con-
tinuous mining system, which consists initially of two bucket-wheel excavators
positioned at separate benches (Fig. 7). Figure 6 shows the extraction sequence for
the case of two excavators. Different digging rates were applied: Excavator one mines
at a rate of 500t/h and excavator two at 1.000t/h. The material is discharged on
belt-conveyors positioned on the benches, which are combined to onematerial flow at
the central mass distribution point. The belt speed is assumed to be constant at 6 m/s.

The combined material flow of both excavators is scanned by a sensor positioned
above a central conveyor feeding the stock- and blending yard. Since no real sensor
data are available, virtual sensor data were generated. The artificial sensor data
represent a 10 min moving average (corresponding to about 250 t production) and
are composed of three components. Component one is the true block grade taken
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Fig. 6 Set up for illustrative case study
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from the exhaustively known data set. Component two captures the volume vari-
ance relationship and corrects the smaller sensor-measurement support of 250 t to
the mining block support of 5120 t by adding the corresponding dispersion vari-
ance. The third component mimics the precision of the sensor. For this case study
the relative sensor error is varied between 1%, 5% and 10%.

Evaluation Measures

The performance of the proposed Kalman-Filter approach will be evaluated using
two measures. The first measure is the mean square difference or mean square error
(MSE) related to the true block value. Here, the difference between estimated block
value zt+1(x) and real block value z(x) from the exhaustive data set is compared.
The MSE is an empirical error measure and can be calculated according to

MSE ¼ 1
N

XN
i¼1

ztþ 1 xið Þ � z xið Þ� �2 ð5Þ

As second measure the theoretical block variance BV is used, which can be
calculated using Eq. (3) for the Kalman-Filter and for the Ensemble Kalman Filter
empirically based on the updated ensemble members.

Results and Discussion

To evaluate the performance for different system configurations and different sensor
precisions, following cases were investigated:
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Fig. 7 Continuous mining system used in illustrative test case

Sensor Based Real-Time Resource Model Reconciliation … 737



• operating only one excavator using KF (Case A),
• operating two excavators simultaneously using KF and EnKF (Case B) and
• operating three excavators simultaneously using KF (Case C).

Table 1 summarises the parameters used in this example. In order to guarantee
linear independency of rows in the production matrix A, a cyclic component was
added to the extraction rates in the cases of two and three excavators. This cyclic
behaviour is typical for continuous mining equipment and is observed in practice.

Figures 8, 9, 10 summarise the results for applying the Kalman-Filter to the
Cases A, B and C. Figure 11 shows the results the Ensemble Kalman Filter applied
to Case B. Each figure shows both measures, the MSE and BV, which are sepa-
rately calculated for already mined blocks, blocks, directly adjacent to the mined
blocks and blocks, which are two block-lengths away from mined blocks.

Figure 8 clearly demonstrates the ability of the Kalman-Filter based approach to
decrease the uncertainty of predicting block values by updating based on sensor
data. Considering the MSE, the following observations can be made:

• For mined blocks, the uncertainty almost vanishes. This is expected because in
the case of one excavator the sensor measurements can be unambiguously
tracked back to the source block. Residual uncertainties remain due to the sensor
precision.

• Adjacent blocks are updated resulting in a significant improvement compared to
the prior model. For high precision sensors this improvement leads to an about
40% decrease of the MSE. This improvement is due to the positive covariance
between two adjacent blocks. In addition, the sensor clearly influences the
result.

• Blocks in the second next row are still updated. Due to the larger distance and
the corresponding smaller covariance. The effect is less obvious compared to
directly adjacent blocks. It is, however, still significant.

The comparison between the empirical error measure MSE and the theoretical
error measure BV reveals that the theoretical error measure reflects realistically the
true error. Observed BV’s are quantitatively very similar to the MSE. Slight dif-
ferences occur and are mainly due to the limited amount of blocks tested.

Table 1 Equipment parameter and model approach used

Case Extraction
rate

Extraction
mode

Sensor
Precision

Method

One excavator E1: 500t/h Constant 1%, 5%, 10% KF

Two excavators E1: 500t/h
E2: 1000t/h

Cyclic 1%, 5%, 10% KF and EnKF

Three
excavators

E1: 500t/h
E2: 1000t/h
E3: 2000t/h

Cyclic 1%, 5%, 10% KF
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Figures 9 and 10 show the increased difficulty of the filter to track back the
differences between the sensor measurements and model based predictions for
combined material flow to the source blocks. The MSE and BV for mined blocks do
not vanish completely; the remaining uncertainty can be interpreted as the limit of

Fig. 8 Performance of the KF for updating the resource model in case A

Fig. 9 Performance of the KF for updating the resource model in case B
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the filter for this specific application. It is expected, that with increased sensor
sampling, for example every 2 or 5 min instead of 10 min, the performance can be
improved. Nevertheless, there is still a significant improvement in prediction for

Fig. 10 Performance of the KF for updating the resource model in case C

Fig. 11 Performance of the EnKF for updating the resource model in case B
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directly adjacent blocks and the next row of blocks. Again, MSE and BV behave
similarly. Differences are again due to local anomalies of grades in the tested blocks
and locally varying sample data configuration (Fig. 6).

Figure 11 shows the example of the EnKF applied to case B. Results are very
similar to the Fig. 9 and demonstrate the validity of using the EnKF. Due to the
limited problem size, observations concerning computational efficiency cannot be
regarded as representative.

Results demonstrate a significant level of improvement by incorporating sensor
data, in this case about 15–40% relative compared to solely relying on exploration
data. This improvement could be interpreted as magnitude of frequency reduction of
being out of spec for delivery coal to customers. The significant positive economic
impact is obvious.

Conclusions, Value of RTRM and Future Outlook

The ability to incorporate online sensor data, derived during the production process,
into resource/reserve models and a subsequent near real-time optimisation of
short-term or operational decision variables promises a large potential for
improvement in efficiency in any type of mining operation. This is especially the
case when the variability of grades or quality parameters inherent in the deposit is
medium to large. The economic effect of such a RTRM and mining process control
can be quantified by a profit function J, which was adapted from (Engel 2007)

DJ ¼ Jðuprior; d ¼ 0Þ � Jðuprior; d ¼ diÞþ Jðuprior; d ¼ diÞ � Jðuopt; d ¼ diÞ
þ Jðuopt; d ¼ diÞ � Jðuposterior; d ¼ diÞ

ð6Þ

The first term is the loss due to the difference di between actual and expected
production targets, if decision variables uprior are fixed at their values based on the
prior resource/reserve model. The second term represents the difference between
actual production targets achieved and the potential optimum resulting from an
optimal adaptation of the decision variables uopt to the real conditions. The third
term represents the compensation which is achieved by model updating and
improved production decisions uposterior. It represents the residual uncertainty. This
equation offers the means to evaluate, if real-time optimisation I of any value. For
example, if the first term in (6) is much larger (in absolute value) than the second
one, or if all terms are relatively small, then a variation of the decision variables
offers no advantage. This can be the case at highly varying grades, where an
adaption to real-time data corresponds to the adaption of noise. Real-time control
aims to decrease the third term and should be designed at a timely resolution to
decrease this difference to an anticipated level.

The presented framework of RTRM is a concept, which is currently further
developed from a level of experimental proof of concept to a level of system
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prototype demonstration in an operational environment to prove industrial viability.
The particular focus lies on the maturation of sensor technologies, overcoming
limits of the feedback algorithms in terms of convergence as function of system
complexity and available data. In addition to grades or quality parameters, effi-
ciency and recovery influencing parameters can also be integrated in the reserve
model, e.g. by using GPS sensors and energy consumption recordings at excava-
tors. This will require efficient data fusion algorithms. Simulation based optimi-
sation techniques will be developed further for efficient real-time optimisation of
mine production control variables as new data become available.

With an implemented framework further questions can be answered, such as:
“What is an efficient monitoring network for the system?” or “What implications
does the knowledge gained have on the long-term planning and necessary level of
exploration?” In particular the last question is interesting as it investigates the
utilisation of additional sensor data for mine planning and suggests that the level of
“traditional” exploration may be decreased in future. New exploration strategies for
a “self-learning-mine” have to be developed that incorporate the time-effect of
available information and maximise the use of it.
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On the Joint Multi Point Simulation
of Discrete and Continuous
Geometallurgical Parameters

K. G. van den Boogaart, R. Tolosana-Delgado, M. Lehmann
and U. Mueller

Abstract Geometallurgical parameters are descriptions of the mineralogy and
microstructure of the ore determining its mineralogical and microstructural char-
acteristics. From a conditional geostatistical simulation of such properties, a pro-
cessing model can compute recovery, equipment usage, processing costs, and thus
the monetary value for mining and processing a block with certain processing
parameters. The output can be used for optimising mining sequences or finding
optimal processing parameters by solving the corresponding stochastic optimisation
problem. The approach requires two properties of the simulation not provided by
established geostatistical techniques:

(1) Many relevant geometallurgical parameters are from non-Euclidean statistical
scales such as (mineral) compositions, (grain size) distribution, (grain) geom-
etry, and (stratigraphic type) categorical which might produce nonsensical
values (for example, negative proportions, negative facies probabilities, planar
grains) when simulated with standard geostatistical techniques.

(2) Due to the nonlinearity of processing, the entire conditional distribution of the
geometallurgical parameters is relevant, not only its mean and variance. The
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geostatistical simulation needs to reproduce the joint conditional distributions
of all the geometallurgical parameters.

The multi-point conditional geostatistical simulation technique discussed here
allows for jointly simulating dependent spatial variables from various sample
spaces. The technique combines an infill simulation, similar to the one used in
multi-point geostatistics (MPS), with a new form of distributional regression to
estimate conditional distributions of arbitrary scales from different information
sources, including training images, training models and observed data. The distri-
butional regression is based on a generalisation of logistic regression and is related
to both Bayesian Maximum Entropy (BME) geostatistics and high order cumulants.
The method ensures that simulated data reside in the set of possible values and
honour the characteristics of the joint distribution to be reproduced. The compu-
tational effort is substantial, but affordable for a useful application with standard
problems: from processing-aware block value prediction and block processing
optimisation as shown in the test application to a mathematically completely
defined simulated model situation with a complex processing model.

Introduction

Geometallurgical parameters describe the mineralogical and microstructural char-
acteristics of the ore. The conditional geostatistical simulation of geometallurgical
parameters enables one to construct a processing model for computing recovery,
equipment usage, processing costs, and other relevant economic parameters and
thus the monetary value for mining and processing of a block with certain pro-
cessing parameters. The processing model could be used for optimising mining
sequences or finding optimal processing parameters by solving the corresponding
stochastic optimisation problem.

An ideal geostatistical simulation procedure for geometallurgical applications
should have two properties which are not met by established geostatistical tech-
niques. First, many relevant geometallurgical parameters are data from
non-conventional scales such as (mineral) compositions, (grain size) distribution,
(grain) geometry, and (lithotype) categorical data, which might produce impossible
values when simulated with standard geostatistical techniques. Second, as pro-
cessing implies a nonlinear transformation of the material properties, the entire
conditional distribution of the geometallurgical parameters is relevant and not only
its mean and variance. Thus a geostatistical simulation needs to reproduce the joint
conditional distributions of all relevant geometallurgical parameters.

This contribution presents a multi-point conditional geostatistical simulation
framework which provides a description of the joint conditional distribution of
several spatial variables from various sample spaces. The framework combines an
infill simulation scheme, similar to the multi-point simulation (MPS) algorithms,
with a new form of distributional regression to estimate conditional distributions of
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arbitrary scales from different information sources, including training images,
training models and observed data. The distributional regression is a generalisation
of logistic regression and generalised linear models.

Existing Methods

Brief Description of SNESIM

Consider a categorical variable s with K levels whose spatial distribution is to be
modelled. Following Strebelle (2002), given a training image, a template sn ¼
fha; a ¼ 1; . . .; ng is specified such that xa ¼ xþ ha : a ¼ 1; . . .; nf g defines the
grid nodes within the search neighbourhood WðxÞ centred at x.

Next denote by dn the data event associated with sn composed of the values at
the n conditioning data sðxaÞ ¼ ka, a ¼ 1; . . .; n considered jointly. The probability
that the value of the categorical variable s at the central location x is k, given that the
data event for the neighbourhood of x is dn is estimated by

pðx; kjsnÞ ffi ckðdnÞ
cðdnÞ

where cðdnÞ and ckðdnÞ are the number of replicates cðdnÞ of the data event dn in the
training image, and the number of replicates of the data event dn with central value
sðxÞ ¼ k respectively.

The above estimation of the probability of occurrence of a value of k at the
central location x relies on the categorical information being available at each
location of the search neighbourhood, however the conditioning information might
only be available at a subset of the possible nodes, motivating the introduction of a
sub-template. Let sn0 (n0 � n) be a sub-template of sn and dn0 the associated data
event. The number of replicates cðdn0 Þ of dn0 is given by

cðdn0 Þ ¼
X

dn; dn0�dn

cðdnÞ

and the number of replicates of dn0 with central value s(x) = k is

ckðdn0 Þ ¼
X

dn; dn0�dn

ckðdnÞ:

As before the probability distribution conditional to the data event dn0 is esti-
mated as

pðx; kjsn0 Þ ffi ckðdn0 Þ
cðdn0 Þ :
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The standard procedure of SNESIM (single normal equation simulation) then
makes use of the sub-templates as follows:

1. Scan the training image and retain only those conditional probability distribution
functions (cpdf) associated with sn that can be inferred from the training image.

2. Assign the conditioning data to grid nodes and define a random path visiting all
unsampled nodes exactly once.

3. At each unsampled location x retain the conditioning data present and identify
the corresponding sub-template sn0 and compute pðx; k ðn0Þj Þ, if n0 ¼ 1, use the
marginal probabilities of occurrence of the categories.

4. Draw a value sðxÞ from the cpdf constructed in step 3 and add the node and its
value to the conditioning information.

5. Repeat until all nodes are simulated.

A Logistic Regression View of MPS

The estimation of the cpdf in the SNESIM algorithm uses a simple counting
approach, which requires a large training image in order to obtain reliable estimates
of the local probabilities. An alternative approach (Stien and Kolbjørnsen 2011) is
the estimation of the cpdfs via multinomial logistic regression. This assumes that at
an unsampled location x the categorical variable follows a multinomial distribution
with probability parameter p ¼ ½p1; p2; . . .; pK �. This vector is modelled through a
log-odd linear expression as

ln
pkðxjsnÞ
pKðxjsnÞ
� �

¼
XQ
q¼1

gqðx; snÞ bq
� �

k
; ð1Þ

where Q depends on the complexity of the interactions considered, and is the
number of influence functions gqðx; snÞ which the analyst wishes to take into
account. Each vector bq is a vector of size K − 1 which gives the increments of the
log-odds for each category with respect to the category K due to the q-th influence
function. An influence function is either an indicator function or a product of
indicator functions depending on some of the points in the template chosen. The
basic indicator function of category k at location x is

iðx; kÞ ¼ 1 sðxÞ ¼ k
0 else

�
:

Thus the first 1þ nðK � 1Þ functions in the sum are the model intercept and the
indicators
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gqðx; sÞ ¼ iðxa; kÞ; 1� k�K; 1� a� n

where, as before, xa is one of the locations relative to the template sn ¼ fha; a ¼
1; . . .; ng as defined in SNESIM: Since for each location the indicator of one of the
categories is redundant (one of them can always be calculated as 1 minus the sum of
all the other indicators), it can be dropped, so that the number of first order indi-
cators is nðK � 1Þ. Two-point and three-point interactions are built as products of
these first-order indicators,

gqðx; sÞ ¼ iðxa; kÞ � iðxa0 ; k0Þ;
gqðx; sÞ ¼ iðxa; kÞ � iðxa0 ; k0Þ � iðxa00 ; k00Þ:

They describe the occurrence of pairs (triples) of categories at pairs (triples) of
locations relative to the unsampled location x. There are respectively ðn � ðK � 1ÞÞ2
and ðn � ðK � 1ÞÞ3 of these functions. Similarly, M-order interactions (M� n) are of
the form

gqðx; sÞ ¼
YM
m¼1

iðxaðmÞ ; kðmÞÞ;

and there are ðnðK � 1ÞÞM of them. If all possible interactions are taken into account,
there are Kn � 1 Influence functions. The counting approach of MPS is equivalent to
considering all these functions, resulting in having to estimate Knþ 1 � 1 parameters.
As a consequence the training images would have to be impractically large to deliver
enough information for this estimation problem. For this reason, Stien and
Kolbjørnsen (2011) suggest using only some sets of influence functions. The pro-
posed approach in this paper is to restrict the order of the interactions to a small
number M � n, but without necessarily reducing the size of the pattern. In both
cases, the model of Eq. (1) can be estimated by maximum likelihood using training
images of reasonable size as data. The optimal trade-offs between the number of
points in the pattern, the order of selected interactions, and the size of the training
image depends on the actual joint distribution of the parameters. They should thus be
selected by the user for each simulation task depending on the assumed spatial
dependence. Some regression diagnostics might help in this choice.

Generalisation

Extension to Compositional Covariates

The regression approach described in the previous section opens up the ability to
extend the MPS model by including additional predictive variables such as
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quantitative covariates available at the conditioning locations of the pattern, or even
at the simulation location itself. This is done via additional influence functions.
A particular case is the consideration of the available compositional information at
the pattern locations zðxaÞ ¼ ½z1ðxaÞ; z2ðxaÞ; . . .; zDðxaÞ�; a ¼ 1; . . .; n, where the
component ziðxaÞ represents the mass of the i-th component at location xa, and
z1ðxaÞþ z2ðxaÞþ � � � þ zDðxaÞ ¼ 100% at each location. It is known that compo-
sitional data carry only relative information (Aitchison 1986), which implies that
the influence functions to include in Eq. (1) should be in the form of log-ratios
(Aitchison 1996)

gqð...Þðx; snÞ ¼ ln
zkðxaÞ
zDðxaÞ ;¼: alrðzðxaÞÞð Þk: ð2Þ

The expression in (2) gives the definition of the additive log-ratio transfor-
mation (alr; Aitchison 1986) of a composition. If no second or higher order
interactions are desired, then compositional information can be accounted for with
one influence function for each alr score and each location in the template,
resulting in as many as nðD� 1Þ additional functions. The specific choice of the
denominator of the log-ratio transform (additive, centered or isometric log-ratio
transforms, Aitchison 1986; Egozcue et al. 2003) is irrelevant, since they are
linear transforms of one another and compensated by the linear structure of the
model. Accordingly the parameter vector bq obtained from maximum likelihood
estimation depends on the choice of log-ratio transform, but it can be transformed
to the parameter vector that would be derived through the use of a different
transform by a linear transformation so that the same predicted conditional
probabilities are delivered. In the examples presented here alr is chosen for
simplicity. In order to model more complex dependencies it is possible to add
interaction terms including categorical information and compositional information
at conditioning locations.

With this extension it is possible to introduce other spatial variables from other
layers of the dataset as covariates into the prediction of the conditional probability
in step 3 of the SNESIM algorithm. This might be categorical (with indicators as
regressors), real (as non-transformed regressors), ratio (for example with log
transformed data as regressors) or compositional (with alr -transformed data as
regressors) data. Replacing the single normal equation approach by a logistic
regression further provides the additional flexibility of choosing models with fewer
parameters, allowing the use of smaller training images.

The approach thus assumes multiple layers of different scales and can use
information from all other layers in the conditional simulation of the binary
layers.
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Characterisation of a Probability Distribution
via an Exponential Family

Logistic regression is a particular case of a set of models known as generalised
linear models (GLMs). The framework of GLMs allows the transfer of the pre-
ceding models from the simulation of categorical variables to the simulation of
many other kinds of variables. The only condition to be satisfied by these variables
is that the probability distribution pðzÞ of the random variable ZðxÞ to be predicted
can be described as an exponential family, that is

p z hjð Þ / exp
Xd
i¼1

TiðzÞhi
 !

	 p0ðzÞ

where d is the dimension of the vector of parameters of the exponential family, for
each i; 1� i� d the function TiðzÞ is a known function of the random variable Z, hi
is a natural parameter of the distribution and p0ðzÞ is a reference probability dis-
tribution. This specification is sufficiently flexible to include most commonly used
models of probability distributions. For instance, for a lognormal distribution with
logarithmic mean l and variance r2, two functions and two parameters are required:
the parameters are h1 ¼ l=r2 and h2 ¼ ðr2 � 1Þ=2r2, the functions T1ðzÞ ¼ lnðzÞ
and T2ðzÞ ¼ ln2ðzÞ, and the reference distribution is the standard lognormal dis-
tribution. The multinomial distribution is obtained with the parameterisation
hi ¼ ln pi=pKð Þ, the functions TiðzÞ ¼ zi � zK , and the reference distribution p0 zð Þ
is the discrete uniform distribution on the set of unit vectors in RK. For a D-part
additive logistic normal random composition (ALN) with alr mean vector and
covariance matrix l and R, the parameters are h1 ¼ R�1l and h2 ¼ ðI� R�1Þ=2,
the functions are alriðzÞ and alriðzÞalrjðzÞ with i; j ¼ 1; 2; . . .D� 1, and the ref-
erence distribution is the standard ALN distribution. A random composition Z is
said to have an ALN distribution (Aitchison 1986) if and only if its transform alr
(Z) is (D − 1)-variate normally distributed. In theory all finite functions are
admissible choices for the Ti resulting in great flexibility in the shape of the con-
ditional distributions.

Extension of MPS to Predict a Compositional Output

From the concept of exponential family described in the preceding section, it can be
concluded that Eq. (1) (and thus MPS) is just a way to estimate the natural
parameters of a multinomial regionalised categorical variable. It is therefore pos-
sible to consider the prediction of the probability distribution of a continuous
property (in this case, the composition) by establishing a GLM linking the natural
parameters of the target distribution (Egozcue et al. 2013; van den Boogaart et al.
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2014) to a linear combination of the existing influence functions
gqðx; snÞ; q ¼ 1; 2; . . .;Q
� �

. In the case of compositional information, the con-
ditional distribution can be taken to be of the ALN family, in which case the GLM
will imply predicting the vector h1 and the matrix h2, where

h1 ¼
XQ
q¼1

gq x; snð Þbð1Þq ;

h2 ¼
XQ
q¼1

gq x; snð Þbð2Þq :

Note that the parameters bð1Þq are vectors of the same length as h1, while bð2Þq are
matrices of the same size as h2. From the predicted values of these parameters, the
covariance matrix and mean vector of the alr transformed composition conditional
to all available information can be recovered respectively as R̂ ¼ ðI� 2ĥ2Þ�1 and
l̂ ¼ ðI� 2ĥ2Þ�1ĥ1. Having estimated these two parameters, they can easily be used
to obtain a random realisation of a multivariate normal distribution y
Nðl̂; R̂Þ,
which would then be back-transformed to a composition by the inverse alr
transformation,

alr�1ðyÞ ¼ 100	 expðyÞ
1þ 1t expðyÞ : ð3Þ

Ensuring a Valid Conditional Covariance

Mean vectors do not pose any problem to the proposed methodology, as all possible
results of these equations give a valid measure of the central value of the condi-
tional random composition. But as is the case with conventional two-point kriging
techniques, it must be ensured that the resulting covariance matrices are positive
(semi)definite, which implies that the algorithms fitting the several bð2Þq should be
able to solve an optimisation problem constrained to the condition that R is positive
(semi)definite for all possible values of the influence functions. To avoid this, most
commonly used GLM implementations assume a constant covariance matrix.
Alternatively, if one desires that the spread of the composition also adapts to the
existing conditioning information, it is necessary to impose some conditions on the
values of bð2Þq .

When the only conditioning information is of categorical nature, then all
influence functions are valued either as zero or one, and h2 is just a sum of some of
the bð2Þq . Thus, the following are different sufficient conditions yielding valid
covariance matrices:
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• all bð2Þq are negative semidefinite; or

• for any indicator iðxa; kÞ the sum of the bð2Þq associated with the set of influence

functions gqðx; snÞ
� �

should be negative semidefinite. This condition should be
satisfied for all elemental indicators, i.e. for each point xa and each category k.

These conditions are sufficient but not necessary, as the form R̂ ¼ ðI� 2ĥ2Þ�1

would allow ĥ2 to have some small positive eigenvalues (all smaller than 1,
though).

For the case where conditioning information is compositional as well, no
solution exists that ensures negative semidefiniteness of ĥ2 for all possible condi-
tioning values if the influence function is of the form in Eq. (2), as such an
influence function is linear and will surely grow to �1 for some values of the
conditioning zðxaÞ. A partial solution is to assume that the compositional condi-
tioning information has no influence on h2 but retain it for h1. A second solution is
to consider bounded influence functions scaled to lie between 0 and 1 only, in
which case the same conditions as with indicator functions would apply, i.e.
ensuring all bð2Þq to be negative semidefinite would be sufficient. The simplest way
to have bounded compositional influence functions is to use the composition
expressed in proportions, without any log-ratio transformation. For instance, the
additive planar transformation (apt, van den Boogaart and Tolosana-Delgado 2008),
would be a valid choice,

aptiðzðxaÞÞð Þ :¼ ziðxaÞ � zDðxaÞ
z1ðxaÞþ z2ðxaÞþ � � � þ zDðxaÞ : ð4Þ

This transformation could then be used to define an influence function, for
example gqðx; snÞ ¼ 0:5þ 0:5 � aptiðzðxaÞÞð Þ, which has monotonous behaviour,
i.e. identifying some linear combination of the components at the conditioning
locations whose value increases/decreases the spread of the composition at the
target location. On the other hand, if quadratic influence functions are considered,
for example gqðx; snÞ ¼ ðaptiðzðxaÞÞ � 1Þðapti0 ðzðxaÞÞ � 1Þ, then the restriction on

bð2Þq to be negative definite would mean that the spread of the target composition
would increase when some of the components of the conditioning compositions
decrease.

Step-by-Step Procedure

This section summarises the approach via a brief step by step description of the
proposed procedure:
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1. Setting:

1:1. data aspects: choice of the transformations that will be applied to each layer
(most probably, alr/apt—Eqs. (2) resp. (4)—for compositional data, indi-
cators for categorical data)

1:2. algorithm aspects: choice of the largest template sn ¼ fha; a ¼ 1; . . .; ng to
consider; definition of all plans to use, given the data distribution and the
chosen template

1:3. model aspects: choice of the influence functions gqðx; snÞ
� �

to be used for
each natural parameter hi of each layer (e.g. how deep will be the interac-
tions considered?); choice of the reference probability distribution p0 zð Þ for
each layer

2. Model Fitting: for each plan,

2:1. fit the parameters bq
n o

of the generalised linear model

3. Simulation: for each scale of the grid to simulate, from the coarsest to the finest:

3:1. set a random path through the grid nodes to be simulated

3:1:1. for each grid node on the random path

3:1:1:1. identify available conditioning data, including „actual“ data and
previously simulated data

3:1:1:2. select the plan that uses all the available data
3:1:1:3. using the fitted model for that plan, obtain the estimated con-

ditional probability distribution
3:1:1:4. draw a random value from that distribution (in general, with

acceptance/rejection techniques)

3:1:2. go to the next grid node
3:1:3. once the categorical variable has been simulated at all grid nodes

repeat the procedure to simulate the log-ratio variables; back-transform
simulated log-ratios to compositions by Eq. (3) in a step 3.1.1.5

3:2. go to the next grid scale.

Example Application

The Simulation Procedure

The proposed method will be tested with an illustration toy study, loosely inspired
by the characteristics of a Ni/Co-lateritic deposit like Murrin-Murrin (WA).
A simulated example is used, since this allows checking the performance of the
method with a fully known ore body. In this sense, the method proposed in this
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contribution can be considered as a first step towards answering the questions posed
by Mueller et al. (2014). In this toy study, three lithotypes are considered (FZ:
washed zone, MZ: mineralized zone and UM: fresh rock), with a relatively complex
contact geometry. Figure 1 shows such zoning as an illustrative example from the
motivating deposit (adapted from Markwell 2001). The spatial domain will be
considered a 2D planar cut to ensure simple graphic representation. Four miner-
alogical components will be considered: a value mineral A and three different types
of other minerals B, C and D with different separation characteristics in different
processing steps. For the unconditional simulation of a test example the domain
geometry has been simulated by taking independent random fields with a Gaussian
covariance of uncorrected range 0.7 km for each of the lithotypes and to select the
lithotype with the maximum value in its random field. This generates a lithology
with continuous boundaries, for which each lithotype has the same proportion of
occurrence. Conditionally to that the mineral composition has been simulated in
log-ratio scores with a universal kriging trend model and isotropic covariance
structure given by independent log-ratio scores each following an exponential
semivariogram with uncorrected range 0.7 km, a sill of 0.2 plus a small nugget of
0.02. The trend was given by different compositional means for the three regions,
given in Table 1. The resulting geometry of the region and mineral proportion maps
for the components are shown in Fig. 2. Although the entire simulation procedure is
possible using just 2-point statistics in a 2-layer hierarchy, the whole set obtained
cannot be modelled any longer with conventional semivariogram-based geostatis-
tics, because the estimation of the semivariograms would depend on knowing the
average composition at each facies, and to estimate the facies knowledge of the
semivariogram would be required (a typical problem of UK). In contrast, the
proposed methodology should be able to model this double dependence correctly
by considering all compositional-indicator, compositional-compositional and
indicator-indicator 2-point interactions.

A regular grid (as depicted in Fig. 3) of observation locations was chosen. The
category and the composition at these locations were used as conditioning data for

Fig. 1 Schematic representation of the three zones considered in the toy example (simplified from
Markwell 2001)
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Table 1 The compositional means of the three lithotypes in the toy example

Mineral A Mineral B Mineral C Mineral D

Lithotype 1 0.077 0.077 0.077 0.769

Lithotype 2 0.154 0.077 0.462 0.308

Lithotype 3 0.181 0.364 0.091 0.364
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Fig. 2 A simulated scenario serving as training image and conditioning situation
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the algorithm. The original unconditional simulation was used as a training image
to exclude any problem with the size of the training image and its ability to
represent the conditional distribution in the dataset from the analysis. Based on this,
a sequence of simulation points was chosen covering every location in every layer
exactly once (following the idea of snesim of denser and denser grids). At each
point first the categorical, and then the conditional variable was scheduled for
simulation. For each step in the simulation sequence the relative locations of
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Fig. 3 A conditional simulation of the training image produced by the new algorithm. White
squares mark the conditioning locations
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observed or already simulated data were determined and those data were included
in the plan for conditioning points if they were at a distance of less than

ffiffiffi
2

p
times

the current grid spacing. This was done to include all diagonal neighbours. Larger
neighbourhoods require larger training images and more computer time, but can be
used too. For practical reasons, in this application the original set of observation
locations was chosen on the grid in order to keep the number of plans small (a plan
is a sub-template produced by eliminating some of the conditioning points of a
template, previously scaled to simulate at a certain grid scale). The resulting plans
were then compared and the set of all combinations of conditioning data with the
layer to be simulated were computed. The 36 different combinations for the given
scenario are shown in Fig. 4.

Use Layer 1
Use Layer 2
Simulate Layer 1
Simulate Layer 2

Fig. 4 The 36 plans for conditioning points used in the toy example. A plan is the combination of
three elements: the scale of the grid (i.e. of 9 	 9, 5 	 5 or 3 	 3), the sub-template (built from
the template by removing conditioning data points), and the layer that is being simulated

758 K. G. van den Boogaart et al.



For each of the combinations a GLM was fitted to data read from 120 locations
of the training image and their respective neighbourhoods according to the plan.
The locations were chosen at random, subject to the condition that all necessary
information (the dependent variable and the conditioning locations) is inside the
training image. The generalised linear model was defined for both layers in the
following way: The reference measure was taken as the empirical distribution of the
data in the training image. This allows a start from completely non Gaussian
reference distributions, while still weighting the different parts of the distribution by
the neighbourhood given by the exponential part of the GLM. The sufficient
statistics TðxÞ for the multinomial layer were given by its first two indicators (the
choice of which 2 indicators from the possible 3 is irrelevant) as usual in multi-
nomial logistic regression. The sufficient statistics TðxÞ for the compositional layer
were given by the alr transform and the monomials of order 2 (i.e. products and
squares) of the apt transform. The influence functions gj x; sð Þ were selected to be
simply all monomials up to order 2 in all available indicators and apt transforms for
the conditioning data points. The method was thus effectively a 3 point procedure.
The GLMs represent one of the simplest possible regression model choices
according to this contribution. The resulting GLMs were fitted with a straightfor-
ward Fisher scoring, with a simple step size control, starting from all b ið Þ

q ¼ 0. The
fitting step takes several hours with an R/C++ implementation on a standard 4 core
Intel(R) Core(TM) i7-2640 M CPU @ 2.80 GHz.

The simulation algorithm then uses the conditioning data points, the simulation
sequence, the plan for the conditioning points, and the fitted b-parameters for each
of the plans to compute for each of the simulation points the conditional distribution
according to the GLM. A new value is then realised by rejection sampling. This is
repeated until all points are simulated. Such a conditional simulation of both layers
simultaneously is shown in Fig. 4. The simulation step runs in O(n) time and needs
less than 5 s per simulation on the same machine, which is indeed faster than the
Cholesky decomposition based marginal simulation used to generate the compo-
sitional training image (>20 s).

Geometallurgical Optimisation

The aim of such simulation procedures is geometallurgical optimisation, leading to
optimal processing choices for each mining block. It is assumed that for each
known set of geometallurgical parameters of the ore (for example lithotype and
mineral composition) and for each known set of processing parameters one can
compute material streams, recovery and the costs along the processing chain. In the
toy example this situation was modelled by a conceptual model of a processing
chain, which was given by known recoveries and costs for several optional pro-
cessing steps measured in costs units (cu; monetary unit per mass unit):
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1. Mining (“mine or leave”-choice for each mining block), mining costs depend on
lithotype (10cu, 20cu, 15cu). Every block mined will be processed further. No
mining is the typical choice for poor ore from any of the lithologies.

2. Density separation comes at a cost of 100cu and recovers 95% A, 10% B, 5% C,
0.2% D. Density separation is the typical choice for rich ore from lithology 1 as
it removes the dominating gangue D effectively.

3. Flotation comes at a cost of 100cu and recovers 95% A, 5% B, 1% C, 5% D.
Flotation is the typical choice for rich ore from lithology 2 as it removes both
materials C and D effectively.

4. Metallurgy comes at a cost of 100cu and recovers 0.95% of the metal content of
A, 20% of the metal content of B, 5% of the metal content of C, and 5% of the
metal content of D. Metallurgy is always necessary, since otherwise there are
unsellable minerals. It is assumed that the metals in the minerals B, C, D are not
desired in the final product.

5. Upgrading, a metallurgical step at 20 cu recovering 0.95% of the metal from A,
0.2% of the metal from B, and 80% of the metal from C and D. This step is
potentially necessary to remove high contents of B in the metal product.
Flotation followed by upgrading can be a good choice for ore from lithology 3.

6. It is assumed that the resulting metal can be sold on the world market at a price
of 4000cu if metal A content is 99% or higher. Nearly all material can reach this
concentration, when all three processing steps are applied, however this gen-
erates costs and lowers recovery substantially.

This model thus implies four simple yes/no processing choices: mining, density
separation, flotation, and upgrading, resulting in 1þ 23 ¼ 9 possible choices (as ore
not mined does not require any further choices). The optimal choice can be esti-
mated for each mining block of the training image by finding which of the 9 choices
provides the maximum value. The result is given in Table 2 and the left panel of
Fig. 5. It shows that the optimal processing choice does not only depend on
lithology, but also on the actual composition. Following van den Boogaart et al.
(2013b), this will be called the omniscient choice since it depends on the complete
knowledge of all relevant parameters. However, in reality the lithology and mineral
composition are not known at every location, but only at the observation locations.
According to van den Boogaart et al. (2013a) the optimal processing given the
available data is the choice maximising the conditional expectation of the gain, i.e.
the cashflow resulting from the choice. This conditional expectation has been
approximated by averaging over 100 simulations from the conditional simulation
algorithm. The result, called the conditional choice, is presented in Table 3 and the
right panel of Fig. 5. As usual for conditional simulations the result of both choices
is the same at all observation locations. Both choices mine roughly the same area.
Analogous to the smoothing effect of kriging, the conditional choice shows a
smoother structure than the omniscient choice. The conditional choice also shows
some artefacts resulting from the grid structure of the algorithm. Table 4 compares
different choices, including the omniscient choice, the conditional choice and all
non-adaptive choices, which in this case would not make the mine economic at all.
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The huge difference between the omniscient choice and the conditional choice
suggests that in this situation more data should be acquired.

Discussion

This new approach of conditional simulation of several layers of different data types
(data scales in Statistics) simultaneously has a lot of inbuilt flexibility. The general
structure of exponential families allows the inclusion of many kinds of data as
predictors. The maximum likelihood estimation for exponential families solves
likelihood equations, which can be formulated such that the expected value of the
product of the sufficient statistics T and g -functions in the regressors fit on average
the observed mean of this same product in the training dataset. The generated
conditional distribution thus fits the corresponding high order moments defined by
the chosen exponential family and the regression model. In this way the method is
related to the high order cumulants in the sense that it selects a special case of
conditional distributions fitting specified higher order moments. If all moments up
to a given degree fit, the cumulants up to this degree will fit also. In addition, the
method is closely related to Bayesian maximum entropy methods, as exponential
families maximise the entropy with respect to certain constraints.

The method is also related to classical multiple point statistics approaches in the
sense that it can generate the same conditional distributions, when saturated models
are used (i.e. with all interactions considered). However the method provides
additional flexibility. Different scales and data layers can be incorporated. The
choice of conditioning functions is robust with respect to the particular definition of
moments considered, cumulants or other polynomial functions of the moments. The
use of arbitrary reference measures, such as empirical distributions from the training
images, enables the reproduction of complex distributions, such as multimodal
distributions, in the conditional simulation.

The trade-off between the precision of parameter estimation and the size of the
training image has to be handled by user choices regarding the conditioning
neighbourhood and model choices, like the statistics used and the degree of
interaction selected. This trade-off is always present in multiple point geostatistics

Table 2 Number of blocks
classified by dominant facies
and optimal processing
according to the processing
model, computed for each
block of the training image

Lithology 1 2 3

No mining 399 382 308

Flotation + upgrading 0 1 116

Density + flotation 22 27 243

Flotation only 3 129 21

Density sep. only 23 6 1

This is the best choice, however it would require full knowledge
of the true lithology and mineralogical composition, hence the
name “omniscient”
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methods, either explicitly or hidden to the user. The difference is merely that in the
framework presented here it must be treated explicitly. The selection of the precise
form of the regression models for the various plans requires some understanding of
the properties of the resulting exponential families, as inconsistent models can be
constructed, for example models with parameters corresponding to negative vari-
ances. In our experience such inconsistencies typically result in numeric errors or
non-convergence of the fitting algorithms. Some mathematical skills and a good
understanding of the spatial dependence structure are yet needed to select the
generalised linear models (GLMs) used in the simulation algorithm. Currently the
algorithm only uses GLMs with the so-called natural link. Eventually future
extensions towards other link functions might simplify model building. The
numerical fitting of the multivariate and high parametric GLMs with the current
general algorithm (relying on sample based integration) requires a substantial
amount of computing power. The algorithm is thus only recommended, when
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Fig. 5 Comparison of the optimal choice based on known geometallurgical parameters
(omniscient) and the computed choice conditional to the observed data. Theory expects the
conditional choice to be much smoother than the omniscient choice. Black outlines show the data
needed for the choice. In the left panel, this is an exhaustive sampling along the grid

Table 3 Number of blocks
classified by dominant facies
and optimal processing
according to the processing
model, computed for each
block using the conditional
expectation of the gain for
each processing choice based
on the simulated conditional
distribution of the properties

Lithology 1 2 3

No mining 373 512 367

Flotation + upgrading 0 0 20

Density + flotation 73 29 302

Flotation only 0 4 0

Density sep. only 1 0 0

This is the best choice anticipating our lack of knowledge,
however approximated by conditional simulations rather than the
unknown full conditional distribution. In contrast to the
omniscient choice in Table 2 more often the conservative
choices of no mining and both separation techniques are preferred

762 K. G. van den Boogaart et al.



powerful computer servers are available. The simulation itself however is extremely
fast, so that many realisations can be computed once the GLMs have been fitted.

An interesting aspect is that classical geostatistical methods can likewise be
understood in terms of a linear model (i.e. regression). Simple kriging is known
(Stein and Corsten 1991) to be closely related to usual regression models and the
conditional distribution in SNESIM corresponds to a saturated multinomial logistic
regression model, although both are computed with different algorithms. Sequential
Gaussian Simulation and SNESIM likewise are based on such sequences adding
points iteratively on a selected simulation path through the simulation grid. The
method can thus be seen as a joint generalisation of sequential Gaussian simulation
and MPS.

The first test of the model with the toy example processing suggests that the
simulation approach is fit for purpose with respect to geometallurgical optimisation
choices. Unlike other methods it can produce joint simulations of all parameters
relevant for processing honouring information on other data layers, and it can
consider bidirectional dependence (i.e. each layer depends on the other). It has
enough flexibility to model complex dependencies and complex conditional dis-
tributions. It has inbuilt flexibility to tackle the trade-off between the precision of
fitting based on finite training images and the approximation error introduced by
unsaturated models. And unlike other models it can honour restricted sample spaces
such as positive numbers, compositions or any other kind of restricted sample
spaces, by selecting the reference measure accordingly. On the other hand, the
present implementation it is not foolproof and requires substantial user choices and
further research. The representation of the conditional distribution in terms of
GLMs might help with that, since all the standard methods for this type of

Table 4 Total gain for various processing choice strategies on the training image

Choice Sum realised values of all mining blocks in thousand monetary
units

Omniscient choice 30

Conditional choice 4

No mining 0

Complete processing −80

Flotation + upgrading −80

Density
sep. +upgrading

−63

Upgrading only −195

Density sep. + flotation −26

Flotation only −168

Density separation only −199

Metallurgy only −161

All non-adaptive choices result in losses. This is mainly due to an insufficient choice of an ultimate
pit. This decision is however difficult to take as it depends on both parameters, lithotype and the
mineral composition, as the different gangue minerals behave differently during processing
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regression analysis can be used for these decisions. These include tests or confi-
dence intervals on the influence parameters bq, diagnostic graphics and global
goodness-of-fit statistics.

The paper has not discussed standard complexity issues in geostatistics like
change of support, how to define a good training image or how to find a best
possible prediction of the conditional distribution at a location. This is left for
further research, and the reader should be aware that more would need to be said
about this.

Conclusions

A new approach was proposed for the joint simulation of various data scales, as
required if geometallurgical processing models are to be incorporated into mine
planning. The approach provides a high degree of flexibility, which will have to be
explored, but is also quite promising for solving several problems of geostatistical
simulation simultaneously, including: managing several scales, constraint spaces,
multivariate joint simulation, limited training images, precision in simulation and
complex dependence structures.
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Geologically Enhanced Simulation
of Complex Mineral Deposits Through
High-Order Spatial Cumulants

H. Mustapha and R. Dimitrakopoulos

Abstract Earth sciences and engineering phenomena such as geologic units, grade
content and other properties of a mineral deposit, as well as attributes of other
natural phenomena, represent complex geological systems distributed in space.
Their spatial distributions are currently predicted from finite measurements and
second-order spatial statistical models, which are limiting, as geological systems are
highly complex, non-Gaussian and exhibit non-linear patterns of spatial connec-
tivity. Non-linear and non-Gaussian high-order geostatistics is a new area of
research based on higher-order spatial connectivity measures and spatial cumulants.
Key elements of a high-order spatial stochastic modelling framework are developed
herein, starting with the definitions of high-order spatial statistics and, more
specifically, the definition and properties of spatial cumulants, and the inference and
interpretation of high-order anisotropic cumulants. Spatial cumulants are shown to
capture the directional multiple-point periodicity and spatial architecture of geo-
logical processes. It is further shown that only a subset of all the cumulant templates
has to be computed to characterize complex spatial patterns. The second key ele-
ment of high-order geostatistics is the simulation of complex mineral deposits using
a nonparametric Legendre series approximation with coefficient calculated in terms
of spatial cumulants. Examples show that the approach works very well.
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Introduction

In earth sciences and engineering, measurements of phenomena under study represent
complex non-Gaussian systems distributed in space. Frequently, it is required that
geo-environmental attributes are modeled and their spatial distributions predicted
from a limited set of measurements. Random field models and stochastic data anal-
ysis, termed geostatistics, have long been established and used as the key approach to
modelling and predicting natural phenomena in a variety of earth sciences and
engineering fields (e.g. Matheron 1971; David 1977, 1988; Journel and Hijbregts
1978; Journel 1989, 1994; Ripley 1987; Cressie 1993; Kitanidis 1997; Hohn 1999;
Goovaerts 1997; Chilès and Delfiner 1999). Despite the considerable developments
over the past three decades, modelling approaches are based on second-order statis-
tics, and the spatial information these contain. Concerns articulated during the last
decade suggest that current modelling frameworks are limited in their ability to
account for the spatial complexity of the natural phenomena being modelled, that are
critical to modelling and predicting spatially-distributed, location-dependent data
(e.g. Guardiano and Srivastava 1993; Journel 1997). Several attempts to develop new
techniques dealing with spatial complexity include the multiple-point approach
(Strebelle 2002; Zhang et al. 2006; Journel 2000), new Markov random field based
approaches (Daly 2005; Tjelmeland and Eidsvik 2005; Tjelmeland 1998), and others.
These developments replace the two-point covariance with a training image so as to
account for high-order dependencies. Although these are novel approaches, there is a
need for a well-defined spatial stochastic modelling framework capable of dealing
with the complexity of geo-environmental phenomena. The approach advocated
herein is based on cumulants, which are combinations of moment statistical param-
eters allowing the complete characterization of non-Gaussian random variables. In
multiple point statistics, training images are used as a model for high order joint
distributions. However this model does not necessarily represent the true joint dis-
tribution of the random field under consideration. The multiple-point is a particular
case of the high-order moment and does not infer from a concrete statistical theory.
While cumulants that have statistical advanced properties compared to the moments
are explored in this paper andwill be essential in a futurework. Spatial cumulants are a
new concept and it is introduced here because cumulants completely characterize
non-Gaussian stationary and ergodic spatial random fields, thus can provide a new
consistent framework in addressing issues mentioned above. Related works on
cumulants of one-dimensional random function models have been developed to deal
with the identification, analysis and testing of non-linear signals (e.g. Billinger and
Rosenblatt 1966; Mendel 1991; Swami et al 1990; Nikias and Petropulu 1993).

In the following sections, this paper first outlines basic definitions, summarizes
approaches to calculating anisotropic spatial cumulants, shows examples, and
comments on relations between cumulants and geological process. Then, the sim-
ulation of mineral deposits with complex non-Gaussian and non-linear geological
patterns is outlined based on the use of spatial cumulants in the high-dimensional
space of Legendre polynomials (Lebedev 1965). Examples from simulating a
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complex channel system illustrate the practical aspects of high-order simulations
based on spatial cumulants. Conclusions and comments follow.

High-Order Statistics of Non-gaussian Spatial Random
Functions

Let ðX;=;PÞ be a probability real space. A spatial real random field ZðxÞ is a family
of random variables Zðx1Þ; Zðx2Þ; . . .f g at locations x1; x2; . . ., where each random
variable is defined on ðX;=;PÞ and takes real values.

Assuming ZðxÞ is a zero-mean ergodic stationary random field, then the
cumulants of the random field ZðxÞ are defined from the MacLaurin expansion of
the cumulant generating function:

eWðvÞ ¼ ln E expðjvTZÞ� �� �
If its moments up to order r exist, then:

Mom Z xð ÞZ xþ h1ð Þ; . . .; Z xþ hr�1ð Þ½ � ¼ E Zf xð ÞZ xþ h1ð Þ
. . .Z xþ hr�1Þgð

The moments depend only on the vectors h1; h2; . . .; hr�1.
Similarly, the rth-order cumulants of ZðxÞ can be denoted as:

czrðh1; h2; . . .; hr�1Þ ¼ Cum½ZðxÞ; Zðxþ h1Þ; . . .; Zðxþ hr�1Þ�

For example, the second-order cumulant of a non-centered random function ZðxÞ
known as the covariance is given by:

cz2ðhÞ ¼ E ZðxÞZðxþ hÞf g � E ZðxÞf g2

Its third-order cumulant is given by:

c
z
3

h1; h2ð Þ ¼ E Z xð ÞZ xþ h1ð ÞZ xþ h2ð Þgf
� E Z xð Þf gE Z xþ h1ð ÞZ xþ h2ð Þf g
� E Z xð Þf gE Z xþ h1ð ÞZ xþ h3ð Þf g
� E Z xð Þf gE Z xþ h2ð ÞZ xþ h3ð Þf gþ 2E Z xð Þf g3

where:

h3 is the difference between vectors h1 and h2.
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It may be computationally convenient to consider zero-mean random functions
as some of the terms vanish. In addition, note that the cumulants of orders higher
than three of a zero mean random function are related to their moments of lower
orders and a combination of their moments of order two.

Calculating Experimental Anisotropic Spatial Cumulants

In this section, the definitions and implementation details of the calculations of
experimental cumulants from exhaustive and sparse data sets are described.

Definitions

Spatial cumulants are defined in terms of distances in space. Existing cumulant
calculations assume regularly sampled data and/or a regularly sampled training data
set. In general, however, geological data are available only on irregularly spaced
borehole locations. Similarly to anisotropic experimental variograms, it is possible
to restrict the calculation of cumulants to a given direction. For this purpose, the
concept of spatial template for calculating cumulants is introduced here. A spatial
template T is defined as a particular geometry of points in space; more formally,

given a set of directional vectors ~h1;~h2; . . .;~hr
n o

, supported by the direction angles

fh1; h2; . . .; hrg, the associated spatial template of order ðnþ 1Þ is defined (con-
sidering a spatial location x as a reference) as:

Trþ 1ðx;~h1;~h2; . . .;~hr; h1; h2; . . .; hrÞ ¼ x; xþ~h1; xþ~h2; . . .; xþ~hr
n o

For example, the r = 3 order cumulant with the given template T3 is computed
from:

CT3
h1;h2

¼ 1
N2

XN
i¼1

XN
j¼1

ZðxÞZðxþ~hiÞZðxþ~hjÞ; fx; xþ~hi; xþ~hjg 2 T3:

Figure 1 shows an example of a template associated to a third-order experi-
mental cumulant.

Implementation on Regular Grids

In the case of regular grids, the calculations are straightforward for particular
templates that are in the same Cartesian system as the grid. In this case, the dis-
tances and angles are defined in terms of grid increments. For example, the template
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shown in Fig. 1 can be easily implemented in a finite difference way. If the
orthonormal basis of the grid is defined with the supporting unit vector~i and~j. For
example, the experimental third-order cumulant associated with the template T
shown in Fig. 1 is given by:

CT3
h1;h2 ¼

1
N2

XN
i¼1

XN
j¼1

ZðxÞZðxþ~hiÞZðxþ~hjÞ; fx; xþ~hi; xþ~hjg 2 T3

Then, the algorithm is summarized as follows:

1. Choose a template T by defining ~hi and ~hj. The angles are defined by the grid:
0.45 or 90°. Start with closest grid node (i + 1, j), (i, j + 1).

2. Loop until all possible triplets are multiplied.
3. Average the products.
4. Increase grid node separation and go back to step 2.

Implementation on Irregular Grids

For irregular grids, the situation is computationally more complex. Computations
involve angles and distances calculations, that is, the grouping of points in terms of
angles and distances. In practice, the directional neighbourhood search is equivalent
as computing several directional variograms, with given angles and ranges as
shown in Fig. 2.

The algorithm for third-order irregular experimental cumulant calculations (see
Figs. 2 and 3 for complementary information) can be summarized as:

1. Choose a template by defining ~hi and~hj. The angles a1 and a2 can be anything
between 0 and 360°. Choose tolerance angles Ta1 and Ta2 for each of the
vectors. If angle equal to 90°, omnidirectional cumulants are calculated.

2. Choose a tolerance distance Th1 and Th2 for each direction.

Fig. 1 L-shape template for
cumulant calculation on
regular grid data
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3. Find the points inside the cone angle for each vector (Fig. 2).
4. Calculate all the possible products between points inside dashed boxes and

supporting point at the origin {Z(x), Z(x1), Z(x2)}.
5. Classify the products in terms of both distances jj~h1jj and jj~h2jj and average in

every lag.

Fig. 2 Irregular template for
3rd order cumulant
calculation. h2 and h1 are the
distances with Th1 and Th2,
tolerance distances
respectively. a1 and a2 are the
angles with tolerances Ta1
and Ta2, respectively. (i, j) is
the basis of the cartesian
coordinate system

Fig. 3 The four experimental
third-order cumulant
templates used in the
following examples.
(1) L-shape, (2) 45°, (3) XX
and (4) YY. h1 is the distance
between x and x1 and h2 is the
distance between x and x2

772 H. Mustapha and R. Dimitrakopoulos



Sequential Simulation with High-Order Spatial Cumulants

Approximation of a Joint Probability Density Using Legendre
Series

This section discusses the approximation of continuous densities using Legendre
series. A squared integrable and real piecewise smooth function f defined on
D ¼ ½�1; 1� can be formally written in a series of Legendre polynomials

f ðzÞ ¼
X
m¼0

1
Lm

PmðzÞ
jjPmjj ; ð1Þ

where PmðzÞ is the mth-order Legendre polynomials, with norm jjPmjj; defined as
(Lebedev 1965)

PmðzÞ ¼ 1
2mm!

d
dz

� �m

z2 � 1
� �m� 	 ¼ Xm

i¼0

ai;mz
i; and � 1� z� 1: ð2Þ

The Legendre polynomials PmðzÞ obey the following recursive relation

Pm þ 1 zð Þ ¼ 2mþ 1
mþ 1

xPm zð Þ � m
mþ 1

Pm�1 zð Þ ð3Þ

where P0ðzÞ ¼ 1, P1ðzÞ ¼ z, and m� 1. The set of Legendre polynomials fPmðzÞgm
forms a complete orthogonal basis set on the interval ½�1; 1�. The orthogonality
property is defined as

Z
D
Pm zð ÞPn zð Þdx ¼ 0 m 6¼ n

2
2mþ 1 m 6¼ n



ð4Þ

The discrete Legendre polynomials also satisfy

X
i¼1

k

PmðziÞPnðziÞDz ¼ 2
2mþ 1

dmn; 8m; n� 0; ð5Þ

where

Dz ¼ zi � zi�1 ¼ 2=k is a space step

k is the number of steps

fzig is a uniform discretisation of �1; 1½ �
dmn is the delta Dirac function

\!endaligned[
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To avoid numerical instability in polynomial computation, we normalized the
Legendre polynomials by utilizing the square norm. The set of normalized
Legendre polynomials is defined as:

PmðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

2

r
PmðzÞ:

In this case, the orthogonality condition given in Eq. 4 becomes:

X
i¼1

k

PmðziÞPnðziÞDz ¼ dmn; 8m; n� 0: ð6Þ

The coefficients Lm in Eq. 1 of the Legendre series, the so-called Legendre
cumulants, can be determined using the orthogonality property in Eq. 4 as:

Lm ¼
Z
D

PmðzÞf ðzÞdz ¼ gmðciÞ; i ¼ 0; . . .m and m ¼ 0; 1; 2; :: ð7Þ

where ci is the ith-order cumulant of f. Theoretically, the series 1, with coefficients
Lm calculated from Eq. 7, converges to f ðzÞ at every continuity point of f ðzÞ as
demonstrated by Lebedev (1965). Finally, if only cumulants of order smaller than
or equal to x are given, then the function f(z) in Eq. 1 can be approximated as
follows:

f ðzÞ � ~fxðzÞ ¼
Xx
m¼

LmPmðzÞ ð8Þ

The above is detailed for three-dimensional spaces in Mustapha and
Dimitrakopoulos (2010a).

A High-Order Simulation Method

This section describes the high-order conditional simulation method (hosim) based
on spatial cumulants. A sequential procedure simulating values at unsampled
locations that are randomly visited is used here. The Legendre series approximation
is used to estimate the cpdfs (Mustapha and Dimitrakopoulos 2010a). This
expression uses Legendre polynomials which are orthogonal on the finite interval
½�1; 1�. Then, the training image (TI) and the data values [Fig. 4(1)] and the data
values [Fig. 4(2)] are first scaled to [−1,1]d, where d is the dimension of the
problem (i.e., d = 1, 2 or 3).
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The hosim method first combines the TI used and the samples (Fig. 5) to infer
the high-order spatial cumulants. A global calculation procedure is performed based
on a given maximal template size (TEMP) [Fig. 5(2)]. This step consists of cal-
culating all the spatial cumulants needed by the Legendre series approximation.

The main steps of hosim method are as follows:

1. Scan the training image and the sample data [Fig. 5(1)] and store the spatial
cumulants in a global tree.

2. Define a random path visiting once all unsampled nodes.
3. Define the template shape T for each unsampled location x0 using its neigh-

bours. The conditioning data available within TEMP are then searched (Fig. 5).
The high-order spatial cumulants are read from the global tree in Step 1, and are
used to calculate the coefficients of the Legendre series. These coefficient are
used to build the cpdf of Z0.

4. Draw a uniform random value in [0, 1] to read from the conditional distribution
a simulated value, Zðx0Þ, at x0:

Fig. 4 (1) Training image;
hard data locations in (2)

(1)- Training image with hard data

(2)- Template TEMP for
global calculation

Fig. 5 Training image in (1). The template in (2) is used for a global calculation of the spatial
cumulants
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5. Add x0 to the set of sample hard data and the previously simulated values.
6. Repeat Steps 3 and 5 for the next points in the random path defined in Step (3).
7. Repeat Steps 2 to 6 to generate different realizations using different random

paths.

The random path defined in Step 5 concerns only the unsampled locations. Thus,
the final realization obtained in after Step 8 honours the conditioning data.

Spatial Cumulants: Examples, Calculation and Geological
Interpretations

Examples of third-order cumulants calculated on two- and three-dimensional data
sets are presented in this section. Results are interpreted so as to understand their
use as a pattern recognition tool. The data sets utilised represent complete images
and the regular grid approach described in a previous section is followed. It should
be noted that, the covariance is a measure of the periodicity between pairs of points
separated by given distances; similarly, the higher-order cumulant is also a measure
of periodicity but in the direction of the symmetry axis of template used, that is, the
multiple point symmetry. In the examples that following, cumulants are computed
on zero mean data sets.

Spatial Templates

In the following example, the covariance map and four directional experimental
cumulants are presented, unless otherwise specified. Fourth- and fifth-order
cumulants are, respectively, computed with the and xy(−x)(−y) templates as
shown in Fig. 6.

1- xy(-y) 2- xy(-x)(-y)Fig. 6 Examples of
fourth-order cumulant
templates (1) and fifth-order
cumulant templates (2)
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Training Image
In Fig. 7(2), (3) we consider an interpretation of a diamond baring kimberlite pipe
of the Ekati mine, NT Canada (Nowicki et al. 2004), and its translation to a 3D
binary training image (76,055 nodes are used). The geological interpretation of the
pipe geometry is seen as two parts: one on the top and another one on the bottom as
shown in Fig. 7. The part on the bottom is close to a three-dimensional cone
geometric shape. The base of this cone or the intersection between the two parts of
the pipe is a horizontal section of size 150 m along x and 200 m along y (Figs. 7
and 11). (For more details, see Dimitrakopoulos et al. 2010 and Mustapha and
Dimitrakopoulos 2010b). Results for high-order cumulants are presented first.
Then, a discussion follows.

The third-order cumulant maps provide approximations of the pipe shape as
shown in Fig. 8(1), (3). The fourth-order xyz cumulants average the objects and
translate them to the origin.

For example, the pipe, considered as the only object in Fig. 7(3), is translated to
the origin as shown in Fig. 9(1). From this figure, 2D cross-sections are shown in
Fig. 9(2), (3). These cross-sections provide, approximately, the results obtained by
the third-order cumulant maps in Fig. 8. This conclusion is justified by the fact that
the pipe shape is approximately reflected, in a specific plane, by using orthogonal
shapes (xy or L-shape, xz or yz) cumulants, while it is fully characterized using xyz
cumulants. These observations show, not surprisingly, the ability of the higher
order cumulants to include key relations seen in lower orders. More generally,
relations between cumulants can be extended for an order higher than four and, in
particularly, order five. The fifth-order cumulant maps are based on four directions,
and placed in four-dimensional space. Then, cross-sections are used as detailed
before. For example, Fig. 10 shows a 3D cross-section of the xyz(−z) fifth-order
cumulant map. This figure translates the pipe to the origin and reflects the results of
the fourth-order and, consequently, the third-order results are reflected too. The pipe
shape varies strongly between the bottom and the top along the vertical

(1) Drillholes 
(2) Geological 
interpretation of (1)

(2) Translation of  the pipe 
(2) to a 3D training image 

Fig. 7 A geological interpretation of a kimberlite pipe, (1) drillholes; (2) a geological
interpretation of (2); (3) regular block approximation of the pipe surrounding rock

Geologically Enhanced Simulation of Complex Mineral … 777



axis (z) while the variations are less along the horizontal axis (x and y) as shown in
Fig. 11. Figure 12 shows results of the third-, fourth- and fifth-order with a different
way. Figure 12(1.a)–(3.a) present third-order cumulant maps using lines contours
from Fig. 8.

(1) Third-order: xy-
templates

(2) Third-order: xz -
templates

(3) Third-order: yz
templates

Fig. 8 Third-order cumulants. (1)–(3) are third-order cumulants for the Fox kimberlite pipe, NT
in Fig. 7(3), using xy, xz and yz templates

(1) Fourth-order: xyz- templates
(2) Fourth-order : Three 2D cross-sections 

from (1)

Fig. 9 Fourth-order cumulants. (1) is a fourth-order cumulant map for the Fox kimberlite pipe,
NT in Fig. 7(3), using xyz templates; (2) are three 2D cross-sections from (1)
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Several 2D cross-sections, along x, y and z directions, are selected from the
fourth-order cumulant maps in Fig. 9. The fronts from 2D cross-sections of Fig. 10
are selected as shown in Fig. 12(1.c)–(3.c). The third-order cumulant map in
Fig. 12(1.a) shows a regular shape of the horizontal sections of the pipe while the
fourth- and fifth-order cumulant maps, in Fig. 12(1.b)–(1.c), reflect some horizontal
irregularity of the pipe. The main raison comes from the variation of the pipe size
along the vertical axis.

This variation is more described by the fourth- and the fifth-order cumulants
because they manipulate points in more than two directions. For example, four
points are considered for the fourth order-cumulant and one of the points varies
along the z direction. The variations along x and y axis are less than the variation
along z axis. The third-order cumulant maps in Fig. 12(2.a)–(3.a) show, approxi-
mately, results close to those obtained from fourth- and fifth-order maps as shown
in Fig. 12(2) and (3). The fourth- and fifth-order maps detect with more precision
the size along x (150 m) and y (200 m) of the intersection between the two parts of
the pipe.

Drill Hole Data
The cumulant maps calculated on the 3D training image provide good interpretation
for the pipe’s shape. In the following, cumulants are calculated on the original data
obtained from the pipe drill holes in Fig. 7(1). Figures 13, 14 and 15 show the
obtained results. In these figures, the red lines represent the borders of the set of
high values in the cumulants maps. These borders reflect the shape of the pipe along
x and y directions which is approximately similar to the results obtained on the 3D

(1) Fifth -order: A 3D cross-section from the 
xyz(-z) templates cumulant map at ‘-z=0’

(2) Fifth-order: Three 2D cross-sections from 
(1)

Fig. 10 Fifth-order cumulants. (1) is a 3D cross-section at −z = 0 of the five-dimensional xyz(−z)
template cumulant map; (2) are three 2D cross-sections from (1)
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training image (Fig. 12). The top part of the pipe is better detected then the bottom
part and that because most of the data points are in the top part, until 300 m depth,
as the pipe drill holes show in Fig. 7(1). In Fig. 13 the fourth- and fifth-order
cumulants maps calculated on data provide better description of the horizontal
sections than the third-order map. They show irregularity between 400 < x < 500
and along y as detected with the fourth- and fifth-order maps from the 3D training
image.

Two-dimensional cross-sections of the pipe in Figure 7
(1.a) xy cross-section at z=350 (1.b) xy cross-section at z=250

(2.a) xz cross-section at y=300 (2.b) xz cross-section at y=200

(3.a) yz cross-section at x=300 (3.b) yz cross-section at z=200

Fig. 11 Different horizontal and vertical 2D cross-sections of the pipe in Fig. 7
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Conditional Simulation Using Cumulants and Training
Images

In this section, the simulation of a two-dimensional exhaustive image [Fig. 16(1)] is
shown so as to illustrate the high-order conditional simulation using spatial
cumulants. The example presented herein uses 25 sample data [Fig. 16(2)], the
training image in Fig. 16(3) and the conditional simulation algorithm discussed
above.

THIRD-ORDER FOURTH-ORDER FIFTH-ORDER

(1.a){ , }x yr r cumulant map
(1.b) 2D cross-sections 
along z from the map in
Figure 9 (1)

(1.c) 2D cross-sections along 
z from the map in Figure 10 (1)

(2.a){ , }x zr r cumulant map

(2.b) 2D cross-sections 
along y from the map in
Figure 9 (1)

(2.c) 2D cross-sections along 
y from the map in Figure 10 (1)

(3.a){ , }y zr r cumulant map

(3.b) 2D cross-sections 
along x from the map in
Figure 9 (1)

2D cross-sections along x 
from the map in Figure 10 (1)

Fig. 12 Third-, fourth- and fifth-order cumulant maps for the pipe (3D training image) in Fig. 7
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Different realizations are presented as shown in Fig. 17. This figure shows that
the main characteristics of the exhaustive image are reproduced using a sparse data
set (about 0.85% of the total number of points). The 2D sections presented here
have particular and complex distributions as shown by the bimodal histogram in
Fig. 18(1). This figure shows the comparison between the generated realizations
histograms and the data set histogram. In addition, the realizations reproduced the
variograms along the EW and NS directions of the data set as shown in Fig. 18(2)
and (3). The developed method is also validated by comparing the high-order
statistics of the data set, exhaustive image and the different realizations obtained.
For example, the third-order spatial cumulant maps of the exhaustive image, data
set, realizations (1) and (2) are very close as shown in Fig. 19. This last result is

xy-view
(1) Third-order (2) Fourth-order (3) Fifth-order

Fig. 13 xy views of the third-, fourth- and fifth-order cumulant maps calculated using the data
from drill holes in Fig. 7(1)

xz-view
(1) Third-order (2) Fourth-order (3) Fifth-order

Fig. 14 xz views of the third-, fourth- and fifth-order cumulant maps calculated using the data
from drill holes in Fig. 7(1)
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yz-view
(1) Third-order (2) Fourth-order (3) Fifth-order

Fig. 15 yz views of the third-, fourth- and fifth-order cumulant maps calculated using the data
from drill holes in Fig. 7(1)

(1)- True image (2)- 25 Sample data (3)- Training image

Fig. 16 Simulation of a horizontal 2D section of a fluvial reservoir. (1) Exhaustive image: true
image, (2) 25 sample data, and (3) a training image

(1)- Realization 1 (2)- Realization 2 

Fig. 17 Realizations (1) and (2) obtained by the hosim
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obtained because the new conditional simulation algorithm uses different cumulants
orders in the Legendre series and this will guaranty the reproduction of not only the
histogram and variograms of the sample data, but also their high-order statistics.

Conclusions

This paper presented developments towards a new alternative approach to mod-
elling complex, non-linear, non-Gaussian earth sciences and engineering data, as
required in most applications. The new alternative framework is founded upon
concepts from high-order statistics that are introduced herein in a spatial context.
Mathematical definitions of non-Gaussian spatial random functions and their
high-order spatial statistics are described in detail, stressing the notion of spatial
cumulants. The calculation of spatial cumulants, including anisotropic experimental
cumulant calculations using spatial templates are introduced, and examples of
three-dimensional images presented and their characteristics analyzed to assess the
relations between cumulants and geological patterns. The simulation of a complex

γ

(2)- Variograms NS

(1)- Histograms 
γ

(3)- Variograms EW

Fig. 18 Histograms (1), NS (2) and EW (3) variograms of 10 hosim realizations. The circles refer
to the data set 1 and the solid lines refer to the realizations

(1)- realization 1 (2)- realization 2

0.01

0.02

0.015

0.01

0.02

0.015

Fig. 19 Third-order spatial cumulant maps of the realizations 1 and 2, respectively
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image of channels is presented using a new high-order sequential simulation
method which is based on the concept of high-order spatial. The results showed a
good reproduction of the main features of the exhaustive image using a small data
set. The realizations generated reproduced the histogram, variogram and high-order
statistics of the data set. A key aspect of the simulation method based on spatial
cumulants is the compliance of the simulated realizations with all statistics (any
order) of the available data and avoid possible conflicts between training images
and dense data sets commonly available in mining studies.
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Optimising a Mineral Supply Chain Under
Uncertainty with Long-Term Sales
Contracts

J. Zhang and R. Dimitrakopoulos

Abstract A two-stage stochastic mixed integer non-linear program is formulated for
a mining complex to optimize strategic and tactical plans. The objective is to find the
near optimal decisions for a mineral supply chain in the context with uncertainties in
both ore supply and the commodity market (price and demand). The endogenous spot
price in the commodity market and long-term sales contracts are considered in the
formulation of the mining complex’s optimization model and an ad hoc heuristic is
developed to deal with the throughput- and head-grade-dependent recovery rate in
processing plants. Numerical results indicate that the proposed heuristic is effective
and efficient in numerical tests. Based on the proposed model and heuristic, a
long-term contract design strategy is proposed for making decisions on the contract
price and strategic investments. A shadow price based method is also proposed to
evaluate the existing mining schedule.

Introduction

A mining supply chain is an end-to-end supply chain including all value-added
production operations from the procurement of raw materials to the delivery of final
products (or commodity). A typical mining supply chain in the contex of a “mining
complex”, consists of mines, waste dumps, ore stockpiles, processing plants, pro-
duct warehouses and fleet vehicles for product transportation (Montiel and
Dimitrakopoulos 2015; Goodfellow and Dimitrakopoulos 2016). When mining
complexes are considered, integrated mining supply chains are formed to provide
comprehensive mine-to-port supply of materials/commodities, including mining
and processing ore, generating products (gold bullion, copper concentrate, iron
supply, and so on) and transportation. In this work, stochastic modelling and
solving techniques are used to find the near optimal decisions for a mining complex
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to maintain its profitability in the context with uncertainties in both ore supply and
the commodity market. Research todate focusses only on ore supply and related
uncerrainty (Montiel and Dimitrakopoulos 2015, 2017 in this volume; Goodfellow
and Dimitrakopoulos 2016, 2017 in this volume).

The mineral supply chain optimisation model proposed herein, as shown in
Fig. 1, uses the data obtained from three program modules, i.e., mine scheduler,
market analyser and contract manager, which are assumed already available. The
spot market and contracted customers are considered in the proposed model. The
dynamic recovery rate that depends on the head grade of the feeding material and
the throughput of a processing plant is also considered. A sales contract designing
strategy is proposed using the proposed model and heuristic.

The remainder of this paper is organized as follows. In Sect. “Notation and
Planning Assumptions”, the notation and assumptions for the optimization model
are provided. In Sect. “Model and Heuristic”, a stochastic mixed integer nonlinear
program is formulated and the corresponding solving heuristic is developed.
A series of numerical tests are conducted in Sect. “Model and Heuristic” to show
the accuracy and the efficiency of the proposed heuristic. In Sect. “Designing
Long-term Sales Contract”, a long-term sales contract design strategy based on the
proposed model and heuristic is proposed. Section “Conclusions” contains the
remarks of conclusions and future work.

Notation and Planning Assumptions

The mining complex’s planning horizon is T time periods, and t 2 1; . . .; Tf g is the
period index. The uncertainty of the mining complex as considered here includes
metal (geological) uncertainty and commodity price (market) uncertainty represented
by scenarios. Each scenario combines both sources of uncertainty. Let S be the total
number of scenarios that account for the uncertainties of both mineral deposits and

Fig. 1 The decision support system for mineral supply chain optimization with long-term sales
contracts
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commodity markets, and s 2 1; . . .; Sf g is the scenario index. The mining complex
includes a number of mines, stockpiles, processing plants and fleet vehicles for
transporting material and products (as shown in Fig. 2). The detailed assumptions for
each facility in a mining complex are described below.

Mines A mining complex consists of I mines each of which is indexed by
i 2 1; . . .; If g. For each mine, the mining schedule is predetermined and hence the
tonnage and the grade of the extracted material are treated as exogenous. Because of
the geological uncertainty, the tonnage and the grade of ore extracted in each period
are stochastic. Because the mine production schedule is assumed to be predeter-
mined in this work, the tonnage and the grade of the ore eactracted in each period
can be simulated. The tonnage and the grade of ore extreacted in each period are
denoted by oits 2 0; þ1½ Þ and gMits 2 0; 1ð Þ, respectively, where the superscript M
indicates that the symbol is associated with a “Mine”. After the material is extracted
from a mine, it can be sent to either a processing plant or a stockpile.

Stockpiles The mining complex has J stockpiles each of which is indexed by
j 2 1; . . .; Jf g. A stockpile only accepts the material of a particular type which is
determined by certain parameters such as grade, hardness, composition, etc.
A waste pile can also be treated as a special stockpile if the wate is treated special
ore of which the grade is below the cutoff grade for waste. For clarity, a binary
parameter, denoted by aijts 2 0; 1f g is used to indicate if stockpile j accepts material
extracted from mine i in scenario s and period t. Because a material stockpile is not
homogeneous and it is usually the case that only the surface is accessible for grade
test (Holmes 2004), the grade of the material from a stockpile can only be tested
when it is being moved. Thus, the grade of the material from a stockpile is treated
as exogenous and stochastic. Let gHjts 2 0; 1ð Þ be the grade of material from
stockpile j, where the superscript H indicates that the symbol is associated with a
“Stockpile”. The tonnage of material stocked in stockpile j is denoted by

Fig. 2 The structure of the mineral supply chain studied in this work

Optimising a Mineral Supply Chain … 789



vHjts 2 0; þ1½ Þ. The flow from mine i to stockpile j is denoted by xMH
ijts 2 0; þ1½ Þ,

and the cost of transporting a unit tonnage material is denoted by cMH
ij 2 0; þ1½ Þ.

Because cMH
ij can also capture other costs incurred at stockpile j, we do not use an

additional parameter to denote the rehandling cost.

Processing plants The mining complex has K processing plants each of which is
indexed by k 2 1; . . .;Kf g. For any plant k, the head grade of the feeding material is
denoted by gPkts 2 0; 1ð Þ, where the superscript P indicates that the symbol is

associated with a “Processing plant”. The head grade should satisfy gPkts 2
gP
kts
; �gPkts

h i
to meet the requirements of the processing method employed by plant

k. The unit processing cost for plant k is denoted by cPkts 2 0; þ1½ Þ. The
throughput in plant k, denoted by vPkts 2 0; þ1½ Þ, is constrained by plant k’s
processing capacity �vPkts. The recovery rate in a processing plant is dynamic
depending on the throughput and the head grade. Plant k’s recovery rate function is
denoted by f Pk vPkts; g

P
kts

� �
which is decreasing in vPkts and increasing in gPkts based on

the observations by Hadler et al. (2010) and Splaine et al. (1982). The material flow
from mine i to plant k is denoted by xMP

ikts 2 0; þ1½ Þ, and cMP
ik 2 0; þ1½ Þ is the

unit transportation cost. Similarly, the material flow from stockpile j to plant k is
denoted by xHPjkts 2 0; þ1½ Þ, and cMH

ik 2 0; þ1½ Þ is the unit transportation cost.

The spot market and the contracted buyers The mining complex sells its
commodity to contracted buyers at contract prices or to “uncontracted” buyers in
the spot market at the spot price. The spot price fluctuates and is influenced by the
mining complex’s commodity supply. Let xUkts be plant k’s commodity supply to the
spot market, and cU the expected transaction cost of selling a unit tonnage of
commodity to the spot market, where the superscript U indicates that the symbol is

associated with the “uncontracted” spot market. The spot price is obtained as pUts �

gts
PK
k¼1

xUkts where p
U
ts and gts are random parameters reflecting market status. gts is the

spot price’s sensitivity to the mining complex’s commodity supply and depends on
the mining complex’s market share. In the literature, similar assumptions can be
found in the articles reviewed by Yano and Gilbert (2004). The mining complex has
L contracted buyers each of which is indexed by l 2 1; . . .; Lf g. The contract price
and demand for buyer l are denoted by pCl 2 0; þ1½ Þ and dClt 2 0; þ1½ Þ,
respectively, where the superscript C indicates that the symbol is associated with a
“contract” buyer. If buyer l’s contract demand is not fulfilled by the mining com-
plex, a penalty of �pUts � pCl is incurred for each unit of shortage to ensure the
contracted buyer to find an alternative supply. The quantity of the unfulfilled
demand is denoted by d�lts 2 0; þ1½ Þ for buyer l. The commodity flow from plant
k to buyer l is denoted by xPBklts 2 0; þ1½ Þ, and the unit transportation cost is
denoted by cPBkl 2 0; þ1½ Þ.
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Transportation system Without loss of generality, the mining complex’s trans-
portation system is simplified to two subsystems: internal and outbound subsys-
tems. The internal subsystem transports material between mines, stockpiles and
processing plants, and the outbound subsystem transport commodity from pro-
cessing plants to buyers. The internal and outbound transportation capacities are
determined by the number of trucks �yINT 2 0; 1; . . .f g and �yOUT 2 0; 1; . . .f g denote
the numbers of existing internal and outbound trucks, respectively. u 2 0; þ1½ Þ is
the transportation capacity of each truck. The mining complex can expand the
capacity of its internal and/or outbound transportation system by adding yINT 2
0; 1; . . .f g and/or yOUT 2 0; 1; . . .f g trucks at a cost of s 2 R 0;þ1½ Þ. for each.
The profit of a mining complex is evaluated by its net present value (NPV) that

accounts for the time value of the cash flows in all planning periods. The rate of

Table 1 List of notation

Symbol Descriptiona

Indices:

s 2 1; . . .; Sf g Scenario index

t 2 1; . . .; Tf g Period index

i 2 1; . . .; If g Mine index

j 2 1; . . .; Jf g Stockpile index

k 2 1; . . .;Kf g Plant index

l 2 1; . . .; Lf g Contracted buyer index

Parameters:

c 2 R 0;þ1½ Þ The mining complex’s rate of return

oits 2 R 0;þ1½ Þ Ore tonnage extracted from mine i

gMits 2 R 0;1ð Þ Ore grade extracted from mine i

aijts 2 0; 1f g Indicate if mine i’s material is acceptable to stockpile j

gHits 2 R 0;1ð Þ Material grade obtained from stockpile j

cMH
ij 2 R 0;þ1½ Þ Unit transportation cost from mine i to stockpile j

gP
k
; �gPk 2 R 0;þ1½ Þ Plant k’s lower and upper limits for acceptable head grade

cPk 2 R 0;þ1½ Þ Plant k’s unit processing cost

�vPk 2 R 0;þ1½ Þ Plant k’s processing capacity

ak 2 R 0;1ð Þ;b
V
k ;b

G
k 2 R 0;þ1½ Þ Parameters of plant k’s recovery function

cMP
ik 2 R 0;þ1½ Þ Transportation cost from mine i to plant k

cHPjk 2 R 0;þ1½ Þ Transportation cost from stockpile j to plant k

pUts 2 R 0;þ1½ Þ Spot price without the mining complex’s commodity supply

gts 2 R 0;þ1½ Þ Spot price’s sensitivity to the mining complex’s total
commodity supply

cU 2 R 0;þ1½ Þ The expected unit transaction cost of selling in the spot market

(continued)
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return for each planning period is denoted by c. For clarity, the notation defined in
this section is listed in Table 1.

Model and Heuristic

In this section, the problem is formulated as a 2-stage stochastic mixed integer
nonlinear program (SMINLP) and a constructive heuristic is developed following
the model.

Table 1 (continued)

Symbol Descriptiona

pCl 2 R 0;þ1½ Þ Buyer l’s contracted price

dClt 2 R 0;þ1½ Þ Buyer l’s contracted demand

uINT ; uOUT 2 R 0;þ1½ Þ Capacities of an equipment for internal and outbound
transportation

�yINT ;�yOUT 2 Z 0;þ1½ Þ Quantities of the existing internal and outbound trucks

sINT ; sOUT 2 R 0;þ1½ Þ Cost of a unit internal and outbound trucks

Strategic variables:

yINT ; yOUT 2 Z 0;þ1½ Þ Quantities of new internal and outbound trucks

Tactical variables:

xMH
ijts 2 R 0;þ1½ Þ Material flow from mine i to stockpile j

xMP
ikts 2 R 0;þ1½ Þ Material flow from mine i to plant k

xHPjkts 2 R 0;þ1½ Þ Material flow from stockpile j to plant k

xPBklts 2 R 0;þ1½ Þ Commodity flow from plant k to buyer l

xUk 2 R 0;þ1½ Þ Plant k’s supply to the spot market

Intermediate variables:

vHjts 2 R 0;þ1½ Þ Stockpile j’s tonnage

vPkts 2 R 0;þ1½ Þ Plant k’s throughput

gPkts 2 R 0;þ1½ Þ Plant k’s head grade

d�lts 2 R 0;þ1½ Þ Buyer l’s unfulfilled demand

Function:

fk vPkts; g
P
kts

� �
Compute plant k’s recovery rate from its throughput and head
grade

aThe descriptions for subscripts t and s, representing period- and scenario-dependant, are omitted
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Model

The mining complex’s objective function is to maximize its expected profit over the
planning horizon as

Maximize
1
S

XS
s¼1

XS
t¼1

1
1þc½ �t pUts �gts

XK
k¼1

xUkts� cU
" #XK

k¼1

xUktsþ
XL
l¼1

XK
k¼1

pCl x
PB
klts|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiÞ

266664

�
XJ
j¼1

XI

i¼1

cMH
ij xMH

ijts þ
XK
k¼1

XI

i¼1

cMP
ik xMP

iktsþ
XK
k¼1

XJ
j¼1

cHPjk xHPjktsþ
XL
l¼1

XK
k¼1

cPBkl x
PB
klts|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

266664
377775�

XK
k¼1

cPk v
P
kts|ffl{zffl}

ðiiiÞ

�
XL
l¼1

pUt �pCl
� �

d�lts|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ivð Þ

377775� sINTyINT � sOUTyOUT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
v

:

ð1Þ

In the objective function (1), (i) computes the gross profit from the spot market
and the contracted customers, (ii) computes the total transportation cost, (iii) com-
putes the total processing cost incurred in processing plants, (iv) computes the total
penalty incurred for not fulfilling contract demands, and (v) computes the total
strategic investment considered in this work. As noted earlier, any scenario s con-
tains a combination of simulated parameters that account for the uncertainties in
both geology and commodity market, and the expected profit is obtained by
averaging the profit obtained in each scenario.

The constraints of the model are formulated as follows.

Mine constraint:

oits ¼
XJ
j¼1

xMH
ijts þ

XK
k¼1

xMP
ikts ; 8i; t; s: ð2Þ

(2) constrains that at any mine j, the total amount of flows to stockpiles and
processing plants equals to mine j’s yield.

Stockpile constraints:
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xMH
ijts � aijtsM 8i; j; t; s: ð3Þ

vHjts ¼ vHj;t�1;s þ
XI

i¼1

xMH
ijts �

XK
k¼1

xHPjkts; 8j; t; s: ð4Þ

(3), where M is a large constant, determines whether the material extracted from
mine i is acceptable to stockpile j. (4) computes the stock level in stockpile j in each
period.

Plant constraints:

vPkts ¼
XI

i¼1

xMP
ikts þ

XJ
j¼1

xHPjkts; 8k; t; s: ð5Þ

gPkts ¼
PI

i¼1 g
M
itsx

MP
ikts þ

PJ
j¼1 g

H
jtsx

HP
jkts

vPkts
; 8k; t; s: ð6Þ

gP
k
vPkts �

XI

i¼1

gMitsx
MP
ikts þ

XJ
j¼1

gHjtsx
HP
jkts � �gPk v

P
kts; 8k; t; s: ð7Þ

XI

i¼1

gMitsx
MP
ikts þ

XJ
j¼1

gHjtsx
HP
jkts

" #
fk vPkts; g

P
kts

� � ¼ xUkts þ
XL
l¼1

xPBklts; 8k; t; s: ð8Þ

vPkts ��vPk : 8k; t; s: ð9Þ

(5) and (6) compute the throughput and the head grade of plant k, respectively.
(7) constrains the material fed to plant k to meet plant k’s requirements on head
grade. (8) computes the plant k’s commodity output based on its material input and
recovery rate function, and the commodity is sent to contracted customers and the
spot market. (9) constrains plant k’s throughput to be within its processing capacity.

Transportation constraints:XJ
j¼1

XI

i¼1

xMH
ijts þ

XK
k¼1

XI

i¼1

xMP
ikts þ

XK
k¼1

XJ
j¼1

xHPjkts � u �yINT þ yINT
� �

; 8t; s: ð10Þ

XL
l¼1

XK
k¼1

xPBklts � u �yOUT þ yOUT
� �

; 8t; s: ð11Þ
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(10) and (11) constrain the transportation to be within an expandable capacity.
Because the transport distance is usually in proportion to the unity transportation
cost, here the unit transportation cost is used as the transport distance without loss
of generality.

Penalty constraint:

XK
k¼1

xPBklts þ d�lts ¼ dClt ; 8l; t; s: ð12Þ

(12) computes the unfulfilled demand for each contracted buyer in any period
t and scenario s.

Solution Heuristic

From the model above, it can be observed that because the recovery rate function in
a processing plant, in (8), depends on throughput and head grade, the mining
complex has to solve a nonconvex nonlinear program, which is difficult to solve
using general methods. Hence, a heuristic is developed to solve the proposed
program.

Because our heuristic is iteration-based, for clarity, we use a hat mark, “º”, to
label a constant parameter equal to optimal solution of the corresponding variable
obtained in the previous iteration. The main idea for modifying the program is
removing the non-convexity by fixing the inputs of the recovery rate function.
Thus, in each iteration, constraints (6), (8) and (9) are substituted with

Fk 0; bgPkts� �þ vPktsF
0
k 0; bgPkts� �þ jG1kts z

G
kts � xUkts þ

XL
l¼1

xPBklts; 8k; t; s: ð13Þ

Fk v0Pkts; bgPkts� �þ vPkts � v0Pkts
� �

F0
k v0Pkts; bgPkts� �þ jG2kts z

G
kts � xUkts þ

XL
l¼1

xPBklts; 8k; t; s: ð14Þ

zGkts ¼
XI

i¼1

gMitsx
MP
ikts þ

XJ
j¼1

gHjtsx
HP
jkts � bgPktsvPkts; 8k; t; s: ð15Þ

DGvPkts � zGkts �DGvPkts; 8k; t; s: ð16Þ

vPkts � v0Pkts; 8k; t; s: ð17Þ

In the modified constraints above, Fk v; bgPkts� �
can be obtained as
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Fk v; bgPkts� � ¼ bgPkts � v� fk v; bgPkts� �
;

And F0
k v; bgPkts� �

is the first-order derivative of Fk v; bgPkts� �
with respect to v.

The throughput in the recovery function is set to 0 and v0Pkts in (13) and (14),
respectively, for outer linearization. Additional terms, jG1kts z

G
kts and jG2kts z

G
kts, are

introduced in the left-hand side of (8) to correct the error incurred by fixing head
grade.

Because for any k, t and s, the optimal setting of v0Pkts in the recovery function
always makes (17) bind, in our heuristic, v0Pkts for all k, t and s are gradually reduced
from its maximum value, vPk , until the slack of constraint (17) is small enough for
any k, t and s.

Numerical Test

The proposed heuristic is tested through a series of numerical experiments. The
parameters of the mining complex’s optimization problem are simulated as in
Table 2. To test the accuracy of the proposed heuristic, the proposed heuristic is
first compared with Lingo Global Solver, which is capable of solving general
nonlinear program, through a small-scale problem with a planning horizon of 2
periods. For Lingo global solver, the limit of computation time is set to 2 h. The
objective value obtained by Lingo global solver and the proposed heuristic are
displayed in Fig. 3. It can be observed that within reasonable computation time, the
solutions found by Lingo global solver are worse than the ones found by the
proposed heuristic, and the proposed heuristic requires much less computation time
to solve the test problems at different scales

Table 2 Parameters settings in the hypothetical case

Category Parameter settings

Mines I ¼ 2, oits �U 2500; 3000ð Þ, gMits �U 0; 1ð Þ
Stockpiles J ¼ 2, gH

j
¼ j� 1½ �=2, �gHj ¼ j=2, gHjts �U gH

j
; �gHj

� �
Processing
plants

K ¼ 2, gP
k
¼ U 0:1; 0:5ð Þ, �gPk ¼ gP

k
þ 0:5, cPk �U 0:5; 1ð Þ, �vPk ¼ 3000,

fk vPkts; g
P
kts

� � ¼ b0k � b1kv
P
kts þ b2kg

P
kts where b0k �U 0:6; 0:7ð Þ,

b1k �U 0:00005; 0:0001ð Þ and b2k �U 0:2; 0:3ð Þ
Contracted
buyers

L ¼ 3, pCl �U 8; 10ð Þ; dClt �U 500; 1000ð Þ

Spot market �pUts �U 15; 25ð Þ, gts �U 0; 0:001ð Þ, cU ¼ 1

Transportation cMH
ij �U 0:5; 1ð Þ, cHPjk �U 0:5; 1ð Þ, cMP

ik ¼ minj cMH
ij þ cHPjk

h i
� 0:1,

cPBkl �U 0:5; 1ð Þ, �yINT ¼ �yOUT ¼ 0, uINT ¼ uOUT ¼ 50, sINT ¼ sOUT ¼ 100

Other c ¼ 0:01
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The efficiency of the proposed heuristic is tested for larger problem with 24
periods and the 100 scenarios. Because the Lingo Global Solver cannot solve the
modified program at this scale, the heuristic is programed using CPLEX OPL script.
It takes 1498.74 s for the proposed heuristic to solve the problem. Figure 4a and
Fig. 4b shows the averages of v0Pkts � vPkts and gPkts � bgPkts		 		 for all k, t and s, and
Fig. 4c shows the change of the obtained objective value as the heuristic progresses.

Designing Long-Term Sales Contract

A long-term sales contract specifies the price and the purchase quantity of the
commodity produced by the mining complex. For clarity, we use “principal buyer”
(l ¼ 1) to refer to the buyer that is currently signing a long-term sales contract with
the mining complex. In the contract negotiating phase, a common assumption is
made that the principle buyer’s preference on the contracted demand is
price-sensitive, which reflects a practice that the contract demand increases with
quantity discount. A good review of the operations literature on quantity discounts
can be found in Viswanthan and Wang (2003). Without loss of generality, the
relationship between the price quote and the principal customer’s contracted
demand is simplified to be linear as

dC1t p
C
1

� � ¼ �d1t � a1tp
C
1

where �d1t and a1t represents the principal buyer’s willingness to buy and
demand-price sensitivity, respectively. The mining complex’s maximum expected
profit can be estimated using the proposed model and heuristic if the contract is
signed at any contract price pC1 . The worst-case profit, which is the lowest possible
profit that can be obtained from the scenarios considered in the optimization model,

Fig. 3 Results of small-case test
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is also evaluated as a consideration factor to decide if a contract offer should be
accepted. The worst-case scenario usually includes parameters with low yield of ore
tonnage and grade, and low market price and demand. We demonstrate the
implementation of the proposed contract design strategy by a hypothetical case with
the identical settings as in Sect. 3. Without loss of generality, the principal buyer’s
parameters are set to �d1t ¼ 2200 and a1t ¼ 100 for all t 2 1; . . .; 24f g. Figure 5
shows the mining complex’s expected profit and the worst-case profit at different

Fig. 4 Convergence curve for solving a large-scale problem (T = 24, S = 100)

Fig. 5 The mining complex’s expected profit and worst-case profit at different contract prices
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contract prices. The dashed line shows the mining complex’s expected profit and
the worst-case profit if the contracted demand is 0, which is equivalent to the case
without the present contract. It can be observed that when the contract price is over
19.5, the contract brings positive profit to the mining complex, and the mining
complex’s expected profit is maximized if the contract can be signed at pC1 ¼ 21.
When the contract price is lower than 20 but higher than 18.5, the risk-averse
mining complex still has an incentive for signing the contract because the
worst-case profit with the present contract is higher than the one obtained without
the present contract.

Figure 6 shows the mining complex’s optimal strategic investments, which are
the expansions of internal and outbound transportation capacities, at different
contract prices, and the dashed lines are the mining complex strategic investment
without the present contract. It can be observed that the requirement for internal
transport capacity is not significantly changed as the contracted demand is
increasing because the mining complex reduces the sales quantity to spot market to
honour contracted demand. When the contracted demand increases to a certain
level, the production capacity in the processing plant becomes the bottleneck of the
supply chain so that there is no need to continue to increase the outbound trans-
portation capacity and the penalty for undelivered demand is increased to reduce the
mining complex’s expected profit.

Conclusions

For a mining supply chain, the uncertainties in mineral deposits (material types, ore
grade and tonnage) and the commodity market (price and demand) should be
considered in making strategic decisions to maximize the profit of the entire supply
chain. In this work, a stochastic nonlinear mixed integer programming model is
proposed to help a mining complex to make decisions in signing a long-term sales
contract to deal with the uncertainties existing in both ends of a mineral supply
chain. Due to the complexity in solving the proposed nonconvex and nonlinear

Fig. 6 Optimal strategic investment at different contract prices
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model, a heuristic is developed and tested by a number of numerical experiments.
The result shows that can find a near optimal solution efficiently.

As a suggestion for the future research, methodology in mining scheduling based
on ore shadow prices (or dual price) will be studied, and the shadow-price-based
mine production scheduling method will account for the cost, the profit and the
uncertainty incurred in mineral resource supply chain regardless of the complex
structure of the supply chain. (Figure 7)
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