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Preface

Our aim in writing this manuscript was to provide young researches and graduate
students with a book that combines examples of solving serious research problems
in electromagnetics and original results that encourage further investigations. The
book contains seven papers on various aspects of resonant wave propagation and
scattering written by different authors. Each paper solves one original problem.
However, all of the papers are unified by authors’ desire to show the advantages of
rigorously justified approaches to all stages of the study: from problem formulation
and selection of the method of attack to interpretation of the results.

A glance at the Contents will reveal a range of physical problems raised in the
book. Mostly, those are the problems associated with wave propagation and scat-
tering in natural and artificial environments or with designing the elements and
units for antenna feeders. The authors invoke both theoretical (analytical and
numerical) and experimental techniques for handling the problems. Considerable
attention is given to the mathematical simulation issues, problems of computational
efficiency, and physical interpretation of the results of numerical or full-scale
experiments. Most of the presented results are original and have not been published
earlier.

The need for rigorous theoretical justification of mathematical modeling and
computational experiments—the widely used methodologies of obtaining new
knowledge—is evident. Underformulated problems, neglect of the estimation of
stability and convergence of numerical schemes cannot guarantee reliability of the
results. Furthermore, the rigorous theoretical basis of the laboratory and full-scale
experiments allows to conduct research saving time and material resources, to
safely test simulated devices in a variety of operating conditions. To demonstrate
the advantages of rigorous approaches and their realizability is the heart of the
ideology of this book. And we address it to those young researchers who are going
to work actively and fruitfully in the field of theoretical and applied physics,
electronics, and optics.

The authors of this book are mostly current or former employees of the
Department of Mathematical Physics at the O.Ya. Usikov Institute for Radiophysics



vi Preface

and Electronics of the National Academy of Sciences (Kharkiv, Ukraine). Professor
Yuriy Sirenko, who has been at the head of the department over the last 25 years,
initiated the writing of this rather unusual in its conception book. He has had a
major influence on it, both scientific and organizational, and managed to inspire
other colleagues with his idea.

The assumed background of the reader is mostly limited to standard under-
graduate topics in physics and mathematics.

Kharkiv, Ukraine Lyudmyla Velychko
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Chapter 1

New Analytical Solutions of Selected
Electromagnetic Problems in Wave
Diffraction Theory

Leonid Pazynin

Abstract The chapter presents explicit analytical solutions for some sophisticated
electromagnetic problems. The analysis of these solutions made it possible, in
particular, to explain the physics of a cycle slipping phenomenon when very long
electromagnetic waves propagate in the Earth-ionosphere waveguide, to establish
the rigorous criterion of the boundary ‘sharpness’ for transient radiation and to
show that the well-known negative refraction phenomenon in isotropic double-
negative media is a direct consequence of the energy conservation law and
Maxwell’s equations.

1.1 Introduction

Exact analytical solutions of the basic problems of physics—boundary value and
initial boundary value—are important not only as a reference for verifying numerical
results but also as an effective tool for a deeper understanding of the nature of the
model under study. To obtain such solutions for new physical problems, one should
invoke, as a rule, new mathematical methods or significantly modify the available
ones. Thus, for example, in quantum mechanics, novel approaches have resulted in a
sharp increase in the number of exactly solvable problems and raised interest in the
subject in the recent years [1]. In theoretical radio physics, this was the case in
mid-twentieth century, after publishing of the book by Wiener and Hopf [2]. This
work has been of vital importance, which is why the method presented therein takes its
name from the authors—the Wiener-Hopf method. As applied to diffraction problems,
it was first used in [3-5]. In the review [6] the authors attempted to describe the areas of
application and discussed the future development of this method.

Mention should be made of the detailed study of the integral convolution
equations in the book by Gakhov and Cherskiy [7], which although not mentioned
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2 L. Pazynin

in [6] can be considered as part of the development of this method. In the first two
sections of this chapter, we apply their methodology of solving integral convolution
equations to the new problems on wave propagation near a plane surface of varying
conductivity, thereby reducing those problems to exactly solvable boundary value
ones. Thus, in Sect. 1.2 of this chapter, using the technique suggested in [7] for
solving the so-called smooth transition equation, we obtain analytical solutions for
two two-dimensional problems, namely, we find analytical expressions for the field
generated by a linear current above a plane surface whose impedance varies con-
tinuously from Z; to Z, in a given direction, and for the field generated by the same
source in a planar waveguide with a wall of the same impedance distribution. These
solutions generalize the known ones in which the surface impedance changes
stepwise. In Sect. 1.3 we investigate a model of a ring waveguide of constant
cross-section with variable in azimuth impedance of one of the walls. We have
found a class of distributions of these impedances, for which the analytical solution
of the excitation problem for this waveguide had been obtained. This result is used
for simulation of the known cycle slipping phenomenon occurring when very long
electromagnetic waves propagate in the Earth-ionosphere waveguide. A possible
cause of this phenomenon is discussed.

The remaining sections of the chapter are not associated with the Wiener-Hopf
method. In Sect. 1.4 a novel technique is suggested for the analysis of a transient
electromagnetic field generated by a pulsed line current that is located near a planar
interface between two dielectric nonabsorbing and nondispersive media. As distinct
from the Cagniard-de Hoop method, which is widely used for the study of transient
fields both in electrodynamics and in the theory of acoustic and seismic waves, our
approach is based on the transformation of the domain of integration in the integral
expression for the field in the space of two complex variables. As a result, it will
suffice to use the standard procedure of finding the roots of the algebraic equation
rather than construct auxiliary Carniard’s contours. A new representation for the
field has been derived in the form of an integral along a finite contour.

In Sect. 1.5 we discuss the transient radiation of a moving longitudinal magnetic
dipole whose trajectory crosses a soft boundary between two media. The obtained
analytical representation for the dipole field ensures a rigorous criterion of the
boundary ‘sharpness’ thus significantly improving the now known approximate
version.

In Sect. 1.6 the isotropic Epstein transition layer was generalized to the case of a
biisotropic plane stratified medium. An explicit analytical solution to the problem of
normal incidence of a linearly polarized electromagnetic plane wave onto the Epstein
layer was obtained for this extension. The derived transmission and reflection coef-
ficients are indicative of the presence of the total transmission mode in such media.

In Sect. 1.7 we suggest a model for a smoothly inhomogeneous isotropic
flat-layered medium that includes domains with double-positive and double-nega-
tive media. The analytical solution derived for a plane wave propagating through
this medium shows that the well-known negative refraction phenomenon in the
isotropic double-negative medium is a direct consequence of Maxwell’s equations
and of the energy conservation law.
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In Sect. 1.8, using as an example a perfectly conducting sphere, we rigorously
prove the possibility of drastic distortion of its radar image by applying a meta-
material coating on the sphere surface. We have found such radial distributions of
the coating dielectric and magnetic permeabilities that the scattered field every-
where outside the object coincides with the field scattered by a perfectly conducting
sphere of any given smaller radius. Requirements on the material parameters of
such distorting coating are smaller than they are in the case of a masking coating.

1.2 Wave Propagation Near an Irregular Impedance
Structure

One of the problems solved at the early stage of the development of the
Wiener-Hopf method was related to the electromagnetic wave propagation above a
plane whose impedance changed step-wise from Z; to Z, in a given direction [§].
A waveguide analog of this problem was studied in [9] for acoustic waves and in
[10] for electromagnetic waves. The electromagnetic model presented in [8] was
given the name ‘he coastal refraction problem’ since it was used for calculation of
a radar error arising when the radar crosses a shoreline.

It is well known that in the case of the stratified medium, whose permittivity is
given by the hyperbolic tangent or by hyperbolic secant, the solution of the wave
propagation problem can be written in explicit form. These two media have been
named asymmetric and symmetric Epstein layers, respectively. In this section we will
show that the problem of wave propagation near a plane surface, whose impedance is
given by the hyperbolic tangent, is also explicitly resolvable. At the same time,
attempts to obtain similar results for an impedance analog of the symmetric Epstein
layer (the permittivity is given by the hyperbolic secant) were unsuccessful, because in
this case we are led to three-element Carleman’s problem whose solution is unknown.

1.2.1 Wave Propagation Over a Plane Surface of Variable
Conductivity

Electrical properties of real underlying surfaces vary smoothly and the assumption
as to their step-wise change (for example, when crossing the boundary land/sea) can
only be justified for sufficiently large values of the wavelength A. However, the
discontinuity of the function Z(x), which characterizes the surface impedance
distribution on the plane z = 0 in classical two-dimensional (0/9y = 0) problems,
is incompatible with a mere concept of the surface impedance.

The question arises as to the existence of such continuous and reasonable (from
the physical point of view) surface impedance distributions that they allow an exact
analytical solution of the problems like those discussed in [8—10].
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It has been shown [11] that such a distribution does exist. It is the impedance
version of the Epstein transition layer [12]

Z(x):w; 00 <x <00, (1.1)
1 +exp(—1x)

where Z; = Z(—o0) and Z, = Z( + o) are the limiting values of impedance. The
parameter 0 <t < oo determines the width of the transition region in the impedance
distribution. The Grinberg-Fock model of the step-wise change in impedance [8]
represents the limiting case T — oo.

Let us consider the following two-dimensional problem: a field generated by a
filament of linear magnetic current J = 1" §(g — go) exp(—iwr)¥, which is
parallel to the impedance plane z = 0, is to be found. Here, J(...) is the J-Dirac
function; g = {x,z} and go = {xo, 20} are the points of the space R?; ¥, y, and 7 are
the Cartesian basis vectors. The current self-field can be represented as

E® = imppyrot ﬁ(m), where Hﬁm) = I (4wuu0)71Hél)(k|g —go|) and 1™ =

Hg’”) = 0 are the components of the magnetic Hertz potential; Hél)(. ..) is the
Hankel function; k = . /Eeofitly; € and p are the relative dielectric permittivity and
magnetic permeability of the medium. The surface impedance is given by relation
(1.1).

Basing, as in [8], on the integral Green formula and using the impedance
boundary condition 0E.(g)/0z = —ik Z(x)E.(g)|,_, [13, 14], we arrive at the fol-
lowing 1-D integral equation:

o0

70) = a) = 5200 [ 7EH (o ) (1.2

—00

where f(x) = Z(x)E.(x,0), g(x) =2Z(x)E2(x,0); E2(x,z) and E.(x,z) are the
vertical components of the primary and total electrical fields, respectively.

Equation (1.2) belongs to the class of the so-called smooth transition equations
introduced by Cherskiy [7]:

.7 o
10+ 7 / Ky (x — H)f (B)d% — q(x)
+e f(x)+\/12—n_/ Kr(x — X)f (X)dx — q(x)p =0; —oco<x<oo.
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For this equation to be normally solvable in the space L,(—00,00) and have a
finite index it is necessary and sufficient to have 1—|—I~<j(f) #0, j=1,2, where
K;(¢) is the Fourier transform of K;(x). In our case, we have

= KZ]/HI Kks) cos Esds =kZ; (K — 52) 1/2,
0

where x = k/1, and /K% — & — i¢ with ¢ —» + o0.

In [7], the authors prove the solvability in quadratures of (1.3) in the space
Ly(—00, 00) with the complementary condition that g(x) € L,(—o0, 00).

Let us apply the Fourier transform to (1.2), following [7]. Then we are led to
Carleman’s two-element boundary value problem for a strip 0 <Im¢ < 1. Later on,
with the use of some conformal mapping v = exp(2n¢), we will rearrange this
problem to yield the Riemann problem, which is as follows: on the real axis of the
complex plane of variable v = v’ 4 iv” two functions, D(v') and H(v'), are given; it
is required to find two functions F*(v), which are analytic in the upper complex
half-plane (v” > 0) and in the lower complex half-plane (v” <0), respectively, and
which also satisfy the boundary condition F* (v') = D' )F~(v')+H(v'). The
value y = (2mi) ' [In D(v/)]|™°,, is known as the index of the Riemann problem. For
the two problems considered in this section, we have y = 0. Using the well-known
solution of this problem [7], we can write the solution of (1.2) in the following
form:

i 1 ¥ e 4 ome K2_52.e—ixé
flx) = 41 2”4 H+e o’ (e )]—\/;@——52+le% (1.4)

2 0 r Zz +Ze " 1) N2, =2\ Lidn
— d
\/;Gxo Cl4en e\ (1 = Xo)" 425 | e,

o™ (ezni) =—itX" (62”5 K Q(c)e™ds

e Z (V=2 1z2) X+ (e275) (2% — &)

)

o0
ﬂ Vid =2 41z d
X*(e¥) = expg (1 —ie*™) In g tKA 5 > i (-
V2 — 62 + 17, (€27 + 1) (20 — e27<)
—00

The contour of integration passes below the pole for the functions marked by ‘+’
and above the pole for the functions marked by ‘—’
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These relations represent an explicit expression for the vertical component of the
electric field on an impedance plane considered without any restriction on the
parameters of the model.

In the case of grazing propagation of a plane wave (x) — —oo) and for Z; = 0,
the integral in the representation of the function @™ [exp(27&)] can be calculated.
To do this, let us transform the formula for Q(¢) using the Parseval equality for
Fourier integrals and then apply the saddle-point technique. As a result we get the
following asymptotic estimate for k|xo| > I:

- ) Pk 1 !
0(&) = 2exp(—in/4) WOT sh[r(x + ¢)] <1+0<’<|XO|>)'

Hence, for the vertical component of the total electric field we have

o]
. / Z X+ 2 I3 e
E(x,0)=2ef - 22 [exp(27¢)]exp(—ix)dé (15)
XTexpCal—r D) ) y/n— ohia(e b )
where the integration contour passes above the pole ¢ = —x. The representation in

the form of (1.5) is convenient for x <0. The first term represents the plane wave on
a perfectly conducting planar surface, while the integral term describes the field
scattered by the impedance inhomogeneity.

Taking into account characteristics of the factorization function X*[exp(2n¢)],
we obtain the representation, which is convenient for the area x > 0:

E.(x,0) = —— iKZ, / X’[exp(Zn(gy—|—i))]exp(—i)_cf)d£’ (1.6)
X~ [exp(2n(- (Ve =&+ k2 )shin(i+&)]
where the integration contour passes below the pole £ = —k. Using the following
decomposition

sh(n( K+é Z§+K+m

it is easy to show that (1.6) transforms for T — oo into the well-known formula [8]
for E,(x, 0) on the plane whose impedance equals Z, for x > 0 and is zero for x <O0.

Notice that the solution obtained in [8] represents the dominant term of the
long-wave asymptotic of the solution to the problem considered by us. This is
the case, where the wavelength of the source is much grater than the width of the
transition region on the impedance surface (2k < 7).
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1.2.2 A Field of Linear Magnetic Current in a Plane
Waveguide with Smoothly Varying Impedance of Its
Walls

In this section, we construct the exact Green function of the Helmholtz equation for
a band with the non-homogeneous boundary condition of the third kind on one of
its boundaries. The coefficient Z(x) in this boundary condition is an impedance
analogue for the permittivity of the known Epstein transition layer [12]. We use this
Green function below for analyzing the electromagnetic field induced by a linear
magnetic current in a gradient junction between two regular impedance waveg-
uides. This solution comprises the stepped impedance distribution as a limiting case
[10]. In [15], we considered a related problem of the electromagnetic TM-wave
propagation in a planar waveguide with the perfectly conducting upper wall and the
lower wall with conductivity changing as thtx.

In Sect. 1.2.2.1, the boundary value problem is reduced to the integral equation
of the second kind. In the next section, we derive the analytical solution by reducing
this equation to the Riemann problem of the linear conjugation of two analytical
functions on the real axis. For this purpose we invoke the Fourier transform and the
conforming mapping. In Sect. 1.2.2.3, the Green function is expressed as the
double Fourier integral, which is transformed further, by employing the Cauchy-
Poincaré theorem, into series in residues. Section 1.2.2.4 is devoted to the analysis
of these series as applied to the transformation of the eigenwaves of the regular
section of the waveguide junction. We also rigorously estimate the adiabatic
approximation for the considered waveguides.

1.2.2.1 Reduction of the Problem to an Integral Equation

A Solution to the Following Two-Dimensional Boundary Value Problem

82 2
(w + 9z +602880HH0> G' = —i(g — %), (1.7a)
8 t
8_G =0 for z=0, (1.7b)
Z
8 t . t
8_G +iweegZ(x)G' =0 for z=d (1.7¢)
z

is to be found in the band {0 <z<d, —co <x<oo} (see Fig. 1.1). Here g = {x, z},
8o = {x0,20}, and the function
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Fig. 1.1 The geometry of the Az
problem ! s—d
D
" Z=Z
Yzezt
* & ! //Z =0
. -
10 X

2y + Zyexp(—1x)

A= ' Z =explip), - 1.
(x) Z+exp(—tx) ’ >0, exp(ip), T<P<T (1.8)

is the complex-valued function describing the gradient transition from Z(—oc) =
Zy =7 t0 Z(+ ) = Zp/Z = Z,. Tts hodograph represents a circular arc having
the angular size of |2¢| and joining the points Z; and Z,. In the course of solution,
the imaginary part of the wave number k = w,/gglifl, is assumed to be positive,
whereas in the final formulas we put it equal to zero.

We seek the solution to the problem (1.7a, 1.7b, 1.7¢c) in the form of a sum

Gt(g7g0) = G0<g7g0) +G(g7 g0>7 (19>
where
1 7 d(n,z,20) o
0 - _ N+ S0/ (¥ — d
G (g,gO) 7 / Rl(l’[) CXp[ l(x )C())l’]] n

is the solution to (1.7a, 1.7b, 1.7c) with the fixed Z(x) = Z;, and
o0
Gle.go) = [ Foln.o) costlexpl-ita—saaldn (110

is the solution of the homogeneous equation (1.7a) with condition (1.7b). Here,
d(n,z,20) = cos(vz<)[cos(v(d —Z=)) —iZsin(v(6 —Zzx))/V],

R,(n) = v sinvé+iZ,cosvd, v =v(N) = /K2 — 2, Z, = Zywe/t, o = lorr, kK = k/t,
0 =dt,Z« =min(z,20), 2> = max(z,2), X = x7, Z = z7, and d is the waveguide
height. With this representation of the function G’, the requirements (1.7a), (1.7b) are
satisfied automatically. The condition (1.7c) leads to the following integral equation

/ F(n) [emé —1-Z(x)(e*™ + 1) /v]exp(—ixn)dn = —V21 Q(%);
> (1.11)

0 = it2n) (- 2) [ G espl-ite—supidn, oo <r<oc
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with respect to the unknown function

Fln) = e vexpl-i(36 — %) Foln.go). (1.12)

By using the known formula [16]

2exp(ivo) = v / H(()l) (K\/ &4 52) exp(iné)d¢,

—00

we can easily go from (1.11) to the equation of the second kind
70+ [ K- (@ae = 0w: —oo<x<oo  (113)

with respect to the Fourier transform of F (1)

f(fc)=\/% / F(n)exp(—inx)dn. (1.14)

The kernel looks like

Rewrite finally (1.13) in the form

o0

IS T .
FO+ 7 / Ko — OF(O)dE — 20(%)

+exp(—X) {f(x) + K\(x = &)f(&)dé — Q(x)} =0; —oco<X<00,

=/
(1.15)
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where
K0 - %Z{H“{x (- 2P+ o7

+H, (K|x—é|)} 47'2 33;1 [ (x—§)2+(25)2}; ji=1,2.

1.2.2.2 Solution of the Integral Equation

For Z = 1, a similar equation was discussed in [17], where a method of obtaining
its analytical solution was proposed. Following the basic ideas introduced in this
work, let us find the analytical solution of the more general equation (1.15) by
reducing it to the Riemann conjugation problem. To this end, we introduce a new
unknown function

<I>(fc)=f(5c)+—/Kl(x—é)f(é)dz—Q(x); —o<x<oo.  (1.16)

By subjecting (1.15) and (1.16) to the Fourier transform, we obtain a system of
functional equations

(1.17)

where K (&), K> (&), &)(E), and Q(&) are the Fourier transforms of the functions
K\ (x), K>(x), ®(x), and Q(x), respectively. Eliminating F (&), we arrive at the
equation

®(&) = -D(E)D(E+i) +H(E); —co<i<oo, (1.18)
where
D(&) =Ri(&)/[zR.(§)] and H(E) =i(Z — Z.)cos(v8)Q(E) /R, (E).

This is the Carleman problem: to find the analytical function &)(Z) in the band
0<Im{ <1 of the complex plane { = &+ it from the condition (1.18) on the band
boundary. Applying the conformal mapping { = exp(2n{) to (1.18), we pass to the
new unknown function w({) = {~'/2®(In{/27). Then this problem is transformed
into the Riemann problem of finding two analytical functions w*({) (in the upper

and lower half-planes of the complex plane { = ¢ 4 ic) from the boundary condi-
tion on the real axis &
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o (&) =D(Qa (&) +H(E); —oco<é<oo (1.19)
with the discontinuous coefficient

D(¢) = {D(¢) for & > 0;1 for <0} and

H(¢) = {efnZH(g) for & > 0; 0 for cf<0}; E=1Iné/2m. (1.20)

The branches of the functions In { and 1/ are determined by the value arg{ = 0
on the upper edge of the cut made along the ray &> 0.
The analytical solution to the homogeneous Riemann problem

ot (&) =DEw (§); —oco<é<oo (1.21)

in the case where the function D(&) is continuous along the whole of the real axis,
including the infinitely distant point, is well known [7]. The function in (1.20) is
discontinuous at the points ¢ = 0 and ¢ = co. Represent it as a product

D(&) = Di(&)D2(¢)
of the continuous function
Dy (&) = {Ri(&) /R (&) for & > 0;1 for E<0} (1.22)
and the discontinuous function
D5(&) = {Z 'for & > 0;1 for &<0}.
Obviously, if the solutions w;({) of the problems
o (&) =D&y (&); j=1,2, —oco<i<oo (1.23)

are known, then w({) = w1({)w,({) is a solution to the problem in (1.21). Let us
find w,({). Since

Inw, (&) = Inw; (&) — ip{l for ¢ > 0;0 for E<0}; —oo<E<oo,
then the desired function is analytical in the plane { containing a cut along the real

positive semiaxis; the discontinuity value on it is —i¢p = — In Z. We take for such a
function the function

w(0) = exp{% . lnC}.
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The solution of the problem in (1.23) for w; ({) can be derived by using the known
mathematical technique of factorizing the Riemann problem coefficient [7, 17]

o) ({) = exp{I'" (0},

where

X 0 00 . (C-l-l)dé ) m
PO =g [ MDO G >0

Let us introduce a function

X" (0) = o) [exp(2nl)] = exp{T" " [exp(2n{)]},

Cop(anl)] L [ B e
T [exp(2 C)]zié Nt Sl e O] ™

With the representation

it can be shown that

<y (Cnl)
w 1.24
,HOVCﬂm’?,,) (1:24)

where y(mnkn?) =T[1—i(nh —n)] - T[=i(n2+n)],T(...) is the
gamma-function [16], and 5% = /x> — (vf;)z, Im#% >0, where v are the roots of

the following dispersion equation for a regular waveguide with the impedance Z, of
one of the waveguide walls:

Vg (vid) +iZ, =0; a=1lorr. (1.25)

The expression for X~ (Z) is evident from (1.23), (1.24).
The coefficient of problem (1.19) can be written now as
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whereas (1.19) takes the form

0@ _ o© . HE
o (o, (&)~ op @0y () T o Oy ()

-0 < &< 0.

The solution of this problem on the discontinuity [7] is the Cauchy integral

vl ot © 1 [ H@ep(-md)
¥ (C)‘wmw;(o‘zmo/ oF OoF @ -0

E=In{/2n, Im{>0.

Hence,

exp () ¥ [exp(2n{)] :i/ H(E)exp(~¢C) d¢; Im{>0, (1.26)

where X(E) = W (exp (an)) and

o —ilZ— Z)zexp((/)z) cos [V(E)(ﬂ i cos[v(17)zolexp(iXon)dn
H(¢) = 47R, (2) / Ri(m)exp(¢n)sh[n (& —n)]

The pole at the point 7 = & lies above the integration contour. Since according to
(1.22) we have ;" (¢) = oy (&) for & <0, therefore the functions i ({) represent a
unified analytical function w;({). Hence in what follows, we will not use the
superscripts ‘+’.

When calculating the function in (1.26), the following integral arises

o n cos[v(&)d]ae
U(n,¢) = 4 R(&)X(&)sh[x(¢ —n)Jsh[x(& = )]

in which the integration contour passes above the pole & = 5 and below the pole
& = ¢. Let us consider the auxiliary integral U (11, E) along the boundary of the
band 0<Im{< 1. From the above we have

. dz
609 = | FErRmE= TR

_ /“ X(&)

. X(&+i)

dé i
X(&)sh[z(¢ —n)]sh[z( - &)] (Z = Z)U(n, €).




14 L. Pazynin

Here we have used the equality X (E)R, (E) =X (EJri)RZ(E) following from
(1.24). At the same time, the integral U (s, ¢) equals to a sum of residues at the
points & =5 +iand & = &, and hence

" 1

X(&) X(E+i)

o AZ-Z)
)

If we substitute this formula into (1.26) and take into consideration that the
solution of the Carleman’s boundary value problem (1.18) is

) (Z) = exp (nZ)‘I’ [exp (ZHZ)]X(Z) exp ((pZ); 0<Im{<I,

we derive from (1.14), (1.17) the desired solution of the integral (1.15):

L iZi=2) [ exp(—ixn)X(y)v(n)dn
&= P 4 exp(— g Jexpliv()OJRA(T)

y /OO cos[v(n)zolexp(ixon)dn |
Ri(m)exp(@n)X (n)shz(n — n")]

1.2.2.3 Residue Series Representation

Having regard to the equality X ()X (—n) = Ri(n)/R,(n) following from (1.24), we
obtain from (1.10), (1.12), and (1.14) that

s | e
7 (1.27)

)

" / X (xp) cos[v(xz)Zolexp(—iXoxz )exp[p(xa — x1)]dxz
Ri(x2) shz[(xy — x1)]
—00

where «; is a small positive value. In view of equalities (1.9), (1.10), we get the

expression for the Green function G'(g, go).
Let us transform the integral representation of G(g,go) in (1.27) into residue
series. To do this, let us deform the integration surface S = {z1,2; : zj = x;+ iy,
J=1,2,x € R',y; = —0y,y2 = 0} in the space CxC of two complex variables z
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and z; into the Leray coboundary [18] enclosing the analytical set A of the singu-
larities of the integrand. We rewrite (1.27) in the form

G(g:80) = %(Zz - Z)/w, (1.28)
S

where the differential form is given by

w Zf(Zl)q(Zz)h(Zz — Z]) exp(i)_czl — i)_C()Zz)dzl A de,

) :;OS[V(ZOZ] 4l _ X(z2) cosfv(z2)z]
(21)X(z1) Ri(z2)
h(z) = exp(¢z)/sh(nz).

The set A comprises the following families of planes z; = —n!,, z1 = 1%,
2=y 22 = Ny 22 — 21 = £im, n,k,m =0, 1,2, ..., where n% = n*+ ik and
o= {l or r}. The behavior of the integrand in (1.28) at infinity is governed by the
sign of Re(iXz1 — iXoz2) = —Xy1 + Xoy2. Consequently, let us introduce the fol-

lowing three-dimensional chains:

" L [ Y= T
C[ =93731,22X12 €R ) 7)’2:0 )
n<-—oa
4 . y2>0
Cy =qzi,22:x12 €R,y = —ay, ;
y2<0

for which the integration surface S is a common boundary. If one of four
inequalities x > 0, x <0, Xy > 0 or xy <0 is satisfied, then we can use the Cauchy-
Poincare theorem [18] in C,", C;, C5 or C,, respectively, and deform S into the
Leray coboundary enclosing the polar straight lines, along which the analytical
planes A and the chains C;E intersect.

It suffices to restrict ourselves to the case of Xy <0. In C,", the equations for
polar straight lines are

Pnk = {Zl =45, = nik}7 Qm = {Zl =45,22 :S+Zm}’
—oco<s<oo, nmk=0/12..., m=1,23,..,

whereas the equations for their coboundaries are as follows:

6P = {21 = 5,20 = Aexp(i0) + 1}, } and
0Q,, = {21 = (s— \/5ACOS@)/27 = (s—i— \/EACOSQ) +iAsin9+im};
0<A< 1, 0<6<2m
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Therefore, the double integral in (1.28) can be represented as a sum of two single
integrals

G(g7g0)

ZIHZI,"},

n,k=0
where

Ly = hm / w = 2mi(— exp(zk(p — iXony ) cos[v(ny)Zo] W (),
&Pnk

Ly :clsirr(l) / o = 2i(—1)"exp(imo + mxo)J2 (% — Xo)

0Q,,
with
b = RO iy = [ (nto, - ) etz
P = / FOq( + im) expli(E — To)ZJdL.

With allowance made for the asymptotics of X({) for |{| > 1 and the fact that
f(0) and ¢({) are meromorphic functions, the above integrals can be reduced to
residue series. As a result, we obtain the following representation for the Green
function of problem (1.7a, 1.7b, 1.7c¢) in the form of the expansion in a
two-parameter family of inhomogeneous plane waves:

> g, (80) cos(viZ) exp(infx); x>0
n,k=0
%;0 8e(80) cos (v Z) exp(—inlX)

Gt(gag()) = +

Nk

d,. (80) cos (vfl_,ki) exp (inﬁ,_fkic) ; Xo<Xx<0
=0 ’ ’
- n i Z ) . l i
; 8 (80) cos (v Z) exp (—inX)
o0

+ @ (80) cos (v1,zZ) exp(—inlyX); X <Xo.
n,k=0
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Here,

= ex —y
8ok 80) = 7(Zr = Z oy D 4 (=) expliglq — k) : [%Zp nn))ﬂ

Pq=0
x cos (v 7o exp finl X0
Pq Pq ’

(1.29a)

- ex i
gul80) = (2 =2y’ 3§ (<1 Wy expliolg + ) W

pq=0
x cos (v 7o) exp( —in’ %
pq*0 pa0) f>

(1.29b)

X cos(vi,qzo) exp(—iniq)‘co) },

(1.29¢)
anten) = = 200t S {0 [ ()X (1)) enpliota +4)

X cOS (VQ,qu) exp (ir/flﬁqfco) }

with Pnie = d[Rr(ﬂ)X(’?)]/dﬂn:n;A
Direct substitution of (1.29a, 1.29b, 1.29¢, 1.29d) and (1.27) into (1.7a, 1.7b,
1.7¢) assures that we have found the desired solutions.

(1.29d)

1.2.2.4 Transformation of Eigenmodes on the Waveguide Junction

The Obtained Green Function Determines the Electromagnetic Field

H, = ineeol ™G, E, = 1™ a—ZHy, E. =

generated by a linear magnetic current of density J) = I (g — go) exp(—iwr)¥
in a plane waveguide whose bottom wall is perfectly conducting, while the surface
impedance distribution of the top wall is defined by (1.8).
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If the source and the observation point are well off the irregular section of the
impedance distribution Z(x), |xo| > |x| > 1/7, then the functions in (1.29a, 1.29b,
1.29¢, 1.29d) become expansions in terms of eigenmodes of the regular
waveguides:

HX(g) = d cos(vfjrz) exp(j:in;‘rx); o=lorr, n=0,1,2,... (1.30)

Here, the normalization @ = i [R; (11,’1‘) cos (vfl“cd)] "2 has been chosen such that
the energy transported by each mode (1.30) does not depend on the indices n and o.
Taking into account that the modes are orthogonal in these systems, we deduce that
in the irregular segment the m-th mode of the left waveguide transforms into the n-
th modes of the right and left regular waveguides with the transmission coefficient

! N I
T = —TCR: ('/’m)Rll ('/Iln) X('/Im) €xp [('/1;7 ;/’n)q):l : n,m=0,1,2,...
R (my)R; (k)| X (ny)sh[=(ul, — )
(1.31)
and the reflection coefficient
R, (1) R, (13)] exp[ (1 +17) ]
Ry = |m— - = a X(n,)X( fn)%; n,m=0,1,2,...,
Ry () Ry (1},) shz (i, + ;)]
(1.32)
where

R, (’71/;) = i<sz — Zﬁ) COS(Vﬁ;Td) for o #£ f5,
R,(n) = —nii(vy) _zcos(v:w’), and ¥ = Td{(v:)z—zg] iz

o, f=1lorr.

It is not hard to prove the invariance of R,,, with respect to a permutation of
subscripts and the invariance of T,,, with respect to a simultaneous permutation of
subscripts and impedances Z; < Z,, or, in other words, to prove the reciprocity
theorem for the waveguide under study.

Let us estimate the error of adiabatic approximation with the use of (1.31). This
approximate description of wave processes in slightly irregular waveguides with no
regard for the mode interconversion [19] is named by analogy with the
Born-Oppenheimer method in solid-state physics. Up to now, the error for this
approach has not been estimated. For ease of estimation, let us restrict ourselves to
the case of purely imaginary limiting values Z; = iQ;, and Z, = iQ,, which is the
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same to the absence of absorption in the walls of the regular sections of the
waveguide. Hodographs for the complex-valued surface impedance functions
Z(x,0) (—t<@p<0 for 0;<Q, and 0< @<z for Q; > Q,) represent a family
of circular arcs of radius Q~ /sin ¢ centered at iQ " — Q~ctge, 20* = Q; + Q, (for
@ =0 it is a straight line) and connecting the points iQ; and iQ, in the right
half-plane of physically realizable impedances. In this case, the following equalities
for the propagation constants are valid:

Imn! =0for0<s<s* and Rey? =0 fors*<s, (1.33)

where s* is the maximum number of the mode (1.30) propagating in the « -regular
waveguide without attenuation.

Since, by hypothesis, the waveguide properties vary slowly over the distance of
a wavelength, then ‘nf‘ = ’hf‘f’l| > 1, where h is the longitudinal wavenumber
of the s-mode and 7! is the characteristic dimension of the irregular section of
Z(x). Then, with the asymptotic Stirling formula for gamma functions, we obtain
from (1.31)

7 (M) (=) en (=) explo (i, — )] ()
" e (e (e (—m)  2sh[w (i, — )] ()

(1.34)

where e? (1) = exp{—i(n% — n) In[—i(n% — n)] }, the principal branch of Inz with
a cut joining the points z = 0 and z = —oo has been chosen, and

]

el (—
s=0 "
s#Em

In view of (1.33), we derive from (1.34) the following expression (with a finite
number of multipliers) for absolute values of the transmission coefficients for the
undumped mode Hﬁn (), 0<m< st incoming from the left waveguide and trans-
formed into undumped modes H/,(g), 0 <n <s" of the right waveguide:

n—1
| Ton| = {Hexp[n(r/éH — ;)] for m<n, 1 for m = n, and

m—1

exp 27r —nn Hexp niH)] form>n} eXp[(P(ﬂin_’?Z)];

Q1<Qr

(1.35)
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and

n—1

| Tonn| = {exp[Zn(n,’1 — nin)] Hexp[n(né — ”I§+1)] for m<n, 1 for m = n, and

m—1
[Texpln(n;,\ —nl)] for m > n} explo(nh, — )]s Q> 0.
(1.36)

In particular, in the case of two-mode operation =5 = 1), as zero mode
H)\(g) runs against the inhomogeneity, we can write

|Tor| = exp{—[m(ny — m) +lol(ny —n})] } <1; —n<@<0, Q<O
(1.37)

and
Tor| = exp[(¢ — m) (g — i) <1; 0<gp<m, Q>0 (1.38)

An interesting feature is exhibited when comparing the amplitudes of zero
(principal) mode Hj(g) and the first mode H|(g) travelling into the right
waveguide:

~exp{—[n(ny — ) +|o|(ny — )]} <l; —n<@<0, Q<O
(1.39)

and

~exp{—[n(mp—m) — el —n)]}; 0<e<m, Q>0Q,. (140)

In the latter case we have |To;/Too| <1 with small ¢, whereas for ¢ — 7 this
value tends to exp[n(ny — nh)] and is greater than unity. That is, for Q; > Q,,
starting with the hodograph Z(x) of sufficiently large radius, the efficiency of
transformation (when passing the irregular segment) of the zeroth mode into the
first mode (H) — HY) is greater than into the zeroth one (H} — H}).

This effect is caused by the familiar phenomenon of the interconversion of two
adjacent modes in the vicinity of the degeneracy regime. Among the wave struc-
tures with mode degeneracy is a regular impedance waveguide. It is known [20]

that in such a waveguide, for each two adjacent modes H;" and H}, |, the impedance

value Zf fil exists such that the solutions v} and v{, | of the dispersion equation in
(1.25) coincide. The analysis of the behavior of these roots on the trajectories
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passing around the point Zj‘}fil reveals [21] that the complete mode interconversion

H} — HJ | occurs as a result of this bypass.

In the above case of the two-mode operation (1.40), as ¢ increases, the arc of the
hodograph Z(x) occupies increasingly more space in the right half-plane of phys-
ically realizable impedances, into which the point ZJ% falls starting with some
value ¢,. It is then that the transformation H, — H{ becomes dominant, by virtue
of the mode interconversion Hj < H}. These phenomena are of great interest for
clarifying the effects of abnormal propagation of radio waves in the
Earth-ionosphere waveguide along the paths intersecting the terminator [22]. It is
interesting to note that in the case of Q; < Q,, the asymptotics in (1.39) do not show
the effect at all, as well as in the case of a linear hodograph (¢ = 0).

As obvious from the asymptotics in (1.35), (1.36), the adiabatic approximation
Nt — nf ), where o, f =
{lorr},i=0,1,...,5%,j=0,1,..., s If the arguments of these exponentials are
of the order of unity, the adiabatic approximation is impossible. For example, for
large positive Q; and large negative Q,, the value of 5}, — #} is small and |7y | in
(1.38) is of the order of unity as ¢ ~ 7.

Finally note that rigorous error estimates are also lacking for the main theoretical
approach used in the study of irregular waveguides with slowly varying parameters,
namely, for the cross-section method [23] suggested by Stevenson [24]. The exact
Green function derived in the present section provides such estimates as applied to
the irregular impedance waveguides of fixed cross-section. In particular, it is seen
from (1.29a, 1.29b, 1.29¢, 1.29d) that for these structures the fields should be
expanded in terms of two-parameter set of functions, whereas the cross-section
method is based on the expansion in one-parameter set, namely, in the eigen-
functions of an auxiliary regular waveguide.

error is defined by products of the exponentials exp(—n

1.3 The Cycle Slipping Phenomenon and the Degeneracy
of Waveguide Modes

1.3.1 Introduction

Electromagnetic wave propagation in the Earth-ionosphere waveguide has been
studied intensively in the last five decades [25-28]. General formulation of the
problems arising in the analysis of such waveguide processes is very complicated
since it requires the inclusion of both the inhomogeneity of the Earth and the
inhomogeneity and anisotropy of the ionosphere. In this section we restrict our
analysis by the case of very low-frequency (VLF) waves, i.e. the electromagnetic
oscillations whose frequency varies from 1.0 to 60 kHz. The main advantage of the
waves of this range is their high stability against random variation of the
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ionospheric parameters. In particular, the analysis of peculiarities of the wave
processes inherent in this range is of importance in developing global navigation
systems.

We will examine the diurnal variations of the VLF field occurring when the
‘transmitter-receiver’ path crosses the dividing ‘day-night’ line. The propagation
conditions vary significantly along this path during 24 h period. The decrease of the
electron density in the lower ionosphere at night increases the effective height of
the Earth-ionosphere waveguide and changes the properties of the upper wall of the
waveguide, which in the modeling are usually characterized by the surface impe-
dance. As a consequence, there is a marked increase in the field amplitude at night;
the phase of the received signal changes as well. The standard view of these
relationships, which has become known as the amplitude and phase of trapezoids,
is shown in [29], Fig. 1.1. It is well explained by the simple single-mode propa-
gation model.

However, a significant distinction from the specified standard form of the
amplitude and phase dependencies of VLF signals can be observed on long paths
[29, 30]. This difference consists in that the initial and final phases of the signal
differ by +27m (as a rule, m = 1) in diurnal phase records. This kind of abnormal
diurnal field dependency at the point of reception is called a cycle slipping
(CS) phenomenon.

From Fig. 1.2, which shows typical abnormal diurnal field variations, we notice
that the CS phenomenon corresponds to an extremely deep fading of the received
signal. This phenomenon can be explained qualitatively by assuming [22] that not
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Fig. 1.2 (from paper [29]). Typical diurnal phase and signal level variations in NLK signals
received at Smithfield (South Australia). Path length is equal to 13,420 km, f = 18.6 kHz. The
broken line shows the phase record when cycle slipping occurs
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only the principal (first) mode arrives at the observation point but also do the
second mode and the higher-order modes resulting from the transformation of
the principal mode on a waveguide discontinuity at the intersection of the path and
the terminator (i.e. the sunrise or sunset line).

It is not difficult to see [27] that to observe the cycle slipping phenomenon, first
of all, the field of the second mode should be greater at some moment of time than
the field of the fundamental mode. Indeed, let at the point of reception two oscil-
lations with the complex amplitudes ry exp(i¢;) and r, exp(ip,) be added up. In
order for the diurnal variation in the argument of the amplitude of the total signal
riexp(io))[1 + (r2/r1) exp(i(@, — ¢,))] be equal to 27, the variation in the argu-
ment of the second factor must be 2x as well. (The phase variation of the first factor
is zero, because during 24 h period it makes a symmetric trapezoidal oscillation.)
Consequently, it is necessary that the ratio r, /ry is greater than unity, at least, when
@, — ¢, = m. It is just the fact that the ratio should be greater than unity, when the
first and the second modes are in antiphase, which leads to that the cycle slipping
phenomenon is usually accompanied by an abnormally deep minimum of the
amplitude (Fig. 1.2). The most important here is the requirement of the large
coefficient of conversion of the fundamental mode into the second mode.

A number of different modifications of irregular waveguides have been inves-
tigated by employing numerical simulation of the CS phenomenon. For example,
the coefficient of conversion from the first into the second mode has been calculated
by the method of partial domains for a number of two-dimensional impedance
waveguides without considering the reflection from the discontinuity [30, 31]. Even
for a stepwise change in the waveguide height, it did not exceed 0.5. In [32], to
estimate this coefficient, the authors invoked the method of cross sections [23]
developed for waveguide structures with slowly varying parameters over a wave-
length distance. A two-dimensional model was used to represent a coaxial
waveguide whose cross section and the surface impedance Z of one wall vary in
azimuth. The coefficient of conversion reached 1.2, which, as the authors noted,
was also too small to explain the CS phenomenon occurring mostly away from the
terminator. The approach developed in [31] was extended in a number of papers to
the waveguides whose top wall is a flat-layered anisotropic medium [33].

Only in one study [34], in contrast to all the above mentioned papers, the authors
provide different qualitative explanation for this phenomenon in terms of the crude
adiabatic approximation, by linking it with the degeneracy of the fundamental
modes.

These investigations have cast doubt on the statement that the CS phenomenon
can be explained solely by the conversion of the fundamental mode into the
higher-order modes in the waveguide of variable cross section. In regular waveg-
uides with walls of finite conductivity, which is constant along the structure, a more
efficient mode-interconversion mechanism takes place. It is well known [35] that

there exist values of the normalized surface impedance of the walls nf?il such that
the propagation constants v; and v;; of two adjacent (i and i + 1) waveguide
modes coincide. Here = Z/n,, where n, = \/y/¢o is the wave resistance of
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vacuum. These modes and the associated impedance values are said to be degen-
erate. Mode interconversion occurs in the neighborhood of the degeneracy regime
[21]. For example, by varying the complex-valued impedance 7(z) of the wall of a

regular waveguide such that it draws a closed curve around the degeneracy point
deg

M;;+ 1, We get a complete interconversion of the 7 and i + 1 modes. In particular, the
degeneracy of two VLF modes in a natural waveguide has been discussed in [36].

Our purpose is to clear up the role of the mode interconversion taking place in
the neighborhood of the degeneracy regime in the occurrence of CS [37]. In
Sect. 1.3.2, we present a model of the irregular waveguide with a constant cross
section and the impedance varying in azimuth, which is a simplified version of the
model given in [32]. This model allows us to exclude from consideration
the diffraction effect of wave transformation on spatial inhomogeneities of the
waveguide walls and to obtain the analytical solution of the associated boundary
value problem for some class of surface impedance distributions. In the next sec-
tion, with the help of the well-known Watson method, the solution will be trans-
formed into a rapidly converging series for large wave sizes of the model. In
Sect. 1.3.4 we present results of a numerical experiment.

1.3.2 Problem Formulation and Solution

Consider in the cylindrical coordinates p, ¢, z a coaxial waveguide whose inner
wall, p = a, is perfectly conducting and the outer wall, p = b, has variable surface
impedance (Fig. 1.3). A filament of linear magnetic current with the time depen-
dence exp(—iwt) disposed at go = {pg, P} such that it is parallel to the z-axis,
generates a field E = iwpy{0U/pdp, —dU/dp,0}, H = k*{0,0,U}. The Hertz
potential U is a solution of the equation

Fig. 1.3 The waveguide
cross-section geometry
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il 1
+k2} U(g,8) = ————0(g — go):

[18 o 1
Wl p (1.41)

pop" dp " p?0¢?
a<p7p0<b7 _n§¢7¢()§n

with the boundary conditions

ou

= =0, 1.42
ol (1.42)

p=b

where k& = w,/gp, is the wavenumber and [ () is the linear magnetic current
density.
Let the normalized surface impedance of the wall p = b be given in the form

Cid) +m
e’ +1,

n(P) = n; (1.43)

with the arbitrary complex parameters 7;, j = 1,2, 3. Then the values of the func-
tion 7(¢) form in the plane of the complex variable  a circle (the hodograph curve)

of radius  rimp = |13(11; — 1) / |1 - |172\2| centered at the point

i = 13(1 = 103) / (1= s )

In order to find the function U, we will use the Green formula

0 0
U(g,go)=Uo(g,go)+/[U(gugo)%G(gl,g) E= Ul(g1,80)G(g1,8) |ds1,
S

(1.44)

where 7 is the outer normal to the boundary S of the ring domain
{a<p, <b,—n< ¢, <n}. By choosing as the function G(g1, g) the Green function
of the space containing a perfectly conducting cylinder of radius a

H"V (kp .. )
G(g1.8 ___n;xexp in(¢; — ¢)]H, (kdvkp<)m

(p17p7¢17¢) (145)

and as the function Uy(g, go) the Hertz potential of the field generated by a linear
magnetic current in the presence of the conducting cylinder p = a

i1

UO(gng) = G(p07p7¢0 - ¢) = UO(p07p7 ¢O - d))v (146)
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we satisfy (1.41) and the first of the boundary conditions (1.42). In (1.45), the
following notation is used:

o o

Ht(ijlﬁ)(xth) = axn 8)(?]2
1 2

[0 ()P (52) — B () ()]s oo = 0.1,

HU)(...) stands for the Hankel functions, p_ = min(p, p), p» = max(p, p;).

In order to satisfy the remained boundary condition from (1.42), one can make in
(1.44) the passage p — b and then substitute the value of dU/dp on the boundary
p = b. Then the equality (1.44) turns into an integral equation of the second kind
with a strong kernel singularity [38]. To avoid this, let us consider formula (1.44)
on the circle p = b — A, where A is a small positive value. Then we have:

U(b = A, po; ¢, $g) = Uo(po, b — A, g — ¢)

+ b/ %G(p,b —AD— ¢) /bezkn((i))G(b,b —Ad- d>) U(bA p0: b, <1>o)d</>~
(1.47)
Let us denote the direct and inverse Fourier transform operators as
Wylan] = A() = Z ay exp(ing),
) 1 _
W, A)) =au =5 [ Al@) exp(—ing)dg.
-
For the inverse Fourier transform the following relationships are valid:
S e
Wt |os [ A(0 - 0)B@a8| —asbu W, lexplip$)A@G) = ay
(1.48)

Applying the operator W ! to (1.47), we obtain in view of (1.48):

— U(b7A7pOa¢a¢O) — U(biAapOad)quO)- _ —

1 {W} +nW, ! {W_ =W, '[Us(pg; b — A, ¢y — ¢)]
1 [9G(p,b— A, ) { -1 {U(b, Po: b, %)} i {U(b, po: b, ¢o)} }

R Ip pb:|  Cexplig)+m | TP Tep(ig) s

= 2mbins WA G000~ A, g [ LBl gy [0 0| |,

exp(ig) +1, | exp(ip) + 1,
(1.49)
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where
B 10 o My k
Wi Uo(o.b— A,y — )] = — o exp(—ingo) T CRP0) i, —
H,’ (x)
(1.0)
HYO (x, k(b — A
W G(,b — A, ¢)] = — L AP =B i gy,
H,” (x)
—A HM )\ ,
W:,} aG(p,b 7¢) _ _lk (x7 k/(b >)Hr(zl> (y)’ —00<n< o0,
dp p=b 8 HY (x)

and HY y (x) = dHy) (x)/dx. One can pass to the limit A — 0 in these relationships.
Considering that HY) (x) = (—1)"H\/(x), we obtain the following finite-difference
equation [7]

tn = =15 (L4 $2)itn_1 + gn; —00<n<oo. (1.50)
Here
Hr(L,lfl)(l"O) (x,y) 10 exp(—ingy) H"O (x,kpy)
(I+s,) = o, o &= 2riky (D0) (1.51)
Hn,é ’ (‘x7y) 172 Hn,é ' (x7y)

and  HV0O(x,y) = B (x,y) = insoH 0 (x,y), LG (r,y) = B0

(X,y)|(5:1, Up = Wn_l [U(b7p0, b, ¢0)/[6Xp(i¢) +’72H7 S—p = Sp, X =ka, y=kb,

0 =ny/n,.
Let us apply the factorization method [7] to solve (1.50). Represent the multi-

plier in (1.50) in the following form:
Xn

(1+sn):y—7 (152)

n—1

where the exponent y > 1 is an auxiliary parameter. Taking the logarithm of (1.52)
and then applying the operators W and W~!, we can easily show that

o0

Inx, = W, [Wo[ln(1+s,)]/[1 = yexp(i0)]] = =" > In(1+su)y " (1.53)

m=n+1

Estimate the convergence of this series. Using the known asymptotics

1(2) = 2mv) 2 (%) . HY(g) ~ —21’(271\))_1/2(;)7 , (1.54)
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for fixed z and |v|> 1, |argv|<m/2, one can show that In(1+s,) =
in;(6 — 1)yn~! + O(n?). In other words, the convergence of the series in (1.53) is
too weak to pass to the limit y — 1 under the sum sign. The elements of the
factorization sequence x, are defined up to an arbitrary factor without violating the
equality (1.52). This allows us to solve the problem of convergence of the series in
(1.53). Let us take the logarithm of the right-hand side of (1.52) and rearrange it in
the following way:

o0 o0
Inx, —ylnx,_; = —)" " In(1 4 sp) + 9" Z“f’" In(1+sy)

m=n+1 m=n

00 00
+9" 27”” In(1+s,,) =" Z 7" In(1+sp)

m=0 m=0
n n—1
=" Z Y " In(1 4 s) — " Zy”" In(1+s,); n>1,
m=0 m=0
00 o0
Inxg —ylnx_; = — Zy’”’ In(1+s,)+ ZV’”’ In(1 +s,,)

m=1 m=0

+ Z}"m In(1+s,,) — Zy"" In(1+s,) =In(1+s0) —0; n=0,
m=0 m=0
—1 ~

NgE

11'1)6,1 —ylnx,Z: —y y’”’]n(l_’_sm)_;'_,\/*l Z A’fmln(l_'_s’n)
m=0 m=—1
0 0
+V71 Z"})f"l ln(l +Sm) - 771 Z“/im ln(l +Sm) =0- ln(l +S,])71; n= —17
m=0 m=0
and
n+1 n
Inx, —yInx, 1 ==Yy In(l+s)+7" Y 7" In(l+s,); n< 2.
m=-—1 m=—1

So we can pass to the limit y — 1 and get

n n+1
Xy, = {H (1+s,)forn>0;1forn=—1; H (1+Sm)_1f0r"§2}- (1.55)

m=0 m=—1

It is easy to verify that this sequence satisfies (1.52) with y = 1. By substituting
(1.52) with y = 1 into (1.50), we arrive at the equation
Uy —1 Un—1 8n

— =N, — +—; —oco<n<oo.
Xn Xn—1 Xn

The solution of this equation is similar to that of the equation for In x,,, which can
be derived by taking the logarithm of (1.52), and is as follows
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n — n/An m - 6
u—:Wn‘[—W(’E‘? f3) } = / Z 8w exXplilm =m1 4 56)
X, 1+ 55" exp(if) o xm1+112 exp(z@)

The integrand here has no singularities on the path of integration as far as its
denominator coincides with the denominator of the function #(¢), while the surface
impedance distribution of the waveguide is naturally assumed to be a limited
function. Equations (1.44)—(1.46), (1.51), (1.55), and (1.56) allows us to obtain a
closed expression for the Hertz potential U. One should distinguish two cases:
[7,] <1 and |n,| > 1. Let us do the relevant calculations for the first case.

The calculation of the integral in (1.56), by substituting exp(i0) = z, is reduced

to the calculation of residues at the points z = 0 and z = —#,. As a result we have
o0
M_n _ Z g_m ( 2)m n
Xn m=n+1 Xm

Then we find the Hertz potential distribution on the impedance wall p = b:

U(b, po, d, o) = [exp(ig) + 7/2]W¢[un]
—lexp(i¢) + 1] Z Xn Z gm )" "exp(ing).

The potential inside the waveguide, as follows from (1.44), is

U(p. por &, bo) = Uo(po, p. o — #) + b / H(dy, $)U(b. po. 1. bo)ddy.

(1.57)

where

H1 ) =~ % 3 explit(or — 0)H (5. k) [ ) — ()" )] /L (o)
[7,,)0

The integration in (1.57) results in the following expression for the potential

I(m)

8k

U(g,80) = — - [Uo(g, g0) + U1(g; 80)], (1.58)

where (see formulas (1.45), (1.46))
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Un(e.20) = > explin( — @I (x.kp JH (ko ) /HIV (x

n=—00

and

= O (1,0)
Ul(gng) = - Z exp(zn¢) Z Xn Wexp(imqﬁo)(ﬂz)mnl’

n=-—00 m= n+1x mH X,
H{M) (x, kp) ') (x, kp)
21(TH ( )+ exp(i ¢)$Hn+1( )
H, (x) Hn+l(x)

H)(v) = Hy' () = ins0Hi (), HY) = HYO)|,_,s p< = min(pg,p), po =
max(py, p), and x, is given by (1.55).

In a similar way, transformations are made for |17,| > 1. It would be convenient
to separate the regular and irregular parts of the potential in (1.58). After lengthy
transformations, we arrive at the following expression for the Hertz potential

Jm)
U(ga g()) = g [Ul‘fg(g7 gO) + Uireg(ga g())} ) (159)

where its regular part with the simple angular dependence in the form of ¢ — ¢ is

o0 (1,0)
; Hy ()C,kp )
Una(g:80) = > explin( = o)l g = ( <)H,5i;°><°-0><y,kp>>, (1.60)
n=—oo n,o ' X,y

o= {1if|n,|<1,0if[n,| > 1}, p_ =min(py,p;), p~ =max(py,p,),
while its irregular part is

L (10)
%y@;@ explin(¢ — )] m Unleo), (1.61)

n,l

Uireg(ga g()) =—4

i

m p(1L1(1,0) (1,0)
> H, o5 () Hy D) (x, kpg)
= ) _exp(—imgy)(—n,)" 0 o o Iml<1,
’; H (1,1)(1,0) (x7 y) H(l 1)(1,0) (x,y)

J=1 1441 n+mo

(1.62)

not LD00)

n— ( ’y) H}SESI)(-X7 kpo)
Un(80) Zexp imeo)(—12) " H o 10 L0(1.0 Pl > L.
o HY 0 e, y) HY) GO (x, )

(1.63)
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The first term in (1.59) coincides with the solution to the problem where the
source excites the regular coaxial waveguide whose reduced surface impedance of
the wall p = b equals ;.

It is easy to show the uniform convergence of the series, which determines the
second term in (1.59), within the interval a < p, p, <b. Hence in this region the
function Uireg (g, g0) is analytic and satisfies the homogeneous Helmholtz equation.

Following the methodology in [39], one can make certain that the function
Ul(g, go) in (1.59) is really the desired Green function of the Helmholtz (1.41) in the
ring region with irregular boundary conditions (1.42).

1.3.3 The Watson Transformation

The series in n in (1.60), (1.61) represent expansions in terms of radially propa-
gating waves. Since the number of the terms contributing significantly to the field
are of the order of O(ka) [20, 40], (1.59) is convenient for analysis only for ka < 1.

For the applications considered in the present section, the range of interest is
ka > 1, where the expansions in terms of azimuthally propagating ‘creeping’
waves (alternative to the series in (1.60), (1.61)), obtainable from (1.59) by using
the so called Watson transformation [20, 39, 41], are rapidly convergent.

The method leading to the Watson transformation was proposed in the early
twentieth century in the works of H. Poincare and J.W. Nicholson and was first used
in the electromagnetic theory by G.N. Watson [42]. This mathematical apparatus is
also used in quantum mechanics, in the theory of potential scattering [42].

As applied to series like in (1.60), (1.61), the initial statement of this method is
as follows: if the function of complex variable B(v) is analytic in the neighborhood
of the real axis, then the equality is valid

[&°]

S exp(ing)B(n) :é / explv(@ = )] gy, (1.64)

e sin v
c

, where C is the contour formed by two straight lines Imv = +o, o < 1 and
bypassing the real axis in a clockwise direction. Let us first consider the regular part
of the field:

o0

Ureg(gvgo) = Z exp(inAd))Breg(n)v (1'65)

n=—00

(1,0)
Hy " (x,kp o) H(10)(0.0)

Bl'e (l’l): n7 ' (y7kp )a A¢:¢_¢ >O (166)
S H gy ] '
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If the analytical properties of the function B, (v) allow the contour of inte-
gration C to be deformed to infinity, then the integral in (1.64) can be represented as
a series of residues at the poles By, (v). This series is just the Watson transform of
the initial series.

Consider the function B, (v). Since for the Hankel functions with complex
index the following relationships are valid: oY (2) = exp(inv)HSl)(z), 1% (z) =
exp(—inv)Hsz) (z), then we have Byeo(—V) = Breg(v); hence it is sufficient to clear
up the properties of this function in the half-plane Rev > 0. Using the asymptotics
(1.54) we find:

2. v
Bieg (V) = n—i (pp<> for |v|>1, Jargy|<m/2.
>

Hence, the integral in (1.64) is reduced to a sum of the residues at the poles v;
obtainable from the formula

H(l’”(l’o)(x,y) = [Hgl)/(x)H§2>

— inga[HY (HP () = B (@HO ()] =05 0<x<y.
(1.67)
Let us determine the location of zeros of this equation in the v-plane. Following

the paper [43], on the assumption that x and y are fixed and |v| > 1 +y?, we obtain
the following approximation:

30y in(s —1)
n(s—1)  In(y/x)

Vi1 & E/insoy/In(y/x), v & for s=2,3,...

and

N30Ly in(s+1)

= for s=-2,-3,...
n(s+1) In(y/x)

Thus the roots of (1.67) are located symmetrically in the first (s = 1,2,3,...)
and the third (s = —1, -2, —3,...) quadrants of the v-plane.
By finding the residues at these points, we arrive at the representation

> cos[vy(m — Ag)JH (x, kp )
Ureg(g7g0) = 7277‘- . ~ (l 1)(1 0) = H\('A177o(())<0’0) (y7 kp > )? (168)
= sin(nvo)Hy L (%)

where the following notation is used: 1:1»(.“1}.3)(1‘0) (x,y) = om0 (x,) / Ov

)

V=V
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For the irregular part of the field, the manipulations are similar though more
cumbersome:

dny(1 —6) & )
Urea(8.80) = B0 S explind)Bieg(n).
where
(
x, k H, 7/ (x,kp
1reg Zexp 7ll¢0 ) 1(0) p) HZ(V) (+)l(1(0) O) ’
‘ o ()C,y) Hv%l.& (X,y)
(1,1)(1,0)
LH ST (% Y)
II;(v) = Ho% for |n,|<1
! H\ +J,1 (xay)
and
B (kp) = HY (x,kpy)

Bi; exp(ilgpy)(—1n,) ’ I (v) ,
! 22 T H Yy )

)

- _ v—j,1
m(v) = J%Hi‘(l;ylo)(x,y) for |n,| > 1.

The poles of the function Biwg(v) for |n,| <1 are located at the points v, — j,
where v, are the roots of the equation (1.67) with a = 1. For |1,| > 1, they are
located at the points vy + j, where v, are the roots of the equation (1.67) with & = .
By finding the residues at these points, we arrive at the following expressions:

2 - 10)(x y)
Uireg(gv g()) = 7173 Z )(1,0)
=1 sin(7 a (x,y)
x [explivs(A¢p — 7)|U (8780, vs) + exp[—ivs(Ad — m)]U(g, g0, —Vs)],
(1.69)
where
U(g, g0, vs) ZeXP —imepo)(—m)"  exp(—ilA)TIY (v, — 1)

=0 (1.70)

0
H") (e, kp)H"™), (x, kpy)

1.0)(1,0 1L.0(1,0
Hf—z)g ' )(X7Y)H5A—1)<+m‘)5(an)

for |n,|<1,
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U(g, 80,vs) = Zexp(im%)(—’?z)_mz exp(ilAg)TT (Va +1)
m=1 =0
o (1.71)
Hy b ko) H T nekpo)
1, 1,1)(1,0 2 )
Hf e J)Hi D ()
m gy(11)(1,0) m py(11)(1,0)
H X, - . X,
0 () = [Tt 00 gy {7 i b2
=0 H§+-)5 ' )()@)’) =0 HSIQE;(L >(x,y)
a T (1.72)

AL (xy) = 4 g0 y)‘v:v . Ap = — ¢y >0,

and v, are the roots of the equation (1.67).

In the analysis which follows, we restrict ourselves to the case of |17,| < 1. The CS
phenomenon has been detected for the waves coming to the receiver by the shortest
route. Therefore, separating them out in (1.68)—(1.72) and placing the receiver and
the source onto the boundary p = a at the points with angular coordinates ¢ and ¢y,
respectively, we arrive at the following expression for the Hertz vector

4k 4~ exp(iviAg)
T U (2 80) == ——;W s(&, o). (1.73)
((»b ¢0) reg(vs)+‘/lreg(d) ¢07Vs) (174)
Vieg (vs) = H'P 0 (3,x), (1.75)
a0 03 = (1= ) () + 1m0 = Ly ()] ()]
(1.76)
L1)(10)
x d (x,y) 1
S(0) =D exp(—ime)(—n,)" ‘*"3 (1.77)
2 Y

To simulate the CS phenomenon let us fix the angular distance A¢ between the
receiver and the source. In this case, the function

m . 0<¢<
)= [ /1 U0l = gy 0 09 <2m

may be considered as the ‘diurnal dependence’ of the received signal. To ensure a
nonzero diurnal phase change, the curve V(¢, ¢,) in the complex plane must
enclose the origin of coordinates. Since the regular term Vi, in (1.75) does not
depend on ¢, while the irregular term Vi, is proportional to exp(—i¢) for

¢o = ¢ — A¢, the inequality
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|Vreg(vs)| < |Vireg(¢a ¢0a Vs)| (1'78)

is the necessary condition for the CS to occur in the model considered.

1.3.4 A Numerical Experiment

Let us calculate the Hertz potential U (¢) from (1.73)—(1.77) for the frequency
f = 10kHz and waveguide dimensions a = 6370km and b — a = 60km. Since
x =ka = 1335.06 > 1, we will use Olver’s uniform asymptotic representation

[44] to calculate the Hankel functions va (x) along with their derivatives with
respect to the argument and the index. The roots of the transcendental equation in
(1.67) for oo =1 can be found by the Newton-Raphson method [45]. For better
understanding of the peculiarities that characterize the waveguide mode intercon-
version, one should analyze the location of several first roots of the equation (1.67)
as a function of the complex parameter #5.

Figure 1.4 illustrates typical trajectories of the first two roots vy, s = 1,2 in the
complex v-plane for several fixed values of arg 75 as |15 increases. The real values

W and 1§ correspond to zero impedance. The sign ‘+” indicates the degenerate value

v‘ljgg of these two roots corresponding to the impedance nfgg ~ 0.1826 —i0.1127

Imv
40
30 — de;
2%

20 —
10 |-

vy v

N \ \ \ \ \ \r\

1300 1310 1320 1330 1340 Rey

Fig. 1.4 The trajectories of the first two roots, v; and v, of (1.67) in the complex v-plane for
several fixed values of arg 3 with increasing |n;|,0 <3| <0.5: arg (in3) equals (1) 63.43°,
(2) 60.94°, (3) 58.39°, (4) 58.21°, (5) 55.83°, (6) 53.37°
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(see [21, 46]). It is easily seen that an abrupt change in the behavior of the
eigenvalues of waveguide modes occurs when crossing the ray argn; = arg n‘li;g.

Let us first consider the case of weakly irregular waveguides (6 ~ 1). Then for
2] < 1 we have from (1.76)

Vireg(¢>¢o,vs) = (1, — 12)Vo(, g, vs), (1.79)
16 i’/IS . 1 eXp(—lA(,ZS)
Vo(¢, ¢, vs) = — ——exp(—igy)
i Xy ’ \(5.1?1(,11’0) (x,y) Hf,AlLll)fll‘O) (x,y) (1.80)

+0(1-96).

In Fig. 1.5, the level curves of the function |Vy(¢, ¢g, v)| (for ¢y = ¢ — A¢p) are
shown in the complex v-plane for the most interesting domain of variation of the

eigenvalues of the first and the second modes for the impedance in; =

HM (x,y) / H (x,y) satisfying (1.67).

The angular distance between the receiver and the transmitter is A¢ = 114.6°,
therefore, as it follows from numerical estimations, the contribution of the third and
higher modes can be neglected. Minimal values of |V, (¢, ¢, v)| are located in the
vicinity of the points v$ and v, while the maximum is close to v‘fgg. By comparing
these results with the level curves of |Vreg(v)’ from Fig. 1.6, we can conclude that

Imv
vis®
25
20
15 \ 0.044
%\0.033
o 0027
0= 002 -
0.016 T
540011
0 0.0055
v, \ VO
1
0 Nﬁ | | | ﬁ\i\

1300 1310 1320 1330 1340 Rev

Fig. 1.5 The level curves of the function V(¢ + A, ¢y, v)| for Ap = 114.6°: max,|Vo(py +
A, o, v)| = 3.0517, vnax = 1325.5+i21.75, [Vo(¢ + A, ¢, v))| = 1.2593 - 1074, Vo (b, +
A, ¢, 19)| = 4.5397 - 107
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Fig. 1.6 The level curves of Imv
the function |Vreg(v) ,
max, |V (v)| = 0.1561,
Vmax = 1328.25

Vs
\Vl
1300 1310 1320 1330 1340 Rev

for small #3;, for which 7y, <1 and vy — v?ﬁz, the inequality
‘Vreg(v)’ > |Vo (¢, ¢g,v)| holds, and hence, CS is impossible in view of (1.78),
(1.79). Let 15 be increasing and approaching n(lizg. At the same time, the center 7imp
of the impedance circle 1y, — n(li;g increases too, while the eigenvalues of the first

and second modes approach the point v(ll;g, in the vicinity of which the amplitude of
the irregular part of |Vy (¢, ¢, v)| is maximal.

Then for not too small values of |, — 15|, the inequality (1.78) holds. In other
words, it follows from the foregoing numerical estimates for the functions |Vreg(v)|
and |Vo(o, ¢y, v)| for weakly irregular waveguides that there exists a threshold
value of the hodograph radius ri, of the impedance 1n(¢) (1.43) such that the CS
phenomenon is impossible for rimp <7ii,, while for rimp > rif it occurs at least for
the hodographs located in the vicinity of ;fl‘;g. As the angular distance A¢ increases,
the probability that the phenomenon in question will occur is growing too, all
factors being equal. A similar situation holds when a degree of the waveguide
irregularity grows, i.e. with increasing 7imp.

Let us now turn back to the general case of arbitrary index of a waveguide irreg-
ularity 6. Figure 1.7 present the simulated diurnal record of the received signal or, in
other words, the ¢-dependencies, A¢p < ¢ <2m+ A¢, of the normalized value

wio) = e, max, [00)])0t0)| /el o)),

0<$<2n

for the fixed angular distance A¢p = 114.6° between the source and the receiver. On
the curves three following values of the received signal are marked: ‘0’ corresponds
to the initial moment of the record (¢ = 0), ‘r’ (‘t’) corresponds to the moment of
time when the receiver (the transmitter) is passing through the waveguide cross
section ¢ = ¢, where the surface impedance is closest to n‘ligg (see Fig. 1.8).
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(a) ImW (¢)
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~ n, =-0.35564675

[2]

(h)
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imp
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L. Pazynin

Fig. 1.7 The normalized diurnal records of the received signalW(¢): n; = 0.1455 — i0.03638,

1, = 0.0001, Ad = 114.6°
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Fig. 1.8 The domains in the 0.06  0.08 0.10 012 014  0.16 0.18  Ren
complex plane of the R T T T T T T
impedance #, where the CS 0.05 Q‘;e."oo
occurs with the given radius °,% % R (¢)
Timp and the angle -0.06 - ° ° %, %
Ap = 114.6 oo ot

—0.08 - %

—0.09 -

—0.10

PR ™ =0.01

* 7, =0.005, 0.01
-0.12 -
Timp = 0.001, 0.005, 0.01
—0.13
Imn

The number of lost phase cycles are shown in the figures in square brackets [m];

s

imp 18 the distance from the impedance circle to the point n(lj;g. The numerical

experiment has shown that the CS phenomenon does not occur for the hodographs

of the impedance #(¢) remote from the segment [ = {O<|r]| Sn‘llzg, argn =

arg n‘f;g} (Fig. 1.7a, b, ¢). As riyp increases, W(¢) behavior becomes more com-
plex; when the circle 5(¢) intersects 5, CS occurs (Fig. 1.7d) for n; = 0.1455 —
i0.03638 and riyp ~ 0.0484435. At the same time, the signal amplitude decreases
within a small variation interval of ¢ (of the order of 0.01°).

As Fimp grows, at rimp ~ 0.0533546 (Fig. 1.7f), the CS phenomenon for two
cycles, at rimp ~ 0.0546966 (Fig. 1.7h) for three cycles, and so forth is observable.
A similar situation holds for the circle n(¢), whose center is located in the vicinity
of s (Fig. 1.8); however, the CS occurs at lesser values of 7i,,. Each CS phe-
nomenon is accompanied by a sharp decrease in signal amplitude, which is typical
for a CS in a natural waveguide [22, 32]. In the context of the given model, the role
played by the segment /s in the initiation of the CS phenomenon can be explained
as follows: only for the impedances in the vicinity of this segment, the eigenvalues
v1 and v, have closely spaced imaginary parts, and consequently, the amplitudes of
the first and the second modes are nearly equal. In addition, when #; is moving
along I.s towards the point n‘li;g, the real parts of v; and v, come close together
(curves 3 or 4 in Fig. 1.4), and consequently, the phase velocities of these modes
approach each other.

Of some interest is a localization of the domains in the complex n-plane, for
which the CS phenomenon takes place at the given radius rin, and angle A¢. In
Fig. 1.8 dots indicate center positions of the hodographs of radiuses 0.001, 0.005
and 0.01, for which CS occurs at A¢ = 114.6°. It is seen that with increasing 7imp

the CS phenomenon develops initially in the immediate vicinity of the point n(ll;g,
and then, as rimp grows, this area is extending occupying a constantly increasing
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part of the segment /.. For the hodographs with fixed centers, the CS phenomenon
having developed at some 7y, persists for larger values of the radius.

In conclusion note the following. We have proposed a model of the ring
waveguide of a fixed cross section whose irregularity is caused only by the behavior
of the surface impedance of its wall. Hence we have excluded from consideration
the diffraction effect of wave transformation on a spatial inhomogeneity of the wall;
only the mode degeneracy effect being inherent in the waveguides with finite
absorption is analyzed. We have obtained the analytical solution of the corre-
sponding boundary value problem for a class of circular hodographs of surface
impedance. It is the first problem of the excitation of a finite irregular waveguide
with continuously varying properties, for which the analytical solution is found.

The results of the numerical experiment for widely separated (1 <A¢ <)
transmitter and receiver have shown that the CS phenomenon here is directly
related to the degeneracy of the first and the second modes. This phenomenon is
threshold-like and it occurs in waveguides with sufficiently high irregularity of the

walls whose impedance is distributed in the neighborhood of the degenerate value

nj“;g. Once the phenomenon is developed, it persists as the radius of the impedance

hodograph increases. At the same time, the domain of the complex plane of the
impedance, where the CS takes place, is extending occupying a constantly
increasing part of the segment joining the origin of coordinates and the point n(lj;g.
It has been demonstrated with a waveguide of fixed cross section that the CS in
irregular lossy waveguides may be caused by the interconversion of two dominant
waveguide modes in the neighborhood of their degeneracy rather than by the
diffraction effect of rescattering of the principal mode into the higher modes on a
spatial inhomogeneity of the waveguide wall, as it is customary to assume.

1.4 Pulsed Radiation from a Line Electric Current Near
a Planar Interface

The classical problem of transient electromagnetic fields generated by pulsed cur-
rents located near a planar boundary between layered media are the subject of
constant theoretical research starting with the B. van der Pol paper [47]. The
approaches based on the Cagniard method [48, 49] is the most efficient tool in this
study. A.T. de Hoop [50] has suggested a modification of Cagniard’s method with
the help of which exact solutions have been obtained for a number of problems of a
dipole or a line source near an interface [51-54]. Various modifications of
Cagniard’s technique have found wide application in the study of transient acoustic
and seismic wave propagation. Following paper [50], the modifications of de
Hoop’s technique [55, 56] as well as the alternative approaches free from some
drawbacks to this method [57, 58] have been suggested.
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In this section, following the paper [59], we use the approach alternative to
Cagniard’s technique to study the transient field generated by line sources located in
a flat-layered media. The suggested approach is applied to the already solved
problem, namely, the problem of finding the electromagnetic field generated by a
pulsed line source located near a planar interface between two nonabsorbing and
nondispersive media. The most complete solution to this problem have been
obtained and discussed in considerable detail by A.T. de Hoop in [54]. In this
paper, were applied the one-sided Laplace transform with respect to time and
two-sided Laplace transform with respect to a horizontal spatial variable. The
electromagnetic field is represented in the form of a double integral. This integral
can be efficiently calculated by the Cagniard-de Hoop method (CHM). The essence
of the method is as follows. The original path of integration for one of two integrals
forming the double integral is deformed into a so-called modified Cagniard con-
tour. It is chosen such that upon the corresponding change of the integration
variable in the integral along the modified contour, the original double integral turns
into a composition of the direct and inverse Laplace transform for the known
function. The central problem with this method is to find, generally speaking,
numerically, the modified Cagniard contour. It should be noted that the shape of
this contour changes as the observation point changes.

The key point of the approach proposed here consists in the following. To
calculate the double integral efficiently, we suggest deforming its domain of inte-
gration (the real plane) in the C X C-space of two complex variables rather than to
deform one contour in the complex C-plane, as has been done in CHM. It is shown
that in this case the integral reduces to a sum of residues. The use of powerful
apparatus of the residue theory instead of somewhat artificial way used in CHM is a
reason to hope that this new approach can be efficient in the situations where the
CHM is failed, for example, for anisotropic media. Our method can be extended to
multilayered media and arbitrary dipole sources.

1.4.1 Problem Formulation

The field generated by a pulsed line electric current

—

T =195(x)0(z — 20)8(2)¥; 20 >0, (1.81)

which is located near a planar interface (Fig. 1.9), is to be found. The source excites
the E-polarized field

OH, 1 OE, OH 1 OE,
E, 40, E,=E. =H,=0, *=—%2 Z&____ % (g
: or  upy Oz ot Uty Ox
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Fig. 1.9 A pulsed line source zZ A\
near the interface between ! 7@
two semi-infinite media z=z :
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The function E, is the solution of the wave equation
0? 0? 0? 31
— &8 1.83
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that satisfies the conditions of continuity of E,- and H-components on the interface
z = 0 and the causality principle. Here, ¢ = ¢, u = p; forz >0and e =&, p = p,
for z<0.

The Fourier transform in time

F(x,z,w):% / Ey(x,z,1)e"dt, Ey(x,z,t) = / F(x,z,0)e ™dw (1.84)
—00 —00

applied to the boundary value problem in (1.83) results in the following problem

(5)—22 +4 az +to 8130#1.“0)F = ~1pd(x)0(z = 20); z>0

(1.85)
(Oxz + Dzz +w 62“’0.“2:“0)17 - 0 z<0
with the boundary conditions on z = 0
OF! OF?
F'=F, 1p—=u——, (1.86)
0z 0z

where Iy = i, gl © / 27. The solution of the equations in (1.85) is conveniently
represented in the form [41]

F'=L(F°+F!) for z>0 and F?=IyF?} for z<0, (1.87)
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where
. % exp |:lfx+i k% - 52|Z—Zo|:|
Fo==
4n / k2 o 52
—00 \/ 1

o exp {ifxqti K2 — 52(z+z0)]

de =—H(kR_),  (1.88)

I' (& w)d¢, (1.89)

47 k% _ 52

;T exp [iéx — i\/k§ — -fzz—l—i\/kf - 5220]
F}=—
Y 4n

—00

(¢, w)dé, (1.90)
K — &

I'j(¢, w) are the unknown functions, Imj /kj2 —&>0, k2 = o2, n? = &j€0

AR
X iy, j = 1,2, R =x*+(z— 10)2. From the boundary conditions in (1.86), we
have:

1+T =17y, —Mz\/’ﬁz - & +#1\/k12 — 8T = —p\/ I = Ty,

ray ki é_ulvkz (1.91)
o/ K — 5+M1\/k2 |
B &

Thus we obtain the required field in the form of the following double integrals
taken over the plane P of real variables @ and ¢&:

or

(1.92)

Ej(x,z,1) = Eop G'(x,2,1); j=0,1,2, (1.93)
1 / dwd

GO()C,Z,I) :E//Pexp[ifx—ﬁ-i wzn%—f_2|z—z0| —iwt]ﬁ; z>0,
1
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G'(x,z,1) = ﬁ// exp [iéx—&—i\/wzn% - E(z+20) — iwt} M\/___)_dfiéé;
P wnd — ¢

(1.95)

z>0,

1
G*(x,z,1) = %//Pexp [iéx - i\/wzn% — 74 i\/wzn% — &7 — iwt]
. (1.96)
" Fz(f,w)dwdg; . <0,
o?n? — &

where E) = I(e),ul,uO/Zn and Im, / w? ]2 —&>0,j=1,2.

1.4.2 Reduction to Single Integrals

In formulas (1.94)-(1.96), the integrands allow analytic continuation from the real
plane P = {w,¢: " = & =0} into the C X C-space of two complex variables
o =o' +io’ and ¢ =& +i”. As the previous analysis has shown, there is no
need to operate with the whole of real four-dimensional space C X C. To calculate
the integrals in (1.94)—(1.96), it is sufficient to restrict our consideration to a
three-dimensional space R® = {w, ¢ : ¢ = 0} C C x C containing P. In R, one
should choose the single-valued branches of two square roots in the integrands.

Consider a function x(w, &) = /@*n? — & in R? assuming that the refractive
index n =n'+in” (W',n” > 0) is complex-valued.
The surface

RCK2 _ (n/2 _ n//Z)wlz _ (n/z _ n//2)w//2 — Al o o — 6/2 =0 (1.97)

has the following invariants [60]: I = —1, J = —|n|4, D=-J,A=0, A" =D.
Therefore it represents a two-pole elliptic cone, which is symmetrical with respect
to the plane & = 0, with its vertex at the origin of coordinates. Let us locate the axis
of the cone. The lines of intersection of the cone with the symmetry plane &’ = 0 are
two mutually orthogonal straight lines (n' Fn”)w” + (0’ £n")w’ =0 with the

bisecting lines n’w” +n"w’ = 0 and '’ — n”"®" = 0. Consequently, the cone axis

is determined by the equations n’®w” 4+ n"«w’' =0 and & = 0.

The surface

Isz = n'n (w/z _ C{)//2) + o' o (n/2 _ n//2) =0 (1.98)
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has the following invariants: 1 = 0, D = —|n|* / 4, A = 0. Therefore it represents

two mutually orthogonal planes intersecting along the &'-axis and determined by the
equations n'@” +n"® = 0 and n"w” — n'&’ = 0. The first plane contains the axis
of the cone (1.97) being its another symmetry plane. From (1.97) and (1.98), we
derive the following equations for the branch lines of x(w, &):

n/w/ _ n//w// :l: i/ — 07 nlwl/+n//w/ _ 0

In Fig. 1.10, the distribution of signs for Rex? and Imx%in R? is shown. In
(1.94)—(1.96), a single-valued branch of the function «(w,¢), for which
Imx(w, &) >0, is determined on the real plane P = {&', @'}. The above mentioned
inequality is hold everywhere in R3, if the following condition is satisfied:
0< arg k2 < 27. In other words, the cut S in R? that separates this branch should be
determined by the conditions Rex? >0, Imx? = 0. As is seen from Fig. 1.10, this
takes place for a double sector formed by the intersection of the inner part of the
cone (1.97) with its symmetry plane n'®” +n"w’ = 0. In R?, with the cut of this
kind (Fig. 1.11), we have Imx(w, &) > 0.

A similar approach to choose a branch of the square root is given in [61] for the
case of a single variable. When passing to the lossless medium « = 0, the cut
surface S is shifted into the plane «” = 0 representing the double sector, which
contains the o'-axis and is bounded by the straight branch lines n'e’ & & = 0.

Thus we have shown that for a lossless media the cut surface ensuring a choice

of the branch, for which we have Im /wznf — 52 >0 in R? , is a double sector S;

(Fig. 1.11), which lies in the plane @” = 0, contains the «’-axis, and is bounded by
the branch lines njo + & = 0,j = 1,2. The root is positive on the upper side of the
right-hand sector {&’ > 0, ®” =040} and on the bottom side of the left-hand

Fig. 1.10 The sign
distribution for Re x? and Im
x? in the plane &' = 0.
Straight lines indicate the
lines of intersection with the
plane & = 0: the bold lines—
for the cone Re k% = 0, the
dashed lines—for the planes
Im x? = 0. Symbols (&)
specify the sign of Re «?,
while [£] specify the sign of
Im x2; sina = —n"/|n|, Iy is
the axis of the cone (1.97)
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Fig. 1.11 The location of the
branch lines /. and the cut
surface S ensuring the choice
of the branch for which
Imk(w, €) >0 in R*-space; I
is the axis of the cone (1.97)

sector {w' <0, w” =0— 0}, while it is negative on the other sides. Since the
integrands in (1.94)—(1.96) are uniquely defined in the R>-space with the specified
cuts, one can apply the Cauchy-Poincare theorem [18] to deform the surface of
integration P in R*\(S; U Sy).

In accordance with the causality principle, the cut surfaces S; and S, have to
adjoin the real plane P from the bottom («” = 0 — 0). Then, the integrands have no
singularities in the half-space @” >0, and we have E,(x,z,7) =0 for all <0,
according to the mentioned theorem.

For the positive values of ¢, the P-plane can be deformed to a half-space @” <0.
Then we have for ES an integral over the surface P.;, while for Eyl, E§ we have
integrals over the surface P. = P.; U P,. Here P; stands for the closed surface
enveloping the cut S;.

Using the function G'(x, z, ) as an example, let us demonstrate how the integrals
describing the secondary field in (1.95), (1.96) can be simplified. Denoting the
integrand in (1.95) by f(w, &), consider the following integral over the surface P..:

/ flo,&)ds = I + I, (1.99)
P.

where I; = jpff w,&)ds. Let P and P; be the right-hand (o’ >0) and the

left-hand («’ <0) cavities of the surface Pq, L.yj is the closed contour generated by
the intersection of the surface P.; with the coordinate plane «’ = const. Then we
have

h=y /i () = O/OC dw/L{ dif (e, &)+ Z dw’L / dif(e, )
0/ [ e~ [ aro-¢

o1 1

(1.100)
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In the second integral, we made the following change of variables v — —w,
& — —¢&. Taking into account the evenness of the chosen branches of the square
roots entering the function f(w, &) with respect to this change of variables and
performing another change of variables & = wy, we arrive at the following

expression for the integral in (1.95):

I :/Oodw/dn<exp{iw[nx+ \/rﬁ(z-i—zo)—t]}
0 L

(1.101)
—exp{ia) {—rpﬁ— \/ﬂ(m—zo)—kt} })fl(”l)/\/ﬂa
where
fi(p) = foN/mi — 1~/ — (1.102)

fo/n =P+ py\/n3 —
The contour L; envelopes the segment (—ny,n;) in the complex n-plane. Let us

introduce the accessory parameter 6 > 0 for the sake of convergence acceleration,
then rewrite (1.101) in the form

I :}sii% dw/dn(exp{iw[ié—i—nx—l—\/nf—nz(z+zO)—t]}

0 L;
—exp{iw{ié —nx+4/n} *112(1+Zo)+l] })fl(’?)/ n—n?
1 (1.103)
=ilim
(§~>OL nx+ m(z-’-a)) —t+id

Fl( )dﬂ

—nx—+/n? —n*(z+z20) +t+id| /3

For the second integral in (1.99), I,, we obtain a representation similar to (1.103)
with L; replaced by L,, where L, is the contour enveloping the segment (—ny, n,).
Thus, for the function given by (1.95), which determines the secondary field in the
first medium (see (1.93)), we arrive at the following expression

1
nx+/nr — n2(z+2z20) — t-

T'y(n)dn

1
1 — 1
G x21) 471615(1)/
L (1.104)

1
—nx+y/ni =P (z+20) + 14
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where ¢ty = ¢ £ id, L is the contour enveloping the segment (—7max, fimax ), Aimax =
max(n;,ny). The root branches are determined by the inequalities

—m< arg 4 /n]? — 1?2 <7 with zero argument on the bottom side of the cut along the
segment (—n;,n;).

Similarly, for the function G2, describing the field in the second medium, we
obtain from (1.96):

1
nx+/nf — P20 — \/n — Pz -1

L ] (1.105)
1 I (n)dn

—nx+/nd =Pz = \/my — Pzt | /nd =

where I';(17) = 1+ I'y (). The integrands in (1.104) and (1.105) are analytic in the
plane of complex variable # with the specified cut and decreasing at infinity as 2.
Therefore, these integrals can be reduced to the residues determined by zeros of the
denominators in the square brackets:

nx+y/nd —n*(z+z0) —t- =0, —nx++/n? —n?(z+z2)+ty =0 for

(1.104),

1.
Gz(xa Z, t) = E})l_)rr(l)

(1.106)

nx+/n? —nPz0 —\/n3 — Pz —1t- =0,
(1.107)

ety P — [/~ Pe b =0 for (1.105).

1.4.3 The Field in the First Medium

The roots of (1.106) are readily determined and can be written as

n = (xt — (z+20)\/niR% — 1‘2)R+2 and
n = (xt+ +(z+20)\/M3R% ti)Rﬁ,

where R%, = x* + (z+z0)>. For the square root ViR’ — 12, we determined the
same branch in the complex plane of variable ¢ as for , / n]2 — 1 in the y-plane. By

calculating the corresponding residues, we get from (1.104):

(1.108)
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: T
G'(x,2,1) = = lim 1(n)

20-0 ) x\/n? — 2 — (z+2z20)1

fl(ﬂ)
n? — 2+ (z+20)n

+

=iy =,
B s Uy B (O
2020 (ViR — 22 /iR -7
(1.109)
Here we used the equality
2 .

It is easy to verify that the following relationships are hold for the chosen
branches of the square roots:

R — 0 = explim) (iR, 7))
. (L.111)
w7 — ()" = exp(im) (\/nF — 1)
(the asterisk stands for a complex conjugation). Therefore,
n = [xt"+ - (z—l—zo)exp(in)(\/n%Rz+ - tﬂ) ]Rf
= |xty +(2+z n’R? —tz} R2=(n *,
[ ++( 0)\/niRy — 13 | R (n") (1.112)
7= (i) =) (Vo () T) == [\ = G 7]
; ny )" =exp(in) | \/n; i = n; " ,
Fi(ny) = [Ta(ni")]

The wave reflected from the interface comes at some point in the first medium at
time t,f = n1R . For the time interval 0 < ¢ < t,f, in view of (1.112), we obtain

G'(x,z,1) = Dlim

= —lim
VR -2 R - | 2000 \/nIR% -2

= ImI (nf)/\/n%R%r -1,

i [ Bed) L ) ]_ih i) = Tl
26—0

(1.113)

where 7% = ;" |;_,= {xt — (z420)/niR% — tz}Rf.
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For the time interval f. <t, we have

: 7 (4 + T + 2 >
G'(x,2,1) = Llim M) D) | Rela(nr) (1.114)
20-0(i\/P —m3R%. i\/©? —n}R% 72— R

where 7, =1, |;_= {xt+i(z+zo)\/t2 - n%Ra}Rjrz.

The behavior of the secondary field in the first medium for the times 0 <7 <t
essentially depends on the relation between the refractive indices for the first (n;)
and second (1) media.

For an arbitrary point in the first medium, both of the roots entering I (nf) are
real (see (1.110)) if n; <n,. Consequently, we have Imfl (171<) = 0, and the sec-
ondary field given by (1.113) is zero (G (x, z, ) = 0) up to the moment of arrival of
the reflected wave.

In the case that 7, > 1, a more detailed analysis of the function n2 — (1°)” is
required. Let us use the following notation: x/R =sin0, (z+z)/R; =cos0,
ny/ny = sin Oy, where 0, stands for the angle of total internal reflection [41, 62].
Let us also introduce the parameter T = arccos(#/t.r) such that cos T = #/fr and
the principal branch 0 <7 <7 of this function is chosen. Then we arrive at

2
2 2

t t
- ) =i [y - e (-
R+ n1R+ R+ n1R+ I’ll

= n% [cosz(r —-0)— cos20mt] = nfsin(@tm — 0+ 1)sin(Oyy + 6 — 7).

(1.115)

Since we have 0 <0, 0,1, T <7/2 for the space-time domain considered, then the
arguments of the sine functions in (1.115) find themselves within the interval
(—m/2, 7). Therefore, the function given by (1.115) has two roots, 7; = 0 — Oy
and 15 = 0+ Oy, corresponding to the time points #; = fercos(0 — Oyy) and 1, =
tref €08(0 + Oyor). There is no difficulty to show (the trajectory zox;x,A in Fig. 1.12)
that

1y = n120/c0s Oiop + n2[x — (24 20)t20i| + n1z/cos Oy = tais,

where t4;¢ is the time of arrival of the so-called side wave [41] (or diffraction wave
[62]) at the observation point located in the first medium in the region 6 > 6. For
0 < Oy, the variable 7, goes to the unphysical sheet of the function arccos(z/#er),
and the side wave does not occur in this region. By virtue of the causality principle,
for the times 7 <t4, there is no secondary field and so the other zero (1) is of no
importance (f, <tp).
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Fig. 1.12 The wave fronts of
the field generated by a pulsed
line current located near a
planar interface for n; > nj:
the primary (I), reflected (II),
transmitted (IIT), and side
(IV) waves; zg x; xp A is the
trajectory determining the
time of arrival of the side
wave at the point A, Oy is the
angle of total internal
reflection

Let us find the value of sign [n% - (nf)z] for tgf <t < ter in the region

0 > 0. Here the following relationships for the arguments of the sine functions in
(1.113) are valid:

_ﬂ:/2<0t0t — 0<010t - 0+T<0t()l - 0+T1 :O,
0<29t0t = 9t0t+0_ T1<9t0[+9_1<9[0t+9<7£,

which means that n3 — (57)® < 0. Considering that Imy/n? — (17)” = 0, we have

ImI, (171<) #0.
Thus for n; > ny and tg <t <tf, in the region 6 > Oy, the side wave is gen-
erated, which is given by the function in (1.113).

From (1.113), (1.114), through the substitutions fl — 1, z4+2z0 — 72— 20, We
arrive at the following expression for the function G characterizing the primary

field:
GO(x,z,1) = [0 for O<t<t0;1/\/t2 — 12 for t0<t}, (1.116)

where ty) = nR_ is the time of arrival of the primary wave at the observation point
in the first medium.

1.4.4 The Field in the Second Medium

Denote the roots of the equation (1.107) by 775 and 1, . Then the integral in (1.105)
takes the form
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, T (n)
2 _ . . 2
G (x,z,1) 7235% |:l$?7§x11+10\/”%—7121\/"%—'12f
T (n) i [ L) T (n)
— Res ~2 =_lim |2 — 4 =2 |
=1 =3 20N/ — 1P — o /m] — Aty | 200|x—Z(ny)  x+Z(ny")
(L.117)
where
20 z = fz(’?)
Z(n) = - n and I () = ———. (1.118)
lm ST —A N

The roots 15 can be written explicitly, in the form of the solutions of the
associated algebraic quartic equations. However, they are too lengthy because of six
parameters entering (1.107) and will not be used. In view of the causality principle,
we have G? (x,z,t) = 0 for t<t,, where #, is the time of arrival of the transmitted
wave at the observation point in the second medium. For 7 > #;, the roots nzi are
complex and, as evident from (1.107), in terms of (1.111), we have 15 = (175" )*
Therefore, taking into account formulas in (1.112), we obtain for t >

SN XN DR NP | EXC N B RN
PEUTRER N FZ00) -z )| 20| v+ 2(m) | v+ 20n)

r (n) B r (n)

(1.119)

1.4.5 Discussion and Conclusion

Formulas (1.93) and (1.116) for the primary field, formulas (1.113) and (1.114) for
the secondary field in the first medium, as well as formula (1.119) for the secondary
field in the second medium coincide with the corresponding expressions derived
with the help of CHM in [54].

The main result of our study is a new representation for the field generated by a
pulsed line current in a two-media configuration in the form of the integrals along
finite contours (1.104), (1.105). This method, like the CHM, is applicable to the
problems of pulsed electromagnetic radiation from linear sources in the medium
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formed by an arbitrary finite number N of homogeneous parallel layers with per-
mittivity ¢ and permeability yw;, j=1,2,...,N. In this case, for the field in the
layers, the integrals along the contour enveloping the interval (—7yax, imax ), Where
Nmax = max{ny,ny,...,ny}, are similar to representations (1.104), (1.105). Two
methods for calculating these integrals are possible.

The first way is to reduce them, by the Cauchy theorem, to a sum of residues at
the poles of the integrand. These poles are determined by the roots of algebraic
equations that coincide with the equations for the modified Cagniard contours [54].
Therefore this technique, being alternative to the CHM in an analytical sense, is
equivalent to it in a calculating sense.

Another way is to estimate numerically the integrals in (1.104), (1.105). It is
easy to show that they can be reduced to the integrals over the interval (0, 72, ). For
example, the field in the first medium (1.104) can be represented for n, > ny,
t > tef in the following form:

GI(X,Z, = _7t /f d’7+ /f I’l —Wzdﬂ )

x*n?+ (n% - ’12)(2-5-20)2—12 L T )= r, (n)

= 2 - 1/] 2 .
R N I

We can use a standard integration procedure of any mathematical package to
calculate G' by this formula. Comparison of the data obtained by this way with the
explicit expression given by (1.114) has demonstrated high efficiency and accuracy
of the approach.

The key point of the CHM is the solution of the algebraic equation determining
the modified Cagniard contour. To do this, the iterative numerical methods are
used. The greatest difficulty inherent in these methods is to choose the initial value
that is close enough to the required zero of the equation [63]. In the paper [54], such
an initial approximation has been proposed for the medium consisting of N isotropic
layers. The efficiency of the iterative method has been demonstrated for N = 2. For
more complex structures containing anisotropic layers, the initial approximation of
this kind is unknown. (The CHM allows us to study as yet the simplest situation
where the source and the observation point are located on the boundary of an
anisotropic medium [64].)

Our approach, being free from such complications, reduces the calculation of the
field generated by a line dipole in a multilayered medium to the standard procedure
of numerical integration along a finite interval.
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1.5 Transition Radiation of a Longitudinal Magnetic
Dipole in the Case of Diffuse Interface

In the overwhelming number of studies on transition radiation (see reviews [65, 66])
the medium models are used in which spatial properties change abruptly. The tran-
sition radiation that occurs when an electric charge moves across the diffuse interface
of two media was first discussed in the paper [67]. The authors used the asymmetric
Epstein layer of relative permittivity &(z) = 1+ a/[1 + exp(—dz)]. This model
problem is of particular value since its exact solution, if it were obtained, would allow
one to determine the conditions under which the transition radiation on the diffuse
boundary can be considered approximately the same as in the case of the sharp
boundary. This problem in [67] is reduced to the solution of the one-dimensional
scalar Helmholtz equation with the coefficient involving v/z(1/+/2)" instead of &(z).
Since the analytic solution of this equation is not known, the authors were forced to
make an additional assumption about smallness of grad ¢(z). Furthermore, the vari-
ation of the function &(z) is supposed to be also small since the authors of [67] limited
themselves by the case of the radiation from an ultrarelativistic charge at frequencies
larger than optical frequencies. These assumptions, weakening the initial rigorous
formulation, do not allow one to establish a reliable criterion of the interface
‘sharpness’, which is free from those restrictions.

In this section, for the medium like an asymmetric Epstein layer, we will show
the possibility to solve rigorously the problem of the transition radiation of a
longitudinal magnetic dipole [68].

1.5.1 Problem Formulation and Solution

We assume that a longitudinal magnetic dipole with moment 77 = m.Z is moving

with constant velocity V=VzZ V,>0inan isotropic layered medium with con-
stant relative permeability u and relative permittivity

& — &

)=+ ——F—;
(2) ! 1+ exp(—12)

> 0. (1.120)

For simplicity, we assume that the condition of Vavilov-Cherenkov radiation is
not satisfied. The initial equations are [67]:

- -

— aD —»(m> =3 aB = = — —
rotH = o +J rotE = o D =¢eoE, B = uuyH,

F(m - - 0, 0=
Jm — /1= V2/m [V, x J6(F1)0(z — Vit),c = (\Veok) 'V, = ax—}—a—yy,

7L =xX+yy.
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For a plane-layered isotropic medium, these equations with a harmonic time
dependence can be reduced [41] to two scalar equations

( a——a— +k —l—V,)([V,XZ] Hw) _88_ZZ<VZJ(U ),

82 -
(o)t {7,

0 FIZ) are the projections of the corre-
sponding vectors on the plane xOy. In this case,

where k> = ke, ko = w./alty, and E!

(V0 B) = (9 700) = 29, <312 )

iwegg

~ 0 - 3
(Vi Hl) = (V, x 2 E.,), Ey=-(IVix2-H),

lwuu 0z

H., = ([V, x7]-E.).

lw,u

Since the problem is homogeneous in time and in the direction perpendicular to
the velocity of the dipole, we represent all the functions in Maxwell’s equations in
the form of the Fourier integrals

~L
I
l

F) = [ Fus(@esli(@-7.) - iofdodi; & =i+ng. =7+

with

i iy/1—V2/c
Tope) == —

2(z m, exp(iwz/V,)[K x 7.
w,K (ZE)SVZ z p( / Z)[ _1

Then, by introducing the scalar function u(z) = ([K x 7] -E! K), we arrive at the

equation

2

el +kge(z)p Kz] u(z) = Aexp(ioz/V,);

=y 4““?’“‘“0 1= V2/2mi?
(27)°Vz o

The spectral components of the field can be recovered from the solution of this
equation by the formulas

(1.121)
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- i s = ; _d
Efa,ﬁ = —é[K x Zu(z), E i =0, H(t;),ﬁ = _mkd_zu(z)’
1
Heook = = rmoniy 9

The magnetic field vector lies in the radiation plane, which passes through the

vectors & and V, that is, the field is an H-polarized wave [69].

We now seek the solution of homogeneous (1.121). By introducing a new
independent variable x = — exp(—7z) and a new function y(x) = (—x) "u(z) [12,
67], we pass from (1.121) to the following hypergeometric equation

x(1—x)y"(x) +[s — (a+ b+ 1)x]y' (x) — aby(x) = 0 (1.122)

with the parameters a=v+4, b=v—4, s=142v,
v = (1) "\/K2 — 0Pereopity, A= (1)7'/K2 = Percomity,
Re/K?2 — w?¢&; 2601ty > 0.
Let us choose two linearly independent solutions of (1.122) that are regular at
zero [70]:
yi(x) = F(a,b,s,x), ys(x) =x'""Fla+1—sb+1—52—s,x),

where F(...) is the hypergeometric function. The corresponding solutions of
homogeneous (1.121) are

ui(z) = exp(—vig) F(v+4,v — 4, 1 + 2v, —exp(—12)),
us(z) = exp(viz) F(A — v, =4 —v,1 — 2v, —exp(—12)).

The general solution of inhomogeneous (1.121) is given by

>| =

u(z) = — 11 (2) / us (<) explicoz V. )dz + us(2) / i (2) expliooe/ V.)dz
+ Clul(Z) + Czus(Z)

(1.123)

with the Wronskian W = lim (uu§ — ujus) = 27v. To calculate these integrals we
—0

use the Barnes representation [70]

T Tardreanr(-n,
F(avbvsv é) _ﬂF(a)F(b) / F(s—H) (_é) dtv

where |arg(—¢&)| <=, y > 0 and all the poles of I'(—1) are located to the right of the
contour of integration. Let us introduce the notation ¢ = iw/V,t, { = 1z and con-
sider the case where z<0. Then,
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I :/us(z)exp(iwz/VZ)dz

= %/ F(A—v,—2—v,1 —=2v,—exp(—c¢))expl(s + v)c]ds
T —2expla £ V)] [ T(— v O (— A — v+~ 1)
“2mic T(J—v)[(—1—v) / Tl —=2v+t)(oc+v—1)

y—ioco

exp( — ¢t)dt

The integrand allows us to close the integration contour in the left half-plane
Rer<7y. Upon calculating the residues at the poles t, =—-n—/i+v,

£, =-m+i4+v,n,m=0,1,2,...and t* = g+ v, we obtain
! exp(GG)F(l—Zv) = — 2% —n)[(=v+2+n)

L= p(ic Z .

'TAr(— (=i - A n' 1—v—)—n)(o+/1+n) exp(nc)

> Irr—n)I(=v—A+n)
+exp(= Z nll l—v—i—/l—n)(a—)v—i-n)eXp(

F(A+G)F(—A+G)F(—O‘—V) R
T(1+o—v) e"p(*a‘*)}'

ng)

Similarly,
L= /ul(z)exp(iwz/VZ)dz = %/ F(v+4,v— 4,14 2v, —exp(—c))exp[(c — v)c]dg

1 r+2vesplo =g [ T+l — i+ )T(= ),
2t D+ A)T(v—2) / T +2vt e —v—p (st

Upon calculating the residues at the poles t, = —n— A —v, ¢, = —m+ 1 — v,
n,m=0,1,2,...,and ~ = o — v in the half-plane Ret <y, we obtain
1exp(ac)l (1+2v) io: —2A—=n)I(v +i+n)ex o)
2_Tl“(v—i—/l) I'iv— non'l"l—l—v—)—n)(a—l—/l—i—n) plns

S (_1) r2.—n)I'(v—21+n)
+ eXp(—)vs) ;rﬂr(l +v+l— l’l)(O' — },+n)

I'(A+o)l(c— ) (—a+v)
B I'l+o+v) exp(—ag)}.

exp(ng)

Applying the formula 7(—1)""" = sin(no)[(a 41 — n)[(—+n) [70], we

find that
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Ir(1-2v) . sin[r(v+ 1)]
T T = (/=) {_‘”‘P(“)S‘(g) sin(217)
+ exp(—4¢)S2(c) 81257;2;7;;)] A G O—)ll:gl_ij; i)l\?)(_a =) exp( — JQ)}
+ us(z)exp(ag) rﬂf—f—lﬂ—% {fexp(lg)Sl (<) %
sinfr(A+v)] T'(A+a)[(—A+a)[(—a+V)
sin@nl) I'l4+o+v) exp( — 65)}
+ Crui(z) + Cous(z),

Su(z) = — 1 (2)exp(oc)

—exp( — 4¢)S2(¢)

(1.124)
where
-y (—v+i+m)(v+it+n)
_; n'F1+2;L+n)(G+/1+n) "Xp(ns) and
i T
p— e n/‘.
= ”'F1—2l+n)(a—z+n) pus

The linearly independent solutions u; and us are regular for positive z. We are
interested in z <0, therefore, let us continue these solutions analytically into this
domain [70]): uy = I'zuz + Uigus, us = Uszuz + I'squy. Here

Lo Tatawr(=2y o T(+200(2d

BT T2+ 0)Iv=24 M T T+ DI+’

ro__ T —29r(-22 r_ T -29r@j

P T(—v=a+ DI (=v=2)" T T(=v+i+tDI(=v+d)

By substituting the above expressions into (1.124), we obtain for z <0
u(z) = u"(z) +u'(z), (1.125)

where

v r(1+24
gum(z) = Jexp(ag){—m(z)exp(ig)&(@) m

r(1—24
—2=v)'(v— A)}
Z/”r(z) = —“3( T3 (0,4, =) +1C]| = Ts3[I'(0,4,v) — 1G]}
+ —u4( HTu[l (o, 2, —v) +1C1] = I'sa[['(0,4,v) — 1 G},
Ir(1+2v)I'(e+2)I'(6 — 2)I'(—a+v)

v+ 2)I(v—2)I(1+a+v)

+ u3(z)exp(—4¢)Sa(c) I

I(o,4,v) =
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With z — —oo we have u3(z) & exp(4¢), us(z) =~ exp(—4Ag), consequently

4 iwz/ V.
o) o VIO Jivijes, exp(ioz/ V)
z

(2n)*V. — wZergopty + @? [V2

ie. for z— —oco the term u™(z) changes into the self field of the longitudinal
magnetic dipole [69]. The term u’(z) represents the radiation field. For propagating
waves, the inequality kgel,z,u > k?> holds; choosing the root branch

argy/Kk? — kZejopt = —m/2, we have

_ L/ — 2 5 _ L/ — 2
V= . W & Uy — K=, A= . W E1E Uy — K~

Consequently, for z — —o0, u3(z) is the wave outgoing to —oo, while u4(z) is
the wave incoming from —oo. Since the latter should not exist, the coefficient at
u4(z) must be zero:

1“14[1"(07 A, —V) +7 Cl] = 1"54[1"(07 A, v) — ‘ECz]. (1126)

Another condition for the constants C; and C, we obtain from the representation
(1.123) for the total field for z > 0. In this case, exp(—¢) <1 in the integral I;,
which allows us to close the contour of integration in the half-plane Rer > y, where
the poles t, =n, n =0,1,2,... are located. As a result we have for z > 0

—ng

exp[(o+v)g]T'(1 — 2v) i D)'T(A—v+n)(=4—v+n)
F(A=vI(=2=v)t <4 nll[(1 =2v+n)(c+v—n)

)
exp[(o — v)]I'(1+2v) i "F (v+A+nm)(v—A+n)
F+A)C(v =24t & nll(1+2v+n)(c—v—n)

+ Ciuy (Z) + Cous (Z)

gu(z) = —uy(z)

+ us(2)

With z — oo, u; = exp(—vg) is the wave outgoing to + oo, while us ~ exp(v¢)
is the wave incoming from + oco. That is why the coefficient at us(z) must be zero,
C, =0, and (1.126) turns into

1
C1 = [F54F(a, i, V) — F14F(a, )u, —V)} m

Irft+v+A)(e+)I'(—o+v)I'(—o —v)
B tT20T(A—v(1—o+4)

If we introduce, by analogy with [67], the function
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v(v,Z,0,exp(—¢)) = F(—v+ 24, —v — 2,1 — 2v, —exp(—¢))
o I'(1+2v) i(—l)"l"(v—xl—‘-n)l"(v—l—i—l—n)
I'(v—=A(v+4) nll(142v+n)(—o+v+n)

exp(—ng),
n=0

then, for z > 0 the field can be written as

u(z) = %exp(ag){—v[v, —A,0,exp(—¢)] +v[—v, —4,0,exp(—¢)]}
AT+ AT(A+v+7) (1.127)
T2 (1420 (1+24) I(=0, —v, Ju(2),

while for z <0 it is

<

(z) = %exp(ac){—v[i, v, —a,exp(¢)] +v[—4,v, —a,exp(¢)]}
AT(v+ D1 4+v+2) (1.128)
T Ttz L@ A ).

In what follows, we will be interested only in the radiation field away from the
boundary (|z] > 1/1). From (1.128) we obtain for this field

¢ A F alv )@ 3 <0
() =~ LAV RO (1.129)
T [(=a,v,2)exp(—vg); 2> 0,
where
(0, 1,7) = F(1+v+ )T (e + ) (e — AT (-0 +v)
B T(1+20T(v—AT(1+v+0o)
The energy of the forward radiation into the half-space z > 0 is [69]
0V [T : :
W =" /dw/wlc T(—0,v, 1)/ ertopse — K2dic,
0 0
(1.130)

where the integration is performed over the domain x> <w?eyeppupty, which cor-

responds to the waves propagating in the right half-space away from the boundary.
For such x, complex conjugation of the parameters v and u gives v = —v,
2" = —/. Taking into account the properties of the gamma function I'*(z) = I'(z"),
I['(z)I(1 — z) = =/sin(nz), we obtain
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Mo )=~ (72 —+2) sin(27v) sin[(4 — v)] sin[x(c — 2)]
IT( )| 2v (a2 —v?)(a? — ,12) sin[z(v+ 2)] sin[z(o + 1)]
1

% sin[n(c — v)]sin[r(c + )]

(1.131)

Formulas (1.127)-(1.131) are valid for arbitrary values of the parameter 7, which
characterizes the degree of boundary diffusiveness.

1.5.2 The Criterion of the Interface ‘Sharpness’

Let us consider the transition to the sharp interface: 1 — oco. The expansion of
(1.131) in the power series in the small parameter 1/t requires the smallness of the
absolute values of 2v, A —v, 6 — A, 6+ A, 6 —v, c+v, A+v, which can be
expressed via four independent values: ¢ + v, ¢ = 4. Denote

" 2n 2n 2n 2n

L e F hgea — K2 |

_‘c|0:|:/l| 2?1/k281l/(—;c2| Ly r\oj:v\

and suppose the following inequalities hold:

2n/t < L, 2n/t < L5 (1.132)
Then we have

sin(2zv) sin[r(A — v)] sin[z(o — 1)]
sin[n(v+ 4)] sin[zn(o + A)] sin[n(eg — v)] sin[n(o + v)]

2v(e — ) (A — 1
ﬁ(V+E)(o—+)}(,)(g2zV2) 1+§”2(6+V)(J—v+2)v)+

and for 1 — o0

—o,v,0)|P= (=)
[T(—0,v, )= PESE— (1.133)

Substituting this formula into (1.130), we obtain the expression for the radiation
energy, which coincides exactly with the results given in [69] for the case of a sharp
boundary.

In evaluating the sharpness of the interface between two media an important role
is played by the notion of the radiation-forming region. In the case of a diffuse
interface, the radiation can be considered approximately the same as in the case of a
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sharp interface if the characteristic width of the transition boundary layer Az is
much smaller than the length of the radiation-forming region. During the qualitative
evaluation [69] based on the determination of the distance at which the field of a
moving source and the radiation field, moving away from the boundary, are sep-
arated, the following conditions were obtained

Az <Ly, Az< LS. (1.134)

They are equivalent to the conditions in (1.132) (t = 2n/Az). Here, L; and L2+
are the lengths of the radiation-forming regions for the radiation moving away from
the interface in the first and second media, respectively.

These two conditions are not enough to transfer from the general solution (1.131)
to the solution (1.133) for a sharp boundary. Two additional conditions in (1.132)
estimate the distance from the boundary, at which the field of the source and the
radiation field incoming on the boundary are separated. Since Lffz > L ,, the con-

ditions under which the interface between two media can be considered sharp, are:
Az Ly, Az L. (1.135)

The error of the condition (1.134), as compared with the exact condition (1.135),
shows itself in the situation where the source moves from a less dense into a more
dense medium.

In the paper [67], the following two inequalities were chosen as a criterion of the
interface sharpness:

Az< L, Az< LS, (1.136)

which were less restrictive than those in (1.135). Within the frequency range w?> >
a)f)e = 47 N.&? / me, considered in [67], where N, is the electron density of the
material and m, is the electron mass, the conditions in (1.136) are sufficient for
passing to the case of a sharp interface in the general relationships for the spectral
density of the radiation, produced at small angles by an ultrarelativistic charge in
the medium with a diffuse boundary.

Thus, we have formulated the problem of transition radiation for a medium with
a diffuse boundary. For the first time, we obtained the rigorous analytical solution of
this problem, without imposing any restrictions on the parameters of the model. By
analyzing the passage to the limiting case of a sharp boundary in this solution, we
have found an exact criterion of the interface ‘sharpness’ in the form of two
inequalities (1.135). It substantially improves the well-known criterion (1.134) and,
in contrast to another version of this criterion (1.136), does not require any
restrictions on the frequency range, the charge velocity and the change in the
permittivity & — ¢;.
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1.6 The Biisotropic Epstein Transition Layer

The isotropic linear media having the properties of chirality and nonreciprocity are
referred to as biisotropic. Chirality leads to circular dichroism and optical activity—
the rotation of the polarization vector as in the Faraday effect, but regardless of the
direction of propagation. If a medium has the property of nonreciprocity, the
electric and magnetic field vectors are not orthogonal, and the phase velocity
depends on the nonreciprocity index [71]. These effects may be important for new
microwave applications [72, 73], if such a medium is realized.

Analysis of electromagnetic waves in inhomogeneous biisotropic media began
from the works [74, 75]. The authors of these papers considered diffraction of a
plane electromagnetic wave on a boundary of the half-space filled with a chiral
medium. In [76] a similar problem was solved for the general case of an arbitrary
biisotropic medium. In a number of works, a similar problem for homogeneous
biisotropic layers has been studied in detail [77]. The papers [78, 79], which use
numerical and analytical methods, are devoted to the investigation of the electro-
magnetic scattering in biisotropic stratified media with continuously varying
parameters. Within the class of inhomogeneous biisotropic media, we proposed in
[80] a model of the medium, for which one can write the analytical solution to the
problem of the plane electromagnetic wave that propagates in this medium along
the normal to the layers. Such a medium is a generalization to the biisotropic case of
the known [12] isotropic Epstein transition layer, which describes a smooth tran-
sition in a plane-layered isotropic medium between the regions with different
refractive indices n; and n,. In this section, we discuss in detail the methodology for
obtaining this solution. The solution can be expressed in terms of the known
hypergeometric series, as well as for the isotropic Epstein layer. The analytical
expressions for the reflection and transmission coefficients have been derived, from
which it follows that in such a medium the total transmission may occur.

1.6.1 Egquations for the Electromagnetic Field
in a Biisotropic Medium

It is well known that biisotropic media are marked by the magnetoelectric coupling,
in which both electric and magnetic excitation leads simultaneously both to the
electric and magnetic polarization. To describe the most general form of such a
medium, in addition to the relative permittivity ¢ and the permeability u, the
nonreciprocity parameter y and the chirality parameter x are used. The constitutive
equations for this medium, on the assumption of harmonic excitation (time
dependence is defined by exp(—iwt)), are as follows [71]:
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D = eaoE + \Jeollg (1 + ix)H, B = \/eotlg(x — ix)E + poH, (1.137)

where &y, p, are the permittivities of free space. For lossless media, the dimen-
sionless parameters ¢, u, x, and x are the real functions of coordinates.
The Maxwell’s equations, in view of (1.137), can be written as

rotE = ikonopH + ko(x +iy)E, totH = —ikong'¢E +ko(ic — ix)H,  (1.138)

where ko = w,/eolly, Ny = \/ 1o/ €0- By eliminating H from (1.138), we arrive at
the vector Helmholtz equation

1 ) Q- K+iy- K—I - K24 2
—rot—rotE — rot l'(E——erotE—i—ko( X

ko p U U

— g)E =0. (1.139)

The parameters ¢, y, x of the plane-parallel medium depend only on the coor-
dinate z; the magnetic permeability u is considered constant in the whole space. The
electromagnetic wave that propagates in such a medium perpendicularly to the
layers, does not depend on the transversal coordinates x, y. Therefore, (1.139) is
transformed into the system:

d’E, dEy 2o o d(k +iy)

dzz —2k0K7Z—k0(K +X _S,U)Ex—k()TEy:O

d’E, dE, d(k+iy) 2/ 2, 2 (1.140)
g T 2kor = ko= By — k(1> + 1 —ep)Ey = 0

E, =0.

Hence, introducing the auxiliary functions E. = E, £iE,, we obtain two
independent equations

d*E. dE,
TE L
FE P ¥

+[(n* — &> — ) iK' +iy) | Ex =0, (1.141)

where Z = koz, n = /e, k' + iy’ = d(ic+ iy)/dz. Removing the term with the first
derivative by the substitution

Er = E.(e" (), F(2) = exp [jFi / x(z)dz} (1.142)

we arrive at the following equation for the function E. (Z):

d’E.
dz?

+(n* = F1)Es = 0. (1.143)



1 New Analytical Solutions of Selected Electromagnetic Problems ... 65

1.6.2 Problem Formulation and Solution

Consider the following version of the plane-layered medium

n*(2)

6(2) = 0.5(1+72) +0.5(1 — #?)th(z2),  1(2) = 0.57[1 — th(zz)],
k(z) = 0.

05k[1 —th()], u=1, |7<h T=r1/k,

b

(1.144)

which is the generalization of the known isotropic Epstein transition layer on the
biisotropic case [12]. For 7 = —o0, the inhomogeneous biisotropic medium (1.144)
smoothly transits into a homogeneous biisotropic medium with the parameters 72,
7, K, while for Z= 4 o0 it transits into the isotropic medium with ¢ = u =1,
7 =k =0. The value A = 2ky/7 can be considered an effective width of the
transition layer (1.144), which describes the degree of diffusiveness of the boundary
between the isotropic and biisotropic media.
In view of (1.144), (1.143) takes the form
LE. -
= +I’li(Z)Ej: = 0, (1145)
dz
where

2% 2%
RE) = 1-N exp(—217) . exp( ‘cz~)~ i
[1+4 exp(—27Z)]

)

1+ exp(—212)
N=1-+7, 4Ms = —3(7+27).

Let a plane linearly polarized electromagnetic wave of unit amplitude be incident
from 7 = + oo on the biisotropic medium (1.144). The resulting electromagnetic
field is to be found.

It is known [12] that solutions of the equations like the one in (1.145) can be
represented as

Ec() = ()P — ot P Dy ), (1.146)

where { = —exp(—27%), while the function u({) is the general solution to the
hypergeometric Gauss equation

2M u
C(l—C)d——[(HﬁH)C—V}z—C—

e afu = 0. (1.147)

The parameters o, f3, y are representable through the parameters 7, N, M. of the
model:
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ny =1+ 11 —4Mi%*2+2i%(1 Vi —N),
Bo= 3+ V1 —4M. 72 +2i%(1 +V1 —N).

Substituting N and M., we obtain

wo =Ll +i(1- VR = 2)], pe=14 g [w+i(1+ Vi = 72)],
p=1+1,
T

(1.148)

where the imaginary parts of the roots is nonnegative.

Equation (1.147) has three proper critical points { = 0, 1, 0o, in the vicinity of
which the two linearly independent solutions of this equation can be represented in
the form of the converging hypergeometric series u;, i = 1,2,3,4,5,6 [70].

The transmitted wave should be outgoing as 7 — —o0, i.e. for { — —oo. In the
vicinity of an infinitely distant point of the complex plane (, the linearly inde-
pendent solutions of (1.147) are

uz = (_C)ixF(fx’a_V—'_lva_ﬁ'i_lacil)a

1.149
u4:(—C)fﬁF(ﬁ,ﬁ—y—FLﬁ—oc—i—l,C_l), ( )

where —({ = {exp(in) and F(o, f8,7,{) = 2F1(, B,7, () is a hypergeometric series
[70].
The asymptotics as z — —oo of the functions in (1.146)

Ey(z) = exp[(1 — 7)TZ][1 + exp(—272)) ™ * P77 H 02y

that correspond to the solutions (1.149) are

ED(@) ~ expl(as — fo)7F),  EL(D) ~ expl(B — o).

Since oy — B = —i\/i? — 22/% and /72 — %% > 0, then ES) corresponds to
the waves outgoing to 7 = —oo, while Eﬁ” corresponds to the ones incoming from

7 = —o0. Consequently, one should take as solutions the functions

EP)(2) = exp[(1 — )71+ exp(~282)] P77 D 25 0),

whose behavior at 7 — + 0o ({ — 0) is determined by the following Kummer'’s
formula [70]:
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(1 —y)oe+1-p.) C)Id—ylec+1-4,)

BT =BT+ 1-9)"  TR= TG — )T (s)

(1.150)

where

uj :F(avﬂa%z)ﬂ'@ :Clin(a7‘y+13ﬂ77)+1,27%5)7

and T'(...) is the gamma function. The asymptotics of the solutions of (1.145) that
correspond to the functions u;, us are

EV(2) m expl(1 — )] = exp(—i2), EY(2) =~ exp|(1 — 7))

% [ exp(~28)] 7= (~1) Texpl—(1 — )] = (—1) Texp(i2).
(1.151)
ie. Eil) corresponds to the wave incoming from z = + oo, while Ef) corresponds
to the wave outgoing to Z = + oo. It follows from (1.150) that
ra-pg.r 1—9) -
L1 =) (e +1 - )
_wsy LA = )T (ee +1—7)
=E;(Z) -
FQ2 =)= )T (o)

(1.152)
(-1 ED ().

Since for Z — + oo the behavior of the functions Eg) (z) and (—I)A"*JNEEE5> (z) are
determined by the asymptotics (1.151) and for z — —oo we have ES )(Z) ~

exp(fi 2 — 5(22), then these functions define the primary, reflected, and trans-

mitted waves, respectively, while the factors in (1.152) are the transmission
coefficients

T )Tt 1-7)
S T e (1.153)

and the reflection coefficients

Iy -Dra-g)rlee+1-y)
C(1—p)(y—po)l(es)

Ry = (1.154)

The left and right parts of the equation (1.152) are two representations of the
solutions of (1.145) E.(z) for 7<0 and for Z > 0, respectively.
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1.6.3 Analysis of the Reflected and Transmitted Fields

As evident from (1.142) and (1.144), the electromagnetic field components can be
written in the form
1 ~

Exzé(E+ef+E,e+), E}::Z(E+ei_E76+)7

where
e (z) = exp{q:éfc [2 — 7 ' In(exp(7z) + exp(—%Z))] }

Let us consider the field structure away from the region, whose dimensions are
determined by the effective width of the layer, |Z| > A.

In the region zZ > A, where the medium differs little from the isotropic one, we
have

e(2) = 1+ Olexp(<2%)],  Eu ~ exp(~i2) + Rs expl(i2),
E, ~ exp(—iZ) +%(R+ +R_)exp(iz), E, =~ %(R+ — R_)exp(iz).

In other words, the primary wave is linearly polarized along the x-axis, while the
reflected wave is

- 1 L s — - -
Er = [§(R+ +R_)X — %(R+ — R_)¥| exp(iz) = Ejp + Ep,

where E't = 0.5R"(¥ + i¥) exp(iZ) (the upper sign is associated with the super-

ref —

script r, the bottom sign is associated with 1), Er’ef is the right-hand circularly

polarized wave, Eﬁef is the left-hand circularly polarized wave. The reflection
coefficients of these two waves can be represented in the form

(V7 -
CFi(1- ) T=)

rl

R, (1.155)

F

where
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The reflected wave takes the form

; R T(2iA)

Ert = .
T2 R - g+ T(-2ih)

When passing to the sharp boundary (A = 0), we get

[(® — 1)% — 23] exp(i).  (1.157)

-

Ewer = [(1 — )%+ 277] (1 +2/2 -2 +ﬁ2)7lexp(i2). (1.158)

As seen from (1.157) and regardless of the width of the layer, when a plane
linearly polarized wave is reflected from a biisotropic half-space with n?> = ¢ =
i?>1, y=7>0 (x=%<0), the plane of polarization rotates anticlockwise
(clockwise) by the angle of

27
, = arctg ——— 1.159
Dret arclg 1— ﬁz ’ ( )

if viewed in the direction of the reflected wave.

Expressions (1.158) and (1.159) differ from those obtained in [76] by the sign of
7. It is interesting to note that the reflection from the biisotropic transition layer
(1.144), in contrast to the isotropic layer, may disappear completely. Indeed, if the
following conditions on the non-reciprocity parameter y = ,, the refraction index
n = ngy, and the layer width A = A, are satisfied:

To=+\/m—1, ho=m; m=172,..., (1.160)

then the coefficients R™ (1.155) vanish due to the second gamma function in the
denominator (1.156).

With the increase in the width of the transition layer, the coefficients R" decay
exponentially to zero. Using the known formulas for gamma functions, we obtain
from (1.155)

|R™| ~ {exp(fZEA)form <)~(O,exp(72nA\/ﬁ2 - iz)form > )}0}; A1,
(1.161)

where J, is defined by (1.160).
Consider the field transmitted into the biisotropic media, away from the transi-
tion layer. For Z < —A we have
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7 (2) = exp(FiR2)[1 + O(exp(27))],  Eu = ToEY) ~ Tuexp( -2/ — 72),
E, ~ %[h exp(fiZ\/ﬁz —p— ich) £T exp (fiz PP+ ifcz)} ,
E, ~ %[ﬂ exp(fizx/ﬁz P ifcz) T exp (fiz 274 ifcz)]
Hence, the wave transmitted through the transition layer is
E,=E.+E., (1.162)

where El = 0.57" (¥ — i¥}) exp(—ik * Z) is the right-hand circularly polarized wave,
while E!. = 0.5T'(X + iy}) exp(—ik %) is the left-hand circularly polarized wave with
the propagation constants k* = \/i? — 32+ &, T" =T,, T' =T_. It is easy to
verify that

L+a| [1-7+iy
T . . 1 +nexp(if)

i = 1+ nexp(—i0) = exp(i), (1.163)
1+fz< /1 —gz—mjg)
where 7 = y/n = sin6, |0] <n/2, and
271 sin 0 + 7% sin 20 20
= arct <m-—arctg——. 1.164
Vi O T 27 cos 0+ 722 c0s 20 Wl <7 a1 ( )

Thus, regardless of the width of the transition layer A, the two waves, Et’r and Eﬁr
into which the primary wave is split (when transmitting into the biisotropic med-
ium), have the amplitudes equal in absolute values and shifted in phase by .. By
representing 7' in the form

r(A {y - i(l R R Az)]) r(zm\/m) sin(zmAm)
rafiri(ievi—2)]) TN a{mafzri(i+vie—2)]}

(1.165)

l_

we find that

r(2iayi = 7) sin(2miA /i — 72)
I(=2iA) . sin{nA [;Z—l—i(l—&-mn}

)= |7 = - (1166)
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and with no reflection (see (1.160)) we get |T"| = |Tl’ = 1. From notions of E{r and
Et’r, we can see that in this case all the energy of the primary wave is distributed
between these two waves.

Thus, the isotropic Epstein transition layer has been generalized to the case of
biisotropic medium. We have also found the explicit analytical solution to the
problem of a linearly polarized wave normally incident onto the Epstein layer. The
main results are as follows.

e The reflected wave does not depend on the chirality of the medium and has,
regardless of the width A, the polarization shifted by an angle of ¢, as com-
pared to the case of the isotropic half-space with the same refraction index
n=n.

¢ In a biisotropic half-space, the transmitted wave is split into the right-hand and
the left-hand circularly polarized waves that are equal in amplitude and shifted
in phase by an angle of ..

e Regimes with zero reflection coefficients, which occur only in the case of the
nonreciprocal medium (y # 0) with a diffuse boundary (A # 0), have been
revealed. They are determined by the following relationships between the
nonreciprocity index y = 7, the refraction index 7 = 7y, and the effective width

of the transition layer A = Ao : 7o = /i3 — 1, oMo =m, m=1,2,...

1.7 Negative Refraction in Isotropic Double-Negative
Media

1.7.1 Negative Refraction Phenomenon in Homogeneous
Double-Negative Media

In recent years, a growing number of publications have analyzed the unusual effects
in the propagation of electromagnetic waves in the isotropic media with negative
relative permittivity ¢ and permeability yu—the so-called double negative (DNG) or
left-handed media. One such effect is the so-called negative refraction (NR), in
which the beam refracted in a DNG medium lies in the plane of incidence on the
same side of the normal to the interface, as the incident beam. At the same time, the
wave vector of the transmitted wave is directed towards the interface. Since there is
no isotropic media with ¢ <0, p <0 in the natural environment, then, in the
experiments, the artificial composite materials in the form of three-dimensional
periodic structures [81] are used as DNG media. As is well known [82], when an
electromagnetic wave, whose wavelength is comparable to the period, is propa-
gating through a periodic medium, the NR effect may also occur. In this case, it is
impossible to introduce the effective permeabilities of the medium. Since in the
experiments [83, 84] revealed the NR, the values of ¢ and u, as well as the
wavelength inside the material, were not determined directly and were assessed
implicitly, the authors of some works expressed doubt [85] about that this effect is
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inherent in a continuous isotropic medium with negative permittivity rather that it is
caused by the periodicity of the material.

In this section, following the approach outlined in [86], we explore the possi-
bility that the NR effect occurs in isotropic media. A model is suggested of an
inhomogeneous isotropic flat-layered lossless medium comprising spatial regions
with conventional and DNG media and smooth, monotonic transition between
them. The analytical description of the plane electromagnetic wave propagating
through such a medium is found, which demonstrates the NR effect in the region
occupied by a DNG isotropic medium. For the first time, this is shown without any
additional assumptions, as a direct consequence of Maxwell’s equations and the
energy conservation law. In addition, letting the size of the transition region to zero,
we verify the conditions on a sharp interface between the conventional and
the DNG homogeneous media. The proposed model has allowed us to obtain for the
first time the accurate description for the electromagnetic field distribution in the
vicinity of the point at which the medium permeabilities ¢ and u are zero.

When an electromagnetic wave is passing from a conventional medium to a
DNG medium, the NR effect can be seen from the standard Fresnel formulas, if we
assume that they remain valid in the case where one of the media is DNG. If the

E—polarized wave E' = exp (il?ﬁ — iwt)j)’, k= {kp sin 0,0, —ky cos Oy}, 7=

XX+ yy + 77 is incident from the half-space z > 0 with the relative permeabilities
& >0 and u, > 0 at an angle 0y, the wave transmitted into the half-space z<0
with the relative permeabilities &, > &, (1, > u, has the form [87]

B 21,k cos Oy
[tk cos Og + 14 /K3 — k3 sin? Oy

Its wave vector is

k= {k2 sin 0y, 0, —\/ k% — k3 sin® 00}; ki = o’eopggip, j=1,2, (1.168)

while the average energy flux is

exp (il_c'l?— iwt)y'. (1.167)

i, = \El|21?1/2u1,10w. (1.169)

In the denominator of (1.167) we have the sum of two positive values.
Let us pass to the case where ¢y <0 and u; <0. Then the first term in the
denominator in (1.167) will be negative; and for the denominator not to be zero, we

should choose the second branch of the square root, that is replace y/k} — k3 sin? 0
by —\/k} — k3 sin” 0. At the same time, as it seen from (1.168), (1.169), the signs

of the longitudinal component of ki and the transversal component of I, change.
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Thus, assuming that the Fresnel formulas for DNG media are valid, we arrive at
the NR effect. However, this assumption is not obvious, since the boundary con-
ditions for a pair of conventional media and the radiation condition suggesting that
the wave vector of the transmitted wave is directed away from the interface are used
in the derivation of these formulas from Maxwell’s equations.

To avoid any suggestion, one should consider a medium without sharp
boundaries, with the permeabilities being smooth (analytic) functions of the spatial
variable and changing from positive to negative values.

1.7.2 A Model of Smoothly Inhomogeneous Flat-Layered
Double Negative Medium. Solution of the Problem
of Transmission of a Plane Wave

The propagation of electromagnetic waves in an inhomogeneous isotropic stratified
lossless medium with the permeabilities &(z) and p(z) is described for E-polariza-
tion by the equations:

O’E, O°E, <dl> OE,

2 -
P + 022 udzu — +weeouuyk, =0,

0z
OE . OE, _ .
az,y = —ioupyHy, aTy = ioppoH,,  Ey=E, = H, =0.

(1.170)

The substitutions E — H, H — —E, ey — Uiy, Uy — €€ in (1.170) yield the
corresponding equations for H-polarization.
A plane E-polarized wave in such a medium can be represented as

E, = Z(2) exp(iKooXx — iot). (1.171)

It follows from (1.170) that the unknown amplitude function Z(z) is the solution
of the following equation

d’Z ldudZ 5 )
e T (@ = 15)Z =00 —oo<z<o, (1172)

with the evident condition z — + o0o. Here Koo = koo Sin 0, koo = /250800 s 0
is the angle of incidence of the primary wave, & = &(c0) > 0, u,, = p(o0) > 0.

In order to describe a smooth transition from the conventional medium (¢ > 0,
u>0 for z > 0) to the DNG medium (¢ <0, u<0 for z <0), consider the
following distribution of the permeabilities:

&= 60(2), p=pon(z), a(z)=rth(z/A), (1.173)

where the parameter A > 0 defines the width of the transition region in the vicinity
of the point z = 0. With the help of the substitution
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Z(z) = &u(é), E=ch?(z/A), q= %ikooAcos 0, (1.174)

(1.172) is rearranged to the hypergeometric equation

2
5(1—f)j—;+[c—(a+b+l)£]j—f—abu—0 (1.175)

with the parameters

1 1
a= EikooA(l + cosl), b= —EikooA(l —cosl), c¢=1+ikoAcos0.

(1.176)

The function &(z) maps the strip [Imz| <7A/2 of the complex plane z onto a
double-sheeted Riemann surface of the complex variable ¢ with the branch points
¢ =0and ¢ = 1. At the same time, the real semiaxis (—oo <z <0) is mapped onto a
segment (0<&<1,arg(1 — &) = 2x) of the first sheet, while the semiaxis 0 <z < oo
is mapped onto a segment (1 > ¢ > 0, arg(l — &) = 0) of the second sheet.

Following the general theory of hypergeometric equations [70], we find the
desired solution of (1.175). It is known that the points & = 0, 1, co are the singular
points of this equation, in the vicinity of which the standard pairs of its linearly
independent solutions are determined: u; and us, uy and ug, u3 and u4, respectively.

Let us choose as a solution of (1.175) in the vicinity of the point ¢ = 0 of the
first sheet of the Riemann surface (this point corresponds to the value

7= —Aln[(l ++1— f)/\/a |5:0: —o0) the function [70]

00

w = Fla,b,c,&) = Z‘(‘ "5" €< 1. (1.177)

n=0

The alternative, with a choice of the function us as a solution of (1.175) in the
vicinity of the point £ = 0 will be discussed below.

To obtain the solution of (1.175), and, therefore, in view of (1.174), of (1.172) as
well, on the entire axis —oo <z < 00, one should perform the following steps: (i) to
continue analytically, on the first sheet of the Riemann surface, the function u;(¢)
from the neighborhood of the point & = 0 to the neighborhood of the point ¢ = 1;
(i1) to go onto the second sheet in this neighborhood; (iii) to perform the analytic
continuation on this sheet into a vicinity of the point ¢ = 0.

Since for z — —oco we have & & 4exp(2z/A) = 0, u; = 1, then the function

Z ~ & =~ 49 exp(ikyoz cos 0) (1.178)
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in view of (1.171), will describe the field that is a plane wave, whose phase velocity
is directed towards positive z as z — —oo. For the analysis of the field at small |z|,
as seen from (1.174), the function u;(¢) must be analytically continued into a
neighborhood of the point £ = 1. Given that the parameters (1.176) are related by
the equation ¢ —a — b = 1, to do this, one should use the equality [70]

I'(c) r(c = a+1 b+1)
Ca+1)I(b+1) T(a)I( 2;)

x [y —In(1 = &) (1 — 5)”; |1 - &<,

F(a,b,a+b+1,¢) =

(1.179)

where 1! =y(n+1)+y(n+2)—yla+n+1)—y(b+n+1), T'(...) is the
gamma function and ¥(x) is the logarithmic derivative of the gamma function.
Hence, it follows that when the point & = 1 is passed around once in the negative
direction (1 — &) — (1 — &) exp(—2mi), the following transformation occurs:

ui (&) — (&) = uy (&) — 2miabuoue(&); |1 — & <1, (1.180)
where i1 (¢) stands for the values of the solution u; (&) on the second sheet,

()

Fasnrern: 9 w6 =0-9Fa+b+1.2,1-2).

Uy —

Now continue the function i (£) from the vicinity of the point £ = 1 on the
second sheet into the vicinity of the point & = 0, using the following Kummer’s
relationship [70]

ue = Lgrur + Dsus, (1.181)
where

I'c+1—a—-Db)I'(1—¢) r _Tle+l—-a—-b)T'(c—1)

Lo =—Fa—ara=s = "~ Te—arc-b

Upon the substitution of (1.181) into (1.180) we obtain for || <1 on the second
sheet of the Riemann surface:

uy = Bijuy + Bysus, (1.182)

where
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ch(mkooA) — exp(—nkoo A cos 0)
sh(mksoA cos 0) ’
(iksoA cos 0) T (ikoo A cos 0)
(0.5iko0 A sin 0)*T2[0.5ikse A(cos 0+ 1)]T2[0.5iko A(cos 6 — 1))

Us = f.licF(_a7_b72 —C, 6)7 Bll -

BIS =2mi

Taking into account that ¢ ~4exp(—2z/A)~0 as z — + oo, from equalities
(1.174) and (1.182) we get

Z = fq(B“M] +B15u5) ~ 4B, exp(—ikoozcos 0) +41_C+4B15 exp(ikxzcos 9)
(1.183)

Since for z — + oo the medium (1.173) goes into a conventional medium with
constant permeabilities &, and u_, then the first term in (1.183) describes the wave
incoming on the transition region while the second term describes the reflected
wave. Expressions (1.178) and (1.183) are the principal terms in the expansions for
large |z| of the function Z(z) for z<0 and z > 0, respectively. Normalizing this
function by the factor at the first exponent in (1.183), we obtain the coefficients of
reflection and transmission for the plane wave (1.171) propagating through the
transition layer (1.173):

R=4"°B;sB;!, T=58]. (1.184)

In view of the known formula |T'(iy)|*= 7/ysin(ny), we find their absolute
values:

ch(mkyA) — ch(mksA cos 0) sh(mksA cos 0)

IR] = ch(mkyoA) — exp(—mksoAcos 0)’ 7= ch(mtkoA) — exp(—mkooAcos 6)
(1.185)

1.7.3 Analysis of the Expressions for Fields

In going to a sharp boundary (4 — 0), the coefficients behave, as they must [81], like
|R| — 0, |T| — 1. As seen from (1.178), (1.183) and (1.184), the field components
and the Poynting vector away from the transition region (|z] > A) are as follows:

E, = explikoo(—zcos 0 +xsin0) — iwt], H, =1 cosOE,, H, =1 sin0E,,

ﬁ:%r’oo{Singvoa_cos 9}7 Noo = V Soo/.uoo
(1.186)

for the incident wave,
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v = Rexpliks (zcos 0+ xsin0) — iwt], H,= —n, cosOE,, H,=n,sin0E,,
|
= 5’790|R|2{Sin 0,0, cos 0}

(1.187)
for the reflected wave, and

Ey

T explikoo(zcos 0+ xsin0) — iwt], Hy =1, cosOE,, H,= —n, sin0E,,
I

1
5””|T|2{_ sin 6,0, — cos 0}
(1.188)

for the transmitted wave.

It is easy to verify that the NR occurs for the wave transmitted into the region
with negative ¢ and u. The above relations are also valid for all z in the limiting case
A — 0 of a sharp interface between the conventional and DNG homogeneous
media. It follows from (1.186), (1.187) and (1.188) that the well-known continuity
conditions are fulfilled on this boundary for the tangential components of Eand H
and for the normal components of D and B.

Now find, using (1.179), the field in the transition region between two media for
small |z|. Since for |z] < A we have:

&= 1 (/a7 +0|(/a)].

(&) = uo{1 = ab[hy — (1 = O)(1 = &) +0(1 = &’n(1 - &) },
In(1 - &) = In(z/A)’ + 2mi{0for 2 > 0; 1 for z<0} +0[(z/A)?].

Then we arrive at the following representations for the field components:

E, = MO{l — [abh* +q — abIn2’] (g)ﬁ%(i)%(i)} }

X exp(ikooX — iot),
2u0

Ho= ot { [abh* + g — ab1n 2’ +0{<§>Zln<§>} } (1.189)

X exp(ikooX — iot),

ot {1 a5 ] (5o () m )

X exp(ikooX — iot),

H, =

where



78 L. Pazynin

Oforz>0
hizhg+2lnA—2m‘{ ¢ }

1 for z<0

As seen from these expansions, the components of the magnetic field intensity
have singularities at z = 0 : H, = Inz, H, ~ 1/z. It is interesting that in the case of
oblique incidence of the H-polarized wave onto the conventional flat-layered
medium (&(z), 4 = const > 0) in a neighborhood of zero of its dielectric permit-
tivity, the respective components of the electric field have the same singularities, as
has been shown in [88-90]. These singularities disappear at normal incidence, as
well as for all angles 0 when passing to a sharp interface. For arbitrary values of the
model parameters, this is the case when taking into account the absorption in the
medium.

Returning to formula (1.177), we would like to note that if the function us,
instead of u;, is chosen as a solution in the vicinity of the point £ = 0, the we get
the usual refraction law for a plane wave transmitted into a medium with negative ¢
and p. As this takes place, we have the following expressions for absolute values of
the reflection and transmission coefficients:

IR| = |ch(mtkoA) — exp(mkso A cos 0)| 7| = sh(mksA cos 0)
~ ch(ntkooA) — ch(mkooAcos )  ch(mkyoA) — ch(mkoAcos 0)

The nonphysical nature of these formulas is evident: at normal incidence, the
coefficients become infinite. That is, the selection of the function us results in the
usual refraction law, but violates the energy conservation law.

Thus, we have shown the following. There exist two formal solutions of
Maxwell’s equations that describe the transmission of a plane wave from a con-
ventional to a DNG media. One of them, which corresponds to the conventional
refraction of a plane wave, is inconsistent with the energy conservation law and
should be disregarded. The other, correct, solution obeying this law corresponds to
the NR in the considered medium.

1.8 Distorting Coatings as an Alternative to Masking
Coatings

1.8.1 Transformation Optics, Masking Coatings, Distorting
Coatings

One of urgent problems in the applied radio physics is the radar camouflage with
the help of special electromagnetic materials. In recent years, there was a con-
ceptual and methodological breakthrough in this field [91]. A novel approach to this
problem based on the idea of ‘wave flow’ was presented in 2006, in the works [92,
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93]. Its physical meaning is that a masking coating has to bend the propagation
direction of the electromagnetic radiation incident on it and cause the wave to pass
round the masked region, after which the initial direction of propagation is restored
maintaining the desired phase. Thus, the electromagnetic waves cannot penetrate
into the area bounded by this coating; and any object being placed inside it becomes
invisible. To find the parameters of such a coating, the method of coordinate
transformations is used, which is based on the fact that Maxwell’s equations are
invariant with respect to arbitrary coordinate transformations, if the permittivity and
the permeability are properly redefined. This approach received the name trans-
formation optics (TO) [94]. With the help of the TO, a wide range of masking
coatings has been studied [91]. The overwhelming majority of the works listed in
the review [91] are based on numerical experiments; for three-dimensional models
only the case of spherical surfaces has been studied analytically [95-98]. It has been
shown that all these coatings are anisotropic gradient materials, whose permittivity
and permeability tensor elements are less than unity. The problem of practical
realization of such materials is extremely complex and far from being solved [99].
In addition to the inhomogeneity and anisotropy, for a number of important types of
coatings, including spherical, the vanishing of the permittivity and permeability
components on its inner surface is also required. That is, the surface consists
entirely of critical points, which greatly complicates both the analysis of the cor-
responding electrodynamic problem and the practical implementation of such
coatings.

In this section, we investigate the alternative way of the object masking—the
distortion of its image, instead of using masking coatings [100].

1.8.2 Radical Distortion of Radar Image by Applying
a Special Coating on the Metamaterial Surface

The geometry of the problem is shown in Fig. 1.13. In the spherical coordinate
system r, ¥, ¢, a horizontal electric dipole is located at the point {r,d, ¢} =
{b,0,0}, b > Rj3; the time dependence is given by exp(—iwt).

Suppose one should construct the coating in the form of a spherical layer
R, <r<R3 on a perfectly conducting sphere of radius » = R,. Following the TO
methodology, let us consider the coordinate transformation

e = R)R (), T=0. d=9. (1.190)

;:

which maps the spherical layer 0<R; <R, <r <R3 onto the spherical layer
R; <7 <Rj. Under this transformation, Maxwell’s equations for a homogeneous
isotropic medium with permittivity & and permeability p, pass into Maxwell’s
equations for the inhomogeneous anisotropic medium, whose relative permittivity
and permeability are defined by the following diagonal tensors [101]:
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Fig. 1.13 Geometry of the

problem
£ =i = diag{0;0; / 0, 0:0; /05, 0:0; 05}, (1.191)
where
Iy OF ~ hyov  hy0¢
Qr_h_raa Qﬂ_h—ﬁ%, Q(p_ﬁ%a

and b, = 1, hy = r, hy = rsind, hy =1, hy = 7, hy = Fsin9).
Thus we get for the permittivity and the permeability:

e =i = diag{o,,, 0y, %pg }»

Ry — Ry R, — R R\ Ry — R (1.192)
= — —_ — _ s aﬂﬂ:(xd)(b: — .

R; — R, Ry —Ry r R; — R,

Olyr

It is easily seen that € and 7 do not vanish in the layer Ry <r <R;.

Now we use the expansion in vector spherical harmonics }7,(,1?(19, ¢), where
j=—1,0,1, to find the fields [102]. In the region R; <r, the total electromagnetic
field is equal to the sum of the field of a horizontal electric dipole

LT o , L
B /ZZ > V2w (ko) [ kor) P (9, )

4y/m br =1 m=%1
(Y (1.193)
e lkon) T, 0, ¢>] = 8" (ko) hor) T (0. ¢)},
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A= z = VA H{m (kab)p (ko) Vi) (0. 9)

4\/_ bi‘ =1 m=+1
+ 1" (kob) [w,(km (9, ¢) + %kam Y, ¢>]}

1

(1.194)

and the scattered field

_" :%i Z {Elmé’[ k()r) Im (19 d))
L Vit W (kor) 7L (09, cﬁ)]}

Hlm [ é,(l ( ¢) weyr l
(1.195)
1 > ~
- {Hlmé] kOr) YIES) (?97 (rb)
==
E | [ ) W+ .y,
+ Epp | 4 | — kor)Y,, (0, ¢) + ——= (U
i [\ ) 3 0,0) + L o T 0,9
(1.196)

Here, ko = w,/souo, J© is the amplitude of the elementary electric current
C§1>/( dCl /dx’ o Yy (kor) = dy(x)/dx]|,_; .. The Riccati-Bessel
funcnons [103] can be expressed in terms of the cylindrical functions as

%) = VA2 dp(®), () = Va2 HY, .

Formulas (1.193) and (1.194) are given for r <b. For b <r, one should substitute

l< Ve .
In the anisotropic layer R, <r<Rj3, the total field can be represented as the

expansion [104]:

L0 gy @ B}
[ g" (r)+Hzmg§2)'(r)}Y;ﬁ?(ﬂ,qb) (1.197)

Im &1
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H= —Z () Hy, g7 ()| Y, (9,¢)
m==x1

L |:Elmfl<l r) +Elmfl<2 (r):| Ylm (19 ¢) (1198)

w

+ LD 000 4 822 070, ¢>},

wu,r

where j”l<j)(r) are the independent solutions of the equation

d1ld I(1+1
Il 41dh —+ {wzstur— ( 2 )]ﬁ =0, (1.199)

while g<j ) (r) are the independent solutions of the equation

dld (141
g & [wzsru,— (rz )]gz=0;

(1.200)

Er = &0y, & = E00yYy = E0%pgp, My = Ho%pry My = HoOyy = Ho%epep,

and gl(j)/(r) = dgl(j)(r)/dr,ﬁ(j)/(r) = dfl(j)(r)/dr. Taking into account (1.192), one
can easily obtain the independent solutions of (1.199) and (1.200):

A =g =P (ko). £ =g = P (koF);

~ R; — R Ry, — Ry (1201)
r = r — I3 .
R: — R, R: — R,

The continuity conditions for the tangential components of the total field on the
boundary r = Rj3 yield:

~ (1) ~(2)
" (R) + iy ) (Rs) = [H”"Cl (koR3)
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~(1) ~(2) -
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— (1) ~(2) ~
Hy, gt (Rs) +Hp, 8 (Rs) :Hzmcﬁ‘kkozeg) P21 (ko) (koRs),

~(1) -2 ~
Elrnﬁ<l)/(R3) +Elmf;(zy(R?’) = [El'"Cl(l)/(koR3)
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While the conditions on the perfectly conducting sphere r = R, yield:
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~(1) ~(2) ~ (1) ' ~(2) ’
Elnzﬁ(l)(Rz) +Elmfl(2) (RZ) = 07 Hlm gl(l) (RZ) +Hlm gl<2> (Rz) =0.

Solving the system of all these equations with respect to the unknown values

~(1) ~2) () ~(2 - Lo .
E and Ej,, Hj,, we obtain, in particular,

m> “lm> "lm> Fim >

- T Yy (koR1)
Eim =17 0\/2l+ 1 (kob) L ])(ISORII) (1.202)
i, =" A1 4’, '(kob )M (1.203)

\F
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Substituting these values into (1.195), (1.196) gives the expression for the
scattered field that results from the interaction of a horizontal electric dipole with a
perfectly conducting sphere of radius R,, coated with a layer of a magneto-dielectric
material of thickness R3 — R, and with the permittivity and permeability given by
(1.192). It is easy to see that outside the layer (that is for r > R3), this field is
exactly the same as the field generated by the same source and scattered by the
perfectly conducting sphere of radius R; <R, [105].

Thus, by using a perfectly conducting sphere as an example, we have rigorously
proved that the application of some special coating onto its surface allows one to
obtain the scattered electromagnetic field that will be exactly the same as the field
scattered by the perfectly conducting sphere of any smaller radius. At the same
time, it is much easier to make such a distorting coating, since it does not require
the vanishing of certain components of its permittivity and permeability, as in the
case of a masking coating.

In [106], the authors demonstrate the possibility of a complete replacement of the
image of the real object with the image of any other object without using the wave
flow method (the so-called illusion optics). However, this complex procedure, based
on the double application of the TO method, can be simulated only numerically.

1.9 Conclusion

In this chapter, analytical solutions have been obtained for the following electro-
magnetic problems associated with wave propagation.

e Wave Propagation in a Homogeneous Medium Bounded by a Surface with
Variable Impedance. We proposed a more realistic compared to the known [§]
model of electromagnetic wave propagation over a plane surface with impe-
dance that varies smoothly in the given direction; we found the analytic rep-
resentation for the field generated by a line current located above this plane; the
case of rapidly varying impedance function Z(x) (see (1.1)) has been considered
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(t > 2k); it is shown that the principal term in the asymptotic approximation for
the obtained electromagnetic field coincides with the known expression derived
in [8] for the case, where the surface impedance changes step-wise.

We constructed the exact Green’s function of the Helmholtz equation for a plane
waveguide with smoothly varying impedance of its wall. As in the previous
problem, the coefficient Z(x) in the boundary condition is an impedance ana-
logue of the permittivity of the Epstein ‘transition’ layer. The obtained solution
was used for the analysis of the field induced by a linear magnetic current in the
gradient junction between two regular impedance waveguides. In the limiting
case, this solution goes to a well-known expression for the field in the
waveguide with the stepped impedance distribution. The error of adiabatic
approximation for smoothly irregular waveguides has been estimated. It has
been also revealed that there exists a regime with the abnormally efficient
transformation of zero fundamental mode into the first mode. The asymptotics,
for large dimensions of the transition region, makes it possible to estimate the
error of the well-known heuristic approach to the study of the waveguides with
slowly varying parameters (the cross-section method).

A model of the irregular circular waveguide of constant cross-section, with
variable in azimuth impedance of its wall, has been proposed; it has been found
the class of the impedance functions, for which the analytical solution of the
excitation problem for such a waveguide is obtained; this solution allowed us to
find the cause of the well-known cycle slipping phenomenon, which occurs
when VLF electromagnetic waves propagate in the Earth-ionosphere waveg-
uide; it is the first exact analytical solution of the excitation problem for the
finite irregular waveguide, whose properties vary continuously.

Wave Propagation in Inhomogeneous Media. The problem of the transition
radiation in a medium with a diffuse boundary has been formulated; for this
problem, a rigorous analytical solution has been obtained for the first time
without imposing any restrictions on the model parameters. The limiting tran-
sition to the sharp boundary in this solution allowed us to find the precise
criterion of boundary sharpness in the form of two inequalities, which essen-
tially clarify the known criterion.

The known isotropic Epstein transition layer, describing a smooth transition
between the regions with different refractive indices n; and n, in a flat-layered
isotropic medium, is extended to the case of biisotropic media. An analytical
solution to the problem of a plane electromagnetic wave propagating in such a
medium in the normal-to-layer direction has been obtained. The analytical
expressions for the reflection and transmission coefficients, which suggest the
existence of the total transition mode, are derived.

A model of a smoothly inhomogeneous isotropic flat-layered medium that
involves domains of conventional and double-negative media is proposed. The
analytical solution derived for a plane wave travelling through this medium
shows that the well-known negative refraction phenomenon in isotropic
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double-negative medium is a direct consequence of Maxwell’s equations and the
energy conservation law.

e Pulsed Radiation from a Line Electric Current near a Planar Interface: a Novel
Technique. A novel technique has been proposed for the analysis of a transient
electromagnetic field generated by a pulsed line current that is located near a
planar interface between two dielectric nonabsorbing and nondispersive media.
As distinct from the Cagniard-de Hoop method, which is widely used for the
study of transient fields both in electrodynamics and in the theory of acoustic
and seismic waves, our approach is based on the transformation of the domain
of integration in the integral expression for the field in the space of two complex
variables. As a result, it will suffice to use the standard procedure of finding the
roots of the algebraic equation rather than construct auxiliary Carniard’s con-
tours. We have represented the field in the form of an integral along a finite
contour. The algorithm based on such representation may work as the most
effective tool for calculating fields in multilayered media. The suggested method
allows extension to the case of arbitrary dipole sources.

® Radical Distortion of Radar Image Caused by a Special Coating Applied on the
Surface of Metamaterial. We have rigorously proved, by the example of a
perfectly conducting sphere, that by applying a special coating on it one can
ensure that the scattered electromagnetic field will be exactly the same as the
field scattered by a perfectly conducting sphere of any given smaller radius. At
the same time, it is much easier to make such a distorting coating, since it does
not require vanishing of certain components of its permittivity and permeability,
as in the case of a masking coating.

Another two papers need to be mentioned. In [107], for a quasi-homogeneous
random medium with the dispersion varying in some direction as hyperbolic
tangent, the average Green’s function is obtained as an exact solution of
Dyson’s equation in the bilocal approximation. The coherent part of the plane
wave, which is incident on a bounded, randomly fluctuating medium with a
diffuse boundary, is studied in detail. It is shown that in the case of small-scale
fluctuations such a medium is a random analogue of the transient Epstein layer.
Paper [108] is devoted to the study of the radiation from a uniformly moving
charge in the nonstationary medium, whose time dependence of the permittivity
is given by the formula similar to that for the symmetric Epstein layer:

e(t) = eo[1 + o/ [ch?(t/Ar) — o] ].
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Chapter 2
Dyadic Green’s Function for Biaxial
Anisotropic Media

Leonid Pazynin, Seil Sautbekov and Yuriy Sirenko

Abstract In this chapter, authors construct the dyadic Green’s function for a
biaxial anisotropic media. Among the obtained analytical results, worthy of men-
tion are the representation of the singular part of the Green’s function in an explicit
form and the representation of its regular part in the form of a relatively simple
double integral over a limited region. These results are aimed at developing efficient
numerical algorithms and asymptotic representations in the problems of wave
scattering in anisotropic media.

2.1 Introduction

The Dyadic Green'’s function (DGF) is the most efficient analytical tool in the analysis
of radiation and propagation of electromagnetic waves in an unbounded medium [1].
The explicit closed-form expression for DGF is known for a uniaxial anisotropic
medium [2—4]. In the case of biaxial and some more complex anisotropic media, DGF
is represented usually as a three-dimensional Fourier integral in Cartesian [5],
cylindrical [6, 7] or spherical [8—10] coordinates in the space K* of wave vectors k. To
obtain a unique solution from this physical representation, the following radiation
condition at infinity is used: under the assumption of small loss in the anisotropic
medium, DGF must tend to zero with the unbounded removal of the observation point
# € R? [5]. Itis not possible to reduce the mentioned three-dimensional integral to an
explicit closed-form one, so the most part of the works in this field is devoted to the
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transformation of this integral into a form that allow numerical analysis and
asymptotic estimation in the near-field and far-field zones.

In the Cartesian and cylindrical coordinates, a single integration in standard
three-dimensional integral is performed without any difficulties. However, the result—
a double singular integral in the case of the Cartesian coordinate system or a double
integral in the infinite limits of functions with double infinite sums in the case of the
cylindrical coordinate system—is even less suitable for computations than the
original one.

The most convenient for the development of computational algorithms for DGF,
apparently, is an approach that is based on the use of spherical coordinates [8—10].
In [8] it is implemented in a standard way and the calculation of the integral over
the radial variable results in representation of DGF in the form of a double integral
over a finite region but with the appearance of a double sum in the integrand
function. In [9], dealing with the construction of DGF for bianisotropic medium,
and in [10] a spherical coordinate system is bound to the observation point ¥ =
XX+ yy + zZ. It allowed the authors of [9] to transform the integral over the radial
variable k,, 0 <k, <oo into the integral over the entire axis —oco <k, <oo and
reduce it to the sum of residues, describing outgoing waves, that is, to fulfill the
radiation condition at infinity. That is a good result, but in its derivation the
modifications associated with the replacement of the original coordinate system by
the systems oriented to an observation point, only the vector of independent vari-

ables l_{, has been subjected to transformation, but transformation of the dyadic
(tensor) Green’s function has not been carried out.

DGF, which is a Fourier integral of a function nondecreasing at infinity, is a
generalized function. It is convenient to consider it by breaking up into two parts:
the singular one (generalized function) and regular one (normal function). In all
above mentioned works, the singular part is calculated in the corresponding coor-
dinate system, but without explicit extraction of the regular part, which may be
more important for the future work.

In the present chapter, the proposed in the paper [9] idea of transition to a special
spherical coordinate system is implemented, and inaccuracies made in [9], which we
have pointed out above, are fixed. DGF is presented as a sum of singular and regular
parts. An explicit, not depending on the coordinate system, representation for the
singular part is found out; it generalizes the known expression for the singular part of
the Green’s function of the uniaxial anisotropic medium [11]. The regular part is
represented as a double integral over a finite domain. This integral is convenient both
for computations and for the construction of asymptotic representations.

2.2 Formulation of the Problem

For the anisotropic medium under consideration, Maxwell’s equations describing a
harmonically oscillating field (time dependence is determined by the factor
exp(—iwt)) can be written as
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1otE(F) — iopguH (F) = 0,  1otH (F) + imeggkE () = j(7), (2.1)

where g and p, are permittivity and permeability of vacuum; g is the relative
permittivity tensor and p is the relative magnetic permeability—they are defined by
arbitrary complex numbers.

The solution of (2.1) for any external electric current density f(?) can be
expressed by the integrals [3]

7) :///Qee(F, 70)i(7o)dry, H(F /// G, (7, 70)J (Fo)dFy, (2.2)

where the dyadic Green’s functions G,, and G,,, are solutions of the equations

10tG,, (7, 7o) — iopopiG,,,. (7, 7o) = 0 (23)
10tG,,, (7, 7o) + iweoeG,, (F, o) = L0(F — 7). '

Here 6(...) is the Dirac delta-function and [ is the identity tensor (dyadic).
System (2.3) is equivalent to two equations of the second order

[rot u~'rot I — k32 G, (F, Fo) = imopoIS(F — Fo), (2.4)
[rot & 'rot I — kgt G, (7, 7o) = iweolS(F — Fy), (2.5)

where ko = /g0 fly-
We confine ourselves to finding DGF of electric type E(F, Fo) =
G, (7, 7)) / iopypt from the equation

rot rot G(7) — kg ueG(¥) = I(7). (2.6)

There is no need to solve (2.5), since due to the availability of G the field H (F) is
determined by the first equations from (2.1) and (2.2).

2.3 Initial Representation for Dyadic Green’s Function

The solution of (2.6) can be represented as a triple Fourier integral [5, 8]

/// K)exp(ik - 7)dk (2.7)



94 L. Pazynin et al.

- — 11 N
where g(k) = (2r) > [A(k)] — (2n)" adj[ ] /det[ ] 12 =k, AR) =
KRI-k®k— Kk3E, and @ ® b is the tensor product of the vectors @ and b, or, in

other words, the tensor with components a,bg = [Ez' ® l_;}

In a Cartesian coordinate system {x, y, z} with axes directed along the axes of the
medium anisotropy, we have

g 0 0 L K kky kk s ay ap  aps
i= {0 & 0|, Fek=|kk & &k|, ai[dA®)]=|an an |,
5 e

=]

where ¢, &, & are arbitrary complex numbers,

an = @@ —kgy —kKq,  an =an = kkgs,  ai = as = kkga,
an = qiq3 — kflh - kzzqh ary = axn = kyk.q1, a3 = qiqx — kffh - k§q1’
k=hkX+kj+ki, q=kK —Kk; j=1,23,

and
det [E(E)} = —K%{kz (kfsl + kfsz + k?83>

—Ké {kf(alaz +é163) + k}z,(elsz +&83) + kz2(8183 + 8283)} + K3818283}.
(2.9)

2.4 Transformation of the Original Representation.
Singular Part of Dyadic Green’s Function

Let us write the adjoint martrix adj[. . .] in the form of an expansion in powers of k:

adj [E(l?)} =Rk — i2A?®) + 12", (2.10)
Here
K2(e2+e3) + kyz_sz + kzza_; kykyes kek,e2
A2(%) = Kok 3 Koy + K2 (e + e3) +K2es kyk21
kyk &> kykzsl ksf‘l + k}z(“z + k?(ﬁl + 82)

(2.11)
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and

o €283 0 0
A% 0 ge 0| (2.12)

0 0 €18

Let
3 2 3 )
D(k) = = ———5 = D) (k) + D) (), (2.13)
det[A(k)}

. -1
where Dyy)(k) = [kz (k)%al +kjex +k1283):| , and the lower index (n) is equal to

the order of decrease of D, (k) as k — oc.
Transform the integrand in (2.7) according to the representation

~(2n)"iig(F) = g (R) + g2 (R) + 82 (), (2.14)

where g9 (k) = KX © KDy (K), g2 (K) = KK © kD) (K) — k34" (K) Dy (k). and
(0)

gzig)(k) = 7K0A( )(k) o) (k) + k3A © D(k). Consequently, DGF breaks up into
three terms:

G(F) = G (F) + G5 (M) + Gy (7). (2.15)

Transform the first one to the form

G () /// K3k2k ® kD4 (%)exp(ﬂ?- ?) dk
1 exp (11_5 . ?) dk
= 3 5 (Ve V)/// 2 2 2
(2n)’K3 whier +kjey +kZes (2.16)

1 1
= L VeV P =2 et et P
4nkd )rg e16083 e [ty e+,

using the result from [12] for calculating the last integral in (2.16).
It is known that —(47) "' V2r~! = §(r) for r2 = x? + 2 + 72 [12]. Therefore, one

can assume that the function G (F) generalizes the function 6(r) in the case of
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biaxial anisotropic medium. In the particular case of the uniaxial medium, it arrives
to the known expression for the singular part of the corresponding DGF [11].

2.5 Regular Part of Dyadic Green’s Function

The function Qzezg)(?) from (2.15) can be represented as a sum of two terms:

7 2/// z k®k KD ﬂE)exp(iE-?)dl?

K’

V®V/// KD, exp(zk )dié
~(n K’

(2.17)

and
1 @) 7 7 7N 7
W Kwé (k)D(4) (k) exp(lk . r)dk
(2)
- (k)exp(ik - 7)dk, (2.18)
K3
where
(82 + 83)8i + 828'3.). + 83832 83&3}, Szdz
E(z)(V) = 330)%y 0% + (&1 + 33)0>2.y +&302 bl(?z .
:;2832 :;18}2,2 szlafx +1232 (& +1‘;2)8§z
(2.19)
Thus
Teg /— 1 1 2 e 72\ 7
G (7) = = (Ve V) [f| KD Eexp (zk : r) dk
A (2.20)
/// exp zk r) dk]
K?
and
GE(F) = — /// K)ex /'é- *) dk
G = , p r
K (2.21)

—|—KOA(O /// exp zk )dk}
K3

The sums (2.20) and (2.21) give us the regular part of DGF:
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G“(F) = (2n [ (Ve V) ///K%kzD exp(tk )dl?

5 (
i (2.22)
- [87 (V) + A" /// Byexp ik )dk}
K?
The matrix operator
sincos¢ sindsin¢g  cosv
T(0,9) = | cosdcos¢ cosdsing —sind (2.23)

—sin¢ cos ¢ 0

for the transition in R3-space from the Cartesian ({x,y,z}) to the spherical
coordinates

x = rsind cos ¢
{r,9,¢} : { y=rsindsin¢ (2.24)

z=rcos?V

transforms (2.22) into

G0 = s [ (V8 Vitla () - (379 +d2") v @29
Here,
U<6 /// k2D(6) exp(zk ///K‘ exp zk )dk
(2.26)
and
(- pn = L9, $)(. )T (9, ) (2.27)

(the upper index T in IT(ﬂ, ¢) denotes the transpose operation of the matrix
T(9,¢)), ¥ is defined by formula (2.24). Cartesian components of the operator V
are expressed in terms of spherical coordinates by the formulas [13]

o . 0 costcosp O  sing 0O
ﬁ_smﬁCOSd)EJr r 8 rsind o’
o . ., 0 cosv¥sing O cos¢p O
a—y—smﬁsm(f)—r—f— %—i_rsinﬂ%’
0 g  sind 0
—=costV————.

0z or r 09
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2.6 The Physical Solution

To meet the radiation condition, we transform the coordinate system in the inte-
gration space K>. First, make the transition from the original Cartesian system
{ky,ky,k;} to the new Cartesian coordinate system {ks, ks, k:}, with the axis k;
directed to the observation point 7 = 7(r, 1, ¢) of the space R? (see, for example,
Fig. 2.1 and [9]; the kz-axis lies in the k.Ok,-plane, the angles ¥ and (}5 are spherical

angles in the rotated system). This transition, k= T,(9, <1))7€, is described by the
rotation matrix

sin ¢ —cos ¢ 0
T,(9,¢) = | cosdcosdp cosUsing —sind |. (2.28)
sindcos¢ sindsing cos

Then we make the second transform in K, namely, change from the Cartesian

coordinate system to spherical coordinates in the representation of the vector k:

ki = ksinﬁcosg])

ky = ksind'sin ¢ . (2.29)
k; = kcos Y
Then we have
- -~ ~ -~ o~ —T 5 o~ o~
k=k(0,¢,9,¢) =kk(9,$,9,¢) =T, (0, p)k(J, ¢), (2.30)

where k(J, §) = {kz, ks, k:} and

Fig. 2.1 Original and new
Cartesian coordinate systems:
[FZ—right angle
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k = sind)simgcosa)—i— cosﬂcosqﬁsimgsin(}—i— sin ¥ cos ¢ cos ¥,
X

k = —cos¢sind cos ¢+ cos sin ¢ sinJ sin ¢ + sind sin ¢ cos V,

y

k = —sindsindsin ¢+ costcosd, (k- 7) = krcos .

Z

In the new coordinates {k, 15, (}5} the integrals (2.26) in (2.25) for the regular part
of DGF take the form

U (F) = / /s1m9d19/ k)exp (ikr cos 0)d¢, (2.31)
0

U(7) /ookzd /ﬂsmﬁdﬂjI D(k)exp(ikr cos J)d . (2.32)
0 0 0

In these representations it is possible to carry out the analytical integration over
k. To do this, first we express the determinant of (2.9) through the roots of the
dispersion equation:

det|A(R)| = — i3 (ak* + b+ ¢) = ~ida(k? — kD) (K — K3). (2.33)
Here,
<~ —b £+ Vb*> —4dac
Ko =k, $.0,¢) =——— ———. (2.34)
a=a(d,,9,$) = ke +k232 —‘rk283, (2.35)

X

= b(lg, (2), 19, ¢) = —K(z) |:/§281 (82 + 83) +I§282(81 + 83) +l§283(81 + Fz):| y (236)
X y z

= c(d, $,9, $) = Kpere265. (2.37)

Than we derive from (2.13) that

o 1 B y 5
D(k)_a(k2—k%)(k2—k%)_D<k 719a¢719,¢), %)
o —(bk* + -~ '
D(G)(k) = a2k4(k2 (_ k%) (;2 — k%) = D(G) (kzaﬂvd)aﬂa ¢>
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Both of these functions are invariant with respect to the change of variables
V=mn— 1?, ¢ =mn+¢. This allows one to transform the integration in (2.31),

(2.32) over the unit sphere to the integration over the closest to the observation
point hemisphere. Consider, for example, the integral (2.32). Given the fact that

n 2n
/ sin 1§d1§/ D(kz,zg, $,9, d))exp(ikr cos¥)d¢
/2 0

0 T
__ / sinddd / D(ka@,(g),ﬁ,¢>exp<_ikrcos@)dq3

n/2 n

n/2
:/ d@sin@/D(kz,@qS,ﬂ, ¢>exp(—ikrcos1§)dq7§,
0

we have
00 n/2 21
U(7) = / K2 dk / sin / D(kz,ﬁ, &3,19,¢)exp(ikrcosq§)d&5

0 0
00 n/2 2n

+ / k> dk / sin 9d) / D(kz,ﬁ, &s,ﬁ,qs)exp(—ikrcosz?)d& (2.39)
0 0 h ~

00 n/2 2n

= / kzdk/ sin&dﬁ/D(k2,1§,a>,ﬂ, qﬁ)exp(ikrcosz;)d(}.
—o0 0 0

Similarly, we also obtain that

00 n/2 2n
Uy (7) = / K dk / sin 9dd / D<6)(k2,z§,<}s,q9, ¢)exp(ikrcos1§)d<}s. (2.40)
—00 0 0

Apply now the radiation condition in order to extract the unique (physical)
solution of the problem. Suppose that the medium has small absorption: Imk is a
small positive number. Then, as seen from (2.34), two out of four poles
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Kiosa = i\/ (—b + Vo — 4ac) / 2a

of the integrand in (2.39), (2.40) have positive imaginary parts. Properties of the
integrand functions of the integrals over & in (2.39), (2.40) enable the closing of the
corresponding integration contour in the upper half plane of the complex variable k.
By finding the corresponding to these functions residues at the poles k = kj, k,
(Imk; > 0 for j = 1,2,) we obtain

n/2
U(G)(?) = —ni/ sin ’l§d1§
0

avb? — dac ’
(2.41)

“ /Mkl1 (bkf + c) exp(ilq ¥ CcOs 15) — k;l (bk% + c) exp (ikzr cos 15) d:ﬁ
0

2n

n/2 ~ ~
[ kyexp(ikircos ) — kaexp (ikor cosd) -
U(F) = ni / sin Jdd / 1exp(iki7 c0s ) — kaexp(ikor cosd) o (2.42)
0

Vb2 — 4dac

0

Thus the representation for Ereg(?’) (see formulas (2.25)-(2.27)) is constructed.
The finiteness of the domain of integration in (2.41), (2.42) and regularity of the
integrand functions allowed using this representation both for numerical and
asymptotic estimations of DGF.

Going to the limiting case of an isotropic medium in these formulas, we obtain
the well-known relations [3, 11]. We failed to derive the relationships for the
uniaxial anisotropic medium, but in the course of the computational experiments we
fully confirmed the identity of the results following from (2.41), (2.42) and the
results presented in [11]. In this context, it should be noted that the authors of [11]
for some reason discarded the static part of the regular component of the Green’s
function for the uniaxial anisotropic medium without any comments. In our
numerical experiments, we have taken into account the corresponding difference in
the analytical results.

2.7 Conclusion

The dyadic Green’s function for an unbounded biaxial anisotropic medium is treated
analytically. The original triple integral is represented as a sum of singular and
regular terms. For the first time, the first term has been evaluated analytically and
presented in the general dyadic form, not related to the coordinate system. It is a



102 L. Pazynin et al.

generalization of the well-known result for uniaxial anisotropy [11] to the case of a
biaxial medium. In view of the radiation conditions at infinity, the regular part of
DGEF has been reduced to double integrals (2.41), (2.42) over a finite domain that are
convenient for numerical calculations and for obtaining asymptotic estimates. These
integrals also allow seeing the fundamental difference in analytics in the cases of

biaxial and uniaxial anisotropic media. The integral over the variable (?) can be
represented as a contour integral over the unit circle. The square root in the
denominator of the integrand generally has two branch points inside the contour and
two out of it. The contour of integration is located between the two cut lines. In the
transition to a uniaxial medium, the radical expression becomes a complete square,
the branch points are transformed to the poles and the integral is easily calculated.
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Chapter 3

Operator Fresnel Formulas

in the Scattering Theory of Waveguide
Modes

Igor Petrusenko and Yuriy Sirenko

Abstract A novel formulation of the problem of wave diffraction by abrupt and
volume discontinuities in a waveguide is presented in this chapter. In the context of
this formulation, the authors succeeded in solving a number of the long-discussed
problems concerning mathematical properties of matrix models of the
mode-matching technique. In particular, they rigorously justified the possibility to
use the truncation technique, unconditionally converging in the norm of a space of
infinite sequences, for numerical implementation of the developed matrix models.
The operator-matrix analysis of the mode-matching technique has shown that the
proposed approach leads to the operator Fresnel formulas, which generalize prop-
erly the well-known Fresnel formulas to the scattering operators.

3.1 Introduction

Scattering of a plane time-harmonic wave being incident normally on the plane €,
where the wave properties of a continuous medium occupying all space are
changing abruptly, is described by the well-known Fresnel formulas

d>—1 2d
r = R t= N (31)
d*+1 d*+1
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for the amplitude reflection () and transmission (¢) coefficients. In these equalities,
the dimensionless parameter d characterizes the jump discontinuity of the medium
impedance on the boundary Q.

The original Fresnel formulas were related to the description of regularities
attributed to the scattering of transverse waves in a hypothetical ether. A.-J. Fresnel
himself stated [1] that the reflection formula had been originally given by T. Young,
and then C.-D. Poisson had obtained it for longitudinal vibrations of highly elastic
ether. For these two problems, the derivation of formulas of type (3.1) was based on
the equality of the frequencies of the incident, reflected and transmitted waves.

In classical electrodynamics, the Fresnel formulas follow directly from the
boundary conditions

E,(gw(w) = El(;)(w) and FI,(;)(w) = FI,(;)(w) onthe surface Q. (3.2)

They are also known as the matching conditions for the tangential components
of the vector complex amplitudes (i.e. vector phasors) of the electromagnetic field
of angular frequency o existing on both sides (1 and 2) of the interface Q (due to a
large number of published studies, we refer the reader to the basic reference [2]).

For normal incidence of a TEM-wave on a plane interface Q between two linear
homogeneous isotropic media, we have

A= tr A =1, d=\/0; {HL _Case} (3.3)

E, — case

for the two possible polarizations (H, and E) with respect to the observation
plane. Here, #'! is the reflection coefficient in the first medium, ' is the trans-
mission coefficient from medium 1 to medium 2, while 6,; stands for the relative
impedance/admittance of these two media. The substitution (+) — (F) in the first
equality in (3.3) gives the expression for the reflection coefficient #** in the second
medium, with the coefficient #'? = ¢ being characteristic of the wave transmission
from medium 2 into medium 1.

In this chapter we will show that the wave scattering law in the form of (3.1),
(3.3), but for the reflection and transmission matrix operators

DD} —1

R'"=+—"230 —
DD} +1

(3.4)

21 T -1 ) H — case
T*' = (DD +1)  2Dy; { £ Case}

holds for the H-or E-plane two-port waveguide junction, where the Poynting vector
of the incident wave is perpendicular to the aperture plane Q of the step disconti-
nuity in a waveguide (i.e., having its own volume Vi, = 0) and where the matching
conditions (3.2) are satisfied. In formulas (3.4) the matrix operator Dy = Dy (w)
acting in the Hilbert space l,, is defined by the given geometry of the problem, I is
the unit operator, and the superscript ‘7" indicates transposition. Similarly to
the above-mentioned properties of formulas (3.3), simultaneous substitutions
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(£) — (F) and Do=DJ in (3.4) give expressions for the reflection and trans-
mission operators, R** and T'2, respectively. There are other parallels between
formulas (3.1), (3.3) and operator expressions (3.4), which will be discussed in the
relevant sections of this chapter.

Considering the generally recognized name of (3.1), we will call formulas like
(3.4) operator Fresnel formulas. It is clear that they generalize their scalar ana-
logues (3.1), (3.3) to the case of an infinite (but countable) number of the
waveguide modes.

In this chapter we will also show that the relationships similar to (3.1) but for the
generalized scattering matrix S of the N-port wave transformer (i.e. for the
N x N operator matrix acting in the Hilbert space hy =1, N=2,3,..;
l% = [, x I, and so on), take place in the case of the ‘volume’ (Vi # 0) waveguide
discontinuities:

W,
N

K= (W+1) "2W,. (3.5)

Here, the given operator of the problem has the formal representation
W =W, WOT , the unit operator is I, : hy — hy, while the introduced operator matrix
K characterizes the oscillating field in the cavity Vj,. Since formulas (3.5) represent
the next step of generalization—the transition from matrix operators to operator
matrices—we will call them generalized operator Fresnel formulas.

In computational electrodynamics, boundary conditions (3.2) are regarded as the
initial equalities of rigorous methods for solving diffraction problems that involve
real or virtual boundaries separating different regions of wave propagation. In
particular, among those methods is the mode-matching technique (also known as
the method of partial (contiguous) regions or re-expansion method), which remains
popular in engineering practice over a very long period of time and seems to be the
most widespread tool for calculating waveguide paths.

All the known matrix models of the mode-matching technique have the form of
infinite systems of linear algebraic equations. They appear in connection with a
commonly used formulation of the mode diffraction problem.

The conventional statement of the problem of mode diffraction by a waveguide
discontinuity is as follows: a specified single waveguide mode is scattered by a
discontinuity and it is necessary to find the amplitudes of the excited modes (both
propagating and evanescent ones). Such problem formulation leads to infinite
systems of linear algebraic equations, in which identifying the operator Fresnel
formulas is quite a challenge.

In accordance with the developed approach, we propose to change the problem
formulation in the following way. The electromagnetic wave of a finite power is
scattered by a given discontinuity in the waveguide; the field of this wave is an
infinite set of modes with any known distribution of amplitudes; it is necessary to
find the scattering operators.
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If the diffraction problem is posed as suggested above, then the application of the
mode-matching technique yields an equation with respect to the scattering operator
rather than an infinite system of linear algebraic equations.

This new approach to solving diffraction problems appears to be more efficient.
In particular, it allows one to

e rigorously prove the existence, uniqueness and stability of the solutions of the
matrix-operator equations of the mode-matching technique for two classes of the
problems considered;

e clarify that the correctness of the operator Fresnel formulas is a direct conse-
quence of the energy conservation law;

e prove the unconditional convergence of the projection approximations of the
truncation technique to the actual scattering operators;

e investigate the rate of convergence of approximate solutions;

e estimate analytically the condition number for both the infinite and the truncated
matrix of the final model.

From the formal mathematical point of view, the proposed approach means that
the unknown vector of the Fourier coefficients in the modal expansion of the field is
replaced by the desired matrix scattering operator. This idea is not new in mathe-
matical physics—it will suffice to mention Heisenberg’s matrix quantum mechan-
ics. In computational electromagnetics this idea probably was first consistently
implemented in the method of matrix operators [4]. The approach applied in this
chapter can also be seen as a further development of the method of spectral scat-
tering operators [5-7].

Thus, we assert that the considered mode-matching technique is of a
matrix-operator nature and, therefore, the theory of operators in the Hilbert space
and, as will be shown, in the Pontryagin space [8] provides an adequate mathe-
matical tool for solving mode diffraction problems.

3.2 The Mode-Matching Technique in the Problem
of a Waveguide Step-like Discontinuity

Let us analyze the application of the mode-matching technique to the problem of
diffraction of waveguide modes.

3.2.1 The Classical Mode-Matching Technique:
An Example of Application

The best known guidance on the application of the classical mode-matching
technique is the book by Mittra and Lee [3]. The method therein is applied to the
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analytically solvable canonical problem of a waveguide bifurcation in the H-plane
[9]. In the proposed approach one can identify the following key points [3]:

e Formulation of the problem. The fundamental mode with unit amplitude is
incident on a discontinuity in a parallel plane waveguide with perfectly con-
ducting walls. The scattered field is to be found.

The desired field is a complete set of waveguide modes with the same polar-
ization as the incident wave, since the problem under consideration is invariant with
respect to displacement along the Cartesian axis perpendicular to the H-plane. Just
as for the incident wave, all the components of the scattered field are completely
determined by the complex amplitude of the single component of the electric field
U(g, ), g = {y,z} (throughout the chapter we will use the uniform notation other
than that used in the book [3]). This scalar function satisfies the wave equation, the
homogeneous Dirichlet conditions on perfectly conducting surfaces, the condition
at infinity for waveguides and the condition on a sharp edge [10].

e Construction of the matrix model. The geometry of the problem allows partition
of the entire domain of the field determination into simple partial contiguous
subregions, which is why the mode-matching technique is sometimes called the
method of partial regions. The partial region is called simple if it allows one to
find the general solution of the given boundary value problem by using the
method of separation of variables in a suitable coordinate system.

The function U(g, w) is sought in each of the regions as a series of a complete
set of waveguide modes with their amplitudes to be determined. For the propa-
gating modes, these amplitudes are the reflection and transmission coefficients.

The matching of the tangential electric and magnetic field components on the
common (virtual) boundary of partial regions, results in a system of functional
equations. Application of the Galerkin procedure, i.e. projection of the obtained
equations on the complete set of the transversal eigenfunctions of the waveguides,
yields a dual infinite system of linear algebraic equations (SLAE) for the desired
complex coefficients of the modal expansion of the field.

e The analytical solution of the infinite SLAE. The constructed SLAE can be
solved analytically both by the truncation technique and by the method of
residues [3]. In the first case, the infinite SLAE is first truncated, what is the
same to taking into account the finite number of modes M and N in the corre-
sponding partial regions. Then the solution of the SLAE reduced to the order of
(M+N) x (M+N) is obtained by the classical Cramer rule. Finally, the
passage to the limit at M, N — oo is performed.

o The analysis of the obtained analytical solution. As it was found, the approx-
imate solution of the infinite SLAE obtained by the truncation procedure is not
the only one, and it depends on the ratio M/N. This phenomenon has been called
relative convergence, while the rule of determination of such M/N that leads to
the true solution is often referred to as Mittra rule. The relative convergence
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effect is confirmed by numerous computations for various problems of mode
diffraction by waveguide step-like discontinuities.

e Software implementation of the exact solution of the infinite SLAE. Numerical
experiments show that the exact analytical solution of the matrix equation is,
generally speaking, poorly adapted for practical computations. It was found that
the problems arising in the calculation of slowly converging infinite products
and series as a rule require significant additional efforts. Therefore, the
approximate solutions of the diffraction problems may reduce computational
burden as compared with the rigorous analytical results.

Based on a literal understanding of the problem statement [3], one could expect
that the declared purpose of the study is to find the scattered field. However, in the
book [3], as in many other works, neither the function U(g, ) nor, especially, the
components of the electromagnetic field are calculated. Instead, the found coeffi-
cients of the modal expansion for the function U(g, w) are declared as the solution
of the problem.

3.2.2 The Mode-Matching Technique in the Problem
of a Step Discontinuity in a Waveguide: Standard
Approach

In this subsection we present an example of the commonly accepted practice of
using the mode-matching technique in the typical case where the problem has no
exact analytical solution, but is important for engineering.

The problem of the mode scattering by a step discontinuity in the H- or E-plane
rectangular (or parallel-plate) waveguide is a canonical problem of the applied
electrodynamics. All the features of the application of the mode-matching technique
for the analysis of this elementary discontinuity can be transferred, as will be seen
in Sect. 3.9, on the whole class of problems usually called the problems of abrupt
waveguide discontinuities. (The rigorous criterion of dividing all the mode
diffraction problems into two different classes will be formulated in Sect. 3.8.) Of
course, the list of papers devoted to this problem is very long. We will rely basically
on the work [11], where an extensive bibliography is also available.

Let us apply the mode-matching technique to the problem of step discontinuity
in a waveguide following the above scheme.

The contour of the discontinuity under study and the used Cartesian coordinate
system are shown in Fig. 3.1. We consider an infinite hollow rectangular waveg-
uide with an abrupt change in its cross-section in the plane z = 0 from a; X a3 to
ay X a3. The plane, where the cross-section changes stepwise and in which the
aperture of the discontinuity is lying, we take as a reference plane.

Referring to Fig. 3.1, the waveguide is divided into two simple partial regions,
namely, two semi-infinite arms 1 and 2. The ratio @, /a; is arbitrary (0 <a,/a; <1).



3 Operator Fresnel Formulas in the Scattering ... 109

Fig. 3.1 Geometry of the v A
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All the metal walls of the waveguide are assumed to be perfectly conducting
surfaces.

Suppose that the rth waveguide mode of unit amplitude (r >0 is an arbitrary
integer) be incident onto the step (Fig. 3.1) from the region 1. To simplify the
analysis we assume that the field of this mode does not change along the x-axis in
case of H-plane discontinuity, while in the case of the E-plane step one variation of
the field occurs. In what follows we will consider both of these problems simul-
taneously, indicating formulas by H-case or E-case, respectively.

Depending on the polarization of the incident wave, we write the x-component
of the field as

E, = U(g,w)exp(—iwt) for H —case and

H, = U(g,w)sin(nx/a3) exp(—iwt) for E — case. (3:6)

The remaining field components can be expressed via the continuous function
U(g,®), which is the solution of the two-dimensional homogeneous Helmholtz
equation

”* ) ’ k% H — case
Grrat?)v=0 2= {e gy, o O

in any finite domain of the field determination. Here, k = ,/éouyw is the
wavenumber and Rek > 0, Imk = 0.
Let us denote the values of the function U in the regions 1 and 2 by U(") and

U, respectively. Then the conditions ensuring the existence and uniqueness of the
solution of this electrodynamic problem takes the following form:

e homogeneous boundary conditions

U(g, ®)|4es=0 for H —case and

U(g,w)/0ii|,cx=0 for E — case (3-8)

on the all perfectly conducting walls £ = X, x [0 <x<as3] of the waveguide
junction; X, is the trace of these walls in yOz-plane and 7 is the surface normal,
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e condition of continuity of the tangential components of the electric and magnetic

fields on the interface Q between the two partial regions (i.e. the matching
condition)

UV (g, 0) = UP(g,0) and oUW /az:aU<2> /az; gcQ (3.9

e condition at infinity for waveguides in the form
lim exp(—iff,;z) =0 and  lim exp(if,pz) =0 for
o , (3.10)
m:X2<}v,2nj:(mn/aj) ;o j=1,2,

where

Brj =\ 72 = I (3.11)

are the propagation constants of modes in the jth partial region;
e condition of finiteness of the field energy in any bounded field domain S, which
is written in the form [11]

W(s) = /

with lim W(S) = 0.
S—0

2 2

oU
UP+|—=
UF+ 15,

’8U
_|_ R

2| |= U2 )+ ||VyZU||iz(S)<OO

(3.12)

The last-mentioned condition excludes the sources/sinks of the field inside the
finite domain S, including those at the points of geometrical singularities (for this
problem—on the sharp edge of the step {y, z} = {a2,0}) [10]. This ‘edge condi-
tion’ defines the functional space, in which the complex amplitude U(g, w) should
be sought. Namely, according to (3.12), this function should belong to the Sobolev
space Wé (see, for example, book [12]).

It follows from (3.10) and from the principle of limiting absorption for
2

mj

constant f3,,; is given by the branch of the square root (3.11) such that Re f8,,; >0

undamped modes (with the numbers m such that y> > 1’ ) that the propagation
and Imf3,; > 0. We exclude the critical frequencies k,,;; of the waveguides that
correspond to f3,,; = 0 for some values of m as non-physical.

The waveguide modes of the partial regions are given by the complete
orthonormal sets of real-valued eigenfunctions
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\/%sin(/lmjy); m=1,2,3,..., H—-case
lumj(y): H_om A HENAS (Oaaj)7]:172
2/ a"cos(Amjy); m=0,1,2,..., E —case
(3.13)
whose scalar product is determined in the usual manner:
: 1 if m=n
(:umﬂ :unj) (O‘a_,')E /Mm]( )lunj( )dy 5m - {0 if m ?é n. (314)

0

In accordance with the physics of the of scattering phenomenon, we represent
the field in the first partial region as a sum of the incident and reflected waves

U (g,0) = U (g,0) + UV(g, )
= :url( )CXp lﬁplz Z Xm1 :uml exp( iﬁmlz); z<0,
(3.13)
while in the second region—as the transmitted wave
U (g, 0) = U (g, 0 Z Xzt (V) exp(ifz);  2>0. (3.16)
n=(0)

If we substitute these modal expansions into the integral in (3.12) and then
integrate over any finite domain S, we find that {x,, }m o)1 {xnz} 1€ lz, where

L = {a = {am},: Y_mlanl* = |la|’, <oo} (3.17)

is the Hilbert space of sequences of complex numbers. (Appendix A gives basic
information about all vector spaces used in this chapter.)

Problem 3.1 Verify: {xml}f;c 01 {xn2}oe 1€ b.

The matching condition (3. 9) applied to the fields in the partial regions at the
aperture Q of the discontinuity together with the boundary condition (3.8) at the
face of the step lead to the following functional equations
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~ 0; y € (ay,a1), H — caseonly
)+ D St () = 5 5 ga(); v € (0,2),
m=(0)1 n=(0)1
(3.18a)
. 0; y € (az,a1), E — caseonly
ﬂrlnu'rl(y) - Z xmlﬂml:uml (y) = { i Xn2 ﬂn2.unZ(y); ye (07a2)'
m=(0)1 n=(0)1
(3.18b)

Performing projection onto the complete and orthonormal set of eigenfunctions
{umj(y)}fno:(o)l, y € (0,4j), j = 1,2, we obtain the dual infinite SLAE

5;1+Xm] = Z Xn2 (:unZHuml); m = 172737"'
"=(0)lw for H — case,
%(Hrl?ﬂrﬂ) - Xm1 %(ﬂmh#lﬁ) = Xn2; N = 172737"'
m=(0)1
(3.19)
or
o0
(:urlHunZ)+ Z Xml (:umlnunZ) =Xn2; N :Oa 1,2,...
m=0 ; for E — case.
5Irn_xml = Z%xnz ﬁ(ﬂnbﬂml); m:O>1>2>"'
n—
(3.20)
The scalar product of the eigenfunctions can be found explicitly:
—— H — case
( )= ( ) Sinln = Aua)a] | V2 i
W1y M) = (s U1 ) = 2 2 2-5m)(2=o" :
omt = P % Am;  E — case
(3.21)

Excluding x,, from the systems (3.19) and (3.20), we arrive at the final infinite
SLAE:

H — case
E — case

00
Xm1 + Z Dygxq1 = :F[éin - Dmr]§ m = (0)1, 2. } (3'22)

q=(0)1
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Here we introduced the notation

Bgr o )“12;2 sin|(Am1 —An)as] Sin[()””zi;”’l)az].

4 ara; B Joni =2 =t ’ H — case
n=1 1
00
. _sm _sq Al j-z/l _sn Sin[(/tm] 71)12)“2]
qu - \/(2 60 ) (2 50) Praras 5 (2 5O)ﬁn2 2=
= ml

Sm[(:z::g:i)az] ) E — case
The analytical solution of infinite SLAE (3.22) is not known, and this situation is
typical for most of the problems that are important for applications. The way out is
to prove the correctness of the constructed matrix model and to justify the trun-
cation procedure for finding finite-dimensional approximations.
A considerable effort was made to implement this approach (see, for example,
[11]). Many researchers believed that the knowledge of the explicit form of all

elements of the infinite matrix D = {Dml/}:.q:(on had to provide the knowledge of

all its operator properties. However, the results of these studies, in general, have not
met these expectations.

Problem 3.2 (research) On the basis of the exact expression for the matrix ele-

ments of the operator D, show its boundedness on the pair of spaces I, — I.
A simple proof of this fact, but by the other way, will be given in Sect. 3.4.1.

As noted by P.R. Halmos in his famous book [13]: ‘While the algebra of infinite
matrices is more or less reasonable, the analysis is not. Questions about norms and
spectra are likely to be recalcitrant. Each of the few answers that are known is
considered a respectable mathematical accomplishment.” Appendix B to this
chapter provides an overview of applied results of the theory of matrix operators in
frequently used Banach spaces. As one can see, these results are of little use for the
problem under consideration.

Moreover, it turned out to be almost impossible to justify rigorously the appli-
cability of the truncation procedure for finding approximate solutions of matrix
equations of the type (3.22).

It is extremely rare to find in today’s publications a discussion of the existence
and uniqueness of the solution obtained by the mode-matching technique or by any
related method (for example, by the method of moments). A discussion of the
stability of the solution and the validity of the truncation procedure is replaced, in
the best case, by the analysis of the ‘practical convergence’ of the results of
computer calculations and by the numerical evaluation of the condition number for
a truncated SLAE. The study of the above-mentioned phenomenon of the relative
convergence of approximations resulting in a numerical catastrophe has also for
many years been in a theoretical impasse.

The current unfavorable situation in the theory of the mode-matching technique
can be resolved, as will be shown, by changing the formulation of the problem of
mode diffraction.
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3.2.3 New Formulation of the Problem of Scattering
of Waveguide Modes

Earlier we have used the conventional formulation of the problem of mode
diffraction. We assumed that a specified waveguide mode is scattered by a given
discontinuity. (Note that in practice the analysis is most often restricted by the
fundamental mode r =1 for H-case or r =0 for E-case.) As a result, the
mode-matching technique always leads to infinite SLAE with respect to the desired
amplitudes {Xu1 } " g)1» X2}, 0)1-

We propose a new and, in our view, a more natural statement of the problem. Let
us assume that an electromagnetic wave of finite energy, whose field is a complete
set of modes with any given distribution of complex amplitudes, be incident on a
discontinuity. It is required to find scattering operators.

A way to introduce these operators is to replace the infinite-dimensional vectors

of the Fourier coefficients {xml},ff:(o) 1 {an}zi(o) 1€ b, by the infinite reflection

and transmission matrices X, X5 : Zg — Zz (i.e., by the scattering matrix
operators).

With this formulation of the problem, the mode-matching technique leads to the
equation with respect to the desired scattering matrix operator. For the diffraction by
a step-like discontinuity in a waveguide, these operator relationships have the form
of the Fresnel formulas

DoD{ — 1 _
- #EH’ T = (DoD} +1)"'2D, (3.23)
for the reflection (R) and transmission (7) operators acting in the Hilbert space /,. In
these formulas, the elementary matrix operator of the problem, Dy, is determined by
the geometry of the waveguide discontinuity and depends on the frequency.

In order to obtain the solution of the problem in the form of (3.23) as simply as
to derive the infinite systems of (3.22), it is convenient to use the matrix operator
method. The basics of the relevant mathematical formalism are outlined below as
applied to the problem of a step discontinuity in a waveguide.

3.3 Matrix Operator Formalism in the Scalar Mode
Analysis

Let us combine the unknown Fourier coefficients of waveguide mode expansions
(3.15), (3.16) into the infinite-dimensional row vectors x; = {Xu }jf:(o)l and

X2 = {Xn2}, (91> While the transverse eigenfunctions of the partial regions (3.13)—
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into the column vector p;(y) = {unlj(y)}ronc;(0>

vector-function are determined by the equalities

» J =1,2. The properties of this

WO =00 =9, (k) =1 (3.24)

Here we use the usual notation for the Dirac delta function and the bilinear
tensor-scalar product of vector-functions.

Let us introduce the diagonal matrix operator describing mode propagation
Ej(z) = {0}, exp(—iB,,;) }zn:(o)l’j = 1,2, such that E;(0) = I is the unit operator.
Then the decompositions of the complex amplitudes (or phasors) of the reflected
and transmitted waves into waveguide modes (3.15), (3.16) take the form

Us(l)(ng)leEl(Z),ul(y); z<0 and

3.25
U (g,0) = 0B (~Jua(y): 220, (3.25)

Using these formulas, the derivative of the complex amplitudes along the
waveguide axis z can be written as

aUx(l)(g7w)/az:xlE'f(Z),ul(y); z<0 and

(3.26)
U (g,0) 0z = —Bi (-2 () 220,
where E{; (z) = {0}, By exp(—if,,z) }s:n:(O)l is another diagonal matrix opera-

. CotsT > 1B — By — i o
tor, which generates the ‘similarity operator’ I; = E;(0) = {-idl, 'ij}m,n:(o

j=12
The flux of the reflected oscillating power through the aperture Q of the dis-
continuity is determined by the value

)’

Fs(l) _ 8US(1)(ga 60)
0z

osc

<U‘V“)(g, ),

> ] =x I =%, (3.27)
(0,(11) Z:—O

while the flux of the reflected complex power—by the value

| AW N
Fé(()li)lp = (U"(l)(g,w),[a—(zﬂ =X (If) XIL =X U1X1r’
Oa) ] ——o

(3.28)
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1/2
where X; = x| (If ) , and the superscripts ‘*’ and ‘}’ stand for the complex

conjugation and Hermitian conjugation, respectively. In (3.28) we introduced the
diagonal operator of the waveguide port (or portal operator)

U, = (Ilﬂ)*l/2(1{3>*(llﬁ*> - {5n exp[ zarg(—z[}ml)]}mn o (3.29)

which is uniquely defined, provided f3,,; # O for Vm.
Suppose that in the first waveguide p; (H-case) or p; + 1 (E-case) types of
modes propagate at the given frequency. Let us introduce the orthoprojectors

P1
P =3 > 540 , { Z 5315;;} (3.30)
a=(0)1 m,n=(0)1 =+l =(0)1
such that X, = X; P; and X; . = X; Q) are the row vectors of the amplitudes of the

propagating modes and all evanescent modes, respectively. Then from the defini-
tion (3.29), in view of the condition at infinity (3.10), it follows that

Ui=0Q +iP. (3.31)

From (3.29) and (3.31) it is obvious that the portal operator is unitary,

Ul = U]L, and that its numerical range lies entirely in the first quadrant of the
complex plane. Such operators are usually called cramped unitary operators.

Problem 3.3 Find the portal operator U, for the field with time dependence
exp(iwt). Answer: U; = {5, exp[—i arg(— iﬁnll)]}fnin:(0>1: Q) —iP.

Instead of the condition of finiteness of the stored energy (3.12) for the field
U = U*Y(g, w), let us postulate the equivalent requirement of finiteness of the flux

of reflected complex power through the waveguide:

Fz((,h)lp‘ <00.

Problem 3.4 Prove the equivalence of the conditions (3.12) and ‘Fcomp| < oo for
the solution U(g, w) of the Helmholtz equation.

Problem 3.5 Show that estimate |Fos| <oo follows immediately from the finite-
ness of the flux of complex power.
By substituting (3.31) into (3.28), we find:

Fiop = 1% [P +ill%- > (3.32)

comp

Here, the notation ||5c1i||2: icli)?ir . has been used (see Appendix A).

éggp}<oo So, we have X; € [, < x| € b,

Consequently, ||x; 4 ||*= ReF, ééfﬁp <

where
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b= { = {an}yi D lanf” = |a||2<oo} (3:33)

is the standard Hilbert space of the sequences of complex numbers (see also
Appendix A).

Problem 3.6 Verify that x; € /5.
In a similar way, if in the second waveguide p, (H-case) or p, + 1 (E-case)
modes propagate at the same frequency, we can define the orthoprojectors:

[o¢]

P2
Py=¢ Y 85 : { Z 5‘15"} , (3.34)
q=(0)1 m,n=(0)1

1
m,n=(0)1 =nt

while for the unitary operator for the second port we obtain

Uy = (15)_1/2 (Ig)*<lf*)_l/2: {0}, exp[—i arg(— tﬂmz)]}mn_ n=Qx+iPa.
(3.35)

From the requirement of finiteness of the flux of transmitted complex power,
‘ - 1/2
‘Féggp‘ < 00, it follows that x, € [, and X, = x; (Ig ) € [». This will automatically
Fotd
According to the new formulation of the diffraction problem, let us represent the

unknown complex amplitude as the scalar product of the infinite-dimensional
vectors:

give

< 0oQ.

o0
Ug,0) =b-u(g, o Z bunitn (8, @), (3.36)
where the given row vector b= { bm} 6 lz describes the incident wave, while

u(g, w) = {un(g, )}m:(o)l is the column vector of the functions to be found.

It is easy to see that the validity of the postulated representation (3.36) follows
from the linearity of the Helmholtz equation. Indeed, assume that in the entire
infinite domain of the field determination, the unknown functions u,, (g, ®) satisfy
the inhomogeneous equation

2 2
(5 s 37 +1 ) (8. ©) = B (8). (337)
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while the functions ¢,,(g), m = (0)1,2, ... form a basis in the volume occupied by
the field source. Multiplying both sides of (3.37) by the known constants b,, and
summing the resulting expression in accordance with the superposition principle,
we obtain the equation

o> D
(2 * 52 + 7 ) Ule.0) = dlg.0) (3.3%)

in which ¢(g, ) =3, b b, (g, ®) is the field source function. Note that there is
actually no need to know or to construct the functions ¢ and ¢,,, since we are
dealing with the problem of the diffraction of the incident wave (more precisely, of
the given set of waveguide modes) rather than with the problem of the excitation of
the field in a waveguide by the known source.

Since the vector b € I in (3.36) is specified arbitrary, the standard formulation of
the electrodynamic problem is transferred onto the vector function u(g,®). Then
each unknown function u,(g,®), m = (0)1,2,..., must satisfy the Helmholtz
equation and obey the conditions (3.8)—(3.12). Therefore, in two regular waveguides,
we obtain the standard expansion in waveguide modes for each of these functions:

(g, 0) = XiE\(2)u, (y); 2<0 and

@ (3.39)
u'? (g, 0) = XoEr(—2)iy(v);  2>0.

But now, in contrast to formula (3.25), the matrix operators X; and X, are to be
found. Comparing (3.25) with formulas (3.36) and (3.39), we obtain

bX, =x;, bX)=nx. (3.40)

Thus, according to (3.39), the representation of the considered complex ampli-
tude in the form of the series (3.36) is equivalent to the replacement of the Fourier
coefficients {x,1},2 ) and {x,2},% (), in the modal expansion of the field (3.15),

(3.16) by the elements of the infinite matrices X : fz — 72 and X, : 72 — 72, having
the meaning of the reflection and transmission operators, respectively.

In what follows we will use the standardized reflection and transmission oper-
ators R : b — I, and T : I, — I, which are introduced as follows. The reflected
power flux is determined by the vector x| € I, from formulas (3.27) and (3.28),
while the transmitted power flux—by the vector X, € I,. In accordance with (3.40),
we find

= () 7= (b)) (1) )

(3.41)
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. 1/2
where we have introduced the vector ¢ = b (If ) € l,. Hence two pairs of the

required scattering operators are related by the formulas:
1/2 ~1/2 ~1/2 1/2
xi= (1) r(1) R = (1) n(n)
>

1/2 ~1/2 —1/2 /2
xo= (1) () = (i) e (h)

Thus, with the new formulation of the problem of mode diffraction, the
expressions for the fields in the first and second partial regions are as follows

(3.42)

)

U (g, 0)+ UV (g,w) = ?{(1{‘) E\(—z)+R" (If)_l/zEn (Z)} w(y); z<0,

_ -1/2
v(g.0) =1 (1) TE(Dmy); 220
(3.43)

instead of the usual expansions (3.15) and (3.16).

Note that the boundedness of the matrix reflection and transmission operators,
R and T, in the space I, follows directly from the finiteness of the power flux
through the cross section of the waveguide. In what follows we will use the fact that
all matrix operators studied in this chapter belong to the Banach algebra B(l) of
bounded operators defined throughout the Hilbert space .

As will be shown in the further analysis, the operator properties of the infinite
matrices U}, Q;and P}, j = 1, 2, defined by formulas (3.30), (3.31), (3.34) and (3.35)
play a decisive role in the rigorous justification of the mode-matching technique.

3.4 Generalized Mode-Matching Technique in the Step
Discontinuity Problem

3.4.1 Derivation of the Operator Fresnel Formulas

For the problem under consideration (Fig. 3.1), we assume that the independent
sources, labeled with numbers 1 and 2, which generate monochromatic fields of the
same frequency and, in general, of different power, are located in the corresponding
waveguide arms. The mutual independence of the field sources means that the two
wave generators can be switched on/off separately.

Suppose that the function U9?)(g, w) is the complex amplitude, which deter-
mines in the gth waveguide all the field components whose source is located in the
pth waveguide, p,qg = 1,2. The field of this source contains a full set of the



120 I. Petrusenko and Y. Sirenko

corresponding modes with known amplitudes given by the row vector

P — {bﬁ,’,’)}oo cb.
m=(0)1

According to the generalized mode-matching technique, we can now present the
complex amplitude in the form of the scalar product of the infinite-dimensional vectors:

U (g, ) = bPule) (g, w). (3.44)

The condition (3.9) of continuity of the tangential components of the electric and
magnetic fields at the aperture of the discontinuity leads to the implication that

b(p> I:u(lvp> (g’ w) — u(zll)(g, (,U)] — O
b a% [u(lvp) (g, @) — ul®P) (g7w)] =0

W) (g,0) = ul? (g, 0)
(g, 0) = Fu (g, )"

o e, —
(3.45)
y€(0,a), z=0, p=12.

The key point here is that the vector b(?) is common to both partial regions.
Similar considerations lead to the homogeneous boundary conditions

9(1P) (g, ) = 0; E — case’ y€(aa), z=0 (3.46)

{ ul?) (g, w) = 0; H — case
0z

on the step face.
Starting from (3.43), we can write the modal expansion for the functions under
study on the reference plane z =0 (p,q = 1,2):

rp (1P e : =
U (y,0, w) = U+R )_(II/’;) 1O 4 p7 y€(0,a),  (3.47)
T‘”’(Ié‘) Hg (V)i q#p
1/2
) B ?U—RWwﬁ)/W@% a=r |1
" (»,0,0) = 12 S PTYa 0 (348)
ﬂFT‘”’(Lf> 1y (¥); q#p
G(O,Clz)-

Substituting (3.47) and (3.48) into (3.45), we obtain the following system of
matrix-functional equations for y € (0,a,):

(I+R) (1[/;’) V) =T (ﬂf

) 1/2
(I—RPP)(IIE)I/ qu(lﬁ)l ; “wr 54

/2
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From the boundary conditions (3.46) we find

=& (1) =0

F1/2
' (If> f(y) =0

Applying the Galerkin procedure to relations (3.49) and (3.50), we formally
obtain the desired solution

E — case (3.50)

H — case
i Y€ (), .

R =£(D, - )(D,+1)"! R2 =D, —(Dy+1)"" [ H—case
21 -1 and 12 ~1npT ; )
T = (Dl +I) ZD() T = (D2 +1) 2DO E — case

(3.51)

where we have introduced the following notation:

+1/2 F1/2 H — case
Dy =DyDY, Dy=DDo, Do= (1) (o) () {E_Case}.

(3.52)

The resulting solution (3.51) represents the Fresnel formulas for the reflection
and transmission operators.

Problem 3.7 Derive the operator Fresnel formulas (3.51) from (3.49) and (3.50).

The existence of a bounded inverse operators in (3.51) follows from the law of

conservation of complex power and will be rigorously proved in Sect. 3.4.3. Here

we mention the symmetry properties of the obtained solution. Indeed, we find from
the first operator Fresnel formula

-1 +R" for p=1 H — case

Ry=1-2(D,+1) "=k, R,= {:FR22 for £:27 {E—case}’

(3.53)

since by definition (3.52) we have le = D,, p =1,2. The symmetry property of

the transmission operators (7% )T: T?4 is verified by the direct substitution.

Note that the first Fresnel formula in (3.51) is also known as the Cayley
transformation. From here on we will use both the names interchangeably. (Strictly
speaking, the name ‘Cayley transformation’ was used in the book by H. Weyl [14]
as applied to finite matrices, however, this term has long been used in the functional
analysis to describe this linear fractional transformation of a linear operator). If the
condition of the existence of such a transform is satisfied (i.e., if the spectrum of the
operator D,, p = 1,2 does not contain the number —1), the transformation is
invertible:
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D, -1

B _I+R,
- D,+1 '

I-R,

R, D, (3.54)
In these formulas the Cayley transforms are written in Weyl’s form [14].
Let us prove that the elementary operator Dy (3.52) is bounded on a pair of

spaces I, — I,. To this end, we introduce another Hilbert space (see Appendix A):

:2 = {a = {am},: z:m_1|am|2 = [|a|* <oo} . (3.55)

It is easily seen that for three spaces (3.17), (3.33) and (3.55) the inclusions
I, C I, C I, are valid. Let us show that the matrix operator ¥, = (,up, ,u;[ ) p,q=

1,2 is bounded in each of these spaces. (We recall that according to the accepted
definition (3.21) the scalar product of functions (..., ...) means integration over the
transverse coordinate 0 <y <a»). Indeed, the matrix operators

By = quq’;rq = (ﬂp?#i) ) (3.56)

By = ‘P’L‘qu = (,uq,,uD (3.57)

are defined in all these spaces; they are bounded and self-adjoint. Furthermore, by
virtue of the completeness of the system of eigenfunctions (3.24), the operators

—

(3.56) and (3.57) are idempotent operators, :5((]) = E,(y). Consequently, the
operator ,,,) is the orthoprojector and ||, H<>= 1, where the norm ||. . .||, is any

of the norms (3.17), (3.33) or (3.55). (More precisely, depending on the value of the
subscripts p,q = 1,2, p # g one of the operators (3.56) or (3.57) is the identity I,
while the other one is an orthoprojector.) Then from (3.56) and (3.57) it follows that

Hlequ: L.

Next, taking into account the asymptotic behavior of the propagation constant
By = im - const(p) with m > 1, it is easy to verify that the similarity operator
bid e o (—ip )jﬂ/2 - is bounded on a pair of s heb bel
(@)= {on )™, pairof spaces = =
for all finite values of the wavenumber k. Therefore, the product of three matrix

operators

+1/2 F1/2
F;Z = (11/3) (:upn“;) (Uj) , Pq=12 (3.58)

is a bounded operator in the space [;.
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Thus, the elementary operator under study and its products

.+ [ H-—case _ [ DyDY for p=1
Do = F; {E—case} and Dp_{DgDO for p=2 (3.59)

are bounded matrix operators in the Hilbert space l,. Then, according to (3.51), the
scattering operators are also bounded, what was implicitly assumed in the previous
sections where they were introduced.

Problem 3.8 Prove the boundedness of the operator E,,) in the space 72.

Problem 3.9 Demonstrate the boundedness of the operator (3.58) in the space /,.

The next step is to validate the correctness of the obtained matrix-operator model
(3.51) of the mode-matching technique. We will prove it starting from the con-
servation law in a generalized form.

3.4.2 Reciprocity Principle and Energy Conservation Law
in the Operator Form

In the electromagnetic field theory, two energy laws are of first importance; namely,
they are the Poynting theorem and the Lorentz reciprocity theorem. When passing
to monochromatic fields in the domain of complex amplitudes (i.e. the phasor
domain), the number of the fundamental laws doubles. This fact is evident from the
representation of the product of the field components “E(r) and PH(r) via the
complex amplitudes “E(w) and #H(w), like, for example, the following expression
for the cross product:

= —

“E(1) x PH(1) = %Re{“ﬁ(w) x PH* () + [“E(co) X ﬁFI(w)] exp(+i2wi)}.
(3.60)

Here and everywhere below the indices o and f§ stand for the independent field
sources. As previously mentioned, this independence implies the possibility of their
independent switching on/off and, in general, different amplitude distributions in the
modal expansion of the field.

When describing a time-harmonic field through complex amplitudes, the
Poynting theorem generates the well-known complex power theorem, as well as
the theorem on oscillating power [15]. For the problem under consideration, the
Lorentz theorem yields two universal reciprocity relations as well. The first one,
containing the initial complex amplitudes and thus corresponding to the second
term in (3.60), is the well-known Lorenz lemma. The second relation, which
contains the complex conjugate values, will be referred to as the second Lorentz
lemma [16].
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All four power laws can be derived from Maxwell’s equations for complex
amplitudes in the same manner (see, for example, [17]). The difference between the
two pairs of these laws arises from the different number of the field sources taken
into account. Indeed, both oscillating power and complex power theorems are
formulated for a single source, o = f5, while the two Lorentz lemmas operate with
two separate sources o and 5. Generally speaking, it can be any number of different
sources, but they all obey two Lorentz lemmas in pairs.

For the problem considered, two independent field sources may be present both
in different partial regions, as suggested above in Sect. 3.4.1, and in the same
waveguide arm. Therefore, in some contrast to formula (3.44), we represent the
field complex amplitude and its derivative with respect to the normal # = + 7 to the
reference plane in the form

‘DY@ (y,0,w) = “PpP)uer)(y,0,w),

b (B 1 B (3.61)
—_a(B) @) — B pP) =, (ap)
P (8, ) Z:O Pl (8, ®) N

where the given vector *f)p(P) = {“(ﬁ)b%’)}::(o)l is associated with the corre-

sponding source in the pth waveguide port, while the vector functions (3.47) and
(3.48) determine the scattering characteristics of these waves in the gth waveguide.

The continuity condition for a flux of oscillating power through the aperture of
the discontinuity yields two equalities:

(a(ﬁ) oy, L) U<‘>) _ (oc(/f)U(2)7i%(/f) U(2>> (3.62)
o 0| on 0@ |~ 4 o
Two more equalities can be derived from the first Lorentz lemma:
0 g, 0
“WBy), Z Ay = (P y@ ZFyR) (3.63)
o 0an)|,—_g on 0|, 4o

Substituting the representation for the field (3.61) into (3.62) and (3.63), taking
into account the modal expansions (3.47), (3.48) and applying the orthogonal
property of the transverse eigenfunctions (3.24), we find the required relationships
between the scattering operators.

Suppose first that both of the field sources are located in the pth waveguide,
p = 1,2, then from (3.63) we obtain four equations, which can be written in the
common form:

a(/f)b(p){(1+Rpp) [1 — (RPP)T} — qu(qu)T} </f(7»)b(p))T: 0; pg=12 p#q.

(3.64)



3 Operator Fresnel Formulas in the Scattering ... 125

If these sources are placed in two different waveguide arms, we can similarly write

b(”){T‘”’ [1 _ (qu)T] . (I+Rpp)(T1>q)T}(b(p))T: 0;: pg=12 p+q.
(3.63)

We have omitted the indices o and f because the source is uniquely defined by
the number of a waveguide port. From (3.64), four fundamental relations follow
immediately

R =R?, (RP+T%(T")'=1; pq=12, p#q (3.66)
Four additional basic properties of the scattering operators
(T®)'=1P,  RPT® + (RUTP)'=0; p,q=1,2, p+#q (3.67)

follow from (3.65).
Problem 3.10 Prove that if bpAd” = 0 for Vb,d € I, then A = 0.

Problem 3.11 Derive the properties (3.66), (3.67) of the scattering operators.
The oscillating power theorem (3.62) in its turn leads to the equation

PO+ R 1= R)T] =TT H(60) =0 pa=12, pg
(3.68)

giving the second formula in (3.66).

Problem 3.12 Prove that if pAbT =0 forV b € I, then A = —AT.

Problem 3.13 Derive the operator relationship (R??)* 4+ T%(T%)" = [ from (3.68).
Next, we write the continuity condition for the complex power flux through the
aperture of the discontinuity as

a(p) gy 9. (a(ﬂ) U(l))* _ (> 9 (a(ﬁ) U(2>)* (3.69)
" of "o
Oa)]——o (C) PR
The second Lorentz lemma yields the following two equalities:
() ) 9 (ﬁ(«) M\’ _ (g 9 (ﬂ(a) u@\)
' on " on
Oa)],——o 0a2) |~ 10
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Substituting the field into formula (3.70) as indicated above and using the
properties of the transverse eigenfunctions of regular waveguides (3.24), we arrive
at the equations (p,q = 1,2, p # q)

“<ﬂ)b<”>{(1+R””)UP {] _ (Rpp)w _ Uq(T‘”’)T} (ﬁ(%)b(p))T: 0, (3.71)

b(p){qu U, [1 _ (qu)T] — (I+RPP)UP(TP‘1)T}(I)(‘]))T: 0. (3.72)

We have omitted the indices o and f§ in formula (3.72) for the same reason as for
(3.65).

Problem 3.14 Derive formulas (3.71) and (3.72) from (3.69), (3.70).
From (3.71) and (3.72), the required relations for scattering operators

,q=1,2, p # q) follow:

(I+R™)U, [1 - (R”p)w — 1 y,(r7yi =0, (3.73)
T U, |1 - (qu)w — (1 +RrRU, (1) =0, (3.74)

The complex power theorem (3.69) leads to the equation

b<p){(I+Rpp)Up [[ _ (RPP)T} _ T9P Uq(qu)T}(b(P))T: 0; pg=1,2,
P74
(3.75)

which repeatedly gives operator relationship (3.73).

Problem 3.15 Derive equality (3.73) from (3.75). Show first that if bA bJr = 0 for
Vb€, then A =0.

For the problem under discussion, the energy laws for fields are expressed
completely by formulas (3.62), (3.63) and (3.69), (3.70). Therefore, there are no
other basic relationships between scattering operators, except the above derived
formulas (3.66), (3.67), (3.73) and (3.74).

The obtained relationships will be generalized and written in a compact form in
Sect. 3.8, after the introduction of the basic operator matrix—the generalized
scattering matrix S.
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3.4.3 Correctness of the Matrix-Operator Model

In the derivation of the operator Fresnel formulas (3.51), we formally assumed that

the operator A, = (Dp—i—l)*l, p=1,2 is bounded in the space l,. The next
important step of the generalized mode-matching technique is a rigorous proof of
this fact.

We turn first to the question of the correctness of the scalar Fresnel formulas
(3.1) and (3.3) (see Sect. 3.1). For the finite value of 6,; # 0, a pair of linear
fractional transformations follows from the first Fresnel formula:

0 — 1 1+r
A (3.76)
from which follows the two-sided implication
Re@zl >0 — |r|<1. (377)

From a physical point of view, these inequalities correspond to the energy
condition for ordinary passive media whose permittivities and permeabilities lie in
the first quadrant of the complex plane (recall that the time dependence is taken as
exp(—iwt)). The scalar Fresnel formulas (3.1) and (3.3) for such media are correct
since the condition (3.77) ensures that 6,; # —1 and r # 1.

Correctness of the operator Fresnel formulas (3.51) follows in just the same way
from the basic energy conservation law. The concept of the correctness of this
solution involves three properties of formulas (3.51): existence, uniqueness and
stability.

Our proof is based on the known properties of the two operators forming the first
Fresnel formula (3.54). Namely, if for the given matrix operator D, the localization
of its spectrum G(Dp) is unknown, then the main characteristics of the entire
spectrum O'(Rp) of the sought-for reflection operator R’? are completely determined
by the energy conservation law (3.73). The relationship of these two operators in
the form of the Cayley transform (3.54) allows us to find all of their required
properties.

Lemma 3.1 The spectrum o‘(Rp) of the reflection operator lies inside the unit disc
with each nonreal point of the spectrum being an eigenvalue of finite multiplicity
and the rest of the spectrum lies on the real axis.

This statement is a consequence of two facts, the proof of which will be given in
Sect. 3.10.1. Firstly, it follows from the energy conservation law (3.73) that the
reflection operator R,, p = 1,2 is quasi-Hermitian. This means that its imaginary

part ImR, = <Rp —R:,r) / (2i) is a compact operator. Such non-self-adjoint

operators are rather well studied (see, for example, [18, 19]). Secondly, the
reflection operator is a strict contraction, RPH <1 [20]. In Sect. 3.10.1, in order to
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find these basic properties of the operator R,,, we will use the concepts and ideas of
the operator theory in the space with indefinite metric (here, in a Pontryagin space
[8]), as well as the geometric properties of the Hilbert space.

Theorem 3.1 The solution of the problem of mode diffraction on a step disconti-
nuity in a waveguide in the form of the Fresnel formulas for the scattering oper-
ators (3.51) is correct.

Proof According to the above lemma 1 ¢ O'(Rp), and hence the Cayley transform
of the reflection operator

W(R,) = (3.78)

exists. Then the Cayley transform D, = W(Rp) is a symmetric quasi-Hermitian
operator, D; = D, because R, is a symmetric quasi-Hermitian operator, Rg =R,.
As corollary of the familiar spectral mapping theorem (see, for example, [21]),

o(Dy) = a(W(R,)) = W(a(R,)), (3.79)

we obtain that the spectrum of the operator D, lies entirely within the right
half-plane, Rev > 0 for Vv € G(Dp); each nonreal point of this spectrum is an
eigenvalue of finite multiplicity, and the rest of the spectrum lies on the real axis.
Thus we have —1 ¢ O'(D,,), and therefore there exists the inverse Cayley transform

D, -1

R, =W (D,) = D, 11"

(3.80)

The uniqueness of the considered solution follows from its existence, i.e. if there
were a second solution of the problem obtained in the same way, it would have the
form of (3.51) and coincide with the first solution.

Let us represent the operator A, introduced above in the form of

Ay, = (I—R,,)/Z; then we have HA,,H <1, and for the condition number

cond A, = ||A,]| HA;I H the following estimate is true:

1<cond(A,) <1+||Dp|| <o . (3.81)
Hence it follows that the obtained solution (3.51) is stable on a set of bounded
operators that act in the space . [1

Problem 3.16 Derive estimate (3.81).
Note that in fact the operators D, and A, possess additional (and stronger)
properties, which have not been used in the above proof. Namely, the operator D, is

accretive, ReD, = (D,,—|—D),L ) / 2 >0, while the operator A, is accretive
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contraction, ReA, > AI,A,J[ > 0. The mentioned properties of these operators are
inextricably entwined with the basic properties of the reflection operator, and we
will prove them rigorously in Sect. 3.10.1.

3.5 Justification of the Truncation Technique for Solving
Operator Equations

The method most frequently used for solving infinite SLAE is a
three-step-algorithm truncation technique. At the first stage, the truncation proce-
dure is used, i.e. the first M rows and M columns are cut from the matrix operator
D= {qu}(rjq:(())l of SLAE (3.22) and each matrix entry is replaced by the Nth

partial sum of the series for D,,,. In the second step, the solution of the finite
M x M system of equations is obtained, and finally, at the third step, the passing to
the limit M, N — oo is performed.

In fact, this passing to the limit is impossible in numerical implementation of the
method. Instead, one find numerical approximations to the required Fourier coeffi-
cients x,,1, m = (0)1,2, ..., M for some ascending sequences of the finite values M
and N. The results of such calculations, presented as tables or schematic graphs, make
possible to demonstrate the so-called ‘practical convergence’ of approximations
obtained by the truncation procedure.

Let us write the infinite SLAE (3.22) in the operator form

(I+D)x; =f, (3.82)

oo

where the vector in the right-hand side is f = :|:{551 — D,m,,}m:«))1 € 22. Then, the
above-described truncation technique can be classified as a fully discrete method,
involving two sequential approximations of the equation (3.82). Indeed, initially the
approximate operator Dy : [, — I, is introduced which should give a certain
approximate representation of the initial matrix operator Dy — D with N — oo,
and only then the standard projection scheme is applied to the obtained approximate
equation (see, for example, [21]):

Pu(I+ D)"Y = pyf™. M N=12,.... (3.83)
Here, Py is the operator of the projection onto M-dimensional subspace of the
space b, x(lM’m € Pyl is the required projection approximation, while fV) is the

corresponding approximation to the right-hand side of (3.82) such that f*) — f as
N — oo. Equation (3.83) reveals the problem of the relative (or conditional) con-
vergence common to the mode-matching technique: whether the double passing to
the limit, M, N — oo, will lead to a result different from the true solution?
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In the generalized mode-matching technique, we are dealing with the equations
for the unknown scattering operators and not with infinite SLAE. For the problem
of mode diffraction on a step-like discontinuity in a waveguide, the operator
equations are the Fresnel formulas for matrix reflection and transmission operators.
Therefore, the generalized mode-matching technique is beyond the scope of the
theory of projection methods [21] for solving linear equations like (3.82).

In this section, we will perform the generalization of the standard projection
method in order to construct the approximations for the operator Fresnel formulas
(3.51) and will study analytically the basic characteristics of the convergence of
these approximations.

3.5.1 Construction of Projection Approximations
Jor the Fresnel Formulas

To find the desired finite-dimensional approximations, let us construct the ortho-
projectors by the formulas

oo

K
Py =P = Y 045, = (’g g) Ok =1-Pg.  (3.84)
9=(0)1 m,n=(0)1

From now on, when describing the special 2 x 2 block structure of a matrix
operator, we will follow the agreement that in the top left cell there is a
finite-dimensional matrix, on the secondary diagonal there are the corresponding
‘semi-infinite’ matrices, and at the bottom of the main diagonal an infinite matrix is
placed. Thus any additional notation to distinguish semi-infinite and endless
matrices is not used.

In the definitions (3.84), K = M or K = N means the highest number of the
waveguide mode taken into account in the partial region, while Ix is the K-
dimensional identity matrix. In order to unify the formulas given in this section we
will assume that the field in the pth region, p = 1, 2, is reduced to the sum of M (H-
case) or M + 1 (E-case) modes, whereas N or N 4 1 modes, respectively, is taken
into account in the adjacent partial region.

Problem 3.17 Show that premultiplication (postmultiplication) by the orthopro-
jector Pk cuts from the infinite matrix either K (H-case) or K + 1 (E-case) rows
(columns), making it ‘semi-infinite’.

The truncation of the accountable modes results in the M x M matrices

s Dof)g; p=1
D, = {DgDo; p=2, (3.83)
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Ay=(Dp+1n)"', AAT=AT1A, =1y, (3.86)

and the required finite-dimensional approximations to the scattering operators take
the form:

- D, —1 -
R,==—M—1,-24, (3.87)
D, +1y
= ~ [ Df 1
o — Z0 \. =
T ZAP{DO }, P #q {2} (3.88)

Formula (3.87) is the Cayley transform of the finite ‘matrix of the problem’ Dp.

As in the case of the exact solution (3.51), the correctness of the projection
approximations (3.87), (3.88) is a consequence of the continuity condition for the
energy flux through the aperture Q. Indeed, matching on the reference plane the
approximate representations for the tangential components of the fields in two
partial regions in the form of the truncated modal expansions, we subject these
approximations to the four energy laws mentioned in Sect. 3.4.2. Performing the
same calculations as in the case of the exact solution, we obtain from the first
Lorentz lemma and the oscillating power theorem the following relationships:
(RPP)T: R, (qu)T: v, (jgpp)z + T (qu)T: I, ™
Revar 4 (”qum)T: 0. (3.89)

The second Lorentz lemma together with the complex power theorem yields the
energy conservation law in a matrix form:

(Iv +R™)U, [IM - (RPP)T} - T qu(qu)T: 0, (3.90)

an [IN _ (R‘M)q ~ (t+ B0, () = 0. (3.91)

Here f]j, Jj = 1,2, is the finite-dimensional K x K approximation to the operator
of the waveguide ports (3.29) and (3.35). Obviously that l~]j is also a cramped
unitary matrix, i.e. its numerical range lies entirely in the first quadrant of the
complex plane (for the time dependence exp(—iw 1)).

Problem 3.18 Derive relationships (3.89)—-(3.91).

Let the (finite-dimensional) row vector be Pyl,,

ZBH = 1, be the eigenvector of

reflection matrix, bR’ = ). b. Multiplying (3.90) from the left and from the right by
this eigenvector, we obtain the equality
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(1+4)(1 - b ,b" = b7 b, (T7) 5. (3.92)

N
The multiplication of the latter by (b U, bT) =b ;F Al gives, in its turn, the

relation

(I+2)(1 =21

b0, bf [ = (BT‘!P qu(T‘IP)TBT) (bojpl). (399

from which we find:

(3.94)

In view of the properties of the cramped unitary operators f]q and U, T, the result
of the multiplying of the two values in the right-hand side of formula (3.93) will
always belong to the right half of the complex plane. Therefore, from (3.94) it
follows that 1 — |4 |2 > 0, i.e. the spectrum of reflection matrix R’ lies completely
within the unit disc. According to the above mentioned spectral mapping theorem,
this means that —1 ¢ G(Dp), and consequently, the Cayley transform (3.87) exists.

Basic properties of the finite matrices D,, R” and Ap are completely similar to
the properties of the corresponding matrix operators in (3.52), (3.53) and (3.81).
The proof of these properties requires fairly sophisticated methods of the operator
theory and hence is considered in Sect. 3.10.1. However, in what follows we
consider as proved the fact that the operator A, and the matrix A, are strict con-
tractions, i.e. their norm is less than one.

Taking these properties and definitions (3.85), (3.86) into account, we obtain the

of the matrix

uniform estimate for the condition number cond(4,) = ||4, || HAP‘I‘
(3.86)

1 <cond(A,) <1+ ||Do|| ||Df|| <oo for VM,N, (3.95)

ensuring the computational stability.

Since in the conventional statement of the diffraction problem the convergence
of the finite-dimensional approximations, which have been obtained by the standard
mode-matching technique, has no substantiation, the efforts were made to find
empirical criteria to evaluate the accuracy of these approximations. In due time, one
believed that such a natural and easily applicable criterion is to verify the complex
power conservation law. However, it was soon discovered that all obtained
numerical solutions satisfy this law, regardless of the remaining number of
waveguide modes, of the problem geometry and the operating frequency.
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According to the rule generally accepted today, the balance ratio between the
incident, reflected and transmitted electromagnetic energy (which is a special case
of general formula (3.90)) is adequate only to check algebra, programming and
roundoff errors, but is not a proper measure of the accuracy of approximations.
The above result allows us to understand the true role of the complete fulfillment
of the energy conservation law in the mode-matching technique, which is difficult
to identify with the traditional approach. Namely, the subjection of each approxi-
mate solution (3.87), (3.88) to the generalized energy conservation law (3.90),
(3.91) ensures the nonsingularity of the matrix of the truncated SLAE (3.85) and the
stable computations for any number of waveguide modes taken into account.

3.5.2 Unconditional Convergence of the Truncation
Technique

In order to analyze the convergence of projection approximations in the space I,
one should extend the finite matrices given above to infinite matrix operators by
using zeros. The formulas providing such an extension can be different, but the
result will be the same. From general considerations, we prefer to introduce the
extended elementary operator of the problem in the form of

- Py Py Dy 0 1
Dy = D, = = . .
0 {PN} O{PM} (o 0>’ P {2 (3.96)
Then, using the given matrix of the problem
5 = (Dp 0)_[DoDj; p=1 poar— (A

we arrive at the relations

- - -1_ (A, 0 < R, 0O
A, = (D, +1) _<Oﬂ 1), 1—2A,,_(0P _1>, (3.98)

1 a-1 —1
AATT=AT1A, =1.

Consequently, the required infinite dimensional extension of the reflection
matrix M x M has the form

R, = (I—2A,)Py =Py(I - 24,) = (RP 0) : (3.99)
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Representing the exact and approximate reflection operators in the form of
R,=1-2A,, R,=Py—2A,Py, (3.100)
and using the definitions of the operators A, and A,, we find the difference
PyR,Py — R, =2A,(PuD, — D,)A, Py . (3.101)

In view of the inequality HA,,PMH <1, we obtain the following estimate for
projection approximations of the reflection operator:

|6(PuR, Py — R,) || < ||d(PuD, — D,)||; d=2bA,, Vbel. (3.102)

Further, by constructing in a similar manner the infinite extension of the matrix

M x N (3.88)
= " 0 = [ Do 1
qp — — _ . —
TP = < 0 0) _ZAp{Dg}7 q#p= {2}, (3.103)

we find the estimate for projection approximations of the transmission operator:

. 2 _
|b(PuTPPy — T) || < g |d(PuD, — D)

|;
) } (3.104)

dZZbAP, Vbelz, q;ép:{z

Inequalities (3.102) and (3.104) allow us to consider the convergence in the form

i |6(PuR, Py —Ry) || | _
M%rgoo{ \b(PyTPy — Ty f = O VP ER (3.105)

which is known as strong projection convergence (or P-convergence) [21].

Problem 3.19 Based on the inequality || 7% || <+/2 obtain the estimate (3.104).

Problem 3.20 Prove that in the space I, strong convergence of the operators fol-
lows from their strong P-convergence and vice versa.

According to the estimates (3.102) and (3.104), strong P-convergence of the
constructed projection approximations is fully determined by strong P-convergence
of the known matrix D, to the given operator D,. Thus the problem is to examine
the conditions of convergence of the difference of two known operators,

PyD, — D, = Aff;}N, to the null operator.



3 Operator Fresnel Formulas in the Scattering ... 135

Lemma 3.2 The operator Az(g)zv strongly converges to the null operator:

HdA’(‘Z)NH — 0 forVd el if M\,N — oc.
Proof Using the definitions (3.52) and (3.97) let us write this operator as

PyDoONDE + PyDoPyDEQy; p=1

() _ D =
AM,N = PuD, — D, {PMDgQNDO +PMD§PND0QM; p=2

(3.106)

Our assertion follows immediately from this representation as a result of strong
(but nonuniform) convergence of the orthoprojector Pgx, K = M,N, to the unit
operator in the space I:

Jlim [|d (1 - Py)|| = lim [d Qx| =0 for Vd €ly. (3.107)

The presence of two terms in (3.106) implies that both passages to the
limit, M — co and N — oo, should be performed simultaneously and indepen-
dently. [J

Problem 3.21 Derive formula (3.106).

Problem 3.22 Derive the formula A,(‘;?N = PMDOQNDSPM +PMD0DS Owm, which
is alternative to (3.106).

Lemma 3.2 and the derived estimates (3.102) and (3.104) lead to the following
result:

Theorem 3.2 The finite-dimensional approximations R’ and T% always exhibit
strong P-convergence to the corresponding scattering operators.

As a consequence, there is no conditional (or relative) strong P-convergence of
the projection approximations for the mathematical model of the generalized
mode-matching technique in the form of operator Fresnel formulas (3.51).

In Sect. 3.6, we will obtain an alternative representation for the operator Az(é),)zv

suitable for the study of more subtle convergence properties of the approximations
constructed.

3.5.3 Rate of Convergence of the Approximations
of Scattering Operators
Our next goal will be to estimate analytically the rate of decrease

bA AN Il =0 as M,N — oo 3.108
pAu N

for the norm of the approximation error vector, given by formulas (3.102) and
(3.104). We will consider a practical problem where the rth waveguide mode is
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scattered by the discontinuity (r <M, N, for H-case or r < (M + 1), (N + 1), for E-
case), i.e., b = {5;”};02(0)1. The key to the success lies in the equivalent transfor-

mation of the product ApAz(tf;)N of the matrix operators.

First, using an alternative to formula (3.106) (see Problem 3.22)
Dy DT 1
we obtain the equality
1 A X Dy Dl 1
2A,,A1(‘2’7)N = [ZAPPMD,,] Oum + [ZAPPM{ Dg H QN{ D(()) }PM; p= {2 }
(3.110)

Here, the square brackets mark two combinations of matrix operators
2A,PuD, = Py +R,; 24Pyl 20V, -] 3.111
ptMPp — I'M +_p7 pt'M DT =45 p= 2( ( . )

that generate new projection approximations Ep and T%, which, as it is easy to see,
converge to the corresponding scattering operators. Indeed, from the formulas for
the exact solution

Dy 1
I+R,=2A,D,, T”p:2Ap{Dg}; p:{z}, (3.112)
we find, firstly, an expression akin to (3.101):
PyR, —R, = —2A,(PyD, — D,)A,D, , (3.113)

and, secondly, a similar formula for the transmission operator
PuT? ~T" = —24,(PuD, ~ D,)A,{ 1o b p=1 ) (3.114)
= /4 14 p)p Dg ’ 2 (" :

Strong P-convergence of the approximations Ep and T% as M, N — oo follows

from Lemma 3.2.
Further, when using formulas (3.113) and (3.114) to eliminate the auxiliary
operators EI, and T from formulas (3.111), the latter take the form
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24Py = (Par+ApAY ) (14 Ry),
(D, o | (3.115)
2A,,PM{ T} _ (PM+A,,AA§N>T‘”’; p= { }
DI , 2

Then, taking these relationships into account, formula (3.110) is transformed
into the equation below

p . 1
ALy = (PM +Ap/\§5,>N) Ed)%, (3.116)

|

in which the following notation is used:
(p) — DI . DT DT .
Dy = (I+Ry)Qu + T QN{ D(()) }PM =T% [{ Dg — Py D(()) Pyl:
1
= {3}

Note that we have used formulas (3.112) when deriving (3.115) and (3.117).
Problem 3.23 Derive (3.116).

To solve (3.116) with respect to APAI(\{I),)N’ we will use the following lemma.

(3.117)

Lemma 3.3 The operator %d),(\%\, is a strict contraction: % Hd),(\f;?NH <1 for VM,N.

Proof This follows from the second form of the matrix operator (3.117) and from
the fact that the operator

1 D} 1

Z7ap) Yo\ _ . _

2T {Do} ADy; p {2},
is an accretive contraction (see also Sect. 3.10.1):

1 1
140 Dp | = S 11+ Ry | < 5 (1 +[|Ry ) <1. D
2 2

~1
Therefore, the inverse operator ( — %(I),(‘Q’)N) exists and is bounded, while

operator (3.116) has a bounded solution

. 1 1 -
Ao = 1 Pudfh <1 2q>;;_>N) | (3.118)



138 I. Petrusenko and Y. Sirenko

Accordingly, the estimates given by (3.102) and (3.104) can be written as

b(PyR,Py — R HbP o) H
H ( MBptM P)H}<ﬂ Vb € Iy, (3.119)

P p,. _ TP ’
|b(Py TP Py — T) || 1‘%H‘I’%H

b Py @), H —0as M,N — oo, YM,N.

Next, we use the first form of the operator (3.117) to represent the infinite vector
under consideration as

where ’

r 1
bPM(D;lfI).)N_bPM(I+RP)QM+bPMquQN{lD)z}PM; P—{2}~ (3.120)

Since Py, and Qy are a pair of complementary orthoprojectors, PyQy =
OmPy = 0, we find from the Pythagorean theorem that
? 1
S P= g (

(3.121)

o [|>_ 2 ap Dg
o Pu®igh|| = 11 Pu (14 R) Qul + |[b PuT Ox D) (P

The infinite vectors b Py (I + Rp) and b Py T% are the Fourier coefficients in the
modal expansion of the field. The asymptotic law of decrease of these coefficients is
determined, as is well known, by the condition on the sharp edge [3, 11]. Setting
the space of the solutions and the geometry of the sharp edge, we a priori know the
behavior of these Fourier coefficients. If the solution of our problem is represented

by the vectors x; = {X }’ono:(o)le I, and x, = {xmg};o:(o)le b, the law of decrease
of these coefficients is the power law, x,1, X, = O(m’s/ 3), m > 1 [3]. When
passing to the Hilbert space l,, we have the dependence O(m~7/%), and therefore

6Py (I+R,)Ou||’= O(M™3),  |bPuT® Qu|*= O(N"*?); M,N > 1.
(3.122)

Above, we have used the asymptotic estimate

= const\? const* B
2 (W) = L+om N M> 1
m=M + 1

Thus, a rough lower estimate for the rate of convergence of the constructed
projection approximations has the form
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[6(PuRy Py = Ry) || } 1 const; N const3
= 43 473
Ib(Py TPy —T)|| | 11 HQI(‘Z)NH M3 NY (3.123)

M,N>1, b= {5?}::(0)1'

Note that the denominator in the right-hand side of this inequality depends on the
ratio M/N. This conclusion follows, in particular, from formula (3.117) for the

operator <I)1(5)N We will study the impact of this dependence upon the rate of

convergence in the following section.

3.6 Mittra Rule for Scattering Operators

We will study the subtle effects of P-convergence for the projection approxima-
tions, which have been constructed in the previous section, using the theory of
distributions (see, for example, [22]).

In our analysis, the key role is played by the distributions

Fl1
D605 =) (1) w0 wIE©Oa), p=12 (3124

which have the meaning of traces of Green’s function for the pth partial region (the
upper minus sign) and of its second derivative (the lower plus sign) at the aperture
Q of the discontinuity. These functions of two variables are the kernels of the
integral expressions

a

0

or, in other words, they induce the integral operators (F)G(?). More specifically, the
distributions (3.124) induce the integral operator of Hilbert-Schmidt type ) GP),
the hypersingular integral operator (*)G?) and the difference operators
FBlar) = FG@) — FGWP) p g =1,2, p # q. In their turn, these integral opera-
tors generate the matrix operators

+1/2 +1/2 +1/2 +1/2
D= () (e ) () IR = (1) (e ) (1)

= () )" {7} {00}

(3.126)
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Hereinafter in this section, for the first partial region, the upper sign corresponds
to the case of H-plane, while the lower sign corresponds to the E-plane, and vice
versa for the second region.

If a finite number of modes is taken into account in regular waveguides, the
functions (3.124) take the form

D = :Fl =
®GY (v,5) = {/«t,f (y)PK} (4{’) [Pk u,()]; K =M,N,
while the corresponding finite-dimensional matrix operators are
_ +1/2 £1/2
Dy = (1) (1, D6 ud) (1),

£1/2 +1/2
PR, = (1) (1, D60 ) (1) (3.127)
+1/2 +1/2 p l, 2
By = (Illj> (:“pa (I)Bz(\?/[ljl)ﬂ;) (Illj) ; {C[} - {2 1 }’

where, by definition, we have FB{) = ®G\? — G
From (3.126) and (3.127), the desired equivalent representation for the matrix
operator (3.100) is

Ay = Pu(B — Byu) Py + PyBQy + By, (3.128)

where the third summand is

188

w = Pu O, (OuF, + Py, 0). (3.129)

In the obtained representation (3.128), we are interested in convergence of
difference between two known operators, B — Byyy = AByyy, to the null operator.

Lemma 3.4 The operator AByy converges strongly to the null operator: b
lb AByy|| — 0 as Ny,M — cc.

Proof This follows immediately from definitions (3.126) and (3.127), in view of
strong convergence of the orthoprojector (3.107). [

Next, let us examine in detail the properties of the convergence AByy — O,
N,M — oo. Separating the main (or static) parts (Fg(?)(y,3) in the distributions
(3.124), we obtain for the induced integral operators: (F)G(») = (F)g(P) 1 Fgp),
p = 1,2, where the remainders ()0 and (+)0) are a nuclear operator and a
Hilbert-Schmidt operator, respectively. With a finite number of waveguide modes
taken into account in the partial regions, we have the corresponding integral

operators with the degenerate kernel (;)Gg(p) =& g%ﬁ + (¢>0g), K=M,N.
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Consider the difference of the matrix operators in formula (3.128):

B — By = AByy = (zlf)i]/z (1 8B 1) (If)il/z. (3.130)

Here, we used the notation

where

p 1,2
(AGE) = PG — DA (FIAQ) — (PIAg® _ (P AglD). {q} 21}

and  FIAGP) = Flgln) _ (#)gl0) - RN — F)gl) _ )W) g =y N.

K

Let us introduce six bounded matrix operators by the formula

) ) 172 (F)glr) )
Dacy b= (1) | e d @age ul | (1) (3a32)
(+) A@%IZI) ) A9;(\%)

Then from (3.130) and (3.131) follows:
AByy = FACE) + T a0

Here, the first term is the main part of the operator under study, and the
remainder is a nuclear operator such that

=0; VM/N.

Consequently, the ascertained strong convergence AByx — 0 will be determined
by the estimate

16 ABwl| < [T ac || + | a0l | 16 b € b. (3.133)

Further, if we consider the first region, then we assume N = tM (and corre-
spondingly, M = ¢N for the second region), where # > 0. Then we sum the kernel
of the integral operator (jF)Agf\?A’;) (i.e., the kernel of the principal part of the operator
<3F>ABI(\{,IA’2)) over the index M (or N) =1,2,3,.... Upon introducing the dimen-

sionless variables o = my/ay, & = my/ax, and the geometric parameter
T =ay/a; <1, the result of the summation is given by the formula
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where

—2 [ ®(10, 100)dot 1
Fg(ta, 13) = {2_21{;1(1)(“ 1) } = g m)|,_= - (0, 3)
a; 0u ’

) 1 o— & o+ H — case
and CD(toc,tcx)Zz clg\t—— ) Feeli— ; E —case |

The obtained sum (3.134) together with the definition (3.132) allow us to con-
struct the operator series, which will be convergent or divergent depending on the
ratio t = M /N of the number of accounted modes in the waveguide arms. Namely,
if # = 7, then the first term in the right-hand side of (3.134) vanishes and, according
to (3.132), we obtain the convergent operator series of the form

[o.¢] o0

23 DA, = 23 Fack), - 2o lmen _@co,  (3.135)

, , .
M=1 N=1

Otherwise if 7 # 1, it is easy to see that J-singularities in the sum (3.134)
generate the unbounded in /, matrix operators

T
+1/2 W, +1/2
const - (r’l - fl) (Ipﬁ) (,up7 {dlz,uT/dyz }) (If) ; p=1,2. (3.136)
P

Hence, in this case, a convergent operator series cannot be constructed in the
space B(l) of bounded operators on the basis of formula (3.134).

Problem 3.24 Using relations (3.132) and (3.134), obtain the series (3.135) and
operators (3.136).
Thus, the rate of decrease of the first term in (3.133), which is given as

Hb ((;)Acz(\?z{;)) TH — 0, M,N — oo, depends on the ratio t =M/N. It can be

sufficient for the series in (3.135) to converge (r = 1) or not (V¢ # 7).
So, the Mittra rule for the scattering operators of the problem under consider-
ation can be formulated as follows:
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Theorem 3.3 If the relation N/M = 1, where 1 = ay/a, is a predetermined geo-
metrical parameter of the problem, holds, then the rate of convergence of the
approximations is higher than with any other ratio of the numbers of accounted
modes.

Taking into account formulas (3.102) and (3.128), we conclude that for N/M =
7 the previously established strong P-convergence of the projection approximations
is characterized by the estimate

|6(PuR, — Ry)|| <2[|b ABoyg,m|| +||d (PuBOM +Ey)]| (3.137)

where d = 2bA,, Vb € L.

3.7 Novel Matrix Models for the Problem of a Step
Discontinuity in a Waveguide

Let us represent the found solution (3.51) via the operator A, = (Dp+1)7l,
p = 1,2, in the form of the following table:

R =4+(—-2A,) T? =2A,D, . H — case (3.138)
T2 =2A,D} R? =F(I-2A,) [’ E —case [’ :

To the left of the equality sign in the table is a 2 x 2 operator matrix—the
generalized scattering matrix

Rll T21
S = {TU R22], (3.139)

operating in the space h, =l x I, = l%. Owing to the established order of the
scattering operators in the entries of matrix (3.139), the symmetry properties of the
operators (3.66) and (3.67) can now be expressed as ST = S.

Next, if we specially construct three diagonal operator matrices

o I 0 _ Al 0 _ 0 Dy
J—[O —I}’ A—[O AJ, V_[Dg 0], (3.140)

then the Table (3.138) can be brought in obvious way to the compact form:

S=+J+2A(VEJ), {g:g:::} (3.141)

Here, according to the definition (3.140), J is the canonical symmetry of the
space hp, J = JJr =J ! (see Appendix A), A is the accretive contraction,
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ReA > AAT > 0, while V is the given operator matrix of the problem. From the
structure of three operator matrices in (3.140) it follows that they are symmetrical
with respect to a transposition operation.

Since A :hy — h, is the accretive contraction, then there exists a unique
bounded and accretive operator C (which is also contraction) such that C> = A.
Since the original operator is symmetric, A7 = A, then the operator C will inherit
this property: CT = C. As is customary in operator theory, we will use the notation
C = A2, To find this operator matrix, notice that from the relation

(VFN=V2il, = [D‘OH D20+I} =A"! (3.142)
it follows that A'/2 = (V FJ)"'= A (V FJ). Here, I, is the unit operator acting
in the space ;.

Thus, the solution (3.141) takes the remarkably simple form

(3.143)

S=4+J+2(VFJ) =242 11, {g:g;‘::}

This equality can be interpreted as the inner structure of the generalized scat-
tering matrix (3.139).

Problem 3.25 Using (3.143), prove that the generalized scattering matrix of the
studied waveguide junction is an involutory operator: S = I,.

Below we will interested in formula (3.143) in terms convergence of the pro-
jection approximations to the desired generalized scattering matrix.

Let us combine the earlier introduced orthoprojectors (3.84) into the operator
matrices

Py O . _|Ouw O
P{O PN}’ thp[o QN]’ (3.144)

where M (N) is now the number of the modes taken into account in the first (second)

region. The computed finite-dimensional approximations have the form of the
(M+N) x (M+N) block (or partitioned) matrices

- RIL 2 D N Al 0 ~ jM 0] H — case
5= [Tu I?”] =ATEL A= Ay | =10 —Iy | | E—case [’
(3.145)

where the operators in the submatrices are given by formulas (3.86)—(3.88).
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Basing on the operator (3.96), we construct the infinite-dimensional extension by
zeros of the given finite matrix in the form

T —» [Dy 0
V_JDVIJ_L)g o] - v_[o Dz], (3.146)

where the operator D,, p=1,2 is given by formula (3.97). We also use the
operator (3.98) to extend by zeros the operator matrix of accretive contraction

- A 0 - - - -
A= [ 01 Az]’ AATT =ATIA, = I, (3.147)
for which the analog of (3.142) is

(3.148)

(PVP T J) = \72+1h:[D1“ 0 ]:Al.

0 Dy +1

Problem 3.26 Derive formula (3.148).
With the help of the operator (3.147) we form the required projection
approximation

plIl 721
T _opil/2 _ 97l/2 _|R T H — case
S=2PAY*£P]=2A""P+JP [T‘z Rzz]’ {E—case (3.149)

as well as the difference between the operator matrices
PSP — § = —2PAY?QVPA'/2. (3.150)

In view of the estimate ||PA'/?[|, <1 and the equality P2A'/*Q = PSQ, which

is a consequence of (3.143) and the orthogonality of the projectors, expression
(3.150) leads to the following estimate for the projection approximation error:

1b(PSP = S)lI,, <|[4QI, |QVPll,: d=bPS, Wbeh.  (3.151)

Strong convergence of the approximations follows from this estimate as a
consequence of strong convergence of the orthoprojector P to the unit operator in
the space h,:

im_[1dQl, = lim |ld(1, — P)],,=0; ¥d € ha. (3.152)
Thus the projection approximation (3.145) always strongly P-converges to the

true solution (3.143), while the relative convergence of these approximations is
lacking.
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The rate of strong convergence can be obtained from the behavior of the given
vector d. First note that the following equality is valid:

1d Q7= Il diOum” + || d20w] I, (3.153)

where

d={d,d}, dy=0bPyR" +bPyT", dy=0bPyT* +bPyR*;
(3.154)

Vby,by € 1.
As in Sect. 3.5.3, we will consider the scattering of the rth mode of the first

waveguide port (r <M for H-case or r <M + 1 for E-case), b = {5,’"}’7016:(0)1, and

the sth mode of the second port (s <N for H-case or s <N+ 1 for E-case),
by = {5;1}20:(0)1'

At this step we will use the results of the study presented in [3] regarding the rate
of decrease of the Fourier coefficients of the modal expansion in the aperture of the
discontinuity in order to find the asymptotics dy, d» = {O(m~7/%); m > 1} (see
Sect. 3.5.3 for details). Then the required estimate takes the form

_ const?  const?
16(PSP = $)1, <QVPl,, |t 1 B, N>, b= {b.ba)

(3.155)

where the multiplier [|Q V P||,, depends on the ratio M/N, confirming the findings of
[3, I11].

Let us use the canonical problem of diffraction of the principal mode of a
rectangular waveguide on the H-plane step discontinuity to illustrate numerically
the obtained analytical results. Chose the modulus |r}]| =0.478458 and the

argument arg r{} = 2.9771 of the reflection coefficient (R'! = {r,ﬁ}r}jir:l, r is the
number of the incident wave) calculated accurately in [11] for the parameters
a;/A = 1.300001 and a,/a; = 0.5001, as test values.

Figure 3.2 shows a stable ‘practical convergence’ of the approximations to the
reference values (shown by the dashed line). In full agreement with the above
results, the relative convergence of the approximations is not observed. At the same
time, the rate of convergence depends substantially on the ratio of the numbers of
modes taken into account M/N. As expected, compliance with the Mittra rule,
MIN = 2.0, gives the best results.

In the numerical computations, the largest size of the reduced matrix reached
7200 x 7200. At the same time, the maximum matrix condition number did not
exceed 1.75.

The high stability of calculations is explained by the structure of the considered
block matrix. The ‘mountain profile’ of this matrix is visualized for M = 15 and
N = 10 in Fig. 3.3. This figure shows that the main diagonal of this matrix contains
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" argr;)
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0.485

0.480
2.98

0.475

297

0.470

2.96
0.465

0.001 0.01 01 N 0001 0.01 01 N

Fig. 3.2 Numerical convergence of projection approximations

Fig. 3.3 The profile of the 25 x 25-size invertible matrix A~'/2: a the real part of the matrix;
b the imaginary part of the matrix

extreme elements £1 independent of the numbers M and N. At the same time, the
elements of the submatrices Dy and Dg , whose magnitude depends on the ratio
MIN, are located at the periphery of the matrix.

Figure 3.4 shows the level lines for the norm of the relative error of projection
approximations (3.151) for the observed range of variation of the truncation
numbers M and N and for different values of the geometric parameter ay/ay.
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a,/a, = 1/2

/—f)O() 008

0 005 010 015 020 M 0 005 010 0.15 020 M

Fig. 3.4 The norm of the approximation error for different values of ay/a;

The approximation calculated for M = N = 250 has been taken for a true gener-
alized scattering matrix. This profile has a unique ravine-type minimum (marked by
the dashed line) corresponding to the Mittra rule M /N = a,/a;.

Thus, the presented numerical results fully confirm the findings of our previous
analytical study.

3.8 The Conservation Laws in Operator Form for Two
Classes of Mode Diffraction Problems

Our next goal will be to apply the developed approach to the analysis of H- and E-
plane waveguide transformers of a general shape.

In this section, we will study a two-port waveguide transformer with relatively
arbitrary geometry of coupling cavity. The configuration and the coordinate systems
used are shown in Fig. 3.5. Here, the orthogonal coordinates {nj, & Cj}, j=1,2
stand for either Cartesian {x,y,z} or cylindrical {# = z,¢ = p,{ = ¢} coordinate
systems.

In this way we introduce the uniformly curved waveguides of rectangular
cross-section, in which the modes LM, n = 1,2, ... (H-case) or LE,,,n =0, 1,...
(E-case) form a complete orthogonal set. (Note that in our notation, n equals to the
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Fig. 3.5 Configuration of the
wave transformer and the
coordinate systems

number of field variations along the straight O¢-axis.) For such regular waveguides,
the mode propagation along the uniformly curved coordinate axis is described by
the exponential function exp(+£if, ¢), where {f,},° ¢, are the angular propagation
constants. (There exists a large number of works on uniform bends of rectangular
waveguides; the generalized mode-matching technique has been applied to the
analysis of such waveguide bend in [23].)

In Fig. 3.5, the coupling region is a cylindrical cavity that is geometrically
uniform along the straight #,-axis or #,-axis; the height of the cavity is a;. Denote
the volume confined by the metal walls together with the reference planes
Y, =T;x(0,a3), j=1,2, disposed in the regular waveguides, as
Vint = Qint X (0,a3), and the reference surface as S = X; UX,. This volume is
supposed to be source free, which ensures the fulfillment of the edge condition
(3.12). We can let Q;;;; — O to form the aperture of an abrupt waveguide discon-
tinuity, which is now considered as a special case of the wave transformer (obvi-
ously, in this case Vi, — 0). All metal surfaces are assumed to be perfect electric
conductors. The waveguide transformer is filled with a homogeneous lossless
medium and the waveguide arms are terminated in matching loads.

Let us mark two independent sources of the field as « and f. These sources
generate the fields {“E ,“H }. and respectively {ﬁf?, PE }, in the volume Viy. In
view of the geometry (Fig. 3.5) and the homogeneous boundary conditions on the
metal walls, the first and second Lorentz lemmas take the form

/(“Ex PH —PE x *H) -iids =0 (3.156)
S

and
/ (“E x PH* +PE* x *H) - iids = 0, (3.157)

S

respectively. The oscillating power theorem and the complex power theorem yields
two relations
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/ (ExH)-iids = i / (ee0E” + pptoH?) dy; (3.158)
N Vint
/ (E x B") - fids = —ieo / (ecolEL ~ st ") (3.159)
S Vint

where ¢ and yu are the relative permittivity and permeability, and the common index
o or f§ is omitted. In all formulas (3.156)—(3.159), the unit vector 7 is the outward
normal to the reference surface S.

In the domain of complex amplitudes, the oscillation power theorem (3.158) and
the complex power theorem (3.159) together with two Lorentz lemmas (3.156) and
(3.157) form a complete set of basic electromagnetic laws in the sense that there are
no other independent energy relations for two fields generated by independent
sources. The presence or absence of the volume integrals in the right-hand sides of
formulas (3.158) and (3.159) naturally divides mode diffraction problems into two
classes. We assign the wave scattering by resonant discontinuities of volume Vi, /
= 0 to the first class and abrupt discontinuities in waveguides (Viy, = 0)—to the
second class. For these two classes of problems the energy conservation laws are
evidently different.

For the planar wave transformers considered herein, the electromagnetic field
can be expressed in terms of n-components of the electric (H-plane case) or
magnetic (E-plane case) fields. The corresponding complex amplitude (i.e. the
phasor) we will denote, as earlier in (3.6), by U(g,®), g = {y,z} in Cartesian
coordinates and g = {p, ¢} in cylindrical coordinates.

We now substitute the continuous scalar function U(g,®) expanded in the
complete set of orthonormal transverse eigenfunctions of regular waveguides into
the left-hand sides of (3.156) and (3.158). Taking into account the orthogonality of
these eigenfunctions, we get two relations for the generalized scattering matrix

ST=S, bl —S)b" = / {[ViCU+P0)) =2 (U +"v) s, (3.160)

Qin

where V|| = V¢ stands for the longitudinal part of the gradient. The first equality
in (3.160) (which have been cited earlier for the canonical problem of a step in a
waveguide) is associated with the reciprocity property of a waveguide transformer,
while the second one describes the oscillating power in the coupling cavity.

Problem 3.27 Derive (3.160) from the laws (3.156) and (3.158).
Similarly, from the second pair of equations in (3.157) and (3.159) one can
obtain a combined relation, which can be written as
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bGbt = / {\VH (“U+ﬁu)|2—X2|“U+/*U|2}ds. (3.161)

Qine

Here, we have introduced the characteristic operator
G= (1,1+S)U(1h —ST), (3.162)

which involves the ‘portal operator matrix’

U= u O _ 0, +iP; 0
10 U 0 Q> +iP,

} — Q+iP. (3.163)

The matrix operators U,,, Q,,, and P,,, m = 1, 2, have been previously defined in
(3.30), (3.31), (3.34) and (3.35). With the last two operators, we have formed the
operator matrix P and Q = I, — P (see (3.144)) of projection onto all propagating
modes and, accordingly, onto all evanescent modes in the two waveguide ports.
The existence of two mutually orthogonal subspaces of the vectors Ph, and Qh,
composed of the amplitudes of propagating and evanescent modes, respectively,
necessitates introduction of a special vector space. The ratio between the energy
transferred by the propagating modes (i.e., the norm of the vectors from the sub-
space Ph,) and the energy stored by the oscillating field (i.e., the norm of the
vectors from the subspace Qh,) may be arbitrary. Therefore, this space is of
indefinite metric. Since for any finite wavenumber y (see formula (3.7)), the number
of propagating modes is always limited and equal to p; (H-case) or p; + 1 (E-case),
Jj=1, 2 (see (3.30) and (3.34)), then P is the operator of finite rank v = Tr(P) =
p1+p2 (H-case) or v=(p;+ 1)+ (p2+1) (E-case). Consequently, the space
I1, = Ph, U Qh, with an indefinite metric is a Pontryagin space [8]. The canonical
symmetry of this space is given by the following formula (see Appendix A):

J=0-P=1,-2P — J=Jl=y (3.164)

In what follows, the operators S, U, and G will be treated as ones acting both in
the space hy = I3, and in the space II,.

In addition, to write the results in a compact form, it is convenient to use the
conventional notation for two components of any linear operator L:

ReL:%(L—i—LT), ImLzzi(L—LT). (3.165)

i
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Refer now to the base relation (3.161), which can be rewritten as

2 2
biT = HVH (“U—i_ﬁU)HLz(le)_XZHOCU+ﬁUHLz(Q (3166)

im) !

Problem 3.28 Derive (3.166) from the laws (3.157) and (3.159).
In the absence of loss (i.e., when y is a real number), equality (3.166) implies the

Hermiticity of the characteristic operator, Gt = G, which is equivalent to the
relationships

ImG =P —SPST +2Im(sQ) =0, (3.167)
G=ReG=0-S0S" —2Im(sP). (3.168)

We emphasize that these expressions are valid for any real value of the
wavenumber y, i.e. for any (finite) number of propagating modes existing in the
waveguide ports (Fig. 3.5).

The found property of the generalized scattering matrix S in the form of the
corollary (3.167) of formula (3.166) has a clear electrodynamic meaning. Namely,
this matrix-operator expression reflects the fact that the active power flux through
the surface enclosing any source-free and lossless volume Vi, equals zero:

Re/(ExFI*)-ﬁds:o.
S

Thus the property (3.167) of the generalized scattering matrix S is the energy
conservation law in a generalized (or operator) form.

Evidently this law in the form of (3.167) is not the only possible representation,
and below we will give its useful modifications. By adding and subtracting (3.167)
and (3.168), we obtain a new representation of the characteristic operator:

G=1,—SS +2Im(ss) =7 — sJsT — 2Ims. (3.169)
The operator matrices
1\ 12
Vi= <§) (I FiSJ) (3.170)

play an important role in further mathematical manipulations. With the use of them
equalities (3.169) can be written in a compact form:
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1
5G:Ih—v,vi:J—mJVTH (3.171)

1
SIGTT =1, ~ vivi—s-viw,. (3.172)

Problem 3.29 Derive formulas (3.169), (3.171) and (3.172).
To derive other forms of the energy conservation law, we use the identities

L+sst=vovl yvovi, (3.173)

2m(s)) = v, v —vovl, (3.174)

which represent, respectively, the Pythagorean theorem and an indefinite form in
the space hy X hy (these formulas were derived in [24] for a more general problem).

Problem 3.30 Verify the validity of identities (3.173) and (3.174) by direct sub-
stitution of the operator (3.170).

Combining relations (3.171)—(3.174), we find the following equivalent forms of
the energy conservation law (3.167):

% (Ih _ SST) —o-v,ovl, (3.175)
ImS=—P+V_PVI, (3.176)
Im(SJ) = —P+ V. PV! (3.177)

whose meaning will be clarified in Sect. 3.10.2.

Problem 3.31 (research) Derive formulas (3.175)-(3.177).

For the second class of the problems of wave scattering by an abrupt waveguide
discontinuity one has to pass to the limit Q;,, — 0 in formulas (3.160) and (3.161).
Since there are no sources and sinks of field both in the interior of Q;,, and at the
points of geometrical singularities of the boundary, the integrals in the right-hand
sides of (3.160) and (3.161) vanish.

Now, in order to represent the required energy conservation laws, let us intro-
duce the reflection and transmission operator matrices

Rll 0 0 T21
Sg = |: 0 R22:|, Sr = |:T12 0 :|7 (3178)

respectively. From the first equality in (3.160) it follows that both of these matrices
are symmetric with respect to the transposition operation: Sk = Sg, ST = Sr. (Note
that, generally speaking, the generalized scattering matrix could be defined by the
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operators (3.178) using the formula Sy = Sk + S7, since all the relationships
derived in this chapter are valid for both signs).
From the oscillating power theorem and the first Lorentz lemma, we obtain

S%+87 =1, (3.179)
SrST +S7Sk = 0. (3180)

In view of these equations, the relation
STU(Ih —S,E) — (I +Sr)USL, (3.181)

which arise from the second Lorentz lemma, turns into a corollary of the complex
power theorem

Iy —i—SR)U(Ih - S,JL) — S;USL, (3.182)

and vice versa. Therefore, formula (3.182) can be taken as a generalized form of the
energy conservation law for the step-like discontinuities in a waveguide considered
herein.

It should be mentioned that simple formulas (3.179)—(3.182) cannot be extended
to the case of a waveguide junction with more than two ports.

Problem 3.32 (research) Derive the properties (3.179)—(3.182) and show their
interdependence.

Separating the real and imaginary parts of the operator (3.182), and then sum-
ming and subtracting the obtained expressions, we get the power conservation law
in the equivalent forms

1
I, — VR,VIL = ESTSi7 (3.183)
_ P _ Lo oot
J = Ve JVi 2STJST, (3.184)
where
12

Note that from (3.183) immediately follows the estimate

ISrl <v2, (Ve[| <1. (3.186)
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Problem 3.33 (research) Derive the energy conservation law in the forms of
(3.183) and (3.184).
Other equivalent forms of the energy conservation law are

1 1 1
> (Ih - SRS,JE) — 0 Ve, OV, + 5STPST — P Vi PV, + 5STQSI,
(3.187)

1

ImSg = —P+ Ve PV _+ 5

1
S;PSI = 0 — Ve_oVi_ — ESTQSI. (3.188)
They can be obtained by combining (3.183), (3.184) and the identities
IthSRS,t = VR+V11L+ +VR_V,L, (3.189)

2Im (SgJ) = Vs Vi, — Ve Vi, (3.190)

which are completely analogous to formulas (3.173) and (3.174). From the first
equation in (3.188) it follows that the operator matrix Sk is a quasi-Hermitian operator.

Problem 3.34 (research) Derive the energy conservation law in the forms of
(3.187) and (3.188).

Note that since the operator matrices (3.178) are ‘diagonal’, the relations similar
to (3.179)—(3.188) are also obtained for the initial matrix operators R”” and T%. In
particular, from (3.179), (3.180) formulas (3.66) and (3.67) follow, while (3.181),
(3.182) yields formulas (3.73) and (3.74).

3.9 Universality of the Operator Fresnel Formulas

The operator Fresnel formulas (3.51) identically satisfy the energy conservation
laws derived above, which is easily verified by direct substitution. We will now
show that these energy relations, which are valid for the entire class of problems
considered, in their turn lead to the operator Fresnel formulas.

3.9.1 Step-Like Discontinuity in a Waveguide

Let us rewrite, for completeness and clarity, the energy laws (3.66), (3.67) (or, what
is the same, formulas (3.179), (3.180)) as

(RY'=Rer, (T)'= 74, (3.191)
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(I+RP)(IF R?) = T%(T%)T (3.192)
RPT  (RUTP) = 0, (3.193)

p,q = 1,2 and p # q. We treat equality (3.192) as an equation with respect to the
required reflection and transmission operators. It follows from this equation that the

spectrum points / € ¢(R”) and 7 € ¢(T%(T%)") lie on the algebraic curve
Pyr=1; Ms1eC (3.194)

(where C is the complex plane), for which we know the solution of the uni-
formization problem in the form of rational functions (see, for example, [25]). Let
us write this solution in the following form:

t—1 b
t+1 (t+1)*

14 —1. (3.195)

Based on the previously mentioned spectral mapping theorem and the first
formula in (3.195), we conclude that there exists a quasi-Hermitian operator D),
such that its spectral points are 1 = (14 4)/(1 — 1) € o(D,); therefore, the fol-
lowing representation is true

"D+ 1+R,=2(D,+1)"'D,

-1
D,—1 I—R,=2(D,+1
R D . { p =2(Dp+1) (3.196)
(here we have used the notation (3.53)). Substituting the last two expressions into
(3.192), we find

(1) = [2(D, +1) "Dy | [2(Dp +1) ] (3.197)

Taking into account the symmetry of the reflection operator (3.191), we put
D, = MM (or D, = M"M), where M : [, — [, is some bounded matrix operator.
Then from (3.197) the second Fresnel formula follows:

T% = (D, +1) '2Dy or T% = (D,+1) '2D. (3.198)

Here, we have introduced the notation Dy = MC and Dy = M”C. The second
multiplier in these formulas possesses the property CCT = I. So we can immedi-
ately put D, = DyD} (or D, = D} D). Now, the bounded matrix operator D,
should be redefined with the use of the complex energy conservation law.

Note that it seems impossible to otherwise distribute the rational functions in
(3.195) since this would result in violation of (3.191) and (3.193).
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Problem 3.35 Verify the last mentioned statement.

Thus the possibility to parameterize the algebraic curve (3.194) by using
single-valued functions (3.195), in this case, ensures the existence of a single
operator of the problem, D,, which defines the laws of mode reflection and
transmission in the form of (3.196), (3.198).

The obtained result can be formulated as the following statement.

Theorem 3.4 For each problem of mode diffraction by a step-like waveguide dis-
continuity, there exists a matrix-operator model in the form of the operator Fresnel
formulas (3.196) and (3.198), if the reciprocity theorem (Lorentz lemma) and the
oscillating power theorem for this problem hold in the form of (3.191)—(3.193).
Notice that the properties (3.191) and (3.193) of the scattering operators play an
important role in the above reasoning. Namely, these relationships provide a
uniqueness of the solution (3.195) for the problem of uniformization of the curve
(3.194). Again, formula (3.180) relating the reflection and transmission operator
matrices, Sg and Sz, is of decisive importance as well. Despite the fact that equality
(3.179) also results in the algebraic curve in the form of (3.194), the property
(3.180) does not allow to obtain the Fresnel formulas for these operator matrices.

Problem 3.36 (research) Prove that the operator Sk has no Cayley transform. Hint:
show that 1 € o(Sg).

3.9.2 Generalized Operator Fresnel Formulas for Resonant
Discontinuities

Here we will construct the operator model for the problem of a resonant discon-
tinuity in a waveguide (Viy # 0) by using the developed technique.

The first Lorentz lemma and the oscillating power theorem yield for this problem
two relationships (3.160), which can be rewritten in the form

=S bl £)GF = [ (VU0 (U+0) fas
Qi
(3.199)

As will be shown in Sect. 3.10.2, the generalized scattering matrix S is a
quasi-Hermitian operator. Therefore, every nonreal point of its spectrum ¢(S) is an
eigenvalue of finite multiplicity, while all singular spectral elements located on the
real axis [18, 19]. These latter points correspond to the eigenvalues of the closed
boundary value problem for the Helmholtz equation (3.7) in the region Qi (see
Fig. 3.5), and we exclude them from consideration as non-physical ones.

Substituting into (3.199) the eigenvector b;, which corresponds to the eigenvalue
A € a(8) of the operator matrix S, we obtain the equality
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1-=1 JteC, (3.200)
where

1

T hoT

/ {[v)(CU+I0)) =7 (U +"v)’ }as. (3.201)

int

Solution of the uniformization problem for the algebraic curve (3.200) is given
above in the form of rational functions (3.195). Only this solution agrees with the
symmetry property S = S and, therefore, it is unique.

Consequently, there exists the operator W : iy — hy, which possesses by the
eigenvectors {b,} and the spectrum o(W) = {(1+2)/(1 — A)}. This single oper-
ator of the problem is related with the desired generalized scattering matrix by the
Cayley transform

_Ih+S S_W*Ih

W= - .
L—-s = Wty

(3.202)

From the symmetry of the generalized scattering matrix (3.199) it follows that
WT = W, which is equivalent to the representation W = WoW[ (or W = W[ W),
where Wy : h, — h, is a bounded operator that requires redefinition by using the
energy conservation law in the generalized form (3.167).

Problem 3.37 (research) Construct the operator model in the form of (3.202) for
some problem of mode scattering by a resonant discontinuity in a waveguide.
Next, we introduce a new operator matrix by the formula

K= (W+1,) 2w, (3.203)

then the second equality in (3.199) takes the form

bKK'D = / {[viCv+P0) =2 (v +v)’} ds. (3.204)
Qint

It follows that the matrix operator K determines the oscillating field in the bulk
of the discontinuity Vijp,.

Problem 3.38 (vet to be solved) Find the explicit form of the operator K for some
mode diffraction problem.
The resulting matrix-operator model

W41,

S=gh W= WwoW
LT (3.205)
K= (W+1,) "2W,
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resembles the operator Fresnel formulas (3.196) and (3.198); moreover, the char-
acteristic equation is valid (compare with formula (3.192)):

S® + KK = 1I;,. (3.206)

The difference is that the formulas for the operator matrices (3.205) have no
scalar analogues. As noted above, we call these equalities the generalized operator
Fresnel formulas.

The obtained result can be formulated as the following statement.

Theorem 3.5 For each problem of mode diffraction in a waveguide transformer
with the coupling cavity Vi # 0, there exists a matrix-operator model in the form
of the generalized operator Fresnel formulas (3.205), if the reciprocity theorem (the
Lorentz lemma) and the oscillating power theorem (3.199) hold true for this
problem.

3.10 Matrix Scattering Operators

In this section we will determine the main properties of the matrix reflection
operator R, and the generalized scattering matrix S. For this purpose, we will use a
number of notions and theorems of the theory of bounded operators in the Hilbert
space.

3.10.1 Properties of Reflection and Transmission Operators

The energy conservation law in the form of (3.73), (3.74) (see Sect. 3.4.2) takes a
simple form in terms of the Cayley transform D, = W(Rp) (3.54), which allows
one to explore the basic properties of this operator, and thereby to clarify the basic
properties of the reflection operator R, = W~! (Dp).

The substitution of the operator Fresnel formulas (3.51) into (3.73) and (3.74),
which were obtained from the complex power theorem and the second Lorentz
lemma, yields the expressions

DU, T . DyU,Dl = D,U,D: H — case
T} :DOUZD(])L’ U:bs 4 = pjuiD;, ) %L o 9(; E —case [’
U1D1 D2U2 DgUlDl = D2U2D0

(3.207)

Dlu, = UQD;‘)- for H—case and DyU, =U;D; for E —case. (3.208)
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Taking into consideration that, by definition, D; = DD} and D, = DDy, we
come to the conclusion that equalities (3.208) form the basis of (3.207).

Problem 3.39 Verify the above statement.
Thus, all the operator relations of the complex power conservation law follow
from the sole condition (3.208), which can be rewritten as

f U _
Dy={ Ul tpyd 2l i mcasel (3.209)
U, U, E — case
It is precisely this condition that sets apart the elementary operator Dy from the
entire set of bounded matrix operators acting in the space /.
For the canonical problem of a step discontinuity in a rectangular waveguide,

considered in Sect. 3.4.1, (3.209) can be given in more detail. Using the following
properties of the portal operator

(If)l/zUp _ ((I[/f)m)*, ((If)lﬂ)*Up _ (If)il/z, (3.210)

we can write (3.209) in the form

F1/2 P\ £1/2 F1/2 £1/2\ * H — case
(If) Do (Ié) - ((lf) Do (Ig) ) ; { E — case } (3.211)

Substituting into (3.211) the definition (3.52) of the operator D, we get

(15 03) = (s, 15) " (3.212)

Thus the fact that the bilinear scalar product (3.212) of the transverse eigen-
functions of regular waveguides is real lies in the basis of the complex power
conservation law (3.73), (3.74) and (3.167).

Let us now clarify the properties of the operator D,U,,, p = 1, 2. From the energy
conservation law in the form of (3.207) we obtain

Re (D,U,) >0, Im(D,U,) > 0. (3.213)
Indeed, taking into account the properties of the unitary portal operator

U,=0,+iP,, p=1, 2 (see definitions (3.31) and (3.35) in Sect. 3.3), we find
from the first two relationships in (3.207) that
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bRe (D,U,) b = dRe U,dt = dQ,df = ||d, | >0
bIm(D,U,) bt = dim U,at = ap,at = |la_|> >0

Vb el y d= bDO. H — case
2 47p 4= bDY’" | E—case |

(3.214)

Thus, the numerical range of the operator D, U,,, which is metrically equal to the
operator Dy, lies entirely in the first quadrant of the complex plane. The inequality
Re (Dp Up) > (0 determines the accretive operator, while the inequality
Im (Dp U,,) > (0 means that at the same time this operator is dissipative (regarding
the terminology, see, for example, the book [27] and the Mathematical
Encyclopedia [26]). For such operators, we introduce the term ‘accretive-dissipative
operators’.

Similarly, it follows from (3.207) that the operator D, UJ ,p =1, 2 is accretive-

accumulative operator, which means that Re (DPUIJL ) > (0 (accretivity of the
operator DpU,]L ) and, at the same time, Im (DPU,lL ) <0 (accumulativity of DPU;r

[27]). In other words, the numerical range of the operator D, U;r lies completely in
the fourth quadrant of the complex plane.

Below, we will use the properties of the operator D, U, to prove the fundamental
fact that the operators D, (H-case) and D, (E-case) are accretive operators. These
properties for the other two operators D, (H-case) and D, (E-case) can be proved in

a similar way with the use of the properties of the operator D,U, T; proof is sug-
gested as an exercise.

In what follows, we omit the subscript p = 1, 2 for simplicity.

Our analysis is based on the following statements, which we formulate for some
bounded operator L.

Lemma 3.5 Re L >0 if and only if (L — oI)(L — ocI)Jr > o?, Va<O.

Proof For any real value of the parameter « we have
(L —al) (L —al) 0 =1Lt - a<L+LT) =1Lt —42ReL.
If the left-hand side is nonnegative for Vo < 0, then
2aRelL < LLT — ReL > 2—1OCLLT.

Passing to the limit for « — —oo, we have Re L > 0. If, conversely, ReL > 0,
then for any o <0 we have
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Lot ]
ReL>0> 2—LL —  LL'>o2ReL. |
o

Lemma 3.6 Suppose Zg déf{z :Rez>0} and M(L) is the numerical range of the
operator L, then M(L) C Zg if and only if

(L—2D)(L—2DT > (Rel)?; VidZp

Proof M(L) C Zg if and only if ReL> 0, since bRe LbT = Re (b LbT). Let / =

o+ if (o and f as usual are real), then we have L — Al = L — al, where L =
L—if I and ReL = Re L. According to the previous Lemma 3.5 we get

(L—ol)(L— ocI)J[ >o% Vo<,

if and only if Re L > 0. O
Corollary Let L = —iM, then Re L = Im M; and we obtain

(M= 20)iM — 2D =M +ianM+izD > Re 2% Vigzg,

if and only if ImM > 0.
Based on the definition of the vector norm (see Appendix A), we can rewrite the
obtained results in the form of the following two-sided implications:

e for A= —o—iff, a >0, —co<ff<oo we have
ReL>0 «— |[(L—ADb"|">a2|b|% Vb e by (3.215)
e for l=il=p—ia, a>0, —co<f<oo we have

mM>0 o |(M-i)b"|* =% Vb eb. (3.216)

We now use these relations to prove the main result of this section.

Theorem 3.6 The Cayley transform D = W(R) is an accretive operator,
ReD > 0.

Proof Inequalities (3.213) indicate that the operator DU is accretive-dissipative.
Then, according to (3.215) and (3.216), the following estimates are true

WDU—AUMHzaw+n}

| —iznpr | = o] fF 7
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where A = —a— iff, « > 0, b, = bQ and b_ = b P. These two equalities together
give

(DU = anb”, ||} + ||(DU — iaD)b” ||* > 2|[b|%; Vb € b, (3.217)

since ||b]|*= ||b4 ||* + ||b—_||*. Transform the left-hand side of (3.217) by using the
parallelogram rule to the form
T 112 . T2 1 T112 112
|(pU = 20w | +|[(DU — iz |*= 3 (|0 = 20)d" |+ |0 - 21 d" ),
(3.218)
where J = Q — P is the canonical symmetry of the Pontryagin space Il = Ql, U Pl,

and the notation d = b U is used, where U = Q — i P is the unitary portal operator.
Use the following estimate for the right-hand part of equality (3.218):

(D = 20)d" || +|(D - angd"||* <2||(D - 20", (3.219)

where ||(D — AI)c"|| = max{||(D — AL)d"||, ||(D — 21)J d"||}. Then, on the basis
of two formulas, (3.217) and (3.218), we obtain the following inequality:

(D = 2D)e"||* = o c|?.
We have taken into account that ||c|| = ||d|| = ||dJ|| = ||p|| . Thus we found that
|(D = 2D)c"|| = aljel; Ve € b.

Referring again to the corollary (3.215) of Lemma 3.6, we obtain Re D > 0. [

Corollary The reflection operator is a contraction, ||R|| < 1.
Indeed, for the Cayley transform D = W(R) the following relations are true

i{IRRT} D+ (DT—H)_I

.|. = T -1 3ReD s

1—RIR (D +1) D1

i.e., the inequality ReD>0 is equivalent to RRTgl, RTRSI or
IR|P= ||RET|| < 1.

Problem 3.40 (research) Using the similar reasoning, prove that Im(J R) <0 and
Im(RJ) <0.
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3.10.2 Basic Operator Properties of the Generalized
Scattering Matrix

Completing generalization of the previous results, consider mode diffraction in an
H- or E-plane N-port waveguide transformer (N is arbitrary integer). General
configuration of the structure is shown in Fig. 3.6.

We suppose that the resonant volume Vi, = Qi X az # 0 and the feeding
regular waveguides are uniform along the Cartesian axis that is perpendicular to the
H- or E-plane. The volume Vi, is bounded by the metal walls of the coupling
region and the reference planes X, =TI, x (0,a3), n=1,2,...,N, which are
located in the waveguide arms, and is free from sources/sinks of the field. As
before, we suppose that the device is filled with a homogeneous lossless medium
and all metal walls are perfectly conducting, while the waveguide arms are ter-
minated in matching loads.

Assume that in each of N inputs, the mode composition of the incident field is
described by the infinite row vector of complex amplitudes b €I,
n=1,2,...,N. Then the vector b = {b(”,b(Z), e b(N)} of the amplitudes of the
given sources belongs to the Hilbert space hy = Iy (see Appendix A).

Let p,, be the number of modes above cutoff in the nth port. The corresponding
orthoprojector we denote as P, and then use it to create the operator matrix of
projections onto all modes propagating in N ports:

P, O - 0
0 P, - 0

P=1|. . . (3.220)
0 0 --- Py

Fig. 3.6 Geometry of the
planar N-port waveguide
transformer r No1
N ~<
e
\

r
. Qint ,

' y
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N
According to this definition, P is an operator of finite rank v = Tr(P) = >_ p,
n=1

(we will assume that v # 0 unless otherwise stated). The orthoprojector onto all
evanescent modes Q =1, — P involves, obviously, the orthoprojectors
Q,=1—P,,n=1,2,....N, on the main diagonal.

We will characterize the nth port by the matrix reflection operator R™ : [, — I,
and by the unitary operator U, = O, + i P,. We will also denote the matrix operator
of the mode transmission from pth waveguide into gth waveguide as 7% : [, — I,.

The wave transformer under consideration is fully described by the portal
operator matrix

U 0 0
0 U - 0

u=1|. . . (3.221)
0 0 Uy

and the generalized scattering matrix

Rll T2l . TNl
T12 R22 . TN2
S = . . . (3.222)
These two operator matrices comprise the characteristic operator
G = (I, +S)U(1,, - ST) Ly — hy. (3.223)

All the operators in (3.220)-(3.223) act also in the Pontrjagin space
Il, = Phy UQhy, which is introduced in the same way as in Sect. 3.8. The
canonical symmetry of this space is the operator J = Q — P, for which we have
N=yr=1

With the idealizations stated previously, the following fundamental electro-
magnetic laws are valid:

e the first Lorentz lemma, from which the symmetry
sT=sS (3.224)

of the generalized scattering matrix follows;
e the oscillating power theorem yielding the relationship
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bl + 8) (I, 7 57)b" = / (Vi) =203 fas, (3.225)
Qin

in which Uy stands for the total complex amplitude in the region €;,; as before,
V) Uy is the gradient of this complex amplitude in the H- or E-plane;

e the complex power theorem and the second Lorentz lemma, which give together
the equality

b6 = ||V 0|7, 0 21OV 00 (3.226)

int

With Imy =0, we have from (3.226) that GJr = G (i.e. the operator G is
self-adjoint), or alternatively, in view of definition (3.223),

p—spst = i(SQ _ QST)

mG=0"= N p_stps— i(QS—STQ).

(3.227)

This relationship is the energy conservation law in the most general form, for the
entire class of the mode diffraction problems under consideration.

In applied research, various truncated forms of this law are widely used. One of
its widespread particular forms can be derived from (3.227) as follows. Let us
introduce the operator Sy = PSP, which is obtained from the classical (finite)
scattering matrix of circuit theory by extending it by zeroes to the infinite matrix.
Multiplying (3.227) from the left and right by the orthoprojector P and taking into

account its properties P = P, P> =Pand PQ = QP = 0, we obtain the desired
result

SoS] =815y = P, (3.228)

or, in expanded form, we have

Py Pq
Z RIY R?{; Z Z T‘”’ Tg{’ =0,; mn<p, p=12_..N.
q— 1 b—(O
q#p

(3.229)

Equalities (3.228) imply that the operator S, is partially isometric in the space &y
(or, what is the same thing, it is an isometry of the subspace Phy). Formula (3.229),
commonly known as the energy conservation law for propagating modes, has been
used in practice since the methods of the microwave network theory are transferred
to waveguide systems.
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Note that separation of diagonal operator blocks of the operator matrix (3.227)
results in a more general expression as compared with (3.229):

Py o m,n<p,
Z R (R?)" Z Z T (T 0; m>p, n<p,
s=(0)1 g=1-s=0)1 2Im REP n>p,, Vm,
q#p
(3.230)
where p = 1,2,...,N. This formula is also the well-known generalization of the

energy conservation law onto evanescent modes. (The frequently used special cases
of formula (3.230) can be found, for example, in the book [6].)

It follows from (3.227) that, in particular, the generalized scattering matrix S is
not a unitary operator. The measure of its deviation from unitarity is given by the
formula

1/2

%(lh _ SST) —o-v,ovl, v, = (é) (I, — iSJ), (3.231)

which is one more generalized form of the energy conservation law equivalent to
(3.227). Namely, the greater the number of propagating modes in the waveguide
ports, the closer (in the sense of (3.231)) S to a unitary operator, never reaching this
limit.

If the wavenumber y is less than its lower critical value, then there are no
propagating modes in the waveguide ports: P = 0, Q = I;, and equality (3.227) give

st = 5. In this case, the Hermiticity property of the generalized scattering matrix
corresponds to the closed system. Generally a measure of the deviation of S from
self-adjointness is given by the formula

1\ 12
ImS=-pP+Vv.pPvl, v. = (2> (I +iSJ), (3.232)

which is one more generalized form of the energy conservation law.

Problem 3.41 (research) Derive the energy conservation law in the form of
(3.231) and (3.232). Hint: the required formulas are combinations of the relations
similar to (3.171)—(3.174), but for the N-port waveguide transformer.

As already noted, the orthoprojector P is the operator of finite rank, since for any
wavenumber y only a finite number of modes can propagate in the waveguide ports.
Then, from (3.232) it follows that the imaginary part of the generalized scattering
matrix Im S belongs to the class of compact operators. This means that the operator
S is quasi-Hermitian [19]. This subclass of non-self-adjoint operators had previ-
ously been investigated in studies [18, 19], the results of which we widely use in
this chapter.
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The quasi-Hermitian character of the generalized scattering matrix means, in
particular, that all the singular elements of its spectrum ¢(S) lie on the real axis,
while all the nonreal points of this spectrum are the eigenvalues of finite multiplicity
(i.e., the regular elements of the point spectrum) [18, 19]. For the considered
problem, the real points of the spectrum a(S) correspond to the eigenfrequencies of
the homogeneous boundary value problem for the Helmholtz equation in the region
Qi # 0, which is enclosed along the corresponding reference planes in the
waveguide arms by electric (in the H-case) or magnetic (in the E-case) walls. At
these eigenfrequencies, the right-hand sides of (3.225) and (3.226) vanish:

b £S)( L FS" )b =0 — S§ =1, (3.233)
bGhi =0 — G=(, +S)U<Ih - ST) -0 (3.234)

(for the proof of these implications see Problems 3.12 and 3.15 above). Relation
(3.233) together with the symmetry property ST = S make appropriate to introduce
special operators

Qs =3 (I +S) {Q5+Pslh
3.235
Ps=tu,-s) T 1os-Ps=5, (3:235)

which, evidently, possess the properties

0t =Qs, PL=Ps, Q;=0Qs, Pi=Ps, QsPs=PsQs=0. (3.236)

In other words, the operators Py and Qg are the complementary projectors (in the

case of ST =5 they become the orthoprojectors and hence ||Ps|| = ||Qs|| = D.
Since the projector spectrum consists only of two points {0; 1} of infinite multi-
plicity, then from the relationships

S=1I,—-2Ps =205 I, (3.237)

we find that the eigenfrequency of the region €, corresponds to the points of the
real axis A = —1 or 4 = + 1, also of infinite multiplicity.

Problem 3.42 (research) Show that each eigenfrequency of the region Q;, cor-
responds to the point 2 = —1 € ¢(S) in the case of the H-plane transformer or the
point A = +1 € ¢(S) in the E-plane case.

Note that for any operating frequency relations (3.233) and (3.234) characterize
the arbitrary abrupt waveguide discontinuity, for which Q;,c = 0 by definition. The
above arguments show that in this case the spectrum of the generalized scattering
matrix consists of only two points of infinite multiplicity, o(S) = {—1; + 1}, lying
on the real axis. The energy conservation law (3.234) written as
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QsUP§L=0 — QSQPTZ—iQsPP;f, (3.238)

shows that in this case Py and/or Qg are compact operators, since the orthoprojector
P in the right-hand side of the second equality in (3.238) is an operator of finite
rank. According to (3.237), this means that the generalized scattering matrix S of
the step-like discontinuity in a waveguide can be represented as a sum of unit and
compact operators.

The characteristic property (3.234), G = 0, can also be written in the expanded
form:

0-sost =1 (SP - PST), (3.239)

i
or, more compactly, as

vovi=vivo =g, vowvl =vigv, = (3.240)

Hence, for any abrupt discontinuity in a waveguide, the operator matrix V_ is a
unitary operator, while the operator matrix V. is a J-unitary operator. Finally, the
addition and subtraction of (3.227) and (3.239) give the representations

% (1 - sst) = ~tm(sy), % (= sTss) = m(s), (3.241)

i.e., in the case of an abrupt discontinuity in a waveguide the left-hand sides of these
equations are compact operators.

We now turn to the characteristic operator G. It can be seen from (3.223) that it
makes sense to introduce a linear fractional transformation of the generalized
scattering matrix S. To this end, we eliminate from the frequency axis the eigen-
frequencies of the region Q;,, which correspond to the point —1 € ¢(S) with the
boundary condition Uy|y =0, m=1,2,...,N, and to the point + 1 € o(S) pro-
vided that (OUv /O#,,) |Zm: 0 where 7, is the outward normal to the corresponding
reference plane %, see Fig. 3.6.

Now we can introduce the Cayley transform of the operator S

LTS H — case
T {Ecase}, (3.242)

which exists under the restrictions —1 ¢ ¢(S) (H-case) and + 1 & o(S) (E-case).
In microwave engineering, the following terminology borrowed from the net-
work theory is adopted: Z = W is the generalized impedance matrix, ¥ = W_ is
the generalized admittance matrix, and Wy is the generalized immittance matrix.
Note that it is important to remember that the above operator matrices are not
necessarily exist because of the constituent parts of the spectrum o(S) [28].
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For the mode diffraction problem under study, the Cayley transform W. is the
given operator matrix. Having obtained this operator (by using the proposed gen-
eralization of the mode-matching technique or by any other method based on the
modal expansion of the field), we have immediately (i.e., before calculating the
generalized scattering matrix S) the generalized admittance matrix Y (in the case of
H-plane) or the generalized impedance matrix Z (in the case of E-plane) in an
explicit analytic form.

In terms of the Cayley transform (3.242), the characteristic operator (3.223)
takes the form

1 .
%G = (W +1h)‘{ ‘%Wg } (WJF +1h) ; {H Case} (3.243)

4 E — case

and the energy conservation law (3.227) is

Im{ w_ut } —0:; {H - case } (3.244)
W, U E — case

The last equality can also be equivalently represented as the Cayley transform

property:
WJF:{[%}WJF{I%}; {Z:g:::} (3.245)

Note that this relation is similar to the above (3.209); it represents the basic
property of the column vector of the transverse eigenfunctions p and of an infinite
set of mode propagation constants, which forms the basis of the energy conser-
vation law (3.244).

Thus, for the canonical problem of the right-angle bend of a rectangular
waveguide, formula (3.245) can be written in the following form:

¥
PGP T - 2GP T ) B
<(07zp8ﬁq"uq)z "up) = ((aﬁpaﬁqaﬂq>z 7,up> ; H —case
q z, q %,

N for Vp,q=1,2
((GN"“q)zq"“;>Zp: ((GN7”q)zq’”;)zp; E —case

(3.246)

(compare with (3.212)). Here GP™ is the well-known Green function of a rect-
angular coupling region (., which satisfies homogeneous Dirichlet (Neumann)
boundary conditions. For this diffraction problem, the basic property (3.246) fol-
lows from the characteristics of traces of the Green function and its second
derivative on the reference planes X,, p = 1,2, as well as from the fact that the
functions y, are real-valued. For a discrete set of the wavenumbers that correspond
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to the eigenfrequencies of the region (i, the Green function is not defined and the
power conservation law (3.244), (3.245) becomes meaningless.

Problem 3.43 (research) Using the generalized mode-matching technique, con-
struct a matrix-operator model for a right-angle bend of a rectangular waveguide in
the form of the generalized operator Fresnel formulas. Derive the corollary of the
energy conservation law in the form of (3.246). Hint: the derivation of the prop-
erties (3.246) is similar to that of (3.212).

Let us multiply (3.244) from the left and right by the row eigenvector b, of the
quasi-Hermitian operator S. Then for the spectrum points t € a(W.) we find

H — case
Imt = +tg(¢,)Ret; { F— case }, (3.247)

where ¢, is the argument of the complex number b, U bi, which, by the properties
of the portal operator, belongs to the first quadrant of the complex plane.
Geometrically, we have the equation of the bundle of lines passing through the
spectrum point T = 0 with the slopes +tg(¢,), 0< ¢, <m/2.

Equation (3.247) implies that if the energy conservation law in the form of
(3.244), (3.245) is valid, then the condition —1 ¢ o (W) necessarily fulfills, and
therefore, the following inverse Cayley transform hold true:

I, —W —
§—xn = Ve, JH-case | (3.248)
I+ We E — case

In other words, the solution in the form of (3.248) of each problem of mode
diffraction by the H- or E-plane waveguide discontinuity with the resonant volume
Vine # 0 exists and is unique for all the wavenumbers, except for the eigenfre-
quencies of the region Q;. The boundedness of the operator A = (I, + W¢)71
ensures the stability of the solution throughout the frequency axis, except the
vicinities of the eigenfrequencies, where cond(A) = ||A]| - HA’1 H — 00.

We now investigate the localization of the spectrum o(S) of the generalized
scattering matrix. By analogy with the derivation of (3.247), we multiply (3.223)
from the left and right by the row eigenvector b, of the operator matrix S. Thus
obtained from (3.226) equation

2

(1421 — 2 )b;Ubl = Cp; Cp= HVH s (3.249)

.12
2 eig
—2llu
Qint) * H v Lo (Qine)

La(

yields the system of equalities

1-iP=¢
3.250
{ZImw _ZC (o) (3.250)
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Fig. 3.7 Localization of the ImA
spectrum o (S) of the
generalized scattering matrix

-1
cos(¢y),

the right-hand parts of which depend on the parameter C;, = C), ’b 2U b];

and C; <1.
Equations (3.250) give the required localization of the entire spectrum {1} €
o(S) in the complex plane (Fig. 3.7). In Fig. 3.7, r, stands for the spectral radius of

min

the operator S, r, < ||S]| jy» T = €SC ((pb ) is the radius of the circle centered at the

min min

point o = ctg(¢™") on the imaginary axis, " = Iggn(qob), 0<@in <7/2; the

positive value = tg(@j"" /2) <1 is also marked on this axis.

3.11 Conclusion

In this chapter, we have presented the rigorous solution of the mode-diffraction
problem in operator form using the canonical problem of H- (E-) plane step dis-
continuity in a rectangular waveguide as an example. It has been shown how the
modal expansion of the complex amplitude U(g, w) in two regular partial regions
together with the matching condition for tangential components of the electric and
magnetic fields in the aperture of the discontinuity (the mode-matching technique in
the theory of mode diffraction) leads to the matrix models possessing different
properties. Let us outline these models in the sequence in which they appear in the
text above.

The first matrix model is the known infinite SLAE (3.22), the solution of which
—the required vector of the Fourier coefficients—has the form

-1
X =Apfy; Ay =(I+D,), x.f,€h, p=12.
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Here, the given operator of the problem, D,, is bounded in the space I, but is
not a contraction or a compact operator; besides, it does not meet the known
regularity criteria (see Appendix B). Consequently, the proof of the correctness of
the above-mentioned matrix model remained important for decades. Another
unsolved problem was to justify the applicability of the truncation procedure to the
solution of the infinite SLAE and to determine the convergence conditions for the
approximate solutions.

As was shown above, the key to overcoming these mathematical difficulties is
the integration of an infinite number of the vectors x, into a matrix operator. To
realize this idea we give a new formulation of the mode-diffraction problem, which
leads to a generalization of the widespread version of the mode-matching technique.

The proposed approach, in essence, consists in replacing the unknown Fourier
coefficients in the modal expansion of the field by the elements of the desired matrix
scattering operator. This matrix-operator technique allows one to introduce scat-
tering operators as the unknown values of the mode-matching technique.

Implementing this approach, we observe that the matrix model in the form of an
infinite SLAE is a truncation of the general matrix-operator equation, which results
in the loss of basic information about the properties of both the required solution
and the given operator of the problem. For example, only in the context of this
approach, it was possible to establish the quasi-Hermitian character of the scattering
operators and the given operator of the problem. This means that these operators
belong to the class of non-self-adjoint operators with compact imaginary parts,
which have relatively simple structure of the spectrum. We emphasize that the
quasi-Hermitian character, as well as other revealed important properties of the
operators under study, are a corollary of the energy conservation law.

When describing time-harmonic fields in the domain of complex amplitudes, we
must take into account four basic energy laws: the complex power theorem, the
oscillating power theorem, as well as the first and second Lorentz lemmas. Thus,
using jointly the complex Poynting’s theorem and the second Lorentz lemma [16]
we have derived the energy conservation law in a generalized form—the operator
equality (3.227). The contribution of each of these theorems into the law is quite
clear. The operator relations on the main diagonal of the resultant operator matrix
are the corollary of the complex power theorem, whereas all the off-diagonal
operator blocks follow from the second Lorenz lemma.

Since the complex Poynting theorem and the second Lorentz lemma form the
full list of basic electromagnetic laws concerning a complex power flux, we argue
that the derived forms of the energy conservation law (3.227), (3.231) and (3.232)
are maximum complete in this sense for the considered range of problems. They
can also be interpreted as the generalized optical theorem in operator form, which is
proved for mode scattering in lossless reciprocal waveguides.

The second matrix model (3.51) is the Fresnel formulas for the reflection and
transmission operators
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Dy for g=2
= — qapr = : =
R,=1-2A,, T ZAP{Dg for g=1° p#q, p=12
For this model, we have rigorously proved that the given operator of the problem

D, = A; I'_ I is accretive (Re D, > 0), the entire spectrum of the reflection oper-
ator O'(R,,) lies strictly inside the unit disc, and that all nonreal points of the
spectrum are the eigenvalues of finite multiplicity. Based on the known properties
of the Cayley transform, it has been shown that the reflection operator is a con-
traction, }RPH <1, while the amplitude operator A, is an accretive contraction,

ReA, > A,,A;,r > 0.

The operator Fresnel formulas appear as a solution to the problem of mode
diffraction by an abrupt discontinuity in a waveguide (i.e., the waveguide discon-
tinuity with zero volume, Vi, = 0). If we assume that there exists the unique
operator D,, which is determined by the problem geometry and is
frequency-dependent (the given operator of the problem), then the existence of the
Fresnel formulas for the required scattering operators follows from the above
mentioned fundamental energy laws.

Combination of the reflection and transmission matrix operators of the problem
into one operator matrix has enabled us to obtain the compact third model, which
represents the generalized scattering matrix as

o Al2 ) H — case _ A O _{1 0
§=247"4J; {E—case}’ A_{O Ay | I = 0 —-I]|’

and has some good points (in particular, this matrix model is remarkably stable).

Application of the generalized mode-matching technique to the analysis of
waveguide transformers with coupling cavity leads to the solution in the form of the
operator Fresnel formula for the generalized scattering matrix:

W,
WA

To construct the solution in such general form, it is sufficient that the operator of
the problem, W, exists and the energy conservation laws (3.160), (3.167) hold. The
correctness of the generalized operator Fresnel formulas, —1 ¢ o(W), is also a
corollary of the energy conservation law.

The energy conservation law also allows one to reveal the important properties
of the generalized scattering matrix S of a waveguide transformer, including the
main characteristics of its entire spectrum. We have found that the generalized
scattering matrix is a quasi-Hermitian and non-unitary operator, and the rank of its
non-Hermiticity is equal to the total number of propagating waves in the ports of the
waveguide transformer. The essential spectrum of the operator matrix S lies on the
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real axis at the points 1, and each nonreal point of its spectrum is an eigenvalue of
finite multiplicity.

In the context of the generalized mode-matching technique, the convergence of
projection approximations to the true solution of the problem has been established
analytically. It has been proved that the complex energy conservation law and the
second Lorentz lemma in the operator form provide, for any number of the modes
taken into account in waveguide ports, the mandatory fulfillment of the require-
ments that ensure the unconditional convergence of projection approximations.

Using as an example the operator Fresnel formulas for a canonical problem of
wave diffraction by an H- or E-plane step discontinuity in a rectangular waveguide,
we studied the characteristics of convergence of finite-dimensional approximations,
including the estimation of the rate of convergence. For the considered matrix
model, the problem of estimation of the approximation error was reduced to the
study of the projection convergence (or P-convergence) of the finite known
matrices to a given matrix operator. As a result, we have rigorously shown the
absence of relative or conditional convergence of the approximations. We have also
established analytically that the condition number of the truncated matrix equation
is a uniformly bounded value, which ensures stability of numerical computations.

It has been found that for the canonical problem of a step discontinuity in a
waveguide, the compliance with the Mittra rule when truncating the field expan-
sions in the partial regions implies the fastest strong convergence to zero of a
certain matrix operator. The mentioned matrix operator is generated by the differ-
ence of the traces of the Green functions of these regions on the aperture of the
discontinuity and it determines a part of the approximation error.

In this chapter, we used a new formulation of the mode diffraction problem to
overcome significant mathematical difficulties in the rigorous justification of the
mode-matching technique. On the other hand, when implementing this approach,
we used the concepts and methods of the modern operator theory in the Hilbert
space and Pontryagin space with indefinite metric. To derive the operator Fresnel
formulas and their approximations we applied the techniques that generalize the
classical Galerkin procedure and the theory of projection approximations.

The developed and rigorously justified generalized mode-matching technique
should be considered as alternative to the standard version of this method widely
used in computational electrodynamics.

Appendix A: Vectors and Their Spaces

Vectors in the Hilbert Spaces [, L, and 1,

The linear space [, consists of infinite-dimensional row vectors a = (a,d, .. .),
b = (b1, bs,...), etc., with complex elements a,, € C, b,, € C,m = 1,2,3,.... The
norm ||al|, € R! of a vector in I, is defined by ||a|\122: Yom |lan|* and its value
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measures the length of the vector. By definition, the space /, consists only of the
vectors of finite length: ||a||,, <oco. Here, C is the plane of complex variable and R’
is the one-dimensional Euclidean space.

Addition is defined element by element: a +b = (a; + by, a, + by, . ..). The sum
belongs to the space I because |la+ b, <l|lall, +b]|, <oco for Va,b € L.
Multiplication by a scalar A is defined element by element: la = (laj, lay, .. .).
Consequently, [[4al|,= [4] [|a][,, <oo.

The conjugate space consists of infinite-dimensional column vectors

al = (aj, a5, .. .)T, bt = (b}, b5, .. .)T, etc., with the same linear operations and

the norm Ha]L

W= lall,,, bTH@ = ||b||,,» and so on. Here the dagger ‘f’ denotes
2 - 2

Hermitian conjugation, the asterisk ‘x’ is for complex conjugation, and the
superscript T denotes transposition.

The scalar product is defined by (a,bT) =a-bl = > amb?, € C. This mul-
tiplication generates a finite complex number, because ‘ (a, bT) ‘ <|lall, 1b]l;, <oc

for Va,b € l,. Two vectors a and b are said to be orthogonal if a - b =0 and
lall 121l >0, where [lall,= Va-al, [[p]l,= Vb 1.

The matrix product al b= A,y generates a matrix operator (i.e. an infinite
matrix)

Cffbl a’sz
* *
Ag = | @01 @b

which is bounded in ;. Specifically, the matrix operator A,, is positive, Ay, >0,
and belongs to the class of nuclear operators in [, because

2 2
Tr(Aua) = 2 lam|™ = llal|” <oo.

By definition, the spaces 22 and 72 are the complex Hilbert spaces for
infinite-dimensional vectors a, b, ... with the scalar products

1
+1 +1 * . 2
<a,bT>i_— al, b]L = mE:1 m* ayb, € C; {i },

2

respectively, and with the norm

- 1/2 -
_ T>1/2_ 1y 2 ) {{2}

allL.= (a,a = m-\ap <0Q; 5 )

lall= (aa) "= |3 jan -

and also
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b
[(abl) | < lalbl <oc, llatbll <lall+ o] <ocs for vabe {21,
2
Here, the diagonal matrix operator I, = {m 5:;};0": | 1s given by its eigenvalues
m=1,2,3,... and is positively defined, 1, > 0.
Sometimes the spaces I, and I, are referred to as ‘energetic spaces of the matrix
operator Iffl .

Vectors in the Hilbert Space hy = ZIZV, N>2

The linear space hy consists of row vectors a = (a(l),a(z), .. .,a(N>),
b= (bW, p®, .., b™), etc., with n vector elements a™ €l, b €,
n=12,...,N.

Addition and multiplication by a scalar A are defined in a natural way:
a+b= (a<1> +bW . a® 4 p@ g +b(N>), Aa = (la(l), a?, . Aaw)).
Hermitian conjugation gives the column vectors

af = <(a<1>)T, @i .. (a<N>)T)T, bt — ((bm)T, et .. (b<N>)T>T,

etc., with the same linear operations.
The scalar product in the space Ay and the norm ||al|, <oo are defined by the

equalities

(a,bT) =qa.bl = i <a<">, (b("))T> €C and

n=1

N
lal2,=a-at =3 [la®| e R,
n=1

respectively; therefore,

(a,bT)’ < lally, |[Bll,, <00, Va,b € hy.

The usual matrix product al b = A, generates an N x N operator matrix
Awp = {A,-j}?_j.zl that is bounded in Ay, because each operator A;; = A i, =
(a(i>)T-b(j> : 1, — I, is the bounded one. Specifically, the operator matrix A,, =

N
N . .. . .
{AL0a0 }; -1 s positive, Ag > 0; its trace Tr(Aw) = D Aymgm is a nuclear
n=1
operator in /.
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Operator Vectors in the Space Vy = (I, — lz)N , N>2

Let us define the operator vectors A= (AD A® . AW),
B = (B<1>7B(2), .. .,B(N>), etc., with N bounded in [, matrix operators
A B0 . HA(”)HZ2 <00, HB(”)HZ2 <oo,n=1,2,...,N.

Addition and multiplication by a scalar A are defined element by element:
A+LB= {A(l) +BW A L BO) AN +B<N)},
A = (24D JAD), . AN}

Hermitian conjugation gives the operator vectors

T T
AT = ((A(U)T,(A<2))T,...,(A<N>)T) . B = ((B<1>)T,(B<2))T,...,(B<N>)T> ,
etc., with the same linear operations.

The scalar product in Vy is defined by (A,BT) =ABl = SN AW (B(”))T,
this product represents a bounded operator in [. Specifically,
[aaf], < = 4] <ce

2 >

The matrix product of operator vectors AfB=Dp generates the operator matrix

D= {Dij}f'\.;:l that is bounded in Vy, since each operator D;; = (A(i))TB(f) il —
I is bounded.

Pontryagin Space 11, with Indefinite Metric

o0
A sesquilinear Hermitian Q-form {a, bw =3 wn,anbl, €C,p, € R!,Va,b € G
m=1

defines the indefinite metric (or Q-metric) of the linear vector space G, with the real
number [a, an being negative, or positive, or equal to zero as a # 0. Therefore, in

the space with indefinite metric there is no isolated element, with respect to which
the distance to any other element is measured.

The Hilbert space G with Q-metric (or the Krein space) allows a canonical
decomposition G = P G @ P_G via two mutually complementary orthoprojectors
P and P_. For all vectors a € G we have

2 2 2 2 2
a=ay+a, (aa)=lal=las P+ oI, [aal] = las P~ la-|P,

where ¢ € PG, a_ € P_G and the ratio ||a ||/||la—|| is arbitrary. All the norms
defined by different canonical decompositions are equivalent.



3 Operator Fresnel Formulas in the Scattering ... 179

A linear operator J/ = P, — P_ is the canonical symmetry of the Krein space G,
which is self-adjoint, J = J Jr, involutive, J~' = J, and unitary, J ' = J .
The basic relationships between the Q-metric and the Hilbert metric (a, bT) in

the Krein space are (a,bT) = [a],bw, [a,bw = (a]7 bT), Ya,b € G. By defi-
nition, the Pontryagin space II, is the Krein space G = P G @ P_G with finite

rank of indefiniteness v = min{dim(P G),dim(P_G)} <cc.
Suppose that a,b € I, and the Q-form is

[a,bw = Z amb;,, — Z amb;,

then [, = I1, (L.S. Pontryagin, 1944).

Appendix B: Infinite Systems of Linear Algebraic Equations

Below we give a brief reference on the theory of infinite systems of linear algebraic
equations (SLAE), composed of the information available to us and, therefore, not
claiming to be exhausted.

For the infinite system of linear equations in a matrix form under consideration
(I+A)x = b the following notation is used: [ is the identity operator (idem-factor);
A = {aun},— is the given matrix operator; x = {x,},~, is the required vector;
b = {bn},_, is the given vector of the right-hand side.

The main classes of matrix operators are related by inclusions:

of finite rank C nuclear C Hilbert — Schmidt C compact C bounded.

By the truncation technique we understand truncation of the matrix operator to
the matrix Ayy of size N X N, obtaining the solution of the corresponding
finite-dimensional system and finding the limit for this solution as N — oc.

Early Results of the Theory

The truncation technique is applicable if the following conditions are met:

o Yot l@m] <00,b € loo = {b = {bu},_,: sup,,|bu| <00} (then there exists a
‘normal determinant’ of the system, det(I +A); G.W. Hill, 1886);
o > mm| <o, Zf,n:l |amn|2<oo, bel, (e, A:l, — L, is a nuclear

operator; Helge von Koch, 1913);
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. Ef,zn:l |amn|2 <00, b € I (the solution of this ‘Hilbert system’ reduces to the

solution of the truncated N X N system and some number of infinite systems
with small (in norm) operators; the number N is found from the condition

D =N £ 1 | |* <1; L.V. Kantorovich, 1948).

Completely Regular Systems

By definition, the system is completely regular if the matrix operator A : I, — [ is
a strict contraction: ||A, =sup Y ", |am| =gq<1, b € l.
* m

The system can be solved by the method of successive approximations (or the
method of simple iteration). For a completely regular system, a principal solution
x € Iy (i.e., the solution obtained when starting with a zero initial approximation)
exists and is unique. The difference between the principal solution and kth suc-
cessive  approximation is estimated by the inequality Hx —x® H I

<q"(1 - q)71|\b||lx, i.e., strong convergence occurs in the space /.

A completely regular SLAE is solvable by the truncation technique that provides
a weak convergent in the space /., and convergent in the norm of the space [, if x,
b belong to the space cy C I, of the sequences converging to zero (sufficient
condition; Yu.l. Gribanov, 1964).

Regular Systems

By definition, the system is regular if a given matrix operator has unit norm (the
limiting case of completely regular systems): [|A]|, = sup >~ % @] = 1, b € l.
m

The principal solution of this system can be found by the truncation technique (L.V.
Kantorovich 1948) or by the successive approximation method (P.O. Kuzmin,
1934) if the Kojalovich condition is met: |b,,| < const - (1 = >0 |amn ) Vm.
We have the following criterion of uniqueness of a bounded solution: if a regular
system satisfies the Kojalovich condition and transforms back to a regular system
(or, possibly, completely regular) with the transformation x, = ,y,, such that
w, # 0, Vn and lim w, = oo, then the initial infinite SLAE has a unique solution

n—oo

(P.S. Bondarenko, 1951).
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B.M. Kojalovich (1932) considered the dual infinite SLAE

00
Xm = Z AmnYn +fm

n=1

00
Ym = Z OmnXn +gm
n=1

with the following restrictions: (i) dyn, %mn >0, Vm,n; (i) Y071 @y = 1 — @(m),
> omn = 1 — Yf(m) (these are the generalized conditions of regularity with the
possibility lim ¢ (m) = lim y (m) = 0); (iii) [fu| <Kep(m), [gn| < Kh(m), K =
const (Kojalovich conditions).

Conditions (ii) and (iii) ensure existence of the principal solution |x,| < K, Vn. At
the same time: (1) the principal solution can be found by the truncation technique or
by the method of simple iteration; (2) if f;,, g, > O, then x,,, y,, > 0; (3) the values of
the first unknowns in the principal solution determine the limits for all other
unknown values, i.e., there exist the values p and g such that for m > p and
n>qg we have h<x, <Hand h<y,<H.

If the following additional conditions are met:

e (iv) there exist numbers /, L >0 such that

amn O{’}n}’l
1< <L, 1<
@ (m) (m)

<L for Vn<m and Vm;

e (v) there exists 0 > 0 such that

P
o(m)+ Zamnze; m=p+1),p+2),...,2p and
n=1

P
Y(m) + Z O >0 for Vp

n=1

then {x,}, and {y,}, are the elements of the space ¢ C I, of convergent
sequences and the ‘law of asymptotic expressions’ lim x, = lim y, =0 # 0
n—oo n—oo

holds true.

Quasi-regular Systems

By definition, the system is quasi-regular if a given matrix operator satisfies the
following conditions:

® A:ly — Il is the bounded matrix operator, ||A[|, = sup >0 || <003
m
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o > % lam|<lform=N,N+1,..;
o |by| <const- (1 — >N |amn|),m2N.

The question of the existence of the solution reduces to the question of the
existence of the solution of the truncated N x N SLAE. If the solutions of both the
regular system

o0 N—1
xl?z_zamnxn+<b1n+ Zamnxn>; m:N7N+1»'~~
n=N n=1

and the truncated system are unique, then the solution of the initial system is unique
as well (L.V. Kantorovich, 1936).

Matrix Contractions

By definition, a matrix operator is a strict contraction in space

o0
I, = {a ={an}p 1 > |am|p<oo}, 1 <p<oo, if its norm is less than unity:
m=1

1A

, <L

If b € 1, this infinite SLAE is uniquely solvable by the truncation technique,
converging by the norm to the solution x € /, (Yu.l. Gribanov, 1964). For the case
of the space [, see Sect. 3.B.2.

The Schur Test and the Young Inequality. Hilbert Matrices

To prove the boundedness of a given matrix operator A : [, — I, and to estimate
analytically its norm, one often uses the following sufficient condition known as the
Schur test.

Suppose, @y, >0, Vm,n and x,,, y,, > 0, Ym, while o and f are the positive
numbers such that Y | dymXm < oyy, VY and > 07| dymyn < fxm, Vm. Then A :

I — I, is the bounded operator of norm ||A]| < +/af.
Another condition is known as the Young inequality: suppose

w=max{|JAll, 4], }<oc,  where Al =sup3 lam|  and
|All, .= sup >, |@mnl|, then the operator A:l, — 1, p>1 is bounded and
Jall, <.

It has been proved by using the Schur test that the Hilbert-Hankel matrix
operator A = {(m+n+ 1)71} . has norm ||A[],, <.
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If {ax}=, is the sequence of the Fourier coefficients of an essentially bounded
function f(x) in the basis {exp(i2mkx)};",, x € (0,1), then the matrix operator
defined by the elements {am,n},fin:o is bounded on the pair of spaces I, — ;. The
norm of this operator coincides with the norm of the function f(x). From this
follows the boundedness of the Hilbert-Toeplitz matrix operator

A= {(m—n)_l}oo

mn=0, m#n '

Compact (Completely Continuous) Operators

According to the Schur theorem, if the condition lim > |au,| = O is satisfied,
m—00

the operator A is continuous on the pair of spaces I, — ¢o (cop C I is the space of
the numerical sequences converging to zero) and completely continuous on the pair
of spaces I, — I

A uniquely solvable SLAE with a compact matrix operator A is solvable by the
truncation technique, which converges in the norm of the space [ only if b € [I] (by
definition, [I] = co, [l,,} =1, for 1 <p<oo) and otherwise converges weakly
(Yu.l. Gribanov, 1964).

The Kojima and Toeplitz Matrix Operators

Suppose that for a given matrix operator the following conditions are satisfied:

e the operator A : I, — Il is bounded,

AHZ%: sup 220:1 |amn| < 0Q;
m

e the ‘convergence by columns’ of the form lim a,, = o,, Vn takes place.

m—oo
Then,

e for o, = 0, Vn the operator A : ¢y — ¢y is bounded (the necessary and sufficient
condition);

o if for some n we have «, # 0, then the operator A : ¢y — c¢ is bounded (the
necessary and sufficient condition).

In the general case, the Kojima-Schur theorem can be formulated as follows.
Suppose, the limit lim Z;ﬁl a,, = o exists, then we have a ‘K-matrix’—the
m—oQ

bounded operator A : ¢ — ¢ (the necessary and sufficient condition).

At the same time, if lim x, =d and Xx=Ax, then
n—oo

lim X, = oad+ Y~ o,(x, — d), whence it follows that for « = 1 and a, = 0, Vn

n—oo
the transformation X = Ax preserves the limit of the sequence {x,},-, (the
Toeplitz-Silverman theorem). In this case, we have a ‘T-matrix’ and the
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transformation ¥ = Ax is called regular. Notice that 7-matrix is not a compact
operator (the Steinhaus theorem).

A sum and a product of K-matrices exist and are K-matrices. K-matrices form an
algebra, in which the addition is associative and commutative, while multiplication
is distributive and associative, but, in general, is not commutative. The necessary
(but not sufficient) condition for K-matrix to be a compact operator is the equality
Do O = O

If K-matrix allows the representation d,, = (m) 'f(n/m), m,n=1,2,3,...
where the function f(x) € L;(0, 00) is monotonic for large x, then the following
exact formulas are valid:

00 = n ®
li mn — i —_ (_> = )
i > = fim 32 (7) = [ riaas
n= n= 0
)

o0 1 o0
Jim > ol = Jim 3l (3)| = [ o
n=1

n=1 0
An illustrative example of T-matrix gives the operator with positive elements

mlf‘cnr
- 2
n2 +m20*

amn -

0<t<l, 60*>>0, mn=172.3,...

Indeed, for 1 = n/m we have @, = (m) '’ (P + 02)_1, and hence

X it 0!
Ii = - 0.
mH»IoloZa /;2+02 2cos(nt/2) 7

n=1 0

Considering that lim a,, =0, upon the correspondent normalization, we
m —0o0

identify a T-matrix.

Appendix C: Operator Forms of the Energy Conservation
Law Under Time Reversal

In this chapter, we have used the SI system of units and the time dependence is
given by the factor exp(—iw t), where o is the angular frequency.

Practicians often use a time dependence in the form of exp( +iw ). For such a
choice, we give below some useful forms of the generalized energy conservation
law in terms of the generalized scattering matrix. In the presence of a resonant
volume Vi, # 0, they are as follows:



Operator Fresnel Formulas in the Scattering ... 185

P—sPst —2m(sQ) =0, P-stPs—2m(Qs)=o0;

[ )
o vVl —g—vouvt L-viv, =y visv,
. %(Ih —SST) —o-v. oVl
. ImS:P—V+PV1;
e Im(sJ)=P—Vv_PVi.
For an arbitrary abrupt discontinuity in a waveguide (Vi, = 0) we have:
e« P—SPST—2Im(SQ) =0, Q-S0ST+2Im(sP) = 0;
e vovl —vive =5, vavi—visvo =
All these forms are applicable for N-port waveguide transformer.
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Chapter 4

Two-Dimensionally Periodic Gratings:
Pulsed and Steady-State Waves

in an Irregular Floquet Channel

Lyudmyla Velychko

Abstract This chapter presents a series of analytical results that serves as theoretical
basis for numerical study of electromagnetic wave transformations in
two-dimensionally periodic structures. Among them is the solution of the important
problem of truncation of the computational space by artificial boundaries. The author
establishes and analyzes fundamental characteristics of transient and steady-state fields
in the regular part of the rectangular Floquet channel. For the first time, strict corollaries
of Poynting’s complex power theorem and Lorentz’s lemma (the energy-balance
equations and reciprocity relations) is presented for two-dimensionally periodic gratings
of finite thickness illuminated by transverse-electric or transverse-magnetic plane
waves. The method of transport operators (a space-time analogue of the generalized
scattering matrices), developed in the chapter, can significantly reduce the computa-
tional resources required for calculation of wave scattering by multilayer periodic
structures or by the structures on thick substrates. A number of questions concerning
the spectral theory of two-dimensionally periodic gratings is answered—it is the result,
which is essential for a reliable physical analysis of the resonant scattering of pulsed
and monochromatic waves.

4.1 Introduction

Rigorous models of one-dimensionally periodic diffraction gratings made their
appearance in the 1970s, when the corresponding theoretical problems had been
considered in the context of classical mathematical disciplines such as mathematical
physics, computational mathematics, and the theory of differential and integral
equations. Periodic structures remain the subject of considerable attention. They are
among the most called-for dispersive elements that provide efficient polarization,
frequency, and spatial signal selection. Fresh insights into the physics of wave
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processes in diffraction gratings are being implemented into radically new devices
operating in gigahertz, terahertz, and optical ranges, into new materials with
inclusions ranging in size from micro- to nanometers, and into novel circuits for
in situ measurements.

However, the potentialities of the classical two-dimensional models [1-7] are
limited. The modern theory and practice invite further investigation of
three-dimensional, vector models of periodic structures in increasing frequency. It
is quite reasonable to base these models on the time-domain (TD) representations
and implement them numerically by the mesh methods [8, 9]. It follows from the
well-known facts: (i) TD-approaches are free from the idealizations inherent in the
frequency domain; (ii) they are universal owing to minimal restrictions imposed on
geometrical and material parameters of the objects under study; (iii) they allow
explicit computational schemes, which do not require inversion of any operators
and call for an adequate run time when implementing on present-day computers;
(iv) they result in the data easy convertible into a standard set of frequency-domain
characteristics. It should be also noted that in recent years both local and nonlocal
exact absorbing conditions (EACs) have been derived and tested [6, 7]. They allow
one to replace an open initial boundary value problem that occurs in electrody-
namic theory of gratings with a closed problem. In addition, one can invoke the
efficient fast Fourier transform accelerated finite-difference and finite-element
schemes with EACs for characterizing different resonant structures [10, 11].

It is evident that the numerical algorithm solving a grating problem must be
stable and convergent, computational error must be predictable, while the numerical
results are bound to be unambiguously treated in physical terms. To comply with
these requirements, it is important to theoretically justify each stage of the modeling
process (formulation of boundary value or initial boundary value problems,
determination of the correctness classes for them, analysis of singularities of the
analytical continuation for the solutions of model boundary value problems into a
domain of complex-valued frequencies, etc.).

Here we present a series of analytical results that provide the necessary theo-
retical background for the numerical solution of the initial boundary value problems
associated with two-dimensionally periodic structures. First, we give general
information required to formulate a model electrodynamic problem in a grating
theory. Then, in Sects. 4.3 and 4.4, we dwell on the correct and efficient truncation
of the computational space when solving the problems of spatial-temporal wave
transformations in two-dimensionally periodic structures. Some important charac-
teristics and properties of transient and steady-state fields in the regular parts of the
rectangular Floquet channel are discussed in Sects. 4.5 and 4.7. In Sect. 4.6, the
method of transformation operators (the TD-analog of the generalized scattering
matrix method) is described; by applying this method, we can optimize the com-
putational resources used in the calculation of multi-layered periodic structures or
structures on thick substrates. In Sect. 4.8, we give the elements of the spectral
theory for two-dimensionally periodic gratings in view of its importance in physical
analysis of resonant scattering of pulsed or monochromatic waves by open periodic
resonators.
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4.2 Fundamental Equations, Domain of Analysis, Initial
and Boundary Conditions

Space-time and space-frequency transformations of electromagnetic waves in
diffraction gratings, waveguides, open resonators, radiators, etc. are described by
the initial boundary value problems and boundary value problems for Maxwell’s
equations. In this chapter, we will consider the problems of the electromagnetic
theory of gratings resulting from the following system of Maxwell’s equations for
the waves propagating in stationary, locally inhomogeneous, isotropic, and fre-
quency dispersive media [9, 12]:

rotFI(g, )= ’10 8[E(g, 0 Xsa(;g’ 2 E(g’ t)] (4.1)

+ 1,(8.1) * E(g,1) +J(g.1),

AH(g,1) + 7,(g,1) = H(g. 1))
ot '

rotE(g, 1) = — 1, (4.2)

Here, g = {x,y,z} isa point in the three-dimensional space R3; x, y, and z are the
Cartesian coordinates; E(g,?) = {E,,E,,E,} and H(g,t) = {H,, H,,H,} are the

electric and magnetic field vectors; 17y = (uy/ 60) /2 is the intrinsic impedance of
free space; &y and y, are the permittivity and permeability of free space; f(g, 1) is the
extraneous current density vector; y,(g,?), x,(g,t), and x,(g,) are the electric,
magnetic, and  specific  conductivity  susceptibilities;  fi () x f2(f) =
[ fi(t = 1)f>(z) dx stands for the convolution operation. We use the SI system of
units. From here on we will use the term ‘time’ for parameter 7, which is measured
in meters and has the meaning of the product of the natural time and the velocity of
light in vacuum.

With no frequency dispersion in the domain G C R?, for the points g € G we
have

1:(8,1) = 0(0)[e(g) — 1], x.(g:t) =0(0)[u(g) — 1],  1,(g1) = d(t)a(g),

where 0(¢) is the Dirac delta-function; &(g), u(g), and o(g) are the relative per-
mittivity, relative permeability, and specific conductivity of a locally inhomoge-
neous medium, respectively. Then (4.1) and (4.2) take the form:

otf(s.) = 15" o() LED L o(Ben s, @43)

rotE (g, 1) = —nou(g) 1S (44)
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In vacuum, where we have ¢(g) = u(g) = 1 and a(g) = 0, they can be rewritten
in the form of the following vector problems [6]:

{ [A_graddiv_aa_;]ﬁ(gat):ﬁE(gat), FE(gvt):nO%;(g,[) (45>
D H(g,1) = —ny'rotE(g, 1),
or
{ [A - %}FI(&I) = Fy(g.1); Fulg,1) = —rotj(g,1) (4.6)
o' ZE(g,1) =rotH (g,1) — j(g,1) .

By A we denote the Laplace operator. As shown in [6], the operator grad divE
can be omitted in (4.5) due to the following reasons. By denoting the induced and
external electric charge volume density through p,(g,) and p,(g, ), we can write
grad divE = ¢y 'grad(p; + p,). In a homogeneous medium, where ¢ and o are
positive and non-negative constants, respectively, we have
p1(8,t) = p1(8,0) exp(—tnyo/e), and if p,(g,0) =0, then p,(g,1) =0 for any
t > 0. The remaining term ¢ 'gradp, can be moved to the right-hand side of the
wave equation in (4.5) as a part of the function defining current sources of the
electric field.

To formulate the initial boundary value problem for hyperbolic equations (4.1)—
(4.6), one should add initial conditions at # = 0 and boundary conditions on the
external and internal boundaries of the domain of analysis Q [13]. In 3-D vector or
scalar problems, the domain Q is a part of the R*-space bounded by the surfaces S
that are the boundaries of the domains intS, filled with a perfect conductor:
Q = R3\intS. In the so-called open problems, the domain of analysis may extend to
infinity along one or more spatial coordinates.

The set of boundary conditions for the initial boundary value problems is for-
mulated in the following way [12]:

e the tangential component of the electric field vector is zero on a perfectly
conducting surface S at all times ¢

Ey(8.1),cg=0 for 120 (4.7)

e the normal component of the magnetic field vector on S is equal to zero
(Fln,(g,t)’g <s= 0), and the function H,g(g,t)’g . defines the so-called surface

currents generated on S by the external electromagnetic field;
e on the surfaces S**°, where material properties of the medium have disconti-

nuities, as well as all over the domain Q, the tangential components E,g (g,t) and
I?Itg (g, 1) of the electric and magnetic field vectors must be continuous;
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e in the vicinity of singular points of the boundaries of Q, i.e. the points, where the
tangents and normals are undetermined, the field energy density must be spa-
tially integrable;

e if the domain Q is unbounded and the field {E (g,1),H(g, 1)} is generated by the
sources that have bounded supports in Q, then for any finite time interval (0,7
one can construct a closed virtual boundary M C Q sufficiently removed from
the sources such that

{E(¢.1).H(8.0)} | yent re0 = O- (4.8)

The initial state of the system is determined by the initial conditions at # = 0.
The reference states E"(g,O) and ﬁ(g, 0) in system (4.1), (4.2) or in system (4.3),
(4.4) are the same as E(g,0) and [8E(g, 1)/ 01] |l:0 (H(g,0) and [8ﬁ(g, 1)/ 0t] |t:0)
in the differential forms of the second order (in terms of #), to which (4.1), (4.2) or
4.3), (4.4) are transformed if the vector H (vector E) is eliminated (see, for

example, system (4.5), (4.6)). Thus, (4.5) should be complemented with the fol-
lowing initial conditions

E(g,0) = 3(s), =y(g); g€Q (4.9)

The functions 3(g), ¥(g), and F(g, 1) (we will call them the instantaneous and
current source functions) usually have limited support in the closure of the domain
Q. It is the practice to divide the current sources into hard and soft ones [9]: soft
sources do not have material supports and thus they are not able to scatter elec-
tromagnetic waves. Instantaneous sources are obtained from the pulsed wave

Ui(g,) exciting an electrodynamic  structure:  §(g) = U'(g,0) and
U(g) = [0 fﬁ(g,t)/@t]‘ R The pulsed signal U'(g,7) itself should satisfy the

1=

corresponding wave equation and the causality principle. It is also important to
demand that the pulsed signal has not yet reached the scattering boundaries by the
moment ¢ = 0.

The latter is obviously impossible if infinite structures (for example, gratings) are
illuminated by the plane pulsed waves that propagate in the direction other than the
normal to certain infinite boundary. Such waves are able to run through a part of the
scatterer’s surface by any moment of time. As a result, a mathematically correct
modeling of the process becomes impossible: the input data required for the initial
boundary value problem to be set are defined, as a matter of fact, by the solution of
this problem.
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4.3 Time Domain: Initial Boundary Value Problems

The vector problem describing transient states of the field nearby the gratings,
whose geometry is presented in Fig. 4.1, can be written in the form

ol (g.r) = gt O L ) E(n) +(z.),
(g r) = g I v eQ 150
E(2,0) = ¢u(g), H(g0)=au(g); g€Q

=

E’g(g7 t) |gES

=

07 Hnr(gat)|ges: O; t>0.

(4.10)

Here, Q is the closure of Q; y,(g,7), 1,(g,1), and y,(g,7) are piecewise con-
tinuous functions and the surfaces S are assumed to be sufficiently smooth. From
this point on, it will be also assumed that the continuity conditions for tangential
components of the field vectors are satisfied, if required. The domain of analysis
Q = R*\intS occupies a great deal of the R3-space. The problem formulated for
that domain can be resolved analytically or numerically only in two following
cases:

e The problem (4.10) degenerates into a conventional Cauchy problem (intS = (),
the medium is homogeneous and nondispersive, while the supports of the

functions F(g, 1), 3(g), and y/(g) are bounded). With some inessential restric-
tions for the source functions, the classical and generalized solutions of the

Fig. 4.1 Geometry of a
two-dimensionally periodic
grating
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Cauchy problem do exist; they are unique and described by the well-known
Poisson formula [13].
e The functions F(g,1), 3(g), and 1//( ) have the same displacement symmetry as
the periodic structure. In this case, the domain of analysis can be reduced to
V= {g€Q:0<x<l;0<y<l,}, by adding to problem (4.10) periodicity
conditions [7] on the lateral surfaces of the rectangular Floquet channel
R={geR:0<x<l;0<y<l}.

The domain of analysis can also be reduced to Q" in a more general case. The
objects of analysis are, in this case, not quite physical (complex-valued sources and
waves). However, through simple mathematical transformations, all the results can
be presented in the customary, physically correct form. There are several reasons (to
one of them we have referred at the end of Sect. 4.2) why the modeling of phys-
ically realizable processes in the electromagnetic theory of gratings should start
with the initial boundary value problems for the images fV(g,1, ®,, D) of the
functions f(g, t) describing the actual real-valued sources:

flg,t) = f(z,t,®,, ®,) exp(27i®, ) exp(Zm(DVI )dD,dD,
o (4.11)
- [ [ Fereso)ao,

From (4.11) it follows that

fN 2111‘13 L
f <x+lx7Y7Z Z, (Dx»(Dy> = f Ox ()C Y, 3,1, (qu))
N
Qy

f { f:}(x y+1,z,t, @, @) = PN { }(x y,2,1, @, @),
or, in other symbols,
D[f"](x+1L.,y) = ™™ D[f"](x,),
D[] (x.y+1) = D[] (x,).
The use of the sources (g, t, ®,, ®,) satisfying the foregoing conditions and

superposition principle truncates the domain of analysis to the domain QV, which is
a part of the Floquet channel R. Hence we can rewrite problem (4.10) in the form
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rotA™ (g, 1) = n(il o[E (gyt)ﬂégg,t)*E (¢1)]
+ %1,(g:1) * EN (g, 1)+ /¥ (g, 1),
rotEV (g,7) = —np [H & ’”ﬁ;fg daiil ) ;i geqQY, >0
EN(g,0) = 3Y(s), H"(3,0) = @y(s); gEQN (4.12)
D[EY (HY)] (L, y) = “®D[EN (HY)](0,y) for 0<y<l,
D[EN (HY)] (x,1,) = " D[EV (H)](x,0) for 0<x<I,,
and Eg(g,t)‘ =0, Hm(& )‘ =0; >0,
ges
o0 o0
E(g,1) = EN(g.1,®,, D,)dD,dD,
o (4.13)
H(g,t) = / / A" (g,1, @y, ®,)dD,dD, .

It is known [6-8] that initial boundary value problems for the above discussed
equations can be formulated such that they are uniquely solvable in the Sobolev
space W) (QT), where Q' =Q x (0,T) and 0<t<T<oco (the observation
interval). On this basis, we will suppose in the subsequent discussion that the
problem (4.12) for all ¢+ € [0,7] has also a generalized solution from the space
W3 (Q"") and that the uniqueness theorem is true in this space. Here symbol x’
stands for the direct product of two sets, (0,7) and [0, 7] are open and closed
intervals, W” (G) is a set of all elements f(g) from the space L,,(G) whose gen-
eralized derivatives up to the order n inclusive also belong to L,,(G), L,,(G) is the
space of the functlons f {fx, S fz} (for g € G), such that the functions

" If(2)

" and |f;( )| are integrable on the domain G.

4.4 Exact Absorbing Conditions for the Rectangular
Floquet Channel

In this section, we present analytical results relative to the truncation of the com-
putational space in open 3-D initial boundary value problems of the electromagnetic
theory of gratings. In Sect. 4.3, by passing on to some special transforms of the
functions describing physically realizable sources, the problem for infinite gratings
have been reduced to that formulated in the rectangular Floquet channel R or, in
other words, in the rectangular waveguide with quasi-periodic boundary conditions.

Now we perform further reduction of the domain QV to the region QY =
{g ceQV: g <L} (all the sources and inhomogeneities of the Floquet channel R
are supposedly located in this domain). For this purpose the exact absorbing
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conditions [6, 7, 10, 14, 15] for the artificial boundaries L. (z = £L) of the domain
QILV will be constructed such that their inclusion into (4.12) does not change the
correctness class of the problem and its solution EN (g, 1), HV (g, 1).

From here on we omit the superscripts N in (4.12). By applying the technique
similar to that described in [14, 15], represent the solution E (g,1) of (4.12) in the
closure of the domains A={g€R: z>L} and B={g€R: z< — L} in the
following form:

o]

E(g,)= Y iy (@0im(y); {xy} Ry 120, (4.14)

n,m=—00

where the superscript ‘+’ corresponds to z > L and ‘-’ to z < — L and the following

notation is used: R. = (0<x<l) x (0<y<l); {tm (%, )}
(n,m=0,%+1,£2,...) is the complete in L,(R;) orthonormal system of the
functions Ly (%, ) = exp(ict,x)exp(iB,,y) /1/Lily; o, = 21(D, +n) /L,

B, = 2n(®y+m)/l,, and 2 = o2+ . The space-time amplitudes it (z,1)
satisfy the equations

{[—g—;+g—;—iﬁm]ﬁjm(z7t) —0; >0 s
ﬁin(zv O) =0, %ﬁfm(za t)|l:0: 0

for z>L and z< — L. Equations (4.14) and (4.15) are obtained by separating
variables in the homogeneous boundary value problems for the equation
[A—9*/9*]E(g,1) = 0 (see formula (4.5)) and taking into account that in the
domains A and B we have grad divE(g,7) = 0 and Fz(g,7) = 0. It is also assumed
that the field generated by the current and instantaneous sources located in Q; has
not yet reached the boundaries Ly by the moment of time ¢ = 0.

For the solutions i, (z,t) of the vector problems (4.15), as well as in the case of
the scalar problems [14, 15], we can write

t
lhpy (£L,1) = F / Jo[Aum (t — )]l (L, T)d7; > 0. (4.16)
0

The above formula represents nonlocal EACs for the space-time amplitudes of
the field E (g,1) in the cross-sections z = £L of the Floquet channel R. The exact

nonlocal and local absorbing conditions for the field E'(gj) on the artificial
boundaries Ly follow immediately from (4.16) and (4.14):
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Lol 3 (4.17)
Ho (%, 9)dXdY | dT 0 (%) 5

{x,y} eR,, >0

and
/2
oWz t _
E(x,y, £L,1) = / Wm; {x.y} €ER, 120,  (418a)
T
0
[Z sin w(%zﬁra"—] oyt ) = JF%;“) . Wy eR, >0
-
Wi (v, 0)] = 552 =0 {xy) R,
[ Ei] (L, y *ezm%D[WEi](O y) for 0<y<l, and

\_/v

= D[WE](x,0) for 0<x<l; ¢>0.

D[Wi] (x.1y

(4.18b)

Here, &, (+L,t) = diiy,, (2,7)/0z| _,,, Jo(...) is the zero-order Bessel func-

tion, the superscript ‘x’ stands for the complex conjugation operation, Wgt (x,y,t, 9)
are some auxiliary functions, where the numerical parameter ¢ lies in the range
0<p<m/2.

It is obvious that the magnetic field vector H (g, ¢) of the pulsed waves U(g, 1) =
{E (g,1),H(g, 1)} outgoing towards the domains A and B satisfies similar boundary
conditions on L. The boundary conditions for E(g,7) and H(g,t) (nonlocal or
local) taken together reduce the computational space for the problem (4.12) to the
domain Q; (a part of the Floquet channel R) that contains all the sources and
obstacles.

Now suppose that in addition to the sources j(g,7), $z(g), and @ (g), there exist
sources (g, 1), Pulg ) and @4 (g) located in A and generating some pulsed wave
U’ (g,1) {E’ g, 1) H’ g,t)} being incident on the boundary L, at times ¢ > 0.
The field U’(g, t) is assumed to be nonzero only in the domain A. Since the
boundary conditions (4.17), (4.18a, 4.18b) remain valid for any pulsed wave out-
going through L. towards z = +oo [14, 15], then the total field {E(g, 1),H(g, 1)} is
the solution of the initial boundary value problem (4.12) in the domain Q; with the



4 Two-Dimensionally Periodic Gratings ... 197

boundary conditions (4.17) or (4.18a, 4.18b) on L_ and the following conditions for
the artificial boundary L

t

ES(%%LJ):— Z /JO[)Vnm(t_T)]
Lo by 4.19)
c'?Exy,z, e e e o (4.
/ / L (%, 3)dXA | dT 5 (X, ¥) 5
00 —L

{x,y} €R,, >0

or

8W ('x?y?t?(p)

E'(x,y,L,1) = %

de; {x,y} €R,, >0, (4.20a)

:l
O\%

[gtz sin 90<32+ )}WE(X)’J ®) = aEiT(f,j)Z:L§ {x,y} €R;,, t>0
IW3 (x,y,t,

Wit 0)], = PG =00 fno} e

D[ ,}] l,y) = e2"®D[Wg](0,y) for 0<y<I, and

D[W] (x, )762”’®)‘D[Wg}(x,0) for 0<x<l; >0.

(4.20b)

Here, U*(g,1) = {E*(g,1),H*(g,1)} = U(g,1) — U'(g,1) (g € A, t>0) is the
pulsed wave outgoing towards z = +oco. It is generated by the incident wave
U(g,1) (‘reflection’ from the virtual boundary L | ) and the sources j(g,7), 5 (g).
and Gy(g).

4.5 Some Important Characteristics of Transient Fields
in the Rectangular Floquet Channel

For numerical implementation of the computational schemes involving boundary

conditions like (4.19) or (4.20a, 4.20b), the function ﬁi(g, t) for t € [0, 7] and its
normal derivative with respect to the boundary L ; are to be known. To obtain the

required data for the wave U’ (g,1) generated by a given set of sources fA(g,t),
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#2(g), and @7 (g), the following initial boundary value problem for a regular
hollow Floquet channel R is to be solved:

mﬁ/*/@t—&—s gradpd | [ Fp
[ +AHH'} { —rot B FA

g={xy,z} €R, >0

ézﬁ"(g, 1/0t| _,= norotfliﬁg,O) 1//E
OH'(g,1)/01],_y= —1; '1otE'(g,0) v (4.21)

HEIRE S

8 €
DIE(H)] () = & DIE(A)] (0.3) for 0<y<l, and
(7

DIE()) (1.1) = D[E(H)|(x,0) for 0<x<i 120,

The function p5(g,t) here determines the volume density of foreign electric
charge.

First we determine the longitudinal components E! and H' of the field {E', H'}
at all points g of the domain R for all times ¢ > 0. Let us consider the scalar initial
boundary value problems following from (4.21):

E Fy
[—%JrA]{ Z} Tl geR >0

A

Fz,H

{ E!(g,0) } oy { OE.(g,1) /01| _, } Wiy e
‘ = ; . = ;8

H;(g70) QD?H aH;(gvt)/al},:() l//?[-]

D[EL(H]) (L, y) = *™®*D[EL(H])](0,y) for 0<y<l, and

D[EL(H])](x,l,) = *™®DI[EL(H])](x,0) for 0<x<l; 1>0.

(4.22)

By separating the transverse variables x and y in (4.22), represent the solution of

the problem as
E;(ga t) > Vim(z,E) (Za t)
. = ’ Fm (X, ) (4.23)
{ H(g,1) 2

nm=—oo \ Vam(z,H) (Z7 t)

To determine the scalar functions v,,,(; g) (2, t) and v, (. g (2, 1), we have to invert
the following Cauchy problems for the one-dimensional Klein-Gordon equations:
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A
Ry V@0 | [ Fone |
o7 T o2 T P B ’
! ¢ o Vim(z,H) (Zv t) Fr?m(z.,H)

t>0, —oco<z<o0

{ Vim(z,E) (Z,O) } _ { (/)Sm(z,E) } 6{ Vim(z,E) (Z7 t) }
Vim(z,H) (Za 0) (psm(sz) T Vim(z,H) (Za t)

—oco<z<oo, nm=0,+1,£2,....

. { lPnAm(zE) }
= A ;
=0 lan(z,E)

(4.24)

A A .
Here F rﬁn(z,E), (pjm@E), Vym(o,) and F, ,‘:‘m(Z‘H), (me(z,m’ Yoz are the amplitudes
of the Fourier transforms of the functions F2;, ¢, Y2 and F2,, o2,. 2, in the
baSiC Set {ﬂn’n (x7 y)}n,m.
Let us continue the functions vy, £)(z, 1), Vum(z,m)(2, 1) and F, ,’fm(z‘E), F ,fm<z u) by

zero on the semi-axis # <0 and pass on to the generalized formulation of the Cauchy
problem (4.24) [13]:

Vim(z,E) (Z7 t) o2 o? 2 Vim(z,E) (Z7 t)
B()vnm) l = |:_8l2 + (9722 - /an:|

Vm(z,H) (Z7 t) Vm(z,H) (Z7 t)

_ Fr/?m(z.E) s ¢211(1,E) s ‘/fﬁmg,E) _ {fnm(z,E) };
Fel) Pt Vinn(e.) Jom(z,H)
—oco<z<o0, —oo<t<oo, nm=1,£2,£3 ...,
(4.25)

where d(¢) and 6" (z) are the Dirac delta-function and its derivative of the order
m. Taking into account the properties of the fundamental solution G(z,t,1) =

—(1/2) x(t = |2])Jo(AV12 — 22) of the operator B(Z) [6, 14, 15] (x(z) is the
Heaviside step function), the solutions v,,(.,g)(z, ) and vy(.m) (2, 1) of (4.25) can be

written as
Vam(z,E (Za t) fnm E
{ - }=G<z7z,ﬂvnm>*{ : >}
Vim(z,H) (Za t) fnm(z,H)
t—z—o]

— [ (e )
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nm(z,E) (1) nm(z,E) nm(z,E) .
X -9 (t){ —0()9 A dodr |;
<{ Flf‘m(z H) @;?m(ZH) lpnm(z,H) (426)
—oco<z<oo, t>0, nm=1,£2,4£3,....

Relations (4.23) and (4.26) completely determine the longitudinal components
of the field {E', H'}.

Outside the bounded domain enclosing all the sources, in the domain G C R,
where the waves generated by these sources propagate freely, the following rela-
tions [6, 15] are valid:

i (PUE _ PUM 2 PUE Pu PUE _ PUE\z
E = (0xaz 8y0t)x+ (ayaz + axaz)y+ ( o or )Z

(4.27)
s ) o r)ZUI: 72UH ?2Ub -')ZUH - OZUH OZUH -
WOHZ - <(8yaz + (dxaz) + (_ (Bx[“)t + ([“)yaz)y+ ( 02 o )Z :
Here,
(o)
Ut (g, ) = D o (2, ) ttm(x,y) (4.28)
n,m=—00

are the scalar Borgnis functions such that [A — & /0| [0UH (g,1)/01] = 0.

Equations (4.23), (4.26)—(4.28) determine the field {E’ , H i} at all points g of the
domain G for all times ¢ > 0 provided that 4,,, # 0 for all n and m. The opposite
case requires special consideration. Really, since at the time point # = 0 the domain
G is undisturbed, then we have [A — / 8t2] UEBH =0 (g € G, t > 0). Hence, in
view of (4.27), (4.28), it follows:

PUE  9*UF PUE  9PUF o
Ez—a—zz‘w—‘<axz ) 2 Pttt

nm=—0o0

Ut oruf 32UH o*ut
nOHZ = - = - ( > Z )“nm nm:unm

072 or? Ox?

nm=—0o0

and (see representation (4.23))

lfifm(Z, t) = (;“nm)izvnm(aE) (Zv t)a unH(Za t) = no(ﬂvnm)izvnm(z,H) (Za t)' (4'29)

Hence the functions U5# (g, 1) as well as the transverse components of the field
{Ei ,ﬁi} are determined.

The foregoing suggests the following important conclusion: the fields generated
in the reflection zone (the domain A) and transmission zone (the domain B) of the
periodic structure are uniquely determined by their longitudinal (directed along z-
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axis) components which can be represented in the following form (see also for-
mulas (4.14) and (4.23)). For the incident wave we have

Ei 7[ l > Viam 7t —
Z,-(g) = E )51 o (X,¥); g €A, >0,  (4.30)
Hz(gvt) Vnm(z,H)(Zat)

for the reflected wave U*(g,7) (which coincides with the total field U(g,z) if
Ui(g,1) = 0) we have

s +
{ Ez (g’ t) or Ez(gv t) } - unm(Z,E) (Z’ t) _

= > m(X,y); g€A, >0,
Hi(g,1) or Hig,0) | witoo | b (@t

n,m=—00

(4.31)

and for the transmitted wave (coinciding in the domain B with the total field
U(g,1)) we can write

{ E.(g,1) } _ i { MEm(Z,E) (z,1) },Llnm(x7 y); g€B, t>0. (4.32)

Hz(g7 l) nm——oo \ Ynm(z,H) (Z’ )

In applied problems, the most widespread are situations where a periodic
structure is excited by one of the partial components of TE-wave (with E;'(g, t) =0)
or TM-wave (with Hé(g7 t) = 0) [7]. Consider, for example, a partial wave of order
pq. Then we have

ﬁi(gvl) = l_j;;q(H)(g) t) : Hé(gat) = qu(z,H)(Zv t):upq(xvy)

or

U'(g,1) = Ul (8:1) = EL(8,1) = Vpg(e) (2 1) g (. ).

The excitation of this kind is implemented in our models in the following way.
The time function v, #)(L, ) OF V(. ) (L, ) is defined on the boundary L, . This
function determines the width of the pulse U i(g,1), namely, the frequency range
[K1, K>] such that for all frequencies k from this range (k = 27/4, A is the wave-
length in free space) the value

| ;pq(z,H or E) (L, k) }

~ i L,k ’
% [Vt or ) (LK)

where Vo por ) (L, k) is the spectral amplitude of the pulse Vigi.por ) (L),

exceeds some given value y = y,. All spectral characteristics f (k) are obtainable
from the temporal characteristics f(¢) by applying the Laplace transform
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oo

ot + 00
flk) = / fnedr  — f(;):% / f(k)e ™ dk; 0<a<Imk. (4.33)

0

For numerical implementation of the boundary conditions (4.19) and (4.20a,
4.20b) and for calculating space-time amplitudes of the transverse components of

the wave U’ (g, 1) in the cross-section z = L of the Floquet channel (formulas (4.27)
and (4.29)), the function (vyq(. or E))/(L, t) is to be determined. To do this, we
apply the following relation [7, 15]:

t

Bttt or ) (L 1) = / oLt =] Grar ) (Lox)dT: 120, (434)
0

which is valid for all the amplitudes of the pulsed wave U (g, 1) outgoing towards
z = —o0 and does not violate the causality principle.

4.6 Transformation Operator Method

4.6.1 Evolutionary Basis of a Signal and Transformation
Operators

Let us place an arbitrary periodic structure of finite thickness between two homo-
geneous dielectric half-spaces z; =z —L >0 (withe=¢)) and zp = —z—L >0
(with & = &). Let also a local coordinate system g; = {x;,y;,z;} be associated with
each of these half-spaces (Fig. 4.2).

Assume that the distant sources located in the domain A of the upper half-space
generate a primary wave Ul(g,t) = {E’l (g,1), Hi(g, 1)} being incident on the
artificial boundary L (on the plane z; = 0) as viewed from z; = co. Denote by
17]-5 (g,1) = {l_'f; (g,t),FIjs (g,t)} the fields resulting from scattering of the primary

wave Ui(g,f) in the domains A (where the total field is
U(g,1) = {E(s,1),H(g,1)} = Uj(g,1) + Uj(g,1)) and B (where U(g,1)=
[7; (g,1)). In Sect. 4.5, we have shown that the fields under consideration are uniquely
determined by their longitudinal components, which can be given, for example, as:

{ E;(g7t) } = i { Vnm(l’E)(th) }:unm(xvy); 2120, >0, (435)

Hé(g, t) nm=—oo | Vnm(1,H) (Z17 t)
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Fig. 42 A
two-dimensionally periodic
grating between two dielectric
half-spaces as element of a
multi-layered structure

Hg(ga t) nm=—oo \ Unm(j,H) (Zja t)

E )1 - Upm(j Zj, 1
{ Z(g )} = Z { U7E>(J ) }unm(xay); ijoa IZ(), .1: 1a2

(4.36)

(see also formulas (4.30)—(4.32)). Here, as before, {t,,,(x,y)},; oo 15 the com-
plete (in L,(R;)) orthonormal system of transverse eigenfunctions of the Floquet
channel R (see Sect. 4.4), while the space-time amplitudes u,, r) (zj, t) and
Upm(j,H) (zj, t) are determined by the solutions of the following problems (see also

problem (4.15)) for the one-dimensional Klein-Gordon equations:

_Sj% + g*z}*;“ﬁm Upm(j,E or H) (Zj,t) = O, > 0
’ 4.37
Upm(j,E or H) (Z;h O) =0, %unm(j,E or H) (Zj, l‘) |l:0: 0 ( )

>0, j=12, nm=0+1,42,. ...

Compose from the functions Viu(1£)(21,%)s V(1) (2152)s  Unm(iE) (zj, t),
uan H) (z], t) and the eigenvalues 1,, @®,m=0,+1,42 ...) the sets
Z17 {Vp Z17 }p:—oo’ (ZJ7 ) {Ltp (Z]7 )} =—00" and {i }p—foo
such that their members are deﬁned according to the rules depicted in Fig. 4.3. The
sets v(1) (21, 7) and u(;) (2, 1) are said to be evolutionary bases of signals l7’1 (g,1) and

U; (g,1). They describe completely and unambiguously transformation of the
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p=0,12,...
m,n=0,%£1,%£2,...

A 2,

vnm(l,E) 2 unm(j,E) - vp(l) > uﬂ(j)

p=-1,-2,-3,...
m,n=0,£1,£2,...
Aorm —>Ap
v u

nm(1,H)? “ nm(j,H) - VP(I)’up(j)

Fig. 4.3 Construction of sets of the values v, ), u,(), and 4,(p = 0, £1, £2, ...) from sets of
the values Vim(1,E) s Unm(j,E) s Vam(1,H) > Unm(j,H)» and /lnm(m’n =0, =1, £2, .. ) ap= 0, 1,2, ..

bp=-1,-2 -3, ..

corresponding nonsine waves in the regular Floquet channels A and B filled with

dielectric.

Let us introduce by the relations

0
%mfmﬁ)zgf%wﬂ%ﬁ

t

/,
t>0,

ZJ z,-:O

o0

> [She = )0] + S = )07 vy (0, 7) d

=—00

p=0,+1,£2,...,

(4.38)

J=12,
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"0,1) = {up Ot}_[SAA(SHLSBAéZM (0,7)]; >0, j=1,2
(4.39)

the boundary (on the boundaries z; = 0) transformation operators SAA and SBA of
the evolutionary basis v()(z1,) of the wave Ui (g,t) incoming from the domain A.
Here 0", stands for the Kronecker delta, the operators’ elements S&Y specify the
space-time energy transformation from the domain Y into the domain X and from
the mode of order m into the mode of order n.

It is evident that the operators S** and S®A working in the space of evolutionary
bases are intrinsic characteristics of the periodic structure placed between two
dielectric half-spaces. They totalize an impact of the structure on elementary
excitations composing any incident signal Ui(g,7). Thus for v1)(0,2) =
0,0(t — n), where r is an integer and 7 > 0, we have u,1)'(0,7) = SﬁrA(t —1n) and
Uy (0,1) = SgrA(t —17). We use this example with an abstract nonphysical signal
by methodological reasons, in order to associate the transformation operators’ com-
ponents SHA(r — ) and SpA (1 — 1) with an ‘elementary excitation .

The operators S and SPA determine all the features of transient states on the
upper and bottom boundaries of the layer enclosing the periodic structure.
Secondary waves outgoing from these boundaries propagate freely in the regular
Floquet channels A and B therewith undergoing deformations (see, for example,
[6]). The space-time amplitudes u,,(;)(z;, #) of the partial components of these waves
(the elements of the evolutionary bases of the signals UJ‘? (g, 1)) vary differently for
different values of p and j. These variations on any finite sections of the Floquet
channels A and B are described by the diagonal transporting operators Z{)LZ1 and
7B

0,» Which act according the rule:
2

)(z1) {”p (gt }

) (4.40)
= |: 0—z; 5]1 0~>125]2:| [ (0’ T)]’ J= 1’ 2 :

The structure of the operators given by (4.40) can be detailed by the formula

(51) = 1/f AP Py (0,7)d
Up(j)\Zj» - 0|4 —Z | X — % | Upg) (U, T)at;
P(]) J 8]0 P 8] ] \/8_] ] p(/)

1>0, >0, p=0,+1,42,..., j=12,

(4.41)

which reflects general properties of solutions of homogeneous problems (4.37), i.e.
the solutions that satisfy zero initial conditions and are free from the components
propagating in the direction of decreasing z;. The derivation technique for (4.41) is
discussed at length in [6, 14, 15].
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4.6.2 Equations of the Operator Method in the Problems
Jor Multilayered Periodic Structures

The operators S and SPA completely define properties of the periodic structure
excited from the channel A. By analogy with (4.38) we can determine transfor-
mation operators SBB and SAB for evolutionary basis vy (22,1) { ) (22, ¢ }p_ -

of the wave U2 g,1) {E (g, 1) Hé (g, t)} incident onto the boundary 722 = 0 from
the channel B:

- 1 2
up<j>’(oyf>:/ ) [Sﬁf( 7)9; +quB<"T)5} 2(0,7) dz; (4.42)
o "M )
£>0, p=0,41,42,..., j=12.

Let us construct an algorithm for calculating scattering characteristics of a
multilayered structure consisting of two-dimensionally periodic gratings, for which
the operators SAA, SBA, S?qB, and SBB are known. Consider a double-layer structure,
whose geometry is given in Fig. 4 4 Two semi-transparent periodic gratings I and
II are separated by a dielectric layer of finite thickness M (here ¢ = & (I) = ¢ (II))
and placed between the upper and the bottom dielectric half-spaces with the per-
mittivity & (I) and &, (II), respectively. Let also a pulsed wave like (4.35) be inci-
dent onto the boundary z;(I) = 0 from the Floquet channel A.

Retaining previously accepted notation (the evident changes are conditioned by
the presence of two different gratings I and II), represent the solution of the
corresponding initial boundary value problem in the regular domains A, B, and C

Fig. 4.4 Schematic drawing
of a double-layered structure
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in a symbolic form U(A)=3>"% _ Vo) (21 (1), 1) + w1y (21 (1), 1) 1, (x, ),
UB) =37 [p)(22(1), 1) + 1y (21 (1), 1) 1, (x,y), and  U(C) =22
up(2) (ZZ (H)v t):up (X, y)

The first terms here correspond to the waves propagating towards the domain C,
while the second ones correspond to the waves propagating towards the domain A

(Fig. 44). The set {u,(x,y) };C:foo is formed by the functions g, (x,y),
(n,m =0,41,42,...) just as the set {/1,, }50:700 is composed from the values 4,,,,

(n,m=0,x1,1£2,...) (see Fig. 4.3).
By denoting

9
uo' () = 5o GM,0] o up @ = {00} g

Zj(l):O

etc., and taking into account formulas (4.38)—(4.42), we construct the following
system of operator equations:

uy' (1) = SMI) vy (D] + AP D22 ) o [y (ID)]

u)' (1) = SBAT) vy ()] + SBBMZE, (1) [0y ()]

ey (1) = SPBNZE o ey (D)] (4.43)
up)' (1) = SCB (H)Zz() oﬁM[ )'(1 )]

Equations (4.43) clearly represent step-by-step response of the complex struc-
ture on the excitation by the signal 17’1 (g,1) with the evolutionary basis
vy ( = {v) };C (or simply v(;)(I)). Thus, for example, the first
equatlon can be 1nterpreted as follows The signal u(;)(I) (the secondary field in A)
is a sum of two signals, where the first signal is a result of the reflection of the
incident signal v(;)(I) by the grating I, while another one is determined by the signal
u(1y(I) being deformed during propagation in the channel B and interaction with
the grating I.

By method of elimination the system (4.43) is reduced to the operator equation
of the second kind

upy (1) = P40 vy ] + S0 ZE 1y—oprS™ D Z2 1 —ope [u2) (D] (4.44)

and some formulas for calculating the electromagnetic field components in all
regions of the two-layered structure. The observation time ¢ for the unknown
function u()'(T) from the left-hand side of (4.44) is strictly greater of any moment
of time t for the function u(;)(I) in the right-hand side of the equation (owing to
finiteness of wave velocity). Therefore (4.44) can be inverted explicitly in the
framework of standard algorithm of step-by-step progression through time layers.
Upon realization of this scheme and calculation of the boundary operators by
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(4.38), (4.42), the two-layered structure can be used as an ‘elementary’ unit of more
complex structures.

Turning back to (4.38)—(4.42), we see that the operators entering these equations
act differently than their analogues in the frequency domain, where the boundary
operators relate a pair ‘field — field’. Reasoning from the structure of the transport
operators Z¢ . and Zg__ (formulas (4.40) and (4.41)), we relate a pair ‘field —
directional derivative with respect to the propagation direction’ to increase
numerical efficiency of the corresponding computational algorithms.

4.7 Some Important Properties of Steady-State Fields
in the Rectangular Floquet Channel

4.7.1 Excitation by a TM-Wave

Let a grating (Fig. 4.1) be excited form the domain A by a pulsed TM-wave
Ui(ga t) = U[l)q(E)(g7l) : E;(g7t) = qu(z,E)(Za t),upq(x,y)

and the region Q; is free from the sources j(g,1), $z(g), and @y (g). The field
generated in the domains A and B is determined completely by its longitudinal
components. They can be represented in the form of (4.31), (4.32). Define
steady-state fields {E(g,k),ﬁ (g,k)} (see formula (4.33) with Imk = 0) corre-
sponding to the pulsed fields {E', H'}, {E*, H*} in A and the pulsed field {E, H} in
B, by their z-components [7]

Ei(g,k) Vpq(z.e) (k) |~ (c—1) <
z _ J Vpq(z, iTpg(z .
Ui =9 Je e seR
E; (g, k)} Z ey ®) | i) N
"Zv = ~ ’ el i :unm X,y ; g € A7 446
{H‘é (8:k) =00 urj;n(z‘H) k ) ( )

£ o u k ‘ —
(505} 5 (bt sen. am
nm=—o0 )

where  the following notation is  used:  Vpu ) (k) < Vpgror) (L 1),
0 ooy (8) = o (L, 1), and Ty = (2 —i2,)""% ReT,Rek >0,
ImI,, >0.

The amplitudes ﬁjm(z Eor H)(k) form the system of the so-called scattering
coefficients of the grating, namely, the reflection coefficients



4 Two-Dimensionally Periodic Gratings ... 209

B 1) (K) Bz, ) (K)
R = e ) = GRS = 0,£1,42,..., (4.48)
b Vpq(z.E) (k) b Vpq(z.E) (k)

specifying efficiency of transformation of pgth harmonic of a monochromatic TM-
wave into nmth harmonics of the scattered field {? , H s} in the reflection zone, and

the transmission coefficients

ik i (k
T =~”‘Z7H)(> ) :J"”(Z*—E)(); nom=0,+1,42,..., (4.49)
b Vog(z,) (k) b Vog(z.E) (K)

determining the efficiency of excitation of the transmitted harmonics in the domain
B.
These coefficients are related by the energy balance equations

SR ()2 4 2 —rl Re L
>l ) =i )

n,m=—00

pd(E)
1 Rel",,,,—l—ZImF,,,,ImR oE) 1 (W
= +— ; paq:07i17:|:27"'7
) (E)
p4(E)

pqE)’ |7

pqE)‘ +17

“pq | ImT», — 2Re T, Im R’ W2
(4.50)

= 2
W= [ ale,0[E(ek)| ds,
Q.

=

sz/ {uou(g,k)‘h;(g,k)‘2—808(g7k)‘§(g,k)ﬂdg-
QL

They follow from the complex power theorem (Poynting theorem) in the integral
form [12]

, (4.51)

EN dg,

zkno/,u’H‘ dg——/ ‘E’ dg—/

Q Q

where g(gvk) -1= is(g,k) A Xs(gvt)’ :u(gvk) -1= jfy(g7k) A Xy(gvt)’

o(g, k) = 7,(g8,k) < x,(g,1), and ds is the vector element of the surface St
bounding the domain Q. Equations (4.50), (4.51) have been derived starting from



210 L. Velychko

the following boundary value problem for a diffraction grating illuminated by a

plane TM-wave U o) (8 K) + Ei(g,k) = exp[—ilpg(z — L) 1y (x, ):

Norotf (g, k) = —ik(g, k)E(g, k),

rotE(g, k) = iknou(g,k)ﬁ (8,k); g€Q

DlE(7)] ) w0 (A0 o 05yt m
{133(1:17)} (x,0) for 0<x<l; |z]<L

) nm(E)
E.(g.k L . N Foute) ()
{ 2(8,k) } { }e Tl o)+ Y Rfuii:;) (4.52b)

=00 p4(E) (k)

~ 0o nm(E)
E.(g,k T k)| _
{~Z(g )} oo e e (e y); g €B. (4.52¢)
00 qu(E) (k)

nm=—

When deriving (4.50), we have also used the equations relating z-components of
the eigenmode of the Floquet channel

U(g, k) : E.(g,k) = Ae*™u(x,y) and H.(g,k) = Be* " p(x,y)
(subscripts nm are omitted) with its longitudinal components:

= ﬂkﬂoH al - = “kﬂoH BT -

E, = /12 T /12 E, Ey /12 Ez,

4.53
g -="Ly ., Prg g,::Fﬁ_Fg _ ok g 33
x 2z e 1/’0/12 29 y 2 7]0)»2 z

_ . —1/2 . .
Here, <g,k> = &(g,K) +ingo(g, k) [k, p(x,y) = (L)~ expliox)exp(ify).
k2 — 2%, and 2% = o + 2.
According to the Lorentz lemma [12], the fields {E<1),H(l)} and {E(2>,ﬁ<2>},

resulting from the interaction of a grating with two plane TM-waves

Uiy (g6 B (g,K) = exp [ —iTpg (B, By) (2 — )] 15 (x, 3, By, D)
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and

O e (g k) s B (g k) =exp[—iT_, (-, ~®,)(z — L)]

:ufr,fs (X,)% _(va _(Dy) )

U

satisfy the following equation

}[ (E“) x« 8%~ E¥ « F}“)) -ds = 0. (4.54)

Se

From (4.54), using (4.52b), (4.52c), and (4.53), we obtain

R;jg;) (@, ®,) 22, (B, D) Rj’r’;jfg (~ @0, —®,) 2, _, (~ Dy, —D,)

rpq ((DX’(D.V) a rfr,fs(_q)xy _(I)Y) 7
p,q,r,s =0,£1,£2,...

(4.55)

—the reciprocity relations, which are of considerable importance in the physical
analysis of wave scattering by periodic structures as well as when testing numerical
algorithms for boundary value problems (4.52a, 4.52b, 4.52c).

Assume now that the first wave

Si(1) ~i .
UPQ(E) (g’ k) : EZ(1>(g7k) = €xp [_lrpq ((D)” (D)’) (Z - L)} rupq (x7ya (I)x7 (Dy)
Si(1)
= qu(E) (g’ k7 A)

be incident on the grating from the domain A, as in the case considered above,
while another wave

l_]’lf(zr?fv(E) (ga ka B) : E;(Z) (g7 k) = eXp [irfr,fs (_(Dxa _(Dy) (Z + L)]

- ()C, Y, -0, _(D)’)

is incident from B. Both of these waves satisfy (4.54), whence we have

T (0.0, A)2,(2,0) T 00(-0,~0,.B)2, (<0, ~0))
rpq ((D)m (Dy) l—‘_r:_s(—(I)x7 _(I)y) )
p.q,r,s = 0,:|:1,:|:2, .

(4.56)
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4.7.2 Excitation by a TE-Wave

Let a grating be excited form the domain A by a pulsed TE-wave
Ui(gﬂ t) = U;;q(l-l) (ga t) : Hé(ga t) = qu(z,H) (Za t)upq(xa y)

and the region Q, is free from the sources j(g,1), $z(g), and @y (g). The field
generated in the domains A and B is determined completely by its longitudinal
components. They can be represented in the form of (4.31), (4.32). Define
steady-state fields { (g,k),H(g, k)} corresponding to the pulsed fields {E', H'},
{Es, HS} in A and the pulsed field {E, H } in B by their z-components as was done
for the TM-case (see (4.45)—-(4.47)). Introduce the scattering coefficients RZ';((:)) ,

ZZQ(HH;, TI’,’;'Z(E)) nd T"”E )) by the relations like (4.48), (4.49). These coefficients can

be determined from the problem
norotH (g, k) = —ike(g, k)E(g, k),

rotE (g, k) = iknoulg, k)H (g, k); g€ Q

D|E(H)| (k) = D[E(H)](0.y) for 0<y<i and  (4573)
D[~( ﬂ( b) = zm"'D{g(:)} for 0<x<l; |[o<L

Etg(gvk)‘ges 0, H, (g7k ’gES )

) nm(E)
E.(g,k 01 - )
{ ~Z (g ) } :{ }elrpq (Z*L) 'upq (,X,', y) + Z R:Zl((IZI))

n,m=—00 pa(H) (k)

(4.57b)
X er”"’( >:unm(x y) g 6 K’

~ nm(E)
E.(g,k 0o (k) , _
{ (g )} =y i, ) geB (@570

nm(H)
nm==oc | Tpyim) (k)

and satisfy the following relations, which are corollaries from the Poynting theorem
and the Lorentz lemma:
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i L (H)‘2 :l:l Rnl71(E)’2+ Tnm(E)‘2 Re Iy
-~ 22 (H) ,7% pq(H) pq(H) ImT
H
1 Rerq+2Iml"qumeq<H§ 1 (W
~ 2, | tmr,, - 2R TpgIm R T\ w P =0l
P4 mipg — € m pq(H)

(4.58)

and

Ry (00 03) 75, (@6, @) R (—0, —0,)22, (0, —y)
rpq (q))m q)v) rfr.fs(_(Dxa _(Dy) ’ (459>

p,q,r,s =0,£1,£2, ...

T;j(‘;’,)) (@, Dy, A) Ay, (0, D)) T:ﬁ:33%> (~®,, —®,,B) 22, _ (~®,, D))

Lo (q)x’ (I)y) B rfr,fs(_q)xa _q))’) ’
p,q,ns:O,il’iZ’”,_

(4.60)

4.7.3 General Properties of the Grating’s Secondary Field

Let now k be a real positive frequency parameter, and let an arbitrary
semi-transparent grating (Fig. 4.1) be excited from the domain A by a homoge-
neous TM- or TE-wave

l_]pq(EorH) g,k {E (g, k) or I:Ié(g,k)} = ¢ Trle- L>,upq(x y); p,q: ImI,,=0.
(4.61)

The terms of the infinite series in (4.52b), (4.52¢) and (4.57b), (4.57¢) are z-

components of nmth harmonics of the scattered field for the domains A and B. The

complex amplitudes an((:s:Z; and T;;E;E;rgg are the functions of &, ®,, @y, as well

as of the geometry and material parameters of the grating.

Every harmonic for which Im I, = 0 and ReI',,, > 0 is a homogeneous plane
wave propagating away from the grating along the vector Ku: ke = oy, ky = B,s
k; = I'y, (in the domain A; see Fig. 4.5) or k, = —I',,;, (in the domain B). The
frequencies k such that I, (k) =0 (k = ki = £|4,n|) are known as threshold

nm
frequencies or sliding points [1-6]. At those points, damped spatial harmonics of
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Fig. 4.5 On determination of AZ
propagation directions for R —
spatial harmonics of the field !
formed by a :
two-dimensionally periodic |
structure ' £ Vo
e
rnm : "
I
| -
a
N (S N I -
o, 7=
x . e kumL 4 9’1771 y
} ﬂm

order nm with ImI',,, > O are transformed into propagating homogeneous pane
waves.

It is obvious that the propagation directions Ky OF homogeneous harmonics of
the secondary field depend on their order nm, on the Values of k and on the directing
vector of the incident wave k’ k’ = 0p, K ﬁq, L= Iy

According to (4.50) and (4.58), we can write the followmg formulas for the
values, which determine the ‘energy content’ of harmonics, or in other words, the
relative part of the energy directed by the structure into the relevant spatial radiation
channel:

nm m 1 Z\ Re an /1 nm(E
(WR)p' = < RE 4 ””JEQ\ ) T = (VR + (WR)E.
np nm( ) 2 Re’;nnm /‘{iq np(E) np(H)
(WT)ho = ( ’ o[y ’ ) 22 F_pq - (WT)W(E) + (WT)pq(E)
(4.62)
(for TM-case) and
2
nm __ nm nm(E) 2\ Re an )"pq o nm(H) nm(E)
(WR),g = < ’ te RI’Q(H)’ > 2T,y (WR) 11y + (WR) a1
)
np __ (H) i nm(E) 2\ Rel',, /qu _ nm(H) nm(E)
(WT)jh = ( Ty - )| ) = W)+ W

(4.63)

(for TE-case). The channel corresponding to the nmth harmonic will be named
‘open’ if ImI',,, = 0. The regime with a single open channel (nm = pq) will be
called the single-mode regime.
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Since l_c};q = l?nm =k, the nmth harmonic of the secondary field in the
reflection zone propagates in opposition to the incident wave only if o, = —o, and
B = —B, or, in other notation, if

n=-20,—p and m=-20,—q. (4.64)

Generation of the nonspecularly reflected mode of this kind is named auto-
collimation.

. nm(E or H nm(E or H
Not all of the amplitudes qu((E ;’r H; or pq(;; H))

physical analysis. In the far-field zone, the secondary field is formed only by
the propagating harmonics of the orders nm such that ReI',,, > 0. However, the
radiation field in the immediate proximity of the grating requires consideration of
the contribution of damped harmonics (n,m: Im1,,, > 0). Moreover, in some
situations (resonance mode) this contribution is the dominating one [6].

are of significance for the

4.7.4 Corollaries of the Reciprocity Relations
and the Energy Conservation Law

Let us formulate several corollaries of the relations (4.50), (4.55), (4.56), and
(4.58)—(4.60) basing on the results presented in [3, 7] for one-dimensionally peri-
odic gratings and assuming that &(g,k) >0, u(g,k) >0, and a(g,k) > 0.

e The upper lines in (4.50) and (4.58) represent the energy conservation law for
propagating waves. If ImI',, = 0, the energy of the scattered field is clearly
related to the energy of the incident wave. The energy of the wave

U py(e or 1) (8- k) is partially absorbed by the grating (only if Wy # 0), and the

remaining part is distributed between spatial TM- and TE-harmonics propagat-
ing in the domains A and B (it is reradiating into the directions z = £o00). If a

plane inhomogeneous wave be incident on the grating (ImI",, > 0), the total

(EorH)

energy is defined by the imaginary part of the reflection coefficient Rﬁ Z( EorH)
which in this case is nonnegative.

e The relations in the bottom lines in (4.50), (4.58) limit the values of

2 2
S o [RoE) | JIm C, 3500, T;ZZSEE)>‘ 4-2ImT,,, etc. and deter-

mine thereby the class of infinite sequences

|anm|2

72 = {a = {anm}ffmzfxz Z \/T_——_—_‘}’;l7 <Oo}7
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or energetic space, to which amplitudes of the scattered harmonics an(( )>, T;;’Eg),

etc. belong.

e [t follows from (4.55), (4.56), (4.59), and (4.60) that for all semi-transparent and
reflecting gratings we can write

00(E or H) o 00
(WR)OO(E or H) ((DV’ o ) - (WR)OO

(

(
00(E or H) 00(E or H)
(WT)oo(Eer)(cD @, ) (WT)oo( o (_(I’m_q)va)'

(4.65)

The first equation in (4.65) proves that the efficiency of transformation of the
TM- or TE-wave into the specular reflected wave of the same polarization
remains unchanged if the grating is rotated in the plane about z-axis through
180°. The efficiency of transformation into the principal transmitted wave of the
same polarizations does not also vary with the grating rotation about the axis

lying in the plane and being normal to the vector Koo (Fig. 4.5).
e When r =5 =p = q =0, we derive from (4.55), (4.56), (4.59), and (4.60) that

00(E or H) (]()(E or H)
ROO(EorH) ((DV’(I) ) OO(EorH)( @, 7(1))’)’
)

(4.66)
00(E or H) 00(E or H

TOO(E or H) ((Dx’ D, A) TOO(E or H) ( Dy, — @y, B)'
That means that even if a semi-transparent or reflecting grating is non symmetric
with respect to any plane, the reflection and transmission coefficients entering
(4.66) do not depend on the proper changes in the angles of incidence of the
primary wave.

e Relations (4.50), (4.55) allow the following regularities to be formulated for
ideal (o(g,k) = 0) asymmetrical reflecting gratings. Let the parameters k, @,,
and @, be such that Re I'gg (CDX, <I>y) > (0 and Re T, ((I)X, (I)y) =0 for n,m # 0.
If the incident wave is an inhomogeneous plane wave

i

Uip,iq(E) (ga k7 :l:(D)m :tq)y), then

Re FOO (:tq)x, :l:q)v)
(20, 0,)

2 2
<‘Ripi )(i(l)x,id)y)’ +né‘R(j$iL(E)(i<Dx,i<Dy)‘ )

ImIy, 1o (£, £0))
;Lft,,,iq(icbx, +0,)

=2Im R 1D (£0,, £0y)

(4.67)

Since RV (@, @) = RV"40) (—,, —®,), we derive from (4.67)
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ROE)

p.q(E) (q)x’ q),\’)

2 00
2 }RP‘;{Q) (@,,®,)

2 2
=R (~ 0 —0))]

(4.68)
00(H
+ W%’R—p(,—)q(m (_(Dx’ _(D.V>

It is easy to realize a physical meaning of the equation (4.68) and of similar
relation for TE-case, which may be of interest for diffraction electronics. If a
grating is excited by a damped harmonic, the efficiency of transformation into
the unique propagating harmonic of spatial spectrum is unaffected by the
structure rotation in the plane x0y about z-axis through 180°.

The above stated corollaries are especially useful for testing numerical results
and making their physical interpretation easier. The use of these corollaries may
considerably reduce the amount of calculations.

4.8 Elements of Spectral Theory for Two-Dimensionally
Periodic Gratings

The spectral theory of gratings studies singularities of analytical continuation of solutions
of boundary value problems formulated in the frequency domain (see, for example,
problems (4.53) and (4.57a, 4.57b, 4.57¢)) into the domain of complex-valued (non-
physical) values of real parameters (like frequency, propagation constants, etc.) and the
role of these singularities in resonant and anomalous modes in monochromatic and
pulsed wave scattering. The fundamental results of this theory for one-dimensionally
periodic gratings are presented in [4, 6, 7]. We discuss the elements of the spectral theory
for two-dimensionally periodic structures, which follow immediately form the results
obtained in the previous sections. The frequency k acts as a spectral parameter; a
two-dimensionally periodic grating is considered as an open periodic resonator.

4.8.1 Canonical Green Function

Let a solution Gy(g,p, k) of the scalar problem

[Ag ""kz} [60(87177]()] = 5(g _p);g = {xg7ygazg} ER, p= {xpaypazp} €Q
D[Go| (L, yg) = ¥ ®D[Gy] (0,y,) for 0<y,<l, and

D[Go| (xg,1y) = ¥ D[Gy] (x,,0) for 0<x, <Ly |z|<L

- ) AP k) | Lir
Giog,pok) = I ttnterit)y () g
o(g,p,k) MZZ_OO { Bun(p, k) } Hnm (xg yg) 4

oo/l

(4.69)
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is named the canonical Green function for 2-D periodic gratings. In the case of the
elementary periodic structure with the absence of any material scatterers, the
problems of this kind but with arbitrary right-hand parts of the Helmholtz equation
are formulated for the monochromatic waves generated by quasi-periodic current
sources located in the region |z| <L.

Let us construct Go(g7 p, k) as a superposition of free-space Green functions:

3

dm, i~ |8 = puml (4.70)
Pnm = {xp +nly, Yp+ mlya Zp} .

~ 1 >, explik & — Pum in im
Go(g,p,k) = Z Mez ®, 27imd,

By using in (4.70) the Poisson summation formula [16] and the tabulated
integrals [17]

exp(ipVx2 + a?)

s = mitly! (ay/ 1o = 27]),
(

exp|iar/p? — b2)

H(()l) (p V2 + az) e dx =2

g~y E—p

where Hél)(. ..) is the Hankel function of the first kind, we obtain

GO(gapa k) - 2lll Z ei[otn(ngxp) +ﬁm()’x*yp)] xp Mzgl—‘i Zp|rnm] . (471)

XYY nm=—o00

The surface K of analytic continuation of the canonical Green function (4.71)
into the domain of complex-valued k is an infinite-sheeted Riemann surface con-
sisting of the complex planes k& C with cuts along the lines

(Rek)*—(Imk)* 2 =0 (n,m=0,£1,42,..., Ink<0) (Fig. 4.6). The first

Fig. 4.6 Natural domain of Imk
variation of the spectral

parameter k: the first sheet of
the surface K Vo Vo
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(physical) sheet C; of the surface K is uniquely determined by the radiation con-
ditions for Gy (g,p, k) in the domains A and B, i.e. by the choice of ReI',,,Rek >0
and Im I, > 0 on the axis Imk = 0. On this sheet, in the domain 0 < arg k <7, we
have ImI,, >0, while Rel,,,>0 for O<argk<n/2 and Rel,, <0 for
n/2 <argk<m. In the domain 37/2 <argk <2z for finite number of functions
[on(k) (with 7 and m such that (Rek)’—(Imk)*—42 > 0), the inequalities
ImI,,,<0 and Rel,,, > 0 hold; for the rest of these functions we have
ImTI,, >0 and ReT,,, <0. In the domain n <argk <37/2, the situation is sim-
ilar, only the signs of Re I',,, are opposite. On the subsequent sheets (each of them
with its own pair {k; I',,,,(k)}), the signs (root branches) of I',,, (k) are opposite to
those they have on the first sheet for a finite number of n and m. The cuts (solid
lines in Fig. 4.6) originate from the real algebraic branch points k,,, = %|lun|.

In the vicinity of some fixed point K € K the function Go(g,p,k) can be
expanded into a Loran series in terms of the local variable x [18]:

. k K Kg{nm}
I\ VEk—K; ke{kt)

Therefore, this function is meromorphic on the surface K. Calculating the

residues Res Go(g,p,k) at the simple poles k € {k } we obtain nontrivial solu-
k=k

nm

tions of homogeneous (f]l(g, k) = 0) canonical (¢(g,k) = 1, u(g, k) = 1, intS = 0)
problems (4.52a, 4.52b, 4.52c) and (4.57a, 4.57b, 4.57¢c):

Ez(g,krfﬂ) = {E E E } EX yorz = Uy, yor expli(ox + )], (4.72)
= (

lknm ’70) - rOtE (g7 knm) )

where ay o ; are the arbitrary constants. These solutions determine free oscillations
in the space stratified by the following conditions:

o) - {5,
D[E(H)](xyﬂ) 2”’®‘D[l§<1:17)}(x,y).

4.8.2 Qualitative Characteristics of the Spectrum

Let a set  of the points {l_cj}je K such that for all k € {I_cj }j the homogeneous
(spectral) problem
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ﬂ()rqtﬁ(& k) = _lké(g> k2E(87 k)7
rotE(g, k) = iknou(g, k)H(g, k); g€ QL
D[E(ﬁ)} (L, y) = e2™® E(ﬁ)} (0,y) for 0<y<I, and

D|E(H (4.73a)
D[E(ﬁ)}(x,ly):eznim"D{E<ﬁ)}(x70) for 0<x<l; |d<L
E.(g,k)| =0, H,(g.k)| =0,
tg(g7 )gES ) (g )gES

E.(g,k S Ay (k) ] _

{~Z<g )}: > { o )}e’r””'(z_”unm(x,y); §EA,  (4.73b)
Hz(gvk) n,m=—00 Anm(H)(k)

E.(g,k o0 By (k . _

f(g ) = Z ) (k) e”r’"”(”’“)unm(x,y); geB  (4.73¢c)
Hz(g,k) nm=—00 BnM(H)(k)

has a nontrivial (not necessarily unique) solution U (g,l}j) = {E (g,l%-)fi (g, 12,)}
be called a point spectrum of the grating. It is obvious that these solutions char-
acterize the so-called free oscillations, whose field pattern, structure of their spatial
harmonics and behavior of these harmonics for large |z| and 7 are determined by the
value of k; = Rek; + iImk; and by a position of the point k; (the eigenfrequency

associated with the free oscillation U (g,l}j)) on the surface K [4, 6, 7]. By con-
tinuing analytically the problems (4.52a, 4.52b, 4.52¢) and (4.57a, 4.57b, 4.57¢)
together with their solutions U(g, k) = {E(g, k),H (g, k)} into the domain K of the
complex-valued k, we detect poles of the function U (g,k) at the points k = l_c] In
the vicinity of these poles, the desired solutions can be represented by the Loran
series in terms of the local on K variable x [18]. The analytical findings of this kind
may form the basis for detailed study of physical features of resonant wave scat-
tering by one-dimensionally and two-dimensionally periodic structures [4, 6, 7, 19,
20].

Now, let us derive the conditions that constrain existence of nontrivial solutions
of the problem (4.73a, 4.73b, 4.73c). These conditions can be considered as
uniqueness theorems for the problems (4.52a, 4.52b, 4.57¢) and (4.57a, 4.57b,
4.57c) formulated for different domains of the surface K. Notice that the study of
the uniqueness allows one to estimate roughly a domain where elements of the set
Q. are localized and simplify substantially the subsequent numerical solution of
spectral problems owing to reduction of a search zone of the eigenfrequencies. The
uniqueness theorems also serve as a basis for application of the ‘meromorphic’
Fredholm theorem [21] when constructing well grounded algorithms for solving
diffraction problems as well as when studying qualitatively gratings’ spectra [4, 7].

Assume that grating scattering elements are nondispersive, that is e(g, k) = ¢(g),
u(g, k) = u(g), and a(g, k) = a(g). In this case, the analytical continuation of the
spectral problem (4.73a, 4.73b, 4.73c) into the domain of complex-valued k are
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simplified considerably. From the complex power theorem in the integral form

formulated for the nontrivial solutions U (g, k;) like

e o 3 S3x 312
]{(EXH)-ds:/diV(ExH)dg:iknO/u‘H’ dg

St QL Qr
1 312 312
! E| dg — / O"E‘ dg

-—— [ ¢
QL QL

(4.74)

Mo

the following relations result:

> 1 (ReTuRek +Im I, Imk) 2 2
2 { (ImT,Re k — Re T, Im k) } K’A”"“E) [+ [Banis| )

n,m=—o00 “'nm (475)
1 (—Imk(V3+ Vo) =V, }

2 2
b (A + o )] =2 { e

Notation: k = ;, E— 1:_?7(g, ki) Tom = Tam (ki) Apm(e) = Aum(r) (k) ete., and

512 512
VIZSQV]O/O"E’ dg7 V2: /50{,’E‘ dg7 V3: /,Uo/l

Q Q Q

2

I:} dg.

No free oscillations exist whose amplitudes do not satisfy (4.75). From this
general statement, several important consequences follow. Below some of them are
formulated for gratings with &(g) > 0, u(g) > 0, and o(g) > 0.

e There are no free oscillations whose eigenfrequencies IEj are located on the upper
half-plane (Im & > 0) of the first sheet of the surface K. This can be verified by
taking into account the upper relation in (4.75), the values of the function
I (k) on Cg, and the inequalities V; >0, V, > 0, V3 > 0.

e If 6(g) =0 (the grating is non-absorptive), no free oscillations exist whose
eigenfrequencies k; are located on the bottom half-plane (Imk <0) of the sheet
Cy between the cuts corresponding to the smallest absolute values of k. In
Fig. 4.6, this region of the first sheet of K and the above-mentioned domain are
shaded by horizontal lines.

e If 6(g) > 0 on some set of nonzero measure of points g € Q;, then there are no
elements ; of grating’s point spectrum € that are located on the real axis of the
plane Cj.

Investigation of the entire spectrum of a grating, i.e. a set of the points k& € K, for
which the diffraction problems given by (4.52a, 4.52b, 4.52¢) and (4.57a, 4.57b,
4.57c) are not uniquely solvable, is a complicated challenge. Therefore, below we
do no more than indicate basic stages for obtaining well-grounded results. The first
stage is associated with regularization of the boundary value problem that describes
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excitation of a metal-dielectric grating by the currents j(g, k) < j(g, ) located in the
domain Q;:

norotH (g, k) = —ike(g, k)E(g, k) + /(g k),
rotk(g, k) = iknou(g, k)H(g,k); g€ QL
DI:E(H)}(Z _GZRZ(DXD[E(_‘)} y for 0§y§ly and (4 763)

=

D[E(_'ﬂ(xl)_ezmd"D{E(:)}(x,O) for 0<x<lIl; |z|<L
=0,

E,g(g,k) Flnr(gvk) gesio’

gesS

{Ez(g,k)}: 3 {Anm<E>((1]3 }ezrm( Dpm(x,y); g €A,  (476b)

Hz (g, k) o0 Anm(H)
Ele.d) ] _ i Bt st o) g€ B (@760
Hz (g7 k) n,m=—o00 Bnm(H) (k)

By regularization we mean (see, for example, [7]) a reduction of the boundary
value problem to the equivalent operator equation of the second kind

[E+B(Go,S,& k)| X=Y, EX=X (4.77)

with a compact (in some space of vector fields) finite-meromorphic (in local on K
variables x) operator-function B(GO,S,E, Ly k) [21, 22]. If the problem given by
(4.76a, 4.76b, 4.76¢) is considered separately for metal gratings (intS # () and S are
sufficiently smooth surfaces; &(g,k) = u(g,k) =1) and dielectric gratings
(intS =0, &(g, k) = &(g) and u(g,k) = u(g) are sufficiently smooth functions),
then it can be regularized by applying the potential theory methods [4, 7, 23].

In the second stage, the following statements should be proved: (i) the resolvent
[E+B(k)]' (keK) of the problem (4.77) is a finite-meromorphic
operator-function; (ii) its poles are located at the points k = lzj G=1,2,3,...);
(iii) the entire spectrum coincides with its point spectrum ; (iv) () is nothing
more than a countable set without finite accumulation points. All these statements
are corollaries of the previously proven ‘meromorphic’ Fredholm theorem [4, 21,
22] and the uniqueness theorem.

By invertin