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Preface

Our aim in writing this manuscript was to provide young researches and graduate
students with a book that combines examples of solving serious research problems
in electromagnetics and original results that encourage further investigations. The
book contains seven papers on various aspects of resonant wave propagation and
scattering written by different authors. Each paper solves one original problem.
However, all of the papers are unified by authors’ desire to show the advantages of
rigorously justified approaches to all stages of the study: from problem formulation
and selection of the method of attack to interpretation of the results.

A glance at the Contents will reveal a range of physical problems raised in the
book. Mostly, those are the problems associated with wave propagation and scat-
tering in natural and artificial environments or with designing the elements and
units for antenna feeders. The authors invoke both theoretical (analytical and
numerical) and experimental techniques for handling the problems. Considerable
attention is given to the mathematical simulation issues, problems of computational
efficiency, and physical interpretation of the results of numerical or full-scale
experiments. Most of the presented results are original and have not been published
earlier.

The need for rigorous theoretical justification of mathematical modeling and
computational experiments—the widely used methodologies of obtaining new
knowledge—is evident. Underformulated problems, neglect of the estimation of
stability and convergence of numerical schemes cannot guarantee reliability of the
results. Furthermore, the rigorous theoretical basis of the laboratory and full-scale
experiments allows to conduct research saving time and material resources, to
safely test simulated devices in a variety of operating conditions. To demonstrate
the advantages of rigorous approaches and their realizability is the heart of the
ideology of this book. And we address it to those young researchers who are going
to work actively and fruitfully in the field of theoretical and applied physics,
electronics, and optics.

The authors of this book are mostly current or former employees of the
Department of Mathematical Physics at the O.Ya. Usikov Institute for Radiophysics
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and Electronics of the National Academy of Sciences (Kharkiv, Ukraine). Professor
Yuriy Sirenko, who has been at the head of the department over the last 25 years,
initiated the writing of this rather unusual in its conception book. He has had a
major influence on it, both scientific and organizational, and managed to inspire
other colleagues with his idea.

The assumed background of the reader is mostly limited to standard under-
graduate topics in physics and mathematics.

Kharkiv, Ukraine Lyudmyla Velychko
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Chapter 1
New Analytical Solutions of Selected
Electromagnetic Problems in Wave
Diffraction Theory

Leonid Pazynin

Abstract The chapter presents explicit analytical solutions for some sophisticated
electromagnetic problems. The analysis of these solutions made it possible, in
particular, to explain the physics of a cycle slipping phenomenon when very long
electromagnetic waves propagate in the Earth-ionosphere waveguide, to establish
the rigorous criterion of the boundary ‘sharpness’ for transient radiation and to
show that the well-known negative refraction phenomenon in isotropic double-
negative media is a direct consequence of the energy conservation law and
Maxwell’s equations.

1.1 Introduction

Exact analytical solutions of the basic problems of physics—boundary value and
initial boundary value—are important not only as a reference for verifying numerical
results but also as an effective tool for a deeper understanding of the nature of the
model under study. To obtain such solutions for new physical problems, one should
invoke, as a rule, new mathematical methods or significantly modify the available
ones. Thus, for example, in quantum mechanics, novel approaches have resulted in a
sharp increase in the number of exactly solvable problems and raised interest in the
subject in the recent years [1]. In theoretical radio physics, this was the case in
mid-twentieth century, after publishing of the book by Wiener and Hopf [2]. This
work has been of vital importance, which is why themethod presented therein takes its
name from the authors—theWiener-Hopf method. As applied to diffraction problems,
it wasfirst used in [3–5]. In the review [6] the authors attempted to describe the areas of
application and discussed the future development of this method.

Mention should be made of the detailed study of the integral convolution
equations in the book by Gakhov and Cherskiy [7], which although not mentioned
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in [6] can be considered as part of the development of this method. In the first two
sections of this chapter, we apply their methodology of solving integral convolution
equations to the new problems on wave propagation near a plane surface of varying
conductivity, thereby reducing those problems to exactly solvable boundary value
ones. Thus, in Sect. 1.2 of this chapter, using the technique suggested in [7] for
solving the so-called smooth transition equation, we obtain analytical solutions for
two two-dimensional problems, namely, we find analytical expressions for the field
generated by a linear current above a plane surface whose impedance varies con-
tinuously from Z1 to Z2 in a given direction, and for the field generated by the same
source in a planar waveguide with a wall of the same impedance distribution. These
solutions generalize the known ones in which the surface impedance changes
stepwise. In Sect. 1.3 we investigate a model of a ring waveguide of constant
cross-section with variable in azimuth impedance of one of the walls. We have
found a class of distributions of these impedances, for which the analytical solution
of the excitation problem for this waveguide had been obtained. This result is used
for simulation of the known cycle slipping phenomenon occurring when very long
electromagnetic waves propagate in the Earth-ionosphere waveguide. A possible
cause of this phenomenon is discussed.

The remaining sections of the chapter are not associated with the Wiener-Hopf
method. In Sect. 1.4 a novel technique is suggested for the analysis of a transient
electromagnetic field generated by a pulsed line current that is located near a planar
interface between two dielectric nonabsorbing and nondispersive media. As distinct
from the Cagniard-de Hoop method, which is widely used for the study of transient
fields both in electrodynamics and in the theory of acoustic and seismic waves, our
approach is based on the transformation of the domain of integration in the integral
expression for the field in the space of two complex variables. As a result, it will
suffice to use the standard procedure of finding the roots of the algebraic equation
rather than construct auxiliary Carniard’s contours. A new representation for the
field has been derived in the form of an integral along a finite contour.

In Sect. 1.5 we discuss the transient radiation of a moving longitudinal magnetic
dipole whose trajectory crosses a soft boundary between two media. The obtained
analytical representation for the dipole field ensures a rigorous criterion of the
boundary ‘sharpness’ thus significantly improving the now known approximate
version.

In Sect. 1.6 the isotropic Epstein transition layer was generalized to the case of a
biisotropic plane stratified medium. An explicit analytical solution to the problem of
normal incidence of a linearly polarized electromagnetic plane wave onto the Epstein
layer was obtained for this extension. The derived transmission and reflection coef-
ficients are indicative of the presence of the total transmission mode in such media.

In Sect. 1.7 we suggest a model for a smoothly inhomogeneous isotropic
flat-layered medium that includes domains with double-positive and double-nega-
tive media. The analytical solution derived for a plane wave propagating through
this medium shows that the well-known negative refraction phenomenon in the
isotropic double-negative medium is a direct consequence of Maxwell’s equations
and of the energy conservation law.
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In Sect. 1.8, using as an example a perfectly conducting sphere, we rigorously
prove the possibility of drastic distortion of its radar image by applying a meta-
material coating on the sphere surface. We have found such radial distributions of
the coating dielectric and magnetic permeabilities that the scattered field every-
where outside the object coincides with the field scattered by a perfectly conducting
sphere of any given smaller radius. Requirements on the material parameters of
such distorting coating are smaller than they are in the case of a masking coating.

1.2 Wave Propagation Near an Irregular Impedance
Structure

One of the problems solved at the early stage of the development of the
Wiener-Hopf method was related to the electromagnetic wave propagation above a
plane whose impedance changed step-wise from Z1 to Z2 in a given direction [8].
A waveguide analog of this problem was studied in [9] for acoustic waves and in
[10] for electromagnetic waves. The electromagnetic model presented in [8] was
given the name ‘the coastal refraction problem’ since it was used for calculation of
a radar error arising when the radar crosses a shoreline.

It is well known that in the case of the stratified medium, whose permittivity is
given by the hyperbolic tangent or by hyperbolic secant, the solution of the wave
propagation problem can be written in explicit form. These two media have been
named asymmetric and symmetric Epstein layers, respectively. In this section we will
show that the problem of wave propagation near a plane surface, whose impedance is
given by the hyperbolic tangent, is also explicitly resolvable. At the same time,
attempts to obtain similar results for an impedance analog of the symmetric Epstein
layer (the permittivity is given by the hyperbolic secant) were unsuccessful, because in
this case we are led to three-element Carleman’s problem whose solution is unknown.

1.2.1 Wave Propagation Over a Plane Surface of Variable
Conductivity

Electrical properties of real underlying surfaces vary smoothly and the assumption
as to their step-wise change (for example, when crossing the boundary land/sea) can
only be justified for sufficiently large values of the wavelength k. However, the
discontinuity of the function ZðxÞ; which characterizes the surface impedance
distribution on the plane z ¼ 0 in classical two-dimensional (@=@y � 0Þ problems,
is incompatible with a mere concept of the surface impedance.

The question arises as to the existence of such continuous and reasonable (from
the physical point of view) surface impedance distributions that they allow an exact
analytical solution of the problems like those discussed in [8–10].
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It has been shown [11] that such a distribution does exist. It is the impedance
version of the Epstein transition layer [12]

ZðxÞ ¼ Z2 þ Z1expð�sxÞ
1þ expð�sxÞ ; �1\x\1; ð1:1Þ

where Z1 ¼ Zð�1Þ and Z2 ¼ Zðþ1Þ are the limiting values of impedance. The
parameter 0\s\1 determines the width of the transition region in the impedance
distribution. The Grinberg-Fock model of the step-wise change in impedance [8]
represents the limiting case s ! 1.

Let us consider the following two-dimensional problem: a field generated by a
filament of linear magnetic current ~JðmÞ ¼ IðmÞd g� g0ð Þ exp �ixtð Þ~y; which is
parallel to the impedance plane z ¼ 0; is to be found. Here, dð. . .Þ is the d-Dirac
function; g ¼ fx; zg and g0 ¼ x0; z0f g are the points of the space R2;~x;~y; and~z are
the Cartesian basis vectors. The current self-field can be represented as

~E0 ¼ ixll0 rot P
!ðmÞ

, where PðmÞ
y ¼ �IðmÞ 4xll0ð Þ�1Hð1Þ

0 k g� g0j jð Þ and PðmÞ
x ¼

PðmÞ
z ¼ 0 are the components of the magnetic Hertz potential; Hð1Þ

0 ð. . .Þ is the
Hankel function; k ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ee0ll0

p
; e and l are the relative dielectric permittivity and

magnetic permeability of the medium. The surface impedance is given by relation
(1.1).

Basing, as in [8], on the integral Green formula and using the impedance
boundary condition @Ez gð Þ=@z ¼ �ik ZðxÞEzðgÞjz¼0 [13, 14], we arrive at the fol-
lowing 1-D integral equation:

f ðxÞ ¼ qðxÞ � k
2
ZðxÞ

Z1
�1

f ~xð ÞHð1Þ
0 k x� ~xj jð Þd~x; ð1:2Þ

where f ðxÞ ¼ ZðxÞEzðx; 0Þ; qðxÞ ¼ 2ZðxÞE0
z ðx; 0Þ; E0

z ðx; zÞ and Ezðx; zÞ are the
vertical components of the primary and total electrical fields, respectively.

Equation (1.2) belongs to the class of the so-called smooth transition equations
introduced by Cherskiy [7]:

f ðxÞþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K1 x� ~xð Þf ~xð Þd~x� q xð Þ

þ e�x f ðxÞþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K2 x� ~xð Þf ~xð Þd~x� qðxÞ
8<:

9=; ¼ 0; �1\x\1:

ð1:3Þ
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For this equation to be normally solvable in the space L2ð�1;1Þ and have a
finite index it is necessary and sufficient to have 1þ ~Kj nð Þ 6¼ 0; j ¼ 1; 2; where
~Kj nð Þ is the Fourier transform of KjðxÞ: In our case, we have

~KjðnÞ ¼ jZj

Z1
0

Hð1Þ
0 ðjsÞ cos nsds ¼jZj j

2 � n2
� ��1=2

;

where j ¼ k=s, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � n2

p
! in with n ! þ1.

In [7], the authors prove the solvability in quadratures of (1.3) in the space
L2 �1;1ð Þ with the complementary condition that qðxÞ 2 L2 �1;1ð Þ:

Let us apply the Fourier transform to (1.2), following [7]. Then we are led to
Carleman’s two-element boundary value problem for a strip 0\Imn\1: Later on,
with the use of some conformal mapping t ¼ expð2pnÞ; we will rearrange this
problem to yield the Riemann problem, which is as follows: on the real axis of the
complex plane of variable t ¼ t0 þ it00 two functions, D t0ð Þ and H t0ð Þ; are given; it
is required to find two functions F�ðtÞ; which are analytic in the upper complex
half-plane t00 [ 0ð Þ and in the lower complex half-plane t00\0ð Þ; respectively, and
which also satisfy the boundary condition F þ t0ð Þ ¼ D t0ð ÞF� t0ð Þ þH t0ð Þ: The
value v ¼ ð2piÞ�1 ln D t0ð Þ½ �j1�1 is known as the index of the Riemann problem. For
the two problems considered in this section, we have v ¼ 0: Using the well-known
solution of this problem [7], we can write the solution of (1.2) in the following
form:

f ðxÞ ¼ � i
4
IðmÞ

1ffiffiffiffiffiffi
2p

p
Z1
�1

sQ nð Þþ epnxþ e2pn
� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 � n2
p

� e�i�xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � n2

p
þ jZ1

dn; ð1:4Þ

where �x ¼ xs, �z ¼ zs, and

Q nð Þ ¼
ffiffiffi
2
p

r
@

@�x0

Z1
�1

Z2 þ Z1e�g

1þ e�g
H 1ð Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� �x0ð Þ2 þ�z20

q� �
eingdg;

xþ e2pn
� � ¼ �isX þ e2pn

� �
j Z1 � Z2ð Þ

Z1
�1

Q 1ð Þep1d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 12

p
þ jZ2

	 

X þ e2p1ð Þ e2p1 � e2pnð Þ

;

X� e2p1
� � ¼ exp 1� ie2p1

� � Z1
�1

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � r2

p
þ jZ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 � r2
p

þ jZ2

e2prdr
e2pr þ ið Þ e2pr � e2p1ð Þ

8<:
9=;:

The contour of integration passes below the pole for the functions marked by ‘+’
and above the pole for the functions marked by ‘−’.
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These relations represent an explicit expression for the vertical component of the
electric field on an impedance plane considered without any restriction on the
parameters of the model.

In the case of grazing propagation of a plane wave (x0 ! �1) and for Z1 ¼ 0;
the integral in the representation of the function xþ exp 2pnð Þ½ � can be calculated.
To do this, let us transform the formula for QðnÞ using the Parseval equality for
Fourier integrals and then apply the saddle-point technique. As a result we get the
following asymptotic estimate for k x0j j � 1:

Q nð Þ ¼ 2 exp �ip=4ð Þ exp ik x0j jð Þffiffiffiffiffiffiffiffiffi
k x0j jp 1

sh p jþ nð Þ½ � 1þO
1

k x0j j
� �� �

:

Hence, for the vertical component of the total electric field we have

Ez x; 0ð Þ ¼ 2eikx � ijZ2
X� exp 2p �jþ ið Þð Þ½ �

Z1
�1

X þ exp 2pnð Þ½ �exp �i�xnð Þdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � n2

p
sh p jþ nð Þ½ �

; ð1:5Þ

where the integration contour passes above the pole n ¼ �j. The representation in
the form of (1.5) is convenient for x\0: The first term represents the plane wave on
a perfectly conducting planar surface, while the integral term describes the field
scattered by the impedance inhomogeneity.

Taking into account characteristics of the factorization function X� exp 2pnð Þ½ �;
we obtain the representation, which is convenient for the area x[ 0:

Ez x; 0ð Þ ¼ � ijZ2
X� exp 2p �jþ ið Þð Þ½ �

Z1
�1

X� exp 2p nþ ið Þð Þ½ �exp �i�xnð Þdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � n2

p
þ jZ2

	 

sh p jþ nð Þ½ �

; ð1:6Þ

where the integration contour passes below the pole n ¼ �j. Using the following
decomposition

1
sh p jþ nð Þ½ � ¼

1
p

X1
n¼�1

�1ð Þn
nþ jþ in

;

it is easy to show that (1.6) transforms for s ! 1 into the well-known formula [8]
for Ez x; 0ð Þ on the plane whose impedance equals Z2 for x[ 0 and is zero for x\0:

Notice that the solution obtained in [8] represents the dominant term of the
long-wave asymptotic of the solution to the problem considered by us. This is
the case, where the wavelength of the source is much grater than the width of the
transition region on the impedance surface (2k � s).
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1.2.2 A Field of Linear Magnetic Current in a Plane
Waveguide with Smoothly Varying Impedance of Its
Walls

In this section, we construct the exact Green function of the Helmholtz equation for
a band with the non-homogeneous boundary condition of the third kind on one of
its boundaries. The coefficient Z xð Þ in this boundary condition is an impedance
analogue for the permittivity of the known Epstein transition layer [12]. We use this
Green function below for analyzing the electromagnetic field induced by a linear
magnetic current in a gradient junction between two regular impedance waveg-
uides. This solution comprises the stepped impedance distribution as a limiting case
[10]. In [15], we considered a related problem of the electromagnetic TM-wave
propagation in a planar waveguide with the perfectly conducting upper wall and the
lower wall with conductivity changing as thsx:

In Sect. 1.2.2.1, the boundary value problem is reduced to the integral equation
of the second kind. In the next section, we derive the analytical solution by reducing
this equation to the Riemann problem of the linear conjugation of two analytical
functions on the real axis. For this purpose we invoke the Fourier transform and the
conforming mapping. In Sect. 1.2.2.3, the Green function is expressed as the
double Fourier integral, which is transformed further, by employing the Cauchy-
Poincaré theorem, into series in residues. Section 1.2.2.4 is devoted to the analysis
of these series as applied to the transformation of the eigenwaves of the regular
section of the waveguide junction. We also rigorously estimate the adiabatic
approximation for the considered waveguides.

1.2.2.1 Reduction of the Problem to an Integral Equation

A Solution to the Following Two-Dimensional Boundary Value Problem

@2

@x2
þ @2

@z2
þx2ee0ll0

� �
Gt ¼ �d g� g0ð Þ; ð1:7aÞ

@

@z
Gt ¼ 0 for z ¼ 0; ð1:7bÞ

@

@z
Gt þ ixee0ZðxÞGt ¼ 0 for z ¼ d ð1:7cÞ

is to be found in the band 0\z\d;�1\x\1f g (see Fig. 1.1). Here g ¼ x; zf g;
g0 ¼ x0; z0f g; and the function
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ZðxÞ ¼ Z2 þ Z1exp �sxð Þ
Zþ exp �sxð Þ ; s[ 0; Z ¼ exp iuð Þ; �p\u\p ð1:8Þ

is the complex-valued function describing the gradient transition from Z �1ð Þ ¼
Z1 ¼ Zl to Z þ1ð Þ ¼ Z2=Z ¼ Zr. Its hodograph represents a circular arc having
the angular size of 2uj j and joining the points Zl and Zr. In the course of solution,
the imaginary part of the wave number k ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ee0ll0

p
is assumed to be positive,

whereas in the final formulas we put it equal to zero.
We seek the solution to the problem (1.7a, 1.7b, 1.7c) in the form of a sum

Gt g; g0ð Þ ¼ G0 g; g0ð ÞþG g; g0ð Þ; ð1:9Þ

where

G0 g; g0ð Þ ¼ � 1
2p

Z1
�1

d g; z; z0ð Þ
Rl gð Þ exp �i �x� �x0ð Þg½ �dg

is the solution to (1.7a, 1.7b, 1.7c) with the fixed Z xð Þ ¼ Zl, and

G g; g0ð Þ ¼
Z1
�1

F0 g; �g0ð Þ cos m�zð Þexp �i �x� �x0ð Þg½ �dg ð1:10Þ

is the solution of the homogeneous equation (1.7a) with condition (1.7b). Here,
d g; z; z0ð Þ ¼ cos m�z\ð Þ cos m d� �z[ð Þð Þ½ � i�Zl sin m d� �z[ð Þð Þ=m�;
Ra gð Þ ¼ m sin mdþ i�Za cos md, m ¼ m gð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � g2

p
, �Za ¼ Zaxe=s; a ¼ l or r; j ¼ k=s;

d ¼ ds, �z\ ¼ min �z;�z0ð Þ; �z[ ¼ max �z;�z0ð Þ; �x ¼ xs, �z ¼ zs, and d is the waveguide
height. With this representation of the functionGt, the requirements (1.7a), (1.7b) are
satisfied automatically. The condition (1.7c) leads to the following integral equation

Z1
�1

F gð Þ e2imd � 1� �Z �xð Þ e2imd þ 1
� ��

m
� �

exp �i�xgð Þdg ¼ �
ffiffiffiffiffiffi
2p

p
Q �xð Þ;

Q �xð Þ ¼ i 2pð Þ�3=2 �Zl � �Z �xð Þð Þ
Z1
�1

cos m�z0ð Þ
Rl gð Þ exp �i �x� �x0ð Þg½ �dg; �1\�x\1

ð1:11Þ

Fig. 1.1 The geometry of the
problem
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with respect to the unknown function

F gð Þ ¼ 1
2i
m exp �i md� g�x0ð Þ½ �F0 g; �g0ð Þ: ð1:12Þ

By using the known formula [16]

2exp imdð Þ ¼ m
Z1
�1

Hð1Þ
0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ d2

q� �
exp ignð Þdn;

we can easily go from (1.11) to the equation of the second kind

f �xð Þþ
Z1
�1

~K �x;�x� nð Þf nð Þdn ¼ Q �xð Þ; �1\�x\1 ð1:13Þ

with respect to the Fourier transform of F gð Þ

f �xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z1
�1

F gð Þexp �ig�xð Þdg: ð1:14Þ

The kernel looks like

~K �x;�x� nð Þ ¼ 1
2
�Zð�xÞH 1ð Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x� nð Þ2 þ 2dð Þ2

q� 
þ 1

2
�Zð�xÞHð1Þ

0 j �x� nj jð Þ

� 1
4i

@

@d
Hð1Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x� nð Þ2 þ 2dð Þ2

q� 
:

Rewrite finally (1.13) in the form

Zf �xð Þþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K2 �x� nð Þf nð Þdn� ZQ �xð Þ

þ exp ��xð Þ f �xð Þþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K1 �x� nð Þf nð Þdn� Q �xð Þ
8<:

9=; ¼ 0; �1\�x\1;

ð1:15Þ
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where

1ffiffiffiffiffiffi
2p

p Kj �x� nð Þ ¼ 1
2
�Zj H 1ð Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x� nð Þ2 þ 2dð Þ2

q� �
þHð1Þ

0 j �x� nj jð Þ
i
� 1
4i
Zj�1 @

@d
Hð1Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x� nð Þ2 þ 2dð Þ2

q� 
; j ¼ 1; 2:

1.2.2.2 Solution of the Integral Equation

For Z ¼ 1; a similar equation was discussed in [17], where a method of obtaining
its analytical solution was proposed. Following the basic ideas introduced in this
work, let us find the analytical solution of the more general equation (1.15) by
reducing it to the Riemann conjugation problem. To this end, we introduce a new
unknown function

U �xð Þ ¼ f �xð Þþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K1 �x� nð Þf nð Þdt � Q �xð Þ; �1\�x\1: ð1:16Þ

By subjecting (1.15) and (1.16) to the Fourier transform, we obtain a system of
functional equations

ZF �n
� �þ ~K2

�n
� �

F �n
� �� Z ~Q �n

� �þ ~U �nþ i
� � ¼ 0

~U �n
� � ¼ F �n

� �þ ~K1
�n
� �

F �n
� �� ~Q �n

� �
;

(
ð1:17Þ

where ~K1
�n
� �

; ~K2
�n
� �

; eU �n
� �

; and ~Q �n
� �

are the Fourier transforms of the functions
K1 �xð Þ; K2 �xð Þ; U �xð Þ; and Q �xð Þ; respectively. Eliminating F �n

� �
; we arrive at the

equation

~U �n
� � ¼ �D �n

� �
~U �nþ i
� �þH �n

� �
; �1\�n\1; ð1:18Þ

where

D �n
� � ¼ Rl

�n
� ��

ZRr
�n
� �� �

and H �n
� � ¼ i �Zl � �Zrð Þcos mdð Þ~Q �n

� ��
Rr

�n
� �

:

This is the Carleman problem: to find the analytical function eU �f
� �

in the band
0\Im�f\1 of the complex plane �f ¼ �nþ i�1 from the condition (1.18) on the band
boundary. Applying the conformal mapping f ¼ exp 2p�f

� �
to (1.18), we pass to the

new unknown function xðfÞ ¼ f�1=2U ln f=2pð Þ: Then this problem is transformed
into the Riemann problem of finding two analytical functions x� fð Þ (in the upper
and lower half-planes of the complex plane f ¼ nþ i1) from the boundary condi-
tion on the real axis n
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xþ nð Þ ¼ �D nð Þx� nð Þþ �H nð Þ; �1\n\1 ð1:19Þ

with the discontinuous coefficient

�D nð Þ ¼ D �n
� �

for n[ 0; 1 for n\0
� �

and

�H nð Þ ¼ e�p�nH �n
� �

for n[ 0; 0 for n\0
n o

; �n ¼ ln n=2p:
ð1:20Þ

The branches of the functions ln f and
ffiffiffi
f

p
are determined by the value arg f ¼ 0

on the upper edge of the cut made along the ray n	 0:
The analytical solution to the homogeneous Riemann problem

xþ nð Þ ¼ �D nð Þx� nð Þ; �1\n\1 ð1:21Þ

in the case where the function �D nð Þ is continuous along the whole of the real axis,
including the infinitely distant point, is well known [7]. The function in (1.20) is
discontinuous at the points n ¼ 0 and n ¼ 1. Represent it as a product

�D nð Þ ¼ �D1 nð Þ�D2 nð Þ

of the continuous function

�D1 nð Þ ¼ Rl
�n
� ��

Rr
�n
� �

for n[ 0; 1 for n\0
� � ð1:22Þ

and the discontinuous function

�D2 nð Þ ¼ Z�1for n[ 0; 1 for n\0
� �

:

Obviously, if the solutions xj fð Þ of the problems

xþ
j nð Þ ¼ �Dj nð Þx�

j nð Þ; j ¼ 1; 2; �1\n\1 ð1:23Þ

are known, then x fð Þ ¼ x1 fð Þx2 fð Þ is a solution to the problem in (1.21). Let us
find x2 fð Þ: Since

lnxþ
2 nð Þ ¼ lnx�

2 nð Þ � iu 1 for n[ 0; 0 for n\0f g; �1\n\1;

then the desired function is analytical in the plane f containing a cut along the real
positive semiaxis; the discontinuity value on it is �iu ¼ � ln Z: We take for such a
function the function

x2 fð Þ ¼ exp
u
2p

� ln f
n o

:
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The solution of the problem in (1.23) forx1 fð Þ can be derived by using the known
mathematical technique of factorizing the Riemann problem coefficient [7, 17]

xþ
1 fð Þ ¼ exp Cþ fð Þf g;

where

Cþ fð Þ ¼ 1
2pi

Z1
�1

ln �D1 nð Þ fþ ið Þdn
n� fð Þ nþ ið Þ; Imf[ 0:

Let us introduce a function

X þ �f
� � ¼ xþ

1 exp 2p�f
� �� � ¼ exp Cþ exp 2p�f

� �� �� �
;

Cþ exp 2p�f
� �� � ¼ 1

2i

Z1
�1

ln
RlðgÞ
RrðgÞ �

ch p �f� i=4
� �� �

dg

ch p g� i=4ð Þ½ �sh p g� �f
� �� �; Im�f[ 0:

With the representation

Rl gð Þ
Rr gð Þ ¼

Y1
n¼0

g2 � gln
� �2

g2 � grn
� �2

;

it can be shown that

X þ �f
� � ¼Y1

n¼0

c �f; gln; g
r
n

� �
c �f; grn; g

l
n

� �; ð1:24Þ

where c g; g1n; g
2
n

� � ¼ C 1� i g1n � g
� �� � � C �i g2n þ g

� �� �
;Cð. . .Þ is the

gamma-function [16], and gan ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � man

� �2q
, Im gan 	 0; where man are the roots of

the following dispersion equation for a regular waveguide with the impedance �Za of
one of the waveguide walls:

mantg mand
� �þ i�Za ¼ 0; a ¼ l or r: ð1:25Þ

The expression for X� �f
� �

is evident from (1.23), (1.24).
The coefficient of problem (1.19) can be written now as

�D nð Þ ¼ xþ
1 nð Þxþ

2 nð Þ
x�

1 nð Þx�
2 nð Þ ;

12 L. Pazynin



whereas (1.19) takes the form

xþ nð Þ
xþ

1 nð Þxþ
2 nð Þ ¼

x� nð Þ
x�

1 nð Þx�
2 nð Þ þ

�H nð Þ
xþ

1 nð Þxþ
2 nð Þ ; �1\n\1:

The solution of this problem on the discontinuity [7] is the Cauchy integral

Wþ fð Þ � xþ fð Þ
xþ

1 fð Þxþ
2 fð Þ ¼

1
2pi

Z1
0

H �n
� �

exp �p�n
� �

xþ
1 f0ð Þxþ

2 f0ð Þ f0 � fð Þ df
0;

�n ¼ ln f0=2p; Imf[ 0:

Hence,

exp p�f
� �

Wþ exp 2p�f
� �� � ¼ 1

2i

Z1
�1

H �n0
� �

exp �u�n0
� �

X �n0
� �

sh p �n0 � �f
� �� � d�n0; Im�f[ 0; ð1:26Þ

where X �n
� � ¼ x1 exp 2p�n

� �� �
and

H �n
� � ¼ �i �Zl � �Zrð Þ2exp u�n

� �
cos m �n

� �
d

� �
4pRr

�n
� � Z1

�1

cos m gð Þ�z0½ �exp i�x0gð Þdg
Rl gð Þexp ugð Þsh p �n� g

� �� �:
The pole at the point g ¼ �n lies above the integration contour. Since according to

(1.22) we have xþ
1 nð Þ ¼ x�

1 nð Þ for n\0; therefore the functions x�
1 fð Þ represent a

unified analytical function x1 fð Þ: Hence in what follows, we will not use the
superscripts ‘�’.

When calculating the function in (1.26), the following integral arises

U g; �n
� � ¼ Z1

�1

cos m �n0
� �

d
� �

d�n0

Rr
�n0
� �

X �n0
� �

sh p �n0 � g
� �� �

sh p �n0 � �n
� �� �;

in which the integration contour passes above the pole �n0 ¼ g and below the pole
�n0 ¼ �n: Let us consider the auxiliary integral ~U g; �n

� �
along the boundary of the

band 0\Im�f\1: From the above we have

~U g; �n
� � ¼ Z d�n0

X �n0
� �

sh p �n0 � g
� �� �

sh p �n0 � �n
� �� �

¼
Z1
�1

1� X �n0
� �

X �n0 þ i
� �" #

d�n0

X �n0
� �

sh p �n0 � g
� �� �

sh p �n0 � �n
� �� � ¼ i �Zr � �Zlð ÞU g; �n

� �
:
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Here we have used the equality X �n
� �

Rr
�n
� � ¼ X �nþ i

� �
Rl

�n
� �

following from
(1.24). At the same time, the integral ~U g; �n

� �
equals to a sum of residues at the

points �n0 ¼ gþ i and �n0 ¼ �n; and hence

U g; �n
� � ¼ 2 �Zr � �Zlð Þ�1

sh p �n� g
� �� � 1

X �n
� �� 1

X �nþ i
� �" #

:

If we substitute this formula into (1.26) and take into consideration that the
solution of the Carleman’s boundary value problem (1.18) is

eU �f
� � ¼ exp p�f

� �
W exp 2p�f

� �� �
X �f
� �

exp u�f
� �

; 0
 Im�f
 1;

we derive from (1.14), (1.17) the desired solution of the integral (1.15):

f �xð Þ ¼ i �Zl � �Zrð Þ
4 2pð Þ3=2

Z1
�1

exp �i�xg0ð ÞX g0ð Þm g0ð Þdg0
exp �ug0ð Þexp im g0ð Þd½ �Rl g0ð Þ

�
Z1
�1

cos m gð Þ�z0½ �exp i�x0gð Þdg
Rl gð Þexp ugð ÞX gð Þsh p g� g0ð Þ½ �:

1.2.2.3 Residue Series Representation

Having regard to the equality X gð ÞX �gð Þ ¼ Rl gð Þ=Rr gð Þ following from (1.24), we
obtain from (1.10), (1.12), and (1.14) that

G g; g0ð Þ ¼
�Zl � �Zrð Þ
4p

Z1�a1

�1�a1

cos m x1ð Þ�z½ �exp i�xx1ð Þdx1
X x1ð ÞRr x1ð Þ

�
Z1
�1

X x2ð Þ cos m x2ð Þ�z0½ �exp �i�x0x2ð Þexp u x2 � x1ð Þ½ �dx2
Rl x2ð Þ shp x2 � x1ð Þ½ � ;

ð1:27Þ

where a1 is a small positive value. In view of equalities (1.9), (1.10), we get the
expression for the Green function Gt g; g0ð Þ:

Let us transform the integral representation of G g; g0ð Þ in (1.27) into residue
series. To do this, let us deform the integration surface S ¼ z1; z2 : zj ¼ xj þ iyj

�
; j ¼ 1; 2; xj 2 R1; y1 ¼ �a1; y2 ¼ 0g in the space C�C of two complex variables z1
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and z2 into the Leray coboundary [18] enclosing the analytical set A of the singu-
larities of the integrand. We rewrite (1.27) in the form

G g; g0ð Þ ¼ 1
4p

�Zl � �Zrð Þ
Z
S

x; ð1:28Þ

where the differential form is given by

x ¼ f z1ð Þq z2ð Þh z2 � z1ð Þ exp i�xz1 � i�x0z2ð Þdz1 ^ dz2;

f z1ð Þ ¼ cos m z1ð Þ�z½ �
Rr z1ð ÞX z1ð Þ ; q z2ð Þ ¼ X z2ð Þ cos m z2ð Þ�z0½ �

Rl z2ð Þ ;

h zð Þ ¼ exp uzð Þ=sh pzð Þ:

The set A comprises the following families of planes z1 ¼ �glnk, z1 ¼ grnk,
z2 ¼ glnk, z2 ¼ �grnk, z2 � z1 ¼ �im; n; k;m ¼ 0; 1; 2; . . ., where gank ¼ gan þ ik and
a ¼ l or rf g: The behavior of the integrand in (1.28) at infinity is governed by the
sign of Re i�xz1 � i�x0z2ð Þ ¼ ��xy1 þ�x0y2. Consequently, let us introduce the fol-
lowing three-dimensional chains:

C�
1 ¼ z1; z2 : x1;2 2 R1;

y1 [ � a1

y1\� a1

 !
; y2 ¼ 0

( )
;

C�
2 ¼ z1; z2 : x1;2 2 R1; y1 ¼ �a1;

y2 [ 0

y2\0

 !( )
;

for which the integration surface S is a common boundary. If one of four
inequalities �x[ 0; �x\0; �x0 [ 0 or �x0\0 is satisfied, then we can use the Cauchy-
Poincare theorem [18] in Cþ

1 , C�
1 , C

�
2 or Cþ

2 , respectively, and deform S into the
Leray coboundary enclosing the polar straight lines, along which the analytical
planes A and the chains C�

j intersect.
It suffices to restrict ourselves to the case of �x0\0: In Cþ

2 , the equations for
polar straight lines are

Pnk ¼ z1 ¼ s; z2 ¼ glnk
� �

; Qm ¼ z1 ¼ s; z2 ¼ sþ imf g;
�1\s\1; n; k ¼ 0; 1; 2; . . .; m ¼ 1; 2; 3; . . .;

whereas the equations for their coboundaries are as follows:

dPnk ¼ z1 ¼ s; z2 ¼ Dexp ihð Þþ glnk
� �

and

dQm ¼ z1 ¼ s�
ffiffiffi
2

p
D cos h

	 
.
2; z2 ¼ sþ

ffiffiffi
2

p
D cos h

	 

þ iD sin hþ im

n o
;

0\D � 1; 0
 h
 2p:
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Therefore, the double integral in (1.28) can be represented as a sum of two single
integrals

G g; g0ð Þ ¼ 1
4p

�Zl � �Zrð Þ
X1
n;k¼0

Ink þ
X1
m¼1

Im

" #
;

where

Ink ¼ lim
d!0

Z
dPnk

x ¼ 2pi �1ð Þkexp iku� i�x0g
l
nk

� �
cos m glnk

� �
�z0

� �
w�1
nk J

1
n �xð Þ;

Im ¼ lim
d!0

Z
dQm

x ¼ 2i �1ð Þmexp imuþm�x0ð ÞJ2m �x� �x0ð Þ

with

wnk ¼
d Rl gð Þ=X gð Þ½ �

dg

����
g¼glnk

; J1n �xð Þ ¼
Z1
�1

f fð Þh g1n � f
� �

exp i�xfð Þdf;

J2m �xð Þ ¼
Z1
�1

f fð Þq fþ imð Þ exp i �x� �x0ð Þf½ �df:

With allowance made for the asymptotics of X fð Þ for fj j � 1 and the fact that
f fð Þ and q fð Þ are meromorphic functions, the above integrals can be reduced to
residue series. As a result, we obtain the following representation for the Green
function of problem (1.7a, 1.7b, 1.7c) in the form of the expansion in a
two-parameter family of inhomogeneous plane waves:

Gt g; g0ð Þ ¼

P1
n;k¼0

gþ
nk �g0ð Þ cos mrnk�z

� �
exp igrnk�x
� �

; �x[ 0P1
n;k¼0

g�nk �g0ð Þ cos mlnk�z
� �

exp �iglnk�x
� �

þ P1
n;k¼0

qþ
nk �g0ð Þ cos mln;�k�z

	 

exp igln;�k�x
	 


; �x0\�x\0P1
n;k¼0

g�nk �g0ð Þ cos mlnk�z
� �

exp �iglnk�x
� �

þ P1
n;k¼0

q�nk �g0ð Þ cos mlnk�z
� �

exp �iglnk�x
� �

; �x\�x0:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
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Here,

gþ
nk �g0ð Þ ¼ p �Zr � �Zlð Þu�1

nk

X1
p;q¼0

�1ð Þq�kw�1
pq exp iu q� kð Þ½ �

exp u glp � grn

	 
h i
sh p glp � grn

	 
h i
8<:
� cos mlpq�z0

	 

exp �iglpq�x0
	 
o

;

ð1:29aÞ

g�nk �g0ð Þ ¼ p �Zr � �Zlð Þw�1
nk

X1
p;q¼0

�1ð Þq�kw�1
pq exp iu qþ kð Þ½ �

exp u glp þ gln

	 
h i
sh p glp þ gln

	 
h i
8<:
� cos mlpq�z0

	 

exp �iglpq�x0
	 
o

;

ð1:29bÞ

qþ
nk �g0ð Þ ¼ �Zr � �Zlð Þ Rr gln;�k

	 

X gln;�k

	 
h i�1X1
q¼0

�1ð Þq�kw�1
nq exp iu qþ kð Þ½ �

n
� cos mlnq�z0

	 

exp �iglnq�x0
	 
o

;

ð1:29cÞ

q�nk �g0ð Þ ¼ �Zr � �Zlð Þw�1
nk

X1
q¼0

�1ð Þq�k Rr gln;�q

	 

X gln;�q

	 
h i�1
exp iu qþ kð Þ½ �

�
� cos mln;�q�z0

	 

exp igln;�q�x0
	 
o

ð1:29dÞ

with unk ¼ d Rr gð ÞX gð Þ½ �=dgjg¼grnk
.

Direct substitution of (1.29a, 1.29b, 1.29c, 1.29d) and (1.27) into (1.7a, 1.7b,
1.7c) assures that we have found the desired solutions.

1.2.2.4 Transformation of Eigenmodes on the Waveguide Junction

The Obtained Green Function Determines the Electromagnetic Field

Hy ¼ ixee0I
mð ÞGt; Ex ¼ I mð Þ @

@z
Hy; Ez ¼ �I mð Þ @

@x
Hy;

generated by a linear magnetic current of density~J mð Þ ¼ I mð Þd g� g0ð Þ exp �ixtð Þ~y
in a plane waveguide whose bottom wall is perfectly conducting, while the surface
impedance distribution of the top wall is defined by (1.8).
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If the source and the observation point are well off the irregular section of the
impedance distribution Z xð Þ; x0j j[ xj j � 1=s; then the functions in (1.29a, 1.29b,
1.29c, 1.29d) become expansions in terms of eigenmodes of the regular
waveguides:

Ha
n gð Þ ¼ aan cos mansz

� �
exp �igansx
� �

; a ¼ l or r; n ¼ 0; 1; 2; . . . ð1:30Þ

Here, the normalization aan ¼ i R0
a gan
� �

cos mansd
� �� �1=2 has been chosen such that

the energy transported by each mode (1.30) does not depend on the indices n and a.
Taking into account that the modes are orthogonal in these systems, we deduce that
in the irregular segment the m-th mode of the left waveguide transforms into the n-
th modes of the right and left regular waveguides with the transmission coefficient

Tmn ¼ �p
Rr glm
� �

Rl grn
� �

R0
r grn
� �

R0
l g

l
m

� �" #1=2
X glm
� �

exp ðglm � grnÞu
� �

X grn
� �

sh p glm � grn
� �� � ; n;m ¼ 0; 1; 2; . . .

ð1:31Þ

and the reflection coefficient

Rmn ¼ p
Rr glm
� �

Rr gln
� �

R0
l g

l
n

� �
R0
l g

l
m

� �" #1=2
X gln
� �

X glm
� � exp glm þ grn

� �
u

� �
sh p glm þ grn

� �� � ; n;m ¼ 0; 1; 2; . . .;

ð1:32Þ

where

Ra gbm
� � ¼ i �Za � �Zb

� �
cos mbmsd
� �

for a 6¼ b;

R0
a gan
� � ¼ �ganc

a
n man
� ��2

cos mansd
� �

; and can ¼ sd man
� �2��Z2

a

h i
� i�Za;

a; b ¼ l or r:

It is not hard to prove the invariance of Rmn with respect to a permutation of
subscripts and the invariance of Tmn with respect to a simultaneous permutation of
subscripts and impedances Zl $ Zr, or, in other words, to prove the reciprocity
theorem for the waveguide under study.

Let us estimate the error of adiabatic approximation with the use of (1.31). This
approximate description of wave processes in slightly irregular waveguides with no
regard for the mode interconversion [19] is named by analogy with the
Born-Oppenheimer method in solid-state physics. Up to now, the error for this
approach has not been estimated. For ease of estimation, let us restrict ourselves to
the case of purely imaginary limiting values Zl ¼ iQl; and Zr ¼ iQr, which is the
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same to the absence of absorption in the walls of the regular sections of the
waveguide. Hodographs for the complex-valued surface impedance functions
Z x;uð Þ (�p\u\0 for Ql\Qr and 0
u\p for Ql [Qr) represent a family
of circular arcs of radius Q�=sinu centered at iQþ � Q�ctgu, 2Q� ¼ Ql � Qr (for
u ¼ 0 it is a straight line) and connecting the points iQl and iQr in the right
half-plane of physically realizable impedances. In this case, the following equalities
for the propagation constants are valid:

Im gas ¼ 0 for 0
 s
 sa and Re gas ¼ 0 for sa\s; ð1:33Þ

where sa is the maximum number of the mode (1.30) propagating in the a -regular
waveguide without attenuation.

Since, by hypothesis, the waveguide properties vary slowly over the distance of
a wavelength, then gas

�� �� ¼ hass
�1

�� ��� 1; where has is the longitudinal wavenumber
of the s-mode and s�1 is the characteristic dimension of the irregular section of
Z xð Þ: Then, with the asymptotic Stirling formula for gamma functions, we obtain
from (1.31)

Tmn �
erm �glm
� �

eln �grn
� �

elm �glm
� �

erm glm
� �

eln grn
� �

ern �grn
� � � exp u glm � grn

� �� �
2sh p glm � grn

� �� � �Pm glm
� �

Pn grn
� � ; ð1:34Þ

where eam gð Þ ¼ exp �i gam � g
� �

ln �i gam � g
� �� �� �

, the principal branch of ln z with
a cut joining the points z ¼ 0 and z ¼ �1 has been chosen, and

Pm gð Þ ¼
Y1
s ¼ 0
s 6¼ m

els gð Þers �gð Þ
els �gð Þers gð Þ:

In view of (1.33), we derive from (1.34) the following expression (with a finite
number of multipliers) for absolute values of the transmission coefficients for the
undumped mode Hl

m gð Þ, 0
m
 sl incoming from the left waveguide and trans-
formed into undumped modes Hr

n gð Þ; 0
 n
 sr of the right waveguide:

Tmnj j �
Yn�1

s¼m

exp p glsþ 1 � grs
� �� �

for m\n; 1 for m ¼ n;

(
and

exp 2p glm � grn
� �� �Ym�1

s¼n

exp p grs � glsþ 1

� �� �
for m[ n

)
exp u glm � grn

� �� �
;

Ql\Qr

ð1:35Þ
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and

Tmnj j � exp 2p grn � glm
� �� �Yn�1

s¼m

exp p gls � grsþ 1

� �� �
for m\n; 1 for m ¼ n; and

(
Ym�1

s¼n

exp p grsþ 1 � gls
� �� �

for m[ n

)
exp u glm � grn

� �� �
; Ql [Qr:

ð1:36Þ

In particular, in the case of two-mode operation (sl ¼ sr ¼ 1Þ, as zero mode
Hl

0 gð Þ runs against the inhomogeneity, we can write

T01j j � exp � p gr0 � gl1
� �þ uj j gl0 � gr1

� �� �� �
\1; �p\u
 0; Ql\Qr

ð1:37Þ

and

T01j j � exp u� pð Þ gl0 � gr1
� �� �

\1; 0
u\p; Ql [Qr: ð1:38Þ

An interesting feature is exhibited when comparing the amplitudes of zero
(principal) mode Hr

0 gð Þ and the first mode Hr
1 gð Þ travelling into the right

waveguide:

T01
T00

���� ���� � exp � p gr0 � gl1
� �þ uj j gr0 � gr1

� �� �� �
\1; �p\u
 0; Ql\Qr

ð1:39Þ

and

T01
T00

���� ���� � exp � p gl0 � gr1
� �� u gr0 � gr1

� �� �� �
; 0
u\p; Ql [Qr: ð1:40Þ

In the latter case we have T01=T00j j\1 with small u, whereas for u ! p this
value tends to exp p gr0 � gl0

� �� �
and is greater than unity. That is, for Ql [Qr,

starting with the hodograph Z xð Þ of sufficiently large radius, the efficiency of
transformation (when passing the irregular segment) of the zeroth mode into the
first mode (Hl

0 ! Hr
1) is greater than into the zeroth one (Hl

0 ! Hr
0).

This effect is caused by the familiar phenomenon of the interconversion of two
adjacent modes in the vicinity of the degeneracy regime. Among the wave struc-
tures with mode degeneracy is a regular impedance waveguide. It is known [20]
that in such a waveguide, for each two adjacent modes Ha

j and H
a
jþ 1, the impedance

value Zdeg
j;jþ 1 exists such that the solutions maj and majþ 1 of the dispersion equation in

(1.25) coincide. The analysis of the behavior of these roots on the trajectories
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passing around the point Zdeg
j;jþ 1 reveals [21] that the complete mode interconversion

Ha
j $ Ha

jþ 1 occurs as a result of this bypass.
In the above case of the two-mode operation (1.40), as u increases, the arc of the

hodograph Z xð Þ occupies increasingly more space in the right half-plane of phys-
ically realizable impedances, into which the point Zdeg

01 falls starting with some
value u0. It is then that the transformation Hl

0 ! Hr
1 becomes dominant, by virtue

of the mode interconversion Ha
0 $ Ha

1 . These phenomena are of great interest for
clarifying the effects of abnormal propagation of radio waves in the
Earth-ionosphere waveguide along the paths intersecting the terminator [22]. It is
interesting to note that in the case of Ql\Qr, the asymptotics in (1.39) do not show
the effect at all, as well as in the case of a linear hodograph (u ¼ 0Þ.

As obvious from the asymptotics in (1.35), (1.36), the adiabatic approximation

error is defined by products of the exponentials exp �p gai � gbj

��� ���	 

; where a; b ¼

l or rf g; i ¼ 0; 1; . . .; sa, j ¼ 0; 1; . . .; sb. If the arguments of these exponentials are
of the order of unity, the adiabatic approximation is impossible. For example, for
large positive Ql and large negative Qr, the value of gl0 � gr1 is small and T01j j in
(1.38) is of the order of unity as u � p.

Finally note that rigorous error estimates are also lacking for the main theoretical
approach used in the study of irregular waveguides with slowly varying parameters,
namely, for the cross-section method [23] suggested by Stevenson [24]. The exact
Green function derived in the present section provides such estimates as applied to
the irregular impedance waveguides of fixed cross-section. In particular, it is seen
from (1.29a, 1.29b, 1.29c, 1.29d) that for these structures the fields should be
expanded in terms of two-parameter set of functions, whereas the cross-section
method is based on the expansion in one-parameter set, namely, in the eigen-
functions of an auxiliary regular waveguide.

1.3 The Cycle Slipping Phenomenon and the Degeneracy
of Waveguide Modes

1.3.1 Introduction

Electromagnetic wave propagation in the Earth-ionosphere waveguide has been
studied intensively in the last five decades [25–28]. General formulation of the
problems arising in the analysis of such waveguide processes is very complicated
since it requires the inclusion of both the inhomogeneity of the Earth and the
inhomogeneity and anisotropy of the ionosphere. In this section we restrict our
analysis by the case of very low-frequency (VLF) waves, i.e. the electromagnetic
oscillations whose frequency varies from 1:0 to 60 kHz: The main advantage of the
waves of this range is their high stability against random variation of the
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ionospheric parameters. In particular, the analysis of peculiarities of the wave
processes inherent in this range is of importance in developing global navigation
systems.

We will examine the diurnal variations of the VLF field occurring when the
‘transmitter-receiver’ path crosses the dividing ‘day-night’ line. The propagation
conditions vary significantly along this path during 24 h period. The decrease of the
electron density in the lower ionosphere at night increases the effective height of
the Earth-ionosphere waveguide and changes the properties of the upper wall of the
waveguide, which in the modeling are usually characterized by the surface impe-
dance. As a consequence, there is a marked increase in the field amplitude at night;
the phase of the received signal changes as well. The standard view of these
relationships, which has become known as the amplitude and phase of trapezoids,
is shown in [29], Fig. 1.1. It is well explained by the simple single-mode propa-
gation model.

However, a significant distinction from the specified standard form of the
amplitude and phase dependencies of VLF signals can be observed on long paths
[29, 30]. This difference consists in that the initial and final phases of the signal
differ by �2pm (as a rule, m ¼ 1Þ in diurnal phase records. This kind of abnormal
diurnal field dependency at the point of reception is called a cycle slipping
(CS) phenomenon.

From Fig. 1.2, which shows typical abnormal diurnal field variations, we notice
that the CS phenomenon corresponds to an extremely deep fading of the received
signal. This phenomenon can be explained qualitatively by assuming [22] that not

Fig. 1.2 (from paper [29]). Typical diurnal phase and signal level variations in NLK signals
received at Smithfield (South Australia). Path length is equal to 13,420 km, f = 18.6 kHz. The
broken line shows the phase record when cycle slipping occurs
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only the principal (first) mode arrives at the observation point but also do the
second mode and the higher-order modes resulting from the transformation of
the principal mode on a waveguide discontinuity at the intersection of the path and
the terminator (i.e. the sunrise or sunset line).

It is not difficult to see [27] that to observe the cycle slipping phenomenon, first
of all, the field of the second mode should be greater at some moment of time than
the field of the fundamental mode. Indeed, let at the point of reception two oscil-
lations with the complex amplitudes r1 exp iu1ð Þ and r2 exp iu2ð Þ be added up. In
order for the diurnal variation in the argument of the amplitude of the total signal
r1 exp iu1ð Þ 1þ r2=r1ð Þ exp i u2 � u1ð Þð Þ½ � be equal to 2p, the variation in the argu-
ment of the second factor must be 2p as well. (The phase variation of the first factor
is zero, because during 24 h period it makes a symmetric trapezoidal oscillation.)
Consequently, it is necessary that the ratio r2=r1 is greater than unity, at least, when
u2 � u1 ¼ p. It is just the fact that the ratio should be greater than unity, when the
first and the second modes are in antiphase, which leads to that the cycle slipping
phenomenon is usually accompanied by an abnormally deep minimum of the
amplitude (Fig. 1.2). The most important here is the requirement of the large
coefficient of conversion of the fundamental mode into the second mode.

A number of different modifications of irregular waveguides have been inves-
tigated by employing numerical simulation of the CS phenomenon. For example,
the coefficient of conversion from the first into the second mode has been calculated
by the method of partial domains for a number of two-dimensional impedance
waveguides without considering the reflection from the discontinuity [30, 31]. Even
for a stepwise change in the waveguide height, it did not exceed 0.5. In [32], to
estimate this coefficient, the authors invoked the method of cross sections [23]
developed for waveguide structures with slowly varying parameters over a wave-
length distance. A two-dimensional model was used to represent a coaxial
waveguide whose cross section and the surface impedance Z of one wall vary in
azimuth. The coefficient of conversion reached 1.2, which, as the authors noted,
was also too small to explain the CS phenomenon occurring mostly away from the
terminator. The approach developed in [31] was extended in a number of papers to
the waveguides whose top wall is a flat-layered anisotropic medium [33].

Only in one study [34], in contrast to all the above mentioned papers, the authors
provide different qualitative explanation for this phenomenon in terms of the crude
adiabatic approximation, by linking it with the degeneracy of the fundamental
modes.

These investigations have cast doubt on the statement that the CS phenomenon
can be explained solely by the conversion of the fundamental mode into the
higher-order modes in the waveguide of variable cross section. In regular waveg-
uides with walls of finite conductivity, which is constant along the structure, a more
efficient mode-interconversion mechanism takes place. It is well known [35] that
there exist values of the normalized surface impedance of the walls gdegi;iþ 1 such that
the propagation constants mi and miþ 1 of two adjacent (i and i + 1) waveguide
modes coincide. Here g ¼ Z=g0; where g0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
is the wave resistance of
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vacuum. These modes and the associated impedance values are said to be degen-
erate. Mode interconversion occurs in the neighborhood of the degeneracy regime
[21]. For example, by varying the complex-valued impedance g zð Þ of the wall of a
regular waveguide such that it draws a closed curve around the degeneracy point
gdegi;iþ 1, we get a complete interconversion of the i and i + 1 modes. In particular, the
degeneracy of two VLF modes in a natural waveguide has been discussed in [36].

Our purpose is to clear up the role of the mode interconversion taking place in
the neighborhood of the degeneracy regime in the occurrence of CS [37]. In
Sect. 1.3.2, we present a model of the irregular waveguide with a constant cross
section and the impedance varying in azimuth, which is a simplified version of the
model given in [32]. This model allows us to exclude from consideration
the diffraction effect of wave transformation on spatial inhomogeneities of the
waveguide walls and to obtain the analytical solution of the associated boundary
value problem for some class of surface impedance distributions. In the next sec-
tion, with the help of the well-known Watson method, the solution will be trans-
formed into a rapidly converging series for large wave sizes of the model. In
Sect. 1.3.4 we present results of a numerical experiment.

1.3.2 Problem Formulation and Solution

Consider in the cylindrical coordinates q, /, z a coaxial waveguide whose inner
wall, q ¼ a; is perfectly conducting and the outer wall, q ¼ b; has variable surface
impedance (Fig. 1.3). A filament of linear magnetic current with the time depen-
dence exp �ixtð Þ disposed at g0 ¼ q0;/0f g such that it is parallel to the z-axis,
generates a field ~E ¼ ixl0 @U=q@/;�@U=@q; 0f g; ~H ¼ k2 0; 0;Uf g: The Hertz
potential U is a solution of the equation

Fig. 1.3 The waveguide
cross-section geometry
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1
q
@

@q
q
@

@q
þ 1

q2
@2

@/2 þ k2
� 

U g; g0ð Þ ¼ � iI mð Þ

xl0

1
q
d g� g0ð Þ;

a\q;q0\b; �p
/;/0 
 p

ð1:41Þ

with the boundary conditions

@U
@q

����
q¼a

¼ 0;
@U
@q

� ikg /ð ÞU
� ����

q¼b

¼ 0; ð1:42Þ

where k ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
is the wavenumber and I mð Þ is the linear magnetic current

density.
Let the normalized surface impedance of the wall q ¼ b be given in the form

g /ð Þ ¼ g3
ei/ þ g1
ei/ þ g2

ð1:43Þ

with the arbitrary complex parameters gj, j ¼ 1; 2; 3: Then the values of the func-
tion g /ð Þ form in the plane of the complex variable g a circle (the hodograph curve)

of radius rimp ¼ g3 g1 � g2ð Þj j
.

1� g2j j2�� �� centered at the point

gimp ¼ g3 1� g1g

2

� �.
1� g2j j2
	 


:

In order to find the function U, we will use the Green formula

U g; g0ð Þ ¼ U0 g; g0ð Þþ
Z
S

U g1; g0ð Þ @

@~n
G g1; gð Þ � @

@~n
U g1; g0ð ÞG g1; gð Þ

� 
ds1;

ð1:44Þ

where ~n is the outer normal to the boundary S of the ring domain
a\q1\b;�p\/1\pf g: By choosing as the function G g1; gð Þ the Green function

of the space containing a perfectly conducting cylinder of radius a

G g1; gð Þ ¼ � i
8

X1
n¼�1

exp in /1 � /ð Þ½ �H 1;0ð Þ
n ka; kq\ð ÞH

1ð Þ
n kq[ð Þ
H 1ð Þ0

n kað Þ
¼ G q1; q;/1 � /ð Þ ð1:45Þ

and as the function U0 g; g0ð Þ the Hertz potential of the field generated by a linear
magnetic current in the presence of the conducting cylinder q ¼ a

U0 g; g0ð Þ ¼ � iI mð Þ

k
G q0; q;/0 � /ð Þ ¼ U0 q0; q;/0 � /ð Þ; ð1:46Þ
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we satisfy (1.41) and the first of the boundary conditions (1.42). In (1.45), the
following notation is used:

H j1;j2ð Þ
n x1; x2ð Þ ¼ @j1

@xj11

@j2

@xj22
H 1ð Þ

n x1ð ÞH 2ð Þ
n x2ð Þ � H 2ð Þ

n x1ð ÞH 1ð Þ
n x2ð Þ

h i
; j1; j2 ¼ 0; 1;

H jð Þ
n . . .ð Þ stands for the Hankel functions, q\ ¼ min q; q1ð Þ; q[ ¼ max q; q1ð Þ:

In order to satisfy the remained boundary condition from (1.42), one can make in
(1.44) the passage q ! b and then substitute the value of @U=@q on the boundary
q ¼ b: Then the equality (1.44) turns into an integral equation of the second kind
with a strong kernel singularity [38]. To avoid this, let us consider formula (1.44)
on the circle q ¼ b� D; where D is a small positive value. Then we have:

U b� D; q0;/;/0ð Þ ¼ U0 q0; b� D;/0 � /ð Þ

þ b
Zp
�p

@

@q
G q; b� D; ~/� /
	 
����

q¼b
�ikg ~/

	 

G b; b� D; ~/� /
	 
" #

U b; q0; ~/;/0

	 

d~/:

ð1:47Þ

Let us denote the direct and inverse Fourier transform operators as

W/ an½ � ¼ A /ð Þ ¼
X1

n¼�1
an exp in/ð Þ;

W�1
n A /ð Þ½ � ¼ an ¼ 1

2p

Zp
�p

A /ð Þ exp �in/ð Þd/:

For the inverse Fourier transform the following relationships are valid:

W�1
n

1
2p

Zp
�p

A ~/� /
	 


B /ð Þd/
24 35 ¼ a�nbn; W�1

n exp ip/ð ÞA /ð Þ½ � ¼ an�p:

ð1:48Þ

Applying the operator W�1
n to (1.47), we obtain in view of (1.48):

W�1
n�1

U b� D; q0;/;/0ð Þ
exp i/ð Þþ g2

� 
þ g2W

�1
n

U b� D; q0;/;/0ð Þ
exp i/ð Þþ g2

� 
¼ W�1

n U0 q0; b� D;/0 � /ð Þ½ �

þ 2pbW�1
�n

@G q; b� D;/ð Þ
@q

����
q¼b

" #
W�1

n�1
U b; q0;/;/0ð Þ
exp i/ð Þþ g2

� 
þ g2W

�1
n

U b; q0;/;/0ð Þ
exp i/ð Þþ g2

� � �
� 2pbikg3W

�1
�n G b; b� D;/ð Þ½ � W�1

n�1
U b; q0;/;/0ð Þ
exp i/ð Þþ g2

� 
þ g1W

�1
n

U b; q0;/;/0ð Þ
exp i/ð Þþ g2

� � �
;

ð1:49Þ
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where

W�1
n U0 q0; b� D;/0 � /ð Þ½ � ¼ � IðmÞ

8k
exp �in/0ð ÞH

ð1;0Þ
n x; kq0ð Þ
Hð1Þ0

n ðxÞ
Hð1Þ

n kðb� DÞ½ �;

W�1
�n G b; b� D;/ð Þ½ � ¼ � i

8
Hð1;0Þ

n x; kðb� DÞð Þ
Hð1Þ0

n ðxÞ
Hð1Þ

n ðyÞ;

W�1
�n

@G q; b� D;/ð Þ
@q

����
q¼b

" #
¼ � ik

8
Hð1;0Þ

n x; k b� Dð Þð Þ
Hð1Þ0

n ðxÞ
Hð1Þ0

n ðyÞ; �1\n\1;

and HðjÞ0
n ðxÞ ¼ dHðjÞ

n ðxÞ=dx. One can pass to the limit D ! 0 in these relationships.
Considering that H jð Þ

�nðxÞ ¼ �1ð ÞnH jð Þ
n ðxÞ; we obtain the following finite-difference

equation [7]

un ¼ �g�1
2 1þ snð Þun�1 þ gn; �1\n\1: ð1:50Þ

Here

1þ snð Þ ¼ H 1;1ð Þ 1;0ð Þ
n;1 x; yð Þ

H 1;1ð Þ 1;0ð Þ
n;d x; yð Þ

; gn ¼ � I mð Þ exp �in/0ð Þ
2pikyg2

H 1;0ð Þ
n x; kq0ð Þ

H 1;1ð Þ 1;0ð Þ
n;d x; yð Þ

ð1:51Þ

and H 1;1ð Þ 1;0ð Þ
n;d x; yð Þ ¼ H 1;1ð Þ

n x; yð Þ � ig3dH
1;0ð Þ
n x; yð Þ, H 1;1ð Þ 1;0ð Þ

n;1 x; yð Þ ¼ H 1;1ð Þ 1;0ð Þ
n;d

x; yð Þjd¼1, un ¼ W�1
n U b;q0;/;/0ð Þ= exp i/ð Þþ g2½ �½ �; s�n ¼ sn, x ¼ ka; y ¼ kb;

d ¼ g1=g2:
Let us apply the factorization method [7] to solve (1.50). Represent the multi-

plier in (1.50) in the following form:

1þ snð Þ ¼ xn
xcn�1

; ð1:52Þ

where the exponent c[ 1 is an auxiliary parameter. Taking the logarithm of (1.52)
and then applying the operators W and W�1, we can easily show that

ln xn ¼ W�1
n Wh ln 1þ snð Þ½ �= 1� c exp ihð Þ½ �½ � ¼ �cn

X1
m¼nþ 1

ln 1þ smð Þc�m: ð1:53Þ

Estimate the convergence of this series. Using the known asymptotics

Jm zð Þ � 2pmð Þ�1=2 ez
2m

	 
m
; H 1ð Þ

m zð Þ � �2i 2pmð Þ�1=2 ez
2m

	 
�m
; ð1:54Þ
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for fixed z and mj j � 1; arg mj j\p=2; one can show that ln 1þ snð Þ ¼
ig3 d� 1ð Þyn�1 þO n�2ð Þ: In other words, the convergence of the series in (1.53) is
too weak to pass to the limit c ! 1 under the sum sign. The elements of the
factorization sequence xn are defined up to an arbitrary factor without violating the
equality (1.52). This allows us to solve the problem of convergence of the series in
(1.53). Let us take the logarithm of the right-hand side of (1.52) and rearrange it in
the following way:

ln xn � c ln xn�1 ¼ �cn
X1

m¼nþ 1

c�m ln 1þ smð Þþ cn
X1
m¼n

c�m ln 1þ smð Þ

þ cn
X1
m¼0

c�m ln 1þ smð Þ � cn
X1
m¼0

c�m ln 1þ smð Þ

¼ cn
Xn
m¼0

c�m ln 1þ smð Þ � cn
Xn�1

m¼0

c�m ln 1þ smð Þ; n	 1;

ln x0 � c ln x�1 ¼ �
X1
m¼1

c�m ln 1þ smð Þþ
X1
m¼0

c�m ln 1þ smð Þ

þ
X1
m¼0

c�m ln 1þ smð Þ �
X1
m¼0

c�m ln 1þ smð Þ ¼ ln 1þ s0ð Þ � 0; n ¼ 0;

ln x�1 � c ln x�2 ¼ � c�1
X1
m¼0

c�m ln 1þ smð Þþ c�1
X1
m¼�1

c�m ln 1þ smð Þ

þ c�1
X1
m¼0

c�m ln 1þ smð Þ � c�1
X1
m¼0

c�m ln 1þ smð Þ ¼ 0� ln 1þ s�1ð Þ�1; n ¼ �1;

and

ln xn � c ln xn�1 ¼ �cn
Xnþ 1

m¼�1

c�m ln 1þ smð Þþ cn
Xn
m¼�1

c�m ln 1þ smð Þ; n
 � 2:

So we can pass to the limit c ! 1 and get

xn ¼
Yn
m¼0

1þ smð Þ for n	 0; 1 for n ¼ �1;
Ynþ 1

m¼�1

1þ smð Þ�1for n
 2

( )
: ð1:55Þ

It is easy to verify that this sequence satisfies (1.52) with c ¼ 1: By substituting
(1.52) with c ¼ 1 into (1.50), we arrive at the equation

un
xn

¼ �g�1
2

un�1

xn�1
þ gn

xn
; �1\n\1:

The solution of this equation is similar to that of the equation for ln xn, which can
be derived by taking the logarithm of (1.52), and is as follows
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un
xn

¼ W�1
n

Wh gn=xnð Þ
1þ g�1

2 exp ihð Þ
� 

¼ 1
2p

Zp
�p

X1
m¼�1

gm
xm

exp i m� nð Þh½ �
1þ g�1

2 exp ihð Þ dh: ð1:56Þ

The integrand here has no singularities on the path of integration as far as its
denominator coincides with the denominator of the function gð/Þ; while the surface
impedance distribution of the waveguide is naturally assumed to be a limited
function. Equations (1.44)–(1.46), (1.51), (1.55), and (1.56) allows us to obtain a
closed expression for the Hertz potential U. One should distinguish two cases:
g2j j\1 and g2j j[ 1: Let us do the relevant calculations for the first case.
The calculation of the integral in (1.56), by substituting exp ihð Þ ¼ z; is reduced

to the calculation of residues at the points z ¼ 0 and z ¼ �g2. As a result we have

un
xn

¼ �
X1

m¼nþ 1

gm
xm

�g2ð Þm�n:

Then we find the Hertz potential distribution on the impedance wall q ¼ b:

U b; q0;/;/0ð Þ ¼ exp i/ð Þþ g2½ �W/ un½ �
¼ � exp i/ð Þþ g2½ �

X1
n¼�1

xn
X1

m¼nþ 1

gm
xm

�g2ð Þm�nexp in/ð Þ:

The potential inside the waveguide, as follows from (1.44), is

U q;q0;/;/0ð Þ ¼ U0 q0; q;/0 � /ð Þþ b
Zp
�p

H /1;/ð ÞU b; q0;/1;/0ð Þd/1;

ð1:57Þ

where

H /1;/ð Þ ¼ � ik
8

X1
l¼�1

exp il /1 � /ð Þ½ �H 1;0ð Þ
l x; kqð Þ H 1ð Þ0

l yð Þ � ig /ð ÞH 1ð Þ
l yð Þ

h i.
H 1ð Þ0

l xð Þ:

The integration in (1.57) results in the following expression for the potential

U g; g0ð Þ ¼ � I mð Þ

8k
U0 g; g0ð ÞþU1 g; g0ð Þ½ �; ð1:58Þ

where (see formulas (1.45), (1.46))
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U0 g; g0ð Þ ¼
X1
n¼�1

exp in /0 � /ð Þ½ �H 1;0ð Þ
n x; kq\ð ÞH 1ð Þ

n kq[ð Þ
.
H 1ð Þ0

n ðxÞ

and

U1 g; g0ð Þ ¼ �
X1

n¼�1
exp in/ð Þ

X1
m¼nþ 1

xn
xm

H 1;0ð Þ
m x; kq0ð Þ

H 1;1ð Þ 1;0ð Þ
m;d x; yð Þ

exp �im/0ð Þ �g2ð Þm�n�1;

� g2
H 1;0ð Þ

n ðx; kqÞ
H 1ð Þ0

n ðxÞ
Hd

nðyÞþ expði/ÞH
ð1;0Þ
nþ 1ðx; kqÞ
H 1ð Þ0

nþ 1ðxÞ
H1

nþ 1ðyÞ
" #

;

Hd
nðyÞ ¼ Hð1Þ0

n ðyÞ � ig3dH
ð1Þ
n ðyÞ, H1

n yð Þ ¼ Hd
n yð Þ��

d¼1, q\ ¼ minðq0; qÞ; q[ ¼
maxðq0; qÞ; and xn is given by (1.55).

In a similar way, transformations are made for g2j j[ 1: It would be convenient
to separate the regular and irregular parts of the potential in (1.58). After lengthy
transformations, we arrive at the following expression for the Hertz potential

U g; g0ð Þ ¼ IðmÞ

8k
Ureg g; g0ð ÞþUireg g; g0ð Þ� �

; ð1:59Þ

where its regular part with the simple angular dependence in the form of /� /0 is

Ureg g; g0ð Þ ¼
X1
n¼�1

exp in /� /0ð Þ½ � H
ð1;0Þ
n x; kq\ð Þ

Hð1;1Þð1;0Þ
n;a x; yð Þ

Hð1;0Þð0;0Þ
n;a y; kq[ð Þ; ð1:60Þ

a ¼ 1 if g2j j\1; d if g2j j[ 1f g; q\ ¼ min q0; q1ð Þ; q[ ¼ max q0; q1ð Þ;

while its irregular part is

Uireg g; g0ð Þ ¼ �4
g3ð1� dÞ

py

X1
n¼�1

exp in /� /0ð Þ½ � Hð1;0Þ
n ðx; kqÞ

Hð1;1Þð1;0Þ
n;1 ðx; yÞ

Un g0ð Þ; ð1:61Þ

Un g0ð Þ ¼
X1
m¼1

exp �im/0ð Þ �g2ð Þm
Ym
j¼1

Hð1;1Þð1;0Þ
nþ j;d ðx; yÞ

Hð1;1Þð1;0Þ
nþ j;1 ðx; yÞ

H 1;0ð Þ
nþm x; kq0ð Þ

H 1;1ð Þ 1;0ð Þ
nþm;d x; yð Þ

; g2j j\1;

ð1:62Þ

Un g0ð Þ ¼ �
X1
m¼1

exp im/0ð Þ �g2ð Þ�m
Ym�1

j¼0

Hð1;1Þð1;0Þ
n�j;1 ðx; yÞ

Hð1;1Þð1;0Þ
n�j;d ðx; yÞ

Hð1;0Þ
n�m x; kq0ð Þ

Hð1;1Þð1;0Þ
n�m;d ðx; yÞ

; g2j j[ 1:

ð1:63Þ
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The first term in (1.59) coincides with the solution to the problem where the
source excites the regular coaxial waveguide whose reduced surface impedance of
the wall q ¼ b equals g3a.

It is easy to show the uniform convergence of the series, which determines the
second term in (1.59), within the interval a
 q, q0 
 b: Hence in this region the
function Uireg g; g0ð Þ is analytic and satisfies the homogeneous Helmholtz equation.

Following the methodology in [39], one can make certain that the function
U g; g0ð Þ in (1.59) is really the desired Green function of the Helmholtz (1.41) in the
ring region with irregular boundary conditions (1.42).

1.3.3 The Watson Transformation

The series in n in (1.60), (1.61) represent expansions in terms of radially propa-
gating waves. Since the number of the terms contributing significantly to the field
are of the order of OðkaÞ [20, 40], (1.59) is convenient for analysis only for ka � 1:

For the applications considered in the present section, the range of interest is
ka � 1; where the expansions in terms of azimuthally propagating ‘creeping’
waves (alternative to the series in (1.60), (1.61)), obtainable from (1.59) by using
the so called Watson transformation [20, 39, 41], are rapidly convergent.

The method leading to the Watson transformation was proposed in the early
twentieth century in the works of H. Poincare and J.W. Nicholson and was first used
in the electromagnetic theory by G.N. Watson [42]. This mathematical apparatus is
also used in quantum mechanics, in the theory of potential scattering [42].

As applied to series like in (1.60), (1.61), the initial statement of this method is
as follows: if the function of complex variable BðmÞ is analytic in the neighborhood
of the real axis, then the equality is valid

X1
n¼�1

expðin/ÞBðnÞ ¼ i
2

Z
C

exp imð/� pÞ½ �
sin pm

BðmÞdm; ð1:64Þ

, where C is the contour formed by two straight lines Imm ¼ �a, a � 1 and
bypassing the real axis in a clockwise direction. Let us first consider the regular part
of the field:

Ureg g; g0ð Þ ¼
X1
n¼�1

expðinD/ÞBregðnÞ; ð1:65Þ

BregðnÞ ¼ Hð1;0Þ
n x; kq\ð Þ

Hð1;1Þð1;0Þ
n;a ðx; yÞ

Hð1;0Þð0;0Þ
n;a y; kq[ð Þ; D/ ¼ /� /0 [ 0: ð1:66Þ
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If the analytical properties of the function BregðmÞ allow the contour of inte-
gration C to be deformed to infinity, then the integral in (1.64) can be represented as
a series of residues at the poles BregðmÞ: This series is just the Watson transform of
the initial series.

Consider the function BregðmÞ: Since for the Hankel functions with complex

index the following relationships are valid: Hð1Þ
�m ðzÞ ¼ expðipmÞHð1Þ

m ðzÞ; Hð2Þ
�m ðzÞ ¼

expð�ipmÞHð2Þ
m ðzÞ; then we have Bregð�mÞ ¼ BregðmÞ; hence it is sufficient to clear

up the properties of this function in the half-plane Rem[ 0: Using the asymptotics
(1.54) we find:

BregðmÞ � 2i
pm

q\
q[

� �m

for mj j � 1; arg mj j\p=2:

Hence, the integral in (1.64) is reduced to a sum of the residues at the poles ms
obtainable from the formula

Hð1;1Þð1;0Þ
m;a ðx; yÞ � Hð1Þ0

m ðxÞHð2Þ0
m ðyÞ � Hð2Þ0

m ðxÞHð1Þ0
m ðyÞ

h i
� ig3a Hð1Þ0

m ðxÞHð2Þ
m ðyÞ � Hð2Þ0

m ðxÞHð1Þ
m ðyÞ

h i
¼ 0; 0\x\y:

ð1:67Þ

Let us determine the location of zeros of this equation in the v-plane. Following
the paper [43], on the assumption that x and y are fixed and mj j � 1þ y2, we obtain
the following approximation:

m�1 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ig3ay=ln y=xð Þ

p
; ms � g3ay

pðs� 1Þ þ
ipðs� 1Þ
ln y=xð Þ for s ¼ 2; 3; . . .

and

ms � g3ay
pðsþ 1Þ þ

ipðsþ 1Þ
ln y=xð Þ for s ¼ �2;�3; . . .

Thus the roots of (1.67) are located symmetrically in the first (s ¼ 1; 2; 3; . . .)
and the third (s ¼ �1;�2;�3; . . .) quadrants of the v-plane.

By finding the residues at these points, we arrive at the representation

Ureg g; g0ð Þ ¼ �2p
X1
s¼1

cos ms p� D/ð Þ½ �Hð1;0Þ
ms x; kq\ð Þ

sin pmsð Þ~Hð1;1Þð1;0Þ
ms;a ðx; yÞ

Hð1;0Þð0;0Þ
ms;a y; kq[ð Þ; ð1:68Þ

where the following notation is used: ~Hð1;1Þð1;0Þ
ms;a ðx; yÞ ¼ @Hð1;1Þð1;0Þ

m;a ðx; yÞ
.
@m
���
m¼ms

.
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For the irregular part of the field, the manipulations are similar though more
cumbersome:

Uireg g; g0ð Þ ¼ 4g3ð1� dÞ
pkb

X1
n¼�1

expðinD/ÞBiregðnÞ;

where

BiregðmÞ ¼ �
X1
l¼1

exp �il/0ð Þ �g2ð Þl H
ð1;0Þ
m ðx; kqÞ

Hð1;1Þð1;0Þ
m;d ðx; yÞ

PlðmÞ
Hð1;0Þ

mþ l x; kq0ð Þ
Hð1;1Þð1;0Þ

mþ l;d ðx; yÞ
;

PlðmÞ ¼ P
l

j¼0

Hð1;1Þð1;0Þ
mþ j;d ðx; yÞ

Hð1;1Þð1;0Þ
mþ j;1 ðx; yÞ

for g2j j\1

and

BiregðmÞ ¼
X1
l¼1

exp il/0ð Þ �g2ð Þl H
ð1;0Þ
m x; kqð Þ

Hð1;1Þð1;0Þ
m;1 ðx; yÞ

~PlðmÞ Hð1;0Þ
m�l x; kq0ð Þ

H 1;1ð Þ 1;0ð Þ
m�l;1 ðx; yÞ

;

~PlðmÞ ¼ P
l

j¼0

Hð1;1Þð1;0Þ
m�j;1 ðx; yÞ

Hð1;1Þð1;0Þ
m�j;d ðx; yÞ

for g2j j[ 1:

The poles of the function BiregðmÞ for g2j j\1 are located at the points ms � j;
where ms are the roots of the equation (1.67) with a ¼ 1: For g2j j[ 1; they are
located at the points ms þ j; where ms are the roots of the equation (1.67) with a ¼ d.
By finding the residues at these points, we arrive at the following expressions:

Uireg g; g0ð Þ ¼ 4i
y
g23ð1� dÞ2

X1
s¼1

Hð1;0Þ
ms ðx; yÞ

sin pmsð Þ~Hð1;1Þð1;0Þ
ms;a ðx; yÞ

� exp ims D/� pð Þ½ �U g; g0; msð Þþ exp �ims D/� pð Þ½ �U g; g0;�msð Þ½ �;
ð1:69Þ

where

U g; g0; msð Þ ¼
X1
m¼1

exp �im/0ð Þ �g2ð Þm
Xm
l¼0

exp �ilD/ð ÞPðlÞ
m ms � lð Þ

� Hð1;0Þ
ms�l x; kqð ÞHð1;0Þ

ms�lþm x; kq0ð Þ
Hð1;1Þð1;0Þ

ms�l;d ðx; yÞHð1;1Þð1;0Þ
ms�lþm;dðx; yÞ

for g2j j\1;

ð1:70Þ
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U g; g0; msð Þ ¼
X1
m¼1

exp im/0ð Þ �g2ð Þ�m
Xm
l¼0

exp ilD/ð Þ ~PðlÞ
m ms þ lð Þ

� Hð1;0Þ
ms þ lðx; kqÞHð1;0Þ

ms þ l�m x; kq0ð Þ
Hð1;1Þð1;0Þ

ms þ l;1 ðx; yÞHð1;1Þð1;0Þ
ms þ l�m;1ðx; yÞ

for g2j j[ 1;

ð1:71Þ

PðlÞ
m ðmÞ ¼

Ym
j¼0
j 6¼l

Hð1;1Þð1;0Þ
mþ j;d ðx; yÞ

Hð1;1Þð1;0Þ
mþ j;1 ðx; yÞ

; ~P
ðlÞ
m ðmÞ ¼

Ym
j¼0
j 6¼l

Hð1;1Þð1;0Þ
m�j;1 ðx; yÞ

Hð1;1Þð1;0Þ
m�j;d ðx; yÞ

;

~Hð1;1Þð1;0Þ
ms;a ðx; yÞ ¼ d

dmH
ð1;1Þð1;0Þ
m;a ðx; yÞ

���
m¼ms

; D/ ¼ /� /0 [ 0;

ð1:72Þ

and ms are the roots of the equation (1.67).
In the analysis which follows, we restrict ourselves to the case of g2j j\1: The CS

phenomenon has been detected for the waves coming to the receiver by the shortest
route. Therefore, separating them out in (1.68)–(1.72) and placing the receiver and
the source onto the boundary q ¼ a at the points with angular coordinates / and /0,
respectively, we arrive at the following expression for the Hertz vector

4k
IðmÞ

U g; g0ð Þjq¼q0¼a¼ � 4
x

X1
s¼1

exp imsD/ð Þ
~Hð1;1Þð1;0Þ
ms;1 ðx; yÞ

Vs /;/0ð Þ; ð1:73Þ

Vs /;/0ð Þ ¼ Vreg msð ÞþVireg /;/0; msð Þ; ð1:74Þ

Vreg msð Þ ¼ Hð1;0Þð0;0Þ
ms;1 ðy; xÞ; ð1:75Þ

ireg /;/0; msð Þ ¼ �16ig3
p2xy

ð1� dÞ uþ
s /0ð Þþ 1þ ig3ð1� dÞHð1;0Þ

ms ðx; yÞuþ
s /0ð Þ

h i
u�s ð/Þ

n o
;

ð1:76Þ

u�s ð/Þ ¼
X1
m¼1

exp �im/ð Þ �g2ð Þm
Ym
j¼1

Hð1;1Þð1;0Þ
ms�j;d ðx; yÞ

Hð1;1Þð1;0Þ
ms�j;1 ðx; yÞ

� 1

Hð1;1Þð1;0Þ
ms�m;d ðx; yÞ

: ð1:77Þ

To simulate the CS phenomenon let us fix the angular distance D/ between the
receiver and the source. In this case, the function

~Uð/Þ ¼ 4k
.
IðmÞ

h i
U g; g0ð Þj q ¼ q0 ¼ a

/0 ¼ /� D/

; 0
/
 2p

may be considered as the ‘diurnal dependence’ of the received signal. To ensure a
nonzero diurnal phase change, the curve Vs /;/0ð Þ in the complex plane must
enclose the origin of coordinates. Since the regular term Vreg in (1.75) does not
depend on /, while the irregular term Vireg is proportional to exp �i/ð Þ for
/0 ¼ /� D/, the inequality
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Vreg msð Þ�� ��\ Vireg /;/0; msð Þ�� �� ð1:78Þ

is the necessary condition for the CS to occur in the model considered.

1.3.4 A Numerical Experiment

Let us calculate the Hertz potential ~Uð/Þ from (1.73)–(1.77) for the frequency
f ¼ 10kHz and waveguide dimensions a ¼ 6370 km and b� a ¼ 60 km: Since
x ¼ ka ¼ 1335:06 � 1; we will use Olver’s uniform asymptotic representation

[44] to calculate the Hankel functions HðjÞ
m ðxÞ along with their derivatives with

respect to the argument and the index. The roots of the transcendental equation in
(1.67) for a ¼ 1 can be found by the Newton-Raphson method [45]. For better
understanding of the peculiarities that characterize the waveguide mode intercon-
version, one should analyze the location of several first roots of the equation (1.67)
as a function of the complex parameter g3.

Figure 1.4 illustrates typical trajectories of the first two roots ms, s ¼ 1; 2 in the
complex v-plane for several fixed values of arg g3 as g3j j increases. The real values
m01 and m

0
2 correspond to zero impedance. The sign ‘+’ indicates the degenerate value

mdeg12 of these two roots corresponding to the impedance gdeg12 � 0:1826� i0:1127
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Fig. 1.4 The trajectories of the first two roots, v1 and v2, of (1.67) in the complex v-plane for
several fixed values of arg η3 with increasing g3j j; 0
 g3j j 
 0:5 : arg ðig3Þ equals (1) 63.43°,
(2) 60.94°, (3) 58.39°, (4) 58.21°, (5) 55.83°, (6) 53.37°
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(see [21, 46]). It is easily seen that an abrupt change in the behavior of the
eigenvalues of waveguide modes occurs when crossing the ray arg g3 ¼ arg gdeg12 .

Let us first consider the case of weakly irregular waveguides (d � 1Þ. Then for
g2j j � 1 we have from (1.76)

Vireg /;/0; msð Þ ¼ g1 � g2ð ÞV0 /;/0; msð Þ; ð1:79Þ

V0 /;/0; msð Þ ¼ � 16
p2

ig3
xy

exp �i/0ð Þ 1

Hð1;1Þð1;0Þ
ms þ 1;1 ðx; yÞ

þ expð�iD/Þ
Hð1;1Þð1;0Þ

ms�1;1 ðx; yÞ

" #
þOð1� dÞ:

ð1:80Þ

In Fig. 1.5, the level curves of the function V0 /;/0; mð Þj j (for /0 ¼ /� D/) are
shown in the complex v-plane for the most interesting domain of variation of the

eigenvalues of the first and the second modes for the impedance ig3 ¼
Hð1;1Þ

m ðx; yÞ
.
Hð1;0Þ

m ðx; yÞ satisfying (1.67).

The angular distance between the receiver and the transmitter is D/ ¼ 114:6�,
therefore, as it follows from numerical estimations, the contribution of the third and
higher modes can be neglected. Minimal values of V0 /;/0; mð Þj j are located in the
vicinity of the points m01 and m02, while the maximum is close to mdeg12 . By comparing
these results with the level curves of VregðmÞ

�� �� from Fig. 1.6, we can conclude that
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Fig. 1.5 The level curves of the function V0ð/0 þD/;/0; vÞj j for D/ ¼ 114:6�: maxv V0ð/0 þj
D/;/0; vÞj ¼ 3:0517; vmax ¼ 1325:5þ i21:75; V0ð/0 þD/;/0; v

0
1Þ

�� �� ¼ 1:2593 � 10�4, V0ð/0 þj
D/;/0; v

0
2Þj ¼ 4:5397 � 10�5

36 L. Pazynin



for small g3, for which rimp � 1 and m1;2 ! m01;2, the inequality

VregðmÞ
�� ��[ V0 /;/0; mð Þj j holds, and hence, CS is impossible in view of (1.78),

(1.79). Let g3 be increasing and approaching gdeg12 . At the same time, the center rimp

of the impedance circle gimp ! gdeg12 increases too, while the eigenvalues of the first

and second modes approach the point mdeg12 , in the vicinity of which the amplitude of
the irregular part of V0 /;/0; mð Þj j is maximal.

Then for not too small values of g1 � g2j j; the inequality (1.78) holds. In other
words, it follows from the foregoing numerical estimates for the functions VregðmÞ

�� ��
and V0 /;/0; mð Þj j for weakly irregular waveguides that there exists a threshold
value of the hodograph radius rcsimp of the impedance g /ð Þ (1.43) such that the CS
phenomenon is impossible for rimp\rcsimp, while for rimp [ rcsimp it occurs at least for

the hodographs located in the vicinity of gdeg12 . As the angular distance D/ increases,
the probability that the phenomenon in question will occur is growing too, all
factors being equal. A similar situation holds when a degree of the waveguide
irregularity grows, i.e. with increasing rimp.

Let us now turn back to the general case of arbitrary index of a waveguide irreg-
ularity d. Figure 1.7 present the simulated diurnal record of the received signal or, in
other words, the /-dependencies, D/
/
 2pþD/, of the normalized value

Wð/Þ ¼ lg max
0
/
 2p

~Uð/Þ�� ��� �
~Uð/Þ

� �
lg ~Uð/Þ�� ��� �

~Uð/Þ�� ��� �
;

for the fixed angular distance D/ ¼ 114:6� between the source and the receiver. On
the curves three following values of the received signal are marked: ‘0’ corresponds
to the initial moment of the record (/ ¼ 0Þ, ‘r’ (‘t’) corresponds to the moment of
time when the receiver (the transmitter) is passing through the waveguide cross
section / ¼ /cr, where the surface impedance is closest to gdeg12 (see Fig. 1.8).

Fig. 1.6 The level curves of
the function Vreg mð Þ�� ��;
maxv Vreg mð Þ�� �� ¼ 0:1561;
vmax ¼ 1328:25
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(a) (b)

(e) (f)

(h)(g)

(d)(c)

Fig. 1.7 The normalized diurnal records of the received signalWð/Þ: g3 ¼ 0:1455� i0:03638;
g2 ¼ 0:0001; D/ ¼ 114:6�
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The number of lost phase cycles are shown in the figures in square brackets [m];
ddegimp is the distance from the impedance circle to the point gdeg12 . The numerical
experiment has shown that the CS phenomenon does not occur for the hodographs

of the impedance gð/Þ remote from the segment lcs ¼ 0\ gj j 
 gdeg12 ;
n

argg ¼
arg gdeg12 g (Fig. 1.7a, b, c). As rimp increases, Wð/Þ behavior becomes more com-
plex; when the circle gð/Þ intersects lcs, CS occurs (Fig. 1.7d) for g3 ¼ 0:1455�
i0:03638 and rimp � 0:0484435: At the same time, the signal amplitude decreases
within a small variation interval of / (of the order of 0:01�).

As rimp grows, at rimp � 0:0533546 (Fig. 1.7f), the CS phenomenon for two
cycles, at rimp � 0:0546966 (Fig. 1.7h) for three cycles, and so forth is observable.
A similar situation holds for the circle g /ð Þ; whose center is located in the vicinity
of lcs (Fig. 1.8); however, the CS occurs at lesser values of rimp. Each CS phe-
nomenon is accompanied by a sharp decrease in signal amplitude, which is typical
for a CS in a natural waveguide [22, 32]. In the context of the given model, the role
played by the segment lcs in the initiation of the CS phenomenon can be explained
as follows: only for the impedances in the vicinity of this segment, the eigenvalues
m1 and m2 have closely spaced imaginary parts, and consequently, the amplitudes of
the first and the second modes are nearly equal. In addition, when g3 is moving
along lcs towards the point gdeg12 , the real parts of m1 and m2 come close together
(curves 3 or 4 in Fig. 1.4), and consequently, the phase velocities of these modes
approach each other.

Of some interest is a localization of the domains in the complex g-plane, for
which the CS phenomenon takes place at the given radius rimp and angle D/. In
Fig. 1.8 dots indicate center positions of the hodographs of radiuses 0.001, 0.005
and 0.01, for which CS occurs at D/ ¼ 114:6�. It is seen that with increasing rimp

the CS phenomenon develops initially in the immediate vicinity of the point gdeg12 ,
and then, as rimp grows, this area is extending occupying a constantly increasing

Fig. 1.8 The domains in the
complex plane of the
impedance g, where the CS
occurs with the given radius
rimp and the angle
D/ ¼ 114:6�

1 New Analytical Solutions of Selected Electromagnetic Problems … 39



part of the segment lcs. For the hodographs with fixed centers, the CS phenomenon
having developed at some rimp, persists for larger values of the radius.

In conclusion note the following. We have proposed a model of the ring
waveguide of a fixed cross section whose irregularity is caused only by the behavior
of the surface impedance of its wall. Hence we have excluded from consideration
the diffraction effect of wave transformation on a spatial inhomogeneity of the wall;
only the mode degeneracy effect being inherent in the waveguides with finite
absorption is analyzed. We have obtained the analytical solution of the corre-
sponding boundary value problem for a class of circular hodographs of surface
impedance. It is the first problem of the excitation of a finite irregular waveguide
with continuously varying properties, for which the analytical solution is found.

The results of the numerical experiment for widely separated (1
D/
 p)
transmitter and receiver have shown that the CS phenomenon here is directly
related to the degeneracy of the first and the second modes. This phenomenon is
threshold-like and it occurs in waveguides with sufficiently high irregularity of the
walls whose impedance is distributed in the neighborhood of the degenerate value
gdeg12 . Once the phenomenon is developed, it persists as the radius of the impedance
hodograph increases. At the same time, the domain of the complex plane of the
impedance, where the CS takes place, is extending occupying a constantly
increasing part of the segment joining the origin of coordinates and the point gdeg12 .

It has been demonstrated with a waveguide of fixed cross section that the CS in
irregular lossy waveguides may be caused by the interconversion of two dominant
waveguide modes in the neighborhood of their degeneracy rather than by the
diffraction effect of rescattering of the principal mode into the higher modes on a
spatial inhomogeneity of the waveguide wall, as it is customary to assume.

1.4 Pulsed Radiation from a Line Electric Current Near
a Planar Interface

The classical problem of transient electromagnetic fields generated by pulsed cur-
rents located near a planar boundary between layered media are the subject of
constant theoretical research starting with the B. van der Pol paper [47]. The
approaches based on the Cagniard method [48, 49] is the most efficient tool in this
study. A.T. de Hoop [50] has suggested a modification of Cagniard’s method with
the help of which exact solutions have been obtained for a number of problems of a
dipole or a line source near an interface [51–54]. Various modifications of
Cagniard’s technique have found wide application in the study of transient acoustic
and seismic wave propagation. Following paper [50], the modifications of de
Hoop’s technique [55, 56] as well as the alternative approaches free from some
drawbacks to this method [57, 58] have been suggested.
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In this section, following the paper [59], we use the approach alternative to
Cagniard’s technique to study the transient field generated by line sources located in
a flat-layered media. The suggested approach is applied to the already solved
problem, namely, the problem of finding the electromagnetic field generated by a
pulsed line source located near a planar interface between two nonabsorbing and
nondispersive media. The most complete solution to this problem have been
obtained and discussed in considerable detail by A.T. de Hoop in [54]. In this
paper, were applied the one-sided Laplace transform with respect to time and
two-sided Laplace transform with respect to a horizontal spatial variable. The
electromagnetic field is represented in the form of a double integral. This integral
can be efficiently calculated by the Cagniard-de Hoop method (CHM). The essence
of the method is as follows. The original path of integration for one of two integrals
forming the double integral is deformed into a so-called modified Cagniard con-
tour. It is chosen such that upon the corresponding change of the integration
variable in the integral along the modified contour, the original double integral turns
into a composition of the direct and inverse Laplace transform for the known
function. The central problem with this method is to find, generally speaking,
numerically, the modified Cagniard contour. It should be noted that the shape of
this contour changes as the observation point changes.

The key point of the approach proposed here consists in the following. To
calculate the double integral efficiently, we suggest deforming its domain of inte-
gration (the real plane) in the C × C-space of two complex variables rather than to
deform one contour in the complex C-plane, as has been done in CHM. It is shown
that in this case the integral reduces to a sum of residues. The use of powerful
apparatus of the residue theory instead of somewhat artificial way used in CHM is a
reason to hope that this new approach can be efficient in the situations where the
CHM is failed, for example, for anisotropic media. Our method can be extended to
multilayered media and arbitrary dipole sources.

1.4.1 Problem Formulation

The field generated by a pulsed line electric current

~JðeÞ ¼ IðeÞdðxÞd z� z0ð ÞdðtÞ~y; z0 [ 0; ð1:81Þ

which is located near a planar interface (Fig. 1.9), is to be found. The source excites
the E-polarized field

Ey 6¼ 0; Ex ¼ Ez ¼ Hy ¼ 0;
@Hx

@t
¼ 1

ll0

@Ey

@z
;

@Hz

@t
¼ � 1

ll0

@Ey

@x
: ð1:82Þ

1 New Analytical Solutions of Selected Electromagnetic Problems … 41



The function Ey is the solution of the wave equation

@2

@x2
þ @2

@z2
� ee0ll0

@2

@t2

� �
Ey ¼ l1l0

@J eð Þ
y

@t
ð1:83Þ

that satisfies the conditions of continuity of Ey- and Hx-components on the interface
z ¼ 0 and the causality principle. Here, e ¼ e1, l ¼ l1 for z[ 0 and e ¼ e2, l ¼ l2
for z\0:

The Fourier transform in time

Fðx; z;xÞ ¼ 1
2p

Z1
�1

Eyðx; z; tÞeixtdt; Eyðx; z; tÞ ¼
Z1
�1

Fðx; z;xÞe�ixtdx ð1:84Þ

applied to the boundary value problem in (1.83) results in the following problem

@2

@x2 þ @2

@z2 þx2e1e0l1l0
	 


F1 ¼ �I0dðxÞd z� z0ð Þ; z[ 0

@2

@x2 þ @2

@z2 þx2e2e0l2l0
	 


F2 ¼ 0; z\0

8<: ð1:85Þ

with the boundary conditions on z ¼ 0

F1 ¼ F2; l2
@F1

@z
¼ l1

@F2

@z
; ð1:86Þ

where I0 ¼ ixl1l0I
ðeÞ�2p: The solution of the equations in (1.85) is conveniently

represented in the form [41]

F1 ¼ I0 F0 þF1
s

� �
for z[ 0 and F2 ¼ I0F

2
s for z\0; ð1:87Þ

Fig. 1.9 A pulsed line source
near the interface between
two semi-infinite media
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where

F0 ¼ i
4p

Z1
�1

exp inxþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
z� z0j j

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q dn ¼ 1
4
Hð1Þ

0 k1R�ð Þ; ð1:88Þ

F1
s ¼ i

4p

Z1
�1

exp inxþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
zþ z0ð Þ

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q C1ðn;xÞdn; ð1:89Þ

F2
s ¼ i

4p

Z1
�1

exp inx� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q
zþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
z0

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q C2ðn;xÞdn; ð1:90Þ

Cjðn;xÞ are the unknown functions, Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2j � n2

q
	 0; k2j ¼ x2n2j , n2j ¼ eje0

�ljl0, j ¼ 1; 2; R2
� ¼ x2 þ z� z0ð Þ2. From the boundary conditions in (1.86), we

have:

1þC1 ¼ C2; �l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
C1 ¼ �l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q
C2;

or

C1ðn;xÞ ¼
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
� l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q ; ð1:91Þ

C2ðn;xÞ ¼
2l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q : ð1:92Þ

Thus we obtain the required field in the form of the following double integrals
taken over the plane P of real variables x and n:

E j
yðx; z; tÞ ¼ E0

@

@t
G jðx; z; tÞ; j ¼ 0; 1; 2; ð1:93Þ

G0ðx; z; tÞ ¼ 1
4pi

ZZ
P
exp inxþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n21 � n2

q
z� z0j j � ixt

� 
dxdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n21 � n2

q ; z[ 0;

ð1:94Þ
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G1 x; z; tð Þ ¼ 1
4pi

ZZ
P
exp inxþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n21 � n2

q
zþ z0ð Þ � ixt

� 
C1 n;xð Þdxdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n21 � n2
q ;

z[ 0;

ð1:95Þ

G2ðx; z; tÞ ¼ 1
4pi

ZZ
P
exp inx� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n22 � n2

q
zþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n21 � n2

q
z0 � ixt

� 
� C2 n;xð Þdxdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n21 � n2
q ; z\0;

ð1:96Þ

where E0 ¼ IðeÞl1l0
�
2p and Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2j � n2

q
	 0; j = 1, 2.

1.4.2 Reduction to Single Integrals

In formulas (1.94)–(1.96), the integrands allow analytic continuation from the real
plane P ¼ x; n : x00 ¼ n00 ¼ 0f g into the C × C-space of two complex variables
x ¼ x0 þ ix00 and n ¼ n0 þ in00. As the previous analysis has shown, there is no
need to operate with the whole of real four-dimensional space C × C. To calculate
the integrals in (1.94)–(1.96), it is sufficient to restrict our consideration to a
three-dimensional space R3 ¼ x; n : n00 ¼ 0f g � C� C containing P. In R3, one
should choose the single-valued branches of two square roots in the integrands.

Consider a function jðx; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 � n2

p
in R3 assuming that the refractive

index n ¼ n0 þ in00 (n0; n00 [ 0Þ is complex-valued.
The surface

Rej2 ¼ n02 � n002
� �

x02 � n02 � n002
� �

x002 � 4n0n00x0x00 � n02 ¼ 0 ð1:97Þ

has the following invariants [60]: I ¼ �1; J ¼ � nj j4, D ¼ �J; A ¼ 0; A0 ¼ D:
Therefore it represents a two-pole elliptic cone, which is symmetrical with respect
to the plane n0 ¼ 0; with its vertex at the origin of coordinates. Let us locate the axis
of the cone. The lines of intersection of the cone with the symmetry plane n0 ¼ 0 are
two mutually orthogonal straight lines n0 � n00ð Þx00 � n0 � n00ð Þx0 ¼ 0 with the
bisecting lines n0x00 þ n00x0 ¼ 0 and n0x0 � n00x00 ¼ 0: Consequently, the cone axis
is determined by the equations n0x00 þ n00x0 ¼ 0 and n0 ¼ 0:

The surface

Imj2 ¼ n0n00 x02 � x002� �þx0x00 n02 � n002
� � ¼ 0 ð1:98Þ
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has the following invariants: I ¼ 0; D ¼ � nj j4
.
4; A ¼ 0: Therefore it represents

two mutually orthogonal planes intersecting along the n0-axis and determined by the
equations n0x00 þ n00x0 ¼ 0 and n00x00 � n0x0 ¼ 0: The first plane contains the axis
of the cone (1.97) being its another symmetry plane. From (1.97) and (1.98), we
derive the following equations for the branch lines of j x; nð Þ:

n0x0 � n00x00 � n0 ¼ 0; n0x00 þ n00x0 ¼ 0:

In Fig. 1.10, the distribution of signs for Rej2 and Imj2in R3 is shown. In
(1.94)–(1.96), a single-valued branch of the function j x; nð Þ; for which
Imj x; nð Þ	 0; is determined on the real plane P ¼ n0;x0f g: The above mentioned
inequality is hold everywhere in R3, if the following condition is satisfied:
0
 arg j2\2p. In other words, the cut S in R3 that separates this branch should be
determined by the conditions Rej2 	 0; Imj2 ¼ 0: As is seen from Fig. 1.10, this
takes place for a double sector formed by the intersection of the inner part of the
cone (1.97) with its symmetry plane n0x00 þ n00x0 ¼ 0: In R3, with the cut of this
kind (Fig. 1.11), we have Imj x; nð Þ	 0:

A similar approach to choose a branch of the square root is given in [61] for the
case of a single variable. When passing to the lossless medium a ¼ 0; the cut
surface S is shifted into the plane x00 ¼ 0 representing the double sector, which
contains the x0-axis and is bounded by the straight branch lines n0x0 � n0 ¼ 0:

Thus we have shown that for a lossless media the cut surface ensuring a choice

of the branch, for which we have Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2j � n2

q
	 0 in R3, is a double sector Sj

(Fig. 1.11), which lies in the plane x00 ¼ 0; contains the x0-axis, and is bounded by
the branch lines njx0 � n0 ¼ 0; j ¼ 1; 2: The root is positive on the upper side of the
right-hand sector x0 [ 0; x00 ¼ 0þ 0f g and on the bottom side of the left-hand

Fig. 1.10 The sign
distribution for Re j2 and Im
j2 in the plane n0 ¼ 0:
Straight lines indicate the
lines of intersection with the
plane n0 ¼ 0: the bold lines—
for the cone Re j2 = 0, the
dashed lines—for the planes
Im j2 = 0. Symbols (±)
specify the sign of Re j2,
while [±] specify the sign of
Im j2; sin a ¼ �n00= nj j; l0 is
the axis of the cone (1.97)
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sector x0\0; x00 ¼ 0� 0f g; while it is negative on the other sides. Since the
integrands in (1.94)–(1.96) are uniquely defined in the R3-space with the specified
cuts, one can apply the Cauchy-Poincare theorem [18] to deform the surface of
integration P in R3n S1 [ S2ð Þ:

In accordance with the causality principle, the cut surfaces S1 and S2 have to
adjoin the real plane P from the bottom (x00 ¼ 0� 0Þ. Then, the integrands have no
singularities in the half-space x00 [ 0; and we have Eyðx; z; tÞ � 0 for all t\0;
according to the mentioned theorem.

For the positive values of t, the P-plane can be deformed to a half-space x00\0:
Then we have for E0

y an integral over the surface Pc1, while for E1
y , E

2
y we have

integrals over the surface Pc ¼ Pc1 [ Pc2. Here Pcj stands for the closed surface
enveloping the cut Sj.

Using the function G1 x; z; tð Þ as an example, let us demonstrate how the integrals
describing the secondary field in (1.95), (1.96) can be simplified. Denoting the
integrand in (1.95) by f x; n0ð Þ; consider the following integral over the surface Pc:ZZ

Pc
f x; n0ð Þds ¼ I1 þ I2; ð1:99Þ

where Ij ¼
RR

Pcj
f x; n0ð Þds . Let Pþ

cj and P�cj be the right-hand (x0 [ 0Þ and the

left-hand (x0\0Þ cavities of the surface Pcj; Lx0j is the closed contour generated by
the intersection of the surface Pcj with the coordinate plane x0 ¼ const: Then we
have

I1 ¼
X
�

ZZ
P�c1

f x; n0ð Þds ¼
Z1
0

dx0
Z

Lx01

dl f x; n0ð Þþ
Z0
�1

dx0
Z

Lx01

dl f x; n0ð Þ

¼
Z1
0

dx0
Z

Lx01

dl f x; n0ð Þ �
Z

Lx01

dl f �x;�n0ð Þ

264
375:

ð1:100Þ

Fig. 1.11 The location of the
branch lines l± and the cut
surface S ensuring the choice
of the branch for which
Im kðx; nÞ	 0 in R3-space; l0
is the axis of the cone (1.97)
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In the second integral, we made the following change of variables x ! �x,
n0 ! �n0: Taking into account the evenness of the chosen branches of the square
roots entering the function f x; n0ð Þ with respect to this change of variables and
performing another change of variables n0 ¼ xg, we arrive at the following
expression for the integral in (1.95):

I1 ¼
Z1
0

dx
Z
L1

dg exp ix gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þ � t

� � ��

� exp ix �gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þþ t

� � ��
~C1ðgÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
;

ð1:101Þ

where

~C1ðgÞ ¼ l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
� l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p : ð1:102Þ

The contour L1 envelopes the segment �n1; n1ð Þ in the complex g-plane. Let us
introduce the accessory parameter d[ 0 for the sake of convergence acceleration,
then rewrite (1.101) in the form

I1 ¼ lim
d!0

Z1
0

dx
Z
L1

dg exp ix idþ gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þ � t

� � ��

� exp ix id� gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þþ t

� � ��
~C1ðgÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
¼ i lim

d!0

Z
L1

1

gxþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
zþ z0ð Þ � tþ id

"

� 1

�gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
zþ z0ð Þþ tþ id

#
~C1ðgÞdgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p :

ð1:103Þ

For the second integral in (1.99), I2, we obtain a representation similar to (1.103)
with L1 replaced by L2, where L2 is the contour enveloping the segment �n2; n2ð Þ:
Thus, for the function given by (1.95), which determines the secondary field in the
first medium (see (1.93)), we arrive at the following expression

G1ðx; z; tÞ ¼ 1
4p

lim
d!0

Z
L

1

gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
zþ z0ð Þ � t�

"

� 1

�gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
zþ z0ð Þþ tþ

#
~C1ðgÞdgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p ;

ð1:104Þ
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where t� ¼ t � id, L is the contour enveloping the segment �nmax; nmaxð Þ; nmax ¼
max n1; n2ð Þ: The root branches are determined by the inequalities

�p\ arg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � g2

q
\p with zero argument on the bottom side of the cut along the

segment �nj; nj
� �

:

Similarly, for the function G2, describing the field in the second medium, we
obtain from (1.96):

G2ðx; z; tÞ ¼ 1
4p

lim
d!0

Z
L

1

gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
z� t�

"

� 1

�gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
zþ tþ

#
~C2ðgÞdgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p ;

ð1:105Þ

where ~C2ðgÞ ¼ 1þ ~C1ðgÞ: The integrands in (1.104) and (1.105) are analytic in the
plane of complex variable g with the specified cut and decreasing at infinity as g�2.
Therefore, these integrals can be reduced to the residues determined by zeros of the
denominators in the square brackets:

gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þ � t� ¼ 0; �gxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þþ tþ ¼ 0 for

ð1:104Þ;
ð1:106Þ

gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

q
z� t� ¼ 0;

� gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

q
zþ tþ ¼ 0 for ð1:105Þ:

ð1:107Þ

1.4.3 The Field in the First Medium

The roots of (1.106) are readily determined and can be written as

g�1 ¼ xt� � zþ z0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2�
q� �

R�2
þ and

gþ
1 ¼ xtþ þ zþ z0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
q� �

R�2
þ ;

ð1:108Þ

where R2
þ ¼ x2 þ zþ z0ð Þ2. For the square root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2
p

, we determined the

same branch in the complex plane of variable t as for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � g2

q
in the g-plane. By

calculating the corresponding residues, we get from (1.104):
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G1ðx; z; tÞ ¼ i
2
lim
d!0

~C1ðgÞ
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
� zþ z0ð Þg

�����
g¼g�1

8<: þ
~C1ðgÞ

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
þ zþ z0ð Þg

�����
g¼gþ

1

9=;
¼ i

2
lim
d!0

~C1 g�1
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21R
2þ � t2�

p þ
~C1 gþ

1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
p( )

:

ð1:109Þ

Here we used the equality

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g�1

� �2q
¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t�ð Þ2
q

� zþ z0ð Þt�
� 

R�2
þ : ð1:110Þ

It is easy to verify that the following relationships are hold for the chosen
branches of the square roots:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21R
2þ � tð Þ2

q
¼ exp ipð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2
q� �

;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � gð Þ2

q
¼ exp ipð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � g2

q	 
 ð1:111Þ

(the asterisk stands for a complex conjugation). Therefore,

g�1 ¼ xtþ � zþ z0ð Þ exp ipð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
q� �� 

R�2
þ

¼ xtþ þ zþ z0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
q� 

R�2
þ ¼ gþ

1

� �
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2j � g�1
� �2q

¼ expðipÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � g�1

� �� �2q� �
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � gþ

1

� �2q� 
;

~C1 g�1
� � ¼ ~C1 gþ

1

� �� �
:

ð1:112Þ

The wave reflected from the interface comes at some point in the first medium at
time tref ¼ n1Rþ . For the time interval 0\ t\ tref , in view of (1.112), we obtain

G1ðx; z; tÞ ¼ i
2
lim
d!0

~C

1 gþ

1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2�
p þ

~C1 gþ
1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
p" #

¼ i
2
lim
d!0

~C

1 gþ

1

� �� ~C1 gþ
1

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2
p

¼ Im~C1 g\1
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21R
2þ � t2

q
;

ð1:113Þ

where g\1 ¼ gþ
1

��
d¼0¼ xt � zþ z0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2
ph i

R�2
þ .
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For the time interval tref\t; we have

G1ðx; z; tÞ ¼ i
2
lim
d!0

~C

1 gþ

1

� �
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � n21R

2þ
p þ

~C1 gþ
1

� �
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � n21R

2þ
p" #

¼ Re~C1 g[
1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � n21R

2þ
p ; ð1:114Þ

where g[
1 ¼ gþ

1

��
d¼0¼ xtþ i zþ z0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � n21R

2þ
ph i

R�2
þ .

The behavior of the secondary field in the first medium for the times 0\t\tref
essentially depends on the relation between the refractive indices for the first (n1)
and second (n2) media.

For an arbitrary point in the first medium, both of the roots entering ~C1 g\1
� �

are

real (see (1.110)) if n1\n2. Consequently, we have Im~C1 g\1
� � ¼ 0; and the sec-

ondary field given by (1.113) is zero (G1 x; z; tð Þ � 0Þ up to the moment of arrival of
the reflected wave.

In the case that n1 [ n2, a more detailed analysis of the function n22 � g\1
� �2

is
required. Let us use the following notation: x=Rþ ¼ sin h; zþ z0ð Þ=Rþ ¼cos h,
n2=n1 ¼ sin htot; where htot stands for the angle of total internal reflection [41, 62].
Let us also introduce the parameter s ¼ arccos t=trefð Þ such that cos s ¼ t=tref and
the principal branch 0\s\p of this function is chosen. Then we arrive at

n22 � g\1
� �2 ¼ n21

x
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t

n1Rþ

� �2
s

þ zþ z0ð Þ
Rþ

t
n1Rþ

24 352

� 1� n22
n21

� �8<:
9=;

¼ n21 cos2 s� hð Þ � cos2htot
� � ¼ n21sin htot � hþ sð Þsin htot þ h� sð Þ:

ð1:115Þ

Since we have 0\h; htot; s\p=2 for the space-time domain considered, then the
arguments of the sine functions in (1.115) find themselves within the interval
�p=2; pð Þ: Therefore, the function given by (1.115) has two roots, s1 ¼ h� htot
and s2 ¼ hþ htot, corresponding to the time points t1 ¼ trefcos h� htotð Þ and t2 ¼
tref cos hþ htotð Þ: There is no difficulty to show (the trajectory z0x1x2A in Fig. 1.12)
that

t1 ¼ n1z0=cos htot þ n2 x� zþ z0ð Þtghtot½ � þ n1z=cos htot ¼ tdif ;

where tdif is the time of arrival of the so-called side wave [41] (or diffraction wave
[62]) at the observation point located in the first medium in the region h[ htot. For
h\htot, the variable s1 goes to the unphysical sheet of the function arccos t=trefð Þ;
and the side wave does not occur in this region. By virtue of the causality principle,
for the times t\tdif , there is no secondary field and so the other zero (s2) is of no
importance (t2\t1).
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Let us find the value of sign n22 � g\1
� �2h i

for tdif \ t\ tref in the region

h[ htot. Here the following relationships for the arguments of the sine functions in
(1.113) are valid:

� p=2\htot � h\htot � hþ s\htot � hþ s1 ¼ 0;

0\2htot ¼ htot þ h� s1\htot þ h� s\htot þ h\p;

which means that n22 � g\1
� �2\ 0: Considering that Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g\1

� �2q
¼ 0; we have

Im~C1 g\1
� � 6¼ 0:

Thus for n1 [ n2 and tdif\t\tref , in the region h[ htot, the side wave is gen-
erated, which is given by the function in (1.113).

From (1.113), (1.114), through the substitutions ~C1 ! 1; zþ z0 ! z� z0, we
arrive at the following expression for the function G0 characterizing the primary
field:

G0ðx; z; tÞ ¼ 0 for 0\t\t0; 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � t20

q
for t0\t

� 
; ð1:116Þ

where t0 ¼ n1R� is the time of arrival of the primary wave at the observation point
in the first medium.

1.4.4 The Field in the Second Medium

Denote the roots of the equation (1.107) by g�2 and gþ
2 . Then the integral in (1.105)

takes the form

Fig. 1.12 The wave fronts of
the field generated by a pulsed
line current located near a
planar interface for n1 > n2:
the primary (I), reflected (II),
transmitted (III), and side
(IV) waves; z0 x1 x2 A is the
trajectory determining the
time of arrival of the side
wave at the point A, htot is the
angle of total internal
reflection
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G2ðx; z; tÞ ¼ i
2
lim
d!0

Res
g¼g�2

~C
~ 2
ðgÞ

xgþ z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
� t�

24
� Res

g¼gþ
2

~C� 2
ðgÞ

�xgþ z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
þ tþ

35 ¼ i
2
lim
d!0

~C� 2
g�2
� �

x� Z g�2
� � þ ~C� 2

gþ
2

� �
xþ Z gþ

2

� �
24 35;

ð1:117Þ

where

ZðgÞ ¼ z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p" #
g and ~C� 2

ðgÞ ¼
~C2ðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p : ð1:118Þ

The roots g�2 can be written explicitly, in the form of the solutions of the
associated algebraic quartic equations. However, they are too lengthy because of six
parameters entering (1.107) and will not be used. In view of the causality principle,
we have G2 x; z; tð Þ � 0 for t\ttr, where ttr is the time of arrival of the transmitted
wave at the observation point in the second medium. For t[ ttr , the roots g�2 are
complex and, as evident from (1.107), in terms of (1.111), we have g�2 ¼ gþ

2

� �
.

Therefore, taking into account formulas in (1.112), we obtain for t[ ttr

G2ðx; z; tÞ ¼ i
2
lim
d!0

~C� 2
gþ
2

� �
xþZ gþ

2

� �� ~C� 2
gþ
2

� �
x� Z gþ

2

� �
24 35 ¼ i

2
lim
d!0

~C� 2
gþ
2

� �
xþ Z gþ

2

� �
24 35�

~C� 2
gþ
2

� �
xþ Z gþ

2

� �
24 358<:

9=;
¼ � lim

d!0
Im

~C� 2
gþ
2

� �
xþ Z gþ

2

� � ¼ �Im
~C� 2

g[
2

� �
xþ Z g[

2

� � ;
ð1:119Þ

where g[
2 ¼ gþ

2

��
d¼0.

1.4.5 Discussion and Conclusion

Formulas (1.93) and (1.116) for the primary field, formulas (1.113) and (1.114) for
the secondary field in the first medium, as well as formula (1.119) for the secondary
field in the second medium coincide with the corresponding expressions derived
with the help of CHM in [54].

The main result of our study is a new representation for the field generated by a
pulsed line current in a two-media configuration in the form of the integrals along
finite contours (1.104), (1.105). This method, like the CHM, is applicable to the
problems of pulsed electromagnetic radiation from linear sources in the medium
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formed by an arbitrary finite number N of homogeneous parallel layers with per-
mittivity ej and permeability lj, j ¼ 1; 2; . . .;N: In this case, for the field in the
layers, the integrals along the contour enveloping the interval �nmax; nmaxð Þ; where
nmax ¼ max n1; n2; . . .; nNf g; are similar to representations (1.104), (1.105). Two
methods for calculating these integrals are possible.

The first way is to reduce them, by the Cauchy theorem, to a sum of residues at
the poles of the integrand. These poles are determined by the roots of algebraic
equations that coincide with the equations for the modified Cagniard contours [54].
Therefore this technique, being alternative to the CHM in an analytical sense, is
equivalent to it in a calculating sense.

Another way is to estimate numerically the integrals in (1.104), (1.105). It is
easy to show that they can be reduced to the integrals over the interval 0; nmaxð Þ: For
example, the field in the first medium (1.104) can be represented for n2 [ n1,
t[ tref in the following form:

G1ðx; z; tÞ ¼ � 2
p
t
Zn1
0

f ðgÞ ~C� 1
ðgÞdg

24 þ 2
n22 � n21

Zn2
n1

f ðgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

q
dg

35;
where

f gð Þ ¼ x2g2 þ n21 � g2
� �

zþ z0ð Þ2�t2

x2g2 � n21 � g2
� �

zþ z0ð Þ2 þ t2
h i2

�4x2t2g2
; ~C� 1

gð Þ ¼
~C1 gð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p :

We can use a standard integration procedure of any mathematical package to
calculate G1 by this formula. Comparison of the data obtained by this way with the
explicit expression given by (1.114) has demonstrated high efficiency and accuracy
of the approach.

The key point of the CHM is the solution of the algebraic equation determining
the modified Cagniard contour. To do this, the iterative numerical methods are
used. The greatest difficulty inherent in these methods is to choose the initial value
that is close enough to the required zero of the equation [63]. In the paper [54], such
an initial approximation has been proposed for the medium consisting of N isotropic
layers. The efficiency of the iterative method has been demonstrated for N ¼ 2: For
more complex structures containing anisotropic layers, the initial approximation of
this kind is unknown. (The CHM allows us to study as yet the simplest situation
where the source and the observation point are located on the boundary of an
anisotropic medium [64].)

Our approach, being free from such complications, reduces the calculation of the
field generated by a line dipole in a multilayered medium to the standard procedure
of numerical integration along a finite interval.
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1.5 Transition Radiation of a Longitudinal Magnetic
Dipole in the Case of Diffuse Interface

In the overwhelming number of studies on transition radiation (see reviews [65, 66])
the medium models are used in which spatial properties change abruptly. The tran-
sition radiation that occurs when an electric charge moves across the diffuse interface
of two media was first discussed in the paper [67]. The authors used the asymmetric
Epstein layer of relative permittivity eðzÞ ¼ 1þ a= 1þ expð�dzÞ½ �: This model
problem is of particular value since its exact solution, if it were obtained, would allow
one to determine the conditions under which the transition radiation on the diffuse
boundary can be considered approximately the same as in the case of the sharp
boundary. This problem in [67] is reduced to the solution of the one-dimensional
scalar Helmholtz equation with the coefficient involving

ffiffi
e

p
1=

ffiffi
e

pð Þ00 instead of eðzÞ:
Since the analytic solution of this equation is not known, the authors were forced to
make an additional assumption about smallness of grad eðzÞ: Furthermore, the vari-
ation of the function eðzÞ is supposed to be also small since the authors of [67] limited
themselves by the case of the radiation from an ultrarelativistic charge at frequencies
larger than optical frequencies. These assumptions, weakening the initial rigorous
formulation, do not allow one to establish a reliable criterion of the interface
‘sharpness’, which is free from those restrictions.

In this section, for the medium like an asymmetric Epstein layer, we will show
the possibility to solve rigorously the problem of the transition radiation of a
longitudinal magnetic dipole [68].

1.5.1 Problem Formulation and Solution

We assume that a longitudinal magnetic dipole with moment ~m ¼ mz~z is moving
with constant velocity ~V ¼ Vz~z; Vz [ 0 in an isotropic layered medium with con-
stant relative permeability l and relative permittivity

eðzÞ ¼ e1 þ e2 � e1
1þ exp �szð Þ ; s[ 0: ð1:120Þ

For simplicity, we assume that the condition of Vavilov-Cherenkov radiation is
not satisfied. The initial equations are [67]:

rot~H ¼ @~D
@t

þ~JðmÞ; rot~E ¼ � @~B
@t

; ~D ¼ ee0~E; ~B ¼ ll0~H;

~JðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

z

�
c2

q
mz rt �~z½ �d ~r?ð Þd z� Vztð Þ; c ¼ ffiffiffiffiffiffiffiffiffi

e0l0
p� ��1

;rt ¼ @

@x
~xþ @

@y
~y;

~r? ¼ x~xþ y~y:
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For a plane-layered isotropic medium, these equations with a harmonic time
dependence can be reduced [41] to two scalar equations

e
@

@z
1
e
@

@z
þ k2 þr2

t

� �
rt �~z½ � � ~Ht

x

� � ¼ e
@

@z
1
e

rt �~JðmÞx

	 

;

@2

@z2
þ k2 þr2

t

� �
rt �~z½ � �~Et

x

� � ¼ �ixll0 rt �~z½ � �~JðmÞx

	 

;

where k2 ¼ k20el, k0 ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
, and ~Et

x; ~Ht
x are the projections of the corre-

sponding vectors on the plane x0y: In this case,

rt �~Et
x

� � ¼ 1
ixee0

rt �~JðmÞx

	 

� @

@z
rt �~z½ � � Ht

x

� �� �
;

rt � ~Ht
x

� � ¼ 1
ixll0

@

@z
rt �~z½ � �~Et

x

� �
; Ezx ¼ 1

ixe
rt �~z½ � � ~Ht

x

� �
;

Hzx ¼ � 1
ixll0

rt �~z½ � �~Et
x

� �
:

Since the problem is homogeneous in time and in the direction perpendicular to
the velocity of the dipole, we represent all the functions in Maxwell’s equations in
the form of the Fourier integrals

~Fð~r; tÞ ¼
Z

~Fx;~jðzÞ exp i ~j �~r?ð Þ � ix t½ �dx d~j; ~j ¼ jx~xþ jy~y; ~r ¼~r? þ z~z

with

~JðmÞx;~jðzÞ ¼
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

z

�
c2

q
2pð Þ3Vz

mz exp ix z=Vzð Þ~j�~z½ �:

Then, by introducing the scalar function uðzÞ ¼ ~j�~z½ � �~Et
x;~j

	 

; we arrive at the

equation

d2

dz2
þ k20eðzÞl� j2

� 
uðzÞ ¼ A exp ixz=Vzð Þ;

A ¼
ffiffiffiffiffiffiffiffiffi
4pe0

p
xll0

2pð Þ3Vz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

z

�
c2

q
mzj

2:

ð1:121Þ

The spectral components of the field can be recovered from the solution of this
equation by the formulas
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~Et
x;~j ¼ � i

j2
~j�~z½ �uðzÞ; Ez;x;~j ¼ 0; ~Ht

x;~j ¼ � iffiffiffiffiffiffiffiffiffi
4pe0

p
xll0j2

~j
d
dz

uðzÞ;

Hz;x;~j ¼ � 1ffiffiffiffiffiffiffiffiffi
4pe0

p
xll0

uðzÞ:

The magnetic field vector lies in the radiation plane, which passes through the
vectors ~j and ~V ; that is, the field is an H-polarized wave [69].

We now seek the solution of homogeneous (1.121). By introducing a new
independent variable x ¼ � expð�s zÞ and a new function yðxÞ ¼ ð�xÞ�muðzÞ [12,
67], we pass from (1.121) to the following hypergeometric equation

xð1� xÞy00ðxÞþ s� aþ bþ 1ð Þx½ �y0ðxÞ � abyðxÞ ¼ 0 ð1:122Þ

with the parameters a ¼ mþ k, b ¼ m� k ; s ¼ 1þ 2m,
m ¼ ðsÞ�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 � x2e2e0ll0
p

, k ¼ ðsÞ�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � x2e1e0ll0

p
,

Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � x2e1;2e0ll0

p 	 0:
Let us choose two linearly independent solutions of (1.122) that are regular at

zero [70]:

y1ðxÞ ¼ Fða; b; s; xÞ; y5ðxÞ ¼ x1�sFðaþ 1� s; bþ 1� s; 2� s; xÞ;

where Fð. . .Þ is the hypergeometric function. The corresponding solutions of
homogeneous (1.121) are

u1ðzÞ ¼ expð�mszÞF mþ k; m� k; 1þ 2m;� expð�szÞð Þ;
u5ðzÞ ¼ exp mszð ÞFðk� m;�k� m; 1� 2m;� expð�szÞÞ:

The general solution of inhomogeneous (1.121) is given by

W
A
uðzÞ ¼ � u1ðzÞ

Z
u5ðzÞ exp ixz=Vzð Þdzþ u5ðzÞ

Z
u1ðzÞ exp ixz=Vzð Þdz

þ C1u1 zð ÞþC2u5 zð Þ
ð1:123Þ

with the Wronskian W ¼ lim
z!1 u1u05 � u01u5

� � ¼ 2sm. To calculate these integrals we

use the Barnes representation [70]

Fða; b; s; nÞ ¼ 1
2pi

CðsÞ
CðaÞCðb)

Zcþ i1

c�i1

Cðaþ tÞCðbþ tÞCð � t)
Cðsþ tÞ ð�nÞtdt;

where argð�nÞj j\p, c[ 0 and all the poles of Cð�tÞ are located to the right of the
contour of integration. Let us introduce the notation r ¼ ix=Vzs; f ¼ sz and con-
sider the case where z\0: Then,
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I1 ¼
Z

u5ðzÞexp ixz=Vzð Þdz

¼ 1
s

Z
Fðk� m;�k� m; 1� 2m;� expð�1ÞÞexp[(rþ mÞ1�d1

¼ 1
2pis

Cð1� 2m)exp[(rþ mÞ1�
Cðk� mÞCð � k� m)

Zcþ i1

c�i1

Cðk� mþ tÞCð � k� mþ tÞCð � t)
Cð1� 2mþ tÞðrþ m� tÞ exp(� 1 tÞdt:

The integrand allows us to close the integration contour in the left half-plane
Re t\c. Upon calculating the residues at the poles tn ¼ �n� kþ m,
t0m ¼ �mþ kþ m, n;m ¼ 0; 1; 2; . . . and tþ ¼ rþ m ; we obtain

I1 ¼ 1
s

expðr1ÞCð1� 2m)
Cðk� mÞCð�k� mÞ expðk1Þ

X1
n¼0

ð�1ÞnCð � 2k� nÞCð � mþ kþ n)
n!Cð1� m� k� nÞðrþ kþ nÞ expðn1Þ

(

þ exp �k1ð Þ
X1
n¼0

�1ð ÞnC 2k� nð ÞC �m� kþ nð Þ
n!C 1� mþ k� nð Þ r� kþ nð Þ exp n1ð Þ

�Cðkþ rÞCð � kþ rÞCð � r� m)
Cð1þr� mÞ expð�r1Þ

�
:

Similarly,

I2 ¼
Z

u1ðzÞexp ixz=Vzð Þdz ¼ 1
s

Z
F mþ k; m� k; 1þ 2m;�expð�1Þð Þexp ðr� mÞ1½ �d1

¼ 1
2pis

Cð1þ 2m)exp ðr� mÞ1½ �
Cðmþ kÞCðm� kÞ

Zcþ i1

c�i1

Cðmþ kþ tÞCðm� kþ tÞCð�tÞ
Cð1þ 2mþ t)(r� m� t)

expð�1tÞdt:

Upon calculating the residues at the poles tn ¼ �n� k� m, t0m ¼ �mþ k� m,
n;m ¼ 0; 1; 2; . . ., and t� ¼ r� m in the half-plane Ret\c, we obtain

I2 ¼ 1
s

exp(r1ÞCð1þ 2m)
Cðmþ kÞCðm� kÞ expðk1Þ

X1
n¼0

ð�1ÞnCð � 2k� nÞCðmþ kþ n)
n!Cð1þ m� k� nÞðrþ kþ nÞ exp(n1Þ

(

þ expð�k1Þ
X1
n¼0

ð�1ÞnCð2k� nÞCðm� kþ n)
n!Cð1þ mþ k� n)ðr� kþ nÞ exp(n1Þ

�Cðkþ rÞCðr� kÞCð � rþ m)
Cð1þ rþ mÞ exp(� r1Þ

�
:

Applying the formula pð�1Þnþ 1 ¼ sinðpaÞCðaþ 1� nÞCð�aþ nÞ [70], we
find that
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W
A
uðzÞ ¼ � u1ðzÞexp(r1Þ Cð1� 2m)

s Cðk� mÞCð�k� mÞ �exp(k1ÞS1ð1Þ sin pðmþ kÞ½ �
sinð2pkÞ

�
þ expð�k1ÞS2ð1Þ sin pðm� kÞ½ �

sinð2pkÞ � Cðkþ rÞCð�kþ rÞCð�r� mÞ
Cð1þ r� mÞ exp(� r1Þ

�
þ u5ðzÞexp(r1Þ C 1þ 2mð Þ

s Cðmþ kÞCðm� k)
�exp(k1ÞS1ð1Þ sin pðk� mÞ½ �

sinð2pkÞ
�

� exp(� k1ÞS2ð1Þ sin pðkþ mÞ½ �
sin(2pkÞ � Cðkþ rÞCð � kþ rÞCð � rþ m)

Cð1þ rþ m)
exp(� r1Þ

�
þ C1u1ðzÞþC2u5ðzÞ;

ð1:124Þ

where

S1ð1Þ ¼
X1
n¼0

ð�1ÞnCð�mþ kþ nÞCðmþ kþ nÞ
n!Cð1þ 2kþ n)(rþ kþ n)

expðn1Þ and

S2ð1Þ ¼
X1
n¼0

ð�1ÞnCðm� kþ nÞCð � m� kþ n)
n!Cð1� 2kþ n)ðr� kþ nÞ exp(n1Þ:

The linearly independent solutions u1 and u5 are regular for positive z. We are
interested in z\0; therefore, let us continue these solutions analytically into this
domain [70]: u1 ¼ C13u3 þC14u4; u5 ¼ C53u3 þC54u4: Here

C13 ¼ Cð1þ 2mÞCð � 2k)
Cðm� kþ 1ÞCðm� k)

; C14 ¼ Cð1þ 2mÞCð2k)
Cðmþ kþ 1ÞCðmþ k)

;

C53 ¼ Cð1� 2mÞCð � 2k)
Cð � m� kþ 1ÞCð � m� k)

; C54 ¼ Cð1� 2mÞCð2k)
Cð � mþ kþ 1ÞCð � mþ k)

:

By substituting the above expressions into (1.124), we obtain for z\0

uðzÞ ¼ umðzÞþ urðzÞ; ð1:125Þ

where

W
A
umðzÞ ¼ m

sk
exp(r1Þ �u4ðzÞexp(k1ÞS1ð1Þ Cð1þ 2k)

Cðk� mÞCðmþ k)

�
þ u3ðzÞexpð�k1ÞS2ð1Þ Cð1� 2k)

C �k� mð ÞCðm� kÞ
�
;

W
A
urðzÞ ¼ 1

s
u3ðzÞ C13 Cðr; k;�m)þ sC1½ � � C53 Cðr; k; m)� sC2½ �f g

þ 1
s
u4ðzÞ C14 Cðr; k;�mÞþ sC1½ � � C54 Cðr; k; mÞ � sC2½ �f g;

Cðr; k; m) ¼ Cð1þ 2mÞCðrþ kÞCðr� kÞCð�rþ mÞ
Cðmþ kÞCðm� kÞCð1þ rþ m)

:
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With z ! �1 we have u3ðzÞ � expðk1Þ; u4ðzÞ � expð�k1Þ; consequently

umðzÞ � �
ffiffiffiffiffiffiffiffiffi
4pe0

p
xll0mz

ð2pÞ3Vz

j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

z

�
c2

q exp ixz=Vzð Þ
j2 � x2e1e0ll0 þx2

�
V2
z

;

i.e. for z ! �1 the term umðzÞ changes into the self field of the longitudinal
magnetic dipole [69]. The term urðzÞ represents the radiation field. For propagating
waves, the inequality k20e1;2l[ j2 holds; choosing the root branch

arg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � k20e1;2l

p
¼ �p=2; we have

m ¼ � i
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e2e0ll0 � j2

p
; k ¼ � i

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e1e0ll0 � j2

p
:

Consequently, for z ! �1, u3ðzÞ is the wave outgoing to �1, while u4ðzÞ is
the wave incoming from �1. Since the latter should not exist, the coefficient at
u4ðzÞ must be zero:

C14 Cðr; k;�mÞþ sC1½ � ¼ C54 Cðr; k; mÞ � sC2½ �: ð1:126Þ

Another condition for the constants C1 and C2 we obtain from the representation
(1.123) for the total field for z[ 0: In this case, exp �1ð Þ\1 in the integral I1,
which allows us to close the contour of integration in the half-plane Ret[ c, where
the poles tn ¼ n; n ¼ 0; 1; 2; . . . are located. As a result we have for z[ 0

W
A
uðzÞ ¼ �u1ðzÞ exp rþ mð Þ1½ �C 1� 2mð Þ

C k� mð ÞC �k� mð Þs
X1
n¼0

�1ð ÞnC k� mþ nð ÞC �k� mþ nð Þ
n!C 1� 2mþ nð Þ rþ m� nð Þ e�n1

þ u5ðzÞ exp r� mð Þ1½ �C 1þ 2mð Þ
C mþ kð ÞC m� kð Þs

X1
n¼0

�1ð ÞnC mþ kþ nð ÞC m� kþ nð Þ
n!C 1þ 2mþ nð Þ r� m� nð Þ

þ C1u1ðzÞþC2u5ðzÞ:

With z ! 1, u1 � exp �m1ð Þ is the wave outgoing to þ1, while u5 � exp m1ð Þ
is the wave incoming from þ1. That is why the coefficient at u5 zð Þ must be zero,
C2 ¼ 0; and (1.126) turns into

C1 ¼ C54C r; k; mð Þ � C14C r; k;�mð Þ½ � 1
C14s

¼ �C 1þ mþ kð ÞC rþ kð ÞC �rþ mð ÞC �r� mð Þ
s C 2mð ÞC k� mð ÞC 1� rþ kð Þ :

If we introduce, by analogy with [67], the function
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t m; k; r; exp �1ð Þð Þ ¼ F �mþ k;�m� k; 1� 2m;� exp �1ð Þð Þ

� C 1þ 2mð Þ
C m� kð ÞC mþ kð Þ

X1
n¼0

�1ð ÞnC m� kþ nð ÞC mþ kþ nð Þ
n!C 1þ 2mþ nð Þ �rþ mþ nð Þ exp �n1ð Þ;

then, for z[ 0 the field can be written as

uðzÞ ¼ A
2s2m

exp r1ð Þ �t m;�k; r; exp �1ð Þ½ � þ t �m;�k; r; exp �1ð Þ½ �f g

� A
s2
C mþ kð ÞC 1þ mþ kð Þ
C 1þ 2mð ÞC 1þ 2kð Þ C �r;�m; kð Þu1 zð Þ;

ð1:127Þ

while for z\0 it is

u zð Þ ¼ A
2s2k

exp r1ð Þ �t k; m;�r; exp 1ð Þ½ � þ t �k; m;�r; exp 1ð Þ½ �f g

� A
s2
C mþ kð ÞC 1þ mþ kð Þ
C 1þ 2mð ÞC 1þ 2kð Þ C r;�k; mð Þu3 zð Þ:

ð1:128Þ

In what follows, we will be interested only in the radiation field away from the
boundary ( zj j � 1=sÞ. From (1.128) we obtain for this field

urad zð Þ ¼ � A
s2

� C r; k; mð Þ exp k1ð Þ; z\0

C �r; m; kð Þ exp �m1ð Þ; z[ 0;

(
ð1:129Þ

where

C r; k; mð Þ ¼ C 1þ mþ kð ÞC rþ kð ÞC r� kð ÞC �rþ mð Þ
C 1þ 2kð ÞC m� kð ÞC 1þ mþ rð Þ :

The energy of the forward radiation into the half-space z[ 0 is [69]

Wr
2 ¼

m2
z 1� V2

z

�
c2

� �
ll0

4p2V2
z s

4

Z1
0

dx
Z1
0

xj2 C �r; v; kð Þj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e2e0ll0 � j2

p
dj2;

ð1:130Þ

where the integration is performed over the domain j2 \x2e2e0ll0, which cor-
responds to the waves propagating in the right half-space away from the boundary.
For such j, complex conjugation of the parameters v and l gives m ¼ �m,
k ¼ �k. Taking into account the properties of the gamma function C zð Þ ¼ C zð Þ;
C zð ÞC 1� zð Þ ¼ p=sin pzð Þ; we obtain
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C �r; m; kð Þj j2 ¼ p
2m

k2 � m2
� �

sin 2pmð Þ sin p k� mð Þ½ � sin p r� kð Þ½ �
r2 � m2ð Þ r2 � k2

� �
sin p mþ kð Þ½ � sin p rþ kð Þ½ �

� 1
sin p r� mð Þ½ � sin p rþ mð Þ½ � :

ð1:131Þ

Formulas (1.127)–(1.131) are valid for arbitrary values of the parameter s, which
characterizes the degree of boundary diffusiveness.

1.5.2 The Criterion of the Interface ‘Sharpness’

Let us consider the transition to the sharp interface: s ! 1. The expansion of
(1.131) in the power series in the small parameter 1=s requires the smallness of the
absolute values of 2m, k� m, r� k, rþ k, r� m, rþ m, kþ m, which can be
expressed via four independent values: r� m, r� k. Denote

L�1 ¼ 2p
s r� kj j ¼

2p
x
Vz
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20e1l� j2
p�� �� ; L�2 ¼ 2p

s r� mj j ¼
2p

x
Vz
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20e2l� j2
p�� ��

and suppose the following inequalities hold:

2p=s � L�1 ; 2p=s � L�2 : ð1:132Þ

Then we have

sin 2pmð Þ sin p k� mð Þ½ � sin p r� kð Þ½ �
sin p mþ kð Þ½ � sin p rþ kð Þ½ � sin p r� mð Þ½ � sin p rþ mð Þ½ �
¼ 2m r� kð Þ k� mð Þ

p mþ kð Þ rþ kð Þ r2 � m2ð Þ 1þ 1
3
p2 rþ mð Þ r� mþ 2kð Þþ . . .

� 
and for s ! 1

Cð�r; m; kÞj j2¼ k� mð Þ2
rþ kð Þ2 r2 � m2ð Þ2 : ð1:133Þ

Substituting this formula into (1.130), we obtain the expression for the radiation
energy, which coincides exactly with the results given in [69] for the case of a sharp
boundary.

In evaluating the sharpness of the interface between two media an important role
is played by the notion of the radiation-forming region. In the case of a diffuse
interface, the radiation can be considered approximately the same as in the case of a
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sharp interface if the characteristic width of the transition boundary layer Dz is
much smaller than the length of the radiation-forming region. During the qualitative
evaluation [69] based on the determination of the distance at which the field of a
moving source and the radiation field, moving away from the boundary, are sep-
arated, the following conditions were obtained

Dz � L�1 ; Dz � Lþ
2 : ð1:134Þ

They are equivalent to the conditions in (1.132) (s ¼ 2p=DzÞ. Here, L�1 and Lþ
2

are the lengths of the radiation-forming regions for the radiation moving away from
the interface in the first and second media, respectively.

These two conditions are not enough to transfer from the general solution (1.131)
to the solution (1.133) for a sharp boundary. Two additional conditions in (1.132)
estimate the distance from the boundary, at which the field of the source and the
radiation field incoming on the boundary are separated. Since Lþ

1;2 [ L�1;2, the con-
ditions under which the interface between two media can be considered sharp, are:

Dz � L�1 ; Dz � L�2 : ð1:135Þ

The error of the condition (1.134), as compared with the exact condition (1.135),
shows itself in the situation where the source moves from a less dense into a more
dense medium.

In the paper [67], the following two inequalities were chosen as a criterion of the
interface sharpness:

Dz � Lþ
1 ; Dz � Lþ

2 ; ð1:136Þ

which were less restrictive than those in (1.135). Within the frequency range x2 �
x2

pe ¼ 4pNee2
�
me; considered in [67], where Ne is the electron density of the

material and me is the electron mass, the conditions in (1.136) are sufficient for
passing to the case of a sharp interface in the general relationships for the spectral
density of the radiation, produced at small angles by an ultrarelativistic charge in
the medium with a diffuse boundary.

Thus, we have formulated the problem of transition radiation for a medium with
a diffuse boundary. For the first time, we obtained the rigorous analytical solution of
this problem, without imposing any restrictions on the parameters of the model. By
analyzing the passage to the limiting case of a sharp boundary in this solution, we
have found an exact criterion of the interface ‘sharpness’ in the form of two
inequalities (1.135). It substantially improves the well-known criterion (1.134) and,
in contrast to another version of this criterion (1.136), does not require any
restrictions on the frequency range, the charge velocity and the change in the
permittivity e2 � e1.
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1.6 The Biisotropic Epstein Transition Layer

The isotropic linear media having the properties of chirality and nonreciprocity are
referred to as biisotropic. Chirality leads to circular dichroism and optical activity—
the rotation of the polarization vector as in the Faraday effect, but regardless of the
direction of propagation. If a medium has the property of nonreciprocity, the
electric and magnetic field vectors are not orthogonal, and the phase velocity
depends on the nonreciprocity index [71]. These effects may be important for new
microwave applications [72, 73], if such a medium is realized.

Analysis of electromagnetic waves in inhomogeneous biisotropic media began
from the works [74, 75]. The authors of these papers considered diffraction of a
plane electromagnetic wave on a boundary of the half-space filled with a chiral
medium. In [76] a similar problem was solved for the general case of an arbitrary
biisotropic medium. In a number of works, a similar problem for homogeneous
biisotropic layers has been studied in detail [77]. The papers [78, 79], which use
numerical and analytical methods, are devoted to the investigation of the electro-
magnetic scattering in biisotropic stratified media with continuously varying
parameters. Within the class of inhomogeneous biisotropic media, we proposed in
[80] a model of the medium, for which one can write the analytical solution to the
problem of the plane electromagnetic wave that propagates in this medium along
the normal to the layers. Such a medium is a generalization to the biisotropic case of
the known [12] isotropic Epstein transition layer, which describes a smooth tran-
sition in a plane-layered isotropic medium between the regions with different
refractive indices n1 and n2. In this section, we discuss in detail the methodology for
obtaining this solution. The solution can be expressed in terms of the known
hypergeometric series, as well as for the isotropic Epstein layer. The analytical
expressions for the reflection and transmission coefficients have been derived, from
which it follows that in such a medium the total transmission may occur.

1.6.1 Equations for the Electromagnetic Field
in a Biisotropic Medium

It is well known that biisotropic media are marked by the magnetoelectric coupling,
in which both electric and magnetic excitation leads simultaneously both to the
electric and magnetic polarization. To describe the most general form of such a
medium, in addition to the relative permittivity e and the permeability l, the
nonreciprocity parameter v and the chirality parameter j are used. The constitutive
equations for this medium, on the assumption of harmonic excitation (time
dependence is defined by exp �ixtð ÞÞ, are as follows [71]:
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~D ¼ ee0~Eþ ffiffiffiffiffiffiffiffiffi
e0l0

p
vþ ijð Þ~H; ~B ¼ ffiffiffiffiffiffiffiffiffi

e0l0
p

v� ijð Þ~Eþ ll0~H; ð1:137Þ

where e0, l0 are the permittivities of free space. For lossless media, the dimen-
sionless parameters e, l, v, and j are the real functions of coordinates.

The Maxwell’s equations, in view of (1.137), can be written as

rot~E ¼ ik0g0l~Hþ k0 jþ ivð Þ~E; rot~H ¼ �ik0g
�1
0 e~Eþ k0 j� ivð Þ~H; ð1:138Þ

where k0 ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
, g0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
. By eliminating ~H from (1.138), we arrive at

the vector Helmholtz equation

1
k0

rot
1
l
rot~E � rot

jþ iv
l

~E � j� iv
l

rot~Eþ k0
j2 þ v2

l
� e

� �
~E ¼ 0: ð1:139Þ

The parameters e, v, j of the plane-parallel medium depend only on the coor-
dinate z; the magnetic permeability l is considered constant in the whole space. The
electromagnetic wave that propagates in such a medium perpendicularly to the
layers, does not depend on the transversal coordinates x; y: Therefore, (1.139) is
transformed into the system:

d2Ex

dz2
� 2k0j

dEy

dz
� k20 j2 þ v2 � el

� �
Ex � k0

d jþ ivð Þ
dz

Ey ¼ 0

d2Ey

dz2
þ 2k0j

dEx

dz
þ k0

d jþ ivð Þ
dz

Ex � k20 j2 þ v2 � el
� �

Ey ¼ 0

Ez ¼ 0:

8>>>>><>>>>>:
ð1:140Þ

Hence, introducing the auxiliary functions E� ¼ Ex � iEy, we obtain two
independent equations

d2E�
d ~z2

� 2ij
dE�
d ~z

þ n2 � j2 � v2
� �� i j0 þ iv0ð Þ� �

E� ¼ 0; ð1:141Þ

where ~z ¼ k0z; n ¼ ffiffiffiffiffi
el

p
, j0 þ iv0 ¼ d jþ ivð Þ=d~z: Removing the term with the first

derivative by the substitution

E� ¼ ~E� zð Þe� ~zð Þ; e� ~zð Þ ¼ exp �i
Z

j ~zð Þd~z
� 

; ð1:142Þ

we arrive at the following equation for the function ~E� ~zð Þ:

d2~E�
d ~z2

þ n2 � v2 � v0
� �

~E� ¼ 0: ð1:143Þ
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1.6.2 Problem Formulation and Solution

Consider the following version of the plane-layered medium

n2 ~zð Þ ¼ e ~zð Þ ¼ 0:5 1þ ~n2
� �þ 0:5 1� ~n2

� �
th ~s~zð Þ; v ~zð Þ ¼ 0:5~v 1� th ~s~zð Þ½ �;

j ~zð Þ ¼ 0:5~j 1� th ~s~zð Þ½ �; l ¼ 1; ~vj j 
 ~n; ~s ¼ s=k0;

ð1:144Þ

which is the generalization of the known isotropic Epstein transition layer on the
biisotropic case [12]. For ~z ¼ �1, the inhomogeneous biisotropic medium (1.144)
smoothly transits into a homogeneous biisotropic medium with the parameters ~n2,
~v; ~j; while for ~z ¼ þ1 it transits into the isotropic medium with e ¼ l ¼ 1;
v ¼ j ¼ 0: The value D ¼ 2k0=s can be considered an effective width of the
transition layer (1.144), which describes the degree of diffusiveness of the boundary
between the isotropic and biisotropic media.

In view of (1.144), (1.143) takes the form

d2~E�
d ~z2

þ n2� ~zð Þ~E� ¼ 0; ð1:145Þ

where

n2� ~zð Þ ¼ 1� N
exp �2~s~zð Þ

1þ exp �2~s~zð Þ � 4M�
exp �2~s~zð Þ

1þ exp �2~s~zð Þ½ �2 ;

N ¼ 1� ~n2 þ ~v2; 4M� ¼ �~v ~v� 2~sð Þ:

Let a plane linearly polarized electromagnetic wave of unit amplitude be incident
from ~z ¼ þ1 on the biisotropic medium (1.144). The resulting electromagnetic
field is to be found.

It is known [12] that solutions of the equations like the one in (1.145) can be
represented as

~E� ~zð Þ ¼ f0ð Þ�1=2fc=2 1� fð Þ aþb�cþ 1ð Þ=2u fð Þ; ð1:146Þ

where f ¼ � exp �2~s~zð Þ; while the function u fð Þ is the general solution to the
hypergeometric Gauss equation

f 1� fð Þ d
2u

df2
� aþ bþ 1ð Þf� c½ � du

df
� abu ¼ 0: ð1:147Þ

The parameters a, b, c are representable through the parameters ~s; N; M� of the
model:
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a� ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M�~s�2

p
þ i

2~s
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p	 

;

b� ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M�~s�2

p
þ i

2~s
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p	 

:

Substituting N and M�, we obtain

a� ¼ 1þ 1
2~s

�~vþ i 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i
; b� ¼ 1þ 1

2~s
�~vþ i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i
;

c ¼ 1þ i
~s
;

ð1:148Þ

where the imaginary parts of the roots is nonnegative.
Equation (1.147) has three proper critical points f ¼ 0; 1;1, in the vicinity of

which the two linearly independent solutions of this equation can be represented in
the form of the converging hypergeometric series ui, i ¼ 1; 2; 3; 4; 5; 6 [70].

The transmitted wave should be outgoing as ~z ! �1, i.e. for f ! �1. In the
vicinity of an infinitely distant point of the complex plane f, the linearly inde-
pendent solutions of (1.147) are

u3 ¼ �fð Þ�aF a; a� cþ 1; a� bþ 1; f�1� �
;

u4 ¼ �fð Þ�bF b; b� cþ 1; b� aþ 1; f�1� �
;

ð1:149Þ

where �f ¼ f exp ipð Þ and F a; b; c; fð Þ � 2F1 a; b; c; fð Þ is a hypergeometric series
[70].

The asymptotics as ~z ! �1 of the functions in (1.146)

~E� zð Þ ¼ exp 1� cð Þ~s~z½ � 1þ exp �2~s~zð Þ½ � a� þ b��cþ 1ð Þ=2u fð Þ

that correspond to the solutions (1.149) are

~E 3ð Þ
� ~zð Þ � exp a� � b�ð Þ~s~z½ �; ~E 4ð Þ

� ~zð Þ � exp b� � a�ð Þ~s~z½ �:

Since a� � b� ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p .
~s and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
[ 0; then ~E 3ð Þ

� corresponds to

the waves outgoing to ~z ¼ �1, while ~E 4ð Þ
� corresponds to the ones incoming from

~z ¼ �1. Consequently, one should take as solutions the functions

~E 3ð Þ
� zð Þ ¼ exp 1� cð Þ~s~z½ � 1þ exp �2~s~zð Þ½ � a� þb��cþ 1ð Þ=2u3 fð Þ;

whose behavior at ~z ! þ1 (f ! 0Þ is determined by the following Kummer’s
formula [70]:
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u3 ¼ C 1� cð ÞC a� þ 1� b�ð Þ
C 1� b�ð ÞC a� þ 1� cð Þ u1 �

C cð ÞC 1� cð ÞC a� þ 1� b�ð Þ
C 2� cð ÞC c� b�ð ÞC a�ð Þ u5; ð1:150Þ

where

u1 ¼ F a; b; c; fð Þ; u5 ¼ f1�cF a� cþ 1; b� cþ 1; 2� c; fð Þ;

and C . . .ð Þ is the gamma function. The asymptotics of the solutions of (1.145) that
correspond to the functions u1, u5 are

~E 1ð Þ
� ~zð Þ � exp 1� cð Þ~s~z½ � ¼ exp �i~zð Þ; ~E 5ð Þ

� ~zð Þ � exp 1� cð Þ~s~z½ �
� � exp �2~s~zð Þ½ �1�c¼ �1ð Þ1�cexp � 1� cð Þ~s~z½ � ¼ �1ð Þ1�cexp i~zð Þ:

ð1:151Þ

i.e. ~E 1ð Þ
� corresponds to the wave incoming from ~z ¼ þ1, while ~E 5ð Þ

� corresponds
to the wave outgoing to ~z ¼ þ1. It follows from (1.150) that

C 1� b�ð ÞC a� þ 1� cð Þ
C 1� cð ÞC a� þ 1� b�ð Þ

~E 3ð Þ
� ~zð Þ

¼ ~E 1ð Þ
� ~zð Þ � C cð ÞC 1� b�ð ÞC a� þ 1� cð Þ

C 2� cð ÞC c� b�ð ÞC a�ð Þ �1ð Þc�1~E 5ð Þ
� ~zð Þ:

ð1:152Þ

Since for ~z ! þ1 the behavior of the functions ~E 1ð Þ
� ~zð Þ and �1ð Þc�1~E 5ð Þ

� ~zð Þ are
determined by the asymptotics (1.151) and for ~z ! �1 we have ~E 3ð Þ

� ~zð Þ �
exp �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
~z

	 

; then these functions define the primary, reflected, and trans-

mitted waves, respectively, while the factors in (1.152) are the transmission
coefficients

T� ¼ C 1� b�ð ÞC a� þ 1� cð Þ
C 1� cð ÞC a� þ 1� b�ð Þ ð1:153Þ

and the reflection coefficients

R� ¼ C c� 1ð ÞC 1� b�ð ÞC a� þ 1� cð Þ
C 1� cð ÞC c� b�ð ÞC a�ð Þ : ð1:154Þ

The left and right parts of the equation (1.152) are two representations of the
solutions of (1.145) ~E� ~zð Þ for ~z\0 and for ~z[ 0; respectively.
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1.6.3 Analysis of the Reflected and Transmitted Fields

As evident from (1.142) and (1.144), the electromagnetic field components can be
written in the form

Ex ¼ 1
2
~Eþ e� þ ~E�eþ
� �

; Ey ¼ 1
2i

~Eþ e� � ~E�eþ
� �

;

where

e� ~zð Þ ¼ exp � i
2
~j ~z� ~s�1 ln exp ~s~zð Þþ exp �~s~zð Þð Þ� �n o

:

Let us consider the field structure away from the region, whose dimensions are
determined by the effective width of the layer, ~zj j � D:

In the region ~z � D, where the medium differs little from the isotropic one, we
have

e� ~zð Þ ¼ 1þO exp �2~s~zð Þ½ �; ~E� � exp �i~zð ÞþR� exp i~zð Þ;
Ex � exp �i~zð Þþ 1

2
Rþ þR�ð Þ exp i~zð Þ; Ey � 1

2i
Rþ � R�ð Þ exp i~zð Þ:

In other words, the primary wave is linearly polarized along the x-axis, while the
reflected wave is

~Eref ¼ 1
2
Rþ þR�ð Þ~x� i

2
Rþ � R�ð Þ~y

h i
exp i~zð Þ ¼ ~Er

ref þ~El
ref ;

where ~Er;l
ref ¼ 0:5Rr;l ~x� i~yð Þ exp i~zð Þ (the upper sign is associated with the super-

script r, the bottom sign is associated with l), ~Er
ref is the right-hand circularly

polarized wave, ~El
ref is the left-hand circularly polarized wave. The reflection

coefficients of these two waves can be represented in the form

Rr;l ¼ R� ¼
~v� i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

~v� i 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
C c� 1ð Þ
C 1� cð ÞR; ð1:155Þ

where

R ¼
C D ~v� i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 

C D �~v� i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 

C D ~vþ i 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 

C D �~vþ i 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 
 : ð1:156Þ
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The reflected wave takes the form

~Eref ¼ R

1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
þ ~n2

C 2iDð Þ
C �2iDð Þ ~n2 � 1

� �
~x� 2~v~y

� �
exp i~zð Þ: ð1:157Þ

When passing to the sharp boundary (D ¼ 0Þ, we get

~Eref ¼ 1� ~n2
� �

~xþ 2~v~y
� �

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
þ ~n2

	 
�1
exp i~zð Þ: ð1:158Þ

As seen from (1.157) and regardless of the width of the layer, when a plane
linearly polarized wave is reflected from a biisotropic half-space with n2 ¼ e ¼
~n2 [ 1; v ¼ ~v[ 0 (v ¼ ~v\0Þ, the plane of polarization rotates anticlockwise
(clockwise) by the angle of

uref ¼ arctg
2~v

1� ~n2
; ð1:159Þ

if viewed in the direction of the reflected wave.
Expressions (1.158) and (1.159) differ from those obtained in [76] by the sign of

~v: It is interesting to note that the reflection from the biisotropic transition layer
(1.144), in contrast to the isotropic layer, may disappear completely. Indeed, if the
following conditions on the non-reciprocity parameter ~v ¼ ~v0, the refraction index
~n ¼ ~n0, and the layer width D ¼ D0 are satisfied:

~v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~n20 � 1

q
; ~v0D0 ¼ m; m ¼ 1; 2; . . .; ð1:160Þ

then the coefficients Rr;l (1.155) vanish due to the second gamma function in the
denominator (1.156).

With the increase in the width of the transition layer, the coefficients Rr;l decay
exponentially to zero. Using the known formulas for gamma functions, we obtain
from (1.155)

Rr;l
�� �� � exp �2pDð Þfor ~vj j\~v0; exp �2pD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

for ~vj j[ ~v0

n o
; D � 1;

ð1:161Þ

where ~v0 is defined by (1.160).
Consider the field transmitted into the biisotropic media, away from the transi-

tion layer. For ~z � �D we have
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e� ~zð Þ ¼ exp �i~j~zð Þ 1þO exp 2~s~zð Þð Þ½ �; ~E� ¼ T�~E
3ð Þ
� � T� exp �i~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

;

Ex � 1
2
Tþ exp �i~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
� i~j~z

	 

þ T� exp �i~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
þ i~j~z

	 
h i
;

Ey � 1
2i

Tþ exp �i~z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
� i~j~z

	 

� T� exp �i~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
þ i~j~z

	 
h i
:

Hence, the wave transmitted through the transition layer is

~Etr ¼ ~Er
tr þ~El

tr; ð1:162Þ

where ~Er
tr ¼ 0:5Tr ~x� i~yð Þ exp �ikþ~zð Þ is the right-hand circularly polarized wave,

while~El
tr ¼ 0:5Tl ~xþ i~yð Þ exp �ik�~zð Þ is the left-hand circularly polarized wave with

the propagation constants k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
� ~j; Tr ¼ Tþ , Tl ¼ T�. It is easy to

verify that

Tr

Tl
¼

1þ ~n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~v

~

2
r

þ i ~v
~

 !

1þ ~n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~v

~

2
r

� i ~v
~

 ! ¼ 1þ ~n exp ihð Þ
1þ ~n exp �ihð Þ ¼ exp iwtrð Þ; ð1:163Þ

where ~v
~
¼ ~v=~n ¼ sin h, hj j 
 p=2; and

wtr ¼ arctg
2~n sin hþ ~n2 sin 2h

1þ 2~n cos hþ ~n2 cos 2h
; wtrj j 
 p� arctg

2~n
~n2 � 1

: ð1:164Þ

Thus, regardless of the width of the transition layer D; the two waves,~Er
tr and~E

l
tr,

into which the primary wave is split (when transmitting into the biisotropic med-
ium), have the amplitudes equal in absolute values and shifted in phase by wtr . By
representing Tl in the form

Tl ¼
C D ~v� i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 

C D ~vþ i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 
 C 2iD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

C �2iDð Þ

sin 2piD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

sin pD ~vþ i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h in o ;

ð1:165Þ

we find that

Trj j ¼ Tl
�� �� ¼ C 2iD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

C �2iDð Þ

������
������ �

sin 2piD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

sin pD ~vþ i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h in o
������

������; ð1:166Þ
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and with no reflection (see (1.160)) we get Trj j ¼ Tl
�� �� ¼ 1: From notions of ~Er

tr and
~El
tr , we can see that in this case all the energy of the primary wave is distributed

between these two waves.
Thus, the isotropic Epstein transition layer has been generalized to the case of

biisotropic medium. We have also found the explicit analytical solution to the
problem of a linearly polarized wave normally incident onto the Epstein layer. The
main results are as follows.

• The reflected wave does not depend on the chirality of the medium and has,
regardless of the width D; the polarization shifted by an angle of uref as com-
pared to the case of the isotropic half-space with the same refraction index
n ¼ ~n:

• In a biisotropic half-space, the transmitted wave is split into the right-hand and
the left-hand circularly polarized waves that are equal in amplitude and shifted
in phase by an angle of wtr .

• Regimes with zero reflection coefficients, which occur only in the case of the
nonreciprocal medium (v 6¼ 0Þ with a diffuse boundary (D 6¼ 0Þ, have been
revealed. They are determined by the following relationships between the
nonreciprocity index ~v ¼ ~v0, the refraction index ~n ¼ ~n0, and the effective width
of the transition layer D ¼ D0 : ~v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~n20 � 1

p
, ~v0D0 ¼ m; m ¼ 1; 2; . . .

1.7 Negative Refraction in Isotropic Double-Negative
Media

1.7.1 Negative Refraction Phenomenon in Homogeneous
Double-Negative Media

In recent years, a growing number of publications have analyzed the unusual effects
in the propagation of electromagnetic waves in the isotropic media with negative
relative permittivity e and permeability l—the so-called double negative (DNG) or
left-handed media. One such effect is the so-called negative refraction (NR), in
which the beam refracted in a DNG medium lies in the plane of incidence on the
same side of the normal to the interface, as the incident beam. At the same time, the
wave vector of the transmitted wave is directed towards the interface. Since there is
no isotropic media with e\0; l\0 in the natural environment, then, in the
experiments, the artificial composite materials in the form of three-dimensional
periodic structures [81] are used as DNG media. As is well known [82], when an
electromagnetic wave, whose wavelength is comparable to the period, is propa-
gating through a periodic medium, the NR effect may also occur. In this case, it is
impossible to introduce the effective permeabilities of the medium. Since in the
experiments [83, 84] revealed the NR, the values of e and l, as well as the
wavelength inside the material, were not determined directly and were assessed
implicitly, the authors of some works expressed doubt [85] about that this effect is
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inherent in a continuous isotropic medium with negative permittivity rather that it is
caused by the periodicity of the material.

In this section, following the approach outlined in [86], we explore the possi-
bility that the NR effect occurs in isotropic media. A model is suggested of an
inhomogeneous isotropic flat-layered lossless medium comprising spatial regions
with conventional and DNG media and smooth, monotonic transition between
them. The analytical description of the plane electromagnetic wave propagating
through such a medium is found, which demonstrates the NR effect in the region
occupied by a DNG isotropic medium. For the first time, this is shown without any
additional assumptions, as a direct consequence of Maxwell’s equations and the
energy conservation law. In addition, letting the size of the transition region to zero,
we verify the conditions on a sharp interface between the conventional and
the DNG homogeneous media. The proposed model has allowed us to obtain for the
first time the accurate description for the electromagnetic field distribution in the
vicinity of the point at which the medium permeabilities e and l are zero.

When an electromagnetic wave is passing from a conventional medium to a
DNG medium, the NR effect can be seen from the standard Fresnel formulas, if we
assume that they remain valid in the case where one of the media is DNG. If the

E�polarized wave ~Ei ¼ exp i~k2~r � ixt
	 


~y; ~k2 ¼ k2 sin h0; 0;�k2 cos h0f g; ~r ¼
x~xþ y~yþ z~z is incident from the half-space z[ 0 with the relative permeabilities
e2 [ 0 and l2 [ 0 at an angle h0, the wave transmitted into the half-space z\0
with the relative permeabilities e1 [ e2, l1 [ l2 has the form [87]

~Et ¼ 2l1k2 cos h0

l1k2 cos h0 þ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22 sin

2 h0
q exp i~k1~r � ixt

	 

~y: ð1:167Þ

Its wave vector is

~k1 ¼ k2 sin h0; 0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22 sin

2 h0

q� �
; k2j ¼ x2e0l0ejlj; j ¼ 1; 2; ð1:168Þ

while the average energy flux is

~P1 ¼ ~Et
�� ��2~k1.2l1l0x: ð1:169Þ

In the denominator of (1.167) we have the sum of two positive values.
Let us pass to the case where e1\0 and l1\0: Then the first term in the

denominator in (1.167) will be negative; and for the denominator not to be zero, we

should choose the second branch of the square root, that is replace
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22 sin

2 h0
q

by �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22 sin

2 h0
q

. At the same time, as it seen from (1.168), (1.169), the signs

of the longitudinal component of~k1 and the transversal component of ~P1 change.
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Thus, assuming that the Fresnel formulas for DNG media are valid, we arrive at
the NR effect. However, this assumption is not obvious, since the boundary con-
ditions for a pair of conventional media and the radiation condition suggesting that
the wave vector of the transmitted wave is directed away from the interface are used
in the derivation of these formulas from Maxwell’s equations.

To avoid any suggestion, one should consider a medium without sharp
boundaries, with the permeabilities being smooth (analytic) functions of the spatial
variable and changing from positive to negative values.

1.7.2 A Model of Smoothly Inhomogeneous Flat-Layered
Double Negative Medium. Solution of the Problem
of Transmission of a Plane Wave

The propagation of electromagnetic waves in an inhomogeneous isotropic stratified
lossless medium with the permeabilities e zð Þ and l zð Þ is described for E-polariza-
tion by the equations:

@2Ey

@x2
þ @2Ey

@z2
þ l

d
dz

1
l

� �
@Ey

@z
þx2ee0ll0Ey ¼ 0;

@Ey

@z
¼ �ixll0Hx;

@Ey

@x
¼ ixll0Hz; Ex ¼ Ez ¼ Hy ¼ 0:

ð1:170Þ

The substitutions ~E ! ~H; ~H ! �~E; ee0 ! ll0, ll0 ! ee0 in (1.170) yield the
corresponding equations for H-polarization.

A plane E-polarized wave in such a medium can be represented as

Ey ¼ Z zð Þ exp ij1x� ixtð Þ: ð1:171Þ

It follows from (1.170) that the unknown amplitude function Z zð Þ is the solution
of the following equation

d2Z
dz2

� 1
l
dl
dz

dZ
dz

þ x2ee0ll0 � j21
� �

Z ¼ 0; �1\z\1; ð1:172Þ

with the evident condition z ! þ1. Here j1 ¼ k1 sin h, k1 ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1e0l1l0

p
, h

is the angle of incidence of the primary wave, e1 ¼ e 1ð Þ [ 0; l1 ¼ l 1ð Þ [ 0:
In order to describe a smooth transition from the conventional medium (e [ 0;

l[ 0 for z [ 0Þ to the DNG medium (e\ 0; l\0 for z\ 0Þ, consider the
following distribution of the permeabilities:

e ¼ e1a zð Þ; l ¼ l1a zð Þ; a zð Þ ¼ th z=Dð Þ; ð1:173Þ

where the parameter D[ 0 defines the width of the transition region in the vicinity
of the point z ¼ 0: With the help of the substitution
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Z zð Þ ¼ nqu nð Þ; n ¼ ch�2 z=Dð Þ; q ¼ 1
2
ik1D cos h; ð1:174Þ

(1.172) is rearranged to the hypergeometric equation

n 1� nð Þ d
2u

dn2
þ c� aþ bþ 1ð Þn½ � du

dn
� abu ¼ 0 ð1:175Þ

with the parameters

a ¼ 1
2
ik1D 1þ cos hð Þ; b ¼ � 1

2
ik1D 1� cos hð Þ; c ¼ 1þ ik1D cos h:

ð1:176Þ

The function n zð Þ maps the strip Imzj j\pD=2 of the complex plane z onto a
double-sheeted Riemann surface of the complex variable n with the branch points
n ¼ 0 and n ¼ 1: At the same time, the real semiaxis (�1\z\0Þ is mapped onto a
segment 0\n\1; arg 1� nð Þ ¼ 2pð Þ of the first sheet, while the semiaxis 0\z\1
is mapped onto a segment 1[ n[ 0; arg 1� nð Þ ¼ 0ð Þ of the second sheet.

Following the general theory of hypergeometric equations [70], we find the
desired solution of (1.175). It is known that the points n ¼ 0; 1;1 are the singular
points of this equation, in the vicinity of which the standard pairs of its linearly
independent solutions are determined: u1 and u5, u2 and u6, u3 and u4, respectively.

Let us choose as a solution of (1.175) in the vicinity of the point n ¼ 0 of the
first sheet of the Riemann surface (this point corresponds to the value
z ¼ �Dln 1þ ffiffiffiffiffiffiffiffiffiffiffi

1� n
p� �� ffiffiffi

n
p� ���

n¼0¼ �1) the function [70]

u1 ¼ F a; b; c; nð Þ ¼
X1
n¼0

að Þn bð Þn
cð Þnn!

nn; nj j 
 1: ð1:177Þ

The alternative, with a choice of the function u5 as a solution of (1.175) in the
vicinity of the point n ¼ 0 will be discussed below.

To obtain the solution of (1.175), and, therefore, in view of (1.174), of (1.172) as
well, on the entire axis �1\z\1, one should perform the following steps: (i) to
continue analytically, on the first sheet of the Riemann surface, the function u1ðnÞ
from the neighborhood of the point n ¼ 0 to the neighborhood of the point n ¼ 1;
(ii) to go onto the second sheet in this neighborhood; (iii) to perform the analytic
continuation on this sheet into a vicinity of the point n ¼ 0:

Since for z ! �1 we have n � 4 exp 2z=Dð Þ � 0; u1 � 1; then the function

Z � nq � 4q exp ik1z cos hð Þ ð1:178Þ
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in view of (1.171), will describe the field that is a plane wave, whose phase velocity
is directed towards positive z as z ! �1. For the analysis of the field at small zj j;
as seen from (1.174), the function u1 nð Þ must be analytically continued into a
neighborhood of the point n ¼ 1: Given that the parameters (1.176) are related by
the equation c� a� b ¼ 1; to do this, one should use the equality [70]

F a; b; aþ bþ 1; nð Þ ¼ C cð Þ
C aþ 1ð ÞC bþ 1ð Þ �

C cð Þ
C að ÞC bð Þ 1� nð Þ

X1
n¼0

aþ 1ð Þn bþ 1ð Þn
nþ 1ð Þnn!

� h00n � ln 1� nð Þ� �
1� nð Þn; 1� nj j\1;

ð1:179Þ

where h00n ¼ w nþ 1ð Þþw nþ 2ð Þ � w aþ nþ 1ð Þ � w bþ nþ 1ð Þ; C . . .ð Þ is the
gamma function and w xð Þ is the logarithmic derivative of the gamma function.
Hence, it follows that when the point n ¼ 1 is passed around once in the negative
direction 1� nð Þ ! 1� nð Þ exp �2pið Þ; the following transformation occurs:

u1 nð Þ ! ~u1 nð Þ ¼ u1 nð Þ � 2piabu0u6 nð Þ; 1� nj j\1; ð1:180Þ

where ~u1 nð Þ stands for the values of the solution u1 nð Þ on the second sheet,

u0 ¼ C cð Þ
C aþ 1ð ÞC bþ 1ð Þ ; and u6 nð Þ ¼ 1� nð ÞF aþ 1; bþ 1; 2; 1� nð Þ:

Now continue the function ~u1 nð Þ from the vicinity of the point n ¼ 1 on the
second sheet into the vicinity of the point n ¼ 0; using the following Kummer’s
relationship [70]

u6 ¼ C61u1 þC65u5; ð1:181Þ

where

C61 ¼ C cþ 1� a� bð ÞC 1� cð Þ
C 1� að ÞC 1� bð Þ ; C65 ¼ C cþ 1� a� bð ÞC c� 1ð Þ

C c� að ÞC c� bð Þ :

Upon the substitution of (1.181) into (1.180) we obtain for nj j\1 on the second
sheet of the Riemann surface:

~u1 ¼ B11u1 þB15u5; ð1:182Þ

where
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u5 ¼ n1�cF �a;�b; 2� c; nð Þ; B11 ¼ ch pk1Dð Þ � exp �pk1D cos hð Þ
sh pk1D cos hð Þ ;

B15 ¼ 2pi
ik1D cos hð ÞC2 ik1D cos hð Þ

0:5ik1D sin hð Þ2C2 0:5ik1D cos hþ 1ð Þ½ �C2 0:5ik1D cos h� 1ð Þ½ � :

Taking into account that n� 4 exp �2z=Dð Þ� 0 as z ! þ1, from equalities
(1.174) and (1.182) we get

Z ¼ nq B11u1 þB15u5ð Þ � 4qB11 exp �ik1z cos hð Þþ 41�cþ qB15 exp ik1z cos hð Þ:
ð1:183Þ

Since for z ! þ1 the medium (1.173) goes into a conventional medium with
constant permeabilities e1 and l1, then the first term in (1.183) describes the wave
incoming on the transition region while the second term describes the reflected
wave. Expressions (1.178) and (1.183) are the principal terms in the expansions for
large zj j of the function Z zð Þ for z\0 and z[ 0; respectively. Normalizing this
function by the factor at the first exponent in (1.183), we obtain the coefficients of
reflection and transmission for the plane wave (1.171) propagating through the
transition layer (1.173):

R ¼ 41�cB15B
�1
11 ; T ¼ B�1

11 : ð1:184Þ

In view of the known formula C iyð Þj j2¼ p=y sin pyð Þ; we find their absolute
values:

Rj j ¼ ch pk1Dð Þ � ch pk1D cos hð Þ
ch pk1Dð Þ � exp �pk1D cos hð Þ ; Tj j ¼ sh pk1D cos hð Þ

ch pk1Dð Þ � exp �pk1D cos hð Þ :

ð1:185Þ

1.7.3 Analysis of the Expressions for Fields

In going to a sharp boundary (D ! 0Þ, the coefficients behave, as they must [81], like
Rj j ! 0; Tj j ! 1: As seen from (1.178), (1.183) and (1.184), the field components
and the Poynting vector away from the transition region ( zj j � D) are as follows:

Ey ¼ exp ik1 �z cos hþ x sin hð Þ � ixt½ �; Hx ¼ g1 cos hEy; Hz ¼ g1 sin hEy;

~P ¼ 1
2
g1 sin h; 0;� cos hf g; g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1=l1

p
ð1:186Þ

for the incident wave,
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Ey ¼ R exp ik1 z cos hþ x sin hð Þ � ixt½ �; Hx ¼ �g1 cos hEy; Hz ¼ g1 sin hEy;

~P ¼ 1
2
g1 Rj j2 sin h; 0; cos hf g

ð1:187Þ

for the reflected wave, and

Ey ¼ T exp ik1 z cos hþ x sin hð Þ � ixt½ �; Hx ¼ g1 cos hEy; Hz ¼ �g1 sin hEy;

~P ¼ 1
2
g1 Tj j2 � sin h; 0;� cos hf g

ð1:188Þ

for the transmitted wave.
It is easy to verify that the NR occurs for the wave transmitted into the region

with negative e and l. The above relations are also valid for all z in the limiting case
D ! 0 of a sharp interface between the conventional and DNG homogeneous
media. It follows from (1.186), (1.187) and (1.188) that the well-known continuity
conditions are fulfilled on this boundary for the tangential components of ~E and ~H
and for the normal components of ~D and ~B:

Now find, using (1.179), the field in the transition region between two media for
small zj j: Since for zj j � D we have:

n ¼ 1� z=Dð Þ2 þO z=Dð Þ4
h i

;

u1 nð Þ ¼ u0 1� ab h000 � ln 1� nð Þ� �
1� nð ÞþO 1� nð Þ2ln 1� nð Þ

h in o
;

ln 1� nð Þ ¼ ln z=Dð Þ2 þ 2pi 0 for z[ 0; 1 for z\0f gþO z=Dð Þ2
h i

:

Then we arrive at the following representations for the field components:

Ey ¼ u0 1� abh� þ q� ab ln z2
� � z

D

	 
2
þO

z
D

	 
4
ln

z
D

	 
� � �
� exp ij1x� ixtð Þ;

Hx ¼ 2u0
ixl1D

abh� þ q� ab ln z2
� �þO

z
D

	 
2
ln

z
D

	 
� � �
� exp ij1x� ixtð Þ;

Hz ¼ g1D
u0 sin h

z
1� abh� þ q� 1

3
� ab ln z2

� 
z
D

	 
2
þO

z
D

	 
4
ln

z
D

	 
� � �
� exp ij1x� ixtð Þ;

ð1:189Þ

where
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h� ¼ h000 þ 2 lnD� 2pi
0 for z[ 0

1 for z\0

( )
:

As seen from these expansions, the components of the magnetic field intensity
have singularities at z ¼ 0 : Hx � ln z; Hz � 1=z: It is interesting that in the case of
oblique incidence of the H-polarized wave onto the conventional flat-layered
medium ðe zð Þ; l ¼ const[ 0Þ in a neighborhood of zero of its dielectric permit-
tivity, the respective components of the electric field have the same singularities, as
has been shown in [88–90]. These singularities disappear at normal incidence, as
well as for all angles h when passing to a sharp interface. For arbitrary values of the
model parameters, this is the case when taking into account the absorption in the
medium.

Returning to formula (1.177), we would like to note that if the function u5,
instead of u1, is chosen as a solution in the vicinity of the point n ¼ 0; the we get
the usual refraction law for a plane wave transmitted into a medium with negative e
and l. As this takes place, we have the following expressions for absolute values of
the reflection and transmission coefficients:

Rj j ¼ ch pk1Dð Þ � exp pk1D cos hð Þj j
ch pk1Dð Þ � ch pk1D cos hð Þ ; Tj j ¼ sh pk1D cos hð Þ

ch pk1Dð Þ � ch pk1D cos hð Þ :

The nonphysical nature of these formulas is evident: at normal incidence, the
coefficients become infinite. That is, the selection of the function u5 results in the
usual refraction law, but violates the energy conservation law.

Thus, we have shown the following. There exist two formal solutions of
Maxwell’s equations that describe the transmission of a plane wave from a con-
ventional to a DNG media. One of them, which corresponds to the conventional
refraction of a plane wave, is inconsistent with the energy conservation law and
should be disregarded. The other, correct, solution obeying this law corresponds to
the NR in the considered medium.

1.8 Distorting Coatings as an Alternative to Masking
Coatings

1.8.1 Transformation Optics, Masking Coatings, Distorting
Coatings

One of urgent problems in the applied radio physics is the radar camouflage with
the help of special electromagnetic materials. In recent years, there was a con-
ceptual and methodological breakthrough in this field [91]. A novel approach to this
problem based on the idea of ‘wave flow’ was presented in 2006, in the works [92,
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93]. Its physical meaning is that a masking coating has to bend the propagation
direction of the electromagnetic radiation incident on it and cause the wave to pass
round the masked region, after which the initial direction of propagation is restored
maintaining the desired phase. Thus, the electromagnetic waves cannot penetrate
into the area bounded by this coating; and any object being placed inside it becomes
invisible. To find the parameters of such a coating, the method of coordinate
transformations is used, which is based on the fact that Maxwell’s equations are
invariant with respect to arbitrary coordinate transformations, if the permittivity and
the permeability are properly redefined. This approach received the name trans-
formation optics (TO) [94]. With the help of the TO, a wide range of masking
coatings has been studied [91]. The overwhelming majority of the works listed in
the review [91] are based on numerical experiments; for three-dimensional models
only the case of spherical surfaces has been studied analytically [95–98]. It has been
shown that all these coatings are anisotropic gradient materials, whose permittivity
and permeability tensor elements are less than unity. The problem of practical
realization of such materials is extremely complex and far from being solved [99].
In addition to the inhomogeneity and anisotropy, for a number of important types of
coatings, including spherical, the vanishing of the permittivity and permeability
components on its inner surface is also required. That is, the surface consists
entirely of critical points, which greatly complicates both the analysis of the cor-
responding electrodynamic problem and the practical implementation of such
coatings.

In this section, we investigate the alternative way of the object masking—the
distortion of its image, instead of using masking coatings [100].

1.8.2 Radical Distortion of Radar Image by Applying
a Special Coating on the Metamaterial Surface

The geometry of the problem is shown in Fig. 1.13. In the spherical coordinate
system r; #, /, a horizontal electric dipole is located at the point r; #;/f g ¼
b; 0; 0f g; b[R3; the time dependence is given by exp �ixtð Þ:
Suppose one should construct the coating in the form of a spherical layer

R2\r\R3 on a perfectly conducting sphere of radius r ¼ R2. Following the TO
methodology, let us consider the coordinate transformation

~r ¼ R3 � R1

R3 � R2
r � R2ð ÞþR1 ¼ f rð Þ; ~# ¼ #; ~/ ¼ /; ð1:190Þ

which maps the spherical layer 0\R1\R2 
 r
R3 onto the spherical layer
R1 
~r
R3. Under this transformation, Maxwell’s equations for a homogeneous
isotropic medium with permittivity e0 and permeability l0 pass into Maxwell’s
equations for the inhomogeneous anisotropic medium, whose relative permittivity
and permeability are defined by the following diagonal tensors [101]:
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e ¼ l ¼ diag Q ~#Q~/

.
Q~r;Q~rQ~/

.
Q ~#;Q~rQ ~#

.
Q~/

n o
; ð1:191Þ

where

Q~r ¼ h~r
hr

@~r
@r

; Q ~# ¼ h ~#

h#

@ ~#

@#
; Q~/ ¼ h~/

h/

@~/
@/

;

and hr ¼ 1; h# ¼ r; h/ ¼ r sin#, h~r ¼ 1; h ~# ¼ ~r; h~/ ¼ ~r sin ~#:

Thus we get for the permittivity and the permeability:

e ¼ l ¼ diag arr; a##; a//
� �

;

arr ¼ R3 � R1

R3 � R2
1� R2 � R1

R3 � R1

R3

r

� �2

; a## ¼ a// ¼ R3 � R1

R3 � R2
:

ð1:192Þ

It is easily seen that e and l do not vanish in the layer R2 
 r
R3.

Now we use the expansion in vector spherical harmonics ~Y jð Þ
lm #;/ð Þ; where

j ¼ �1; 0; 1; to find the fields [102]. In the region R3\r; the total electromagnetic
field is equal to the sum of the field of a horizontal electric dipole

~Ei ¼ J eð Þ

4
ffiffiffi
p

p
br

ffiffiffiffiffi
l0
e0

r X1
l¼1

X
m¼�1

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
mfð1Þ0l k0bð Þ
n

w0
l k0rð Þ~Y 1ð Þ

lm #;/ð Þ
h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
k0r

wl k0rð Þ~Y �1ð Þ
lm #;/ð Þ

#
� f 1ð Þ

l k0bð Þwl k0rð Þ~Y 0ð Þ
lm #;/ð Þ

)
;

ð1:193Þ

Fig. 1.13 Geometry of the
problem
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~Hi ¼ � J eð Þ

4
ffiffiffi
p

p
br

X1
l¼1

X
m¼�1

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
mf 1ð Þ0

l k0bð Þwl k0rð Þ~Y 0ð Þ
lm #;/ð Þ

n
þ f 1ð Þ

l k0bð Þ w0
l k0rð Þ~Y 1ð Þ

lm #;/ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
k0r

wl k0rð Þ~Y �1ð Þ
lm #;/ð Þ

" #) ð1:194Þ

and the scattered field

~Es ¼ 1
r

X1
l¼1

X
m¼�1

~Elmf
1ð Þ
l k0rð Þ~Y 0ð Þ

lm #;/ð Þ
n

� ~Hlm

ffiffiffiffiffi
l0
e0

r
f 1ð Þ0
l k0rð Þ~Y 1ð Þ

lm #;/ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
xe0r

f 1ð Þ
l k0rð Þ~Y �1ð Þ

lm #;/ð Þ
" #)

;

ð1:195Þ

~Hs ¼ 1
r

X1
l¼1

X
m¼�1

~Hlmf
1ð Þ
l k0rð Þ~Y 0ð Þ

lm #;/ð Þ
n

þ ~Elm

ffiffiffiffiffi
e0
l0

r
f 1ð Þ0
l k0rð Þ~Y 1ð Þ

lm #;/ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
xl0r

f 1ð Þ
l k0rð Þ~Y �1ð Þ

lm #;/ð Þ
" #)

:

ð1:196Þ

Here, k0 ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
, J eð Þ is the amplitude of the elementary electric current,

f 1ð Þ0
l k0bð Þ ¼ df 1ð Þ

l xð Þ
.
dx
���
x¼k0b

, w0
l k0rð Þ ¼ dwl xð Þ=dxjx¼k0r. The Riccati-Bessel

functions [103] can be expressed in terms of the cylindrical functions as

wl xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
px=2

p
Jlþ 1=2 xð Þ; f 1ð Þ

l xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
px=2

p
H 1ð Þ

lþ 1=2 xð Þ:

Formulas (1.193) and (1.194) are given for r\b: For b\r; one should substitute

f 1ð Þ
l $ wl.
In the anisotropic layer R2\r\R3, the total field can be represented as the

expansion [104]:

~E ¼ 1
r

X1
l¼1

X
m¼�1

E
_ð1Þ
lm f ð1Þl ðrÞþE

_ð2Þ
lm f ð2Þl ðrÞ

� �
~Y ð0Þ
lm ð#;/Þ

� 1
xet

H
_ ð1Þ
lm gð1Þ0l ðrÞþH

_ ð2Þ
lm gð2Þ0l ðrÞ

� 
~Y ð1Þ
lm ð#;/Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
xerr

H
_ ð1Þ
lm gð1Þl ðrÞþH

_ ð2Þ
lm gð2Þl ðrÞ

� 
~Y ð�1Þ
lm ð#;/Þ

)
;

ð1:197Þ
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~H ¼ 1
r

X1
l¼1

X
m¼�1

H
_ 1ð Þ
lm g 1ð Þ

l rð ÞþH
_ 2ð Þ
lm g 2ð Þ

l rð Þ
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~Y 0ð Þ
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þ 1
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E
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lm f 2ð Þ0
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� 
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þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
xlrr

E
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lm f 1ð Þ

l rð ÞþE
_ 2ð Þ
lm f 2ð Þ

l rð Þ
� 

~Y �1ð Þ
lm #;/ð Þ

)
;

ð1:198Þ

where f jð Þ
l rð Þ are the independent solutions of the equation

lr
d
dr

1
lt

dfl
dr

þ x2etlr �
l lþ 1ð Þ

r2

� 
fl ¼ 0; ð1:199Þ

while g jð Þ
l rð Þ are the independent solutions of the equation

er
d
dr

1
et

dgl
dr

þ x2erlt �
l lþ 1ð Þ

r2

� 
gl ¼ 0;

er ¼ e0arr; et ¼ e0a## ¼ e0a//; lr ¼ l0arr; lt ¼ l0a## ¼ l0a//;

ð1:200Þ

and g jð Þ0
l rð Þ ¼ dg jð Þ

l rð Þ
.
dr; f jð Þ0

l rð Þ ¼ df jð Þ
l rð Þ

.
dr: Taking into account (1.192), one

can easily obtain the independent solutions of (1.199) and (1.200):

f 1ð Þ
l ¼ g 1ð Þ

l ¼ f 2ð Þ
l k0r

_
	 


; f 2ð Þ
l ¼ g 2ð Þ

l ¼ f 1ð Þ
l k0r

_
	 


;

r_ ¼ R3 � R1

R3 � R2
r � R3

R2 � R1

R3 � R2
:

ð1:201Þ

The continuity conditions for the tangential components of the total field on the
boundary r ¼ R3 yield:
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r ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
f 1ð Þ
l k0bð Þwl k0R3ð Þ;

H
_ 1ð Þ
lm g 1ð Þ

l R3ð ÞþH
_ 2ð Þ
lm g 2ð Þ

l R3ð Þ ¼ ~Hlmf
1ð Þ
l k0R3ð Þ � J eð Þm

4
ffiffiffi
p

p
b

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
f 1ð Þ0
l k0bð Þwl k0R3ð Þ;

E
_ 1ð Þ
lm f 1ð Þ0

l R3ð ÞþE
_ 2ð Þ
lm f 2ð Þ0

l R3ð Þ ¼ ~Elmf
1ð Þ0
l k0R3ð Þ

h
� J eð Þ

4
ffiffiffi
p

p
b

ffiffiffiffiffi
l0
e0

r ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
f 1ð Þ
l k0bð Þw0

l k0R3ð Þ

k0

lt
l0

:

While the conditions on the perfectly conducting sphere r ¼ R2 yield:
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E
_ð1Þ
lm f ð1Þl R2ð ÞþE

_ð2Þ
lm f ð2Þl R2ð Þ ¼ 0; H

_ ð1Þ
lm gð1Þ

0

l R2ð ÞþH
_ ð2Þ
lm gð2Þ

0

l R2ð Þ ¼ 0:

Solving the system of all these equations with respect to the unknown values

E
_ 1ð Þ
lm , E

_ 2ð Þ
lm , H

_ 1ð Þ
lm , H

_ 2ð Þ
lm , and ~Elm, ~Hlm we obtain, in particular,

~Elm ¼ J eð Þ

4
ffiffiffi
p

p
b

ffiffiffiffiffi
l0
e0

r ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
f 1ð Þ
l k0bð Þ wl k0R1ð Þ

f 1ð Þ
l k0R1ð Þ

; ð1:202Þ

~Hlm ¼ J eð Þm
4
ffiffiffi
p

p
b

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
f 1ð Þ0
l k0bð Þ w0

l k0R1ð Þ
f 1ð Þ0
l k0R1ð Þ

: ð1:203Þ

Substituting these values into (1.195), (1.196) gives the expression for the
scattered field that results from the interaction of a horizontal electric dipole with a
perfectly conducting sphere of radius R2, coated with a layer of a magneto-dielectric
material of thickness R3 � R2 and with the permittivity and permeability given by
(1.192). It is easy to see that outside the layer (that is for r[R3), this field is
exactly the same as the field generated by the same source and scattered by the
perfectly conducting sphere of radius R1\R2 [105].

Thus, by using a perfectly conducting sphere as an example, we have rigorously
proved that the application of some special coating onto its surface allows one to
obtain the scattered electromagnetic field that will be exactly the same as the field
scattered by the perfectly conducting sphere of any smaller radius. At the same
time, it is much easier to make such a distorting coating, since it does not require
the vanishing of certain components of its permittivity and permeability, as in the
case of a masking coating.

In [106], the authors demonstrate the possibility of a complete replacement of the
image of the real object with the image of any other object without using the wave
flow method (the so-called illusion optics). However, this complex procedure, based
on the double application of the TO method, can be simulated only numerically.

1.9 Conclusion

In this chapter, analytical solutions have been obtained for the following electro-
magnetic problems associated with wave propagation.

• Wave Propagation in a Homogeneous Medium Bounded by a Surface with
Variable Impedance. We proposed a more realistic compared to the known [8]
model of electromagnetic wave propagation over a plane surface with impe-
dance that varies smoothly in the given direction; we found the analytic rep-
resentation for the field generated by a line current located above this plane; the
case of rapidly varying impedance function Z xð Þ (see (1.1)) has been considered
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(s � 2kÞ; it is shown that the principal term in the asymptotic approximation for
the obtained electromagnetic field coincides with the known expression derived
in [8] for the case, where the surface impedance changes step-wise.
We constructed the exact Green’s function of the Helmholtz equation for a plane
waveguide with smoothly varying impedance of its wall. As in the previous
problem, the coefficient Z xð Þ in the boundary condition is an impedance ana-
logue of the permittivity of the Epstein ‘transition’ layer. The obtained solution
was used for the analysis of the field induced by a linear magnetic current in the
gradient junction between two regular impedance waveguides. In the limiting
case, this solution goes to a well-known expression for the field in the
waveguide with the stepped impedance distribution. The error of adiabatic
approximation for smoothly irregular waveguides has been estimated. It has
been also revealed that there exists a regime with the abnormally efficient
transformation of zero fundamental mode into the first mode. The asymptotics,
for large dimensions of the transition region, makes it possible to estimate the
error of the well-known heuristic approach to the study of the waveguides with
slowly varying parameters (the cross-section method).
A model of the irregular circular waveguide of constant cross-section, with
variable in azimuth impedance of its wall, has been proposed; it has been found
the class of the impedance functions, for which the analytical solution of the
excitation problem for such a waveguide is obtained; this solution allowed us to
find the cause of the well-known cycle slipping phenomenon, which occurs
when VLF electromagnetic waves propagate in the Earth-ionosphere waveg-
uide; it is the first exact analytical solution of the excitation problem for the
finite irregular waveguide, whose properties vary continuously.

• Wave Propagation in Inhomogeneous Media. The problem of the transition
radiation in a medium with a diffuse boundary has been formulated; for this
problem, a rigorous analytical solution has been obtained for the first time
without imposing any restrictions on the model parameters. The limiting tran-
sition to the sharp boundary in this solution allowed us to find the precise
criterion of boundary sharpness in the form of two inequalities, which essen-
tially clarify the known criterion.
The known isotropic Epstein transition layer, describing a smooth transition
between the regions with different refractive indices n1 and n2 in a flat-layered
isotropic medium, is extended to the case of biisotropic media. An analytical
solution to the problem of a plane electromagnetic wave propagating in such a
medium in the normal-to-layer direction has been obtained. The analytical
expressions for the reflection and transmission coefficients, which suggest the
existence of the total transition mode, are derived.
A model of a smoothly inhomogeneous isotropic flat-layered medium that
involves domains of conventional and double-negative media is proposed. The
analytical solution derived for a plane wave travelling through this medium
shows that the well-known negative refraction phenomenon in isotropic
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double-negative medium is a direct consequence of Maxwell’s equations and the
energy conservation law.

• Pulsed Radiation from a Line Electric Current near a Planar Interface: a Novel
Technique. A novel technique has been proposed for the analysis of a transient
electromagnetic field generated by a pulsed line current that is located near a
planar interface between two dielectric nonabsorbing and nondispersive media.
As distinct from the Cagniard-de Hoop method, which is widely used for the
study of transient fields both in electrodynamics and in the theory of acoustic
and seismic waves, our approach is based on the transformation of the domain
of integration in the integral expression for the field in the space of two complex
variables. As a result, it will suffice to use the standard procedure of finding the
roots of the algebraic equation rather than construct auxiliary Carniard’s con-
tours. We have represented the field in the form of an integral along a finite
contour. The algorithm based on such representation may work as the most
effective tool for calculating fields in multilayered media. The suggested method
allows extension to the case of arbitrary dipole sources.

• Radical Distortion of Radar Image Caused by a Special Coating Applied on the
Surface of Metamaterial. We have rigorously proved, by the example of a
perfectly conducting sphere, that by applying a special coating on it one can
ensure that the scattered electromagnetic field will be exactly the same as the
field scattered by a perfectly conducting sphere of any given smaller radius. At
the same time, it is much easier to make such a distorting coating, since it does
not require vanishing of certain components of its permittivity and permeability,
as in the case of a masking coating.
Another two papers need to be mentioned. In [107], for a quasi-homogeneous
random medium with the dispersion varying in some direction as hyperbolic
tangent, the average Green’s function is obtained as an exact solution of
Dyson’s equation in the bilocal approximation. The coherent part of the plane
wave, which is incident on a bounded, randomly fluctuating medium with a
diffuse boundary, is studied in detail. It is shown that in the case of small-scale
fluctuations such a medium is a random analogue of the transient Epstein layer.
Paper [108] is devoted to the study of the radiation from a uniformly moving
charge in the nonstationary medium, whose time dependence of the permittivity
is given by the formula similar to that for the symmetric Epstein layer:
e tð Þ ¼ e0 1þ a

�
ch2 t=Dtð Þ � a
� �� �

:
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Chapter 2
Dyadic Green’s Function for Biaxial
Anisotropic Media

Leonid Pazynin, Seil Sautbekov and Yuriy Sirenko

Abstract In this chapter, authors construct the dyadic Green’s function for a
biaxial anisotropic media. Among the obtained analytical results, worthy of men-
tion are the representation of the singular part of the Green’s function in an explicit
form and the representation of its regular part in the form of a relatively simple
double integral over a limited region. These results are aimed at developing efficient
numerical algorithms and asymptotic representations in the problems of wave
scattering in anisotropic media.

2.1 Introduction

TheDyadic Green’s function (DGF) is the most efficient analytical tool in the analysis
of radiation and propagation of electromagnetic waves in an unbounded medium [1].
The explicit closed-form expression for DGF is known for a uniaxial anisotropic
medium [2–4]. In the case of biaxial and somemore complex anisotropic media, DGF
is represented usually as a three-dimensional Fourier integral in Cartesian [5],
cylindrical [6, 7] or spherical [8–10] coordinates in the space K3 of wave vectors~k:To
obtain a unique solution from this physical representation, the following radiation
condition at infinity is used: under the assumption of small loss in the anisotropic
medium, DGFmust tend to zero with the unbounded removal of the observation point
~r 2 R3 [5]. It is not possible to reduce the mentioned three-dimensional integral to an
explicit closed-form one, so the most part of the works in this field is devoted to the
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transformation of this integral into a form that allow numerical analysis and
asymptotic estimation in the near-field and far-field zones.

In the Cartesian and cylindrical coordinates, a single integration in standard
three-dimensional integral is performedwithout anydifficulties.However, the result—
a double singular integral in the case of the Cartesian coordinate system or a double
integral in the infinite limits of functions with double infinite sums in the case of the
cylindrical coordinate system—is even less suitable for computations than the
original one.
The most convenient for the development of computational algorithms for DGF,

apparently, is an approach that is based on the use of spherical coordinates [8–10].
In [8] it is implemented in a standard way and the calculation of the integral over
the radial variable results in representation of DGF in the form of a double integral
over a finite region but with the appearance of a double sum in the integrand
function. In [9], dealing with the construction of DGF for bianisotropic medium,
and in [10] a spherical coordinate system is bound to the observation point ~r ¼
x~xþ y~yþ z~z: It allowed the authors of [9] to transform the integral over the radial
variable kr, 0� kr\1 into the integral over the entire axis �1\kr\1 and
reduce it to the sum of residues, describing outgoing waves, that is, to fulfill the
radiation condition at infinity. That is a good result, but in its derivation the
modifications associated with the replacement of the original coordinate system by
the systems oriented to an observation point, only the vector of independent vari-
ables ~k; has been subjected to transformation, but transformation of the dyadic
(tensor) Green’s function has not been carried out.

DGF, which is a Fourier integral of a function nondecreasing at infinity, is a
generalized function. It is convenient to consider it by breaking up into two parts:
the singular one (generalized function) and regular one (normal function). In all
above mentioned works, the singular part is calculated in the corresponding coor-
dinate system, but without explicit extraction of the regular part, which may be
more important for the future work.

In the present chapter, the proposed in the paper [9] idea of transition to a special
spherical coordinate system is implemented, and inaccuracies made in [9], which we
have pointed out above, are fixed. DGF is presented as a sum of singular and regular
parts. An explicit, not depending on the coordinate system, representation for the
singular part is found out; it generalizes the known expression for the singular part of
the Green’s function of the uniaxial anisotropic medium [11]. The regular part is
represented as a double integral over a finite domain. This integral is convenient both
for computations and for the construction of asymptotic representations.

2.2 Formulation of the Problem

For the anisotropic medium under consideration, Maxwell’s equations describing a
harmonically oscillating field (time dependence is determined by the factor
expð�ixtÞÞ can be written as
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rot~Eð~rÞ � ixl0l~Hð~rÞ ¼ 0; rot~Hð~rÞþ ixe0e~Eð~rÞ ¼~jð~rÞ; ð2:1Þ

where e0 and l0 are permittivity and permeability of vacuum; e is the relative
permittivity tensor and l is the relative magnetic permeability—they are defined by
arbitrary complex numbers.

The solution of (2.1) for any external electric current density ~jð~rÞ can be
expressed by the integrals [3]

~Eð~rÞ ¼
ZZZ

Gee ~r;~r0ð Þ~j ~r0ð Þd~r0; ~Hð~rÞ ¼
ZZZ

Gme ~r;~r0ð Þ~J ~r0ð Þd~r0; ð2:2Þ

where the dyadic Green’s functions Gee and Gme are solutions of the equations

rotGee ~r;~r0ð Þ � ixl0lGme ~r;~r0ð Þ ¼ 0
rotGme ~r;~r0ð Þþ ixe0eGee ~r;~r0ð Þ ¼ Id ~r �~r0ð Þ:

�
ð2:3Þ

Here d . . .ð Þ is the Dirac delta-function and I is the identity tensor (dyadic).
System (2.3) is equivalent to two equations of the second order

rot l�1rot I � k20e
� �

Gee ~r;~r0ð Þ ¼ ixl0Id ~r �~r0ð Þ; ð2:4Þ

rot e�1rot I � k20l
� �

Gme ~r;~r0ð Þ ¼ ixe0Id ~r �~r0ð Þ; ð2:5Þ

where k0 ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
.

We confine ourselves to finding DGF of electric type G ~r;~r0ð Þ ¼
Gee ~r;~r0ð Þ�ixl0l from the equation

rot rot G ~rð Þ � k20leGð~rÞ ¼ Idð~rÞ: ð2:6Þ

There is no need to solve (2.5), since due to the availability of G the field ~Hð~rÞ is
determined by the first equations from (2.1) and (2.2).

2.3 Initial Representation for Dyadic Green’s Function

The solution of (2.6) can be represented as a triple Fourier integral [5, 8]

Gð~rÞ ¼
ZZZ

K3
�gð~kÞexp(i~k �~rÞd~k; ð2:7Þ

2 Dyadic Green’s Function for Biaxial Anisotropic Media 93



where �gð~kÞ ¼ ð2pÞ�3 Að~kÞ
h i�1

¼ ð2pÞ�3adj Að~kÞ
h i.

det Að~kÞ
h i

; j20 ¼ k20l, Að~kÞ ¼
k2I �~k �~k � j20e, and ~a�~b is the tensor product of the vectors ~a and ~b; or, in

other words, the tensor with components aabb ¼ ~a�~b
h i

ab
.

In a Cartesian coordinate system fx; y; zg with axes directed along the axes of the
medium anisotropy, we have

e ¼
e1 0 0
0 e2 0
0 0 e3

2
4

3
5; ~k �~k ¼

k2x kxky kxkz
kxky k2y kykz
kxkz kykz k2z

2
4

3
5; adj Að~kÞ

h i
¼

~a11 ~a12 ~a13
~a21 ~a22 ~a23
~a31 ~a32 ~a33

2
4

3
5;

ð2:8Þ

where e1, e2, e2 are arbitrary complex numbers,

~a11 ¼ q2q3 � k2y q3 � k2z q2; ~a12 ¼ ~a21 ¼ kxkyq3; ~a13 ¼ ~a31 ¼ kxkzq2;

~a22 ¼ q1q3 � k2x q3 � k2z q1; ~a23 ¼ ~a32 ¼ kykzq1; ~a33 ¼ q1q2 � k2x q2 � k2y q1;

~k ¼ kx~xþ ky~yþ kz~z; qj ¼ k2 � j20ej; j ¼ 1; 2; 3;

and

det Að~kÞ
h i

¼ �j20 k2 k2x e1 þ k2y e2 þ k2z e3
� �n

�j20 k2x e1e2 þ e1e3ð Þþ k2y e1e2 þ e2e3ð Þþ k2z e1e3 þ e2e3ð Þ
h i

þ j40e1e2e3
o
:

ð2:9Þ

2.4 Transformation of the Original Representation.
Singular Part of Dyadic Green’s Function

Let us write the adjoint matrix adj[. . .� in the form of an expansion in powers of~k:

adj Að~kÞ
h i

¼ k2~k �~k � j20A
ð2Þð~kÞþ j40A

ð0Þ
: ð2:10Þ

Here,

A
ð2Þð~kÞ ¼

k2x e2 þ e3ð Þþ k2y e2 þ k2z e3 kxkye3 kxkze2
kxkye3 k2x e1 þ k2y e1 þ e3ð Þþ k2z e3 kykze1
kxkze2 kykze1 k2x e1 þ k2y e2 þ k2z e1 þ e2ð Þ

2
64

3
75

ð2:11Þ
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and

A
ð0Þ ¼

e2e3 0 0
0 e1e3 0
0 0 e1e2

2
4

3
5: ð2:12Þ

Let

Dð~kÞ ¼ � j20

det Að~kÞ
h i ¼ Dð4Þð~kÞþDð6Þð~kÞ; ð2:13Þ

where Dð4Þð~kÞ ¼ k2 k2x e1 þ k2y e2 þ k2z e3
� �h i�1

, and the lower index ðnÞ is equal to

the order of decrease of DðnÞð~kÞ as k ! 1.
Transform the integrand in (2.7) according to the representation

�ð2pÞ3j20�gð~kÞ ¼ �gsingð~kÞþ �gregð2Þð~kÞþ �gregð4Þð~kÞ; ð2:14Þ

where �gsingð~kÞ ¼ k2~k �~kDð4Þð~kÞ; �gregð2Þð~kÞ ¼ k2~k �~kDð6Þð~kÞ � j20A
ð2Þð~kÞDð4Þð~kÞ; and

�gregð4Þð~kÞ ¼ �j20A
ð2Þð~kÞDð6Þð~kÞþ j40A

ð0Þ
Dð~kÞ: Consequently, DGF breaks up into

three terms:

Gð~rÞ ¼ G
singð~rÞþG

reg
ð2Þð~rÞþG

reg
ð4Þð~rÞ: ð2:15Þ

Transform the first one to the form

G
singð~rÞ ¼ � 1

ð2pÞ3j20

ZZZ
K3
k2~k �~kDð4Þð~kÞexp i~k �~r

� �
d~k

¼ 1

ð2pÞ3j20
ðr �rÞ

ZZZ
K3

exp i~k �~r
� �

d~k

k2x e1 þ k2y e2 þ k2z e3

¼ 1
4pj20

ðr �rÞ 1
re

ffiffiffiffiffiffiffiffiffiffiffiffi
e1e2e3

p ; r2e ¼ x2
�
e1 þ y2

�
e2 þ z2

�
e3;

r ¼ @

@x
~xþ @

@y
~yþ @

@z
~z;

ð2:16Þ

using the result from [12] for calculating the last integral in (2.16).
It is known that�ð4pÞ�1r2r�1 ¼ dðrÞ for r2 ¼ x2 þ y2 þ z2 [12]. Therefore, one

can assume that the function G
singð~rÞ generalizes the function dðrÞ in the case of
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biaxial anisotropic medium. In the particular case of the uniaxial medium, it arrives
to the known expression for the singular part of the corresponding DGF [11].

2.5 Regular Part of Dyadic Green’s Function

The function G
reg
ð2Þð~rÞ from (2.15) can be represented as a sum of two terms:

� 1

ð2pÞ3j20

ZZZ
K3

~k �~k
� �

k2Dð6Þð~kÞexp i~k �~r
� �

d~k

¼ 1

ð2pÞ3j20
ðr �rÞ

ZZZ
K3
k2Dð6Þð~kÞexp i~k �~r

� �
d~k

ð2:17Þ

and

1

ð2pÞ3
ZZZ

K3
A
ð2Þð~kÞDð4Þð~kÞexpði~k �~rÞd~k

¼ � 1

ð2pÞ3 A
ð2ÞðrÞ

ZZZ
K3

Dð4Þð~kÞexpði~k �~rÞd~k; ð2:18Þ

where

A
ð2ÞðrÞ ¼

e2þ e3ð Þ@2
xx þ e2@2

yy þ e3@2
zz e3@2

xy e2@2
xz

e3@2
xy e1@2

xx þ e1 þ e3ð Þ@2
yy þ e3@2

zz e1@2
yz

e2@2
xz e1@2

yz e1@2
xx þ e2@2

yy þ e1 þ e2ð Þ@2
zz

2
64

3
75:

ð2:19Þ

Thus

G
reg
ð2Þð~rÞ ¼

1

ð2pÞ3
1
j20

ðr �rÞ
ZZZ

K3
k2Dð6Þð~kÞexp i~k �~r

� �
d~k

	

�A
ð2ÞðrÞ

ZZZ
K3
Dð4Þð~kÞexp i~k �~r

� �
d~k


 ð2:20Þ

and

G
reg
ð4Þð~rÞ ¼ � 1

ð2pÞ3 A
ð2ÞðrÞ

h ZZZ
K3
Dð6Þð~kÞexp i~k �~r

� �
d~k

þ j20A
ð0Þ
ZZZ

K3
Dð~kÞexp i~k �~r

� �
d~k



:

ð2:21Þ

The sums (2.20) and (2.21) give us the regular part of DGF:
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G
regð~rÞ ¼ 1

ð2pÞ3
1
j20

ðr �rÞ
ZZZ

K3
k2Dð6Þð~kÞexp i~k �~r

� �
d~k

	

� A
ð2ÞðrÞþ j20A

ð0Þh iZZZ
K3
Dð~kÞexp i~k �~r

� �
d~k



:

ð2:22Þ

The matrix operator

Tðh;/Þ ¼
sin# cos/ sin# sin/ cos#
cos# cos/ cos# sin/ � sin#
� sin/ cos/ 0

2
4

3
5 ð2:23Þ

for the transition in R3-space from the Cartesian (fx; y; zg) to the spherical
coordinates

fr; #;/g :
x ¼ r sin# cos/
y ¼ r sin# sin/
z ¼ r cos#

8<
: ð2:24Þ

transforms (2.22) into

G
regð~rÞ ¼ 1

ð2pÞ3
1
j20

ðr �rÞsphUð6Þð~rÞ � A
ð2ÞðrÞþ j20A

ð0Þ� �
sph

Uð~rÞ
	 


: ð2:25Þ

Here,

Uð6Þð~rÞ ¼
ZZZ

K3
k2Dð6Þð~kÞexp i~k �~r

� �
d~k; Uð~rÞ ¼

ZZZ
K3
Dð~kÞexp i~k �~r

� �
d~k;

ð2:26Þ

and

ð. . .Þsph ¼ Tð#;/Þð. . .ÞTTð#;/Þ ð2:27Þ

(the upper index T in T
Tð#;/Þ denotes the transpose operation of the matrix

Tð#;/ÞÞ,~r is defined by formula (2.24). Cartesian components of the operator r
are expressed in terms of spherical coordinates by the formulas [13]

@

@x
¼ sin# cos/

@

@r
þ cos# cos/

r
@

@#
� sin/
r sin#

@

@/
;

@

@y
¼ sin# sin/

@

@r
þ cos# sin/

r
@

@#
þ cos/

r sin#
@

@/
;

@

@z
¼ cos#

@

@r
� sin#

r
@

@#
:
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2.6 The Physical Solution

To meet the radiation condition, we transform the coordinate system in the inte-
gration space K3. First, make the transition from the original Cartesian system
fkx; ky; kzg to the new Cartesian coordinate system fk~x; k~y; k~zg, with the axis k~z
directed to the observation point~r ¼~rðr; #;/Þ of the space R3 (see, for example,
Fig. 2.1 and [9]; the k~x-axis lies in the kx0ky-plane, the angles ~# and ~/ are spherical

angles in the rotated system). This transition, ~~k ¼ T1ð#;/Þ~k; is described by the
rotation matrix

T1ð#;/Þ ¼
sin/ � cos/ 0
cos# cos/ cos# sin/ � sin#
sin# cos/ sin# sin/ cos#

2
4

3
5: ð2:28Þ

Then we make the second transform in K3, namely, change from the Cartesian

coordinate system to spherical coordinates in the representation of the vector ~~k:

k~x ¼ k sin ~# cos ~/
k~y ¼ k sin ~# sin ~/
k~z ¼ k cos ~#

8<
: : ð2:29Þ

Then we have

~k ¼~kð ~#; ~/; #;/Þ ¼ k~k
~
ð ~#; ~/; #;/Þ ¼ T

T
1 ð#;/Þ ~~kð ~#; ~/Þ; ð2:30Þ

where ~~kð ~#; ~/Þ ¼ k~x; k~y; k~z
� �

and

Fig. 2.1 Original and new
Cartesian coordinate systems:
—right angle
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k
~x

¼ sin/ sin ~# cos ~/þ cos# cos/ sin ~# sin ~/þ sin# cos/ cos ~#;

k
~y

¼ � cos/ sin ~# cos ~/þ cos# sin/ sin ~# sin ~/þ sin# sin/ cos ~#;

k
~z

¼ � sin# sin ~# sin ~/þ cos# cos ~#; ð~k �~rÞ ¼ kr cos ~#:

In the new coordinates fk; ~#; ~/g the integrals (2.26) in (2.25) for the regular part
of DGF take the form

Uð6Þð~rÞ ¼
Z1

0

k4dk
Zp

0

sin ~#d ~#
Z2p

0

Dð6Þð~kÞexpðikr cos ~#Þd~/; ð2:31Þ

Uð~rÞ ¼
Z1

0

k2dk
Zp

0

sin ~#d ~#
Z2p

0

Dð~kÞexpðikr cos ~#Þd~/: ð2:32Þ

In these representations it is possible to carry out the analytical integration over
k: To do this, first we express the determinant of (2.9) through the roots of the
dispersion equation:

det Að~kÞ
h i

¼ �j20 ak4 þ bk2 þ c
 � ¼ �j20a k2 � k21

 �
k2 � k22
 �

: ð2:33Þ

Here,

k21;2 ¼ k21;2ð ~#; ~/; #;/Þ ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
; ð2:34Þ

a ¼ að ~#; ~/; #;/Þ ¼ k
~

2

x
e1 þ k

~

2

y
e2 þ k

~

2

z
e3; ð2:35Þ

b ¼ bð ~#; ~/; #;/Þ ¼ �j20 k
~

2

x
e1 e2 þ e3ð Þþ k

~

2

y
e2 e1 þ e3ð Þþ k

~

2

z
e3 e1 þ e2ð Þ

	 

; ð2:36Þ

c ¼ cð ~#; ~/; #;/Þ ¼ j40e1e2e3: ð2:37Þ

Than we derive from (2.13) that

Dð~kÞ ¼ 1
a k2 � k21
 �

k2 � k22
 � ¼ D k2; ~#; ~/; #;/

� �
;

Dð6Þð~kÞ ¼ � bk2 þ cð Þ
a2k4 k2 � k21

 �
k2 � k22
 � ¼ Dð6Þ k2; ~#; ~/; #;/

� �
:

ð2:38Þ
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Both of these functions are invariant with respect to the change of variables
~# ¼ p� ~#

~
; ~/ ¼ pþ ~/

~
. This allows one to transform the integration in (2.31),

(2.32) over the unit sphere to the integration over the closest to the observation
point hemisphere. Consider, for example, the integral (2.32). Given the fact that

Zp

p=2

sin ~#d ~#
Z2p

0

D k2; ~#; ~/; #;/
� �

expðikr cos ~#Þd~/

¼ �
Z0

p=2

sin ~#
~
d ~#
~

Zp

�p

D k2; ~#
~
; ~/
~
; #;/

� �
expð�ikr cos ~#

~
Þd~/

~

¼
Zp=2

0

d ~#
~
sin ~#

~

Z2p

0

D k2; ~#
~
; ~/
~
; #;/

� �
expð�ikr cos ~#

~
Þd~/

~
;

we have

Uð~rÞ ¼
Z1

0

k2dk
Zp=2

0

sin ~#d ~#
Z2p

0

D k2; ~#; ~/; #;/
� �

expðikr cos ~#Þd~/

þ
Z1

0

k2dk
Zp=2

0

sin ~#
~
d ~#
~

Z2p

0

D k2; ~#
~
; ~/
~
; #;/

� �
expð�ikr cos ~#

~
Þd~/

~

¼
Z1

�1
k2dk

Zp=2

0

sin ~#d ~#
Z2p

0

D k2; ~#; ~/; #;/
� �

expðikr cos ~#Þd~/:

ð2:39Þ

Similarly, we also obtain that

Uð6Þð~rÞ ¼
Z1

�1
k4dk

Zp=2

0

sin ~#d ~#
Z2p

0

Dð6Þ k2; ~#; ~/; #;/
� �

expðikr cos ~#Þd~/: ð2:40Þ

Apply now the radiation condition in order to extract the unique (physical)
solution of the problem. Suppose that the medium has small absorption: Imj0 is a
small positive number. Then, as seen from (2.34), two out of four poles
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k1;2;3;4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p� �.
2a

r

of the integrand in (2.39), (2.40) have positive imaginary parts. Properties of the
integrand functions of the integrals over k in (2.39), (2.40) enable the closing of the
corresponding integration contour in the upper half plane of the complex variable k:
By finding the corresponding to these functions residues at the poles k ¼ k1; k2
(Imkj [ 0 for j ¼ 1; 2;) we obtain

Uð6Þð~rÞ ¼ �pi
Zp=2

0

sin ~#d ~#

�
Z2p

0

k�1
1 bk21 þ c
 �

exp ik1r cos ~#
 �� k�1

2 bk22 þ c
 �

exp ik2r cos ~#
 �

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p d~/;

ð2:41Þ

Uð~rÞ ¼ pi
Zp=2

0

sin ~#d ~#
Z2p

0

k1exp ik1r cos ~#
 �� k2exp ik2r cos ~#

 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p d~/: ð2:42Þ

Thus the representation for G
regð~rÞ (see formulas (2.25)–(2.27)) is constructed.

The finiteness of the domain of integration in (2.41), (2.42) and regularity of the
integrand functions allowed using this representation both for numerical and
asymptotic estimations of DGF.

Going to the limiting case of an isotropic medium in these formulas, we obtain
the well-known relations [3, 11]. We failed to derive the relationships for the
uniaxial anisotropic medium, but in the course of the computational experiments we
fully confirmed the identity of the results following from (2.41), (2.42) and the
results presented in [11]. In this context, it should be noted that the authors of [11]
for some reason discarded the static part of the regular component of the Green’s
function for the uniaxial anisotropic medium without any comments. In our
numerical experiments, we have taken into account the corresponding difference in
the analytical results.

2.7 Conclusion

The dyadic Green’s function for an unbounded biaxial anisotropic medium is treated
analytically. The original triple integral is represented as a sum of singular and
regular terms. For the first time, the first term has been evaluated analytically and
presented in the general dyadic form, not related to the coordinate system. It is a
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generalization of the well-known result for uniaxial anisotropy [11] to the case of a
biaxial medium. In view of the radiation conditions at infinity, the regular part of
DGF has been reduced to double integrals (2.41), (2.42) over a finite domain that are
convenient for numerical calculations and for obtaining asymptotic estimates. These
integrals also allow seeing the fundamental difference in analytics in the cases of
biaxial and uniaxial anisotropic media. The integral over the variable ~/ can be
represented as a contour integral over the unit circle. The square root in the
denominator of the integrand generally has two branch points inside the contour and
two out of it. The contour of integration is located between the two cut lines. In the
transition to a uniaxial medium, the radical expression becomes a complete square,
the branch points are transformed to the poles and the integral is easily calculated.
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Chapter 3
Operator Fresnel Formulas
in the Scattering Theory of Waveguide
Modes

Igor Petrusenko and Yuriy Sirenko

Abstract A novel formulation of the problem of wave diffraction by abrupt and
volume discontinuities in a waveguide is presented in this chapter. In the context of
this formulation, the authors succeeded in solving a number of the long-discussed
problems concerning mathematical properties of matrix models of the
mode-matching technique. In particular, they rigorously justified the possibility to
use the truncation technique, unconditionally converging in the norm of a space of
infinite sequences, for numerical implementation of the developed matrix models.
The operator-matrix analysis of the mode-matching technique has shown that the
proposed approach leads to the operator Fresnel formulas, which generalize prop-
erly the well-known Fresnel formulas to the scattering operators.

3.1 Introduction

Scattering of a plane time-harmonic wave being incident normally on the plane X,
where the wave properties of a continuous medium occupying all space are
changing abruptly, is described by the well-known Fresnel formulas

r ¼ d2 � 1
d2 þ 1

; t ¼ 2d
d2 þ 1

ð3:1Þ
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for the amplitude reflection (r) and transmission (t) coefficients. In these equalities,
the dimensionless parameter d characterizes the jump discontinuity of the medium
impedance on the boundary X.

The original Fresnel formulas were related to the description of regularities
attributed to the scattering of transverse waves in a hypothetical ether. A.-J. Fresnel
himself stated [1] that the reflection formula had been originally given by T. Young,
and then C.-D. Poisson had obtained it for longitudinal vibrations of highly elastic
ether. For these two problems, the derivation of formulas of type (3.1) was based on
the equality of the frequencies of the incident, reflected and transmitted waves.

In classical electrodynamics, the Fresnel formulas follow directly from the
boundary conditions

~E 1ð Þ
tg xð Þ ¼ ~E 2ð Þ

tg xð Þ and ~H 1ð Þ
tg xð Þ ¼ ~H 2ð Þ

tg xð Þ on the surface X: ð3:2Þ

They are also known as the matching conditions for the tangential components
of the vector complex amplitudes (i.e. vector phasors) of the electromagnetic field
of angular frequency x existing on both sides (1 and 2) of the interface X (due to a
large number of published studies, we refer the reader to the basic reference [2]).

For normal incidence of a TEM-wave on a plane interface X between two linear
homogeneous isotropic media, we have

r11 ¼ �r; t21 ¼ t; d ¼
ffiffiffiffiffiffi
h21

p
;

H? � case
E? � case

� �
ð3:3Þ

for the two possible polarizations (H? and E?) with respect to the observation
plane. Here, r11 is the reflection coefficient in the first medium, t21 is the trans-
mission coefficient from medium 1 to medium 2, while h21 stands for the relative
impedance/admittance of these two media. The substitution �ð Þ ! �ð Þ in the first
equality in (3.3) gives the expression for the reflection coefficient r22 in the second
medium, with the coefficient t12 = t being characteristic of the wave transmission
from medium 2 into medium 1.

In this chapter we will show that the wave scattering law in the form of (3.1),
(3.3), but for the reflection and transmission matrix operators

R11 ¼ �D0DT
0 � I

D0DT
0 þ I

; T21 ¼ D0D
T
0 þ I

� ��1
2D0;

H � case
E � case

� �
ð3:4Þ

holds for the H-or E-plane two-port waveguide junction, where the Poynting vector
of the incident wave is perpendicular to the aperture plane X of the step disconti-
nuity in a waveguide (i.e., having its own volume Vint ¼ 0) and where the matching
conditions (3.2) are satisfied. In formulas (3.4) the matrix operator D0 ¼ D0 xð Þ
acting in the Hilbert space l2, is defined by the given geometry of the problem, I is
the unit operator, and the superscript ‘T’ indicates transposition. Similarly to
the above-mentioned properties of formulas (3.3), simultaneous substitutions
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�ð Þ ! �ð Þ and D0 �DT
0 in (3.4) give expressions for the reflection and trans-

mission operators, R22 and T12, respectively. There are other parallels between
formulas (3.1), (3.3) and operator expressions (3.4), which will be discussed in the
relevant sections of this chapter.

Considering the generally recognized name of (3.1), we will call formulas like
(3.4) operator Fresnel formulas. It is clear that they generalize their scalar ana-
logues (3.1), (3.3) to the case of an infinite (but countable) number of the
waveguide modes.

In this chapter we will also show that the relationships similar to (3.1) but for the
generalized scattering matrix S of the N-port wave transformer (i.e. for the
N � N operator matrix acting in the Hilbert space hN ¼ lN2 , N ¼ 2; 3; . . .;
l22 ¼ l2 � l2, and so on), take place in the case of the ‘volume’ (Vint 6¼ 0) waveguide
discontinuities:

S ¼ W � Ih
W þ Ih

; K ¼ W þ Ihð Þ�12W0: ð3:5Þ

Here, the given operator of the problem has the formal representation
W ¼ W0WT

0 , the unit operator is Ih : hN ! hN , while the introduced operator matrix
K characterizes the oscillating field in the cavity Vint. Since formulas (3.5) represent
the next step of generalization—the transition from matrix operators to operator
matrices—we will call them generalized operator Fresnel formulas.

In computational electrodynamics, boundary conditions (3.2) are regarded as the
initial equalities of rigorous methods for solving diffraction problems that involve
real or virtual boundaries separating different regions of wave propagation. In
particular, among those methods is the mode-matching technique (also known as
the method of partial (contiguous) regions or re-expansion method), which remains
popular in engineering practice over a very long period of time and seems to be the
most widespread tool for calculating waveguide paths.

All the known matrix models of the mode-matching technique have the form of
infinite systems of linear algebraic equations. They appear in connection with a
commonly used formulation of the mode diffraction problem.

The conventional statement of the problem of mode diffraction by a waveguide
discontinuity is as follows: a specified single waveguide mode is scattered by a
discontinuity and it is necessary to find the amplitudes of the excited modes (both
propagating and evanescent ones). Such problem formulation leads to infinite
systems of linear algebraic equations, in which identifying the operator Fresnel
formulas is quite a challenge.

In accordance with the developed approach, we propose to change the problem
formulation in the following way. The electromagnetic wave of a finite power is
scattered by a given discontinuity in the waveguide; the field of this wave is an
infinite set of modes with any known distribution of amplitudes; it is necessary to
find the scattering operators.
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If the diffraction problem is posed as suggested above, then the application of the
mode-matching technique yields an equation with respect to the scattering operator
rather than an infinite system of linear algebraic equations.

This new approach to solving diffraction problems appears to be more efficient.
In particular, it allows one to

• rigorously prove the existence, uniqueness and stability of the solutions of the
matrix-operator equations of the mode-matching technique for two classes of the
problems considered;

• clarify that the correctness of the operator Fresnel formulas is a direct conse-
quence of the energy conservation law;

• prove the unconditional convergence of the projection approximations of the
truncation technique to the actual scattering operators;

• investigate the rate of convergence of approximate solutions;
• estimate analytically the condition number for both the infinite and the truncated

matrix of the final model.

From the formal mathematical point of view, the proposed approach means that
the unknown vector of the Fourier coefficients in the modal expansion of the field is
replaced by the desired matrix scattering operator. This idea is not new in mathe-
matical physics—it will suffice to mention Heisenberg’s matrix quantum mechan-
ics. In computational electromagnetics this idea probably was first consistently
implemented in the method of matrix operators [4]. The approach applied in this
chapter can also be seen as a further development of the method of spectral scat-
tering operators [5–7].

Thus, we assert that the considered mode-matching technique is of a
matrix-operator nature and, therefore, the theory of operators in the Hilbert space
and, as will be shown, in the Pontryagin space [8] provides an adequate mathe-
matical tool for solving mode diffraction problems.

3.2 The Mode-Matching Technique in the Problem
of a Waveguide Step-like Discontinuity

Let us analyze the application of the mode-matching technique to the problem of
diffraction of waveguide modes.

3.2.1 The Classical Mode-Matching Technique:
An Example of Application

The best known guidance on the application of the classical mode-matching
technique is the book by Mittra and Lee [3]. The method therein is applied to the
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analytically solvable canonical problem of a waveguide bifurcation in the H-plane
[9]. In the proposed approach one can identify the following key points [3]:

• Formulation of the problem. The fundamental mode with unit amplitude is
incident on a discontinuity in a parallel plane waveguide with perfectly con-
ducting walls. The scattered field is to be found.

The desired field is a complete set of waveguide modes with the same polar-
ization as the incident wave, since the problem under consideration is invariant with
respect to displacement along the Cartesian axis perpendicular to the H-plane. Just
as for the incident wave, all the components of the scattered field are completely
determined by the complex amplitude of the single component of the electric field
U g;xð Þ, g ¼ y; zf g (throughout the chapter we will use the uniform notation other
than that used in the book [3]). This scalar function satisfies the wave equation, the
homogeneous Dirichlet conditions on perfectly conducting surfaces, the condition
at infinity for waveguides and the condition on a sharp edge [10].

• Construction of the matrix model. The geometry of the problem allows partition
of the entire domain of the field determination into simple partial contiguous
subregions, which is why the mode-matching technique is sometimes called the
method of partial regions. The partial region is called simple if it allows one to
find the general solution of the given boundary value problem by using the
method of separation of variables in a suitable coordinate system.

The function U g;xð Þ is sought in each of the regions as a series of a complete
set of waveguide modes with their amplitudes to be determined. For the propa-
gating modes, these amplitudes are the reflection and transmission coefficients.

The matching of the tangential electric and magnetic field components on the
common (virtual) boundary of partial regions, results in a system of functional
equations. Application of the Galerkin procedure, i.e. projection of the obtained
equations on the complete set of the transversal eigenfunctions of the waveguides,
yields a dual infinite system of linear algebraic equations (SLAE) for the desired
complex coefficients of the modal expansion of the field.

• The analytical solution of the infinite SLAE. The constructed SLAE can be
solved analytically both by the truncation technique and by the method of
residues [3]. In the first case, the infinite SLAE is first truncated, what is the
same to taking into account the finite number of modes M and N in the corre-
sponding partial regions. Then the solution of the SLAE reduced to the order of
MþNð Þ � MþNð Þ is obtained by the classical Cramer rule. Finally, the
passage to the limit at M;N ! 1 is performed.

• The analysis of the obtained analytical solution. As it was found, the approx-
imate solution of the infinite SLAE obtained by the truncation procedure is not
the only one, and it depends on the ratio M/N. This phenomenon has been called
relative convergence, while the rule of determination of such M/N that leads to
the true solution is often referred to as Mittra rule. The relative convergence
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effect is confirmed by numerous computations for various problems of mode
diffraction by waveguide step-like discontinuities.

• Software implementation of the exact solution of the infinite SLAE. Numerical
experiments show that the exact analytical solution of the matrix equation is,
generally speaking, poorly adapted for practical computations. It was found that
the problems arising in the calculation of slowly converging infinite products
and series as a rule require significant additional efforts. Therefore, the
approximate solutions of the diffraction problems may reduce computational
burden as compared with the rigorous analytical results.

Based on a literal understanding of the problem statement [3], one could expect
that the declared purpose of the study is to find the scattered field. However, in the
book [3], as in many other works, neither the function U g;xð Þ nor, especially, the
components of the electromagnetic field are calculated. Instead, the found coeffi-
cients of the modal expansion for the function U g;xð Þ are declared as the solution
of the problem.

3.2.2 The Mode-Matching Technique in the Problem
of a Step Discontinuity in a Waveguide: Standard
Approach

In this subsection we present an example of the commonly accepted practice of
using the mode-matching technique in the typical case where the problem has no
exact analytical solution, but is important for engineering.

The problem of the mode scattering by a step discontinuity in the H- or E-plane
rectangular (or parallel-plate) waveguide is a canonical problem of the applied
electrodynamics. All the features of the application of the mode-matching technique
for the analysis of this elementary discontinuity can be transferred, as will be seen
in Sect. 3.9, on the whole class of problems usually called the problems of abrupt
waveguide discontinuities. (The rigorous criterion of dividing all the mode
diffraction problems into two different classes will be formulated in Sect. 3.8.) Of
course, the list of papers devoted to this problem is very long. We will rely basically
on the work [11], where an extensive bibliography is also available.

Let us apply the mode-matching technique to the problem of step discontinuity
in a waveguide following the above scheme.

The contour of the discontinuity under study and the used Cartesian coordinate
system are shown in Fig. 3.1. We consider an infinite hollow rectangular waveg-
uide with an abrupt change in its cross-section in the plane z ¼ 0 from a1 � a3 to
a2 � a3. The plane, where the cross-section changes stepwise and in which the
aperture of the discontinuity is lying, we take as a reference plane.

Referring to Fig. 3.1, the waveguide is divided into two simple partial regions,
namely, two semi-infinite arms 1 and 2. The ratio a2=a1 is arbitrary (0\a2=a1\1).
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All the metal walls of the waveguide are assumed to be perfectly conducting
surfaces.

Suppose that the rth waveguide mode of unit amplitude (r� 0 is an arbitrary
integer) be incident onto the step (Fig. 3.1) from the region 1. To simplify the
analysis we assume that the field of this mode does not change along the x-axis in
case of H-plane discontinuity, while in the case of the E-plane step one variation of
the field occurs. In what follows we will consider both of these problems simul-
taneously, indicating formulas by H-case or E-case, respectively.

Depending on the polarization of the incident wave, we write the x-component
of the field as

Ex ¼ U g;xð Þ exp �ix tð Þ for H � case and
Hx ¼ U g;xð Þ sin px=a3ð Þ exp �ixtð Þ for E � case:

ð3:6Þ

The remaining field components can be expressed via the continuous function
U g;xð Þ, which is the solution of the two-dimensional homogeneous Helmholtz
equation

@2

@y2
þ @2

@z2
þ v2

� �
U ¼ 0; v2 ¼ k2; H � case

k2 � p=a3ð Þ2; E � case

�
ð3:7Þ

in any finite domain of the field determination. Here, k ¼ ffiffiffiffiffiffiffiffiffi
e0l0

p
x is the

wavenumber and Re k[ 0, Im k ¼ 0.
Let us denote the values of the function U in the regions 1 and 2 by U 1ð Þ and

U 2ð Þ, respectively. Then the conditions ensuring the existence and uniqueness of the
solution of this electrodynamic problem takes the following form:

• homogeneous boundary conditions

U g;xð Þjg2R¼ 0 for H � case and
@U g;xð Þ=@~njg2R¼ 0 for E � case ð3:8Þ

on the all perfectly conducting walls R ¼ Rx � 0\x\a3½ � of the waveguide
junction; Rx is the trace of these walls in y0z-plane and~n is the surface normal;

Fig. 3.1 Geometry of the
problem
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• condition of continuity of the tangential components of the electric and magnetic
fields on the interface X between the two partial regions (i.e. the matching
condition)

U 1ð Þ g;xð Þ ¼ U 2ð Þ g;xð Þ and @U 1ð Þ
.
@z ¼ @U 2ð Þ

.
@z; g 2 X; ð3:9Þ

• condition at infinity for waveguides in the form

lim
z!�1 exp �ibm1zð Þ ¼ 0 and lim

z!þ1 exp ibm2zð Þ ¼ 0 for

m : v2\k2mj ¼ mp
	
aj

� �2
; j ¼ 1; 2;

ð3:10Þ

where

bmj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � k2mj

q
ð3:11Þ

are the propagation constants of modes in the jth partial region;
• condition of finiteness of the field energy in any bounded field domain S, which

is written in the form [11]

W Sð Þ ¼
Z
S

Uj j2 þ @U
@ y





 



2 þ @U
@ z





 



2
" #

ds � Uk k2L2 Sð Þ þ ryzU
�� ��2

L2 Sð Þ\1

ð3:12Þ

with lim
S!0

W Sð Þ ¼ 0.

The last-mentioned condition excludes the sources/sinks of the field inside the
finite domain S, including those at the points of geometrical singularities (for this
problem—on the sharp edge of the step y; zf g ¼ a2; 0f g) [10]. This ‘edge condi-
tion’ defines the functional space, in which the complex amplitude U g;xð Þ should
be sought. Namely, according to (3.12), this function should belong to the Sobolev
space W1

2 (see, for example, book [12]).
It follows from (3.10) and from the principle of limiting absorption for

undamped modes (with the numbers m such that v2 [ k2mj) that the propagation
constant bmj is given by the branch of the square root (3.11) such that Re bmj � 0
and Im bmj � 0. We exclude the critical frequencies kþ

mj of the waveguides that
correspond to bmj ¼ 0 for some values of m as non-physical.

The waveguide modes of the partial regions are given by the complete
orthonormal sets of real-valued eigenfunctions
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lmj yð Þ ¼
ffiffiffi
2
aj

q
sin kmjy
� �

; m ¼ 1; 2; 3; . . .; H � caseffiffiffiffiffiffiffiffi
2�dm0
aj

q
cos kmjy
� �

; m ¼ 0; 1; 2; . . .; E � case

8<: ; y 2 0; aj
� �

; j ¼ 1; 2

ð3:13Þ

whose scalar product is determined in the usual manner:

lmj; lnj
� �

0;ajð Þ�
Zaj
0

lmj yð Þlnj yð Þdy ¼dnm ¼ 1 if m ¼ n
0 if m 6¼ n:

�
ð3:14Þ

In accordance with the physics of the of scattering phenomenon, we represent
the field in the first partial region as a sum of the incident and reflected waves

U 1ð Þ g;xð Þ ¼ Ui 1ð Þ g;xð ÞþUs 1ð Þ g;xð Þ

¼ lr1 yð Þ exp ibp1z
� �þ X1

m¼ 0ð Þ1
xm1 lm1 yð Þ exp �ibm1zð Þ; z	 0;

ð3:15Þ

while in the second region—as the transmitted wave

U 2ð Þ g;xð Þ ¼ Us 2ð Þ g;xð Þ ¼
X1

n¼ 0ð Þ1
xn2ln2 yð Þ exp ibnjz

� �
; z� 0: ð3:16Þ

If we substitute these modal expansions into the integral in (3.12) and then
integrate over any finite domain S, we find that xm1f g1m¼ 0ð Þ1; xn2f g1n¼ 0ð Þ12 ~l2, where

~l2 ¼ a � amf gm:
X
m

m amj j2 ¼ ak k2þ\1
( )

ð3:17Þ

is the Hilbert space of sequences of complex numbers. (Appendix A gives basic
information about all vector spaces used in this chapter.)

Problem 3.1 Verify: xm1f g1m¼ 0ð Þ1; xn2f g1n¼ 0ð Þ12 ~l2.
The matching condition (3.9) applied to the fields in the partial regions at the

aperture X of the discontinuity together with the boundary condition (3.8) at the
face of the step lead to the following functional equations
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lr1 yð Þþ
X1

m¼ 0ð Þ1
xm1lm1 yð Þ ¼

0; y 2 a2; a1ð Þ; H � case onlyP1
n¼ 0ð Þ1

xn2 ln2 yð Þ; y 2 0; a2ð Þ;

8<:
ð3:18aÞ

br1lr1 yð Þ �
X1

m¼ 0ð Þ1
xm1bm1lm1 yð Þ ¼

0; y 2 a2; a1ð Þ; E � case onlyP1
n¼ 0ð Þ1

xn2 bn2ln2 yð Þ; y 2 0; a2ð Þ:

8<:
ð3:18bÞ

Performing projection onto the complete and orthonormal set of eigenfunctions
lmj yð Þ� 1

m¼ 0ð Þ1, y 2 0; aj
� �

, j ¼ 1; 2, we obtain the dual infinite SLAE

drm þ xm1 ¼
P1

n¼ 0ð Þ1
xn2 ln2; lm1ð Þ; m ¼ 1; 2; 3; . . .

br1
bn2

lr1; ln2ð Þ � P1
m¼ 0ð Þ1

xm1
bm1
bn2

lm1; ln2ð Þ ¼ xn2; n ¼ 1; 2; 3; . . .

8>>><>>>: for H � case,

ð3:19Þ

or

lr1; ln2ð Þþ P1
m¼0

xm1 lm1; ln2ð Þ ¼ xn2; n ¼ 0; 1; 2; . . .

drm � xm1 ¼
P1
n¼0

xn2
bn2
bm1

ln2; lm1ð Þ; m ¼ 0; 1; 2; . . .

8>><>>: for E � case:

ð3:20Þ

The scalar product of the eigenfunctions can be found explicitly:

lm1; ln2ð Þ � ln2; lm1ð Þ ¼ sin km1 � kn2ð Þa2½ �
k2m1 � k2n2

2ffiffiffiffiffiffiffi
a1a2

p kn2; H � caseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�dm0ð Þ 2�dn0ð Þ

a1a2

r
km1; E � case

8<: :

ð3:21Þ

Excluding xn2 from the systems (3.19) and (3.20), we arrive at the final infinite
SLAE:

xm1 þ
X1

q¼ 0ð Þ1
Dmqxq1 ¼ � drm � Dmr

� �
; m ¼ 0ð Þ1; 2; . . .; H � case

E � case

� �
: ð3:22Þ
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Here we introduced the notation

Dmq ¼

4
bq1
a1a2

P1
n¼1

k2n2
bn2

sin km1�kn2ð Þa2½ �
k2m1�k2n2

sin kn2�kq1ð Þa2½ �
k2n2�k2q1

; H � caseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� dm0
� �

2� dq0
� �q

km1kq1
bm1a1a2

P1
n¼0

2� dn0
� �

bn2
sin km1�kn2ð Þa2½ �

k2m1�k2n2

� sin kn2�kq1ð Þa2½ �
k2n2�k2q1

; E � case

8>>>>><>>>>>:
:

The analytical solution of infinite SLAE (3.22) is not known, and this situation is
typical for most of the problems that are important for applications. The way out is
to prove the correctness of the constructed matrix model and to justify the trun-
cation procedure for finding finite-dimensional approximations.

A considerable effort was made to implement this approach (see, for example,
[11]). Many researchers believed that the knowledge of the explicit form of all
elements of the infinite matrix D ¼ Dmq

� 1
m;q¼ 0ð Þ1 had to provide the knowledge of

all its operator properties. However, the results of these studies, in general, have not
met these expectations.

Problem 3.2 (research) On the basis of the exact expression for the matrix ele-
ments of the operator D, show its boundedness on the pair of spaces ~l2 ! ~l2.
A simple proof of this fact, but by the other way, will be given in Sect. 3.4.1.

As noted by P.R. Halmos in his famous book [13]: ‘While the algebra of infinite
matrices is more or less reasonable, the analysis is not. Questions about norms and
spectra are likely to be recalcitrant. Each of the few answers that are known is
considered a respectable mathematical accomplishment.’ Appendix B to this
chapter provides an overview of applied results of the theory of matrix operators in
frequently used Banach spaces. As one can see, these results are of little use for the
problem under consideration.

Moreover, it turned out to be almost impossible to justify rigorously the appli-
cability of the truncation procedure for finding approximate solutions of matrix
equations of the type (3.22).

It is extremely rare to find in today’s publications a discussion of the existence
and uniqueness of the solution obtained by the mode-matching technique or by any
related method (for example, by the method of moments). A discussion of the
stability of the solution and the validity of the truncation procedure is replaced, in
the best case, by the analysis of the ‘practical convergence’ of the results of
computer calculations and by the numerical evaluation of the condition number for
a truncated SLAE. The study of the above-mentioned phenomenon of the relative
convergence of approximations resulting in a numerical catastrophe has also for
many years been in a theoretical impasse.

The current unfavorable situation in the theory of the mode-matching technique
can be resolved, as will be shown, by changing the formulation of the problem of
mode diffraction.
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3.2.3 New Formulation of the Problem of Scattering
of Waveguide Modes

Earlier we have used the conventional formulation of the problem of mode
diffraction. We assumed that a specified waveguide mode is scattered by a given
discontinuity. (Note that in practice the analysis is most often restricted by the
fundamental mode r ¼ 1 for H-case or r ¼ 0 for E-case.) As a result, the
mode-matching technique always leads to infinite SLAE with respect to the desired
amplitudes xm1f g1m¼ 0ð Þ1, xn2f g1n¼ 0ð Þ1.

We propose a new and, in our view, a more natural statement of the problem. Let
us assume that an electromagnetic wave of finite energy, whose field is a complete
set of modes with any given distribution of complex amplitudes, be incident on a
discontinuity. It is required to find scattering operators.

A way to introduce these operators is to replace the infinite-dimensional vectors
of the Fourier coefficients xm1f g1m¼ 0ð Þ1; xn2f g1n¼ 0ð Þ12 ~l2, by the infinite reflection

and transmission matrices X1; X2 : ~l2 ! ~l2 (i.e., by the scattering matrix
operators).

With this formulation of the problem, the mode-matching technique leads to the
equation with respect to the desired scattering matrix operator. For the diffraction by
a step-like discontinuity in a waveguide, these operator relationships have the form
of the Fresnel formulas

R ¼ D0DT
0 � I

D0DT
0 þ I

; T ¼ D0D
T
0 þ I

� ��1
2D0 ð3:23Þ

for the reflection (R) and transmission (T) operators acting in the Hilbert space l2. In
these formulas, the elementary matrix operator of the problem, D0, is determined by
the geometry of the waveguide discontinuity and depends on the frequency.

In order to obtain the solution of the problem in the form of (3.23) as simply as
to derive the infinite systems of (3.22), it is convenient to use the matrix operator
method. The basics of the relevant mathematical formalism are outlined below as
applied to the problem of a step discontinuity in a waveguide.

3.3 Matrix Operator Formalism in the Scalar Mode
Analysis

Let us combine the unknown Fourier coefficients of waveguide mode expansions
(3.15), (3.16) into the infinite-dimensional row vectors x1 ¼ xm1f g1m¼ 0ð Þ1 and

x2 ¼ xn2f g1n¼ 0ð Þ1, while the transverse eigenfunctions of the partial regions (3.13)—
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into the column vector lj yð Þ ¼ lmj yð Þ� 1
m¼ 0ð Þ1, j ¼ 1; 2. The properties of this

vector-function are determined by the equalities

lTj yð Þlj �yð Þ ¼ d y� �yð Þ; lj; l
T
j

� �
0;ajð Þ¼ I: ð3:24Þ

Here we use the usual notation for the Dirac delta function and the bilinear
tensor-scalar product of vector-functions.

Let us introduce the diagonal matrix operator describing mode propagation
Ej zð Þ ¼ dnm exp �ibmjz

� �� 1
m;n¼ 0ð Þ1, j ¼ 1; 2, such that Ej 0ð Þ ¼ I is the unit operator.

Then the decompositions of the complex amplitudes (or phasors) of the reflected
and transmitted waves into waveguide modes (3.15), (3.16) take the form

Us 1ð Þ g;xð Þ ¼ x1E1 zð Þl1 yð Þ; z	 0 and

Us 2ð Þ g;xð Þ ¼ x2E2 �zð Þl2 yð Þ; z� 0:
ð3:25Þ

Using these formulas, the derivative of the complex amplitudes along the
waveguide axis z can be written as

@Us 1ð Þ g;xð Þ
.
@z ¼ x1E

b
1 zð Þl1 yð Þ; z	 0 and

@Us 2ð Þ g;xð Þ
.
@z ¼ �x2E

b
2 �zð Þl2 yð Þ; z� 0;

ð3:26Þ

where Eb
1 zð Þ ¼ �idnm bmj exp �ibmjz

� �� 1
m;n¼ 0ð Þ1 is another diagonal matrix opera-

tor, which generates the ‘similarity operator’ Ibj � Eb
j 0ð Þ ¼ �idnm bmj

� 1
m;n¼ 0ð Þ1,

j ¼ 1; 2.
The flux of the reflected oscillating power through the aperture X of the dis-

continuity is determined by the value

Fs 1ð Þ
osc ¼ Us 1ð Þ g;xð Þ; @U

s 1ð Þ g;xð Þ
@z

� �
0;a1ð Þ

" #
z¼�0

¼ x1I
b
1 x

T
1 ¼ ~x1~xT1 ; ð3:27Þ

while the flux of the reflected complex power—by the value

Fs 1ð Þ
comp ¼ Us 1ð Þ g;xð Þ; @ Us 1ð Þ g;xð Þ� �


@z

 !
0;a1ð Þ

24 35
z¼�0

¼ x1 Ib1
� �


xy1 ¼ ~x1U1~x
y
1 ;

ð3:28Þ
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where ~x1 ¼ x1 Ib1
� �1=2

, and the superscripts ‘
’ and ‘y’ stand for the complex

conjugation and Hermitian conjugation, respectively. In (3.28) we introduced the
diagonal operator of the waveguide port (or portal operator)

U1 � Ib1
� ��1=2

Ib1
� �


Ib



1

� ��1=2
¼ dnm exp �i arg �ibm1ð Þ½ �� 1

m;n¼ 0ð Þ1; ð3:29Þ

which is uniquely defined, provided bm1 6¼ 0 for 8m.
Suppose that in the first waveguide p1 (H-case) or p1 þ 1 (E-case) types of

modes propagate at the given frequency. Let us introduce the orthoprojectors

P1 ¼
Xp1
q¼ 0ð Þ1

dqmd
n
q

8<:
9=;

1

m;n¼ 0ð Þ1

; Q1 ¼
X1

q¼p1 þ 1

dqmd
n
q

( )1

m;n¼ 0ð Þ1
ð3:30Þ

such that ~x1� ¼ ~x1 P1 and ~x1þ ¼ ~x1 Q1 are the row vectors of the amplitudes of the
propagating modes and all evanescent modes, respectively. Then from the defini-
tion (3.29), in view of the condition at infinity (3.10), it follows that

U1 ¼ Q1 þ i P1: ð3:31Þ

From (3.29) and (3.31) it is obvious that the portal operator is unitary,

U�1
1 ¼ Uy

1 , and that its numerical range lies entirely in the first quadrant of the
complex plane. Such operators are usually called cramped unitary operators.

Problem 3.3 Find the portal operator U1 for the field with time dependence
exp ix tð Þ. Answer: U1 ¼ dnm exp �i arg �ibm1ð Þ½ �� 1

m;n¼ 0ð Þ1¼ Q1 � i P1.

Instead of the condition of finiteness of the stored energy (3.12) for the field
U ¼ Us 1ð Þ g;xð Þ, let us postulate the equivalent requirement of finiteness of the flux

of reflected complex power through the waveguide: Fs 1ð Þ
comp




 


\1.

Problem 3.4 Prove the equivalence of the conditions (3.12) and Fcomp



 

\1 for
the solution U g;xð Þ of the Helmholtz equation.

Problem 3.5 Show that estimate Foscj j\1 follows immediately from the finite-
ness of the flux of complex power.

By substituting (3.31) into (3.28), we find:

Fs 1ð Þ
comp ¼ ~x1þk k2 þ i ~x1�k k2: ð3:32Þ

Here, the notation ~x1�k k2¼ ~x1�~x
y
1� has been used (see Appendix A).

Consequently, x1þk k2¼ ReFs 1ð Þ
comp 	 Fs 1ð Þ

comp




 


\1. So, we have ~x1 2 l2 $ x1 2 ~l2,

where
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l2 ¼ a � amf gm:
X
m

amj j2 ¼ ak k2\1
( )

ð3:33Þ

is the standard Hilbert space of the sequences of complex numbers (see also
Appendix A).

Problem 3.6 Verify that ~x1 2 l2.
In a similar way, if in the second waveguide p2 (H-case) or p2 þ 1 (E-case)

modes propagate at the same frequency, we can define the orthoprojectors:

P2 ¼
Xp2
q¼ 0ð Þ1

dqmd
n
q

8<:
9=;

1

m;n¼ 0ð Þ1

; Q2 ¼
X1

q¼p2 þ 1

dqmd
n
q

( )1

m;n¼ 0ð Þ1
; ð3:34Þ

while for the unitary operator for the second port we obtain

U2 ¼ Ib2
� ��1=2

Ib2
� �


Ib



2

� ��1=2
¼ dnm exp �i arg �ibm2ð Þ½ �� 1

m;n¼ 0ð Þ1¼ Q2 þ iP2:

ð3:35Þ

From the requirement of finiteness of the flux of transmitted complex power,

Fsð2Þ
comp




 


\1, it follows that x2 2 ~l2 and ~x2 ¼ x2 Ib2
� �1=2

2 l2. This will automatically

give Fs 1ð Þ
osc




 


\1.

According to the new formulation of the diffraction problem, let us represent the
unknown complex amplitude as the scalar product of the infinite-dimensional
vectors:

U g;xð Þ ¼ ~b � u g;xð Þ ¼
X1

m¼ 0ð Þ1
~bmum g;xð Þ; ð3:36Þ

where the given row vector ~b ¼ ~bm
� 1

m¼ 0ð Þ12 ~l2 describes the incident wave, while

u g;xð Þ ¼ um g;xð Þf g1m¼ 0ð Þ1 is the column vector of the functions to be found.
It is easy to see that the validity of the postulated representation (3.36) follows

from the linearity of the Helmholtz equation. Indeed, assume that in the entire
infinite domain of the field determination, the unknown functions um g;xð Þ satisfy
the inhomogeneous equation

@2

@y2
þ @2

@z2
þ v2

� �
um g;xð Þ ¼ /m gð Þ; ð3:37Þ
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while the functions /m gð Þ, m ¼ 0ð Þ1; 2; . . . form a basis in the volume occupied by
the field source. Multiplying both sides of (3.37) by the known constants ~bm and
summing the resulting expression in accordance with the superposition principle,
we obtain the equation

@2

@y2
þ @2

@z2
þ v2

� �
U g;xð Þ ¼ / g;xð Þ ð3:38Þ

in which / g;xð Þ ¼Pm
~bm /m g;xð Þ is the field source function. Note that there is

actually no need to know or to construct the functions / and /m, since we are
dealing with the problem of the diffraction of the incident wave (more precisely, of
the given set of waveguide modes) rather than with the problem of the excitation of
the field in a waveguide by the known source.

Since the vector ~b 2 ~l2 in (3.36) is specified arbitrary, the standard formulation of
the electrodynamic problem is transferred onto the vector function u g;xð Þ. Then
each unknown function um g;xð Þ, m ¼ ð0Þ1; 2; . . ., must satisfy the Helmholtz
equation and obey the conditions (3.8)–(3.12). Therefore, in two regular waveguides,
we obtain the standard expansion in waveguide modes for each of these functions:

us 1ð Þ g;xð Þ ¼ X1E1 zð Þl1 yð Þ; z	 0 and

us 2ð Þ g;xð Þ ¼ X2E2 �zð Þl2 yð Þ; z� 0:
ð3:39Þ

But now, in contrast to formula (3.25), the matrix operators X1 and X2 are to be
found. Comparing (3.25) with formulas (3.36) and (3.39), we obtain

~b X1 ¼ x1; ~bX2 ¼ x2: ð3:40Þ

Thus, according to (3.39), the representation of the considered complex ampli-
tude in the form of the series (3.36) is equivalent to the replacement of the Fourier
coefficients xn1f g1n¼ 0ð Þ1 and xn2f g1n¼ 0ð Þ1 in the modal expansion of the field (3.15),

(3.16) by the elements of the infinite matrices X1 : ~l2 ! ~l2 and X2 : ~l2 ! ~l2, having
the meaning of the reflection and transmission operators, respectively.

In what follows we will use the standardized reflection and transmission oper-
ators R : l2 ! l2 and T : l2 ! l2, which are introduced as follows. The reflected
power flux is determined by the vector ~x1 2 l2 from formulas (3.27) and (3.28),
while the transmitted power flux—by the vector ~x2 2 l2. In accordance with (3.40),
we find

~x1 ¼ x1 Ib1
� �1=2

¼ ~b Ib1
� �1=2� �

Ib1
� ��1=2

X1 Ib1
� �1=2

¼ ~cR11;

~x2 ¼ x2 Ib2
� �1=2

¼ ~b Ib1
� �1=2� �

Ib1
� ��1=2

X2 Ib2
� �1=2

¼ ~cT21;

ð3:41Þ
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where we have introduced the vector ~c ¼ ~b Ib1
� �1=2

2 l2. Hence two pairs of the

required scattering operators are related by the formulas:

X1 ¼ Ib1
� �1=2

R11 Ib1
� ��1=2

X2 ¼ Ib1
� �1=2

T21 Ib2
� ��1=2

8><>: $
R11 ¼ Ib1

� ��1=2
X1 Ib1
� �1=2

T21 ¼ Ib1
� ��1=2

X2 Ib2
� �1=2 :

8><>: ð3:42Þ

Thus, with the new formulation of the problem of mode diffraction, the
expressions for the fields in the first and second partial regions are as follows

Ui 1ð Þ g;xð ÞþUs 1ð Þ g;xð Þ ¼ ~c Ib1
� ��1=2

E1 �zð ÞþR11 Ib1
� ��1=2

E1 zð Þ
� �

l1 yð Þ; z	 0;

Us 2ð Þ g;xð Þ ¼ ~cT21 Ib2
� ��1=2

E2 �zð Þl2 yð Þ; z� 0

ð3:43Þ

instead of the usual expansions (3.15) and (3.16).
Note that the boundedness of the matrix reflection and transmission operators,

R and T, in the space l2 follows directly from the finiteness of the power flux
through the cross section of the waveguide. In what follows we will use the fact that
all matrix operators studied in this chapter belong to the Banach algebra B(l) of
bounded operators defined throughout the Hilbert space l.

As will be shown in the further analysis, the operator properties of the infinite
matrices Uj, Qj and Pj, j = 1, 2, defined by formulas (3.30), (3.31), (3.34) and (3.35)
play a decisive role in the rigorous justification of the mode-matching technique.

3.4 Generalized Mode-Matching Technique in the Step
Discontinuity Problem

3.4.1 Derivation of the Operator Fresnel Formulas

For the problem under consideration (Fig. 3.1), we assume that the independent
sources, labeled with numbers 1 and 2, which generate monochromatic fields of the
same frequency and, in general, of different power, are located in the corresponding
waveguide arms. The mutual independence of the field sources means that the two
wave generators can be switched on/off separately.

Suppose that the function U q;pð Þ g;xð Þ is the complex amplitude, which deter-
mines in the qth waveguide all the field components whose source is located in the
pth waveguide, p; q ¼ 1; 2. The field of this source contains a full set of the
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corresponding modes with known amplitudes given by the row vector

b pð Þ ¼ bðpÞm

n o1

m¼ð0Þ1
2 l2.

According to the generalized mode-matching technique, we can now present the
complex amplitude in the form of the scalar product of the infinite-dimensional vectors:

U q;pð Þ g;xð Þ ¼ b pð Þu q;pð Þ g;xð Þ: ð3:44Þ

The condition (3.9) of continuity of the tangential components of the electric and
magnetic fields at the aperture of the discontinuity leads to the implication that

b pð Þ u 1;pð Þ g;xð Þ � u 2;pð Þ g;xð Þ� � ¼ 0

b pð Þ @
@z u 1;pð Þ g;xð Þ � u 2;pð Þ g;xð Þ� � ¼ 0

(
; 8b pð Þ 2 l2 !

u 1;pð Þ g;xð Þ ¼ u 2;pð Þ g;xð Þ
@
@z u

1;pð Þ g;xð Þ ¼ @
@z u

2;pð Þ g;xð Þ

(
; y 2 0; a2ð Þ; z ¼ 0; p ¼ 1; 2:

ð3:45Þ

The key point here is that the vector b pð Þ is common to both partial regions.
Similar considerations lead to the homogeneous boundary conditions

u 1;pð Þ g;xð Þ ¼ 0; H � case
@
@z u

1;pð Þ g;xð Þ ¼ 0; E � case

�
; y 2 a2; a1ð Þ; z ¼ 0 ð3:46Þ

on the step face.
Starting from (3.43), we can write the modal expansion for the functions under

study on the reference plane z ¼ 0 p; q ¼ 1; 2ð Þ:

u q;pð Þ y; 0;xð Þ ¼
IþRppð Þ Ibp

� ��1=2
lp yð Þ; q ¼ p

Tqp Ibq
� ��1=2

lq yð Þ; q 6¼ p

8><>: ; y 2 0; a2ð Þ; ð3:47Þ

@

@z
u q;pð Þ y; 0;xð Þ ¼

� I � Rppð Þ Ibp
� �1=2

lp yð Þ; q ¼ p

�Tqp Ibq
� �1=2

lq yð Þ; q 6¼ p

8><>: ; p ¼ 1

2

( )
;

y 2 0; a2ð Þ:
ð3:48Þ

Substituting (3.47) and (3.48) into (3.45), we obtain the following system of
matrix-functional equations for y 2 0; a2ð Þ:

IþRppð Þ Ibp
� ��1=2

lp yð Þ ¼ Tqp Ibq
� ��1=2

lq yð Þ
I � Rppð Þ Ibp

� �1=2
lp yð Þ ¼ Tqp Ibq

� �1=2
lq yð Þ

; q 6¼ p

8><>: : ð3:49Þ
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From the boundary conditions (3.46) we find

I � R11ð Þ Ib1
� ��1=2

l1 yð Þ ¼ 0

T12 Ib1
� ��1=2

l1 yð Þ ¼ 0

8><>: ; y 2 a2; a1ð Þ; H � case
E � case

� �
: ð3:50Þ

Applying the Galerkin procedure to relations (3.49) and (3.50), we formally
obtain the desired solution

R11 ¼ � D1 � Ið Þ D1 þ Ið Þ�1

T21 ¼ D1 þ Ið Þ�12D0

�
and R22 ¼ � D2 � Ið Þ D2 þ Ið Þ�1

T12 ¼ D2 þ Ið Þ�12DT
0

�
;

H � case
E � case

� �
;

ð3:51Þ

where we have introduced the following notation:

D1 ¼ D0D
T
0 ; D2 ¼ DT

0D0; D0 ¼ Ib1
� ��1=2

l1; l
T
2

� �
Ib2
� ��1=2

;
H � case
E � case

� �
:

ð3:52Þ

The resulting solution (3.51) represents the Fresnel formulas for the reflection
and transmission operators.

Problem 3.7 Derive the operator Fresnel formulas (3.51) from (3.49) and (3.50).
The existence of a bounded inverse operators in (3.51) follows from the law of

conservation of complex power and will be rigorously proved in Sect. 3.4.3. Here
we mention the symmetry properties of the obtained solution. Indeed, we find from
the first operator Fresnel formula

Rp ¼ I � 2 Dp þ I
� ��1¼ RT

p ; Rp � �R11 for p ¼ 1
�R22 for p ¼ 2

�
;

H � case
E � case

� �
;

ð3:53Þ

since by definition (3.52) we have DT
p ¼ Dp, p ¼ 1; 2. The symmetry property of

the transmission operators Tqpð ÞT¼ Tpq is verified by the direct substitution.
Note that the first Fresnel formula in (3.51) is also known as the Cayley

transformation. From here on we will use both the names interchangeably. (Strictly
speaking, the name ‘Cayley transformation’ was used in the book by H. Weyl [14]
as applied to finite matrices, however, this term has long been used in the functional
analysis to describe this linear fractional transformation of a linear operator). If the
condition of the existence of such a transform is satisfied (i.e., if the spectrum of the
operator Dp, p ¼ 1; 2 does not contain the number −1), the transformation is
invertible:
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Rp ¼ Dp � I
Dp þ I

$ Dp ¼ IþRp

I � Rp
: ð3:54Þ

In these formulas the Cayley transforms are written in Weyl’s form [14].
Let us prove that the elementary operator D0 (3.52) is bounded on a pair of

spaces l2 ! l2. To this end, we introduce another Hilbert space (see Appendix A):

~~l2 ¼ a � amf gm:
X
m

m�1 amj j2 ¼ ak k2�\1
( )

: ð3:55Þ

It is easily seen that for three spaces (3.17), (3.33) and (3.55) the inclusions

~l2 � l2 � ~~l2 are valid. Let us show that the matrix operator Wpq ¼ lp; l
y
q

� �
, p; q ¼

1; 2 is bounded in each of these spaces. (We recall that according to the accepted
definition (3.21) the scalar product of functions . . .; . . .ð Þ means integration over the
transverse coordinate 0\y\a2). Indeed, the matrix operators

Np � WpqW
y
pq ¼ lp; l

y
p

� �
; ð3:56Þ

Nq � Wy
pqWpq ¼ lq; l

y
q

� �
ð3:57Þ

are defined in all these spaces; they are bounded and self-adjoint. Furthermore, by
virtue of the completeness of the system of eigenfunctions (3.24), the operators
(3.56) and (3.57) are idempotent operators, N2

p qð Þ ¼ Np qð Þ. Consequently, the

operator Np qð Þ is the orthoprojector and Np qð Þ
�� ��

}¼ 1, where the norm . . .k k} is any

of the norms (3.17), (3.33) or (3.55). (More precisely, depending on the value of the
subscripts p; q ¼ 1; 2, p 6¼ q one of the operators (3.56) or (3.57) is the identity I,
while the other one is an orthoprojector.) Then from (3.56) and (3.57) it follows that
Wpq

�� ��
}¼ 1.

Next, taking into account the asymptotic behavior of the propagation constant
bmp  i m � const pð Þ with m � 1, it is easy to verify that the similarity operator

Ibj
� ��1=2

¼ dnm �ibmj
� ��1=2

n o1

m;n¼ 0ð Þ1
is bounded on a pair of spaces~l2 � l2, l2 �~~l2

for all finite values of the wavenumber k. Therefore, the product of three matrix
operators

F�
pq ¼ Ibp

� ��1=2
lp; l

T
q

� �
Ibq
� ��1=2

; p; q ¼ 1; 2 ð3:58Þ

is a bounded operator in the space l2.
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Thus, the elementary operator under study and its products

D0 ¼ F�
12;

H � case
E � case

� �
and Dp ¼ D0DT

0 for p ¼ 1
DT

0D0 for p ¼ 2

�
ð3:59Þ

are bounded matrix operators in the Hilbert space l2. Then, according to (3.51), the
scattering operators are also bounded, what was implicitly assumed in the previous
sections where they were introduced.

Problem 3.8 Prove the boundedness of the operator Np qð Þ in the space ~~l2.

Problem 3.9 Demonstrate the boundedness of the operator (3.58) in the space l2.
The next step is to validate the correctness of the obtained matrix-operator model

(3.51) of the mode-matching technique. We will prove it starting from the con-
servation law in a generalized form.

3.4.2 Reciprocity Principle and Energy Conservation Law
in the Operator Form

In the electromagnetic field theory, two energy laws are of first importance; namely,
they are the Poynting theorem and the Lorentz reciprocity theorem. When passing
to monochromatic fields in the domain of complex amplitudes (i.e. the phasor
domain), the number of the fundamental laws doubles. This fact is evident from the
representation of the product of the field components a~E tð Þ and b~H tð Þ via the
complex amplitudes a~E xð Þ and b~H xð Þ, like, for example, the following expression
for the cross product:

a~E tð Þ � b~H tð Þ ¼ 1
2
Re a~E xð Þ � b~H
 xð Þþ a~E xð Þ � b~H xð Þ� �

exp �i 2x tð Þ� 
:

ð3:60Þ

Here and everywhere below the indices a and b stand for the independent field
sources. As previously mentioned, this independence implies the possibility of their
independent switching on/off and, in general, different amplitude distributions in the
modal expansion of the field.

When describing a time-harmonic field through complex amplitudes, the
Poynting theorem generates the well-known complex power theorem, as well as
the theorem on oscillating power [15]. For the problem under consideration, the
Lorentz theorem yields two universal reciprocity relations as well. The first one,
containing the initial complex amplitudes and thus corresponding to the second
term in (3.60), is the well-known Lorenz lemma. The second relation, which
contains the complex conjugate values, will be referred to as the second Lorentz
lemma [16].
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All four power laws can be derived from Maxwell’s equations for complex
amplitudes in the same manner (see, for example, [17]). The difference between the
two pairs of these laws arises from the different number of the field sources taken
into account. Indeed, both oscillating power and complex power theorems are
formulated for a single source, a � b, while the two Lorentz lemmas operate with
two separate sources a and b. Generally speaking, it can be any number of different
sources, but they all obey two Lorentz lemmas in pairs.

For the problem considered, two independent field sources may be present both
in different partial regions, as suggested above in Sect. 3.4.1, and in the same
waveguide arm. Therefore, in some contrast to formula (3.44), we represent the
field complex amplitude and its derivative with respect to the normal~n ¼ �~z to the
reference plane in the form

a bð ÞU qð Þ y; 0;xð Þ ¼ a bð Þb pð Þu q;pð Þ y; 0;xð Þ;
@

@~n
a bð ÞU qð Þ g;xð Þ






z¼0

¼ a bð Þb pð Þ @
@~n

u q;pð Þ g;xð Þ





z¼0

;
ð3:61Þ

where the given vector a bð Þb pð Þ ¼ a bð Þb pð Þ
m

� 1
m¼ 0ð Þ1 is associated with the corre-

sponding source in the pth waveguide port, while the vector functions (3.47) and
(3.48) determine the scattering characteristics of these waves in the qth waveguide.

The continuity condition for a flux of oscillating power through the aperture of
the discontinuity yields two equalities:

a bð ÞU 1ð Þ;
@

@~n
a bð ÞU 1ð Þ

� �
0;a1ð Þ







z¼�0

¼ a bð ÞU 2ð Þ;
@

@~n
a bð ÞU 2ð Þ

� �
0;a2ð Þ







z¼þ 0

: ð3:62Þ

Two more equalities can be derived from the first Lorentz lemma:

a bð ÞU 1ð Þ;
@

@~n
b að ÞU 1ð Þ

� �
0;a1ð Þ







z¼�0

¼ a bð ÞU 2ð Þ;
@

@~n
b að ÞU 2ð Þ

� �
0;a2ð Þ







z¼þ 0

: ð3:63Þ

Substituting the representation for the field (3.61) into (3.62) and (3.63), taking
into account the modal expansions (3.47), (3.48) and applying the orthogonal
property of the transverse eigenfunctions (3.24), we find the required relationships
between the scattering operators.

Suppose first that both of the field sources are located in the pth waveguide,
p ¼ 1; 2, then from (3.63) we obtain four equations, which can be written in the
common form:

a bð Þb pð Þ IþRppð Þ I � Rppð ÞT� �� Tqp Tqpð ÞT� 
b að Þb pð Þ
� �T

¼ 0; p; q ¼ 1; 2; p 6¼ q:

ð3:64Þ
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If these sources are placed in two different waveguide arms, we can similarly write

b pð Þ Tqp I � Rqqð ÞT� �� IþRppð Þ Tpqð ÞT� 
b pð Þ
� �T

¼ 0; p; q ¼ 1; 2; p 6¼ q:

ð3:65Þ

We have omitted the indices a and b because the source is uniquely defined by
the number of a waveguide port. From (3.64), four fundamental relations follow
immediately

Rppð ÞT¼ Rpp; Rppð Þ2 þ Tqp Tqpð ÞT¼ I; p; q ¼ 1; 2; p 6¼ q: ð3:66Þ

Four additional basic properties of the scattering operators

Tqpð ÞT¼ Tpq; RppTqp þ RqqTpqð ÞT¼ 0; p; q ¼ 1; 2; p 6¼ q ð3:67Þ

follow from (3.65).

Problem 3.10 Prove that if bAdT ¼ 0 for 8 b; d 2 l2, then A ¼ 0.

Problem 3.11 Derive the properties (3.66), (3.67) of the scattering operators.
The oscillating power theorem (3.62) in its turn leads to the equation

b pð Þ IþRppð Þ I � Rppð ÞT� �� Tqp Tqpð ÞT� 
b pð Þ
� �T

¼ 0; p; q ¼ 1; 2; p 6¼ q

ð3:68Þ

giving the second formula in (3.66).

Problem 3.12 Prove that if bAbT ¼ 0 for 8 b 2 l2, then A ¼ �AT .

Problem 3.13 Derive the operator relationship Rppð Þ2 þ Tqp Tqpð ÞT¼ I from (3.68).
Next, we write the continuity condition for the complex power flux through the

aperture of the discontinuity as

a bð ÞU 1ð Þ;
@

@~n
a bð ÞU 1ð Þ
� �
� �

0;a1ð Þ







z¼�0

¼ a bð ÞU 2ð Þ;
@

@~n
a bð ÞU 2ð Þ
� �
� �

0;a2ð Þ







z¼þ 0

: ð3:69Þ

The second Lorentz lemma yields the following two equalities:

a bð ÞU 1ð Þ;
@

@~n
b að ÞU 1ð Þ
� �
� �

0;a1ð Þ







z¼�0

¼ a bð ÞU 2ð Þ;
@

@~n
b að ÞU 2ð Þ
� �
� �

0;a2ð Þ







z¼þ 0

:

ð3:70Þ
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Substituting the field into formula (3.70) as indicated above and using the
properties of the transverse eigenfunctions of regular waveguides (3.24), we arrive
at the equations (p; q ¼ 1; 2, p 6¼ q)

a bð Þb pð Þ IþRppð ÞUp I � Rppð Þy
h i

� Tqp Uq Tqpð Þy
n o

b að Þb pð Þ
� �y

¼ 0; ð3:71Þ

b pð Þ Tqp Uq I � Rqqð Þy
h i

� IþRppð ÞUp Tpqð Þy
n o

b qð Þ
� �y

¼ 0: ð3:72Þ

We have omitted the indices a and b in formula (3.72) for the same reason as for
(3.65).

Problem 3.14 Derive formulas (3.71) and (3.72) from (3.69), (3.70).
From (3.71) and (3.72), the required relations for scattering operators

(p; q ¼ 1; 2, p 6¼ q) follow:

IþRppð ÞUp I � Rppð Þy
h i

� Tqp Uq Tqpð Þy¼ 0; ð3:73Þ

Tqp Uq I � Rqqð Þy
h i

� IþRppð ÞUp Tpqð Þy¼ 0: ð3:74Þ

The complex power theorem (3.69) leads to the equation

b pð Þ IþRppð ÞUp I � Rppð Þy
h i

� Tqp Uq Tqpð Þy
n o

b pð Þ
� �y

¼ 0; p; q ¼ 1; 2;

p 6¼ q;

ð3:75Þ

which repeatedly gives operator relationship (3.73).

Problem 3.15 Derive equality (3.73) from (3.75). Show first that if bAby ¼ 0 for
8 b 2 l2, then A ¼ 0.

For the problem under discussion, the energy laws for fields are expressed
completely by formulas (3.62), (3.63) and (3.69), (3.70). Therefore, there are no
other basic relationships between scattering operators, except the above derived
formulas (3.66), (3.67), (3.73) and (3.74).

The obtained relationships will be generalized and written in a compact form in
Sect. 3.8, after the introduction of the basic operator matrix—the generalized
scattering matrix S.
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3.4.3 Correctness of the Matrix-Operator Model

In the derivation of the operator Fresnel formulas (3.51), we formally assumed that

the operator Ap � Dp þ I
� ��1

, p ¼ 1; 2 is bounded in the space l2. The next
important step of the generalized mode-matching technique is a rigorous proof of
this fact.

We turn first to the question of the correctness of the scalar Fresnel formulas
(3.1) and (3.3) (see Sect. 3.1). For the finite value of h21 6¼ 0, a pair of linear
fractional transformations follows from the first Fresnel formula:

r ¼ h21 � 1
h21 þ 1

$ h21 ¼ 1þ r
1� r

; ð3:76Þ

from which follows the two-sided implication

Re h21 [ 0 $ rj j\1: ð3:77Þ

From a physical point of view, these inequalities correspond to the energy
condition for ordinary passive media whose permittivities and permeabilities lie in
the first quadrant of the complex plane (recall that the time dependence is taken as
exp �ix tð Þ). The scalar Fresnel formulas (3.1) and (3.3) for such media are correct
since the condition (3.77) ensures that h21 6¼ �1 and r 6¼ 1.

Correctness of the operator Fresnel formulas (3.51) follows in just the same way
from the basic energy conservation law. The concept of the correctness of this
solution involves three properties of formulas (3.51): existence, uniqueness and
stability.

Our proof is based on the known properties of the two operators forming the first
Fresnel formula (3.54). Namely, if for the given matrix operator Dp the localization
of its spectrum r Dp

� �
is unknown, then the main characteristics of the entire

spectrum r Rp
� �

of the sought-for reflection operator Rpp are completely determined
by the energy conservation law (3.73). The relationship of these two operators in
the form of the Cayley transform (3.54) allows us to find all of their required
properties.

Lemma 3.1 The spectrum r Rp
� �

of the reflection operator lies inside the unit disc
with each nonreal point of the spectrum being an eigenvalue of finite multiplicity
and the rest of the spectrum lies on the real axis.

This statement is a consequence of two facts, the proof of which will be given in
Sect. 3.10.1. Firstly, it follows from the energy conservation law (3.73) that the
reflection operator Rp, p ¼ 1; 2 is quasi-Hermitian. This means that its imaginary

part ImRp � Rp � Ryp
� �.

2 ið Þ is a compact operator. Such non-self-adjoint

operators are rather well studied (see, for example, [18, 19]). Secondly, the
reflection operator is a strict contraction, Rp

�� ��\1 [20]. In Sect. 3.10.1, in order to
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find these basic properties of the operator Rp, we will use the concepts and ideas of
the operator theory in the space with indefinite metric (here, in a Pontryagin space
[8]), as well as the geometric properties of the Hilbert space.

Theorem 3.1 The solution of the problem of mode diffraction on a step disconti-
nuity in a waveguide in the form of the Fresnel formulas for the scattering oper-
ators (3.51) is correct.

Proof According to the above lemma 1 62 r Rp
� �

, and hence the Cayley transform
of the reflection operator

W Rp
� � ¼ IþRp

I � Rp
ð3:78Þ

exists. Then the Cayley transform Dp ¼ W Rp
� �

is a symmetric quasi-Hermitian
operator, DT

p ¼ Dp, because Rp is a symmetric quasi-Hermitian operator, RT
p ¼ Rp.

As corollary of the familiar spectral mapping theorem (see, for example, [21]),

r Dp
� � ¼ r W Rp

� �� � ¼ W r Rp
� �� �

; ð3:79Þ

we obtain that the spectrum of the operator Dp lies entirely within the right
half-plane, Re m[ 0 for 8m 2 r Dp

� �
; each nonreal point of this spectrum is an

eigenvalue of finite multiplicity, and the rest of the spectrum lies on the real axis.
Thus we have �1 62 r Dp

� �
, and therefore there exists the inverse Cayley transform

Rp ¼ W�1 Dp
� � ¼ Dp � I

Dp þ I
: ð3:80Þ

The uniqueness of the considered solution follows from its existence, i.e. if there
were a second solution of the problem obtained in the same way, it would have the
form of (3.51) and coincide with the first solution.

Let us represent the operator Ap introduced above in the form of
Ap ¼ I � Rp

� �	
2; then we have Ap

�� ��\1, and for the condition number

cond Ap � Ap

�� �� A�1
p

��� ��� the following estimate is true:

1	 cond Ap
� �	 1þ Dp

�� ��\1 : ð3:81Þ

Hence it follows that the obtained solution (3.51) is stable on a set of bounded
operators that act in the space l2. h

Problem 3.16 Derive estimate (3.81).
Note that in fact the operators Dp and Ap possess additional (and stronger)

properties, which have not been used in the above proof. Namely, the operator Dp is

accretive, ReDp � Dp þDyp
� �.

2[ 0, while the operator Ap is accretive
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contraction, ReAp [ApA
y
p [ 0. The mentioned properties of these operators are

inextricably entwined with the basic properties of the reflection operator, and we
will prove them rigorously in Sect. 3.10.1.

3.5 Justification of the Truncation Technique for Solving
Operator Equations

The method most frequently used for solving infinite SLAE is a
three-step-algorithm truncation technique. At the first stage, the truncation proce-
dure is used, i.e. the first M rows and M columns are cut from the matrix operator
D ¼ Dmq

� 1
m;q¼ 0ð Þ1 of SLAE (3.22) and each matrix entry is replaced by the Nth

partial sum of the series for Dmq. In the second step, the solution of the finite
M �M system of equations is obtained, and finally, at the third step, the passing to
the limit M;N ! 1 is performed.

In fact, this passing to the limit is impossible in numerical implementation of the
method. Instead, one find numerical approximations to the required Fourier coeffi-
cients xm1, m ¼ 0ð Þ1; 2; . . .;M for some ascending sequences of the finite values M
andN. The results of such calculations, presented as tables or schematic graphs, make
possible to demonstrate the so-called ‘practical convergence’ of approximations
obtained by the truncation procedure.

Let us write the infinite SLAE (3.22) in the operator form

IþDð Þx1 ¼ f ; ð3:82Þ

where the vector in the right-hand side is f � � dpm � Dmp
� 1

m¼ð0Þ12 ~l2. Then, the

above-described truncation technique can be classified as a fully discrete method,
involving two sequential approximations of the equation (3.82). Indeed, initially the
approximate operator DN : ~l2 ! ~l2 is introduced which should give a certain
approximate representation of the initial matrix operator DN ! D with N ! 1,
and only then the standard projection scheme is applied to the obtained approximate
equation (see, for example, [21]):

PM IþDNð Þx M;Nð Þ
1 ¼ PMf Nð Þ; M;N ¼ 1; 2; . . . : ð3:83Þ

Here, PM is the operator of the projection onto M-dimensional subspace of the

space ~l2, x
M;Nð Þ
1 2 PM~l2 is the required projection approximation, while f Nð Þ is the

corresponding approximation to the right-hand side of (3.82) such that f Nð Þ ! f as
N ! 1. Equation (3.83) reveals the problem of the relative (or conditional) con-
vergence common to the mode-matching technique: whether the double passing to
the limit, M;N ! 1, will lead to a result different from the true solution?
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In the generalized mode-matching technique, we are dealing with the equations
for the unknown scattering operators and not with infinite SLAE. For the problem
of mode diffraction on a step-like discontinuity in a waveguide, the operator
equations are the Fresnel formulas for matrix reflection and transmission operators.
Therefore, the generalized mode-matching technique is beyond the scope of the
theory of projection methods [21] for solving linear equations like (3.82).

In this section, we will perform the generalization of the standard projection
method in order to construct the approximations for the operator Fresnel formulas
(3.51) and will study analytically the basic characteristics of the convergence of
these approximations.

3.5.1 Construction of Projection Approximations
for the Fresnel Formulas

To find the desired finite-dimensional approximations, let us construct the ortho-
projectors by the formulas

PK � p Kð Þ
mn ¼

XK
q¼ð0Þ1

dqmd
n
q

8<:
9=;

1

m;n¼ð0Þ1

¼ IK 0
0 0

� �
; QK ¼ I � PK : ð3:84Þ

From now on, when describing the special 2� 2 block structure of a matrix
operator, we will follow the agreement that in the top left cell there is a
finite-dimensional matrix, on the secondary diagonal there are the corresponding
‘semi-infinite’ matrices, and at the bottom of the main diagonal an infinite matrix is
placed. Thus any additional notation to distinguish semi-infinite and endless
matrices is not used.

In the definitions (3.84), K ¼ M or K ¼ N means the highest number of the
waveguide mode taken into account in the partial region, while IK is the K-
dimensional identity matrix. In order to unify the formulas given in this section we
will assume that the field in the pth region, p ¼ 1; 2, is reduced to the sum ofM (H-
case) or Mþ 1 (E-case) modes, whereas N or N þ 1 modes, respectively, is taken
into account in the adjacent partial region.

Problem 3.17 Show that premultiplication (postmultiplication) by the orthopro-
jector PK cuts from the infinite matrix either K (H-case) or K þ 1 (E-case) rows
(columns), making it ‘semi-infinite’.

The truncation of the accountable modes results in the M �M matrices

~Dp ¼
~D0 ~DT

0 ; p ¼ 1
~DT
0
~D0; p ¼ 2;

�
ð3:85Þ
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~Ap ¼ ~Dp þ IM
� ��1

; ~Ap~A
�1
p ¼ ~A�1

p
~Ap ¼ IM ; ð3:86Þ

and the required finite-dimensional approximations to the scattering operators take
the form:

~Rp ¼
~Dp � IM
~Dp þ IM

¼ IM � 2 ~Ap; ð3:87Þ

~Tqp ¼ 2~Ap
~DT
0

~D0

� �
; p 6¼ q ¼ 1

2

� �
: ð3:88Þ

Formula (3.87) is the Cayley transform of the finite ‘matrix of the problem’ ~Dp.
As in the case of the exact solution (3.51), the correctness of the projection

approximations (3.87), (3.88) is a consequence of the continuity condition for the
energy flux through the aperture X. Indeed, matching on the reference plane the
approximate representations for the tangential components of the fields in two
partial regions in the form of the truncated modal expansions, we subject these
approximations to the four energy laws mentioned in Sect. 3.4.2. Performing the
same calculations as in the case of the exact solution, we obtain from the first
Lorentz lemma and the oscillating power theorem the following relationships:

~Rpp
� �T¼ ~Rpp; ~Tqp

� �T¼ ~Tpq; ~Rpp
� �2 þ ~Tqp ~Tqp

� �T¼ IM ;

~Rpp~Tqp þ ~Rqq~Tpq
� �T¼ 0:

ð3:89Þ

The second Lorentz lemma together with the complex power theorem yields the
energy conservation law in a matrix form:

IM þ ~Rpp
� �

~Up IM � ~Rpp
� �y� �

� ~Tqp ~Uq ~Tqp
� �y¼ 0 ; ð3:90Þ

~Tqp ~Uq IN � ~Rqq
� �y� �

� IM þ ~Rpp
� �

~Up ~Tpq
� �y¼ 0: ð3:91Þ

Here ~Uj, j ¼ 1; 2, is the finite-dimensional K � K approximation to the operator
of the waveguide ports (3.29) and (3.35). Obviously that ~Uj is also a cramped
unitary matrix, i.e. its numerical range lies entirely in the first quadrant of the
complex plane (for the time dependence exp � ix tð Þ).
Problem 3.18 Derive relationships (3.89)–(3.91).

Let the (finite-dimensional) row vector ~b 2 PMl2, ~b
�� �� ¼ 1, be the eigenvector of

reflection matrix, ~b~Rpp ¼ k ~b. Multiplying (3.90) from the left and from the right by
this eigenvector, we obtain the equality
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1þ kð Þ 1� k
ð Þ~b ~Up
~by ¼ ~b~Tqp ~Uq ~Tqp

� �y~by: ð3:92Þ

The multiplication of the latter by ~bUp
~by

� �y
¼ ~b ~Uy

p ~by gives, in its turn, the

relation

1þ kð Þ 1� k
ð Þ ~b ~Up ~b
y


 


2¼ ~b ~Tqp ~Uq ~Tqp

� �y ~by� �
~b ~Uy

p
~by

� �
; ð3:93Þ

from which we find:

sign Re 1þ kð Þ 1� k
ð Þf g ¼ sign Re ~b ~Tqp ~Uq ~Tqp
� �y~by� �

~b ~Uy
p
~by

� �� �
:

ð3:94Þ

In view of the properties of the cramped unitary operators ~Uq and ~Uy
p , the result

of the multiplying of the two values in the right-hand side of formula (3.93) will
always belong to the right half of the complex plane. Therefore, from (3.94) it
follows that 1� kj j2 [ 0, i.e. the spectrum of reflection matrix ~Rpp lies completely
within the unit disc. According to the above mentioned spectral mapping theorem,
this means that �1 62 r ~Dp

� �
, and consequently, the Cayley transform (3.87) exists.

Basic properties of the finite matrices ~Dp, ~Rpp and ~Ap are completely similar to
the properties of the corresponding matrix operators in (3.52), (3.53) and (3.81).
The proof of these properties requires fairly sophisticated methods of the operator
theory and hence is considered in Sect. 3.10.1. However, in what follows we
consider as proved the fact that the operator Ap and the matrix ~Ap are strict con-
tractions, i.e. their norm is less than one.

Taking these properties and definitions (3.85), (3.86) into account, we obtain the

uniform estimate for the condition number cond ~Ap
� � � ~Ap

�� �� ~A�1
p

��� ��� of the matrix

(3.86)

1	 cond ~Ap
� �	 1þ ~D0

�� �� ~DT
0

�� ��\1 for 8M;N; ð3:95Þ

ensuring the computational stability.
Since in the conventional statement of the diffraction problem the convergence

of the finite-dimensional approximations, which have been obtained by the standard
mode-matching technique, has no substantiation, the efforts were made to find
empirical criteria to evaluate the accuracy of these approximations. In due time, one
believed that such a natural and easily applicable criterion is to verify the complex
power conservation law. However, it was soon discovered that all obtained
numerical solutions satisfy this law, regardless of the remaining number of
waveguide modes, of the problem geometry and the operating frequency.
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According to the rule generally accepted today, the balance ratio between the
incident, reflected and transmitted electromagnetic energy (which is a special case
of general formula (3.90)) is adequate only to check algebra, programming and
roundoff errors, but is not a proper measure of the accuracy of approximations.

The above result allows us to understand the true role of the complete fulfillment
of the energy conservation law in the mode-matching technique, which is difficult
to identify with the traditional approach. Namely, the subjection of each approxi-
mate solution (3.87), (3.88) to the generalized energy conservation law (3.90),
(3.91) ensures the nonsingularity of the matrix of the truncated SLAE (3.85) and the
stable computations for any number of waveguide modes taken into account.

3.5.2 Unconditional Convergence of the Truncation
Technique

In order to analyze the convergence of projection approximations in the space l2,
one should extend the finite matrices given above to infinite matrix operators by
using zeros. The formulas providing such an extension can be different, but the
result will be the same. From general considerations, we prefer to introduce the
extended elementary operator of the problem in the form of

�D0 ¼ PM

PN

� �
D0

PN

PM

� �
¼ ~D0 0

0 0

� �
; p ¼ 1

2

� �
: ð3:96Þ

Then, using the given matrix of the problem

�Dp �
~Dp 0
0 0

� �
¼ �D0 �DT

0 ; p ¼ 1
�DT
0
�D0; p ¼ 2

�
! �Dp þ I ¼ ~A�1

p 0
0 I

� �
; ð3:97Þ

we arrive at the relations

�Ap � �Dp þ I
� ��1¼ ~Ap 0

0 I

� �
; I � 2�Ap ¼

~Rp 0
0 �I

� �
;

�Ap�A
�1
p ¼ �A�1

p
�Ap ¼ I :

ð3:98Þ

Consequently, the required infinite dimensional extension of the reflection
matrix M �M has the form

�Rp � I � 2�Ap
� �

PM ¼ PM I � 2�Ap
� � ¼ ~Rp 0

0 0

� �
: ð3:99Þ
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Representing the exact and approximate reflection operators in the form of

Rp ¼ I � 2Ap; �Rp ¼ PM � 2�ApPM ; ð3:100Þ

and using the definitions of the operators Ap and �Ap, we find the difference

PMRpPM � �Rp ¼ 2 �Ap PMDp � �Dp
� �

ApPM : ð3:101Þ

In view of the inequality ApPM

�� ��\1, we obtain the following estimate for
projection approximations of the reflection operator:

b PMRpPM � �Rp
� ��� ��\ d PMDp � �Dp

� ��� �� ; d ¼ 2 b �Ap; 8b 2 l2 : ð3:102Þ

Further, by constructing in a similar manner the infinite extension of the matrix
M � N (3.88)

�Tqp � ~Tqp 0
0 0

� �
¼ 2�Ap

�D0
�DT
0

� �
; q 6¼ p ¼ 1

2

� �
; ð3:103Þ

we find the estimate for projection approximations of the transmission operator:

b PMT
qpPN � �Tqpð Þk k	

ffiffiffi
2

p

2
d PMDp � �Dp
� ��� �� ;

d ¼ 2 b �Ap; 8b 2 l2; q 6¼ p ¼
1

2

( )
:

ð3:104Þ

Inequalities (3.102) and (3.104) allow us to consider the convergence in the form

lim
M;N!1

b PMRpPM � �Rp
� ��� ��

b PMTqpPN � �Tqpð Þk k
� �

¼ 0; 8b 2 l2; ð3:105Þ

which is known as strong projection convergence (or P-convergence) [21].

Problem 3.19 Based on the inequality Tqpk k	 ffiffiffi
2

p
obtain the estimate (3.104).

Problem 3.20 Prove that in the space l2 strong convergence of the operators fol-
lows from their strong P-convergence and vice versa.

According to the estimates (3.102) and (3.104), strong P-convergence of the
constructed projection approximations is fully determined by strong P-convergence
of the known matrix �Dp to the given operator Dp. Thus the problem is to examine
the conditions of convergence of the difference of two known operators,

PMDp � �Dp � K pð Þ
M;N , to the null operator.
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Lemma 3.2 The operator K pð Þ
M;N strongly converges to the null operator:

dK pð Þ
M;N

��� ���! 0 for 8d 2 l2 if M;N ! 1.

Proof Using the definitions (3.52) and (3.97) let us write this operator as

K pð Þ
M;N ¼ PMDp � �Dp ¼ PMD0QNDT

0 þPMD0PNDT
0QM ; p ¼ 1

PMDT
0QND0 þPMDT

0PND0QM ; p ¼ 2:

�
ð3:106Þ

Our assertion follows immediately from this representation as a result of strong
(but nonuniform) convergence of the orthoprojector PK , K ¼ M;N, to the unit
operator in the space l2:

lim
K!1

d I � PKð Þk k ¼ lim
K!1

d QKk k ¼ 0 for 8d 2 l2 : ð3:107Þ

The presence of two terms in (3.106) implies that both passages to the
limit, M ! 1 and N ! 1, should be performed simultaneously and indepen-
dently. h

Problem 3.21 Derive formula (3.106).

Problem 3.22 Derive the formula K 1ð Þ
M;N ¼ PMD0QNDT

0PM þPMD0DT
0QM , which

is alternative to (3.106).
Lemma 3.2 and the derived estimates (3.102) and (3.104) lead to the following

result:

Theorem 3.2 The finite-dimensional approximations ~Rpp and ~Tqp always exhibit
strong P-convergence to the corresponding scattering operators.

As a consequence, there is no conditional (or relative) strong P-convergence of
the projection approximations for the mathematical model of the generalized
mode-matching technique in the form of operator Fresnel formulas (3.51).

In Sect. 3.6, we will obtain an alternative representation for the operator K pð Þ
M;N

suitable for the study of more subtle convergence properties of the approximations
constructed.

3.5.3 Rate of Convergence of the Approximations
of Scattering Operators

Our next goal will be to estimate analytically the rate of decrease

b �ApK
p
M;N

��� ���! 0 as M;N ! 1 ð3:108Þ

for the norm of the approximation error vector, given by formulas (3.102) and
(3.104). We will consider a practical problem where the rth waveguide mode is

3 Operator Fresnel Formulas in the Scattering … 135



scattered by the discontinuity (r	M;N, for H-case or r	ðMþ 1Þ; ðN þ 1Þ, for E-
case), i.e., b ¼ dmr

� 1
m¼ 0ð Þ1. The key to the success lies in the equivalent transfor-

mation of the product �ApK
pð Þ
M;N of the matrix operators.

First, using an alternative to formula (3.106) (see Problem 3.22)

K pð Þ
M;N ¼ PMDpQM þPM

D0

DT
0

� �
QN

DT
0

D0

� �
PM ; p ¼ 1

2

� �
; ð3:109Þ

we obtain the equality

2 �ApK
pð Þ
M;N ¼ 2 �ApPMDp

� �
QM þ 2 �ApPM

D0

DT
0

� �� �
QN

DT
0

D0

� �
PM ; p ¼ 1

2

� �
:

ð3:110Þ

Here, the square brackets mark two combinations of matrix operators

2 �ApPMDp ¼ PM þRp; 2 �ApPM
D0

DT
0

� �
¼ T

qp
; p ¼ 1

2

� �
; ð3:111Þ

that generate new projection approximations Rp and T
qp
, which, as it is easy to see,

converge to the corresponding scattering operators. Indeed, from the formulas for
the exact solution

IþRp ¼ 2 ApDp; Tqp ¼ 2 Ap
D0

DT
0

� �
; p ¼ 1

2

� �
; ð3:112Þ

we find, firstly, an expression akin to (3.101):

PMRp � Rp ¼ �2 �Ap PMDp � �Dp
� �

ApDp ; ð3:113Þ

and, secondly, a similar formula for the transmission operator

PMT
qp � T

qp ¼ �2 �Ap PMDp � �Dp
� �

Ap
D0

DT
0

� �
; p ¼ 1

2

� �
: ð3:114Þ

Strong P-convergence of the approximations Rp and T
qp

as M;N ! 1 follows
from Lemma 3.2.

Further, when using formulas (3.113) and (3.114) to eliminate the auxiliary
operators Rp and T

qp
from formulas (3.111), the latter take the form
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2 �ApPMDp ¼ PM þ �ApK
pð Þ
M;N

� �
IþRp
� �

;

2 �ApPM
D0

DT
0

� �
¼ PM þ �ApK

pð Þ
M;N

� �
Tqp; p ¼ 1

2

� �
:

ð3:115Þ

Then, taking these relationships into account, formula (3.110) is transformed
into the equation below

�ApK
pð Þ
M;N ¼ PM þ �ApK

pð Þ
M;N

� � 1
2
U pð Þ

M;N ; ð3:116Þ

in which the following notation is used:

U pð Þ
M;N � IþRp

� �
QM þ Tqp QN

DT
0

D0

� �
PM ¼ Tqp DT

0
D0

� �
� PN

DT
0

D0

� �
PM

� �
;

p ¼ 1
2

� �
:

ð3:117Þ

Note that we have used formulas (3.112) when deriving (3.115) and (3.117).

Problem 3.23 Derive (3.116).

To solve (3.116) with respect to �ApK
pð Þ
M;N , we will use the following lemma.

Lemma 3.3 The operator 1
2U

pð Þ
M;N is a strict contraction: 1

2 U pð Þ
M;N

��� ���\1 for 8M;N.

Proof This follows from the second form of the matrix operator (3.117) and from
the fact that the operator

1
2
Tqp DT

0
D0

� �
¼ ApDp; p ¼ 1

2

� �
;

is an accretive contraction (see also Sect. 3.10.1):

ApDp

�� �� ¼ 1
2

IþRp

�� ��	 1
2

1þ Rp

�� ��� �
\1: h

Therefore, the inverse operator I � 1
2U

pð Þ
M;N

� ��1
exists and is bounded, while

operator (3.116) has a bounded solution

�ApK
pð Þ
M;N ¼ 1

2
PMU

pð Þ
M;N I � 1

2
U pð Þ

M;N

� ��1

: ð3:118Þ
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Accordingly, the estimates given by (3.102) and (3.104) can be written as

b PMRpPM � �Rp
� ��� ��

b PMT
qpPN � �Tqpð Þk k

)
\

bPMU
pð Þ
M;N

��� ���
1� 1

2 U pð Þ
M;N

��� ��� ; 8b 2 l2; ð3:119Þ

where b PMU
pð Þ
M;N

��� ���! 0 as M;N ! 1, 8M;N.

Next, we use the first form of the operator (3.117) to represent the infinite vector
under consideration as

b PMU
pð Þ
M;N ¼ b PM IþRp

� �
QM þ b PMT

qp QN
DT

0
D0

� �
PM ; p ¼ 1

2

� �
: ð3:120Þ

Since PM and QM are a pair of complementary orthoprojectors, PMQM ¼
QMPM ¼ 0, we find from the Pythagorean theorem that

b PMU
pð Þ
M;N

��� ���2¼ b PM IþRp
� �

QM

�� ��2 þ b PMT
qp QN

DT
0

D0

� �
PM

���� ����2; p ¼ 1
2

� �
:

ð3:121Þ

The infinite vectors b PM IþRp
� �

and b PMTqp are the Fourier coefficients in the
modal expansion of the field. The asymptotic law of decrease of these coefficients is
determined, as is well known, by the condition on the sharp edge [3, 11]. Setting
the space of the solutions and the geometry of the sharp edge, we a priori know the
behavior of these Fourier coefficients. If the solution of our problem is represented
by the vectors x1 ¼ xm1f g1m¼ 0ð Þ12 ~l2 and x2 ¼ xm2f g1m¼ 0ð Þ12 ~l2, the law of decrease

of these coefficients is the power law, xm1; xm2 ¼ O m�5=3
� �

, m � 1 [3]. When
passing to the Hilbert space l2, we have the dependence O m�7=6

� �
, and therefore

b PM IþRp
� �

QM

�� ��2¼ O M�4=3
� �

; b PMT
qp QNk k2¼ O N�4=3

� �
; M;N � 1:

ð3:122Þ

Above, we have used the asymptotic estimate

X1
m¼Mþ 1

const
m7=6

� �2
¼ const2

M4=3
1þO M�1� �� �

; M � 1:

Thus, a rough lower estimate for the rate of convergence of the constructed
projection approximations has the form
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b PMRpPM � �Rp
� ��� ��

b PMT
qpPN � �Tqpð Þk k

)
\

1

1� 1
2 U pð Þ

M;N

��� ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
const21
M4=3

þ const22
N4=3

r
;

M;N � 1; b ¼ dmr
� 1

m¼ 0ð Þ1:

ð3:123Þ

Note that the denominator in the right-hand side of this inequality depends on the
ratio M/N. This conclusion follows, in particular, from formula (3.117) for the

operator U pð Þ
M;N . We will study the impact of this dependence upon the rate of

convergence in the following section.

3.6 Mittra Rule for Scattering Operators

We will study the subtle effects of P-convergence for the projection approxima-
tions, which have been constructed in the previous section, using the theory of
distributions (see, for example, [22]).

In our analysis, the key role is played by the distributions

�ð ÞG pð Þ y;�yð Þ ¼ lTp yð Þ Ibp
� ��1

lp �yð Þ; y;�y 2 0; a2ð Þ; p ¼ 1; 2; ð3:124Þ

which have the meaning of traces of Green’s function for the pth partial region (the
upper minus sign) and of its second derivative (the lower plus sign) at the aperture
X of the discontinuity. These functions of two variables are the kernels of the
integral expressions

�ð ÞG pð Þlmq
� �

yð Þ ¼
Za2
0

�ð ÞG pð Þ y;�yð Þlmq �yð Þd �y; p; q ¼ 1; 2; ð3:125Þ

or, in other words, they induce the integral operators �ð ÞG pð Þ. More specifically, the
distributions (3.124) induce the integral operator of Hilbert-Schmidt type �ð ÞG pð Þ,
the hypersingular integral operator þð ÞG pð Þ and the difference operators
�ð ÞB qpð Þ ¼ �ð ÞG qð Þ � �ð ÞG pð Þ, p; q ¼ 1; 2, p 6¼ q. In their turn, these integral opera-
tors generate the matrix operators

Dp ¼ Ibp
� ��1=2

lp;
�ð ÞG qð ÞlTp

� �
Ibp
� ��1=2

; �ð ÞFp
�ð ÞFp ¼ Ibp

� ��1=2
lp;

�ð ÞG pð ÞlTp
� �

Ibp
� ��1=2

;

B ¼ Ibp
� ��1=2

lp;
�ð ÞB qpð ÞlTp

� �
Ibp
� ��1=2

;
p

q

� �
¼ 1; 2

2; 1

� �
:

ð3:126Þ
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Hereinafter in this section, for the first partial region, the upper sign corresponds
to the case of H-plane, while the lower sign corresponds to the E-plane, and vice
versa for the second region.

If a finite number of modes is taken into account in regular waveguides, the
functions (3.124) take the form

�ð ÞG pð Þ
K y;�yð Þ ¼ lTp yð ÞPK

h i
Ibp
� ��1

PK lp �yð Þ� �
; K ¼ M;N;

while the corresponding finite-dimensional matrix operators are

�Dp ¼ Ibp
� ��1=2

lp;
�ð ÞG qð Þ

N lTp

� �
Ibp
� ��1=2

;

�ð ÞFpPK
�ð ÞFp ¼ Ibp

� ��1=2
lp;

�ð ÞG pð Þ
K lTp

� �
Ibp
� ��1=2

;

BNM ¼ Ibp
� ��1=2

lp;
�ð ÞB qpð Þ

NM lTp

� �
Ibp
� ��1=2

;
p

q

� �
¼ 1; 2

2; 1

� �
;

ð3:127Þ

where, by definition, we have �ð ÞB qpð Þ
NM ¼ �ð ÞG qð Þ

N � �ð ÞG pð Þ
M .

From (3.126) and (3.127), the desired equivalent representation for the matrix
operator (3.106) is

K pð Þ
M;N ¼ PM B� BNMð ÞPM þPMBQM þNM ; ð3:128Þ

where the third summand is

NM ¼ PM
�ð ÞFp QM

�ð ÞFp þPM
�ð ÞFpQM

� �
: ð3:129Þ

In the obtained representation (3.128), we are interested in convergence of
difference between two known operators, B� BNM � DBNM , to the null operator.

Lemma 3.4 The operator DBNM converges strongly to the null operator: 8b
bDBNMk k ! 0 as N;M ! 1.

Proof This follows immediately from definitions (3.126) and (3.127), in view of
strong convergence of the orthoprojector (3.107). h

Next, let us examine in detail the properties of the convergence DBNM ! 0,
N;M ! 1. Separating the main (or static) parts �ð Þg pð Þ y;�yð Þ in the distributions
(3.124), we obtain for the induced integral operators: �ð ÞG pð Þ ¼ �ð Þg pð Þ þ �ð Þh pð Þ,
p ¼ 1; 2, where the remainders �ð Þh pð Þ and þð Þh pð Þ are a nuclear operator and a
Hilbert-Schmidt operator, respectively. With a finite number of waveguide modes
taken into account in the partial regions, we have the corresponding integral

operators with the degenerate kernel �ð ÞG pð Þ
K ¼ �ð Þg pð Þ

K þ �ð Þh pð Þ
K , K ¼ M;N.
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Consider the difference of the matrix operators in formula (3.128):

B� BNM � DBNM ¼ Ibp
� ��1=2

lp;
�ð ÞDB qpð Þ

NM lTp

� �
Ibp
� ��1=2

: ð3:130Þ

Here, we used the notation

�ð ÞDB qpð Þ
NM ¼ �ð ÞDg qpð Þ

NM þ �ð ÞDh qpð Þ
NM ; ð3:131Þ

where

�ð ÞDg qpð Þ
NM ¼ �ð ÞDg qð Þ

N � �ð ÞDg pð Þ
M ; �ð ÞDh qpð Þ

NM ¼ �ð ÞDh qð Þ
N � �ð ÞDh pð Þ

M ;
p

q

� �
¼ 1; 2

2; 1

� �
and �ð ÞDg pð Þ

K ¼ �ð Þg pð Þ � �ð Þg pð Þ
K ; �ð ÞDh pð Þ

K ¼ �ð Þh pð Þ � �ð Þh pð Þ
K ; K ¼ M;N:

Let us introduce six bounded matrix operators by the formula

�ð ÞCðpÞ
�ð ÞDC qpð Þ

NM
�ð ÞDH qpð Þ

NM

8<:
9=; ¼ Ibp

� ��1=2
lp;

�ð ÞgðpÞ
�ð ÞDg qpð Þ

NM
�ð ÞDh qpð Þ

NM

8<:
9=;lTp

0B@
1CA Ibp
� ��1=2

: ð3:132Þ

Then from (3.130) and (3.131) follows:

DBNM ¼ ð�ÞDC qpð Þ
NM þ ð�ÞDH qpð Þ

NM :

Here, the first term is the main part of the operator under study, and the
remainder is a nuclear operator such that

lim
M;N!1

ð�ÞDH qpð Þ
NM

��� ��� ¼ 0; 8M=N:

Consequently, the ascertained strong convergence DBNK ! 0 will be determined
by the estimate

bDBNMk k	 b ð�ÞDC qpð Þ
NM

��� ���þ ð�ÞDH qpð Þ
NM

��� ��� bk k; 8b 2 l2: ð3:133Þ

Further, if we consider the first region, then we assume N ¼ tM (and corre-
spondingly, M ¼ tN for the second region), where t[ 0. Then we sum the kernel

of the integral operator �ð ÞDg qpð Þ
NM (i.e., the kernel of the principal part of the operator

�ð ÞDB qpð Þ
NM ) over the index M or Nð Þ ¼ 1; 2; 3; . . .. Upon introducing the dimen-

sionless variables a ¼ py=a2, �a ¼ p�y=a2, and the geometric parameter
s ¼ a2=a1 	 1, the result of the summation is given by the formula
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X1
M¼1

�ð ÞDg 21ð Þ
tM;M a; �að Þ ¼ �

X1
N¼1

�ð ÞDg 12ð Þ
N;tN a; �að Þ ¼ � s�1 � t�1� � d a� �að Þ

d2d xð Þ
dx2






x¼a��a

8><>:
9>=>;

þ �ð Þg 1ð Þ a; �að Þ � 1
2

�ð Þg 2ð Þ a; �að Þþ �ð Þg ta; t�að Þ
h i

;

ð3:134Þ

where

�ð Þg ta; t�að Þ ¼
� 2

p

R
U ta; t�að Þda

2p
a22

@
@aU ta; t�að Þ

( )
! �ð Þg ta; t�að Þ

t¼s

¼ 1
s

�ð Þg 1ð Þ a; �að Þ

and U ta; t�að Þ ¼ 1
2

ctg t
a� �a
2

� �
� ctg t

aþ �a
2

� �� �
;

H � case

E � case

� �
:

The obtained sum (3.134) together with the definition (3.132) allow us to con-
struct the operator series, which will be convergent or divergent depending on the
ratio t ¼ M=N of the number of accounted modes in the waveguide arms. Namely,
if t ¼ s, then the first term in the right-hand side of (3.134) vanishes and, according
to (3.132), we obtain the convergent operator series of the form

2
X1
M¼1

�ð ÞDC 21ð Þ
sM;M ¼ �2

X1
N¼1

�ð ÞDC 12ð Þ
N;sN ¼ 2s� 1

s
�ð ÞC 1ð Þ � �ð ÞC 2ð Þ: ð3:135Þ

Otherwise if t 6¼ s, it is easy to see that d-singularities in the sum (3.134)
generate the unbounded in l2 matrix operators

const � s�1 � t�1� �
Ibp
� ��1=2

lp;
lTp

d2lTp
.
dy2

( ) !
Ibp
� ��1=2

; p ¼ 1; 2: ð3:136Þ

Hence, in this case, a convergent operator series cannot be constructed in the
space B l2ð Þ of bounded operators on the basis of formula (3.134).

Problem 3.24 Using relations (3.132) and (3.134), obtain the series (3.135) and
operators (3.136).

Thus, the rate of decrease of the first term in (3.133), which is given as

b �ð ÞDC qpð Þ
NM

� �
T

��� ���! 0, M;N ! 1, depends on the ratio t ¼ M=N. It can be

sufficient for the series in (3.135) to converge t ¼ sð Þ or not 8t 6¼ sð Þ.
So, the Mittra rule for the scattering operators of the problem under consider-

ation can be formulated as follows:
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Theorem 3.3 If the relation N=M ¼ s, where s ¼ a2=a1 is a predetermined geo-
metrical parameter of the problem, holds, then the rate of convergence of the
approximations is higher than with any other ratio of the numbers of accounted
modes.

Taking into account formulas (3.102) and (3.128), we conclude that for N=M ¼
s the previously established strong P-convergence of the projection approximations
is characterized by the estimate

b PMRp � ~Rp
� ��� ��\2 b DBsM;M

�� ��þ d PMBQM þNM

� ��� �� ; ð3:137Þ

where d ¼ 2 b ~Ap, 8b 2 l2.

3.7 Novel Matrix Models for the Problem of a Step
Discontinuity in a Waveguide

Let us represent the found solution (3.51) via the operator Ap � Dp þ I
� ��1,

p ¼ 1; 2, in the form of the following table:

R11 ¼ � I � 2A 1ð Þ T21 ¼ 2A 1D0

T12 ¼ 2A 2DT
0 R22 ¼ � I � 2A 2ð Þ

�
;

H � case
E � case

� �
: ð3:138Þ

To the left of the equality sign in the table is a 2� 2 operator matrix—the
generalized scattering matrix

S � R11 T21

T12 R22

� �
; ð3:139Þ

operating in the space h2 ¼ l2 � l2 � l22. Owing to the established order of the
scattering operators in the entries of matrix (3.139), the symmetry properties of the
operators (3.66) and (3.67) can now be expressed as ST ¼ S.

Next, if we specially construct three diagonal operator matrices

J ¼ I 0
0 �I

� �
; A ¼ A 1 0

0 A 2

� �
; V ¼ 0 D0

DT
0 0

� �
; ð3:140Þ

then the Table (3.138) can be brought in obvious way to the compact form:

S ¼ � Jþ 2A V � Jð Þ; H � case
E � case

� �
: ð3:141Þ

Here, according to the definition (3.140), J is the canonical symmetry of the

space h2, J ¼ Jy ¼ J�1 (see Appendix A), A is the accretive contraction,
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ReA[AAy[ 0, while V is the given operator matrix of the problem. From the
structure of three operator matrices in (3.140) it follows that they are symmetrical
with respect to a transposition operation.

Since A : h2 ! h2 is the accretive contraction, then there exists a unique
bounded and accretive operator C (which is also contraction) such that C2 ¼ A.
Since the original operator is symmetric, AT ¼ A, then the operator C will inherit
this property: CT ¼ C. As is customary in operator theory, we will use the notation
C � A1=2. To find this operator matrix, notice that from the relation

V � Jð Þ2¼ V2 þ Ih ¼ D1 þ I 0
0 D2 þ I

� �
¼ A�1 ð3:142Þ

it follows that A1=2 ¼ V � Jð Þ�1¼ A V � Jð Þ. Here, Ih is the unit operator acting
in the space h2.

Thus, the solution (3.141) takes the remarkably simple form

S ¼ � Jþ 2 V � Jð Þ�1¼ 2A1=2 � J;
H � case
E � case

� �
: ð3:143Þ

This equality can be interpreted as the inner structure of the generalized scat-
tering matrix (3.139).

Problem 3.25 Using (3.143), prove that the generalized scattering matrix of the
studied waveguide junction is an involutory operator: S2 ¼ Ih.

Below we will interested in formula (3.143) in terms convergence of the pro-
jection approximations to the desired generalized scattering matrix.

Let us combine the earlier introduced orthoprojectors (3.84) into the operator
matrices

P ¼ PM 0
0 PN

� �
; Q ¼ Ih � P ¼ QM 0

0 QN

� �
; ð3:144Þ

whereM (N) is now the number of the modes taken into account in the first (second)
region. The computed finite-dimensional approximations have the form of the
MþNð Þ � MþNð Þ block (or partitioned) matrices

~S ¼ ~R11 ~T21

~T12 ~R22

� �
¼ 2~A1=2 � ~J; ~A � ~A 1 0

0 ~A 2

� �
; ~J � ~IM 0

0 �~IN

� �
;

H � case
E � case

� �
;

ð3:145Þ

where the operators in the submatrices are given by formulas (3.86)–(3.88).

144 I. Petrusenko and Y. Sirenko



Basing on the operator (3.96), we construct the infinite-dimensional extension by
zeros of the given finite matrix in the form

�V � PVP ¼ 0 �D0
�DT
0 0

� �
! �V2 ¼ �D1 0

0 �D2

� �
; ð3:146Þ

where the operator �Dp, p ¼ 1; 2 is given by formula (3.97). We also use the
operator (3.98) to extend by zeros the operator matrix of accretive contraction

�A � �A1 0
0 �A2

� �
; �Ap�A

�1
p ¼ �A�1

p
�Ap ¼ Ih; ð3:147Þ

for which the analog of (3.142) is

PVP� Jð Þ2¼ �V2 þ Ih ¼
�D1 þ I 0
0 �D2 þ I

� �
¼ �A�1: ð3:148Þ

Problem 3.26 Derive formula (3.148).
With the help of the operator (3.147) we form the required projection

approximation

�S ¼ 2P�A1=2 � PJ ¼ 2�A1=2P� J P ¼ �R11 �T21

�T12 �R22

� �
;

H � case
E � case

� �
ð3:149Þ

as well as the difference between the operator matrices

PSP� �S ¼ �2PA1=2QVP�A1=2: ð3:150Þ

In view of the estimate P�A1=2
�� ��

h2
\1 and the equality P2A1=2Q ¼ PSQ, which

is a consequence of (3.143) and the orthogonality of the projectors, expression
(3.150) leads to the following estimate for the projection approximation error:

b PSP� �Sð Þk kh2\ dQk kh2 QVPk kh2 ; d ¼ bPS; 8b 2 h2: ð3:151Þ

Strong convergence of the approximations follows from this estimate as a
consequence of strong convergence of the orthoprojector P to the unit operator in
the space h2:

lim
M;N!1

dQk kh2¼ lim
M;N!1

d Ih � Pð Þk kh2¼ 0; 8d 2 h2: ð3:152Þ

Thus the projection approximation (3.145) always strongly P-converges to the
true solution (3.143), while the relative convergence of these approximations is
lacking.
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The rate of strong convergence can be obtained from the behavior of the given
vector d. First note that the following equality is valid:

d Qk k2h2¼ d1QMk k2 þ d2QNk k2; ð3:153Þ

where

d ¼ d1; d2f g; d1 ¼ b1PMR
11 þ b2PNT

12; d2 ¼ b1PMT
21 þ b2PNR

22;
8b1; b2 2 l2:

ð3:154Þ

As in Sect. 3.5.3, we will consider the scattering of the rth mode of the first
waveguide port (r	M for H-case or r	Mþ 1 for E-case), b1 ¼ drm

� 1
m¼ 0ð Þ1, and

the sth mode of the second port (s	N for H-case or s	Nþ 1 for E-case),
b2 ¼ dsm

� 1
m¼ 0ð Þ1.

At this step we will use the results of the study presented in [3] regarding the rate
of decrease of the Fourier coefficients of the modal expansion in the aperture of the
discontinuity in order to find the asymptotics d1; d2 ¼ O m�7=6

� �
; m � 1

� 
(see

Sect. 3.5.3 for details). Then the required estimate takes the form

b PSP� �Sð Þk kh2\ QVPk kh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
const21
M4=3

þ const22
N4=3

r
; M;N � 1; b ¼ b1; b2f g;

ð3:155Þ

where the multiplier QV Pk kh2 depends on the ratioM/N, confirming the findings of
[3, 11].

Let us use the canonical problem of diffraction of the principal mode of a
rectangular waveguide on the H-plane step discontinuity to illustrate numerically
the obtained analytical results. Chose the modulus r1111



 

 ¼ 0:478458 and the

argument arg r1111 ¼ 2:9771 of the reflection coefficient (R11 ¼ r11mr
� 1

m;r¼1, r is the

number of the incident wave) calculated accurately in [11] for the parameters
a1=k ¼ 1:300001 and a2=a1 ¼ 0:5001, as test values.

Figure 3.2 shows a stable ‘practical convergence’ of the approximations to the
reference values (shown by the dashed line). In full agreement with the above
results, the relative convergence of the approximations is not observed. At the same
time, the rate of convergence depends substantially on the ratio of the numbers of
modes taken into account M/N. As expected, compliance with the Mittra rule,
M/N = 2.0, gives the best results.

In the numerical computations, the largest size of the reduced matrix reached
7200 � 7200. At the same time, the maximum matrix condition number did not
exceed 1.75.

The high stability of calculations is explained by the structure of the considered
block matrix. The ‘mountain profile’ of this matrix is visualized for M = 15 and
N = 10 in Fig. 3.3. This figure shows that the main diagonal of this matrix contains
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extreme elements �1 independent of the numbers M and N. At the same time, the
elements of the submatrices ~D0 and ~DT

0 , whose magnitude depends on the ratio
M/N, are located at the periphery of the matrix.

Figure 3.4 shows the level lines for the norm of the relative error of projection
approximations (3.151) for the observed range of variation of the truncation
numbers M and N and for different values of the geometric parameter a2=a1.

Fig. 3.2 Numerical convergence of projection approximations
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Fig. 3.3 The profile of the 25 � 25-size invertible matrix ~A�1=2: a the real part of the matrix;
b the imaginary part of the matrix
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The approximation calculated for M = N = 250 has been taken for a true gener-
alized scattering matrix. This profile has a unique ravine-type minimum (marked by
the dashed line) corresponding to the Mittra rule M=N ¼ a2=a1.

Thus, the presented numerical results fully confirm the findings of our previous
analytical study.

3.8 The Conservation Laws in Operator Form for Two
Classes of Mode Diffraction Problems

Our next goal will be to apply the developed approach to the analysis of H- and E-
plane waveguide transformers of a general shape.

In this section, we will study a two-port waveguide transformer with relatively
arbitrary geometry of coupling cavity. The configuration and the coordinate systems
used are shown in Fig. 3.5. Here, the orthogonal coordinates gj; nj; fj

� 
, j ¼ 1; 2

stand for either Cartesian x; y; zf g or cylindrical g ¼ z; n ¼ q; f ¼ /f g coordinate
systems.

In this way we introduce the uniformly curved waveguides of rectangular
cross-section, in which the modes LM0n, n ¼ 1; 2; . . . (H-case) or LE1n, n ¼ 0; 1; . . .
(E-case) form a complete orthogonal set. (Note that in our notation, n equals to the

Fig. 3.4 The norm of the approximation error for different values of a2/a1
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number of field variations along the straight On-axis.) For such regular waveguides,
the mode propagation along the uniformly curved coordinate axis is described by
the exponential function exp �ibn/ð Þ, where bnf g1n¼ 0ð Þ1 are the angular propagation
constants. (There exists a large number of works on uniform bends of rectangular
waveguides; the generalized mode-matching technique has been applied to the
analysis of such waveguide bend in [23].)

In Fig. 3.5, the coupling region is a cylindrical cavity that is geometrically
uniform along the straight g1-axis or g2-axis; the height of the cavity is a3. Denote
the volume confined by the metal walls together with the reference planes
Rj ¼ Cj � 0; a3ð Þ, j ¼ 1; 2, disposed in the regular waveguides, as
Vint � Xint � 0; a3ð Þ, and the reference surface as S ¼ R1 [R2. This volume is
supposed to be source free, which ensures the fulfillment of the edge condition
(3.12). We can let Xint ! 0 to form the aperture of an abrupt waveguide discon-
tinuity, which is now considered as a special case of the wave transformer (obvi-
ously, in this case Vint ! 0). All metal surfaces are assumed to be perfect electric
conductors. The waveguide transformer is filled with a homogeneous lossless
medium and the waveguide arms are terminated in matching loads.

Let us mark two independent sources of the field as a and b. These sources
generate the fields a~E; a~H

� 
, and respectively b~E; b~H

� 
, in the volume Vint. In

view of the geometry (Fig. 3.5) and the homogeneous boundary conditions on the
metal walls, the first and second Lorentz lemmas take the formZ

S

a~E � b~H � b~E � a~H
� � �~n ds ¼ 0 ð3:156Þ

and Z
S

a~E � b~H
 þ b~E
 � a~H
� � �~n ds ¼ 0; ð3:157Þ

respectively. The oscillating power theorem and the complex power theorem yields
two relations

Fig. 3.5 Configuration of the
wave transformer and the
coordinate systems
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Z
S

~E � ~H
� � �~n ds ¼ ix

Z
Vint

ee0~E
2 þ ll0~H

2� �
dv; ð3:158Þ

Z
S

~E � ~H
� � �~n ds ¼ �ix
Z
Vint

ee0 ~E


 

2�ll0 ~H



 

2� �
dv; ð3:159Þ

where e and l are the relative permittivity and permeability, and the common index
a or b is omitted. In all formulas (3.156)–(3.159), the unit vector ~n is the outward
normal to the reference surface S.

In the domain of complex amplitudes, the oscillation power theorem (3.158) and
the complex power theorem (3.159) together with two Lorentz lemmas (3.156) and
(3.157) form a complete set of basic electromagnetic laws in the sense that there are
no other independent energy relations for two fields generated by independent
sources. The presence or absence of the volume integrals in the right-hand sides of
formulas (3.158) and (3.159) naturally divides mode diffraction problems into two
classes. We assign the wave scattering by resonant discontinuities of volume Vint 6
¼ 0 to the first class and abrupt discontinuities in waveguides Vint ¼ 0ð Þ—to the
second class. For these two classes of problems the energy conservation laws are
evidently different.

For the planar wave transformers considered herein, the electromagnetic field
can be expressed in terms of g-components of the electric (H-plane case) or
magnetic (E-plane case) fields. The corresponding complex amplitude (i.e. the
phasor) we will denote, as earlier in (3.6), by U g;xð Þ, g ¼ y; zf g in Cartesian
coordinates and g ¼ q;/f g in cylindrical coordinates.

We now substitute the continuous scalar function U g;xð Þ expanded in the
complete set of orthonormal transverse eigenfunctions of regular waveguides into
the left-hand sides of (3.156) and (3.158). Taking into account the orthogonality of
these eigenfunctions, we get two relations for the generalized scattering matrix

ST ¼ S; b Ih � S2
� �

bT ¼
Z
Xint

rk aUþ bU
� �� �2�v2 aUþ bU

� �2n o
ds; ð3:160Þ

where rk � rnf stands for the longitudinal part of the gradient. The first equality
in (3.160) (which have been cited earlier for the canonical problem of a step in a
waveguide) is associated with the reciprocity property of a waveguide transformer,
while the second one describes the oscillating power in the coupling cavity.

Problem 3.27 Derive (3.160) from the laws (3.156) and (3.158).
Similarly, from the second pair of equations in (3.157) and (3.159) one can

obtain a combined relation, which can be written as
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bGby ¼
Z
Xint

rk aUþ bU
� �

 

2�v2 aUþ bU



 

2n o
ds: ð3:161Þ

Here, we have introduced the characteristic operator

G � Ih þ Sð ÞU Ih � Sy
� �

; ð3:162Þ

which involves the ‘portal operator matrix’

U � U1 0
0 U2

� �
¼ Q1 þ iP1 0

0 Q2 þ iP2

� �
¼ Qþ iP: ð3:163Þ

The matrix operators Um, Qm, and Pm, m = 1, 2, have been previously defined in
(3.30), (3.31), (3.34) and (3.35). With the last two operators, we have formed the
operator matrix P and Q ¼ Ih � P (see (3.144)) of projection onto all propagating
modes and, accordingly, onto all evanescent modes in the two waveguide ports.
The existence of two mutually orthogonal subspaces of the vectors Ph2 and Qh2
composed of the amplitudes of propagating and evanescent modes, respectively,
necessitates introduction of a special vector space. The ratio between the energy
transferred by the propagating modes (i.e., the norm of the vectors from the sub-
space Ph2) and the energy stored by the oscillating field (i.e., the norm of the
vectors from the subspace Qh2) may be arbitrary. Therefore, this space is of
indefinite metric. Since for any finite wavenumber v (see formula (3.7)), the number
of propagating modes is always limited and equal to pj (H-case) or pj þ 1 (E-case),
j = 1, 2 (see (3.30) and (3.34)), then P is the operator of finite rank m ¼ Tr Pð Þ ¼
p1 þ p2 (H-case) or m ¼ p1 þ 1ð Þþ p2 þ 1ð Þ (E-case). Consequently, the space
Pm ¼ Ph2 [Qh2 with an indefinite metric is a Pontryagin space [8]. The canonical
symmetry of this space is given by the following formula (see Appendix A):

J � Q� P ¼ Ih � 2P ! J ¼ Jy ¼ J�1: ð3:164Þ

In what follows, the operators S, U, and G will be treated as ones acting both in
the space h2 ¼ l22, and in the space Pm.

In addition, to write the results in a compact form, it is convenient to use the
conventional notation for two components of any linear operator L:

Re L ¼ 1
2

Lþ Ly
� �

; Im L ¼ 1
2 i

L� Ly
� �

: ð3:165Þ
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Refer now to the base relation (3.161), which can be rewritten as

bG by ¼ rk aUþ bU
� ��� ��2

L2 Xintð Þ�v2 aUþ bU
�� ��2

L2 Xintð Þ : ð3:166Þ

Problem 3.28 Derive (3.166) from the laws (3.157) and (3.159).
In the absence of loss (i.e., when v is a real number), equality (3.166) implies the

Hermiticity of the characteristic operator, Gy ¼ G, which is equivalent to the
relationships

ImG ¼ P� S P Sy þ 2Im SQð Þ ¼ 0; ð3:167Þ

G ¼ ReG ¼ Q� SQ Sy � 2Im S Pð Þ: ð3:168Þ

We emphasize that these expressions are valid for any real value of the
wavenumber v, i.e. for any (finite) number of propagating modes existing in the
waveguide ports (Fig. 3.5).

The found property of the generalized scattering matrix S in the form of the
corollary (3.167) of formula (3.166) has a clear electrodynamic meaning. Namely,
this matrix-operator expression reflects the fact that the active power flux through
the surface enclosing any source-free and lossless volume Vint equals zero:

Re
Z
S

~E � ~H
� � �~n ds ¼ 0:

Thus the property (3.167) of the generalized scattering matrix S is the energy
conservation law in a generalized (or operator) form.

Evidently this law in the form of (3.167) is not the only possible representation,
and below we will give its useful modifications. By adding and subtracting (3.167)
and (3.168), we obtain a new representation of the characteristic operator:

G ¼ Ih � SSy þ 2Im SJð Þ ¼ J � SJSy � 2Im S: ð3:169Þ

The operator matrices

V� ¼ 1
2

� �1=2

Ih � iSJð Þ ð3:170Þ

play an important role in further mathematical manipulations. With the use of them
equalities (3.169) can be written in a compact form:
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1
2
G ¼ Ih � V�Vy� ¼ J � Vþ JV

y
þ ; ð3:171Þ

1
2
JGTJ ¼ Ih � Vy�V� ¼ J � Vyþ JVþ : ð3:172Þ

Problem 3.29 Derive formulas (3.169), (3.171) and (3.172).
To derive other forms of the energy conservation law, we use the identities

Ih þ SSy ¼ VþV
y
þ þV�Vy�; ð3:173Þ

2Im SJð Þ ¼ VþV
y
þ � V�Vy�; ð3:174Þ

which represent, respectively, the Pythagorean theorem and an indefinite form in
the space h2 � h2 (these formulas were derived in [24] for a more general problem).

Problem 3.30 Verify the validity of identities (3.173) and (3.174) by direct sub-
stitution of the operator (3.170).

Combining relations (3.171)–(3.174), we find the following equivalent forms of
the energy conservation law (3.167):

1
2

Ih � SSy
� �

¼ Q� VþQV
y
þ ; ð3:175Þ

Im S ¼ �PþV�PVy�; ð3:176Þ

Im SJð Þ ¼ �PþVþPV
y
þ ; ð3:177Þ

whose meaning will be clarified in Sect. 3.10.2.

Problem 3.31 (research) Derive formulas (3.175)–(3.177).
For the second class of the problems of wave scattering by an abrupt waveguide

discontinuity one has to pass to the limit Xint ! 0 in formulas (3.160) and (3.161).
Since there are no sources and sinks of field both in the interior of Xint, and at the
points of geometrical singularities of the boundary, the integrals in the right-hand
sides of (3.160) and (3.161) vanish.

Now, in order to represent the required energy conservation laws, let us intro-
duce the reflection and transmission operator matrices

SR � R11 0
0 R22

� �
; ST � 0 T21

T12 0

� �
; ð3:178Þ

respectively. From the first equality in (3.160) it follows that both of these matrices
are symmetric with respect to the transposition operation: STR ¼ SR, STT ¼ ST . (Note
that, generally speaking, the generalized scattering matrix could be defined by the
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operators (3.178) using the formula S� ¼ SR � ST , since all the relationships
derived in this chapter are valid for both signs).

From the oscillating power theorem and the first Lorentz lemma, we obtain

S2R þ S2T ¼ Ih; ð3:179Þ

SRST þ STSR ¼ 0: ð3:180Þ

In view of these equations, the relation

STU Ih � SyR
� �

¼ Ih þ SRð ÞUSyT ; ð3:181Þ

which arise from the second Lorentz lemma, turns into a corollary of the complex
power theorem

Ih þ SRð ÞU Ih � SyR
� �

¼ STUS
y
T ; ð3:182Þ

and vice versa. Therefore, formula (3.182) can be taken as a generalized form of the
energy conservation law for the step-like discontinuities in a waveguide considered
herein.

It should be mentioned that simple formulas (3.179)–(3.182) cannot be extended
to the case of a waveguide junction with more than two ports.

Problem 3.32 (research) Derive the properties (3.179)–(3.182) and show their
interdependence.

Separating the real and imaginary parts of the operator (3.182), and then sum-
ming and subtracting the obtained expressions, we get the power conservation law
in the equivalent forms

Ih � VR�V
y
R� ¼ 1

2
STS

y
T ; ð3:183Þ

J � VRþ JV
y
Rþ ¼ 1

2
STJS

y
T ; ð3:184Þ

where

VR� ¼ 1
2

� �1=2

Ih � iSRJð Þ: ð3:185Þ

Note that from (3.183) immediately follows the estimate

STk k	
ffiffiffi
2

p
; VR�k k	 1: ð3:186Þ
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Problem 3.33 (research) Derive the energy conservation law in the forms of
(3.183) and (3.184).

Other equivalent forms of the energy conservation law are

1
2

Ih � SRS
y
R

� �
¼ Q� VRþQV

y
Rþ þ 1

2
STPS

y
T ¼ P� VRþPV

y
Rþ þ 1

2
STQS

y
T ;

ð3:187Þ

Im SR ¼ �PþVR�PV
y
R� þ 1

2
STPS

y
T ¼ Q� VR�QV

y
R� � 1

2
STQS

y
T : ð3:188Þ

They can be obtained by combining (3.183), (3.184) and the identities

Ih þ SR S
y
R ¼ VRþV

y
Rþ þVR�V

y
R�; ð3:189Þ

2Im SR Jð Þ ¼ VRþV
y
Rþ � VR�V

y
R�; ð3:190Þ

which are completely analogous to formulas (3.173) and (3.174). From the first
equation in (3.188) it follows that the operatormatrix SR is a quasi-Hermitian operator.

Problem 3.34 (research) Derive the energy conservation law in the forms of
(3.187) and (3.188).

Note that since the operator matrices (3.178) are ‘diagonal’, the relations similar
to (3.179)–(3.188) are also obtained for the initial matrix operators Rpp and Tqp. In
particular, from (3.179), (3.180) formulas (3.66) and (3.67) follow, while (3.181),
(3.182) yields formulas (3.73) and (3.74).

3.9 Universality of the Operator Fresnel Formulas

The operator Fresnel formulas (3.51) identically satisfy the energy conservation
laws derived above, which is easily verified by direct substitution. We will now
show that these energy relations, which are valid for the entire class of problems
considered, in their turn lead to the operator Fresnel formulas.

3.9.1 Step-Like Discontinuity in a Waveguide

Let us rewrite, for completeness and clarity, the energy laws (3.66), (3.67) (or, what
is the same, formulas (3.179), (3.180)) as

Rppð ÞT¼ Rpp; Tqpð ÞT¼ Tpq; ð3:191Þ
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I � Rppð Þ I � Rppð ÞT¼ Tqp Tqpð ÞT ; ð3:192Þ

RppTqp þ RqqTpqð ÞT¼ 0; ð3:193Þ

p; q ¼ 1; 2 and p 6¼ q. We treat equality (3.192) as an equation with respect to the
required reflection and transmission operators. It follows from this equation that the
spectrum points k 2 r Rppð Þ and s 2 r Tqp Tqpð ÞT� �

lie on the algebraic curve

k2 þ s ¼ 1; k; s 2 C ð3:194Þ

(where C is the complex plane), for which we know the solution of the uni-
formization problem in the form of rational functions (see, for example, [25]). Let
us write this solution in the following form:

k ¼ t � 1
tþ 1

; s ¼ 4t

tþ 1ð Þ2 ; t 6¼ �1: ð3:195Þ

Based on the previously mentioned spectral mapping theorem and the first
formula in (3.195), we conclude that there exists a quasi-Hermitian operator Dp

such that its spectral points are t ¼ 1þ kð Þ= 1� kð Þ 2 r Dp
� �

; therefore, the fol-
lowing representation is true

Rp ¼ Dp � I
Dp þ I

! I � Rp ¼ 2 Dp þ I
� ��1

IþRp ¼ 2 Dp þ I
� ��1

Dp

(
ð3:196Þ

(here we have used the notation (3.53)). Substituting the last two expressions into
(3.192), we find

Tqp Tqpð ÞT¼ 2 Dp þ I
� ��1

Dp

h i
2 Dp þ I
� ��1

h i
: ð3:197Þ

Taking into account the symmetry of the reflection operator (3.191), we put
Dp ¼ MMT (or Dp ¼ MTM), where M : l2 ! l2 is some bounded matrix operator.
Then from (3.197) the second Fresnel formula follows:

Tqp ¼ Dp þ I
� ��1

2D0 or Tqp ¼ Dp þ I
� ��1

2�D0: ð3:198Þ

Here, we have introduced the notation D0 ¼ MC and �D0 ¼ MTC. The second
multiplier in these formulas possesses the property CCT ¼ I. So we can immedi-
ately put Dp ¼ D0DT

0 (or Dp ¼ DT
0D0). Now, the bounded matrix operator D0

should be redefined with the use of the complex energy conservation law.
Note that it seems impossible to otherwise distribute the rational functions in

(3.195) since this would result in violation of (3.191) and (3.193).
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Problem 3.35 Verify the last mentioned statement.
Thus the possibility to parameterize the algebraic curve (3.194) by using

single-valued functions (3.195), in this case, ensures the existence of a single
operator of the problem, Dp, which defines the laws of mode reflection and
transmission in the form of (3.196), (3.198).

The obtained result can be formulated as the following statement.

Theorem 3.4 For each problem of mode diffraction by a step-like waveguide dis-
continuity, there exists a matrix-operator model in the form of the operator Fresnel
formulas (3.196) and (3.198), if the reciprocity theorem (Lorentz lemma) and the
oscillating power theorem for this problem hold in the form of (3.191)–(3.193).

Notice that the properties (3.191) and (3.193) of the scattering operators play an
important role in the above reasoning. Namely, these relationships provide a
uniqueness of the solution (3.195) for the problem of uniformization of the curve
(3.194). Again, formula (3.180) relating the reflection and transmission operator
matrices, SR and ST, is of decisive importance as well. Despite the fact that equality
(3.179) also results in the algebraic curve in the form of (3.194), the property
(3.180) does not allow to obtain the Fresnel formulas for these operator matrices.

Problem 3.36 (research) Prove that the operator SR has no Cayley transform. Hint:
show that �1 2 r SRð Þ.

3.9.2 Generalized Operator Fresnel Formulas for Resonant
Discontinuities

Here we will construct the operator model for the problem of a resonant discon-
tinuity in a waveguide Vint 6¼ 0ð Þ by using the developed technique.

The first Lorentz lemma and the oscillating power theorem yield for this problem
two relationships (3.160), which can be rewritten in the form

ST ¼ S; b Ih � Sð Þ Ih � Sð ÞbT ¼
Z
Xint

rk aUþ bU
� �� �2�v2 aUþ bU

� �2n o
ds:

ð3:199Þ

As will be shown in Sect. 3.10.2, the generalized scattering matrix S is a
quasi-Hermitian operator. Therefore, every nonreal point of its spectrum r Sð Þ is an
eigenvalue of finite multiplicity, while all singular spectral elements located on the
real axis [18, 19]. These latter points correspond to the eigenvalues of the closed
boundary value problem for the Helmholtz equation (3.7) in the region Xint (see
Fig. 3.5), and we exclude them from consideration as non-physical ones.

Substituting into (3.199) the eigenvector bk, which corresponds to the eigenvalue
k 2 r Sð Þ of the operator matrix S, we obtain the equality
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1� k2 ¼ s; k; s 2 C; ð3:200Þ

where

s ¼ 1
bk bTk

Z
Xint

rk aUþ bU
� �� �2�v2 aUþ bU

� �2n o
ds: ð3:201Þ

Solution of the uniformization problem for the algebraic curve (3.200) is given
above in the form of rational functions (3.195). Only this solution agrees with the
symmetry property S = ST and, therefore, it is unique.

Consequently, there exists the operator W : h2 ! h2, which possesses by the
eigenvectors bkf g and the spectrum r Wð Þ ¼ 1þ kð Þ= 1� kð Þf g. This single oper-
ator of the problem is related with the desired generalized scattering matrix by the
Cayley transform

W ¼ Ih þ S
Ih � S

$ S ¼ W � Ih
W þ Ih

: ð3:202Þ

From the symmetry of the generalized scattering matrix (3.199) it follows that
WT ¼ W , which is equivalent to the representation W ¼ W0WT

0 (or W ¼ WT
0 W0),

where W0 : h2 ! h2 is a bounded operator that requires redefinition by using the
energy conservation law in the generalized form (3.167).

Problem 3.37 (research) Construct the operator model in the form of (3.202) for
some problem of mode scattering by a resonant discontinuity in a waveguide.

Next, we introduce a new operator matrix by the formula

K ¼ W þ Ihð Þ�12W0; ð3:203Þ

then the second equality in (3.199) takes the form

b K KTbT ¼
Z
Xint

rk aUþ bU
� �� �2�v2 aUþ bU

� �2n o
ds : ð3:204Þ

It follows that the matrix operator K determines the oscillating field in the bulk
of the discontinuity Vint.

Problem 3.38 (yet to be solved) Find the explicit form of the operator K for some
mode diffraction problem.

The resulting matrix-operator model

S ¼ W�Ih
W þ Ih

; W ¼ W0WT
0 ;

K ¼ W þ Ihð Þ�12W0

(
ð3:205Þ
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resembles the operator Fresnel formulas (3.196) and (3.198); moreover, the char-
acteristic equation is valid (compare with formula (3.192)):

S2 þKKT ¼ Ih: ð3:206Þ

The difference is that the formulas for the operator matrices (3.205) have no
scalar analogues. As noted above, we call these equalities the generalized operator
Fresnel formulas.

The obtained result can be formulated as the following statement.

Theorem 3.5 For each problem of mode diffraction in a waveguide transformer
with the coupling cavity Vint 6¼ 0, there exists a matrix-operator model in the form
of the generalized operator Fresnel formulas (3.205), if the reciprocity theorem (the
Lorentz lemma) and the oscillating power theorem (3.199) hold true for this
problem.

3.10 Matrix Scattering Operators

In this section we will determine the main properties of the matrix reflection
operator Rp and the generalized scattering matrix S. For this purpose, we will use a
number of notions and theorems of the theory of bounded operators in the Hilbert
space.

3.10.1 Properties of Reflection and Transmission Operators

The energy conservation law in the form of (3.73), (3.74) (see Sect. 3.4.2) takes a
simple form in terms of the Cayley transform Dp ¼ W Rp

� �
(3.54), which allows

one to explore the basic properties of this operator, and thereby to clarify the basic
properties of the reflection operator Rp ¼ W�1 Dp

� �
.

The substitution of the operator Fresnel formulas (3.51) into (3.73) and (3.74),
which were obtained from the complex power theorem and the second Lorentz
lemma, yields the expressions

D1U1

U1D
y
1

�
¼ D0U2D

y
0 ;

U2D
y
2

D2U2

)
¼ DT

0U1D


0;

D0U2D
y
2 ¼ D1U1D


0

DT
0U1D

y
1 ¼ D2U2D

y
0

;
H � case
E � case

� �
;

ð3:207Þ

DT
0U1 ¼ U2D

y
0 for H � case and D0U2 ¼ U1D



0 for E � case: ð3:208Þ
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Taking into consideration that, by definition, D1 ¼ D0DT
0 and D2 ¼ DT

0D0, we
come to the conclusion that equalities (3.208) form the basis of (3.207).

Problem 3.39 Verify the above statement.
Thus, all the operator relations of the complex power conservation law follow

from the sole condition (3.208), which can be rewritten as

D0 ¼ Uy
1

U1

( )
D


0

U2

Uy
2

� �
;

H � case
E � case

� �
: ð3:209Þ

It is precisely this condition that sets apart the elementary operator D0 from the
entire set of bounded matrix operators acting in the space l2.

For the canonical problem of a step discontinuity in a rectangular waveguide,
considered in Sect. 3.4.1, (3.209) can be given in more detail. Using the following
properties of the portal operator

Ibp
� �1=2

Up ¼ Ibp
� �1=2� �


; Ibp
� ��1=2
� �


Up ¼ Ibp
� ��1=2

; ð3:210Þ

we can write (3.209) in the form

Ib1
� ��1=2

D0 Ib2
� ��1=2

¼ Ib1
� ��1=2

D0 Ib2
� ��1=2

� �

;

H � case
E � case

� �
: ð3:211Þ

Substituting into (3.211) the definition (3.52) of the operator D0, we get

l1; l
T
2

� � ¼ l1; l
T
2

� �

: ð3:212Þ

Thus the fact that the bilinear scalar product (3.212) of the transverse eigen-
functions of regular waveguides is real lies in the basis of the complex power
conservation law (3.73), (3.74) and (3.167).

Let us now clarify the properties of the operator DpUp, p = 1, 2. From the energy
conservation law in the form of (3.207) we obtain

Re DpUp
� �

[ 0; Im DpUp
� �

[ 0: ð3:213Þ

Indeed, taking into account the properties of the unitary portal operator
Up ¼ Qp þ i Pp, p = 1, 2 (see definitions (3.31) and (3.35) in Sect. 3.3), we find
from the first two relationships in (3.207) that
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bRe DpUp
� �

by ¼ d ReUqdy ¼ dQqdy ¼ dþk k2 [ 0

b Im DpUp
� �

by ¼ d ImUqdy ¼ dPqdy ¼ d�k k2 [ 0
;

8b 2 l2; q 6¼ p; d � bD0

bDT
0

;

�
H � case

E � case

� �
:

ð3:214Þ

Thus, the numerical range of the operator DpUp, which is metrically equal to the
operator Dp, lies entirely in the first quadrant of the complex plane. The inequality
Re DpUp
� �

[ 0 determines the accretive operator, while the inequality
Im DpUp
� �

[ 0 means that at the same time this operator is dissipative (regarding
the terminology, see, for example, the book [27] and the Mathematical
Encyclopedia [26]). For such operators, we introduce the term ‘accretive-dissipative
operators’.

Similarly, it follows from (3.207) that the operator DpU
y
p , p = 1, 2 is accretive-

accumulative operator, which means that Re DpU
y
p

� �
[ 0 (accretivity of the

operator DpU
y
p ) and, at the same time, Im DpU

y
p

� �
\0 (accumulativity of DpU

y
p

[27]). In other words, the numerical range of the operator DpU
y
p lies completely in

the fourth quadrant of the complex plane.
Below, we will use the properties of the operator DpUp to prove the fundamental

fact that the operators D1 (H-case) and D2 (E-case) are accretive operators. These
properties for the other two operators D2 (H-case) and D1 (E-case) can be proved in

a similar way with the use of the properties of the operator DpU
y
p ; proof is sug-

gested as an exercise.
In what follows, we omit the subscript p = 1, 2 for simplicity.
Our analysis is based on the following statements, which we formulate for some

bounded operator L.

Lemma 3.5 Re L� 0 if and only if L� a Ið Þ L� a Ið Þy � a2, 8a\0.

Proof For any real value of the parameter a we have

L� a Ið Þ L� a Ið Þy�a2 ¼ LLy � a Lþ Ly
� �

¼ LLy � a 2Re L :

If the left-hand side is nonnegative for 8a\ 0, then

2aRe L 	 LLy ! Re L � 1
2a

LLy:

Passing to the limit for a ! �1, we have Re L � 0. If, conversely, Re L � 0,
then for any a\0 we have
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Re L� 0� 1
2a

LLy ! LLy � a2Re L: h

Lemma 3.6 Suppose ZR ¼def z : Re z� 0f g and M Lð Þ is the numerical range of the
operator L, then M Lð Þ � ZR if and only if

L� k Ið Þ L� k Ið Þy � Re kð Þ2; 8k 62 ZR:

Proof M Lð Þ � ZR if and only if Re L� 0, since bRe L by ¼ Re b L by
� �

. Let k ¼
aþ ib (a and b as usual are real), then we have L� k I ¼ �L� a I, where �L ¼
L� ib I and Re �L ¼ Re L. According to the previous Lemma 3.5 we get

�L� a Ið Þ �L� a Ið Þy � a2; 8a\0 ;

if and only if Re �L� 0: h

Corollary Let L ¼ � i M, then Re L ¼ ImM; and we obtain

i M � k Ið Þ i M � k Ið Þy¼ Mþ i k Ið Þ Mþ i k Ið Þy � Re kð Þ2; 8k 62 ZR ;

if and only if ImM� 0.
Based on the definition of the vector norm (see Appendix A), we can rewrite the

obtained results in the form of the following two-sided implications:

• for k ¼ �a� ib, a[ 0, �1\b\1 we have

Re L� 0 $ L� k Ið ÞbT�� ��2 � a2 bk k2; 8b 2 l2; ð3:215Þ

• for �k ¼ ik ¼ b� i a, a[ 0, �1\b\1 we have

ImM� 0 $ M � �kI
� �

bT
�� ��2 � a2 bk k2; 8b 2 l2: ð3:216Þ

We now use these relations to prove the main result of this section.

Theorem 3.6 The Cayley transform D ¼ W Rð Þ is an accretive operator,
ReD[ 0.

Proof Inequalities (3.213) indicate that the operator DU is accretive-dissipative.
Then, according to (3.215) and (3.216), the following estimates are true

DU � k Ið ÞbTþ
�� ��� a bþk k

DU � ik Ið ÞbT�
�� ��� a b�k k

�
; 8b� 2 l2;
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where k ¼ �a� ib, a[ 0, bþ ¼ bQ and b� ¼ b P. These two equalities together
give

DU � k Ið ÞbTþ
�� ��2 þ DU � ik Ið ÞbT�

�� ��2 � a2 bk k2; 8b 2 l2; ð3:217Þ

since bk k2¼ bþk k2 þ b�k k2. Transform the left-hand side of (3.217) by using the
parallelogram rule to the form

DU � k Ið ÞbTþ
�� ��2 þ DU � ik Ið ÞbT�

�� ��2¼ 1
2

D� k Ið ÞdT�� ��2 þ D� k Ið ÞJ dT�� ��2� �
;

ð3:218Þ

where J ¼ Q� P is the canonical symmetry of the Pontryagin space P ¼ Ql2 [Pl2
and the notation d ¼ bU is used, where U ¼ Q� i P is the unitary portal operator.

Use the following estimate for the right-hand part of equality (3.218):

D� k Ið ÞdT�� ��2 þ D� k Ið ÞJ dT�� ��2 	 2 D� k Ið ÞcT�� ��2; ð3:219Þ

where D� k Ið ÞcTk k ¼ max D� k Ið ÞdTk k; D� k Ið ÞJ dTk kf g. Then, on the basis
of two formulas, (3.217) and (3.218), we obtain the following inequality:

D� k Ið ÞcT�� ��2 � a2 ck k2:

We have taken into account that ck k ¼ dk k ¼ d Jk k ¼ bk k . Thus we found that

D� k Ið ÞcT�� ��� a ck k; 8c 2 l2:

Referring again to the corollary (3.215) of Lemma 3.6, we obtain ReD� 0: h

Corollary The reflection operator is a contraction, Rk k	 1.
Indeed, for the Cayley transform D ¼ W Rð Þ the following relations are true

1
4

I � RRy
I � RyR

� �
¼

Dþ Ið Þ�1

Dy þ I
� ��1

8<:
9=;ReD Dy þ I

� ��1

Dþ Ið Þ�1

8<:
9=;;

i.e., the inequality ReD� 0 is equivalent to RRy 	 I, RyR	 I or

Rk k2¼ RRy
��� ���	 1.

Problem 3.40 (research) Using the similar reasoning, prove that Im J Rð Þ	 0 and
Im RJð Þ	 0.
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3.10.2 Basic Operator Properties of the Generalized
Scattering Matrix

Completing generalization of the previous results, consider mode diffraction in an
H- or E-plane N-port waveguide transformer (N is arbitrary integer). General
configuration of the structure is shown in Fig. 3.6.

We suppose that the resonant volume Vint ¼ Xint � a3 6¼ 0 and the feeding
regular waveguides are uniform along the Cartesian axis that is perpendicular to the
H- or E-plane. The volume Vint is bounded by the metal walls of the coupling
region and the reference planes Rn ¼ Cn � 0; a3ð Þ, n ¼ 1; 2; . . .;N, which are
located in the waveguide arms, and is free from sources/sinks of the field. As
before, we suppose that the device is filled with a homogeneous lossless medium
and all metal walls are perfectly conducting, while the waveguide arms are ter-
minated in matching loads.

Assume that in each of N inputs, the mode composition of the incident field is
described by the infinite row vector of complex amplitudes b nð Þ 2 l2,
n ¼ 1; 2; . . .;N. Then the vector b � b 1ð Þ; b 2ð Þ; . . .; b Nð Þ� 

of the amplitudes of the
given sources belongs to the Hilbert space hN ¼ lN2 (see Appendix A).

Let pn be the number of modes above cutoff in the nth port. The corresponding
orthoprojector we denote as Pn and then use it to create the operator matrix of
projections onto all modes propagating in N ports:

P ¼
P1 0 � � � 0
0 P2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � PN

26664
37775: ð3:220Þ

Fig. 3.6 Geometry of the
planar N-port waveguide
transformer
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According to this definition, P is an operator of finite rank m ¼ Tr Pð Þ ¼ PN
n¼1

pn

(we will assume that m 6¼ 0 unless otherwise stated). The orthoprojector onto all
evanescent modes Q ¼ Ih � P involves, obviously, the orthoprojectors
Qn ¼ I � Pn, n ¼ 1; 2; . . .;N, on the main diagonal.

We will characterize the nth port by the matrix reflection operator Rnn : l2 ! l2
and by the unitary operator Un ¼ Qn þ i Pn. We will also denote the matrix operator
of the mode transmission from pth waveguide into qth waveguide as Tqp : l2 ! l2.

The wave transformer under consideration is fully described by the portal
operator matrix

U ¼
U1 0 � � � 0
0 U2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � UN

26664
37775 ð3:221Þ

and the generalized scattering matrix

S ¼
R11 T21 � � � TN1

T12 R22 � � � TN2

..

. ..
. . .

. ..
.

T1N T2N � � � RNN

2664
3775: ð3:222Þ

These two operator matrices comprise the characteristic operator

G ¼ Ih þ Sð ÞU Ih � Sy
� �

: hN ! hN : ð3:223Þ

All the operators in (3.220)–(3.223) act also in the Pontrjagin space
Pm ¼ P hN [QhN , which is introduced in the same way as in Sect. 3.8. The
canonical symmetry of this space is the operator J ¼ Q� P, for which we have

Jy ¼ J�1 ¼ J.
With the idealizations stated previously, the following fundamental electro-

magnetic laws are valid:

• the first Lorentz lemma, from which the symmetry

ST ¼ S ð3:224Þ

of the generalized scattering matrix follows;
• the oscillating power theorem yielding the relationship
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b Ih � Sð Þ Ih � ST
� �

bT ¼
Z
Xint

rkUV
� �2�v2U2

V

n o
ds; ð3:225Þ

in which UV stands for the total complex amplitude in the region Xint; as before,
rkUV is the gradient of this complex amplitude in the H- or E-plane;

• the complex power theorem and the second Lorentz lemma, which give together
the equality

bĜby ¼ rkUV
�� ��2

L2 Xintð Þ�v2 UVk k2L2 Xintð Þ: ð3:226Þ

With Im v ¼ 0, we have from (3.226) that Gy ¼ G (i.e. the operator G is
self-adjoint), or alternatively, in view of definition (3.223),

ImG ¼ 0 !
P� SPSy ¼ i SQ� QSy

� �
P� SyPS ¼ i QS� SyQ

� �
:

8<: ð3:227Þ

This relationship is the energy conservation law in the most general form, for the
entire class of the mode diffraction problems under consideration.

In applied research, various truncated forms of this law are widely used. One of
its widespread particular forms can be derived from (3.227) as follows. Let us
introduce the operator S0 � P SP, which is obtained from the classical (finite)
scattering matrix of circuit theory by extending it by zeroes to the infinite matrix.
Multiplying (3.227) from the left and right by the orthoprojector P and taking into

account its properties Py ¼ P, P2 ¼ P and PQ ¼ QP ¼ 0, we obtain the desired
result

S0 S
y
0 ¼ Sy0 S0 ¼ P; ð3:228Þ

or, in expanded form, we have

Xpp
s¼ 0ð Þ1

Rpp
sm Rpp

sn

� �
 þ XN
q ¼ 1
q 6¼ p

Xpq
s¼ 0ð Þ1

Tqp
sm Tqp

sn

� �
 ¼ dnm; m; n	 pp; p ¼ 1; 2; . . .N:

ð3:229Þ

Equalities (3.228) imply that the operator S0 is partially isometric in the space hN
(or, what is the same thing, it is an isometry of the subspace PhN). Formula (3.229),
commonly known as the energy conservation law for propagating modes, has been
used in practice since the methods of the microwave network theory are transferred
to waveguide systems.
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Note that separation of diagonal operator blocks of the operator matrix (3.227)
results in a more general expression as compared with (3.229):

Xpp
s¼ 0ð Þ1

Rpp
sm Rpp

sn

� �
 þ XN
q ¼ 1
q 6¼ p

Xpq
s¼ 0ð Þ1

Tqp
sm Tqp

sn

� �
 ¼ dnm; m; n	 pp
0; m[ pp; n	 pp
2ImRpp

nm; n[ pp; 8m;

8<:
ð3:230Þ

where p ¼ 1; 2; . . .;N. This formula is also the well-known generalization of the
energy conservation law onto evanescent modes. (The frequently used special cases
of formula (3.230) can be found, for example, in the book [6].)

It follows from (3.227) that, in particular, the generalized scattering matrix S is
not a unitary operator. The measure of its deviation from unitarity is given by the
formula

1
2

Ih � SSy
� �

¼ Q� VþQV
y
þ ; Vþ � 1

2

� �1=2

Ih � iSJð Þ; ð3:231Þ

which is one more generalized form of the energy conservation law equivalent to
(3.227). Namely, the greater the number of propagating modes in the waveguide
ports, the closer (in the sense of (3.231)) S to a unitary operator, never reaching this
limit.

If the wavenumber v is less than its lower critical value, then there are no
propagating modes in the waveguide ports: P ¼ 0, Q ¼ Ih and equality (3.227) give

Sy ¼ S. In this case, the Hermiticity property of the generalized scattering matrix
corresponds to the closed system. Generally a measure of the deviation of S from
self-adjointness is given by the formula

Im S ¼ �PþV�PVy�; V� � 1
2

� �1=2

Ih þ iSJð Þ; ð3:232Þ

which is one more generalized form of the energy conservation law.

Problem 3.41 (research) Derive the energy conservation law in the form of
(3.231) and (3.232). Hint: the required formulas are combinations of the relations
similar to (3.171)–(3.174), but for the N-port waveguide transformer.

As already noted, the orthoprojector P is the operator of finite rank, since for any
wavenumber v only a finite number of modes can propagate in the waveguide ports.
Then, from (3.232) it follows that the imaginary part of the generalized scattering
matrix Im S belongs to the class of compact operators. This means that the operator
S is quasi-Hermitian [19]. This subclass of non-self-adjoint operators had previ-
ously been investigated in studies [18, 19], the results of which we widely use in
this chapter.
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The quasi-Hermitian character of the generalized scattering matrix means, in
particular, that all the singular elements of its spectrum r Sð Þ lie on the real axis,
while all the nonreal points of this spectrum are the eigenvalues of finite multiplicity
(i.e., the regular elements of the point spectrum) [18, 19]. For the considered
problem, the real points of the spectrum r Sð Þ correspond to the eigenfrequencies of
the homogeneous boundary value problem for the Helmholtz equation in the region
Xint 6¼ 0, which is enclosed along the corresponding reference planes in the
waveguide arms by electric (in the H-case) or magnetic (in the E-case) walls. At
these eigenfrequencies, the right-hand sides of (3.225) and (3.226) vanish:

b Ih � Sð Þ Ih � ST
� �

bT ¼ 0 ! S2 ¼ Ih; ð3:233Þ

bGby ¼ 0 ! G � Ih þ Sð ÞU Ih � Sy
� �

¼ 0 ð3:234Þ

(for the proof of these implications see Problems 3.12 and 3.15 above). Relation
(3.233) together with the symmetry property ST ¼ S make appropriate to introduce
special operators

QS ¼ 1
2 Ih þ Sð Þ

PS ¼ 1
2 Ih � Sð Þ ! QS þPS ¼ Ih

QS � PS ¼ S;

�
ð3:235Þ

which, evidently, possess the properties

QT
S ¼ QS; PT

S ¼ PS; Q2
S ¼ QS; P2

S ¼ PS; QSPS ¼ PSQS ¼ 0: ð3:236Þ

In other words, the operators PS and QS are the complementary projectors (in the

case of Sy ¼ S they become the orthoprojectors and hence PSk k ¼ QSk k ¼ 1).
Since the projector spectrum consists only of two points 0 ; 1f g of infinite multi-
plicity, then from the relationships

S ¼ Ih � 2PS ¼ 2QS � Ih ð3:237Þ

we find that the eigenfrequency of the region Xint corresponds to the points of the
real axis k ¼ �1 or k ¼ þ 1, also of infinite multiplicity.

Problem 3.42 (research) Show that each eigenfrequency of the region Xint cor-
responds to the point k ¼ �1 2 r Sð Þ in the case of the H-plane transformer or the
point k ¼ þ 1 2 r Sð Þ in the E-plane case.

Note that for any operating frequency relations (3.233) and (3.234) characterize
the arbitrary abrupt waveguide discontinuity, for which Xint ¼ 0 by definition. The
above arguments show that in this case the spectrum of the generalized scattering
matrix consists of only two points of infinite multiplicity, r Sð Þ ¼ �1; þ 1f g, lying
on the real axis. The energy conservation law (3.234) written as
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QSUP
y
S ¼ 0 ! QSQP

y
S ¼ �iQSPP

y
S ; ð3:238Þ

shows that in this case PS and/or QS are compact operators, since the orthoprojector
P in the right-hand side of the second equality in (3.238) is an operator of finite
rank. According to (3.237), this means that the generalized scattering matrix S of
the step-like discontinuity in a waveguide can be represented as a sum of unit and
compact operators.

The characteristic property (3.234), G ¼ 0, can also be written in the expanded
form:

Q� SQSy ¼ 1
i

SP� PSy
� �

; ð3:239Þ

or, more compactly, as

V�Vy� ¼ Vy�V� ¼ Ih; Vþ JV
y
þ ¼ Vyþ JVþ ¼ J: ð3:240Þ

Hence, for any abrupt discontinuity in a waveguide, the operator matrix V� is a
unitary operator, while the operator matrix Vþ is a J-unitary operator. Finally, the
addition and subtraction of (3.227) and (3.239) give the representations

1
2

Ih � SSy
� �

¼ �Im SJð Þ; 1
2

J � SyJS
� �

¼ Im Sð Þ; ð3:241Þ

i.e., in the case of an abrupt discontinuity in a waveguide the left-hand sides of these
equations are compact operators.

We now turn to the characteristic operator G. It can be seen from (3.223) that it
makes sense to introduce a linear fractional transformation of the generalized
scattering matrix S. To this end, we eliminate from the frequency axis the eigen-
frequencies of the region Xint, which correspond to the point �1 2 r Sð Þ with the
boundary condition UVjRm

¼ 0, m ¼ 1; 2; . . .;N, and to the point þ 1 2 r Sð Þ pro-
vided that @UV=@~nmð ÞjRm

¼ 0 where ~nm is the outward normal to the corresponding
reference plane Rm, see Fig. 3.6.

Now we can introduce the Cayley transform of the operator S

W� ¼ Ih � S
Ih � S

;
H � case
E � case

� �
; ð3:242Þ

which exists under the restrictions �1 62 r Sð Þ (H-case) and þ 1 62 r Sð Þ (E-case).
In microwave engineering, the following terminology borrowed from the net-

work theory is adopted: Z ¼ Wþ is the generalized impedance matrix, Y ¼ W� is
the generalized admittance matrix, and W� is the generalized immittance matrix.
Note that it is important to remember that the above operator matrices are not
necessarily exist because of the constituent parts of the spectrum r Sð Þ [28].
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For the mode diffraction problem under study, the Cayley transform W� is the
given operator matrix. Having obtained this operator (by using the proposed gen-
eralization of the mode-matching technique or by any other method based on the
modal expansion of the field), we have immediately (i.e., before calculating the
generalized scattering matrix S) the generalized admittance matrix Y (in the case of
H-plane) or the generalized impedance matrix Z (in the case of E-plane) in an
explicit analytic form.

In terms of the Cayley transform (3.242), the characteristic operator (3.223)
takes the form

1
4
G ¼ W� þ Ihð Þ�1 UWy

�
WþU

� �
Wy

� þ Ih
� ��1

;
H � case
E � case

� �
ð3:243Þ

and the energy conservation law (3.227) is

Im W�Uy
WþU

� �
¼ 0;

H � case
E � case

� �
: ð3:244Þ

The last equality can also be equivalently represented as the Cayley transform
property:

W� ¼ U
Uy

� �
Wy

�
U
Uy

� �
;

H � case
E � case

� �
: ð3:245Þ

Note that this relation is similar to the above (3.209); it represents the basic
property of the column vector of the transverse eigenfunctions l and of an infinite
set of mode propagation constants, which forms the basis of the energy conser-
vation law (3.244).

Thus, for the canonical problem of the right-angle bend of a rectangular
waveguide, formula (3.245) can be written in the following form:

@2GD

@~np@~nq
; lq

� �
Rq

; lTp

� �
Rp

¼ @2GD

@~np@~nq
; lq

� �
Rq

; lTp

� �


Rp

; H � case

GN ; lq
� �

Rq
; lTp

� �
Rp

¼ GN ; lq
� �

Rq
; lTp

� �

Rp

; E � case
for 8p; q ¼ 1; 2

ð3:246Þ

(compare with (3.212)). Here GD(N) is the well-known Green function of a rect-
angular coupling region Xint, which satisfies homogeneous Dirichlet (Neumann)
boundary conditions. For this diffraction problem, the basic property (3.246) fol-
lows from the characteristics of traces of the Green function and its second
derivative on the reference planes Rp, p ¼ 1; 2, as well as from the fact that the
functions lp are real-valued. For a discrete set of the wavenumbers that correspond
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to the eigenfrequencies of the region Xint, the Green function is not defined and the
power conservation law (3.244), (3.245) becomes meaningless.

Problem 3.43 (research) Using the generalized mode-matching technique, con-
struct a matrix-operator model for a right-angle bend of a rectangular waveguide in
the form of the generalized operator Fresnel formulas. Derive the corollary of the
energy conservation law in the form of (3.246). Hint: the derivation of the prop-
erties (3.246) is similar to that of (3.212).

Let us multiply (3.244) from the left and right by the row eigenvector bk of the
quasi-Hermitian operator S. Then for the spectrum points s 2 r W�ð Þ we find

Ims ¼ �tg ubð ÞRes; H � case
E � case

� �
; ð3:247Þ

where ub is the argument of the complex number bkUbyk , which, by the properties
of the portal operator, belongs to the first quadrant of the complex plane.
Geometrically, we have the equation of the bundle of lines passing through the
spectrum point s ¼ 0 with the slopes � tg ubð Þ, 0\ub\p=2.

Equation (3.247) implies that if the energy conservation law in the form of
(3.244), (3.245) is valid, then the condition �1 62 r W�ð Þ necessarily fulfills, and
therefore, the following inverse Cayley transform hold true:

S ¼ � Ih �W�
Ih þW�

;
H � case
E � case

� �
: ð3:248Þ

In other words, the solution in the form of (3.248) of each problem of mode
diffraction by the H- or E-plane waveguide discontinuity with the resonant volume
Vint 6¼ 0 exists and is unique for all the wavenumbers, except for the eigenfre-
quencies of the region Xint. The boundedness of the operator A ¼ Ih þW�ð Þ�1

ensures the stability of the solution throughout the frequency axis, except the
vicinities of the eigenfrequencies, where cond Að Þ � Ak k � A�1

�� ��! 1.
We now investigate the localization of the spectrum r Sð Þ of the generalized

scattering matrix. By analogy with the derivation of (3.247), we multiply (3.223)
from the left and right by the row eigenvector bk of the operator matrix S. Thus
obtained from (3.226) equation

1þ kð Þ 1� k
ð ÞbkUbyk ¼ Cb; Cb � rkU
eig
V

��� ���2
L2 Xintð Þ

�v2 Ueig
V

��� ���2
L2 Xintð Þ

ð3:249Þ

yields the system of equalities

1� kj j2¼ Ck

2Im kð Þ ¼ �Ck tg ubð Þ
�

ð3:250Þ
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the right-hand parts of which depend on the parameter Ck � Cb bkUbyk



 


�1

cos ubð Þ,
and Ck\1.

Equations (3.250) give the required localization of the entire spectrum kf g 2
r Sð Þ in the complex plane (Fig. 3.7). In Fig. 3.7, rr stands for the spectral radius of
the operator S, rr 	 Sk khN , ra ¼ csc umin

b

� �
is the radius of the circle centered at the

point a ¼ ctg umin
b

� �
on the imaginary axis, umin

b � min
8bk

ubð Þ, 0\umin
b \p=2; the

positive value b ¼ tg umin
b

	
2

� �
\1 is also marked on this axis.

3.11 Conclusion

In this chapter, we have presented the rigorous solution of the mode-diffraction
problem in operator form using the canonical problem of H- (E-) plane step dis-
continuity in a rectangular waveguide as an example. It has been shown how the
modal expansion of the complex amplitude U g;xð Þ in two regular partial regions
together with the matching condition for tangential components of the electric and
magnetic fields in the aperture of the discontinuity (the mode-matching technique in
the theory of mode diffraction) leads to the matrix models possessing different
properties. Let us outline these models in the sequence in which they appear in the
text above.

The first matrix model is the known infinite SLAE (3.22), the solution of which
—the required vector of the Fourier coefficients—has the form

xp ¼ Apfp; Ap � IþDp
� ��1

; xp; fp 2 l2; p ¼ 1; 2:

Fig. 3.7 Localization of the
spectrum r (S) of the
generalized scattering matrix
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Here, the given operator of the problem, Dp, is bounded in the space l2, but is
not a contraction or a compact operator; besides, it does not meet the known
regularity criteria (see Appendix B). Consequently, the proof of the correctness of
the above-mentioned matrix model remained important for decades. Another
unsolved problem was to justify the applicability of the truncation procedure to the
solution of the infinite SLAE and to determine the convergence conditions for the
approximate solutions.

As was shown above, the key to overcoming these mathematical difficulties is
the integration of an infinite number of the vectors xp into a matrix operator. To
realize this idea we give a new formulation of the mode-diffraction problem, which
leads to a generalization of the widespread version of the mode-matching technique.

The proposed approach, in essence, consists in replacing the unknown Fourier
coefficients in the modal expansion of the field by the elements of the desired matrix
scattering operator. This matrix-operator technique allows one to introduce scat-
tering operators as the unknown values of the mode-matching technique.

Implementing this approach, we observe that the matrix model in the form of an
infinite SLAE is a truncation of the general matrix-operator equation, which results
in the loss of basic information about the properties of both the required solution
and the given operator of the problem. For example, only in the context of this
approach, it was possible to establish the quasi-Hermitian character of the scattering
operators and the given operator of the problem. This means that these operators
belong to the class of non-self-adjoint operators with compact imaginary parts,
which have relatively simple structure of the spectrum. We emphasize that the
quasi-Hermitian character, as well as other revealed important properties of the
operators under study, are a corollary of the energy conservation law.

When describing time-harmonic fields in the domain of complex amplitudes, we
must take into account four basic energy laws: the complex power theorem, the
oscillating power theorem, as well as the first and second Lorentz lemmas. Thus,
using jointly the complex Poynting’s theorem and the second Lorentz lemma [16]
we have derived the energy conservation law in a generalized form—the operator
equality (3.227). The contribution of each of these theorems into the law is quite
clear. The operator relations on the main diagonal of the resultant operator matrix
are the corollary of the complex power theorem, whereas all the off-diagonal
operator blocks follow from the second Lorenz lemma.

Since the complex Poynting theorem and the second Lorentz lemma form the
full list of basic electromagnetic laws concerning a complex power flux, we argue
that the derived forms of the energy conservation law (3.227), (3.231) and (3.232)
are maximum complete in this sense for the considered range of problems. They
can also be interpreted as the generalized optical theorem in operator form, which is
proved for mode scattering in lossless reciprocal waveguides.

The second matrix model (3.51) is the Fresnel formulas for the reflection and
transmission operators
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Rp ¼ I � 2Ap; Tqp ¼ 2Ap
D0 for q ¼ 2
DT

0 for q ¼ 1

�
; p 6¼ q; p ¼ 1; 2:

For this model, we have rigorously proved that the given operator of the problem
Dp ¼ A�1

p � I is accretive (ReDp [ 0), the entire spectrum of the reflection oper-

ator r Rp
� �

lies strictly inside the unit disc, and that all nonreal points of the
spectrum are the eigenvalues of finite multiplicity. Based on the known properties
of the Cayley transform, it has been shown that the reflection operator is a con-
traction, Rp

�� ��\1, while the amplitude operator Ap is an accretive contraction,

ReAp [ApA
y
p [ 0.

The operator Fresnel formulas appear as a solution to the problem of mode
diffraction by an abrupt discontinuity in a waveguide (i.e., the waveguide discon-
tinuity with zero volume, Vint ¼ 0). If we assume that there exists the unique
operator Dp, which is determined by the problem geometry and is
frequency-dependent (the given operator of the problem), then the existence of the
Fresnel formulas for the required scattering operators follows from the above
mentioned fundamental energy laws.

Combination of the reflection and transmission matrix operators of the problem
into one operator matrix has enabled us to obtain the compact third model, which
represents the generalized scattering matrix as

S ¼ 2 A1=2 � J;
H � case
E � case

� �
; A � A1 0

0 A2

� �
; J � I 0

0 �I

� �
;

and has some good points (in particular, this matrix model is remarkably stable).
Application of the generalized mode-matching technique to the analysis of

waveguide transformers with coupling cavity leads to the solution in the form of the
operator Fresnel formula for the generalized scattering matrix:

S ¼ W � Ih
W þ Ih

:

To construct the solution in such general form, it is sufficient that the operator of
the problem, W, exists and the energy conservation laws (3.160), (3.167) hold. The
correctness of the generalized operator Fresnel formulas, �1 62 r Wð Þ, is also a
corollary of the energy conservation law.

The energy conservation law also allows one to reveal the important properties
of the generalized scattering matrix S of a waveguide transformer, including the
main characteristics of its entire spectrum. We have found that the generalized
scattering matrix is a quasi-Hermitian and non-unitary operator, and the rank of its
non-Hermiticity is equal to the total number of propagating waves in the ports of the
waveguide transformer. The essential spectrum of the operator matrix S lies on the
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real axis at the points �1, and each nonreal point of its spectrum is an eigenvalue of
finite multiplicity.

In the context of the generalized mode-matching technique, the convergence of
projection approximations to the true solution of the problem has been established
analytically. It has been proved that the complex energy conservation law and the
second Lorentz lemma in the operator form provide, for any number of the modes
taken into account in waveguide ports, the mandatory fulfillment of the require-
ments that ensure the unconditional convergence of projection approximations.

Using as an example the operator Fresnel formulas for a canonical problem of
wave diffraction by an H- or E-plane step discontinuity in a rectangular waveguide,
we studied the characteristics of convergence of finite-dimensional approximations,
including the estimation of the rate of convergence. For the considered matrix
model, the problem of estimation of the approximation error was reduced to the
study of the projection convergence (or P-convergence) of the finite known
matrices to a given matrix operator. As a result, we have rigorously shown the
absence of relative or conditional convergence of the approximations. We have also
established analytically that the condition number of the truncated matrix equation
is a uniformly bounded value, which ensures stability of numerical computations.

It has been found that for the canonical problem of a step discontinuity in a
waveguide, the compliance with the Mittra rule when truncating the field expan-
sions in the partial regions implies the fastest strong convergence to zero of a
certain matrix operator. The mentioned matrix operator is generated by the differ-
ence of the traces of the Green functions of these regions on the aperture of the
discontinuity and it determines a part of the approximation error.

In this chapter, we used a new formulation of the mode diffraction problem to
overcome significant mathematical difficulties in the rigorous justification of the
mode-matching technique. On the other hand, when implementing this approach,
we used the concepts and methods of the modern operator theory in the Hilbert
space and Pontryagin space with indefinite metric. To derive the operator Fresnel
formulas and their approximations we applied the techniques that generalize the
classical Galerkin procedure and the theory of projection approximations.

The developed and rigorously justified generalized mode-matching technique
should be considered as alternative to the standard version of this method widely
used in computational electrodynamics.

Appendix A: Vectors and Their Spaces

Vectors in the Hilbert Spaces l2, ~l2 and ~~l2

The linear space l2 consists of infinite-dimensional row vectors a ¼ a1; a2; . . .ð Þ,
b ¼ b1; b2; . . .ð Þ, etc., with complex elements am 2 C, bm 2 C, m ¼ 1; 2; 3; . . .. The
norm ak kl22 R1 of a vector in l2 is defined by ak k2l2¼

P
m amj j2 and its value
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measures the length of the vector. By definition, the space l2 consists only of the
vectors of finite length: ak kl2\1. Here, C is the plane of complex variable and R1

is the one-dimensional Euclidean space.
Addition is defined element by element: aþ b ¼ a1 þ b1; a2 þ b2; . . .ð Þ. The sum

belongs to the space l2 because aþ bk kl2 	 ak kl2 þ bk kl2\1 for 8a; b 2 l2.
Multiplication by a scalar k is defined element by element: ka ¼ ka1; ka2; . . .ð Þ.
Consequently, kak kl2¼ kj j ak kl2\1.

The conjugate space consists of infinite-dimensional column vectors

ay ¼ a
1; a


2; . . .

� �T , by ¼ b
1; b


2; . . .

� �T , etc., with the same linear operations and

the norm ay
��� ���

‘2
� ak k‘2 , by

��� ���
‘2
� bk k‘2 , and so on. Here the dagger ‘y’ denotes

Hermitian conjugation, the asterisk ‘
’ is for complex conjugation, and the
superscript T denotes transposition.

The scalar product is defined by a; by
� �

� a � by ¼Pm amb
m 2 C. This mul-

tiplication generates a finite complex number, because a; by
� �


 


	 ak kl2 bk kl2\1

for 8a; b 2 l2. Two vectors a and b are said to be orthogonal if a � by ¼ 0 and

ak kl2 ; bk kl2 � 0, where ak kl2¼
ffiffiffiffiffiffiffiffiffiffiffi
a � ay

p
, bk kl2¼

ffiffiffiffiffiffiffiffiffiffiffi
b � by

p
.

The matrix product ay � b ¼ Aab generates a matrix operator (i.e. an infinite
matrix)

Aab ¼
a
1b1 a
1b2 � � �
a
2b1 a
2b2 � � �
..
. ..

. . .
.

0B@
1CA;

which is bounded in l2. Specifically, the matrix operator Aaa is positive, Aaa � 0,
and belongs to the class of nuclear operators in l2, because
Tr Aaað Þ ¼Pm amj j2 ¼ ak k2\1.

By definition, the spaces ~l2 and ~~l2 are the complex Hilbert spaces for
infinite-dimensional vectors a; b; . . . with the scalar products

a; by
D E

�
� a I�1

l by ¼
X1
m¼1

m�1amb


m 2 C;

~l2
~~l2

� �
;

respectively, and with the norm

ak k�¼ a; ay
D E1=2

�
¼

X1
m¼1

m�1 amj j2
" #1=2

\1;
~l2
~~l2

� �
;

and also
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a; by
D E

�




 


	 ak k�� bk k�\1; aþ bk k� 	 ak k� þ bk k�\1; for 8a; b 2
~l2
~~l2

� �
:

Here, the diagonal matrix operator Il � m dnm
� 1

m;n¼1 is given by its eigenvalues

m ¼ 1; 2; 3; . . . and is positively defined, Il [ 0.

Sometimes the spaces ~l2 and
~~l2 are referred to as ‘energetic spaces of the matrix

operator I�1
l ’.

Vectors in the Hilbert Space hN � lN2 , N� 2

The linear space hN consists of row vectors a ¼ a 1ð Þ; a 2ð Þ; . . .; a Nð Þ� �
,

b ¼ b 1ð Þ; b 2ð Þ; . . .; b Nð Þ� �
, etc., with n vector elements a nð Þ 2 l2, b nð Þ 2 l2,

n ¼ 1; 2; . . .;N.
Addition and multiplication by a scalar k are defined in a natural way:

aþ b ¼ a 1ð Þ þ b 1ð Þ; a 2ð Þ þ b 2ð Þ; . . .; a Nð Þ þ b Nð Þ� �
, ka ¼ ka 1ð Þ; ka 2ð Þ; . . .; ka Nð Þ� �

.
Hermitian conjugation gives the column vectors

ay ¼ a 1ð Þ� �y
; a 2ð Þ� �y

; . . .; a Nð Þ� �y� �T

, by ¼ b 1ð Þ� �y
; b 2ð Þ� �y

; . . .; b Nð Þ� �y� �T

,

etc., with the same linear operations.
The scalar product in the space hN and the norm ak khN\1 are defined by the

equalities

a; by
� �

� a � by ¼
XN
n¼1

a nð Þ; b nð Þ
� �y� �

2 C and

ak k2hN� a � ay ¼
XN
n¼1

a nð Þ�� ��2 2 R1;

respectively; therefore, a; by
� �


 


	 ak khN bk khN\1, 8a; b 2 hN .

The usual matrix product ay � b ¼ Aab generates an N � N operator matrix

Aab ¼ Ai j
� N

i;j¼1 that is bounded in hN , because each operator Ai j � Aa ið Þb jð Þ ¼
a ið Þ� �y�b jð Þ : l2 ! l2 is the bounded one. Specifically, the operator matrix Aaa ¼
Aa ið Þa jð Þf gNi;j¼1 is positive, Aaa [ 0; its trace Tr Aaað Þ ¼ PN

n¼1
Aa nð Þa nð Þ is a nuclear

operator in l2.
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Operator Vectors in the Space VN � l2 ! l2ð ÞN , N� 2

Let us define the operator vectors A ¼ A 1ð Þ;A 2ð Þ; . . .;A Nð Þ� �
,

B ¼ B 1ð Þ;B 2ð Þ; . . .;B Nð Þ� �
, etc., with N bounded in l2 matrix operators

A nð Þ;B nð Þ : A nð Þ�� ��
l2
\1; B nð Þ�� ��

l2
\1, n ¼ 1; 2; . . .;N.

Addition and multiplication by a scalar k are defined element by element:
AþB ¼ A 1ð Þ þB 1ð Þ;A 2ð Þ þB 2ð Þ; . . .;A Nð Þ þB Nð Þ� 

,

kA ¼ kA 1ð Þ; kA 2ð Þ; . . .; kA Nð Þ� 
.

Hermitian conjugation gives the operator vectors

Ay ¼ A 1ð Þ� �y
; A 2ð Þ� �y

; . . .; A Nð Þ� �y� �T

, By ¼ B 1ð Þ� �y
; B 2ð Þ� �y

; . . .; B Nð Þ� �y� �T

,

etc., with the same linear operations.

The scalar product in VN is defined by A;By
� �

� ABy ¼PN
n¼1 A

nð Þ B nð Þ� �y
,

this product represents a bounded operator in l2. Specifically,

AAy
��� ���

l2
	 PN

n¼1 A nð Þ�� ��2
l2
\1.

The matrix product of operator vectors AyB ¼ D generates the operator matrix

D ¼ Di j
� N

i;j¼1 that is bounded in VN , since each operator Di j ¼ A ið Þ� �y
B jð Þ : l2 !

l2 is bounded.

Pontryagin Space Pm with Indefinite Metric

A sesquilinear Hermitian Q-form a; by
h i

� P1
m¼1

lm am b


m 2 C, lm 2 R1, 8a; b 2 G

defines the indefinite metric (or Q-metric) of the linear vector space G, with the real

number a; ay
h i

being negative, or positive, or equal to zero as a 6¼ 0. Therefore, in

the space with indefinite metric there is no isolated element, with respect to which
the distance to any other element is measured.

The Hilbert space G with Q-metric (or the Krein space) allows a canonical
decomposition G ¼ PþG� P�G via two mutually complementary orthoprojectors
Pþ and P�. For all vectors a 2 G we have

a ¼ aþ þ a�; a; ay
� �

� ak k2¼ aþk k2 þ a�k k2; a; ay
h i

¼ aþk k2� a�k k2 ;

where aþ 2 PþG, a� 2 P�G and the ratio aþk k= a�k k is arbitrary. All the norms
defined by different canonical decompositions are equivalent.
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A linear operator J ¼ Pþ � P� is the canonical symmetry of the Krein space G,

which is self-adjoint, J ¼ Jy, involutive, J�1 ¼ J , and unitary, J �1 ¼ Jy.
The basic relationships between the Q-metric and the Hilbert metric a; by

� �
in

the Krein space are a; by
� �

¼ aJ; by
h i

, a ; by
h i

¼ aJ; by
� �

, 8a; b 2 G. By defi-

nition, the Pontryagin space Pm is the Krein space G ¼ PþG� P�G with finite
rank of indefiniteness m ¼ min dim PþGð Þ; dim P�Gð Þf g\1.

Suppose that a; b 2 l2 and the Q-form is

a; by
h i

¼
Xm
m¼1

am b


m �

X1
m¼mþ 1

am b


m ;

then l2 ¼ Pm (L.S. Pontryagin, 1944).

Appendix B: Infinite Systems of Linear Algebraic Equations

Below we give a brief reference on the theory of infinite systems of linear algebraic
equations (SLAE), composed of the information available to us and, therefore, not
claiming to be exhausted.

For the infinite system of linear equations in a matrix form under consideration
IþAð Þ x ¼ b the following notation is used: I is the identity operator (idem-factor);
A ¼ amnf g1m;n¼1 is the given matrix operator; x ¼ xnf g1n¼1 is the required vector;
b ¼ bmf g1m¼1 is the given vector of the right-hand side.

The main classes of matrix operators are related by inclusions:

of finite rank � nuclear � Hilbert� Schmidt � compact � bounded:

By the truncation technique we understand truncation of the matrix operator to
the matrix ANN of size N � N, obtaining the solution of the corresponding
finite-dimensional system and finding the limit for this solution as N ! 1.

Early Results of the Theory

The truncation technique is applicable if the following conditions are met:

•
P1

m;n¼1 amnj j\1, b 2 l1 � b ¼ bmf g1m¼1: supm bmj j\1� 
(then there exists a

‘normal determinant’ of the system, det IþAð Þ ; G.W. Hill, 1886);
•
P1

m¼1 ammj j\1,
P1

m;n¼1 amnj j2\1, b 2 l2 (i.e., A : l2 ! l2 is a nuclear
operator; Helge von Koch, 1913);
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•
P1

m;n¼1 amnj j2\1, b 2 l2 (the solution of this ‘Hilbert system’ reduces to the
solution of the truncated N � N system and some number of infinite systems
with small (in norm) operators; the number N is found from the conditionP1

m;n¼N þ 1 amnj j2\1; L.V. Kantorovich, 1948).

Completely Regular Systems

By definition, the system is completely regular if the matrix operator A : l1 ! l1 is
a strict contraction: Ak kl1¼ sup

m

P1
n¼1 amnj j ¼ q\1, b 2 l1.

The system can be solved by the method of successive approximations (or the
method of simple iteration). For a completely regular system, a principal solution
x 2 l1 (i.e., the solution obtained when starting with a zero initial approximation)
exists and is unique. The difference between the principal solution and kth suc-
cessive approximation is estimated by the inequality x� x kð Þ�� ��

l1

	 qk 1� qð Þ�1 bk kl1 , i.e., strong convergence occurs in the space l1.
A completely regular SLAE is solvable by the truncation technique that provides

a weak convergent in the space l1 and convergent in the norm of the space l1, if x,
b belong to the space c0 � l1 of the sequences converging to zero (sufficient
condition; Yu.I. Gribanov, 1964).

Regular Systems

By definition, the system is regular if a given matrix operator has unit norm (the
limiting case of completely regular systems): Ak kl1¼ sup

m

P1
n¼1 amnj j ¼ 1, b 2 l1.

The principal solution of this system can be found by the truncation technique (L.V.
Kantorovich 1948) or by the successive approximation method (P.O. Kuzmin,
1934) if the Kojalovich condition is met: bmj j 	 const � 1�P1

n¼1 amnj j� �
, 8m.

We have the following criterion of uniqueness of a bounded solution: if a regular
system satisfies the Kojalovich condition and transforms back to a regular system
(or, possibly, completely regular) with the transformation xn ¼ xnyn, such that
xn 6¼ 0, 8n and lim

n!1xn ¼ 1, then the initial infinite SLAE has a unique solution

(P.S. Bondarenko, 1951).
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B.M. Kojalovich (1932) considered the dual infinite SLAE

xm ¼ P1
n¼1

amnyn þ fm

ym ¼ P1
n¼1

amnxn þ gm

8>><>>:
with the following restrictions: (i) amn; amn � 0 , 8m; n; (ii) P1

n¼1 amn ¼ 1� u mð Þ,P1
n¼1 amn ¼ 1� w mð Þ (these are the generalized conditions of regularity with the

possibility lim
m!1u mð Þ ¼ lim

m!1w mð Þ ¼ 0); (iii) fmj j 	Ku mð Þ, gmj j 	Kw mð Þ, K ¼
const (Kojalovich conditions).

Conditions (ii) and (iii) ensure existence of the principal solution xnj j 	K, 8n. At
the same time: (1) the principal solution can be found by the truncation technique or
by the method of simple iteration; (2) if fm; gm � 0, then xn; yn � 0; (3) the values of
the first unknowns in the principal solution determine the limits for all other
unknown values, i.e., there exist the values p and q such that for m > p and
n > q we have h	 xm 	H and h	 yn 	H.

If the following additional conditions are met:

• (iv) there exist numbers l; L� 0 such that

l	 amn
u mð Þ 	 L; l	 amn

w mð Þ 	 L for 8n\m and 8m;

• (v) there exists h[ 0 such that

u mð Þþ
Xp
n¼1

amn � h; m ¼ pþ 1ð Þ; pþ 2ð Þ; . . .; 2p and

w mð Þþ
Xp
n¼1

amn � h for 8p
;

then xnf gn and ynf gn are the elements of the space c � l1 of convergent
sequences and the ‘law of asymptotic expressions’ lim

n!1 xn ¼ lim
n!1 yn ¼ r 6¼ 0

holds true.

Quasi-regular Systems

By definition, the system is quasi-regular if a given matrix operator satisfies the
following conditions:

• A : l1 ! l1 is the bounded matrix operator, Ak kl1¼ sup
m

P1
n¼1 amnj j\1;

3 Operator Fresnel Formulas in the Scattering … 181



•
P1

n¼1 amnj j\1 for m ¼ N;Nþ 1; . . .;
• bmj j 	 const � 1�P1

n¼N amnj j� �
;m�N:

The question of the existence of the solution reduces to the question of the
existence of the solution of the truncated N � N SLAE. If the solutions of both the
regular system

xm ¼
X1
n¼N

amnxn þ bm þ
XN�1

n¼1

amnxn

 !
; m ¼ N;Nþ 1; . . .

and the truncated system are unique, then the solution of the initial system is unique
as well (L.V. Kantorovich, 1936).

Matrix Contractions

By definition, a matrix operator is a strict contraction in space

lp � a ¼ amf g1m¼1:
P1
m¼1

amj jp\1
� �

, 1	 p\1, if its norm is less than unity:

Ak klp\1.

If b 2 lp, this infinite SLAE is uniquely solvable by the truncation technique,
converging by the norm to the solution x 2 lp (Yu.I. Gribanov, 1964). For the case
of the space l1, see Sect. 3.B.2.

The Schur Test and the Young Inequality. Hilbert Matrices

To prove the boundedness of a given matrix operator A : l2 ! l2 and to estimate
analytically its norm, one often uses the following sufficient condition known as the
Schur test.

Suppose, amn � 0, 8m; n and xm; ym [ 0, 8m, while a and b are the positive
numbers such that

P1
m¼1 amnxm 	 ayn, 8n and

P1
n¼1 amnyn 	 bxm, 8m. Then A :

l2 ! l2 is the bounded operator of norm Ak k	 ffiffiffiffiffiffi
ab

p
.

Another condition is known as the Young inequality: suppose

l ¼ max Ak kl1 ; Ak kl1
n o

\1, where Ak kl1¼ sup
n

P1
m¼1 amnj j and

Ak kl1¼ sup
m

P1
n¼1 amnj j, then the operator A : lp ! lp, p� 1 is bounded and

Ak klp 	 l.

It has been proved by using the Schur test that the Hilbert-Hankel matrix

operator A ¼ mþ nþ 1ð Þ�1
n o1

m;n¼0
has norm Ak kl2 	 p.
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If akf g1k¼0 is the sequence of the Fourier coefficients of an essentially bounded
function f xð Þ in the basis exp i 2 pkxð Þf g1k¼0, x 2 0; 1ð Þ, then the matrix operator
defined by the elements am�nf g1m;n¼0 is bounded on the pair of spaces l2 ! l2. The
norm of this operator coincides with the norm of the function f xð Þ. From this
follows the boundedness of the Hilbert-Toeplitz matrix operator

A ¼ m� nð Þ�1
n o1

m;n¼0; m 6¼n
.

Compact (Completely Continuous) Operators

According to the Schur theorem, if the condition lim
m!1

P1
n¼1 amnj j ¼ 0 is satisfied,

the operator A is continuous on the pair of spaces l1 ! c0 (c0 � l1 is the space of
the numerical sequences converging to zero) and completely continuous on the pair
of spaces l1 ! l1.

A uniquely solvable SLAE with a compact matrix operator A is solvable by the
truncation technique, which converges in the norm of the space l only if b 2 l½ � (by
definition, l1½ � ¼ c0, lp

� � ¼ lp for 1	 p\1) and otherwise converges weakly
(Yu.I. Gribanov, 1964).

The Kojima and Toeplitz Matrix Operators

Suppose that for a given matrix operator the following conditions are satisfied:

• the operator A : l1 ! l1 is bounded, Ak kl1¼ sup
m

P1
n¼1 amnj j\1;

• the ‘convergence by columns’ of the form lim
m!1 amn ¼ an, 8n takes place.

Then,

• for an � 0, 8n the operator A : c0 ! c0 is bounded (the necessary and sufficient
condition);

• if for some n we have an 6¼ 0, then the operator A : c0 ! c is bounded (the
necessary and sufficient condition).

In the general case, the Kojima-Schur theorem can be formulated as follows.
Suppose, the limit lim

m!1
P1

n¼1 amn ¼ a exists, then we have a ‘K-matrix’—the

bounded operator A : c ! c (the necessary and sufficient condition).
At the same time, if lim

n!1 xn ¼ d and �x ¼ A x, then

lim
n!1�xn ¼ a dþ P1

n¼1 an xn � dð Þ, whence it follows that for a ¼ 1 and an ¼ 0, 8n
the transformation �x ¼ A x preserves the limit of the sequence xnf g1n¼1 (the
Toeplitz-Silverman theorem). In this case, we have a ‘T-matrix’ and the
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transformation �x ¼ A x is called regular. Notice that T-matrix is not a compact
operator (the Steinhaus theorem).

A sum and a product of K-matrices exist and are K-matrices. K-matrices form an
algebra, in which the addition is associative and commutative, while multiplication
is distributive and associative, but, in general, is not commutative. The necessary
(but not sufficient) condition for K-matrix to be a compact operator is the equalityP1

n¼1 an ¼ a.

If K-matrix allows the representation amn ¼ mð Þ�1f n=mð Þ, m; n ¼ 1; 2; 3; . . .
where the function f xð Þ 2 L1 0;1ð Þ is monotonic for large x, then the following
exact formulas are valid:

lim
m!1

X1
n¼1

amn ¼ lim
m!1

1
m

X1
n¼1

f
n
m

� �
¼
Z1
0

f xð Þdx;

lim
m!1

X1
n¼1

amnj j ¼ lim
m!1

1
m

X1
n¼1

f
n
m

� �


 


 ¼ Z1
0

f xð Þj jdx:

An illustrative example of T-matrix gives the operator with positive elements

amn ¼ m1�sns

n2 þm2h2 ; 0\s\1; h2 [ 0; m; n ¼ 1; 2; 3; . . .

Indeed, for t ¼ n=m we have amn ¼ mð Þ�1ts t2 þ h2� ��1
, and hence

lim
m!1

X1
n¼1

amn ¼
Z1
0

tsdt

t2 þ h2 ¼
p h s�1

2 cos p s=2ð Þ 6¼ 0 :

Considering that lim
m !1 amn ¼ 0, upon the correspondent normalization, we

identify a T-matrix.

Appendix C: Operator Forms of the Energy Conservation
Law Under Time Reversal

In this chapter, we have used the SI system of units and the time dependence is
given by the factor exp �ix tð Þ, where x is the angular frequency.

Practicians often use a time dependence in the form of exp þ ix tð Þ. For such a
choice, we give below some useful forms of the generalized energy conservation
law in terms of the generalized scattering matrix. In the presence of a resonant
volume Vint 6¼ 0, they are as follows:
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• P� S P Sy � 2Im SQð Þ ¼ 0; P� SyP S� 2Im QSð Þ ¼ 0;

• Ih � VþV
y
þ ¼ J � V� J Vy�; Ih � VyþVþ ¼ J � Vy�J V�;

• 1
2 Ih � S Sy
� �

¼ Q� V�QVy�;
• Im S ¼ P� Vþ PVyþ ;
• Im S Jð Þ ¼ P� V�PVy�:

For an arbitrary abrupt discontinuity in a waveguide (Vint ¼ 0) we have:

• P� S P Sy � 2Im SQð Þ ¼ 0; Q� SQ Sy þ 2Im S Pð Þ ¼ 0;

• VþV
y
þ ¼ VyþVþ ¼ Ih; V�J Vy� ¼ Vy�J V� ¼ J:

All these forms are applicable for N-port waveguide transformer.
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Chapter 4
Two-Dimensionally Periodic Gratings:
Pulsed and Steady-State Waves
in an Irregular Floquet Channel

Lyudmyla Velychko

Abstract This chapter presents a series of analytical results that serves as theoretical
basis for numerical study of electromagnetic wave transformations in
two-dimensionally periodic structures. Among them is the solution of the important
problem of truncation of the computational space by artificial boundaries. The author
establishes and analyzes fundamental characteristics of transient and steady-state fields
in the regular part of the rectangular Floquet channel. For the first time, strict corollaries
of Poynting’s complex power theorem and Lorentz’s lemma (the energy-balance
equations and reciprocity relations) is presented for two-dimensionally periodic gratings
of finite thickness illuminated by transverse-electric or transverse-magnetic plane
waves. The method of transport operators (a space-time analogue of the generalized
scattering matrices), developed in the chapter, can significantly reduce the computa-
tional resources required for calculation of wave scattering by multilayer periodic
structures or by the structures on thick substrates. A number of questions concerning
the spectral theory of two-dimensionally periodic gratings is answered—it is the result,
which is essential for a reliable physical analysis of the resonant scattering of pulsed
and monochromatic waves.

4.1 Introduction

Rigorous models of one-dimensionally periodic diffraction gratings made their
appearance in the 1970s, when the corresponding theoretical problems had been
considered in the context of classical mathematical disciplines such as mathematical
physics, computational mathematics, and the theory of differential and integral
equations. Periodic structures remain the subject of considerable attention. They are
among the most called-for dispersive elements that provide efficient polarization,
frequency, and spatial signal selection. Fresh insights into the physics of wave
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processes in diffraction gratings are being implemented into radically new devices
operating in gigahertz, terahertz, and optical ranges, into new materials with
inclusions ranging in size from micro- to nanometers, and into novel circuits for
in situ measurements.

However, the potentialities of the classical two-dimensional models [1–7] are
limited. The modern theory and practice invite further investigation of
three-dimensional, vector models of periodic structures in increasing frequency. It
is quite reasonable to base these models on the time-domain (TD) representations
and implement them numerically by the mesh methods [8, 9]. It follows from the
well-known facts: (i) TD-approaches are free from the idealizations inherent in the
frequency domain; (ii) they are universal owing to minimal restrictions imposed on
geometrical and material parameters of the objects under study; (iii) they allow
explicit computational schemes, which do not require inversion of any operators
and call for an adequate run time when implementing on present-day computers;
(iv) they result in the data easy convertible into a standard set of frequency-domain
characteristics. It should be also noted that in recent years both local and nonlocal
exact absorbing conditions (EACs) have been derived and tested [6, 7]. They allow
one to replace an open initial boundary value problem that occurs in electrody-
namic theory of gratings with a closed problem. In addition, one can invoke the
efficient fast Fourier transform accelerated finite-difference and finite-element
schemes with EACs for characterizing different resonant structures [10, 11].

It is evident that the numerical algorithm solving a grating problem must be
stable and convergent, computational error must be predictable, while the numerical
results are bound to be unambiguously treated in physical terms. To comply with
these requirements, it is important to theoretically justify each stage of the modeling
process (formulation of boundary value or initial boundary value problems,
determination of the correctness classes for them, analysis of singularities of the
analytical continuation for the solutions of model boundary value problems into a
domain of complex-valued frequencies, etc.).

Here we present a series of analytical results that provide the necessary theo-
retical background for the numerical solution of the initial boundary value problems
associated with two-dimensionally periodic structures. First, we give general
information required to formulate a model electrodynamic problem in a grating
theory. Then, in Sects. 4.3 and 4.4, we dwell on the correct and efficient truncation
of the computational space when solving the problems of spatial-temporal wave
transformations in two-dimensionally periodic structures. Some important charac-
teristics and properties of transient and steady-state fields in the regular parts of the
rectangular Floquet channel are discussed in Sects. 4.5 and 4.7. In Sect. 4.6, the
method of transformation operators (the TD-analog of the generalized scattering
matrix method) is described; by applying this method, we can optimize the com-
putational resources used in the calculation of multi-layered periodic structures or
structures on thick substrates. In Sect. 4.8, we give the elements of the spectral
theory for two-dimensionally periodic gratings in view of its importance in physical
analysis of resonant scattering of pulsed or monochromatic waves by open periodic
resonators.
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4.2 Fundamental Equations, Domain of Analysis, Initial
and Boundary Conditions

Space-time and space-frequency transformations of electromagnetic waves in
diffraction gratings, waveguides, open resonators, radiators, etc. are described by
the initial boundary value problems and boundary value problems for Maxwell’s
equations. In this chapter, we will consider the problems of the electromagnetic
theory of gratings resulting from the following system of Maxwell’s equations for
the waves propagating in stationary, locally inhomogeneous, isotropic, and fre-
quency dispersive media [9, 12]:

rot~Hðg; tÞ ¼ g�1
0

@ ~Eðg; tÞþ veðg; tÞ �~Eðg; tÞ
� �

@t
þ vrðg; tÞ �~Eðg; tÞþ~jðg; tÞ;

ð4:1Þ

rot~E g; tð Þ ¼ � g0
@ ~H g; tð Þþ vl g; tð Þ � ~H g; tð Þ� �

@t
: ð4:2Þ

Here, g ¼ x; y; zf g is a point in the three-dimensional space R3; x, y, and z are the
Cartesian coordinates; ~E g; tð Þ ¼ Ex;Ey;Ez

� �
and ~H g; tð Þ ¼ Hx;Hy;Hz

� �
are the

electric and magnetic field vectors; g0 ¼ l0=e0ð Þ1=2 is the intrinsic impedance of
free space; e0 and l0 are the permittivity and permeability of free space;~j g; tð Þ is the
extraneous current density vector; ve g; tð Þ, vl g; tð Þ, and vr g; tð Þ are the electric,
magnetic, and specific conductivity susceptibilities; f1ðtÞ � f2ðtÞ ¼R
f1 t � sð Þf2 sð Þ ds stands for the convolution operation. We use the SI system of

units. From here on we will use the term ‘time’ for parameter t, which is measured
in meters and has the meaning of the product of the natural time and the velocity of
light in vacuum.

With no frequency dispersion in the domain G � R3, for the points g 2 G we
have

ve g; tð Þ ¼ d tð Þ e gð Þ � 1½ �; vl g; tð Þ ¼ d tð Þ l gð Þ � 1½ �; vr g; tð Þ ¼ d tð Þr gð Þ;

where d tð Þ is the Dirac delta-function; e gð Þ, l gð Þ, and r gð Þ are the relative per-
mittivity, relative permeability, and specific conductivity of a locally inhomoge-
neous medium, respectively. Then (4.1) and (4.2) take the form:

rot~H g; tð Þ ¼ g�1
0 e gð Þ @

~E g; tð Þ
@t

þ r gð Þ~E g; tð Þþ~j g; tð Þ; ð4:3Þ

rot~E g; tð Þ ¼ � g0l gð Þ @
~H g; tð Þ
@t

: ð4:4Þ
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In vacuum, where we have e gð Þ ¼ l gð Þ ¼ 1 and r gð Þ ¼ 0, they can be rewritten
in the form of the following vector problems [6]:

D� grad div� @2

@ t2

h i
~E g; tð Þ ¼ ~FE g; tð Þ; ~FE g; tð Þ ¼ g0

@
@ t
~j g; tð Þ

@
@ t
~H g; tð Þ ¼ � g�1

0 rot~E g; tð Þ ;

(
ð4:5Þ

or

D� @2

@ t2

h i
~H g; tð Þ ¼ ~FH g; tð Þ; ~FH g; tð Þ ¼ � rot~j g; tð Þ

g�1
0

@
@ t
~E g; tð Þ ¼ rot~H g; tð Þ �~j g; tð Þ :

(
ð4:6Þ

By D we denote the Laplace operator. As shown in [6], the operator grad div~E
can be omitted in (4.5) due to the following reasons. By denoting the induced and
external electric charge volume density through q1ðg; tÞ and q2ðg; tÞ, we can write
grad div~E ¼ e�1

0 gradðq1 þ q2Þ. In a homogeneous medium, where e and r are
positive and non-negative constants, respectively, we have
q1ðg; tÞ ¼ q1ðg; 0Þ expð�tg0r=eÞ, and if q1ðg; 0Þ ¼ 0, then q1ðg; tÞ ¼ 0 for any
t[ 0. The remaining term e�1

0 gradq2 can be moved to the right-hand side of the
wave equation in (4.5) as a part of the function defining current sources of the
electric field.

To formulate the initial boundary value problem for hyperbolic equations (4.1)–
(4.6), one should add initial conditions at t ¼ 0 and boundary conditions on the
external and internal boundaries of the domain of analysis Q [13]. In 3-D vector or
scalar problems, the domain Q is a part of the R3-space bounded by the surfaces S
that are the boundaries of the domains intS, filled with a perfect conductor:
Q ¼ R3nint S. In the so-called open problems, the domain of analysis may extend to
infinity along one or more spatial coordinates.

The set of boundary conditions for the initial boundary value problems is for-
mulated in the following way [12]:

• the tangential component of the electric field vector is zero on a perfectly
conducting surface S at all times t

~Etg g; tð Þ��g2S¼ 0 for t� 0; ð4:7Þ

• the normal component of the magnetic field vector on S is equal to zero
(~Hnr g; tð Þ��g2S¼ 0), and the function ~Htg g; tð Þ��g2S defines the so-called surface

currents generated on S by the external electromagnetic field;
• on the surfaces Se;l;r, where material properties of the medium have disconti-

nuities, as well as all over the domain Q, the tangential components ~Etg g; tð Þ and
~Htg g; tð Þ of the electric and magnetic field vectors must be continuous;
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• in the vicinity of singular points of the boundaries of Q, i.e. the points, where the
tangents and normals are undetermined, the field energy density must be spa-
tially integrable;

• if the domain Q is unbounded and the field ~E g; tð Þ; ~H g; tð Þ� �
is generated by the

sources that have bounded supports in Q, then for any finite time interval 0; Tð Þ
one can construct a closed virtual boundary M � Q sufficiently removed from
the sources such that

~E g; tð Þ; ~H g; tð Þ� ���
g2M; t2 0;Tð Þ¼ 0: ð4:8Þ

The initial state of the system is determined by the initial conditions at t ¼ 0.
The reference states ~E g; 0ð Þ and ~H g; 0ð Þ in system (4.1), (4.2) or in system (4.3),
(4.4) are the same as ~E g; 0ð Þ and @~E g; tð Þ�@t� ���

t¼0 (
~H g; 0ð Þ and @~H g; tð Þ�@t� ���

t¼0)
in the differential forms of the second order (in terms of t), to which (4.1), (4.2) or
(4.3), (4.4) are transformed if the vector ~H (vector ~E) is eliminated (see, for
example, system (4.5), (4.6)). Thus, (4.5) should be complemented with the fol-
lowing initial conditions

~E g; 0ð Þ ¼ ~u gð Þ; @~E g; tð Þ
@t

����
t¼0

¼ ~w gð Þ; g 2 �Q. ð4:9Þ

The functions ~u gð Þ, ~w gð Þ, and ~F g; tð Þ (we will call them the instantaneous and
current source functions) usually have limited support in the closure of the domain
Q. It is the practice to divide the current sources into hard and soft ones [9]: soft
sources do not have material supports and thus they are not able to scatter elec-
tromagnetic waves. Instantaneous sources are obtained from the pulsed wave
~Ui g; tð Þ exciting an electrodynamic structure: ~u gð Þ ¼ ~Ui g; 0ð Þ and
~w gð Þ ¼ @ ~Ui g; tð Þ�@t� ����

t¼0
. The pulsed signal ~Ui g; tð Þ itself should satisfy the

corresponding wave equation and the causality principle. It is also important to
demand that the pulsed signal has not yet reached the scattering boundaries by the
moment t ¼ 0.

The latter is obviously impossible if infinite structures (for example, gratings) are
illuminated by the plane pulsed waves that propagate in the direction other than the
normal to certain infinite boundary. Such waves are able to run through a part of the
scatterer’s surface by any moment of time. As a result, a mathematically correct
modeling of the process becomes impossible: the input data required for the initial
boundary value problem to be set are defined, as a matter of fact, by the solution of
this problem.
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4.3 Time Domain: Initial Boundary Value Problems

The vector problem describing transient states of the field nearby the gratings,
whose geometry is presented in Fig. 4.1, can be written in the form

rot~H g; tð Þ ¼ g�1
0

@ ~E g;tð Þþ ve g;tð Þ�~E g;tð Þ½ �
@t þ vr g; tð Þ �~E g; tð Þþ~j g; tð Þ;

rot~E g; tð Þ ¼ � g0
@ ~H g;tð Þþ vl g;tð Þ�~H g;tð Þ½ �

@t ; g ¼ x; y; zf g 2 Q; t[ 0
~E g; 0ð Þ ¼ ~uE gð Þ; ~H g; 0ð Þ ¼ ~uH gð Þ; g 2 �Q

~Etg g; tð Þ��g2S ¼ 0; ~Hnr g; tð Þ��g2S¼ 0; t� 0:

8>>>><>>>>:
ð4:10Þ

Here, �Q is the closure of Q; veðg; tÞ, vlðg; tÞ, and vrðg; tÞ are piecewise con-
tinuous functions and the surfaces S are assumed to be sufficiently smooth. From
this point on, it will be also assumed that the continuity conditions for tangential
components of the field vectors are satisfied, if required. The domain of analysis
Q ¼ R3nint S occupies a great deal of the R3-space. The problem formulated for
that domain can be resolved analytically or numerically only in two following
cases:

• The problem (4.10) degenerates into a conventional Cauchy problem (int S ¼ ;,
the medium is homogeneous and nondispersive, while the supports of the

functions ~Fðg; tÞ, ~uðgÞ, and ~wðgÞ are bounded). With some inessential restric-
tions for the source functions, the classical and generalized solutions of the

Fig. 4.1 Geometry of a
two-dimensionally periodic
grating
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Cauchy problem do exist; they are unique and described by the well-known
Poisson formula [13].

• The functions ~Fðg; tÞ, ~uðgÞ, and ~wðgÞ have the same displacement symmetry as
the periodic structure. In this case, the domain of analysis can be reduced to
QN ¼ g 2 Q : 0\x\lx; 0\y\ly

� �
, by adding to problem (4.10) periodicity

conditions [7] on the lateral surfaces of the rectangular Floquet channel
R ¼ g 2 R3 : 0\x\lx; 0\y\ly

� �
.

The domain of analysis can also be reduced to QN in a more general case. The
objects of analysis are, in this case, not quite physical (complex-valued sources and
waves). However, through simple mathematical transformations, all the results can
be presented in the customary, physically correct form. There are several reasons (to
one of them we have referred at the end of Sect. 4.2) why the modeling of phys-
ically realizable processes in the electromagnetic theory of gratings should start
with the initial boundary value problems for the images f Nðg; t;Ux;UyÞ of the
functions f ðg; tÞ describing the actual real-valued sources:

f g; tð Þ ¼
Z1
�1

Z1
�1

~f z; t;Ux;Uy
� 	

expð2piUx
x
lx
Þ expð2piUy

y
ly
ÞdUxdUy

¼
Z1
�1

Z1
�1

f Nðg; t;Ux;UyÞdUxdUy:

ð4:11Þ

From (4.11) it follows that

f N
@f N

@x


 �
xþ lx; y; z; t;Ux;Uy
� 	 ¼ e2piUx f N

@f N

@x


 �
x; y; z; t;Ux;Uy
� 	

;

f N
@f N

@y


 �
x; yþ ly; z; t;Ux;Uy
� 	 ¼ e2piUy f N

@f N

@y


 �
x; y; z; t;Ux;Uy
� 	

;

or, in other symbols,

D f N
� �

xþ lx; yð Þ ¼ e2piUxD f N
� �

x; yð Þ;

D f N
� �

x; yþ ly
� 	 ¼ e2piUyD f N

� �
x; yð Þ:

The use of the sources f Nðg; t;Ux;UyÞ satisfying the foregoing conditions and
superposition principle truncates the domain of analysis to the domain QN , which is
a part of the Floquet channel R. Hence we can rewrite problem (4.10) in the form
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rot~HN g; tð Þ ¼ g�1
0

@ ~EN g;tð Þþ ve g;tð Þ�~EN g;tð Þ½ �
@t

þ vr g; tð Þ �~EN g; tð Þþ~jN g; tð Þ;
rot~EN g; tð Þ ¼ �g0

@ ~HN g;tð Þþ vl g;tð Þ�~HN g;tð Þ½ �
@t ; g 2 QN ; t[ 0

~EN g; 0ð Þ ¼ ~uN
E gð Þ; ~HN g; 0ð Þ ¼ ~uN

H gð Þ; g 2 �QN

D ~EN ~HN
� 	� �

lx; yð Þ ¼ e2piUxD ~EN ~HN
� 	� �

0; yð Þ for 0� y� ly;
D ~EN ~HN

� 	� �
x; ly
� 	 ¼ e2piUyD ~EN ~HN

� 	� �
x; 0ð Þ for 0� x� lx;

and ~EN
tg g; tð Þ

���
g2S

¼ 0; ~HN
nr g; tð Þ��g2S¼ 0; t� 0 ;

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð4:12Þ

~E g; tð Þ ¼
Z1
�1

Z1
�1

~EN g; t;Ux;Uy
� 	

dUxdUy ;

~H g; tð Þ ¼
Z1
�1

Z1
�1

~HN g; t;Ux;Uy
� 	

dUxdUy :

ð4:13Þ

It is known [6–8] that initial boundary value problems for the above discussed
equations can be formulated such that they are uniquely solvable in the Sobolev
space W1

2 QT
� 	

, where QT ¼ Q� 0;Tð Þ and 0� t� T\1 (the observation
interval). On this basis, we will suppose in the subsequent discussion that the
problem (4.12) for all t 2 0; T½ � has also a generalized solution from the space
W1

2 QN;T
� 	

and that the uniqueness theorem is true in this space. Here symbol ‘�’
stands for the direct product of two sets, 0; Tð Þ and 0; T½ � are open and closed
intervals, Wn

m Gð Þ is a set of all elements ~f gð Þ from the space Lm Gð Þ whose gen-
eralized derivatives up to the order n inclusive also belong to Lm Gð Þ, Lm Gð Þ is the
space of the functions ~f gð Þ ¼ fx; fy; fz

� �
(for g 2 G), such that the functions

fx gð Þj jm, fy gð Þ�� ��m, and fz gð Þj jm are integrable on the domain G.

4.4 Exact Absorbing Conditions for the Rectangular
Floquet Channel

In this section, we present analytical results relative to the truncation of the com-
putational space in open 3-D initial boundary value problems of the electromagnetic
theory of gratings. In Sect. 4.3, by passing on to some special transforms of the
functions describing physically realizable sources, the problem for infinite gratings
have been reduced to that formulated in the rectangular Floquet channel R or, in
other words, in the rectangular waveguide with quasi-periodic boundary conditions.

Now we perform further reduction of the domain QN to the region QN
L ¼

g 2 QN : zj j\L
� �

(all the sources and inhomogeneities of the Floquet channel R
are supposedly located in this domain). For this purpose the exact absorbing
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conditions [6, 7, 10, 14, 15] for the artificial boundaries L	 (z ¼ 	L) of the domain
QN

L will be constructed such that their inclusion into (4.12) does not change the
correctness class of the problem and its solution ~ENðg; tÞ, ~HNðg; tÞ.

From here on we omit the superscripts N in (4.12). By applying the technique
similar to that described in [14, 15], represent the solution ~Eðg; tÞ of (4.12) in the
closure of the domains A ¼ g 2 R : z[ Lf g and B ¼ g 2 R : z\� Lf g in the
following form:

~E g; tð Þ ¼
X1

n;m¼�1
~u	nm z; tð Þlnm x; yð Þ; x; yf g 2 �Rz; t� 0; ð4:14Þ

where the superscript ‘+’ corresponds to z� L and ‘–’ to z� � L, and the following
notation is used: Rz ¼ 0\x\lxð Þ � 0\y\ly

� 	
; lnm x; yð Þf g

(n;m ¼ 0;	1;	2; . . .) is the complete in L2 Rzð Þ orthonormal system of the
functions lnm x; yð Þ ¼ exp ianxð Þexp ibmyð Þ� ffiffiffiffiffiffiffi

lxly
p

; an ¼ 2p Ux þ nð Þ=lx,
bm ¼ 2p Uy þm

� 	�
ly, and k2nm ¼ a2n þ b2m. The space-time amplitudes ~u	nm z; tð Þ

satisfy the equations

� @2

@t2 þ @2

@z2 � k2nm

h i
~u	nm z; tð Þ ¼ 0; t[ 0

~u	nm z; 0ð Þ ¼ 0; @
@t~u

	
nm z; tð Þ��t¼0¼ 0

(
ð4:15Þ

for z� L and z� � L. Equations (4.14) and (4.15) are obtained by separating
variables in the homogeneous boundary value problems for the equation
D� @2

�
@ t2

� �
~E g; tð Þ ¼ 0 (see formula (4.5)) and taking into account that in the

domains A and B we have grad div~E g; tð Þ ¼ 0 and ~FE g; tð Þ ¼ 0. It is also assumed
that the field generated by the current and instantaneous sources located in QL has
not yet reached the boundaries L	 by the moment of time t ¼ 0.

For the solutions~u	nm z; tð Þ of the vector problems (4.15), as well as in the case of
the scalar problems [14, 15], we can write

~u	nm 	L; tð Þ ¼ 

Z t

0

J0 knm t � sð Þ½ �~u	0
nm 	L; sð Þds; t� 0: ð4:16Þ

The above formula represents nonlocal EACs for the space-time amplitudes of
the field ~E g; tð Þ in the cross-sections z ¼ 	L of the Floquet channel R. The exact
nonlocal and local absorbing conditions for the field ~E g; tð Þ on the artificial
boundaries L	 follow immediately from (4.16) and (4.14):
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~Eðx; y;	L; tÞ ¼ 

X1

n;m¼�1

Z t

0

J0 knm t � sð Þ½ �
8<:

�
Zlx
0

Zly
0

@~E ~x;~y; z; sð Þ
@z

������
z¼	L

l�nm ~x;~yð Þd~xd~y

264
375ds

9>=>;lnm x; yð Þ ;

x; yf g 2 �Rz; t� 0

ð4:17Þ

and

~E x; y;	L; tð Þ ¼ 2
p

Zp=2
0

@ ~W	
E x; y; t;uð Þ

@t
du; x; yf g 2 �Rz; t� 0; ð4:18aÞ

@2

@t2 � sin2 u @2

@x2 þ @2

@y2

 �h i
~W	

E x; y; t;uð Þ ¼ 
@~E g;tð Þ
@z

���
z¼	L

; x; yf g 2 Rz; t[ 0

~W	
E x; y; t;uð Þ��t¼0¼

@~W	
E x;y;t;uð Þ
@t

���
t¼0

¼ 0; x; yf g 2 �Rz

D ~W	
E

� �
lx; yð Þ ¼ e2piUxD ~W	

E

� �
0; yð Þ for 0� y� ly and

D ~W	
E

� �
x; ly
� 	 ¼ e2piUyD ~W	

E

� �
x; 0ð Þ for 0� x� lx; t� 0 :

8>>>>><>>>>>:
ð4:18bÞ

Here, ~u	0
nmð	L; sÞ ¼ @~u	nmðz; sÞ=@z

��
z¼	L, J0 . . .ð Þ is the zero-order Bessel func-

tion, the superscript ‘�’ stands for the complex conjugation operation, ~W	
E x; y; t;uð Þ

are some auxiliary functions, where the numerical parameter u lies in the range
0�u� p=2.

It is obvious that the magnetic field vector ~Hðg; tÞ of the pulsed waves ~Uðg; tÞ ¼
~E g; tð Þ; ~H g; tð Þ� �

outgoing towards the domains A and B satisfies similar boundary

conditions on L	. The boundary conditions for ~E g; tð Þ and ~H g; tð Þ (nonlocal or
local) taken together reduce the computational space for the problem (4.12) to the
domain QL (a part of the Floquet channel R) that contains all the sources and
obstacles.

Now suppose that in addition to the sources~j g; tð Þ, ~uE gð Þ, and ~uH gð Þ, there exist
sources~jA g; tð Þ, ~uA

E gð Þ, and ~uA
H gð Þ located in A and generating some pulsed wave

~Ui g; tð Þ ¼ ~Ei g; tð Þ; ~Hi g; tð Þ� �
being incident on the boundary Lþ at times t[ 0.

The field ~Ui g; tð Þ is assumed to be nonzero only in the domain A. Since the
boundary conditions (4.17), (4.18a, 4.18b) remain valid for any pulsed wave out-
going through L	 towards z ¼ 	1 [14, 15], then the total field ~E g; tð Þ; ~H g; tð Þ� �

is
the solution of the initial boundary value problem (4.12) in the domain QL with the
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boundary conditions (4.17) or (4.18a, 4.18b) on L� and the following conditions for
the artificial boundary Lþ

~Esðx; y; L; tÞ ¼ �
X1

n;m¼�1

Z t

0

J0 knm t � sð Þ½ �
8<:

�
Zlx
0

Zly
0

@~Es ~x;~y; z; sð Þ
@z

������
z¼L

l�nm ~x;~yð Þd~xd~y

264
375ds

9>=>; lnm x; yð Þ ;

x; yf g 2 �Rz; t� 0

ð4:19Þ

or

~Es x; y; L; tð Þ ¼ 2
p

Zp=2
0

@ ~Ws
E x; y; t;uð Þ
@t

du; x; yf g 2 �Rz; t� 0; ð4:20aÞ

@2

@t2 � sin2 u @2

@x2 þ @2

@y2

 �h i
~Ws

E x; y; t;uð Þ ¼ �@~Es g;tð Þ
@z

���
z¼L

; x; yf g 2 Rz; t[ 0

~Ws
E x; y; t;uð Þ��t¼0¼

@~Ws
E x;y;t;uð Þ
@t

���
t¼0

¼ 0; x; yf g 2 Rz

D ~Ws
E

� �
lx; yð Þ ¼ e2piUxD ~Ws

E

� �
0; yð Þ for 0� y� ly and

D ~Ws
E

� �
x; ly
� 	 ¼ e2piUyD ~Ws

E

� �
x; 0ð Þ for 0� x� lx; t� 0 :

8>>>>><>>>>>:
ð4:20bÞ

Here, ~Us g; tð Þ ¼ ~Es g; tð Þ; ~Hs g; tð Þ� � ¼ ~U g; tð Þ � ~Ui g; tð Þ (g 2 A, t[ 0) is the
pulsed wave outgoing towards z ¼ þ1. It is generated by the incident wave
~Ui g; tð Þ (‘reflection’ from the virtual boundary Lþ ) and the sources~j g; tð Þ, ~uE gð Þ,
and ~uH gð Þ.

4.5 Some Important Characteristics of Transient Fields
in the Rectangular Floquet Channel

For numerical implementation of the computational schemes involving boundary
conditions like (4.19) or (4.20a, 4.20b), the function ~Ui g; tð Þ for t 2 0; T½ � and its
normal derivative with respect to the boundary Lþ are to be known. To obtain the
required data for the wave ~Ui g; tð Þ generated by a given set of sources~jA g; tð Þ,
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~uA
E gð Þ, and ~uA

H gð Þ, the following initial boundary value problem for a regular
hollow Floquet channel R is to be solved:

� @2

@t2 þD
h i ~Ei

~Hi


 �
¼ g0@~j

A
�
@tþ e�1

0 gradqA2
�rot~jA


 �
¼ ~FA

E
~FA
H


 �
;

g ¼ x; y; zf g 2 R; t[ 0

@~Ei g; tð Þ�@t��t¼0¼ g0rot~H
i g; 0ð Þ

@~Hi g; tð Þ�@t��t¼0¼ �g�1
0 rot~Ei g; 0ð Þ

( )
¼ ~wA

E
~wA
H

( )
;

~Ei g; 0ð Þ
~Hi g; 0ð Þ


 �
¼

~uA
E

~uA
H

( )
; g 2 �R

D ~Ei ~Hi
� 	� �

lx; yð Þ ¼ e2piUxD ~Ei ~Hi
� 	� �

0; yð Þ for 0� y� ly and

D ~Ei ~Hi
� 	� �

x; ly
� 	 ¼ e2piUyD ~Ei ~Hi

� 	� �
x; 0ð Þ for 0� x� lx; t� 0 :

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

ð4:21Þ

The function qA2 g; tð Þ here determines the volume density of foreign electric
charge.

First we determine the longitudinal components Ei
z and Hi

z of the field ~Ei; ~Hi
� �

at all points g of the domain R for all times t[ 0. Let us consider the scalar initial
boundary value problems following from (4.21):

� @2

@ t2 þD
h i Ei

z

Hi
z

( )
¼

FA
z;E

FA
z;H

8<:
9=;; g 2 R; t[ 0

Ei
z g; 0ð Þ

Hi
z g; 0ð Þ

( )
¼

uA
z;E

uA
z;H

8<:
9=;;

@Ei
z g; tð Þ�@t��t¼0

@Hi
z g; tð Þ�@t��t¼0

( )
¼

wA
z;E

wA
z;H

8<:
9=;; g 2 �R

D Ei
z Hi

z

� 	� �
lx; yð Þ ¼ e2piUxD Ei

z Hi
z

� 	� �
0; yð Þ for 0� y� ly and

D Ei
z Hi

z

� 	� �
x; ly
� 	 ¼ e2piUyD Ei

z Hi
z

� 	� �
x; 0ð Þ for 0� x� lx; t� 0 :

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð4:22Þ

By separating the transverse variables x and y in (4.22), represent the solution of
the problem as

Ei
z g; tð Þ

Hi
z g; tð Þ

( )
¼

X1
n;m¼�1

vnm z;Eð Þ z; tð Þ
vnm z;Hð Þ z; tð Þ

( )
lnm x; yð Þ: ð4:23Þ

To determine the scalar functions vnm z;Eð Þ z; tð Þ and vnm z;Hð Þ z; tð Þ, we have to invert
the following Cauchy problems for the one-dimensional Klein-Gordon equations:
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� @2

@t2 þ @2

@z2 � k2nm

h i vnm z;Eð Þ z; tð Þ
vnm z;Hð Þ z; tð Þ

( )
¼

FA
nm z;Eð Þ

FA
nm z;Hð Þ

( )
;

t[ 0; �1\z\1
vnm z;Eð Þ z; 0ð Þ
vnm z;Hð Þ z; 0ð Þ

( )
¼

uA
nm z;Eð Þ

uA
nm z;Hð Þ

( )
; @

@ t

vnm z;Eð Þ z; tð Þ
vnm z;Hð Þ z; tð Þ

( )�����
t¼0

¼
wA
nm z;Eð Þ

wA
nm z;Eð Þ

( )
;

�1\z\1; n;m ¼ 0;	1;	2; . . . :

8>>>>>>>><>>>>>>>>:
ð4:24Þ

Here FA
nm z;Eð Þ, u

A
nm z;Eð Þ, w

A
nm z;Eð Þ and FA

nm z;Hð Þ, u
A
nm z;Hð Þ, w

A
nm z;Hð Þ are the amplitudes

of the Fourier transforms of the functions FA
z;E, u

A
z;E, w

A
z;E and FA

z;H , u
A
z;H , w

A
z;H in the

basic set lnm x; yð Þf gn;m.
Let us continue the functions vnm z;Eð Þ z; tð Þ, vnm z;Hð Þ z; tð Þ and FA

nm z;Eð Þ, F
A
nm z;Hð Þ by

zero on the semi-axis t\0 and pass on to the generalized formulation of the Cauchy
problem (4.24) [13]:

B knmð Þ
vnm z;Eð Þ z; tð Þ
vnm z;Hð Þ z; tð Þ

" #
� � @2

@ t2
þ @2

@ z2
� k2nm

� � vnm z;Eð Þ z; tð Þ
vnm z;Hð Þ z; tð Þ

( )

¼
FA
nm z;Eð Þ

FA
nm z;Hð Þ

8<:
9=;� d 1ð Þ tð Þ

uA
nm z;Eð Þ

uA
nm z;Hð Þ

8<:
9=;� d tð Þ

wA
nm z;Eð Þ

wA
nm z;Hð Þ

8<:
9=; ¼

fnm z;Eð Þ

fnm z;Hð Þ

( )
;

�1\z\1; �1\t\1; n;m ¼ 1;	2;	3; . . . ;

ð4:25Þ

where d tð Þ and d mð Þ tð Þ are the Dirac delta-function and its derivative of the order
m. Taking into account the properties of the fundamental solution G z; t; kð Þ ¼
� 1=2ð Þ v t � zj jð ÞJ0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p� 	
of the operator BðkÞ [6, 14, 15] (v tð Þ is the

Heaviside step function), the solutions vnm z;Eð Þ z; tð Þ and vnm z;Hð Þ z; tð Þ of (4.25) can be
written as

vnm z;Eð Þ z; tð Þ
vnm z;Hð Þ z; tð Þ

( )
¼ G z; t; knmð Þ �

fnm z;Eð Þ

fnm z;Hð Þ

( )

¼ � 1
2

Zt� z�xj j

�1

Z1
�1

J0 knm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � sð Þ2� z� xð Þ2

q� �264
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�
FA
nm z;Eð Þ

FA
nm z;Hð Þ

( )
� d 1ð Þ tð Þ

uA
nm z;Eð Þ

uA
nm z;Hð Þ

( )
� d tð Þ

wA
nm z;Eð Þ

wA
nm z;Hð Þ

( ) !
dxds

#
;

�1\z\1; t� 0; n;m ¼ 1;	2;	3; . . . :

ð4:26Þ

Relations (4.23) and (4.26) completely determine the longitudinal components
of the field ~Ei; ~Hi

� �
.

Outside the bounded domain enclosing all the sources, in the domain G � R,
where the waves generated by these sources propagate freely, the following rela-
tions [6, 15] are valid:

~Ei ¼ @2UE

@x@z � @2UH

@y@t

 �
~xþ @2UE

@y@z þ @2UH

@x@t

 �
~yþ @2UE

@z2 � @2UE

@t2

 �
~z

g0~H
i ¼ @2UE

@y@t þ @2UH

@x@z

 �
~xþ � @2UE

@x@t þ @2UH

@y@z

 �
~yþ @2UH

@z2 � @2UH

@t2

 �
~z :

8<: ð4:27Þ

Here,

UE;H g; tð Þ ¼
X1

n;m¼�1
uE;Hnm z; tð Þlnm x; yð Þ ð4:28Þ

are the scalar Borgnis functions such that D� @2
�
@t2

� �
@UE;H g; tð Þ=@t½ � ¼ 0.

Equations (4.23), (4.26)–(4.28) determine the field ~Ei; ~Hi
� �

at all points g of the
domain G for all times t[ 0 provided that knm 6¼ 0 for all n and m. The opposite
case requires special consideration. Really, since at the time point t ¼ 0 the domain
G is undisturbed, then we have D� @2

�
@t2

� �
UE;H ¼ 0 (g 2 G, t[ 0). Hence, in

view of (4.27), (4.28), it follows:

Ez ¼ @2UE

@z2
� @2UE

@t2
¼ � @2UE

@x2
þ @2UE

@y2

� �
¼

X1
n;m¼�1

k2nmu
E
nmlnm;

g0Hz ¼ @2UH

@z2
� @2UH

@t2
¼ � @2UH

@x2
þ @2UH

@y2

� �
¼

X1
n;m¼�1

k2nmu
H
nmlnm

and (see representation (4.23))

uEnm z; tð Þ ¼ knmð Þ�2vnm z;Eð Þ z; tð Þ; uHn z; tð Þ ¼ g0 knmð Þ�2vnm z;Hð Þ z; tð Þ: ð4:29Þ

Hence the functions UE;H g; tð Þ as well as the transverse components of the field
~Ei; ~Hi
� �

are determined.
The foregoing suggests the following important conclusion: the fields generated

in the reflection zone (the domain A) and transmission zone (the domain B) of the
periodic structure are uniquely determined by their longitudinal (directed along z-

200 L. Velychko



axis) components which can be represented in the following form (see also for-
mulas (4.14) and (4.23)). For the incident wave we have

Ei
z g; tð Þl
Hi

z g; tð Þ

( )
¼

X1
n;m¼�1

vnm z;Eð Þ z; tð Þ
vnm z;Hð Þ z; tð Þ

( )
lnm x; yð Þ; g 2 �A; t� 0; ð4:30Þ

for the reflected wave ~Us g; tð Þ (which coincides with the total field ~U g; tð Þ if
~Ui g; tð Þ � 0) we have

Es
z g; tð Þ or Ez g; tð Þ

Hs
z g; tð Þ or Hz g; tð Þ

( )
¼

X1
n;m¼�1

uþ
nm z;Eð Þ z; tð Þ

uþ
nm z;Hð Þ z; tð Þ

8<:
9=;lnm x; yð Þ; g 2 �A; t� 0 ;

ð4:31Þ

and for the transmitted wave (coinciding in the domain B with the total field
~U g; tð Þ) we can write

Ez g; tð Þ
Hz g; tð Þ

( )
¼

X1
n;m¼�1

u�nm z;Eð Þ z; tð Þ
u�nm z;Hð Þ z; tð Þ

( )
lnm x; yð Þ; g 2 �B; t� 0: ð4:32Þ

In applied problems, the most widespread are situations where a periodic
structure is excited by one of the partial components of TE-wave (with Ei

z g; tð Þ ¼ 0)
or TM-wave (with Hi

z g; tð Þ ¼ 0) [7]. Consider, for example, a partial wave of order
pq. Then we have

~Ui g; tð Þ ¼ ~Ui
pq Hð Þ g; tð Þ : Hi

z g; tð Þ ¼ vpq z;Hð Þ z; tð Þlpq x; yð Þ

or

~Ui g; tð Þ ¼ ~Ui
pq Eð Þ g; tð Þ : Ei

z g; tð Þ ¼ vpq z;Eð Þ z; tð Þlpq x; yð Þ:

The excitation of this kind is implemented in our models in the following way.
The time function vpq z;Hð Þ L; tð Þ or vpq z;Eð Þ L; tð Þ is defined on the boundary Lþ : This
function determines the width of the pulse ~Ui g; tð Þ, namely, the frequency range
K1;K2½ � such that for all frequencies k from this range (k ¼ 2p=k, k is the wave-
length in free space) the value

c ¼ ~vpq z;H or Eð Þ L; kð Þ�� ��
max

k2 K1;K2½ �
~vpq z;H or Eð Þ L; kð Þ�� �� ;

where ~vpq z;H or Eð Þ L; kð Þ is the spectral amplitude of the pulse vpq z;H or Eð Þ L; tð Þ,
exceeds some given value c ¼ c0. All spectral characteristics ~f ðkÞ are obtainable
from the temporal characteristics f ðtÞ by applying the Laplace transform
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~f ðkÞ ¼
Z1
0

f ðtÞeiktdt $ f tð Þ ¼ 1
2p

Ziaþ1

ia�1

~f ðkÞe�iktdk; 0� a� Im k: ð4:33Þ

For numerical implementation of the boundary conditions (4.19) and (4.20a,
4.20b) and for calculating space-time amplitudes of the transverse components of
the wave ~Uiðg; tÞ in the cross-section z ¼ L of the Floquet channel (formulas (4.27)
and (4.29)), the function vpq z;H or Eð Þ

� 	0
L; tð Þ is to be determined. To do this, we

apply the following relation [7, 15]:

~vpq H or Eð Þ L; tð Þ ¼
Z t

0

J0 kpq t � sð Þ� �
~vpq H or Eð Þ
� 	0

L; sð Þds; t� 0; ð4:34Þ

which is valid for all the amplitudes of the pulsed wave ~Uiðg; tÞ outgoing towards
z ¼ �1 and does not violate the causality principle.

4.6 Transformation Operator Method

4.6.1 Evolutionary Basis of a Signal and Transformation
Operators

Let us place an arbitrary periodic structure of finite thickness between two homo-
geneous dielectric half-spaces z1 ¼ z� L[ 0 (with e ¼ e1) and z2 ¼ �z� L[ 0
(with e ¼ e2). Let also a local coordinate system gj ¼ xj; yj; zj

� �
be associated with

each of these half-spaces (Fig. 4.2).
Assume that the distant sources located in the domain A of the upper half-space

generate a primary wave ~Ui
1ðg; tÞ ¼ ~Ei

1ðg; tÞ; ~Hi
1ðg; tÞ

� �
being incident on the

artificial boundary Lþ (on the plane z1 ¼ 0) as viewed from z1 ¼ 1. Denote by
~Us
j ðg; tÞ ¼ ~Es

j ðg; tÞ; ~Hs
j ðg; tÞ

n o
the fields resulting from scattering of the primary

wave ~Ui
1ðg; tÞ in the domains A (where the total field is

~Uðg; tÞ ¼ ~Eðg; tÞ; ~Hðg; tÞ� � ¼ ~Us
1ðg; tÞþ ~Ui

1ðg; tÞ) and B (where ~Uðg; tÞ ¼
~Us
2ðg; tÞ). In Sect. 4.5, we have shown that the fields under consideration are uniquely

determined by their longitudinal components, which can be given, for example, as:

Ei
z g; tð Þ

Hi
z g; tð Þ

( )
¼

X1
n;m¼�1

vnm 1;Eð Þ z1; tð Þ
vnm 1;Hð Þ z1; tð Þ

( )
lnm x; yð Þ; z1 � 0; t� 0; ð4:35Þ

202 L. Velychko



Es
z g; tð Þ

Hs
z g; tð Þ

( )
¼

X1
n;m¼�1

unm j;Eð Þ zj; t
� 	

unm j;Hð Þ zj; t
� 	( )

lnm x; yð Þ; zj � 0; t� 0; j ¼ 1; 2

ð4:36Þ

(see also formulas (4.30)–(4.32)). Here, as before, lnm x; yð Þf g1n;m¼�1 is the com-
plete (in L2 Rzð Þ) orthonormal system of transverse eigenfunctions of the Floquet
channel R (see Sect. 4.4), while the space-time amplitudes unm j;Eð Þ zj; t

� 	
and

unm j;Hð Þ zj; t
� 	

are determined by the solutions of the following problems (see also
problem (4.15)) for the one-dimensional Klein-Gordon equations:

�ej @
2

@t2 þ @2

@z2j
� k2nm

� �
unm j;E or Hð Þ zj; t

� 	 ¼ 0; t[ 0

unm j;E or Hð Þ zj; 0
� 	 ¼ 0; @

@t unm j;E or Hð Þ zj; t
� 	��

t¼0¼ 0

8><>: ;

zj � 0; j ¼ 1; 2; n;m ¼ 0;	1;	2; . . . :

ð4:37Þ

Compose from the functions vnm 1;Eð Þ z1; tð Þ, vnm 1;Hð Þ z1; tð Þ, unm j;Eð Þ zj; t
� 	

;

unm j;Hð Þ zj; t
� 	

and the eigenvalues knm (n;m ¼ 0;	1;	2; . . .) the sets

v 1ð Þ z1; tð Þ ¼ vp 1ð Þ z1; tð Þ� �1
p¼�1, u jð Þ zj; t

� 	 ¼ up jð Þ zj; t
� 	� �1

p¼�1, and kp
� �1

p¼�1
such that their members are defined according to the rules depicted in Fig. 4.3. The
sets v 1ð Þ z1; tð Þ and u jð Þ zj; t

� 	
are said to be evolutionary bases of signals ~Ui

1 g; tð Þ and
~Us
j g; tð Þ. They describe completely and unambiguously transformation of the

Fig. 4.2 A
two-dimensionally periodic
grating between two dielectric
half-spaces as element of a
multi-layered structure
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corresponding nonsine waves in the regular Floquet channels A and B filled with
dielectric.

Let us introduce by the relations

up jð Þ0 0; tð Þ � @

@zj
up jð Þ zj; t

� 	����
zj¼0

¼
Z t

0

X1
q¼�1

SAApq t � sð Þd1j þ SBApq t � sð Þd2j
h i

vq 1ð Þ 0; sð Þ ds;

t� 0; p ¼ 0;	1;	2; . . .; j ¼ 1; 2 ;

ð4:38Þ

(a)

(b)

Fig. 4.3 Construction of sets of the values vpð1Þ; upðjÞ; and kpðp ¼ 0; 	1; 	2; . . .Þ from sets of
the values vnmð1;EÞ; unmðj;EÞ; vnmð1;HÞ; unmðj;HÞ; and knmðm; n ¼ 0; 	1; 	2; . . .Þ: a p = 0, 1, 2, …;
b p = −1, −2, −3, …
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u jð Þ0ð0; tÞ ¼ up jð Þ0ð0; tÞ
� �

p¼ SAAd1j þ SBAd2j
h i

v 1ð Þð0; sÞ
� �

; t� 0; j ¼ 1; 2

ð4:39Þ

the boundary (on the boundaries zj ¼ 0) transformation operators SAA and SBA of
the evolutionary basis v 1ð Þ z1; tð Þ of the wave ~Ui

1 g; tð Þ incoming from the domain A.
Here dnm stands for the Kronecker delta, the operators’ elements SXYnm specify the
space-time energy transformation from the domain Y into the domain X and from
the mode of order m into the mode of order n.

It is evident that the operators SAA and SBA working in the space of evolutionary
bases are intrinsic characteristics of the periodic structure placed between two
dielectric half-spaces. They totalize an impact of the structure on elementary
excitations composing any incident signal ~Ui

1 g; tð Þ. Thus for vq 1ð Þ 0; tð Þ ¼
drqd t � gð Þ, where r is an integer and g[ 0, we have up 1ð Þ0 0; tð Þ ¼ SAApr t � gð Þ and
up 2ð Þ0 0; tð Þ ¼ SBApr t � gð Þ. We use this example with an abstract nonphysical signal
by methodological reasons, in order to associate the transformation operators’ com-
ponents SAApr t � sð Þ and SBApr t � sð Þ with an ‘elementary excitation’.

The operators SAA and SBA determine all the features of transient states on the
upper and bottom boundaries of the layer enclosing the periodic structure.
Secondary waves outgoing from these boundaries propagate freely in the regular
Floquet channels A and B therewith undergoing deformations (see, for example,
[6]). The space-time amplitudes up jð Þðzj; tÞ of the partial components of these waves

(the elements of the evolutionary bases of the signals ~Us
j g; tð Þ) vary differently for

different values of p and j. These variations on any finite sections of the Floquet
channels A and B are described by the diagonal transporting operators ZA

0!z1 and
ZB
0!z2 , which act according the rule:

u jð Þðzj; tÞ ¼ up jð Þðzj; tÞ
� �

¼ ZA
0!z1d

1
j þ ZB

0!z2d
2
j

h i
uðjÞ0ð0; sÞ
� �

; j ¼ 1; 2 :
ð4:40Þ

The structure of the operators given by (4.40) can be detailed by the formula

up jð Þðzj; tÞ ¼ � 1
ej

Z
0

J0 kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � sð Þ2
ej

� z2j

s24 35v t � sffiffiffi
ej

p � zj

 !
upðjÞ0 0; sð Þds;

t� 0; zj � 0; p ¼ 0;	1;	2; . . .; j ¼ 1; 2 ;

ð4:41Þ

which reflects general properties of solutions of homogeneous problems (4.37), i.e.
the solutions that satisfy zero initial conditions and are free from the components
propagating in the direction of decreasing zj. The derivation technique for (4.41) is
discussed at length in [6, 14, 15].
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4.6.2 Equations of the Operator Method in the Problems
for Multilayered Periodic Structures

The operators SAA and SBA completely define properties of the periodic structure
excited from the channel A. By analogy with (4.38) we can determine transfor-
mation operators SBB and SAB for evolutionary basis v 2ð Þðz2; tÞ ¼ vp 2ð Þðz2; tÞ

� �1
p¼�1

of the wave ~Ui
2ðg; tÞ ¼ ~Ei

2ðg; tÞ; ~Hi
2 g; tð Þ� �

incident onto the boundary z2 ¼ 0 from
the channel B:

up jð Þ0 0; tð Þ ¼
Z t

0

X1
m¼�1

SABpq t � sð Þd1j þ SBBpq t � sð Þd2j
h i

vq 2ð Þ 0; sð Þ ds;

t� 0; p ¼ 0;	1;	2; . . . ; j ¼ 1; 2 :

ð4:42Þ

Let us construct an algorithm for calculating scattering characteristics of a
multilayered structure consisting of two-dimensionally periodic gratings, for which
the operators SAA, SBA, SABpq , and SBBpq are known. Consider a double-layer structure,
whose geometry is given in Fig. 4.4. Two semi-transparent periodic gratings I and
II are separated by a dielectric layer of finite thickness M (here e ¼ e2 Ið Þ ¼ e1 IIð Þ)
and placed between the upper and the bottom dielectric half-spaces with the per-
mittivity e1 Ið Þ and e2 IIð Þ, respectively. Let also a pulsed wave like (4.35) be inci-
dent onto the boundary z1 Ið Þ ¼ 0 from the Floquet channel A.

Retaining previously accepted notation (the evident changes are conditioned by
the presence of two different gratings I and II), represent the solution of the
corresponding initial boundary value problem in the regular domains A, B, and C

Fig. 4.4 Schematic drawing
of a double-layered structure
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in a symbolic form U Að Þ ¼P1
p¼�1 vp 1ð Þ z1 Ið Þ; tð Þþ up 1ð Þ z1 Ið Þ; tð Þ� �

lp x; yð Þ,
U Bð Þ ¼P1

p¼�1 up 2ð Þ z2 Ið Þ; tð Þþ up 1ð Þ z1 IIð Þ; tð Þ� �
lp x; yð Þ, and U Cð Þ ¼P1

p¼�1
up 2ð Þ z2 IIð Þ; tð Þlp x; yð Þ.

The first terms here correspond to the waves propagating towards the domain C,
while the second ones correspond to the waves propagating towards the domain A
(Fig. 4.4). The set lp x; yð Þ� �1

p¼�1 is formed by the functions lnm x; yð Þ,
(n;m ¼ 0;	1;	2; . . .) just as the set kp

� �1
p¼�1 is composed from the values knm,

(n;m ¼ 0;	1;	2; . . .) (see Fig. 4.3).
By denoting

u jð Þ0 Ið Þ �
@

@zj Ið Þ u jð Þ zj Ið Þ; t
� 	����

zj Ið Þ¼0

; u jð Þ Ið Þ ¼ up jð Þ zj Ið Þ; t
� 	� ���

zj Ið Þ¼0;

etc., and taking into account formulas (4.38)–(4.42), we construct the following
system of operator equations:

u 1ð Þ0 Ið Þ ¼ SAA Ið Þ v 1ð Þ Ið Þ
� �þ SAB Ið ÞZB

z1 IIð Þ¼0!M u 1ð Þ0 IIð Þ� �
u 2ð Þ0 Ið Þ ¼ SBA Ið Þ v 1ð Þ Ið Þ

� �þ SBB Ið ÞZB
z1 IIð Þ¼0!M u 1ð Þ0 IIð Þ� �

u 1ð Þ0 IIð Þ ¼ SBB IIð ÞZB
z2 Ið Þ¼0!M u 2ð Þ0 Ið Þ

� �
u 2ð Þ0 IIð Þ ¼ SCB IIð ÞZB

z2 Ið Þ¼0!M u 2ð Þ0 Ið Þ
� �

:

8>>><>>>: ð4:43Þ

Equations (4.43) clearly represent step-by-step response of the complex struc-
ture on the excitation by the signal ~Ui

1 g; tð Þ with the evolutionary basis
v 1ð Þ z1 Ið Þ; tð Þ ¼ vp 1ð Þ z1 Ið Þ; tð Þ� �1

p¼�1 (or simply v 1ð Þ Ið Þ). Thus, for example, the first

equation can be interpreted as follows. The signal u 1ð Þ Ið Þ (the secondary field in A)
is a sum of two signals, where the first signal is a result of the reflection of the
incident signal v 1ð Þ Ið Þ by the grating I, while another one is determined by the signal
u 1ð Þ IIð Þ being deformed during propagation in the channel B and interaction with
the grating I.

By method of elimination the system (4.43) is reduced to the operator equation
of the second kind

u 2ð Þ0 Ið Þ ¼ SBA Ið Þ v 1ð Þ Ið Þ
� �þ SBB Ið ÞZB

z1 IIð Þ¼0!MS
BB IIð ÞZB

z2 Ið Þ¼0!M u 2ð Þ0 Ið Þ
� � ð4:44Þ

and some formulas for calculating the electromagnetic field components in all
regions of the two-layered structure. The observation time t for the unknown
function u 2ð Þ0 Ið Þ from the left-hand side of (4.44) is strictly greater of any moment
of time s for the function u 2ð Þ0 Ið Þ in the right-hand side of the equation (owing to
finiteness of wave velocity). Therefore (4.44) can be inverted explicitly in the
framework of standard algorithm of step-by-step progression through time layers.
Upon realization of this scheme and calculation of the boundary operators by
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(4.38), (4.42), the two-layered structure can be used as an ‘elementary’ unit of more
complex structures.

Turning back to (4.38)–(4.42), we see that the operators entering these equations
act differently than their analogues in the frequency domain, where the boundary
operators relate a pair ‘field ! field’. Reasoning from the structure of the transport
operators ZA

0!z1 and ZB
0!z2 (formulas (4.40) and (4.41)), we relate a pair ‘field !

directional derivative with respect to the propagation direction’ to increase
numerical efficiency of the corresponding computational algorithms.

4.7 Some Important Properties of Steady-State Fields
in the Rectangular Floquet Channel

4.7.1 Excitation by a TM-Wave

Let a grating (Fig. 4.1) be excited form the domain A by a pulsed TM-wave

~Ui g; tð Þ ¼ ~Ui
pq Eð Þ g; tð Þ : Ei

z g; tð Þ ¼ vpq z;Eð Þ z; tð Þlpq x; yð Þ

and the region QL is free from the sources~j g; tð Þ, ~uE gð Þ, and ~uH gð Þ. The field
generated in the domains A and B is determined completely by its longitudinal
components. They can be represented in the form of (4.31), (4.32). Define

steady-state fields ~~E g; kð Þ; ~~H g; kð Þ
n o

(see formula (4.33) with Im k ¼ 0Þ corre-

sponding to the pulsed fields ~Ei; ~Hi
� �

, ~Es; ~Hs
� �

in A and the pulsed field ~E; ~H
� �

in
B, by their z-components [7]

~Ei
z g; kð Þ

~Hi
z g; kð Þ


 �
¼ ~vpq z;Eð Þ kð Þ

0


 �
e�iCpq z�Lð Þlpq x; yð Þ; g 2 A; ð4:45Þ

~Es
z g; kð Þ

~Hs
z g; kð Þ


 �
¼

X1
n;m¼�1

~uþ
nm z;Eð Þ kð Þ

~uþ
nm z;Hð Þ kð Þ

( )
eiCnm z�Lð Þlnm x; yð Þ; g 2 A; ð4:46Þ

~Ez g; kð Þ
~Hz g; kð Þ


 �
¼

X1
n;m¼�1

~u�nm z;Eð Þ kð Þ
~u�nm z;Hð Þ kð Þ


 �
e�iCnm zþ Lð Þlnm x; yð Þ; g 2 B; ð4:47Þ

where the following notation is used: ~vpq z;Eð Þ kð Þ $ vpq z;Eð Þ L; tð Þ,
~u	nm z;E or Hð Þ kð Þ $ u	nm z;E or Hð Þ 	L; tð Þ, and Cnm ¼ k2 � k2nm

� 	1=2
; ReCnmRe k� 0,

ImCnm � 0.
The amplitudes ~u	nm z;E or Hð Þ kð Þ form the system of the so-called scattering

coefficients of the grating, namely, the reflection coefficients
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Rnm Hð Þ
pq Eð Þ ¼

~uþ
nm z;Hð Þ kð Þ
~vpq z;Eð Þ kð Þ ; Rnm Eð Þ

pq Eð Þ ¼
~uþ
nm z;Eð Þ kð Þ
~vpq z;Eð Þ kð Þ ; n;m ¼ 0;	1;	2; . . . ; ð4:48Þ

specifying efficiency of transformation of pqth harmonic of a monochromatic TM-

wave into nmth harmonics of the scattered field ~~E
s
; ~~H

s
n o

in the reflection zone, and

the transmission coefficients

Tnm Hð Þ
pq Eð Þ ¼

~u�nm z;Hð Þ kð Þ
~vpq z;Eð Þ kð Þ ; Tnm Eð Þ

pq Eð Þ ¼
~u�nm z;Eð Þ kð Þ
~vpq z;Eð Þ kð Þ ; n;m ¼ 0;	1;	2; . . . ; ð4:49Þ

determining the efficiency of excitation of the transmitted harmonics in the domain
B.

These coefficients are related by the energy balance equations

X1
n;m¼�1

1

k2nm
Rnm Eð Þ
pq Eð Þ

��� ���2 þ Tnm Eð Þ
pq Eð Þ

��� ���2� �
	 g20 Rnm Hð Þ

pq Eð Þ
��� ���2 þ Tnm Hð Þ

pq Eð Þ
��� ���2� �� � ReCnm

ImCnm

( )

¼ 1

k2pq

ReCpq þ 2 ImCpqImRpq Eð Þ
pq Eð Þ

ImCpq � 2ReCpqImRpq Eð Þ
pq Eð Þ

8<:
9=;
 1

e0

W1

W2

( )
; p; q ¼ 0;	1;	2; . . . ;

ð4:50Þ

W1 ¼ e0g0
k

Z
QL

r g; kð Þ ~~E g; kð Þ
��� ���2dg ;

W2 ¼
Z
QL

l0l g; kð Þ ~~H g; kð Þ
��� ���2�e0e g; kð Þ ~~E g; kð Þ

��� ���2� �
dg :

They follow from the complex power theorem (Poynting theorem) in the integral
form [12]I

SL

~~E � ~~H
� �

� ds
!
¼
Z
QL

div ~~E � ~~H
� �

dg

¼ ikg0

Z
QL

l ~~H
��� ���2dg� ik

g0

Z
QL

e ~~E
��� ���2dg� Z

QL

r ~~E
��� ���2dg ; ð4:51Þ

where e g; kð Þ � 1 ¼ ~ve g; kð Þ $ ve g; tð Þ, l g; kð Þ � 1 ¼ ~vl g; kð Þ $ vl g; tð Þ,
r g; kð Þ ¼ ~vr g; kð Þ $ vr g; tð Þ, and ds

!
is the vector element of the surface SL

bounding the domain QL. Equations (4.50), (4.51) have been derived starting from
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the following boundary value problem for a diffraction grating illuminated by a

plane TM-wave ~~U
i
pq Eð Þ g; kð Þ : ~Ei

z g; kð Þ ¼ exp �iCpq z� Lð Þ� �
lpq x; yð Þ:

g0rot
~~H g; kð Þ ¼ �ik�e g; kð Þ ~~E g; kð Þ;

rot ~~E g; kð Þ ¼ ikg0l g; kð Þ ~~H g; kð Þ; g 2 QL

D ~~E ~~H
 �h i

lx; yð Þ ¼ e2piUxD ~~E ~~H
 �h i

0; yð Þ for 0� y� ly and

D ~~E ~~H
 �h i

x; ly
� 	 ¼ e2piUyD ~~E ~~H

 �h i
x; 0ð Þ for 0� x� lx; zj j\L

~~Etg g; kð Þ
���
g2S

¼ 0; ~~Hnr g; kð Þ
���
g2S

¼ 0 ;

8>>>>>>>>><>>>>>>>>>:
ð4:52aÞ

~Ez g; kð Þ
~Hz g; kð Þ

( )
¼

1

0

( )
e�iCpq z�Lð Þlpq x; yð Þþ

X1
n;m¼�1

Rnm Eð Þ
pq Eð Þ kð Þ

Rnm Hð Þ
pq Eð Þ kð Þ

8<:
9=;

� eiCnm z�Lð Þlnm x; yð Þ; g 2 A;

ð4:52bÞ

~Ez g; kð Þ
~Hz g; kð Þ


 �
¼

X1
n;m¼�1

Tnm Eð Þ
pq Eð Þ kð Þ

Tnm Hð Þ
pq Eð Þ kð Þ

( )
e�iCnm zþ Lð Þlnm x; yð Þ; g 2 B: ð4:52cÞ

When deriving (4.50), we have also used the equations relating z-components of
the eigenmode of the Floquet channel

~~U g; kð Þ : ~Ez g; kð Þ ¼ Ae	iCzl x; yð Þ and ~Hz g; kð Þ ¼ Be	iCzl x; yð Þ

(subscripts nm are omitted) with its longitudinal components:

~Ex ¼ � bkg0
k2

~Hz 
 a C

k2
~Ez; ~Ey ¼ akg0

k2
~Hz 
 b C

k2
~Ez;

~Hx ¼ 
 a C

k2
~Hz þ bk

g0k
2
~Ez; ~Hy ¼ 
 b C

k2
~Hz � ak

g0k
2
~Ez:

ð4:53Þ

Here, �e g; kð Þ ¼ e g; kð Þþ ig0r g; kð Þ=k, l x; yð Þ ¼ lxly
� 	�1=2

exp iaxð Þexp ibyð Þ,
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

p
, and k2 ¼ a2 þ b2.

According to the Lorentz lemma [12], the fields ~~E
1ð Þ
; ~~H

1ð Þn o
and ~~E

2ð Þ
; ~~H

2ð Þn o
,

resulting from the interaction of a grating with two plane TM-waves

~~U
i 1ð Þ
pq Eð Þ g; kð Þ : ~Ei 1ð Þ

z g; kð Þ ¼ exp �iCpq Ux;Uy
� 	

z� Lð Þ� �
lpq x; y;Ux;Uy
� 	
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and

~~U
i 2ð Þ
�r;�s Eð Þ g; kð Þ : ~Ei 2ð Þ

z g; kð Þ ¼ exp �iC�r;�s �Ux;�Uy
� 	

z� Lð Þ� �
l�r;�s x; y;�Ux;�Uy

� 	
;

satisfy the following equationI
SL

~~E
1ð Þ � ~~H

2ð Þ � ~~E
2ð Þ � ~~H

1ð Þ �
� ds
!

¼ 0: ð4:54Þ

From (4.54), using (4.52b), (4.52c), and (4.53), we obtain

Rrs Eð Þ
pq Eð Þ Ux;Uy

� 	
k2p;q Ux;Uy
� 	

Cpq Ux;Uy
� 	 ¼

R�p;�q Eð Þ
�r;�s Eð Þ �Ux;�Uy

� 	
k2�r;�s �Ux;�Uy

� 	
C�r;�s �Ux;�Uy

� 	 ;

p; q; r; s ¼ 0;	1;	2; . . .

ð4:55Þ

—the reciprocity relations, which are of considerable importance in the physical
analysis of wave scattering by periodic structures as well as when testing numerical
algorithms for boundary value problems (4.52a, 4.52b, 4.52c).

Assume now that the first wave

~~U
i 1ð Þ
pq Eð Þ g; kð Þ : ~Ei 1ð Þ

z g; kð Þ ¼ exp �iCpq Ux;Uy
� 	

z� Lð Þ� �
lpq x; y;Ux;Uy
� 	

¼ ~~U
i 1ð Þ
pq Eð Þ g; k;Að Þ

be incident on the grating from the domain A, as in the case considered above,
while another wave

~~U
i 2ð Þ
�r;�s Eð Þ g; k;Bð Þ : ~Ei 2ð Þ

z g; kð Þ ¼ exp iC�r;�s �Ux;�Uy
� 	

zþ Lð Þ� �
l�r;�s x; y;�Ux;�Uy

� 	
is incident from B. Both of these waves satisfy (4.54), whence we have

Trs Eð Þ
pq Eð Þ Ux;Uy;A

� 	
k2p;q Ux;Uy
� 	

Cpq Ux;Uy
� 	 ¼

T�p;�q Eð Þ
�r;�s Eð Þ �Ux;�Uy;B

� 	
k2�r;�s �Ux;�Uy

� 	
C�r;�s �Ux;�Uy

� 	 ;

p; q; r; s ¼ 0;	1;	2; . . . :

ð4:56Þ
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4.7.2 Excitation by a TE-Wave

Let a grating be excited form the domain A by a pulsed TE-wave

~Ui g; tð Þ ¼ ~Ui
pq Hð Þ g; tð Þ : Hi

z g; tð Þ ¼ vpq z;Hð Þ z; tð Þlpq x; yð Þ

and the region QL is free from the sources~j g; tð Þ, ~uE gð Þ, and ~uH gð Þ. The field
generated in the domains A and B is determined completely by its longitudinal
components. They can be represented in the form of (4.31), (4.32). Define

steady-state fields ~~E g; kð Þ; ~~H g; kð Þ
n o

corresponding to the pulsed fields ~Ei; ~Hi
� �

,

~Es; ~Hs
� �

in A and the pulsed field ~E; ~H
� �

in B by their z-components as was done

for the TM-case (see (4.45)–(4.47)). Introduce the scattering coefficients Rnm Eð Þ
pq Hð Þ ,

Rnm Hð Þ
pq Hð Þ , T

nm Eð Þ
pq Hð Þ , and Tnm Hð Þ

pq Hð Þ by the relations like (4.48), (4.49). These coefficients can

be determined from the problem

g0rot
~~H g; kð Þ ¼ �ik�e g; kð Þ ~~E g; kð Þ;

rot ~~E g; kð Þ ¼ ikg0l g; kð Þ ~~H g; kð Þ; g 2 QL

D ~~E ~~H
 �h i

lx; yð Þ ¼ e2piUxD ~~E ~~H
 �h i

0; yð Þ for 0� y� ly and

D ~~E ~~H
 �h i

x; ly
� 	 ¼ e2piUyD ~~E ~~H

 �h i
x; 0ð Þ for 0� x� lx; zj j\L

~Etg g; kð Þ��g2S¼ 0; ~Hnr g; kð Þ��g2S¼ 0 ;

8>>>>>>>>>>><>>>>>>>>>>>:
ð4:57aÞ

~Ez g; kð Þ
~Hz g; kð Þ

( )
¼ 0

1


 �
e�iCpq z�Lð Þlpq x; yð Þþ

X1
n;m¼�1

Rnm Eð Þ
pq Hð Þ kð Þ

Rnm Hð Þ
pq Hð Þ kð Þ

8<:
9=;

� eiCnm z�Lð Þlnm x; yð Þ; g 2 A;

ð4:57bÞ

~Ez g; kð Þ
~Hz g; kð Þ

( )
¼

X1
n;m¼�1

Tnm Eð Þ
pq Hð Þ kð Þ

Tnm Hð Þ
pq Hð Þ kð Þ

8<:
9=;e�iCnm zþ Lð Þlnm x; yð Þ ; g 2 �B ð4:57cÞ

and satisfy the following relations, which are corollaries from the Poynting theorem
and the Lorentz lemma:
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X1
n;m¼�1

1

k2nm
Rnm Hð Þ
pq Hð Þ

��� ���2 þ Tnm Hð Þ
pq Hð Þ

��� ���2� �
	 1
g20

Rnm Eð Þ
pq Hð Þ

��� ���2 þ Tnm Eð Þ
pq Hð Þ

��� ���2� �� � ReCnm

ImCnm

( )

¼ 1

k2pq

ReCpq þ 2 ImCpqImRpq Hð Þ
pq Hð Þ

ImCpq � 2ReCpqImRpq Hð Þ
pq Hð Þ

8<:
9=;� 1

l0

W1

W2

( )
; p; q ¼ 0;	1;	2; . . .

ð4:58Þ

and

Rrs Hð Þ
pq Hð Þ Ux;Uy

� 	
k2p;q Ux;Uy
� 	

Cpq Ux;Uy
� 	 ¼

R�p;�q Hð Þ
�r;�s Hð Þ �Ux;�Uy

� 	
k2�r;�s �Ux;�Uy

� 	
C�r;�s �Ux;�Uy

� 	 ;

p; q; r; s ¼ 0;	1;	2; . . .

ð4:59Þ

Trs Hð Þ
pq Hð Þ Ux;Uy;A

� 	
k2p;q Ux;Uy
� 	

Cpq Ux;Uy
� 	 ¼

T�p;�q Hð Þ
�r;�s Hð Þ �Ux;�Uy;B

� 	
k2�r;�s �Ux;�Uy

� 	
C�r;�s �Ux;�Uy

� 	 ;

p; q; r; s ¼ 0;	1;	2; . . . :

ð4:60Þ

4.7.3 General Properties of the Grating’s Secondary Field

Let now k be a real positive frequency parameter, and let an arbitrary
semi-transparent grating (Fig. 4.1) be excited from the domain A by a homoge-
neous TM- or TE-wave

~~U
i
pq E or Hð Þ g; kð Þ : ~Ei

z g; kð Þ or ~Hi
z g; kð Þ� �

= e�iCpq z�Lð Þlpq x; yð Þ ; p; q : ImCpq ¼ 0 :

ð4:61Þ

The terms of the infinite series in (4.52b), (4.52c) and (4.57b), (4.57c) are z-
components of nmth harmonics of the scattered field for the domains A and B. The

complex amplitudes Rnm E orHð Þ
pq E or Hð Þ and Tnm E orHð Þ

pq E or Hð Þ are the functions of k, Ux, Uy, as well

as of the geometry and material parameters of the grating.
Every harmonic for which ImCnm ¼ 0 and ReCnm [ 0 is a homogeneous plane

wave propagating away from the grating along the vector ~knm: kx ¼ an, ky ¼ bm,
kz ¼ Cnm (in the domain A; see Fig. 4.5) or kz ¼ �Cnm (in the domain B). The
frequencies k such that Cnm kð Þ ¼ 0 ðk ¼ k	nm ¼ 	 knmj jÞ are known as threshold
frequencies or sliding points [1–6]. At those points, damped spatial harmonics of
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order nm with ImCnm [ 0 are transformed into propagating homogeneous pane
waves.

It is obvious that the propagation directions ~knm of homogeneous harmonics of
the secondary field depend on their order nm, on the values of k and on the directing
vector of the incident wave ~kipq: k

i
x ¼ ap, kiy ¼ bq, k

i
z ¼ �Cpq.

According to (4.50) and (4.58), we can write the following formulas for the
values, which determine the ‘energy content’ of harmonics, or in other words, the
relative part of the energy directed by the structure into the relevant spatial radiation
channel:

WRð Þnmpq ¼ Rnm Eð Þ
pq Eð Þ

��� ���2 þ g20 Rnm Hð Þ
pq Eð Þ

��� ���2� �
ReCnm

k2nm

k2pq
Cpq

¼ WRð Þnm Eð Þ
pq Eð Þ þ WRð Þnm Hð Þ

pq Eð Þ ;

WTð Þnppq ¼ Tnm Eð Þ
pq Eð Þ

��� ���2 þ g20 Tnm Hð Þ
pq Eð Þ

��� ���2� �
ReCnm

k2nm

k2pq
Cpq

¼ WTð Þnp Eð Þ
pq Eð Þ þ WTð Þnp Hð Þ

pq Eð Þ

ð4:62Þ

(for TM-case) and

WRð Þnmpq ¼ Rnm Hð Þ
pq Hð Þ

��� ���2 þ 1
g20

Rnm Eð Þ
pq Hð Þ

��� ���2� �
ReCnm

k2nm

k2pq
Cpq

¼ WRð Þnm Hð Þ
pq Hð Þ þ WRð Þnm Eð Þ

pq Hð Þ ;

WTð Þnppq ¼ Tnm Hð Þ
pq Hð Þ

��� ���2 þ 1
g20

Tnm Eð Þ
pq Hð Þ

��� ���2� �
ReCnm

k2nm

k2pq
Cpq

¼ WTð Þnm Hð Þ
pq Hð Þ þ WTð Þnm Eð Þ

pq Hð Þ

ð4:63Þ

(for TE-case). The channel corresponding to the nmth harmonic will be named
‘open’ if ImCnm ¼ 0. The regime with a single open channel (nm ¼ pq) will be
called the single-mode regime.

Fig. 4.5 On determination of
propagation directions for
spatial harmonics of the field
formed by a
two-dimensionally periodic
structure
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Since ~kipq

��� ��� ¼ ~knm
��� ��� ¼ k, the nmth harmonic of the secondary field in the

reflection zone propagates in opposition to the incident wave only if an ¼ �ap and
bm ¼ �bq or, in other notation, if

n ¼ �2Ux � p and m ¼ �2Uy � q: ð4:64Þ

Generation of the nonspecularly reflected mode of this kind is named auto-
collimation.

Not all of the amplitudes Rnm E orHð Þ
pq E or Hð Þ or Tnm E orHð Þ

pq E or Hð Þ are of significance for the

physical analysis. In the far-field zone, the secondary field is formed only by
the propagating harmonics of the orders nm such that ReCnm � 0. However, the
radiation field in the immediate proximity of the grating requires consideration of
the contribution of damped harmonics (n;m : ImCnm [ 0). Moreover, in some
situations (resonance mode) this contribution is the dominating one [6].

4.7.4 Corollaries of the Reciprocity Relations
and the Energy Conservation Law

Let us formulate several corollaries of the relations (4.50), (4.55), (4.56), and
(4.58)–(4.60) basing on the results presented in [3, 7] for one-dimensionally peri-
odic gratings and assuming that e g; kð Þ� 0, l g; kð Þ� 0, and r g; kð Þ� 0.

• The upper lines in (4.50) and (4.58) represent the energy conservation law for
propagating waves. If ImCpq ¼ 0, the energy of the scattered field is clearly
related to the energy of the incident wave. The energy of the wave
~~U
i
pq E or Hð Þ g; kð Þ is partially absorbed by the grating (only if W1 6¼ 0), and the

remaining part is distributed between spatial TM- and TE-harmonics propagat-
ing in the domains A and B (it is reradiating into the directions z ¼ 	1). If a
plane inhomogeneous wave be incident on the grating (ImCpq [ 0), the total

energy is defined by the imaginary part of the reflection coefficient Rpq E or Hð Þ
pq E or Hð Þ,

which in this case is nonnegative.
• The relations in the bottom lines in (4.50), (4.58) limit the values ofP1

n;m¼�1 Rnm Eð Þ
pq Eð Þ

��� ���2k�2
nmImCnm,

P1
n;m¼�1 Tnm Eð Þ

pq Eð Þ
��� ���2k�2

nmImCnm, etc. and deter-

mine thereby the class of infinite sequences

�l2 ¼ a ¼ anmf g1n;m¼�1:
X1

n;m¼�1

anmj j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2

p \1
( )

;
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or energetic space, to which amplitudes of the scattered harmonics Rnm Eð Þ
pq Eð Þ , T

nm Eð Þ
pq Eð Þ ,

etc. belong.

• It follows from (4.55), (4.56), (4.59), and (4.60) that for all semi-transparent and
reflecting gratings we can write

WRð Þ00 E or Hð Þ
00 E or Hð Þ Ux;Uy

� 	 ¼ WRð Þ00 E or Hð Þ
00 E or Hð Þ �Ux;�Uy

� 	
;

WTð Þ00 E or Hð Þ
00 E or Hð Þ Ux;Uy;A

� 	 ¼ WTð Þ00 E or Hð Þ
00 E or Hð Þ �Ux;�Uy;B

� 	
:

ð4:65Þ

The first equation in (4.65) proves that the efficiency of transformation of the
TM- or TE-wave into the specular reflected wave of the same polarization
remains unchanged if the grating is rotated in the plane about z-axis through
180°. The efficiency of transformation into the principal transmitted wave of the
same polarizations does not also vary with the grating rotation about the axis
lying in the plane and being normal to the vector ~k00 (Fig. 4.5).

• When r ¼ s ¼ p ¼ q ¼ 0, we derive from (4.55), (4.56), (4.59), and (4.60) that

R00 E or Hð Þ
00 E or Hð Þ Ux;Uy

� 	 ¼ R00 E or Hð Þ
00 E or Hð Þ �Ux;�Uy

� 	
;

T00 E or Hð Þ
00 E or Hð Þ Ux;Uy;A

� 	 ¼ T00 E or Hð Þ
00 E or Hð Þ �Ux;�Uy;B

� 	
:

ð4:66Þ

That means that even if a semi-transparent or reflecting grating is non symmetric
with respect to any plane, the reflection and transmission coefficients entering
(4.66) do not depend on the proper changes in the angles of incidence of the
primary wave.

• Relations (4.50), (4.55) allow the following regularities to be formulated for
ideal (r g; kð Þ � 0) asymmetrical reflecting gratings. Let the parameters k, Ux,
and Uy be such that ReC00 Ux;Uy

� 	
[ 0 and ReCnm Ux;Uy

� 	 ¼ 0 for n;m 6¼ 0.
If the incident wave is an inhomogeneous plane wave
~~U
i
	p;	q Eð Þ g; k;	Ux;	Uy

� 	
, then

R00 Eð Þ
	p;	q Eð Þ 	Ux;	Uy

� 	��� ���2 þ g20 R00 Hð Þ
	p;	q Eð Þ 	Ux;	Uy

� 	��� ���2� �
ReC00 	Ux;	Uy

� 	
k200 	Ux;	Uy
� 	

¼ 2 ImR	p;	q Eð Þ
	p;	q Eð Þ 	Ux;	Uy

� 	 ImC	p;	q 	Ux;	Uy
� 	

k2	p;	q 	Ux;	Uy
� 	 :

ð4:67Þ

Since Rpq Eð Þ
pq Eð Þ Ux;Uy

� 	 ¼ R�p;�q Eð Þ
�p;�q Eð Þ �Ux;�Uy

� 	
, we derive from (4.67)
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R00 Eð Þ
p;q Eð Þ Ux;Uy

� 	��� ���2 þ g20 R00 Hð Þ
p;q Eð Þ Ux;Uy

� 	��� ���2¼ R00 Eð Þ
�p;�q Eð Þ �Ux;�Uy

� 	��� ���2
þ g20 R00 Hð Þ

�p;�q Eð Þ �Ux;�Uy
� 	��� ���2 : ð4:68Þ

It is easy to realize a physical meaning of the equation (4.68) and of similar
relation for TE-case, which may be of interest for diffraction electronics. If a
grating is excited by a damped harmonic, the efficiency of transformation into
the unique propagating harmonic of spatial spectrum is unaffected by the
structure rotation in the plane x0y about z-axis through 180°.

The above stated corollaries are especially useful for testing numerical results
and making their physical interpretation easier. The use of these corollaries may
considerably reduce the amount of calculations.

4.8 Elements of Spectral Theory for Two-Dimensionally
Periodic Gratings

The spectral theoryof gratings studies singularitiesof analytical continuationof solutions
of boundary value problems formulated in the frequency domain (see, for example,
problems (4.53) and (4.57a, 4.57b, 4.57c)) into the domain of complex-valued (non-
physical) values of real parameters (like frequency, propagation constants, etc.) and the
role of these singularities in resonant and anomalous modes in monochromatic and
pulsed wave scattering. The fundamental results of this theory for one-dimensionally
periodic gratings are presented in [4, 6, 7].We discuss the elements of the spectral theory
for two-dimensionally periodic structures, which follow immediately form the results
obtained in the previous sections. The frequency k acts as a spectral parameter; a
two-dimensionally periodic grating is considered as an open periodic resonator.

4.8.1 Canonical Green Function

Let a solution ~G0 g; p; kð Þ of the scalar problem

Dg þ k2
� �

~G0 g; p; kð Þ� � ¼ d g� pð Þ;g ¼ xg; yg; zg
� � 2 R; p ¼ xp; yp; zp

� � 2 QL

D ~G0
� �

lx; yg
� 	 ¼ e2piUxD ~G0

� �
0; yg
� 	

for 0� yg � ly and

D ~G0
� �

xg; ly
� 	 ¼ e2piUyD ~G0

� �
xg; 0
� 	

for 0� xg � lx; zg
�� ��� L

~G0 g; p; kð Þ ¼ P1
n;m¼�1

Anm p; kð Þ
Bnm p; kð Þ

( )
e	iCnm zg
Lð Þlnm xg; yg

� 	
; g 2

�A
�B

( )

8>>>>>>>>><>>>>>>>>>:
ð4:69Þ
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is named the canonical Green function for 2-D periodic gratings. In the case of the
elementary periodic structure with the absence of any material scatterers, the
problems of this kind but with arbitrary right-hand parts of the Helmholtz equation
are formulated for the monochromatic waves generated by quasi-periodic current
sources located in the region zj j\L.

Let us construct ~G0 g; p; kð Þ as a superposition of free-space Green functions:

~G0 g; p; kð Þ ¼ � 1
4p

X1
n;m¼�1

exp ik g� pnmj j½ �
g� pnmj j e2pinUxe2pimUy ;

pnm ¼ xp þ nlx; yp þmly; zp
� �

:

ð4:70Þ

By using in (4.70) the Poisson summation formula [16] and the tabulated
integrals [17]

Z1
�1

exp ip
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p eibxdx ¼ piH 1ð Þ
0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � b2j j

p �
;

Z1
�1

H 1ð Þ
0 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p �
eibxdx ¼ 2

exp ia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � b2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � b2

p ;

where H 1ð Þ
0 . . .ð Þ is the Hankel function of the first kind, we obtain

~G0 g; p; kð Þ ¼ � i
2lxly

X1
n;m¼�1

ei an xg�xpð Þþbm yg�ypð Þ½ � exp i zg � zp
�� ��Cnm
� �

Cnm
: ð4:71Þ

The surface K of analytic continuation of the canonical Green function (4.71)
into the domain of complex-valued k is an infinite-sheeted Riemann surface con-
sisting of the complex planes k 2 C with cuts along the lines
Re kð Þ2� Im kð Þ2�k2nm ¼ 0 (n;m ¼ 0;	1;	2; . . ., Im k� 0) (Fig. 4.6). The first

Fig. 4.6 Natural domain of
variation of the spectral
parameter k: the first sheet of
the surface K
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(physical) sheet Ck of the surface K is uniquely determined by the radiation con-
ditions for ~G0 g; p; kð Þ in the domains A and B, i.e. by the choice of ReCnmRe k� 0
and ImCnm � 0 on the axis Im k ¼ 0. On this sheet, in the domain 0� arg k\p, we
have ImCnm [ 0, while ReCnm � 0 for 0\arg k� p=2 and ReCnm � 0 for
p=2� arg k\p. In the domain 3p=2� arg k\2p for finite number of functions
Cnm kð Þ (with n and m such that Re kð Þ2� Im kð Þ2�k2nm [ 0), the inequalities
ImCnm\0 and ReCnm [ 0 hold; for the rest of these functions we have
ImCnm [ 0 and ReCnm � 0. In the domain p\arg k� 3p=2, the situation is sim-
ilar, only the signs of ReCnm are opposite. On the subsequent sheets (each of them
with its own pair k;Cnm kð Þf g), the signs (root branches) of Cnm kð Þ are opposite to
those they have on the first sheet for a finite number of n and m. The cuts (solid
lines in Fig. 4.6) originate from the real algebraic branch points k	nm ¼ 	 knmj j.

In the vicinity of some fixed point K 2 K the function ~G0 g; p; kð Þ can be
expanded into a Loran series in terms of the local variable j [18]:

j ¼ k � K; K 62 k	nm
� �ffiffiffiffiffiffiffiffiffiffiffiffi

k � K
p

; K 2 k	nm
� �(

:

Therefore, this function is meromorphic on the surface K. Calculating the
residues Res

k¼�k
~G0 g; p; kð Þ at the simple poles �k 2 k	nm

� �
, we obtain nontrivial solu-

tions of homogeneous ( ~~U
i
g; kð Þ � 0) canonical (�e g; kð Þ � 1, l g; kð Þ � 1, int S ¼ ;)

problems (4.52a, 4.52b, 4.52c) and (4.57a, 4.57b, 4.57c):

~~E g; k	nm
� 	 ¼ ~Ex; ~Ey; ~Ez

� �
; ~Ex; y or z ¼ ax; y or zexp i anxþ bmyð Þ½ �;

and ~~H g; k	nm
� 	 ¼ ik	nmg0

� 	�1
rot ~~E g; k	nm

� 	
;

ð4:72Þ

where ax; y or z are the arbitrary constants. These solutions determine free oscillations
in the space stratified by the following conditions:

D ~~E ~~H
 �h i

xþ lx; yð Þ ¼ e2piUxD ~~E ~~H
 �h i

x; yð Þ;

D ~~E ~~H
 �h i

x; yþ ly
� 	 ¼ e2piUyD ~~E ~~H

 �h i
x; yð Þ :

4.8.2 Qualitative Characteristics of the Spectrum

Let a set Xk of the points �kj
� �

j2 K such that for all k 2 �kj
� �

j the homogeneous

(spectral) problem
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g0rot
~~H g; kð Þ ¼ �ik�e g; kð Þ ~~E g; kð Þ;

rot ~~E g; kð Þ ¼ ikg0l g; kð Þ ~~H g; kð Þ; g 2 QL

D ~~E ~~H
 �h i

lx; yð Þ ¼ e2piUxD ~~E ~~H
 �h i

0; yð Þ for 0� y� ly and

D ~~E ~~H
 �h i

x; ly
� 	 ¼ e2piUyD ~~E ~~H

 �h i
x; 0ð Þ for 0� x� lx; zj j\L

~~Etg g; kð Þ
���
g2S

¼ 0; ~~Hnr g; kð Þ
���
g2S

¼ 0;

8>>>>>>>>><>>>>>>>>>:
ð4:73aÞ

~Ez g; kð Þ
~Hz g; kð Þ

( )
¼

X1
n;m¼�1

Anm Eð Þ kð Þ
Anm Hð Þ kð Þ

( )
eiCnm z�Lð Þlnm x; yð Þ; g 2 �A; ð4:73bÞ

~Ez g; kð Þ
~Hz g; kð Þ

( )
¼

X1
n;m¼�1

Bnm Eð Þ kð Þ
Bnm Hð Þ kð Þ

( )
e�iCnm zþLð Þlnm x; yð Þ; g 2 �B ð4:73cÞ

has a nontrivial (not necessarily unique) solution ~~U g; �kj
� 	 ¼ ~~E g; �kj

� 	
;
~~H g; �kj
� 	n o

be called a point spectrum of the grating. It is obvious that these solutions char-
acterize the so-called free oscillations, whose field pattern, structure of their spatial
harmonics and behavior of these harmonics for large zj j and t are determined by the
value of �kj ¼ Re �kj þ i Im �kj and by a position of the point �kj (the eigenfrequency

associated with the free oscillation ~~U g; �kj
� 	

) on the surface K [4, 6, 7]. By con-
tinuing analytically the problems (4.52a, 4.52b, 4.52c) and (4.57a, 4.57b, 4.57c)

together with their solutions ~~U g; kð Þ ¼ ~~E g; kð Þ; ~~H g; kð Þ
n o

into the domain K of the

complex-valued k, we detect poles of the function ~~U g; kð Þ at the points k ¼ �kj. In
the vicinity of these poles, the desired solutions can be represented by the Loran
series in terms of the local on K variable j [18]. The analytical findings of this kind
may form the basis for detailed study of physical features of resonant wave scat-
tering by one-dimensionally and two-dimensionally periodic structures [4, 6, 7, 19,
20].

Now, let us derive the conditions that constrain existence of nontrivial solutions
of the problem (4.73a, 4.73b, 4.73c). These conditions can be considered as
uniqueness theorems for the problems (4.52a, 4.52b, 4.57c) and (4.57a, 4.57b,
4.57c) formulated for different domains of the surface K. Notice that the study of
the uniqueness allows one to estimate roughly a domain where elements of the set
Xk are localized and simplify substantially the subsequent numerical solution of
spectral problems owing to reduction of a search zone of the eigenfrequencies. The
uniqueness theorems also serve as a basis for application of the ‘meromorphic’
Fredholm theorem [21] when constructing well grounded algorithms for solving
diffraction problems as well as when studying qualitatively gratings’ spectra [4, 7].

Assume that grating scattering elements are nondispersive, that is e g; kð Þ ¼ e gð Þ,
l g; kð Þ ¼ l gð Þ, and r g; kð Þ ¼ r gð Þ. In this case, the analytical continuation of the
spectral problem (4.73a, 4.73b, 4.73c) into the domain of complex-valued k are
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simplified considerably. From the complex power theorem in the integral form

formulated for the nontrivial solutions ~~U g; �kj
� 	

likeI
SL

~~E � ~~H
� �

� ds
!

¼
Z
QL

div ~~E � ~~H
� �

dg ¼ ikg0

Z
QL

l ~~H
��� ���2dg

� ik�

g0

Z
QL

e ~~E
��� ���2dg� Z

QL

r ~~E
��� ���2dg ð4:74Þ

the following relations result:

X1
n;m¼�1

1

k2nm

ReCnmRe kþ ImCnmIm kð Þ
ImCnmRe k � ReCnmIm kð Þ


 �
Anm Eð Þ
�� ��2 þ Bnm Eð Þ

�� ��2 �h
	 g20 Anm Hð Þ

�� ��2 þ Bnm Hð Þ
�� ��2 �i

¼ 1
e0

�Im k V3 þV2ð Þ � V1

Re k V3 � V2ð Þ

 �

:

ð4:75Þ

Notation: k ¼ �kj,
~~E ¼ ~~E g; �kj

� 	
, Cnm ¼ Cnm

�kj
� 	

, Anm Eð Þ ¼ Anm Eð Þ �kj
� 	

, etc., and

V1 ¼ e0g0

Z
QL

r ~~E
��� ���2dg; V2 ¼

Z
QL

e0e
~~E
��� ���2dg; V3 ¼

Z
QL

l0l
~~H
��� ���2dg:

No free oscillations exist whose amplitudes do not satisfy (4.75). From this
general statement, several important consequences follow. Below some of them are
formulated for gratings with e gð Þ[ 0, l gð Þ[ 0, and r gð Þ� 0.

• There are no free oscillations whose eigenfrequencies �kj are located on the upper
half-plane (Im k[ 0) of the first sheet of the surface K. This can be verified by
taking into account the upper relation in (4.75), the values of the function
Cnm kð Þ on Ck, and the inequalities V1 � 0, V2 [ 0, V3 [ 0.

• If r gð Þ � 0 (the grating is non-absorptive), no free oscillations exist whose
eigenfrequencies �kj are located on the bottom half-plane (Im k\0) of the sheet
Ck between the cuts corresponding to the smallest absolute values of k	nm. In
Fig. 4.6, this region of the first sheet of K and the above-mentioned domain are
shaded by horizontal lines.

• If r gð Þ[ 0 on some set of nonzero measure of points g 2 QL, then there are no
elements �kj of grating’s point spectrum Xk that are located on the real axis of the
plane Ck.

Investigation of the entire spectrum of a grating, i.e. a set of the points k 2 K, for
which the diffraction problems given by (4.52a, 4.52b, 4.52c) and (4.57a, 4.57b,
4.57c) are not uniquely solvable, is a complicated challenge. Therefore, below we
do no more than indicate basic stages for obtaining well-grounded results. The first
stage is associated with regularization of the boundary value problem that describes
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excitation of a metal-dielectric grating by the currents ~~j g; kð Þ $~j g; tð Þ located in the
domain QL:

g0rot
~~H g; kð Þ ¼ �ik�e g; kð Þ ~~E g; kð Þþ g0

~~j g; kð Þ;
rot ~~E g; kð Þ ¼ ikg0l g; kð Þ ~~H g; kð Þ; g 2 QL

D ~~E ~~H
 �h i

lx; yð Þ ¼ e2piUxD ~~E ~~H
 �h i

0; yð Þ for 0� y� ly and

D ~~E ~~H
 �h i

x; ly
� 	 ¼ e2piUyD ~~E ~~H

 �h i
x; 0ð Þ for 0� x� lx; zj j\L

~~Etg g; kð Þ
���
g2S

¼ 0; ~~Hnr g; kð Þ
���
g2S

¼ 0 ;

8>>>>>>>>><>>>>>>>>>:
ð4:76aÞ

~Ez g; kð Þ
~Hz g; kð Þ


 �
¼

X1
n;m¼�1

Anm Eð Þ kð Þ
Anm Hð Þ kð Þ


 �
eiCnm z�Lð Þlnm x; yð Þ; g 2 A; ð4:76bÞ

~Ez g; kð Þ
~Hz g; kð Þ

( )
¼

X1
n;m¼�1

Bnm Eð Þ kð Þ
Bnm Hð Þ kð Þ

( )
e�iCnm zþ Lð Þlnm x; yð Þ; g 2 �B : ð4:76cÞ

By regularization we mean (see, for example, [7]) a reduction of the boundary
value problem to the equivalent operator equation of the second kind

EþB ~G0; S;�e; l; k
� 	� �

X ¼ Y ; EX ¼ X ð4:77Þ

with a compact (in some space of vector fields) finite-meromorphic (in local on K
variables j) operator-function B ~G0; S;�e; l; k

� 	
[21, 22]. If the problem given by

(4.76a, 4.76b, 4.76c) is considered separately for metal gratings (int S 6¼ ; and S are
sufficiently smooth surfaces; �e g; kð Þ ¼ l g; kð Þ � 1) and dielectric gratings
(int S ¼ ;, �e g; kð Þ ¼ e gð Þ and l g; kð Þ ¼ l gð Þ are sufficiently smooth functions),
then it can be regularized by applying the potential theory methods [4, 7, 23].

In the second stage, the following statements should be proved: (i) the resolvent
EþB kð Þ½ ��1 (k 2 K) of the problem (4.77) is a finite-meromorphic
operator-function; (ii) its poles are located at the points k ¼ �kj (j ¼ 1; 2; 3; . . .);
(iii) the entire spectrum coincides with its point spectrum Xk; (iv) Xk is nothing
more than a countable set without finite accumulation points. All these statements
are corollaries of the previously proven ‘meromorphic’ Fredholm theorem [4, 21,
22] and the uniqueness theorem.

By inverting the homogeneous operator (4.77), we can construct a numerical
solution of the spectral problem given by (4.73a, 4.73b, 4.73c) [4, 6], in other
words, calculate the complex-valued eigenfrequencies �kj and associated eigenwaves
~~U g; �kj
� 	 ¼ ~~E g; �kj

� 	
; ~~H g; �kj
� 	n o

or free oscillations of an open two-dimensionally
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periodic resonator. Commonly, this operation is reduced to an approximate solution
of the characteristic equation like:

det C kð Þ½ � ¼ 0: ð4:78Þ

Here C kð Þ is some infinite matrix-function; the compactness of the operator B kð Þ
ensures (i) existence of the determinant det C kð Þ½ � and (ii) the possibility to
approximate the solutions �k of (4.78) by the solutions �k Nð Þ of the equation
det C k;Nð Þ½ � ¼ 0 with the matrix C k;Nð Þ reduced to dimension N � N.

Let �k be a root of characteristic equation (4.78) that does not coincide with any
pole of the operator-function B kð Þ. The multiplicity of this root determines the
multiplicity of the eigenvalue �k of the homogeneous operator (4.77), i.e. the value
M ¼ M 1ð ÞþM 2ð Þþ . . .þM Qð Þ [22]. Here, Q is the number of

linearly-independent eigenfunctions ~~U
qð Þ

g; �kð Þ; q ¼ 1; 2; . . .;Q (the number of free
oscillations) corresponding to the eigenvalue (eigenfrequency) �k, while M qð Þ � 1 is

the number of the associated functions ~~U
qð Þ
mð Þ g; �kð Þ; m ¼ 1; 2; . . .;M qð Þ � 1. The

order of pole of the resolvent EþB kð Þ½ ��1 (and of the Green function ~G g; p; kð Þ of
the problem (4.76a, 4.76b, 4.76c)) for k ¼ �k is determined by the maximal value of
M qð Þ.

4.9 Conclusion

The analytical results presented in the chapter are of much interest in the development
of rigorous theory of two-dimensionally periodic gratings as well as in numerical
solution of the associated initial boundary value problems. We derived exact absorbing
boundary conditions that truncate the unbounded computational space of the initial
boundary value problem for two-dimensionally periodic structures to a bounded part of
the Floquet channel. Some important features of transient and steady-state fields in
rectangular parts of the Floquet channel were discussed. The technique for calculating
electrodynamic characteristics of a multi-layered structure consisting of
two-dimensionally periodic gratings was developed by introducing the transformation
operators similar to generalized scattering matrices in the frequency domain. In one of
the last sections we discussed the elements of spectral theory for two-dimensionally
periodic gratings. We also gave some practical guidelines related to fast enough and
highly accurate numerical solution of gratings problems.
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Chapter 5
The Exact Absorbing Conditions Method
in the Analysis of Open Electrodynamic
Structures

Kostyantyn Sirenko and Yuriy Sirenko

Abstract The authors expound the method of exact absorbing boundary condi-
tions, which solves one of the most important theoretical problems in computational
electrodynamics, namely, the problem of equivalent replacement of an open (with
infinite domain of analysis) initial boundary value problem by a closed (with
bounded computation domain) one. This method, being mathematically strict,
allows proper formulation and numerical study of transient and steady-state pro-
cesses in various open resonant systems. The authors present local (in space and
time) and non-local exact absorbing conditions for virtual boundaries located in
cross-sections of regular waveguides or in free space. The elaborated concept of the
so-called virtual feeding waveguides allows to solve many practically interesting
radiation problems. The approach outlined in this chapter was implemented in
software for solving both scalar (plane and axially symmetric) and vector problems.

5.1 Introduction

Exact absorbing conditions (EACs) are used in computational electrodynamics of
non-sine waves to truncate computation domains via replacement of original initial
boundary value problems formulated on open (unbounded) domains with modified
problems on bounded domains [1–9].
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The efficient truncation of computation domains of open (unbounded) initial
boundary value problems (i.e. problems whose domains of analysis are infinite in
one or more directions) is a vital issue in computational electrodynamics as well as
in other physical disciplines using mathematical simulations and numerical
experiments. Most of well-known and extensively used heuristic and approximate
solutions to the truncation problem are based on absorbing boundary conditions
(ABCs) [10–13] and perfectly matched layers (PMLs) [14–16]. Various modifi-
cations and improvements to ABCs and PMLs yield good results in various specific
physical situations. However, it appears that for certain problems associated with
the resonant wave scattering, the numerical implementation of ABCs or PMLs may
cause unpredictable growth of the computational error for large observation times.

EACs-enabled methods [1–9, 17, 18] are outnumbered by approximate
approaches utilizing ABCs or PMLs. However, careful numerical tests, and phys-
ical and applied results obtained with EACs-enabled methods (see, for example, [3,
5, 8, 18–27]), show their evident potential, especially, for simulations of open
waveguides, periodic and compact resonators.

The essence of EACs-enabled methods for open (unbounded) scalar or vector
problems, which are considered in the part X of two- or three-dimensional
Euclidean space, is as follows. Assume that sources and scatterers are located in a
bounded domain Xint of the unbounded analysis domain X. The propagation
velocity of electromagnetic waves is finite. Therefore, within the finite time T , the
waves will not leave some bounded domain Xint; T � X:

U g; tð Þ½ �jg2Xext; T ; t2 0;T½ �¼ 0: ð5:1Þ

Here, U g; tð Þ (g 2 X, t� 0) is the electromagnetic field function, 0; T½ � is the
observation interval 0� t� T , and Xext; T is the complement of the domain Xint; T

with respect to X.
The formula (5.1) is the well-known radiation condition for outgoing (from the

domain Xint) pulsed waves U g; tð Þ: The only but essential limitation of this simple
condition is associated with the fact that with growing observation time T the
domain Xint; T is expanding, and its boundary is moving farther away from the
domain Xint. That is why the condition (5.1) is not used for truncating computation
domains of open problems. In EACs-enabled methods, the condition (5.1) is
transferred from the field-free region Xext; T onto some virtual boundary C located
in a region, where the electromagnetic field can be arbitrary:

D U g; tð Þ½ �jg2C¼ 0; t� 0: ð5:2Þ

The electromagnetic waves U g; tð Þ must be outgoing in this case as well, or in
other words, they must intersect the boundary C in one direction only, moving away
from sources and scatterers. Here, D U½ � is some integro-differential operator on the
virtual boundary C.

The boundary C divides the unbounded domain X into two domains, namely,
Xint and Xext such that X ¼ Xint [Xext [C. In the bounded computation domain
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Xint, which contains all sources and scatterers, we can formulate the initial
boundary value problem with respect to the function U g; tð Þ using the boundary
condition (5.2). This problem is called the modified problem as distinct from the
original initial boundary value problem formulated in the unbounded domain X
using the radiation condition (5.1). In the computation domain Xint, the function
U g; tð Þ can be computed using standard finite-difference [28] or finite-element [29]
methods. To find the values of U g; tð Þ in the domain Xext using its values on the
boundary C, EACs-enabled methods allow to derive the so-called transport oper-
ators Zq2C! g2Xext tð Þ U½ � [3, 8, 30, 31]

U g; tð Þ½ � ¼ Zq2C! g2Xext tð Þ U q; sð Þ½ �; 0� s� t: ð5:3Þ

Analytical forms of the EAC operators D U½ � and the transport operators Z U½ �
depend on the geometry of the domainXext, and, evidently, on problems’ dimensions
and coordinates systems. However, in all cases, the derivation of these operators is
based on the common sequence of transformations widely used in the theory of
hyperbolic equations [3, 32]: (i) isolation of the regular domain Xext where the wave
U g; tð Þ propagates freely moving away from the domain Xint, which contains all
sources and scatterers; (ii) separation of variables in the original initial boundary value
problem for the domain Xext, which results in a problem for the 1-D Klein-Gordon
equation with respect to the space-time amplitudes of the field U g; tð Þ; (iii) integral
transformations in the problem for 1-D Klein-Gordon equation; (iv) resolution of the
auxiliary boundary value problem for ordinary differential equationwith respect to the
images of the field amplitudes; (v) inverse integral transformations.

As a result, nonlocal (in space and time) EACs on the virtual boundary C are
derived. In some cases, the nonlocal conditions can be reduced to the local ones by
replacing certain integral forms with differential ones [2, 3, 8]. EAC (5.2) can be
included into standard finite-difference or finite-element algorithms with the com-
putation domain truncated to Xint. However, one can confidently assert that relevant
computational schemes are stable and convergent only when the modified problem
is uniquely-solvable and equivalent to the original problem [33]. Although the
corresponding assertions were formulated in some works (see, for example, [1, 3,
8]), they were proved analytically only in [9] for the initial boundary value prob-
lems describing TE0- and TM0-waves scattering on compact open axially symmetric
structures. In Sect. 5.2.5 we replicate the proof for initial boundary value problems
associated with compact discontinuities in circular and coaxial waveguides and
demonstrate ipso facto that there is a strong reason to believe that it can be used for
all other types of EACs as well.

In Sects. 5.2–5.4 of this chapter we construct EACs for axially symmetric
electrodynamic structures illuminated by symmetric pulsed TE- and TM-waves (or
TE0- and TM0-waves) and prove the equivalency of original (open) and modified
(closed) initial boundary value problems. We present the following results: EACs
for virtual boundaries in cross-sections of regular circular and coaxial waveguides
(Sect. 5.2) and for spherical boundaries in free space (Sect. 5.3); transport operators
relating near-zone and far-zone fields generated by compact structures in free space.
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We also prove the unique solvability of modified closed problems and their
equivalency to original open problems (Sect. 5.2) and solve the problem of
extended and remote sources giving grounds for rigorous theoretical justification of
EACs-enabled methods. Some important if not fundamental questions are discussed
in Sect. 5.4, such as time domain to frequency domain transitions and algorith-
mization of the electrodynamic characteristics calculations. In the next sections,
omitting details discussed in Sects. 5.2–5.4, we construct EACs for plane (2-D)
electrodynamic structures illuminated by pulsed E- and H-polarized waves
(Sect. 5.5) and EACs for 3-D vector initial boundary value problems describing
electromagnetic field transformations in open waveguides and compact resonators
(Sect. 5.6). Section 5.7 is devoted to the enhancement of computation efficiency of
the results obtained in the previous sections.

5.2 Circular and Coaxial Waveguides

5.2.1 Formulation of the Model Problem

The 2-D initial boundary value problem describing the transformation of pulsed
symmetric (@=@/ � 0) TE0- ðEq ¼ Ez ¼ H/ � 0Þ and TM0-waves (Hq ¼ Hz ¼
E/ � 0) in open axially symmetric waveguide structures is given (see [3, 8]) by

�e gð Þ @
2

@t2
� r gð Þg0

@

@t
þ @2

@z2
þ @

@q
1
q
@

@q
q

� �� �
U g; tð Þ ¼ F g; tð Þ;

t[ 0; g ¼ q; zf g 2 X

U g; tð Þjt¼0¼ u gð Þ; @

@t
U g; tð Þ

����
t¼0

¼ w gð Þ; g 2 �X

~Etg p; tð Þ��p¼ q;/;zf g2R¼ 0; U 0; z; tð Þ ¼ 0 for zj j\1; t� 0 :

8>>>>>>>><>>>>>>>>:
ð5:4Þ

Here, ~E ¼ Eq;E/;Ez
� �

and ~H ¼ Hq;H/;Hz
� �

are the electric and magnetic
field vectors; q;/; zf g are the cylindrical coordinates; U g; tð Þ ¼ E/ g; tð Þ for TE0-
waves and U g; tð Þ ¼ H/ g; tð Þ for TM0-waves. By R ¼ R/ � 0; 2p½ � we denote
perfectly conducting surfaces obtained by rotating the piecewise smooth curves R/

around the z-axis. The relative permittivity e gð Þ and specific conductivity r gð Þ are
smooth non-negative functions inside Xint and take free space values outside (in the

case of TE0-waves) or e gð Þ � 1 and r gð Þ � 0 (in TM0-case), g0 ¼ l0=e0ð Þ1=2 is the
impedance of free space, e0 and l0 are the electric and magnetic constants of
vacuum. We use SI, the International System of Units, for all physical parameters
except the ‘time’ t that is the product of the natural time and the velocity of light in
vacuum, thus t is measured in meters.

The domain of analysis X is the part of the half-plane Xtotal ¼ p ¼ q;/; zf g :f
q[ 0; zj j � 0; / ¼ p=2g bounded by R/. The domains Xint and Xadd ¼ [J

j¼1 Xj
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(regular semi-infinite circular and coaxial waveguides) are separated by the virtual
boundaries Cj ¼ gj ¼ qj; zj

� � 2 X : zj ¼ 0
� �

and X ¼ Xint [Xadd [Cadd,
Cadd ¼ [J

j¼1 Cj. Here, qj;/j; zj
� �

is the local coordinate system associated with the
waveguide Xj (see Fig. 5.1).

The functions F g; tð Þ, u gð Þ, w gð Þ, r gð Þ, and e gð Þ � 1, which have compact
supports in the closure of X, are supposed to satisfy the theorem on the unique
solvability of the problem (5.4) in the Sobolev space W1

2 XT	 

, XT ¼ X � 0; Tð Þ,

0; Tð Þ ¼ t : 0\t\T\1f g (see Statement 5.1 below and [3, 33]). The current
and instantaneous sources given by the functions F g; tð Þ and u gð Þ, w gð Þ as well as
all scatterers described by the functions e gð Þ, r gð Þ and by the contours R/ are
located in Xint. In axially symmetric problems, at the points g ¼ q; zf g such that
q ¼ 0, only Hz- or Ez-fields components are non-zero [2, 3, 8]. Hence, it follows
that U 0; z; tð Þ ¼ 0 for zj j\1, t� 0 in (5.4).

Let us assume that 0\m� 1=e gð Þ� l\1 (g 2 X) and the functions r=e, e0=e2

are bounded in X. Then the following statement (see also [3, 33]) is true.

Statement 5.1. Let F g; tð Þ=e gð Þ 2 L 2;1 XT	 

, uðgÞ 2 W1

2

	
Xð Þ (for TE0-waves)

or uðgÞ 2 W1
2 Xð Þ (for TM0-waves), and wðgÞ 2 L2 Xð Þ: Then the problem (5.4)

has a generalized solution fromW1
2 XT	 


, and the uniqueness theorem is true in this
space.

Here, the following notations are used: e0 is the partial derivative of e gð Þ with
respect to q or z; Ln Gð Þ is the space of functions f gð Þ (g 2 G) for which the function
f gð Þj jn is integrable in G; Wl

m Gð Þ is the set of all the elements f gð Þ from Lm Gð Þ
whose generalized derivatives up to the order l inclusive belong to Lm Gð Þ; L2;1 GT

	 

is the space containing all elements f g; tð Þ 2 L1 GT

	 

with finite norm

fk k ¼ R T0 R
G fj j2dg

� �1=2
dt; W1

2

	
Gð Þ is the subspace of space W1

2 Gð Þ, where the set
of functions, which have compact supports and infinitely differentiable in G, is a
dense set.

Fig. 5.1 Open axially symmetric waveguide transformer
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5.2.2 Radiation Conditions for Outgoing Waves

In the domain Xj (see Fig. 5.2), where the wave U g; tð Þ propagates freely to zj ¼ 1
as t ! 1, the 2-D initial boundary value problem (5.4) can be rewritten in the local
coordinates gj ¼ qj; zj

� �
in the following way:

� @2

@t2
þ @2

@z2j
þ @

@qj

1
qj

@

@qj
qj

 !" #
U gj; t
	 
 ¼ 0; t[ 0; gj 2 Xj

U gj; t
	 
��

t¼0¼ 0;
@

@t
U gj; t
	 
����

t¼0
¼ 0; gj ¼ qj; zj

� � 2 �Xj

~Etg pj; t
	 
��

pj¼ qj;/j;zjf g2R¼ 0; U 0; zj; t
	 
 ¼ 0 for 0� zj �1; t� 0:

8>>>>>>><>>>>>>>:
ð5:5Þ

Separation of variables in (5.5) results in

U gj; t
	 
 ¼X

n

un j zj; t
	 


ln j qj
	 


and

un j zj; t
	 
 ¼ Zaj

0 or bj

U gj; t
	 


ln j qj
	 


qjdqj; gj ¼ qj; zj
� � 2 Xj;

ð5:6Þ

where an orthonormal (with the weight factor qj) system of the transverse functions
ln j qj
	 


, and the transverse eigenvalues kn j are obtained from the homogeneous
Sturm-Liouville problems

(a)

(b)

Fig. 5.2 Virtual boundary Cj in the regular a circular and b coaxial waveguide Xj
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d
dqj

1
qj

d
dqj

qj þ k2n j

" #
ln j qj
	 
 ¼ 0; qj 2 0; aj

	 

ln j 0ð Þ ¼ ln j aj

	 
 ¼ 0 TE0-wavesð Þ or

ln j 0ð Þ ¼ d qjln j qj
	 
	 


dqj

�����
qj¼aj

¼ 0 TM0-wavesð Þ

8>>>>>>>><>>>>>>>>:
ð5:7Þ

(if Xj is circular waveguide with 0� qj � aj) or

d
dqj

1
qj

d
dqj

qj þ k2n j

" #
ln j qj
	 
 ¼ 0; qj 2 bj; aj

	 

ln j bj
	 
 ¼ ln j aj

	 
 ¼ 0 TE0�wavesð Þ or

d qjln j qj
	 
	 


dqj

�����
qj¼bj

¼ d qjln j qj
	 
	 


dqj

�����
qj¼aj

¼ 0 TM0�wavesð Þ

8>>>>>>>><>>>>>>>>:
ð5:8Þ

(if Xj is coaxial waveguide with bj � qj � aj). Here and hereinafter, n ¼ 0; 1; 2; . . .
only in the case of TM0-waves, and only for the coaxial waveguide Xj. In all other
cases n ¼ 1; 2; 3; . . .: The boundary conditions on waveguide walls for the case of
TM0-waves in (5.7) and (5.8) are determined by the following relationships:
U g; tð Þ ¼ H/ g; tð Þ, ~Etg pj; t

	 
��
pj2R equals to Ezj pj; t

	 
��
pj2R, and [3]

@Ezj

@ t
¼ g0q

�1
j

@ qjH/j

� �
@qj

:

The space-time amplitudes un j zj; t
	 


of the wave U gj; t
	 


, gj 2 Xj are determined
by a solution to the initial boundary value problem

� @2

@ t2
þ @2

@ z2j
� k2n j

" #
un j zj; t
	 
 ¼ 0; t[ 0; zj [ 0

un j zj; 0
	 
 ¼ 0;

@

@ t
un j zj; t
	 
����

t¼0
¼ 0; zj � 0

8>>><>>>: ð5:9Þ

(it is assumed that the excitation U g; tð Þ, which is generated by the sources u gð Þ,
w gð Þ, and F g; tð Þ located in Xint, has not yet reached the boundary zj ¼ 0 separating
Xint and Xj by the moment of time t ¼ 0).

Analytical representations for the solutions ln j qð Þ and kn j to the problems (5.7),
(5.8) are well-known [3, 8] and for TE0-waves are:
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ln j qj
	 
 ¼ G1 kn j; qj

	 
 ffiffiffi
2

p
a2j G

2
0 kn j; aj
	 
� b2j G

2
0 kn j; bj
	 
h i�1=2

;

bj\qj\aj

kn j [ 0 are the roots of the equation G1 kj; aj
	 
 ¼ 0;

Gq kj; qj
	 
 ¼ Jq kjqj

	 

N1 kjbj
	 
� Nq kjqj

	 

J1 kjbj
	 


; q ¼ 0; 1

8>>>>><>>>>>:
ð5:10Þ

for coaxial waveguide Xj and

ln j qj
	 
 ¼ J1 kn jqj

	 
 ffiffiffi
2

p
ajJ0 kn jaj

	 
� ��1
; 0\qj\aj

kn j [ 0 are the roots of the equation J1 kjaj
	 
 ¼ 0

(
ð5:11Þ

for circular waveguide Xj. For TM0-waves we have:

ln j qj
	 
 ¼ J1 kn jqj

	 
 ffiffiffi
2

p
ajJ1 kn jaj

	 
� ��1
; 0\qj\aj

kn j [ 0 are the roots of the equation J0 kjaj
	 
 ¼ 0

(
ð5:12Þ

for circular waveguide Xj and

ln j qj
	 
 ¼ ~G1 kn j; qj

	 
 ffiffiffi
2

p
a2j ~G

2
1 kn j; aj
	 
� b2j ~G

2
1 kn j; bj
	 
h i�1=2

for n ¼ 1; 2; . . .

and l0j qj
	 
 ¼ qj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln aj=bj
	 
qh i�1

; bj\qj\aj

kn j [ 0 n ¼ 1; 2; . . .ð Þ are the roots of the equation ~G0 kj; bj
	 
 ¼ 0

and k0 j ¼ 0;
~Gq kj; qj
	 
 ¼ Jq kjqj

	 

N0 kjaj
	 
� Nq kjqj

	 

J0 kjaj
	 


; q ¼ 0; 1

8>>>>>>>>><>>>>>>>>>:
ð5:13Þ

for coaxial waveguide Xj. Here, Jq . . .ð Þ and Nq . . .ð Þ are the Bessel and Neumann
cylindrical functions.

Applying the cosine Fourier transform

~f ðxÞ ¼
ffiffiffi
2
p

r Z1
0

f ðzjÞ cosðx zjÞdzj $ f ðzjÞ ¼
ffiffiffi
2
p

r Z1
0

~f ðxÞ cosðx zjÞdx ð5:14Þ

to the problem (5.9) and taking into account that

�x2~f xð Þ �
ffiffiffi
2
p

r
d
d zj

f zj
	 
� �����

zj¼0

$ d2

d z2j
f zj
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[34], we obtain the following Cauchy problem for the images ~un j x; tð Þ of un j zj; t
	 


:

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n j þx2

q� �
~un j x; tð Þ� � ¼ �

ffiffi
2
p

q
un j

0 0; tð Þ; x[ 0; t[ 0

~un j x; 0ð Þ ¼ 0; @
@t ~un j x; tð Þ��t¼0¼ 0; x� 0;

8<: ð5:15Þ

where

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n j þx2

q� �
~un j x; tð Þ� � � @2

@t2
þ k2n j þx2
� �� �

~un j x; tð Þ and

un j
0ðc; tÞ ¼ @un j zj; t

	 

@zj

����
zj¼c

:

The derivation of (5.15) is based on the fact that the wave U gj; t
	 


(gj 2 Xj) is an
outgoing wave, and thus the amplitudes un j zj; t

	 

of all its partial components are

zero at any time t for zj large enough.
Continuing the functions ~un j x; tð Þ and un j

0 0; tð Þ by zero on the semiaxis t\0,
the generalized formulation of the Cauchy problem (5.15) [35] is obtained:

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n j þx2

q� �
~un j x; tð Þ� � ¼ �

ffiffiffi
2
p

r
un j

0 0; tð Þþ d 1ð Þ tð Þ~un j x; 0ð Þ

þ d tð Þ@
@t

~un j x; tð Þ
����
t¼0

¼ �
ffiffiffi
2
p

r
un j

0 0; tð Þ; x[ 0; �1\t\1; ð5:16Þ

where d . . .ð Þ and d 1ð Þ . . .ð Þ are the Dirac delta-function and its generalized derivative
of the first order.

A convolution of the fundamental solution G k; tð Þ ¼ v tð Þk�1 sin kt of the
operator D kð Þ . . .½ � with the right-hand side of the equation D kð Þ u tð Þ½ � ¼ f tð Þ gives
its solution u tð Þ [3, 35]. Here, v . . .ð Þ is the Heaviside step function. Therefore, the
unknown functions ~un j x; tð Þ from (5.16) can be represented as

~un j x; tð Þ ¼ �
ffiffiffi
2
p

r Z t

0

sin t � sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n j þx2

q� �
un j

0 0; sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n j þx2

q ds;

x� 0; t� 0:

ð5:17Þ
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Applying the inverse transform (5.14) to (5.17), we get the originals un j zj; t
	 


:

un j zj; t
	 
 ¼ �

Zt�zj

0

J0 kn j t � sð Þ2�z2j
� �1=2� �

un j
0 0; sð Þds;

zj � 0; t� 0:

ð5:18Þ

Multiplying (5.18) by ln j qj
	 


and summing over all n, we obtain the radiation
condition (RC) for the waves U gj; t

	 

outgoing towards zj ¼ 1:

U gj; t
	 
 ¼ �

X
n

Zt�zj

0

J0 kn j t � sð Þ2�z2j
� �1=2� �8<:

�
Zqj 2ð Þ

qj 1ð Þ

@U qj; zj; s
	 

@ zj

����
zj¼0

ln j qj
	 


qj d qj

264
375ds

9>=>;ln j qj
	 


;

gj ¼ qj; zj
� � 2 Xj; t� zj:

ð5:19Þ

In (5.19), one should set qj 1ð Þ ¼ 0 and qj 2ð Þ ¼ aj for a circular waveguide Xj or
qj 1ð Þ ¼ bj and qj 2ð Þ ¼ aj for a coaxial waveguide.

The equations (5.18) and (5.19) specify the operator X0!zj tð Þ u0½ �, which operates
on the amplitudes un jðzj; tÞ according to the rule

un j zj; t
	 
 ¼ X0!zj tð Þ un j

0 0; sð Þ� �
;

zj � 0; t� zj; t � zj � s� 0;
ð5:20Þ

and the operator

U gj; t
	 
 ¼ Zqj2Cj ! gj2Xj tð Þ U0 qj; s

	 
� �
; U0 qj; s

	 
 ¼ @U gj; s
	 

@zj

����
zj¼0

;

t� zj; t � zj � s� 0:

ð5:21Þ

The operators (5.20) and (5.21) allow to compute the values of un jðzj; tÞ and
U gj; t
	 


in any point in the waveguide Xj knowing only their values on the virtual
boundary Cj. The operators (5.20) and (5.21) are the so-called transport operators
which relate near-zone and far-zone fields. They are discussed in more details in
Sect. 5.3.3.
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5.2.3 Nonlocal Exact Absorbing Conditions

Placing the observation point in (5.18) onto the virtual boundary Cj (zj ¼ 0), we
obtain

un j 0; tð Þ ¼ �
Z t

0

J0 kn j t � sð Þ� �
un j

0 0; sð Þds; t� 0: ð5:22Þ

Differentiating (5.22) with respect to t, we can write

@

@ t
þ @

@ zj

� �
un j zj; t
	 
����

zj¼0

¼ kn j

Z t

0

J1 kn j t � sð Þ� �
un j

0 0; sð Þds; t� 0: ð5:23Þ

Here, the relationships dJ0 xð Þ=dx ¼ �J1 xð Þ, J0 0ð Þ ¼ 1, and v 1ð Þ t � sð Þ ¼
d t � sð Þ were used, v 1ð Þ . . .ð Þ stands for the generalized derivative of v . . .ð Þ:

Applying the Laplace transform

~f sð Þ ¼
Z1
0

f tð Þe�stdt $ f tð Þ ¼ 1
2pi

Zaþ i1

a�i1

~f sð Þest ds ð5:24Þ

to (5.23) and taking into account the relationships ~f1 sð Þ~f2 sð Þ $ R t
0 f1 t � sð Þ f2 sð Þds

(the convolution theorem), k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ k2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ k2

p
þ s

� �h i�1
$ kJ1 ktð Þ [36], and

s~f sð Þ � f 0ð Þ $ df tð Þ=dt, we obtain the following expression in the space of
images ~un j z; sð Þ:

@

@ zj
þ s

� �
~un j zj; s
	 
����

zj¼0

¼ k2n ~un j
0 0; sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ k2n j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ k2n j

q
þ s

� � ; ð5:25Þ

which is equivalent to

~un j
0 0; sð Þ ¼ � sþ k2n j

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ k2n j

q
0B@

1CA~un j 0; sð Þ: ð5:26Þ
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Applying the inverse Laplace transform to (5.26), we return back to the
originals:

@

@ t
þ @

@zj

� �
un j zj; t
	 
����

zj¼0

¼ �kn j

Z t

0

J1 kn j t � sð Þ� �
t � sð Þ�1un j 0; sð Þds;

t� 0:

ð5:27Þ

Here, the formula sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ k2

p� ��1
$ ktð Þ�1J1 ktð Þ [37] was used.

To justify the use of the Laplace transform (5.24) when passing from (5.23) to
(5.27), we refer to the estimates in [38]. From these estimates it follows that at the
points g of any bounded subdomain of the domain X, the field U g; tð Þ generated by
a system of sources with compact supports cannot grow faster than exp atð Þ for
t ! 1, where a[ 0 is some constant. The estimates are valid for all electrody-
namic structures whose spectrum of complex-valued eigenfrequencies �kn

� �
n does

not contain the points �km from the upper half-plane of the first (physical) sheet,
which constitutes a natural domain of variation of the complex frequency parameter
k [3]. All open structures considered in this section fall into this category [39].

Rewriting (5.22), (5.23), and (5.27) in terms of (5.6), we obtain:

U qj; 0; t
	 
 ¼ �

X
n

Z t

0

J0 kn j t � sð Þ� �8<:
�

Zqj 2ð Þ

qj 1ð Þ

@U qj; zj; s
	 

@ zj

����
zj¼0

ln j qj
	 


qj d qj

264
375ds

9>=>;
� ln j qj

	 

; qj 1ð Þ � q� qj 2ð Þ; t� 0;

ð5:28Þ

@

@ t
þ @

@ zj

� �
U qj; zj; t
	 
����

zj¼0

¼
X
n

kn j

Z t

0

J1 kn j t � sð Þ� �8<:
�

Zqj 2ð Þ

qj 1ð Þ

@U qj; zj; s
	 

@ zj

����
zj¼0

ln j qj
	 


qj d qj

264
375ds

9>=>;
� ln j qj

	 

; qj 1ð Þ � qj � qj 2ð Þ; t� 0;

ð5:29Þ
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and

@

@ t
þ @

@ zj

� �
U qj; zj; t
	 
����

zj¼0

¼ �
X
n

kn j

Z t

0

J1 kn j t � sð Þ� �8<:
� t � sð Þ�1

Zqj 2ð Þ

qj 1ð Þ

U qj; 0; s
	 


ln j qj
	 


qj d qj

264
375ds

9>=>;
� ln j qj

	 

; qj 1ð Þ � qj � qj 2ð Þ; t� 0:

ð5:30Þ

The relationships (5.28)–(5.30) are valid for all waves U g; tð Þ outgoing into the
waveguide Xj. The relationships (5.22), (5.23), and (5.27) deal with the space-time
amplitudes un j zj; t

	 

of all modes traveling towards zj ¼ 1 on the boundary Cj,

while the relationships (5.28)–(5.30) deal with the waves U g; tð Þ: The relationships
(5.28)–(5.30) relate values of U g; tð Þ with values of its derivatives on the virtual
boundary Cj, and thus could be used as boundary conditions. The boundary con-
ditions (5.28)–(5.30) are called exact absorbing conditions (EACs) because they are
exact by derivation, and the wave U g; tð Þ is not distorted crossing the boundary Cj;
there is no reflection back into the domain Xint, the wave U g; tð Þ passes into the
domain Xj completely, as if it is absorbed by that domain or by the virtual boundary
Cj. The open problem (5.4) and the problem (5.4) with the bounded computation
domain Xint together with any of EACs (5.28)–(5.30) on the virtual boundaries Cj,
j ¼ 1; 2; . . .; J are equivalent (see Sect. 5.2.5). For the first time, the equations
(5.22), (5.28) were used as EACs in [1].

EACs (5.28)–(5.30) arenonlocal in space (with respect toqj) and in time: the function
U qj; zj; t
	 


and its derivatives at each point of the boundary Cj and at each moment of
time are determined by the values of this function or its derivatives at all other points
of the boundary and at all previous moments of time s\t:Numerical implementation
of nonlocal EACs could be computationally expensive as discussed in Sect. 5.7. For
practical applications, FFT-based acceleration of nonlocal EACs is used as detailed in
Sect. 5.7.3 or nonlocal EACs are replaced with local ones as detailed next.

5.2.4 Local Exact Absorbing Conditions

Using the formula [34]

J0 xð Þ ¼ 2
p

Zp=2
0

cos x sinuð Þdu;
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let us rewrite (5.22) as

un j 0; tð Þ ¼ � 2
p

Zp=2
0

Z t

0

cos kn j t � sð Þsinu� �
un j

0 0; sð Þds
8<:

9=;du; t� 0: ð5:31Þ

Denote

wn j t;uð Þ ¼ �
Z t

0

sin kn j t � sð Þ sinu� �
un j

0 0; sð Þ
kn j sinu

ds;

t� 0; 0�u� p=2:

ð5:32Þ

Then

@wn j t;uð Þ
@ t

¼ �
Z t

0

cos kn j t � sð Þsinu� �
un j

0 0; sð Þds;

and we have from (5.31) that

un j 0; tð Þ ¼ 2
p

Zp=2
0

@ wn j t;uð Þ
@ t

du; t� 0: ð5:33Þ

The integral form (5.32) is equivalent to the following differential form:

@2

@ t2
þ k2n j sin

2 u

� �
wn j t;uð Þ ¼ �un j

0 0; tð Þ; t[ 0

wn j 0;uð Þ ¼ @ wn j t;uð Þ
@ t

����
t¼0

¼ 0:

8>><>>: ð5:34Þ

Indeed, using the generalized formulation of the corresponding Cauchy problem,
and the fundamental solution G k; tð Þ ¼ v tð Þk�1sin kt of the operator DðkÞ �
d2=dt2 þ k2
� �

(see [3]), we can easily verify that the formulas (5.32) and (5.34)
determine the same function wn j t;uð Þ:

Let us now multiply (5.33) and (5.34) by ln j qj
	 


and sum over all n. As a result,
taking into account that

X
n

k2n j un j zj; t
	 


ln j qj
	 
 ¼ � @

@qj

1
qj

@

@qj
qj U qj; zj; t
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and

X
n

k2n j wn j t;uð Þ ln j qj
	 
 ¼ � @

@qj

1
qj

@

@qj
qj W qj; t;u

	 

for

W qj; t;u
	 
 ¼X

n

wn j t;uð Þln j qj
	 


(see the problems (5.7), (5.8)), we obtain

U qj; 0; t
	 
 ¼ 2

p

Zp=2
0

@W qj; t;u
	 

@ t

d u; t� 0; qj 1ð Þ � qj � qj 2ð Þ; ð5:35aÞ

@2

@ t2
� sin2 u

@

@qj

1
qj

@

@qj
qj

" #
W qj; t;u
	 
 ¼ �@U qj; zj; t

	 

@ zj

����
zj¼0

;

qj 1ð Þ\qj\qj 2ð Þ; t[ 0

W qj; 0;u
	 
 ¼ @W qj; t;u

	 

@ t

����
t¼0

¼ 0; qj 1ð Þ � qj � qj 2ð Þ:

8>>>>><>>>>>:
ð5:35bÞ

Here, W qj; t;u
	 


is an auxiliary function, which can be determined by solving
the auxiliary initial boundary value problem (5.35b); 0�u� p=2 is a numeric
parameter.

The same manipulations with (5.23) and (5.27) result in the following local
EACs different from (5.35a), (5.35b):

@

@ t
þ @

@zj

� �
U qj; zj; t
	 
����

zj¼0

¼ 2
p

Zp=2
0

W qj; t;u
	 


cos2 udu;

t� 0; qj 1ð Þ � qj � qj 2ð Þ;

ð5:36aÞ

@2

@ t2
� cos2 u

@

@qj

1
qj

@

@qj
qj

" #
W qj; t;u
	 
 ¼ � @

@qj

1
qj

@

@qj
qj

� @

@ zj
U qj; zj; t
	 
����

zj¼0

" #
; qj 1ð Þ\qj\qj 2ð Þ; t[ 0

W qj; 0;u
	 
 ¼ @W qj; t;u

	 

@ t

����
t¼0

¼ 0; qj 1ð Þ � qj � qj 2ð Þ

8>>>>>>>>>><>>>>>>>>>>:
ð5:36bÞ
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and

@

@ t
þ @

@ zj

� �
U qj; zj; t
	 
����

zj¼0

¼ 2
p

Zp=2
0

@W qj; t;u
	 

@ t

sin2 u du;

t� 0; qj 1ð Þ � qj � qj 2ð Þ;

ð5:37aÞ

@2

@ t2
� cos2 u

@

@qj

1
qj

@

@qj
qj

" #
W qj; t;u
	 
 ¼ @

@qj

1
qj

@

@qj
qjU qj; 0; t
	 


;

qj 1ð Þ\qj\qj 2ð Þ; t[ 0

W qj; 0;u
	 
 ¼ @W qj; t;u

	 

@ t

����
t¼0

¼ 0; qj 1ð Þ � qj � qj 2ð Þ:

8>>>>>><>>>>>>:
ð5:37bÞ

In derivation of (5.36a), (5.36b), the following formula was used [40]

J1 xð Þ ¼ 2
p

Zp=2
0

sin x cosuð Þ cosu du

along with the substitutions

wn j t;uð Þ ¼ kn j

Z t

0

sin kn j t � sð Þ cos u� �
un j

0 0; sð Þ
cosu

ds; t� 0; 0�u� p=2;

while in the derivation of (5.37a), (5.37b), we applied the integral Poisson formula
[34]

J1 xð Þ ¼ 2x
p

Zp=2
0

cos x cos uð Þsin2u du

and

wn j t;uð Þ ¼ �kn j

Z t

0

sin kn j t � sð Þ cosu� �
un j 0; sð Þ

cosu
ds; t� 0; 0�u� p=2:

The auxiliary initial boundary value problems (5.35b), (5.36b), and (5.37b) should
be supplemented by the following boundary conditions for all time moments t� 0

W 0; t;uð Þ ¼ W aj; t;u
	 
 ¼ 0; TE0�waves

W 0; t;uð Þ ¼ @ qjW qj; t;u
	 
	 

@qj

�����
qj¼aj

¼ 0; TM0�waves

8>><>>:
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(for the domain Xj corresponding to a circular waveguide) and

W bj; t;u
	 
 ¼ W aj; t;u

	 
 ¼ 0; TE0�waves
@ qjW qj; t;u

	 
	 

@qj

�����
qj¼bj

¼ @ qjW qj; t;u
	 
	 

@qj

�����
qj¼aj

¼ 0; TM0�waves

8>><>>:
(for the domain Xj corresponding to a coaxial waveguide).

The formulas (5.35a), (5.35b)–(5.37a), (5.37b), just like (5.28)–(5.30), exactly
describe the behavior of the waves U g; tð Þ on the boundary Cj, thus, they are EACs
for the outgoing waves. In contrast with EACs (5.28)–(5.30), EACs (5.35a),
(5.35b)–(5.37a), (5.37b) are local both in space and time: in (5.35a), (5.36a), and
(5.37a) the function U gj; t

	 

and its derivatives at each point qj of the boundary Cj

and at each moment of time t are determined by the auxiliary functionW qj; t;u
	 


at
the same point and the same moment of time.

5.2.5 Equivalence Theorem

EACs derived in Sects. 5.2.3, 5.2.4 allow us to replace the original open problem
(5.4) with the closed (modified) problem

�e gð Þ @
2

@t2
� r gð Þg0

@

@t
þ @2

@z2
þ @

@q
1
q

@

@q
q

� �� �
U g; tð Þ ¼ F g; tð Þ;

t[ 0; g 2 Xint

U g; tð Þjt¼0¼ u gð Þ; @

@t
U g; tð Þ

����
t¼0

¼ w gð Þ; g ¼ q; zf g2�Xint

~Etg p; tð Þ��p¼ q;/;zf g2R¼ 0; U 0; z; tð Þ ¼ 0 for 0; zf g2�Xint;

and Dadd U g; tð Þ½ �jg2Cadd
¼ 0; t� 0

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð5:38Þ

and the total kit (j ¼ 1; 2; . . .; J) of RCs (5.19) for the points g2 Xadd ¼ [J
j¼1

Xj.

Below we prove that this replacement is equivalent, in other words, any solution to
the problem (5.4) is at the same time a solution to the problem (5.38), (5.19) and

vice versa. By Dadd U g; tð Þ½ �jg2Cadd
¼ 0, Cadd ¼ [J

j¼1
Cj we denote here the total kit

(j ¼ 1; 2; . . .; J) of EACs. It may be local or/and nonlocal EACs (5.28) to (5.30) and
(5.35a), (5.35b) to (5.37a), (5.37b) in any combination.

The problem (5.4) is uniquely solvable in the space of generalized functions
W1

2 XT	 

: Its unique solution U g; tð Þ is at the same time a solution to the problem
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(5.38) from the Sobolev space W1
2 XT

int

	 

, where XT

int ¼ Xint � 0; Tð Þ: This direct
inclusion is trivial, it is proved by the derivations in Sects. 5.2.2 to 5.2.4. The
inverse inclusion is true only if the generalized solution U g; tð Þ to the problem
(5.38) from the space W1

2 XT
int

	 

is unique. Let us prove the uniqueness.

According to [33], the generalized solution to the problem (5.38) is an element
U g; tð Þ of the space W1

2 XT
int

	 

which is equal to u gð Þ at t ¼ 0 and satisfying the

identity Z
XT

int

e
@U
@t

@c
@t

� 1
q2

@

@q
qU

� �
@ qcð Þ
@q

� @U
@z

@c
@z

� rg0
@U
@t

c

� �
dgdt

þ
Z
UT

1
q
@

@q
qU

� �
c cos ~n;~qð Þþ @U

@z
c cos ~n;~zð Þ

� �
dsdt

þ
Z
Xint

ewc g; 0ð Þdg ¼
Z
XT

int

Fcdgdt

ð5:39Þ

for any function c g; tð Þ from W1
2 XT

int

	 

that is zero at t ¼ T: Here, UT is a lateral

surface of the cylinder XT
int (U

T ¼ U � 0;Tð Þ; U is the boundary of the domain
Xint); cos ~n;~qð Þ and cos ~n;~zð Þ are cosines of the angles between the outer normal~n to
the surface UT and the axes~q and~z, respectively. An element of the end surfaces of
the cylinder is dg ¼ qdqdz: The identity (5.39) is obtained multiplying the equation
from (5.38) by c g; tð Þ and integrating the result by parts in XT

int [33, 41].
Assume that there exist two solutions to the problem (5.38) from the space

W1
2 XT

int

	 

: U1 g; tð Þ and U2 g; tð Þ: The difference between them u g; tð Þ ¼ U1 g; tð Þ �

U2 g; tð Þ is a solution to the homogeneous problem similar to (5.38), so it satisfies
the identity (see (5.39))Z

XT
int

e
@u
@t

@c
@t

� 1
q2

@

@q
qu

� �
@ qcð Þ
@q

� @u
@z

@c
@z

� rg0
@u
@t

c

� �
dgdt

þ
Z
UT

1
q
@

@q
qu

� �
c cos ~n;~qð Þþ @u

@z
c cos ~n;~zð Þ

� �
dsdt ¼ 0:

ð5:40Þ

Let us introduce an arbitrary s2 0; Tð Þ and consider the following function

c g; tð Þ ¼
Rs
t
u g; fð Þdf; 0\t\s

0; s\t\T

8<: :
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It can be verified easily that c g; tð Þ has the generalized derivatives in XT
int [41]

@c g; tð Þ
@t

¼ �u g; tð Þ; 0\t\s
0; s\t\T

�
;

@c g; tð Þ
@q

¼
Rs
t

@u g; fð Þ
@q

df; 0\t\s

0; s\t\T

8<: ;

and
@c g; tð Þ

@z
¼

Rs
t

@u g; fð Þ
@z

df; 0\t\s

0; s\t\T

8<: :

At the same time we have c g; tð Þjt¼T¼ 0: Substituting the function c g; tð Þ into
the identity (5.40), we obtain:

Z
Xs

int

e
@u
@t

uþ 1
q2

@

@q
qu

� � Zs
t

@

@q
qu fð Þdf

0@ 1A24
þ @u

@z

Zs
t

@

@z
u fð Þdf

0@ 1Aþ rg0
@u
@t

c

35dgdt
�
Z
Us

1
q
@

@q
qu

� �
c cos ~n;~qð Þþ @u

@z
c cos ~n;~zð Þ

� �
dsdt ¼ 0:

ð5:41Þ

Since [41]

Z
Xs

int

k gð Þf g; tð Þ
Zs
t

f g; fð Þ df
24 35dgdt ¼ 1

2

Z
Xint

k gð Þ
Zs
0

f g; tð Þ dt
0@ 1A2

dg;

then

Z
Xs

int

1
q2

@

@q
qu

� � Zs
t

@

@q
qu fð Þdf

0@ 1A24 35dgdt ¼ 1
2

Z
Xint

1
q2

Zs
0

@

@q
qudt

0@ 1A2

dg� 0

ð5:42Þ

and Z
Xs

int

@u
@z

Zs
t

@

@z
u fð Þdf

0@ 1A24 35dgdt ¼ 1
2

Z
Xint

Zs
0

@

@z
udt

0@ 1A2

dg� 0: ð5:43Þ

Performing partial integration and taking into consideration that c g; tð Þjt¼s¼ 0
and u g; tð Þjt¼0¼ 0, we also obtain
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Z
Xs

int

e
@u
@t

u

� �
dgdt ¼ 1

2

Z
Xint

e u g; sð Þ½ �2dg� 0 ð5:44Þ

and Z
Xs

int

r
@u
@t

c

� �
dgdt ¼�

Z
Xs

int

ru
@c
@t

� �
dgdt ¼

Z
Xs

int

ru2dgdt� 0: ð5:45Þ

Thus, all the volume integrals in the identity (5.41) are non-negative. Let us
show that the integral

I1 sð Þ ¼ �
Z
Us

1
q
@

@q
q u

� �
c cos ~n;~qð Þþ @u

@z
c cos ~n;~zð Þ

� �
dsdt ð5:46Þ

is non-negative as well. To this end, let us estimate the integral I1 sð Þ for the case of
TE0-waves, when (see [3, 8])

u g; tð Þ ¼ E/; Eq ¼ Ez ¼ H/ � 0; and

@Hq

@t
¼ g�1

0
@ u
@z

;
@ Hz

@t
¼ �g�1

0
1
q
@ quð Þ
@q

ð5:47Þ

(the case of TM0-waves can be considered similarly). Thus

I1 sð Þ ¼ g0

Z
Us

@ Hz

@t
c cos ~n;~qð Þ � @ Hq

@t
c cos ~n;~zð Þ

� �
dsdt

¼ �g0

Z
Us

Hz
@ c
@t

cos ~n;~qð Þ � Hq
@ c
@t

cos ~n;~zð Þ
� �

dsdt

¼ g0

Z
Us

Hzu cos ~n;~qð Þ � Hqu cos ~n;~zð Þ� �
dsdt

¼ g0

Z
Us

HzE/ cos ~n;~qð Þ � HqE/ cos ~n;~zð Þ� �
dsdt

¼ g0

Z
Cadd � 0;sð Þ

HzE/ cos ~n;~qð Þ � HqE/ cos ~n;~zð Þ� �
dsdt

¼ g0

Z
Cadd � 0;sð Þ

~E � ~H
� � 
~n	 


dsdt ¼ g0I2 sð Þ� 0:

ð5:48Þ

The last step in the chain of transformations (5.48) requires explanation. The
integral I2 sð Þ, which is accurate within a fixed factor, coincides with the
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electromagnetic field energy radiated from the region Xint � 0�/� 2p½ � during
the time 0\t\s [42]. According to the condition Dadd u g; tð Þ½ �jg2Cadd

¼ 0 (the
operator Dadd . . .½ � here is given by (5.28)–(5.30) and (5.35a), (5.35b)–(5.37a),
(5.37b)), the functions ~E ¼ Eq;E/;Ez

� �
and ~H ¼ Hq;H/;Hz

� �
correspond to the

electromagnetic waves outgoing from the domain Xint, and the energy of the out-
going waves cannot be negative.

Then, from (5.41)–(5.45), (5.48) we haveZ
Xint

e u g; sð Þ½ �2dg ¼ g0

Z
Xs

int

ru2dgdt ¼ 0;

or, as s could be arbitrary,

u g; tð Þ � 0; g2 Xint; 0\t\T :

Thus, a solution to the modified problem (5.38) exists and it is unique. This result
allows one to construct stable and convergent finite-difference or finite-element
numerical schemes based on (5.38) for computing values of the field U g; tð Þ, g2 X,
0� t� T\1 (see works [3, 28, 29, 33]) and proves the following statement.

Statement 5.2. Let the problem (5.4) has a unique solution from the space
W1

2 XT	 

. Then, the problem (5.38) is uniquely solvable in the space W1

2 XT
int

	 

, and

the closed problem (5.19), (5.38) is equivalent to the open problem (5.4).

5.3 Compact Axially Symmetric Structures

5.3.1 Formulation of the Model Problem

Figure 5.3 shows the cross-section of an open compact axially symmetric
(@=@/ � 0) resonant structure. Here, q;/; zf g are cylindrical and r; #;/f g are
spherical coordinates. The 2-D initial boundary value problem describing evolu-
tions of pulsed axially symmetric TE0- (Eq ¼ Ez ¼ H/ � 0) and TM0-waves
(Hq ¼ Hz ¼ E/ � 0) in the open structures of this kind is given (see [3, 8]) by

�e gð Þ @
2

@t2
� r gð Þg0

@

@t
þ @2

@z2
þ @

@q
1
q
@

@q
q

� �� �
U g; tð Þ ¼ F g; tð Þ;

t[ 0; g2 X

U g; tð Þjt¼0¼ u gð Þ; @

@t
U g; tð Þ

����
t¼0

¼ w gð Þ; g ¼ q; zf g 2 �X

~Etg p; tð Þ and ~Htg p; tð Þ are continuouswhen crossing Re;r

and ~Etg p; tð Þ��p¼ q;/;zf g2R¼ 0; U 0; z; tð Þ ¼ 0 for zj j\1; t� 0:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð5:49Þ
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Here, U g; tð Þ ¼ E/ g; tð Þ for TE0-waves and U g; tð Þ ¼ H/ g; tð Þ for TM0-waves.
The domain of analysis X is the part of the half-plane Xtotal bounded by the
contours R/. The domains Xint ¼ g ¼ r; #f g2 X : r\Lf g and Xext : X ¼
Xint [Xext [C (free space) are separated by the virtual boundary C ¼ g ¼ r; #f gf
2 X : r ¼ Lg.

The functions F g; tð Þ;u gð Þ;w gð Þ; r gð Þ; and e gð Þ � 1, which have compact
supports in the closure of X, are supposed to satisfy the theorem on the unique
solvability of the problem (5.49) in the Sobolev space W1

2 XT	 

;XT ¼ X �

0; Tð Þ; T\1 (see, for example, Statement 5.1 in Sect. 5.2). Current and instan-
taneous sources described by the functions F g; tð Þ and u gð Þ;w gð Þ as well as all
scatterers described by the piecewise constant functions e gð Þ; r gð Þ and by the
piecewise smooth contours R/ andR

e;r
/ are located in the domain Xint. By R ¼

R/ � 0; 2p½ � we denote perfectly conducting surfaces obtained by rotating the
curves R/ around the z-axis; Re;r ¼ Re;r

/ � 0; 2p½ � are similarly defined surfaces
across which the relative permittivity e gð Þ and specific conductivity r gð Þ change
step-wise.

5.3.2 Radiation Conditions for Outgoing Waves

In the domain Xext; where the wave U g; tð Þ propagates freely to infinity as t → ∞,
the 2-D initial boundary value problem (5.49) can be rewritten in the spherical
coordinates in the following way [3, 7, 9]:

Fig. 5.3 Compact axially symmetric object
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� @2

@t2
þ 1

r
@2

@r2
rþ 1

r2
@

@ #

1
sin#

@

@#
sin#

� �� �
U g; tð Þ ¼ 0;

t[ 0; g2 Xext

U g; tð Þjt¼0¼ 0;
@

@t
U g; tð Þ

����
t¼0

¼ 0; g ¼ r; #f g2Xext

U r; 0; tð Þ ¼ U r; p; tð Þ ¼ 0; r� L; t� 0:

8>>>>>>><>>>>>>>:
ð5:50Þ

Let us represent the solution U r; #; tð Þ of (5.50) as U r; #; tð Þ ¼ u r; tð Þl #ð Þ:
Separation of variables in (5.50) results into the homogeneous Sturm-Liouville
problem with respect to the function ~l cos #ð Þ ¼ l #ð Þ

d2

d #2 þ ctg#
d
d #

� 1

sin2 #
þ k2

� �
~l cos#ð Þ ¼ 0; 0\#\p

~l cos#ð Þj#¼0; p¼ 0

8><>: ð5:51Þ

and the initial boundary value problem for u r; tð Þ

� @2

@t2
þ @2

@r2
� k2

r2

� �
r u r; tð Þ ¼ 0; r� L; t[ 0

u r; 0ð Þ ¼ @

@t
u r; tð Þ

����
t¼0

¼ 0; r� L:

8>><>>: ð5:52Þ

Let us solve the problem (5.51) with respect to ~l cos#ð Þ and k. Change of
variables x ¼ cos#, ~l xð Þ ¼ ~l cos#ð Þ yields the following boundary value problem
for ~l xð Þ:

1� x2ð Þ d2

dx2
� 2x

d
dx

þ k2 � 1
1� x2

� �� �
~l xð Þ ¼ 0; xj j\1

~l �1ð Þ ¼ ~l 1ð Þ ¼ 0:

8<: ð5:53Þ

With k2 ¼ k2n ¼ n nþ 1ð Þ for each n ¼ 1; 2; 3; . . . the equation (5.53) has two
nontrivial linearly independent solutions in the form of the associated Legendre
functions P1

n xð Þ and Q1
n xð Þ. Taking into account the behavior of these functions in

the vicinity of their singular points x ! �1 [43], we obtain

~ln cos#ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ= 2n nþ 1ð Þð Þ

p
P1
n cos#ð Þ: ð5:54Þ

The orthonormal (with the weight factor sin#) system of functions ~ln cos#ð Þ,
n ¼ 1; 2; . . ., which is complete in the space L2 0\#\pð Þ, is nontrivial solution to
the problem (5.51). Therefore, the solution to the initial boundary value problem
(5.50) can be represented as
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U r; #; tð Þ ¼ P1
n¼1

un r; tð Þ~ln cos#ð Þ; r� L

un r; tð Þ ¼ Rp
0
U r; #; tð Þ ~ln cos#ð Þ sin#d#;

8>><>>: ð5:55Þ

where the space-time amplitudes un r; tð Þ are the solution to the problem (5.52) for
k2 ¼ k2n.

Our goal now is to derive RCs for the amplitudes un r; tð Þ of the outgoing wave
(5.55). Defining wn r; tð Þ ¼ run r; tð Þ and taking into account that k2n ¼ n nþ 1ð Þ, we
rewrite the equation in (5.52) as

� @2

@t2
þ @2

@r2
� n nþ 1ð Þ

r2

� �
wn r; tð Þ ¼ 0; r� L; t[ 0: ð5:56Þ

Now subject it to the integral transform

~f xð Þ ¼
Z1
L

f rð Þ Zc x; rð Þdr; x� 0; ð5:57Þ

where the kernel Zc x; rð Þ ¼ ra a xð ÞJc xrð Þþ b xð ÞNc xrð Þ� �
satisfies the equation

[34]

@2

@r2
þ 1� 2a

r
@

@r
þx2 þ a2 � c2

r2

� �
Zc x; rð Þ ¼ 0: ð5:58Þ

Here, Jc . . .ð Þ and Nc . . .ð Þ are the Bessel and Neumann cylindrical functions,
a xð Þ and b xð Þ are arbitrary functions independent of r, and a is a fixed real
constant.

Applying the transform (5.57) to (5.56) with a ¼ 1=2 and c ¼ nþ 1=2, we
obtain

Z1
L

� @2

@t2
� x2

� �
wn r; tð ÞZc x; rð Þdrþ Zc x; rð Þ @wn r; tð Þ

@r

����1
L

� wn r; tð Þ @Zc x; rð Þ
@r

����1
L

¼ 0:

ð5:59Þ

Since the ‘signal’ wn r; tð Þ propagates with a finite velocity, for any t we can
always point a distance r which is not reached yet by this signal, in other words,
such that for these t and r we have wn r; tð Þ � 0. Then we can rewrite the equation
(5.59) in the form
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Z1
L

� @2

@t2
� x2

� �
wn r; tð ÞZc x; rð Þdr�Zc x; Lð Þ @wn r; tð Þ

@r

����
r¼L

þ wn L; tð Þ @Zc x; rð Þ
@r

����
r¼L

¼ 0:

ð5:60Þ

From (5.60) the simple differential equation for the images ~wn x; tð Þ of the
functions wn r; tð Þ follows:

@2

@t2
þx2

� �
~wn x; tð Þ ¼ wn L; tð Þ @Zc x; rð Þ

@r

����
r¼L

� Zc x; Lð Þ @wn r; tð Þ
@r

����
r¼L

; x� 0; t[ 0:
ð5:61Þ

In this equation, the values a xð Þ and b xð Þ in Zc x; rð Þ are not defined yet. With
a xð Þ ¼ �Nc xLð Þ and b xð Þ ¼ Jc xLð Þ, the function Zc x; Lð Þ ¼ ffiffiffi

L
p

a xð ÞJc xLð Þþ�
b xð ÞNc xLð Þ� in (5.61) vanishes, and the transform (5.57) turns into the Weber-Orr
transform [43] with the known inverse

~f xð Þ ¼
Z1
L

Jc xLð ÞNc xrð Þ � Nc xLð ÞJc xrð Þ� �
f rð Þ ffiffi

r
p

dr

$ f rð Þ ¼ ffiffi
r

p Z1
0

Jc xLð ÞNc xrð Þ � Nc xLð ÞJc xrð Þ
J2c xLð ÞþN2

c xLð Þ
~f xð Þx dx;

ð5:62Þ

while the coefficient of the first term in the right-hand side of (5.61) is

@Zc x; rð Þ
@ r

����
r¼L

¼ 1

2
ffiffiffi
L

p Jc xLð ÞNc xLð Þ � Nc xLð ÞJc xLð Þ� �
þ x

ffiffiffi
L

p
Jc xLð ÞN 0

c xLð Þ � Nc xLð ÞJ 0c xLð Þ
h i

¼ x
ffiffiffi
L

p
W Jc xLð Þ;Nc xLð Þ� � ¼ 2

p
ffiffiffi
L

p :

ð5:63Þ

Here, W Jc xLð Þ;Nc xLð Þ� � ¼ 2= pxLð Þ is the Wronskian [34]; N 0
c xLð Þ and

J 0c xLð Þ are the derivatives of the functions Nc xLð Þ and Jc xLð Þ with respect to their
argument xL.

Thus, applying the integral transform (5.62) to the problem (5.52) we obtain the
following Cauchy problem for the images ~wn x; tð Þ, x� 0, n ¼ 1; 2; 3; . . .:
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@2

@ t2
þx2

� �
~wn x; tð Þ ¼ gn x; tð Þ; t[ 0

@~wn x; tð Þ
@ t

����
t¼0

¼ ~wn x; 0ð Þ ¼ 0:

8>>><>>>: ð5:64Þ

Here, gn x; tð Þ ¼ 2wn L; tð Þ= p
ffiffiffi
L

p	 

. In the generalized formulation (the functions

~wn x; tð Þ and gn x; tð Þ are extended with zero on the semiaxis t� 0), the problem
(5.64) have the form [35]

@2

@t2
þx2

� �
~wn x; tð Þ ¼ gn x; tð Þþ d 1ð Þ tð Þ~wn x; 0ð Þ

þ d tð Þ @
@ t

~wn x; tð Þ
����
t¼0

¼ gn x; tð Þ; �1\t\1;

ð5:65Þ

where d . . .ð Þ and d 1ð Þ . . .ð Þ are the Dirac delta-function and its generalized deriva-
tive. The solutions ~wn x; tð Þ can be obtained as a result of the convolution
~wn x; tð Þ ¼ G�gn½ � of the fundamental solution G x; tð Þ ¼ v tð Þx�1 sinx t ¼
x�2 d tð Þ cos xtð Þ � d v tð Þ cos xtð Þ½ �=dt½ � of the operator @2=@t2 þx2½ � G x; tð Þ½ � (see
[3, 8, 35]) and the right-hand side of the equation (5.65):

~wn x; tð Þ ¼
Z1
0

G x; t � sð Þgn x; sð Þds

¼ 2

px2
ffiffiffi
L

p wn L; tð Þ �
Z t

0

cos x t � sð Þ½ � @wn L; sð Þ
@ s

ds

24 35;
x� 0; t� 0:

ð5:66Þ

Here, v . . .ð Þ is the Heaviside step-function and the following property of the
convolution [35] was used in derivation of (5.66):

@af �g½ � ¼ @a f �g½ � ¼ f �@ag½ �:

Let us subject the equation (5.66) to the inverse transform (5.62). Taking into
consideration that [44]

Z1
0

Jc xLð ÞNc xrð Þ � Nc xLð ÞJc xrð Þ
x J2c xLð ÞþN2

c xLð Þ
h i dx ¼ p

2
L
r

� �c

; L\r;
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we obtain:

wn r; tð Þ ¼ L
r

� �c�1=2

wn L; tð Þ � 2
p

ffiffiffi
r
L

r Z t

0

Fc r; L; t � sð Þ @wn L; sð Þ
@ s

ds; r[ L;

ð5:67Þ

Fc r; L; t � sð Þ ¼
Z1
0

cos x t � sð Þ½ � Jc xLð ÞNc xrð Þ � Nc xLð ÞJc xrð Þ� �
x J2c xLð ÞþN2

c xLð Þ
h i dx: ð5:68Þ

To compute the formula (5.67) efficiently, one should find an easy way to
calculate the function Fc r; L; t � sð Þ. To do this, first consider the following aux-
iliary integral

~Fc r; L; t � sð Þ ¼
Z1
�1

Hð1Þ
c zrð Þ

Hð1Þ
c zLð Þ

cos z t � sð Þ½ �
z

dz ð5:69Þ

along the real axis in the plane of the complex variable z. The critical point z ¼ 0 is
passed along the semi-circle Cd of infinitely small radius d in the upper half-plane;

H 1ð Þ
c . . .ð Þ is the Hankel function of the first kind. The function Fc r; L; t � sð Þ is

related to the integral in (5.69) by the easily verifiable equality

Hð1Þ
c zrð Þ

Hð1Þ
c zLð Þ

� Hð1Þ
c eipzrð Þ

Hð1Þ
c eipzLð Þ

¼ 2i
Jc zLð ÞNc zrð Þ � Nc zLð ÞJc zrð Þ

J2c zLð ÞþN2
c zLð Þ ;

in view of which

~Fc r; L; t � sð Þ

¼
Z�d

�1

Hð1Þ
c zrð Þ

Hð1Þ
c zLð Þ

cos z t � sð Þ½ �
z

dzþ
Z1
d

Hð1Þ
c zrð Þ

Hð1Þ
c zLð Þ

cos z t � sð Þ½ �
z

dz

þ
Z
Cd

Hð1Þ
c zrð Þ

Hð1Þ
c zLð Þ

cos z t � sð Þ½ �
z

dz ¼ �
Z1
d

Hð1Þ
c eipzrð Þ

Hð1Þ
c eipzLð Þ

cos z t � sð Þ½ �
z

dz

þ
Z1
d

Hð1Þ
c zrð Þ

Hð1Þ
c zLð Þ

cos z t � sð Þ½ �
z

dz� pi
L
r

� �c

¼ 2iFc r; L; t � sð Þ � pi
L
r

� �c

:

ð5:70Þ
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Rewrite the function ~Fc r; L; t � sð Þ as

~Fc r; L; t � sð Þ

¼ 1
2

Z1
�1

Hð1Þ
c zrð Þ

Hð1Þ
c zLð Þ

exp iz t � sð Þ½ �
z

dzþ
Z1
�1

Hð1Þ
c zrð Þ

Hð1Þ
c zLð Þ

exp �iz t � sð Þ½ �
z

dz

8<:
9=;:

ð5:71Þ

To calculate the integrals in the braces, we use the standard technique based on
the Cauchy theorem and the Jordan lemma [45]. Since for zLj j � c with z ! 1, the

relationship H 1ð Þ
c zrð Þ=H 1ð Þ

c zLð Þ  L=rð Þ1=2exp iz r � Lð Þ½ � is valid [34], then for
r � L[ t � s, the contours of integration in (5.71) can be closed by an arc of
infinitely large radius in the upper half-plane of the complex variable z. For
r � L\t � s, the contour of the first integral in (5.71) is closed in the upper
half-plane, while the contour of the second integral is closed in the bottom
half-plane. Taking into account that all singularities of the function

H 1ð Þ
c zrð Þ=H 1ð Þ

c zLð Þ are reduced to a finite number of simple poles at the points

z ¼ zs : Im zs\0 (s ¼ 1; 2; . . .; n) coinciding with zeros of the function H 1ð Þ
c zLð Þ

[36] and having regard to the asymptotic (for z ! 0) equality H 1ð Þ
c zrð Þ=H 1ð Þ

c zLð Þ 
L=rð Þc and equality dH 1ð Þ

c zLð Þ=dz ¼ L H 1ð Þ
c�1 zLð Þ � cH 1ð Þ

c zLð Þ= zLð Þ
h i

, we obtain

~Fc r; L; t � sð Þ ¼ �pi L
r

	 
c þ P
s

Hð1Þ
c zsrð Þ

Hð1Þ
c�1 zsLð Þ

exp �izs t � sð Þ½ �
zsL

" #
; s\t � r � Lð Þ

0; s[ t � r � Lð Þ:

8><>:
ð5:72Þ

Substituting (5.72) into (5.70), we finally have:

Fc r; L; t � sð Þ ¼

� p
2

X
s

Hð1Þ
c zsrð Þ

Hð1Þ
c�1 zsLð Þ

exp �izs t � sð Þ½ �
zsL

¼ � p
2
Sc r; L; t � sð Þ; s\t � r � Lð Þ

p
2

L
r

� �c

; s[ t � r � Lð Þ:

8>>>>>>><>>>>>>>:
ð5:73Þ

Summation in (5.73) can be performed over a half of the roots zs, s ¼ 1; 2; . . .; n

of the equation H 1ð Þ
c zLð Þ ¼ 0, for example, taking into account only those lying in

the fourth quadrant of the plane of complex variable z [36]. This inference stems
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from the fact that the function H 1ð Þ
c zLð Þ, c ¼ nþ 1=2 has n complex-valued zeros

zs : Im zs\0, which are located symmetrically with respect to the imaginary axis
approximately on a finite arc connecting the points zL ¼ �n and zL ¼ n [36].

Calculation of the function Sc r; L; t � sð Þ and partial integration in (5.67) yield
the following RC for the amplitudes wn r; tð Þ ¼ r un r; tð Þ, which determine the field
U g; tð Þ in the domain Xext:

wn r; tð Þ ¼ L
r

� �n

wn L; t � r � Lð Þð Þþ
ffiffiffi
r
L

r Zt� r�Lð Þ

0

Snþ 1=2 r; L; t � sð Þ @wn L; sð Þ
@ s

ds

¼ L
r

� �n

þ
ffiffiffi
r
L

r
Snþ 1=2 r; L; r � Lð Þ

� �
wn L; t � r � Lð Þð Þ

�
ffiffiffi
r
L

r Zt� r�Lð Þ

0

wn L; sð Þ @Snþ 1=2 r; L; t � sð Þ
@ s

ds;

r[ L; t� r � Lð Þ; n ¼ 1; 2; 3; . . . :

ð5:74Þ

From the expansions in (5.55) and the condition for amplitudes in (5.74), we
obtain RC for the wave U g; tð Þ outgoing through the boundary C into the domain
Xext:

Uðg; tÞ ¼
X1
n¼1

L
r

� �nþ 1Zp=2
0

U L; #; t � ðr � LÞð Þ~lnðcos#Þ sin#d#
8<:

þ
ffiffiffi
L
r

r Zt�ðr�LÞ

0

Snþ 1=2ðr; L; t � sÞ

�
Zp=2
0

@UðL; #; sÞ
@s

~lnðcos#Þ sin#d#

264
375ds

9>=>;~lnðcos#Þ;

g ¼ r; #f g 2 Xext; t�ðr � LÞ:

ð5:75Þ

With r ¼ L, the equations (5.74) and (5.75) turn into identities. These RCs do
not contain any directional derivative of the function U g; tð Þ and, thus, can be
implemented on a rectangular mesh of coordinates g ¼ q; zf g with minimal error.
The peculiarities of utilization of these RCs as EACs are discussed in [8]. The
modified (closed) problem obtained with (5.75) is following:
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�e gð Þ @2

@t2 � r gð Þg0 @
@t þ @2

@z2 þ @
@q

1
q

@
@q q

� �h i
U g; tð Þ ¼ F g; tð Þ;

t[ 0; g 2 Xint

U g; tð Þjt¼0¼ u gð Þ; @
@t U g; tð Þ��t¼0¼ w gð Þ; g ¼ q; zf g 2 �Xint

~Etg p; tð Þ and ~Htg p; tð Þ are continuous when crossing Re;r;

~Etg p; tð Þ��p¼ q;/;zf g2R¼ 0; U 0; z; tð Þ ¼ 0 for 0; zf g 2 �Xint

and D U g; tð Þ½ �jg2C¼ 0; t� 0:

8>>>>>>>>>><>>>>>>>>>>:
ð5:76Þ

Statement 5.3. Let the problem (5.49) has a unique solution from the space
W1

2 XT	 

. Then, the problem (5.76) is uniquely solvable in the space W1

2 XT
int

	 

and

the closed problem (5.75), (5.76) is equivalent to the open problem (5.49).

5.3.3 Far-Field Zone Problem, Extended and Remote
Sources

In contrast to approximate approaches to truncation of computation domains based
on ABCs or PMLs, our approach is rigorous. This means that an original open
problem and a modified closed (truncated) problem are equivalent. This allows to
monitor a computational error and obtain reliable information about resonant wave
scattering [3, 8]. It is noteworthy that using our approach we also solve without
additional efforts the far-field zone problem. Namely, to find the field U g; tð Þ at an
arbitrary point in the external domain Xext from values of U g; tð Þ on any arc
r ¼ M� L, 0�#� p, lying entirely in the computation domain Xint and retaining
all characteristics of the arc of the virtual boundary C. Thus in the case considered
here, the equation (5.74) define the transport operator XL! r tð Þ u½ � which operates
on the amplitudes un r; tð Þ of the outgoing waves (5.55) according to the rule

un r; tð Þ ¼ XL!r tð Þ un L; sð Þ½ �; r[ L; t� r � Lð Þ; t � r � Lð Þ� s� 0:

ð5:77Þ

It allows one to calculate values of the amplitudes un r; tð Þ anywhere in Xext

knowing their values only within Xint. The operator

U g; tð Þ ¼ Zq2C! g2Xext tð Þ U q; sð Þ½ �; t� r � Lð Þ; t � r � Lð Þ� s� 0 ð5:78Þ

given by (5.75) allows to calculate values of the field U g; tð Þ anywhere in Xext

knowing its values only within Xint

It is obvious that the efficiency of numerical algorithms based on (5.76) reduces
if the support of the function F g; tð Þ and/or the functions u gð Þ and w gð Þ is extended
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substantially or located far from the region where scatterers are located. This
problem (the far-field zone problem or the problem of extended and remote sources)
can be resolved as discussed next.

Let us consider the problem

�e gð Þ @
2

@t2
� r gð Þg0

@

@t
þ @2

@z2
þ @

@q
1
q
@

@q
q

� �� �
U g; tð Þ

¼ F g; tð Þþ ~F g; tð Þ; t[ 0; g ¼ q; zf g 2 X

U g; tð Þjt¼0¼ u gð Þþ ~u gð Þ; @

@t
U g; tð Þ

����
t¼0

¼ w gð Þþ ~w gð Þ; g ¼ �X

~Etg p; tð Þ and ~Htg p; tð Þ are continuous when crossing Re;r

and ~Etg p; tð Þ��p¼ q;/;zf g2R¼ 0; U 0; z; tð Þ ¼ 0 for zj j\1; t� 0:

8>>>>>>>>>>><>>>>>>>>>>>:
ð5:79Þ

In contrast with the problem (5.49) considered in Sects. 5.3.1 and 5.3.2, the
sources ~F g; tð Þ, ~u gð Þ, and ~w gð Þ of the problem (5.79) are located outside of the
domain Xint, which contains all the scatterers (see Fig. 5.4 and compare with
Fig. 5.3). The supports of the functions ~F g; tð Þ, ~u gð Þ, and ~w gð Þ can be arbitrary
large (and even unbounded) and are located in Xext at any finite distance from Xint.

Fig. 5.4 Compact axially symmetric object in the field of distant sources
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Let the relevant sources generate the field Ui g; tð Þ in the half-plane
Xtotal ¼ g : q[ 0; zj j\1f g. In other words, let the function Ui g; tð Þ be a solu-
tion to the following Cauchy problem:

� @2

@t2
þ @2

@z2
þ @

@q
1
q
@

@q
q

� �� �
Ui g; tð Þ ¼ ~F g; tð Þ; t[ 0; g2 Xtotal

Ui g; tð Þjt¼0¼ ~u gð Þ; @

@t
Ui g; tð Þ

����
t¼0

¼ ~w gð Þ; g ¼ q; zf g2 �Xtotal

Ui 0; z; tð Þ ¼ 0; zj j\1; t� 0:

8>>>>><>>>>>:
ð5:80Þ

It follows from (5.79), (5.80) that in the domain Xext the function

Us g; tð Þ ¼ U g; tð Þ � Ui g; tð Þ ð5:81Þ

satisfies the equation

� @2

@t2
þ @2

@z2
þ @

@q
1
q
@

@q
q

� �� �
Us g; tð Þ ¼ 0;

t[ 0; g ¼ q; zf g 2 Xext

Us g; tð Þjt¼0¼ 0; @
@t U

s g; tð Þ��t¼0¼ 0; g ¼ �Xext

Us 0; z; tð Þ ¼ 0; zj j � L; t� 0

8>>>>><>>>>>:
ð5:82Þ

and determines the electromagnetic wave crossing the virtual boundary C in one
direction only, namely, from Xint into Xext.

The problems (5.82) and (5.50) are of the same kind. Therefore, repeating the
transformations of Sect. 5.3.2, we obtain similarly to (5.75)

Us g; tð Þ ¼
X1
n¼1

L
r

� �nþ 1Zp=2
0

Us L; #; t � r � Lð Þð Þ~ln cos#ð Þ sin#d#
8<:

þ
ffiffiffi
L
r

r Zt� r�Lð Þ

0

Snþ 1=2 r; L; t � sð Þ

�
Zp=2
0

@Us L; #; sð Þ
@ s

~ln cos#ð Þ sin#d#

264
375ds

9>=>;~ln cos#ð Þ;

g ¼ r; #f g2 Xext; t� r � Lð Þ:

ð5:83Þ

The open problem (5.79) can be replaced now with the equivalent closed
problem
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�e gð Þ @
2

@t2
� r gð Þg0

@

@t
þ @2

@z2
þ @

@q
1
q

@

@q
q

� �� �
U g; tð Þ ¼ F g; tð Þ;

t[ 0; g2 Xint

U g; tð Þjt¼0¼ u gð Þ; @

@t
U g; tð Þ

����
t¼0

¼ w gð Þ; g ¼ q; zf g2 �Xint

~Etg p; tð Þ and ~Htg p; tð Þ are continuouswhen crossing Re;r;

~Etg p; tð Þ��p¼ q;/;zf g2R¼ 0; U 0; z; tð Þ ¼ 0 for 0; zf g2 �Xint

and D U g; tð Þ � Ui g; tð Þ½ �jg2C¼ 0; t� 0:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð5:84Þ

The problem of extended and remote sources is solved. RC (5.83) allows one to
shrink the computation domain of the problem (5.84) to the same domain Xint as in
the case of compact sources F g; tð Þ, u gð Þ, and w gð Þ located in the immediate
vicinity of scatterers.

To solve the problem (5.84) numerically, one has to solve the Cauchy problem
(5.80) first, and determine the function Ui r; #; tð Þ for points g ¼ r; #f g from the
neighborhood of the boundary C (see the formulas (5.81)–(5.83)). Let us separate
the transverse variable q in the problem (5.80) and represent its solution in the form
[43]:

Ui q; z; tð Þ ¼
Z1
0

vk z; tð ÞJ1 kqð Þ dk; ð5:85Þ

vk z; tð Þ ¼
Z1
0

vl z; tð Þd l� kð Þ dl ¼ k
Z1
0

vl z; tð Þ
Z1
0

J1 lqð ÞJ1 kqð Þqdq
24 35 dl

¼ k
Z1
0

Z1
0

vl z; tð ÞJ1 lqð Þdl
24 35J1 kqð Þqdq ¼ k

Z1
0

Ui q; z; tð ÞJ1 kqð Þqdq:

ð5:86Þ

In order to find the functions vk z; tð Þ, one has to solve the following Cauchy
problem for the 1-D Klein-Gordon equation:

� @2

@t2 þ @2

@z2 � k2
h i

vk z; tð Þ ¼ Fk z; tð Þ; t[ 0; zj j\1
vk z; 0ð Þ ¼ uk zð Þ; @

@t vk z; tð Þ��t¼0¼ wk zð Þ; zj j\1:

(
ð5:87Þ

Here, Fk z; tð Þ, uk zð Þ, and wk zð Þ are the amplitude coefficients in the integral
presentation (5.85) for the functions ~F g; tð Þ, ~u gð Þ, and ~w gð Þ, namely,
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Fk g; tð Þ
uk gð Þ
wk gð Þ

8<:
9=; ¼ k

Z1
0

~F g; tð Þ
~u gð Þ
~w gð Þ

8<:
9=;J1 kqð Þqdq:

Now, extending the functions Fk z; tð Þ and vk z; tð Þ with zero on the interval t� 0,
we pass on to the generalized version of the problem (5.87) [35]:

B kð Þ vk z; tð Þ½ � � � @2

@t2
þ @2

@z2
� k2

� �
vk z; tð Þ

¼ Fk z; tð Þ � d 1ð Þ tð Þuk zð Þ � d tð Þwk zð Þ
¼ fk z; tð Þ; tj j\1; zj j\1:

ð5:88Þ

Using the fundamental solution G z; t; kð Þ ¼ �1=2ð Þv t � zj jð ÞJ0 k t2 � z2ð Þ1=2
h i

of

the operator B kð Þ v½ � and the well-known convolution property @af �g½ � ¼ @a f �g½ � ¼
f �@ag½ � for generalized functions f and g [3, 35], the solution to the problem (5.88)
is obtained in the following form:

vk z; tð Þ ¼ G z; t; kð Þ�fk z; tð Þ½ � ¼
Z1
0

Z1
�1

G z� z1; t � s; kð Þfk z1; sð Þdz1ds

¼ � 1
2

Z t

0

Z
z1: z�z1j j\t�s

J0 k t � sð Þ2� z� z1ð Þ2
� �1=2� �

Fk z1; sð Þdz1ds

8><>:
� @

@t

Z
z1: z�z1j j\t

J0 k t2 � z� z1ð Þ2
� �1=2� �

uk z1ð Þdz1

�
Z

z1: z�z1j j\t

J0 k t2 � z� z1ð Þ2
� �1=2� �

wk z1ð Þdz1

9>=>;; t[ 0; zj j\1:

ð5:89Þ

The equations (5.89) and (5.85) completely determine the desired function
Ui q; z; tð Þ. The equation (5.89) is similar to the Poisson formula [35], which
describes a classic solution to the Cauchy problem for the wave equation in the spaces
R2 and R3. The formula (5.89) gives an explicit analytical representation for classic
and generalized solutions to the Cauchy problem for 1-D Klein-Gordon equation.

Clearly the solution (5.81), (5.83), (5.84) to the problem (5.79) also remains
valid in the case when instead of the sources ~F g; tð Þ, ~u gð Þ, and ~w gð Þ the field
Ui g; tð Þ generated by them is known in the domain Xtotal. Any nontrivial solution of
the homogeneous wave equation
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� @2

@t2
� þ @2

@z2
þ @

@q
1
q
@

@q
q

� �� �
Ui g; tð Þ ¼ 0; t[ 0; g2 Xtotal ð5:90Þ

could be chosen as the function Ui g; tð Þ.

5.3.4 Virtual Feed Lines in Compact Open Structures

A compact open electrodynamic structure with input and output waveguides is a
difficult-to-simulate object. To deal with it, in some models [3, 8, 46, 47] an input
waveguide is separated from the half-space where wave processes under study take
place by a perfectly conducting infinite flange. However, in many cases, this
approach is inapplicable because an infinite flange may introduce substantial dis-
tortions in the simulated processes.

Here we detail a different approach [3, 7, 8], which allows the presence of an
arbitrary finite number of differently directed waveguides in a structure under study.
It is expected that our approach introduces less distortions into the simulated pro-
cesses. The ultimate conclusion on this matter can be made only comparing theo-
retical and experimental results. It is important that our approach allows one to
solve initial boundary value problems for objects with input and output waveguides
using methods developed for compact objects.

The essence of the approach is following (see Fig. 5.5). Each regular infinite
waveguide is truncated to a finite length by a metal wall from the free-space side.
Then the virtual boundary Cj is introduced inside the jth waveguide Xj at some
distance away from the junction of the waveguide with a structure. The desired
electromagnetic field on this boundary is subject to conditions identical to those in

Fig. 5.5 Virtual feed lines in compact open structure
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an infinite waveguide (see Sect. 5.2). In the input waveguide, the total field on the
boundary Cj is a sum of the incident (from the domain Xj) wave and the outgoing
waves. In the output waveguide, the total field on the boundary Cj is represented by
the outgoing (into the domain Xj) waves. The domains Xj are excluded from the
computation domain. In this way electrodynamic equivalency of the finite virtual
waveguide (Xj) and the infinite real waveguide is achieved.

Let us discuss the details of this approach solving the following modified
(closed) initial boundary value problem for a compact radiating structure with one
input coaxial waveguide X1, and one output circular waveguide X2 (Fig. 5.5):

�e gð Þ @
2

@t2
� r gð Þg0

@

@t
þ @2

@z2
þ @

@q
1
q
@

@q
q

� �� �
U g; tð Þ ¼ F g; tð Þ;

t[ 0; g2 Xint

U g; tð Þjt¼0¼ u gð Þ; @
@t U g; tð Þ��t¼0¼ w gð Þ; g ¼ q; zf g2 �Xint

~Etg p; tð Þ; ~Htg p; tð Þ are continuouswhen crossing Re;r

~Etg p; tð Þ��p¼ q;/;zf g2R¼ 0; U 0; z; tð Þ ¼ 0 for 0; zf g2 �Xint

D1 U g; tð Þ � Ui 1ð Þ g; tð Þ� ���
g2C1

¼ 0; D2 U g; tð Þ½ �jg2C2
¼ 0

D U g; tð Þ½ �jg2C¼ 0

8>>>>><>>>>>:
; t� 0:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
ð5:91Þ

We adopted the same notation and assumptions to functions’ properties as in the
problems (5.49), (5.76). But the computation domain Xint now is the part of the
half-plane Xtotal bounded by the contours R/ together with the virtual boundaries Cj

(input and output ports in the cross-sections zj ¼ 0 of the virtual waveguides Xj,
j ¼ 1; 2) and the spherical boundary C ¼ g ¼ r; #f g : r ¼ Lf g separating the
domains Xint and Xext ¼ g ¼ r; #f g : r[ Lf g (free space).

The conditions Dj U½ � and D U½ � for the virtual boundaries Cj and C were
described in Sects. 5.2.3, 5.2.4 and 5.3.2. The function

Ui 1ð Þ g; tð Þ ¼
X1

n¼ 1 for TE0�waves
0 for TM0�waves

n vn 1 z; tð Þln 1 qð Þ; g ¼ q; zf g2 X1 ð5:92Þ

in the first of these conditions defines the wave incident on the boundary C1 from
the waveguide X1. This function and the source functions F g; tð Þ, u gð Þ, and w gð Þ
are assumed to be given. It is assumed also that by the moment of time t ¼ 0 the
wave Ui 1ð Þ g; tð Þ has not yet reached the boundary C1.

The equations

D1 U g; tð Þ � Ui 1ð Þ g; tð Þ
h i���

g2C1

¼ 0; D2 U g; tð Þ½ �jg2C2
¼ 0; t� 0 ð5:93Þ
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in (5.91) are EACs for the waves Us 1ð Þ g; tð Þ ¼ U g; tð Þ � Ui 1ð Þ g; tð Þ and Us 2ð Þ g; tð Þ ¼
U g; tð Þ traveling in the virtual waveguides X1 and X2, respectively. Using EACs
(5.93), we substantially simplify the model: the domains Xj are excluded from
consideration, while EACs Dj U½ � describe wave transformation on the boundaries Cj

which separate regular feeding waveguides from the main unit. These EACs allow
waves arriving on Cj from the domain Xint to pass into the virtual domain Xj just like
into a regular waveguide, without any deformations or reflections.

In Sect. 5.2 one can find six different versions of EAC Dj U½ � for virtual
boundaries in cross-sections of circular or coaxial waveguides. We pick out two of
them, nonlocal EAC (5.28) and local EAC (5.35a), (5.35b). Taking into consid-
eration the location of the boundaries Cj (C1 is in the plane z ¼ �L1 and C2 is in the
plane z ¼ L2), and the direction of propagation of the waves outgoing through these
boundaries (towards z ¼ �1 for C1 and towards z ¼ 1 for C2), we can rewrite
(5.93) in the following form:

U q;�L1; tð Þ � Ui 1ð Þ q;�L1; tð Þ ¼
X1

n¼
1 for TE0�waves

0 for TM0�waves

�
Z t

0

J0 kn 1 t � sð Þ½ �
8<:

�
Za1
b1

@ U q; z; sð Þ � Ui 1ð Þ q; z; sð Þ� �
@ z

�����
z¼�L1

ln 1 qð Þq d q

264
375ds

9>=>;
� ln 1 qð Þ; b1 � q� a1; t� 0;

ð5:94Þ

U q; L2; tð Þ ¼ �
X1
n¼1

Z t

0

J0 kn 2 t � sð Þ½ �
8<:

�
Za2
0

@U q; z; sð Þ
@ z

����
z¼L2

ln 2 qð Þq d q
24 35ds

9=;
� ln 2 qð Þ; 0� q� a2; t� 0

ð5:95Þ

(nonlocal EACs) and

U q;�L1; tð Þ � Ui 1ð Þ q;�L1; tð Þ ¼ 2
p

Zp=2
0

@W q; t;uð Þ
@ t

d u; t� 0;

b1 � q� a1;

ð5:96aÞ

5 The Exact Absorbing Conditions Method in the Analysis … 261



@2

@ t2
� sin2 u

@

@q
1
q
@

@q
q

� �
W q; t;uð Þ

¼ @ U q; z; tð Þ � Ui 1ð Þ q; z; tð Þ� �
@ z

�����
z¼�L1

; b1\q\a1; t[ 0

W q; 0;uð Þ ¼ @W q;t;uð Þ
@ t

���
t¼0

¼ 0; b1 � q� a1;

8>>>>>>>><>>>>>>>>:
ð5:96bÞ

U q; L2; tð Þ ¼ 2
p

Zp=2
0

@W q; t;uð Þ
@ t

d u; t� 0; 0� q� a2; ð5:97aÞ

@2

@ t2
� sin2 u

@

@q
1
q
@

@q
q

� �
W q; t;uð Þ ¼ � @U q;z;tð Þ

@ z

���
z¼L2

;

0\q\a2; t[ 0

W q; 0;uð Þ ¼ @W q;t;uð Þ
@ t

���
t¼0

¼ 0; 0� q� a2

8>>>><>>>>: ð5:97bÞ

(local EACs).
The initial boundary value problems in (5.96a), (5.96b) and (5.97a), (5.97b) with

respect to the auxiliary functions W q; t;uð Þ (u is a numeric parameter) are sup-
plemented with the following boundary conditions for all times t� 0:

W b1; t;uð Þ ¼ W a1; t;uð Þ ¼ 0; TE0�waves
@ qW q; t;uð Þð Þ

@q

����
q¼b1

¼ @ qW q; t;uð Þð Þ
@q

����
q¼a1

¼ 0; TM0�waves

8><>: ð5:98Þ

(on the walls of coaxial waveguide X1) and

W 0; t;uð Þ ¼ W a2; t;uð Þ ¼ 0; TE0�waves

W 0; t;uð Þ ¼ @ qW q; t;uð Þð Þ
@q

����
q¼a2

¼ 0; TM0�waves

8><>: ð5:99Þ

(on the walls of circular waveguide X2).
The incident wave Ui 1ð Þ g; tð Þ and its derivative with respect to z on the boundary

C1 must be given by the sets of their space-time amplitudes v �L1; tð Þ ¼
vn 1 �L1; tð Þf gn and v0 �L1; tð Þ ¼ @vn 1 z; tð Þ=@zjz¼�L1

n o
n
to implement EACs (5.94)

and (5.96a). The functions vn 1 �L1; tð Þ, which should be non-zero on the finite
interval 0\T1 � t� T2\T (T is the upper limit of the observation time), can be
chosen practically arbitrarily. This choice is dictated by a specific problem and
requirements of a numerical experiment. However, the set v0 �L1; tð Þ, which
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determines the derivative of the wave Ui 1ð Þ g; tð Þ on C1, cannot be chosen in an
arbitrary way due to the causality principle. Each pair

Vn1 q; tð Þ ¼ vn1 �L1; tð Þln1 qð Þ; @vn1 z; tð Þ
@z

����
z¼�L1

" #
ln 1 qð Þ

( )

is bound to be generated by a pulsed eigenmode Ui 1ð Þ
n g; tð Þ ¼ vn1 z; tð Þln1 qð Þ

propagating in the waveguide X1 in the direction of increasing z. This requirement
is met if the functions comprising the pair Vn1 q; tð Þ satisfy the equation

vn1 �L1; tð Þ ¼ �
Z t

0

J0 kn1 t � sð Þ½ �@vn1 z; tð Þ
@z

����
z¼�L1

ds; t� 0; ð5:100Þ

which is obtained from (5.22).

5.4 Characteristics of Steady-State and Transient Fields
in Axially Symmetric Structures

5.4.1 Frequency-Domain Prototypes for Initial Boundary
Value Problems

The solution U g; tð Þ to the problem (5.75), (5.91) and the solution ~U g; kð Þ to the
problem

@2

@z2
þ @

@q
1
q
@

@q
q

� �
þ�e gð Þk2

� �
~U g; kð Þ ¼ �f g; kð Þ;

g ¼ q; zf g 2 Xint
~~Etg p; kð Þ

���
p¼ q;/;zf g2R

¼ 0; ~U 0; z; kð Þ ¼ 0 for 0; zf g 2 �Xint

~~Etg p; kð Þ; ~~Htg p; kð Þ are continuous when crossing Re;r

and boundaries C � 0; 2p½ �; Cj � 0; 2p½ �;

8>>>>>>>><>>>>>>>>:
ð5:101aÞ

~U g; kð Þ ¼
X1

n¼
1 for TE0�waves

0 for TM0�waves

� An1 kð Þeibn1 zþ L1ð Þ þBn1 kð Þe�ibn1 zþL1ð Þ
h i

ln1 qð Þ;

g 2 �X1;

ð5:101bÞ
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~U g; kð Þ ¼
X1
n¼1

Bn 2 kð Þeibn 2 z�L2ð Þln 2 qð Þ; g 2 �X2; ð5:101cÞ

~U g; kð Þ ¼ 1ffiffi
r

p
X1
n¼1

Cn kð ÞH 1ð Þ
nþ 1=2 krð Þ~ln cos#ð Þ; g 2 �Xext ð5:101dÞ

are related [3, 5] by the following integral transform

~f kð Þ ¼
Z1
0

f tð Þeiktdt $ f tð Þ ¼ 1
2p

Ziaþ1

ia�1

~f kð Þe�iktdk; 0� a� Im k: ð5:102Þ

This transform links time-domain characteristics f tð Þ with frequency-domain
characteristics ~f kð Þ. Here, ~U g; kð Þ ¼ ~E/ g; kð Þ for monochromatic TE0-waves and
~U g; kð Þ ¼ ~H/ g; kð Þ for monochromatic TM0-waves, k is the complex wavenumber
(frequency parameter or simply frequency), �e gð Þ ¼ e gð Þþ ig0r gð Þ=k,
�f g; kð Þ ¼ ~F g; kð Þþ ik�e gð Þu gð Þ � e gð Þw gð Þ, ~F g; kð Þ $ F g; tð Þ, and

bn j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2n j

q
; Re bn j Re k� 0; Im bn j � 0 ð5:103Þ

are the longitudinal propagation numbers of TE0n- or TM0n-modes which run along
the waveguide Xj with the attenuation (when Im bn j [ 0) or without it (when
Im bn j ¼ 0).
In the formulas (5.101b), (5.101c), the terms with complex-valued amplitudes

An 1 correspond to the incident monochromatic wave ~Ui 1ð Þ g; kð Þ $ Ui 1ð Þ g; tð Þ on
the boundary C1, while the terms with amplitudes Bn 1 and Bn 2 correspond to the
scattered (secondary) waves ~Us 1ð Þ g; kð Þ $ Us 1ð Þ g; tð Þ ¼ U g; tð Þ � Ui 1ð Þ g; tð Þ and
~Us 2ð Þ g; kð Þ $ U g; tð Þ in the waveguides X1 and X2. If we correlate representations
(5.6), (5.92) with (5.101b), (5.101c), it is evident that

An1 kð Þ $ vn1 �L1; tð Þ; Bn1 kð Þ $ un1 �L1; tð Þ;
Bn2 kð Þ $ un2 L2; tð Þ; ð5:104Þ

or, in other signs, An1 kð Þ ¼ ~vn1 �L1; kð Þ, Bn1 kð Þ ¼ ~un1 �L1; kð Þ, Bn2 kð Þ ¼ ~un2 L2; kð Þ.
Similar, from (5.55), (5.101d) we have too:

Cn kð ÞH 1ð Þ
nþ 1=2 krð Þffiffi
r

p $ un r; tð Þ or
Cn kð ÞH 1ð Þ

nþ 1=2 krð Þffiffi
r

p ¼ ~un r; kð Þ: ð5:105Þ
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In the boundary value problem (5.101a), (5.101b), (5.101c) (5.101d), the equa-
tions (5.101b) to (5.101d) represent the so-called partial radiation conditions [3, 5,
48], which reflect physically grounded requirement imposed on the total field outside
the domainXint, namely, that thefield ~U g; kð Þ in this regionmay not contain thewaves
incoming from infinity. The only exception is the incident wave, which in our case has
the form:

~Ui 1ð Þ g; kð Þ ¼
X
n

An1 kð Þeibn1 zþ L1ð Þln1 qð Þ; g 2 �X1: ð5:106Þ

5.4.2 Electrodynamic Characteristics of Open Axially
Symmetric Structures

Consider now frequencies k such that Re k[ 0 and Im k ¼ 0 (physical values of
k). Let also, an open axially symmetric structure (Fig. 5.5) is fed from the
waveguide X1, and

~Ui 1ð Þ g; kð Þ ¼ ~Ui 1ð Þ
p g; kð Þ ¼ Ap1 kð Þeibp1 zþL1ð Þlp1 qð Þ; Im bp1 ¼ 0 ð5:107Þ

(undamped eigenwave), and the domain Xint is free from sources (�f g; kð Þ � 0). In
the frequency-domain, a structure of this kind can be characterized by the reflection
coefficients R11

np kð Þ (conversion coefficients of the pth incident mode into nth

reflected mode) and the transmission coefficients T21
np kð Þ (conversion coefficients of

the pth mode of the waveguide X1 into nth mode of the waveguide X2) given by the
following formulas:

R11
np kð Þ ¼ Bn1

Ap1
¼ ~un1 �L1; kð Þ

~vp1 �L1; kð Þ ; T21
np kð Þ ¼ Bn2

Ap1
¼ ~un2 L2; kð Þ

~vp1 �L1; kð Þ : ð5:108Þ

It is evident that in real computation experiments, the first integral transform in
(5.102) should be replaced with the following one:

~f kð Þ ¼
ZT
0

f tð Þeiktdt: ð5:109Þ

Here, T is the upper limit of the observation time, and for all t[ T the function
f tð Þ in (5.102) is continued by zero.
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The values

Wabs kð Þ ¼ k2

bp1b

Z
Xint

Im �e gð Þ ~~E g; kð Þ
��� ���2dg; W11

np kð Þ ¼ R11
np

��� ���2 Re bn1
bp1

;

W21
np kð Þ ¼ T21

np

��� ���2 Re bn2
bp1

ð5:110Þ

(b ¼ 1 in the case of TE0-waves and b ¼ g20 in the case of TM0-waves,
dg ¼ qdqdz) specify the relative part of energy lost to absorption and diverted into
each propagating mode in the waveguides X1 and X2, where it is carried away from
the open axially symmetric structure [3, 5, 8]. For any finite value of the frequency
k ¼ 2p=k (k is the wavelength in free space) the number Nj ¼

P
n Re bnj= bnj

�� ��	 

of propagating modes for each waveguide Xj is finite. It follows from (5.110) that
the relative portion of energy radiated into free space through the boundary C (the
radiating efficiency or antenna efficiency) can be calculated by the formula

g kð Þ ¼ 1�Wabs �
X
n

W11
np þW21

np

� �
: ð5:111Þ

The normalized directional pattern on the arc r ¼ M� L

D #; k;Mð Þ ¼
~~Etg M; #; kð Þ
��� ���2

max
0�#� p

~~Etg M; #; kð Þ
��� ���2 ; 0�#� 180	; K1 � k�K2 ð5:112Þ

determines the spatial orientation and the energy content of the propagating waves

radiated into free space. Here, ~~Etg M; #; kð Þ is the tangential (to the spherical surface

r ¼ M) component of the monochromatic electric field ~~E g; kð Þ.
The main lobe of the pattern is directed at an angle �# kð Þ such that

D �# kð Þ; k;M	 
 ¼ 1. The value M defines a zone (near-field, intermediate, or
far-field), for which the pattern D #; k;Mð Þ is calculated. We assume that the
near-zone boundary is determined by M ¼ L, while the far-zone boundary is
determined by such M that its further growth does not lead to significant variations
of D #; k;Mð Þ for all values of k under consideration.

Half-power beamwidth (HPBW) #0:5 kð Þ is an angle between two directions of
the main lobe, where the power reduces to the half of its maximum, i.e.
#0:5 kð Þ ¼ #þ � #�j j, where D #þ ; k;Mð Þ ¼ 0:5 and D #�; k;Mð Þ ¼ 0:5.

To obtain the pattern D #; k;Mð Þ, one should solve the closed initial boundary
value problem (5.91), then recalculate the values of U g; tð Þ from the arc r ¼ L onto
the arc r ¼ M using (5.75), determine ~Etg M; #; tð Þ (E/ M; #; tð Þ in the case of TE0-
waves or E# M; #; tð Þ in the case of TM0-waves, see the formulas (5.19) in [3]), and
finally invoke the transform (5.109).
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Another sequence of operations is possible. Upon solving the initial boundary
value problem (5.91), we determine (see the formulas (5.55)) a set of the amplitudes
un L; tð Þ and then determine the complex-valued amplitudes Cn kð Þ using (5.105) and
(5.109). The field ~E/ M; #; kð Þ (in the case of TE0-waves) or the field ~H/ M; #; kð Þ
(in the case of TM0-waves) can be calculated then from (5.101d). For TM0-waves,

we have ~~Etg M; #; kð Þ equals to ~E# M; #; kð Þ, where

~E# r; #; kð Þ ¼ g0
ik�er

@ r ~H/ r; #; kð Þ� �
@r

: ð5:113Þ

The formula (5.113) is derived by applying the transform (5.102) to the equa-
tions (1.19) from [3].

Let now an open axially symmetric structure (see Fig. 5.5) is excited from the
waveguide X1 by the pth pulsed eigenwave (pulsed TE0p- or TM0p-wave)

Ui 1ð Þ g; tð Þ ¼ Ui 1ð Þ
p g; tð Þ ¼ vp1 z; tð Þlp1 qð Þ: ð5:114Þ

Let also the domain Xint is free from sources of pulsed waves, i.e. F g; tð Þ � 0
and u gð Þ ¼ w gð Þ � 0 in (5.91). The field ~E g; tð Þ; ~H g; tð Þ� �

, which is the solution
to the problem (5.91), satisfies the following relation [5, 8]:

Ps 1ð Þ þPs 2ð Þ þPi� s 1ð Þ þP|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

þ 1
2
@

@t

Z
Xint

g0 ~H
�� ��2 þ e

g0
~E
�� ��2� �

dg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

þ
Z
Xint

r ~E
�� ��2dg

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
C

¼ �Pi 1ð Þ|fflffl{zfflffl}
D

:

ð5:115Þ

This formula represents a relationship between instantaneous electromagnetic
powers in the closure of the domain Xint [8, 42]: (A) is a sum of the instantaneous
powers radiating through the boundaries Cj into the waveguides Xj (Ps

j tð Þ) and the
instantaneous power radiating through the boundary C into free space (P tð Þ); (B) is
the instantaneous power accumulated in the domain Xint; (C) is the instantaneous
absorbed power; and (D) is the instantaneous power incoming into the domain Xint

through the boundary C1. Here,

P tð Þ ¼
Z
C

~E � ~H
	 
 
~n� �

d#; Ps or i jð Þ tð Þ ¼
Z
Cj

~Es or i jð Þ � ~Hs or i jð Þ
� �


~nj
h i

qdq;

Pi� s 1ð Þ tð Þ ¼
Z
C1

~Es 1ð Þ � ~Hi 1ð Þ þ~Ei 1ð Þ � ~Hs 1ð Þ
� �


~n1
h i

qdq;

ð5:116Þ
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~nj and~n are the outer normals to the domain Xint on the boundaries Cj and C,~a � ~b

and~a 
~b are the vector and scalar products of vectors~a and~b, ~Es or i jð Þ and ~Hs or i jð Þ

are electric and magnetic fields corresponding to the wave Us or i jð Þ g; tð Þ in the
waveguide Xj (see comments after (5.93)).

The equation (5.115) is derived via simple manipulations with the Maxwell’s
equations

rot~H ¼ g�1
0 e

@~E
@t

þ r~E; rot~E ¼ �g0
@~H
@t

: ð5:117Þ

Namely, the scalar product of the first equation in (5.117) by ~E is subtracted
from the scalar product of the second equation by ~H. The resulting equation is
integrated over the volume Xint � 0; 2p½ �. The term containing the volume integral
of div ~E � ~H

	 

is transformed then according to the Gauss divergence theorem

[34]. The field ~E g; tð Þ; ~H g; tð Þ� �
, which is the solution to the problem (5.91),

satisfies the Maxwell’s equations (5.117) in all points of the domain �Xint.
Bringing into correlation the notions of power and energy we can conclude that

the integrals

WP
feed X1ð Þ ¼ �

ZT
0

Pi 1ð Þ tð Þdt; WP
rad Xextð Þ ¼

ZT
0

P tð Þdt;

WP
rad Xj
	 
 ¼ ZT

0

Ps jð Þ tð Þdt; WP
abs Xintð Þ ¼

ZT
0

Z
Xint

r ~E
�� ��2dgdt;

WP
cum Xintð Þ ¼ 1

2

Z
Xint

g0 ~H
�� ��2 þ e

g0
~E
�� ��2� �

dg

�������
t¼T

t¼0

ð5:118Þ

have the following physical meaning: WP
feed X1ð Þ is the energy incoming into the

axially symmetric system from the waveguide X1 during the time interval 0\t� T;
WP

rad Xextð Þ and WP
rad Xj
	 


represent the energy stored in pulses outgoing through the
boundaries C and Cj into free space and into the waveguides Xj; WP

cum Xintð Þ is the
energy accumulated in the domain Xint; and WP

abs Xintð Þ is the energy lost to
absorption in the domain Xint. It is clear that

WP
feed X1ð Þ ¼ WP

rad Xextð ÞþWP
rad X1ð ÞþWP

rad X2ð ÞþWP
cum Xintð ÞþWP

abs Xintð Þ:
ð5:119Þ
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Using (5.118) and (5.119), we can determine the radiating efficiency of a pulsed
antenna

grad ¼
WP

rad Xextð Þ
WP

feed X1ð Þ ð5:120Þ

and the efficiency of energy accumulation in an open axially symmetric resonator

gcum ¼ WP
cum Xintð Þ

WP
feed X1ð Þ : ð5:121Þ

The ability of a pulsed antenna to concentrate the radiated energy in a certain
direction is described by the normalized pulsed pattern on the arc r ¼ M [8, 19]:

Dpuls #; t;Mð Þ ¼ U M; #; tð Þ
max
#; t

U M; #; tð Þj j ; 0�#� 180	; M� L;

T1 � t� T2 � T þM � L:

ð5:122Þ

The results presented in [8, 19] show that ~Dpuls #; k;Mð Þ $ Dpuls #; t;Mð Þ is
also useful when investigating radiators of pulsed waves.

5.4.3 Spectral Characteristics of Open Resonators

It is known [3, 5, 48–50] that for k such that Im k[ 0 and for any
�f g; kð Þ 2 L2 Xð Þ, ~Ui 1ð Þ g; kð Þ ¼ ~Ui 1ð Þ

p g; kð Þ, the problem (5.101a), (5.101b), (5.101c),

(5.101d) is uniquely solvable in the space W1
2 Xð Þ. And in this case, its resolvent

(the operator R�1 kð Þ . . .½ � such that ~U g; kð Þ ¼ ~U g; k;�f ;Ap1 kð Þ	 
 ¼ R�1 kð Þ �f g; kð Þ;½
Ap1 kð Þ�; g 2 X) is an analytical operator-function of the parameter k.

The natural boundaries of the analytic extension of resolving operators similar to
R�1 kð Þ . . .½ � from the upper half-plane of the plane C ¼ k : �1� Re k;f
Im k� þ1g are defined by some infinite-sheeted Riemann surfaces K [3, 5]. The
kernels of resolvents (the Green functions ~G g; g0; kð Þ of associated boundary value
problems) are in this case meromorphic functions of the complex-valued parameter
k (in local variables on the surface K [45]). The sets of the poles �kn

� �
n¼ Hk of

these functions are the spectral sets or simply the spectra. The elements �kn of these
sets (eigenfrequencies) correspond to the nontrivial solutions ~U g; �knð Þ ¼ �u g; �knð Þ of
homogeneous boundary value problems. If the number of linearly independent
solutions of this kind for k ¼ �kn equals M (�u g; �knð Þ ¼ �u mð Þ g; �knð Þ; m ¼ 1; 2; . . .;M),
then the order of the pole �kn of the resolvent R�1 kð Þ . . .½ � (and of the corresponding
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Green function ~G g; g0; kð Þ) is determined by the maximal value of S mð Þ, where
S mð Þ � 1 is a number of associated with the eigenfunction �u mð Þ g; �knð Þ functions
[3, 5, 51].

Solutions �u g; �knð Þ define possible free electromagnetic field oscillations in open
electrodynamic structures (open resonators). The spectrum points located in the
vicinity of the real axis of the first (physical) sheet Ck of the surface K together with
the corresponding free oscillations play a dominant role in the resonant response of
a structure on any external excitation [3, 5, 8]. For the reliable physical analysis of
resonant electromagnetic field transformations in space and time, it is necessary to
use elements of the spectral theory: distribution of points �kn ¼ Re �kn þ i Im �kn in
specified regions of the surface K, configuration of the fields �u g; �knð Þ, estimations of
the quality factor Q ¼ Re �kn=2 Im �kn

�� �� for free oscillations, and so on.
We have shown previously how to calculate time- and frequency-domains

characteristics using time-domain models. Now, we will discuss briefly how to
obtain information about the spectrum Hk from these models. A few simple recipes
from [20] will be quoted, which may be useful in consideration of various applied
problems, as it was demonstrated in [5, 8, 24].

Let us consider the problem (5.75), (5.76) and

@2

@z2
þ @

@q
1
q
@

@q
q

� �
þ�e gð Þk2

� �
~U g; kð Þ ¼ �f g; kð Þ;

g ¼ q; zf g 2 Xint

~~Etg p; kð Þ
���
p¼ q;/;zf g2R

¼ 0; ~U 0; z; kð Þ ¼ 0 for 0; zf g 2 �Xint

~~Etg p; kð Þ; ~~Htg p; kð Þ are continuous when crossing Re;r

and boundary C � 0; 2p½ �;

8>>>>>>>>>><>>>>>>>>>>:
ð5:123aÞ

~U g; kð Þ ¼ 1ffiffi
r

p
X1
n¼1

Cn kð ÞH 1ð Þ
nþ 1=2 krð Þ~ln cos#ð Þ; g 2 �Xext; ð5:123bÞ

whose solutions are connected by the transform (5.102):

U g; tð Þ ¼ 1
2p

Ziaþ1

ia�1

~U g; kð Þe�iktdk; Re k� a� 0: ð5:124Þ

The surface K in this case coincides with the surface of the analytical extension
of the function ln k [5, 48]: k ¼ 0 is the logarithmic branch point; the sheets of the
surface are cut along the semi-axis Re k ¼ 0, Im k\0. All poles of the resolvent
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R�1 kð Þ . . .½ � of the problem (5.123a), (5.123b) on the first (physical) sheet Ck of the
surface K are located below the axis Im k ¼ 0 [5, 48, 49]. Taking into consider-
ation that by definition

~U g; kð Þ ¼ R�1 kð Þ �f g; kð Þ½ � ¼
Z
X

~G g; g0; kð Þ�f g0; kð Þdg0; ð5:125Þ

and deforming the contour of integration in (5.124) downwards to the position
Im k ¼ b\0 (the branch point is bypassed along the banks of the cut and an
infinitesimal semi-circle), we obtain [20]:

U g; tð Þ ¼ 2 Im
X
n

Z
X

Res
k¼�kn: Re �kn [ 0

~G g; g0; kð Þ�f g0; kð Þe�ikt
� �

dg0

8<:
þ
X
m

Z
X

Res
k¼k m : Re k m [ 0

~G g; g0; kð Þ�f g0; kð Þe�ikt
� �

dg0

9=;þQ g; tð Þ;

g 2 Xint; t[ 0:

ð5:126Þ

The term Q g; tð Þ in (5.126) sums up contributions of the singularities of ~U g; kð Þ,
k 2 K which are not swept when deforming the contour of integration in (5.124). Its
estimation in the norm of the space W1

2 Xintð Þ for large t is determined by the
function �f g; kð Þ when k ! 0 [38]. Thus, for example, if �f g; kð Þ ¼ O kp lnq kð Þ,
where p and q are integers, then we have Q g; tð Þk k� const �fð Þ t�p�1 lnq�2 t

� �
. In

(5.126), �kn 2 Hk are eigenfrequencies of an open resonator located on the first sheet
of the surface K between two straight lines Im k ¼ 0 and Im k ¼ b\0, and
numbered so that Im �knþ 1 � Im �kn. The number of such eigenfrequencies is finite
[5, 20, 38, 48]. The values k m are poles of the function �f g; kð Þ that do not coincide
with elements of the spectral set Hk. All of them are assumed to be located in the
plane Ck above the line Im k ¼ b\0.

Assume that all the poles k ¼ �k of the Green function ~G g; g0; kð Þ of the problem
(5.123a), (5.123b) are simple. Without the loss of generality, it may be suggested
that each eigenfrequency �k corresponds to a single free oscillation �u g; �kð Þ.

Under these assumptions, the principal part N~G of the Green function ~G g; g0; kð Þ
in the vicinity of the pole k ¼ �k takes form [51]

N~G g; g0; kð Þ ¼ G�1 g; g0; �kð Þ
k � �k

¼ �u g; �kð Þ�w� g0; �k�ð Þ
k � �k

: ð5:127Þ
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Here, �w g; �k�ð Þ is the eigen element of the operator-function �R kð Þ ¼ R k�ð Þ½ ��
corresponding to the eigenvalue �k� [51]; the operator R kð Þ . . .½ � is inverse to the
resolvent R�1 kð Þ . . .½ �: R kð Þ ~U g; kð Þ� � ¼ �f g; kð Þ; and the asterisk ‘�’ stands for the
complex conjugation. The symbols Gl g; g0; gð Þ and fl g0; gð Þ (they will be intro-
duced below) denote the coefficients at the terms k � gð Þl in the Laurent expansion
of the functions ~G g; g0; kð Þ and �f g0; kð Þ in the vicinity of the point k ¼ g.

For the elements �u and �w we obtain from (5.127) and [20]

~G g; g0; kð Þ ¼ ~G g0; g; kð Þ ¼ ~G� g; g0;�k�ð Þ; ð5:128Þ

that

�u g; �kð Þ ¼ �w� g; �k�ð Þ; �u g; �kð Þ�w� g0; �k�ð Þ ¼ ��u� g;��k�ð Þ�w g0;��kð Þ: ð5:129Þ

The results below are obtained from (5.126) to (5.129). These results may sim-
plify significantly the analysis of the solutions U g; tð Þ to the problem (5.75), (5.76).

• Let the function �f g; kð Þ is free from singularities on the sheet Ck. From (5.126) it
follows that

U g; tð Þ  2
X

n :Re �kn [ 0

et Im
�kn �u g; �knð Þ�� �� C �f ; �knð Þ�� ��

� sin arg �u g; �knð Þþ argC �f ; �knð Þ � t Re �kn½ �;
g 2 Xint; 0\T1\t\T :

ð5:130Þ

Here,

C f ; �knð Þ ¼
Z
X

�u g0; �knð Þf g0; �knð Þdg0 ð5:131Þ

and the value of T1 is defined by such parameters as the duration of excitation, the
presence of traps, absorbing elements, etc. From (5.130) it follows that the field
U g; tð Þ in the near-field zone of an open resonator is a superposition of the free
oscillations �u g; �knð Þ associated with the complex-valued eigenfrequencies �kn. The
lifetime of each oscillation in the domain Xint, as well as its rate of decay, are
determined by the value Im �kn

�� �� (or by the Q-factor Q ¼ Re �kn=2 Im �kn
�� ��). The

initial state (or the excitation level) is determined by the value C �f ; �knð Þ which
reflects the degree of correlation of time- and frequency-domains characteristics of
the field �u g; �knð Þ with the source function �f g; kð Þ.
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• Let the function �f g; kð Þ has a single simple pole at the point k ¼ k on the
right-hand half-plane of the sheet Ck, and it does not coincide with any element
�kn of the set Hk. It follows from (5.126) that

U g; tð Þ  2
X

n : Re �kn [ 0

et Im
�kn �u g; �knð Þ�� �� C �f ; �knð Þ�� ��8<:

� sin arg �u g; �knð Þþ argC �f ; �knð Þ � t Re �kn½ �
þ et Im k ~U g; k; f�1ð Þ�� �� sin arg ~U g; k; f�1ð Þ � t Re k

� ��
;

g 2 Xint; 0\T1\t\T:

ð5:132Þ

In the formula (5.132), a new term arises, which is associated with a field of the
frequency Re k. The spatial pattern of this field is determined by the solution
~U g; k; f�1ð Þ of the elliptic problem R kð Þ ~U g; k; f�1ð Þ� � ¼ f�1 g; kð Þ, and its amplitude
decreases as exp t Im kð Þ. With Im k ¼ 0 and sufficiently large values of t, this term
will dominate in the field U g; tð Þ due to the principle of limiting amplitude.

• Let the function �f g; kð Þ has a single second-order pole at the point k ¼ k on the
right-hand half-plane of the sheet Ck, and it does not coincide with any element
�kn of the set Hk. In this case, we have:

U g; tð Þ  2
X

n : Re �kn [ 0

et Im
�kn �u g;�knð Þ�� �� C �f ; �knð Þ�� ��8<:

� sin arg �u g; �knð Þþ argC �f ; �knð Þ � t Re �kn½ �
� tet Im k ~U g; k; f�2ð Þ�� �� cos arg ~U g; k; f�2ð Þ � t Re k

� �
þ et Im k ~U g; k; f�1ð Þþ ~U1 g; k; f�2ð Þ�� ��
� sin arg ~U g; k; f�1ð Þþ ~U1 g; k; f�2ð Þ� �� t Re k

� ��
;

g 2 Xint; 0\T1\t\T :

ð5:133Þ

Here,

~Ul g; g; fð Þ ¼
Z
X

Gl g; g0; gð Þf g0; gð Þ dg0: ð5:134Þ

With Im k ¼ 0 and sufficiently large t, the contribution of free oscillations with
complex-valued eigenfrequencies �kn into the field U g; tð Þ will be negligible. The
field oscillating with frequency k ¼ k will dominate. The spatial pattern of this field
is determined by the solution ~U g; k; f�2ð Þ of the elliptic problem
R kð Þ ~U g; k; f�2ð Þ� � ¼ f�2 g; kð Þ, and its amplitude increases proportionally with t.
For small values of Im kj j[ 0, the situation is basically the same, but the domi-
nation is not as striking as before.
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• Let the simple poles k ¼ k and k ¼ �k of the functions �f g; kð Þ and ~G g; g0; kð Þ
coincide (�k ¼ k). In this case,

U g; tð Þ  2
X

n : Re �kn [ 0; �kn 6¼�k

et Im
�kn �u g; �knð Þ�� �� C �f ; �knð Þ�� ��8<:

� sin arg �u g; �knð Þþ argC �f ; �knð Þ � t Re �kn½ �
� tet Im

�k �u g; �kð Þ�� �� C f�1; �kð Þ�� �� cos arg �u g; �kð Þþ argC f�1; �kð Þ � t Re �k½ �
þ et Im

�k �u g; �kð Þ�� �� C f0;�kð Þ�� �� sin arg �u g; �kð Þþ argC f0; �knð Þ � t Re �k½ �
þ et Im

�k ~U0 g; �k; f�1ð Þ�� �� sin arg ~U0 g;�k; f�1ð Þ � t Re �k
� �o

;

g 2 Xint; 0\T1\t\T:

By superposing singularities of the Green function of the problem (5.123a),
(5.123b) with singularities of the source function �f g; kð Þ, the field of the corre-
sponding free oscillation can be forced to be dominating in the field U g; tð Þ. The
values Im �k

�� �� and C f�1; �kð Þ�� �� determine how long the field

W g; tð Þ ¼ �2tet Im
�k �u g; �kð Þ�� �� C f�1; �kð Þ�� ��

� cos arg �u g; �kð Þþ argC f�1; �kð Þ � t Re �k½ �

will remain dominant.
Let us consider in more details one of the above-listed results, for example, the

first one. Assume that an open resonator (note that we consider compact axially
symmetric structures without feeding waveguides Xj) is excited by the current
source F g; tð Þ and u gð Þ ¼ w gð Þ � 0. The frequency band occupied by this source is
K1 � k�K2. Assume also that only the value of k ¼ Re �k falls within this band;
this k corresponds to the real part of the complex-valued eigenfrequency �k asso-
ciated with a high-Q free oscillation �u g; �kð Þ. The band occupied by the source is
defined as the interval of real values of k such that the value ~F g; kð Þ�� ��=max

k
~F g; kð Þ�� ��

of normalized spectral amplitudes of the function F g; tð Þ exceeds 0.01. Assume also
that the source is switched off at the moment of time t ¼ �T . Then, according to
(5.130), solving the problem (5.76) and monitoring the function U g; tð Þ, g 2 Xint,
t[ �T , we observe the field �u g; �kð Þ oscillating with the frequency Re �k. Amplitudes
of these oscillations are given by the function C �f ; �kð Þ�� ��; the formula (5.131) is the
key to efficient excitation of an open resonator by the current source F g; tð Þ. For
s ¼ t � �T [ 0 at any fixed point g 2 Xint not coincident with the knot points of the
field �u g; �kð Þ, we obtain from (5.130) that

U g; tð Þ ¼ U sð Þ  A exp s Im �kð Þ sin s Re �kþ að Þ: ð5:135Þ
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Comparing (5.135) with the function U g; tð Þ, which is obtained solving the
problem (5.76) numerically, we estimate the values Re �k, Im �k, A, and a, which
uniquely determine principal characteristics of the eigenoscillation �u g; �kð Þ (see, for
example, Figs. 4.5 and 4.6 in [5]).

The analysis becomes more complicated if two eigenfrequencies �k1 and �k2 are so
close that none of them can be separated even with a bandwidth reduction of the
source F g; tð Þ in the spectral domain (such reduction results in increased values of
�T and T , and the duration of numerical experiment grows significantly). Assuming
that the real parts of �k1 and �k2 fall within the band K1 � k�K2 occupied by the
source F g; tð Þ, we obtain from (5.130) the following simplified formula:

U g; tð Þ ¼ U sð Þ  U1 sð ÞþU2 sð Þ ¼ A1 exp s Im �k1ð Þ cos s Re �k1 þ a1ð Þ
þ A2 exp s Im �k2ð Þ cos s Re �k2 þ a2ð Þ; s[ 0:

ð5:136Þ

Comparing (5.136) with the function U g; tð Þ, which is obtained solving the
problem (5.76) numerically, and behavior of the curves which represent the global
inner and the global outer envelopes of U sð Þ (see Sect. 4.3.3 in [5]), we estimate all
the values that specify the oscillations �u g; �kj

	 

, namely Re �kj, Im �kj, Aj, and aj

(j ¼ 1; 2).

5.5 Plane Models for Open Electrodynamic Structures

5.5.1 The Key Problem

In the closed initial boundary value problem

�e gð Þ @2

@t2 � r gð Þg0 @
@t þ @

@y2 þ @2

@z2

h i
U g; tð Þ ¼ F g; tð Þ;

t[ 0; g ¼ y; zf g 2 Xint

U g; tð Þjt¼0¼ u gð Þ; @
@t U g; tð Þ��t¼0¼ w gð Þ; g 2 �Xint

_~Etg p; tð Þ; ~Htg p; tð Þ are continuous when crossing Re;r

~Etg p; tð Þ��p¼ x;y;zf g2R¼ 0; D U g; tð Þ½ �jg2C¼ 0

D1 U g; tð Þ � Ui 1ð Þ g; tð Þ� ���
g2C1

¼ 0; D2 U g; tð Þ½ �jg2C2
¼ 0

; t� 0

8>><>>:

8>>>>>>>>>>><>>>>>>>>>>>:
ð5:137Þ

we find all elements necessary for effective numerical analysis of the majority of
2-D (plane) models that can be found in practice (Fig. 5.6): (i) virtual parallel-plate
waveguides Xj (j ¼ 1; 2), which allow to study structures with infinite feeding and
output lines just like bounded in space models; (ii) EACs D1 U g; tð Þ�½
Ui 1ð Þ g; tð Þ�jg2C1

¼ 0 and D2 U g; tð Þ½ �jg2C2
¼ 0, which allow errors-free replacement
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of real infinite waveguides with finite virtual waveguides for simulations; (iii) EAC
D U g; tð Þ½ �jg2C¼ 0 on the cylindrical (C ¼ g ¼ q;/f g 2 Xtotal : q ¼ Lf g) or rect-
angular (see Fig. 5.6) virtual boundary C, which allows to truncate efficiently
computation domains of open initial boundary value problems.

In (5.137), x; y; zf g are the Cartesian coordinates and q;/f g are the polar
coordinates in the y0z plane Xtotal; U g; tð Þ ¼ Ex g; tð Þ for TE0- (E-polarized) waves
(@=@x ¼ 0, Ey ¼ Ez ¼ Hx � 0) and U g; tð Þ ¼ Hx g; tð Þ for TM0- (H-polarized)
waves (@=@x ¼ 0, Hy ¼ Hz ¼ Ex � 0). By R ¼ Rx � �1;1½ � we denote per-
fectly conducting surfaces obtained by moving the piecewise smooth contours Rx

along the x-axis. Re;r ¼ Re;r
x � �1;1½ � are similarly defined surfaces across

which the relative permittivity e gð Þ and specific conductivity r gð Þ change
step-wise.

The functions F g; tð Þ, u gð Þ, w gð Þ, r gð Þ, and e gð Þ � 1, which have compact
supports in the closure of Xint, are supposed to satisfy the theorem on unique
solvability of the problem (5.137) in the Sobolev space W1

2 XT
int

	 

, XT

int ¼ Xint �
0; Tð Þ, T\1. Current and instantaneous sources, which are given by the functions
F g; tð Þ and u gð Þ, w gð Þ, and all scatterers, which are given by the piecewise constant
functions e gð Þ, r gð Þ and by the contours Rx and Re;r

x , are located in Xint.

Fig. 5.6 Geometry of the key problem
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The computation domain Xint is the part of the plane Xtotal bounded by the
contours Rx together with the virtual boundaries C1 and C2 (input and output ports
in the cross-sections z ¼ �L1 and z ¼ L2 of the virtual waveguides X1 and X2) and
cylindrical or rectangular boundary C separating the domain Xint and the free space
domain Xext.

EACs D1 U � Ui 1ð Þ� �
, D2 U½ � and D U½ � for the virtual boundaries are detailed

below. They provide an ideal model for the outgoing waves

Us 1ð Þ g; tð Þ ¼ U g; tð Þ � Ui 1ð Þ g; tð Þ in X1;

Us 2ð Þ g; tð Þ ¼ U g; tð Þ in X2;

and U g; tð Þ in Xext:

ð5:138Þ

Namely, the outgoing waves cross the virtual boundaries without disturbance or
reflection, as if they are absorbed by the virtual waveguides X1, X2 and by the part
of free space Xext. The function Ui 1ð Þ g; tð Þ defines the wave incident on the virtual
boundary C1 from the waveguide X1. This function and the source functions
F g; tð Þ, u gð Þ, and w gð Þ are assumed to be given. It is assumed also that by the
moment of time t ¼ 0 the wave Ui 1ð Þ g; tð Þ has not yet reached the boundary C1.

5.5.2 Exact Absorbing Conditions for Parallel-Plate
Waveguides

Let us consider the following model problem (Fig. 5.7). A pulsed wave U g; tð Þ
propagating in a metal parallel-plate waveguide

G ¼ g ¼ y; zf g : b\y\a;f zj j\1g

towards growing z is arriving on some imaginary boundary z ¼ 0 at time moments
t[ 0. It is required to determine the field U g; tð Þ in the closure of the domain
Gþ ¼ g 2 G : z[ 0f g for t[ 0. The corresponding equation has the following
form:

Fig. 5.7 Virtual boundary
z = 0 in the regular
parallel-plate waveguide G
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� @2

@t2
þ @

@y2
þ @2

@z2

� �
U g; tð Þ ¼ 0; t[ 0; g ¼ y; zf g 2 Gþ

U g; tð Þjt¼0¼ 0; @
@t U g; tð Þ��t¼0¼ 0; g 2 �Gþ

~Etg p; tð Þ��p¼ x;y;zf g2R¼ 0; t� 0:

8>>>><>>>>: ð5:139Þ

The separation of variables in (5.139) yields the following representation for the
solution U g; tð Þ:

U g; tð Þ ¼
X
n

un z; tð Þln yð Þ; g 2 �Gþ t� 0: ð5:140Þ

The orthonormal system of transverse functions ln yð Þ, which is complete in the
space L2 b; að Þ, is determined by a nontrivial solution to the homogeneous (spectral)
problem

d2

d y2
þ k2n

� �
ln yð Þ ¼ 0; 0\y\a

ln bð Þ ¼ ln að Þ ¼ 0 E�polarizationð Þ or

dln ðyÞ=dyjy¼b¼ dln ðyÞ=dyjy¼ a¼ 0 H�polarizationð Þ;

8>>><>>>: ð5:141Þ

while the space-time amplitudes un z; tð Þ of the wave U g; tð Þ are determined by a
solution to the initial boundary value problem

� @2

@t2 þ @2

@z2 � k2n

h i
un z; tð Þ ¼ 0; z[ 0; t[ 0

un z; 0ð Þ ¼ 0; @
@t un z; tð Þ��t¼0¼ 0; z� 0:

(
ð5:142Þ

It is easy to show that in the case of E-polarized waves, n ¼ 1; 2; 3; . . .,
ln yð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2= a� bð Þp
sin np y� bð Þ= a� bð Þ½ �, and kn ¼ np= a� bð Þ; and in the case

of H-polarized waves, n ¼ 0; 1; 2; . . ., ln yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� dn0
	 


= a� bð Þ
q

�
cos np y� bð Þ= a� bð Þ½ � (dnm is the Kronecker symbol), and kn ¼ np= a� bð Þ.

The problem (5.142) is studied in details in Sect. 5.2. It is evident that the
relevant results may be easily adapted to the situation considered here. Therefore,
omitting the intermediate constructions we immediately formulate the main
conclusions.

• RCs for the amplitudes un z; tð Þ and for the waves U g; tð Þ have the form

un z; tð Þ ¼ �
Zt�z

0

J0 kn t � sð Þ2�z2
� �1=2� �

un
0 0; sð Þds; z� 0; t� 0 ð5:143Þ
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and

U g; tð Þ ¼ �
X
n

Zt�z

0

J0 kn t � sð Þ2�z2
� �1=2� �8<:

�
Za
b

@U y; z; sð Þ
@ z

����
z¼0

ln yð Þd y
24 35ds

9=;ln yð Þ;

g ¼ y; zf g 2 Gþ ; t� z:

ð5:144Þ

Here and below, n ¼ 1; 2; 3; . . . in the case of E-polarized waves and n ¼
0; 1; 2; . . . in the case of H-polarized waves.

• Nonlocal EACs for the amplitudes un z; tð Þ and for the waves U g; tð Þ may have
one of the following forms:

un 0; tð Þ ¼ �
Z t

0

J0 kn t � sð Þ½ �un0 0; sð Þds; t� 0; ð5:145Þ

@

@ t
þ @

@ z

� �
un z; tð Þ

����
z¼0

¼ kn

Z t

0

J1 kn t � sð Þ½ �un0 0; sð Þds; t� 0; ð5:146Þ

@

@ t
þ @

@ z

� �
un z; tð Þ

����
z¼0

¼ �kn

Z t

0

J1 kn t � sð Þ½ � t � sð Þ�1un 0; sð Þds;

t� 0

ð5:147Þ

and

U y; 0; tð Þ ¼ �
X
n

Z t

0

J0 kn t � sð Þ½ �
8<:

Za
b

@U y; z; sð Þ
@ z

����
z¼0

ln yð Þd y
24 35ds

9=;
� ln yð Þ; b� y� a; t� 0;

ð5:148Þ

@

@ t
þ @

@ z

� �
U y; z; tð Þ

����
z¼0

¼
X
n

kn

Z t

0

J1 kn t � sð Þ½ �
8<:

�
Za
b

@U y; z; sð Þ
@ z

����
z¼0

ln yð Þd y
24 35ds

9=;ln yð Þ; b� y� a; t� 0;

ð5:149Þ
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@

@ t
þ @

@ z

� �
U y; z; tð Þ

����
z¼0

¼ �
X
n

kn

Z t

0

J1 kn t � sð Þ½ �
8<:

� t � sð Þ�1
Za
b

U y; 0; sð Þln yð Þ d y
24 35ds

9=;ln yð Þ; b� y� a; t� 0:

ð5:150Þ

• Local EACs for the waves U g; tð Þ may have one of the following forms:

U y; 0; tð Þ ¼ 2
p

Zp=2
0

@W y; t;uð Þ
@ t

d u; t� 0; b� y� a; ð5:151aÞ

@2

@ t2
� sin2 u

@2

@y2

� �
W y; t;uð Þ ¼ �@U y;z;tð Þ

@ z

���
z¼0

;

b\y\a; t[ 0

W y; 0;uð Þ ¼ @W y; t;uð Þ
@ t

����
t¼0

¼ 0; b� y� a;

8>>>>><>>>>>:
ð5:151bÞ

@

@ t
þ @

@ z

� �
U y; z; tð Þ

����
z¼0

¼ 2
p

Zp=2
0

W y; t;uð Þ cos2 u du;

t� 0; b� y� a;

ð5:152aÞ

@2

@ t2
� cos2 u

@2

@y2

� �
W y; t;uð Þ ¼ � @2

@y2
@

@ z
U y; z; tð Þ

����
z¼0

� �
;

b\y\a; t[ 0

W y; 0;uð Þ ¼ @W y; t;uð Þ
@ t

����
t¼0

¼ 0; b� y� a

8>>>>><>>>>>:
ð5:152bÞ

or

@

@ t
þ @

@ z

� �
U y; z; tð Þ

����
z¼0

¼ 2
p

Zp=2
0

@W y; t;uð Þ
@ t

sin2 u du;

t� 0; b� y� a;

ð5:153aÞ

280 K. Sirenko and Y. Sirenko



@2

@ t2
� cos2 u

@2

@y2

� �
W y; t;uð Þ ¼ @2

@y2 U y; 0; tð Þ;
b\y\a; t[ 0

W y; 0;uð Þ ¼ @W y; t;uð Þ
@ t

����
t¼0

¼ 0; b� y� a:

8>>>>><>>>>>:
ð5:153bÞ

The initial boundary value problems (5.151b), (5.152b), and (5.153b) are for-
mulated with respect to the auxiliary functions W y; t;uð Þ, and should be supple-
mented with the following boundary conditions for t� 0:

W b; t;uð Þ ¼ W a; t;uð Þ ¼ 0; E�polarization
@W y; t;uð Þ

@y

����
y¼b

¼ @W y; t;uð Þ
@y

����
y¼a

¼ 0; H�polarization:

8><>:
Let us consider EACs (5.148) and (5.151a), (5.151b) in more details. Taking into

consideration the location of the boundaries Cj in the problem (5.137) (in the plane
z ¼ �L1 for the boundary C1 and in the plane z ¼ L2 for C2), and the direction of
propagation for the waves outgoing through these boundaries (towards z ¼ �1 for
C1 and towards z ¼ 1 for C2), we can rewrite (5.148) and (5.151a), (5.151b) to
explicitly show the operators D1 U � Ui 1ð Þ� �

and D2 U½ �:

U y;�L1; tð Þ � Ui 1ð Þ y;�L1; tð Þ ¼
X1

n¼ 1 for E�case

0 for H�case

�
Z t

0

J0 kn 1 t � sð Þ½ �
8<:

�
Za1
b1

@ U y; z; sð Þ � Ui 1ð Þ y; z; sð Þ� �
@ z

�����
z¼�L1

ln 1 yð Þd y

264
375ds

9>=>;
� ln 1 yð Þ; b1 � y� a1; t� 0;

ð5:154Þ

U y; L2; tð Þ ¼ �
X1

n¼ 1 for E�case

0 for H�case

�
Z t

0

J0 kn 2 t � sð Þ½ �
8<:

Za2
b2

@U y; z; sð Þ
@ z

����
z¼L2

ln 2 yð Þd y

264
375ds

9>=>;
� ln 2 yð Þ; b2 � y� a2; t� 0

ð5:155Þ
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(nonlocal EACs); and

U y;�L1; tð Þ � Ui 1ð Þ y;�L1; tð Þ ¼ 2
p

Zp=2
0

@W y; t;uð Þ
@ t

d u; t� 0;

b1 � y� a1;

ð5:156aÞ

@2

@ t2
� sin2 u

@2

@y2

� �
W y; t;uð Þ ¼ @ U y;z;tð Þ�Ui 1ð Þ y;z;tð Þ½ �

@ z

����
z¼�L1

;

b1\y\a1; t[ 0

W y; 0;uð Þ ¼ @W y; t;uð Þ
@ t

����
t¼0

¼ 0; b1 � y� a1;

8>>>>><>>>>>:
ð5:156bÞ

U y; L2; tð Þ ¼ 2
p

Zp=2
0

@W y; t;uð Þ
@ t

d u; t� 0; b2 � y� a2; ð5:157aÞ

@2

@ t2
� sin2 u

@2

@y2

� �
W y; t;uð Þ ¼ � @U y; z; tð Þ

@ z

����
z¼L2

;

b2\y\a2; t[ 0

W y; 0;uð Þ ¼ @W y; t;uð Þ
@ t

����
t¼0

¼ 0; b2 � y� a2

8>>>>><>>>>>:
ð5:157bÞ

(local EACs). Here, kn j and ln j yð Þ (j ¼ 1; 2) are transverse eigenvalues and

transverse eigenfunctions for the waveguide Xj. The wave Ui 1ð Þ g; tð Þ incident on the
boundary C1 from the waveguide X1 could be represented in the form

Ui 1ð Þ g; tð Þ ¼
X1

n¼
n

1 for E�case
0 for H�case

vn 1 z; tð Þln 1 yð Þ; g ¼ y; zf g 2 �X1: ð5:158Þ

The initial boundary value problems in (5.156a), (5.156b) and (5.157a), (5.157b)
with respect to the auxiliary functions W y; t;uð Þ should be supplemented with the
boundary conditions

W b 1 or 2; t;uð Þ ¼ W a 1 or 2; t;uð Þ ¼ 0; E�polarization

@W y; t;uð Þ
@y

����
y ¼ b 1 or 2

¼ @W y; t;uð Þ
@y

����
y ¼ a 1 or 2

¼ 0; H�polarization:

8><>:
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5.5.3 Exact Absorbing Conditions for Cylindrical Virtual
Boundary in Free Space

Let now all field sources and scatterers are located inside a circle of radius L with its
center in the point g ¼ y; zf g ¼ 0; 0f g (see Fig. 5.6). Then within Xext ¼
g ¼ q;/f g 2 Xtotal : q[ Lf g the E- or H-polarized wave U g; tð Þ generated in Xint

is the outgoing wave crossing the boundary C ¼ g ¼ q;/f g 2 Xtotal : q ¼ Lf g
only in one direction q ! 1, and [3]

� @2

@t2
þ 1

q
@

@q
q
@

@q
þ 1

q2
@2

@/2

� �
U g; tð Þ ¼ 0;

g ¼ q;/f g 2 Xext; t[ 0

U g; tð Þjt¼0¼ 0; @
@t U g; tð Þ��t¼0¼ 0; g 2 �Xext

U q;/; tð Þ ¼ U q;/þ 2p; tð Þ; q� L; t� 0:

8>>>>><>>>>>:
ð5:159Þ

The separation of variables with respect to / in (5.159) yields

U q;/; tð Þ ¼
X
n

un q; tð Þ ln /ð Þ; g ¼ q;/f g 2 �Xext; t� 0; ð5:160Þ

where ln /ð Þ ¼ 2pð Þ�1=2exp in/ð Þ, n ¼ 0;�1;�2; . . . is the orthonormal system of
transverse functions, which is complete in the space L2 0\/\2pð Þ. The space-time
amplitudes un q; tð Þ of the wave U q;/; tð Þ are determined by a solution to the initial
boundary value problem

� @2

@t2
þ 1

q
@

@q
q
@

@q
� n2

q2

� �
un q; tð Þ ¼ 0; q[ L; t[ 0

un q; 0ð Þ ¼ 0;
@

@t
un q; tð Þ

����
t¼0

¼ 0; q� L:

8>>><>>>: ð5:161Þ

Let us multiply (5.161) by v q� Lð Þ and then apply the Hankel transform

~fn xð Þ ¼
Z1
0

fn qð Þ q J nj j qxð Þdq $ fn qð Þ ¼
Z1
0

~fn xð Þx J nj j qxð Þdx: ð5:162Þ

Finally, for the images ~Zn x; tð Þ of the functions Zn q; tð Þ ¼ un q; tð Þv q� Lð Þ we
have

D xð Þ ~Zn x; tð Þ� � � @2

@ t2
þx2

� �
~Zn x; tð Þ ¼

¼ L un L; tð ÞJ nj j0 xLð Þ � un0 L; tð ÞJ nj j xLð Þ� �
; x[ 0; t[ 0

~Zn x; 0ð Þ ¼ @

@ t
~Zn x; tð Þ

����
t¼0

¼ 0; x� 0:

8>>>>><>>>>>:
ð5:163Þ
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Here, un0 L; tð Þ ¼ @un q; tð Þ=@qjq¼L and J nj j0 xLð Þ ¼ @J nj j xqð Þ=@q��
q¼L. The

derivation of (5.163) uses the formula [34] �x2~fn xð Þ $ d2
dq2 þ d

qdq � n2
q2

h i
fn qð Þ,

the chain of equalities

v q� Lð Þ 1
q

@

@q
q
@

@q

� �
un q; tð Þ ¼ v q� Lð Þ 1

q
@

@q
þ @2

@q2

� �
un q; tð Þ

¼ 1
q

@

@q
þ @2

@q2

� �
Zn q; tð Þ � d q� Lð Þ 1

q
þ @

@q

� �
un q; tð Þ

� @

@q
d q� Lð Þun q; tð Þ½ �;

and the equality @af ; cð Þ ¼ ð�1Þ aj j f ; @acð Þ defining the generalized derivative @af
(a ¼ aif gni¼1 is the multiindex, aj j ¼ a1 þ . . .þ an) of the generalized function f qð Þ,
q 2 Rn [35].

The problem (5.163) is similar to (5.15) studied in Sect. 5.2.2. Its solution

~Zn x; tð Þ ¼ L
x

Z t

0

sin x t � sð Þ½ � un L; sð ÞJ nj j0 xLð Þ � un
0 L; sð ÞJ nj j xLð Þ� �

ds

after the inverse Hankel transform (5.162) becomes

un q; tð Þ ¼ L
Z t

0

un L; sð Þfn0 L; q; t � sð Þ � un
0 L; sð Þfn L; q; t � sð Þ½ � ds;

q� L; t� 0:

ð5:164Þ

The formula (5.164) describes the behavior of the amplitudes un q; tð Þ of the
outgoing cylindrical wave (5.160) propagating from the circle q ¼ L to any other
circle with the radius q[ L. Here,

fn r; q; t � sð Þ ¼
Z1
0

sin x t � sð Þ½ �J nj j xrð Þ J nj j xqð Þdx ð5:165Þ

and fn0 L; q; t � sð Þ ¼ @fn r; q; t � sð Þ=@ rjr¼L.
The integration in (5.165) is converted to the calculation of the first and the

second kind Legendre functions P nj j�1=2ðaÞ and Q nj j�1=2ð�aÞ for the argument

ar;q ¼ r2 þ q2 � t � sð Þ2
h i

= 2qrð Þ [44]:
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fn r; q; t � sð Þ ¼
0; 0\t � s\q� r

Pjnj�1=2 ar;q
	 


2 rqð Þ1=2
h i

; q� r\t � s\qþ r

�Qjnj�1=2 �ar;q
	 


cos npð Þ= p rqð Þ1=2
h i

; qþ r\t � s

8>>><>>>:
¼ v t � sð Þ � q� rð Þ½ �Qjnj�1=2 �ar;q

	 

cos npð Þ= p rqð Þ1=2

h i
; 0\t � s:

ð5:166Þ

At the last step in (5.166), we have used the well-known properties of the
Legendre functions [40]: pPv xð Þ ¼ p cos vpð ÞPv �xð Þ � 2 sin vpð ÞQv �xð Þ.

Considering [35, 40] that the value of Q nj j�1=2 �ar;q
	 


at t � s ¼ q� r is

Q nj j�1=2ð�1Þ ¼ pP nj j�1=2ð1Þ=2 cosðnpÞ ¼ p=2 cosðnpÞ;

while @v t � sð Þ � q� rð Þ½ �=@r ¼ d t � sð Þ � q� rð Þ½ �, upon differentiation in
(5.164) and summation of the results in accordance with (5.160), we obtain for
q� L and t� 0:

U q;/; tð Þ ¼ 1
2

ffiffiffi
L
q

s
U L;/; t � qþ Lð Þþ 1

p

ffiffiffi
L
q

s X
n

�1ð Þnln /ð Þ

�
Zt� q�Lð Þ

0

un L; sð Þ
2L

Q nj j�1=2
0 �aL;q
	 
 q2 � L2 � t � sð Þ2

Lq

 !
� Q nj j�1=2 �aL;q

	 
" #(

�un
0 L; sð ÞQ nj j�1=2 �aL;q

	 
)
ds:

ð5:167Þ

Placing the observation point onto the virtual boundary q ¼ L in (5.167), we
obtain EAC D U g; tð Þ½ �jg2C¼ 0 for the problem (5.137):

U L;/; tð Þ ¼ 2
p

X
n

�1ð Þnln /ð Þ
Z t

0

un L; sð Þnn t � sð Þ � un
0 L; sð Þgn t � sð Þ½ �ds

24 35;
0�/� 2p; t� 0:

ð5:168Þ

In (5.167) and (5.168) the following notations were used: fQ nj j�1=2
0 �að Þ ¼

@Q nj j�1=2 xð Þ=@ x��x¼�a, nn t � sð Þ ¼ 2Q nj j�1=2
0 �aL;L
	 


aL;L � 1
	 
� Q nj j�1=2

� �aL;L
	 
� 2Lð Þ�1;

and gn t � sð Þ ¼ Q nj j�1=2 �aL;L
	 


:
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5.5.4 Exact Absorbing Conditions for Rectangular Virtual
Boundary in Free Space

Up to now we constructed EACs only for virtual boundaries which coincide with
coordinate surfaces. In this section we demonstrate a different approach: we
develop an EAC for a rectangular virtual boundary which detached components are
orthogonal and have so-called corner points at intersections. In these points, EACs
for different components of the virtual boundary must be matched neatly. This gives
rise to a mathematically complicated [52, 53] auxiliary problem. Below we discuss
one possible way to solve it rigorously, and obtain one more EAC for the problem
(5.137).

Let now the virtual boundary C separating the domains Xint and Xext in (5.137) is
a rectangular boundary (Fig. 5.6). Then within Xext ¼ Xtotaln g ¼ y; zf gf 2 Xtotal :
l4 � y� l3; l2 � z� l1g the E- or H-polarized wave U g; tð Þ generated in Xint is the
outgoing wave crossing the boundary C only in one direction, and

� @2

@t2
þ @

@y2
þ @2

@z2

� �
U g; tð Þ ¼ 0; t[ 0; g ¼ y; zf g 2 Xext

U g; tð Þjt¼0¼ 0;
@

@t
U g; tð Þ

����
t¼0

¼ 0; g 2 �Xext:

8>>><>>>: ð5:169Þ

Subject the function U g; tð Þ from (5.169) to the Fourier transforms

uy k; z; tð Þ ¼ 1
2p

Z1
�1

U y; z; tð Þeikydy $ U y; z; tð Þ ¼
Z1
�1

uy k; z; tð Þe�ikydk;

uz y; l; tð Þ ¼ 1
2p

Z1
�1

U y; z; tð Þeilzdz $ U y; z; tð Þ ¼
Z1
�1

uz y; l; tð Þe�ilzdl

ð5:170Þ

and employ the technique from Sects. 5.2.2 and 5.2.3, which is applied there to the
problem (5.9) for 1-D Klein-Gordon equations. Then

@

@ t
� @

@ z

� �
uy k; z; tð Þ ¼ �k

Z t

0

J1 k t � sð Þð Þ
t � s

uy k; z; sð Þds; z� l1
z� l2

�
; ð5:171Þ

@

@ t
� @

@ y

� �
uz y; l; tð Þ ¼ �l

Z t

0

J1 l t � sð Þð Þ
t � s

uz y; l; sð Þds; y� l3
y� l4

�
: ð5:172Þ

Nonlocal EACs (5.171) and (5.172), written in terms of the Fourier amplitudes
of the field U g; tð Þ, truncate the computation domain of open plane problems to the
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band l2\z\l1 or l4\y\l3. We will seek now conditions that are local in time and
space. Following the scheme from Sect. 5.2.4, we obtain from (5.171), (5.172) and
(5.170)

@

@ t
� @

@ z

� �
U g; tð Þ ¼ 2

p

Zp=2
0

@V1 g; t;uð Þ
@ t

sin2 udu;

yj j �1;
z� l1
z� l2

�
; t� 0;

ð5:173aÞ

@2

@ t2
� cos2 u

@2

@ y2

� �
V1 g; t;uð Þ ¼ @2

@ y2
U g; tð Þ; yj j\1; t[ 0

@V1 g; t;uð Þ
@ t

����
t¼0

¼ V1 g; t;uð Þjt¼0¼ 0; yj j �1

8>><>>: ð5:173bÞ

and

@

@ t
� @

@ y

� �
U g; tð Þ ¼ 2

p

Zp=2
0

@V2 g; t;uð Þ
@ t

sin2 udu;

y� l3
y� l4

�
; zj j �1; t� 0;

ð5:174aÞ

@2

@ t2
� cos2 u

@2

@ z2

� �
V2 g; t;uð Þ ¼ @2

@ z2
U g; tð Þ; zj j\1; t[ 0

@V2 g; t;uð Þ
@ t

����
t¼0

¼ V2 g; t;uð Þjt¼0¼ 0; zj j �1:

8>><>>: ð5:174bÞ

Each of the four expressions (5.173a), (5.173b) and (5.174a), (5.174b) is local
EAC which truncates the computation domain to the half-plane z\l1, z[ l2, y\l3
or y[ l4. The auxiliary differential (Cauchy) problems for the functions V1 g; t;uð Þ
(z is some parameter) and V2 g; t;uð Þ (y is some parameter) are well posed.

When the domain truncated in this way is rectangular, all four equations of
(5.173a), (5.173b) and (5.174a), (5.174b) must be taken into account. At the same
time, the auxiliary differential problems must be completed with conditions at the
ends where the boundaries z ¼ const and y ¼ const meet. There are several analytic
ways to treat the problem of corner points. One of them, supposedly the clearest, is
detailed below.

Initially, consider the first equations (with the plus signs) from (5.173a),
(5.173b) and (5.174a), (5.174b). In Fig. 5.6, the domain Xext quadrant, where these
equations are valid simultaneously, is dotted. In this quadrant, consider the region
G ¼ g ¼ y; zf g : l3\y\l3 þ 2p; l1\z\l1 þ 2pf g and use here the following
representation for the functions f g; tð Þ:
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f g; tð Þ ¼ 1
2pi

Zaþ i1

a�i1

X1
n;m¼�1

~f n;m; sð Þei nyþmzð Þþ stds; Re s� b� 0

$ ~f n;m; sð Þ ¼ 1
4p2

Z1
0

Zl1 þ 2p

l1

Zl3 þ 2p

l3

f g; tð Þe�i nyþmzð Þ�stdydzdt:

ð5:175Þ

For the amplitudes ~u ¼ ~u n;m; sð Þ, ~vj uð Þ ¼ ~vj n;m; s;uð Þ, and
~wj uð Þ ¼ ~wj n;m; s;uð Þ, j ¼ 1; 2, of the functions U g; tð Þ, Vj g; t;uð Þ, and
Wj g; t;uð Þ ¼ Vj g; t;uð Þ cos2 uþU g; tð Þ, we obtain:

sþ imð Þ~u ¼ 2s
p

Zp=2
0

sin2 u~v1du; sþ inð Þ~u ¼ 2s
p

Zp=2
0

sin2 u~v2du; ð5:176Þ

~w1 ¼ s2

s2 þ n2 cos2 u
~u; ~w2 ¼ s2

s2 þm2 cos2 u
~u; ð5:177Þ

~v1 ¼ � n2

s2 þ n2 cos2 u
~u; ~v2 ¼ � m2

s2 þm2 cos2 u
~u; ð5:178Þ

s2 þm2 þ n2 ¼ 0: ð5:179Þ

Now address the function

in~w1 uð Þ ¼ in~u
s2

s2 þ n2 cos2 u

¼ s2

s2 þ n2 cos2 u
�s~uþ 2s

p

Zp=2
0

sin2 c~v2 cð Þdc

264
375

¼ �s~u
s2

s2 þ n2 cos2 u
1þ 2 sin2 u

p

Zp=2
0

sin2 c

cos2 uþ sin2 u cos2 c
dc

264
375

þ 2
p

Zp=2
0

s~u
s2

s2 þm2 cos2 c
� sin2 c

cos2 uþ sin2 u cos2 c
dc

¼ � s
cosu

~w1 uð Þþ 2
p

Zp=2
0

s~w2 cð Þ sin2 c

cos2 uþ sin2 u cos2 c
dc:

ð5:180Þ
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Here, a successive usage of the equations (5.177), (5.176), (5.178) was made,
the equality

s2

s2 þ an2
� s2

s2 þ bm2 ¼
a

aþ 1� að Þb � s2

s2 þ an2
þ b

aþ 1� að Þb � s2

s2 þ bm2

valid only if (5.179) and (5.177) holds.
The inverse transform of (5.180) yields

@

@ t
þ cosu

@

@ y

� �
W1 g; t;uð Þ ¼ 2cosu

p

Zp=2
0

sin2 c

cos2 uþ sin2 u cos2 c

@W2 g; t; cð Þ
@ t

dc;

z� l1 ; y� l3:

The upper boundaries z ¼ l1 þ 2p and y ¼ l3 þ 2p of the region G, where the
equation holds, are not mentioned, as the region G may be arbitrary in size.

Performing the operations described above for the function im~w2 uð Þ, which is
the object of the present study, we obtain

@

@ t
þ cosu

@

@ z

� �
W2 g; t;uð Þ ¼ 2cosu

p

Zp=2
0

sin2 c

cos2 uþ sin2 u cos2 c

@W1 g; t; cð Þ
@ t

dc;

z� l1; y� l3:

The expressions relating the auxiliary functions W1 g; t;uð Þ and W2 g; t;uð Þ in all
four G-like regions resolve the problem of corner points. The auxiliary initial
boundary value problems in (5.173a), (5.173b), (5.174a), (5.174b) equipped with
the corresponding relation are well posed within the finite sections of the outer
boundary C surrounding the rectangular domain Xint. The complete system of
equations constituting EAC D U g; tð Þ½ �jg2C¼ 0 for the problem (5.137) is

@

@ t
� @

@ z

� �
U g; tð Þ ¼ 2

p

Zp2
0

@V1 g; t;uð Þ
@ t

sin2 udu;

l4 � y� l3;
z ¼ l1
z ¼ l2

�
; t� 0;

ð5:181aÞ

@2V1 g; t;uð Þ
@ t2

� @2W1 g; t;uð Þ
@ y2

� �
¼ 0; l4\y\l3; t[ 0

@V1 g; t;uð Þ
@ t

����
t¼0

¼ V1 g; t;uð Þjt¼0¼ 0; l4 � y� l3;

8>><>>: ð5:181bÞ
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@

@ t
� @

@ y

� �
U g; tð Þ ¼ 2

p

Zp=2
0

@V2 g; t;uð Þ
@ t

sin2 udu;

y ¼ l3
y ¼ l4

�
; l2 � z� l1; t� 0;

ð5:182aÞ

@2V2 g; t;uð Þ
@ t2

� @2W2 g; t;uð Þ
@ z2

� �
¼ 0; l2\z\l1; t[ 0

@V2 g; t;uð Þ
@ t

����
t¼0

¼ V2 g; t;uð Þjt¼0¼ 0; l2 � z� l1;

8>><>>: ð5:182bÞ

@

@ t
� cosu

@

@ y

� �
W1 g; t;uð Þ ¼ 2 cosu

p

�
Zp=2
0

sin2 c

cos2 uþ sin2 u cos2 c

@W2 g; t; cð Þ
@ t

dc

@

@ t
� cosu

@

@ z

� �
W2 g; t;uð Þ ¼ 2 cosu

p

�
Zp=2
0

sin2 c

cos2 uþ sin2 u cos2 c

@W1 g; t; cð Þ
@ t

dc

;
þ
þ

� �
! g ¼ l3; l1f g;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
þ
�

� �
! g ¼ l3; l2f g; �

þ

� �
! g ¼ l4; l1f g; �

�

� �
! g ¼ l4; l2f g:

ð5:183Þ

Actually, the formulas (5.181a), (5.181b), (5.182a), (5.182b) and (5.183) should
be considered together, as only together they can determine local EAC over the
entire rectangular virtual boundary C. The equations (5.183) act here as boundary
conditions in the auxiliary initial boundary value problems of (5.181a), (5.181b)
and (5.182a), (5.182b). The symbols

þ
þ

� �
! g ¼ l3; l1f g

choose the signs in the upper and lower equations for different corner points
g ¼ y; zf g.
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5.5.5 Frequency-Domain Formalism and Main
Characteristics of Open Plane Structures

The solution U g; tð Þ to the problem (5.137), (5.167) (it is assumed that
C ¼ g ¼ q;/f g 2 Xtotal : q ¼ Lf g) and the solution ~U g; kð Þ to the problem

@2

@y2 þ @2

@z2 þ�e gð Þk2
h i

~U g; kð Þ ¼ �f g; kð Þ; g ¼ y; zf g 2 Xint

~~Etg p; kð Þ
���
p¼ x;y;zf g2R

¼ 0 and ~~Etg p; kð Þ; ~~Htg p; kð Þ
are continuous when crossing Re;r

and boundaries C � xj j\1½ �; Cj � xj j\1½ �;

8>>>>>><>>>>>>:
ð5:184aÞ

~U g; kð Þ ¼
X1

n¼ 1 for E�case
0 for H�case

� An 1 kð Þeibn 1 zþ L1ð Þ þBn 1 kð Þe�ibn 1 zþ L1ð Þ
h i

ln 1 yð Þ; g 2 �X1; ð5:184bÞ

~U g; kð Þ ¼
X1

n¼ 1 for E�case
0 for H�case

n Bn 2 kð Þeibn 2 z�L2ð Þln 2 yð Þ; g 2 �X2; ð5:184cÞ

~U g; kð Þ ¼
X1
n¼�1

Cn kð ÞH 1ð Þ
n kqð Þln /ð Þ; g 2 �Xext ð5:184dÞ

are related by the integral transform (5.102).
Here, ~U g; kð Þ ¼ ~Ex g; kð Þ for monochromatic E-polarized waves and ~U g; kð Þ ¼

~Hx g; kð Þ for monochromatic H-polarized waves. The remaining designations like
�f g; kð Þ, �e gð Þ, etc. and the electromagnetic characteristics R11

n p kð Þ, T21
n p kð Þ, etc. are the

same as in Sects. 5.4.1 and 5.4.2. Below we highlight only differences in analysis as
compared to that conducted above.

• From (5.160), (5.184d) we have in place of (5.105)

Cn kð ÞH 1ð Þ
n kqð Þ $ un q; tð Þ or Cn kð ÞH 1ð Þ

n kqð Þ ¼ ~un q; kð Þ: ð5:185Þ

• The element dg ¼ qdqdz in the integrals over the domain Xint in (5.110),
(5.115), and (5.118) should be replaced by dg ¼ dydz, while the element qdq in
(5.116) should be replaced by dy.
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• The definition (5.112) of the normalized directional pattern changes to

D /; k;Mð Þ ¼
~~Etg M;/; kð Þ
��� ���2

max
0�/� 2p

~~Etg M;/; kð Þ
��� ���2 ; 0�/� 360	; K1 � k�K2:

ð5:186Þ

Here, ~~Etg M;/; kð Þ is the tangential (to the cylindrical surface q ¼ M� L;f
xj j �1g) component of the monochromatic electric field ~~E g; kð Þ.

• The definition (5.122) of the normalized pulsed pattern changes to

Dpuls /; t;Mð Þ ¼ U M;/; tð Þ
max
/; t

U M;/; tð Þj j ; 0�/� 360	; M� L;

T1 � t� T2 � T þM � L:

ð5:187Þ

5.6 3-D Vector Models

The 3-D vector problem

@2

@ x2
þ @2

@ y2
þ @2

@ z2
� grad div� e gð Þ @2

@ t2
� r gð Þg0

@

@ t

� �
~E g; tð Þ

¼ g0
@

@ t
~j g; tð Þ � ~F g; tð Þ; g ¼ x; y; zf g 2 Xint; t[ 0

~E g; 0ð Þ ¼ ~u gð Þ; @
@ t
~E g; tð Þ��t¼0¼ ~wðgÞ; g 2 �Xint

~Etg g; tð Þ; ~Htg g; tð Þ are continuous when crossing Re;r

~Etg g; tð Þ��g2R¼ 0; D ~E g; tð Þ� ���
g2C¼ 0

D1 ~E g; tð Þ �~Ei 1ð Þ g; tð Þ� ���
g2C1

¼ 0; D2 ~E g; tð Þ� ���
g2C2

¼ 0

; t� 0

8>><>>:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð5:188Þ

describes space-time transformations of the electromagnetic field ~U g; tð Þ ¼
~E g; tð Þ; ~H g; tð Þ� �

in compact open structures with input and output waveguides
(Fig. 5.8). To solve it numerically, we must know how to construct EACs for virtual
boundaries in cross-sections of different hollow waveguides (D1 ~E g; tð Þ��
~Ei 1ð Þ g; tð Þ�jg2C1

¼ 0, D2 ~E g; tð Þ� ���
g2C2

¼ 0) and in free space (D ~E g; tð Þ� ���
g2C¼ 0).

In (5.188), ~E g; tð Þ ¼ Ex;Ey;Ez
� �

and ~H g; tð Þ ¼ Hx;Hy;Hz
� �

are the vectors of
electric and magnetic fields;
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�g0
@

@ t
~H g; tð Þ ¼ rot~E g; tð Þ; ð5:189Þ

~j g; tð Þ is the extraneous current density; g ¼ x; y; zf g is a point in the space R3. The
computation domain Xint is the part of the space R3, bounded by the surfaces R
together with the virtual boundaries C1 and C2 (input and output ports in the
cross-sections of the virtual waveguides X1 and X2) and the spherical virtual
boundary C separating the domains Xint and Xext (free space). The surfaces R of
perfectly conducting elements and the surfaces Re;r of discontinuities of material
properties (of the piecewise smooth functions e gð Þ and r gð Þ) are assumed to be
sufficiently smooth. The function ~Ei 1ð Þ g; tð Þ in EAC in (5.188) represents a pulsed
wave ~Ui 1ð Þ g; tð Þ ¼ ~Ei 1ð Þ g; tð Þ; ~Hi 1ð Þ g; tð Þ� �

, which is incident on the virtual
boundary C1 from the waveguide X1 at t[ 0.

Fig. 5.8 Geometry of 3-D vector problem
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5.6.1 Exact Absorbing Conditions for Regular Hollow
Waveguides

Let us consider the following model problem (Fig. 5.9). A pulsed wave ~U g; tð Þ,
which propagates in a metal hollow waveguide G ¼ g ¼ x; y; zf g : x; yf gf 2
intRz; zj j\1g towards increasing z, is incident on some virtual boundary z ¼ 0 at
the moments of time t[ 0. It is required to find the field ~U g; tð Þ in the closure of the
domain Gþ ¼ g 2 G : z[ 0f g for t[ 0. The corresponding problem is

D� @2

@ t2

� �
~E g; tð Þ ¼ 0; g 2 Gþ ; t[ 0

~E g; 0ð Þ ¼ @~E g; tð Þ
@t

����
t¼0

¼ 0; g 2 �Gþ

Ez g; tð Þjg2R¼ ~s 
~E? g; tð Þ	 
��
g2R¼ 0; t� 0:

8>>>>><>>>>>:
ð5:190Þ

Here, ~E ¼ Ez~zþ~E?, ~E? ¼ Ex~xþEy~y;~a 
~b is the scalar product of vectors~a and
~b; D ¼ @2=@ x2 þ @2=@ y2 þ @2=@ z2; R ¼ Rz � 0� z\1ð Þ are the walls of the
regular waveguide Gþ ; Rz is the boundary contour of its cross-section by any
coordinate plane z ¼ const� 0;~x,~y,~z are the unit vectors of the coordinate axes;~s
and ~n are the tangent and the normal to the contour Rz; intRz is the domain in the
plane z ¼ const bounded by Rz. The operator grad div in (5.188) is eliminated in
(5.190) since the function grad div~E g; tð Þ determines herein the volume density of
induced charges q g; tð Þ, which is zero for all t[ 0, if only q g; 0ð Þ ¼ 0 [8].

Fig. 5.9 The hollow regular waveguide G
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Applying the scalar Borgnis functions UE g; tð Þ and UH g; tð Þ (see [3, 32, 54])
such that

� @2

@ t2
þD

� �
@UE;H g; tð Þ

@ t
¼ 0; g 2 Gþ ; t[ 0

UE g; tð Þ��g2R¼ @UH g; tð Þ
@~n

����
g2R

¼ 0; t� 0;

8>><>>: ð5:191Þ

the general solution to the vector differential equation in (5.190) can be written as

Ex ¼ @2UE

@x@z
� @2UH

@y@t
; Ey ¼ @2UE

@y@z
þ @2UH

@x@t
; Ez ¼ @2UE

@z2
� @2UE

@t2
: ð5:192Þ

The field ~E g; tð Þ written in this form satisfies also the boundary conditions of the
problem (5.190):

~s 
~E?
	 
��

Rz
¼ dx

dh
@

@x
þ dy

dh
@

@y

� �
@

@z
UE � dx

dh
@

@y
� dy
dh

@

@x

� �
@

@t
UH

¼ d
dh

@

@z
UE

� �
� @

@~n
@

@t
UH

� �
¼ 0:

Here, the contour Rz has been parametrized as Rz ¼ Rz hð Þ ¼ x hð Þ; y hð Þf gh and
the following representations for the tangential and normal vectors to Rz is used [34]:

~s ¼ dx
dh

~xþ dy
dh

~y; ~n ¼ � dy
dh

~xþ dx
dh

~y:

Separating the transverse variables x and y in the problem (5.191), we obtain its
solution in the form

UE;H x; y; z; tð Þ ¼
X1
n¼1;0

uE;Hn z; tð ÞlE;Hn x; yð Þ; ð5:193Þ

where lEn x; yð Þ� �1
n¼1 and lHn x; yð Þ� �1

n¼0 are the complete orthonormal systems of

the solutions to the Sturm-Liouville problems for the equation @2=@y2 þ k2
	 


l ¼ 0
in the domain intRz and with the Dirichlet (lE x; yð Þj x;yf g2Rz

¼ 0) or Neumann

(@ lH x; yð Þ=@~nj x;yf g2Rz
¼ 0) conditions on its boundary Rz. kEn and kHn are the

eigenvalues associated with these solutions.
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Substituting (5.193) into (5.192), the field ~E g; tð Þ can be written as

Ez g; tð Þ ¼ P1
n¼1

un z z; tð Þ nn z x; yð Þ

~E? g; tð Þ ¼ P1
n¼�1

un ? z; tð Þ~nn ? x; yð Þ
; t� 0; z� 0

8>><>>: : ð5:194Þ

The scalar functions un z z; tð Þ and un ? z; tð Þ are solutions to the following initial
boundary value problems:

� @2

@ t2
þ @2

@ z2
� a2n z

� �
un z z; tð Þ ¼ 0; t[ 0; z[ 0

un z z; 0ð Þ ¼ @

@ t
un z z; tð Þ

����
t¼0

¼ 0; z� 0
; n ¼ 1; 2; 3; . . .;

8>><>>:
ð5:195Þ

� @2

@ t2
þ @2

@ z2
� a2n ?

� �
un ? z; tð Þ ¼ 0; t[ 0; z[ 0

un ? z; 0ð Þ ¼ @

@ t
un ? z; tð Þ

����
t¼0

¼ 0; z� 0

8>>><>>>: ; n ¼ 0;�1;�2; . . . :

ð5:196Þ

Here, an z ¼ kEn ; an ? ¼ kEn for n ¼ 1; 2; 3; . . . and an ? ¼ kH�n for

n ¼ 0;�1;�2; . . .; nn z ¼ lEn ; ~nn ? ¼ a�1
n ? @lEn=@x
	 


~xþ @lEn=@y
	 


~y
� �

for n ¼
1; 2; 3; . . . and ~nn ? ¼ �a�1

n ? @lH�n=@y
	 


~xþ�
@lH�n=@x
	 


~y
�
for n ¼ 0;�1;�2; . . .

The inversion formulas for (5.194)

un z z; tð Þ ¼ R
intRz

Ez g; tð Þ nn z x; yð Þdx dy

un ? z; tð Þ ¼ R
intRz

~E? g; tð Þ 
~nn ? x; yð Þ
� �

dx dy

8><>: ð5:197Þ

can be obtained using the basic properties of the systems of functions lE;Hn x; yð Þ. To
see that the latter formula is true, consider the integralsZ

intRz

@lEn
@x

~xþ @lEn
@y

~y

� �

 @lEm

@x
~xþ @lEm

@y
~y

� �� �
dx dy ¼

Z
intRz

gradlEn 
 gradlEm
	 


dx dy

¼ �
Z

intRz

lEmDl
E
n dx dyþ

Z
Rz

lEm
@lEn
@~n

ds ¼
0; m 6¼ n

kEn
	 
2

; m ¼ n

(
;
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Z
intRz

� @lHn
@y

~xþ @lHn
@x

~y

� �

 � @lHm

@y
~xþ @lHm

@x
~y

� �� �
dx dy

¼
Z

intRz

gradlHn � ~z
	 
 
 gradlHm � ~z

	 
� �
dx dy

¼
Z

intRz

gradlHn 
 gradlHm
	 


dx dy ¼
0; m 6¼ n

kHn
	 
2

; m ¼ n

(
;

Z
intRz

@lEn
@x

~xþ @lEn
@y

~y

� �

 � @lHm

@y
~xþ @lHm

@x
~y

� �� �
dx dy ¼

Z
P

d~P 
 rot~lHm

¼
Z
Rz

d~Rz 
~lHm ¼ 0:

Here,~a � ~b is the vector product of vectors~a and~b;~lHm ¼ lHm~z; P is the surface
of the function z ¼ lEn x; yð Þ spanned on the contour Rz; d~P ¼ � @lEn=@x

	 

~x��

@lEn=@y
	 


~yþ~z�dx dy is the surface element of the surface P; d~Rz ¼~sdh is the
vector element of the contour Rz.

The problems (5.195) and (5.196) are identical with those considered in
Sects. 5.2.2–5.2.4. Thus, omitting the tedious calculations, we address immediately
to their solutions un z; tð Þ (un z z; tð Þ or un ? z; tð Þ):

un z; tð Þ ¼ �
Z t

0

J0 an t � sð Þ2�z2
� �1=2� �

un
0 0; sð Þds; z� 0; t� 0: ð5:198Þ

Placing the observation point in (5.198) onto the virtual boundary z ¼ 0, we
obtain

un 0; tð Þ ¼ �
Z t

0

J0 an t � sð Þ½ �un0 0; sð Þds; ð5:199Þ

and then

@

@ z
þ @

@ t

� �
un z; tð Þ

����
z¼0

¼ �an

Z t

0

J1 an t � sð Þ½ � t � sð Þ�1un 0; sð Þds; t� 0:

ð5:200Þ

Setting an ¼ an z, n ¼ 1; 2; 3; . . . in (5.198) to (5.200), we obtain RC and EAC
for the amplitudes un z z; tð Þ of the Ez-component of the outgoing wave ~U g; tð Þ. With
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an ¼ an ?, n ¼ 0;�1;�2; . . ., we have precisely the same expressions for the
amplitudes un ? z; tð Þ of the transverse electric field ~E? g; tð Þ of the wave ~U g; tð Þ.

Using (5.194) and (5.197), we rewrite the formulas (5.198)–(5.200):

Ez x; y; z; tð Þ
~E? x; y; z; tð Þ

� �
¼ �

X1
n¼ 1

�1
� �

Z t

0

J0
an z

an ?

� �
t � sð Þ2�z2

� �1=2� �24

�
Z

intRz

@Ez x; y; z; sð Þ=@zð Þjz¼0nn z x; yð Þ
@~E? x; y; z; sð Þ=@z	 
��

z¼0
~nn ? x; yð Þ
� �8<:

9=;dx dy ds

375 nn z x; yð Þ
~nn ? x; yð Þ

( )
;

x; yf g2 intRz; z� 0; t� 0;

ð5:201Þ

Ez x; y; 0; tð Þ
~E? x; y; 0; tð Þ

� �
¼ �

X1
n¼ 1

�1

n o
Z t

0

J0
an z

an ?

� �
t � sð Þ

� �24

�
Z

intRz

@Ez x; y; z; sð Þ=@zð Þjz¼0nn z x; yð Þ
@~E? x; y; z; sð Þ=@z	 
��

z¼0
~nn ? x; yð Þ
� �8<:

9=; dx dy ds

375 nn z x; yð Þ
~nn ? x; yð Þ

( )
;

x; yf g2 intRz; t� 0;

ð5:202Þ

@

@ z
þ @

@ t

� �
Ez x; y; z; tð Þ
~E? x; y; z; tð Þ

� �
jz¼0 ¼ �

X1
n¼

1

�1

� � an z

an ?

� �� Z t

0

J1
an z

an ?

� �
t � sð Þ

� �
t � sð Þ�1

�
Z

intRz

Ez x; y; 0; sð Þnn z x; yð Þ
~E? x; y; 0; sð Þ 
~nn ? x; yð Þ
� �( )

dx dy ds

375 nn z x; yð Þ
~nn ? x; yð Þ

( )
;

x; yf g2 intRz; t� 0:

ð5:203Þ

From (5.200) it also follows that

@
@ t þ @

@ z

h i Ez x; y; z; tð Þ
~E? x; y; z; tð Þ

� �����
z¼0

¼ 2
p

Rp=2
0

@
Wz x; y; t;uð Þ
~W? x; y; t;uð Þ

� �
@ t sin2 u du;

x; yf g2 intRz; t� 0;

ð5:204aÞ
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@2

@ t2
� cos2 u

@2

@x2
þ @2

@y2

� �� � Wz x; y; t;uð Þ
~W? x; y; t;uð Þ

( )

¼ @2

@x2
þ @2

@y2

� � Ez x; y; 0; tð Þ
~E? x; y; 0; tð Þ

( )
; x; yf g2 intRz; t[ 0

Wz x; y; 0;uð Þ
~W? x; y; 0;uð Þ

( )
¼ @

Wz x; y; t;uð Þ
~W? x; y; t;uð Þ

( ),
@ t

�����
t¼0

¼ 0; x; yf g2 intRz

Wz x; y; t;uð Þ
~s 
 ~W? x; y; t;uð Þ	 


( )�����
x;yf g2Rz

¼ 0; t� 0:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
ð5:204bÞ

Each of EACs (5.202)–(5.204a), (5.204b) for the vector function ~E g; tð Þ deter-
mines its own operator Dj . . .½ � in EACs D1 ~E g; tð Þ �~Ei 1ð Þ g; tð Þ� ���

g2C1
¼ 0,

D2 ~E g; tð Þ� ���
g2C2

¼ 0 in (5.188). The auxiliary scalar and vector functions

Wz x; y; t;uð Þ and ~W? x; y; t;uð Þ are presented in the same bases of the transverse

functions nn z x; yð Þ and ~nn ? x; yð Þ as the field ~E g; tð Þ.
In contrast to (5.204a), (5.204b), EACs (5.202) and (5.203) are nonlocal both in

time and space. It is important to note also the following essential distinction
between EACs (5.202), (5.203) and EAC (5.204a), (5.204b). EACs (5.202), (5.203)
require complete information on the eigenfunctions and eigenvalues of the
Sturm-Liouville operator in the region intRz with the Dirichlet and Neumann
conditions on its boundary Rz. Resolution of the corresponding problems may be
too cumbersome and costly in terms of computer resources. EAC (5.204a), (5.204b)
is free from this shortcoming and, hence, it should be preferred when analyzing
structures for which the transverse functions for channels with outgoing waves
cannot be found analytically.

The equations (5.198) and (5.201) specify the operator X0! z tð Þ u0½ �, which
operates on the amplitudes un z; tð Þ of the outgoing wave (5.194) according to the rule

un z; tð Þ ¼ X0! z tð Þ un0 0; sð Þ½ �; z� 0; t� z ; t � z � s� 0 ð5:205Þ

and the operator

~E g; tð Þ ¼ Zq!g tð Þ ~E0 q; sð Þ� �
; ~E0 q; sð Þ ¼ @~E g; tð Þ

@z

����
z¼0

;

g ¼ x; y; zf g 2 Gþ ; t� z; t � z� s� 0;

ð5:206Þ

which operates on the field ~E g; tð Þ. The operators (5.205) and (5.206) allow to
compute the values of un z; tð Þ and ~E g; tð Þ in any point in the waveguide Gþ
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knowing only their values on the virtual boundaries. The operators (5.205) and
(5.206) are the so-called transport operators which relate near-zone and far-zone
fields. They are discussed in more details in Sect. 5.3.3.

5.6.2 Radiation Conditions and Exact Absorbing Conditions
for Spherical Virtual Boundary in Free Space

Turning back to the problem (5.188), we must formulate a condition on C for
~E g; tð Þ that does not distort the physical processes simulated. The virtual boundary
C ¼ g ¼ r; #;/f g : r ¼ Lf g is spherical, therefore, the problem

D� @2

@ t2

h i
~E g; tð Þ ¼ 0; g 2 Xext; t[ 0

~E g; 0ð Þ ¼ 0; @
@ t
~E g; tð Þ��t¼0¼ 0; g 2 �Xext;

8<: ð5:207Þ

whose solution represents the desired condition, should also be considered in the
spherical coordinates 0� r\1, 0�#� p, 0�/� 2p. The expression for
D~E g; tð Þ in spherical coordinates is too cumbersome (see, for example, [55]), which
practically disables any analytical manipulations with the equation (5.207). Some
intermediate derivations are needed to simplify the situation. Below we use the
Borgnis functions for it. These are two scalar functions UE g; tð Þ and UH g; tð Þ,
which allow to determine all six components of the electromagnetic field vectors
~E g; tð Þ and ~H g; tð Þ (see [3, 32, 54]). Clearly we have worked in the region Xext ¼
g 2 R3 : r[ L
� �

where the relevant representations are valid and where all the
analytical rearrangements are performed to obtain RC and EAC on the boundary C.

Following [32], we obtain such solutions ~E g; tð Þ for the wave equation from
(5.207):

Er ¼ @2UE

@ r2
� @2UE

@ t2
; E# ¼ 1

r
@2UE

@ r @#
� 1
sin#

@2UH

@ / @ t

� �
;

E/ ¼ 1
r

1
sin#

@2UE

@ r @ /
þ @2UH

@# @ t

� �
:

ð5:208Þ

The functions UE g; tð Þ and UH g; tð Þ, which specify TM- and TE-waves (with
respect to the r-axis), satisfy the following equivalent (if r 6¼ 0) equations:

1
r2 sin#

@

@#
sin#

@

@#

� �
þ 1

r2 sin2 #

@2

@/2 þ 1
r2

@

@r
r2

@

@r

� �
� @2

@t2

� �
@UE;H g; tð Þ

r @ t

¼ � @2

@ t2
þD

� �
@UE;H g; tð Þ

r @ t

ð5:209Þ
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and

1
r2 sin#

@

@ #
sin#

@

@ #

� �
þ 1

r2 sin2 #

@2

@ /2 þ @2

@ r2
� @2

@ t2

� �
@UE;H g; tð Þ

@ t
¼ 0:

ð5:210Þ

It is obvious that in the basis of the tesseral spherical harmonics [34]

lnm #;/ð Þ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ

p
n� mj jð Þ!
nþ mj jð Þ!

s
P mj j
n cos#ð Þeim /;

n ¼ 0; 1; 2; . . .; m ¼ 0;�1;�2; . . .;�n

(P mj j
n . . .ð Þ are the associated Legendre functions of the first kind of degree n and

order mj j) they can be given by the expansions

UE;H g; tð Þ ¼
X1
n¼0

uE;Hn r; tð Þ
Xn
m¼�n

lnm #;/ð Þ: ð5:211Þ

The system of functions lnm #;/ð Þ is complete on the sphere 0�#� p,
0�/� 2p, and for any two accessorial functions f1 and f2

f1f2
�½ �?�

Z2p
0

d/
Zp
0

f1ð#;/Þf2�ð#;/Þ sin#d# ¼ 0; f1 6¼ f2
1; f1 ¼ f2

�
ð5:212Þ

(the superscript ‘�’ stands for the complex conjugation operation). The functions
lnm #;/ð Þ satisfy the equation [34]

1
sin#

@

@ #
sin#

@

@ #

� �
þ 1

sin2 #

@2

@ /2 þ n nþ 1ð Þ
� �

lnm #;/ð Þ

¼ D? þ n nþ 1ð Þ½ �lnm #;/ð Þ ¼ 0:

ð5:213Þ

From (5.209) to (5.211), and (5.213) we have the following equivalent equations
to determine the space-time amplitudes uE;Hn r; tð Þ of the functions UE;H g; tð Þ:

� @2

@ t2
þ @2

@ r2
� n nþ 1ð Þ

r2

� �
@ uE;Hn r; tð Þ

@ t
¼ 0; ð5:214Þ

� @2

@ t2
þ 1

r2
@

@ r
r2

@

@ r

� �
� n nþ 1ð Þ

r2

� �
@ uE;Hn r; tð Þ

r@ t
¼ 0: ð5:215Þ
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Let us rewrite now the vector ~E g; tð Þ in the form

~E g; tð Þ ¼ � @2~UE

@ t2
þ grad

@UE

@ r
� rot

@~UH

@ t
; ~UE;H g; tð Þ ¼ UE;H g; tð Þ~r; ð5:216Þ

which is equivalent to (5.208). Substituting (5.211) into (5.216), we obtain

Er g; tð Þ ¼
X
n;m

urn r; tð Þ lnm #;/ð Þ; ð5:217Þ

~E? g; tð Þ ¼ E# g; tð Þ~#þE/ g; tð Þ~/ ¼ ~EE
? g; tð Þþ~EH

? g; tð Þ
¼
X
n;m

u?;E
n r; tð Þgrad?lnm #;/ð Þþ u?;H

n r; tð Þrot?lnm #;/ð Þ� �
: ð5:218Þ

Here,

grad? � ~#
@

@ #
þ~/

1
sin#

@

@ /
; rot? � ~#

1
sin#

@

@ /
�~/

@

@ #
;

while

urn r; tð Þ ¼ � @2

@ t2
þ @2

@ r2

� �
uEn r; tð Þ ¼ n nþ 1ð Þ

r2
uEn r; tð Þ; ð5:219Þ

u?;E
n r; tð Þ ¼ 1

r
@ uEn r; tð Þ

@ r
; ð5:220Þ

u?;H
n r; tð Þ ¼ � 1

r
@ uHn r; tð Þ

@ t
: ð5:221Þ

On the other hand,

urn r; tð Þ ¼ Er g; tð Þl�nm #;/ð Þ� �
?; ð5:222Þ

u?;E
n r; tð Þ ¼ n nþ 1ð Þ½ ��1 ~E? g; tð Þ 
 grad?l�nm #;/ð Þ	 
� �

?; ð5:223Þ

u?;H
n r; tð Þ ¼ n nþ 1ð Þ½ ��1 ~E? g; tð Þ 
 rot?l�nm #;/ð Þ	 
� �

?: ð5:224Þ

The equation (5.222) follows immediately from (5.212). To show that (5.223)
and (5.224) are true, consider the equalities
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grad?lp s #;/ð Þ 
 grad?l�nm #;/ð Þ� �
?

¼
Z2p
0

Zp
0

Z1
0

gradlp s #;/ð Þ 
 gradl�nm #;/ð Þ	 

r2 sin#drd#d/

¼
Z

S 0;1ð Þ

gradlp s #;/ð Þ 
 gradl�nm #;/ð Þ	 

dv

¼ �
Z

S 0;1ð Þ

lp s #;/ð ÞDl�nm #;/ð Þ dvþ
Z

@S 0;1ð Þ

lp s #;/ð Þ @l
�
nm #;/ð Þ
@~n

ds

¼ � lp s #;/ð ÞD?l�nm #;/ð Þ� �
?¼

0; p 6¼ n or s 6¼ m

n nþ 1ð Þ; p ¼ n and s ¼ m

�
;

ð5:225Þ

rot?lp s #;/ð Þ 
 rot?l�nm #;/ð Þ� �
?

¼ grad?lp s #;/ð Þ � ~r
	 
 
 grad?l

�
nm #;/ð Þ � ~r

	 
� �
?

¼ grad?lp s #;/ð Þ 
 grad?l�nm #;/ð Þ� �
? ;

grad?lp s #;/ð Þ 
 rot?l�nm #;/ð Þ� �
?

¼
Z2p
0

Zp
0

@lp s #;/ð Þ
@ #

@l�nm #;/ð Þ
@ /

� @lp s #;/ð Þ
@ /

@l�nm #;/ð Þ
@ #

� �
d#d/

¼

#;/f g
+

x;yf g �
Z2p
0

Zp
0

rot l�nm x; yð Þ~z� � 
 � @lp s x; yð Þ
@ x

~x � @lp s x; yð Þ
@ y

~y þ~z

� �
dx dy

¼ �
Z
M

rot l�nm x; yð Þ~z� � 
 dm�! ¼ �
I
K

dr
! 
 l�nm x; yð Þ~z ¼ 0:

ð5:226Þ

Here, S 0; 1ð Þ is a solid sphere of the unit radius with the origin of coordinates as
its center; @S 0; 1ð Þ is its surface; ~n is the outer normal to @S 0; 1ð Þ; dv ¼
r2 sin#drd#d/ is the volume element; M is the complex ‘surface’ of the function

z ¼ lp s x; yð Þ, x; yf g 2 0; p½ � � 0; 2p½ �, spanned on the complex ‘contour’ K; dm
�!

is

the vector element of the area of this surface; and dr
!

is the vector element of the
contour K. In the derivation of (5.225) were used the Green theorem and
the equations (5.223), whereas in the derivation of (5.226) were used the Stokes
theorem, the periodicity in / of the spherical harmonics (the period is 2p), and the
particular values P mj j

n �1ð Þ ¼ 0 for n ¼ 0; 1; 2; . . .; m ¼ �1;�2; . . .;�n and
Pn �1ð Þ ¼ �1ð Þn, @ln 0 #;/ð Þ=@/ ¼ 0 for n ¼ 0; 1; 2; . . . [40, 43].
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Rewrite now the equation (5.214) in the following form:

� @2

@ t2
þ @2

@ r2
� n nþ 1ð Þ

r2

� �
un r; tð Þ ¼ 0; r� L; t[ 0: ð5:227Þ

Here, un r; tð Þ ¼ @uE;Hn r; tð Þ=@ t or un r; tð Þ ¼ uE;Hn r; tð Þ: since at the initial
moment of time t ¼ 0 the excitation is absent in Xext, the functions uE;Hn r; tð Þ in this
region satisfy the same equations as the functions @uE;Hn r; tð Þ=@ t do.

As it was shown in Sect. 5.3.2 (see the equations (5.56)–(5.74)), we have the
following solution for (5.227) with zero initial conditions:

un r; tð Þ ¼ L
r

� �n

un L; t � r � Lð Þð Þ þ
ffiffiffi
r
L

r Zt� r�Lð Þ

0

Snþ 1=2 r; L; t � sð Þ @un L; sð Þ
@ s

ds

¼ L
r

� �n

þ
ffiffiffi
r
L

r
Snþ 1=2 r;L; r � Lð Þ

� �
un L; t � r � Lð Þð Þ

�
ffiffiffi
r
L

r Zt� r�Lð Þ

0

un L; sð Þ @Snþ 1=2 r; L; t � sð Þ
@ s

ds; r[ L; t� r � Lð Þ; n ¼ 0; 1; 2; . . .

ð5:228Þ

To evaluate the amplitudes u?;E
n r; tð Þ of the transverse component ~E? g; tð Þ of the

electric field ~E g; tð Þ (see the formulas (5.218) and (5.220)), RCs for radial
derivatives of the functions un r; tð Þ should also be constructed. Through differen-
tiation with respect to r in the first equality in (5.228) we obtain

@un r; tð Þ
@r

¼ � n
r

L
r

� �n

un L; t � r � Lð Þð Þ

� L
r

� �n

þ
ffiffiffi
r
L

r
Snþ 1=2 r; L; r � Lð Þ

� �
@un L; sð Þ

@ s

����
s¼t� r�Lð Þ

þ
ffiffiffi
r
L

r Zt� r�Lð Þ

0

Snþ 1=2 r; L; t � sð Þ
2r

þ @Snþ 1=2 r; L; t � sð Þ
@ r

� �
@un L; sð Þ

@ s
ds;

r[L; t� r � Lð Þ; n ¼ 0; 1; 2; . . .

ð5:229Þ

The radial derivative of Sc r; L; t � sð Þ can be evaluated as easy as the function
Sc r; L; t � sð Þ itself (see the formula (5.73)):

@Sc r; L; t � sð Þ
@ r

¼ 1
L

Xn
s¼1

H 1ð Þ0
c zsrð Þ

H 1ð Þ
c�1 zsLð Þ

e�izs t�sð Þ; s\t � r � Lð Þ:

Now let us pass, using the expansions (5.212), (5.217) to (5.224), from RCs
(5.228), (5.229) for the amplitudes of the Borgnis functions and their derivatives to
RCs for the vector function ~E g; tð Þ:
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Er g; tð Þ ¼
X
n;m

L
r

� �nþ 2

Er L; ~#; ~/; t � r � Lð Þ
� �

l�nm ~#; ~/
� �h i

?

(

þ L
r

� �3=2 Zt� r�Lð Þ

0

Snþ 1=2 r; L; t � sð Þ
@Er L; ~#; ~/; s
� �

@ s
l�nm ~#; ~/

� �24 35
?

ds

9>=>;
� lnm #;/ð Þ; g ¼ r; #;/f g 2 Xext; t� r � Lð Þ

ð5:230Þ

and

~E? g; tð Þ ¼
X
n;m

� 1
nþ 1

�
L
r

� �nþ 2

Er L; ~#; ~/; t � r � Lð Þ
� �

l�nm ~#; ~/
� �h i

?

(

þ L
n

L
r

� �nþ 1

þ
ffiffiffi
L
r

r
Snþ 1=2 r; L; r � Lð Þ

" #
@Er L; ~#; ~/; s
� �

@ s

������
s¼t� r�Lð Þ

l�nm ~#; ~/
� �264

375
?

� L
n

ffiffiffi
L
r

r Zt� r�Lð Þ

0

Snþ 1=2 r; L; t � sð Þ
2r

þ @Snþ 1=2 r; L; t � sð Þ
@ r

� �

�
@Er L; ~#; ~/; s
� �

@ s
l�nm ~#; ~/

� �24 35
?

ds

9=; grad?lnm #;/ð Þ

þ 1
n nþ 1ð Þ

L
r

� �� nþ 1
~E? L; ~#; ~/; t � r � Lð Þ
� �


 rot?l�nm ~#; ~/
� �h i

?

þ
ffiffiffi
L
r

r Zt� r�Lð Þ

0

Snþ 1=2 r;L; t � sð Þ
@~E? L; ~#; ~/; s

� �
@ s


 rot?l�nm ~#; ~/
� �24 35

?

ds

9=;
� rot?lnm #;/ð Þg; g ¼ r; #;/f g 2 Xext; t� r � Lð Þ:

ð5:231Þ

There might be different approaches to the numerical implementation of RCs
(5.230), (5.231) as EACs for the problem (5.180), but it is a subject of a separate
study. It should be noted that the numerical implementation of EACs obtained from
RCs (5.230), (5.231) does not require numerical differentiation with respect to the
normal to the spherical virtual boundary C. This feature might appear unessential at
the first glance, but it is very important in cases when these EACs, which are
derived in spherical coordinates, are used to truncate computation domains on
rectangular Cartesian grids.

Let us note also that RCs (5.230), (5.231) specify the transport operator

~E g; tð Þ ¼ Zq2C!g 2Xext tð Þ ~E q; sð Þ� �
; t� L; t � L� s� 0 ð5:232Þ
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which allows to compute the values of ~E g; tð Þ in any point g ¼ r; #;/f g of the
domain Xext knowing only the values of ~E g; tð Þ on the virtual boundary C.
Transport operators are discussed in more details in Sect. 5.3.3.

5.6.3 TM-Excitation: Frequency-Domain Characteristics

For situations described by the problem (5.188), the following important corollary
[3, 8] exists: fields generated in the reflection (waveguide X1) and transmission
(waveguide X2) zones of a waveguide (radiation into free space is absent) or a
radiating unit (Fig. 5.8) are uniquely determined by their longitudinal (directed
along the waveguide axes) components. Certainly it is not true for TEM-waves as
their electromagnetic field is transverse with respect to the propagation direction.
But now we eliminate this limitation. At this stage, simplifying the formalism as
much as possible, we list characteristics whose analogs are widely used in physical
and applied problems. Let us begin with simple definitions. First of all, we intro-
duce the local coordinates gj ¼ xj; yj; zj

� �
, j ¼ 1; 2 for the waveguides X1 and X2,

as illustrated in Fig. 5.8. The wave ~Ui 1ð Þ g1; tð Þ ¼ ~Ei 1ð Þ g1; tð Þ; ~Hi 1ð Þ g1; tð Þ� �
in X1 is

the TM-wave when Hi 1ð Þ
z g1; tð Þ � 0, and is the TE-wave when ~Ei 1ð Þ

z g1; tð Þ � 0.
Let the structure under consideration is excited by one of the partial constituent

of the TM-wave, namely the TMp-wave:

~Ui 1ð Þ g1; tð Þ ¼ ~Ui 1ð Þ
p Eð Þ g1; tð Þ : Ei 1ð Þ

z g1; tð Þ ¼ vEp z;1 z1; tð ÞlEp 1 x1; y1ð Þ;
Hi 1ð Þ

z g1; tð Þ � 0; g1 ¼ x1; y1; z1f g 2 �X1; t� 0:
ð5:233Þ

The waves ~Us g1; tð Þ ¼ ~U g1; tð Þ � ~Ui 1ð Þ g1; tð Þ and ~U g2; tð Þ generated in the
domains X1 and X2 can be represented by their longitudinal components

Es
z g1; tð Þ

Hs
z g1; tð Þ

� �
¼

X1
n¼ 1

0

n o uE!E
n z;1 z1; tð Þ

uE!H
n z;1 z1; tð Þ

� �
lEn 1 x1; y1ð Þ
lHn 1 x1; y1ð Þ

� �
; g1 2 �X1; t� 0

ð5:234Þ

(reflected wave) and

Ez g2; tð Þ
Hz g2; tð Þ

� �
¼

X1
n¼ 1

0

n o uE!E
n z;2 z2; tð Þ

uE!H
n z;2 z2; tð Þ

� �
lEn 2 x2; y2ð Þ
lHn 2 x2; y2ð Þ

� �
; g2 2 �X2; t� 0

ð5:235Þ
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(transmitted wave in output waveguide). Here, we increase the number of indexes
in the identifiers vn z z; tð Þ, un z z; tð Þ, lEn x; yð Þ, and lHn x; yð Þ in comparison with
Sect. 5.6.1 to segregate notations for different domains (1 and 2) and different
longitudinal components of the electromagnetic field (! E and ! H). The field
generated by TM-waves is marked by E !, and the field generated by TE-waves is
marked by H !. The expansions for Hz-component is written using the formulas

g0Hx ¼ @2UE

@y@t
þ @2UH

@x@z
; g0Hy ¼ � @2UE

@x@t
þ @2UH

@y@z
; g0Hz ¼ @2UH

@z2
� @2UH

@t2

[3, 32] complementing (5.192).
The frequency-domain counterparts of the time-domain representations (5.233)

to (5.235) are:

~Ei 1ð Þ
z g1; kð Þ ¼ AE

p z;1 kð Þ exp �iz1b
E
p 1 kð Þ

h i
lEp 1 x1; y1ð Þ;

~Hi 1ð Þ
z g1; kð Þ ¼ 0; g1 2 �X1;

ð5:236Þ

~Es
z g1; kð Þ

~Hs
z g1; kð Þ

� �
¼

X1
n¼ 1

0

n o BE!E
n z;1 kð Þ exp iz1b

E
n 1 kð Þ� �

BE!H
n z;1 kð Þ exp iz1b

H
n 1 kð Þ� �( )

lEn 1 x1; y1ð Þ
lHn 1 x1; y1ð Þ

� �
; g1 2 �X1

ð5:237Þ

(incident and reflected waves of the steady-state field) and

~Ez g2; kð Þ
~Hz g2; kð Þ

� �
¼

X1
n¼ 1

0

n o BE!E
n z;2 kð Þ exp iz2b

E
n 2 kð Þ� �

BE!H
n z;2 kð Þ exp iz2b

H
n 2 kð Þ� �( )

lEn 2 x2; y2ð Þ
lHn 2 x2; y2ð Þ

� �
; g2 2 �X2

ð5:238Þ

(transmitted wave of the steady-state field in output waveguide). Here, AE
p z;1, B

E!E
n z;1 ,

and so on are the complex-valued amplitudes of the monochromatic waves, which
are the partial constituents of the longitudinal components of the steady-state field

~~U g; kð Þ ¼ ~~E g; kð Þ; ~~H g; kð Þ
n o

; bEn j kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kEn j

� �2r
and bHn j kð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � kHn j

� �2r
, j ¼ 1; 2 are the longitudinal propagation numbers of these waves;

Re bE or H
n j kð Þ Re k� 0 and Im bE or H

n j kð Þ� 0; ~f kð Þ $ f tð Þ is the Laplace trans-

form (5.102). The frequencies k ¼ kEn j

� ��
¼ � kEn j

��� ��� and k ¼ kHn j

� ��
¼ � kHn j

��� ��� are
the cutoff frequencies. On these frequencies, the longitudinal propagation numbers
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bEn j kð Þ and bHn j kð Þ (for TMn- and TEn-modes, respectively) vanish, as on larger
frequencies monochromatic TMn- and TEn-modes propagate without decay. For
majority of theoretical problems, k has real value and k ¼ 2p=k, where k is the
wavelength in free space. It is obvious that AE

p z;1 kð Þ $ vEp z;1 0; tð Þ, BE!E
n z;j kð Þ $

uE!E
n z;j 0; tð Þ, and BE!H

n z;j kð Þ $ uE!H
n z;j 0; tð Þ. The amplitudes BE!E or H

n z;j kð Þ form the
so-called scattering coefficients of a structure. They are the reflection coefficients

R11
n Eð Þ;p Eð Þ ¼

BE!E
n z;1 kð Þ
AE
p z;1 kð Þ ; n ¼ 1; 2; 3; . . .;

R11
n Hð Þ;p Eð Þ ¼

BE!H
n z;1 kð Þ
AE
p z;1 kð Þ ; n ¼ 0; 1; 2; . . .

ð5:239Þ

which characterize the efficiency of transformation of the pth mode of the

monochromatic TM-wave ~~U
i 1ð Þ

g1; kð Þ $ ~Ui 1ð Þ g1; tð Þ into the nth modes of the

scattered field ~~U
s
g1; kð Þ in the waveguide X1; and the transmission coefficients

T21
n Eð Þ;p Eð Þ ¼

BE!E
n z;2 kð Þ
AE
p z;1 kð Þ ; n ¼ 1; 2; 3; . . .;

T21
n Hð Þ;p Eð Þ ¼

BE!H
n z;2 kð Þ
AE
p z;1 kð Þ ; n ¼ 0; 1; 2; . . .

ð5:240Þ

which characterize the efficiency of excitation of the transmitted modes in the
waveguide X2.

A portion of the energy feeding a waveguide or a radiating unit is redistributed
between TEn- and TMn-modes propagating without decay in the waveguides X1 and
X2, i.e. between modes corresponding to the longitudinal propagation numbers
bE or H
n j kð Þ : Re bE or H

n j kð Þ[ 0. It is evident that the number of these modes is
finite. Their ‘energy content’ (a portion of acquired energy) in case of
Re bEp 1 kð Þ[ 0 and real k is defined by the following expressions [56]:

W11
n Eð Þ;p Eð Þ ¼ R11

n Eð Þ;p Eð Þ
��� ���2 Re bEn 1

kEn 1

	 
2 kEp 1

� �2
bEp 1

;

W21
n Eð Þ;p Eð Þ ¼ T21

n Eð Þ;p Eð Þ
��� ���2 Re bEn 2

kEn 2

	 
2 kEp 1

� �2
bEp 1

; n ¼ 1; 2; 3; . . .

ð5:241Þ
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and

W11
n Hð Þ;p Eð Þ ¼ g20 R11

n Hð Þ;p Eð Þ
��� ���2 Re bHn 1

kHn 1

	 
2 kEp 1

� �2
bEp 1

;

W21
n Hð Þ;p Eð Þ ¼ g20 T21

n Hð Þ;p Eð Þ
��� ���2 Re bHn 2

kHn 2

	 
2 kEp 1

� �2
bEp 1

; n ¼ 0; 1; 2; . . .

ð5:242Þ

If a radiating structure is made of a loss-free material, the value

g kð Þ ¼ 1�
X1
n¼1

W11
n Eð Þ;p Eð Þ þW21

n Eð Þ;p Eð Þ
� �

+
X1
n¼0

W11
n Hð Þ;p Eð Þ þW21

n Hð Þ;p Eð Þ
� �" #

ð5:243Þ

defines the radiation efficiency. The normalized directional pattern on the arc
r ¼ M� L

D #;/; k;Mð Þ ¼
~~E? M; #;/; kð Þ
��� ���2

max
0�#� p; 0�/� 2p

~~E? M; #;/; kð Þ
��� ���2 ;

0�#� p; 0�/� 2p; K1 � k�K2

ð5:244Þ

characterizes the distribution of the radiated field’s power as a function of space
directions and frequency. The pattern is computed in the near-, middle- or far-field
region of a radiator and is defined thoroughly by the ~E? r; #;/; tð Þ-component of
the radiated into domain Xext pulsed wave ~U r; #;/; tð Þ. In this work, the normal-
ized pattern definition, which depends on space and frequency, is preferred over the
conventional one, which depends on space only and is evaluated at discrete fre-
quencies [55], because it is obtained from time-domain simulations with no extra
cost, and it allows easy and accurate detection of frequency dependent changes in
the power distribution. D #;/; k;Mð Þ can be used to determine if all frequency
components of a pulse propagate in the same direction or ‘prefer’ different ones
causing spreading of a pulse in different directions.

The direction of the main beam is characterized by the angles �# kð Þ and �/ kð Þ.
Along this direction the maximum radiation occurs, i.e. D �# kð Þ; �/ kð Þ; k;M	 
 ¼ 1.
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5.6.4 TE-Excitation: Frequency-Domain Characteristics

Let the structure under consideration is excited now by one of the partial constituent
of the TE-wave, namely the TEp-wave or

~Ui 1ð Þ g1; tð Þ ¼ ~Ui 1ð Þ
p Hð Þ g1; tð Þ : Hi 1ð Þ

z g1; tð Þ ¼ vHp z;1 z1; tð ÞlHp 1 x1; y1ð Þ;
Ei 1ð Þ
z g1; tð Þ � 0; g1 ¼ x1; y1; z1f g 2 �X1; t� 0

ð5:245Þ

(in the case of time-dependent field) or

~~U
i 1ð Þ

g1; kð Þ ¼ ~~U
i 1ð Þ
p Hð Þ g1; kð Þ : ~Hi 1ð Þ

z g1; kð Þ ¼ AH
p z;1 kð Þ exp �iz1b

H
p 1 kð Þ

h i
� lHp 1 x1; y1ð Þ; ~Ei 1ð Þ

z g1; kð Þ ¼ 0; g1 2 �X1; t� 0
ð5:246Þ

(in the case of steady-state field). For the longitudinal components of
time-dependent and steady-state fields in the domains X1 and X2 we come to the
equations which are almost identical to (5.234), (5.235) and (5.237), (5.238), only
the symbol E ! here, marking the field generated by TM-waves, must be substi-
tuted by the symbol H !, marking the field generated by TE-waves. The reflection
and transmission coefficients

R11
n Eð Þ;p Hð Þ ¼

BH!E
n z;1 kð Þ
AH
p z;1 kð Þ ; n ¼ 1; 2; 3; . . .;

R11
n Hð Þ;p Hð Þ ¼

BH!H
nz;1 kð Þ
AH
pz;1 kð Þ ; n ¼ 0; 1; 2; . . .;

ð5:247Þ

T21
n Eð Þ;p Hð Þ ¼

BH!E
n z;2 kð Þ
AH
p z;1 kð Þ ; n ¼ 1; 2; 3; . . .;

T21
n Hð Þ;p Hð Þ ¼

BH!H
n z;2 kð Þ
AH
p z;1 kð Þ ; n ¼ 0; 1; 2; . . .

ð5:248Þ

as well as the energy content of TMn- and TEn-waves propagating in the waveg-
uides X1 and X2

W11
n Eð Þ;p Hð Þ ¼ g�2

0 R11
n Eð Þ;p Hð Þ

��� ���2 Re bEn 1

kEn 1

	 
2 kHp 1

� �2
bHp 1

;

W21
n Eð Þ;p Hð Þ ¼ g�2

0 T21
n Eð Þ;p Hð Þ

��� ���2 Re bEn 2

kEn 2

	 
2 kHp 1

� �2
bHp 1

; n ¼ 1; 2; 3; . . .;

ð5:249Þ
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W11
n Hð Þ;p Hð Þ ¼ R11

n Hð Þ;p Hð Þ
��� ���2 Re bHn 1

kHn 1

	 
2 kHp 1

� �2
bHp 1

;

W21
n Hð Þ;p Hð Þ ¼ T21

n Hð Þ;p Hð Þ
��� ���2 Re bHn 2

kHn 2

	 
2 kHp 1

� �2
bHp 1

; n ¼ 0; 1; 2; . . .;

ð5:250Þ

and the radiation efficiency

g kð Þ ¼ 1�
X1
n¼1

W11
n Eð Þ;p Hð Þ þW21

n Eð Þ;p Hð Þ
� �

þ
X1
n¼0

W11
n Hð Þ;p Hð Þ þW21

n Hð Þ;p Hð Þ
� �" #

ð5:251Þ

change slightly too.
As for the normalized directional pattern D #;/; k;Mð Þ, everything said in

Sect. 5.6.3 remains valid for the case of TE-excitation.

5.7 Accurate and Efficient Calculations

5.7.1 General Questions

Standard discretization of closed 2-D or 3-D initial boundary value problems (see,
for example, the problems (5.137) and (5.188)) by the finite-difference (FD) method
[28] using a uniform rectangular mesh on the coordinates g ¼ y; zf g or g ¼ x; y; zf g
leads to explicit computation schemes with the uniquely defined numerical solution
U k; l;mð Þ  U yk; zl; tmð Þ or ~E j; k; l;mð Þ  ~E xj; yk; zl; tm

	 

. The approximation error

is O �h2ð Þ, but could be improved, for example, using higher order schemes [57]; �h is
the mesh step in space; �l is the mesh step in time t; xj ¼ j�h, yk ¼ k�h, zl ¼ l�h, and
tm ¼ m�l. In order to achieve desired second-order accuracy, all integrals are com-
puted using the composite trapezoid rule and all one-sided first-order derivatives are
approximated using the FD operators [58]

d f xð Þ
dx

����
x¼xj

 B� f xj
	 
� � ¼ �3f xj

	 
� 4f xj�1
	 
� f xj�2

	 
� �
=2�h: ð5:252Þ

The range of the j ¼ 0;�1;�2; . . .; J�, k ¼ 0;�1;�2; . . .;K�,
l ¼ 0;�1;�2; . . .; L�, and m ¼ 0; 1; . . .;M integers depends on the size of the
computation domain Xint and the length of the observation interval 0; T½ �: gk l ¼
yk; zlf g 2 �Xint or gj k l ¼ xj; yk; zl

� � 2 �Xint and tm 2 0; T½ �. The condition
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g
ffiffiffi
n

pffiffiffi
n

p
�l
�h
\1 or/and

ffiffiffiffiffiffiffiffi
2ng

p �l
�h
\1; n� e�1 gð Þ� g;

g 2 Xint 2 Rn; n ¼ 2 or n ¼ 3
ð5:253Þ

ensures the uniform boundedness of the numerical solution U k; l;mð Þ or~E j; k; l;mð Þ
with decreasing �h and �l (see the formulas (10.35) and (10.49) in [33]). FD schemes
are stable, and the numerical solution U k; l;mð Þ or ~E j; k; l;mð Þ tends to the solution
U gk l; tmð Þ or ~E gj k l; tm

	 

of the original problem (5.137) or (5.188) [33].

5.7.2 Nonlocal or Local Conditions?

The computational complexity of FD-based solutions of modified (closed) prob-
lems depends on the type of EACs being discretized, nonlocal or local ones. In what
follows, the computational complexity is derived not for the most general case: we
consider the 2-D axially symmetric problem for an open radiating end of a coaxial
waveguide with elongated central conductor over an infinite perfectly conducting
plane (see Fig. 5.10 and paper [6]).

Fig. 5.10 Geometry of the test problem—open end of coaxial waveguide with elongated central
conductor over infinite perfectly conducting plane
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This example includes nonlocal or local EAC on the planar boundary C1 and a
nonlocal EAC similar to (5.75) on the semispherical (0�#� 90	) boundary C.
They are (5.94), (5.96a), (5.96b) and

U g; tð Þ ¼
X
m

L
r

� �mþ 1 Zp=2
0

U L; #; t � r � Lð Þð Þ~lm cos#ð Þ sin#d#
8<:

þ
ffiffiffi
L
r

r Zt� r�Lð Þ

0

Smþ 1=2 r; L; t � sð Þ
Zp=2
0

@U L; #; sð Þ
@ s

~lm cos#ð Þ sin#d#

264
375ds

9>=>;
� ~lm cos#ð Þ; g ¼ r; #f g 2 Xext; t� r � Lð Þ;
m ¼ 2k ðfor TE0�wavesÞ or

m ¼ 2k � 1 ðfor TM0�wavesÞ; k ¼ 1; 2; 3; . . .:

ð5:254Þ

If the explicit three-layer O �h2ð Þ-accurate FD scheme [6, 28] with nonlocal EACs
(5.94) and (5.254) on C1 and C is used, then its total computational cost is

S  O PMð Þ|fflfflffl{zfflfflffl}
CFDTD

þ O Nmod ið ÞM2
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Cprecomp
C1

þ O Nmod sð Þ
X1

M2
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Cnonloc
C1

þ O Nmod sð Þ
Xext

M2
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Cnonloc
C

:

ð5:255Þ

Here, the terms CFDTD, C
precomp
C1

, Cnonloc
C1

, and Cnonloc
C represent the computational

costs of FD solution in Xint, precomputation of incident field’s derivative, and
numerical implementation of nonlocal EACs on C1 and C, respectively. The inte-

gers P, M, Nmod ið Þ, Nmod sð Þ
X1

and Nmod sð Þ
Xext

are the total numbers of FD cells in the

computation domain, the time steps, the modes in the incident wave Ui 1ð Þ g; tð Þ, and
the modes of the secondary field taken into account in discretization of nonlocal
EACs (5.94) and (5.254), respectively.

Replacement of nonlocal EAC (5.94) on the virtual boundary C1 with local EAC
(5.96a), (5.96b) yields a new estimate for the total computational cost:

S  O PMð Þ|fflfflffl{zfflfflffl}
CFDTD

þ O Nmod ið ÞM2
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Cprecomp
C1

þ O NuMð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Cloc
C1

þ O Nmod sð Þ
Xext

M2
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Cnonloc
C

: ð5:256Þ
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In (5.256), Cloc
C1

represents the computational cost of numerical implementation
of local EAC, the integer Nu is the number of points needed to compute the integral
over u in local EAC. Comparing Cloc

C1
in (5.256) with Cnonloc

C1
in (5.255), it is clear

that for large M utilization of local EAC might lead to a significant reduction in

computational cost provided that Nmod sð Þ
X1

M � Nu. However, numerical experi-
ments show that this condition may not always be satisfied: to obtain accurate
results in resonant situations, Nu must be high. This reduces the efficiency of local
EACs. One can still use nonlocal EACs efficiently for the analysis of resonant
situations, provided that the temporal convolutions in nonlocal EACs are computed
fast. It could be achieved using the blocked fast Fourier transform based
(FFT-based) acceleration scheme described below.

5.7.3 The Blocked FFT-Based Acceleration Scheme

The FFT-based acceleration scheme was presented in [59–61] and implemented for
EACs in [6]. The FFT-based acceleration algorithm benefits from the temporal
invariance of the convolutions present in all RCs and nonlocal EACs similar to
(5.19), (5.28)–(5.30) and (5.75). The algorithm is applied to the discretized versions
of these conditions, where the temporal convolutions are summations over discrete
time samples. The operating principles of the algorithm are better explained using
an example. Consider the discrete convolution

Y mð Þ ¼
Xm
q¼0

J m� qð ÞX qð Þ; m ¼ 0; 1; 2; . . .;M; ð5:257Þ

that results from (5.199) and (5.252). Here,

X qð Þ  �l 3un 0; sq
	 
� 4un ��h; sq

	 
þ un �2�h; sq
	 
� �

=2�h;

Y mð Þ  �l 3un 0; tmð Þ � 4un ��h; tmð Þþ un �2�h; tmð Þ½ �=4�h� un 0; tmð Þ;
J m� qð Þ  J0 an tm � sq

	 
� �
are the proper mesh functions and Y mð Þ, m ¼ 0; 1; 2; . . .;M represents the result of
the convolution.
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Let us rewrite now the expression (5.257) in the following form:

ð5:258Þ

Here, J ¼ Jm q
� �

is the lower triangular Toeplitz matrix; Y ¼ Ym½ �T and X ¼
Xq
� �T

are the column vectors; Jm q ¼ Jm�q ¼ J m� qð Þ, Ym ¼ Y mð Þ, Xq ¼ X qð Þ,
and M ¼ 14.

According to [6, 59–61] to speed up computation of the matrix product JX using
the FFT, it is necessary to partition the lower triangular fragment of the matrix J
into square blocks with a side dimension equal to a power of two. The formula
(5.258) represents an example of such partition. Then calculation can be performed
block by block, where multiplication of a block with the part of X that corresponds
to that block is accelerated using FFT. This is explained in more detail in what
follows.

At time step 1, the 1 � 1 block J0 multiplies X0 to yield Y0. At time step 2, the
2 � 2 block (see (5.258)) multiplies the column vector X0 X1½ �T to yield Y1 and
update Y2 (Y2 still needs to be updated at time step 3). At time step 3, the 1 � 1
block J0 multiplies Y1 to update Y2. At time step 4, the 4 � 4 block multiplies the
column vector X0 X1 X2 X3½ �T to yield Y3 and update Y4, Y5, and Y6. At time step 5,
the 1 � 1 block J0 multiplies Y3 to yield Y4. At time step 6, the 2 � 2 block
multiplies X4 X5½ �T yield Y5 and update Y6. At time step 7, the 1 � 1 block J0
multiplies Y5 to yield Y6. This block-by-block multiplication scheme is executed
until the end of the simulation time t (until YM is calculated).

In this scheme, the multiplication of a matrix block with a vector can be
accelerated using FFT. Consider, for example, the multiplication at time step 4: The
result of multiplying the 4 � 4 block with the column vector X0 X1 X2 X3½ �T is
equal to the last four elements of the circular convolution of �J ¼
J0 J1 J2 J3 J4 J5 J6½ � with �X ¼ X0 X1 X2 X3 0 0 0½ �. This convolution can be
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computed exactly using the discrete Fourier transform (DFT) [62], i.e. computing
DFT�1 DFT �J½ �DFT �X½ �½ �. In this expression, DFT is replaced with FFT without any
numerical approximation for speed up. Since the large blocks are multiplied less
often than the small ones and each block, which bigger than 1 � 1, is multiplied
using FFT, the computational complexity of the block-by-block multiplication (i.e.,
the discrete convolution in (5.257)) is reduced to O M log2 M

	 

from O M2ð Þ.

Using the FFT-based acceleration technique described above for computing all
temporal convolutions pertinent to nonlocal EAC in the problem under consider-
ation (see Fig. 5.10), the computational complexity of the FD solution is reduced to

S  O PMð Þ|fflfflffl{zfflfflffl}
CFDTD

þ O Nmod ið ÞM log2 M
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cprecomp; FFT
C1

þ O Nmod sð Þ
X1

M log2 M
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cnonloc; FFT
C1

þ O Nmod sð Þ
Xext

M log2 M
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cnonloc; FFT
C

:
ð5:259Þ

Comparing (5.259) with (5.255) one concludes that Cprecomp; FFT
C1

� Cprecomp
C1

,

Cnonloc; FFT
C1

� Cnonloc
C1

and Cnonloc; FFT
C � Cnonloc

C especially for large M. This results
in significant savings in computational resources. Comparing (5.259) with (5.256),

one can conclude that for Cnonloc; FFT
C1

\Cloc
C1
, Nmod sð Þ

X1
log2 M\Nu should be satis-

fied. This is possible to achieve for resonant structures where Nu is large [8]. It
should be noted here that while comparing (5.259) and (5.256), Cnonloc; FFT

C �
Cnonloc
C is already satisfied.
Looking at the comparisons above, one can conclude the following: (i) the

implementation of nonlocal EACs on spherical boundaries should always be
accelerated using the blocked FFT-based algorithm as there are no equivalent local
EACs; (ii) the implementation of nonlocal EACs on planar boundaries can be
accelerated using the blocked FFT-based algorithm or equivalent local EACs may

be used; one can compare Nmod sð Þ
X1

log2 M and Nu, for example, to see which one
will be more efficient; (iii) the FFT-based acceleration should be also used in
preparation of the input data when expressions like (5.100) are used for compu-
tation of the spatial derivative of incoming signal.

It should be emphasized here again that no additional errors are introduced
neither by the blocked FFT-based algorithm nor by the derivation of local EACs
from nonlocal ones. Both of these approaches are exact.
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5.7.4 Efficiency and Accuracy of the Blocked FFT-Based
Acceleration Scheme. Numerical Results

Here we present numerical results that demonstrate the efficiency and accuracy of
the blocked FFT-accelerated FD scheme with nonlocal/local EAC detailed above.
Since the accuracy of EAC was the subject of several other publications (see [3, 8,
17] for example), the emphasis here is on the accuracy and efficiency of the blocked
FFT-acceleration. Two different examples are considered. Both examples are run on
a workstation with a 2.67 GHz Xeon CPU and 23.4 GB of RAM.

In the first example, the computational complexity estimates for Cprecomp; FFT
C1

and
Cprecomp
C1

are verified and compared (without the FD calculation in Xint). To this end,
a planar virtual boundary in the cross-section of a coaxial waveguide with the outer
conductor radius a1 ¼ 1:5 and the inner conductor radius b1 ¼ 0:9 is considered
(see Fig. 5.10) and the convolutions (5.100) are computed on this boundary (to be
more precise, the discrete versions of (5.100) are computed). The space step is
�h ¼ 0:01, and the time step is �l ¼ 0:005. The number of modes used for expanding
the field Ui 1ð Þ g; tð Þ is Nmod ið Þ ¼ 6, the number of mesh cells used for discretizing
the boundary equals to 61. Figure nternalRef RefID="Fig11">5.11a presents the
CPU times required by the blocked FFT-accelerated and non-accelerated compu-
tation while the number of time steps M is changed from 1000 to 2,000,000. As
clearly shown here, theoretical estimates of the computational complexity are in
good agreement with numerical experiment results. Also, Fig. 5.11a clearly shows
that blocked FFT-accelerated computation becomes undoubtedly faster than
non-accelerated computation when M[ 4000.

The second example is designed to demonstrate the efficiency and accuracy of
the blocked FFT-accelerated FD scheme. For this purpose, the same radiator, which
was used as an example in the previous section to derive the computational com-
plexity estimates is considered (see Fig. 5.10). The feeding structure is a coaxial
waveguide with the outer conductor radius a1 ¼ 1:0 and the inner conductor radius
b1 ¼ 0:3, the length of the elongated central conductor is d ¼ 1:57. The space step
is �h ¼ 0:02, and the time step is �l ¼ 0:01.

The structure is excited by a quasi-monochromatic TEM-signal (see (5.92) for
TM0-waves: vn 1 z; tð Þ � 0, n ¼ 1; 2; 3; . . .), whose space-time amplitude v0 1 z; tð Þ of
the Hi 1ð Þ

/ -component is given on the boundary C1 by the function v0 1 �L1; tð Þ ¼
cos ~kt
	 


, where ~k ¼ 7:5 is the central frequency. The virtual boundaries C1 (planar)
and C (spherical) are located at z ¼ �L1 ¼ �1:0 and r ¼ L ¼ 8:0, respectively. C1

is discretized using 36 cells, and the field Us 1ð Þ q; z; tð Þ ¼ U q; z; tð Þ � Ui 1ð Þ q; z; tð Þ
on C1 is expanded using Nmod sð Þ

X1
¼ 5 modes. C is discretized using 565 arc seg-

ments and the field U r; #; tð Þ on it is expanded using Nmod sð Þ
Xext

¼ 30 modes. The total
number of mesh cells in the computation domain Xint is P ¼ 127;350.

Figure 5.11b presents the CPU times required by the FD scheme with blocked
FFT-accelerated EAC (see (5.259) for the computational complexity estimate), FD
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scheme with non-accelerated EAC (see (5.255) for the computational complexity
estimate), and the FD scheme itself while the number of time steps M is changed
from 1000 to 500,000. Figure 5.11b clearly demonstrates the efficiency of the
blocked FFT-accelerated FD scheme.

To demonstrate that the blocked FFT-acceleration introduces only weak
numerical noise in the solution, the H/-component for the field U q; z; tð Þ computed
at the point q ¼ 0:95, z ¼ 1:7 (see Fig. 5.10) by the FFT-accelerated and
non-accelerated FD schemes are compared in Fig. 5.12. For this simulation, the
same structure as in the previous one is utilized. M ¼ 8000 and the radiator is
excited by pulsed TEM-wave

Ui 1ð Þ g; tð Þ ¼ Ui 1ð Þ
0 g; tð Þ : v0 1 �L1; tð Þ

¼ 4 cos ~k t � ~T
	 
� �

sin Dk t � ~T
	 
� �

t � ~T
	 
�1

v �T � tð Þ ¼ P1 tð Þ;

(a)

(b)

Fig. 5.11 Radiator problem.
CPU times versus number of
time steps: a comparison of
CPU times for
FFT-accelerated and
non-accelerated EAC;
b comparison of total CPU
times for FD schemes with
FFT-accelerated and
non-accelerated EAC and for
the FD scheme itself.
Reproduced courtesy of The
Electromagnetics Academy
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where ~k ¼ 7:5 is the central frequency, 2Dk ¼ 14:0 is the bandwidth, ~T ¼ 30 is the
delay time, and �T ¼ 60 is the signal duration. As expected the difference between
two results is on the level of 10�13, which is far below the error of the FD dis-
cretization scheme.

In closing it should be said that the optimized implementation of the blocked
FFT-accelerated computation scheme described above was proposed in [63]. One
result of this work we present in Fig. 5.13. Curve 1 shows the time of computing
the convolution (5.200) of the signal

30 31 32 33 34 35

Time, meters
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iz
ed

 m
ag

ni
tu

de
 

T
he
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iff

er
en

ce

1.5

1.0

0.5

0.0

FFT-accelerated
Non-accelerated
The difference

Fig. 5.12 The normalized magnitude of H/ðg; tÞ
�� �� recorded at the observation point and the

difference between FFT-accelerated and nonaccelerated solutions ð�h ¼ 0:01; �l ¼ 0:005Þ:
Reproduced courtesy of The Electromagnetics Academy

Fig. 5.13 Computation time
for estimating the convolution
integral (5.200). The
calculations have been
performed using the
quadrature trapezoid formula
(curve 1) and the optimized
FFT-accelerated algorithm
(curve 2)
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un 0; tð Þ ¼ S tð ÞP1 tð Þ; ~k ¼ 6:25; Dk ¼ 2:75; ~T ¼ 25; �T ¼ 50;

S tð Þ ¼ x tð Þ½ �2 3� 2x tð Þ½ �; x tð Þ ¼ t=25 for 0� t� 25

and x tð Þ ¼ 50� tð Þ=25 for 25� t� 50

against the input array size. Curve 2 corresponds to the time of computing the same
convolution using the optimized algorithm. For an array of one million elements,
these times are equal to about 1.78 h and 1 s, respectively. The calculations were
performed using a PC with a 3.0 GHz Intel Pentium 4 (Prescott) CPU and 4.0 GB
of RAM.

5.7.5 Test Problems

Let an open axially symmetric resonator (a widening of a circular waveguide, see

Fig. 5.14a) be excited from the domain X1 by the pulsed TM01-wave Ui 1ð Þ g; tð Þ ¼
Ui 1ð Þ

1 g; tð Þ whose amplitude of the Ei 1ð Þ
q -component equals vq1 1 �L1; tð Þ ¼ P1 tð Þ;

~k ¼ 5:6, Dk ¼ 2:1, ~T ¼ 40, �T ¼ 100.

(a)

(b) (c)

Fig. 5.14 a The widening of the circular waveguide (a1 = a2 = 0.8, a = 1.0, L1 = 0,
d1 = L2 − d2 = 0.5, k2j

+  6.9 is the cutoff frequency for TM02-wave) and its energy character-
istics: b d2 − d1 = 0.3 and c d2 − d1 = 0.8
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The energy characteristics of the unit for two different lengths of its expanding
part can be found in Fig. 5.14b, c (�h ¼ 0:005, �l ¼ �h=2, the number of modes of the
secondary field taken into account in the discretization of nonlocal EAC similar to

(5.94), (5.95) is equal to Nmod sð Þ
X1

¼ Nmod sð Þ
X2

¼ 15).
These characteristics replicate those obtained in [64] (see Fig. 93b in the book

[64]) by one of the most reliable frequency-domain method, namely, the analytical
regularization method [5, 39, 48, 65]. It is important that the results are practically
identical as to determination of the points k of frequency band, at which a
semi-transparent structure totally transmits (W11

11 kð Þ ¼ 0, W21
11 kð Þ ¼ 1) or totally

reflects (W11
11 kð Þ ¼ 1, W21

11 kð Þ ¼ 0) the energy of the incident monochromatic TM01-
wave. The regimes of this kind are associated with excitation in the open waveguide
resonator Xint of near-eigenmode oscillations [64, 66, 67]. Thus, the algorithms
utilizing EACs adequately describe resonant situations.

Let now a cylindrical monopole extending the central conductor of coaxial feed
line above the infinite perfectly conducting flange (see Fig. 5.15a: a1 ¼ 0:00345,

(a) (b)

Fig. 5.15 The solutions to the test problems: a �h ¼ 0:00005; L ¼ 0:13995; NmodðsÞ
X1

¼ 13;

NmodðsÞ
Xext

¼ 40; b �h ¼ 0:0001; L ¼ 0:12; NmodðsÞ
X1

¼ 8; NmodðsÞ
Xext

¼ 35
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b1 ¼ 0:0015, b ¼ 0:00045, h ¼ 0:1144, L1 ¼ 0:005) be excited by the pulsed
TEM-wave

Ui 1ð Þ
0 g; tð Þ : vq0 1 �L1; tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln a1=b1ð Þ

p
¼ V0 �L1; tð Þ

¼ exp � t � ~T
	 
2

=4~a2
h i

v 2~T � t
	 
 ¼ P2 tð Þ; ~T ¼ 0:035; ~a ¼ 0:00569487

through the virtual boundary C1 located in the cross-section z ¼ �L1 of the input
waveguide.

The incident (V0 �L1; tð Þ) and reflected (U0 �L1; tð Þ) voltage pulses shown in
Fig. 5.15a replicate in details (magnitude and sequence order of local extrema,
distance between them, etc.) the same characteristics calculated for the same
structure in the paper [68] (see Fig. 9b in [68]). Those pulses are determined by the
Eq g; tð Þ-components of the incident and reflected TEM-waves [69]:

V0 z; tð Þ
U0 z; tð Þ

� �
¼ vq01 z; tð Þ

uq01 z; tð Þ
� � Za1

b1

lq01 qð Þdq ¼ vq01 z; tð Þ
uq01 z; tð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln a1=b1ð Þ

p
:

In [68], the experimental results for a prototype of a monopole antenna are also
available. They agree well with the numerical results. The authors assert that
nobody before could achieve better agreement between theory and experiment.

Our data are also in good agreement with the results obtained in [47] (see Fig. 2
in [47]) where a hollow conical monopole (Fig. 5.15b: a1 ¼ 0:0023, b1 ¼ 0:001,
the slant height of cone is h ¼ 0:0997, L1 ¼ 0:01) is illuminated by the pulsed
TEM-wave

Ui 1ð Þ
0 g; tð Þ : vq01 �L1; tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln a1=b1ð Þ

p
¼ V0 �L1; tð Þ ¼ AP2 tð Þ ~T � t

	 

;

~T ¼ 0:03; ~a ¼ 0:004533; A ¼ 257:186:

5.8 Conclusion

In this chapter, the problem of efficient truncation of computation domains of
finite-difference or finite-element methods is discussed for 2-D and 3-D open
(unbounded) electrodynamic structures. The original problem describing pulsed
wave scattering on a compact waveguide discontinuity or on a compact free-space
object is an initial boundary value problem formulated in an unbounded domain.
EACs have been derived for virtual boundaries enveloping all sources and scat-
terers in order to truncate the computation domain and replace the original open
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problem with an equivalent closed one formulated in now bounded computation
domain.

It has been shown that for all situations under study, it is possible to prove that
modified (closed) problems are uniquely solvable if original (open) problems are
well-posed. The solutions to original and modified problems coincide; original and
modified problems are equivalent. This result has been obtained by spreading the
technique previously used in classical studies of initial boundary value problems
with Dirichlet and Neumann boundary conditions (see, for example, [33, 41]) and
for the first time applied for open problems with EACs in [9]. It can be now used for
most problems involving EACs. Conceptually the proof of the equivalency com-
pletes the mathematical justification of the corresponding approach. The compu-
tation efficiency of the EACs-based approach was confirmed in a series of works [3,
8, 19, 21–27].

The EACs-based approach has been generalized to the case of extended and
remote field sources. The analytical representation for transport operators con-
verting near-zone fields into far-zone fields has been also derived.

Rigorous mathematical models of open compact structures are modified to fit
applied problems involving structures of this kind. Models have been supplied with
feeding waveguides to bridge the gap between models and real-world devices such
as resonators and radiators of monochromatic and pulsed waves. Excitation of such
structures as well as transformation of signals received by them is realized generally
by means of various waveguides. The modifications allow to use almost with no
changes the principal results associated with the efficient truncation of computation
domains in problems for structures with feed lines. On this point, the idea of virtual
waveguides with EACs in them is especially important.

Part of the chapter is devoted to practically important theoretical and method-
ological problems arising in the time-domain analysis of open resonators, namely,
to relate spatial-temporal and spatial-frequency representations for electromagnetic
field and to develop the algorithm for estimating principal electrodynamic char-
acteristics of these structures.

The obtained analytic results together with a set of solvers and special programs
developed by the authors and their colleague V. Pazynin were tested in numerical
experiments devoted to testing and improving the EACs-based approach, and to
calculation and physical analysis of electrodynamic characteristics of some open
structures that are of interest tomicrowave theory and techniques [3, 8, 18, 19, 21–27].

In conclusion, it is worth noting once again that as opposed to the well-known
approximate boundary conditions utilized by finite-difference and finite-element
methods, namely ABCs and PMLs, EACs are exact by construction and do not
introduce any additional error into algorithms and computations. This advantage is
especially valuable in resonant situations, where numerical simulation requires
large running time and calculating errors may grow unpredictably if an open
problem is replaced by an insufficiently accurate closed problem.
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Chapter 6
High-Power Short Pulses Compression:
Analysis and Modeling

Vadym Pazynin, Kostyantyn Sirenko and Yuriy Sirenko

Abstract The chapter discusses practically realizable algorithms of model syn-
thesis of direct-flow compressors built on the basis of rectangular, circular or
coaxial waveguides. Resonance and distributed switches have been designed to
ensure effective energy accumulation and release into output waveguides or free
space. The authors dwell on peculiarities of radiation of high-power short pulses by
simple monopole antennas with coaxial feeding waveguides. They also design a
novel phased antenna array, whose each radiating element is an active compressor.
Particular attention is given to the study of such physical processes in compressors
as energy accumulation, switching from the accumulation mode into the mode of
energy release, and radiation of short high-power pulses into free space.

6.1 Introduction

This chapter presents our approach to studies of microwave energy compression,
namely modeling, analysis, and design of compressors and radiators. Energy
compressor is a device for converting long low-amplitude input pulses into short
high-amplitude output pulses.

Design of a properly working energy compressor requires in-depth study of the
energy accumulation process. As this process is non-monotonic in time, a real-time
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study is required to get an insight into all pertinent physical phenomena. In this
chapter, we consider the processes inside a compressor, from the very beginning of
excitation right to the accumulated energy release, in the time domain. We also
discuss the influence of various parameters on the energy accumulation efficiency
and, thus, the overall compressor performance.

The following topics are discussed in this chapter. First, the rigorous scheme to
design and analyze energy compressors. Second, estimation of the influence on the
compressor efficiency of various parameters. Third, studies of a monopole antenna
mounted on a ground plane to demonstrate that compressed pulses can be efficiently
radiated by simple antennas. Fourth, a novel array design, each of the array ele-
ments combines a compressor and a radiator. Fifth, the efficient scheme to deter-
mine the law of amplitude and frequency modulation of the input pulse for passive
compressors based on hollow waveguides. Six, demonstration that the kinematical
approximation is inapplicable for the rigorous description of broadband pulse
propagation in dispersive systems.

One section in the book [1] is devoted to the model synthesis of resonant quasi-
optical devices. An approach developed therein has been originally described in [2]
as applied to microwave energy compressors. The approach includes the following
steps: estimation of the functional capabilities of isolated components, matching
these capabilities with the functionality of the unit as a whole, construction of the
corresponding mathematical model, electrodynamic analysis and design of the unit
and its components paying particular attention to optimization of the device.

Mathematically we deal here with open boundary value problems or open initial
boundary value problems, i.e. problems whose domain of analysis is infinite in one
or more directions. An efficient technique combining time-domain and
frequency-domain methods have been proposed to solve this kind of problems. The
basic idea was to use the so-called exact absorbing conditions (EACs) [1, 3–8],
which are discussed in details in Chap. 5 of this book, in finite-difference or
finite-element algorithms [9–11] and to invoke the time-domain analysis of open
resonators [12–14]. EACs-enabled methods allow one to analyze initial boundary
value problems in bounded domains and for long time intervals and to obtain
reliable numerical data describing transient processes under resonant conditions [1,
2, 4, 7, 14–16]. EACs-enabled methods suit best for reliable and precise analysis of
the energy accumulation process in active compressors, which are high-Q resonant
systems excited by long pulses [17–19], and compressors’ switches. We have also
proposed to apply EACs-enabled methods to the study of the compression of
frequency-modulated pulses propagating long distances in dispersive guiding
structures like passive compressors [20]. The proposed algorithms are based on
exact analytical representations for the so-called transport operators, which allow to
compute far-zone fields knowing only near-zone fields (see Chap. 5 and [1, 7, 21–
24]).

The developed methods and algorithms have been implemented in the
special-purpose software packages for 2-D (and partially for 3-D) simulations and
analysis of energy compressors and radiators of short high-power pulses. Devices
under study are: (i) cross-uniform regular waveguides for passive compression,

328 V. Pazynin et al.

http://dx.doi.org/10.1007/978-3-319-31631-4_5
http://dx.doi.org/10.1007/978-3-319-31631-4_5


(ii) storage units (waveguide and open resonators with metal, semitransparent, and
frequency-selective mirrors), and (iii) switches (distributed grating-type switches
for compressors on multimode waveguides and for resonant radiators, interference
and resonant switches for compressors with single-mode output waveguides) for
active compression.

In Sect. 6.2 we briefly consider models, which are employed in numerical
experiments using EAC-enabled methods. A detailed discussion of these models
and associated analytical results can be found in Chap. 5 of this book. In Sect. 6.3
we study in details the analysis and design of active microwave energy compres-
sors. The methodology and results from Sect. 6.3 are used in Sect. 6.4 to study
radiation of short pulses by a monopole antenna and to design a novel combined
compressor/radiator antenna element for a phased array. Section 6.5 is devoted to
the aforementioned algorithm for calculating the time profiles of pulses propagating
in hollow waveguides.

We use SI, the International System of Units, for all physical parameters except
the ‘time’ t that is the product of the natural time and the velocity of light in
vacuum, thus t is measured in meters. In this chapter, dimensions are omitted as a
rule. The obtained results are formulated in terms of relative values and can be
generalized to all geometrically similar structures.

6.2 Exact Absorbing Conditions Method: 2-D Case

6.2.1 Planar Structures

Let ~Eðg; tÞ ¼ Ex;Ey;Ez
� �

and ~Hðg; tÞ ¼ Hx;Hy;Hz
� � ðg ¼ y; zf gÞ be the electric

and magnetic vectors of the E-polarized ðEy ¼ Ez ¼ Hx � 0Þ or H-polarized ðHy ¼
Hz ¼ Ex � 0Þ electromagnetic field. Let a planar structure (Fig. 6.1) be excited by a
pulsed TE0n- or TM0n-wave Ui 1ð Þ

p ðg; tÞ incident onto the virtual boundary C1 from
the regular parallel-plate waveguide X1. Let also rðg; tÞ� 0 be the specific con-
ductivity of a locally inhomogeneous medium. Its time dependence allows us to
simulate changes in compressor’s mode of operation. eðgÞ� 1 and lðgÞ � 1 are the

relative permittivity and magnetic permeability of the medium; g0 ¼ l0=e0ð Þ1=2 is
the impedance of free space; e0 and l0 are the electric and magnetic constants of
vacuum; x; y; zf g are the Cartesian coordinates and q;/f g are the polar coordinates
in the y0z plane. By R¼Rx � xj j �1½ � we denote perfectly conducting surfaces
obtained by moving the piecewise smooth curves Rx along the x-axis. Re;r ¼Re;r

x �
xj j �1½ � are the surfaces on which the functions eðgÞ and/or rðg; tÞ have discon-

tinuities. Symbol ‘�’ denotes the direct product of two sets.
The basis for all planar models considered in this chapter is the closed (i.e.,

formulated on a bounded computation domain) initial boundary value problem
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�eðgÞ @2

@t2 � g0Pþ @2

@y2 þ @2

@z2

h i
Uðg; tÞ ¼ 0; t[ 0; g 2 Xint

Uðg; tÞjt¼0¼ 0; @
@t U g; tð Þ��t¼0¼ 0; g ¼ y; zf g 2 �Xint

~Etgðq; tÞ and ~Htgðq; tÞ are continuous when crossing Re;r;
~Etgðq; tÞ

��
q¼ x;y;zf g2R¼ 0; and D Uðg; tÞ½ �jg2C¼ 0;

D1 Uðg; tÞ � Ui 1ð Þ
p ðg; tÞ

h i���
g2C1

¼ 0; D2 Uðg; tÞ½ �jg2C2
¼ 0; t� 0

8>>>>>>><>>>>>>>:
ð6:1aÞ

and the radiation conditions (RCs)

Uðgj; tÞ � d1j U
i 1ð Þ
p ðgj; tÞ ¼ �

X1
n¼

1 for E � case

0 for H � case

�
Zt�zj

0

J0 kn j t � sð Þ2�z2j
� �1=2� 	8<:

�
Zaj 2ð Þ

bj 1ð Þ

@U ~yj;~zj; s

 �� d1j U

i 1ð Þ
p ~yj;~zj; s

 �h i

@~zj

������
~zj¼0

lnj ~yj

 �

d ~yj

264
375ds

9>=>;ln jðyjÞ;

gj ¼ yj; zj
� � 2 �Xj; t� zj; j ¼ 1; 2;

ð6:1bÞ

Fig. 6.1 Planar structure
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Uðq;/; tÞ ¼ 1
2

ffiffiffi
L
q

s
UðL;/; t � qþ LÞ

þ 1
p

ffiffiffi
L
q

s X
n¼0;	1;	2;...

ð�1Þnlnð/Þ
Zt�ðq�LÞ

0

unðL; sÞ
2L

�

� Q0
jnj�1=2ð�aL;qÞ q2 � L2 � ðt � sÞ2

Lq

 !
� Qjnj�1=2ð�aL;qÞ

" #
� u0nðL; sÞQjnj�1=2ð�aL;qÞ

�
ds; q� L; 0�/� 2p; t� 0

ð6:1cÞ

for outgoing (into the domains Xj and Xext ¼ g ¼ q;/f g : q[ L; 0�/� 2pf gÞ
pulsed waves. Here, U g; tð Þ ¼ Ex g; tð Þ and P U½ � � @ r g; tð ÞU g; tð Þ½ �=@t in the case
of E-polarization, and U g; tð Þ ¼ Hx g; tð Þ and P U½ � � r g; tð Þ � @U g; tð Þ=@t in the
case of H-polarization.

The functions r g; tð Þ and e gð Þ � 1; which have compact supports in the closure
of Xint, are supposed to satisfy the theorem on the unique solvability of the problem
(6.1a, 6.1b, 6.1c) in the Sobolev space W1

2 Xint � 0; Tð Þð Þ; T\1 [1, 8]. All scat-
terers described by the piecewise constant functions e gð Þ; r g; tð Þ and by the
piecewise smooth contours Rx and Re;r

x are located in Xint .
In (6.1b), J0ð. . .Þ is the Bessel cylindrical function, dlj is the Kronecker symbol,

gj ¼ yj; zj
� �

is the local coordinate system associated with the virtual waveguide Xj

(see Fig. 6.1). In the parallel-plate waveguide Xj, the transverse functions lnj yj

 �

form an orthonormal system, and knj are the transverse eigenvalues associated with

ln j yj

 �

: In the case of E-polarization, we have lnj yj

 � ¼ ffiffiffiffiffiffiffiffiffi

2

aj

q
sin npyj


aj


 �
and

knj ¼ np

aj ðn ¼ 1; 2; 3; . . .Þ. In the case of H-polarization, we have lnj yj


 � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� dn0

 �

aj
q

cos npyj

aj


 �
and knj ¼ np


aj ðn ¼ 0; 1; 2; . . .Þ:

In (6.1c), ln /ð Þ ¼ 2pð Þ�1=2exp in/ð Þ (n ¼ 0;	1;	2; . . . ); Q nj j�1=2 . . .ð Þ is the

second-kind Legendre function; Q0
nj j�1=2 �að Þ ¼ @Q nj j�1=2 xð Þ@ x��x¼�a ; aL;q ¼

L2 þ q2 � t � sð Þ2
h i.

2qLð Þ; u q; tð Þ ¼ un q; tð Þf gn is the evolutionary basis for the
outgoing (into free space) pulsed wave U q;/; tð Þ which could be represented as

U q;/; tð Þ ¼
X
n

un q; tð Þln /ð Þ; g ¼ q;/f g 2 �Xext; t� 0; and

un q; tð Þ ¼
Z 2p

0
U q;/; tð Þl
n /ð Þd/

ð6:2aÞ
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(the asterisk ‘*’ stands for the complex conjugation); and
u0n L; sð Þ ¼ @un q; tð Þ@ q��

q¼L.

The computation domain Xint is the part of the y0z plane bounded by the con-
tours Rx together with the virtual boundaries C1 and C2 (input and output ports in
the cross-sections z1 ¼ 0 and z2 ¼ 0 of the virtual waveguides X1 and X2) and the
cylindrical virtual boundary C separating the domains Xint and Xext (free space).

The EAC operators D1 . . .½ �; D2 . . .½ �; and D . . .½ � are derived by placing the
observation point in (6.1b) and (6.1c) onto the virtual boundaries C1, C2 and C. The

function Ui 1ð Þ
p g; tð Þ in EAC D1 U g; tð Þ � Ui 1ð Þ

p g; tð Þ
h i���

g2C1

¼ 0 represents a pulsed

wave incident on C1 from X1. The following relations are true for this wave:

Ui 1ð Þ
p g1; tð Þ ¼ vp1 z1; tð Þlp1 y1ð Þ; g1 2 X1; t� 0;

vp1 z1; tð Þ ¼
Z a1

0
Ui 1ð Þ

p g1; tð Þlp1 y1ð Þdy1:
ð6:2bÞ

Scattered waves traveling away from Xint in the waveguides X1 and X2 can be
represented in the form

Us 1ð Þ g1; tð Þ ¼ U g1; tð Þ � Ui 1ð Þ
p g1; tð Þ ¼

X
n

un1 z1; tð Þln1 y1ð Þ; g1 2 X1;

t� 0; un1 z1; tð Þ ¼
Z a1

0
Us 1ð Þ g1; tð Þln1 y1ð Þdy1

ð6:2cÞ

and

Us 2ð Þ g2; tð Þ ¼ U g2; tð Þ ¼
X
n

un2 z2; tð Þln2 y2ð Þ; g2 2 X2; t� 0;

un2 z2; tð Þ ¼
Z a2

0
Us 2ð Þ g2; tð Þln2 y2ð Þdy2:

ð6:2dÞ

In the frequency domain, the formulas (6.2a, 6.2b, 6.2c, 6.2d) take the following
form:

~U g; kð Þ ¼
X1
n¼�1

Cn kð ÞH 1ð Þ
n kqð Þln /ð Þ; g 2 �Xext; ð6:3aÞ

~Ui 1ð Þ
p g1; kð Þ ¼ Ap1 kð Þ exp �ibp1z1


 �
lp1 yð Þ; g 2 �X1; ð6:3bÞ
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~Us 1ð Þ g1; kð Þ ¼ ~U g1; kð Þ � ~Ui 1ð Þ
p g1; kð Þ

¼
X1

n¼
1 for E�case

0 for H�case

� Bn1 kð Þ exp ibn1z1ð Þln1 yð Þ; g 2 �X1; ð6:3cÞ

~Us 2ð Þ g2; kð Þ ¼ ~U g2; kð Þ ¼
X1

n¼ 1 for E�case
0 for H�case

� Bn2 kð Þ exp ibn2z2ð Þln2 yð Þ; g 2 �X2:

ð6:3dÞ

Here, Ap1 kð Þ ¼ ~vp1 0; kð Þ $ vp1 0; tð Þ; Bnj kð Þ ¼ ~unj 0; kð Þ $ unj 0; tð Þ; and
Cn kð ÞH 1ð Þ

n kqð Þ ¼ ~un q; kð Þ $ un q; tð Þ are the complex-valued amplitudes of

monochromatic waves generating a steady-state field ~~E g; kð Þ; ~~H g; kð Þ
n o

in the

domains Xj and Xext ; H 1ð Þ
n . . .ð Þ is the Hankel function of the first kind; bnj kð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2nj

q
are the longitudinal propagation numbers for the waveguide modes

Us jð Þ
n gj; k

 � ¼ Bnj kð Þ exp ibnjz1


 �
lnj yð Þ with Re bnj kð ÞRe k� 0 and Imbnj kð Þ� 0; k

is the complex wavenumber (frequency parameter or frequency); ~f kð Þ $ f tð Þ
stands for the Laplace transform

~f kð Þ ¼
Z1
0

f tð Þeiktdt $ f tð Þ ¼ 1
2p

Ziaþ1

ia�1

~f kð Þe�iktdk; 0� a� Im k: ð6:4Þ

The frequencies k ¼ k	nj ¼ 	 knj
�� �� are the cutoff frequencies. On these frequen-

cies, the longitudinal propagation numbers bnj kð Þ vanish, as on larger frequencies

monochromatic modes Us jð Þ
n gj; k

 �

propagate without decay.
Consider the values of k such that Re k[ 0 and Im k ¼ 0: In this case, the

frequency parameter takes the physical value of k ¼ 2p=k; where k is the wave-
length in free space. Let also an open planar structure (Fig. 6.1) be fed from the
waveguide X1 by an undamped sinusoidal wave ~Ui 1ð Þ

p g1; kð Þ with Im bp1 ¼ 0: Then
the structure is completely described by the following characteristics.

• Reflection and transmission coefficients

R11
np kð Þ ¼ ~un1 z1; kð Þ

~vp1 z1; kð Þ
����
z1¼0

¼ Bn1 kð Þ
Ap1 kð Þ and T21

np kð Þ ¼ ~un2 z2; kð Þjz2¼0

~vp1 z1; kð Þ��z1¼0

¼ Bn2 kð Þ
Ap1 kð Þ ;
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which characterize the efficiency of transformation of the wave ~Ui 1ð Þ
p g1; kð Þ

incoming from the waveguide X1 into the waves ~Us 1ð Þ
n g1; kð Þ and ~Us 2ð Þ

n g2; kð Þ
propagating in the waveguides X1 and X2.

• Energy distribution between waveguide modes; the values

W11
np kð Þ ¼ R11

np

��� ���2Re bn1
bp1

and W21
np kð Þ ¼ T21

np

��� ���2Re bn2
bp1

determine the relative parts of energy diverted into the waveguides X1 and X2

(the energy of the waves ~Us 1ð Þ
n g1; kð Þ and ~Us 2ð Þ

n g2; kð Þ propagating without
decay).

• Ohmic loss; the value

Wabs kð Þ ¼ kb
bp1

Z
Xint

r gð Þ ~~E g; kð Þ
��� ���2dg ð6:5Þ

determine the relative part of energy lost to absorption. Here, b ¼ g0 in the case
of E-polarized waves and b ¼ g�1

0 in the H-case; dg ¼ dydz is the surface
element.

• Radiation efficiency or antenna efficiency, which is calculated by the formula

g kð Þ ¼ 1�Wabs �
X
n

W11
np þW21

np

� �
:

• Normalized directional pattern on the arc q ¼ M� L

D /; k;Mð Þ ¼
~~Etg M;/; kð Þ
��� ���2

max
0� ~/� 2p

~~Etg M; ~/; k
� ���� ���2 ; 0�/� 360�; K1 � k�K2; ð6:6Þ

determines the spatial orientation and the energy content of the propagating

waves radiated into free space. Here, ~~Etg M;/; kð Þ is the tangential (to the
cylindrical surface q ¼ q;/; xf g: q ¼ M; 0�/� 2p; xj j\1f gÞ component

of the monochromatic electric field ~~E g; kð Þ:
• Main lobe of the pattern is directed at an angle �/ kð Þ such that

D �/ kð Þ; k;M
 � ¼ 1:
• Half-power beamwidth /0:5 kð Þ is an angle between two directions of the main

lobe, where the power reduces to the half of its maximum, i.e. /0:5 kð Þ ¼
/þ � /��� ��; where D /þ ; k;M


 � ¼ 0:5 and D /�; k;Mð Þ ¼ 0:5:
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• Complex eigenfrequencies �km 2 Ck , where �km ¼ Re �km þ iIm�km, Im�km\0:
These frequencies ensure existence of nontrivial solutions ~U g; �kmð Þ to the
boundary value (spectral) problem associated with the homogeneous problem in
(6.1a, 6.1b, 6.1c), i.e. the problem with Ui 1ð Þ

p g; tð Þ � 0: The function ~U g; �kmð Þ
(g 2 Xint) represents a free oscillation with the eigenfrequency �km. The quality
factor of the oscillation with the frequency �km is defined as Q ¼ Re�km


2 Im�km
�� ��:

Here, Ck is the first (physical) sheet of the Riemann surface, which determines
natural boundaries for the analytical continuation in k of the boundary value
problem associated with (6.1a, 6.1b, 6.1c) [1, 13].
The following time-domain characteristics are related with the energy
accumulation:

• Energy efficiency

c ¼ Ws 2ð Þ t3; t4ð Þ
Wi 1ð Þ t1; t2ð Þ or c ¼ Ws t3; t4ð Þ

Wi 1ð Þ t1; t2ð Þ

is the output-to-input energy ratio. Here, Wi 1ð Þ t1; t2ð Þ and Ws 2ð Þ t3; t4ð Þ or
Ws t3; t4ð Þ represent the total energy received by a compressor from the
waveguide X1 during the interval t1\t\t2, and the energy transmitted into the
domains X2 or Xext, respectively, during the interval t3\t\t4. Wi or s jð Þ t3; t4ð Þ
and Ws t3; t4ð Þ are calculated using the following formulas:

Wi or s jð Þ tstart; tfinishð Þ ¼ � orþð Þ
Ztfinish
tstart

Pi or s jð Þ tð Þdt

and Ws tstart; tfinishð Þ¼
Ztfinish
tstart

Ps tð Þdt;

where �Pi 1ð Þ tð Þ; Ps 2ð Þ tð Þ and Ps tð Þ represent the instantaneous power entering
and leaving the domain Xint through the boundaries C1, C2, and C, respectively.
The energy efficiency c is a positive number less than or equal to one.
Obviously, the closer c to one, the more efficient compressor is.

• Degree of compression is the input-to-output pulse duration ratio:

b ¼ Ti 1ð Þ

Ts 2ð Þ or b ¼ Ti 1ð Þ

Ts
:

Here, Ti 1ð Þ ¼ t2 � t1 and Ts 2ð Þðor TsÞ ¼ t4 � t3 are the durations of the input and
output pulses, respectively. The degree of compression b is a positive number
greater than one.

• Power gain is a measure of compressor’s ability to increase the input power.
Power gain h ¼ b� c is the product of degree of compression and energy
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efficiency. It is clear that h is the input-to-output average power ratio. The power
gain h is a positive number greater than one.

• Instantaneous efficiency of energy accumulation is the ratio of the energy
accumulated in a storage unit to the total input energy by a given time. At the
time t, it is

caccum tð Þ ¼ Wi 1ð Þ 0; tð Þ �Ws 1ð Þ 0; tð Þ �Ws 2ð Þ 0; tð Þ �Ws 0; tð Þ �W abs 0; tð Þ
Wi 1ð Þ 0; tð Þ ;

where Ws 1ð Þ t1; tð Þ is the energy reflected back into the feeding waveguide X1

during the interval t � t1, while W abs t1; tð Þ is the energy lost to absorption. The
meaning of the functions Wi 1ð Þ 0; tð Þ and Ws 2ð Þ 0; tð Þ is explained above. The
characteristic caccum tð Þ determines the optimal duration of excitation Ti 1ð Þ. As the
reflected and transmitted instantaneous powers are non-monotonic functions of
time, there exist intervals when the accumulated energy grows faster than the
scattered energy. Also there exist intervals with the inverse dynamics and
intervals without energy accumulation. For example, Ti 1ð Þ can be chosen to
obtain maximal energy efficiency c. All one has to do is to stop the accumulation
process at the instant of maximal caccum tð Þ:
The characteristics introduced above are based on the instantaneous Poynting

theorem (the instantaneous power balance theorem), which has the following form
for the structures under study [25]:

Ps 1ð Þ tð ÞþPs 2ð Þ tð ÞþPs tð ÞþPi�s 1ð Þ tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þ 1
2
@

@t

Z
Xint

g0 ~H g; tð Þ�� ��2 þ e gð Þ
g0

~E g; tð Þ�� ��2� �
dg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

þ
Z
Xint

r g; tð Þ ~E g; tð Þ�� ��2dg
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3

¼ �Pi 1ð Þ tð Þ:

ð6:7Þ
In (6.7) the following designations are used:

Pi or s jð Þ tð Þ ¼
Z
Cj

~Ei or s jð Þ gj; t

 �� ~Hi or s jð Þ gj; t


 �h i
�~nj

� �
dyj;

Ps tð Þ ¼
Z
C

~Es g; tð Þ � ~Hs g; tð Þ� � �~n
 �
d/;

ð6:8Þ
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Pi�s 1ð Þ tð Þ ¼
Z
C1

~Es 1ð Þ g1; tð Þ � ~Hi 1ð Þ g1; tð Þþ~Ei 1ð Þ g1; tð Þ � ~Hs 1ð Þ g1; tð Þ
h i

�~n1
� �

dy1;

ð6:9Þ

where~nj and~n represent the outward (with respect to the domain Xint) unit normals
to the boundaries Cj and C, respectively.

It follows from (6.7) that the sum of the instantaneous power reflected and
transmitted from the domain Xint into the waveguides X1, X2 and the domain Xext

through the boundaries C1, C2 and C (the terms in brace ‘1’), the instantaneous
power accumulated in Xint (brace ‘2’), and the instantaneous power dissipated in
Xint (brace ‘3’) is equal to the instantaneous power incoming into Xint through C1

(the right side of (6.7)). It is clear that the energiesWs 1ð Þ . . .ð Þ;W abs . . .ð Þ; etc., which
are required to calculate c and caccum tð Þ; can be determined immediately from (6.7)
by integrating the relevant terms over certain time intervals.

The normalized pulsed pattern describes the space (angular) and temporal dis-
tribution of the radiated pulse at a given distance [26]. It is defined as

Dpuls /; t;Mð Þ ¼ U M;/; tð Þ
max
~/; s

U M; ~/; s
� ���� ��� ; M� L; 0�/� 2p;

T1 � t� T2 � T þM � L:

ð6:10Þ

This function allows one to estimate the distance where the radiated pulse retains
its primary shape, and to study in detail its behavior (splitting, focusing, etc.) as the
distance increases. The results presented in [7, 26] show that the values
~Dpuls /; k;Mð Þ $ Dpuls /; t;Mð Þ are also highly informative in the study of
radiators.

Disregarding ohmic loss (brace ‘3’ in (6.7)) and energy accumulation inside Xint

(brace ‘2’ in (6.7)), the value

n Tð Þ ¼ Wi 1ð Þ 0; Tð Þ �Ws 1ð Þ 0; Tð Þ �Ws 2ð Þ 0; Tð Þ
Wi 1ð Þ 0; Tð Þ

defines the time-domain radiation efficiency. Here, T is the end of the observation
time.

6.2.2 Axially Symmetric Structures

We will study the space-time and space-frequency transformations of symmetric
ð@=@/ � 0Þ electromagnetic waves in open axially symmetric structures (Fig. 6.2)
by solving the following initial boundary value problem:
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�e gð Þ @2

@t2 � g0Pþ @2

@z2 þ @
@q

1
q

@
@q q

� �h i
U g; tð Þ ¼ 0; t[ 0; g 2 Xint

U g; tð Þjt¼0¼ 0; @
@t U g; tð Þ��t¼0¼ 0; g ¼ q; zf g 2 �Xint

~Etg q; tð Þ; ~Htg q; tð Þ are continuouswhen crossing Re;r;
~Etg p; tð Þ��q¼ q;/;zf g2R¼ 0; U 0; z; tð Þ ¼ 0 for 0; zf g 2 �Xint;

D1 U g; tð Þ � Ui 1ð Þ
p g; tð Þ

h i���
g2C1

¼ 0; D2 U g; tð Þ½ �jg2C2
¼ 0 and

D U g; tð Þ½ �jg2C¼ 0; t� 0;

8>>>>>>>>>><>>>>>>>>>>:
ð6:11aÞ

U gj; t

 �� d1j U

i 1ð Þ
p gj; t

 � ¼ �

X
n

Zt�zj

0

J0 knj t � sð Þ2�z2j
� �1=2� 	8<:

�
Zaj
bj

@U ~qj;~zj; s

 �� d1j U

i 1ð Þ
p ~qj;~zj; t

 �h i

@ ~zj

������
~zj¼0

lnj ~qj

 �

~qj d ~qj

264
375ds

9>=>;
� lnj qj


 �
; gj ¼ qj; zj

� � 2 �Xj; t� zj;

ð6:11bÞ

1 1 1a

, ,g g t

1z 2,z z

1

2
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ext
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,

2b

0

r
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Fig. 6.2 Axially symmetric structure
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U g; tð Þ ¼
X1
n¼1

L
r

� �nþ 1Zp=2
0

U L; ~#; t � r � Lð Þ
 �
ln cos ~#

 �

sin ~#d ~#

8<:
þ

ffiffiffi
L
r

r Zt� r�Lð Þ

0

Snþ 1=2 r; L; t � sð Þ

�
Zp=2
0

@UðL; ~#; sÞ
@s

lnðcos ~#Þ sin ~#d ~#

264
375ds

9>=>;lnðcos#Þ;

g ¼ r; #f g 2 Xext; t� r � Lð Þ:

ð6:11cÞ

In the case of TE0-waves ðEq ¼ Ez ¼ H/ � 0Þ, we have U g; tð Þ ¼ E/ g; tð Þ and
P U½ � � @ r g; tð ÞU g; tð Þ½ �=@t: In the case of TM0-waves (Hq ¼ Hz ¼ E/ � 0Þ, we
have U g; tð Þ ¼ H/ g; tð Þ and P U½ � � r g; tð Þ@U g; tð Þ=@t: All other nonzero com-
ponents (Hq, Hz in the case of TE0-waves and Eq, Ez in the case of TM0-waves) can
be expressed via U g; tð Þ [1]. r g; tð Þ� 0 is the electric conductivity of a locally
inhomogeneous medium, its time dependence allows us to simulate changes in
compressor’s mode of operation; e gð Þ� 1 and l gð Þ � 1 are the relative permittivity

and magnetic permeability of the medium; g0 ¼ l0=e0ð Þ1=2 is the impedance of free
space; e0 and l0 are the electric and magnetic constants of vacuum; q;/; zf g are the
cylindrical coordinates and r; #; /f g are the spherical coordinates. By R¼R/ �
0; 2p½ � we denote perfectly conducting surfaces obtained by rotating the piecewise
smooth curves R/ around the z-axis. Re;r¼Re;r

/ � 0; 2p½ � are the surfaces on which
the functions e gð Þ and/or r g; tð Þ have discontinuities.

The functions r g; tð Þ and e gð Þ � 1; which have compact supports in the closure
of Xint , are supposed to satisfy the theorem on the unique solvability of the problem
(6.11a, 6.11b, 6.11c) in the Sobolev space W1

2 Xint � 0; Tð Þð Þ; T\1 [1, 8]. All
scatterers defined by the piecewise constant functions e gð Þ; r g; tð Þ and by the
piecewise smooth contours R/ and Re;r

/ are located in the domain Xint.

In (6.11b), gj ¼ qj; zj
� �

is the local coordinate system associated with the virtual
waveguide Xj (see Fig. 6.2). In the circular or coaxial waveguide Xj, the transverse
functions lnj qj


 �
form an orthonormal system, and knj are the transverse eigenvalues

associated with lnj qj

 �

:Analytical representations for lnj qj

 �

and knj are well-known
(see [1, 7] and Chap. 5) and for TE0-waves ðn ¼ 1; 2; 3; . . .Þ take the form:

lnj qj

 � ¼ G1 knj; qj


 � ffiffiffi
2

p
a2j G

2
0 knj; aj

 �� b2j G

2
0 knj; bj

 �h i�1=2

;

bj\qj\aj
knj [ 0 are the roots of the equation G1 kj; aj


 � ¼ 0
Gq kj; qj

 � ¼ Jq kjqj


 �
N1 kjbj

 �� Nq kjqj


 �
J1 kjbj

 �

; q ¼ 0; 1

8>>><>>>:
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(coaxial waveguide Xj), and

lnj qj

 � ¼ J1 knjqj


 � ffiffiffi
2

p
ajJ0 knjaj


 �� ��1
; 0\qj\aj

knj [ 0 are the roots of the equation J1 kjaj

 � ¼ 0

(

(circular waveguide Xj). For TM0-waves we have:

lnj qj

 � ¼ ~G1 knj; qj


 � ffiffiffi
2

p
a2j ~G

2
1 knj; aj

 �� b2j ~G

2
1 knj; bj

 �h i�1=2

for

n ¼ 1; 2; . . . and lnj qj

 � ¼ qj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln aj


bj


 �qh i�1
; bj\qj\aj

knj [ 0 for n ¼ 1; 2; . . . are the roots of the equation
~G0 kj; bj

 � ¼ 0 and k0j ¼ 0

~Gq kj; qj

 � ¼ Jq kjqj


 �
N0 kjaj

 �� Nq kjqj


 �
J0 kjaj

 �

; q ¼ 0; 1

8>>>>>>><>>>>>>>:
(coaxial waveguide Xj, n ¼ 0; 1; 2; . . .), and

lnj qj

 � ¼ J1 knjqj


 � ffiffiffi
2

p
ajJ1 knjaj


 �� ��1
; 0\qj\aj

knj [ 0 are the roots of the equation J0 kjaj

 � ¼ 0

(

(circular waveguide Xj, n ¼ 1; 2; 3; . . .). Here, Jqð. . .Þ and Nq . . .ð Þ are the Bessel
and Neumann cylindrical functions.

In (6.11c),

Snþ 1=2 r; L; t � sð Þ ¼
X
s

Hð1Þ
nþ 1=2 zsrð Þ

Hð1Þ
n�1=2 zsLð Þ

exp �izs t � sð Þ½ �
zsL

;

where z ¼ zs : Im zs\0 (s ¼ 1; 2; . . .; nÞ are zeros of the Hankel cylindrical

function H 1ð Þ
nþ 1=2 zLð Þ; ln cos#ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ= 2n nþ 1ð Þð Þp
P1
n cos#ð Þ; n ¼ 1; 2; . . .

is a complete orthonormal (with the weight factor sin#) system in the space
L2 0\#\pð Þ; P1

n . . .ð Þ is the associated Legendre function of the first kind.
The computation domain Xint is the part of the half-plane Xtotal ¼

g ¼ q; zf g : q[ 0; �1\z\1f g bounded by the contours R/ together with
the virtual boundaries C1 and C2 (input and output ports in the cross-sections
z ¼ �L1 (z1 ¼ 0Þ and z ¼ L2 (z2 ¼ 0Þ of the virtual waveguides X1 and X2 ) and
the spherical virtual boundary C ¼ g ¼ q;/f g 2 Xtotal : r ¼ Lf g separating Xint

and Xext.
The EAC operators D1 . . .½ � and D2 . . .½ � are derived by placing the observation

point in (6.11b) onto C1 and C2, i.e. by putting r ¼ L: This converts (6.11c) to the
identity, which makes the discretization of D . . .½ � nontrivial [1, 7].
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The function Ui 1ð Þ
p g; tð Þ in EAC D1 U g; tð Þ � Ui 1ð Þ

p g; tð Þ
h i���

g2C1

¼ 0 represents a

pulsed wave incident from the waveguide X1. The following relations are true for
this wave:

Ui 1ð Þ
p g1; tð Þ ¼ vp1 z1; tð Þlp1 q1ð Þ; g1 2 X1; t� 0;

vp1 z1; tð Þ ¼
Z a1

b1

Ui 1ð Þ
p g1; tð Þlp1 q1ð Þq1dq1:

ð6:12aÞ

Reflected and transmitted pulsed waves outgoing into the waveguides X1 and X2

can be represented as

Us 1ð Þ g1; tð Þ ¼ U g1; tð Þ � Ui 1ð Þ
p g1; tð Þ ¼

X
n

un1 z1; tð Þln1 q1ð Þ; g1 2 X1;

t� 0; un1 z1; tð Þ ¼
Z a1

b1

Us 1ð Þ g1; tð Þln1 q1ð Þq1dq1
ð6:12bÞ

and

Us 2ð Þ g2; tð Þ ¼ U g2; tð Þ ¼
X
n

un2 z2; tð Þln2 q2ð Þ; g2 2 X2; t� 0;

un2 z2; tð Þ ¼
Z a2

b2

Us 2ð Þ g2; tð Þln2 q2ð Þq2dq2:
ð6:12cÞ

The following wave is radiated into free space:

U r; #; tð Þ ¼
X
n

un r; tð Þ ln #ð Þ; g ¼ r; #f g 2 �Xext; t� 0;

un r; tð Þ ¼
Z p

0
U r; #; tð Þ sin#ln cos#ð Þd#:

ð6:12dÞ

Here, vp1 z1; tð Þ; un1 z1; tð Þ; un2 z2; tð Þ; and un r; tð Þ are the space-time amplitudes of
the waves given by (6.12a, 6.12b, 6.12c, 6.12d).

In the frequency domain, the equations (6.12a, 6.12b, 6.12c, 6.12d) take the
following form:

~Ui 1ð Þ
p g1; kð Þ ¼ Ap1 kð Þ exp �ibp1z1


 �
lp1 q1ð Þ; g 2 �X1; ð6:13aÞ

~Us 1ð Þ g1; kð Þ ¼ ~U g1; kð Þ � ~Ui 1ð Þ
p g1; kð Þ

¼
X
n

Bn1 kð Þ exp ibn1z1ð Þln1 q1ð Þ; g 2 �X1;
ð6:13bÞ
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~Us 2ð Þ g2; kð Þ ¼ ~U g2; kð Þ ¼
X
n

Bn2 kð Þ exp ibn2z2ð Þln2 q2ð Þ; g 2 �X2; ð6:13cÞ

~U g; kð Þ ¼ 1ffiffi
r

p
X1
n¼1

Cn kð ÞH 1ð Þ
nþ 1=2 krð Þln cos#ð Þ; g 2 �Xext: ð6:13dÞ

Here, Ap1 kð Þ ¼ ~vp1 0; kð Þ $ vp1 0; tð Þ; Bnj kð Þ ¼ ~unj 0; kð Þ $ unj 0; tð Þ; and

Cn kð Þ : Cn kð ÞH 1ð Þ
nþ 1=2 krð Þ

. ffiffi
r

p ¼ ~un r; kð Þ $ un r; tð Þ are the complex-valued

amplitudes of monochromatic waves generating a steady-state field
~~E g; kð Þ; ~~H g; kð Þ

n o
in the domains Xj and Xext ; bnj kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2nj

q
are the lon-

gitudinal propagation numbers for the waveguide modes Us jð Þ
n gj; k

 � ¼

Bnj kð Þ exp ibnjz1

 �

lnj qj

 �

; Re bnj kð ÞRe k� 0 and Im bnj kð Þ� 0; ~f kð Þ $ f tð Þ is the
Laplace transform (6.4).

The characteristics R11
np kð Þ; T21

np kð Þ; etc. are the same as in Sect. 6.2.1. Below we
highlight only differences caused by switching from planar to axially symmetric
structures.

• The element dg ¼ dydz in the integrals over the domain Xint in (6.5) and (6.7)
should be replaced by dg ¼ qdqdz; while the element dy in (6.8) and (6.9)
should be replaced by qdq.

• The definition (6.6) of the normalized directional pattern changes to

D #; k;Mð Þ ¼
~~Etg M; #; kð Þ
��� ���2

max
0� ~#� p

~~Etg M; ~#; k

 ���� ���2 ; 0�#� 180�; K1 � k�K2:

Here, ~~Etg M; #; kð Þ is the tangential (to the spherical surface
q ¼ r; #;/f g : r ¼ M; 0�#� p; 0�/� 2pf gÞ component of the

monochromatic electric field ~~E g; kð Þ:
• The definition (6.10) of the normalized pulsed pattern changes to

Dpuls #; t;Mð Þ ¼ U M; #; tð Þ
max
~#; s

U M; ~#; s

 ��� �� ; 0�#� 180�; M� L;

T1 � t� T2 � T þM � L:

342 V. Pazynin et al.



6.3 Energy Accumulation in Direct-Flow Waveguide
Compressors

Energy compressor is a device for converting long low-amplitude input pulses into
short high-amplitude output pulses. Compressors accumulate the energy of an input
pulse over a relatively long period of time and then release it in the form of a short
high-power pulsed output. Efficient microwave pulse compression is required in
several fields of science and engineering: compressors are used as components of
particle accelerators [27, 28] and radars [29], in data transmission [30], energy
transfer [31], plasma heating [32], and biological studies [33].

Design of a properly working energy compressor requires in-depth study of the
energy accumulation process. This process, which involves formation of highly
resonant high-power pulses in a storage unit, is non-monotonic in time. Hence, the
real-time study is required to gain a better insight into all pertinent physical phe-
nomena. In this section, we will consider the processes inside a compressor, from
the very beginning of excitation right to the accumulated energy release, in the time
domain. We will also discuss the influence of various parameters on the energy
accumulation efficiency and, thus, the overall compressor performance. As an
example, we will analyze in detail the energy accumulation in a rectangular
direct-flow waveguide compressor working on TE0n-waves. This chapter focuses on
the development of the technique that allows rigorous and efficient solution of the
problems associated with the design of compressors operating in VHF, UHF, SHF
and EHF bands (from 300MHz to 300GHzÞ. Here, we are dealing with com-
pressors based on waveguide and open quasi-optical resonators, with resonant and
distributed switches, the ones that release high-power short pulses into a feeder line
and into free space.

The contributions of this section are twofold. In the first place, it presents the
rigorous scheme to design and analyze energy compressors, which allows studying
a compressor as a whole in contrast to the currently available design frameworks,
which separately account for characteristics of isolated components. The second
contribution is the estimation of the influence on the compressor efficiency of
various parameters like geometry, duration of the excitation, accumulation and
release processes’ parameters, and others.

6.3.1 Slot Switches

Even simple structures can be used as switches in axially symmetric energy com-
pressors. For example, narrow slots or narrow radial/coaxial grooves in inner or
outer conductors of axially symmetric waveguide transformers (see Figs. 6.3, 6.4,
6.5, 6.6, 6.7).

The study of slots and grooves of this kind [7, 34–37] has shown that they may
drastically affect the propagation and radiation of pulsed and sinusoidal TEM-
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Fig. 6.3 Direct-flow compressor based on circular and coaxial waveguides
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waves. This is due to the so-called slot resonances (half-wave slot resonances and
quarter-wave resonances in grooves) that can be excited in narrow radial or coaxial
waveguides on TEM-waves.

Slot resonances can be used to lock energy release channels in direct-flow
compressors based on circular and coaxial waveguides (see Fig. 6.3 and [2, 7]).
Figure 6.4b shows that a TEM-wave is totally reflected by the short (h ¼ 0:1Þ slot
in the inner conductor on the frequencies k ¼ Re�k1 � 2:14 and k ¼ Re �k2 � 3:9;
while the groove (h ¼ 0:05; c ¼ 0:3Þ in the inner conductor totally locks the
coaxial waveguide on the frequency k ¼ Re �k1 � 1:98: Variation of the parameters
h and c (Fig. 6.4a) results in a predictable change of complex eigenfrequencies
�k ¼ Re �kþ i Im �k that correspond to the slot resonances, and consequently, in a

0.0 2.0  4.0 6.0 k
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11
0 0arg R k

11
0 0R k
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z

Fig. 6.5 A set of grooves in the inner conductor of a coaxial waveguide (a = 1.0, b = 0.6,
d = 2.0, L1 = 5.0, ε = 1.0): a the spatial distribution of the field intensity (g 2 Xint, t = 45); b the
reflection coefficient R11

00ðkÞ in the frequency band 0� k� 7:0 (single-mode operation, kþ
1 � 7:83Þ
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predictable change of reflection parameters of a TEM-wave propagating in the
single-mode coaxial waveguide.

We can also predict with confidence the action of a set of grooves [34, 37]. The
groove with h ¼ 0:05 and c ¼ 0:02 resonates at k ¼ 1:4; whereas the groove with
c ¼ 0:22 resonates at k � 3:12: The set of grooves in Fig. 6.5 completely locks the
coaxial waveguide in the frequency band k 2 klower; kupper

� � ¼ 1:6; 3:1½ �: The
bandwidth BW ¼ 2 kupper � klower


 �
kupper þ klower

 �� 100% equals 63.8%

(Fig. 6.5b). Figure 6.5a demonstrates the process for the quasi-monochromatic
signal

Ui 1ð Þ
0 g; tð Þ ¼ v01 z; tð Þl01 qð Þ : vq01 �L1; tð Þ ¼ P tð Þ cos ~k t � ~T


 �� � ¼ F1 tð Þ;
~k ¼ 2:7; ~T ¼ 0:5; P tð Þ : 0:01� 5� 75� 80; g ¼ q; zf g 2 X1;

ð6:14Þ
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where vq01 z; tð Þ is the space-time amplitude of the Ei 1ð Þ
q g; tð Þ-component of the wave

Ui 1ð Þ
0 g; tð Þ incoming from the waveguide X1 (see the formula (6.12a);

@vq01 z; tð Þ@t ¼ �g0 @v01 z; tð Þ=@z; ~k is the central frequency of the signal and P tð Þ :
t1 � t2 � t3 � t4 is its trapezoidal envelope, which equals one for t2 \ t\ t3 and is
zero for t\ t1 and t [ t4.

To extend the range of effects observed in structures of this kind, one can add
narrow coaxial grooves (Figs. 6.6 and 6.7), which sustain low-Q free TEM-oscil-
lations, to step junctions and U-turns of circular waveguides [7]. Properties
exhibited by step junctions and U-turns with slot resonators are determined basi-
cally by the slot location (whether it is located along the line of nodes or along the
line of antinodes of the H/-component of a wave propagating along the wide
waveguide) and by the degree of matching of TM0n-waves in the narrow and the
wider waveguides.

In the waveguide step-junction with a1 ¼ 1:0; a2 ¼ 1:56; the TM02-wave of the
narrow waveguide is matched with the TM03-wave of the wider waveguide: the
cut-off points kþ

21 � 5:52 and kþ
32 are very nearly the same. A narrow coaxial

groove cut along the line of antinodes of the H/-component of the second mode of
the wider waveguide (q ¼ 1:5; see Fig. 6.6) results in a new effect for
step-junctions: the incident TM01-wave is totally reflected back into the feeding
waveguide. The width of the groove is 0.06 and the depth is 0.33. Only TM01-
waves propagate in both waveguides without decay.
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k4.0 6.0 8.0 4.0 6.0 8.0 k
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1nW k 21

1nW k

1n 0n

2                                                                 1 

4.69k

0                                                                   z(a) 

(b) 

4.36k

01TM 1

TEM 2 1.0 

Fig. 6.7 Slot resonances. Total reflection of TM01-wave of circular waveguide (k ≈ 4.36) and
total transformation of this wave into TEM-wave of coaxial waveguide (k ≈ 4.69): a geometry of
the wave converter (slot length and width are 0.33 and 0.02) and b energy response of the unit
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An axially symmetric U-turn without slots and with the same parameters of the
narrow and the wider waveguides totally reflects the incident TM01-wave on the
frequency k � 3:68 (the resonance on the modes locked in the section of the wider
waveguide [38]). In the frequency band 4:0\k\5:0; no less than 80% of the input
energy is transformed into the energy of TEM-wave of the coaxial waveguide; the
maximum is 86% at k � 4:45:

A narrow groove cut along the line of antinodes of the H/-component of the
TM01-wave in a section of the wider waveguide (q ¼ 1:23Þ results in another point
of total reflection (k � 4:55Þ and allows one to transport 95% of the input energy
into the TEM-wave of the coaxial waveguide at k � 4:8:

In the U-turn, at the level of its outer wall (Fig. 6.7a), we observe at k � 4:69 the
total transformation of the TM01-wave of the circular waveguide into the TEM-
wave of the coaxial waveguide (Fig. 6.7b). Within the frequency band 4:6\k\4:8
(BW � 4:0% ), more than 98% of the input energy is transformed into the energy of
TEM-wave. The frequencies on which the total reflection occurs (the locked-mode
resonance at k � 3:67 and the slot resonance at k � 4:36Þ remain practically the
same as before.

6.3.2 Active Compressors Based on Circular and Coaxial
Waveguides

Active compressors (see, for example, [2, 7, 15–19]) contain, as a rule, two resonant
units: a storage unit for accumulating an input energy, and a switch, which closes
the output section during energy accumulation and opens it at the moment of
release. The optimal matching of these units is an intricate problem. Its solution is
based on the results and methods of spectral theory [1, 4, 7, 12–14, 39] and has to
provide the following.

• Coincidence of the working frequencies Re �kstor and Re �ksw of the storage unit
and the switch.

• Required dynamics of the field intensity growth in the storage unit and in the
switch (it is determined by the Q-factors of the oscillations in the corresponding
volumes, namely, by Im�kstor and Im�ksw, by the deviation of the central frequency
~k of the input pulse from the compressor working frequency kwork, and by
parameters of the coupling window between the feeder and the storage unit).

• Effective release (the eigenfrequencies �k of the unlocked storage in Fig. 6.8b
may not be close to kwork in the complex plane Ck of the variable kÞ.
Let us now outline, basing on [2], the algorithm for constructing the efficient

electrodynamic model of a direct-flow compressor with a slot switch.
On the first stage, one should choose a prototype for a storage unit, namely, a

waveguide resonator that is open only on the side of the feeding waveguide X1 and
is linked with it through a beyond-cutoff diaphragm (Fig. 6.8a). For the storage unit
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shown in Fig. 6.8, the frequency band K1 \ k\K2 where the waveguide X1 and
the closed coaxial output are single-mode is 2:3\ k\ 4:5: The dimensions a2 and
d2 of the central part of the storage should be chosen such that the
counter-propagating TM0n-waves generating the TM0nm-oscillation propagate
without decay. Here m is the number of field variations along the z-axis. In the
central circular waveguide shown in Fig. 6.8, the second propagating wave (TM02-
wave) appears at k ¼ kþ

2 � 3:54 (kþ
1 � 1:54; kþ

3 � 5:55Þ.
On the second step, one should calculate the complex-valued eigenfrequencies

�kstor; n ¼ Re �kstor; n þ iIm�kstor; n of the storage resonator and to determine the quality
factors and the field patterns for free oscillations associated with these frequencies.
The working frequency kwork is assigned one of the values of Re�kstor; n. It should be
chosen in view of the following facts. A Q-factor and a type of the working
oscillation determine the energy efficiency of the storage unit, while the difference
between Re �kstor; n and the actual eigenfrequencies of the storage resonator with an
open end (see Fig. 6.8b) determines, together with the parameter d2, the duration of
the compressed pulse. Let us choose kwork ¼ 2:728: A free oscillation with the
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0

Fig. 6.8 Geometry of storage units with a open and b closed output ends: a = 0.5, a1 = 1.2,
a2 = 1.56, b2 = 0.9, d1 = 0.5, d2 = 6.0, d3 = 0.8, L1 = d1 + d2 + d3; thickness c of diaphragm is
0.06. c Slot switch (slot depth and width are 0.44 and 0.06, permittivity of slot material is
ε = 1.055) and d compressor with slot switch (d4 = 1.34)

6 High-Power Short Pulses Compression: Analysis and Modeling 349



complex-valued eigenfrequency �kstor:Re �kstor � 2:728 is a high-Q oscillation whose
field pattern is shown in Fig. 6.9.

On the third step, we design the slot switch that locks the coaxial output on the
frequency kwork ¼ 2:728 (see Fig. 6.8c) and then connect this switch with the open
output of the storage such that the resonator with a closed output end (Fig. 6.8a)
and the compressor as a whole (Fig. 6.8d) sustain the same high-Q oscillation at
k ¼ kwork. This can be easily done if R11

00 kworkð Þ�� �� � 1:0; where R11
00 kð Þ is the

reflection coefficient for the slot discontinuity in the coaxial waveguide, by
selecting a proper value of d4 (see Figs. 6.8d and 6.9), which is uniquely deter-
mined by the value of argR11

00 kworkð Þ [2].
On the fourth step, one should refine the values of kwork ðRe �kstorÞ and Q for the

resonant system as a whole, since these values vary slightly even with making the
first three steps accurately, and then calculate the basic compressor characteristics

for different in duration input quasi-monochromatic TM01-pulses Ui 1ð Þ
1 g; tð Þ

ð~k ¼ kworkÞ.

,H g t

,E g t

,zE g t

Fig. 6.9 Field patterns in
resonator with closed end and
in resonator with slot switch
(t = 910). Excitation by
TM01-wave

Uið1Þ
1 ðg; tÞ: vq11ð�L1; tÞ ¼

F1ðtÞ; ~k ¼ 2:728; PðtÞ: 0:1�
5� 1495� 1499:9; ~T ¼ 0:5
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Paper [2] presents the following results obtained at this stage (see also Fig. 6.10,

where Ui 1ð Þ
1 g; tð Þ : vq11 �L1; tð Þ ¼ F1 tð Þ; P tð Þ : 0:1� 5� 4195� 4199:9; ~k ¼

2:723; ~T ¼ 0:5; and the observation time is T ¼ 4200Þ: kwork ¼ 2:723 and Q �
7160; the degree of compression is b ¼ T i 1ð ÞTs 2ð Þ � 190; the energy efficiency is

c ¼ Ws 2ð Þ 4002; 4023ð ÞWi 1ð Þ 0; T i 1ð Þ
 � � 0:51; the power gain is h ¼ b� c � 97:
Here, T i 1ð Þ ¼ 4000 and Ts 2ð Þ � 4023� 4002 ¼ 21 are the input and the output
pulse duration, respectively (almost all the accumulated energy is released through
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the port C2 in the time that is somewhat greater than the time required for the signal
to pass twice the length of the storage unit); Ws 2ð Þ 4002; 4023ð Þ and Wi 1ð Þ 0; T i 1ð Þ
 �
are the output and the input energy, respectively. During energy accumulation
(t� 4000Þ, the specific conductivity r tð Þ of the slot material equals zero, while in
the release mode ðt[ 4001Þ it is equal to 5:8 � 105. Over a short period of time
4000\t\4001; the function r tð Þ grows rapidly and linearly thus simulating a
discharge in the slot with respect to the previously monotone increasing Ez g; tð Þ-
component (Fig. 6.9). This discharge converts the slot resonator into the section of
a coaxial waveguide with a very weak inhomogeneity, and completely unlocks the
compressor.

The results presented above show the validity of the basic steps in constructing
the electromagnetic model of an energy compressor. We now turn our attention to
the detailed study of special features in the energy accumulation process.

6.3.3 Distributed Switches and Active Compressors Based
on Rectangular Waveguides

When dealing with planar models ð@=@x ¼ 0Þ, we can analyze two types of waves:
E-polarized waves (or TE0-waves) or H-polarized waves (or TM0-waves). In this
section, we will consider TE0-waves, for which the following relations are valid:

Uðg; tÞ ¼ Exðg; tÞ; Eyðg; tÞ ¼ Ezðg; tÞ ¼ Hxðg; tÞ � 0;

@Hy

@t
¼ �g�1

0
@Ex

@z
;

@Hz

@t
¼ g�1

0
@Ex

@y
; g ¼ fy; zg

(see the equations (6.1a)–(6.1c) in Sect. 6.2.1 and [1, 7]).
Let the structure shown in Fig. 6.11 be excited by the pulsed TE01-wave

Ui 1ð Þ
1 g; tð Þ ¼ v11 z; tð Þlp1 yð Þ : v11 �L1; tð Þ ¼ 4

sin Dk t � ~T

 �� �

cos ~k t � ~T

 �� �

t � ~T

 � v �T � tð Þ

¼ F2 tð Þ; ~k ¼ 3:65; Dk ¼ 0:5; ~T ¼ 50; �T ¼ 100;

ð6:15Þ

where ~k; Dk; ~T and �T stand for the central frequency of the signal, its band, delay
time, and duration, respectively. A detailed description of the temporal and spectral
characteristics of the pulse F2 tð Þ could be found in the book [4], Fig. 4.3. In the
frequency band 3:15� k� 4:15; the waveguides X1 and X2 sustain propagation of
one and three undamped TE0n-waves.

A compressor switch is a periodic system of quartz gas-discharge tubes (e ¼ 3:8Þ
whose walls are 0.02 in thickness. Frequency characteristics of the accumulation
mode and the release mode are presented in Fig. 6.12. Here W11

n1 kð Þ ðW21
n1 kð ÞÞ is the
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energy of the reflected (transmitted) TE0n-wave if the TE01-wave is incident on the
virtual boundary C1. The material parameters of the gas in the switch are e ¼ 1:0
and r ¼ 5:7 � 104 for the accumulation mode and r ¼ 0 for the release mode.

d
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l        0 

1 1a 2a 2 z
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1d 2d 3d 2,y y

Coupling window 
(beyond-cutoff 

diaphragm) 

Storage unit Switch 

1

2

xFeeding waveguide 
Output waveguide 

d

1y

1z

2z

Fig. 6.11 Geometry of direct-flow compressor based on rectangular waveguide; a = 0.4,
a1 = 1.28, a2 = 3.0, L1 = d1 + d2 + d3 = 16.0, d1 = 3.0, d2 = 10.0, d3 = 3.0, d = 0.06, l = 0.6,
h = 0.4; z = −L1 (z1 = 0) and z = 0 (z2 = 0) are virtural boundaries. Reproduced courtesy of The
Electromagnetics Academy
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switch is locked); and
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Reproduced courtesy of The
Electromagnetics Academy

6 High-Power Short Pulses Compression: Analysis and Modeling 353



By analyzing the resonant peaks of the spectral amplitudes ~Ex g1; k; �Tð Þ�� ��
(~Ex g; k; �Tð Þ $ Ex g; tð Þv t � �Tð Þ; see the formula (6.4)) of the freely oscillating field
U g; tð Þ; g 2 Xint, t[ �T ; determine seven values of k � Re�kstor (Fig. 6.13),
choosing one of them as a working frequency for the compressor. Here, as before,
Re �kstor is a real part of the complex-valued eigenfrequency �kstor that corresponds to
a high-Q free oscillation in the storage unit with a locked switch. The refined value
of Re �kstor, the oscillation pattern, and its quality factor can be found by exciting the
compressor by a narrow-band Gaussian pulse

Ui 1ð Þ
1 g; tð Þ : v1;1 �L1; tð Þ ¼ exp � t � ~T


 �2.
4~a2

h i
cos ~k t � ~T


 �� �
v �T � tð Þ ¼ F3 tð Þ;

~k � Re �kstor; ~a ¼ 20; ~T ¼ 100; �T ¼ 200; g ¼ y; zf g 2 X1

ð6:16Þ

and then studying the behavior of the functions Ex g2; tð Þ; t[ �T ; where g2 2 Xint is
the point at the oscillation antinode (the relevant methodology is described in [12–
14]). In Fig. 6.13, the peak marked ‘6’ corresponds to the TE0;1;12-oscillation (see
Fig. 6.14b). Its Q-factor Q � 6600 (Re �kstor � 3:953; Im�kstor � �0:0003Þ is suffi-
cient to construct the compressor.
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Fig. 6.13 Excitation of compressor by broadband pulse: a field pattern of Ex(g, t) at t = 902;
b spectral amplitudes jfExðg1; k; TÞj of free-oscillating field in antinodal point g1
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To get complete information on the accumulation modes that can be realized
in the compressor (see Fig. 6.15), calculate the eigenfrequencies �kstor ¼
Re �kstor þ i Im �kstor for H0;1;12-oscillations in the storage units with various dimen-
sions of the coupling window between the feeder and the resonator and then excite

each structure by a long quasi-monochromatic TE01-pulse U
i 1ð Þ
1 g; tð Þ : ~k ¼ Re �kstor.

It is clear that the functions u11 �L1; tð Þ and u12 0; tð Þ (the space-time amplitudes of
the pulsed TE01-waves outgoing into the waveguides X1 and X2) determine the
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Fig. 6.14 Excitation of compressor by narrowband Gaussian pulse (6.16) with varying central
frequency ~k ¼ Re�kstor: a ~k ¼ 3:85 (fifth point in Fig. 6.13b); b ~k ¼ 3:95 (sixth point),fExðg2; k; TÞ $ Exðg2; tÞvðt � TÞ; c ~k ¼ 4:04 (seventh point). All field patterns are at t = 210.5
(free oscillation, Ex(g, t)-component). Reproduced courtesy of The Electromagnetics Academy
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efficiency of energy accumulation caccum tð Þ at each moment of time from the
interval 0\t\3000; while the function Ex g2; tð Þ specifies the amplitude of the
signal obtained as a result of compression, the rate of its rise, and its limiting values.
From the behavior of these functions, one can easily estimate the limiting duration
Ti 1ð Þ of the input pulse. Exceeding this value will result in substantial reduction in
the compressor efficiency, and the amplitude of the compressed pulse will not gain
even a slight increase.
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Fig. 6.15 Excitation of compressor with varying size of coupling window by long

quasi-monochromatic pulse Uið1Þ
1 ðg; tÞ: v11ð�L1; tÞ ¼ F1ðtÞ; eT ¼ 1:0; PðtÞ : 0:1� 5� 3000�

3004:9; T ¼ 4500 with varying central frequency ~k: a a ¼ 0:4; ~k ¼ 3:953; b a ¼ 0:36; ~k �
3:9546; c a ¼ 0:32; ~k � 3:95625; d a ¼ 0:28; ~k � 3:9575: Reproduced courtesy of The
Electromagnetics Academy
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When the size of the coupling window is fixed (i.e., fixed quality factor of the
storage resonator), the accumulation efficiency depends only on the duration of
the accumulation mode. The behavior of this non-monotonic dependence is almost the
same for high-Q and low-Q resonators. The growing quality factor will cause the signal
amplitude and the time, required to obtain the same value of caccum , to increase. As
we can see, when constructing an electromagnetic model of a compressor, one
should take into consideration and critically estimate a great body of options.

Let us consider in greater detail the compressor whose size of the coupling
window is a ¼ 0:32 (see Fig. 6.15c; Re �kstor � 3:95625Þ. Even with a slight
deviation of the central frequency ~k of the input pulse from the value ~k ¼ Re �kstor,
the compressor may lose its ability to accumulate energy, Fig. 6.16. Even 0.01%
error in ~k may turn the storage unit to an ordinary reflecting inhomogeneity.

We have chosen the TE0;1;12-oscillation as a working oscillation; the working
frequency of the compressor is kwork ¼ 3:95625 � Re�kstor, its Q-factor is Q �
7912:5 (Im�kstor � �0:00025Þ Let us excite the structure by a long

quasi-monochromatic TE01-pulse Ui 1ð Þ
1 g; tð Þ : v1;1 �L1; tð Þ ¼ F1 tð Þ; ~k ¼ kwork,

P tð Þ : 0:1� 5� 10100� 10104:9; ~T ¼ 1:0: Let us also set the following operating
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Fig. 6.16 Influence of central frequency ~k of incident TE01-pulse ðUið1Þ
1 ðg; tÞ : v11ð0; tÞ ¼

F1ðtÞ; eT ¼ 1:0; PðtÞ : 0:1�5�5000�5004:9; T ¼ 6000Þ on compressor’s ability to accumulate
energy: a central frequency coincides with working frequency: ~k ¼ kwork ¼ 3:95625; b central
frequency is slightly different: ~k ¼ 3:953: Reproduced courtesy of The Electromagnetics Academy
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regime for the switch (Fig. 6.12): during the time period until t ¼ 10000 the switch
is locked, for the moments of time t[ 10001 it is open, and in the time interval
10000� t� 10001 the specific conductivity of the gas in the discharge tubes varies
from r tð Þ ¼ 5:7 � 104 to r tð Þ ¼ 0:

In Table 6.1 are given the energy accumulation efficiency caccum tð Þ and the

relative field-intensity level a tð Þ ¼ max
0\s� t

Ex g2; sð Þj j
�

max
s[ 0

Ex g2; sð Þj j at the working
oscillation antinode for different times (see also Fig. 6.17a–c).

The energy accumulation is completed and the accumulated energy is released at
t ¼ Ti 1ð Þ ¼ 10000; a high-power short pulse crosses the boundary C2 in a time
Ts 2ð Þ � 10025:5� 10004 ¼ 21:5 (Fig. 6.17d). The degree of compression is b ¼
Ti 1ð ÞTs 2ð Þ � 465; the efficiency is c ¼ Ws 2ð Þ 10004; 10025:5ð ÞWi 1ð Þ 0; Ti 1ð Þ
 � �
0:6238; the power gain is h ¼ b� c � 290: The output pulse duration Ts 2ð Þ is
somewhat greater than the double length of the storage unit (see Fig. 6.11), what is
predictable since the unlocked storage unit is not a resonant structure.

Notice that on the interval 10004\t\10025:5 the amplitudes of the function
Ps 2ð Þ tð Þ are 325 and 16250 times greater than the maximal amplitudes of the
functions Pi 1ð Þ tð Þ and Ps 2ð Þ tð Þ on the interval 0\t\10000: The compressor effi-
ciency is slightly below the accumulation efficiency caccum Ti 1ð Þ
 �

since a part of the
accumulated energy is distributed among a short intense spike in the reflected signal
(see Fig. 6.17) and the tail of the main pulse.

From the value of kwork ¼ 3:95625 rad=m we determine the working wavelength
kwork � 1:588m of the compressor whose storage unit is of length d2 ¼ 10:0m
(Fig. 6.11). The accumulation time required to obtain those characteristics is
33:3564 ls; the pulse duration is 71:7163 ns: It should be noted that the results can
be easily extended to any other geometrically similar structures. Thus, for example,
the working wavelength kwork � 8mm requires the storage unit 50:38mm in length
and 168:042 ns of the accumulation time. The duration of the pulse formed by such
a compressor will be 361:291 ps:

6.4 Radiation of High-Power Short Pulses

Almost any paper on microwave energy compression focuses on the design of a
compressor as a whole [2, 19] or its (isolated) components [40, 41], on the gen-
eration of compressed pulses [42, 43], or, rarely, on the details of the energy
accumulation [2, 15]). However, the design of a compressor and the generation of
high-power short pulses are just one aspect of the problem. In most of applications,

Table 6.1 Energy
accumulation efficiency at
different observation times t

t = 2500 5000 7500 10000

caccumðtÞ � 0.691 0.8 0.736 0.637

aðtÞ � 0.509 0.774 0.906 0.981
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an output pulse has to be transmitted to a load without significant distortion [27, 44]
or to an antenna to be radiated [45, 46]. Propagation of a compressed pulse through
waveguides is quite easy for study and understanding. However, the topic of
radiation of compressed pulses is practically untouched. This section is intended to
fill this gap.

The output of a microwave compressor is a high-power short pulse. The
bandwidth of the compressed pulse is determined mostly by the spectral content of
the input pulse and by the dynamics of energy accumulation and release processes.
Since the compressor is a resonant device, the bandwidth of the compressed pulse is
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Fig. 6.17 Accumulation and release of energy (a = 0.32): a instantaneous power of excitation;
b instantaneous power of wave reflected back into X1; c Ex(g, t) in antinodal point g2;
d instantaneous power of compressed pulse. Reproduced courtesy of The Electromagnetics
Academy
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not wide. No specially designed antenna is required to efficiently radiate a com-
pressed pulse; in other words, one can use even simple antennas [7, 16, 26, 36, 47]
to radiate a compressed pulse with low distortion. The corresponding antenna arrays
can be used in specific applications.

The contributions of this section are twofold. First of all, it studies radiation of a
short pulse from a monopole antenna mounted on a ground plane. The purpose of
this study is to demonstrate that compressed pulses can be efficiently radiated by
simple antennas. Besides, a novel array design is presented; each of the array
elements combines a compressor and a radiator. The proposed design allows one to
eliminate the feeder line between the compressor and the radiator and thus reduces
the overall size and weight of the array. It also reduces the pulse distortion and
absorption loss since the distance covered by the pulse in lossy and dispersive
waveguides is reduced. Additionally, the proposed design has the advantage of
compressing the pulse right before it is radiated. Therefore, one can use array
components that do not necessarily designed for working with high power.

6.4.1 Radiation of Compressed Pulses by Simple Antennas

In this section, characteristics of a simple monopole antenna, which is mounted on
an infinite ground plane and excited by a compressed pulse, which is an output of
axially symmetric compressor (see Sect. 6.3.2), are studied. These studies are
carried out in two steps. First, the characteristics of the monopole, namely the
frequency-domain radiation efficiency and the power and pulse patterns, are
obtained under a broadband excitation to observe all possible modes of operation.
The interesting features of the obtained characteristics are pointed out. Then, the
geometry of the monopole antenna is modified so that the antenna can be joined to
the output waveguide of the axially symmetric compressor from Sect. 6.3.2, and the
characteristics of the modified monopole under the compressed pulse excitation are
studied.

The geometry of a monopole mounted on an infinite ground plane is shown in
Fig. 6.18a. The antenna represents an elongated inner conductor of a coaxial
waveguide over an infinite flange. Its geometrical dimensions are set as a1 ¼ 1:0;
b1 ¼ 0:3; and d ¼ 1:57: The electromagnetic wave transformations in this structure
are described by the 2-D initial boundary value problem (6.11a, 6.11b, 6.11c),
where in this case 0�#� 90�. To calculate the electrodynamic characteristics of
the monopole in a wide frequency band, the monopole is illuminated by a broad-
band pulse. Since the output of the axially symmetric compressor is a TEM-mode
pulse, the monopole is excited by a wideband pulse of the same type. The excitation

is implemented by setting Ui 1ð Þ
0 g; tð Þ : vq01 �L1; tð Þ ¼ F2 tð Þ; �T ¼ 100; L1 ¼ 0:5;

T ¼ 150 and ~k ¼ 8; Dk ¼ 7:5; ~T ¼ 30 (for the results presented in Fig. 6.18) or
~k ¼ 15; Dk ¼ 10; ~T ¼ 25 (for the results presented in Figs. 6.19 and 6.20). These
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signals occupy the frequency bands 0:5� k� 15:5 and 5:0� k� 25:0; within
which the monopole exhibits the following behavior [7, 26].

The frequency-domain radiation efficiency, g kð Þ; grows monotonically from
zero to �g1 � 1 within the frequency band 0\k\�K1 (see Fig. 6.18c). The first local
maximum �g1 of the function g kð Þ occurs at k ¼ �K1, which approximately corre-
sponds to k ¼ 4d; the second local maximum �g2 occurs at k ¼ �K2, which
approximately corresponds to 3k ¼ 4d: It is obvious that the peaks are associated
with the quarter-wave resonances. The first local minimum g

1
of the function g kð Þ

occurs at k ¼ K1, which approximately corresponds to k ¼ 2d; the second local
minimum g

2
occurs at k ¼ K2, which approximately corresponds to k ¼ d: Clearly

the minima are associated with the half-wave resonances.
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For the frequencies k[ kþ
21 � 8:93 (kþ

n1 are the cut-off frequencies of TM0n-
waves in the waveguide X1), the frequency-domain radiation efficiency g kð Þ is
close to one. The normalized power pattern, D #; k;Mð Þ; changes smoothly with
increasing k; and its main lobe is gradually getting narrow and finally reaches the
stable direction of �# kð Þ\10� (see Figs. 6.18 and 6.19a).

In the frequency band k\kþ
11 (single-wave range) and at the beginning of the

double-wave range, the function D #; k;Mð Þ changes abruptly in the vicinities of the
points k ¼ Kn: the main lobe gets much closer to the z-axis and becomes narrower,
and then smoothly turns back in the direction of large # (Fig. 6.18a, b). This means
that a pulse could be strongly distorted if its central frequency coincides with any of
the frequency points Kn.

For 0\k\K1 (relatively low frequencies), the radiated waves propagate
transversely to the axis of symmetry (z-axis, see Fig. 6.18a, b). Hence, this mode of
operation allows using a monopole as a feeding element for planar structures and
paracylinder pulsed antennas.

The power patterns D #; k;Mð Þ on the boundary of the near-field zone
(Fig. 6.18a: M ¼ L ¼ 8:0Þ, in the intermediate-field region (Fig. 6.19a: M ¼ 30Þ,
and in the far-field zone (Fig. 6.18b: M ¼ 1) differ moderately.

The pulse Ui 1ð Þ
0 g; tð Þ; whose spectral amplitudes are non-zero only for k[ kþ

11 , is
radiated without forerunner pulse, and its low-amplitude tail cannot compete with
the main pulse (see the pulsed pattern Dpuls #; t; 30ð Þ in Fig. 6.19b). The time-
domain radiation efficiency n Tð Þ is higher than 0.97. The radiated signal is well-
focused and propagates in the direction of �#; which is determined by the central

frequency ~k of the pulse Ui 1ð Þ
0 g; tð Þ: the larger ~k corresponds to the smaller �# (see

Fig. 6.19b, c, where ~k ¼ 15 and �# � 7�).
The spectral amplitudes of the signal Ui 1ð Þ

0 g; tð Þ in the band kþ
11 \ k\ kþ

21 are
comparable with those in the band k[ kþ

21 , but the shape of the radiated pulse only
partially replicates the shape of the primary signal (Fig. 6.20). Most of the
low-frequency spectral components are scattered in the sector �#þ 5� \#\ 50�

(Fig. 6.19). For the primary signal Ui 1ð Þ
0 g; tð Þ; which is free from those components,

a monopole turns into a near-perfect antenna, whose efficiency is n Tð Þ � 0:98: The
radiated pulse is well-focused and retains the shape and the spectral composition of
the primary signal.

Part of the information and reasoning presented above might be considered as
predictable or well-known, but when collected together, they provide a deep insight
into the physics of wave radiation from monopole antennas.

Let now a monopole antenna mounted on an infinite ground plane is fed by the
output signal of the axially symmetric microwave compressor that was designed in
Sect. 6.3.2. Recall that the output pulse here is the short high-power TEM-pulse
U g; tð Þ ¼ Us 2ð Þ g; tð Þ ¼ u02 z; tð Þl02 qð Þ (g ¼ q; zf g 2 X2), which was released into
the coaxial output waveguideX2 (see Fig. 6.10). The central frequency of this pulse is
~k ¼ 2:723; its bandwidth is in the band 2:5� k� 2:9; and its duration is Ts 2ð Þ � 21:
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The radii of the inner and the outer conductors of the waveguide X2 are 0.9 and 1.56,
respectively.

The modified monopole antenna (see Fig. 6.21a) is designed from the simple
monopole studied above. The feeding waveguide X1 of this antenna is interfaced
with the coaxial waveguide X2 of the compressor (a1 ¼ 1:56; b1 ¼ 0:9Þ. The
radiator replicates (a one-third scale model) the geometry of the monopole, whose
characteristics are presented in Figs. 6.18, 6.19, 6.20 (cþ b1 ¼ 3:0; d ¼ 4:71Þ. The
modified monopole antenna is excited by the compressed pulse Ui 1ð Þ

0 g; tð Þ:
vq01 �L1; tð Þ ¼ uq02 0; tþ 3980ð Þ; t[ 0; �T ¼ 100; T ¼ 150: Its time signature is
shown in Fig. 6.21b.

Taking into account the frequency band k ¼ ~k 	 0:2 ¼ 2:723	 0:2 of the com-
pressed pulse and studying the data associated with the band k ¼ 3~k � 8:17	 0:7 in
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Figs. 6.18, 6.19, 6.20 (the threefold increase in frequency is caused by the changes in
the monopole geometry), one can state with confidence that the efficiency and the
directivity of radiation from the modified monopole will be rather high. The simu-
lation data fully confirm this statement (see Figs. 6.21c and 6.22): the time-domain
radiation efficiency is n Tð Þ � 0:981; the frequency-domain radiation efficiency
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varies from g ¼ 0:965 (at k � 2:87Þ дo g ¼ 0:999 (at k � 2:6Þ, the direction of the
main lobe of the pulsed pattern is �#puls � 15� and the half-amplitude beamwidth of
this lobe is #puls; 0:5 � 13� (see Fig. 6.22). The weak side lobe (# � 45�) is caused by
the radiation of the undamped TM01-mode, which is excited in the wider coaxial
waveguide when k[ 1:47:
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Fig. 6.21 a Geometry of modified monopole (d1 = 1.0, d2 = 2.0, L1 = 2d1 + d2); b time

signature of input (compressed) pulse: amplitude of Eρ-component of TEM-wave Uið1Þ
0 ðg; tÞ on C1;

c field patterens of H/ðg; tÞ; g 2 Xint: Reproduced courtesy of The Electromagnetics Academy
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In conclusion of the discussion, we point to the result [36], which makes
important additions to the traditional understanding of the characteristics that can be
achieved by using simple monopole antennas. Transverse quarter-wave groove in
the extension of the central conductor of the feeding line (see Fig. 6.23, where the
groove width is 0.06, the groove depth is 0.36; the plane z ¼ 0:2 bisects the groove)
significantly changes the behaviour of the function g kð Þ in the vicinity of the point
k � 1:3; which corresponds to the first half-wave resonance along the monopole
length d: Here, in accord with the notation of Fig. 6.18a, a1 ¼ 1:0; b1 ¼ 0:4;
d ¼ 2:5; and L1 ¼ 0:5Þ.
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efficiency. Field pattern for H/ðg; tÞ; excitation by quasi-monochromatic TEM-waves with central
frequencies ~k ¼ 1:27 (c–maximal radiation efficiency) and ~k ¼ 1:38 (d–antenna ‘blindness’)
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The patterns D #; k;1ð Þ for the radiators with a groove and without it
(Figs. 6.18b and 6.23a) are almost the same. The only distinction is the presence of
side lobes in the radiation field of the modified antenna in the vicinity of the second
quarter-wave groove resonance (k � 6:15Þ. The values of D #; k;1ð Þ for these
lobes are less than 0.3 (for the lobe with the lower value of �#Þ and 0.4.

The groove position with respect to the plane z ¼ 0 is an important parameter in
the control of the basic radiator characteristics. For example, if the groove is shifted
along the z-axis for a distance of 1.2, then the radiation efficiency would fall to 35%
at k � 1:28 and would grow to 100% at k � 1:42: The distinctions in the radiation
characteristics are caused basically by the phase difference between the oscillation
in the groove and the wave guided by the monopole. It is easily observable from the
spatial distributions of the function H/ g; tð Þ in Fig. 6.23c (maximal radiation effi-
ciency; zero phase difference) and in Fig. 6.23d (minimal radiation efficiency;
opposite phases).

Even though the results presented in this section show that a monopole antenna
can be used efficiently for radiating short pulses, more complex antennas or antenna
arrays might be needed for solving some specific problems. More directive radia-
tion patterns can be obtained using advanced antennas such as horn-type or reflector
antennas, or arrays of the elements of this kind [4, 7, 26]. In the next section, the
radiation of compressed pulses from phased antenna arrays is discussed and a new
design, where each of the array elements is constructed by combining a radiator and
a microwave compressor, is proposed.

6.4.2 Novel Antenna Array Design with Combined
Compressor/Radiator Elements

Analysis and design of phased antenna arrays [48] are based basically on the
methods and results of grating theory. To calculate actual constructions, rather
universal and reliable 3-D models are required. However, many vital issues, in
particular, questions associated with the physics of wave transformation in phased
antenna arrays, can be successfully resolved using 2-D models. Below a series of
such problems are considered basing on the approaches and results of the previous
sections and book [4].

In [4], a 2-D phased array (see Fig. 6.24: a planar model contains 13 radiating
elements being excited by TE01-waves of rectangular feeding waveguides) was
designed, whose radiation efficiency garray kð Þ in the frequency band 168� k� 251
(f ¼ 8 12GHz; k ¼ 2p=k ¼ 2p

ffiffiffiffiffiffiffiffiffi
e0l0

p
f Þ and for the scanning sector

45� �/� 135� does not fall below 0.9.
The function garray kð Þ obviously extends g kð Þ to the case of compact grating

structures with more than one feeding waveguides. The width /0:5 kð Þ of the main
(and actually the sole) lobe of the pattern for this phased array varies from 7:0�

(k ¼ 251; �/ ¼ 90�) to 13:9� (k ¼ 168; �/ ¼ 90� 	 45�), while its directivity �/ kð Þ
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fully complies with the expected one: �/ kð Þ ¼ 75� for Dt ¼ sin 15�ð Þl � 0:36;
�/ kð Þ ¼ 60� for Dt ¼ sin 30�ð Þl � 0:7; and �/ kð Þ ¼ 45� for Dt ¼ sin 45�ð Þl � 0:99:
When operating in the pulse mode and for Dt ¼ sin �a0ð Þl; the beam associated
with the zeroth spatial harmonic of the infinite grating goes away from the grating at
an angle of a0 [4]. The angle a0 ¼ /� 90� is measured from the z-axis anti-
clockwise; l is the grating period. The value Dt is the delay in the excitation of the
radiating elements such that if the first grating element is excited by the wave

Ui 1ð Þ
1 y; z; tð Þ; then the second one is excited by the wave Ui 2ð Þ

1 y; z; tð Þ ¼
Ui 1ð Þ

1 y� l; z; tþDtð Þ; and so on.
Let us modify the grating investigated in [4] in such a way that having the period

of l ¼ 1:4; it can form and directionally radiate high-power short pulses in the
frequency band 1:68� k� 2:51: Taking into account a hundred-fold reduction in
the frequency (as compared with the prototype from [4]) and the necessity of
building the resonance storage unit in the antenna-feeder path, choose the radiating
element whose geometry is shown in Fig. 6.25a.

Following the technique presented in the previous section, let us excite the
radiator by the TE01-pulse that occupies the frequency band of interest. From the
behavior of the spectral amplitudes ~u11 �L1; k; 250ð Þ $ u11 �L1; tð Þv t � 250ð Þ of
the signal Us 1ð Þ g; tð Þ; t� 250 outgoing into the rectangular virtual waveguide X1

(see Fig. 6.25b and [12–14]) determine the frequency corresponding to a high-Q
free oscillation in the storage unit: k � Re �kstor � 2:329: Exciting the storage res-

onator with a quasi-monochromatic signal Ui 1ð Þ
1 g; tð Þ: v11 �L1; tð Þ ¼ F3 tð Þ; ~k ¼

2:329; ~a ¼ 22; ~T ¼ 100; �T ¼ 200 (a narrow-band Gaussian pulse) and then ana-
lyzing the behavior of the function U g; tð Þ; t[ 200 at the antinode (Fig. 6.26), we
determine the mode of oscillation (TE0;1;3), the imaginary part of its
complex-valued eigenfrequency (Im�kstor � �0:00095Þ and the Q-factor
(Q � 1225:8Þ.

Some data for the radiating element operating in the accumulation mode are
presented in Fig. 6.27 and in Table 6.2.

Here as before caccum tð Þ is the energy accumulation efficiency over the interval
0; tð Þ; while a tð Þ defines the relative level of the field strength at the antinode of the
working oscillation. For t� 4500; the function a tð Þ reaches one: a tð Þ � 1: There is

Fig. 6.24 Geometry of 2-D
phased array
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no point in further accumulation of energy. For T i 1ð Þ [ 4500; the device efficiency
drastically decreases, while the amplitude of the compressed pulse is no longer
growing. Notice that the data in Tables 6.1 and 6.2 correlate well. With different
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Fig. 6.25 a Geometry of radiating element: a1 = 1.32; b = 3.6; c = 2.0; d = 1.0; L1 = 4.8; thickness
of metal walls is 0.08; the diaphragm thickness is 0.04; size of the diaphragm window is 0.28;
permittivity of dielectric parts is e ¼ 2:5 everywhere including the lock, for which rðtÞ ¼ 5:7 � 104
in accumulation mode and rðtÞ ¼ 0 in release mode. b Excitation by TE01-wave Uið1Þ

1 ðg; tÞ ¼
v11ðz; tÞl11ðyÞ : v11ð�L1; tÞ ¼ F2ðtÞ; ~k ¼ 2:1; eT ¼ 100; T ¼ 200; T ¼ 1000: Reproduced cour-
tesy of The Electromagnetics Academy
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Fig. 6.26 Excitation by quasi-monochromatic TE01-wave: a field pattern of Ex(g, t) at t = 250
(free oscillation mode); b Ex in g1. Reproduced courtesy of The Electromagnetics Academy
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resonators, working oscillation modes, working frequencies, and quality factors, the
parameters of the accumulation processes calculated for those portions of the t-axis,
where the functions Ps 1ð Þ tð Þ (u11 �L1; tð ÞÞ behave qualitatively the same, are close.
This observation provides the means of controlling the compressor operational
parameters.

Let us consider the accumulation mode with Ti 1ð Þ � 3000 and excite the radiator
with the storage unit and the plain radiator (Fig. 6.28) by a long
quasi-monochromatic pulse

Ui 1ð Þ
1 g; tð Þ : v11 �L1; tð Þ ¼ F1 tð Þ;
~k ¼ kwork ¼ 2:329; P tð Þ : 0:1� 5� 3095� 3099:9; ~T ¼ 1:0:

ð6:17Þ

The conductivity of the switch, the piecewise linear function r tð Þ; equals 5:7 �
104 for t� 2994 and is zero for t� 2995: At the instant of time t ¼ Ti 1ð Þ ¼ 2995; a
high-power short pulse is released and passes the point g ¼ g2 in a time Ts 2ð Þ �
3015� 3000 ¼ 15 (see Fig. 6.28a). The degree of compression is equal to b ¼
Ti 1ð ÞTs 2ð Þ � 199:7; the efficiency is c � 0:608; the power gain is h ¼ b� c �
121:4: In the interval 3000\t\3015; the amplitude of the compressed pulse
passing the point g ¼ g2 is 13 times greater than the amplitude of the uncompressed

Table 6.2 Energy
accumulation efficiency at
different observation times t

t = 750 1500 2250 3000 4000

caccumðtÞ � 0.74 0.81 0.72 0.61 0.49

aðtÞ � 0.52 0.78 0.90 0.96 0.99
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Fig. 6.27 Excitation in
accumulation mode by long
quasi-monochromatic pulse

Uið1Þ
1 ðg; tÞ: v11ð�L1; tÞ ¼

F1ðtÞ; ~k ¼ 2:329; PðtÞ: 0:1�
5� 4000� 4004:9; eT
¼ 1:0; T ¼ 4000. The
instantaneous a input and
b output power on the
boundary C1 c the electric
field strength at the point
g = g1. Reproduced courtesy
of The Electromagnetics
Academy
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pulse. The compressor efficiency is somewhat below the accumulation efficiency
caccum Ti 1ð Þ
 �

; since a part of the accumulated energy falls on the pulse tail (see the
function Ex g2; tð Þ for t� 3015 in Fig. 6.28a).

To simulate the shaping and directional radiation of short high-power pulses,
compose a grating of 13 identical radiators. The grating period is l ¼ 1:4: Let the

first radiator is fed by the wave Ui 1ð Þ
1 y; z; tð Þ (see the formula (6.17)), the second one

—by Ui 2ð Þ
1 y; z; tð Þ ¼ Ui 1ð Þ

1 y� l; z; tþDtð Þ; Dt ¼ sin �a0ð Þl; a0j j\45�, and so on.
The first radiator is released at t ¼ t1 ¼ 2995; the second one—at t ¼ t2 ¼ t1 þDt;
and so on. The energy accumulation in each of the elementary radiators lasts for
equal time intervals. The numerical results for Dt ¼ sin 30�ð Þl � 0:7 are presented
in Fig. 6.29. The amplitudes of the pulse with a near-flat front are somewhat greater
than the amplitudes of the pulses formed by isolated elements. These pulses are of
the same duration. The radiation directivity is very high, the width of the main lobe
of the pattern (�/ kð Þ � 60�) does not exceed the value /0:5 ¼ 8:3� in the frequency
band occupied by the pulse. As the value Dt ¼ sin �a0ð Þl changes within the range
0� Dtj j � 0:99; the scanning sector of the high-power short pulse in the half-space
z[ 0 is a0j j � 45�.

6.5 Compression of Frequency-Modulated
Electromagnetic Pulses in Hollow Waveguides

The idea of passive compression of radio-frequency pulses has been formulated
long ago (see, for example, [49–54]). If a section of a dispersive waveguide is fed
by a pulse modulated in frequency and amplitude according to a certain law, then it
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Fig. 6.28 Radiation of a compressed and b uncompressed pulses under excitation by long
quasi-monochromatic pulse (6.17). Reproduced courtesy of The Electromagnetics Academy
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is possible to make all the frequency components of the pulse to arrive in-phase and
simultaneously at a certain point. It would be accompanied by an increase in the
pulse amplitude and a decrease in its length. The main theoretical problem which
should be solved in this situation is to determine the law of amplitude and fre-
quency modulation of the input pulse.

Despite the apparent simplicity of this problem and a great number of theoretical
and experimental studies on the subject [49–58], the results to date seem to be
rather modest. For example, the attained compression factor (degree of compres-
sion), i.e., the input-to-output pulse length ratio, is several tens at best. The progress
observed in the field over the last fifty years concerns basically the transition to
shorter wavelengths rather than increasing the degree of compression. This situation
may be explained by the inadequate efficiency of mathematical models, which

3000 3040 3080 t

  10 

    0 

–10 

  10 

    0 

–10 

  10 

    0 

–10 

3,xE g t

4 ,xE g t

5 ,xE g t

0.3 0.5

0.5 0.30.1
0.7 0.9

2.328 2.330  k

90 

75 

60 

45 

30 

(a) 

(b) 

, ,D k

30

3g 4g 5g

z

y

Fig. 6.29 Compression and radiation by the grating of 13 elements. a Field pattern of Ex(g, t)
ðg 2 Xint; t ¼ 3014Þ and Ex(g, t) in near-field zone. b Directional pattern in frequency band of

primary pulse Uið1Þ
1 ðg; tÞ

372 V. Pazynin et al.



precede full-scale physical experiments. In our opinion the main shortcoming of the
works we are familiar with is explicit or implicit use of the so-called kinematic
approximation (see, for example, [58]), in the context of which the input pulse is
represented (often purely conceptually) as a continuous chain of particles (wave
packets) each entering the dispersive element of a compressor with its own time
delay. Assuming (without any foundation) that the frequency dependencies of the
particle speed and of the electromagnetic wave group velocity in a waveguiding
section of a compressor coincide, the kinematic equations of motion are used to
determine both the time delays, i.e., the law of frequency modulation of the input
pulse, and the optimum length of the dispersive element, i.e., the distance that
particles pass to meet at one point. Undoubtedly, the kinematic representation
describes qualitatively physical processes in a compressor. However, as shown
below, it proves to be a very crude approximation and is unsuitable for rigorous
modeling and design.

In this section the possibility of pulse compression in regular homogeneous
waveguides of arbitrary cross-section is discussed. The main advantages of the
approach we have developed are the use of rigorous methods for calculating
electrodynamic characteristics and accurate numerical experiments, whose results
can be replicated in actual devices. The main idea for determining the required
modulation law is in solving first an inverse problem. If we know the pulse shape to
be obtained, then applying this pulse to the output of the dispersive system and
changing the time variable t by −t, we obtain the required input pulse. Once the
time profile of the input signal is found, there is no problem to determine its
modulation law. Such numerical experiments were first suggested in paper [59].
The approach is universal and can be easily applied to any dispersive medium (at
least linear one) or waveguiding systems.

6.5.1 Transport Operators for Regular Waveguides

The well-known dependence of the relative group velocity vn kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kþ

n


k


 �2q
on the frequency k [60] suggests that the compression of frequency-modulated
pulses can be observed even in simple dispersive systems like regular waveguides.
Here kþ

n is the cutoff frequency of the nth mode. For numerical simulation of this
effect the robust and efficient algorithm is required, which is capable to calculate
transformations of the time profile of a pulsed nth mode during its travel through a
waveguide. Works [1, 3, 6, 7, 21–23] introduce the transport operators in two
arbitrary cross-sections of a hollow regular semi-infinite waveguide with perfectly
conducting walls. One of the operators for the space-time amplitudes un z; tð Þ of any
longitudinal or transverse component of the nth waveguide mode is the formula (5.
198) in Chap. 5:
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un z; tð Þ ¼ �
Z t

0

J0 an t � sð Þ2�z2
� �1=2� 	

u0n 0; sð Þds; t� 0: ð6:18Þ

From (6.18) it follows [1, 3, 7] that

un 0; tð Þ ¼ �
Z t

0

J0 an t � sð Þ½ �u0n 0; sð Þds; t� 0 ð6:19Þ

and

	 @

@ z
þ @

@ t

� 	
un z; tð Þ

����
z¼0

¼ �an

Z t

0

J1 an t � sð Þ½ � t � sð Þ�1un 0; sð Þds; t� 0:

ð6:20Þ

Here, u0n a; tð Þ ¼ @un z; tð Þ=@zjz¼a ; Jm . . .ð Þ are the Bessel functions; z is supposed
to be the longitudinal axis of a waveguide and the upper and the lower signs
correspond to the waves propagating toward increasing and decreasing z; respec-
tively. Magnitudes of the transverse eigenvalues an depend on a waveguide type
and the wave polarization and can be calculated analytically for waveguides with
simple cross-section geometry. The values of an (that are equal to knj ) for
parallel-plate, circular and coaxial waveguides are given in Sects. 6.2.1 and 6.2.2.
The transverse eigenvalues an for waveguides with more complex geometry can be
determined numerically.

The transport operators are exact in the sense that they strictly follow from the
Maxwell’s equations. For this reason, they can be used with no restrictions when
investigating the transformation of a pulse with arbitrary waveform during its travel
through a waveguide. In particular, the signal spectrum can be different from zero at
frequencies above and below the cutoff point [24]. This property is of the highest
importance in numerical experiments. Any inaccuracy in calculating the time
dependence of the input signal, which gives rise to spectral components below the
cutoff point, is not disastrous for algorithms implementing EACs like (6.18)–(6.20).
All such components are damped rapidly as the pulse propagates along a
waveguide.

Now let us formulate the main steps of the algorithm of recalculation of the
time-dependent profile un 0; tð Þ from the reference cross-section z ¼ 0 onto the
arbitrary waveguide cross-section z: Let the initial signal un 0; tð Þ be specified within
the interval 0� t� T 0ð Þ; and the output signal is to be determined for the interval
0� t� T zð Þ; T zð Þ� T 0ð Þ: Since the function un 0; tð Þ is determined on a uniform
time grid with the step size �l; which is independent of the parameter an, it might
occur that the period TJ of the Bessel function oscillations in the convolutions of
(6.18)–(6.20) would be comparable with or even smaller than �l: For such values of
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an and�l it becomes impossible to calculate the relevant integrals exactly. To prevent
such situations, let us introduce a parameter j to control the accuracy of mesh
approximation of the Bessel function. If the inequality TJ


�l� j holds, then the

convolutions are calculated using the function un 0; tð Þ with the preset step size �l:
Otherwise, the function un 0; tð Þ is redefined on a grid with the mesh size small
enough. It has been found experimentally that to provide the acceptable accuracy, it
is sufficient to select j between 103 and 104. The value of TJ can be estimated using
the asymptotic formula [61]

Jm antð Þ �
ffiffiffiffiffiffiffiffiffi
2

pant

r
cos ant � mp

2
� p

4

� �
;

from which follows immediately TJ ¼ 2p=an:
The algorithm for recalculating the pulse waveform un 0; tð Þ ! un z; tð Þ includes

the following steps.

• Test the time step size �l to satisfy the condition TJ

�l� j.

• Calculate @un 0; tð Þ=@t over the interval 0� t� T 0ð Þ: To do this, we use the
five-point approximation formulas for the first-order differentiation [62].

• Calculate @un z; tð Þ=@zjz¼0 by the formula (6.20) for 0� t� T zð Þ: It is assumed
that un 0; tð Þ � @un 0; tð Þ=@t � 0 for T 0ð Þ\t� T zð Þ:

• Calculate un z; tð Þ by the formula (6.18) for the interval 0� t� T zð Þ:
One may often encounter difficulties calculating the convolution integrals during

implementation of the described algorithm. The direct use of the trapezoid rule, the
Simpson rule, etc. requires about O M2ð Þ (M is the dimension of the array to be
convolved) floating-point operations, which would make the formulas (6.18)–(6.20)
impractical for rather long pulses. To solve this problem, an algorithm has been
suggested in [5] for calculating such convolutions using the fast Fourier transform
(FFT) which requires only about O M logMð Þ operations. In [24] a modification of
this algorithm is presented which is faster and more efficient.

6.5.2 Pulse Compression in Regular Waveguides

Now consider the compression of frequency-modulated pulses in regular waveg-
uides by using the algorithm described in the previous section. A general scheme of
the relevant numerical experiment is as follows.

1. Select the pulse time profile to be obtained at the compressor output.
2. Solve the inverse problem. It is necessary to find the time profile at the given

distance z knowing the time profile of the pulse from step 1 at the cross-section
z ¼ 0 of the waveguide compressor.

3. Find the amplitude and frequency modulation laws for the pulse from step 2.
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4. Construct the pulse using the modulation laws from step 3 and changing the
time variable from t to �t:

5. Solve the direct problem. The pulse from step 4 is used to excite the structure,
and its time dependence at the distance z is to be determined.

The pulse waveform to be obtained is determined by the device application.
There are many options available for the initial pulse. We will use the pulse

un 0; tð Þ ¼ 4S tð Þ cos 6:25 t � 25ð Þ½ � sin 2:75 t � 25ð Þ½ � t � 25ð Þ�1; 0� t� 50;

S tð Þ ¼ x tð Þ½ �2 3� 2x tð Þ½ �; x tð Þ ¼
t=25; 0� t� 25

50� tð Þ=25; 25� t� 50

(
ð6:21Þ

which propagates in a regular homogeneous waveguide of arbitrary cross-section.
Here, un z; tð Þ is the amplitude of the nth waveguide mode. The function S tð Þ; which
is composed of two splines, is introduced for convenience of calculations. It is
intended for smoothing the source edges and allows more accurate calculation of
the time derivatives at the moments when the source switches on, t ¼ 0; and
switches off, t ¼ 50: The selection of such waveform is easily explainable. When
the switch-on and switch-off times go to minus and plus infinity, respectively, the
amplitude spectrum of the signal un 0; tð Þ tends to a constant level within the fre-
quency band k 2 6:25� 2:75; 6:25þ 2:75½ �; while outside of this band it vanishes.
Thus, the formula (6.21) can be considered as an approximate representation of the
Dirac delta-function, whose spectrum is uniform within the band �1\k\1. The
unique properties of the delta-function make it a key tool in theoretical electro-
dynamics and signal processing theory, in particular when investigating the pulse
responses of dynamic systems. Thus, it seems quite attractive to use its approximate
analog when simulating the operation of actual physical devices. The time step size
of a discrete representation of the function un 0; tð Þ is �l ¼ 0:002: The time depen-
dence of the function (6.21) and its amplitude spectrum are shown in Fig. 6.30.
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Fig. 6.30 a The pulse (6.21) and b its amplitude spectrum
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In order to solve the inverse problem, it is necessary to specify the waveguide
type and the operating mode. Since the waveguide type in the formulas (6.18)–
(6.20) is determined exclusively by the parameter an, it does not matter what
waveguide would be chosen for a dispersive system. The final result will be the
same for different waveguides with identical an. Thus, let us consider the trans-
formation of the TE01-mode (n ¼ 1Þ in a hollow parallel-plate waveguide of height
a ¼ 1:0: The obtained results can be easily extended (by scaling) to waveguides
with other transverse dimensions when needed. The cutoff frequencies of the
selected waveguide are kþ

n ¼ np; and the pulse’s spectrum (Fig. 6.30b) occupies
the single-mode and two-mode propagation range.

Figure 6.31a shows transformations of the pulse (6.21) during its propagation
along the waveguide at the distances z ¼ 100; z ¼ 1000 and z ¼ 10000 from the
reference cross-section z ¼ 0: With the selected scaling factor, the function
u1 z; tþ zð Þ oscillates so fast that the area occupied by the pulse seems to be
completely filled. More detailed information on these characteristics can be
obtained from the modulation laws below. As can be seen, the pulse length
increases almost proportionally to the distance traveled. Therefore, it is possible,
theoretically, to construct a compressor with an arbitrary large degree of com-
pression, by increasing the waveguide length unlimitedly. From the practical point
of view, it is pointless, as all characteristics of such compressor will be confined due
to loss in the walls.

Now let us find the laws of amplitude and frequency modulations (the functions
A tð Þ and k tð ÞÞ of the pulses u1 z; tþ zð Þ: The window Laplace transform (see also
(6.4)).

~f ðk; tÞ ¼
Z1
0

f ðsÞW s� tþ w
2

� �
eikrds ð6:22Þ

makes it possible to visually represent signal changes in the time-frequency coor-
dinates and to check the carrier frequency for uniqueness. Figure 6.32a, b show
results of applying the transform (6.22) to the initial function u1 0; tð Þ and to the
function u1 1000; tþ 1000ð Þ using the Hamming window [63] W tð Þ ¼ 0:54�
0:46 cos 2pt=wð Þ of the width w ¼ 8:0: Each spectrum in Fig. 6.32b has been cal-
culated for the respective position of the time window and normalized to one:

~f norm t; kð Þ ¼ ~f t; kð Þ
�

max
k

~f t; kð Þ:

The bold curve corresponds to ~unorm1 ¼ 1:0 and actually demonstrates the fre-
quency modulation law. However, it is not practical to apply the window transform
(6.22) for determining the exact time dependence of k tð Þ since it requires very small
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frequency step, two-coordinate interpolation formulas, etc. As a result, the com-
plexity of computer programs and the computation time increase.

In the present work, a simpler and more effective procedure was adopted instead
of finding simultaneously the frequency and amplitude modulation laws. First, the
sequences of zeros t01; t02; t03; . . .; t0N and extremes t1; t2; t3; . . .; tN�1 of the wanted
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function f tð Þ were determined within the given time interval T0; T1½ �: The zeros and
extremes were arranged according to the inequalities

T0 � t0;1\t1\t0;2\ � � �\t0;i\ti\t0;iþ 1\ � � �\t0;N�1\tN�1\t0;N � T1:

Then for every time point tj, the amplitude and frequency were calculated fol-
lowing the rule:

A tj

 � ¼ f tj


 ��� �� and k tj

 � ¼ p


t0;jþ 1 � t0;j

 �

:

If for further calculations the amplitude and frequency for the times other than tj
should be known, then the quadratic interpolation formulas are used. The numerical
experiments have proved that this way to estimate A tð Þ and k tð Þ is more efficient
than using the window Laplace transform as it provides more accurate results and
requires shorter computation time.

Finally, in order to recover the initial function f tð Þ uniquely from the found
modulation laws [64]

f recon tð Þ ¼ A tð Þ sin u0 þ
Z t

t0;1

k sð Þds

264
375; t0;1 � t� t0;N ; ð6:23Þ

it is also necessary to know the signal phase u0 at the initial time. Since the
reconstruction was performed for the interval t0;1; t0;N

� �
; we have f recon t0;1


 � ¼ 0;
and u0 ¼ 0 if f t1ð Þ[ 0; and u0 ¼ p if f t1ð Þ\0:
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The described algorithm of determining the modulation laws and recovering the
initial signal was applied to the pulses u1 z; tþ zð Þ with z ¼ 100; z ¼ 1000; and
z ¼ 10 000 (see Fig. 6.31a) and provided acceptable accuracy. Figure 6.31b shows
time dependences of the amplitudes (left scale) and frequencies (right scale) cal-
culated for these pulses. Figure 6.33 presents the time dependence of the absolute
error u1 1000; tþ 1000ð Þ � urecon1 1000; tþ 1000ð Þ of reconstruction of the signal
u1 1000; tþ 1000ð Þ: As can be seen, the error is three orders of magnitude smaller
than the value of the function itself (the integral in (6.23) was calculated numeri-
cally using the trapezoidal formula).

The presence of noticeable oscillations in the signal amplitude and frequency at
the distance z ¼ 100 from the reference cross-section (Fig. 6.31b) makes this pulse
unsuitable for practical use. At greater z the frequency modulation law is mono-
tonous. Such pulses are of greatest interest to study.

On the next step, the signal urecon1 z; tþ zð Þ (t0;1 � t� t0;N ) is used to reconstruct
the reversed in time signal

urecon �ð Þ
1 0; tð Þ ¼ urecon1 z; t0;N � tþ z


 �
ð0� t� t0;N � t0;1Þ; which is to be incident on the reference cross-section of the
waveguide z ¼ 0: The time profile of this pulse in the cross-section z is described

by the function, which will be referred as urecon �ð Þ
1 z; tþ zð Þ: Both of the signals,

urecon �ð Þ
1 0; tð Þ and urecon �ð Þ

1 1000; tþ 1000ð Þ (t0;1 � 50:19; t0;N � 2499:03Þ, are
shown in Fig. 6.34. As can be seen from Fig. 6.30a, the initial pulse u1 0; tð Þ has
been reconstructed with a high accuracy. The minor difference is due to the trun-

cated long-lasting ringing tail of urecon �ð Þ
1 1000; tþ 1000ð Þ for t[ 2500: By

increasing the length of this pulse, it is possible, at least in theory, to reproduce the
profile of the desired signal with any degree of accuracy.
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error for u1(1000, t + 1000)
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The compressor based on the section of a regular waveguide, which transforms

the pulse urecon �ð Þ
1 0; tð Þ into urecon �ð Þ

1 1000; tþ 1000ð Þ; has the following charac-
teristics: (i) the amplitude gain (output-to-input signal maximum magnitude ratio) is
a � 10:998=1:263 � 8:708; (ii) the degree of compression (input-to-output pulse
length ratio) is b � 2448:84=50 � 48:98; (iii) the energy efficiency (output-to-input
pulse energy ratio) is c � 1; (iv) the power gain (product of the compression factor
by the efficiency) is h ¼ b� c � 48:98: These characteristics were calculated
assuming no loss in the waveguide walls.

A more detailed description of these results can be found in [24], which also
demonstrates the non-applicability of the kinematic approximation in the study of
compression processes even in simplest dispersive systems. The frequency modu-

lation laws for the pulses u1 z; tþ zð Þ and urecon �ð Þ
1 0; tð Þ calculated in the context of

our rigorous approach and in the context of the kinematic theory [58] differ rather
substantially. Even greater differences are found when determining the optimal
length of a compressor.

Thus, the kinematic conception that a pulse moves as a superposition of particles
is too rough for adequate modeling of physical processes even in a simple case
where a dispersive element is a section of a regular waveguide. Using this
approximation, it is difficult to answer the question: ‘What should be the frequency
and amplitude modulation law of the input pulse?’ This question is of the highest
importance in numerical and full-scale experiments since the knowledge of the
dispersion law of a specific device does not mean the knowledge of the frequency
modulation law of an input pulse.
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6.6 Conclusion

The chapter presents our approach to studies of microwave energy compression and
radiation, namely modeling, analysis, and design of compressors and radiators. Our
approach is based on highly-accurate EACs-enabled time-domain numerical
methods, which are detailed in Chap. 5.

As follows from the name, the pillars of EACs-enabled methods are exact
absorbing conditions (EACs). Being imposed on virtual boundaries, EACs allow
truncation of unbounded physical domains of interest to bounded computation
domains without introduction of any additional errors or distortion of wave pro-
cesses. EACs-enabled methods are especially appropriate for the analysis and
synthesis of microwave energy compressors and radiators of high-power short
pulses, since design of such devices requires simulation tools for accurate and
efficient analysis of long-duration wave interactions with resonant structures.

In Sect. 6.3 we studied several problems concerning analysis and synthesis of
active microwave energy compressors. In order to successfully design such devices,
the in-depth understanding of nonmonotonic behavior of high-power pulses inside
storage units becomes a necessity. This can be achieved using a design scheme that
heavily depends on time-domain analysis. In this work, the physical processes
inside microwave energy compressors have been extensively studied in the time
domain, from the very beginning of the excitation right until the end of the energy
release. The methodology and the results presented in Sect. 6.3 were used in
Sect. 6.4 to design a novel combined compressor/radiator antenna element for a
phased array.

The radiation of a short pulse from a monopole antenna mounted on a ground
plane has also been studied. It has been demonstrated that compressed pulses can be
efficiently radiated by simple antennas. A novel array design, where each of the
array elements is constructed by combining a compressor and a radiator, has been
presented. The new design allows one to reduce the overall size and weight of the
array, pulse distortion and absorption loss. Besides, the proposed design has the
advantage of compressing a pulse right before it is radiated, allowing the use of
components that cannot handle high power in the rest of array. This design idea was
applied to a phased antenna array, which is intended for generation and directional
radiation of high-power short pulses and shares the basic advantage of common
phased arrays, namely, rapid electronic beam steering without moving an array
itself.

The substantial part of this chapter is devoted to the rigorous algorithm for
calculating the time profiles of electromagnetic pulses propagating in hollow
waveguides of arbitrary cross-sections with perfectly conducting walls. An efficient
computation scheme has been suggested for calculating the frequency and ampli-
tude modulation laws for pulses to be compressed. It has been shown that the
kinematic approximation is inapplicable for the rigorous description of broadband
pulse propagation in dispersive systems.
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Chapter 7
Diffraction Radiation Phenomena:
Physical Analysis and Applications

Seil Sautbekov, Kostyantyn Sirenko, Yuriy Sirenko, Alexey Vertiy
and Anatoliy Yevdokymov

Abstract The chapter is devoted to the problems of analysis and applied usage of
the diffraction radiation phenomena, which are exploited in antennas and generators
for millimeter and submillimeter waves. The diffraction radiation occurs when
surface waves of open waveguides or eigenfields of charged-particle beams are
transformed by periodic gratings into radiated fields. Main properties of the
diffraction radiation phenomena have been studied using the given-current
approximation and rigorous methods taking into account actual size of devices
exploiting the phenomena. The algorithm of experimental synthesis of planar
diffraction antennas with record-breaking low side lobes level has been developed
and applied to design a real-world device.

7.1 Introduction

Advances in the electrodynamic theory of gratings (see, for example, [1–13]) have
always played an important role in the development of related areas of science and
technology. Nowadays optics, spectroscopy, physics and engineering of millimeter
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and submillimeter waves, high-power electronics, quantum radio physics, solid
state physics, acoustics, and resonance quasi-optics benefit from new methods and
models of the gratings theory, its results and novel effects. Gratings ability to
change their transparency over maximal limits and controllability of energy transfer
between waves propagating in different directions allows to use gratings as polar-
ization and frequency filters, anti-reflection and scattering coatings, screens of
various types and purposes, selective mirrors for dispersive open resonators,
pattern-forming structures. One major field of diffraction gratings application is
antenna equipment, in particular, antennas exploiting the effect of diffraction
radiation [14–18] or diffraction antennas. When this effect occurs, exponentially
decreasing surface eigenwaves of any open guiding structure (or eigenfields of
charged-particle beams in diffraction electronics) are transformed by nearby peri-
odic structures into radiation fields [19–23], whose characteristics (directivity,
energy efficiency, frequency band, scanning sector, etc.) are optimized to suit
practical requirements.

In this chapter, extending our results from [16, 18], we consider in more details
the diffraction radiation effect (Sect. 7.3) and methodological grounds for model
and experimental synthesis of diffraction antenna components and units (Sect. 7.4).
In Sect. 7.5, we present the unique low-side-lobe planar antenna [16] for
millimeter-wave radars. The presented theoretical results have been obtained for
2-D planar and axially symmetric objects. Electrodynamic analysis of these objects
(finite and infinite gratings, planar and circular dielectric waveguides, etc.) is based
on the numerical resolution of open initial boundary value problems, whose
computation domains are truncated using exact absorbing conditions (EACs). All
relevant analytical results are given in Sect. 7.2 and Chap. 5.

We use SI, the International System of Units, for all physical parameters except
the ‘time’ t that is the product of the natural time and the velocity of light in
vacuum, thus t is measured in meters. In this chapter, dimensions are omitted as a
rule. According to SI, all geometrical parameters (a; b; c; etc.) are given in meters.
However, this is obviously not a serious obstacle to extend the results to any other
geometrically similar structure. For example, if some parameter a of a model
problem corresponds to the parameter ar of a real problem and ar=a ¼ a, then to
construct the solution to the real problem, all quantities of the model problem
involving dimension ½m� (meters) should be multiplied by the factor a, while
quantities involving dimension ½m�1� should be divided by a.
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7.2 Periodic Structures and Dielectric Waveguides:
Analysis Techniques

7.2.1 Plane Models for Infinite Gratings: Time-Domain
Representations

Space-time transformations of E - (Ey ¼ Ez ¼ Hx � 0Þ and H-polarized (Hy ¼
Hz ¼ Ex � 0Þ waves in the near-field zone of a one-dimensionally periodic grating
(see Fig. 7.1: structures are uniform along the x-axis (@=@x ¼ 0Þ and periodic with
the period l along the y-axis) are described by the following scalar problem:

�eðgÞ @2

@t2 � rðgÞg0 @
@ t þ @2

@ y2 þ @2

@ z2

h i
Uðg; tÞ ¼ Fðg; tÞ;

g ¼ fy; zg 2 X; t[ 0
Uðg; 0Þ ¼ uðgÞ; @

@t Uðg; tÞ��t¼0¼ wðgÞ; g 2 X
~Etgðq; tÞ and ~Htgðq; tÞ; where q ¼ fx; y; zg; are continuous

when crossing Re;r and ~Etgðq; tÞ
��
q2R¼ 0; t� 0:

8>>>>>><
>>>>>>:

ð7:1Þ

(b)

(a)

Fig. 7.1 1-D periodic structures: a semitransparent grating and b reflective grating
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Here, Uðg; tÞ ¼ Exðg; tÞ in the case of E-polarization and Uðg; tÞ ¼ Hxðg; tÞ in the
case of H-polarization; ~Eðg; tÞ ¼ fEx;Ey;Ezg and ~Hðg; tÞ ¼ fHx;Hy;Hzg are the
electric and magnetic field vectors; fx; y; zg are the Cartesian coordinates;
the piecewise-constant functions rðgÞ� 0 and eðgÞ� 1 are the specific conductivity

and the relative permittivity of dielectric elements; g0 ¼ ðl0=e0Þ1=2 is the impe-
dance of free space; e0 and l0 are the electric and magnetic vacuum constants. The
surfaces R ¼ Rx � xj j �1½ � of perfectly conducting elements of a grating and the
surfaces Re;r of discontinuities of its material parameters are assumed to be suffi-
ciently smooth.

It is known [9, 12, 24] that the initial boundary value problem (7.1) can be
formulated such that it is uniquely solvable in the Sobolev space W1

2ðX� ð0; TÞÞ;
where ð0; TÞ ¼ ft : 0\ t\ T \1g is the observation interval. Let us suppose
that all necessary conditions for the single-valued solvability of the problem (7.1)
are fulfilled (the source functions uðgÞ;wðgÞ, and Fðg; tÞ have compact supports in
the closure X of the domain X, and so on) and discuss the following important
question.

The analysis domain X is the part of the y0z plane bounded by Rx. X is
unbounded, and should be truncated to solve the problem (7.1) numerically.

For this purpose, let us introduce the complex-valued functions
f newðg; t;UÞ; jUj\1 or f newp ðg; t;UÞ; Uj j � 0:5; which are the Fourier images of
the real-valued functions f ðg; tÞ (uðgÞ; wðgÞ and Fðg; tÞÞ describing the true
sources:

f ðy; z; tÞ ¼
Z1

�1

~f ðz; t;UÞe2piUy=ldU ¼
Z1

�1
f newðy; z; t;UÞdU

$ f newðy; z; t;UÞ ¼ expð2piUy=lÞ
l

Z1

�1
f ðy1; z; tÞe�2piUy1=ldy1;

ð7:2Þ

f ðy; z; tÞ ¼
Z1

�1

~f ðz; t;UÞe2piUy=ldU ¼
X1
p¼�1

Z0:5

�0:5

~f ðz; t;Uþ pÞe2pi Uþ pð Þy=ldU

¼
X1
p¼�1

Z0:5

�0:5

~fpðz; t;UÞeiUpydU¼
X1
p¼�1

Z0:5

�0:5

f newp ðy; z; t;UÞdU

$ f newp ðy; z; t;UÞ ¼ expðiUpyÞ
l

Z1

�1
f ðy1; z; tÞe�iUpy1dy1;

ð7:3Þ

Up ¼ 2pðUþ pÞ=l:
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From (7.2) and (7.3) it follows that

f new
@ f new

@y

� �
ðyþ l; z; t;UÞ ¼ e2piUf new

@ f new

@y

� �
ðy; z; t;UÞ ð7:4Þ

and

f newp

@ f newp

@y

� �
ðyþ l; z; t;UÞ ¼ e2piUf newp

@ f newp

@y

� �
ðy; z; t;UÞ: ð7:5Þ

The use of the quasiperiodic sources f newðg; t;UÞ or f newp ðg; t;UÞ together with the
superposition principle allows one to restrict the domain of analysis to Xnew ¼
g ¼ fy; zg 2 X : 0\ y\ lf g (to the part of the Floquet channel

R = g : 0\ y\ lf gÞ. The problem (7.1) is represented in one of the following
equivalent forms:

Uðg; tÞ ¼
Z1

�1
Unewðg; t;UÞdU; ð7:6aÞ

�eðgÞ @2

@t2 � rðgÞg0 @
@t þ @2

@y2 þ @2

@z2

h i
Unewðg; tÞ ¼ Fnewðg; tÞ;

g ¼ fy; zg 2 Xnew; t[ 0
Unewðg; 0Þ ¼ unewðgÞ; @

@t U
newðg; tÞ��t¼0¼ wnewðgÞ; g 2 X

new

~Enew
tg ðq; tÞ and ~Hnew

tg ðq; tÞ are continuouswhen

crossing Re;r; ~Enew
tg ðq; tÞ

���
q¼ x;y;zf g2R

¼ 0; and

Unew @ Unew

@y

n o
ðl; z; tÞ ¼ e2piUUnew @ Unew

@y

n o
ð0; z; tÞ; t� 0;

8>>>>>>>>>><
>>>>>>>>>>:

ð7:6bÞ

or

Uðg; tÞ ¼
X1
p¼�1

Z0:5

�0:5

Unew
p ðg; t;UÞdU; ð7:7aÞ

�eðgÞ @2

@t2 � rðgÞg0 @
@t þ @2

@y2 þ @2

@z2

h i
Unew

p ðg; tÞ ¼ Fnew
p ðg; tÞ;

g ¼ y; zf g 2 Xnew; t[ 0

Unew
p ðg; 0Þ ¼ unew

p ðgÞ; @
@t U

new
p ðg; tÞ

���
t¼0

¼ wnew
p ðgÞ; g 2 X

new

~Enew
p

� �
tg
ðq; tÞ and ~Hnew

p

� �
tg
ðq; tÞ are continuouswhen

crossing Re;r; ~Enew
p

� �
tg
ðq; tÞ

����
q¼ x;y;zf g2R

¼ 0; and

Unew
p

@ Unew
p

@y

n o
ðl; z; tÞ ¼ e2piUUnew

p
@ Unew

p

@y

n o
ð0; z; tÞ; t� 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð7:7bÞ
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The problems (7.6b) and (7.7b) are open since the domain Xnew extends to infinity
along the z-axis. It is a serious handicap to the use of finite-difference or
finite-element methods [25, 26] for numerical solution. On the virtual boundaries
C1 and C2 of the domain Xint ¼ g 2 Xnew : �L1 \ z\ L2f g containing all sources
and grating’s elements (Fig. 7.1), the fields Unewðg; tÞ and Unew

p ðg; tÞ are formed by
outgoing pulsed waves. This lets us replace (7.6b) and (7.7b) with the following
closed problem (see [10, 12] and Chap. 5 in this book)

�eðgÞ @2

@t2 � rðgÞg0 @
@t þ @2

@y2 þ @2

@z2

h i
Uðg; tÞ ¼ Fðg; tÞ;

g ¼ fy; zg 2 Xint; t[ 0
Uðg; 0Þ ¼ uðgÞ; @

@t Uðg; tÞ��t¼0¼ wðgÞ; g 2 Xint

~Etgðq; tÞ and ~Htgðq; tÞ are continuouswhen
crossing Re;r; ~Etgðq; tÞ

��
q¼ x;y;zf g2R¼ 0;

U @ U
@y

n o
ðl; z; tÞ ¼ e2piUU @ U

@y

n o
ð0; z; tÞ for � L1 \ z\ L2;

and D1½Uðg; tÞ�jg2C1
¼ 0; D2½Uðg; tÞ�jg2C2

¼ 0; t� 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7:8aÞ

(the superscript ‘new’ is omitted) and the formulas

Uðy; z; tÞ ¼
X1

n¼�1

Ztþ L1 þ zð Þ

0

J0 Un ðt � sÞ2 � ðL1 þ zÞ2
� �h i

8><
>:

�
Z l

0

@Uð~y;~z; sÞ
@ ~z

����
~z¼�L1

l	nð~yÞd~y
2
4

3
5ds

9=
;lnðyÞ;

0� y� l; z� � L1; t� 0;

ð7:8bÞ

Uðy; z; tÞ ¼ �
X1

n¼�1

Zt� z�L2ð Þ

0

J0 Un ðt � sÞ2 � ðz� L2Þ2
� �h i

8><
>:

�
Z l

0

@Uð~y;~z; sÞ
@ ~z

����
~z¼L2

l	nð~yÞd~y
2
4

3
5ds

9=
;lnðyÞ;

0� y� l; z� L2; t� 0;

ð7:8cÞ

which calculate the field Uðg; tÞ in the domains X1 ¼ g ¼ fy; zg 2 R : z\ � L1f g
and X2 ¼ g ¼ fy; zg 2 R : z[ L2f g from its values on the virtual boundaries Cj,
j ¼ 1; 2: Here, Jmð. . .Þ are the Bessel cylindrical functions and the asterisk ‘	’
stands for the complex conjugation. The transverse functions lnðyÞ ¼
l�1=2 expðiUnyÞ; n ¼ 0;
1;
2; . . ., Un ¼ ðnþUÞ2p=l form a complete orthonor-
mal system in the Floquet channel R: Thus, for g ¼ fy; zg 2 Xj and t[ 0 the
following representations for the sought-for field are correct:
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Uðg; tÞ ¼
X1
n¼�1

un jðz; tÞlnðyÞ and un jðz; tÞ ¼
Z l

0

Uðg; tÞl	nðyÞdy: ð7:9Þ

The EACs operators D1½Uðg; tÞ�jg2C1
¼ 0 and D2½Uðg; tÞ�jg2C2

¼ 0 are obtained by
substituting the values z ¼ �L1 and z ¼ L2 into (7.8b) and (7.8c).

Suppose all sources are relocated from the domain Xint into the domain X2,
where they generate the pulsed wave

Uið2Þðg; tÞ ¼
X1
n¼�1

vn 2ðz; tÞlnðyÞ; g ¼ fy; zg 2 X2; t� 0; ð7:10Þ

which is incident onto the boundary C2 at t[ 0: Then the problem (7.8a, 7.8b,
7.8c) should be rewritten in the form:

�eðgÞ @2

@t2 � rðgÞg0 @
@t þ @2

@y2 þ @2

@z2

h i
Uðg; tÞ ¼ 0; g 2 Xint; t[ 0

Uðg; 0Þ ¼ 0; @
@t Uðg; tÞ��t¼0¼ 0; g 2 Xint

~Etgðq; tÞ and ~Htgðq; tÞ are continuouswhen crossing Re;r;

~Etgðq; tÞ
��
q¼ x;y;zf g2R¼ 0; U @ U

@y

n o
ðl; z; tÞ ¼ e2piUU @ U

@y

n o
ð0; z; tÞ

for � L1 \ z\ L2; and D1½Uðg; tÞ�jg2C1
¼ 0;

D2 Uðg; tÞ � Ui 2ð Þðg; tÞ� ���
g2C2

¼ 0; t� 0;

8>>>>>>>>><
>>>>>>>>>:

ð7:11aÞ

Uðy; z; tÞ ¼
X1

n¼�1

Ztþ L1 þ zð Þ

0

J0 Un ðt � sÞ2 � ðL1 þ zÞ2
� �h i

8><
>:

�
Z l

0

@Uð~y;~z; sÞ
@ ~z

����
~z¼�L1

l	nð~yÞd~y
2
4

3
5ds

9=
;lnðyÞ;

0� y� l; z� � L1; t� 0;

ð7:11bÞ

Uðy; z; tÞ � Uið2Þðy; z; tÞ ¼ �
X1
n¼�1

Zt� z�L2ð Þ

0

J0 Un ðt � sÞ2 � ðz� L2Þ2
� �h i

8><
>:

�
Z l

0

@ Uð~y;~z; sÞ � Uið2Þð~y;~z; sÞ� �
@ ~z

�����
z¼L2

l	nð~yÞd~y
2
4

3
5ds

9=
;lnðyÞ;

0� y� l; z� L2; t� 0:

ð7:11cÞ
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7.2.2 Plane Models for Infinite Gratings:
Frequency-Domain Representations

The solution ~Uðg; kÞ to the problem

@
@t þ @2

@y2 þ @2

@z2 þ�eðgÞk2
h i

~Uðg; kÞ ¼ 0; g 2 Xint

~~Etgðq; kÞ; ~~Htgðq; kÞ are continuouswhen crossing Re;r

and boundaries Cj � xj j �1½ �; ~~Etgðq; kÞ
���
q¼ x;y;zf g2R

¼ 0; and

~U @ ~U
@y

n o
ðl; z; kÞ ¼ e2piU ~U @ ~U

@y

n o
ð0; z; kÞ for � L1 � z� L2;

8>>>>>><
>>>>>>:

ð7:12aÞ

~Uðg; kÞ ¼
X1
n¼�1

Bn 1ðkÞe�icn zþ L1ð ÞlnðyÞ; g 2 X1; ð7:12bÞ

~Uðg; kÞ ¼
X1
n¼�1

An 2ðkÞe�icnðz�L2Þ þBn 2ðkÞeicnðz�L2Þ
h i

lnðyÞ; g 2 X2 ð7:12cÞ

and the solution Uðg; tÞ to the problem (7.11a, 7.11b, 7.11c) can be related [12] by
the following integral transform

~f ðkÞ ¼
Z1

0

f ðtÞeiktdt $ f ðtÞ ¼ 1
2p

Ziaþ1

ia�1

~f ðkÞe�iktdk; 0� a� Im k: ð7:13Þ

Here, ~Uðg; kÞ ¼ ~Exðg; kÞ for monochromatic E-polarized waves and ~Uðg; kÞ ¼
~Hxðg; kÞ for H-polarized waves, k is the complex wavenumber (frequency param-
eter or frequency), �eðgÞ ¼ eðgÞþ ig0rðgÞ=k;

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � U2

n

q
; Re cnRe k� 0; Im cn � 0; andUn ¼ ðnþUÞ2p=l ð7:14Þ

are the vertical and horizontal wavenumbers for spatial harmonics (plane waves)
propagating in the domains Xj with attenuation (when Im cn [ 0Þ or without it
(when Im cn ¼ 0Þ. According to (7.13), the time-dependence for monochromatic
components of any signal is expð�iktÞ:

In the formulas (7.12b), (7.12c), the terms with complex-valued amplitudes An 2

correspond to the monochromatic wave ~Uið2Þðg; kÞ $ Uið2Þðg; tÞ incident on the
boundary C2; while the terms with amplitudes Bn 1 and Bn 2 correspond to the
scattered (secondary) waves ~Usð1Þðg; kÞ $ Usð1Þðg; tÞ ¼ Uðg; tÞ and
~Usð2Þðg; kÞ $ Usð2Þðg; tÞ ¼ Uðg; tÞ � Uið2Þðg; tÞ in X1 and X2. If we correlate (7.9)
and (7.10) with (7.12b) and (7.12c), it becomes evident that

394 S. Sautbekov et al.



An 2ðkÞ $ vn 2ðL2; tÞ; Bn 1ðkÞ $ un 1ð�L1; tÞ; Bn 2ðkÞ $ un 2ðL2; tÞ: ð7:15Þ

Consider now frequencies k such that Re k[ 0 and Im k ¼ 0 (physical values of the
frequency parameter k ¼ 2p=k; k is the wavelength). Let also, as previously, a
grating (Fig. 7.1) be excited from the domain X2, but

~Uið2Þðg; kÞ ¼ ~Uið2Þ
p ðg; kÞ ¼ Ap 2ðkÞe�icpðz�L2ÞlpðyÞ: ð7:16Þ

In the frequency domain, a periodic structure is characterized by the reflection
coefficient R22

n pðkÞ (coefficient of conversion of the pth incident harmonic into the

nth reflected harmonic) and the transmission coefficient T12
n pðkÞ (coefficient of

conversion of the pth incident harmonic into the nth transmitted harmonic) given by
the following formulas:

R22
n pðkÞ ¼

Bn 2

Ap 2
¼ ~un 2ðL2; kÞ

~vp 2ðL2; kÞ ; T12
n pðkÞ ¼

Bn 1

Ap 2
¼ ~un 1ð�L1; kÞ

~vp 2ðL2; kÞ : ð7:17Þ

The elements R22
n pðkÞ and T12

n pðkÞ of the generalized scattering matrices

R22
n pðkÞ

n o1

n;p¼�1
and T12

n pðkÞ
n o1

n;p¼�1
are related by the energy balance equations

X1
n¼�1

R22
n p

��� ���2 þ T12
n p

��� ���2

 � Re cn

Im cn

( )
¼

Re cp þ 2ImR22
p pIm cp

Im cp � 2ImR22
p pRe cp

8<
:

9=
;� k2

b0

W1

W2

( )
;

p ¼ 0;
1;
2; . . .

ð7:18Þ

and by the reciprocity relations

R22
n pðUÞ
cpðUÞ

¼ R22
�p;�nð�UÞ
c�nð�UÞ ;

T1 2
n p ðUÞ
cpðUÞ

¼ T21
�p;�nð�UÞ
c�nð�UÞ ;

n; p ¼ 0;
1;
2; . . .;

ð7:19Þ

which are the corollaries from the Pointing theorem on complex power and the
Lorentz lemma [2, 12, 27]. It should be obvious that for excitation from the domain

X1; the matrices R11
n pðkÞ

n o1

n;p¼�1
and T21

n pðkÞ
n o1

n;p¼�1
are determined in the same

way. In (7.18), we have used the following designations:
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b0 ¼
e0

l0

( )
; W1 ¼ g0e0

k

Z
Xint

rðgÞ ~~Eðg; kÞ
��� ���2dg; and

W2 ¼
þ
�

( ) Z
Xint

l0
~~Hðg; kÞ

��� ���2�eðgÞe0 ~~Eðg; kÞ
��� ���2


 �
dg;

E � case

H � case

( )
:

Every harmonic of the field ~UsðjÞðg; kÞ; for which Im cn ¼ 0 and Re cn [ 0; is a
homogeneous plane wave propagating away from a grating at the angle an ¼
�arcsin Un=kð Þ into the reflection zone (z[ L2), and at the angle an ¼
pþ arcsinðUn=kÞ into the transmission zone (z\ � L1). All angles are measured
anticlockwise from the z-axis in the plane y0z (Fig. 7.1).

For Re cp [ 0; the angle aip ¼ arcsinðUp
�
kÞ is the angle of incidence of the wave

~Uið2Þ
p ðg; kÞ onto a grating. It is obvious that the travelling direction of each

homogeneous harmonic of the secondary field depends on its number n, as well as
on the values of k and aip. The angle between the propagation directions of the

primary and the (−m)th reflected plane wave 2a ¼ aip � a�m is determined from the

equation kl sin aip � a
� �

cos a ¼ pðpþmÞ: At a ¼ 0 the corresponding harmonic

propagates countercurrent to the incident wave. Initiation of the nonspecular
reflected mode of this kind is called the autocollimation phenomenon. According to
(7.18), the values

WabsðkÞ ¼ k2

b0 cp
�� ��W1; W22

n pðkÞ ¼ R22
n p

��� ���2Re cn
cp
�� �� ; W12

n pðkÞ ¼ T12
n p

��� ���2Re cn
cp
�� �� ð7:20Þ

determine the relative part of energy lost to absorption and directed by a grating into
the relevant spatial harmonic.

If a grating is excited by an inhomogeneous plane wave (Im cp [ 0Þ, the near-
field to far-field conversion efficiency is determined by the value of ImR22

p p (see
(7.18)), which in this case is nonnegative and

ImR22
p p ¼

1
2

X
n

W22
n p þW12

n p

� �
þWabs

" #
ð7:21Þ

as follows from (7.19) and the equalities UnðUÞ ¼ �U�nð�UÞ and cnðUÞ ¼
c�nð�UÞ; one can study the excitation of a grating by an inhomogeneous plane
wave in the context of conventional for the gratings theory diffraction problems: a

structure is excited by homogeneous plane waves ~Uið2Þ
�n ðg; k;�UÞ and

~Uið1Þ
�n ðg; k;�UÞ; and the coefficients of conversion into damped (−p)th spatial

harmonics R22
�p;�nð�UÞ and T21

�p;�nð�UÞ are calculated.
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7.2.3 Infinite Gratings as Open Resonators or Open
Waveguides

Main peculiarities of the near-field to far-field conversion are associated with the
so-called normal modes. When modes of this kind are excited in a grating, it
operates as an open resonator or an open waveguide. One can simulate such
operating modes by extending analytically homogeneous (spectral) frequency-do-
main problems (see, for example, the problem (7.12a, 7.12b, 7.12c) for
~Uið2Þðg; kÞ � 0Þ into a range of complex values of one of spectral parameters: the
frequency k or the longitudinal propagation number U [12]. The domain of ana-
lytical extension coincides with the infinite-sheeted Riemann surfaces K
(real-valued U is fixed, k 2 K is a complex-valued spectral parameter) or F (k[ 0
is fixed, U 2 F is a spectral parameter) with the real algebraic branch points
k
n : cn k
n

 � ¼ 0 and U

n : cn U


n

 � ¼ 0; n ¼ 0;
1;
2; . . .. On the real axis of the
first (physical) sheet of the Riemann surface K the following conditions hold true:
Re cnRe k� 0 and Im cn � 0 (see (7.14)). They are consistent with the physically
understandable requirement that the fields ~Usð1Þðg; kÞ and ~Usð2Þðg; kÞ do not contain
waves incoming from infinity. Similarly, on the real axis of the first sheet of F we
have: Re cn � 0 and Im cn � 0:

The set Hk of eigenfrequencies �kn is the frequency spectral set or the frequency
spectra if for complex-valued frequencies k ¼ �kn 2 K; the spectral problem has
nontrivial solutions ~Uðg; �knÞ ¼ �uðg; �knÞ: Every solution of this kind corresponds to
a free oscillation at the eigenfrequency �kn in a grating. Likewise one can define the
set HU of propagation constants Un of surface, leaky, and piston-like eigenwaves
~U g;Un
 � ¼ �uðg;UnÞ [8]. For gratings under consideration, the sets Hk and HU are

countable sets without finite accumulation points. A detailed discussion of spectral
sets, localization and dynamics of their elements on the surfaces K and F as well as
the relation between anomalous or resonant scattering of monochromatic and
pulsed waves by periodic structures and generation in these structures of
high-quality free oscillations and weak decaying eigenwaves can be found in [12].

7.2.4 Some Further Comments

• The field of a density-modulated electron flow, whose instantaneous charge
density can be written as qdðz� aÞ exp iððk=bÞy� ktÞ½ �; is H-polarized field with

~Hxðy; z; kÞ ¼ 2pqbei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�ðk=bÞ2

p
z�aj j þ ðk=bÞy

� �
z� aj j=ðz� aÞ½ �; z 6¼ a ð7:22Þ

[19]. Here, dð. . .Þ is the Dirac delta-function, q and k are the modulation
amplitude and the modulation frequency of the flow, and b\ 1 is its relative
velocity.
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From (7.16) and (7.22) it follows that the flow-generated field is a solution to the
problem (7.12a, 7.12b, 7.12c) (H-case), where the incident wave is

~Uið2Þðg; kÞ ¼ ~Uið2Þ
p ðg; kÞ ¼ Ap 2ðkÞe�icpðz�L2ÞlpðyÞ; L2 � z\ a ð7:23Þ

with Ap 2ðkÞ ¼ �2pqb
ffiffi
l

p
exp �kða� L2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=bÞ2 � 1

q
 �
and Up ¼ k=b:

• In the subsequent considerations of electrodynamic models (Sect. 7.3), we deal
with the following structures: infinite one-dimensionally periodic gratings and
plane density-modulated electron flows, whose description is given in this section;
finite planar and axially symmetric gratings and open waveguides (information on
these structures can be found in Chap. 5); infinite planar dielectric waveguides.

• Represent the x-component of E- or H-polarized eigenwave of a planar
waveguide (Fig. 7.2; @=@x ¼ 0Þ as

~Uðg; �vÞ ¼ �uðg; �vÞ ¼
B2 exp icð�vÞðz� bÞþ i�vy½ �; z� b
C exp �iceð�vÞðz� bÞ½ � þD exp iceð�vÞðz� aÞ½ �½ �
� expði�vyÞ; a� z� b

B1 exp �icð�vÞðz� aÞþ i�vy½ �; z� a:

8>><
>>:

ð7:24Þ

Here, �v is the complex-valued longitudinal propagation number for the
eigenwave �uðg; �vÞ; cðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � v2

p
(a branch of the square root is determined

by the point �v location on the two-sheeted Riemann surface X with the algebraic
branch points v
 ¼ 
k (Fig. 7.3)); ceðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2e� v2

p
(one can choose any

branch of the root).

Fig. 7.2 Planar dielectric waveguide

(b)(a)

Fig. 7.3 cðvÞ distribution on the first sheet of X: a Re cðvÞ and b ImcðvÞ

398 S. Sautbekov et al.

http://dx.doi.org/10.1007/978-3-319-31631-4_5


The continuity condition of the wave tangential components on the boundaries
z ¼ b and z ¼ a of the partial domains in (7.24) leads to the homogeneous
system of linear algebraic equations

B2 
 B1ð Þ � C 
 Dð Þ 1
 eeð Þ ¼ 0
B2 
 B1ð Þcþ C 
 Dð Þ 1� eeð Þace ¼ 0;

�
ð7:25Þ

which is resolvable nontrivially for the values of v ¼ �v 2 X satisfying the
following dispersion equation:

ð1� eeÞaceðvÞþ ð1
 eeÞcðvÞ ¼ 0: ð7:26Þ

Here, ee ¼ exp iceðvÞðb� aÞ½ �; a ¼ 1 for E-polarized wave and a ¼ e�1 for H-
polarized wave; the upper signs in (7.25), (7.26) correspond to symmetric with
respect to the plane z ¼ ðaþ bÞ=2 waves (B2 ¼ B1, C ¼ DÞ, while the bottom
signs correspond to antisymmetric waves (B2 ¼ �B1, C ¼ �DÞ.
On the axis Re v of the first (physical) sheet of X we have: Re cðvÞ� 0 and
Im cðvÞ� 0: It follows from the physically evident requirement that the field
�uðg; �vÞ does not contain waves incoming from infinity. The values of cðvÞ
determine the quarters of the v-plane where the branch cuts should lie. They are
given by the curves k2 � ðRe vÞ2 þðIm vÞ2 ¼ 0; Re vIm v� 0: The functions
Re cðvÞ and Im cðvÞ are shown in Fig. 7.3 for the points v of the first sheet of the
surface X: For v from the second sheet, the values of Re cðvÞ and Im cðvÞ have
opposite signs.
An eigenwave, whose field strength is exponentially decreasing with the dis-
tance from the dielectric layer (Im cð�vÞ[ 0Þ, is a surface wave, otherwise
(Im cð�vÞ� 0Þ it is a leaky wave. A wave �uðg; �vÞ is called a real wave if Im v ¼ 0;
and a complex wave if Im v 6¼ 0: A real surface wave is a true wave. Its relative
phase velocity b ¼ k=�v\ 1 and thus it is a slow wave.

• The points v, �v, and v	 lie on the same sheet of the surface X; and the
following relations are true for them: cðvÞ ¼ cð�vÞ; c	ðvÞ ¼ cðv	Þ: Then the
points v ¼ �v; v ¼ ��v; v ¼ �v	, and v ¼ ��v	 are the solutions to the disper-
sion equation (7.26). The points �v and ��v lie on the same sheet of X; and the
points �v	, ��v	 on the other sheet. These facts provide some insight into the
behavior of the eigenvalues �v under changing b� a; e, and k: The longitudinal
propagation numbers move on the surface X in sets of four �v;��v; �v	;��v	f g. For
example, if Im �v ¼ 0; then in order to transform a real wave into a complex
wave with wiggling the corresponding parameters around, it is necessary to
collide a real wave with another real wave. In other words, two waves simul-
taneously emerge in the domain of complex-valued �v from the point on the real
axis of v, where projections of their longitudinal propagation numbers on the
first sheet of X coincide. The collided real waves are transformed into complex
waves; the eigenvalues �v acquire equal in magnitude and opposite in sign
imaginary increments.
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7.3 Diffraction Radiation Phenomena

7.3.1 Reflecting Gratings in the Field
of a Density-Modulated Electron Flow

Suppose Ap 2ðkÞ ¼ A1 2ðkÞ ¼ 1 (p ¼ 1Þ and L2 ¼ 0 in (7.23). Consider behavior of
the functions W22

0 1ðb; a0; . . .Þ (see (7.20) and (7.21)), which determine the trans-
formation efficiency of the eigenfield of density-modulated electron flow into
fundamental (n ¼ 0Þ spatial harmonic of the secondary field outgoing into the
reflection zone of a periodic structure at an angle of a0. We study numerical data
obtained for perfectly-conducting lamellar and echelette gratings for b[ 0:9: This
range is interesting for developers of relativistic devices of diffraction electronics.
Radiation characteristics of reflecting gratings in the field of slow electron beams
(0\ b\ 0:5Þ have been studied extensively in [20, 28].

From Up ¼ k=b and an ¼ � arcsinðUn=kÞ (see Sects. 7.2.2 and 7.2.4) we have
(for p ¼ 1 and n ¼ 0Þ b ¼ j=ð1� j sin a0Þ: This formula relates the electron
velocity b, the angle a0, and the nondimensional frequency parameter j ¼ l=k ¼
kl=2p; where k is the flow modulation wavelength.

The radiation energy W22
0 1ðb; a0; d; hÞ of the zeroth spatial harmonic is presented

in Fig. 7.4 as a function of the relative height d ¼ h=l of a lamellar grating for
different values of a0, b, and h ¼ d=l: The functions W22

0 1ðdÞ are almost periodic.
The period decreases as b increases; an increase in a0 causes the oscillation period
to increase too. The maximum value of W22

0 1ðdÞ grows as b increases and h
decreases. For large b (for high velocity of electron beam) gratings with lesser
groove height are required to implement the regime with the maximal intensity of

Fig. 7.4 Radiation intensity as function of relative height of lamellar grating grooves: 1�
W22

0 1ð0:9; 1:0�; d; 0:4Þ; 2�W22
0 1ð0:95; 1:0�; d; 0:4Þ; 3�W22

0 1ð0:95; 1:0�; d; 0:2Þ; 4�W22
0 1ð0:9; 1:0�;

d; 0:2Þ; 5�W22
0 1ð0:9; 35�; d; 0:4Þ; 6�W22

0 1ð0:95; 35�; d; 0:4Þ

400 S. Sautbekov et al.



the radiation into the zeroth spatial harmonic. The corresponding height for a
vertical radiation is less than for a0 [ 0:

We emphasize a favorable, in technical respect, tendency for a decrease of the
required groove depth to gain the optimum diffraction radiation characteristics with
increasing b. Thus, the values of h=l for the near-vertical radiation (a0 ¼ 1�) are
approximately equal to 0.15 and 0.121 for b ¼ 0:9 and b ¼ 0:95; respectively. This
tendency gets more evident as b gets closer to 1.0. It is shown by the behavior of
the level curves of W22

0 1 in the plane with coordinates b and d (Fig. 7.5). It follows
that the requirements imposed on the stability of the electron flow velocity have to
grow as b increases because a small variation in stability for b[ 0:99 and fixed d
and a0 can cause an abrupt decrease of the diffraction radiation intensity. For
b\ 0:99 the requirements imposed on the stability of the beam velocity can be far
more lenient (the level curves of W22

0 1ðb; dÞ are almost parallel to the b-axis).
Observation of the level curves for W22

0 1 in the plane with coordinates b and h
allows one to investigate in detail the radiation characteristics of lamellar gratings of
various groove width. Thus, for example, for b\ 0:93 (Fig. 7.6) a decrease of
groove width is followed initially by a progressive and monotonic increase of the
radiation intensity. Then it decreases in its passage through the maximum
W22

0 1ðhÞ  4:0� 7:0; which is reached in the band 0:2\ h\ 0:4: The greater is b,
the sharper is a decrease. In the range 0:93\ b\ 0:98; the functions
W22

0 1ðb; a0; d; hÞ ¼ W22
0 1ðb; 1:0�; 0:135; hÞ have several local extrema. For wide

Fig. 7.5 Level curves
W22

0 1ðb; 31�; d; 0:4Þ = const of
energy radiated into free
space on the fundamental
spatial harmonic
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grooves (h[ 0:6Þ, the best performance is possible only if electron beams are
highly velocity-stabilized. Such ranges of b and h form separate islands with the
values W22

0 1ðb; hÞ� 10:0 in the relevant plane. The islands lie along a line; crossing
this line towards large b and h causes the diffraction radiation intensity to decrease
sharply (to W22

0 1 \ 0:1Þ. The tendency for a growth of maximum values of W22
0 1ðhÞ

as b increases for small h changes into the opposite one for b[ 0:98: For the
near-vertical radiation, it is worthwhile to use gratings with filling factor close to 0.5
in order to gain high levels of W22

0 1. Initiation of the islands with high radiation
intensity in the region b[ 0:94 and h[ 0:5 is associated with the excitation of
near-free oscillations. A necessary condition to enter this resonant region (where
high-Q free oscillations can exist) remains the same as in the case of excitation by a
homogeneous plane wave [12].

As noted above, the groove depth that is necessary to gain the optimal values of
W22

0 1 decreases substantially as b increases. This mechanism being most conspic-
uous for b[ 0:99 is typical only for beams with velocities close to the velocity of
light. Recall [20, 28] that for b\ 0:5 it has not been found noticeable deviations of
h=k from the value h=k  0:22 with the maximum of W22

0 1.
When passing to relativistic beams one can observe a peculiarity affecting essen-

tially the radiation pattern. The number of sliding points (points at which new prop-
agating harmonics arise and the Wood’s anomalies are displayed) on the interval

Fig. 7.6 Level curves
W22

0 1ðb; 1:0�; 0:135; hÞ = const
of energy radiated into free
space in near-vertical
direction. Shaded area
corresponds to
W22

0 1ðb; hÞ� 10:0
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a0j j\ p=2 increases with increasing b. The degree of the radiation pattern roughness
increases accordingly. Figure 7.7 presents the level curves ofW22

0 1ða0; dÞ:The dashed
lines denote the lower boundaries of the radiation zones for the minus first, minus
second, and minus third harmonics. In the region �2� \ a0 \ 90�, where only the
fundamental harmonic radiates, the near-vertical directions correspond to the maxi-
mal intensity. The curves in Fig. 7.7 confirm themechanismdescribed above, namely,
the closer is the radiation direction to a vertical one, the lesser has to be the groove
depth to achieve the best performance. The peak of the radiation diagram is shifting
towards larger a0 as d increases. A crevasse is found near the boundary where the
radiation on the minus first harmonic (a0 ¼ �2:14�) comes into existence. The closer
is d to optimal values, the steeper becomes this crevasse. The initiation of the radiation
on the minus second (a0 ¼ �22:5�) and minus third (a0 ¼ �33:8�) harmonics is
marked by the similar crevasses. The function W22

n 1ða0; dÞ for the harmonics with
near-sliding propagation directions increases sharply.

As a result of scattering by an echelette grating of a plane inhomogeneous H-
polarized wave generated by a modulated electron flow (Fig. 7.8), an intensive
radiation may occur in near-vertical direction for large b. For b\ 0:4 reasonable

Fig. 7.7 Level curves
W22

0 1ð0:93; a0; d; 0:4Þ = const
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values of W22
0 1ðb; a0;wÞ could be obtained only in the angular range a0 [ 80� [28].

Figure 7.8, where the level curves of W22
0 1ðb; 1:0�;wÞ are presented, allows one to

distinguish two principal zones for which the level of radiation can be greater than
W22

0 1 ¼ 6:0; i.e. the radiation characteristics as good as for a lamellar grating can be
attained for an echelette grating. This is an important result because the production
of lamellar gratings with optimized profile becomes problematic with shortening of
excitation wavelengths, however, the present-day manufacturing technique for
echelette gratings is well-developed both in optical and in microwave ranges.

In Fig. 7.8, one of high radiation intensity zones corresponds to deep grooves
with w  45� � 55�, another one corresponds to shallow grooves with w 
75� � 82� (rippled surface). Echelette gratings with the intermediate value w  65�

are characterized by the stability of diffraction radiation under variations of b. For
b\ 0:95 the maximal radiation intensity in near-vertical direction is reached for
echelette gratings with w  74�.

In relativistic diffraction electronics, echelette gratings are best suited for strong
vertical radiation resulting from the interaction of an electron flow with a weakly
profiled periodic structure. In particular, this is evident from the curves presented in
Fig. 7.9 for b ¼ 0:93; a neighborhood of the point a0 ¼ 0; w ¼ 78� corresponds to
the radiation zone with W22

0 1ða0;wÞ� 4:0:

Fig. 7.8 High radiation
intensity zones with
W22

0 1ðb; 1�;wÞ� 6:0 for
echelette gratings
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The obtained results allow one to choose optimal parameters for lamellar and
echelette gratings, which are the most-used periodic structures in various devices of
relativistic diffraction electronics. The above-described mechanisms simplify sub-
stantially the design of structures from their output characteristics and can serve as a
basis for creating new intense radiation sources and units in millimeter and sub-
millimeter ranges. It is evident that we can read these results in the context of a
structure ‘planar dielectric waveguide—grating’: from (7.16) and (7.24) it follows
that we can study a waveguide-generated field by solving the problem (7.12a,
7.12b, 7.12c) for the incident wave (7.23) with Ap 2ðkÞ ¼ B1ðkÞ

ffiffi
l

p
exp icpða� L2Þ

� �
and Up ¼ �v:

It should be noted that the approach to study the transformation of eigenwaves of
a planar waveguide into propagating spatial harmonics of a periodic structure (near-
field to far-field conversion) fails to account for the interaction of those harmonics
with a waveguide and a decrease of the amplitude B1ðkÞ of the wave �uðg; �vÞ as it
propagates along the y-axis, which is natural for real situations. This is the so-called
given-field approximation and its range of accuracy can be evaluated within the
framework of more accurate models (see, for example, Sects. 7.3.2–7.3.4).

Some results obtained in the framework of this approximation related to the
near-field to far-field conversion on an infinite grating are discussed below. In the
covered frequency band 0:36� j ¼ l=k ¼ lk=2p� 0:64; the H-polarized wave
(7.23) with Ap 2ðkÞ ¼ 1; p ¼ 1; U ¼ �0:35 generated by a modulated electron flow
(U1 ¼ k=bkÞ or by a planar waveguide (U1 ¼ �vÞ produces in its reflection zone
only one undamped wave (harmonic with n ¼ 0Þ, which moves away from a
grating at the angle a0 ¼ � arcsinðU0=kÞ ¼ � arcsinðU=jÞ (Fig. 7.10a).

The functions W22
0 1ðjÞ depicted in Fig. 7.10b reflect the transformation effi-

ciency. A curve with the number j (j ¼ 1; 2; . . .; 5Þ corresponds to a reflecting
grating with the same number. The following gratings are considered (Fig. 7.10a):

Fig. 7.9 Intensive near-vertical radiation ðW22
0 1ð0:93; a0;wÞ� 4:0Þ under interaction of electron

flow with slightly grooved echelette grating
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the echelette grating with rectangular grooves, the symmetric echelette, the lamellar
grating, the semi-cylindrical grating and the strip grating on a dielectric layer. All
the gratings are equal in depth h with the equal period l; the strip thickness equals
0:0064l: But just one of them (the grating number 5) is capable of reradiating
energy efficiently into the far-field region. This ability shows up in a narrow fre-
quency band in the vicinity of the point j ¼ 0:474; for which a0  47:6�. The less
intensive reversed radiation (the angle between travelling directions of the incident
wave and the outgoing plane wave is greater than 90�) and in far wider band of j
(see curve 3 in Fig. 7.10a) is provided by the metal lamellar grating.

Let now the grating number 5 (l ¼ 2p; for such l we have kj j ¼ jj j; L2 ¼ 4:0Þ be
excited by the pulsed plane wave Uið2Þðg; tÞ ¼ Uið2Þ

0 ðg; tÞ ¼ v0 2ðz; tÞ � l0ðyÞ; U ¼
�0:35; g 2 X2, t� 0 such that

(a)

(b)

Fig. 7.10 a Geometry of gratings ðd ¼ h=l ¼ 0:43; c=l ¼ 0:013;L2 ¼ 0;w ¼ 30�; h ¼ d=l ¼
0:5; e ¼ 2:5Þ and b their ability to near-field to far-field conversion
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v0 2ðL2; tÞ ¼ exp �ðt � ~TÞ2
.
4~a2

h i
� cos ~kðt � ~TÞ� �

vð�T � tÞ ¼ F1ðtÞ ð7:27Þ

with ~k ¼ 0:474; ~a ¼ 35; ~T ¼ 200; �T ¼ 400: Here ~k; ~T ; and �T are the central
frequency, the delay time, and the signal duration, respectively. The parameter ~a
determines the frequency band ~k � bðcÞ=~a; ~kþ bðcÞ=~a� �

; where the normalized
spectral amplitudes ~F1ðkÞ of the function F1ðtÞ do not fall below some given level
c[ 0 (see details in book [12], Sect. 4.3.2).

In Fig. 7.11, the free-oscillating field Hxðg; tÞ; g 2 Xint, t[ �T (once the source
has been switched off) is depicted.

(a)

(b)

Fig. 7.11 a Space
distribution of Hxðg; tÞj j at t =
560 and b function Im
Hxðg1; tÞ ¼ UðsÞ; s ¼ t � T
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The anomalous peak of intensity of W22
0 1ðkÞ at the point k ¼ 0:474 results from

the generation in the structure of low-Q eigenoscillations (Q ¼ Re �k
�
2 Im �k
�� ��  24Þ

associated with the complex eigenfrequency �k  0:474� i0:0098: Configuration of
these oscillations is shown in Fig. 7.11a, while their quality factors are determined
by the envelope of the function UðsÞ; s� 0 (Fig. 7.11b). The technique used here
for estimating spectral characteristics of open periodic resonators from their
response on a pulse excitation was proposed in [29] and discussed in detail in [12].

7.3.2 Finite Gratings: Plane and Axially Symmetric Models

The closed initial boundary value problems

�eðgÞ @2

@t2 � rðgÞg0 @
@t þ @2

@y2 þ @2

@z2

h i
Uðg; tÞ ¼ 0; t[ 0; g 2 Xint

Uðg; tÞjt¼0¼ 0; @
@t Uðg; tÞ��t¼0¼ 0; g ¼ fy; zg 2 Xint

~Etgðq; tÞ and ~Htgðq; tÞ are continuous when crossing Re;r;
~Etgðq; tÞ

��
q¼fx;y;zg2R¼ 0; and D Uðg; tÞ½ �jg2C¼ 0;

D1 Uðg; tÞ � Ui 1ð Þðg; tÞ� ���
g2C1

¼ 0; D2 Uðg; tÞ½ �jg2C2
¼ 0; t� 0;

8>>>>>>><
>>>>>>>:

ð7:28aÞ

�eðgÞ @2

@t2 � rðgÞg0 @
@t þ @2

@z2 þ @
@q

1
q

@
@q q

� �h i
Uðg; tÞ ¼ 0;

t[ 0; g ¼ q; zf g 2 Xint

Uðg; tÞjt¼0¼ 0; @
@t Uðg; tÞ��t¼0¼ 0; g ¼ fq; zg 2 Xint

~Etgðq; tÞ and ~Htgðq; tÞ are continuous when crossing Re;r;
~Etgðq; tÞ

��
q¼ q;/;zf g2R¼ 0; Uð0; z; tÞ ¼ 0 for f0; zg 2 Xint;

and D Uðg; tÞ½ �jg2C¼ 0; D1 Uðg; tÞ � Uið1Þðg; tÞ� ���
g2C1

¼ 0;
D2 Uðg; tÞ½ �jg2C2

¼ 0; t� 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7:28bÞ

describe space-time transformations of the electromagnetic field ~Eðg; tÞ; ~Hðg; tÞ� �
in planar (@=@x ¼ 0; Fig. 7.12a) and axially symmetric (@=@/ ¼ 0; Fig. 7.12b)
structures, on which a pulsed wave ~Eið1Þðg; tÞ; ~Hið1Þðg; tÞ� �

is incident through the
virtual boundary C1 in a cross-section of the virtual waveguide X1 (for details see
Sects. 5.2, 5.3 and 5.5 and [9, 12, 13]). In the context of this formulation, the
diffraction radiation phenomena are described accurately, without distortions which
inevitably accompany the given-field or given-current approximations. Besides, in
the context of this model one can calculate energy and phase characteristics of the
processes that have to be studied prior to designing devices exploiting the near-field
to far-field conversion.

In (7.28a, 7.28b) Uðg; tÞ ¼ Exðg; tÞ or Uðg; tÞ ¼ E/ðg; tÞ in the case of TE0-
waves (Ey ¼ Ez ¼ Hx � 0 or Eq ¼ Ez ¼ H/ � 0Þ and Uðg; tÞ ¼ Hxðg; tÞ or
Uðg; tÞ ¼ H/ðg; tÞ in the case of TM0-waves (Hy ¼ Hz ¼ Ex � 0 or
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Hq ¼ Hz ¼ E/ � 0Þ; eðgÞ� 1 and rðgÞ� 0 are the relative permittivity and the

specific conductivity of nondispersive and nonmagnetic materials; g0 ¼ l0=e0ð Þ1=2
is the impedance of free space; e0 and l0 are the electric and magnetic constants of
vacuum; g ¼ fy; zg or g ¼ fq; zg is a point in 2-D space R2; q ¼ fx; y; zg or
q ¼ fq;/; zg is a point in 3-D space R3. By R ¼ Rx � ½�1;1� and R ¼
R/ � ½0; 2p� we denote perfectly conducting surfaces, while Re;r ¼ Re;r

x �
½�1;1� and Re;r ¼ Re;r

/ � ½0; 2p� stand for surfaces on which the medium
material parameters (the functions eðgÞ and rðgÞÞ have discontinuities. In the
problem (7.28a) for planar structures, the domain of analysis Xint is the part of the
plane y0z bounded by the contours Rx and the virtual boundaries Cj (j ¼ 1; 2Þ and
C ¼ g ¼ fq;/g : q ¼ L; 0�/� 2pf g (by fq;/g we denote the polar coordinates
in the plane y0zÞ. In the problem (7.28b) for axially symmetric structures, the
domain of analysis Xint is the part of the half-plane q[ 0 bounded by R/, the axis
of symmetry q ¼ 0 and the virtual boundaries Cj (j ¼ 1; 2Þ and C ¼
g ¼ fr; #g : r ¼ L; 0�#� pf g (fr; #;/g are the spherical coordinates). All scat-

terers, which are given by the piecewise constant functions eðgÞ; rðgÞ and piece-
wise smooth contours Rx, R/ and Re;r

x , Re;r
/ are located in Xint. If the functions

eðgÞ � 1 and rðgÞ have compact supports in the closure Xint of the domain Xint then
the problems (7.28a, 7.28b) are uniquely solvable in the Sobolev space
W1

2 Xint � 0; T½ �ð Þ; T \1 [12, 24].
The EACs operators D1 U � Ui 1ð Þ� �

; D2½U�; and D½U� were constructed in
Chap. 5 (see also [12]). When they are used for the computation domain truncation,
they do not introduce any additional errors into simulations of the behavior of the

(a)

(b)

Fig. 7.12 a Planar and b axially symmetric models of diffraction radiation antenna: l = 1.0, d =
0.5, h = 0.4; impact parameter c = 0.2. Drawings are in proportion
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pulsed waves Us 1ð Þðg; tÞ ¼ Uðg; tÞ � Ui 1ð Þðg; tÞ; Us 2ð Þðg; tÞ ¼ Uðg; tÞ; and Uðg; tÞ
outgoing through the virtual boundaries C1, C2, and C into the virtual waveguides
X1, X2 and the free-space domain Xext [9, 12, 29]. The function

Ui 1ð Þðg; tÞ ¼
X1
n

vn 1ðy; tÞln 1ðzÞ; g ¼ fy; zg 2 X1 or

Ui 1ð Þðg; tÞ ¼
X1
n

vn 1ðz; tÞln 1ðqÞ; g ¼ fq; zg 2 X1;

which determines the wave ~Ei 1ð Þðg; tÞ; ~Hi 1ð Þðg; tÞ� �
coming on the boundary C1

from the waveguide X1 is assumed to be given along with the functions eðgÞ; rðgÞ
and the contours Rx, Re;r

x , etc. Suppose also that by the moment of time t ¼ 0 the
incident wave has not yet reached the boundary C1. The transverse eigenfunctions
ln jðzÞ; ln jðqÞ (j ¼ 1; 2Þ of the waveguides Xj form orthonormal bases, they can be
found in [9]; vn 1ðy; tÞ and vn 1ðz; tÞ are the space-time amplitudes of the pulsed
eigenwaves of the waveguide X1, which form the incident wave Ui 1ð Þðg; tÞ:

The solution Uðg; tÞ to the problems (7.28a, 7.28b) can be obtained by standard
finite-difference or finite-element methods [25, 26] for the points g 2 Xint and
t 2 ½0; T � (T \1), and then extended from the boundary C into the domain Xext

using the so-called transport operators. These operators allow to compute far-zone
fields knowing only near-zone fields, see Chap. 5 and [9, 12].

Applying the integral transform ~f ðkÞ ¼ R T
0 f ðtÞeiktdt , the time-domain solution

Uðg; tÞ is converted into the frequency-domain solution ~Uðg; kÞ [12], whereby we
can calculate amplitude-frequency characteristics, which are necessary for the
physical analysis. Some of them are:

• field patterns for ~~Eðg; kÞ and ~~Hðg; kÞ in the domains Xint and Xext;
• radiation efficiency

gðkÞ ¼ 1�Wabs �
X
n;p

W11
n p þW21

n p

� �
;

• directional pattern on the arc q ¼ M� L or r ¼ M� L

Dð/; k;MÞ ¼
~~EtgðM;/; kÞ

��� ���2

max
0�/� 2p

~~EtgðM;/; kÞ
��� ���2

; 0�/� 360� or

Dð#; k;MÞ ¼
~~EtgðM; #; kÞ

��� ���2

max
0�#� p

~~EtgðM; #; kÞ
��� ���2

; 0�#� 180�; K1 � k�K2;
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• orientation of the main lobe, which is determined by the angle �/ðkÞ or �#ðkÞ such
that D �/ðkÞ or �#ðkÞ; k;M � ¼ 1:0;

• /0:5ðkÞ or #0:5ðkÞ; which are the width of the main lobe at a level of
Dð/ or #; k;MÞ ¼ 0:5; and others [9, 12].

Here k ¼ 2p=k[ 0; the observation interval is 0� t� T and f ðtÞ is taken zero for

t[ T ; ~~EtgðM;/; kÞ or ~~EtgðM; #; kÞ is the tangential component of the harmonic

electric field ~~Eðq; kÞ on the cylindrical surface q ¼ M� L or the spherical surface
r ¼ M� L; Wabs is the ratio of the energy lost in the imperfect materials and the
energy of the incident pth waveguide mode, Wj1

n pðkÞ is the ratio of the energy of the
nth eigenwave outgoing through the waveguide Xj and the energy of the pth
waveguide mode incident from the waveguide X1. The functions Dð/; k;MÞ and
Dð#; k;MÞ determine the spatial orientation and the energy content of waves
radiated into free space via the virtual boundary C. The value M defines a zone
(near-field, intermediate, or far-field), for which the pattern is calculated.

7.3.3 Near-Field to Far-Field Conversion by Finite Periodic
Structures. Plane Models

Consider a radiating structure whose section by the plane x ¼ const is depicted in
Fig. 7.12a. It is a planar dielectric waveguide (e ¼ 2:1Þ of the width a with
parallel-plate virtual waveguides Xj (j ¼ 1; 2Þ on its ends. The flanges of the virtual
waveguides are inclined at an angle of 45�. At a distance of c below the waveguide,
a diffraction grating of length 15l is placed, where l is the grating period. The pulsed
TE01-wave

Ui 1ð Þðg; tÞ ¼ Ui 1ð Þ
1 ðg; tÞ ¼ v1 1ðy; tÞl1 1ðzÞ; g ¼ fy; zg 2 X1 ð7:29Þ

is incident on the structure through the virtual boundary C1. The cutoff points of the
first three sinusoidal TE0n-waves in the waveguides X1 and X2 are kþ

1  2:17;
kþ
2  4:33 and kþ

3  6:5:
First assume that

v1 1ðy : g 2 C1; tÞ ¼ 4
sin Dkðt � ~TÞ� �

ðt � ~TÞ cos½~kðt � ~TÞ�vð�T � tÞ ¼ F2ðtÞ ð7:30Þ

and ~k ¼ 4:4; Dk ¼ 2:0; ~T ¼ 40; �T ¼ 80; T ¼ 300: Here, vð. . .Þ is the Heaviside
step function, ~k is the central frequency of the pulse, ~T and �T are its delay time and
duration. The pulse F2ðtÞ occupies the frequency band ~k � Dk� k� ~kþDk [12], in
our case it is 2:4� k� 6:4: Only two sinusoidal waves, TE01-wave and TE02-wave,
are undamped in the waveguides Xj.
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Figure 7.13 presents the characteristics of a finite grating illuminated by the
surface wave Aðz; kÞ exp½i�vðkÞy� guided by a dielectric layer. In order to make sense
of these results, one should invoke the information on the propagation constant �vðkÞ
in the band 2:4� k� 6:4: It is also important to understand what kind of the field is
generated if a plane inhomogeneous monochromatic wave with the longitudinal
propagation constant U1ðkÞ ¼ �vðkÞ (k\ U1ðkÞj jÞ is incident on an infinite grating
of period l:

We start with some well-known facts [2, 3, 12] (see also Sects. 7.2.1, 7.2.2). The
spatial harmonics BnðkÞ exp½icnðkÞz� exp½iUnðkÞy�; n ¼ 0; 
1; 
2; . . . are generated
in the reflection zone z[ 0 of an infinite grating by an inhomogeneous plane
monochromatic wave. These harmonics are homogeneous (n : k[ Unj jÞ and inho-
mogeneous (n : k\ Unj jÞ plane waves propagating towards growing z with zero or
exponential decay. The number of harmonics with k[ Unj j is finite for any finite k:
Each of these homogeneous plane waves outgoes from a grating at an angle of

anðkÞ ¼ � arcsin UnðkÞ=k½ � ð7:31Þ

(a)

(b)

Fig. 7.13 a Directional pattern D(ϕ, k, ∞) and b radiation efficiency η (k) of planar antenna
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(Fig. 7.12a) and carries away the energy released as a result of scattering of the

inhomogeneous wave. Here, cnðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � U2

nðkÞ
q

(Re cnðkÞ� 0; Im cnðkÞ� 0Þ,
Un ¼ ðnþUÞ2p=l ¼ U1 þ 2pðn� 1Þ=l; U is the real number and Uj j � 0:5:

The values of �vðkÞ (Fig. 7.14) we obtain by calculating the phase incursion
fðkÞ ¼ arg ~Exðg2; kÞ � arg ~Exðg1; kÞ ¼ �vðkÞ of the field ~Exðg; kÞ caused by the dis-
placement of the observation point along the dielectric waveguide axis from the
point g ¼ fz; y1g into the point g ¼ fz; y2g (y2 � y1 ¼ 1:0Þ.

As we can see from Fig. 7.14, the zeroth harmonic is detached from a grating
and propagating if 2:7\ k\ 2:8: At the instant the harmonic leaves a grating we
have k ¼ U0ðkÞj j and / ¼ 90� þ a0 ¼ 180�, that is the incipient homogeneous
plane wave is sliding along the grating’s surface. The analog of this propagating
harmonic forms the main lobe of the pattern of the radiator under study in the bands
2:8\ k\ 4:8 and 5:8\ k\ 6:4: The minus first propagating harmonic emerges in
the reflection zone of an infinite grating when 5:2\ k\ 5:3; but analog of this
harmonic in the situation under study has little effect on the directional pattern
Dð/; k;1Þ:

It is clear now why the pattern does not have a sharp main lobe for k\ 2:8; but
as before the reasons of the phenomenon observed in the band 4:8\ k\ 5:8 are
not evident. For the directional pattern function, two large ranges of variation of /
and k with the high level of Dð/; k;1Þ are clearly defined. These domains are
almost symmetric about the direction / ¼ 90�. It turns out that the associated
pattern lobes are shaped by the leaky waves of the planar dielectric waveguide (fast
waves or waves with �vðkÞ\ kÞ, which are generated efficiently near the open ends
of the virtual waveguides X1 and X2, but decay rapidly when moving towards each
other (Fig. 7.15a). This inference is also confirmed by the results presented in
Fig. 7.15b: in the frequency band where the lobes (which occurrence cannot be
predicted by the classic theory of gratings) are observed, the excitation level of the
TE02-wave in the input waveguide X1 rises sharply. This means that the higher
eigenwave of the dielectric waveguide appears at the output of X1. And its field
pattern is identical to the one of the TE02-wave of a closed waveguide.

Fig. 7.14 Propagation constant vðkÞ ¼ U1ðkÞ of surface wave of planar waveguide and associated
values of longitudinal propagation constants UmðkÞj j for the zeroth and minus first spatial
harmonics of infinite grating of period l = 1.0
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The antenna radiation efficiency is not high over the whole frequency band under
consideration. The sole exception is the neighborhood of the point k ¼ 3:985 (see
Fig. 7.13b). As we can see from simple calculations, it is caused by a half-wave
resonance: the wavelength of the TE01-wave propagating along the grating grooves

is kw ¼ 2p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2e1 � p=dð Þ2
q

 0:83 (k ¼ 2p
�
k

ffiffiffiffi
e1

p  0:79Þ, while the groove

depth is 0.4. At the frequency k ¼ 3:985; we have �vðkÞ ¼ U1  5:35; and an
infinite grating according to the formula (7.31) directs the zeroth spatial harmonic at
an angle of a0ðkÞ ¼ 13:53� (/ ¼ 103:53�). The accurately calculated beam direc-
tion �/ðkÞ for k ¼ 3:985 is 103�.

Let now a quasi-monochromatic (narrowband) TE01-pulse U
i 1ð Þ
1 ðg; tÞ be incident

on the structure. Assume also that the amplitude of its Exðg; tÞ-component is

v1 1 y : g ¼ fy; zg 2 C1; tð Þ ¼ PðtÞ cos½~kðt � ~TÞ� ¼ F3ðtÞ; ð7:32Þ

with ~k ¼ 3:985; ~T ¼ 5; PðtÞ : 0:01� 5� 75� 80 and T ¼ 200: As before, ~k is the
central frequency of the signal; PðtÞ : t1 � t2 � t3 � t4 is its trapezoidal envelope,
which equals zero for t\ t1, t[ t4 and 1 for t2 \ t\ t3. Figure 7.16 presents the
results of this numerical experiment. The finite grating radiates a wave with almost
plane front (Fig. 7.16a). This radiation is narrow-beamed as the width of the main
lobe at the level Dð/; k;1Þ ¼ 0:5 is /0:5ðkÞ ¼ 5:6� (Fig. 7.16b). �/ðkÞ  103�,
which means that a simple metal grating provides the so-called backscattered
radiation [30] without any negative-refractive-index materials. On the frequency
corresponding to the maximal radiation efficiency (gðkÞ  0:94Þ one can observe a
low-Q resonance [12, 29], the field intensity in the grating grooves decreases
rapidly once the source is switched off (Fig. 7.16c).

Figure 7.16d presents some characteristics, which are of exceptional importance
in design of antennas exploiting the diffraction radiation phenomenon [14–17]. It

3.0 4.0 5.0 6.0 k

 0.010

 0.005

     0.0

(a) (b)

Fig. 7.15 a Excitation of planar radiating structure by the pulse (7.32), ~k ¼ 5:4. Space
distribution of Ex(g, t) at t = 60. b Level of reflected wave in Ω1
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turns out that the phase distortions can be minimized even for rather long apertures.
At the same time, the averaged distribution of the field over short gratings (6� 8
periods in length) is such that the field can be easily controlled by changing the
impact parameter (distance between grating and dielectric waveguide) and the
groove depth. Short gratings of this kind can be assembled together to comprise
structures with large apertures and required amplitude-phase field distributions on
them or, in other words, structures with specified directional patterns. Thus, the
above-described algorithm for model synthesis of diffraction radiation antennas can
be efficiently used to design new products.

Let us take a brief look at diffraction radiation effects in structures with finite
gratings lying on a surface of a metal circular cylinder (Figs. 7.17 and 7.18).

When simulating the incidence of a pulsed TE01-wave, which is given by (7.29),
(7.30) and occupying the band 0:29� k� 0:79; onto the boundary C1 from the
virtual waveguide X1, we obtained the characteristics Dð/; k;1Þ and gðkÞ very
similar to the ones shown in Fig. 7.13. The basic distinction in the patterns is that

(a) (b)

(c)
(d)

Fig. 7.16 Excitation of planar structure by the pulse (7.32), ~k ¼ 3:985: a Space distribution of
Ex(g, t) at t = 60; b directional pattern D(ϕ, k, ∞) for k = 3.985; c Ex(g, t)-component at g = g0;
d distribution of ~Exðgn; kÞ for k = 3.985 over radiator’s aperture
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the lobes corresponding to the zeroth spatial harmonic of the planar antenna are
now split. Their irregularity and width grow as the number of periods of the grating
increases. This effect makes cylindrical antennas with gratings comprising 6� 10
periods unsuitable for the generation of narrow-beam radiation. The only exception
is a radiator with the grating five periods in length. It exhibits the directivity
acceptable for potential users on the peak of gðkÞ  0:6 at k ¼ 0:42; which cor-
responds to a half-wave resonance of the TE01-wave in the grating groove.
However, the radiation efficiency of this structure is lower as compared to the
gratings of six (gðkÞ  0:67Þ, eight (gðkÞ  0:78Þ and ten (gðkÞ  0:84Þ periods in
length.

The radiation characteristics of the structure with the grating five periods in
length do not vary substantially when the cylinder rotates. Rotation of the cylinder
results in the same rotation of the main lobe of the pattern Dð/; k;1Þ (see
Fig. 7.18). This effect may be exploited in scanning antennas including antennas for
Squint-Mode SAR Systems [31]. However, in order to implement these possibili-
ties, cylindrical radiators of good performance are required and a series of full-scale
experiments verifying theoretical results should be conducted.

7.3.4 Near-Field to Far-Field Conversion by Finite Periodic
Structures. Axially Symmetric Models

Axially symmetric antennas (Fig. 7.12b) differ from planar antennas discussed in
the previous section in that their radiation field is formed by the waves transmitted
through a periodic structure. These waves will be called spatial harmonics, as well

Fig. 7.17 Geometry of
cylindrical antenna: grating
period is 10.0; grooves width
and depth are 5.0 and 4.0; the
impact parameter is c = 0.8;
cylinder radius is ρ = 80;
dielectric waveguide width is
a; permittivity of dielectric in
the grooves is ε1 = 4.0
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as the waves BnðkÞH 1ð Þ
1 cnðkÞq½ � exp iUnðkÞz½ � (n ¼ 0; 
1; 
2; . . ., q[ aþ cþ hÞ

comprising the secondary field of an infinite axially symmetric grating being
excited by the surface wave Aðq; kÞ exp½i�vðkÞz� of an infinite circular dielectric
waveguide. They are given the common name because of qualitatively identical
contribution of these waves into the radiation field. For the same reason, we can
invoke a series of well-known concepts of the classical theory of gratings when
interpreting numerical results obtained for finite periodic structures.

Fig. 7.18 Beam scanning by rotating cylindrical diffraction antenna, k = 0.42
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Let a pulsed TE01-wave Ui 1ð Þðg; tÞ ¼ Ui 1ð Þ
1 ðg; tÞ (g ¼ fq; zg 2 X1) be incident on

the antenna shown in Fig. 7.12b. The amplitude of its E/ðg; tÞ-component is v1 1ðz :
g 2 C1; tÞ ¼ F2ðtÞ with ~k ¼ 7:0; Dk ¼ 1:5; ~T ¼ 40; �T ¼ 80; T ¼ 300: The pulse
F2ðtÞ occupies the frequency band 5:5� k� 8:5: TE01-wave is the only undamped
sinusoidal wave propagating in the circular waveguides Xj (kþ

1  5:08;
kþ
2  9:31Þ. Basic characteristics of the axially symmetric antenna within this band
are presented in Fig. 7.19.

If a surface wave of an infinite circular dielectric waveguide whose propagation
constant is �vðkÞ ¼ U1ðkÞ be incident onto an infinite axially symmetric grating, the
zeroth spatial harmonic will propagate in its transmission zone without decay (or
more precisely, without exponential decay) for 5:5� k� 8:5 (see Fig. 7.20:
k[ U0ðkÞj j for all k). The minus first harmonic propagates if 5:8� k� 5:9: In this
band, the inequality k\ U�1ðkÞj j is replaced by k[ U�1ðkÞj j: The minus second
harmonic propagates if 8:3� k� 8:4: The phase front of the nth propagating har-
monic is perpendicular to the direction #nðkÞ ¼ anðkÞþ 90� (see the formula (7.31)

(a)

(b)

Fig. 7.19 a Directional pattern D(ϑ, k, ∞) and b radiation efficiency η(k) of axially symmetric
antenna
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and Fig. 7.12b) for all 0�/� 2p. This allows us to unambiguously determine the
contribution of each harmonic into the radiation in the far-field zone from the
function Dð#; k;1Þ given in Fig. 7.19a.

The radiation efficiency at some points from the band under study is high
enough: gðkÞ  0:9 at k1 ¼ 5:7 and gðkÞ  0:99 at k2 ¼ 6:8 and k3 ¼ 8:4
(Fig. 7.19b). Exciting the axially symmetric antenna by a quasi-monochromatic
signal whose central frequency coincides with the frequencies k1, k2, k3 (Fig. 7.21),
we can determine (i) which resonances in the grating’s slots cause the sharp
increase of gðkÞ and how fronts of the outgoing waves are oriented (see the curves
for E/ðg; tÞ at t ¼ 195Þ, and (ii) how the orientation of the fronts correlate with the
direction of the basic lobes of Dð#; k;1Þ: It worth to point the half-wave resonance
of the TE02-wave on the frequency k ¼ 6:8: It results in an abnormally abrupt
change of the orientation of the main lobe from the direction #0ðkÞ to #�1ðkÞ
(Fig. 7.19a).

Let us take a close look at the results presented in Fig. 7.21 for k ¼ 8:4: Three
main lobes of the pattern Dð#; k;1Þ are oriented at #0  61�, #�1  106� and
#�2  173�. From Fig. 7.20 we have for k ¼ 8:4: �vðkÞ ¼ U1ðkÞ  10:5; U0ðkÞ 
4:22; U�1ðkÞ  �2:06 and U�2ðkÞ  �8:34: With these values of the longitudinal
propagation constants, the spatial harmonics numbered 0, �1 and �2 propagate in
the directions a0  �30:1� (#0  59:9�), a�1  14:2� (#�1  104:2�) and a�2 
83:1� (#�2  173:1�), respectively. The accurate calculation of these angles yields
the results close to those obtained from the calculation based on the knowledge of
exact value of the propagation constant �vðkÞ and assumptions common for the
given-field approximation (see Sect. 3.1).

A decrease of the grating period results in predictable changes of the patterns
Dð#; k;1Þ (Fig. 7.22). The number of the lobes associated with propagating har-
monics is reduced. At the same time, the remaining lobes are coming closer (for the
common values of k) to the direction # ¼ 180�, which determines the sliding
operation mode of a spatial harmonic. For example, the antenna with the grating
whose period is reduced to l ¼ 0:8 radiates at its best on two different spatial

Fig. 7.20 Same as in Fig. 7.14 but for circular dielectric waveguide and axially symmetric infinite
grating with period l = 1.0
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harmonics with k ¼ 5:8 (gðkÞ ¼ 0:998Þ and k ¼ 8:4 (gðkÞ ¼ 0:963Þ; the radiation
directions fall within the range #[ 90�(reversed radiation).

If the slot size remains practically unchanged with reduction of the grating
period, we can predict with confidence that most of the resonances associated with
extreme points of the function gðkÞ retains. The supporting results are presented in
Figs. 7.19 and 7.22.

Let us consider the radiator displayed in Fig. 7.23a. It is a section of the Goubau
line placed inside a semi-transparent grating of thick dielectric rings. Let also a

pulsed TEM-wave Ui 1ð Þ
0 ðg; tÞ : v0 1ðz : g 2 C1; tÞ ¼ F2ðtÞ (~k ¼ 6:0; Dk ¼ 2:5; ~T ¼

30; �T ¼ 60; T ¼ 350Þ be incident on the radiator. The incident wave occupies the
frequency band 3:5\ k\ 8:5: Within this band, the only wave propagating

(a) (b)

Fig. 7.21 Excitation of axially symmetric antenna from Ω1 by the pulse (7.32): P(t): 0.01–5–195–
200, T = 300 and ~k ¼ 5:7; ~k ¼ 6:8; ~k ¼ 8:4. a Space distribution of Eϕ (g, t) at t = 195 and
b directional patterns for different k
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without decay in the waveguides Xj is a sinusoidal TEM-wave. The functions
Dð#; k;1Þ and gðkÞ are plotted in Fig. 7.23b, c. As we can see, qualitatively they
differ little from those obtained before (Figs. 7.13, 7.19 and 7.22). As to the
quantitative difference, it can be significant in the following situations: (i) consid-
erable difference between the propagation constants �vðkÞ of surface waves travel-
ling in the sections of the open waveguides and (ii) considerable difference in the
geometry of the gratings used for surface-to-spatial wave conversion and, as a
consequence [2, 11], in the redistribution of radiated energy between propagating
spatial harmonics.

It worth to note the existence of sufficiently wide frequency bands, where the
radiation efficiency gðkÞ is above 0.98. These are the bands 3:59� k� 4:25;
5:6� k� 6:05 and 8:06� k� 8:22; whose widths are 17%, 8%, and 2%,

(a) (b)

Fig. 7.22 Directional patterns D(ϑ, k, ∞) and radiation efficiency η(k) of axially symmetric
structures with semitransparent (d = 0.5) gratings of periods a 0.8 and b 0.6
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respectively. The behavior of the directional pattern is quite predictable. In the
vicinity of frequencies corresponding to small gðkÞ; the number of lobes increases
abruptly, while the main lobes change their orientation twice from the direction
associated with one spatial harmonic to the direction corresponding to the other
one, if only such opportunity exists.

(a)

(b)

(c)

Fig. 7.23 a Axially symmetric antenna—Goubau line and dielectric rings grating: inner
conductor radius is 0.06, outer radius of dielectric cover is 0.3, thickness and width of dielectric
rings are 0.4 and 0.3, c = 0.08. Drawing is in proportion. b Directional pattern D(ϑ, k, ∞) and
c radiation efficiency η(k) of the antenna
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7.4 Synthesis of Diffraction Antenna Components
and Units

Most of optimization problems considered in this section can be resolved theo-
retically, in particular by the methods discussed above. However, we give prefer-
ence to the experimental approach. There are some reasons for our choice. First of
all, we believe it would be appropriate to demonstrate potential of experimental
methods as was done previously for theoretical approaches, since they inevitably
must be invoked passing from theoretical research to new devices. At the same
time, the emphasis in this section is on the methodology, which is equally appli-
cable to both theoretical and experimental technique used for solving a specific
problem. And finally, in the next section we present the unique diffraction antenna,
which is a product of the experimental technique outlined below.

7.4.1 Synthesis of Radiators with Predetermined
Amplitude-Phase Field Distribution on the Aperture

Consider a radiator formed by a ridge dielectric waveguide (RDW) and a lamellar
grating (Fig. 7.24). The radiator of this kind was used in the airfield surveillance radar
discussed in [32]. In the dielectric waveguide made from fluoroplastic (e ¼ 2:05Þ, the
surface wave with the moderating coefficient cðkÞ ¼ b�1ðkÞ ¼ �vðkÞ=k ¼ 1:243 for
k ¼ 2p=k ¼ kwork ¼ 8:3mm propagates, where kwork is the working wavelength.
The components Ey and Ez dominate in the electric field. Being scattered by the
grating, the surface wave gives rise to the horizontally-polarized spatial outgoing
wave. The vector ~H of this wave is directed normally to the y0z plane, which is called
‘horizontal’ due to typical antenna orientation in radar installations.

RDW isfittedwith a horn-type source of slow surfacewaves. Its total loss is 0:2 dB;
of which the radiation loss is 0:1 dB: The standing wave ratio (SWR) does not exceed
1.15 in the frequency band 34GHz� f � 38GHz (7:89mm� k� 8:82mmÞ.

Fig. 7.24 ‘RDW—grating’ radiator: a1 = 77 mm, a2 = 7.0 mm, a3 = 40 mm, h1 = 5.5 mm,
h2 = 3.1 mm, h3 = 5.5 mm
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An efficient antenna can be constructed around the radiator under consideration
providing three following problems are resolved [17]. The first problem is to
determine the grating period l and the grating geometry (parameters d and hÞ with
the following requirements in mind: (i) a slow surface wave with the propagation
constant �vðkÞ ¼ U1ðkÞ produces in the reflection zone only one propagating spatial
harmonic (zeroth harmonic), which is directed within the angle range
90� \/� 150� and (ii) sufficiently high efficiency of the surface-to-spatial wave
conversion (for planar infinite gratings this parameter is defined by the function
W22

0 1ðkÞÞ and minimal phase distortions (minimal variations in �vðkÞ due to a
waveguide-grating field coupling). The second problem is to gain the required
field-amplitude distribution on the radiator aperture by selecting the
waveguide-grating separation cðyÞ throughout the length of the interaction region
0� y� L: The resolution of this problem allows to construct an antenna with the
given radiation efficiency and side-lobe level (SLL) of its directional pattern in the
plane y0z [33]. The third problem is to determine and minimize aperture phase
distortions, which are characterized by the deviation DwðyÞ of the field phase wðyÞ
from the straight line connecting the points wð0Þ and wðLÞ:

In [32] the first problem was resolved experimentally for l ¼ 6:2mm (with this
period we have /0ðkÞ ¼ 95:49�), d ¼ 2:0mm; h ¼ 1:5mm and a ¼ 4:0mm (see
also Fig. 7.24). The authors used a radiator with a grating of length Lprot ¼ 250mm
and measured such characteristics of the structure ‘surface wave line—grating’ like
the input-to-output power ratio WincðkÞ

�
Wpropðk; cÞ and cðk; cÞ for various values of

the impact parameter c: The results of measurements of several suitable gratings
(electrodynamic characteristics of periodic structures of this kind were analyzed in
detail in [2, 11, 20]) let them to select the one that best meets the requirements in
(ii) above.

At the next stage, we chose the grating length L ¼ 2000mm such that
the directional pattern in the plane y0z has sufficiently narrow main lobe. From the
required field-amplitude distribution on the aperture, which is determined by the

function Wnorm
rad ðk; yÞ ¼ Wradðk; yÞ

�
max

0� y� L
½Wradðk; yÞ� (normalized radiated

energy), and the linear loss in the surface wave line, we calculated the power taken
by each period of the grating. Then, using the function WincðkÞ

�
Wpropðk; cÞ mea-

sured earlier for the grating 250mm long (Fig. 7.25), we determined the magnitude
of c for each period and consequently cðyÞ along the whole length of the interaction
region 0� y� 2000mm: Provided high precision of measurements, this approach
exhibits good agreement between the resulting data with those expected.

As the distance r[ 0 from the planar dielectric waveguide increases, the field
intensity decreases as exp �aðkÞr½ �; where aðkÞ ¼ Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � �v2ðkÞp

(see Sect. 7.2.4).
RDW differs from the planar waveguide with the same moderating coefficient in
that the field decreases more steeply with the distance away from its surface facing
the grating. The approximate formula for the field decrease is
exp �aðkÞr½ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0= r0 þ rð Þp
, where r0 is the distance between the plane z ¼ c and the

point at which the power flux density is maximal within the RDW cross-section
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(Fig. 7.24). The corresponding power takeoff is plotted in Fig. 7.25 (solid line) for
the following parameters: cðkÞ ¼ 1:243; kwork ¼ 8:3mm and r0 ¼ 3:0mm: This
curve corresponds to the experimentally obtained value of WincðkÞ

�
Wpropðk; cÞ for

c ¼ 1:5mm and agrees well with the measurement data (circles) obtained for
greater (up to c ¼ 5:0mmÞ grating-RDW distances. The data calculated by this
algorithm is required for accurate determination of the function cðyÞ along the
entire interaction region, where at some points a drop to 10�4 dB is registered for
c  12:0mm (c  1:45kwork). The point is that the range where the drop can be
measured rather precisely is 1:0� 30:0 dB: Therefore the discrepancy between the
measured and calculated data in Fig. 7.25 for WincðkÞ

�
Wpropðk; cÞ\ 0:1 dB is

caused by the increased measurement error for small values of the power takeoff.
When solving the second problem, consideration must be given to some general

restrictions on the shape of the field-amplitude distribution along the antenna
aperture 0� y� L:

f ðyÞ ¼ gþð1� gÞg 2y� L
L

� �
; 0� g� 1

and for pj j � 1 gðpÞ� 0; max gðpÞ ¼ 1:

This function must be sufficiently smooth and may not become zero, including its
values at the ends of the interaction region. Therefore, such widely used distribu-
tions as cosine distribution gðpÞ ¼ cos pp=2ð Þ (see Table 4.1 in [33]) or
cosine-squared distribution gðpÞ ¼ cos2 pp=2ð Þ can be used only with a pedestal g
of height not less than 0.01. It should be mentioned that with a cosine-squared

100

  10

 1.0

 0.1

0.01
0.0 2.0 4.0 6.0 8.0

Fig. 7.25 Energy response of
‘RDW—grating’
structure 250 mm in length
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distribution, a pedestal g ¼ 0:1 produces the first side lobes at the level of
�42:64 dB:

At the third stage, using the previously calculated and measured functions cðyÞ
for 0� y� L and cðk; cÞ; we estimated phase distortions on the aperture, which are
caused by a relationship between the moderating coefficient cðkÞ and the
waveguide-grating gap c (Fig. 7.26).

To measure the moderating coefficient cðk; cÞ; we used the radiator with the
grating 250mm in length and the 8-mm phase meter with Doppler frequency shifter
[32]. The values of cðkÞ for different c were determined from the phase incursion
over a finite distance along the interaction region (see Sect. 7.3.3). The radiator
input and output were very well matched with the phase meter that provided pre-
cision of measurements at a level of about 0:2�.

As seen from Fig. 7.26, the moderating coefficient cðk; cÞ rises sharply for
c\ 2:5mm; that is why this value of c was chosen as ultimately permissible. The
phase wðyÞ at some point y corresponding to a certain grating period is a sum of the
phase incursions over all preceding periods. These incursions can be easily cal-
culated from the impact parameter c corresponding to each grating period and the
local value of the function cðk; cÞ: Since it is not easy to visualize the incursion
Dcðk; cÞ ¼ cðk; cÞ � cðk;1Þ for c[ 3:0mm due to the plotting scale in Fig. 7.26,
we give some numerical data: Dcðk; cÞ ¼ 6:5 � 10�4 for c ¼ 3:0mm; Dcðk; cÞ ¼
2:3 � 10�4 for c ¼ 4:0mm, and Dcðk; cÞ ¼ 4:6 � 10�5 for c ¼ 5:0mm: If the antenna
aperture size is greater than 100 wavelengths, then even such small phase devia-
tions must be taken into account when calculating the directional pattern.

The above-described methodology may be followed to construct an antenna
whose SLL does not exceed �20 dB and the main lobe width approximates 0:3� for
the pattern in the plane y0z: This performance can be reached if the amplitude

1.26

1.25

1.24
0.0 2.0 4.0 6.0 8.0

Fig. 7.26 Moderating
coefficient for ‘RDW—
grating’ structure 250 mm in
length
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distribution on the aperture is cosine with the pedestal g ¼ 0:03 (the field drop is
�30 dB at the aperture ends). The function cðyÞ calculated for this distribution with
allowance made for linear loss in the dielectric waveguide at a level of 0:85 dB=m is
depicted in Fig. 7.27 by the solid line. The values of c vary from 3:15mm to
9:7mm over the interaction interval 0� y� L: The dashed line corresponds to the
profile cðyÞ of the constructed antenna. The discrepancy between the calculated and
realized functions cðyÞ stems from the fact that only eight points of fixation in
250mm intervals starting with the point y ¼ 125mm provide the required bending
of RDW. For the same reason the field drop at the aperture edges in the constructed
antenna reduced from the expected �30 dB to �20 dB (Fig. 7.28).

0 500 1000 1500 2000

10.0

8.0

6.0

4.0

2.0

Fig. 7.27 Impact parameter
c(y)
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–16

–20
0 500 1000 1500 2000

Fig. 7.28 Calculated (solid
line) and measured (circles)
amplitude field distribution
over aperture
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The measured and computed values for the function Wnorm
rad ðk; yÞ; which is rep-

resentative of the field-amplitude distribution over the antenna aperture, agree
closely. The total loss of the ‘RDW—grating’ system is 1:25 dB; which includes the
material loss in the guiding line and the load loss at the end of this line.

The function DwðyÞ defining phase distortions on the aperture, which was cal-
culated from cðk; cÞ for the actual profile cðyÞ; is presented in Fig. 7.29. In
Fig. 7.30, the calculated directional patterns for the cosine-on-pedestal amplitude
distribution without phase distortions and the actual amplitude-phase distribution
(see Figs. 7.28 and 7.29) are depicted by the solid and dashed lines, respectively.
The total effect of the amplitude and phase distortions is moderate—the maximum
of the directional pattern is deflected gently towards the aperture normal, the side
lobes are slightly asymmetric, while their level falls. From the results obtained it
may be concluded that eight points of fixation of RDW would be ample to get
satisfactory amplitude-phase field distribution on the aperture 2000mm in length.

The directional pattern of the actual antenna in the plane y0z is shown in
Fig. 7.31. Its width is /0:5 ¼ 0:27� (or /�3:0dB ¼ 0:27�), SLL is �21:7 dB: When
the calculated SLL (Fig. 7.30) is compared with the SLL obtained experimentally, it
is apparent that some additional disregarded sources of amplitude-phase distortions
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Fig. 7.29 Phase distortions
on aperture
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Fig. 7.30 Calculated
horizontal directional patterns
as illustration of impact of
aperture phase distortions
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occur. However, the actual SLL exceeds the calculated values insignificantly
(1:2 dBÞ, which is quite satisfactory. On the whole, all these rather good results have
been obtained owing to optimal dimensions of the dielectric waveguide and the
grating geometry as well as to minimal manufacturing errors.

It should be noted that all experimental and numerical data discussed above were
obtained for the working wavelength k ¼ kwork ¼ 8:3mm:

7.4.2 Maintenance of Antenna Operability on Coupling
Level

Table 7.1 presents values of the function cðyÞ which result in the cosine-squared
field distribution on the aperture to decay down to �14 dB at its edges (see
Table 7.2, first row) for k ¼ kwork ¼ 8:8mm (cðkworkÞ ¼ 1:254Þ and the following
radiator parameters: l ¼ 6:5mm; d ¼ 2:0mm; h ¼ 1:6mm; L ¼ 1830mm; a ¼
12:0mm (and, see Fig. 7.24, a1 ¼ 28mm; a2 ¼ 8:0mm; a3 ¼ 40mm; h1 ¼
8:0mm; h2 ¼ 3:5mm; h3 ¼ 6:2mmÞ. When calculating cðyÞ; we used the energy
responses from the antenna segment 201:5mm in length.

The data in Table 7.2 allows to estimate the influence of uniform deviations on
the calculated function cðyÞ (first row). The first column lists new impact parameter
functions. In the second and third columns, field-amplitude distributions and
directional patterns associated with these profiles are given. The main lobe width
/0:5ðkÞ is 0:325� in all cases. The calculated directional patterns take no account of
phase distortions. The taken into account linear loss is 1:0 dB=m:
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Fig. 7.31 Measured
horizontal directional pattern
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To increase the antenna efficiency, small impact parameters must be used, which
results in a growth of phase distortions. That is why the field drop at the output of
the interaction region at a level of �14 dB (AE ¼ 75% ) is a compromise from the
standpoint of phase distortions and possible thermal expansions or compressions of
the antenna parts. Such a choice results in a reasonable precision of measurements
as it is well known that it is difficult to determine the field drop at a level of �20 dB
and below.

The data presented in Table 7.2 testify that even considerable growth or
reduction of the impact parameter (e.g., due to variations of ambient temperature)
does not cause operating irregularity of the diffraction antenna. In fabrication of
antennas of this kind, reasonably large deviations of the function cðyÞ from the
calculated values may be tolerated.

Let us consider the influence of deviations of cðyÞ from its initial values over
small variation intervals of y on the antenna performance. Such deviations may
occur if we use separate points of fixation when making the profile cðyÞ (see
Table 7.1). The results presented in the first and second rows of Table 7.3 are
calculated for the cases where the value of cðyÞ is increased by 0:2mm and 0:4mm;
respectively, at the point y ¼ 1100mm on the aperture, while the data in the third
and fourth rows correspond to cðyÞ being decreased in the same way. The antenna
efficiency reduces predictably in the first two cases and increases in the two others,
where field coupling between the waveguide and the grating increases slightly on a
small portion of the interaction area. In all cases, one can observe considerable
distortions of the field-amplitude distribution over the aperture together with the
marked increase of SLL. The presented data allow to conclude that the acceptable
deviation of cðyÞ may not exceed 0:1mm at separate points. However, as was
shown previously, a smooth and uniform variation of the impact parameter well
over this value results in only insignificant change in the antenna performance.

In closing, it may be noted that the width of the directional pattern measured in
the plane y0z with the initial parameters given in Table 7.1 agrees with the cal-
culated one while SLL does not exceed �27 dB:

Table 7.1 Calculated values
of impact parameter

y[mm] c(y)[mm]

10 6.49

110 6.25

310 5.22

510 4.29

710 3.63

910 3.17

1110 2.88

1315 2.80

1510 3.11

1710 3.79

1810 3.95
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Table 7.2 Impact of uniform deviations of c(y)
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7.5 The Low-Side-Lobe Planar Antenna

7.5.1 Radiator’s Characteristics

Consider a radiator incorporating a planar dielectric waveguide (PDW) and a
lamellar grating (Fig. 7.32a). The dielectric waveguide made from fluoroplastic
(e ¼ 2:05Þ sustains propagation of the surface TM11-wave with the moderating

Table 7.3 Impact of local deviations of c(y)
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coefficient cðkÞ ¼ 1:23 for k ¼ kwork ¼ 8:824mm (fwork ¼ 34GHzÞ. Scattering on
the grating, this wave gives rise to a horizontally polarized spatial outgoing wave
(the vector ~H is almost perpendicular to the y0z plane) with a cylindrical phase front
in the plane x0z: The radiator of this kind is a principal unit of the low-side-lobe
planar antenna, whose design and characteristics were first described in [16].

In the course of experiments with the radiator of the length Lprot ¼ 125mm
(Fig. 7.32b), among three gratings having groove depths h ¼ 2:2mm; h ¼
1:75mm; h ¼ 1:4mm and the common parameters l ¼ 6:2mm; d ¼ 2:0mm; a ¼
52:0mm; we selected the one with h ¼ 1:75mm which demonstrated high effi-
ciency in the surface-to-spatial wave transformation (Fig. 7.33) and the smallest
phase distortions for c[ 3:0mm (Fig. 7.34). It is precisely these values that were
thereafter considered as acceptable values of the impact parameter.

(a)

(b)

Fig. 7.32 a Geometry of ‘PDW—grating’ radiator. b Prototype with reduced aperture
(60 × 125 mm2): 1—PDW; 2—three changeable diffraction gratings; 3 and 4—input and output
horns
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In the reflection zone of an infinite grating, a surface wave with the given
moderation gives rise to only one (nonzero) propagating spatial harmonic outgoing
into free space at an angle of /0ðkÞ ¼ 101:11� for kwork  0:712 rad=mm: This
means that the main lobe of the directional pattern is directed at 10� to the aperture
normal. This deflection ensures low SWR and no impact of the energy remaining in
PDW after the surface wave passage over the grating and reflection from its end on
the level of the first side lobes.

When calculating a sample of a planar antenna with the interaction region of
length L ¼ 1000mm and SLL below �30 dB; we utilized the data on the field
distribution functions and the associated directional patterns given in [33]. To
obtain the given SLL, the cosine-squared with a pedestal field distribution is
required on the aperture. Different values of g result in field distributions with
different drops at the ends of the interval 0� y� L and different SLL of the
directional patterns. For example, the pedestal g ¼ 1:0 corresponds to uniform field
distribution on the aperture (the field drop is 0:0 dB at the ends); the expected SLL
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is �13:25 dB: With g ¼ 0:1; the field drop at the ends is �22:0 dB; and SLL is
�42:64 dB: With g ¼ 0:0; the field drop is �60:0 dB; and SLL is �31:17 dB:

The problem set above can be solved by utilizing the cosine-squared distribution
with the pedestal g ¼ 0:2:With this distribution, the field drop at the aperture edges
is �14 dB and the expected SLL is �31:41 dB: The impact factor cðyÞ and the
phase distortions DwðyÞ calculated for this distribution are depicted in Fig. 7.35.
They are required to set up the experimental sample of the antenna. The calculated
directional pattern shown in Fig. 7.36 indicates that the required side-lobe level
may be achieved.

In the above-mentioned calculations, we used experimentally obtained data of
the function cðk; cÞ (Table 7.4) and took into account 1:0 dB=m linear loss in PDW.

7.5.2 Antenna Design

An antenna embodiment plays an important role in ensuring the stability of its
parameters in a wide range of temperatures, under static and dynamic loads, and
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vibrations. Additionally, a complete hermeticity may be needed to protect against
moisture and precipitation. An antenna should be sufficiently rigid in construction
with high precision of fabrication and assembly of its parts. Usually, when sealing
hermetically, an entire antenna is placed into a protective housing with a
radio-transparent window. In our design, it has been modified and resulted in a
significant reduction of weight and dimensions of the device.

The dimensions of the antenna aperture are 200� 1000mm2, and the thick-
nesses of the grating, the dielectric waveguide, and the excitation device are within
a few millimeters. Such dimensions of the antenna constituent parts do not provide
the required flexural rigidity in the horizontal plane and torsional rigidity, so we
added the base (marked ‘1’ in Fig. 7.37a) and the bracing frame (marked ‘2’) on the
reverse side of the aperture.

The base is intended for mounting on it such antenna parts as five diffraction
gratings (‘3’, Fig. 7.37a) the dielectric waveguide (‘4’), the horn-lens excitation
unit with an output waveguide and a return bend. Each diffraction grating 9:0mm
thick provides local rigidity over the area 200� 200mm2 in size. In the assembly
of the antenna, the rigidity increases and reaches the required value when installing
it on the bracing frame. Total sealing encloses only the antenna itself without the
bracing frame. They are separated by a sealing sheet. The antenna enclosed in a
protective housing represents a self-contained construction that can be mounted on
any flat surface with the deviation from flatness of no more than 
0:1mm and fixed
with twelve screws. The points of fixation match gratings’ junctions or edges, so the
surface of the assembled diffraction grating meets the flatness requirements both
over the 200� 200mm2 area and over the total area 200� 1000mm2.

Table 7.4 Moderating
coefficient as function of
impact parameter

c(y)[mm] γ(k, c)

1.0 1.249947

1.5 1.236864

2.0 1.233314

2.5 1.231206

3.0 1.230275

3.5 1.230069

4.0 1.230157

4.5 1.230196

5.0 1.230128

5.5 1.230118

6.0 1.230098

6.5 1.230039

7.0 1.230002

7.5 1.230001

8.0 1.230000

12.0 1.230000
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The bracing frame consists of two pipes (aluminum alloy) 40mm in diameter
and 1050mm long. Using the flanges ‘5’, the ribs ‘6’ are secured to the pipes.
During the fabrication, six ribs are processed simultaneously, including their holes
40mm in diameter, and hence, straightness of the pipes ensures sufficient flatness of
the frame. The center-to-center distances of the ribs equal 210; 210; 210; 200; and
200mm measured from the excitation unit. Strength of the ribs and pipes is suffi-
cient to be securely fastened to a rotary device or any other bearing part.

(a)

(b)

(d)

(c)

Fig. 7.37 a Experimental prototype of planar antenna [16], b PDW with antireflection lens,
c exciter of PDW, and d return bend
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The diffraction gratings are the most important and accurately fabricated parts.
The period is maintained with the tolerance of 
0:02mm: Upon assembling (up to
the length of L ¼ 1000mmÞ, the distance between two arbitrary grooves is nearly
multiple of the period l ¼ 6:2mm: Once the base is mounted on the bracing frame,
the tolerance on flatness of the grating surface is 0:25mm: The gratings interface
together at the grooves bottom without clearance and are attached to the base by six
screws each.

The dielectric waveguide (marked ‘4’ in Fig. 7.37a) is made from polystyrene
sheet 3:0mm in nominal thickness. The average thickness of a sheet varies between
2:8mm and 3:0mm; however, extreme deviation from the mean value may not
exceed 
0:02mm: PDW is attached to the base by twenty seven studs with
adjustable height and spring blank holders to provide sliding fit and to compensate
for thermal expansion of the polystyrene sheet. A planar lens with a focal distance
of 582:7mm and 14:31mm thick is installed at the waveguide input. The lens
refractor is hyperbolic in shape. At the antenna end, under the dielectric waveguide,
a matching absorber is pasted in. Rubber with metal powder filling proved itself to
be the best absorbing material.

The lens refractor may be equipped with an antireflection layer in the form of a
grating (Fig. 7.37b), which results in the lower reflection coefficient and thus in the
lower SWR of the antenna as a whole. To do this, a lens with a smooth surface is
first fabricated and then grooves 1:75mm in depth, 1:5mm in width and with a
period of 2:5mm are milled.

PDW is excited through the horn (marked ‘3’ in Fig. 7.37c) loaded on the
biplanar metal waveguide with return bend ‘4’. For the horn upper wall, the base is
used and a cover 1:0mm long is used as the bottom wall. Aluminum alloy sheets
used for these details should be free from scratches, corrosion marks, and other
defects. The horn side walls 4:0mm thick are positioned at an angle of 9:5� to the
antenna axis. The return bend (Fig. 7.37d) provides also a smooth transition from
the four-millimeter section to the three-millimeter section, which corresponds to the
thickness of the dielectric waveguide. In the horn throat, the feeding waveguide of
inner dimensions 7:2� 3:4mm2 is installed. This waveguide is equipped with the
flange ‘1’ 24� 24mm2 in size and the E-plane bend ‘2’. A correcting lens is placed
in the planar waveguide ‘5’. The configuration of this kind reduces the number of
reflecting surfaces on the way to the planar waveguide, and, as a result, decreases
the total SWR of the waveguide transmission line. The horn marked ‘6’ matches the
parallel-plate waveguide with PDW.

7.5.3 Experimental Data

Below are given the results obtained for the frequency fwork ¼ 34GHz
(kwork ¼ 8:824mmÞ, which coincides with the center of the antenna working fre-
quency band. On typical spatial orientation of the antenna (y0z is the horizontal
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plane, x0z is the vertical plane), its polarization is horizontal and the magnitude of
the cross-component is below �40 dB: The antenna losses measured by means of
registering SWR comprise 1:7 dB: They are a sum of the loss in the exciter of PDW
0:72m in length (1:0 dBÞ and the loss in the planar waveguide up to its center
(0:7 dBÞ. Thus, the antenna intrinsic loss is 0:7 dB:

The measured SWR is 1.12. Notice that prior the blooming of the lens, SWR
was 1.25, while the loss in the PDW excitation unit was 0:2 dB higher.

Figure 7.38a presents the measured antenna directional pattern in the vertical
plane. From a number of measurements, we obtain the mean width of the pattern of
2:95� at a level of �3:0 dB: Due to the dielectric lens installed at the driven end of
PDW, the field drops at the aperture edges x ¼ 
a=2 faster, which results in the
reduction of the lateral radiation level down to �25 dB in the vertical plane. It
would have been �23 dB for the cosine-shape distribution. The effect of this kind is
common to horn-lens antennas with a convex first refractor. In short-focus systems,
it is more pronounced. Application of a short-focus lens will allow to reduce SLL in
the vertical plane by another 2� 6 dB:

The measured antenna directional pattern in the horizontal plane is shown in
Fig. 7.38b. Its shape agrees with the calculated one (Fig. 7.36). A set of mea-
surements gave the mean width of the pattern of 0:64� at a level of �3:0 dB: The
operational integrity of the antenna is retained in the frequency band 34
 0:5GHz
with possible variations of the main lobe orientation as low as 1:0� per 1% of
frequency variation. SLL in the horizontal plane is coincident with the calculated
data and equals �31:4 dB: The shape of the side lobes suggests unsuspected phase
distortions associated with possible inaccurate fabrication of individual parts and
assembly errors. It is also possible that there exist other neglected energy leakage
paths. As a whole, the problem may be considered as resolved since we have
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proved experimentally the possibility to form directional patterns with SLL below
�30 dB for diffraction radiation antennas. Further reduction of SLL is possible
provided other amplitude distribution is realized on the aperture and the assembling
accuracy control is more rigid.

The antenna directive gain (ADG) obtained from the measured widths of the
directional patterns in the vertical and horizontal planes is 42:7 dB: The measure-
ment of the antenna power gain (APG) by the substitution technique with an aid of
a reference horn-lens antenna (APG ¼ 33:8 dBÞ yields the elevation of þ 7:6 dB:
From the difference between ADG and APG, we determine the total loss in the
designed planar antenna, it is 1:3 dB: Previously, we estimated the total loss by
registering SWR, it was 1:7 dB: The difference of 0:4 dB is due to oversized losses
caused by phase distortions in planar guided-wave structures when estimating the
loss by registering SWR. That oversized estimation has nothing to do with the
structural ohmic loss. Thus, we may consider that the antenna loss is about 1:3 dB:

The planar antenna with hermetic housing weights 16 kg: The antenna finds its
use in stationary and movable, ground-based and sea-based millimeter-waves
scanning radars as well as in side-looking radars. Long-standing testing of actual
antennas of this kind demonstrates their reliability, stability, and tolerance for
adverse environmental conditions [17].

7.6 Conclusion

Diffraction gratings illuminated by surface waves of open waveguides or by
density-modulated charged-particle beams are capable of forming a narrow-beam
radiation. This effect is used in antenna and electronic devices, specifically in
diffraction radiation generators and antennas. In this chapter, we first decided to
look into this area in detail. We presented the models making possible more
detailed observations of the processes associated with the near-field to far-field
conversion by infinite and finite periodic structures. The efficient experimental
approach to design parts and units for diffraction antennas was elaborated. We
obtained a number of new physical results, which are of theoretical and applied
interest. In particular, the low-side-lobe planar antenna prototype was designed and
tested, which experimentally proved the possibility of diffraction radiation antennas
to form a directional pattern with SLL below �30 dB:
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