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Preface

Electromagnetic field carries the bulk of information about the structure of matter,
atoms and molecules, nuclei or even elementary particles. Theory in this respect has
the basic task: to retrieve this information from the available data that are obtained
from experiments. The task is, therefore, finding a connection between the density
of charges and the intensity of emitted radiation that they produce when subjected
to external agitation; in short the task is solving the inverse intensity problem.
However, the task as described is not that simple, although the problem of direct
inverse intensity problem is immensely difficult one to solve. Charges that one
discusses are basically electrons and protons, or their conglomerates, but they are
quantum objects for which the concept of charge density must be fundamentally
modified from that for classical charges. Electrons and protons are individually, as
classical objects, point-like charges but as quantum objects they must be treated as
delocalized particles and therefore treated as charge densities. The problem, how-
ever, is more difficult than that, because being treated as delocalized particles they
are described essentially by probability densities and therefore by assuming that as
charge densities must be taken with great caution. There are circumstances when
probability density could be treated as charge density but there are when this is not
a correct assumption. The choice when and how to distinguish between these two
concepts, probability density versus charge density, depends on the problem to
analyze, which is also sometimes not a simple task.

There are essentially four problems to analyze in electromagnetic interactions.
One is dynamics of charges under the impact of electromagnetic force, another is
radiation that is produced by moving charges, the third is structure of conglomerates
of charges, and the fourth is the problem of field interaction, essentially unification
of electromagnetic force and the force that results from radiation. All of these
problems have been thoroughly studied, perhaps with exception of the last one,
however, extreme states under which charges are placed, extreme states of elec-
tromagnetic field that interact with charges and fine details of this interaction have
room for further investigations. Placing the field and charges under extreme con-
ditions requires theoretical tool that adequately could describe these situations.
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Relativistic classical and quantum theory are the foremost tools, description of
electromagnetic field of finite extent in all dimensions, and also having accurate
description in nonrelativistic theoretical tools.

Electromagnetic field itself is also essential to be understood because this has
direct impact on how from experiments one interprets structure of matter. The basic
principles of electrodynamics are well established, but with the development of
quantum principles and applied on the scale of atoms and smaller another of its
feature emerged, which is universally accepted: electromagnetic interaction is
mediated by photons, manifestation of particle-like interaction on charges. Origins
of the idea for the particle nature of electromagnetic field go back to explaining
black body radiation, photoelectric effect, and finally the Compton effect. Success
of the model is undisputable but there are limitations on how far it could be applied,
for example in the case of very strong electromagnetic fields. There is an obvious
question and this is what is the true nature of the photon model, because despite
successful in explaining many features of matter there are some limitations of it, for
example in interpretation of the Coulomb law as exchange of photons among
charges. The answer to this question is not yet clear, and it should be found with
in-depth understanding of solutions of the basic equations of dynamics: Dirac and
Maxwell equations, coupled with the relativistic classical equation for particles.

Those four mentioned problems are investigated in this book, by giving quali-
tative description to get their essence before applying exact tools and these are
equations for electromagnetic field and both classical and quantum dynamics, and
relativistic and nonrelativistic, for charges. Separate discussion is on equations for
relativistic dynamics, Maxwell and Dirac equations, as the essential tools for
investigating the charges under extreme confinements and their interaction with the
electromagnetic field. The basic tool for describing photon interaction with matter,
quantum electrodynamics, is not used; however, it is mentioned in the context when
the particle-like exchange of electromagnetic interaction is encountered.

Zagreb, Croatia Slobodan Danko Bosanac
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Chapter 1
Introduction

Abstract Properties of electrons and protons, as the basic charged elements of mat-
ter, are briefly reviewed. The concept of charge and the quantum probability densities
is examined and discussed under what circumstances the two are identical. Charge
density and resulting properties of molecules is reviewed, together with describing
adiabatic expansion for calculating their structure. Particular emphases is to derive
non adiabatic coupling among the electron states of molecules.

1.1 Properties of Elementary Charges

Elementary particles of importance are the electron, proton and neutron. The electron
and proton are carriers of electric charge,1

e = 1.60217733 × 10−19 C

whilst neutron is neutral. However, in addition to charge these particles are also
carriers of magnetic dipole but their values differ from one particle to the other.
Their values are

me = 9.2847701 × 10−24 JT−1

mp = 1.41060761 × 10−26 JT−1

mn = 9.6623707 × 10−27 JT−1

The theory predicts that neutron, based on the evidence that it has internal structure,
should have a small electric dipole moment, but so far there is no strong experimental
evidence for it. Therefore for any practical purpose one could assume (for the electron
and proton predictedmoment is even smaller) that the particles do not have this dipole
moment, although from the conceptual point, and also for the consequences, yes or
no is very important. However, neutron and proton might have internal distribution
of charge density [20], about which there will be here more discussion.

1SI units are used in this section.

© Springer-Verlag Berlin Heidelberg 2016
S.D. Bosanac, Electromagnetic Interactions,
Springer Series on Atomic, Optical, and Plasma Physics 94,
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2 1 Introduction

A charge at rest produces static electric component of the electromagnetic field,
the Coulomb electric field −→

E = e

4πε0r2
r̂ (1.1)

where ε0 = 8.854187817× 10−12 Fm−1 is permittivity of the vacuum, and the sign̂
indicates the unit vector. On the other hand magnetic dipole �m at rest produces a
static magnetic component of the electromagnetic field

−→
B = μ0

4πr3
[

3
(−→m · r̂) r̂ − −→m ] = − μ0

4π
∇ ×

(

−→m × ∇ 1

r

)

= ∇ × �A (1.2)

where
�A = μ0

4π
−→m × r̂

r2

and μ0 = 1.2566370614 × 10−6 NA−2 is permeability of the vacuum.2 The force
that the two components of the electromagnetic field produces on another particle
with charge q and magnetic dipole moment �n could be written as

−→
F eb = −∇ Veb (1.3)

where the potential energy is
Veb = Vc + Vd

The first term is the Coulomb potential

Vc = qe

4πε0r

whilst the second is the magnetic dipole potential

Vd = − μ0

4π
�n · ∇

(−→m · r̂)
r2

Themagnetic dipole potential energy is in generalmuch smaller than theCoulomb
potential energy, however, at short distances the former increases more rapidly due
to its r−3dependence. For the electrons one can make an estimate of the relative
importance of the two forces by writing the total potential energy as

Veb = e2

4πε0r
+ μ0

4πr3

(

e�

2M

)2

η

2Magnetic induction
−→
B (Tesla) and the magnetic field

−→
H (Ampere/Meter) are related by μ0

−→
H =−→

B .
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where η is of the order 1, and e�
2M is approximate magnetic dipole of the electron

(Bohr magneton). The potential energy can be written in another form

Veb = e2

4πε0r

(

1 + 1

4r2
�
2

c2m2
e

)

where the relationship

μ0ε0 = 1

c2

was used. The contribution from the magnetic dipole becomes significant when

1

4r2
�
2

c2m2
e

≈ 1

or

r = �

2cme

The Coulomb energy at this distance is

Wc = 1

2π

cmee2

�ε0
≈ 7500 eV

which means that in the collisions above this energy one should consider also the
contribution of the magnetic dipoles of the particles to the cross sections.

Classical equations of motion that are based on the force (1.3) are not complete
without equation that couples rotation of the magnetic dipole due to the torque that
magnetic field exerts on it. The additional equation is

dt �m = γ �m × −→
B

where γ is a factor that relates spin to the magnetic dipole. For the three elementary
particles this factor is derived from the fact that they have spin �/2 and from the
Bohr magneton one obtains

γelectron = 1. 001 2
e

Melectron

γproton = 2. 792 8
e

Mproton

γneutron = 1. 915 7
e

Mneutron

The additional factors indicate that the Bohr magneton is only approximate value
for the magnetic dipole of the elementary particles with the half spin, except for the
electron for which it is given relatively accurately.
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1.2 Charge Density in Molecules

Although the constituents of a molecule are protons, electrons and neutrons it is only
the former two that play the essential role in the interaction with the electromagnetic
field. The neutrons change the overall magnetic dipole of the nuclei and as such they
are important when this type of interaction is investigated. The protons are localized
in the nuclei, which, for all practical purpose, could be regarded as the point like
objects with the well defined position (this statement must be taken with a caution
and is only relevant for the calculation of the density of charges in molecules). The
electrons, on the other hand, are delocalized over a molecule, and their position can
only be satisfactory defined through the probability density

P(�r1, �r2, �r3, . . . , �rn) = | f (�r1, �r2, �r3, . . . , �rn)|2

where f (. . .) is the probability amplitude (wave function) for the system of n elec-
trons. It gives the probability density of finding electron 1 at the position �r1, electron
2 at �r2 etc. However, the probability density of finding electron j at �r j , irrespective
of the whereabouts of the other electrons, is given by

P(�r j ) =
∫

| f (�r1, �r2, �r3, . . . , �rn)|2 d3r1d
3r2 . . . d3r j−1d

3r j+1 . . . d3rn

which could be associated with the charge density for this electron, meaning that
it could not be treated as a true charge density. Contribution of this electron to the
overall Coulomb potential at �r that comes from the other electrons and the nuclei is
then given by

V j
c = −e

∫

P(�r j )
∣

∣�r − �r j
∣

∣

d3r j

which, strictly speaking, should be interpreted as the average potential from the j-th
electron. However, this expression is identical with the potential when P(�r j ) is a
charge density and therefore the probability density could be also associated with a
charge density of the j-th electron. The difference between the true charge density
and the probability density that plays the role of it is in the self repulsion term. The
true charge density has a self repelling term that tends to make it unstable, whilst the
probability density has no such term.

1.2.1 Self Energy of Hydrogen Atom

Hydrogen atom is a system of proton and the electron, and in the simplest approxima-
tion is that proton is at a precise position whilst the electron is delocalized. Electric
potential of the proton is given by Coulomb law for a point charge, whilst that of the
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electron should be calculated from the assumption that the probability density is also
charge density. Therefore, the overall potential of the hydrogen atom at the distance
r from the proton, for the electron in the ground state, is given by

V (r) =
∫

d3r ′ P(r ′)
|�r − �r ′| = α3

2π3

∫

d3r ′
∫

d3k
ei �k·(�r−�r ′)

k2 + i η
e−2α r ′

where α is the fine structure constant, and the identity

1

|�r − �r ′| = 1

2π2

∫

d3k
ei �k·(�r−�r ′)

k2 + i η
(1.4)

is used. The potential is finally

V (r) = 1

r
− 1 + αr

r
e−2αr

If the probability density is the charge density then this potential could be used
to calculate self repulsion energy for the electron, and add it as the correction to the
basic equation for Hydrogen atom. This energy is

Vsel f = α

2

∫

d3r ′ d3r
P(r)P(r ′)
|�r − �r ′|

and by using (1.4) the final expression is

Vsel f = 4απ2
∫

dr ′
∫

dr r r ′ (r + r ′ − ∣

∣r − r ′∣
∣

)

P(r)P(r ′)

The ground state of Hydrogen atom is then solution of the radial equation

e g(r) = −1

2
g′′(r)− α

r
g(r)+ 1

4
α

∫

dr ′ dr ′′
(

r ′′ + r ′ − ∣

∣r ′′ − r ′∣
∣

)

r ′′ r ′ g2(r ′′)g2(r ′) g(r)

which is an integro-differential equation. One way of solving it is by iteration,
where in the first step the uncorrected probability density is used to calculate the
self repelling term and in the next iteration calculate new ground state probability
amplitude. The iteration is repeated until the ground state eigenenergy e converges.
For Hydrogen atom this eigenenergy is e = −0.187 α2, which should be compared
with e = −0.5 α2 when the correction is not included. The difference is sufficient to
dismiss the assumption that the probability density is the charge density. However, if
another charge is placed in the field of this Hydrogen atom then its potential energy
agrees very well with the observations.
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1.2.2 Charge Density in Molecules

Molecules are neutral species but in most of them certain sites around atoms have
slight excess of positive or negative charge. For example proton in a water molecule
are slightly positively chargedwhilst oxygen atom is negatively charged, orHydrogen
atom in the HF molecule is slightly negatively charged whilst Fluorine is positively
charged. Determining the amount of charge at the sites of amolecule is of importance
in various circumstances (for example in calculating radiation by a rotating molecule
Sect. 7.3.2) and therefore it is necessary to define what is meant by it. However,
there is a problem with this task because positive charges are well localized in atoms
whilst negative are essentially delocalized all around amolecule. The problem is well
described if one asks a question what is charge density within Hydrogen atom? (here
the assumption is that proton is localized at a fixed point whilst when it is not shall
be discussed in Sect. 1.2.3). The answer appears simple, away from proton (nucleus)
charge density is that of the probability density for the electron, which is formally
correct and hence the question for amolecule seems solved. This, however, is notwhat
is meant by charge density for amolecule, because it is defined as an effective amount
of charge that a test charge experiences when approaching it. Another aspect of the
concept of effective charge density is a nonuniform moving molecule, for example
a rotating one. Resulting radiation comes as superposition of the individual motion
of charges, nuclei and the electrons, however, it could be approximately treated by
assuming that each atom is a charged particle having some effective charge. The
overall charge density of a molecule is deduced from the calculation of the total
potential due to all charges, and it is given by

V = −e
n

∑

j=1

∫

P(�r j )
∣

∣�r − �r j
∣

∣

d3r j +
N

∑

i=1

ei
∣

∣

∣�r − �Ri

∣

∣

∣

where �Ri is position of the i-th nuclei (e.g. with respect to the centre of mass of
molecule), and the number of electrons n is equal to the number of protons, i.e.
ne = e1 +· · ·+ eN . Because of the symmetry between electrons one has the identity

P(�r j ) = P(�rk)

for any pair, then

V = −ne
∫

P(�r1)
|�r − �r1|d

3r j +
N

∑

i=1

ei
∣

∣

∣�r − �Ri

∣

∣

∣

(1.5)

and therefore the charge density in a molecule due to the electrons is

ρ(�r) = −neP(�r) = −ne
∫

| f (�r , �r2, �r3, . . . , �rn)|2 d3r2 . . . d3rn

http://dx.doi.org/10.1007/978-3-662-52878-5_7
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In a number of circumstance it is useful to define effective charge that one asso-
ciates with an atom in a molecule, in particular atoms that are on its surface. One
starts by noting that the excess of electron charge density is localized around a par-
ticular atom, and its extent is smaller than the distance of this atom to the centre of
mass of a molecule. Therefore one expands potential (1.5) as

V ≈ −e
n

∑

j=1

∫

P(�r j )
r

(

1 + �r · �r j
r2

)

d3r j +
N

∑

i=1

ei
∣

∣

∣�r − �Ri

∣

∣

∣

= �r ·
r3

[

N
∑

i=1

ei �Ri − ne
∫

P(�r j )�r jd3r j

]

which has a form of potential for an electric dipole, where the dipole has the value

−→p =
N

∑

i=1

ei �Ri − ne
∫

P(�r j )�r j d3r j =
N

∑

i=1

qi �Ri

The parameter qi is associated with the effective charge on atom i , and its value
is calculated by the least square fit, in which case they are solutions of the set of
equations

N
∑

i=1

qi �Rk · �Ri =
N

∑

i=1

ei �Rk · �Ri − ne
∫

P(�r j ) �Rk · �r jd3r j

In an external electric field, which is represented by the potential Vext (�r), a mole-
cule has potential energy

W = −ne
∫

ρ(�r)Vext (�r) d3r +
N

∑

i=1

ei Vext ( �Ri )

In those circumstances when variation of the external field over the size of amolecule
is small one can write approximately

Vext (�r) ≈ Vext ( �Rc) +
(

�r − �Rc

)

· ∇ Vext ( �Rc)

where �Rc is position of a point within the molecule, for example it is its centre of
mass. The first term in the expansion, for a neutral molecule, gives

W0 = −ne
∫

ρ(�r)Vext ( �Rc) d
3r +

N
∑

i=1

ei Vext ( �Rc)

= −neVext ( �Rc)

∫

ρ(�r)d3r + Vext ( �Rc)

N
∑

i=1

ei = 0
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where the condition ∫

ρ(�r)d3r = 1

was used.
The next term gives

W1 = −ne
∫

ρ(�r)
(

�r − �Rc

)

· ∇ Vext ( �Rc) d
3r +

N
∑

i=1

ei
(

�r − �Rc

)

· ∇ Vext ( �Rc)

=
[

−ne
∫

ρ(�r)
(

�r − �Rc

)

d3r +
N

∑

i=1

ei
(

�r − �Rc

)

]

· ∇ Vext ( �Rc)

which can be written as
W1 = �d · ∇ Vext ( �Rc)

The vector �d is the permanent dipole moment of the molecule.
There are several objections with the previous derivation: (a) variation of the

external field over a molecule may not small, (b) whilst definition of a permanent
dipole is well defined for small, say a diatomic, molecule, for large ones may not
have meaning, and (c) definition of a permanent dipole moment assumes that the
probability amplitude (wave function) for the electrons is unaffected by the external
field. This is never true, but in many circumstances this effect is negligible.

1.2.3 Charge Density in Hydrogen-Like Atom

Delocalization of two oppositely charged particles, one havingmassm1 and the other
mass m2, that are bound by a force produce charge density. The stationary bound
state problem is solved in the centre of mass system, and for the relevant coordinates,
which are defined as

�r = �r1 − �r2; �R = m1�r1 + m2�r2
m1 + m2

the probability amplitude for the system is

ψ
(

�r , �R
)

= f (�r) g
( �R

)

The charge density is then defined as (particle 1 has positive charge e = 1)

ρ (�s) =
∫

d3r2

∣

∣

∣

∣

f (�s − �r2) g

(

m1�s + m2�r2
m1 + m2

)∣

∣

∣

∣

2

−
∫

d3r1

∣

∣

∣

∣

f (�r1 − �s) g

(

m1�r1 + m2�s
m1 + m2

)∣

∣

∣

∣

2

and it is a function of the coordinates �s.
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The coordinates are scaled with the Compton wave number κ = mc/�, where m
is reduced mass

m = m1m2

m1 + m2

of the two particles, in which case they are dimensionless, and for a Hydrogen-like
atom particle 1 is proton and particle 2 is a negatively charged particle. The ground
state probability amplitude is

f (�r) = Ne−αr

but for the probability density for the centre of mass one takes delta function3

∣

∣

∣g
( �R

)∣

∣

∣

2 = δ
( �R

)

The last choice means that the charge density is defined for a system that is localized
at the origin as a point-like particle. The radial charge density is now

ρ (s) =
(

1 + m1

m2

)3

s2
∣

∣

∣

∣

f

[(

1 + m1

m2

)

�s
]∣

∣

∣

∣

2

−
(

1 + m2

m1

)3

s2
∣

∣

∣

∣

f

[(

1 + m2

m1

)

�s
]∣

∣

∣

∣

2

and for the Hydrogen-like atom it is

ρ (s) = α3s2

π

(

1 + m1

m2

)3

e
−2α

(

1+ m1
m2

)

s − α3s2

π

(

1 + m2

m1

)3

e
−2α

(

1+ m2
m1

)

s

Typical charge densities are shown in Fig. 1.1 for two examples (in the appropriately
scaled coordinates). If negatively charged particle is muon, which has comparable
mass with the proton, the charge density has two pronounced extremes, one for the
positive charge and the other for the negative (lower graph). On the other hand, if
mass of negatively charged particle is that of the electron then positive charge density
is concentrated in close proximity of the origin (upper graph). More realistic analysis
that involves relativistic dynamics is discussed in Sect. 5.4.3.

1.2.4 Electric Dipole of Molecules

Electric dipole moment of a molecule changes when external field on a molecule is
applied, and it is called induced electric dipole moment. This is manifested either as
a dipole moment for molecule that has zero permanent dipole moment, or variation
of the latter with the external field. The induced dipole moment is calculated from

3It should be pointed out that the delta function choice is not physical, because the size of the system
as the whole cannot be smaller than the with of the binding potential. In this case this choice is only
for the modelling purpose.

http://dx.doi.org/10.1007/978-3-662-52878-5_5
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Fig. 1.1 Radial charge
density for hydrogen atom
(upper graph), where the
positive component from
proton is very close to the
origin. Radial charge density
for a hydrogen-like atom for
muon as negatively charged
particle is shown by the
lower graph

100 200 300 400 500

100 200 300 400 500

ρ(
r)

r

ρ(
r)

r

the probability amplitude of a molecule in the presence of external field, and for
a weak field one uses perturbation theory. If Hamiltonian of a molecule is H0 and
its eigenfunction is f0, with the eigenenergy E0, then in the external field the new
eigenfunction f satisfies equation

(H0 + Vext ) f = E f

By replacing solution with
f = f0 + g

and likewise the eigenenergy with

E = E0 + ε

The equation for correcting term g, in the first order of perturbation, is

H0g + f0Vext = f0ε + gE0

and by expanding it in the eigenfunctions f j of the Hamiltonian H0

g =
∑

j

ε j f j

the expansion coefficients are

εm = 1

E0 − Em

∫

f0Vext fm dV ; m �= 0
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Within this correction the charge density is

ρ(�r) = ρ0(�r) − 2ne
∫

f0(�r , �r2, �r3, . . . , �rn)g(�r , �r2, �r3, . . . , �rn) d3r2 . . . d3rn

where the second term is the induced dipole moment, and it is explicitly given by

�dind = −2ne
∫

(

�r − �Rc

)
∑

m �=0

εmρm(�r) (1.6)

= −2ne
∑

m �=0

∫

f0Vext fm dV

E0 − Em

∫

(

�r − �Rc

)

ρm(�r) d3r

where

ρm(�r) =
∫

f0(�r , �r2, �r3, . . . , �rn) fm(�r , �r2, �r3, . . . , �rn) d3r2 . . . d3rn

Permanent and induced dipole moments always go together, and the magnitude
of the latter is primarily determined by the differences in the eigenenergies of a
molecule. In general the larger the molecule the greater the impact of the external
field on the dipole moment, however, even for smaller molecules the same may hold
true if the energy level spacing is small. In particular the induced dipole moment
may play significant role for the time dependent external field having an impact on
the spectrum a molecule.

It should be noted that the series for the induceddipolemoment is not convergent, it
is so called asymptotically convergent, which for the strong external fields manifests
itself as the tunneling ionization.

Dipole moment for molecules is measured in the units of debey, and its unit
value is

1 debey (D) = 3.336 × 10−30 Cm

To understand the meaning of this unit one takes charge of the electron that is at the
distance r = 10−10 m (typical dimension of a diatom molecule) from its opposite
charge, and this dipole moment has the value

d = 4.8D

Atoms do not have dipole moments, they acquire it only when they are subjected to
the external field. The simplest isHydrogen atom, forwhich the probability amplitude
of the electron, if subjected to the electromagnetic wave of the resonance frequency
for 1S → 2P transition, is a linear combination

f = a
√

πa30

e− r
a0 + b

4
√

2πa50

re− r
2a0 Y1,0 (θ,φ)
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where a0 = 0.5292 × 10−10 m is the Bohr radius. The coefficients a and b are in
general complex time dependent coefficients, but without loss of generality they
could be assumed real, with the property4

a2 + b2 = 1

The dipole moment is then

�d = −e
∫

d3r f 2 �r = −e
256

√
2

243
a
√

1 − a2a0 ẑ

which is indeed zero if either the electron is in the ground state (a = 1) or the excited
state (a = 0). Its maximal value is attained for a = 2−1/2, when the dipole moment
has the value

d = 1.89 D

The induced dipolemoment ofHydrogen atom in this electromagneticwave therefore
oscillates with this amplitude.5

Hydrogen atom could be permanently polarized in a constant electrostatic field.
If Hydrogen atom is in the ground state, and only the 2P state is taken into account,
then from the perturbation expression (1.6) for the dipole moment one gets

d = 524288

177147

e2a40me

�2
E

where me is mass of the electron and E is the strength of the electric field. If the
dipole moment should equal its amplitude when the atom is subject to the oscillating
electromagnetic field then E is

E = 729

2048

�
2

√
2emea30

= 1.29 × 1011 V/m

which is in practice virtually unobtainable.
Molecules, in general, may have permanent dipole moment, and few typical ones

are given in Table 1.1 [1]. As the result molecule 1 with a dipole moment produces
electrostatic field

�E1 = 1

4πε0r3

[

3
( �d1 · r̂

)

r̂ − �d1
]

4Their exact time dependence is the subject of separate analysis in later discussions.
5It should be noted, though, that the frequency of oscillations with this amplitude is not that of the
electromagnetic wave, it is a function of the strength of the field (see Rabbi oscillations).



1.2 Charge Density in Molecules 13

Table 1.1 Dipole moments
of molecules

Molecule d/D

CO 0.112

O3 0.53

H2O 1.85

CN2H2 4.27

KBr 10.41

and another molecule with a dipole �d2 in this field has potential energy

Vdip−dip = − 1

4πε0r3

[

3
( �d2 · r̂

) ( �d1 · r̂
)

− −→
d 1 · �d2

]

where r is separation between the dipoles and r̂ points fromone to the othermolecule.
Potential energy depends on the relative orientation of the two dipoles: the interaction
could be attractive (parallel configuration) or repulsive (antiparallel configuration).
This feature of interaction between the two dipoles results in the torque that the field
of one molecule exerts on the other, which has the form

I2 dt �ω2 = �d2 × �E1

where I2 is momentum of inertia and �ω2 is the angular velocity of the molecule 2
(for the equation of the molecule 1 the indices are interchanged) given by (the index
is omitted)

�ω = −dtθ sin φ x̂ + dtθ cosφ ŷ + dtφ ẑ

In terms of the spherical angles the dipole �d is

�d = d
(

sin θ cosφ x̂ + sin θ sin φ ŷ + cos θ ẑ
)

Dipole-dipole interaction is dominant when the molecules are separated, and its
absolute magnitude is better expressed in the scaled units, being

Vdip−dip = −0.6242

r3

[

3
( �d ′ · r̂

) ( �d · r̂
)

− −→
d · �d ′

]

where the separation between them is now measured in the units of 10−10 m
(Angstroms) and the dipole moments are given in debeys. Depending on the mole-
cules but in general dipole-dipole interaction dominates until the distances of the
order 10A. A simpler system is atom-molecule system the potential is

Vdip−atom = −2.998q

r2
�d · r̂
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where the charge of atom q is in the units of elementary charge. On the other hand if
atom is neutral then the dipole field induces charge separation in it, which is of the
order r−2, and the interaction decays more rapidly, as Vdip−atom ∼ r−4.

1.2.5 Van der Waals Potential

Neutral atoms or molecules, without polarization of charge density still exerts a
force on another species with the same characteristics. The force is responsible for
formation of clusters, which is manifested, for example, as formation of liquids from
gas phase, adhesion and it is essentially the explanation of the Casimir effect [2].
The theory that explains the force is very well documented [2,3] and here we give a
brief overview of its essentials.

Relatively few molecules do not have electric dipole moment, but atoms and the
molecules without it exert a force on the like species by attractive force that arises
from the finite extent of the charge density of the electrons. The force is expected
to be weak but significant at large separations of the species, where the chemical
forces are negligible. Therefore at these separations the electron densities of these
species do not overlap appreciable, the assumption that will be used in the following
analysis. For simplicity this force is derived for two Hydrogen atoms, the derivation
that has straightforward generalization to more complex situations.

Based on the assumption that the two Hydrogen atoms are well separated the
potential energy of the system is

VW = q2

r
− q2

∣

∣
−→r + −→r 2

∣

∣

− q2

∣

∣
−→r − −→r 1

∣

∣

+ q2

∣

∣
−→r + −→r 2 − −→r 1

∣

∣

≈ q2

[−→r 2.
−→r 1

r3
− 3

(−→r .
−→r 2

) (−→r .
−→r 1

)

r5

]

where−→r is separation of atom 2 from atom 1, which is placed at the origin. The vec-
tors −→r 2 and

−→r 1 are positions of the the electrons 2 and 1 relative to their respective
nuclei. In the last step expansion is made in the ratio of rn/r , and the leading term
retained. This interaction perturbs electronic states, and the (nearly) complete set of
the unperturbed ones are (the continuum states are not included)

F (0)
n1,n2

(−→r 1,
−→r 2

) = f (0)
n1

(−→r 1
)

f (0)
n2

(−→r 2
)

(1.7)

where the assumption of the non overlapping electronic probability amplitudes was
implemented. Impact of interaction potential VW on the state (n1, n2) is calculated
from the perturbation expansion, and the probability amplitude with the leading
correction is6

6The convenient 〈||〉 abbreviates integral over all variables that are involved.
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F (1)
n1,n2 = F (0)

n1,n2 +
∑

m1,m2

〈

F (0)
n1,n2

|VW | F (0)
m1,m2

〉

E (0)
n1,n2 − E (0)

m1,m2

F (0)
m1,m2

Correction to the unperturbed eigenergies is then

〈

F (0)
n1,n2 |VW |

∑

m1,m2

an1,n2;m1,m2F
(0)
m1,m2

〉

(1.8)

= 〈

F (0)
n1,n2

|VW | F (0)
n1,n2

〉 +
∑

m1,m2

∣

∣

〈

F (0)
n1,n2

|VW | F (0)
m1,m2

〉∣

∣

2

E (0)
n1,n2 − E (0)

m1,m2

which is r dependent and is associated with the long range atom-atom interaction,
known as the Van der Waals potential.

Potential VW represents essentially electric dipole-dipole interaction, which
means that induces also correlation between the two of them. This correlation effect
is calculated from

〈̂r1 · r̂2〉 =
∫

d3r1d
3r2F

∗
n1,n2 (̂r1 · r̂2) Fn1,n2 (1.9)

and by using approximation for the probability amplitude

〈̂r1 · r̂2〉 ≈ 2 Re

[

∑

m1,m2

〈

F (0)
n1,n2

|VW | F (0)
m1,m2

〉

E (0)
n1,n2 − E (0)

m1,m2

〈

F (0)∗
n1,n2

|̂r1 · r̂2| F (0)
m1,m2

〉

]

Previous derivation is valid under the assumption of no degeneracy, meaning that
no two pair of energies E (0)

n1,n2 and E (0)
m1,m2

are equal for any set of quantum numbers
unless (n1, n2) = (m1,m2). The problem arises because for Hydrogen atom, as an
example, the probability amplitude is specified by three quantum numbers (n, l,m)

whilst the appropriate eigenenergy is a function of only the principal quantumnumber
n and independent of the angular momentum ones l and m. Therefore for the quan-
tum number n the eigenergies are n2 degenerate. Degeneracy also arises when two
atoms are identical, in which case by interchanging the pair (n1, n2)with (n2, n1) the
eigenergies are the same. Previous analysis that is based on the non-degenerate per-
turbation expansion must therefore be replaced by the theory that takes into account
degeneracy.

In the degenerate perturbation expansion one isolates a set of degenerate states,
say there are d degenerate ones. If fn are eigenstates of unperturbed Hamiltonian
then the first d states (for convenience the set of eigenstates are ordered in this way)
have the same eigenenergy ed . One defines a new basis set hn , which is a linear
combination of fn but only for the indices smaller or equal to d whilst the rest are
unaltered. The first d states are gn for n ≤ d are defined so that they diagonalize
perturbing potential VW , i.e.
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(

˜U
)

n,i

〈

fi |VW | f j
〉

Uj,m = 〈hn |VW | hm〉 = e(1)
n δn,m (1.10)

which means that
hm = f jU j,m

In the new basis set one uses the rules of the non-degenerate perturbation theory,
thus the first order corrected eigenergies, for all n, are

e(1)
n = en + 〈hn |VW | hn〉

and the first order corrected probability amplitudes are

h(1)
n = hn +

∑

m

〈hn |VW | hm〉
en − em

hm

The second order corrected eigenergies are therefore

e(2)
n = en + 〈

hn |VW | h(1)
n

〉 = en + 〈hn |VW | hn〉 +
∑

m

|〈hn |VW | hm〉|2
en − em

(1.11)

Degenerate perturbation expansion is the most demanding when two atoms are
identical. The two indices that specify the state of each atom (each index should be
understood as a set of quantum numbers, 3 in the case of Hydrogen atom) do not
only individually represent degenerate states but also upon the exchange of them one
gets also another set that is degenerate with the previous one. For example, if one
seeks Van der Waals potential between two Hydrogen atoms where one is in n = 1
state and the other in n = 2, l = 1 and m = 0 state one cannot but not to include the
other l and m states in this atom. In general one combination has 4 states and upon
interchange of the states there are another 4 states. There are, therefore, altogether 8
states are degenerate and should be considered for calculating the potential. However,
within these states some are not coupled by the matrix element in (1.10) and their
eigenergies are not affected by transformation, but their probability amplitudes are.
Furthermore, the diagonal elements in this coupling matrix are zero therefore the
sum of the eigenvalues in (1.10) are zero. This means that for this system the states
whose eigenergies are affected by the transformation come in pairs, one for which
the shift from their unperturbed values is positive and the other that is negative. Upon
the exchange of atoms the two affected states are of the opposite sign, being result
of the symmetry of VW with respect to this exchange.

Correlation of the two electric dipoles (1.9), in the case of degeneracy is approx-
imately

〈̂r1 · r̂2〉n ≈ 〈hn |̂r1 · r̂2| hn〉 (1.12)

and it is not in general zero.
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In the previous analysis the states for which the Van der Waals potential was
defined are fixed, however, in most applications regarding dynamics of atoms one
works with a general expansion

G =
∑

m1,m2

cm1,m2F
(0)
m1,m2

where the coefficients are, in general, time dependent, therefore the Van der Waals
force is also time dependent. Straightforward generalization of the previous. non
degenerate, perturbation analysis gives for the Van der Waals potential

〈

G |VW |G(1)
〉

=
∑

m1,m2

∑

n1,n2

c∗
m1,m2

cn1,n2

⎡

⎣

〈

F (0)
m1,m2

|VW | F (0)
n1,n2

〉+
∑

i1,i2

〈

F (0)
n1,n2 |VW |F (0)

i1 ,i2

〉

E (0)
n1 ,n2−E (0)

i1 ,i2

〈

F (0)
m1,m2

|VW | F(
(0)
i1,i2

〉

⎤

⎦

In the case of degeneracy one defines a newbasis set based on the recipe thatwas given
earlier. The degenerate states form a subset of the complete set, and for each one of
themone performs transformation thatwas described earlier.After the transformation
the unitary matrix that transforms the entire basis set is a block matrix, where each
one transforms a particular degenerate subset. This unitary matrix is used to define
a new basis set which used in the perturbation expansion.

1.2.5.1 Two Hydrogen Atoms

Two Hydrogen atoms is the simplest system where to describe calculation of
the Van der Waals potential, and if both of them are in their ground state there
is no degeneracy and it is calculated from (1.8). The ground state probability
amplitude is F [1, 0, 0; 1, 0, 0] (the indices n, l and m are written in the brack-
ets for better visualization, where r1 is associated with the first set whilst r2
with the second) and in the simplest approximation it is in general coupled to
F [2, l,m; 1, 0, 0] , F [1, 0, 0; 2, l,m] and F [2, l,m; 2, l,m].However, by the sym-
metry considerations it is only coupled to F [2, 1,−1; 2, 1, 1] , F [2, 1, 1; 2, 1,−1]
and F [2, 1, 0; 2, 1, 0] in which case one gets for the Van der Waals potential7

VW ≈ −2.46 q2

α6r6

where q is electric charge andα is fine structure constant (appropriate units are used).
One is tempted to assume that the same reasoning applies for the potential when

both atoms are in 2S state. Although this state is degenerate with 2P states that would
not be a problem if the coupling between them is zero. However, this is not the case

7In the calculations it is assumed that the two atoms are along the z axes.
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because F [2, 0, 0; 2, 0, 0] is coupled to F [2, 1,−1; 2, 1, 1] , F [2, 1, 1; 2, 1,−1]
and F [2, 1, 0; 2, 1, 0], and therefore one must use degenerate perturbation expan-
sion. The complete set of degenerate probability amplitudes for n = 2 when both
both atoms are included has 16 terms, and out of 136 coupling terms only 12 are are
coupled. The list of those coupled states is in (1.14), but there are 8 states that are not
coupled to any other. In practice one forms the coupling matrix (1.10) with the entire
set, and combination of basis set functions that have zero eigenvalue correspond
to the uncoupled set. 8 eigenvalues that are not zero are {±22.05,±18,±9,±9}.
Therefore Van der Waals potential between two atoms in 2S state has no meaning
because these states come in a linear combination with the states from 2P . However,
among the linear combinations those with the largest absolute eigenvalue have the
largest weight and the two are given by

F2S = 1√
2
F [2, 0, 0; 2, 0, 0] ∓ 1√

3
F [2, 1, 0; 2, 1, 0] ∓ (1.13)

1√
12

F [2, 1, 1; 2, 1,−1] ∓ 1√
12

F [2, 1,−1; 2, 1, 1]

which are symmetric with respect to the interchange of two atoms. For each of the
two linear combinations one associates a potential, one is attractive, corresponding
to the negative eigenenergy, and the other is repulsive, corresponding to the positive
one. Important feature of these potentials is their rate of decay is r−3, which is
much slower than r−6 for a typical Van der Waals interaction. The two potentials
have also different sign, one describes attraction of the two atoms and the describe
repulsion. The states (1.13) describe interaction of two atoms in predominantly 2S
states and to show this one calculates correlation (1.12), which is shown to be zero.
The result supports this conjecture because correlation is zero if the two atoms are
in a spherically symmetric states.

(1.14)

The other linear combinations involve states 2S and 2P , for example the two that
correspond to the second largest in magnitude eigenergies are

F2S = 1√
2
F [2, 1, 0; 2, 0, 0] ∓ 1√

2
F [2, 0, 0; 2, 1, 0]
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and they produce the Van derWaals potential when the P state has quantum numbers
l = 1 andm = 0. One state is antisymmetric with respect to the interchange of atoms
and the potential is repulsive. The other is symmetric and the potential is attractive.
Correlation (1.12) is not zero, and in the former case it is 〈̂r1 · r̂2〉 = −1/4, thus
indicating that on average the two dipoles are antiparallel, which means repulsion.8

For the symmetric state the correlation is 〈̂r1 · r̂2〉 = 1/4, and represents attraction.
The other two linear combinations represent similar interactions.

1.3 Structure of Molecules

Constituents of molecules are electrons and nuclei, but when it comes to determining
their structure and dynamics the two sets of particles play different role. The key
parameter that distinguishes them is theirmass, the nuclei havingmuch larger than the
electrons. However, this statement should be taken with some caution, depending on
how it is applied. The intuition tells that if the nuclei of a mass M and the electrons of
themassm have nearly equal energy E then the ratio of their velocities is proportional
to

√
m/M . This means that nuclei move more slowly than the electrons, for example

kinetic energy of the protons in the ground state of Hydrogen molecule is of the order
0.1eV whilst that of the electrons is 10eV and so the ratio of the two velocities is
vprot/velec ≈ √

0.1/10 × 1/2000 ≈ 10−3. Furthermore the momentum exchange
between the electrons and the nuclei is small, again due to the ratio of their masses,
and based on the two arguments one assumes a similar concept as in thermodynamics,
the adiabatic approximation. The approximation applies to a system with two groups
of degrees of freedom9 where each one has independent dynamics of the other. In the
case of molecules, therefore, the adiabaticity, the Born-Oppenheimer approximation
as it is also called, means that the motion of nuclei is independent of the motion of
the electrons. Validity of the Born-Oppenheimer approximation has been discussed
on various occasions [5–8], whilst here in Sect. 1.3.2 its limitations are discussed
more explicitly on example of Hydrogen atom in harmonic oscillator.

In practice the adiabatic approximation is formally implemented in the following
way. For afixed configuration of nuclei one calculates eigenstates of the electrons, and
the relevant probability amplitudes are fn (r, R), where n refers to a set of indices that
characterize a particular electronic state. r is the set of coordinates for the electrons,
in the form r = {x1, y1, z1, x2, y2, . . .} whilst R is similar set for the nuclei. Energy
of the electronic states depend parametrically on the coordinates R and it is written
as en (R), meaning that if E is the overall energy of molecule then energy of the
nuclei is E − en (R). In equation for the nuclei, therefore, the energy en (R) plays

8It should be noted that the two dipoles are defined with respect to the line that connects two atoms,
thus antiparallel means electron-proton-proton-electron configuration.
9In thermodynamics the parameters that determine a system are pressure, volume, temperature and
the heath bath with which the system has energy exchange. The adiabatic approximation means
that the temperature always changes in unison with that of the heath bath and it is not affected by
the changes in pressure and volume.
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Fig. 1.2 Electronic energies
of Li2 molecule [4] as a
function of their internuclear
separation. The energies are
labeled by the dissociation
states of the molecule
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the role of potential in which they move due to, roughly speaking, averaging over the
electronic degrees of freedom. Typical potentials for Li–Li molecule are shown in
Fig. 1.2, which are characterized by the asymptotic states of individual atoms when
they are pulled apart. Although the procedure is straightforward the question is when
one expects the adiabatic approximation to fail?

The answer to this question will be given on a general level but a simpler one
derives from an order of magnitude argument. The adiabatic approximation is valid
provided the electrons move much faster than nuclei, and so its failure is expected
when the two velocities are nearly equal. This, however, means that kinetic energy of
the nuclei should be greater than the same for the electrons by the ration of the mass
of the former to the mass of the latter. This ratio is typically of the order 104 and so if
binding energy of the electrons (valence electrons) is of the order 1eV then energy of
the nuclei should be roughly 104 eV, which is indeed very large. However, there may
be circumstances when the adiabatic approximation fails for much smaller kinetic
energy of the nuclei, e.g. when atoms are in highly excited states (Rydberg states)
and their binding energy is much smaller. For example, the electron in Hydrogen
atom in the state with the principal quantum number n = 100 has energy of the order
10−3 eV and so it is expected that adiabatic approximation would fail when nuclei
have few eV .

The essence of breakdown of the adiabatic approximation could be demonstrated
on a simple classical model. In this model the electron is coupled to the motion of the
nucleus whilst the latter is coupled to an external potential. The simplest is to assume

Hydrogen atom on which the force
−→
F

(−→
R

)

is applied and analyze how the motion

of the electron is affected by it. Adiabatic approximation assumes that motion of the
electron is independent of motion of the proton, or to be more precise, energy of the
electron is affected but its change is smaller than some predetermined value. There
are two sets of classical equations that describe this system. One for the proton, and
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if it has the mass M and the position vector
−→
R it is given by

M
··−→
R = −→

F
(−→
R

)

+ −→
G

(−→
R − −→r

)

On the other hand, equation for the electron is

m
··−→r = −−→

G
(−→
R − −→r

)

where
−→
G

(−→
R − −→r

)

is force between the electron and proton, the Coulomb force

−→
G

(−→
R − −→r

)

= −∇VCoul

(∣

∣

∣

−→
R − −→r

∣

∣

∣

)

= − e2

4πε0

−→
R − −→r

∣

∣

∣

−→
R − −→r

∣

∣

∣

3

By defining
−→u = −→

R − −→r

then equation for the electron is

m
··−→u = −→

G
(−→u ) + m

M

−→
F

(−→
R

)

+ m

M

−→
G

(−→u )

The adiabatic approximation is to neglect the last two terms, which are of the order
mM−1, when trajectory for the electron is

−→r = −→
R − −→u (t)

which depends parametrically on the coordinates of proton. By definition this is
adiabatic solution for the electron.Motion of the proton is then derived from equation

M
··−→
R = −→

F
(−→
R

)

+ −→
G

(−→u )

where −→u is solution of adiabatic equation for the electron. Measure of this approx-
imation is energy of proton, whose change in time is given by

�Epr =
∫

dt
·−→
R · −→

G
[−→u (t)

]

and motion is adiabatic if �Epr is smaller than some predetermined value.
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1.3.1 Adiabatic Approximation

Deriving rigorous adiabatic approximation for the system of Nel electrons and Nnu

nuclei one starts from equation

[Tel (r) + Tnu (R) + V (r, R)] f (r, R) = E f (r, R) (1.15)

where Tel (r) is kinetic energy operator for the electrons, Tnu (R) is the same for the
nuclei and V (r, R) is the potential energy of the whole system. Few words about the
coordinates and the symbolic way how they are represented. The symbol r represents
the Cartesian coordinates set r = {x1, y1, z1, x2, y2, . . .} of the individual electrons
whilst R stands for the set of nuclear coordinates in the centre of mass coordinates
system, which is obtained by neglecting the mass of the electrons. Therefore the
components R = {X1,Y1, Z1, X2,Y2, . . .} are obtained from the coordinates of
individual nuclei by removing the centre of mass coordinate and the remaining are
chosen so that the kinetic energy operator is in the form

Tnu (R) = −�
2

2

3Nnu−3
∑

n

M−1
n �Rn = −�

2

2
M−1/2∇ · M−1/2∇ ≡ T 1/2

nu (R) T 1/2
nu (R)

(1.16)

where M is a 3Nnu −3 (the centre of mass coordinates are removed) diagonal matrix
of the masses that are related to those of the nuclei (see Appendix D), which on
the diagonal has the values Mj, j = {M1, M1, M1, M2, M2, . . .}. The operator ∇ is a
single column matrix having the elements

∇ = {∇X1 ,∇Y1 ,∇Z1 ,∇X2 ,∇Y2 , . . .
}

.

In contrast to the nuclear kinetic energy the operator Tel (r) is the sumof contributions
from individual electrons. The parameter E is the total energy of the system.

Overall motion of a molecule appears as a nonessential information and could
be removed from the solution of equation (1.15). The removal is indeed justified in
many circumstances but there are processes when it is important to know motion
of the centre of mass of a molecule. For example, when the electromagnetic field
interacts with a molecule then the result is also its translational motion, which means
that there is coupling between all the coordinates involved. In this case it is impera-
tive to including the centre of mass coordinates into the dynamics equations. These
processes are not analyzed here, in Chap.6 they are analyzed in details for atoms, the
interest is focused on investigating how to implement the adiabatic approximation
for an isolated molecule and under what circumstances it is applicable.

Adiabatic, or Born-Oppenheimer, approximation is briefly or in more details
reviewed in almost any textbook where molecular structure is analyzed. Nowadays
the methods of calculating molecular structures has grown to be a very sophisticated
tool, but always in the background is this approximation. However, the problem still

http://dx.doi.org/10.1007/978-3-662-52878-5_6
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remains corrections to this approximation, the non adiabatic processes, which is the
emphases in this section.

The adiabatic approximation is derived by writing solution of equation (1.15) in
the form of expansion

f (r, R) =
∑

n

gn (r, R) wn (R) (1.17)

where gn (r, R) are eigenfunctions of the electronic Hamiltonian for a fixed config-
uration of a molecule, i.e.

Hel (r, R) gn (r, R) = Wn (R) gn (r, R)

However, here another approach is adopted that will prove to be useful in later
analysis. One starts by the diabatic expansion, which essentially means that for a
fixed configuration of nuclei R0 one defines a complete set of eigenfunctions of
the electronic Hamiltonian (for simplicity it is assumed that all electronic states are
bound.) by solving equation

[Tel (r) + V (r, R0)] gn (r) = Wn (R0) gn (r) (1.18)

For any other nuclear configuration one then writes expansion for the solution of
equation (1.15) as

f (r, R) =
∑

n

gn (r) wn (R)

This expansion is expected to be poorly convergent for all R but in a small vicinity
of R0 it may have advantages over the adiabatic expansion. By replacing expansion
in (1.15) one gets a set of equations for the “coefficients” wn (R), which are in a
matrix form given by

Tnu (R) w (R) = [

E − Odi (R)
]

w (R) (1.19)

where Odi (R) is a matrix with the elements

Odi
i, j (R) =

∫

d3Nel r [V (r, R) − V (r, R0)] gi (r) g j (r) + Wi (R0) δi, j (1.20)

≡ 〈g (r) |O(r, R)| g (r)〉i, j
= 〈i |V (r, R) − V (r, R0)| j〉di + Wi (R0) δi, j

where the superscript indicates the diabatic basis. One now defines a unitary matrix
U that diagonalizes Odi , i.e.

˜U (R)Odi (R)U (R) = λ(R) ≡ Oad(R) (1.21)
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where λ(R) is a diagonal matrix. The role of the matrix U is deduced from this
property, it changes the basis set of the electronic functions, from those fixed at R0

to those at R. Explicitly
˜U (R)g (r) = g (r, R) (1.22)

which is changing from diabatic basis set in expansion (1.19) into the adiabatic in
expansion (1.17). Therefore, study of the matrix U (R) is bridging the gap between
the two expansions.

The diabatic set of equations (1.19) is transformed by using the relationship (1.22),
when one gets

Tnu (R) w (R) = [

E −U (R)Oad(R)˜U (R)
]

w (R)

where now the matrix elements are in the adiabatic basis. In accordance with the
transformation of the electronic basis functions the nuclear ones must also be modi-
fied by writing

W (R) = ˜U (R)w(R)

and so they satisfy the set of equations

˜U (R)Tnu (R) [U (R)W (R)] = [

E − Oad(R)
]

W (R) = [E − λ(R)]W (R)

By using nuclear kinetic energy operator (1.16) the left side is transformed, where
one has to calculate derivatives ∇RnU (R) ≡ U ′

n(R). By making parametrization

U ′
n(R) = U (R)ηn(R)

and from the definition of the matrix U (R) it is deduced

ηn;i, j (R) =
{ 〈i|V ′

n(r,R)| j〉ad
λ j (R)−λi (R)

; i �= j

0 ; i = j
(1.23)

where the superscript indicates the adiabatic electronic basis. Further derivatives are
similarly deduced, and given by

∇Rn ηi, j (R) =
〈

i
∣

∣V ′′
n (r, R)

∣

∣ j
〉ad

λ j (R) − λi (R)

+ 2λk (R) − λi (R) − λ j (R)

λ j (R) − λi (R)
ηn;i,k (R)ηn;k, j (R) −

λ′
n; j (R) − λ′

n;i (R)

λ j (R) − λi (R)
ηn;i, j (R)

and
λ′
n;i (R) = 〈

i
∣

∣V ′
n(r, R)

∣

∣ i
〉ad
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so that the final set of equations is

− �
2

2

3Nnu−3
∑

n

M−1
n

[∇Rn + ηn(R)
]2
W (R) = [E − λ(R)]W (R) (1.24)

where one distinguishes two terms of different order in powers of mass M . The
term ∇RnW (R) is of the order M1/2 whilst the matrix η is independent of mass and
therefore by the criterion that the nuclear mass is large one neglects this term and
the set simplifies

Tnu (R)W (R) = [E − λ(R)]W (R)

which is the adiabatic approximation, or the Born-Oppenheimer approximation.
In general η is small and the mass of the nuclei is large which means that the

adiabatic approximation is quite accurate. However, the matrix elements of η depend
on the separation between the eigenvalues λi (R), as shown in their definition (1.23),
and their proximity is a measure of the failure of the adiabatic approximation. In
order to understand that better it is worth investigating the source of encounter of
the electronic energies λ(R), and for that one should recall how in practice they are
calculated. Direct solution of equations (1.18) is not feasible, instead one resorts
to the variational principle, and the simplest of the methods is the Hartree-Fock.10

It essentially assumes a fixed electronic configuration, being a product (properly
antisymmetrized though) of functions that describe independent electronic states,
and then the parameters in these functions are optimized to minimize the lowest
eigenvalue of the integral

W (R0) = min

{∫

d3Nel r gtr (r) [Tel (r) + V (r, R0)] gtr (r)

}

(1.25)

where gtr (r) is a trial multi-electron function with some free parameters. The trial
functionsmay be chosen to correspond to a certain dissociation limit, and hence if two
of these are decide upon (in the simplest case) then for another configuration of the
nuclei the related electronic energies are independent of each other. In principle they
could cross, i.e. become degenerate, for a particular configuration.More accurate trial
function, however, is a combination of the Hartree-Fock ones, so called configuration
interaction functions. In this case the minimization procedure of the kind (1.25)
becomes the minimization of the eigenvalues of the matrix that is obtained from
these configurations, say for two of these g(1)

tr (r) and g(2)
tr (r) it is given by

H =
∣

∣

∣

∣

H1,1 H1,2

H2,1 H2,2

∣

∣

∣

∣

10The Hartree-Fock method is far from being accurate for calculating energies of the electronic
states, however, in here it is not used for this purpose but to demonstrate why these do not become
degenerate. In short, to demonstrate the source of the avoided crossing of the electronic energies.
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where

Hi, j (R) =
∫

d3Nel r g(i)
tr (r) [Tel (r) + V (r, R)] g( j)

tr (r)

If the diagonal elements are degenerate at Rdeg then in their vicinity one can write

H ≈
∣

∣

∣

∣

∣

H (0) + (R − R0) · H (1)
1,1 H (0)

1,2

H (0)
2,1 H (0) + (R − R0) · H (1)

2,2

∣

∣

∣

∣

∣

where

H (0)
i, j =

∫

d3Nel r g(i)
tr (r) [Tel (r) + V (r, R0)] g

( j)
tr (r) ,

(R − R0) · H (1)
1,1 =

3Nnu−3
∑

n

(

Rn − Rn;0
)

∫

d3Nel r g(i)
tr (r)∇Rn V (r, R0) g

( j)
tr (r)

The eigenvalues are therefore

λ1,2 = 1

2

[

2H (0) + (R − R0) ·
(

H (1)
1,1 + H (1)

2,2

)]

(1.26)

± 1

2

√

[

(R − R0) ·
(

H (1)
1,1 − H (1)

2,2

)]2 + (�H)2

where
�H = 2

∣

∣

∣H (0)
1,2

∣

∣

∣

and the electronic energies do not cross. The splitting is due to the “coupling” between
the configuration interaction basis functions, and this effect on its own cannot be the
sign of the breakdown of the adiabatic approximation. The breakdown is entirely due
to the coupling that causes nuclei to change motion from one electronic energy state
into another. Example of the avoided crossing of the electronic energies is shown in
Fig. 1.3, where the diabatic electronic energies are indicated by H1 and H2.

From the previous remarks one traces the cause of the breakdown of the adiabatic
approximation to the matrix η because in the set of equations (1.24) it mixes the
channels of different electronic states. This matrix, the coupling matrix among the
electronic states, appears in the form of the first power and the second power. The
latter could beneglected in the qualitative analysis, becauseη has only the off diagonal
elements whilst η2 has the diagonal ones as well, but especially in a two state problem
when its off diagonal elements are zero. Therefore, the quadratic term does not
contribute towards mixing of the electronic states, at least not in an essential way.
This, however, is not always true as it will be shown later.

From the explicit expression (1.23) of the matrix elements of η mixing of the
states starts when the eigenvalues λ(R) are not well separated, i.e. when they are
in the regime of the avoided crossing. The source of the avoided crossing was dis-
cussed, and as argued this happens in a relatively small interval around some isolated
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Fig. 1.3 Electronic energies
of two states in the regime of
avoided crossing

λ1

λ2

ΔH
H2

H1V

R

configurations of the nuclei. Based on this finding it could be assumed that for the
purpose of estimating the extent of mixing of the electronic states it is sufficient to
analyze a two state problem. In this case the only non-zero elements of η are

ηn;1,2(R) = −ηn;2,1(R) = 1

λ2(R) − λ1(R)

2
∑

i, j=1

Ui,1
〈

i
∣

∣V ′
n(r, R)

∣

∣ j
〉di

U j,2

and in the vicinity of the avoided crossing the diabatic elements are (nearly) constant
whilst the denominator has a functional dependence based on the estimate (1.26).
The unitary matrix U parametrizes as

U =
∣

∣

∣

∣

cosφ sin φ
− sin φ cosφ

∣

∣

∣

∣

in which case one derives

ηn;1,2(R) = ∇Rnφ = 1

λ2(R) − λ1(R)

(

V ′
n;1,1 − V ′

n;2,2
2

sin 2φ + V ′
n;1,2 cos 2φ

)

where
V ′
n;i, j (R) = 〈

i
∣

∣V ′
n(r, R)

∣

∣ j
〉di

In the vicinity of crossing of the diabatic electronic states the matrix elements
V ′
n;i, j (R) are nearly constant and could be fixed to have value the V ′

n;i, j (R0). It
follows from this, and the definition of the diabatic states, that V ′

n;1,2 ≈ 0 and

V ′
n;1,1 − V ′

n;2,2 ≈ H (1)
1,1 − H (1)

2,2
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hence the equation for the phase φ has a solution

tan φ = (R − R0) · Q +
√

[(R − R0) · Q]2 + 1

where

Qn = H (1)
n;1,1 − H (1)

n;2,2
�H

and the coupling matrix is

ηn =
∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

∇Rnφ = |Qn|
2

1

[(R − R0) · Q]2 + 1

∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

There are two limits to consider depending on the value of |Qn|, the “coupling
constants” among the electronic states, but in fact depending on �H . In one limit
�H is very small in which case the coupling constants |Qn| are very large. The
matrix η is in this case nearly a delta function and the set of equations (1.24), without
the quadratic term in the same matrix, have a straightforward solution. The unitary
matrix has a step-like property, on one side of the turning points R0 it is, say, (nearly)
a unit matrix and on the other side it is a matrix with the zero elements on the
diagonal. This means, for example, that if on one side solution in a particular channel
corresponds to the electron energy 1 on the other side it corresponds to the electron
energy 2. This behavior is precisely that of a diabatic solution. However, obtaining
this solution from the set (1.24) is not possible because the quadratic term in η is of
the order of the square of a delta function, the singularity that is not integrable. In this
case the adiabatic expansion fails, and hence the adiabatic approximation, the Born-
Oppenheimer approximation, has no meaning. The way out is to transform the set
(1.24) into the diabatic form when it could be solved by a perturbation method, say
the distorted channel method. In this case one could define, by analogy, the diabatic
approximation.

The other limit is when the coupling constants are small, i.e. when �H is large.
In this case the matrix η is small and hence its quadratic form is smaller, and also
∇Rnηn(R) is negligible. The adiabatic approximation has meaning in this case and
its corrections are calculated from the set (1.24) by a perturbation method.

In between these two extremes there is a transition region where one could say
that the adiabatic approximation has meaning but it is not accurate. The details of
how to analyze solution in this case is not elaborated here, this is a topic on its own.

1.3.2 Hydrogen Atom in Harmonic Oscillator

1.3.2.1 Classical Theory

Adiabatic approximation in a classical system is demonstrated on example of a
proton being subject to a harmonic force and the electron is coupled to the proton by
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Coulomb force. For simplicity the problem is treated in two dimensions. Equations
to be solved are

··−→
R = −ω2−→R − α

m

M

−→u
u3

(1.27)

··−→u = −α
(

1 + m

M

) −→u
u3

− ω2−→R

where
−→
R is coordinate of the proton and −→u is connected with the coordinate of the

electron −→r by −→u = −→
R − −→r . The coordinates and time are dimensionless,

−→
R and

−→u stand for
−→
R κ and −→u κ, respectively, whilst time t stands for tcκ, where

κ = mc

�
= 2.58961 × 1012 m−1

isComptonwavenumber for the electron. In the adiabatic approximationoneneglects
the terms of the order M−1, which also includes ω2 because it is of the same order
of magnitude. The set of equations to solve is now

··−→
R ad = −ω2−→R ad

··−→u ad = −α
−→u ad(t)

u3ad(t)
− ω2−→R ad

where α is the fine structure constant, which is defined as

α = e2

4πε0�c
= 1

137.036

Motion of proton is independent from that of the electron, whilst trajectory of the
electron is parametrically dependent on the coordinates of the proton.

Solution for the adiabatic trajectory of the proton is

−→
R ad = −→

R 0 cos (ωt + δ) + 1

ω

−→
V 0 sin (ωt + δ)

and by assuming the simplest case, that the electron is in a circular orbit of the radius
1/α (ground state Bohr orbit) around the proton, then its adiabatic trajectory is

−→u ad(t) = −→u 0(t) − ω2

ωel

∫ t

0
dτ sin [ωel (t − τ )]

−→
R ad(τ ) (1.28)

where
−→u 0(t) = 1

α
[̂x cos (ωel t + δel) + ŷ sin (ωel t + δel)]
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From the adiabatic solutions one calculates corrections, and of particular interest is
correction to the trajectory of the proton. Solution for this trajectory is in direct rela-
tionship to what is the purpose of the Born-Oppenheimer approximation. Trajectory
for the proton is solution of equation

··−→
R = −ω2−→R − α

m

M

−→u ad

u3ad

or in approximate form

··−→
R ≈ −ω2−→R − α4 m

M
−→u ad(t)

where it is assumed that u3ad ≈ u30. The equation has solution

−→
R = −→

R ad − 1

ω
α4 m

M

∫ t

0
dτ sin [ω (t − τ )]−→u ad(τ )

and by replacing −→u ad(t) with (1.28) one gets two integrals in the time variable. The
integral that involves −→u 0(t) is straightforward to solve and solution is oscillatory,
with the bounded amplitude. On the other hand the integral with the second term in
(1.28) is

−→
R ≈ α4 mω

Mωel

∫ t

0
dτ

∫ τ

0
ds sin [ω (t − τ )] sin [ωel (τ − s)]

−→
R ad(s)

and its amplitude increases linearly in time. This result is of particular interest because
it shows that expansion in the powers of m

M , at least in classical mechanics, may not
be convergent.

1.3.2.2 Quantum Theory

Hydrogen atom that is subject to an external harmonic force is a good example where
one could study interdependence of the electron and the proton motion. Classical
study was done in Sect. 1.3.2 and here it will be shown how the problem is solved in
quantum dynamics. Equation for this system, in the same scaling as in Sect. 1.3.2, is

⎛

⎝−q

2
�R − 1

2
�r + 1

2q
w2R2 − α

∣

∣

∣

−→r − −→
R

∣

∣

∣

⎞

⎠ f
(−→
R ,

−→r
)

= E f
(−→
R ,

−→r
)

(1.29)
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which is solved by writing solution as expansion

f
(−→
R ,

−→r
)

=
∑

n

gn

(−→
R

)

hn
(−→r − −→

R
)

where hn
(−→r )

is solution of equation

⎛

⎝−1

2
�r − α

∣

∣

∣

−→r − −→
R

∣

∣

∣

⎞

⎠ hn(
−→r − −→

R ) = enhn(
−→r − −→

R ) (1.30)

As before one chooses the parameter q = m/M as the measures of quality for
adiabatic expansion. When the expansion is replaced in (1.29) one obtains a set of

equations for the functions gn

(−→
R

)

, which is in a matrix form given by

−q

2
(∇R − 〈h|∇h〉)2 g + 1

2q
w2R2g + q

2

(〈h|∇h〉2 − 〈h |�| h〉) g (1.31)

= (E − e) g

where in derivation equation (1.30) was used. The matrix elements are defined as

[〈h|∇h〉]i, j =
∫

d3r hi
(−→r )∇h j

(−→r )

and e is diagonal matrix.
Ratio of the two masses q appears in the part of the set (1.31) that refers to the

motion of the centre of mass of Hydrogen (proton) and also in the term that couples
it to the motion of the electron (the last term on the left). It would appear that by
neglecting this ratio the twomotions would be decoupled, which would indeed be the
case if it is not that the coupling also appears in the kinetic energy of the Hydrogen.
Therefore, in addition to neglecting the ratio of the two masses it should be assumed
that momentum of the heavier mass, the average of ∇R , is much larger than the
average of momentum of the lighter one 〈h|∇h〉. This approximation, however, may
not be the sole criterion, if the energy difference in e is very large then by replacing
g with

g = e
−→
R ·〈h|∇h〉 f

then (1.31) is approximately

−q

2
∇2

R f + 1

2q
w2R2 f = (E − e) f

The equation describes entirely de-coupled motion of the atom from that of the
electron.



Chapter 2
Relativistic Wave Equations

Abstract There are three sets of equations that are relativistic invariant, equations
for vector and scalar potentials, Klein-Gordon equation and Dirac equation, and they
could be derived from a single equation. Solutions are analyzed and with special
emphases on applying various Green functions. Particular emphases is devoted to
analyzing Dirac equation, being representative of relativistic quantum dynamics for
spin half particles.

For discussion of particles, and in particular charges, that are confined within a small
space it is imperative to use relativistic classical and quantum theory. The former
is often a very good substitute for quantum theory, whether one wants only esti-
mates or getting understanding of the essential dynamics for these circumstances.
It is not only that particles are necessarily confined in the small space that rela-
tivistic theory should be used, they could also move at nearly the speed of light.
There is also the problem of understanding very fine corrections in interaction of
these particles with the electromagnetic field, when in particular one needs to know
the meaning of solutions of the equations that describe relativistic particles. There
are three equations that would be used for relativistic treatment of dynamics of par-
ticles, classical dynamics excluded. One describes dynamics of the electromagnetic
field (in fact a set of equations) and the other two describe quantum dynamics of par-
ticles. All of them could be derived from an all encompassing equation, the approach
that gives better insight into the nature of relativistic dynamics.

2.1 Unifying Equation

Three equations are used when relativistic dynamics is implemented for description
of wave phenomena: one is for the electromagnetic field and the other two are Klein-
Gordon and Dirac equations. These equations, however, have single basic, unifying,
form

� f (�r , t) − 1

c2
∂2
t f (�r , t) − m2c2

�2
f (�r , t) = ρ(�r , t) (2.1)

© Springer-Verlag Berlin Heidelberg 2016
S.D. Bosanac, Electromagnetic Interactions,
Springer Series on Atomic, Optical, and Plasma Physics 94,
DOI 10.1007/978-3-662-52878-5_2

33
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for example, ifm = 0 and ρ(�r , t) is charge density then f (�r , t) is scalar potential for
the electromagnetic field. On the other hand if ρ(�r , t) is replaced by the charge current
then solution is for the vector potential. Klein-Gordon equation is whenm �= 0where
ρ(�r , t) is collection of all terms from the equation for a particle with the charge q
that interacts with the electromagnetic field

(

∇ − i
q
−→
A

�c

)2

f (�r , t) −
(

1

c
∂t + i

qV

�c

)2

f (�r , t) − m2c2

�2
f (�r , t) = 0 (2.2)

and when it is put into the form (2.1).
Similarly Dirac equation for interacting charged particle with the electromagnetic

field is
(

1

c
γ0∂t + −→γ · ∇ + i

mc

�

)

f (�r , t) = −ρ(�r , t) (2.3)

where ρ(�r , t) is obtained from

(

1

c
γ0∂t + i

qV

�c
γ0 + −→γ · ∇ − iq

�c
−→γ · −→

A + i
mc

�

)

f (�r , t) = 0 (2.4)

by collecting the appropriate terms. The symbols that are used are defined as

−→γ =
∣

∣

∣

∣

0 �S
−�S 0

∣

∣

∣

∣

, γ0 =
∣

∣

∣

∣

I 0
0 −I

∣

∣

∣

∣

(2.5)

and

Sx =
∣

∣

∣

∣

0 1
1 0

∣

∣

∣

∣

, Sy =
∣

∣

∣

∣

0 −i
i 0

∣

∣

∣

∣

, Sz =
∣

∣

∣

∣

1 0
0 −1

∣

∣

∣

∣

and I is the unit matrix. In the spherical coordinates

Sr =
∣

∣

∣

∣

cos θ e−iφ sin θ
eiφ sin θ − cos θ

∣

∣

∣

∣

, Sθ =
∣

∣

∣

∣

− sin θ e−iφ cos θ
eiφ cos θ sin θ

∣

∣

∣

∣

,

Sφ =
∣

∣

∣

∣

0 −ie−iφ

ieiφ 0

∣

∣

∣

∣

By parametrizing solution as

f (�r , t) =
(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

)

g(�r , t) (2.6)

one obtains equation

�g(�r , t) − 1

c2
∂2
t g(�r , t) − m2c2

�2
g(�r , t) = ρ(�r , t)
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which is formally the same as the previous two inhomogeneous wave equations, the
only difference being that g(�r , t) has four components.

Equation (2.1) is transformed into the integral equation form

f (�r , t) = f0(�r , t) +
∫

ds d3u K
(�r − −→u , t − s

)

ρ(
−→u , s) (2.7)

for the sake of finding solution by iteration with the advantage that at each step the
boundary conditions are preserved. f0(�r , t) is solution of homogeneous equation and
the remaining term is solution of (2.1) if

(

� − 1

c2
∂2
t − m2c2

�2

)

K
(�r − −→u , t − s

) = δ
(�r − −→u )

δ (t − s) (2.8)

2.2 Homogeneous Equation

Homogeneous form of the wave equation (2.1) is

� f (�r , t) − 1

c2
∂2
t f (�r , t) − m2c2

�2
f (�r , t) = 0

with the simplest solution in the form of two plane waves

f (�r , t) = ei
−→
k ·−→r ±iεt/�

where ε = c
√

�2k2 + m2c2. The plane wave solutions have only mathematical sig-
nificance because they extend over the whole space and in that sense they do not
represent physical state of a particle. Particle is normally localized within a certain
space region when solutions of the homogeneous equation are more complex.

Solving homogeneous equation requires defining initial and boundary conditions
for its solution, which in turn are defined by physical circumstances. Two initial
conditions are required at t = 0

f (�r , 0) = F0(�r), ∂t f (�r , 0) = G0(�r)

whilst no particular boundary conditions on these are assumed. Solution of the homo-
geneous equation is now

f (�r , t) =
∫

d3u
[

K1
(�r − −→u , t

)

F0(
−→u ) + K2

(�r − −→u , t
)

G0(
−→u )

]

(2.9)
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with the requirement that

K2
(�r − −→u , 0

) = 0, K1
(�r − −→u , 0

) = δ
(�r − −→u )

and
∂t K2

(�r − −→u , 0
) = δ

(�r − −→u )

, ∂t K1
(�r − −→u , 0

) = 0

One shows that

K2 (�r , t) = �

(2π)3

∫

d3k
sin (εt/�)

ε
ei

−→
k ·−→r

and

K1 (�r , t) = ∂t K2 (�r , t) = 1

(2π)3

∫

d3k cos (εt/�) ei
−→
k ·−→r

or

K2 (�r , t) = i

(2π)3

∫

d3k dω ei
−→
k ·�r−iωtδ

(

ω2 − ε2

�2

)

ω

|ω| (2.10)

and

K1 (�r , t) = 1

� (2π)3

∫

d3k dω ei
−→
k ·�r−iωtδ

(

ω2 − ε2

�2

)

ε

Important feature of the functions K1 (�r , t) and K2 (�r , t) is that they are analytic in
the variable k,which is essential if for the solutions it is requirednot to transmit signals
faster than the speed of light. As the consequence, however, both signs of energy are
present in solution, which is explicitly evident if it is written in the expanded form

f (�r , t) = 1

2 (2π)3

[∫

d3k ei
−→
k ·�r+iεt/�K+

(−→
k

)

+
∫

d3k ei
−→
k ·�r−iεt/�K−

(−→
k

)

]

where

K±
(−→
k

)

=
∫

d3u e−i
−→
k ·−→u

[

F0(
−→u ) ± �

iε
G0(

−→u )

]

Solution is a combination of two plane waves, whose physical meaning is deduced
by noting that velocity of a relativistic particle is

−→v =
−→p
e
c2 = −c2∇ (∂t )

−1

where the operators act on a plane wave. Thus the velocity of the component with

K+
(−→
k

)

in the solution f (�r , t) is

−→v = −�
−→
k

ε
c2
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and points in the opposite direction with respect to the momentum of particle. For the
other component velocity is in direction ofmomentum. In general, therefore, solution
always consists of two components, one going in the opposite direction with respect
to the other. The question is could one form solution with a single energy component,
for example only for the positive one?

For a single energy component solution, for example positive, one should require
that

K+
(−→
k

)

= 0

for all
−→
k . It follows that F0(

−→r ) and G0(
−→r ) are not independently determined but

they are related by

F0(
−→r ) = �i

(2π)3

∫

d3u G0(
−→u )

∫

d3k
ei

−→
k ·(−→u −−→r )

ε
(2.11)

and if G0(
−→u ) is spherically symmetric then

F0(r) = − 2i�

πc�r

∫

dk
sin kr

√

k2 + m2c2
�2

∫

du u G0(u) sin ku

In the limit m → 0 (for the electromagnetic field)

F0(r) = − 2i�

4πc�r

∫

du u G0(u) ln

[

(r + u)2

(r − u)2

]

≈
r→∞ − 2i�

πc�r2

∫

du u2 G0(u)

which shows that F0(r) is nowhere zero even if G0(r) may be strictly so beyond
some r . This, however, means that for a single energy component solution particle
cannot be localized within finite space.

On the other hand, in the limit m → ∞

F0(r) = − i�

mc2
G0(r)

and the solution is determined by only single initial function, which is the non
relativistic limit.

Solution (2.9) could also be used for solving homogeneous Dirac equation, how-
ever, it would appear that since it is first order in time derivative there is no need for
this initial condition. This is not the case because solution is having four components
and requires formally four initial conditions at t = 0. The simplest generalization in
(2.9) would be to replace F0(

−→u ) and G0(
−→u ) by four row matrices, but that means

eight initial functions amongst which four matrix elements are not independent func-
tions. For selecting these elements one starts with the solution of Dirac equation as
it is formally derived from (2.9)
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f (�r , t) =
(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

)

∫

d3u
[

K1
(�r − −→u , t

)

F0(
−→u ) + K2

(�r − −→u , t
)

G0(
−→u )

]

but it is more convenient to give it in the Fourier transformed form. If one makes
replacement

f (�r , t) =
∫

d3k ̂f
(−→
k , t

)

ei
−→
k ·−→r (2.12)

and defines matrix E as
E = e−i tγ0ε/� (2.13)

then

̂f (
−→
k , t) = 1

2

(

1

c
γ0∂t + i−→γ · −→

k − i
mc

�

)

E

[

�

iε
γ0ĝ0(

−→
k ) + ̂F0(

−→
k )

]

This is a linear combination
̂f (

−→
k , t) = ϒEa

where a is a single column matrix and ϒ is a 4 × 4 unitary matrix with the property

ϒ+ϒ = I

where I is the unit matrix. The matrix a is determined from the initial ̂f0(
−→
k ) =

̂f (
−→
k , t = 0), whose matrix elements are arbitrary functions of

−→
k , in which case

a = ϒ+
̂f0(

−→
k )

and
̂f (

−→
k , t) = ϒEϒ+

̂f0(
−→
k )

Solution in terms of ̂F0(
−→
k ) and ĝ0(

−→
k ) is then

ϒEϒ+
̂f0(

−→
k ) = 1

2

(

1

c
γ0∂t + i−→γ · −→

k − i
mc

�

)

E

[

�

iε
γ0ĝ0(

−→
k ) + ̂F0(

−→
k )

]

where either of the two coefficients is arbitrary, and one could choose

̂F0(
−→
k ) = �

iε
γ0ĝ0(

−→
k )
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when

̂f (
−→
k , t) = ϒEϒ+

̂f0(
−→
k ) = �

iε

(

1

c
γ0∂t + i−→γ · −→

k − i
mc

�

)

E γ0ĝ0(
−→
k ) (2.14)

One shows that

(

1

c
γ0∂t + i−→γ · −→

k − i
mc

�

)

E = −i

√

2ε
(

ε + mc2
)

�c
U E

whereU is a unitary matrix and could be identified with ϒ , which is explicitly given
as

ϒ =
√

ε + mc2

2ε

∣

∣

∣

∣

∣

I −c�
−→
S ·−→k

ε+mc2

c�
−→
S ·−→k

ε+mc2 I

∣

∣

∣

∣

∣

(2.15)

and

ĝ0(
−→
k ) = − c

√
ε

√

2
(

ε + mc2
)

γ0ϒ
+

̂f0(
−→
k ) (2.16)

In this way ̂F0(
−→
k ) and ĝ0(

−→
k ) are determined in terms of the initial condition ̂f0(

−→
k ).

What is the condition for the solution with only one energy component? The one
(2.11) does not apply here instead one imposes it on ĝ0(

−→
k ) in (2.16), thus for the

solutionwith only the positive energy component the last twomatrix elements should
be zero. Thismeans that the four elements of ̂f0(

−→
k ) cannot be chosen independently,

instead they are related by

̂f (−)(
−→
k , 0) = c�

ε + mc2
−→
S · −→

k ̂f (+)(
−→
k , 0) (2.17)

and so
̂G(+)

0 (
−→
k ) = − cε

ε + mc2
̂f (+)(

−→
k , 0), ̂G(−)

0 (
−→
k ) = 0 (2.18)

This result implies a general question of initial conditions for Dirac equation. In
particular one would like to know if they are specified, for example, in the coordinate
space how do they appear in the momentum space, and vice verse.

If in the coordinate space the initial condition is f0
(−→r )

then in the momentum

space the matrix ĝ0(
−→
k ) plays the same role and it is given by

ĝ0(
−→
k ) = − c

2

[

1 + c�
(

ε + mc2
)

−→γ · −→
k

]

γ0 ̂f0(
−→
k ) (2.19)
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In particular if one specifies that f0
(−→r )

contains only the positive energy compo-

nents then ĝ0(
−→
k ) is

̂G+
0 (

−→
k ) = − c

2
̂f +
0 (

−→
k ); ̂G−

0 (
−→
k ) = �c2

2
(

ε + mc2
)

−→
S · −→

k ̂f +
0 (

−→
k )

which shows that in the momentum space both energy components in the coeffi-
cients are present. At any other time in the coordinate space the solution is given by
the transformation (2.12) of solution (2.14) and hence both energy components are
present. In other words, if in the coordinate space one determines initial conditions
to have only a single energy component, in the time evolution both appear.

The only way to ensure that at any time only single energy component is present
in the coordinate space is to choose correct ĝ0(

−→
k ), as in the example (2.18). For

example solution with only the positive energy component is

f
(−→r , t

) = �

i

(

1

c
γ0∂t + −→γ · −→∇ − i

mc

�

) ∫

d3k
ei

−→
k ·−→r −i tε/�

ε

∣

∣

∣

∣

̂G(+)
0 (

−→
k )

0

∣

∣

∣

∣

but as the initial conditions are normally selected in the coordinate space finding
̂G(+)

0 (
−→
k ) that matches it is not a simple task. One solves the problem by using the

relationship (2.17) when

f
(−→r , 0

) =
∫

d3k ei
−→
k ·−→r

∣

∣

∣

∣

∣

̂f (+)(
−→
k , 0)

c�
ε+mc2

−→
S · −→

k ̂f (+)(
−→
k , 0)

∣

∣

∣

∣

∣

which shows that only the first two components of f
(−→r , 0

)

are arbitrary. If one
chooses f + (−→r , 0

)

then

̂f (+)(
−→
k , 0) = 1

(2π)3

∫

d3r e−i
−→
k ·−→r f + (−→r , 0

)

and the other two components in the coordinate space are

f − (−→r , 0
) = c�

i

−→
S · −→∇

∫

d3k
ei

−→
k ·−→r

ε + mc2
̂f (+)(

−→
k , 0)
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2.3 Inhomogeneous Equation

2.3.1 General Features

Inhomogeneous term in (2.1) is charge or current density for the electromagnetic
field, whilst for Klein-Gordon equation it is

ρ = 2iq

�c

(−→
A · ∇ + 1

c
V∂t

)

f (�r , t) + q2

c2�2

(−→
A 2 − V 2

)

f (�r , t) (2.20)

and for Dirac equation

ρ = iq

�c

(−→γ · −→
A − γ0V

)

(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

)

g(�r , t) (2.21)

where the replacement (2.6) was made.
Green function that enters integral equation (2.7) is formally defined as solution

of equation (2.8) and its Fourier transform

K (�r , t) =
∫

d3k de ̂K (
−→
k , e) ei

−→
k ·�r−iet/�

is

̂K
(−→
k , e

)

= 1

(2π)4
c2�2

e2 − c2�2k2 − m2c4

which is a function with two first order singular points. There are various ways to
avoid integrating over the singular points and the results represent different boundary
conditions. Important integration variable is e and one way of evaluating this integral
is to calculate its principal value

∫

de ̂K (
−→
k , e) e−iet/� = c2�2

(2π)4
P

[∫

de

e2 − ε2
e−iet/�

]

the result being
∫

de ̂K (
−→
k , e) e−iet/� = − c2�2

16π3ε
sin

εt

�

The other way is to replace e by e + iη, where η is small and positive, and after
integration it is taken to zero.1 In this case

∫

de ̂K (
−→
k , e) e−iet/� = �(t)

c2�2

8π3ε
sin

εt

�

1Analogous way is to retain the integration variable e real but shifting the integration path into the
complex e plane. The result is the same.
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where�(t) is the unit step function. Green function that results from such integration
is called retarded. Similarly one could show that if η < 0 the right hand side is
multiplied by �(−t), and this is advanced Green function.

The third way to evaluate the integral is to make replacement ε → ε − iη when
the results is

∫

de ̂K (
−→
k , e) e−iet/� = i

c2�2

16π3ε

[

�(t) e−iεt/� + �(−t) eiεt/�
]

If η < 0 then the sign of ε in the exponent is changed. This is known as the Feynman
Green function.

Although (2.1) is the same for all three relativistic applications, with some not so
essential modifications, the meaning of solutions does not reflect that observation.
This is demonstrated on the conservation laws that are deduced from these three
applications. In electrodynamics the wave equation is for the scalar V and vector

−→
A

potentials

�V − 1

c2
∂2
t V = −4πρ (2.22)

�
−→
A − 1

c2
∂2
t
−→
A = −4π

c

−→
j

and from the continuity equation for the charge ρ and current
−→
j densities

∂tρ = −∇ · −→
j

one shows that
1

c
∂t V + ∇ · −→

A = 0

This is formally the continuity equation for the two potentials but it does not have the
same meaning as for the charge and current densities for which it implies conserva-
tion law for the charge. The continuity equation for potentials is called the Lorentz
condition, and about its meaning and importance shall be discussed in Chap.3. There
is indeed a conservation law in electrodynamics, which relates the energy change in
the field at the expense of its flow from or into some volume, but it cannot be deduced
from the two equations for the potentials (see Chap. 3).

For the Klein-Gordon equation one derives the continuity equation

∂t P = −∇ · −→
J (2.23)

where
P = −� Im

(

f ∗∂t f
) − V f ∗ f

http://dx.doi.org/10.1007/978-3-662-52878-5_3
http://dx.doi.org/10.1007/978-3-662-52878-5_3


2.3 Inhomogeneous Equation 43

and −→
J = �c2 Im

(

f ∗∇ f
) − c

−→
A f f ∗

and about its meaning in Sect. 2.3.3. In short, this continuity equation implies con-
servation of energy law because P could be associated with the energy density.

From Dirac equation (2.4) one derives the continuity equation

∂t
(

f + f
) = −c∇ · (

f +γ0
−→γ f

)

where
P = f + f (2.24)

is associated with the probability density and

−→
J = c f +γ0

−→γ f (2.25)

with the probability current. The continuity equation for Dirac equation implies
conservation of the probability law, more about it in Sect. 2.3.4.

2.3.2 Electromagnetic Field

Properties of solutions for the two basic equations of electrodynamics (2.22) are
demonstrated on the equation for the scalar potential because no additional informa-
tion is obtained by discussing the one for the vector potential. More detailed analysis
that includes both equations is given in Chap. 3.

Equation for the scalar potential is

�V (�r , t) − 1

c2
∂2
t V (�r , t) = −4πρ(�r , t) (2.26)

where ρ(�r , t) is charge density, which could have two sources. It is either distribution
of classical charges or it could be the probability density that plays the role of the
charge density. The latter is (2.21), times the charge of the particle, and not (2.20)
because it cannot be associated with the probability density, as it is discussed in
Sect. 2.3.3.

Solution of equation (2.26) depends on the choice of the boundary conditions,
and consequently appropriate Green function is chosen from those that are defined
in Sect. 2.3.1. The most often used is the retarded boundary condition for which the
appropriate Green function is defined as

Kr (�r , t) = 1

(2π)4

∫

d3k dω
c2

(ω + iη)2 − c2k2
ei

−→
k ·�r−iωt (2.27)

http://dx.doi.org/10.1007/978-3-662-52878-5_3
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from which its intermediate form is

Kr (�r , t) = − c

2 (2π)3

∫

d3k
sin (ckt)

k
ei

−→
k ·�r �(t)

and the final one

Kr (�r , t) = − 1

4πr
δ
(

t − r

c

)

�(t)

Solution of the wave equation is now

Vr (�r , t) =
∫

d3u
1

∣

∣�r − −→u ∣

∣

ρ

(

−→u , t −
∣

∣�r − −→u ∣

∣

c

)

(2.28)

and it represents (the details in Chap.3) outflow of electromagnetic energy from a
sphere within which all charge density is contained. Similarly one derives advanced
Green function, which is given by

Ka(�r , t) = − 1

4πr
δ
(

t + r

c

)

�(−t)

Retarded and advanced Green functions in the combination

K−(�r , t) = 1

2

[

Kr (�r , t) − Ka(�r , t)
]

(2.29)

define standingwave solution. From their definition the standingwaveGreen function
is

K− (�r , t) = − ic2

2 (2π)3

∫

d3k dω ei
−→
k ·�r−iωtδ

(

ω2 − c2k2
) ω

|ω|
in the intermediate form

K− (�r , t) = − c

16π3

∫

d3k ei
−→
k ·�r sin (ckt)

k

and in the final

K−(�r , t) = − 1

8πr

[

δ
(

t − r

c

)

− δ
(

t + r

c

)]

which is the same as the Green function (2.10) for homogeneous equation, when the
mass of particle is formally set to zero. The Green function K−(�r , t) also solves the
initial value problem for the inhomogeneous equation, producing the standing wave
solution.

The basic assumption in the derivation of the previous Green functions is to shift
the poles of integrand (2.27) in the frequency variable, however, the same could
be done by shifting them in the wave number. One then obtains Feynman Green
function, which is defined as

http://dx.doi.org/10.1007/978-3-662-52878-5_3
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KF (�r , t) = − 1

(2π)4

∫

d3k dω
c2

ω2 − c2 (k − iη)2
ei

−→
k ·�r−iωt

and in the intermediate form it is given by

KF (�r , t) = ic

2 (2π)3

∫

d3k
e−ickt�(t) + eickt�(−t)

k
ei

−→
k ·�r

and finally

KF (�r , t) = ic

4π2

[

P
[

1

r2 − c2t2

]

− iπ

2r
δ (r − c |t |)

]

Physical meaning of those Green functions is analyzed on two examples.

2.3.2.1 Charge Density

In order to understand the meaning of various solutions that the Green functions
produce it is assumed that a point charge is created at t = 02 and after it oscillates
harmonically. Charge density for this example is

ρ
(−→r , t

) = sin (ω0t) δ
(−→r )

�(t) (2.30)

in which case retarded solution is

Vr
(−→r , t

) = 1

r
sin

[

ω0

(

t − r

c

)]

�
(

t − r

c

)

As anticipated the field expands at the speed of light, being zero for all time that is
smaller than the time to reach the point r at this speed. After that the field oscillates
out of phase with the source, the phase being determined by the information that
travels with c.

Standing wave solution, on the other hand, is given by

Vst
(−→r , t

) = sin
[

ω0
(

t − r
c

)]

�
(

t − r
c

) − sin
[

ω0
(

t + r
c

)]

�
(

t + r
c

)

2r

that has two time sections. For 0 < t < r/c solution is the wave that travels from
infinity towards the origin, whilst for t > r/c it is in the form

Vst
(−→r , t

) = cos (ω0t) sin
(

ω0r
c

)

r

2The meaning of this charge density is not very physical but it is instructive for understanding how
its sudden change affects the electromagnetic field.
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which describes standing wave being formed by two oppositely propagating waves
that extend to infinity. For the assumed charge density standing wave is formed when
t is very large.

Solution for the Feynman Green function is not given in simple form as for the
previous two solutions. Furthermore solution is not easily interpreted for charge
density, which is evident from two extreme limits. One limit is for large r > ct when

VF
(−→r , t

) ≈ i

2r
e−iω0(t+ r

c )

which is complex and therefore not regarded as the physical solution. On the other
hand, for large t > r/c solution is

VF
(−→r , t

) ≈ 1

r
sin (ω0t) e

i ω0r
c

which is again complex and resembles the standing wave solution Vst
(−→r , t

)

. The
difference is that the standing wave solution is formed as interference of two waves,
incoming and outgoing

Vst
(−→r , t

) ∼ sin
(ω0r

c
− ω0t

)

+ sin
(ω0r

c
+ ω0t

)

whilst the Feynman is result of interference of the same kind of waves, but in the
form of plane waves

VF
(−→r , t

) ∼ ei
ω0r
c −iω0t − e−i ω0r

c −iω0t

As the result the modulus of the standing wave solution is time dependent, oscillates
as cos (ω0t), whilst that of the Feynman is time independent. For this reason Feynman
solution for charge density has no meaning but it has for quantum densities.

2.3.2.2 Quantum Density

Inhomogeneous term in (2.26) could also be the quantum probability density or
the probability current for a charged particle. As mentioned in Sect. 2.3.1 the only
densities that could play that role are derived from Dirac equation, and the charge
density is

ρ(�r , t) = q f +(�r , t) f (�r , t) (2.31)

whilst the charge current is

−→
J (�r , t) = cq f +(�r , t)γ0−→γ f (�r , t) (2.32)
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where q is charge of the particle (in further discussion q = 1). Function f (�r , t)
appears in two basic forms, either as a combination of bound state eigenfunctions or
it is a solution for unbound particle. General form of the density in both cases is

ρ(�r , t) = f +
1 (�r) f2(�r)eiω0t + f +

2 (�r) f1(�r)e−iω0t

where ω0 could either be the energy difference of the states 1 and 2 or it could
also contain frequency of the external electromagnetic wave if it interacts with the
charge. For simplicity it is assumed that both f1(�r) and f2(�r) represent bound state
functions and ω0 is arbitrary. Furthermore it is assumed that there is no onset of time
dependence, which implicitly assumes that if there is then solution is analyzed long
time after it.

Retarded solution is obtained in a straightforward way, its structure is not very
revelling, however, in the limit far away from the source it is given by

Vr (�r , t) ∼ eiω0( r
c −t)

r

∫

d3k1 ̂f +
2 (

−→
k1 − ω0

c
n̂) ̂f1(

−→
k1 ) (2.33)

+e−iω0( r
c −t)

r

∫

d3k1 ̂f +
1 (

−→
k1 ) ̂f2(

−→
k1 + ω0

c
n̂)

where the replacement

∫

d3ue−i
−→
k ·−→u f +

1 (u) f2(u) = 1

(2π)3

∫

d3k1 ̂f +
1 (

−→
k1 − −→

k ) ̂f2(
−→
k1 )

was made, the Fourier transform of the density. The result is important because it
shows that the frequency of radiated field equals that of the frequency of the density,
however, the amplitude of Vr (�r , t) depends on the momentum width of individual
solutions f j (�r). If those widths are �k j and ω0/c � �k j then this amplitude is
negligible.

Standing wave solution is obtained in the same way, and in the far away limit it
is given by

Vst (�r , t) ∼ 1

r
sin (ω0t + α (̂n)) cos

(

ω0
r

c

)

I (̂n)

where

I (̂n) eiα(̂n) =
∫

d3u sin

(

ω0
n̂ · −→u
c

)

f +
1 (

−→u ) f2(
−→u )

and n̂ = �r/r . The solution is typical for this wave, it is a product of the time and
space dependent functions. It could be shown ( in later analysis) that resulting flow
of energy from the source is zero, in contrast to the retarded solution when this flow
is outward from the source.
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Feynman solution is

VF (�r , t) = −eitω0

∫

d3u
ei

ω0
c |�r−−→u |

∣

∣�r − −→u ∣

∣

f +
1 (

−→u ) f2(
−→u )

− e−i tω0

∫

d3u
ei

ω0
c |�r−−→u |

∣

∣�r − −→u ∣

∣

f +
2 (

−→u ) f1(
−→u )

which is complex and in classical electromagnetic theory it has nomeaning.However,
some of its meaning is deduced by considering its asymptotic limit far away from
the source. In this case

VF (�r , t) ∼ eitω0+i ω0
c r

r

∫

d3k1 ̂f +
1 (

−→
k1 ) ̂f2(

−→
k1 + ω0

c
n̂) (2.34)

+ e−i tω0+i ω0
c r

r

∫

d3k1 ̂f +
2 (

−→
k1 − ω0

c
n̂) ̂f1(

−→
k1 )

which resembles retarded Vr solution. The essence of the two solutions, however, is
different. In both solutions time has two signs but the sign of the radial component is
always positive in VF whilst in Vr changes. In the Feynman solution this indicates
that the two components move in different directions whilst in the retarded theymove
in the same. In that respect Feynman solution is similar to the standing wave solution
rather than the retarded one. There is, however, much more important difference in
their physical meaning.

In the integrals of the three solutions the variable
−→
k is associatedwith themomen-

tum of particle, given by �
−→
k . Change in the argument from one eigenfunction (the

same applies if these are solutions for the unbound particles) to the other indicates
that radiation by charge has the effect on its momentum distribution. If one asso-
ciates ̂f1(

−→
k1 )with the “incoming” solution3 and ̂f2(

−→
k2 )with the “outgoing” then the

radiated field has impact on the momentum distribution of the latter. In the retarded
solution (2.33) both plane wave components represent the radiated waves going out-
ward, regardless of the sign in the time component of their phase. If this sign is
negative then the corresponding momentum distribution of the “outgoing” solution
is shifted, as if the charge lost its momentum by �

ω0
c n̂ from its “incoming” value.

This demonstrates particle like feature of the radiation field, because if the outgoing
radiation carries momentum �

ω0
c n̂ then it should be subtracted from the particle in

order to preserve momentum conservation law. On the other hand, if the sign of
time is positive the wave also goes outward but the momentum of the “outgoing”
charge acquires momentum �

ω0
c n̂, which is contrary to the idea that the radiation

field behaves as a particle. The same applies for the standing wave solution.

3The product of two eigenfunctions results from applying perturbation method in analysis of the
effect on a charge by external force. In that case one of the eigenfunction, f1(

−→u ), corresponds to
the unperturbed solution (“incoming”) and f2(

−→u ) is from the set in which perturbed solution is
expanded (“outgoing”).
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The Feynman solution (2.34), on the other hand, demonstrates the particle like
feature of radiation field, because the two plane waves are going in different direc-
tions. Thus, for example, the incoming wave (having the positive sign of the time
component in its phase) transfers momentum onto the charge. On the other hand, the
wave that is outgoing carries away momentum thus reducing initial momentum of
the charge.

Free Particle

Additional features of the radiation field are demonstrated for the probability density
that describes a charge which is initially localized in a finite space, but otherwise it is
free (for example an electron produced in a nuclear beta decay). A general solution
of Dirac equation for this circumstance is given by

f
(−→r , t

) =
∫

d3k ̂f
(−→
k , t

)

ei
−→
k ·−→r (2.35)

where
̂f (

−→
k , t) = �

iε

(

1

c
γ0∂t + i−→γ · −→

k − i
mc

�

)

E γ0ĝ0(
−→
k )

ĝ0(
−→
k ) is connected with the initial ̂f0(

−→
k ) through the relationship (2.16).

Charge density for this example is time dependent because it spreads in time,
however, there is a specific important feature of it that should be analyzed in detail.
Initially localized charge implies that ̂f0(

−→
k ) is also bound within certain interval of

k and there are two limits that could be analyzed depending on its range. One is the
non-relativistic limit, meaning that for all k within this interval applies the inequality
k � mc2

c� , in which case ε ≈ mc2 + �
2k2

2m , and ̂f (
−→
k , t) is approximately

̂f (
−→
k , t) ≈ E ̂f0(

−→
k ) − i

�

mc
γ0

−→γ · −→
k sin

( ε

�
t
)

̂f0(
−→
k )

and the density is
ρ(

−→r , t) ≈ ρo(
−→r , t) + ρs(

−→r , t) (2.36)

where

ρo(
−→r , t) =

∫

d3k
∫

d3q ̂f +
0 (

−→q )e
iγ0

�(q2−k2)
2m t+i

(−→
k −−→q

)

·−→r
̂f0(

−→
k )

and

ρs(
−→r , t) = �

2mc
e−2iγ0

mc2
�

t
∫

d3k
∫

d3q ̂f +
0 (

−→q )γ0
−→γ ·

(−→
k + −→q

)

e
iγ0

�(q2+k2)
2m t+i

(−→
k −−→q

)

·−→r
̂f0(

−→
k )
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ρ0(
−→r , t) is the nonrelativistic time evolution of the charge density, the same as

derived from Schroedinger equation. Depending on the initial mixture of states in
̂f0(

−→
k ) the time evolution could also include negative energy terms. The density

ρs(
−→r , t) is combination of terms that are essentially the same as ρ0(

−→r , t) but with

the oscillating factor e−2iγ0 mc2

�
t .

Retarded solution is calculated from (2.28), and far away from the source the
density ρo(

−→r , t) in (2.36) gives

Vro(�r , t) ∼ (2π)3

r

∫

d3k ̂f +
0 (

−→
k )

(

1 − γ0
�

mc
n̂ · −→

k

)−1
̂f0(

−→
k ) ∼ 1

r
(2.37)

where the identity

∫

d3u e
iγ0

�(q2−k2)
2m

n̂·−→u
c +i

(−→
k −−→q

)

·−→u = (2π)3
(

1 − γ0
�

mc
n̂ · −→

k

)−1

δ
(−→
k − −→q

)

was used. This is the Coulomb potential of a point like charge, which is slightly
modified from its unit value and correction is of the order k�/(mc). The density
ρs(

−→r , t) is essential the same as ρ0(
−→r , t) except that it is oscillating with the mass

dependent frequency, and so the potential has the same structure.
The other extreme is when k � mc2

c� and ε ≈ c�k + m2c3

2�k , which is relativistic time
evolution of the density. In this case

̂f (
−→
k , t) ≈

[

I cos
( ε

�
t
)

− iγ0
−→γ ·

−→
k

k
sin

( ε

�
t
)

]

̂f0(
−→
k )

and the density is
ρ(

−→r , t) ≈ ρ0(
−→r , t) + ρs(

−→r , t) (2.38)

where

ρ0(
−→r , t) =

∫

d3k
∫

d3q ̂f +
0 (

−→q ) ̂f0(
−→
k ) cos (cqt) cos (ckt) e

i
(−→
k −−→q

)

·−→r

and

ρs(
−→r , t) ≈ −i

∫

d3k
∫

d3q e
i
(−→
k −−→q

)

·−→r

̂f +
0 (

−→q )γ0
−→γ ·

(−→q
q

sin (cqt) cos (ckt) +
−→
k

k
cos (cqt) sin (ckt)

)

̂f0(
−→
k )
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where again only the dominant terms were retained. There is now no distinction
between contributions from negative and positive energy components. The density
spreads at (nearly) the speed of light, in contrast with the non-relativistic solution,
more about it shortly.

The potential that is derived from the density (2.38) has complicated structure but
overall it is negligible, and the reason shall be described on one example. However,
before that a general comment is necessary. Relativistic time evolution of the density
(2.38) is given by ρ0(

−→r , t) and ρs(
−→r , t) for which it could be shown to spread

at (nearly) the speed of light. This causes the problem of fundamental importance
that should be discussed in more details. By the very nature of retarded solution
(2.28) the potential V (�r , t) is determined by the value of charge density prior to
time t , which also includes the instant t = 0. This means that for the initial value of
potential one requires charge density from its past, which is not known by default
because the assumption is that its time evolution is determined from that instant on.
In the non relativistic limit this was not the problem because the assumption is that
velocity of light is nearly infinite and the past of the charge density is not essential.
In general, therefore, initial value problem for potential is not solvable unless some
assumptions are made on the past of the charge density. The simplest is to assume
that it is constant up to t = 0 and after that its time evolution is for a free particle.
For simplicity ̂f0(

−→
k ) is assumed to be dependent only on the modulus k.

Charge density ρ0(
−→r , t) with these properties is

ρ0(
−→r , t) = ∣

∣ f
(−→r , t

)∣

∣

2

where

f
(−→r , t

) =
∫

d3k ̂f (k, 0) cos [ckt �(t)] ei
−→
k ·−→r

= 1

2

[

r + ctr
r

f (r + ctr , 0) + r − ctr
r

f (r − ctr , 0)

]

where
tr = t �(t)

Relativistic dynamics assumes that f
(−→r , 0

)

is very narrow which means that
f
(−→r , t

)

is essentially of the shape of a sphere whose radius is expanding at (nearly)
the speed of light and the thickness of its perimeter is of width for

∣

∣ f
(−→r , 0

)∣

∣. The
density ρ0(

−→r , t) is therefore concentrated on the perimeter of the sphere, of a nar-
row thickness, in which case one distinguishes three regions for potential: inside the
sphere, within its perimeter and outside of it. The retarded potential is

Vr (�r , t) = 1

4

∫

d3u
1

∣

∣�r − −→u ∣

∣

∣

∣

∣

∣

u + ctr
u

f (u + ctr , 0) + u − ctr
u

f (u − ctr , 0)

∣

∣

∣

∣

2
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where t in tr is replaced by t − |�r−−→u |
c , and for inside the sphere the inequality ct � r

should be satisfied. By writing −→u = un̂u one makes estimate

u ± ctr ≈ (

1 ± n̂ · −→nu
)

u ± ct ∓ r ≈ (1 ± n̂ · n̂u) u ± ct

and the only non negligible contribution is for the negative sign and u ≈ ct . This
means that the potential is approximately

Vr (�r , t) ∼ 1

ct

∫

d3u

∣

∣

∣

∣

u − ct

u
f (u − ct, 0)

∣

∣

∣

∣

2

which is constant in the coordinates and hence the field is zero. This is precisely the
case for the field inside a sphere with only the surface charge.

For outside of the sphere r � ct when

u ± ctr = u

and

Vr (�r , t) ≈ 1

r

∫

d3u | f (u, 0)|2

which is the Coulomb potential, as it should. Correction to the Coulomb law, of the
kind given in (2.37), is not done.

Within the perimeter of the density, which arrives at distance r in time t = r/c,
the potential makes a sudden change from 1/r functional form to a constant value
inside the sphere. The change occurs within the width of | f (r, 0)|2, which is small
and hence the field could have large value.

Standing wave solution, and likewise the Feynman solution, have essentially no
meaning for these narrow charge densities because the components of the retarded
and advanced solutions are well separated in their time evolution. It is only when the
latter overlap for a long period of time one could talk about their physical meaning.

2.3.3 Klein-Gordon Equation

Klein-Gordon equation is

� f (�r , t) − 1

c2
∂2
t f (�r , t) − m2c2

�2
f (�r , t) = g(�r , t) (2.39)

and its solution is

f (�r , t) = f0(�r , t) +
∫

d3u ds K
(�r − −→u , t − s

)

g(
−→u , s) (2.40)
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where the Green function satisfies equation

�K (�r , t) − 1

c2
∂2
t K (�r , t) − μ2K (�r , t) = δ (�r) δ (t)

The inhomogeneous term in (2.39) is the difference between (2.2) and the homoge-
neous equation for a free particle f0(�r , t) that is discussed in (2.2).

Solutions of Klein-Gordon equation have very specific properties that cannot be
understood in terms of the basic principles of quantum theory. Thesewill be reviewed
rather than discussing solutions based on different Green functions.

Important identity follows from (2.2)

c∇
[

c�
(

f ∗∇ f − f ∇ f ∗) − 2iq
−→
A f ∗ f

]

= −� ∂t

[

f ∂t f
∗ − f ∗∂t f − 2iq

�
V f ∗ f

]

(2.41)
which is in the form of the continuity equation. As in the case of non-relativistic
dynamics one could associate

P = �

2i

(

f ∂t f
∗ − f ∗∂t f − 2iq

�
V f ∗ f

)

(2.42)

with the probability density, but there is a problemwith this interpretation because the
function P is not always positive. Alternative interpretation is in terms of the charge
density, but again it is not correct for the reasons that will be described, however,
before doing that it is necessary to make a short digression about classical relativistic
dynamics.

There are three types of energy of particle: its rest energy, or the energy equivalent
of its rest mass, kinetic energy and potential energy. Total energy is combination of
these three terms. In addition there is also momentum of particle and together with
energy one derives fundamental equation of relativity

(e − qV )2 − c2 p2 = m2c4

where e is its total and V potential energy. The difference e − qV is called energy
of particle and it is given by

e − qV = mc2
√

1 − v2

c2

= mc2 + ekin (2.43)

where ekin is kinetic energy. From relativistic definition of velocity v, essentially as
the ratio of momentum and energy, one obtains

v = c

√

(e − qV )2 − m2c4

e − qV
(2.44)
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from where one concludes that momentum and velocity of particle may not point
in the same direction. In non relativistic dynamics they point in the same direction
because by default mass is defined as a positive parameter. In relativistic dynamics,
however, the mass is replaced by the energy of particle that could also be negative.
This result will be of particular importance in later analysis of quantum dynamics.

In the function P the product f ∂t f ∗ could be replaced by e
�
f f ∗, where e is the

average total energy of the particle,4 when (2.42) is approximately

P ≈ (e − V ) f ∗ f

One could interpret P as the product of energy of particle and the probability density,
but for that to be correct f ∗ f should obey continuity equation, which is not true.
Furthermore the current that is defined from (2.41) (for simplicity the vector potential
is omitted) is5

−→
j = c2�

2i

(

f ∗∇ f − f ∇ f ∗)

which is interpreted as the momentum of particle, and the ratio
−→
j /P has dimension

of velocity. This means that P could only be interpreted as the energy density and
not probability of energy of a particle, and not as the probability density or charge
density.

2.3.4 Dirac Equation

2.3.4.1 General Theory

Dirac set of equations for a charge in the electromagnetic field is given by (2.4)

(

1

c
γ0∂t + i

qV

�c
γ0 + −→γ · ∇ − iq

�c
−→γ · −→

A + i
mc

�

)

f (�r , t) = 0

and its homogeneous form had been discussed. The equation could be transformed
in other forms, each one of them having certain merits. One form that resembles
Klein-Gordon equation is obtained by generalizing parametrization (2.6) as

f (�r , t) =
(

1

c
γ0∂t + i

qV

�c
γ0 + −→γ · ∇ − iq

�c
−→γ · −→

A − i
mc

�

)

g(�r , t) (2.45)

4For a very narrow probability amplitude in momentum space (a very wide in the coordinate space)
this assumption is nearly exact.
5It should be noted that from the continuity equation the current is not uniquely determined, as
discussed in Chap.3.

http://dx.doi.org/10.1007/978-3-662-52878-5_3
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If it is replaced in Dirac equation one derives equation for g(�r , t)

(�∂t + iqV )2 g −
(

c�∇ − iq
−→
A

)2
g + m2c4g

− ic�q γ0
−→γ ·

(

1

c
∂t

−→
A + ∇V

)

g + ic�q
−→
� ·

(

∇ × −→
A

)

g = 0

where
−→
� =

∣

∣

∣

∣

�S 0
0 �S

∣

∣

∣

∣

and the identity

(�S · −→a
) (�S · −→

b
)

= −→a · −→
b + i �S ·

(−→a × −→
b

)

was used. The equation is the Klein-Gordon type, except that the solution g(�r , t) has
four elements and there are two additional terms, one that describes interaction of
electric field with the charge and the other that represents interaction of its spin with
magnetic field. The difficulty appears to be in the order of the equation, which is the
second order in both time and coordinates, and this requires more initial conditions
than for (2.4). This observation, however, is superficial because g(�r , t) is parame-
trized as (2.45) and therefore the additional conditions are deduced from it. If in
the small vicinity of the initial instant t = 0 electromagnetic field is zero then in
the momentum space solution for f (�r , t) is given by (2.14). The function ĝ0(

−→
k ) is

determined from the initial f (�r , 0) by using (2.19) and therefore g(�r , t), in the small
vicinity of t = 0 is given by

g(�r , t) = �

i

∫

d3k
1

ε
E γ0ĝ0(

−→
k )ei

−→
k ·−→r

from where additional initial conditions are

∂tg(�r , 0) = −i
�

i�

∫

d3k ĝ0(
−→
k )ei

−→
k ·−→r

∇g(�r , 0) = �

∫

d3k
γ0

−→
k

ε
ĝ0(

−→
k )ei

−→
k ·−→r

If the scalar potential is time independent one derives another form of Dirac set
of equations. The set is first decoupled into two, the first is formally written as

f1 = −
(

1

c
∂t + i

qV

�c
+ i

mc

�

)−1
�S ·

(

∇ − iq

�c

−→
A

)

f2 (2.46)
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whilst the second is
(

−1

c
∂t − i

qV

�c
+ i

mc

�

)

f2 − −→
S ·

(

∇ − iq

�c

−→
A

)

f1 = 0 (2.47)

where f1 contains the two upper elements of f whilst f2 the lower two. Inverse of
the operator in (2.46) is obtained by solving the Green function equation

−
(

1

c
∂t + i

qV

�c
+ i

mc

�

)

D (t) = δ (t)

with the solution

D (t) = −cei
t
� (−qV−mc2)� (t) ≡ −

(

1

c
∂t + i

qV

�c
+ i

mc

�

)−1

and (2.46) is

f1 = −c
−→
S ·

∫ t

0
e−i (t−s)

� (qV+mc2)
(

∇ − iq

�c

−→
A (s)

)

f2 (s) + e−i t
� (qV+mc2) f1 (0)

Equation (2.47) is now in the form of integro-differential equation that simplifies for
the scalar potential only

i

�c

(

i�∂t − qV + mc2
)

f2

= −c
−→
S · ∇

[∫ t

0
e−i (t−s)

� (qV+mc2)−→S · ∇ f2 (s)

]

+ −→
S · ∇

[

e−i t
� (qV+mc2) f1 (0)

]

The equation is solved by iteration, thus on the right side it is assumed that solution
is stationary

f2 (t) = e−i e0 t
� f2 (0) (2.48)

and it reduces to differential equation

(

i�∂t − qV + mc2
)

f2 = c2�2e−i t
�
e0−→S · ∇

−→
S · ∇ f2 (0)

Vq − e0 + mc2

Solution is

f2 = c2�2

e0 − Vq + mc2
e−i t

�
e0

[

1 − ei
t
� (e0+mc2−qV)

]−→
S · ∇

−→
S · ∇ f2 (0)

Vq − e0 + mc2

+ ei
t
� (mc2−qV) f2 (0)
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and if rapidly oscillating terms are neglected one obtains equation for the time inde-
pendent component of the solution

� f2 + (e0 − Vq)2

c2�2
f2 − m2c2

�2
f2 = q

∇V · ∇ + i �S · (∇V × ∇)

Vq − e0 + mc2
f2 (2.49)

where the relationship

(�S · −→a
) (�S · −→

b
)

= −→a · −→
b − i−→a ·

(�S × −→
b

)

was used.

2.3.4.2 Free Particle

Free particle is the simplest example to study from Dirac equation, which was par-
tially discussed in Sect. 2.2. Motivation is that solutions of this equation have some
specific features and their implications are best analyzed for a free particle, when
interaction is included no essential additional insight is obtained.

Few comments about the choice of initial conditions, whichwere in part discussed
in Sect. 2.2, because they determine the physics of the problem. Alternatives are
either to choose them in the coordinate space, at t = 0, or in the momentum space.
The “natural” choice is the coordinate space, however, in doing so some important
features of dynamics could be missed. For example, choosing solution that has only
one energy component cannot be easily decided upon if one works in the coordinate
space only (apart from a trivial case of a plane wave), as discussed in Sect. 2.2. It is
therefore necessary to analyze the consequences of the choice of initial conditions
in the two spaces in order to select physically meaningful solution.

If solution in the coordinate space is f (�r , t) then in the momentum space it is
defined through the transformation

f (�r , t) =
∫

d3k ̂f (
−→
k , t)ei

−→
k ·−→r

and for a free particle

f (�r , t) =
∫

d3k ϒEϒ+
̂f0(

−→
k )ei

−→
k ·−→r (2.50)

where the symbols are defined in Sect. 2.2. From this relationship one gets initial
f (�r , 0) from ̂f0(

−→
k ). However, instead of ̂f0(

−→
k ) one defines

ĝ0(
−→
k ) = (2π)3/2 γ0ϒ

+
̂f0(

−→
k )
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in which case solution in the coordinate space is

f (�r , t) = (2π)−3/2
∫

d3k ϒEγ0ĝ0(
−→
k )ei

−→
k ·−→r (2.51)

and ĝ0(
−→
k ) also defines initial conditions for f (�r , t).

For further discussion it is necessary to review the initial conditions in more
details. They have four components, as it is shown in discussing initial conditions
for Dirac equation in (2.2), and could be separated into two sets where each one
has two components. In the coordinate space it is not simple to associate physically
meaningful interpretation to each group although when the plane wave solutions are
analyzed one is associatedwith positive and the otherwith negative energy of particle.
When the localized particle is analyzed then this interpretation is no longer valid, as
discussed in Sect. 2.2. For this, and other examples, choosing initial conditions in
the momentum space often takes priority over taking them in the coordinate space,
and to show this few examples shall be analyzed.

In the momentum space there are two classes of initial conditions, either one
chooses them for ̂f0(

−→
k ) or ĝ0(

−→
k ) , however, in both cases their four components

are split into a set of two matrices each one with two elements. It is shown on the
example of ĝ0(

−→
k ) how each matrix is parametrized, the same is true for ̂f0(

−→
k ). The

first two elements of ĝ0(
−→
k ) shall be associated with the positive energy and they are

parametrized as6

ĝ(+)
0 (

−→
k ) =

∣

∣

∣

∣

∣

s(+)
1 (

−→
k )

s(+)
2 (

−→
k )

∣

∣

∣

∣

∣

̂G(+)(
−→
k ) = s(+)(

−→
k )̂G(+)(

−→
k )

where each element is in general complex, s(+)(
−→
k ) is unitary and ̂G(+)(

−→
k ) is a scalar

function. Similarly the other two elements are defined and s(±) are parametrized as

s(+) =
∣

∣

∣

∣

∣

e−i φ
2 cos θ

2

ei
φ
2 sin θ

2

∣

∣

∣

∣

∣

cos
β

2
, s(−) =

∣

∣

∣

∣

∣

e−i φ
2 cos θ

2

ei
φ
2 sin θ

2

∣

∣

∣

∣

∣

sin
β

2

where the angle β measures relative contributions of the positive and negative energy
components. A word of warning, previous parametrization is the simplest, in the
following section a more general one shall be given.

In the momentum space one defines either ̂f0(
−→
k ) or ĝ0(

−→
k ) as the initial con-

ditions, and the choice has repercussions on the averages of physically relevant
parameters. For example, average of the coordinates is defined as

�rav =
∫

d3r �r f +(�r , t) f (�r , t)

6The same is valid for ̂f0(
−→
k ) but the signs in superscript is left for convenience and does not imply

positive energy component.
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and if one chooses (2.50) then

�rav = (2π)3 i
∫

d3k ̂f +
0 (

−→
k )ϒE+ϒ+ ∇k

[

ϒEϒ+
̂f0(

−→
k )

]

(2.52)

or else for (2.51)

�rav = i
∫

d3k ĝ+
0 (

−→
k )γ0E

+ϒ+ ∇k

[

ϒEγ0ĝ0(
−→
k )

]

(2.53)

In further discussion it is assumed that ̂f0(
−→
k ) parametrizes as

̂f0(
−→
k ) =

∣

∣

∣

∣

∣

s(+)
̂F (+)(

−→
k )

s(−)
̂F (−)(

−→
k )

∣

∣

∣

∣

∣

= s ̂F(
−→
k )

and similarly for ĝ0(
−→
k ). For both initial conditions s is the same and independent

of
−→
k . The matrix s is diagonal with the elements of s(±) and ̂F(

−→
k ) is the single

column matrix of the scalar functions ̂F (±)(
−→
k ). The averages are calculated for two

extreme cases: for the positive energy component (β = 0) and for the negative one
(β = π) with the result for (2.52)

�r (±)
av = ± (2π)3 c4�m

∫

d3k ̂F(±)∗
−→
k

ε2

(

t − �

2ε
sin

2εt

�

)

̂F(±)

+ (2π)3 c2�
2
∫

d3k ̂F(±)∗
−→
k × n̂

ε2
sin2

εt

�

̂F(±) + (2π)3 i
∫

d3k ̂F(±)∗∇k ̂F(±)

where n̂ is the unit vector that is determined by the angles θ and φ in s(±). On the
other hand the average for (2.53) is

�r (±)
av =

∫

d3k ̂G(±)∗
[

±c2�
−→
k

ε
t + c2�2

2ε
(

ε + mc2
)

−→
k × n̂

]

̂G(±)

+ (2π)3 i
∫

d3k ̂G(±)∗∇k ̂G
(±)

and there is difference between the two averages. In fact it is even more so if the
average velocity is calculated, the time derivative of �r (±)

av . The average velocity for
̂f0(

−→
k ) rapidly oscillates around its constant value, which is quite surprising consid-

ering that single energy solutions are selected. Even more surprising is the constant
component, which has the value that is not related to how one defines relativistic
velocity. On the other hand the average velocity for ĝ0(

−→
k ) is non oscillatory, as one

would expect, and it is in accord with the standard definition of relativistic velocity.
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Interesting feature of �r (±)
av is that it has a constant, time independent, component

of the order c2�2

ε2
−→
k × n̂. In the nonrelativistic limit ε ≈ mc2 and it has the value

�

mc2
�
−→
k
m × n̂ which is the product of velocity of particle and the period time of the

oscillations that result from the energy equivalent of particle’s rest mass. At the other
extreme in the relativistic limit ε ≈ c�k this term has the estimate k−1

̂k × n̂ which
is shorter than the Compton wavelength.

Even more revelling is the average energy, which is by definition

εav = (2π)3 i�
∫

d3k ̂F+(
−→
k )s+ϒE+ϒ+ ∂t

[

ϒEϒ+s ̂F(
−→
k )

]

and for ̂f0(
−→
k )

ε(±)
av = ±mc2

whilst for ĝ0(
−→
k )

ε(±)
av = ±ε

The second choice produces result that is expected whilst the first one gives the rest
energy of particle and not its true value.

Important parameter is the angular momentum, which is defined as

−→
L av = −i�

∫

d3r f +(�r , t)�r × ∇ f (�r , t)

and for the initial ̂f0(
−→
k )

−→
L ±

av = c2�3 (2π)3
∫

d3k
sin2

(

εt
�

)

ε2

[(−→
k × n̂

)

× −→
k

]

∣

∣̂F (±)
∣

∣

2

− i� (2π)3
∫

d3k ̂F (±)+−→
k × ∇k ̂F (±)

whilst for ĝ0(
−→
k )

−→
L ±

av = c2�3

2

∫

d3k

(−→
k × n̂

)

× −→
k

ε
(

ε + mc2
)

∣

∣̂G(±)
∣

∣

2 − i�
∫

d3k ̂G(±)+−→
k × ∇k ̂G

(±)

The last term is the angular momentum that results from themotion of the probability
density as the whole. The first term oscillates very rapidly.

Once the initial conditions are determined one must decide on the choice of
boundary conditions for propagation of solution. There is essentially only one choice,
retarded solution which is defined as having the value of the initial condition up to
the initial instant (t = 0). For t > 0 it corresponds to the solution of Dirac equation
with that initial condition, and for a free particle one can write it as
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f (�r , t) = �(t)

(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

)∫

d3k
sin εt

�

ε
ei

−→
k ·−→r

̂f0(
−→
k ) (2.54)

and when the integral representation (C.6) is used then (2.54) takes equivalent form7

f
(−→r , t

) = �

2π

(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

) ∫

de d3k ei
−→
k ·−→r −iet/�

ε2 − (e + iη)2
̂f0(

−→
k )

where η > 0 and the limit η → 0 is assumed. Equation that the retarded solution
satisfies is

(

1

c
γ0∂t + −→γ · ∇ + i

mc

�

)

f
(−→r , t

) = 1

c2�
f0

(−→r )

δ (t) (2.55)

where the inhomogeneous term is indeed the initial condition for f
(−→r , t

)

which is
shown from (2.54)

f
(−→r , 0

) = 1

2�c
γ0 f0

(−→r )

The inhomogeneous term f0
(−→r )

δ (t) could be of a more general form �
(−→r , t

)

,
for example it could be collection of terms resulting from interaction of particle with
electromagnetic field. Solution is then

f
(−→r , t

) = �

(2π)4

(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

)

∫

ds d3u
∫

de d3k ei
−→
k ·(−→r −−→u )−ie(t−s)

ε2 − (e + iη)2
�

(−→u , s
)

It is convenient to define (retarded) Green function as

Kr (
−→r , t) = �

2c2

(2π)4

∫

de d3k
ei

−→
k ·−→r −iet/�

ε2 − (e + iη)2

which satisfies equation

(

1

c
γ0∂t + −→γ · ∇ + i

mc

�

) (

1

c
γ0∂t + −→γ · ∇ − i

mc

�

)

Kr (
−→r , t) = δ

(−→r )

δ (t)

when retarded solution is then

f
(−→r , t

) = 1

�c2

(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

) ∫

ds d3u Kr (
−→r − −→u , t − s)�

(−→u , s
)

7� (t) and ∂t can interchange their order because δ (t) that results from this gives zero contribution
in f .
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Time evolution (2.54) involves both energy components ε, one with the factor
e−i tε/� and the otherwith eitε/�. As the consequence for increasing time initial f0

(−→r )

splits into two components, one that propagates in one direction and the other in the
opposite. For the reason that was discussed in Sect. 2.3.2.2 one requires solution
that propagates only single energy component, for example the one with e−i tε/�

(positive energy component), for t > 0 and the other with eitε/� (negative energy
component), for t < 0, however both components move in the same direction. In
short, this solution expresses particle like feature of solution whilst the retarded
describes wave like feature. To find this solution the simplest would be to replace
(2.54) with

fF
(−→r , t

) = i�

2

(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

)

∫

d3k

ε

[

e−i tε/��(t) + eitε/��(−t)
]

ei
−→
k ·−→r

̂f0
(−→
k

)

where the time derivative that includes step functions is zero. By following the steps
as for the retarded solution one derives fF

(−→r , t
)

in the equivalent form

fF
(−→r , t

) = �

2π

(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

) ∫

de d3k
ei

−→
k ·−→r −iet/�

(ε − iη)2 − e2
̂f0

(−→
k

)

(2.56)
It is straightforward to show that fF

(−→r , t
)

satisfies inhomogeneous equation

(

1

c
γ0∂t + −→γ · ∇ + i

mc

�

)

fF
(−→r , t

) = 1

c2
f0

(−→r )

δ (t) (2.57)

On the other hand Feynman solution at the initial instant is

fF
(−→r , 0

) = �

2

∫

d3k

ε

(

−−→γ · −→
k + mc

�

)

ei
−→
k ·−→r

̂f0
(−→
k

)

(2.58)

which is not identical with f0, as for (2.55). This means that the initial condition

is determined by ̂f0
(−→
k

)

, and it is given by (2.58), whilst the solution fF
(−→r , t

)

satisfies the inhomogeneous equation (2.57).
For a more general form of the inhomogeneous term �

(−→r , t
)

Feynman solution
is

�F
(−→r , t

) =
(

1

c
γ0∂t + −→γ · ∇ − i

mc

�

) ∫

ds d3u KF (
−→r − −→u , t − s)�

(−→u , s
)
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where the Green function is

KF (
−→r , t) = �c2

(2π)4

∫

de d3k
ei

−→
k ·−→r −iet/�

(ε − iη)2 − e2

There is a basic difference between Feynman solution (2.56) and the retarded
(2.54). For the latter its initial value is arbitrarily specified in the coordinate space
whilst for the Feynman solution it should be specified in the momentum space from
which one derives in the coordinate space from (2.58). This difference is demon-
strated on the example in which f0

(−→r )

is zero beyond r0, and the simplest example
is (normalization is not important)

f0
(−→r ) = 1

r
�(r0 − r)C

where C is constant matrix. Fourier transform of f0
(−→r )

is

̂f0
(−→
k

)

= 1

2π2

1 − cos kr0
k2

C

Initial f
(−→r , 0

)

is identical with f0
(−→r )

and the estimate for fF
(−→r , 0

)

is

fF
(−→r , 0

) ∼ 1

r

∫

dk
sin kr

√

k2 + m2c2
�2

1 − cos kr0
k

∼ 1

r3/2
e− mc

�
r ; r � r0

which is not zero beyond r = r0. In the time evolution of f the cut at r = r0 moves
outward at the speed of light, the same applies for fF and the tail beyond this cut
also moves at the same speed.

Difference between initial f
(−→r , 0

)

and fF
(−→r , 0

)

is removed in the limit when

f0
(−→r )

is very wide, in the plane wave limit. In this case f
(−→r , 0

) ∼ ei
−→
k 0·−→r and

fF
(−→r , 0

) ∼ 1

ε0

(

c−→γ · −→
k 0 − mc2

�
I

)

ei
−→
k 0·−→r

which, apart from normalization, it is identical with f0
(−→r )

.

2.3.4.3 Spherically Symmetric Potential

Special interest is interaction of particlewith a spherically symmetric potential,which
is analyzed from (2.46) and (2.49) in the limit (2.48) when they are time independent

(

e0 − Vq − mc2
)

f1 = −i�c �S · ∇ f2,
(

e0 − Vq + mc2
)

f2 = −i�c
−→
S · ∇ f1

(2.59)
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It is expected that for these potentials the total angularmomentum is conservedwhich
means that the solution is parametrized as

f1 = 1

r
u1 (r) �1 (θ,φ) , f2 = i

r
u2 (r) �2 (θ,φ)

where u1,2 (r) are scalars. At this point one defines the spin matrices in the spherical
coordinates, which are given by

Sr =
∣

∣

∣

∣

cos θ e−iφ sin θ
eiφ sin θ − cos θ

∣

∣

∣

∣

, Sθ =
∣

∣

∣

∣

− sin θ e−iφ cos θ
eiφ cos θ sin θ

∣

∣

∣

∣

,

Sφ =
∣

∣

∣

∣

0 −ie−iφ

ieiφ 0

∣

∣

∣

∣

and for them one can show these identities

�S · ∇ = �S · r̂
[(�S · r̂

) (�S · ∇
)]

= Sr

(

∂

∂r
+ i �S · (̂r × ∇)

)

�S × ∇ = Sr

(

̂φ

r
dθ +

̂θ

r sin θ
dφ

)

+ Sθ
r̂

r sin θ
dφ − Sφ

r̂

r
dθ

In order that in the set (2.59) radial and angular components are decoupled one must
assume that the angular functions satisfy identities

�S · (̂r × ∇)�(σ) (θ,φ) = i

r
λσ�

(σ) (θ,φ) ; σ = −1, 1

and
Sr�1,2 = �2,1

Furthermore the angular functions must be eigenfunctions of the angular part of
the Laplace operator in (2.49), eigenfunctions of the angular momentum operator
squared. The two eigenvalue problems do not have single solution, there are two
angular functions that satisfy those two criteria, hence for �1 they are

�
(−1)
l,m (θ,φ) = 1√

2l + 1

(
√
l − m + 1Ym−1

l

−√
l + mYm

l

)

; λ(−1) = −l − 1; l = 1, 2, . . . (2.60)

�
(1)
l,m (θ,φ) = 1√

2l + 1

(
√
l + mYm−1

l√
l − m + 1Ym

l

)

; λ(1) = l; l = 0, 1, 2, . . .

and they are interrelated by

Sr�
(σ)
l,m (θ,φ) = �

(−σ)
l+σ,m (θ,φ) ; σ = ±1
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The completeness relation for the functions (2.60) is

∑

l,m,σ

�
+(σ)
l,m

(

θ′,φ′) �
(σ)
l,m (θ,φ) = δ

(

φ − φ′) δ
(

sin θ − sin θ′)

These are called the spin angular functions because they represent the states that
result from addition of the spin and the angular momentum. Thus the spin angular
function�

(−1)
l,m (θ,φ) represents the state of the total angular momentum j = l − 1/2

whilst �(1)
l,m (θ,φ) represents j = l + 1/2.

The two solutions of Dirac equation are now parametrized as

f (σ) = 1

r

∣

∣

∣

∣

∣

u(σ)
1 (r) �

(σ)
l,m (θ,φ)

iu(σ)
2 (r) �

(−σ)
l+σ,m (θ,φ)

∣

∣

∣

∣

∣

where the radial functions satisfy the set of equations

c�

(

d

dr
− σ (l + 1/2 + σ/2)

r

)

u(σ)
1 + (

mc2 + e0 − qV
)

u(σ)
2 = 0 (2.61)

c�

(

d

dr
+ σ (l + 1/2 + σ/2)

r

)

u(σ)
2 + (

qV + mc2 − e0
)

u(σ)
1 = 0

with the normalization
∫

d3r f +(σ) f (σ) =
∫

dr
[

u(σ)2
1 (r) + u(σ)2

2 (r)
]

= 1

and the overlap integral

∫

dr u(σ)
1 u(σ)

2 = �

2mc

[

u(σ)2
1 (0) + u(σ)2

2 (0) − σ (2l + 1 + σ)

∫

dr
u(σ)2
1 − u(σ)2

2

r

]

Non-relativistic limit implies e0 ≈ mc2 � |qV | when one talks about the dominant
u(σ)
1 component of the solution and its subdominant u(σ)

2 .

Average current is now calculated, and from its definition (2.25) when

−→
J (σ) = 2c

r2
Im

[

u∗(σ)
2 u(σ)

1

] ∣

∣

∣�
(σ)
l,m

∣

∣

∣

2
n̂

− 2c

r2
Re

[

u∗(σ)
2 u(σ)

1

]

n̂ × �
+(σ)
l,m (θ,φ) �S�

(σ)
l,m (θ,φ)

+ 2c

r2
Im

[

u∗(σ)
2 u(σ)

1

] ∣

∣

∣�
(σ)
l,m

∣

∣

∣

2
n̂ − 2c

r2
Re

[

u∗(σ)
2 u(σ)

1

]

n̂ × ẑ P+(σ)
l,m (θ)
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where P+(σ)
l,m (θ) is a polynomial. One shows

∫

d3r
−→
J (σ) = −2c

∫

dr u(σ)
1 (r) u(σ)

2 (r)
∫

d� �
+(σ)
l,m (θ,φ) Sθ�

(σ)
l,m (θ,φ) ̂φ

and indicates that whilst there is no flow of probability in the radial direction there is
always its component that goes around the origin. A note here, strictly speaking the
unit azimuthal angle should have been given in the Cartesian coordinates, in which
case, on average, even this current is zero. This is simply the consequence of the
current going in circle, when its tangential component is not zero, but in Cartesian
coordinates, on average, it is zero.

Another important parameter to calculate is the angular momentum, and it would
be natural to define it as

−→
L (σ)

l,m = −i�
∫

d3r f +(σ)−→r × ∇ f (σ) = m� ẑ (2.62)

For a spherically symmetric potential the angularmomentum is constant and to check
that one calculates its time derivative, which must be zero. It is straightforward to
show that

dt
−→
L (σ)

l,m = −ic�
∫

d3r f +(σ)γ0
−→γ × ∇ f (σ)

which means that the definition is not complete. One can show that its complete
definition is −→

L (σ)
l,m =

∫

d3r f +(σ)

(

−i�−→r × ∇ + �

2
−→
�

)

f (σ)

which is indeed constant. Thefirst part is orbital angularmomentumwhilst the second
is the spin. It should be noted that whilst the orbital angular momentum has simple
expression (2.62) the same is not true, in general, for the spin component. It is only
in the non-relativistic limit that the spin component acquires simple expression

∫

d3r f +(σ)−→� f (σ) ≈ σ
2m − 1

2l + 1
; −l + 1

2
(1 − σ) ≤ m ≤ l + 1

2
(1 + σ)



Chapter 3
Electrodynamics

Abstract Basic principles of electrodynamics are reviewed with the emphases on
the parts that are of importance in manipulating dynamics of charges; short pulses,
modulated waves and focusing the waves to increase there amplitude.

Basic principles and applications of electrodynamics are thoroughly described in the
available literature [10–12], however, there are still areas of its use which are not
often reviewed and specifically when it comes to investigate interaction with charges
under extreme conditions. For this purpose electrodynamics is reviewed with the
emphases on the features that are important in such extremes.

3.1 Basic Principles

Electromagnetic field has two components: electric and magnetic, which means that
in general it is defined by six vector components. However, it could be uniquely
represented by recalling definition of a field, it is a force that it exerts on a test charge.1

Gravitational field is gravitational force on a unit mass whilst electromagnetic field is
electromagnetic force on a unit charge. Electromagnetic force is also called Lorentz
force and when normalized to unit charge one could define electromagnetic field as
(for simplicity from now on the CGS units will be used)

−→
� = �E + �v

c
× �H (3.1)

where �v is velocity of the test charge and c is velocity of light. The Lorentz force is
therefore

�F = e
−→
�

1Test charge is the name of a fictitious charge that measures the strength of the field.
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where e is charge of the particle on which the field is applied. In general sta-
tionary charges determine electric component (or electric field) whilst the charges
in motion determine magnetic component (or magnetic field). Exact relationship
between charges in motion and the electromagnetic field is given by Maxwell equa-
tions, four of themare (these equations could be derived frommore general principles,
also the Lorentz force [9])

∇ × �E = −1

c
∂t �H , ∇ × �H = 1

c
∂t �E + 4π

c
�j ,

∇ · �E = 4πρ, ∇ · �H = 0

where ρ is charge density and �j is charge current. For a point-like electron (in
traditional, or classical, description) these two quantities are

ρ = e δ(�r − �r0), �j = e�v0 δ(�r − �r0)

where �r0 is position of the electron and �v0 is its velocity. On the other hand, if position
of the electron is given as the probability density then the two quantities are

ρ = e | f (�r)|2 , �j = e�

m
Im

[

f ∗(�r)∇ f (�r)]

where f (�r) is the probability amplitude.
Electromagnetic field propagates in space and interacts with the other charges,

however, it also interacts with its own source. In the traditional picture2 a charge
is treated as a point-like particle, for which the self force of this kind is not well
defined (again, treatment of this force goes back more than hundred years ago and is
considered as one of the unsolved problems in classical electrodynamics). However,
in the real world dynamics of particles onemust take into account their delocalization
due to the uncertainty principle, in which case instead of being treated as the point
like objects their position is described by probability density [9]. For the probability
density, however, this self force is well defined only if the effect of retardation is
taken into account, i.e. at certain point electromagnetic field that exerts a force on
the charge density originated at some earlier time at another location.

Electromagnetic field is the carrier of energy, and the energy balance is obtained
from Maxwell equations, from which one derives equation

∇ · ( �E × �H) = − 1

2c
∂t

( �H · �H + �E · �E
)

− 4π

c
�E · �j

In this equation one recognizes the continuity equation, which always expresses a
conservation law. For example, for the charge and the current densities it is given by

2By traditional picture it is meant classical dynamics, or more precisely, dynamics of particles
where the uncertainty principle is not implemented.
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∇ · �j = −∂tρ (3.2)

which is homogeneous because besides derivatives there are no other terms. It fol-
lows from this equation that the total probability in space is always conserved. The
continuity equation for the electromagnetic field is similar but contains additional
term, which makes it inhomogeneous instead homogeneous equation. Therefore, if
with the current density one associates the vector

�P = c

4π
�E × �H (3.3)

and with the charge density one associates

ε = 1

8π

( �H · �H + �E · �E
)

then the relationship between them, in the form of the continuity equation, suggests
that the total ε in space is conserved if there are no currents in it. One then associates ε
with energy density of the electromagnetic field and �P is Poyting vector andmeasures
energy flow per unit time and unit area, which is also associated with the momentum
density of the field. The presence of other charges in the total volume affects the
energy of the field, it is either absorbed or released by them, and the extent of this
exchange is measured by the additional inhomogeneous term �E · �j , where these
charges are represented by their respective currents.

It should be noted that the continuity equation does not specify the energy flow
uniquely. One can make replacement

�P =⇒ �P + ∇ × �U

where �U is arbitrary vector, and the continuity equation is not altered. The additional
term represents the flow of energy that does not exit enclosed volume, it flows in a
circle around its source.

Closely related to the Poyting vector is the radiation pressure, which is the force
of the electromagnetic radiation per unit area, and it is given by

−→
� = 1

4π
�E × �H

3.2 Vector and Scalar Potentials

Analysis of the electromagnetic field is considerably simplified if one defines poten-
tials. Scalar potential was already defined when the electric, time independent, force
was introduced, in which case the appropriate electric field is given by



70 3 Electrodynamics

�E = −∇V

The advantage of using the potential is obvious, instead of working with the three
component quantities, the electric field, one needs to know a single component,
scalar, function. However, the disadvantage is that the potential is not a uniquely
defined quantity, because it is the field that manifests itself as a force on a charge.
Any constant could be added to the potential and the force remains the same.

In the same spirit one defines a vector function for the magnetic field by noting
its basic property

∇ · �H = 0

from where it follows that �H could be represented as

�H = ∇ × �A (3.4)

where �A is the vector potential. The scalar potential is derived from the charge density
and it is expected that the vector potential is derived from the charge current.

To find relationship of the scalar and vector potentials to the charge density and
the charge current one must find their relationship to Maxwell equations. From the
first Maxwell equation one obtains

∇ × �E = −1

c
∂t∇ × �A = −∇ × 1

c
∂t �A

and hence
�E = −1

c
∂t �A − ∇V (3.5)

The second term on the right expresses the fact that theMaxwell equation determines
the electric component up to a gradient of a scalar function.

From the second Maxwell equation one obtains

∇ ×
(

∇ × �A
)

= 1

c
∂t

(

−1

c
∂t �A − ∇V

)

+ 4π

c
�j

or

∇
(

∇ · �A
)

− � �A = − 1

c2
∂2
t

�A − ∇
(

1

c
∂t V

)

+ 4π

c
�j

In this equation one recognizes the wave equation

� �A − 1

c2
∂2
t

�A = −4π

c
�j (3.6)

which one needs to assume if the vector potential is to describe electromagnetic
waves. This requirement is fulfilled if the vector and the scalar potentials are inter
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related through equation

∇ · �A + 1

c
∂t V = 0 (3.7)

which is also known as the Lorentz condition.
The third Maxwell equation then gives

∇ ·
(

−1

c
∂t �A − ∇V

)

= −1

c
∂t∇ · �A − �V = 1

c2
∂2
t V − �V = 4πρ

or finally

�V − 1

c2
∂2
t V = −4πρ (3.8)

where the Lorentz condition was used. Again this is now a wave equation, but for
the scalar potential.

Both potentials obey inhomogeneous wave equation, and its general solution is

h (�r , t) = hhom (�r , t) +
∫

d3r ′ dt ′ K
(�r − �r ′, t − t ′

)

g
(�r ′, t ′

)

(3.9)

where K
(�r − �r ′, t − t ′

)

is the Green function for the electromagnetic field, which is
derived in Appendix 2, and g

(�r ′, t ′
)

is inhomogeneous term in the wave equations.
Solution for the potentials, without the homogeneous term hhom (�r , t) (it corresponds
to the electromagnetic field without a source), is in the explicit form (see Appendix
2)

�A = 1

c

∫ �j (�r ′, tret
)

|�r − �r ′| d3r ′ (3.10)

V =
∫

ρ
(�r ′, tret

)

|�r − �r ′| d3r ′

where tret is the retarded time, which is defined as the solution of equation

t − tret = 1

c

∣

∣�r − �r ′∣
∣

Its essence is to give time when the disturbance in the field should be produced by its
source at the coordinates �r ′ in order to interact with the charge density at the position
�r and time t .

Despite the fact that both potentials are determined by charge and current they
are in fact not uniquely determined quantities. If any scalar function W satisfies the
homogeneous wave equation

�W − 1

c2
∂2
t W = 0
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then the electric and magnetic components of the electromagnetic field remain unal-
tered if one makes replacements

�A =⇒ �A + ∇W

V =⇒ V − 1

c
∂tW

The Lorentz condition is also satisfied. This arbitrariness in the definition of the
potentials plays important role in dynamics of the electromagnetic field, and it has
a special name, the gauge invariance. Related to this invariance is a theorem, which
is mentioned but not proved. Any vector could be uniquely decomposed into two
components

�A = �A‖ + �A⊥

where they are defined to satisfy the equations

∇ × �A‖ = 0

∇ · �A⊥ = 0

�A‖ is called the longitudinal component because in general it is given as a gradient
of a certain scalar function

�A‖ = ∇�

On the other hand, �A⊥ is called the orthogonal component because it is given as the
curl of a vector

�A⊥ = ∇ × �S

These components could be extracted from the equations

�A‖ = − 1

4π
∇

[

∇ ·
∫ �A(�r ′)

|�r − �r ′|d
3r ′

]

(3.11)

�A⊥ = 1

4π
∇ ×

[

∇ ×
∫ �A(�r ′)

|�r − �r ′|d
3r ′

]

but directly if one defines Green function for the orthogonal component (longitudinal
is then easily extracted). By using (C.8) and definition of Green functions in Chap.2
one derives orthogonal Green function for the retarded field

K tr
n,m(�r , t) = 2

(2π)3

∫

d3κ dω
δn,m − κ̂n κ̂m

�κ2 − (

ω
c + iη

)2 ei �κ·�r−iωt

where η > 0 and κ̂ = �κ/κ is unit vector. The n-th orthogonal component of the
vector potential is now

http://dx.doi.org/10.1007/978-3-662-52878-5_2
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(−→
A ⊥

)

n
= 1

c

∑

m

∫

d3q ds K tr
n,m (�r − �q, t − s)

−→
j m (�q, s)

These components are of importance in quantumdynamics of a charge that is interact-
ing with the electromagnetic field. Momentum operator is modified by the transver-
sal component of the vector potential whilst the longitudinal goes together with the
scalar potential. External electromagnetic field without a source (for example a plane
wave) could always be modified by using the gauge invariance to eliminate scalar
and longitudinal components.

From homogeneous equations (3.6) and (3.8) (they do not necessarily reflect
solutions without source, they also represent standing wave solutions, as it will be
shown later) one derives expression for the energy of the field and its momentum,
which are given by

T0 = 1

8π

∫

d3r
( �H · �H + �E · �E

)

and −→
T = c

4π

∫

d3r �E × �H

respectively. They assume more convenient form when given in terms of the poten-
tials. By replacing electric and magnetic components from (3.5) and (3.4), respec-
tively, the Lorentz condition (3.7) is used and after partial integrations one gets for
the total electromagnetic energy (and removing scalar potential by gauge transfor-
mation)

T0 = 1

8π

∫

d3r

(

1

c2
dt

−→
A · dt−→A + dx

−→
A · dx−→A + dy

−→
A · dy−→A + dz

−→
A · dz−→A

)

and for the total electromagnetic momentum

−→
T = − 1

4πc2

∫

d3r
(

dt
−→
A · dx−→A x̂ + dt

−→
A · dy−→A ŷ + dt

−→
A · dz−→A ẑ

)

If the vector potential is represented as

−→
A =

∫

d3k
[

ei
−→
k ·−→r −ktc −→a

(−→
k

)

+ e−i
−→
k ·−→r +ktc −→a ∗

(−→
k

)]

then these two expressions take the form

T0 = 2π2
∫

d3k k2
[−→a

(−→
k

)

· −→a ∗
(−→
k

)

+ −→a ∗
(−→
k

)

· −→a
(−→
k

)]
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and
−→
T = 2π2

c

∫

d3k k
−→
k

[−→a
(−→
k

)

· −→a ∗
(−→
k

)

+ −→a ∗
(−→
k

)

· −→a
(−→
k

)]

Importance of these expressions is in formulation of quantum electromagnetic field
theory [24–26].

3.3 Electromagnetic Waves

3.3.1 General Features

Charges in a non uniform motion produce electromagnetic waves and if this change
in velocity is for a finite time interval then the wave has a finite length. Far away
from the source equation for this field is then

� �A − 1

c2
∂2
t

�A = 0

�V − 1

c2
∂2
t V = 0

These are wave equations without a source, and they are basic in the analysis of
interaction of the electromagnetic wave with charges. Their solution is simple, for
example, a single source produces waves that far away from it propagate in the radial
direction, in the outward direction, for which a general solution is

h = 1

r

∑

l,m

al,mYl,m(θ,φ) fl,m(r − ct)

The waves of this kind are seldom encountered, only in dynamics of individ-
ual source, more often one observes a collective effect of huge number of sources
(e.g. atoms) in which case a wave of particular character is encountered. This wave
propagates in a certain direction, along which it has coordinate dependence, and
perpendicular to it is in general constant (not always, as discussed in Sect. 3.3.4).
When referring to the wave one assumes this functional dependence, whilst the wave
produced by a single charge is referred to as the spherical wave.

A general solution of the wave equation for the potentials (without the source) is

�A = �f (

n̂ · �r ± ct
)

(3.12)

V = g
(

n̂ · �r ± ct
)
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where �f and g are arbitrary functions, however, they are determined by how the
wave is formed. As it was shown earlier there is arbitrariness in the choice of the
potentials, having the roots in the gauge invariance. This invariance can be used with
the specific purpose to make the scalar potential zero. In other words, one defines
new potentials as

�Anew = �A + ∇W

Vnew = V − 1

c
∂tW = 0

where the correcting scalar potential that does that is

W = c
∫

g
(

n̂ · �r ± ct
)

dt

Therefore electromagnetic waves, when they have no source, are uniquely described
entirely by the vector potential. This is also called the Coulomb gauge.

Important property of the vector potential is deduced from the Lorentz condition.
When applied to the potentials in the Coulomb gauge one finds

∇ · �A + 1

c
∂t V = ∇ · �A = n̂ · �f ′ = 0

where ′ indicates derivative with respect to the argument of the functions. This means
that the unit vector n̂ in the argument of the vector potential is always perpendicular
to its polarization. From the Poyting vector (3.3) one deduces physical meaning of
the unit vector. The electric and magnetic components are

�E = −1

c
∂t �A − ∇V = ∓ �f ′ (n̂ · �r ± ct

)

�H = ∇ × �A = n̂ × �f ′ (n̂ · �r ± ct
)

and the Poyting vector is

�P = c

4π
�E × �H == ∓ c

4π
n̂

( �f ′ · �f ′
)

The unit vector n̂, therefore, determines direction of the energy flow, it is along its
direction when the argument of the vector potential is n̂ · �r −ct whilst in the opposite
when it is n̂ · �r + ct . Both choices are allowed, but in the case of spherical waves
the former one indicates that the wave travels away from the source, whilst in the
latter it travels towards the source. Obviously the latter choice is not physical and
therefore the former will always be used for the spherical waves. However, for the
waves (not spherical) both choices are used, depending on where the sources of the
wave are, e.g. if they are placed in the space x > 0 then for the waves that propagate
towards x → −∞ the appropriate choice of the argument in the function f would
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be n̂ · �r +ct . The unit vector n̂ is called the propagation vector of the electromagnetic
waves.

Direction of the vector potential is polarization of the electromagnetic wave. In
general one distinguishes two types of polarizations. The most common is when the
direction of the vector potential does not changes in time, in which case one talks
about the linear polarization of the wave. When it changes in time then it is called
non-linearly polarized light. There are more specific choices, but they are only well
defined for the plane waves, which will be discussed shortly.

Very often a detailed shape of vector potential is not known, in which case one
makes models on the bases of the available general information. The simplest model
is a linearly polarized wave, say along the z direction, that propagates along the x
axes. The vector potential is then determined by a single component, a single scalar
function. If this wave has finite length then one acceptable form that describes it is

�A = A0 e
− (x−ct)2

c2T 2 cos
[ω

c
(x − ct)

]

ẑ (3.13)

T is normally estimated, ω is known, but the amplitude A0 must be determined. The
available information for this is the total energy carried by this wave, but normalized
to the unit area that is perpendicular to the propagation of the wave. The amplitude
is therefore obtained from the relationship

en =
∫ ∞

−∞
dt P = c

4π

∫ ∞

−∞
dt

( �f ′ · �f ′
)

where P is the modulus of the Poyting vector and en is the energy that is carried by
this wave. By assuming the shape (3.13) one gets

en = A2
0

8cT
√
2π

(

1 + T 2ω2 + e− 1
2 T

2ω2
)

There are two limiting cases: very long wave, when Tω  1, and a short wave, when
Tω ≈ 1. However, the energy en is not the proper choice for getting information
about the wave, instead one should calculate the time average power that it transmits,
i.e. the time average of the Poyting vector. This average is

en

T
= Pav = A2

0

8cT 2
√
2π

(

1 + T 2ω2 + e− 1
2 T

2ω2
)

from which, in principle, the amplitude A0 could be calculated.
For a long wave the amplitude is

Pav = A2
0

8c
√
2π

ω2 =⇒ A0 = 27/4π1/4

√
cPav

ω
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but for a short

Pav = A2
0

4cT 2
√
2π

=⇒ A0 = 25/4π1/4T
√

cPav

Measure of the strength of the field is not the vector potential but the electric and
magnetic components, which are derived from the vector potential. For a long wave
the electric component is

�E = −1

c
∂t �A ≈ − A0ω

c
sin

(ω

c
x − ωt

)

ẑ

whilst for a short

�E ≈ − 2A0

cT 2ω

(ω

c
x − ωt

)

cos
(ω

c
x − ωt

)

ẑ

In general, for a short wave the strength of the field increases as T−1 , i.e. the shorter
the wave the electric and magnetic components are larger.

3.3.2 Plane Waves

Special type of the electromagnetic wave is a plane wave. Its typical feature is that
it has single frequency, which uniquely specifies its other characteristics, except
polarization. There are, however, no perfect plane waves, because single frequency
implies also infinite length along the line of propagation, which means that it carries
infinite energy. Nevertheless, the concept of a plane wave is very useful because in
many circumstances describes well real situations, and in addition simplifies theo-
retical analysis. Plane wave approximation fails when transient effects are analyzed,
impact of onset or the end of interactionwith charges, when this could have important
consequences on the resulting dynamics, as it will be discussed in Chap. 4.

The most general form of a plane wave is

�A = Ax cos
(ω

c
z − ωt

)

x̂ + Ay cos
(ω

c
z − ωt + α

)

ŷ (3.14)

where now it is assumed that it propagates along the z axes. The assumption is not
restriction on its generality, because the wave that propagates in any other direction is
obtained from this by rotation of the coordinate system. α is the phase shift between
oscillations along the x and y coordinates, and in general the amplitudes of the
vector potential along these axes are not equal. Depending on the phase shift one
distinguishes various types of polarizations of the electromagnetic wave.3

3Polarization of electromagnetic field is defined as direction of its electric component, but for the
plane waves this coincides with the direction of the vector potential, because the former is just the
time derivative of the latter.

http://dx.doi.org/10.1007/978-3-662-52878-5_4
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Polarization is defined as time dependence of the vector potential direction at a
fixed point in space. For simplicity one takes z = 0 as the reference point, in which
case the direction angle φ with respect to the x axes is

tan φ = Ay

Ax
[cosα − tan (ct) sinα]

which in general is time dependent, except for two special cases: α = 0, π. The
polarization is in this case called linear. There are another two special cases for
α = π/2, 3π/2, and their meaning is obtained by calculating modulus of the vector
potential

A =
√

A2
x cos

2 (ct) + A2
y sin

2 (ct)

and if the relationship

tan φ = Ay

Ax
tan (ct)

is used then

A = Ay Ax
√

A2
x + A2

y − (

A2
x − A2

y

)

cos (2φ)

This is equation for an ellipse with the axes Ax and Ay , and therefore polarization is
called elliptic, and the special case of it is circular when Ax = Ay . Any other choice
of the phase shift α does not produces simple polarization.

Plane wave is a very useful model because in a number of circumstances it realis-
tically describes interaction of the electromagnetic field with charges. For example,
a continuous laser produces almost a steady stream of the electromagnetic radiation
of nearly a single frequency. The concept of a plane wave is, however, primarily a
very useful mathematical object, and therefore it is important to define it in a suitable
way. One of its forms is

�A+
j (

�k) = â j e
i �k·�r−wt (3.15)

where �k = w
c n̂, and the index j = 1, 2 refers to one of directions of polarization

(there are at most two), which, from the Lorentz condition, have the property

â j · �k = 0

Polarization vectors are not uniquely defined from this property, one of them is
arbitrary but the other one is then (almost) uniquely determined (its sign is arbitrary).
The last equation implies

â j · �k = k [cos θa cos θk + cos (φa − φk) sin θa sin θk]
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where the spherical angles are for each vector. The choice of direction of â1 is
arbitrary and the simplest is to take φa = φk in which case θa = θk +π/2. The other
polarization vector is then â2 = â1 × �k/k. In the explicit form

â1 = cos θk cosφk x̂ + cos θk sin φk ŷ − sin θk ẑ

and
â2 = sin φk x̂ − cosφk ŷ

Any wave is described as a linear combination of these elementary plane waves,
however, �A+

j (
�k) do not form a complete set of functions, additionally onemust define

�A−
j (

�k) = â j e
−i �k·�r+wt (3.16)

so that a general plane wave (3.14) is given as a sum

−→
A = g1 �A+

1 (�k) + g2 �A+
2 (�k) + h1 �A−

1 (�k) + h2 �A−
2 (�k)

Vector n̂ has only component in the z direction therefore the unit polarization vectors
â j must be a linear combination of the unit vectors x̂ and ŷ. One of them is arbitrary,
say it is given by

â1 = cosβ x̂ + sin β ŷ

but the other one, which is orthogonal to it, is

â2 = sin β x̂ − cosβ ŷ

If they are replaced in the linear combination then

Ax

2

(

ei(k z−ct) + e−i(k z−ct)
)

x̂ + Ay

2

(

ei(k z−ct+α) + e−i(k z−ct+α)
)

ŷ

= g1(cosβ x̂ + sin β ŷ)ei(k z−ct) + g2
(

sin β x̂ − cosβ ŷ
)

ei(k z−ct)

+h1(cosβ x̂ + sin β ŷ)e−i(k z−ct) + h2
(

sin β x̂ − cosβ ŷ
)

e−i(k z−ct)

and by comparing the coefficients in front of the same unit vectors, and the expo-
nential functions, then

Ax

2
= g1 cosβ + g2 sin β,

Ax

2
= h1 cosβ + h2 sin β,

Ay

2
eiα = g1 sin β − g2 cosβ,

Ay

2
e−iα = h1 sin β − h2 cosβ
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Solution for the expansion coefficients is

g1 = 1

2

(

Ax cosβ + Aye
iα sin β

)

, g2 = 1

2

(

Ax sin β − Aye
iα cosβ

)

,

h1 = 1

2

(

Ax cosβ + Aye
−iα sin β

)

, h2 = 1

2

(

Ax sin β − Aye
−iα cosβ

)

That simple exercise showed how to use plane waves (3.15) and (3.16) to rep-
resent any wave as their linear combination. The first step is to define polarization
vectors, based on the knowledge of the unit vector n̂. One then forms a general linear
transformation

�A(u) =
∫

dw
[(

g1(w)â1 + g2(w)â2
)

ei w u + (

h1(w)â1 + h2(w)â2
)

e−i w u
]

and from that the polarization components are obtained as

�A(u) · â j =
∫ ∞

0
dw

[

g j (w)ei w u + h j (w)e−i w u
]

The coefficients in the expansion are now

g j (w) = 1

2π

∫ ∞

−∞
du �A(u) · â j e

−i w u, h j (w) = 1

2π

∫ ∞

−∞
du �A(u) · â j e

i w u

3.3.3 Short Pulses

A special type of a time varying electromagnetic field is produced by a uniformly
moving charge. It does not have characteristics of an electromagnetic wave because
it is not produced by a non uniformly moving charge, but a pulse that travels with its
source which is of a very short duration and of the extreme strength. These pulses
could be used also for manipulating charges, atoms or molecules, with a possible
advantage that they do not have a single frequency carrier. e.g. as the pulse that was
modelled by (3.13). The disadvantage of these pulses, however, is that their strength
depends on the distance from the source, and in that respect cannot be used with
the same intention as, for example, the plane electromagnetic waves. Modelling of
these pulses assumes the point like character of their source, e.g. of the electron or
the proton, and that their velocity approaches the speed of light.4 One manifestation
of the effect of relativistically moving charge on the surrounding media through the
electromagnetic pulse that it produces is in particle detectors, say a bubble chamber.

4The electron with kinetic energy 3MeV has the speed 0.99 that of light, whilst proton of the same
speed must have kinetic energy 5713MeV. This gives roughly the energy range when these short
pulses are important.
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Vector potential, for a point like source,5 is

�A (�r , t) = − 1

4π3c

∫

d3q
∫

ds K (�r − �q, t − s) �j (�q, s)

where K (�r − �q, t − s) is the Green function for the electromagnetic field, and its
explicit form is derived in Appendix 2. By assuming that the charge moves with
velocity v0 along the z axis, and that its current is given by

�j (�q, s) = ev0 ẑ δ (qz − v0s) δ (qx ) δ
(

qy
)

then the vector potential is

�A (�r , t) = 1

4π3c

∫

d3q
∫

ds
∫

d3k
∫

dw
ei �k·(�r−�q)−iw(t−s)

k2 − (

w
c + iη

)2
�j (�q, s)

= ẑ ev0
2π2c

∫

d2k dkz
ei �k·�r+ikz z−iv0kz t

k2 + k2z − (

v0
c kz + iη

)2

where the integral in �k was split into the integration along its z component and the
components that are perpendicular to it. The integrals could be evaluated exactly,
and the final result is

�A (�r , t) = ev0
c

ẑ
√

(z − v0t)
2 +

(

1 − v20
c2

)

(

x2 + y2
)

and similar derivation gives for the scalar potential

V (�r , t) = e
√

(z − v0t)
2 +

(

1 − v20
c2

)

(

x2 + y2
)

The electric andmagnetic components of the field are then derived from the known
expressions, however, it is the electromagnetic field (3.1) that matters, which is given
by

−→
� = eγ

x
(

c2 − v0 z̊
)

c2R3
x̂ + eγ

y
(

c2 − v0 z̊
)

c2R3
ŷ + eγ

c2 (z − v0t) + v0
(

x x̊ + y ẙ
)

c2R3
ẑ

(3.17)

5For elementary particles one should use the fact that their dynamics is described by the proba-
bility amplitude. However, in the extreme circumstances when their speed approaches that of the
electromagnetic waves the spread of their probability amplitude is negligible, and it is confined to
a narrow space. This means that the elementary particles could indeed be treated as the point like
objects.
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Fig. 3.1 Modulus of the
electromagnetic field

−→
� of a

charge that is moving with
velocity at nearly the speed
of light along the z axes

where

γ =
(

1 − v2
0

c2

)−1/2

and

R =
√

γ2 (z − v0t)
2 + (

x2 + y2
)

A typical modulus of the electromagnetic field
−→
� is shown in Fig. 3.1 when velocity

of charge that produces the field is nearly the speed of light.
As an example the electron having kinetic energy of 100MeV, and at distance 5×

10−11 m (approximately the Bohr radius) from the z axes, produces time dependence
of the z and the x components of the field

−→
� as shown in Fig. 3.2, left and right

graphs, respectively. At the same distance in Hydrogen atom the Coulomb field of
the proton is of the order ECoulomb ≈ 6 × 1011 Volt/m. The z component is smaller
whilst the x component is much larger than the field that keeps the electron bound
to the proton.

By assumption velocity v0 of the charge is nearly the speed of light, and if z is
not close to v0t , then the two potentials are

�A (�r , t) = e ẑ
√

(z − v0t)
2
sign(v0), V (�r , t) = e

√

(z − v0t)
2

which is a valid approximation within the interval

√

x2 + y2 < γ |z − ct |

This inequality defines a conus within which the potentials are longitudinal, i.e.
depend only on the coordinate along which the charge moves. Outside the conus,
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Fig. 3.2 Components of the
electromagnetic field (3.17)
of a charge that is moving
along the z axes at nearly the
speed of light
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when the inequality is reversed, the potentials depend on the transversal coordinates,
and within the time interval

t <
1

cγ

√

x2 + y2 (3.18)

reach the maximal value

�Amax (�r , t) = eγ ẑ
√

x2 + y2
sign(v0), Vmax (�r , t) = eγ ẑ

√

x2 + y2

Thismeans that although a fastmoving charge exerts a strong force on the neighboring
charges, its time duration is very short.

The structure of the field of a fast moving charge is almost equivalent of an elec-
tromagnetic wave, because its functional dependence on time and coordinates is
essentially the same as in (3.12). More specifically it is the same as the electromag-
netic wave beam, which is discussed in the following Sect. 3.3.4.

Previous analysis of the electromagnetic field that is produced by a single, fast
moving, charge one could generalize by considering more charges, for example two
charges (of the samemass, for simplicity) that move against each other with the same
velocity. If one moves along the z axes with velocity v0, having the charge e1 and
being at the distance d along the x axes, whilst the other one having the charge e2 at
−d along the same axis but moving in the opposite direction then the charge and the
current densities are

ρ(�r , t) = e1 δ
(�r − v0t ẑ − d x̂

) + e2 δ
(�r + v0t ẑ + d x̂

)

,

�j(�r , t) = [

e1 v0 δ
(�r − v0t ẑ − d x̂

) − e2 v0 δ
(�r + v0t ẑ + d x̂

)]

ẑ

The vector potential is derived in the same way as in the previous analysis, and the
result is

�A (�r , t) = ẑ γv0

c

( e1
R− − e2

R+
)
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whilst the scalar potential is

V (�r , t) = e1γ

R− + e2γ

R+

where

R± =
√

γ2 (z ± v0t)
2 + [

(x ± d)2 + y2
]

The electromagnetic field that is derived from the two potentials is

−→
� =

[

e1γ
(

v0vz − c2
)

(d − x)

c2R−3 + e2γ
(

v0vz + c2
)

(d + x)

c2R+3

]

x̂

+y

[

e1γ
(

v0vz − c2
)

c2R−3 + e2γ
(

v0vz + c2
)

c2R+3

]

ŷ +
[

e2γs+

c2R−3 − e1γs−

c2R−3

]

ẑ

where
s± = c2 (tv0 ± z) − v0

(±dvx + xvx + yvy
)

The interesting space is around the origin when the two charges meet, say this
instant is t = 0, where the electromagnetic field for e1 = e2 = e approximates as

−→
� ≈ 2γe

d3

[(

d
v0vz

c2
− 2x

)

x̂ + y ŷ +
(

z − d
v0vx

c2

)

ẑ
]

For small velocity of the test charge the components of the electromagnetic field are
either binding harmonic force or repulsive. Thus if the test charge has the same sign
as e then in x direction the force is harmonic and binding

Fx = −4γe

d3
x

whilst in the other directions it is repulsive. On the other hand, if e1 = −e2 = e then

−−→
EM ≈ 2γe

d3

[(

2v0vz
c2

x − d

)

x̂ − v0vz

c2
y ŷ +

(

y
v0vy

c2
− 2x

v0vx

c2

)

ẑ

]

which is in x direction constant and in the others it is velocity dependent, and negli-
gible for a slowly moving test charge.

For the electron and the positron, when each has the kinetic energy of 100MeV
and are at the distance 5×10−11 m (again approximately the Bohr radius) from the z
axes along the x direction, produce time dependence of the z and the x components
of the field

−→
� at the origin as shown in Fig. 3.3. This field should be compared with

the Coulomb of the proton, which is of the order ECoulomb ≈ 6× 1011 Volt/m. The z
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Fig. 3.3 Time dependence
of the components of the
electromagnetic field
between two charges of
different sign that move in
the opposite direction
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component is smaller whilst the x component much larger than the field that keeps
the electron bound to the proton.

Impact that the electromagnetic field of this kind has on atoms is discusses in
Sect. 4.2.

3.3.4 Finite Width Waves

So far electromagnetic waves were treated as having infinite width. In practice,
however, they are either radiated froma single source, inwhich case they are spherical
like, or they are in the form of a directed beam, for example radar beam or laser
beams. In almost all analysis of these beams the assumption is that they are plane
waves, meaning that their width is infinitely wide. There are several problems in the
treatment of a beam of electromagnetic waves with the finite width. The problem is
not only with the edges of the beam but onemust also allow that their polarization has
coordinate dependence. One should make distinction with the amplitude modulation
in which interference of several plane waves produces a wave whose amplitude
varies with the coordinate along its propagation direction, but not in the direction of
polarization. For simplicity linearly polarized waves are treated.

Simple functional form for a vector potential that appears to describe electromag-
netic wave is

�A(x, z, t) = a(z) e−iwt+ikx ẑ (3.19)

which has coordinate dependence of its polarization, but to be the wave there are
two problems with it. First, this potential is not sufficient for describing the wave,
the scalar potential is missing because the Lorentz condition (3.7) for (3.19) is not
satisfied, as it should. Second the wave equation (3.6) is not satisfied (the current is
zero). However, (3.19) could be treated as the initial condition for electromagnetic
wave that evolves from it, for example taken at t = 0, but the problem is finding the

http://dx.doi.org/10.1007/978-3-662-52878-5_4


86 3 Electrodynamics

basis that would be used for solving the problem. This basis is derived by generalizing
(3.19) to the form that satisfies the wave equation, and the simplest is

�A(x, z, t) = f [x, z] e−iwt ẑ

where the function f (x, z) satisfies equation

∂2
x f (x, z) + ∂2

z f (x, z) + k2 f (x, z) = 0

One then uses the required form for the vector potential as the initial condition

f (0, z) = a(z), ∂x f (0, z) = ika(z)

for the solution of this equation and analyze to what extent (3.19) is preserved along
the x axes.

The equation is solved by writing

f (x, z) =
∫

dq eiqzg(q, x)

and equation for the function g(q, x) is

∂2
xg(q, x) = − (

k2 − q2) g(q, x)

with the solution

g(q, x) = g(q, 0)

[

cos
(

x
√

k2 − q2
)

+ i
k

√

k2 − q2
sin

(

x
√

k2 − q2
)

]

where

g(q, 0) = 1

2π

∫

dz e−iqza(z)

In principle the equation is solved, one only has to calculate the integral in the
variable q, but this is not straightforward. The problem are the square root branching
points at q = ±k, and if the choice of the integration paths around them is not
correct the result may be meaningless. In order to avoid problems of this kind one
splits g(q, x) as

g(q, x) = g+(q, x) + g−(q, x) (3.20)

where

g±(q, x) = 1

2

(

1 ± k
√

k2 − q2

)

g(q, 0)e±i x
√

k2−q2
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The integration path q for g+(q, x) is now defined having a small positive imaginary
part for Re(q) < 0 and negative for Re(q) > 0. For the function g−(q, x) it is the
other way around.

The question of importance is the stability criterion for the initial shape of the
wave. In other words, if at x = 0 a particular choice for the cross section of the beam
of the electromagnetic wave is made at what distance x one still finds approximately
the same form. In order to find the answer one must evaluate the integral

f ±(x, z) = 1

2

∫ ±
dq

(

1 ± k
√

k2 − q2

)

g(q, 0)eiqz±i x
√

k2−q2

for large x , which could be done by various techniques but the choice depends very
much on the initial function a(z), or on g(q, 0). The most used function is Gaussian

a(z) = e− z2

d2 ⇒ g(q, 0) = d

2
√

π
e−d2q2/4

and so the integrals are

f ±(x, z) = d

4
√

π

∫ ±
dq

(

1 ± k
√

k2 − q2

)

e−d2q2/4+iqz±i x
√

k2−q2

and if d is large compared to the wave length of the wave, i.e. kd  1, then most
of contribution comes from (relatively) small values of q. In this case one makes
expansion

√

k2 − q2 ≈ k − q2

2k

and so the dominant integral is

f +(x, z) = 1

�+(x)
e
ikx

(

1+ 2z2

d2k2�2(x)

)

− z2

�2(x) (3.21)

where

�±(x) = d ± 2i x

dk
; �2(x) = �+(x)�−(x)

The subdominant component is

f −(x, z) = z2 − 2d�−(x)

8k2d2 [�−(x)]3
e
−ikx

(

1+ 2z2

d2k2�2(x)

)

− z2

�2(x)

The beam of electromagnetic wave therefore spreads with the distance x , in general
this spread is considerable when its width is larger than

√
2, which happens at x ≈

4dn, where n is the number of wave lengths that goes into the width d. Also the wave
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length of the wave changes as

λ(x, z) = λ0

1 + 2z2
d2k2�2(x)

which is also a function of z. For a typical wave length of λ0 = 5 × 10−7 m and the
width of the beam d = 5×10−3 m the distance along which it is stable is x ≈ 200m.

Generalization to three dimensions is straightforward. The equation is in this case

∂2
x f (x, z) + ∂2

y f (x, z) + ∂2
z f (x, z) + k2 f (x, z) = 0

and it is assumed now that thewave propagates along the z axes. The initial conditions
are chosen for z = 0, and they are defined as

f (x, y, 0) = a(x, y); ∂z f (x, y, 0) = ika(x, y)

The formal solution is written as

f (x, y, z) =
∫

dqx dqy e
iqx x+iqy yg(qx , qy, z)

where
∂2
z g(qx , qy, z) = − (

k2 − q2
x − q2

y

)

g(qx , qy, z)

and the solution of this equation is

g(qx , qy, z)

= g(qx , qy , 0)

⎡

⎣cos

(

z
√

k2 − q2x − q2y

)

+ i
k

√

k2 − q2x − q2y

sin

(

z
√

k2 − q2x − q2y

)

⎤

⎦

In this way formal solution in three dimensions is obtained, only the function
a(x, y) needs to be specified. One particularly interesting example is

a(x, y) = re− r2

d2 sin φ

when

g(qx , qy, 0) = 1

(2π)2

∫

dx dy e−iqx x−iqy y ye− x2

d2
− y2

d2

= N qye
− 1

4 d
2q2

x− 1
4 d

2q2
y
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and the solution is

f ±(x, y, z)

= N
∫ ∞

0
dq

∫ 2π

0
dγ

(

1 ± k
√

k2 − q2

)

q2 sin γ e− 1
4 d

2q2+iqr cos(γ−φ)±i z
√

k2−q2

where again separation (3.20) was used. After the angular integration one gets

f ±(x, y, z) = N sin φ

∫ ∞

0
dq

(

1 ± k
√

k2 − q2

)

q2 J1(qr)e
− 1

4 d
2q2±i z

√
k2−q2

where Jn(u) is the Bessel function. By assuming that d is large, in the units of the
wave length of the wave, dominant solution is

f +(x, y, z) = 8N y

d2 [�+(z)]2
e
izk

(

1+ 2r2

d2k2�2(z)

)

− r2

�2(z)

where

�±(z) = d ± 2i z

dk
; �2(z) = �+(z)�−(z)

The subdominant component is

f −(x, y, z) = 8N y

k2d4 [�−(z)]4
[

r2 − 2d�−(z)
]

e
−i zk

(

1+ 2r2

d2k2�2(z)

)

− r2

�2(z)

which differs from the result in two dimensions (3.21) in some obvious factors, but
in essence it is the same form for the wave. Therefore the same conclusions apply as
before, the beam is stable up to the point where z ≈ kd2.

The vector potential that is polarized along the y axes is now, by taking into
account only the dominant component

�A(x, y, z, t) = Re
[

f +(x, y, z) e−iwt
]

ŷ

= a0y e
− r2

�2(z) cos

[

zk

(

1 + 2r2

d2k2�2(z)

)

− wt

]

ŷ

whilst the subdominant represents the wave that propagates in the opposite direction.
It is interesting to note that any “localization” of the electromagnetic wave produces
this component, the result that is derived also in the relativistic quantum theory,
however, there this is interpreted as creation of negative energy states of particle.

Very often one uses the initial shape of the vector potential as being constant,
which obviously only applies within the space where its spreading is negligible, its
general form being (for the model that is used earlier on)
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�A(x, y, z, t) = a0y e
− r2

d2 cos [zk − wt] ŷ

from which the scalar potential is derived from the Lorentz condition

V = a0
k

(

1 − 2y2

d2

)

e− r2

d2 sin [zk − wt]

The electric field is
�E = a0 �f (x, y, z, t)e− r2

d2

where

�f (x, y, z, t) = − 2x

kd2

(

1 − 2y2

d2

)

sin [zk − wt] x̂

− y

kd2

(

6 − 4y2

d2
+ k2d2

)

sin [zk − wt] ŷ +
(

1 − 2y2

d2

)

cos [zk − wt] ẑ

The dominant component is in y direction, followed by that in the z direction, whilst
the weakest is in the x direction, the estimates that are based on the assumption that
kd  1. The magnetic field is

�H = a0ky sin [zk − wt] e− r2

d2 x̂ − 2a0xy

d2
cos [zk − wt] e− r2

d2 ẑ

Two typical values of the modulus of the electric field are shown in Figs. 3.4 and
3.5 for a fixed z and variable x and y. In the first the phase of the wave was chosen
so that only the x and y components are present, whilst in the second only the z
component is present. The ratio of the maxima

∣

∣Exy

∣

∣ in Fig. 3.4 to the maxima |Ez|
in Fig. 3.5 is

Fig. 3.4 Modulus of electric
field in the beam of
electromagnetic wave of the
width d = 50λ. It has only x
and y components, but the
former are almost negligible
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Fig. 3.5 Modulus of electric
field in the beam of
electromagnetic wave of the
width d = 50λ, which has
only z component. The
modulus of the field is
considerably smaller than
that in Fig. 3.4
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|Ez| ≈ dk√
2e

which is large.

3.3.5 Beam Focusing (Paraxial Approximation)

Electromagnetic wave could be manipulated in order to achieve its high intensity in
a particular region of space. The best know example is squeezing plane wave into a
point by a lens. However, the effect of high intensity could also occur along the lines
or confined to planes, and an example are high intensity lines of light on a sandy
seabed when the choppy sea surface is in the sunlight. The intensity, as opposed to
the focal point, persist regardless of the depth of the sea. These high intensity regions
are result of the caustic effect, whereby rays of light concentrate on the line or surface
being tangent on them. The caustics are result of the inhomogeneous character of
media through which rays of electromagnetic wave travel, where each ray satisfies
equation

d−→v
dt

= −−→v × (−→v × ∇n
) − −→v (−→v · ∇n

)

where −→v is speed of light in the medium with the refraction index n (x, y, z). The
caustic effect is demonstrated in Fig. 3.6 where the surface between two media is
irregular (light rays come from above the surface) on a two dimensional example.

Caustics could also form high intensity lines on a surface, resulting of formation
of patterns on seabed, as shown in Fig. 3.7.

The effect of caustics is described within geometric optics, however, there is
another effect that results in the similar outcome but its cause is in the wave nature
of electromagnetic waves. The basic idea is that along its line of propagation a beam
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Fig. 3.6 Caustic effect that is the cause of high intensity lines of light

Fig. 3.7 Simulation of high
intensity lines on a seabed
that are caused by a choppy
sea surface

is essentially the plane wave whilst perpendicular to it is slowly spreading, being
dissimilar to the effect of caustics where for the definition of rays it is essential that
no spread of beam occurs. The assumption implies that the wave length of the carrier
wave is much smaller than the width of the beam, and so the functional form for the
vector potential that describes a wave with this properties is

�A(x, y, z, t) = f (x, y, z) e−iwt+ikx ẑ

From the equation for the vector potential one gets equation for the scalar function

ik∂x f = −1

2

(

∂2
y f + ∂2

z f
)

(3.22)

where in the derivation the following assumption is implemented

|k∂x f |  ∣

∣∂2
x f

∣

∣
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but the second derivatives in the coordinates y and z are retained. The choice of
parametrization for f determines the scalar potential � from the Lorentz condition

� = −i
c

ω
∂z f

and so the electric field is

−→
E = i

k

(∇∂z f + k2 f ẑ
)

e−iwt+ikx

Solving (3.22) is, therefore, central in calculating magnetic and electric fields,
and the equation resembles Schroedinger equation [27], albeit in two dimensions,
for a free particle if one associates k with �

−1 and x with time t . Based on this
observation, and in order to have complete symmetry with quantum dynamics, one
defines dimensionless coordinates as x ⇒ kx to obtain final equation

i∂s f = −1

2

(

∂2
y f + ∂2

z f
)

(3.23)

where now the variable x is replaced by s to emphasize that it plays the role that
could be either coordinate or time.

For solving (3.23) with the initial condition f0 (y, z) at s = 0 one uses techniques
that are developed in quantum dynamics. The most straightforward solution is

f (�r , s) =
∫

d2k A
(−→
k

)

ei
−→
k ·�r− i

2 k
2s

where
�r = y ŷ + z ẑ

and A
(−→
k

)

is the amplitude that is determined from f0.Alternatively solution could

be formulated in the phase space, in quantumdynamics its components are coordinate
and momentum and here coordinate and wave number. Formulating solution in this
way has advantage that also classical dynamics could be used for solving this initial
value problem for (3.23). In the phase space the solution is given by

ρ (�r , �p, s) = 1

π2

∫

d2q f ∗(�r + �q, s) f (�r − �q, s) e2i �p·�q (3.24)

where now the vector �r is defined as

�r = y ŷ + z ẑ

and likewise the other vectors. Formulation of solution through the phase space
density (3.24), which is also know as the Wigner function, has advantage that it
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could also be solved by classical dynamics but at the same time the uncertainty
principle is preserved. The basis of quantum dynamics is this principle, but it is
also in electrodynamics, where the width of electromagnetic pulse in coordinates is
inverse proportional to its width in the wave number (frequency) space.

From the phase density one obtains the modulus of f squared by integrating it
over the momentum variables

P (�r , s) = | f (�r , s)|2 = 1

π2

∫

d2 p
∫

d2q f ∗(�r + �q, s) f (�r − �q, s) e2i �p·�q

whilst the phase arg ( f ) = γ is derived from the current

−→
j = Im

[

f ∗∇2 f
] = | f |2 ∇2γ (3.25)

where ∇2 is two dimensional gradient and

−→
j =

∫

d2 p �pρ (�r , �p, s) (3.26)

Time evolution of the phase space density (3.24) has simple solution. One defines
trajectory

�r = �r0 + �p s

and makes replacement [9]

ρ (�r , �p, s) = 1

π2

∫

d2q f ∗
0 (�r − �p s + �q) f0(�r − �p s − �q) e2i �p·�q

where now the phase space density is given entirely in terms of the initial condition for
f . Few words about the initial conditions. It should be emphasized that the variable
s is the coordinate and therefore the phase space density, and as the consequence the
solution f is time independent. The solution represents stationary situation when
the electromagnetic wave is of the infinite extent. As opposed to quantum dynamics,
where s plays the role of time, one does not describe time evolution of wave. This
should be kept inmindbecause the temptation to associate swith time, in resemblance
with quantum dynamics, may lead to misinterpretation of results, such as coining
the phrase “self-accelerating” beam for the effects that will be described [14–16].

There is a choice to formulate initial conditions in either the coordinate or the
momentum space. If specified in the coordinate space it is implied that this is per-
pendicular to the line of propagation, it cannot be along parallel with it. The reason
is simple, the variable s plays the role of the evolution parameter and at some point,
say s = 0, the initial conditions are specified and this is along the y and z axes.
If this initial condition is specified in such a way then one could only analyze the
situation of a finite size beams, of the sort that were discussed in Sect. 3.3.4. The
situation that one wants to analyze is infinitely, or practically so, wide beam that is
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phase modulated in y and z directions, and the best way to ensure it is to specify
initial conditions in the momentum space, which is defined as

f0(�r) = 1

4π2

∫

d2 p g0 ( �p) ei �p·�r

when the phase space density is

ρ (�r , �p, s) = 1

π2

∫

d2q g∗
0

( �p − −→q )

g0
(−→p + −→q )

e2i
−→q ·(�r− �p s)

Initial function g0 should be of a special kind, any localization in the momentum
variable reflects on localization in the coordinate space, the situation one wants to
avoid. One way to ensure that the initial conditions reflect those requirements is that
g0 ( �p) is of the exponential type with the exponent being imaginary.

Few examples shall be analyzed in one dimension, when the phase space density
is

ρ (y, p, s) = 1

π

∫

dq g∗
0 (p − q) g0 (p + q) e2iq(y−p s) (3.27)

The simplest choice for g0 is Gaussian function with imaginary exponent, for which
one shows that f is the delta function. The next more complicated is a polynomial
type phase for g0 and the simplest non trivial is

arg g0 = 1

3
p3 + a

2
p2 + pc (3.28)

where c and a are “the control parameters”. The phase of the integrand is now

δ = 2

3
q3 + 2q

[

(

p + a − s

2

)2

− 1

4
(s − a)2 + (y + c)

]

(3.29)

and when integration in q and p are performed then P (y, s) is a function of s−a and
y+c. This shows that the parameter a plays the role of the shift of the “instant” when
one specifies the initial condition and c moves the entire P along the perpendicular
direction with respect to x . In that sense these two parameters do not play essential
role, they only move the entire graph in those specified directions, and that is why
they are referred to as “the control parameters”. By setting both control parameters
to zero the expression for P (y, s) is

P (y, s) ∼
∫ ∞

−∞
dp Ai

[

22/3
(

p2 − 1

4
s2 + y

)]

(3.30)

where Ai(u) is Airy function, and its typical contour is shown in Fig. 3.8a.
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Fig. 3.8 The density
P(y, s) for the cubic phase
(3.28) of initial condition g0

Qualitative features in Fig. 3.8 are determined from the properties of Airy function
in (3.30). It is negligible for positive argument and oscillatory for negative, and the
dividing line

y = 1

4
s2

separates two regions. For s greater than 2
√
y the argument of the Airy function is

negative and it is oscillatory, whilst in the opposite case the solution is negligible.
More accurate features of P (y, s) are determined from the stationary phase method
C.3 for calculating integrals of the type (3.27). In this example this is a two dimen-
sional integral, in the variables q and p, and the stationary points are calculated from
two equations

∂qδ = 2q2 + 2
(

p2 − ps + y
) = 0, ∂pδ = 2q (2p − s)

where δ is given by (3.29). There are four solutions of the set, two are

q1,2 = 0, p1,2 = 1

2
s ± 1

2

√

s2 − 4y

and the remaining two

q3,4 = ±1

2

√

s2 − 4y, p3,4 = s

2
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By using formulae from C.3 the estimate for P (y, s) is

Pst (y, s) ≈ 2π
√

s2 − 4y

[

1 + sin

(

1

6

(

s2 − 4y
)

)3/2
]

; s2 > 4y

and for s2 < 4y it is zero. Pst (y, s) is in a very close agreement with the result
in Fig. 3.8, except in the region around the border line, where the stationary phase
method is not very accurate. It could be verified that Pst (y, s) is the asymptotic
expansion of the function

P (y, s) ∼ Ai

[

−1

4

(

s2 − 4y
)

]2

The current is also needed to get solution f of equation (3.23), which is defined
in (3.26) and for the phase (3.29) it is given by

j (y, s) = s

2
P (y, s)

from where the phase γ in (3.25) is

γ = s

2
y

and f is

f ∼ Ai

[

1

4

(

4y − s2
)

]

ei
s
2 y

It is straightforward to calculate f directly from (3.23) with the result

fdir ∼ Ai

[

1

4

(

4y − s2
)

]

ei
s
2 y −i 1

12 s
3

and the two solutions are identical, apart from additional contribution in the phase
of fdir that is independent of y and therefore cannot be derived from (3.25).

The phase (3.28) is an example of the polynomial type for the elementary catastro-
phes, when a = 0, called fold or rainbow [27] and the next one is the cusp with the
phase (the catastrophes were analyzed in details by Berry [17]

arg g0 = 1

4
p4 + a

2
p2 + pc (3.31)

when the phase of the integrand in the phase space density is

δ = 2pq3 + 2q
[

p3 + p (a − s) + y + c
]
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Again the parametersa and c could beomitted because theyplay the role of translation
for the variables s and y, respectively. One could show that the phase space density
is (non essential constant pre-factors are omitted)

ρ (y, p, s) ∼ 1

p1/3
Ai

[

22/3

31/3 p1/3
(

p3 − ps + y
)

]

and getting from it the density P (y, s) could only be done numerically. A typical
P (y, s) is shown in Fig. 3.9 and resemblance with that in Fig. 3.8 is again that there
are two regions of space, one where P (y, s) is (nearly) zero and the other where
it oscillates. The line that separates the two spaces is estimated by evaluating the
phase space density by the stationary phase method (see C.3). The two equations
that determine the stationary points are

∂qδ = 6pq2 + 2p3 − 2ps + 2y = 0, ∂pδ = 2q3 + 6qp2 − 2qs = 0

where the second has three solutions

qst = 0, ±
√

s − 3p2

For each of these the first equation has three roots in the variable p, however, as this
equation is quadratic in q there is in fact only one equation to be solved. For qst = 0
the equation is

p3 − ps + y = 0 (3.32)

whilst for the other two qst there is only one equation

8p3 − 2ps − y = 0

If solution of the first equation is pst then the solution of the second is −pst/2 which
means that only the (3.32) needs to be solved. The three solutions of equation (3.32)
are functions of parameter ϕ, which is defined as

cosϕ = 9y√
12s3

and they are given by

p±
st = 2

√
s√
3

cos
(ϕ

3
∓ π/3

)

, pst = −2
√
s√
3

cos
(ϕ

3

)

Definition of the parameter ϕ specifies the dividing line between the space where
P (y, s) is negligible and where it is not, the latter is in the space
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Fig. 3.9 The density
P(y, s) for the quartic phase
(3.31) of initial condition g0

y <
2

3
√
3
s3/2 (3.33)

Having the stationary points of the phase in the integrand (3.27), and by using the
expressions C.3 one calculates Pst (y, s), which almost exactly reproduces P (y, s)
in Fig. 3.9, except around the border line where the stationary phase method fails.

The last to analyze polynomial is for elementary catastrophe swallowtail

arg g0 = 1

5
p5 + a

3
p3 (3.34)

where the coefficients with the second and the first power in p are omitted, for the
reason that was discussed earlier. The phase of the integrand in P (y, s) is now

δ = 2

5
q5 + 2

3

(

a + 6p2
)

q3 + 2
(

p4 + ap2 − ps + y
)

q

General features of P (y, s) are obtained by the stationary phase method C.3. The
stationary points are calculated numerically although they are given in a closed,
somewhat complicated, form. There are 16 roots of the stationary equations, however,
only 4 are real and only in a certain region in the plane (s, y). The line that separates
the space where P (y, s) is negligible (all the four roots are complex) from that where
it is not (the four roots are real) is not given in a simple form as for the previous
polynomials, however, it could be estimated for large s and the analytic expression
for the four real roots. One shows that the line has asymptotic expansion
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Fig. 3.10 The density
P(y, s) for the quintic phase
(3.34) of initial condition g0
for a = 100 (a). The density
for a = 0 (b)

y ≈ 6 21/3s4/3 − 22/3as2/3 + 1

6
− ...

whilst in the vicinity of s = 0 the line has quadratically dominant term s2 (Fig. 3.10).



Chapter 4
Charge in Electromagnetic Wave

Abstract Dynamics of a single charge is analyzed when electromagnetic wave of
finite length interacts with it. Extreme case of impact on atom by a very short pulse,
which is produced by relativistic motion of a charge, is examined. Theory for the
field reaction force is developed, which is the missing link between dynamics of
charge and radiation that it generates.

Some of the most basic features of dynamics of atoms and molecules in the
electromagnetic field could be deduced from the simplest system: single charge
in the electromagnetic field. The system is analyzed in details here both in classical
and quantum treatment. The former has advantage to give intuitive insight into this
dynamics, whilst the latter describes it more accurately. Classical mechanics is used
in its most elementary form, without the treatment through the Liouville equation
in the phase space. This simplifies considerably the analysis but gives a qualitative
overview of the basic effects.

4.1 Basic Effects

4.1.1 Classical Dynamics

Information on dynamics of a charge in the electromagnetic wave is obtained from
equation of motion

m d2
t �r = −e

c
∂t �A(u) + e

c
�v ×

[

∇ × �A(u)
]

where

u = n̂

c
· �r − t
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For a linearly polarized wave, which is from now on assumed, one writes

�A(u) = ŝ a(u) (4.1)

where n̂ · ŝ = 0, and equation of motion is

m d2
t �r = e

c
ŝ a′(u) + e a′(u)

c2
�v × [

n̂ × ŝ
]

= e

c
a′(u)

[

ŝ

(

1 − �v
c

· n̂
)

+ n̂

( �v
c

· ŝ
)]

(4.2)

Typical for dynamics of atoms and molecules in the electromagnetic field is that the
velocity of light c is large compared to the typical velocities of charges. In such cases
one makes assumption that the ratio v/c is small, and (4.2) simplifies

m d2
t �r = e

c
a′(u) ŝ

If one scalar multiplies the equation with n̂/c then

m d2
t

(

n̂

c
· �r

)

= m d2
t u = 0

which means that
u = a + bt

where a and b are constants that are determined from the initial conditions. If at
t = 0 the initial position of the charge is �r0 and its velocity �v0 then

u = n̂

c
· �r0 +

(

n̂

c
· �v0 − 1

)

t

which means its trajectory satisfies condition

n̂ · �r = n̂ · �r0 + n̂ · �v0 t

It says that the parallel component of velocity of charge with respect to n̂ is not
affected by the electromagnetic wave, despite the fact that a(u) has coordinate depen-
dence. Therefore motion of a charge in the electromagnetic wave is primarily in the
plane that is perpendicular to its propagation.

If one makes correction to the trajectory due to the finite, but large, value of c
then the equation of motion is

m d2
t �r = e

c
a′(u)

[

ŝ + ε n̂

( �v
c

· ŝ
)]
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where the term n̂
c · �v was neglected. Parameter ε was introduced only to indicate that

the additional term in the equation of motion is small. Solution of the equation is a
function of this parameter, and is expanded in the series

�r (t; ε) = �r (0) (t) + ε �r (1) (t) + · · ·

where the unperturbed trajectory �r (0) (t) satisfies equation

m d2
t �r (0) (t) = e

c
a′(−t) ŝ (4.3)

with the solution
�r (0)(t) = ŝ f (t)

Correction �r (1) (t) is obtained by finding the equation that it satisfies, and this is
done by first expanding the function a′(u) as

a′(u) = a′
(

n̂

c
· ŝ f (t) + ε

n̂

c
· �r (1) − t

)

= a′
(

ε
n̂

c
· �r (1) − t

)

= a′(−t) + ε

(

n̂

c
· �r (1)

)

a′′(−t)

in which case equation for the trajectory is

m d2
t

(

ŝ f (t) + ε �r (1)
) = e

c

[

a′(−t) + ε
n̂ · �r (1)

c
a′′(−t)

] [

ŝ + ε
f ′(t)n̂
c

]

By collecting the terms of the same order ε the equation for the correction is

m d2
t �r (1) = e

c2
a′(−t) f ′(t) n̂ + e

c2
(

n̂ · �r (1)
)

a′′(−t) ŝ

and contains two mutually orthogonal terms. The component of �r (1) that is parallel
to the line of propagation is obtained by scalar multiplying the equation by n̂, in
which case it is solution of equation

m d2
t r

(1)
n = e

c2
a′(−t) f ′(t) (4.4)

and if the initial conditions are r (1)
n (0) = dt r (1)

n (0) = 0 then

r (1)
n (t) = f (1)

n (t)
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On the other hand, parallel component with the polarization vector satisfies equa-
tion

m d2
t

(

ŝ · �r (1)
) = m d2

t r
(1)
s = e

c2
f (1)
n (t)a′′(−t)

and if the initial conditions are r (1)
s (0) = dt r (1)

s (0) = 0 then

r (1)
s (t) = f (1)

s (t)

so that the final (approximate to the order ε) solution for trajectory is

�r (0)(t) = ŝ f (t) + ŝ f (1)
s (t) + n̂ f (1)

n (t)

Essential dynamic features of a charge that interactswith the electromagneticwave
which is polarized along the x axes and propagates along the z axes are illustrated
on one example. The vector potential for this wave is

�A(u) = a(u) �x

and for the amplitude function a(u) one takes

a(u) = a0
(

1 + e
cu−z1

d

) (

1 + e− cu−z2
d

) cos(wu + δ)

This form is typical of a wave that has beginning and end (electromagnetic pulse),
whilst in between oscillates with the frequency w (carrier wave of single frequency).
The onset of the wave has the width d and the same at its end. Typical amplitude
a(u) at t = 0 is shown by the left graph in Fig. 4.1. At some later time, when the
wave interacts with the charge, the vector potential is

�A(z, t) = a
( z

c
− t

)

�x

and it is shown in Fig. 4.1 (right graph).
If at t = 0 the beginning of the electromagnetic pulse is at the position z1 < 0

then it reaches the charge in time t = |z1/c|. The vector potential then increases its
amplitude to a0 in time tint ≈ d/c, exerting the force on the charge being approxi-
mately

F ≈ ea0/(ctint ).

From the relationship
Ftint = mv
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Fig. 4.1 Vector potential for
electromagnetic wave of
finite length and a carrier
wave of single frequency,
before the onset of
interaction with the charge at
the origin (left graph) and
during interaction (right
graph)

u u

velocity that the particle acquires is

v = Ftint
m

≈ ea0tint
mctint

Along the length of the wave the force is oscillatory and acts during time tosc =
|z2 − z1|/c. In this interval it makes

nosc = toscw/(2π) = |z2 − z1|w/(2πc) (4.5)

oscillations, and after the wave has gone velocity of the particle could be estimated
from the approximate solution for the trajectory. The dominant solution is �r (0)(t),
which means that along the z axes the velocity is small, but along the x axes (in the
direction of polarization) it is given by

dt �r (0) (t) = e ŝ

cm

∫ T

0
a′(−t) dt = − e ŝ

cm
[a(−T ) − a(0)] = 0

where it was taken into account that interaction with the charge is zero before its
onset, and after the wave departed. Likewise the component of the velocity that is
parallel with the propagation of the wave, in the z direction, is estimated from

dt r
(1)
n = e

mc2

∫ T

0
a′(−t) f ′(t) dt = − e2

m2c3

∫ T

0
a′(−t) [a(−t) − a(0)] dt

= e2

m2c3

[

1

2
a2(−T ) + 1

2
a2(0) − a(0)a(−T )

]
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Fig. 4.2 Time dependence
of two components of
velocity of a charge in the
electromagnetic wave in
Fig. 4.1. One is parallel with
the polarization of the wave
(upper graph) and the other
parallel with its propagation
vector
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and it is also zero. Therefore if the particle is at rest before the onset of interactionwith
the electromagnetic wave then it is at rest after the interaction is over. Typical time
dependence of the two components of velocity of the charge are shown in Fig. 4.2,
component parallelwith ŝ (upper graph) and component parallelwith n̂ (lower graph).
Both velocity components were calculated numerically for some given parameters,
and the approximate velocities, which are obtained from (4.3) and (4.4), are not
distinguishable from the exact ones.

By increasing length of the pulse number of its oscillations within it increases,
which is reflected in the number of oscillations of the charge during the interaction.
For the parallel component with the polarization the number of oscillations of the
charge is estimated from (4.5), but for the parallel component with the propagation
of the wave (see Fig. 4.2) this number is doubled. The latter has also a constant
component thus implying that the charge acquired uniform velocity, whilst the for-
mer averages to zero. Doubling of the frequency, and acquiring uniform velocity, is
explained from the solution of (4.4). Within the wave, far away from its front or end,
parallel velocity with n̂ is approximated as

vn = e2

2m2c3
a2(−t)

≈ e2a20
4m2c3

[1 + cos (2wt)]

This component of velocity oscillates at twice the frequency of the wave, and fur-
thermore it has a constant component

vdri f t = e2a20
4m2c3

(4.6)

meaning that a charge in a plane electromagnetic wave acquires a constant velocity,
the drift velocity.
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The choice of small width d is an extreme case, because in real situation it may be
much larger.However, this example describes anoftenmademistake in the theoretical
modeling of interaction between the electromagnetic plane wave and a charge. The
most common assumption is that the magnetic component is neglected so that the
basic equation of motion is

m d2
t z (t) = e E0 cos(w t + δ) (4.7)

where the electric component points in the z direction. Initial conditions z = z0 and
v = v0 are set at t = 0, but that says nothing about the field prior to that instant,
whether it was zero or had the value that is extrapolation of the functional form (4.7).
In the modelling one should assume that it is zero, because otherwise the results
do not have meaning for the simple reason that there is no telling how the initial
conditions for the particle are determined. They could have been chosen at any other
instant in time, of coursewith their value appropriate for it. Strictly speaking it should
be assumed that the field is zero prior to t = 0, but one has a choice whether to model
the interaction either with the vector potential or with the electromagnetic field. In
the latter case one assumes the electric component to have the functional form

�E = E0 cos(wt + α)�(t) ẑ

where�(t) is the step function.However, the vector potential fromwhich it is derived
is

�A = −c
∫

dt �E = −cE0
sin(wt + α)�(t)

w
ẑ

which does not give back the electric component because

�E == −1

c
∂t �A = E0

[

cos(wt + α)�(t) + sin(wt + α)

w
δ (t)

]

ẑ

i.e. it has contribution from the delta function. This inconsistency only tells that when
it comes to modeling interaction of the electromagnetic wave with the charges one
must start from the vector potentials.

The exact equation of motion that includes the onset of interaction is therefore

m d2
t z (t) = e E0

[

cos(wt + α)�(t) + sin(wt + α)

w
δ (t)

]

The initial conditions are defined before the onset of interaction, for example those
already mentioned in the previous analysis. The equation could now be integrated in
the interval from t = 0− (just before the onset of interaction) to t = 0+ (just after
the onset of interaction) to give for velocity
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m v
(

0+) = e E0

∫ 0+

0−

[

cos(wt + α)�(t) + sin(wt + α)

w
δ (t)

]

dt

= e E0
sin(α)

w
+ mv0

and the coordinate
z
(

0+) = z0

Therefore if (4.7) is solved for the trajectory by taking into account the onset of the
field then the initial velocity should be modified as

v
(

0+) = e E0
sin(α)

mw
+ v0 (4.8)

whilst the coordinate is the same.

4.1.2 Quantum Dynamics

The basic equation of quantum dynamics for a charge that interacts with the electro-
magnetic wave is

i�∂t f = − �
2

2m

[

∇ − ie

�c
�A
(

n̂ · �r
c

− t

)]2

f (4.9)

which is solved by transforming it into the integral equation, and then by iteration.
It is shown in Appendix B how to do this transformation, and if (4.9) is written as

i�∂t f + �
2

2m
∇2 f =

[

ie�

mc
�A
(

n̂ · �r
c

− t

)

· ∇ + e2

2mc2
�A2

(

n̂ · �r
c

− t

)]

f

then the appropriate integral equation is

f (�r , t) = f0(�r , t)

+
∫

d3q ds G(�r − �q, t − s)

[

ie�

mc
�A
(

n̂ · �q
c

− s

)

· ∇ + e2

2mc2
�A2

(

n̂ · �q
c

− s

)]

f (�q, s)

where G(�r − �q, t − s) is Green function. The unperturbed solution f0(�r , t) is deter-
mined before the onset of interaction, and typical initial conditions are shown in
Fig. 4.3 where at t = 0 the probability density | f0(�r , 0)|2 is shown by a filled shape
and the electromagnetic wave by solid line. One possible choice for the initial prob-
ability density is

P(�r) = | f0(�r , 0)|2 = 1

d3π3/2
e− r2

d2
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Fig. 4.3 Initial conditions
for scattering of the finite
length electromagnetic wave
(solid line) on a particle
whose initial probability
amplitude is shown filled
shape -20 -10 0 10z

and if the charge has average velocity �v0 then the probability amplitude that describes
these data is

f0(�r , 0) =
√

P(�r)eim�v0·�r/� = 1

d3/2π3/4
eim�v0·�r/�− r2

2d2 (4.10)

At any time later this probability amplitude is

f0(�r , t) = 1

π3/4d3/2�3/2(t)
e
− 1

2�(t)

[

r2

d2
+imv0(v0t−2x)/�

]

where

�(t) = 1 + i
t�

md2

The integral equation is solved by iteration, meaning that in the first approximation
one neglects interaction with the electromagnetic wave, and the solution is

f (0)(�r , t) = f0(�r , t)

In the next step this solution is replaced in the integral, so that the correction is

f (1)(�r , t) = f0(�r , t)

+
∫

d3q ds G(�r − �q, t − s)

[

ie�

mc
�A
(

n̂ · �q
c

− s

)

· ∇ + e2

2mc2
�A2

(

n̂ · �q
c

− s

)]

f0(�q, s)

and in the following iteration the exact solution in the integral is replaced by f (1)(�r , t).
Higher order corrections are getting considerably more complicated for analysis
and therefore this procedure is only implemented when the first one already gives
reasonable accurate answer. There is, however, another problem with the integral
equation, which should be mentioned because of possible problems in the analysis
of its solution. If one assumes a plane wave, for example of the form

�A = A0 x̂ cosw
( z

c
− t

)
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then the first iteration of the integral equation is

f (1)(�r , t) = f0(�r , t)

+
∫

d3q ds G(�r − �q, t − s)

[

ie�

mc
A0 cos

(

w
qz
c

− ws
)

∂qx + e2

4mc2
A2
0

]

f0(�q, s)

where one made approximation

�A2 = A2
0 cos2 w

( z

c
− t

)

= 1

2
A2
0

[

1 + cos 2w
( z

c
− t

)]

≈ 1

2
A2
0

There are now two terms in the integrand, and the second gives

∫

d3q ds G(�r − �q, t − s)

[

e2

4mc2
A2
0

]

f0(�q, s)

= e2

4mc2
A2
0

∫

d3q ds G(�r − �q, t − s) f0(�q, s) → ∞

which could be shown by using expressions for the Green function fromAppendix B.
The first term, on the other hand, gives

I1 =
∫

d3q ds G(�r − �q, t − s)

[

ie�

mc
A0 cos

(

w
qz
c

− ws
)

∂qx

]

f0(�q, s)

= ie�

2mc
A0

∫

d3q ds G(�r − �q, t − s)
(

eiw
qz
c −iws + e−iw qz

c +iws
)

∂qx f0(�q, s)

and when the retarded Green function is used and

f0(�q, s) =
∫

d3 p B( �p)ei �p·�q−i �p2s
2m (4.11)

then

I1 = − e�2i A0

2mc(2π)3

∫

d3q ds
∫

d3κ ei �κ·(�r−�q)−i �κ2

2m (t−s) �(t − s)

(

eiw
qz
c −iws + e−iw qz

c +iws
)

∫

d3 p px B( �p)ei �p·�q−i �p2s
2m

The integral in the variables q gives the delta function

∫

d3q.... = (2π)3δ(−�κ ± w

c
ẑ + −→p ) (4.12)
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whilst the integral in s is

∫ t

0
ds ei

�κ2

2m s∓iws−i �p2

2m s = πδ

(

�κ2

2m
∓ w − �p2

2m

)

− i¶

[

1
�κ2

2m ∓ w − �p2

2m

]

(4.13)

where it was assumed that the field was turned on at t = 0 and that the effect on
the probability amplitude is analyzed long after that time. The sign ¶ indicates the
Cauchy principal value of the integral, which is defined in (C.1).

When one takes into account the delta function (4.12) then the argument of the
functions in (4.13) is

�κ2

2m
∓ w − �p2

2m
= �

cm

(

±pz ∓ cm

�
+ w

2c

)

which can never be zero because cm
�

is much larger than the possible momentum of
the particle. Therefore contribution from the delta function in (4.13) is zero and the
principal value sign can be omitted because the argument is not singular, and the
integral is

I1 = −e�2A0

2mc

∫

d3 p px B
(

�p − w

c
ẑ
)

ei �p·�r−i �p2

2m t

−e�2A0

2mc

∫

d3 p px B
(

�p + w

c
ẑ

)

ei �p·�r−i �p2

2m t

Approximate probability amplitude is now

f (1)(�r , t) = f0(�r , t) + ie�2A0

2mc
∂x

∫

d3 p B
(

�p − w

c
ẑ
)

ei �p·�r−i �p2

2m t (4.14)

+ ie�2A0

2mc
∂x

∫

d3 p B
(

�p + w

c
ẑ

)

ei �p·�r−i �p2

2m t

where the unperturbed probability amplitude f0(�r , t) is given by (4.11). All three
terms have the same structure as in (4.11), which means that they represent motion of
a free probability amplitude, the only difference being in theirmomentumdistribution
B ( �p). For example the contributionwith B

( �p − w
c ẑ

)

means that the free probability
amplitude has additional component w�

c ẑ in the moment and hence it moves with
the additional velocity w�

mc ẑ. It appears as if part of the initial probability amplitude
acquires velocity that is related to the frequency of the electromagnetic wave and not
its amplitude. This result differs in essential way from the classical treatment, where
the translational velocities of the particle depend only on the amplitude of the wave.
However, it should be emphasized that this finding only applies to a small fraction
of the initial probability amplitude, but the classical change of velocity affects all.
The effect that the momentum of particle depends on the frequency is called the



112 4 Charge in Electromagnetic Wave

frequency dependent momentum transfer, the finding that is normally associated
with the concept that the electromagnetic interaction is mediated by a photon.

The problem of the onset of interaction with the electromagnetic wave also exists
here, as in the classical treatment. Here it is somewhat more complicated to derive
this effect because one works with the probability amplitude rather than the precise
position of the particle. The equation for the onset of interaction is

i�∂t f = − �
2

2m

[

∇ − ie

�c
�A
(

n̂ · �r
c

− t

)

�

(

t − n̂ · �r
c

)]2

f

and the assumption is that the probability amplitude f is localized around the ori-
gin, not moving but spreading according to the laws of dynamics. If one makes
replacement

f = e
ie
�c �r · �A

(

n̂·�r
c −t

)

�
(

t− n̂·�r
c

)

g

then the equation for g is quite complicated but simplifies if one notices that the time
derivative of the phase is of the order c, which is orders of magnitude larger than the
derivative of the vector potential with respect to the coordinates. If one neglects the
latter derivative the equation for g is

− e

c

[

−�r · �A′
(

n̂ · �r
c

− t

)

�

(

t − n̂ · �r
c

)

+ �r · �A
(

n̂ · �r
c

− t

)

δ

(

t − n̂ · �r
c

)]

g

+ i�∂tg = − �
2

2m
�g

One now integrates the equation in the time interval around the non zero contribution
of the delta function, from t − ε to t + ε, where the limit ε → 0 is assumed. The
only contribution is from the delta function, and the result is

−e

c
�r · �A (0) g−

(

r,
n̂ · �r
c

)

+ i�g+
(

r,
n̂ · �r
c

)

− i�g−
(

r,
n̂ · �r
c

)

= 0

One writes this equation as

i�g+
(

r,
n̂ · �r
c

)

= i�g−
(

r,
n̂ · �r
c

)

+ e

c
�r · �A (0) g−

(

r,
n̂ · �r
c

)

or alternatively

g+
(

r,
n̂ · �r
c

)

= e− ie
�c �r · �A(0)g−

(

r,
n̂ · �r
c

)

because higher order corrections in c−1 were neglected. From the rules of quantum
mechanics the phase indicates that the charge acquires velocity, which is exactly the
same as given by (4.8) in classical mechanics.
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Simplification in (4.9) is made by assuming that c is very large, meaning that
within one period of its oscillation the wave travels much further than the width of
the probability amplitude spreads. One, therefore, assumes the inequality

2π

w
c 	 L = �2π

dp

where the uncertainty principle dpL ≈ �was assumed. By rearranging the inequality
one gets

dp

w�
c = dp

�k
	 1

which expresses the fact that the momentum transfer by the photon is much smaller
than the width of the momentum distribution in the probability amplitude. Under this
condition one makes expansion

�A
(

n̂ · �r
c

− t

)

≈ �A (−t) +
(

n̂ · �r)
c

�A′ (−t)

in which case (4.9) is

i�∂t f = − �
2

2m

[

∇ − ie

�c
�A (−t) − ie

�c2
(

n̂ · �r) �A′ (−t)

]2

f

or in the expanded form

i�∂t f = − �
2

2m

[

� f − 2
(

ie
�c

�A (−t) + ie
�c2

(

n̂ · �r) �A′ (−t)
)

· ∇ f
]

+ e2

2c2m

[ �A2 (−t) + (

n̂ · �r)2 �A′2 (−t)
]

f + e2

c3m

(

n̂ · �r) �A (−t) · �A′ (−t) f

This complicated expression has in fact relatively simple solution. It can be shown,
but not derived here, that a general solution for a charge in the electromagnetic wave
is

f =
∫

d3k B(�k)ei �k·�r−i �k2

2m t+i e
2mc

∫ n̂·�r
c −t

u0
du

[

e
c� A2(u)−2 �k· �A(u)

]

(4.15)

which is generalization of the expression (4.11) for a free probability amplitude. The
amplitude B(�k) is determined from the initial probability amplitude from

f (�r , 0) =
∫

d3k B(�k)ei �k·�r =⇒ B(�k) =
∫

d3r f (�r , 0) e−i �k·�r
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By assuming large c the exponent in the general solution is expanded into the
powers of c−1, and after rearranging it one gets solution in a general form

f = ei γ(t)+i �vdri f t ·�r
∫

d3k B(�k)ei �k·(�r−�rosc)−i �k2

2m t+i � (4.16)

where

�vdri f t = e2

2m�c3
A2(−t) n̂

is the classical drift velocity, whilst

�rosc = e

mc

∫ −t

u0

du �A(u)

is the classical expression for the oscillations in the direction of polarization and

γ(t) = e2

2m�c2

∫ −t

u0

du A2(u)

is the phase that gives the energy of the particle due to these oscillations. The latter
can be shown by noting that the time derivative of the probability amplitude gives
the energy of the particle i.e.

i�∂t f = E f = i�∂t [γ(t)] f + · · ·

where the additional term comes from derivatives of the other factors in f . Therefore
the contribution to energy from the phase γ is

Eγ = e2

2mc2
A2(−t)

On the other hand, velocity from �rosc is

�vosc = − e

mc
�A(−t)

and the appropriate kinetic energy is

Eosc = m�v2
osc

2
= Eγ

The remaining term is

� = − e

mc2
�k · �A(−t) n̂ · �r
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which is also a classical quantity. In order to show this one starts by solving classical
equation (4.3), which gives for velocity

dt �r (0) (t) = − e

mc
a(−t) ŝ + v0s ŝ

where v0s is parallel component of initial velocity with the polarization of the elec-
tromagnetic wave. Correction to the component of the velocity that is parallel with
the propagation of the electromagnetic wave is given by

dt r
(1)
n = − e

mc2
a(−t) v0s = − e

mc2
�v0 · �A(−t)

or the appropriate momentum is

�pin = − e

c2

[

�v0 · �A(−t)
]

n̂

where the index in indicates that this component of momentum is associated with
the initial velocity of the charge. In the probability amplitude the function B(�k)
determines distribution of momenta, and ��k is initial momentum of the charge and
�v0 is associated with the initial velocity �k�

m . The phase � is now derived as

� = − e

mc2
�k · �A(−t) n̂ · �r = − e

mc2
m

�

[

�v0 · �A(−t)
]

n̂ · �r = �pin
�

· �r

which shows that it is derivable from classical concepts, and hence it is of classical
origin. According to the rules of quantum theory, the factor that multiplies �r in the
phase � represents additional velocity of the charge (see discussion of (4.10)).

There is one important consequence of using vector potential. Dynamics of charge
is affected evenwhen it is assumed that vector potential is time independent, in which
case force on it is zero (contribution from magnetic component is neglected). This
effect is also in classical mechanics as it follows from (4.3). Velocity of charge is in
this case

dt �r (0) (t) = − e

mc
a ŝ (4.17)

where a is arbitrary constant. The answer to this paradox, in classical mechanics,
is that one should be very careful about understanding the initial conditions. The
choice of the constant a is intimately connected with how they are determined. If
one assumes that prior to the instant t = 0 velocity of the particle is zero then a must
be zero, from the previous conclusion. At t = 0 the potential changes its value to
a, which is instantaneous by implicit assumption, and therefore the correct vector
potential is a�(t) and the correct equation that one needs to solve is

m d2
t �r (0) (t) = −e

c
δ(t) ŝ
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Its solution for velocity after t = 0 is

dt �r (0) (t) = − e

mc
a ŝ

which is the same as (4.17). Therefore working with vector potentials needs great
care so that the results may not be interpreted in non physical terms.

The same analysis applies in quantum dynamics. In the solution (4.16) one could
formally replace the vector potential by a constant value, and all the parameters that
determine it are not zero. However, without repeating the analysis with the onset of
vector potential, the answer to this paradox is the same as in classical mechanics;
one needs to make sure that the correct initial conditions are chosen. By replacing
the vector potential with its constant value one is implicitly assuming that the initial
velocity of the particle is modified according to the discussion in classical mechanics,
however, adapted to the quantum rules.

Related to the last discussion is transformation that is normally used in the elec-
tromagnetic wave-charge interaction. In (4.9) one assumes that the vector potential
is not coordinate dependent, in which case

i�∂t f = − �
2

2m

[

∇ − ie

�c
�A (t)

]2

f

and writes
f = ei

ie
�c �r · �A(t)g

to obtain equation for g as

i�∂tg = − �
2

2m
� g + e

c
�r · ∂t �A (t) g = − �

2

2m
� g − e �r · �E (t) g

where �E (t) is electric field. This equation is the bases for almost all analysis of
interaction between the electromagnetic field with charges, however, in the step from
the vector potential to the electric field one modifies the probability amplitude by a
phase, and the question is what is its nature. In the exact solution for this problem the
probability amplitude f is given by (4.16) and in it there is no term of the kind that
transforms it onto g, which means the phase of this term is the artificial one, with no
particular physical meaning. In fact the only physical meaning that one could deduce
is that the velocity of the particle is modified at each instant in time by

�vmod = − e

mc
�A (t)

so that according to the rules of quantum mechanics the new probability amplitude
is

g = e−i ie
�c �r · �A(t) f
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The reason for such modification is only justified mathematically because equation
for the probability amplitude g is simpler for analysis then that for f . However,
great care must be taken when setting initial conditions, besides that for the onset of
interaction. If before the onset the probability amplitude is f0 then after the onset it
is

f0 → ei
ie
�c �r · �A(0) f0

and this means that the initial g is
g0 = f0

After time t solution is g but the required is the probability amplitude f , and this is
given by

f = ei
ie
�c �r · �A(t)g

That this is not a simple matter of the phase is shown by calculating the momentum
distributions of the two probability amplitudes at time t . This is done by taking the
Fourier transform of both sides of the last equation

∫

d3r f (�r)e−i �k·�r = B(�k) =
∫

d3r e−i �k·�r ei
ie
�c �r · �A(t)g(�r)

=
∫

d3r e−i (�k− ie
�c

�A(t))·�rg(�r) = C
(�k − e

�c
�A (t)

)

where C
(�k

)

is the momentum probability amplitude for g. Therefore momentum

probability amplitude B(�k) for f (the one that is required) is shifted by − e
�c

�A (t) in
the momentum probability amplitude for g. This finding is very important to bare in
mind whenever transforming the exact (4.9) into some equivalent form.

4.1.2.1 Weak Electromagnetic Field

A very important limiting case is when the coupling of the charge with the electro-
magnetic field is weak. The amplitude (4.15) is then approximately

f ≈ f0 (�r , t) − i
e

mc

∫

d3k B(�k)ei �k·�r−i �k2

2m t
∫ n̂·�r

c −t

du �k · �A(u)

where f0 (�r , t) is the probability amplitude for a free charge, which is given by (4.11).
The quadratic terms in the vector potential are omitted. Special example is when the
the electromagnetic field is a plane wave

�A(u) = �A0 cosωu = �A+ + �A− (4.18)
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when the correction to the probability amplitude is

f1 = f +
ph + f −

ph (4.19)

where

f σ
ph = −σ

e

2mωc
eσi−→q ·�r−σiωt

∫

d3k B(�k)ei �k·�r−i �k2

2m t �k · �A0

and
−→q = ωn̂

c

In order to understand physical significance of this result one should discuss a
simpler problem, probability amplitude consists of a dominant contribution and a
subdominant whose phase is modified by i−→q · �r . The question is what is the time
evolution of the entire probability amplitude? Straightforward answer would be

f (�r , t) = f0 (�r , t) + ε f0 (�r , t) ei−→q ·�r

where for simplicity it was assumed that the two components differ in the small
factor ε. The probability density is then (the term with ε2 is neglected)

P (�r , t) ≈ | f0 (�r , t)|2 [

1 + 2ε cos
(−→q · �r)]

and it is not different from the onewithout the phase except that itsmodulus oscillates.
However, the reasoning is not correct because phase modification of the second
component affects its initial conditions, instead of being f0 (�r , 0) it is f0 (�r , 0) ei−→q ·�r .
Therefore, if the initial condition for the dominant component is

f0 (�r , 0) =
∫

d3k g
(−→
k

)

ei
�k·�r ⇒ g

(−→
k

)

= 1

(2π)3

∫

d3r f0 (�r , 0) e−i �k·�r

then for the subdominant it is

g
(−→
k − −→q

)

= 1

(2π)3

∫

d3r f0 (�r , 0) ei−→q ·�r−i �k·�r

and the time evolution of the probability amplitude is

f (�r , t) =
∫

d3k g
(−→
k

)

ei
�k·�r−i �k2

2m t + ε

∫

d3k g
(−→
k − −→q

)

ei
�k·�r−i �k2

2m t

If g
(−→
k

)

gives zero for the average value of the velocity of particle then f0 (�r , t)
only spreadswithout the overall translation.However, in the subdominant component
the momentum distribution is shifted by −→q and as the result this component moves
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with the average velocity �
−→q /m. It appears as if the particle was hit by another

particle, called the photon, having the momentum that is related to the frequency
of the electromagnetic wave. The two components separate in space thus becoming
independent entities.

Based on the foregoing discussion one deduces from the expression for the cor-
rection amplitude (4.19) that in a plane electromagnetic wave there will be two
types of momentum transfers onto the charge. The subdominant component moves
either in direction of the wave propagation or in the opposite one. That appears to
be contrary to what the model with the photon predicts, which is derived from the
assumption that the vector potential (4.18) represents wave moving in direction of
the vector −→q . However, if the vector potential is defined as a linear combination
of two complex exponential functions then each component separately represents
two distinctive momentum transfers. The component

−→
A + represents a wave going

in direction −→q whilst
−→
A − represents the one going in the opposite direction −−→q .

In this way arbitrariness in the formulation of the model with the photon is removed
because one could formulate the theory, the quantum field theory, with a particular
momentum transfer.

4.2 Very Short Electromagnetic Pulse

4.2.1 Impact on Hydrogen Atom

Inmost applications electromagnetic waves are typically in the form of awave carrier
(wave of a single frequency) and the amplitude modulation, one example is shown
in Fig. 4.1. For this reason the name “wave” is used, the extreme limit being a “plane
wave” when only the wave carrier is present. There are circumstances, however,
when there is no wave carrier in which case one talks of the electromagnetic pulse.
One important example of the electromagnetic pulse is produced by a charge that is
moving at nearly the speed of light, which is discussed in Sect. 3.3.3. The field has
large strength in a narrow space that is perpendicular to the line of motion of the
charge, and the question is what impact it has on the charges, in particular the bound
ones, that are in its vicinity. The problem is defined more precisely by assuming that
the charge es, where s is its sign, moves with velocity v0 parallel with the z axes and
at the distance d along the x axes (the impact parameter), its y coordinate being zero.
As a typical example of a bound charge it is assumed that Hydrogen atom is placed
at the origin of the coordinates, and the effect is analyzed for the electron. The field
of the moving charge affects both the electron and the proton, however, the analysis
will be made only for the electron, because it is expected that the proton is affected
little compared to the electron. The electron is assumed to be initially in the ground
1S state, and before commencing analysis one chooses a convenient scaling. As the
reference mass one chooses that of the electron, and scale all lengths with respect to
the appropriate Compton wave number κ = mc/�, i.e. one writes −→r for κ−→r and t

http://dx.doi.org/10.1007/978-3-662-52878-5_3
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for ctκ. In this scaling the probability amplitude for the electron satisfies equation
(for the details of the field that is produced by the moving charge see Sect. 3.3.3)

i∂t f = −1

2

[

∂z − i
αsγv0

R

]2
f − 1

2
∂2
x f − 1

2
∂2
y f + αsγ

R
f (4.20)

where

R =
√

γ2 (z − v0t)
2 + (x − d)2 + y2

and
γ = (

1 − v2
0

)−1/2

The Coulomb potential of the proton is not included because in this energy transfer,
as it will be shown, it is not required.

The ground state probability amplitude is

f0(r) = α3/2

√
π
e−αr

and its momentum space representation is

g0(k) = 2
√
2α5/2

π

1
(

k2 + α2
)2

where α is the fine structure constant. As it was shown in Sect. 3.3.3 electromagnetic
field of a moving charge is confined into a narrow space interval along the z axes,
being of the order

�z =
√

1 − v2
0 = γ−1

where |v0| � 1. Therefore when the charge is at the distance from Hydrogen atom
larger than |z| > α−1 the impact of the field on the electron is negligible. The time
that it takes the charge to cross the atom is

tcross ≈ 2rH
c

⇒ ttran = 2

α

and during that time the electron moves the distance

�s = vel tcross ⇒ �s = α
2

α
= 2

where the estimate k = vel = α for the velocity of the electron was taken from the
momentum distribution. During the crossing time of the charge the electron stays
virtually at the same position. The estimate of the interaction time with the electron
is also important, and it is given by

http://dx.doi.org/10.1007/978-3-662-52878-5_3
http://dx.doi.org/10.1007/978-3-662-52878-5_3
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tint = �z

|v0| ⇒ tint = γ−1

which is very short, and it could be assumed to be impulsive, i.e. during the interaction
time the electron does not changes position andvelocity.Havinggiven those estimates
it is clear that in (4.20) it is indeed not necessary to include the Coulomb potential
of Hydrogen atom because the energy transfer is instantaneous.

Initial condition for (4.20) is not defined as usual at t = 0 because this is the
instant when the field of the moving charge overlaps with Hydrogen atom. Instead it
is defined at some earlier time when the field does not overlap with it, and because
of the estimate (3.18) of the field width this instant should be at least earlier than

t < −1/α

In practical calculations the initial instant could be defined at

t0 = −3/α

The impact parameter d is in general arbitrary but for the sake of estimates it could
be taken as d = 3/α, in which case for the incident energy of the moving electron
at 100 MeV the width of the electromagnetic field on the z axes is

�z = d

γ
≈ 2

which is small compared to the “radius” of the atom α−1 ≈ 137. The initial instant
for this scattering is shown in Fig. 4.4, where the red shaded region shows the initial
electromagnetic field (its width somewhat exaggerated) and the gray shaded region
is the probability density of the electron.

Having defined initial condition one now solves (4.20), and the first step is to
make transformation

f = eiαsγv0
∫ z−v0 t dz′ 1

R g

when equation for g is

i∂tg = −1

2
∂2
z g − 1

2
(∂x + iαsv0ax )

2 g − 1

2

(

∂y + iαsv0ay
)2

g + αs

γR
g (4.21)

where

ax = x − d

R [γ (z − v0t) + R]
; ay = y

R [γ (z − v0t) + R]

Velocity of charge is very close to the speed of light, hence v0 ≈ 1 and γ >> 1, and
the function R is approximately

http://dx.doi.org/10.1007/978-3-662-52878-5_3
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Fig. 4.4 Initial instant for calculating impact of the electromagnetic field (blue region) onHydrogen
atom (gray shaded region). The field is produced by a charge which is moving at nearly the speed c

R = γ |z − v0t | + (x − d)2 + y2

2γ |z − v0t |

except in a small vicinity of |z − v0t | < γ−1 when it is of the order R =
O

(
√

(x − d)2 + y2
)

. Therefore ax and ay are step-like functions of the form

ax = 2 (x − d)

(x − d)2 + y2
�(v0t − z) ; ay = 2y

(x − d)2 + y2
�(v0t − z)

which are independent of the z coordinate and time.
In (4.21) the last term is negligible because it is of the order γ−1, but it is further

simplified by defining a new function h as

g = e−iαsv0 ln[(x−d)2+y2]�(v0t−z)h

which satisfies equation

i∂t h = −1

2
∂2
x h − 1

2
∂2
yh − 1

2
∂2
z h

This is an equation for a free particle, but because interactionwith the electromagnetic
pulse takes very short time it could be assumed that the solution is

h = h0(x, y, z)e
−i Et
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However, the initial condition is defined for the function f , and by taking into account
the two transformations the final solution is

f = eiχ f0(x, y, z)

where the phase χ is

χ = αsγv0

∫ z−v0t

z−v0t0

dz′

R
− αsv0 ln

[

(x − d)2 + y2
]

�(v0t − z) − E(t − t0)

The probability amplitude is calculated when the interaction is over, which is at
t = −t0, when its phase is approximately

χ = 2αsz

t0
− αs ln

[

(x − d)2 + y2
] − E(t − t0) + O

(

t−3
0

)

where v0 = 1 was assumed. The term of the order t−1
0 could be neglected because

for the stationary probability amplitude, as the one it is assumed, the limit t0 → ∞
could be taken. Therefore, after the interaction the probability amplitude is

f = e−iαs ln[(x−d)2+y2]−i E(t−t0) f0(x, y, z)

which indicates that the electron acquired momentum

�p = −2�αs
(x − d) x̂ + y ŷ

(x − d)2 + y2
(4.22)

where now the coordinates are not scaled.
The estimate could also be made from classical equation, which is given by (in

the scaled coordinates)

d2
t
−→r = αsγ (x − d) (1 − vz)

R3
x̂ + αsγy (1 − vz)

R3
ŷ

+αsγ
[

(x − d) vx + yvy
]

R3
ẑ

where v0 = 1 was assumed. Velocity of the electron (charge) is v with the index
of the appropriate component. As in the quantum calculation it is assumed that the
velocity of the electron is small, and that during the interaction it does not move. In
this case the equation is

d2
t
−→r = αsγ (x − d)

R3
x̂ + αsγy

R3
ŷ
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and velocity of the electron is

dt
−→r = −2αs

(x − d) x̂ + y ŷ

(x − d)2 + y2

which is precisely the result (4.22), when appropriately transformed into the momen-
tum and into the non scaled coordinates. Therefore for all practical purpose energy
transfer from the electromagnetic pulse that is produced by a fast moving charge onto
a charge is impulsive and classical in nature. However, this is precisely the model by
which momentum transfer from the electromagnetic field to a charge is mediated by
a photon. This could be further demonstrated by assuming that the line of impact
of a charge d is large compared to the size of the probability density for Hydrogen
atom. In this case

ln
[

(x − d)2 + y2
] ≈ −2x

d

and the probability amplitude after the interaction is over is

f = eisxη−i Et f0(r)

where η is the wave number for a “virtual photon”, which is given by

η = 2α

d

and its corresponding frequency is

ν = cη

2π

For the impact parameter d = 10−9m the frequency of the virtual photon is ν ≈
7×1014 sec−1. Therefore, in this approximation it appears that the energy transfer is
given in terms of a photon mediated interaction, but there is essential difference with
the result for the “true photon”, which is given by (4.14) (see discussion that follows).
Whilst for the “true photon” only a small fraction of the initial probability amplitude
is affected by the electromagnetic wave, which is proportional to its amplitude, for
the “virtual photon” the whole is affected.

In the virtual photon approximation the momentum space distribution for the 1S
state of Hydrogen atom, after the interaction is over, is given by

Q( �p) = 2
√
2α5/2

π

1
[

( �p − 2αs
d x̂

)2 + α2
]2
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from where one calculates energy of the electron

E =
∫

d3 p
p2

2
Q2( �p) = α2

2
+ 2α2

d2

and by noting that d is scaled in terms of the Compton wave number of the electron,
the energy transfer is very small, being of the order

�E = 2α2
�
2

md2
≈ 8.1 × 10−4

d2
eV

where d is now in the units of Angstroms. Energy transfer is small, but depends on
the distance d, however, for smaller values the “virtual photon” approximation is no
longer applicable.

4.2.2 Impact On Atom

Electromagnetic field of a rapidly moving charge was analyzed in Sect. 3.3.3, whilst
its impact on a target particle is analyzed in Sect. 4.2. The finding is that although
the field has extremely large amplitude (essentially it increases by a factor that is
the ratio of the kinematic mass of the charge to its rest mass) its duration is short
and the overall impact on a charge, in terms of the energy transfer, is small. The
energy transfer has a similar structure, at least when the moving charge is at the
distance that is larger than the size of confinement of the particle, as if the interaction
is mediated by a photon (for the photon concept see discussion following (4.14)); it
is instantaneous and depends on the “frequency” of the field. The question is what
impact this field has on atom?

As the field is confined within a narrow strip that is perpendicular to the velocity
of the moving charge and having large strength, it affects all charges in atom in equal
fashion. This means that all the electrons and the nucleus acquire instantaneous
momentum, according to the analysis in Sect. 4.2 and as the result atom is left with
an excess of internal energy (that of electrons) and acquires translational energy.
Both energy transfer components are of interest, and they are calculated from the
probability amplitude for the whole atom at the initial instant

f ( �RN , �R1, �R2, . . . �Rn)

which acquires the phase

ei �γ·( �R1+ �R2+···+ �Rn)−i ��· �RN f ( �RN , �R1, �R2, . . . �Rn)

according to the analysis of Sect. 4.2. The probability amplitude is expressed in
absolute coordinates, where the index N refers to the nucleus and the other indices

http://dx.doi.org/10.1007/978-3-662-52878-5_3
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to the electrons. The “virtual” photon momentum is given by

�γ = 2αs

d
d̂

where the unit vector d̂ points from the moving charge to the charge within atom at
their closest approach and d is their separation. The factor s is the relative sign of the
two charges, e.g. for two electrons s = 1. Therefore impact on all the electrons is

�� = −2nαs

d
d̂

where n is the number of electrons.
By transforming into the centre of mass coordinates, which is identified with the

nucleus, the probability amplitude transforms into

g( �RN , �r1, �r2, ...�rn) = ei �γ·(�r1+�r2+···+�rn) f ( �RN , �r1, �r2, ...�rn)

where the relative coordinates are defined as �r j = �R j − �RN . The centre of mass
coordinates are not present in the phase, therefore, there is no energy transfer onto
the translation of the atom as the whole. On the other hand probability amplitude to
find the electron state μ after the interaction is

aμ =
∫

d3r1d
3r2 . . . d3rn f ∗

μ (�r1, �r2, ...�rn)ei �γ·(�r1+�r2+···+�rn) f (�r1, �r2, ...�rn)

where the reference to the nucleus is omitted. These coefficients are relatively simply
calculated for Hydrogen atom, in which case the amplitudes are

aμ =
∞

∑

l=0

l
∑

m=−l

i l
√

π

2γ
Y ∗
l,m

(

θγ,φγ

)

∫

d3r f ∗
μ (�r) 1√

r
Jl+1/2 (γr) Yl,m (θ,φ) f (�r)

where the plane wave expansion (C.7) for ei �γ·�r was used. If the index of the electron
probability amplitude is the set μ = [ν,λ, υ], the initial probability amplitude is the
ground state and

fμ(�r) = 1

r
Rν,λ(r)Yλ,υ (θ,φ)

then the coefficients are

aν,λ,υ = iλ
√

π

2γ
Y ∗

λ,υ

(

θγ,φγ

)

∫ ∞

0
dr Rν,λ(r)

1√
r
Jλ+1/2 (γr) R1,0(r)

They are given as the polynomials in the powers of ε = γ/α, and because this ratio
is small, of the order d−1, only the leading powers are retained. Few coefficients
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Table 4.1 Leading powers in ε = γ/α in the probability amplitudes for the stationary states of
Hydrogen atom after interaction of its ground state with the electromagnetic field that is produced
by a fast moving charge

υ\λ 0 1 2 3

1 1–0.5 ε2 – – –

2 0.497 ε2 i 0.172 ε – –

3 0.183 ε2 i 0.102 ε –0.053 ε2 –

4 0.105 ε2 i 0.070 ε –0.040 ε2 –i 0.013 ε3

5 0.071 ε2 i 0.052 ε –0.032 ε2 –i 0.009 ε3

are given in Table4.1, where only the leading powers in ε are retained. The leading
coefficients are for λ = 1 and arbitrary n ≥ 2, when they are of the order ε, which
means that the expansion of the probability amplitude is

g(�r) = f1,0 + 3ε

4π

[

cos θγ cos θ + sin θγ sin θ cos
(

φγ − φ
)]

∑

ν=2

ãν fν,1

where the coefficients ãν are aν,1,υ when ε is factored out. The sum is just another
way of expressing f1,0, which follows from the initial form for g(�r), however, it starts
to deviate from it for different instants when the probability amplitude is

g(�r , t) = f1,0e
−i E1,0t + 3ε

4π

[

cos θγ cos θ + sin θγ sin θ cos
(

φγ − φ
)]

∑

ν=2

ãν fν,1e
−i Eν,1t

4.3 Field Reaction

Electromagnetic field that is produced by moving charges could be divided up into
two regions of analysis, far away from the source and in its close proximity. Focus
of interest in most applications is on radiation that results from dynamics of charges,
which is far away space, however, the field that overlaps with the probability density
of its source (or the classical charge density) is of fundamental importance as the
source of the effect without which energy conservation law would be violated. Elec-
tromagnetic field in the latter is important for formulating the field reaction force. In
this section the basic principles that formulate this force are described.

Importance of the field reaction was recognized ever since it was discovered in
the work of Maxwell and Herz that electromagnetic field produces wave that takes
away energy from its source in accelerated motion. Calculating that energy, from
the motion of charges, is done in a straightforward manner, and vice verse, from the
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knowledge of the electromagnetic field motion of charges could have been deduced.
It does not need special insight into that dynamics to deduce that what is needed is
the force that would couple energy taken away by radiation at the expense of the
energy of charges, kinetic and potential. In other words, radiated field takes away
energy that must affect motion of charges, but the force that does that remains to
a great extend the mystery even today. In fact, formulating the force that does that
is as old as the problem itself, and effectively there are two models that one would
use for its description. One is based on classical model for charges, but it is based
on non physical assumptions and leads to non physical solutions for dynamics of
charges (for a good account of the problems see [10]). The other model is based on
assuming quantum charges and classical electromagnetic field, which dispenses with
the inadequacies of the classical model (for account of the model see [9, 18, 19]),
but still cannot answer some of the finer effects of this force. Much of the pursuit to
formulate the force was scaled down by development of quantum electrodynamics,
which was successful in giving accurate account of these fine details, for example
Lamb shift. However, it should be remarked that, for example, the Lamb shift cannot
be explained by the field reaction because this force is the consequence of motion of
charges. TheLamb shift is intrinsic property of bound states of charges, and if itwould
have the source in the field reaction then its magnitude would depend on dynamics of
charges. Therefore the criterion of validity of the models for field reaction cannot be
failure to describe the fine effects of quantum electrodynamics, besides Lamb shift
there is also anomalous magnetic moment of the electron. In mathematical terms,
field reaction in order to have effect on the charge that is its source one uses either
retarded or Feynman Green function (2.3.2) (depending if either wave or particle
(photon) nature, respectively, of electromagnetic field is assumed), whilst for Lamb
shift one uses standing wave Green function (2.3.2).

In order to understand the basic principle in formulating the field reaction force
one starts with simple observation. As it was argued in Sect. 1.2 probability density
plays the role of charge density for the charged particles. This means that if two
particles interact then their total potential energy is

V = e2
∫

d3r1 d
3r2

| f (�r1)|2 | f (�r2)|2
|�r1 − �r2|

where f (�r1) and f (�r2) are their respective probability amplitudes. However, treat-
ment of | f (�r1)|2 as the charge density cannot be extended when the particle acts
on itself, which is expected of the normal charge density. This extension leads to
paradoxes that are discussed in Sect. 1.2.1. Nevertheless, probability density could
act on itself, as if it were the charge density, provided it is time dependent. In this
circumstances the field at time t and at the coordinate −→q is produced by the prob-
ability (charge) density | f (�r)|2 at some earlier time tret , and it could be treated as
originating from the probability density of another charge. Therefore, the field that
interacts with the charge density | f (�r)|2 at −→q and time t is produced by the same

http://dx.doi.org/10.1007/978-3-662-52878-5_2
http://dx.doi.org/10.1007/978-3-662-52878-5_2
http://dx.doi.org/10.1007/978-3-662-52878-5_1
http://dx.doi.org/10.1007/978-3-662-52878-5_1
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probability density | f (�r)|2 but originating at time tret . Inclusion of this field affects
dynamics of the particle, and because it arrises from the particle itself it is called
field reaction force, or simply field reaction. This means that in principle equation1

i ∂t f (�r , t) = 1

2

[

i ∇ + �A f r (�r , t) + �Aext (�r , t)
]2

f (�r , t) (4.23)

+ V f r (�r , t) f (�r , t) + Vext (�r , t) f (�r , t)

gives a complete dynamics of a charge in the external field (indicated by the subscript
ext) which also includes field reaction (indicated by the subscript f r ) given by (7.2)
and (7.3). In this section time and spatial coordinates are scaled as

�r ≡ �r κ ; t ≡ ctκ

whilst the potentials are normalized as

eV ≡ eV

mc2
; e �A ≡ e �A

mc2

where
κ = mc

�

is the Compton wave number.
There are certain features of the field reaction that should be taken into account for

its correct formulation. One is that the leading term in the field reaction that comes
by taking velocity of light infinite (see discussion in Sect. 7.1) should not be present.
This contribution describes instantaneous interaction of the probability density with
itself and it is a self repelling term of the kind that was discussed in Sect. 1.2.1.
Impact of field reaction on its own source should not result in radiation, because
only the external force should be responsible for that, for the following reason. A
bound charge in an excited state radiates, and its sole cause is the binding potential
whilst the field reaction should compensate for this lose of energy at the expense of
the kinetic and potential energies of the charge. There is yet another feature of the
force that needs attention and this is the nature of the energy/momentum exchange
with the charge. At this stage, however, discussion about it is set aside until after few
steps are made in derivation of the final �A f r (�r , t) and V f r (�r , t).

In order to find expression for the field reaction interaction one starts from (4.23)
where the external field is omitted

i ∂t f (�r , t) = 1

2

[

i ∇ + �A f r (�r , t)
]2

f (�r , t) + V f r (�r , t) f (�r , t)

1Charge of the particle is incorporated in the potentials, for the sake of simplicity.

http://dx.doi.org/10.1007/978-3-662-52878-5_7
http://dx.doi.org/10.1007/978-3-662-52878-5_7
http://dx.doi.org/10.1007/978-3-662-52878-5_7
http://dx.doi.org/10.1007/978-3-662-52878-5_1
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From the wave equation for the scalar potential one obtains useful identity

− 1

4π

∫

d3q
1

|�r − �q|
[

�V f r (�q, t) − ∂2
t V f r (�q, t) + 4παρ (�q, t)

] = 0

where α is fine structure constant. By partial integration, and using identity

�
1

|�r − �q| = −4π δ (�r − �q)

one obtains

V f r (�r , t) + 1

4π
∂t

∫

d3q
1

|�r − �q|∂t V f r (�q, t) = α

∫

d3q
ρ (�q, t)

|�r − �q|
On the right is the instantaneous interaction and if the Lorentz condition (3.7) is used
then the relationship is

V f r (�r , t) − 1

4π
∂t

∫

d3q
1

|�r − �q|∇ • �A f r (�q, t) = V∞
f r (�r , t)

By defining new probability amplitude as

f (�r , t) = g (�r , t) e−i�(�r ,t)

where

�(�r , t) = 1

4π

∫

d3q
1

|�r − �q|∇ • �A f r (�q, t)

equation for g (�r , t) is

i ∂tg (�r , t) = 1

2

[

i ∇ + �A f r (�r , t) + ∇�(�r , t)
]2

g (�r , t)

In the gradient −∇�(�r , t) one recognizes the parallel component of the vector
�A f r (�r , t), as defined by (3.11), so that the equation is

i ∂tg (�r , t) = 1

2

[

i ∇ + �A⊥
f r (�r , t)

]2
g (�r , t) (4.24)

where the orthogonal component is

�A⊥
f r (�r , t) = 1

4π
∇ × ∇ ×

∫

d3q

|�r − �q| �A f r (�q, t)

http://dx.doi.org/10.1007/978-3-662-52878-5_3
http://dx.doi.org/10.1007/978-3-662-52878-5_3
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In this way field reaction interaction is defined entirely in terms of the, transversal,
vector potential.

The source of �A f r (�q, t) is in the probability current for the charge, and for its
propagation from the source oneusesGreen functions that are discussed inSect. 2.3.2.
One is retarded Green function, which one would first use, however, it refutes the
principle that no radiation emanates from the source, i.e. far away from the source the
intensity of radiation decays as r2. One is left with the choice of either standing wave
Green function or the Feynman. Both are acceptable and here additional requirement
is made on the field reaction, in its interaction with a charge it should manifest itself
as a photon, i.e. as a particle. This feature could be satisfied if the field �A f r has the
form of a plane wave as the Feynman Green function has. For detailed discussion
how electromagnetic fieldmanifests itself as a particle in the interactionwith a charge
see Chap.17 in [9].

Feynman Green function is defined in Sect. 2.3.2 and solution for �A f r (�q, t) is

�A f r (�r , t) = −4πα

∫

d3u ds KF (
−→r − −→u , t − s) × �j (−→u , s

)

where the current is derived from (4.24), and it is given by

�j (�r , t) = 1

2i

[

g∗ (�r , t) ∇g (�r , t) − g (�r , t)∇g∗ (�r , t)] − �A f r (�r , t) g∗ (�r , t) g (�r , t)
(4.25)

where the field reaction is also present. This means that the wave equation which
�A f r satisfies is

� �A f r − ∂2
t

�A f r − 4πα g∗g �A f r = −4πα Im
[

g∗∇g
]

where one recognizes Klein-Gordon type equation, inhomogeneous for a “particle”
of “mass” 4πα g∗g. Transversal component is now

�A⊥
f r (�r , t) = −α

∫

d3q

|�r − �q|
∫

d3u ds KF (�q − −→u , t − s) ∇ × ∇ × �j (−→u , s
)

and when the Feynman Green function is used then

�A⊥
f r (�r , t) = icα

π
∇×∇×

∫

d3u

u

∫ ∞
0

ds
[

I− �j (−→r + −→u , t − s
) − I+ �j (−→r + −→u , t + s

)

]

where

I± = −u
(

ln k − 1 + ln c + Eγ

) + c

2

(

s − u

c

)

ln
∣

∣

∣s − u

c

∣

∣

∣ − c

2

(

s + u

c

)

ln
∣

∣

∣s + u

c

∣

∣

∣

± icπ

4

(∣

∣

∣s + u

c

∣

∣

∣ −
∣

∣

∣s − u

c

∣

∣

∣

)
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The parameter k is small, and represents the limit k → 0, which means that I± has
logarithmic singularity, however its contribution to �A⊥

f r (�r , t) is zero. In fact all the
contributions from the terms in I± that are linear in u are zero, and based on this
observation in the limit c → ∞ the field reaction �A⊥

f r (�r , t) goes to zero as c−2.

This also means that indeed �A⊥
f r (�r , t) represents field reaction because the static

interaction is removed.



Chapter 5
Confinement of Charge

Abstract Controlling motion of a charged particle is to control its phase space,
in particular the momentum part. Particle with relativistic velocity is one model,
when owing to relativistic effects the phase space is almost stationary, except for
translational degrees of freedom. Relativistic motion is an example of the universal
recipe to control motion of, charged, particles; they should be confined to a small
volume of space and then manipulated by electromagnetic field. Confinement is
achieved by static and time dependent magnetic field and electromagnetic waves
of various properties. Extreme confinement of charges when their motion is in the
relativistic regime, have specific features that are manifested in distribution of their
momenta and energies when the system decays, and also in distribution of charges
densities within the bound system, for which two body Dirac equation is used.

One of the basic uses of the electromagnetic field is to control motion of charges. For
solving this task it is important to learn about the elementary processes that govern
motion of the simplest system, a single charge in the electromagnetic field. This
had been done in Chap.4, by using both quantum and classical dynamics because
they give complementary information about dynamics of a charge, the former gives
the accuracy whilst the latter physical insight. Yet the analysis in Chap.4 is not
complete, at least in classical dynamics, because the true nature of a charge is that
of a delocalized particle, which was not taken into account. Therefore instead of
assuming that controlling motion of a charge means controlling its trajectory one
should modify the question and seek to control its phase space density. Although the
concept of probability is incorporated in quantum dynamics the shortcoming of this
approach is that analysis is not in the phase space and in that sense the dynamics is
not complete. In contrasts phase space analysis is inherent in classical dynamics and
in this respect the two dynamics are complementary. Phase space analysis in classical
dynamics is done with relative ease, but result may not be sufficiently accurate, on
the other hand quantum dynamics gives accuracy but the physical insight is missing.

Having these two tools one has at disposal ways of studying the basic principles
behind controlling motion of charges. However, the task should be defined more
precisely by asking what is meant by the control of motion? In short, the control
means moving most of the probability density from one part of the phase space to
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another. In simpler terms this means moving the average position of the particle from
one point to another, and also leaving it with a predetermined average velocity. The
emphases is on most of the probability density, or a weaker statement on the average
position and velocity.

5.1 General Remarks

The simplest system to control is a free particle, and the task is simple, at least it
appears so, to move particle from its averaged position, say at �r = �ri to �r = �rf in time
t. For simplicity it is required that initial and final velocity of particle should be zero.
This, very simple definition of the task should be made more exact in order to have
any meaning for the particles that one is interested to control, e.g. electrons, protons,
atoms and molecules. In classical terms instead of initial position and velocity of a
particle one defines its initial phase space probability density. Likewise one defines
its final phase space probability density, and the average quantities replace position
and velocities. In quantum terms initial is the probability amplitude in the coordinate
space, which is defined by its modulus (related to the coordinate probability density,
equivalent of the position) and the phase (related to the probability current, equivalent
of the velocity). The phase space analysis in quantum dynamics is obsolete because
by implementing the uncertainty principle on the phase space one of its components
is redundant, usually the momentum component. This is why the essential equation
in classical dynamics is in the coordinate and momentum (phase) space whilst the
same equation in quantum dynamics is only in one space, most commonly in the
coordinate space.

From the definition of the task it is immediately clear where the basic problem
is. Whilst for a single trajectory control of the motion of a particle means essentially
control of a single set of parameters, initial position and velocity, in reality one has
to control a set of its continuum values. This means that one has to find the ways of
controlling at least majority of the initial conditions, because one could hardly expect
to control all of them. For example, if one assumes initial phase space probability
density that gives zero average velocity for the particle, then even if no force is applied
it evolves in time and eventually spreads all over the space. Therefore control of the
motion of a particle does not only involves control of its average position and velocity
but also the width of its phase space density. This makes the task considerably more
difficult than the same task for a single trajectory.

Few general estimates are in order before going into the more detailed analysis
of the possible ways of solving the task. For simplicity single dimension dynamics
is assumed, the coordinate is z and the momentum p. First, it is necessary to know
what the initial conditions are, and in the case of a free particle this essentially means
assuming the shape of the initial phase space density (it is tentatively assumed that
the average velocity of the particle is zero). In general it could be assumed that its
width in the coordinate space is �z and in the momentum space is �p, and their
product is
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�z �pz = b >
�

2

from where the estimate for the spread of velocities is

�v <
�

2m �z
(5.1)

Few typical values of b are1

Gaussian f = 1
a3/2π3/4 e

− r2

2a2 b = �

2

1S state of H f = α3/2

π1/2 e
−αr b = �√

3

3D square well f = 1
r
√
r0

√
2π

sin
(

πr
r0

)

b = 0.56 �

The two parameters that need to be controlled are the width of the probability
density in the coordinate and its average position, which is done by controlling the
momentum space. To control the momentum space the force should be sufficiently
strong to easily manipulate particle with extreme momenta, whose estimate is (5.1).
In terms of the energy parameter the confining potential should be much larger
than the average kinetic energy of particle, which is estimate from the momentum
distribution Q(p). If it is assumed that Q(p) is constant within the interval �p then
the average kinetic energy of the particle is

〈Ekin〉 =
∫

d3p Q(p)
p2

2m
= 3

10m

�
2

�z2
(5.2)

For example the proton that is confined within �r = 10−10 m (as in Hydrogen
molecule) has the average kinetic energy ≈10−3 eV, whilst if it is confined within
�r = 10−15 m (as in a nucleus) it has kinetic energy ≈107 eV. The electron within
�r = 10−10 m (as in Hydrogen atom) has the average kinetic energy ≈2eV. These
are the relevant parameters but another one is also the speed at which the probability
density spreads, which determines the time interval within which the confining force
acts and its time dependence to be properly defined to control the motion. Estimate
of the spreading time for the probability density in the coordinates of a free particle
starts by noting that in the momentum space the appropriate probability density is
constant, but the probability amplitude has time dependence

g(p) = |g(p)| e−it p2

2m�

1�u is standard deviation, which is defined as (�u)2 = (

u2
)

aver − (uaver)2 and it is used in calcu-
lation of the uncertainty relationship.
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From this time dependence one gets the rate at which the width of the probability
density spreads in the coordinates by calculating standard deviation of the coordinate
z. The average of the coordinate squared is

〈z2〉 = −�
2

∫

d3p g∗(p)∂2
pzg(p)

= �
2

∫

d3p
(

∂pz |g(p)|)2 + t2

m2

∫

d3p p2 |g(p)|2

and the standard deviation for large time is

�z ≈ t

m

√

∫

d3p p2 |g(p)|2 ≈ t�
√
3

m�z0
√
5

where �z0 is initial width of the probability density. Average kinetic energy (5.2)
was used in the last step.

5.1.1 Uniform Velocity

One relatively simple way of controlling the spread of the probability density is to
give particle velocity that is nearly the speed of light. This effect is at work with
the elementary particles, and examples are shown in Fig. 5.1. Fragments, elementary
particles, that are produced leave a visible trek of perturbed matter through which
they move (provided that they are charged) and they are identified by their classical
trajectories. It should be noted though that these particles are initially confinedwithin
the space within which their host particle, from which they are produced either by
collision or decay, is confined. The simplest is to assume that this is the radius of
the host particle, and this uncertainty is represented by the probability density of
this width. The probability density for the fragment evolves from that instant on as
predicted from quantum dynamics, and in the rest frame of the parent particle, for
simplicity, evolves in radial direction. This means that for a spherically symmetric
probability density detecting fragment is equally probable in any direction, however,
as Fig. 5.1 shows individual events are observed. One event does not reveal quantum
nature of the fragment, but it would if one is to follow its path.

For better understanding of this effect analogous one is analyzed. A particle that
approaches a screen with a slit in it serves as detector that determines its position
which is parallel with the screen. This measurement has meaning only if prior to
reaching the screen the uncertainty in the position of the fragment is wider than
the slit. The width of the slit determines a new probability density, together with
the appropriate momentum probability density, according to the quantum principles.
This means that upon exiting the slit the new probability density evolves in time irre-
spective of its form before the screen. Motion of a single particle is then determined
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Fig. 5.1 Traces of elementary particles in detector. Although quantum objects elementary particles
obey classical dynamics equations. Credit CERN

with random initial conditions that are determined by the probability densities on the
exit from the slit. If the trajectory after the screen is to be followed one needs layers
of screens each with array of slits that serve as detectors of the particle position. Each
slit works in the same way as in the initial screen, and upon exiting from one of them
motion of the particle is again determined by random choice of initial conditions,
irrepsective of its motion prior to entering the slit. The entire trajectory looks more
like random walk rather than obeying classical equation of motion.

The same reasoning applies for the fragment in the decay of the parent particle.
However, the detectors of position are ionized molecules2 in Fig. 5.1 and virtually
there is no difference with the experiment with the slits. The difference is that motion
of the fragments is relativistic, and this fact should be taken into account because
otherwise the trajectories indeed would look like random walk.

Relativistic treatment for the time evolution of the probability densities is demon-
strated on the example of a convenient initial phase space density, nevertheless quite
general, that has functional form

ρ0(�r, �p) =
(

�

dπ

)3

e− 1
d2

r2− d2

�2 (
−→p −−→p 0)

2

where −→p 0 is initial momentum of the particle given by an impulsive force.

2Using bubble chamber is only one way of determining trajectories of charged elementary particles,
however, the same argument applies to the other methods. The essence is to trace trajectories by
measuring with high accuracy the sequence of their positions.
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Time evolution of the phase space density with a given initial value ρ0(�r, �p) is
determined by knowing classical trajectories for arbitrary initial conditions �ri and �pi,
which for a free particle of mass m have simple form

�r = �ri + �pi
√

p2i + c2m2
ct , �p = �pi

Time dependence of the phase space density is then [9]

ρ(�r, �p, t) = ρ0(�r−, �p−)

where3

�r− = �r − �p
√

p2 + c2m2
ct, �p− = �p (5.3)

and time evolution of the coordinate probability density is

P(�r, t) =
∫

d3p ρ(�r, �p, t)

The simplest example is time evolution for a stationary particle that is defined
with p0 = 0. In that case P(�r, t) is

P(�r, t) = N

rt

∫

dp p
√

p2 + c2m2 e− d2p2

�2

⎡

⎣e
− 1

d2

(

r− cpt√
p2+c2m2

)2

− e
− 1

d2

(

r+ cpt√
p2+c2m2

)2
⎤

⎦

and if relativistic limit is assumed then d should be small, later the meaning of this
shall be defined more precisely. In this limit the second term in the integral could
be neglected and the first is approximately the delta function (see C.1). The integral
then has solution so that final expression for P(�r, t) is

P(�r, t) = N
t2

r
(

c2t2 − r2
)5/2 e

− c2d2m2

�2(c2 t2−r2)
r2

Typical time evolution of the relativistic probability density P(�r, t) is shown in
Fig. 5.2, its two dimensional cross section (a) and its one dimensional cross section
across its centre (b). The density spreads as a radially expanding pulse where its
furthest point from the centre moves at the sped of light. From P(�r, t) one calculates

3Classical results here are almost identical (negative energy trajectories not included for simplicity)
with quantum for free particles. This treatment appears to bemore in linewithKlein-Gordon solution
rather thanDirac one, because in the latter the spin degree of freedom is taken into account. However,
for a free particle spin is not significant and the results are identical in both cases. More detailed
relativistic quantum analysis is given in a separate chapter.
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(a) (b)

Fig. 5.2 Gaussian initial probability density after certain time in the relativistic regime, its two
dimensional cross section (a) and one dimensional across the centre of expansion (b)

position of the maximum, which is at the distance

r = ct

√

1 − 2c2m2d2

5�2

from the centre. The maximummoves at nearly the speed of light, and from its value
one derives the criterion for the relativistic approximation

cm

�
d ≈ 0 (5.4)

which is the same as saying that the Compton wave length of the particle should be
much greater than the initial width of the probability density.

When particle moves with momentum p0 in the z direction the expression for the
probability density is

P(�r, t) = N
∫

dpzdpn pn I0

(

2cpnrnt

d2
√

p2 + c2m2

)

e�

where

� = − 1

d2

(

z − ctpz
√

p2 + c2m2

)2

− 1

d2
t2c2p2n

p2 + c2m2

− r2n
d2

− d2

�2
(pz − p0)

2 − d2

�2
p2n

where pn is component of momentum that is perpendicular to −→p 0 in which case
p = √

p2z + p2n, and similarly rn is perpendicular distance with respect to −→p 0 and
r = √

z2 + r2n . Modified Bessel function of the first kind is I0 (u). In the short time
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limit the argument of the Bessel function is small and hence I0 (u) ≈ 1 and the
expression simplifies. In the relativistic limit, when p0 >> mc and d is small, the
criterion being (5.4), one expects that pz ≈ p0 whilst pn is small and comparable to
mc. Based on those comments one expands � for large p0 giving

� ≈ − (z − vt)2

d2
− R2

d2
− d2

�2
p2z − d4p20 + �

2ctz

d2�2p20
p2n

where velocity v is

v = c

(

1 − m2c2

2p20

)

≈ c
p0

√

p20 + m2c2

The integrals are now straightforward to calculate and result is

P(�r, t) ∼ e− R2

d2
− (z−vt)2

d2

1 + �2ctz
d4p20

which is copy of the initial probability density moving with velocity v. In the rela-
tivistic limit probability density is stable, in contrast with the example when p0 = 0
and shown in Fig. 5.2.

The other extreme is the limit for large t when

P(�r, t) = N
∫

dpzdpn pn

√

p

pnrnt
e�

where now the exponent has additional contribution to its short time approximation

� = · · · + 2ctRpn
p

and in the asymptotic expansion for large p0 it is modified by

� ≈ · · · + 2ctRpn
p0

The integral in pz is again straightforward whilst in pn it is given in terms of error
function and for large t the probability density is

P(�r, t) ∼ e− R2

D2
− (z−vt)2

d2

1 + �2ctz
d4p20
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Fig. 5.3 Time evolution of
the probability density in the
relativistic regime with
relativistic initial
momentum. Short time
evolution is shown in (a) and
its long time in (b). The scale
in (b) is 3 times larger than
in (a) in vertical direction

(a) (b)

where

D = d

√

1 + �2c2t2

d4p20

Again the initial probability density moves with velocity v but its width in the per-
pendicular direction expands. Its rate of expansion determines stability of P(�r, t),
and from the expression for D one gets the value of time

t = √
3
d2p0
�c

(5.5)

when it expands by twice the original width. However, the angular spreadα ofP(�r, t)
is determined from the ration of D to ct (approximate position of its maximum on
the z axis) and it is

tanα = d

√

1

c2t2
+ �2

d4p20
(5.6)

which is constant for infinite time. This angle is small considering the implicit
assumption that was made so far that the product p0d/� is large, meaning that p0
is much larger than the spread of momenta owing to confinement width d for the
particle.

Typical example for the time evolution is shown in Fig. 5.3, one for short time (a)
and the other for long time (b). The scales of (a) and (b) in the vertical direction are
not the same, the latter is factor 3 lager. After the period of stable time evolution,
which is a copy of the initial probability density, P(�r, t) evolves radially however
confined within the angle (5.6).

5.1.2 Decay of Two Particle System

Important issue that results from the model for relativistic translation of the phase
space density in Sect. 5.1.1 is analysis of kinematics of a decay process, when two
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particles are involved. Decaying system assumes that the two particles are bound
together up to a certain instant (precise mechanism of their confinement is not impor-
tant) and it is described by a phase space density for which two essential parameters
are known. One is the width of their confinement by themutual interaction (for exam-
ple within a square well) and the other is the width of the localization of the system as
the whole. The former width is measured in terms of the relative coordinates �r1 − �r2
of the two particles, and it is d, whilst the latter is given with respect to the center
of mass coordinates, and it is D. From the meaning of the two widths D is always
greater than d. A general functional form that describes this phase space density is

ρ0(�r1, �r2, �p1, �p2) = f

(

�r1 − �r2, m1�r1 + m2�r2
m1 + m2

,
m2�p1 − m1�p2
m1 + m2

, �p1 + �p2
)

where one momentum variable is the total momentum of the two particles in the
confinement and the other is the total momentum of the system as the whole. Mass
of the two particles are m1 and m2. For the convenience one assumes explicit form
for the initial phase space density of this system

ρ0(�r1, �r2, �p1, �p2) = N e
− 1

d2
(�r1−�r2)2− d2

�2

(

m2�p1−m1�p2
m1+m2

)2− 1
D2

(
m1�r1+m2�r2
m1+m2

)2− D2

�2 (�p1+�p2)2 (5.7)

which assumes that the system as the whole does not move, in other words, average
momentum of the system is zero. On the other hand, average total (kinetic) energy is

〈E〉 =
∫

dV

(

p21
2m1

+ p22
2m2

)

ρ0(�r1, �r2, �p1, �p2) (5.8)

=3�2 (m1 + m2)

4d2m1m2
+ 3�2

4D2 (m1 + m2)

At t = 0 a delta like repulsive force acts between the two particles that has a prop-
erty to act along the line that joins the particles, in which case their total momentum
is not changed. The force modifies momenta of the particles as

−→p 1 → −→p 1 + n̂12p0 , −→p 2 → −→p 2 − n̂12p0 (5.9)

where

n̂12 =
−→r 1 − −→r 2

∣

∣
−→r 1 − −→r 2

∣

∣

and p0 is the momentum from the force. As a model for p0 it could be assumed that
the change in energy of the two particles is a fraction of the total energy 〈E〉 i.e.

(−→p 1 + n̂12p0
)2

2m1
+

(−→p 2 − n̂12p0
)2

2m2
−

−→p 2
1

2m1
−

−→p 2
2

2m2
= η〈E〉
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then

p0 =
√

2m1m2

m1 + m2
η〈E〉

where it was assumed that the averages of −→p 1 · n̂12 and −→p 2 · n̂12 are zero. Time
evolution of the phase space density is obtained by sampling method. By generating
random −→r n and−→p n with the weight of the initial phase space density and replacing
the coordinates with

−→r n → −→r n + 1

mn

−→p nt

where−→p n is replaced by (5.9) one generates a density of points that represents phase
space density at time t.

From the phase space density one determines kinematics of decay process, and
two results are of particular interest: distribution of decay productsP (�)with respect
to the angle � = −→p 1·−→p 2

p1p2
(correlation in decay) and the probability of the absolute

momenta difference P (p1 − p2) for decaying products. Common assumption is that
distribution P (�) is delta function at � = −1 that is based on the classical picture
that if initial momentum of the composed system is zero then the two fragments
should fly apart in the opposite directions. The same applies for P (p1 − p2) that
should give p1 = p2 which is again based on the classical conservation laws.

For the calculation of both distributions one needs momentum probability density
P

(−→p 1,
−→p 2

)

P
(−→p 1,

−→p 2
) =

∫

ρ0
(−→r 1,

−→r 2,
−→p 1,

−→p 2
)

d3r1d
3r2

and because the particles are free this density is time independent. It is therefore
sufficient to calculate P (�) and P (p1 − p2) from the initial phase space density
(5.7). The most straightforward way is to do that numerically by sampling method,
whereby random choice for −→p 1 and

−→p 2 is made with the weight P
(−→p 1,

−→p 2
)

,4 one
of the parameters is calculated and for its value add 1 into the box around it. After
N steps the boxes are normalized with respect to this number and the width of the
boxes and the result is the required probability distribution.

Electron-positron pair creation is an example of two particles being initially
“bound”5 and they fly away in opposite directions. For the modelling purpose it
is assumed that initially the size of their confinement is approximately the size of
Hydrogen atom (the mechanism of confinement is not essential in this example).

4For a general ρ0
(−→r 1,

−→r 2,
−→p 1,

−→p 2
)

one takes N random choices of the four coordinates, with
the weight of the absolute value for initial phase space density. Sampling is made by adding or
subtracting the outcome depending on the sign of ρ0, which allows for the possibility that it could
have negative values. For more details see [9].
5Being “bound” is here used for the modelling purpose. The pair is created in collision and its
precise history prior to that is essentially not known. In this context the term “bound” means that
between separating and creation the two particles were confined in a certain space.
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Fig. 5.4 Correlation
probability in
positron-electron decay
when no internal release of
energy (η = 0) is taking
place (circles) and when it
does (η = 5) (stars)

Average kinetic energy of the system (potential energy is significant but it is neglected
in order to simplify the arguments of final conclusions) is 〈E〉 ≈ 57eV. Correlation
probability is analyzed first for two cases, one when no internal energy is released
and the other when it is factor η = 5 greater than 〈E〉. The results are shown in
Fig. 5.4 where η = 0 example is displayed by circles and η = 5 by stars. In both
cases motion of fragments is not correlated, in other words there is no way if one
determines motion of positron that one knows in what direction the electron goes.
By increase of internal release of energy the correlation goes towards the classical
limit � = −1 but it is only achieved for η = ∞. Classical limit is also achieved by
increase of D, the width of the system as the whole, and in the limit D → ∞ the
correlation is delta function in � + 1.

From classical dynamics one infers that the positron and the electron absolute
momenta are the same, but the results in Fig. 5.5 for the probability P (p1 − p2) show
that this is not correct prediction. The results for η = 0 are shown by circles but
since the effect of increasing η has very little effect on the distribution the stars show
results for η = 100 (p0 is momentum that is associated with 〈E〉). The distribution
P (p1 − p2) has large width, if compared with the typical momentum p0 of the
particles. This means that if momentum of one particle is known then momentum
of the other is determined with large error bar. It does not help if internal energy is
released the error bar stays almost the same. However, in absolute terms the error
decreases with increasing p0. Classical limit, delta function in p1 − p2, is achieved
in the limit D → ∞.

5.1.2.1 Neutron Decay

Results of the previous analysis show that classical conservation laws, if implemented
without considering quantum nature of the systems, could lead to incorrect conclu-
sions. This does not mean that the conservation laws do not apply for the quantum
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Fig. 5.5 Momentum
difference probability in
positron-electron decay
when no internal release of
energy (η = 0) is taking
place (circles) and when it
does (η = 100) (stars)

systems, the difference is that in the classical they apply for single trajectories with
well determined initial conditions but in the quantum they apply for the averages. In
fact if classical dynamics is formulated in the phase space then the same conclusion
would be reached as in the quantum dynamics, the only difference being that in the
latter the uncertainty principle applies for the choice of the phase space density [9].

Neutron decay is the prime example of this observation. In this decay the conjec-
ture is that the mass difference between the neutron and the sum of proton and the
electron masses (the most elementary model for the decay of the neutron) goes into
the kinetic energy of the latter. By classical analysis it is shown that the fragments,
proton and the electron, should have well determined kinetic energies and they fly
in the opposite directions, � = −1. It was experimentally determined that this con-
jecture is not correct because energy (momentum) of the electron momentum does
not have single value but a distribution. New particle, antineutrino, was proposed
as the third product of the neutron decay in order to fit this data. Applying the con-
servation laws to this three particle decay model it is straightforward to show that
energy and momentum of the electron do not have single value, and the correlation
angle between the electron and the proton is no longer � = −1. Distribution for
the electron energy and momentum that was calculated agreed very well with the
experimental result, which was essentially the proof for antineutrino.

Energy conservation law is

mnc
2 = c

√

p2p + mpc2 + c
√

p2e + mec2 + cpν

whilst for the momentum it is

0 = −→p p + −→p e + −→p ν
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where the assumption is that the neutron is at rest and antineutrino has zero mass.6

Correlation angle is then given by

cos� =
(

mnc −
√

p2p + m2
pc

2 − √

p2e + m2
ec

2
)2 − p2p − p2e

2pppe

where the arbitrary parameters are momenta of proton and the electron. Similarly
one calculates momentum of the electron but its expression is too complicated for
any analysis and one proceeds numerically, however, it is a function of arbitrary
parameters momentum of proton and the correlation angle�. The correlation proba-
bility, and likewise the momentum of the electron probability, is calculated by taking
a number of random choices for the arbitrary parameters and do the appropriate
summation of the final outcomes.

Decay of neutron could be examined as a process that involves only two particles
as its fragments, the electron and proton. Motivation to analyze this model follows
from the previous discussion: in the original analysis of the decay products spread of
initial conditions was not taken into account. By neglecting antineutrino as the third
product the intention is to see to what degree distribution of energy and momentum
among the electron and proton could be reproduced by taking into account this
spread. There is, however, a problem with the two particle decay mode of neutron. In
the decay model that is discussed the initial state consists of the electron and proton
that are confined to a certain volume, and for the model to have some degree of
authenticity one should take into account that they originated as decay products of
the neutron. The parameter that should be taken into account is the mass of neutron
that is greater than the sum of masses of proton and the electron. The answer is in the
confinement energy for the two particles just prior to decay, which is for the Gaussian
given by (5.8). By accepting that its mass equivalent equals the mass difference one
determines the appropriate width d (the result is almost independent of D), and for
the neutron it is d = 2.7 × 10−13 m.

Probability distribution P (pelectron) for the momentum of the electron is shown in
Fig. 5.6 as calculated from the standard model for the neutron decay (stars) and in
comparison with the model that two fragments are involved (solid circles). Spread of
solid circles is larger than the experimental value for the threshold value of pelectron
and the optimal value d = 4.5 × 10−13 m for the width is found that reproduces it
(line). However, in this case the “mass of neutron” is not reproduced, only its half
value.

Correlation probability P (�) between the directions of the electron and proton
momenta is shown in Fig. 5.7 as calculated from the standard model for the neutron
decay (stars) and in comparison with the model that two fragments are involved
(solid circles). Solid line is correlation for d = 4.5 × 10−13 m.

6If the mass of antineutrino is assumed to be not zero, but small, the final results do not change in
essential way.
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Fig. 5.6 Distribution of the
electron momenta in neutron
decay when antineutrino is
taken into account (stars)
and from the two fragment
decay model (solid circles).
Line is calculated from the
model by fitting the width d
to reproduce, approximately,
the threshold value the
electron momentum

Fig. 5.7 Distribution of the
electron-proton correlation
angle � in neutron decay
when antineutrino is taken
into account (stars) and from
the two fragment decay
model (solid circles). Line is
calculated from the model by
fitting the width d to
reproduce, approximately,
the threshold value the
electron momentum
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The aim of the exercise was not to give the proof that there is non need for
antineutrino, it is only to show that strict analysis of the decay processes should also
include uncertainty of initial conditions. Results shown in Figs. 5.6 and 5.7 indicate
that this effect is considerable and cannot be neglected.

5.2 Confinement by Magnetic Field

One way to control the momentum space is by magnetic field. The idea is to use
property of the magnetic force to bend trajectories of charged particles into a circular
motion. This means that all components of momenta that are perpendicular to the
magnetic field do not contribute towards the spread of the probability density. The
problem that remains is to choose sufficiently strong field so that the radius of tra-
jectories is comparable to the width of the probability density. However, the effect
does not control spread in the direction of the magnetic field, which should be done
by other means.
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To obtain parameters that are essential for the control of the spread of the proba-
bility density one should solve equation

i�∂t f = − �
2

2m

[

∇ − ie

�c
�A (�r)

]2

f (5.10)

subject to some initial condition. It is assumed that the charge is in a homogeneous
magnetic field along the z axes and the vector potential for it is

�A (�r) = A0 ẑ × �r

Solving equation (5.10) is not straightforward, however, it is much simpler to cal-
culate the probability density from classical mechanics with the constraint that the
uncertainty principle is implemented. One starts by parametrizing the initial phase
space density as

ρ0(�r, �π) = 1

�3π3

∫

d3q f ∗
0 (�r + �q)f0(�r − �q) e2i�π·�q/� (5.11)

where f0(�r) is initial probability amplitude and for the electromagnetic field ordinary
momentum �p is replaced by

�π = �p + e

c
�A (�r)

Obtaining time evolution of the phase space density with that initial value starts by
solving Newton equation for the Lorentz force

�F = e
�v
c

×
(

∇ × �A
)

= e

c
a0

.

�r × ẑ (5.12)

Motion of the charge in the z direction is not affected by the field, which means that it
is sufficient to study time evolution of the phase space density in the x − y plane. The
only condition is that the initial phase space density is product separable in all the
phase space components, which for simplicity it is assumed. For example, the initial
probability amplitude with this property is a Gaussian function. This simplification
does not alter general conclusions but emphases the essence of dynamics, and that
is control over dynamics of the probability density in two dimensions.

Newton equation for the force (5.12) has solution in a closed form, which is
obtained by defining complex coordinate u = x + i y that satisfies equation

mü = −i
e

c
a0 u̇.

For the initial conditions

u0 = x0 + iy0, u̇0 = ẋ0 + iẏ0
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at t = 0 solution in the x − y plane is given by

x = x0 + vy0

ω
+ vx0

ω
sin(ωt) − vy0

ω
cos(ωt),

y = y0 − vx0

ω
+ vx0

ω
cos(ωt) + vy0

ω
sin(ωt).

where ω = ea0
mc . Time dependence of the phase space density is now obtained by

using the following rule. If one wants the value of the phase space density at the
points −→r and −→p at time t then trajectory is calculated with these initial conditions
and followed it backward in time to t = 0. At the final point one calculates the value
of the initial phase space density, which is the value of it at time t. The rule is based
on the basic feature of the phase space density that its value is preserved along a
classical trajectory. The coordinates of trajectory are, therefore, replaced by

x → x + py
mω

− px
mω

sin(ωt) − py
mω

cos(ωt), (5.13)

y → y − px
mω

+ px
mω

cos(ωt) − py
mω

sin(ωt).

and the same replacement is done for the momentum components, where time
changed the sign implying that charge moves backward in time.

For the initial probability amplitude

f0 = 1

d
√

π
e− x2+y2

2d2 (5.14)

the initial phase space density is

ρ0(x, y, px, py) = 1

�2π2
e
− x2+y2

d2
− d2

�2

[

(py+ 1
2mωx)

2+(px− 1
2mωy)

2
]

where one replaces coordinates by (5.13), and likewise momenta, to get its time
dependence. Probability density in the coordinates is now

P(x, y, t) =
∫

dpx dpy ρ(x, y, px, py, t)

= 1

πγ(t)
e− 1

γ(t) (x
2+y2)

where

γ(t) = d2 cos2
(

ωt

2

)

+ 4D2 sin2
(

ωt

2

)

and

D = c�

eda0
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Probability density at any time is a copy of the initial one except that its width
oscillates between d and 2D, however, when

d = 2D ⇒ a0 = 2c�

ed2

then it is constant and equal to the initial one. It is interesting that the width D does
not depend on the mass of charge only the strength of the magnetic field, on the
other hand the period of oscillations between the two widths is mass dependent.
Thus for example, for the proton in magnetic field of the strength 1T and the width
d = 10−10 m the frequency is ν = ea0

2πmc ≈ 1.5 × 107s−1 andD ≈ 6.6 × 10−6 m. The
field that controls the probability densitywithin its originalwidth is a0 ≈ 1.3 × 107 T,
however, its value is inverse proportional as d2 and so a0 = 1T would confine the
one with the width d ≈ 3.6 × 10−8 m.

5.2.1 Time Dependent Magnetic Field

Homogeneousmagnetic field that is also timedependent induces circular electric field
around its field lines, which also contributes towards confinement of the probability
density. Force on charge is in this case (it is assumed that themagnetic field is parallel
along the z axes)

�F = − e

2c
ẑ × �r dta0(t) + e

c
a0(t)

.

�r × ẑ

which has no component along the z axes and therefore only dynamics in the x − y
plane affects motion of charge. Equation of motion in the x − y plane is simplified
by defining function

u(t) = r (t) e− ie
2cm

∫ t
0 dt

′ a0(t′)

where
r (t) = x(t) + i y(t)

It is shown that u(t) satisfies equation

d2t u(t) = − e2

4c2m2
a20(t) u(t)

The simplest time dependence for the magnetic field is linear increase from its
zero value, and the equation to solve is

d2t u(t) = − e2

4c2m2
a20 t

2 u(t)
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with the initial conditions at t = 0

u0 = r (0) , v0 = D[r (s) , s] |s=0

Further simplification is made by defining dimensionless time variable

s = bt =
√

ea0
2cm

t

in which case the equation is

d2s u(s) = − s2u(s)

with a general solution

u = √
sJ1/4

(

s2

2

)

c1 + √
sY1/4

(

s2

2

)

c2 (5.15)

where Ja(z) and Ya(z) are Bessel functions. From the initial values u0 and v0 the
coefficients c1 and c2 are

c1 = 1

4

[√
2v0�

(

1

4

)

+ 2u0�

(

3

4

)]

c1 = − π√
2�

(

1
4

)u0

Trajectory of charge is obtained from (5.15), and a typical is shown in Fig. 5.8.
Irrespective of initial conditions the trajectory spirals into the origin, with a rate
t−1/2, however, its angular frequency increases as s2.

Having a general solution for trajectories one obtains time evolution of the phase
space density and the rules how to do that for a time independent force are described
in Sect. 5.2. The force here is time dependent when these rules are somewhat more
elaborate because one must take into account that the force changes its value with
time (for more details see [9]). If initial conditions are chosen at time t = t0 then
the force should be appropriate for this instant and not for t = 0. This is formally
accomplished by replacing t by t0 − t in the force and in the other places where time
shows up explicitly. In the new time variable classical trajectory is evolved from
t = 0 to t = t0.

The first step towards the time evolution of the phase space density is to define
initial conditions at s = s0

r1 = r (s0) , v1 = ds0r1
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Fig. 5.8 Trajectory of a
charge in homogeneous
magnetic field when it
linearly increases in time.
The arrows indicate
direction of motion of charge

y

x

where the coefficients c1 and c2 are

c1 = π
√
s0

4

[

r1s0Y−3/4

(

s20
2

)

+ (ir1s0 − v1)Y1/4

(

s20
2

)]

e−i
s20
2

c2 = −π
√
s0

4

[

r1s0J−3/4

(

s20
2

)

+ (ir1s0 − v1) J1/4

(

s20
2

)]

e−i
s20
2

and solution for the trajectory is

r(s) =
[√

sJ1/4

(

s2

2

)

c1 + √
sY1/4

(

s2

2

)

c2

]

ei
s2

2

The time variable is now replaced by s → s0 − s when evolution of the trajectory
backward in time from its initial values at s = s0 is obtained by varying s from s = 0
till s = s0. The coordinates and velocities for s = s0, or s = 0 if one now considers
time before it was replaced for the purpose of time reversal, are

r (0) =
√
s0 �

(

1
4

)

2
√
2

[

r1s0J−3/4

(

s20
2

)

+ (ir1s0 − v1) J1/4

(

s20
2

)]

e−i
s20
2

and

dsr (0) = iπ
√
s0

�
(

1
4

)

[

r1s0J3/4

(

s20
2

)

+ (−ir1s0 + v1) J−1/4

(

s20
2

)]

e−i
s20
2

Formally the variables are now replaced as s0 → s, r1 → r and v1 → v in which
case the time reversed solution is obtained: it gives the initial values at t = 0 for the
coordinates and velocities if at t their values are specified. Finally the coordinates
and velocities are
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r− =
√
s �

(

1
4

)

2
√
2

[

rsJ−3/4

(

s2

2

)

+ (irs − v) J1/4

(

s2

2

)]

e−i s
2

2 (5.16)

and

v− = iπ
√
s

�
(

1
4

)

[

rsJ3/4

(

s2

2

)

+ (−irs + v) J−1/4

(

s2

2

)]

e−i s
2

2 (5.17)

where the superscript − indicates that the variables are calculated from the time
reversed solution for trajectory.

Time dependence of the phase space density with its initial value (5.11) is now
determined from7

ρ(�r, �p, t) = 1

�2π2

∫

d2q f ∗
0 (�r− + �q)f0(�r− − �q) e2i�π−·�q/�

The “momentum” �π− is calculated for initial instant, and because of time dependence
of the vector potential it is given by

�π = m �v = mb ds�r

and when integrating in the variables �q for the initial probability amplitude (5.14)
the phase space density is

ρ(�r, �p, t) = 1

�2π2
e− 1

d2 (x
−2+y−2)− d2m2b2

�2 (v−2
x +v−2

y )

Solutions (5.16) and (5.17) are now to be replaced in the phase space density, which
is a complicated function in four variables. Unless there is a special reason to use
the phase space density (e.g. for calculating angular momentum) there is no need
to investigate it in details, more import is the probability density P(x, y, t) which is
obtained by integrating it in the variables vx and vy, with the result

P(x, y, t) = 1

π�2(tb)
e
− x2+y2

�2(tb)

where

�2(s) = s

[

d2π2

�2
(

1
4

)J2−1/4

(

s2

2

)

+ �
2�2

(

1
4

)

8d2m2b2
J21/4

(

s2

2

)

]

The probability density retains its original shape except that its width oscillates
between two extremes. This is confirmed by taking the asymptotic value for the
Bessel function, when the width is

7For potentials, scalar or vector, that are linear in spatial coordinates, regardless of time dependence,
phase space and quantum dynamics give identical results. In this example phase space analysis is
simpler.
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�2(s) ≈ 4d2π

s�2
(

1
4

) cos2
(

s2

2
− π

8

)

+ �
2�2

(

1
4

)

ea0mπsd2
sin2

(

s2

2
+ π

8

)

which indeed goes to zero as � ∼ t−1/2, but oscillates approximately between the
values d and d−1. The period of oscillations is not constant but decreases linearly in
time.

Asymptotic value of the width of the probability density is reached when s >> 1
or

t >> b−1 =
√

2cm

ea0

For the proton and the time gradient for the magnetic field a0 =1T/s this gives

t >> 1.4 × 10−4 s

whilst for the electron
t >> 3.4 × 10−6 s

Short time evolution �(s) for d = 10−10 m is shown in Fig. 5.9 for proton and the
electron.

Similarly momentum space probability density is calculated. The details are omit-
ted, and the final width for the velocity distribution (velocity gives better insight then
momentum)

�2
v (s) = ea0d

2π2s3

2m�2
(

1
4

)

[

J2−1/4

(

s2

2

)

+ J23/4

(

s2

2

)]

+
�
2s3�2

(

1
4

)

8d2m2

[

J2−3/4

(

s2

2

)

+ J21/4

(

s2

2

)]

Fig. 5.9 Width �(s) of a
Gaussian probability density
for proton (its exact value is
multiplied by factor 10) and
the electron in time
dependent homogeneous
magnetic field. The width
does not go to zero but a
small value of the order
d = 10−10 m that is assumed
in the example
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Fig. 5.10 Width �v(s) of velocity probability density for proton (its exact value is multiplied by
factor 10) and the electron in time dependent homogeneous magnetic field. The width increases in
time as the result of the electric force which is induced by magnetic field

In the long time limit its value is

�2
v (s) ≈

(

2ea0d2π

m�2
(

1
4

) + �
2�2

(

1
4

)

2d2m2π

)

s

−
(

ea0d2π

m�2
(

1
4

) cos

(

s2

2
+ π

4

)

+ �
2�2

(

1
4

)

4d2m2π
sin

(

s2

2
+ π

4

)

)

1

s

and the width increases as t1/2, which indicates that the velocity of particle increases
as the result of induced electric field (Fig. 5.10).

5.3 Confinement with Electromagnetic Wave

5.3.1 Classical Dynamics

Charge in electromagnetic field is analyzed in Chap.4, and the results could be
used to model control of its motion. Several effects are described as the result of this
interaction, but one in particular is important to keep inmind and this is the frequency
dependent (photon) momentum transfer. Its main feature is that for the waves of the
form (4.1)momentum of a charge changes instantaneously and its subsequentmotion
is essentially not controllable. One way to avoid the effect is to form a standing wave,
two counter propagating electromagneticwaves of equal amplitude, and the net result

http://dx.doi.org/10.1007/978-3-662-52878-5_4
http://dx.doi.org/10.1007/978-3-662-52878-5_4
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is no frequency dependent momentum transfer on a charge. There are other useful
features of such a wave, which are investigated in this section.

The simplest example of a standing wave is

�A = a sinwt cos kx ẑ (5.18)

which is equivalent of a plane wave.8 Although the use of the plane waves should
be done with some caution, as discussed in details in Chap. 4, the analysis here is
done within this model. The main rationale is that the essence of the effects that are
discussed are not greatly affected by taking into account the onset of interaction. Also
the field is assumed (relatively) weak, in which case the contribution from the effects
that result by taking into account magnetic interaction are negligible. The rationale
is that once the magnetic component becomes non negligible motion of a charge
becomes multidimensional with less prospect to be controllable, and the goal here
is to use the electromagnetic waves to control motion in one dimension, essentially
in the direction of polarization. Based on this assumption Newton equation for a
charge is

m
..

�r = −eka coswt cos kx ẑ

from which it is deduced that only motion in z direction is affected. In the x direction
the solution is

x = x0 + vx0t

and equation in the z direction is

m z̈ = −eka coswt cos [k (x0 + vx0t)] (5.19)

with the solution

z = z0 +
[

vz0 − aevx0
mc2

sin (kx0)
]

t + ae

mwc
cos (wt) cos [k(x0 + vx0t)]

+2aevx0
mwc2

sin (wt) sin [k(x0 + vx0t)] − ae

mwc
cos (kx0)

if the speed of light is large.
Typical for the solution is that it has linear increase in time, which indicates that

the probability density in the z cannot be confined. However, the coefficient with the
linear increase could be made zero if

vz0 − aevx0
mc2

sin (kx0) = 0

8The phase of a plane standing wave in time and coordinate dependence is removed by a suitable
choice of the initial instant in time and initial position of a charge.

http://dx.doi.org/10.1007/978-3-662-52878-5_4
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which in principle could be satisfied for various combinations of parameters. The
crucial is the amplitude of the vector potential, because if it is too small then the
equation has no solution. If vz0 and vx0 are assumed to be of the same order of
magnitude then the estimate of the minimal value for a is

ae = mc2

but better estimate is given in terms of the required power of the plane wave to
produce this amplitude. The amplitude of the Poyting vector is

P = 1

4π

a2w2

c
= 1

4πα

m2c2w2

�

because for a plane wave E = H and

H =
∣

∣

∣∇ × �A
∣

∣

∣ ∼ a
w

c

For a typical frequency of radiation of ν = 1015 s−1 this estimates gives (see for the
units conversion A) P ≈ 3 × 1023 Wm−2, which is so a large value that all practical
purpose there is no way to prevent spread of the probability density in the z direction
by using standing plane wave.

5.3.2 Charge in Standing Wave

Time evolution of a probability density for a charge in a plane standing wave (5.18)
is analyzed in two dimensions, one along the coordinate dependence of the wave and
the other along its polarization The condition is that the velocity of light is much
larger than the spread of velocities in the phase space density

ρ0 = 1

�2π2
e− x2+z2

d2
− m2d2

�2 [v2z +v2x ]

where it was taken into account that at t = 0 the vector potential is zero, and because
of that it is not present in the momentum variable pz. The condition means that
�/(md) << c. Probability density is calculated from the phase space density, and
the first step is to find solution for the time reversed trajectory for general initial
conditions. In the x coordinate the trajectory is simple

x = x0 − vx0t (5.20)
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however, in the z coordinate one obtains it by first solving a general Newton equation

z̈ = F(t)

for the initial conditions at t = t0. It could be shown that this solution is

z = z0 − vz0(t0 − t) + (t0 − t)
∫ t0

0
dt′′ F(t′′)

+
∫ t

t0

dt′
∫ t′

0
dt′′ F(t′′)

and by taking the limit t → 0 one gets

z = z0 − vz0t + t
∫ t

0
dt′′ F(t′′) −

∫ t

0
dt′

∫ t′

0
dt′′ F(t′′)

v = vz0 −
∫ t

0
dt′′ F(t′′)

Time reversal is obtained by replacing t0 by t (for more details about the rules to
calculated time reversed trajectory for time dependent force see Sect. 5.2.1). Solution
for the equation (5.19) is therefore

z = z0 − [

vz0 − qvx0 sin [k(x0 + vx0t)] cos (wt) + qc cos [k(x0 + vx0t)] sin (wt)
]

t (5.21)

− qc

w
cos [k(x0 + vx0t)] cos (wt) − 2qvx0

w
sin [k(x0 + vx0t)] sin (wt) + qc

w
cos (kx0)

and

vz = vz0 − qvx0 sin [k(x0 + vx0t)] cos (wt) + qc cos [k(x0 + vx0t)] sin (wt) + qvx0 sin [kx0]
(5.22)

where

q = ae

mc2
=

√
4πα�

wmc

√
P

The parameter q is small, for example for the proton in the plane wave with the power
P = 1 W/m2 and the frequency ν = 1015 s−1 it has the value q ≈ 10−15. Therefore
correction to the trajectory in the z direction due to the spatial dependence of the
standing wave is small.

The phase space density at time t is obtained by replacing coordinates and veloc-
ities in ρ0 by expressions (5.20), (5.21) and (5.22), and subsequently remove the
index 0 in them. Probability density is then obtained by integrating it in the velocity
components, and after integration in vz one gets

∫

dvz ρ(x, z, vx, vz) = N

�(t)
e
− 1

�2(t)
[z+u(t)]2− 1

d2
[x−vx t]2− m2d2

�2 v2x
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where

u(t) = cq

w
cos (kx) + qtvx sin (kx) − ε

cq

w
cos (wt) cos [k (x + vxt)]

and

�2(t) = d2 + �
2t2

d2m2

The factor ε was introduced as the expansion parameter. For ε = 0 the integral in
vx (probability density) is quite lengthy, but one is interested in its limiting case for
large t, which indicates whether the charge is contained or not. In this limit

P(x, z, t) = N

t
e
− d2m2

�2 t2

[

x2+(z+ cq
w
cos(kx)+qx sin(kx))

2
]

probability density spreads in time and it has oscillatory structure in unison with the
standing wave.

Correction to the probability density is obtained by expanding the phase space
density in the powers of ε, and even in the first order it is again a lengthy expression
which has functional structure

P(1)(x, z, t) ∼ qz

t3
cos(2kx) cos(wt)e− 1

t2
δ(x,z)

where δ(x, z) as a quadratic form in the coordinates. Therefore, correction decays
more rapidly but it is oscillatory in time.

5.3.3 Generalized Standing Wave

Lack of confinement by the standing wave could be remedied by treating a more
general form for the field. One does not have much freedom in the choice of the field
along the line of propagation, because by its definition standing wave is formed as
interference of identical and counter propagating waves of infinite length, the plane
waves. The only freedom that remains is to allow their polarization to be coordinate
dependent, for example the standing wave could have a form

�A = a(z) sin (wt) cos (kx) ẑ (5.23)

This simple generalization, however, is in contradiction with the wave equation that
this vector potential should satisfy. In addition to this problem the implicit assumption
that the scalar potential is zero is not correct, however, formally this is solved by
deriving it from the Lorentz condition (3.7). Therefore, one should find a proper
parametrization of the vector potential (the scalar is derived from it) that allows
coordinate dependence of its polarization but at the same time that it should satisfy
the wave equation.

http://dx.doi.org/10.1007/978-3-662-52878-5_3
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The simplest non trivial solution is

h(x, z) = z ; g(x, z) = cos x

and the eikonal function is

f (x, z) = c

w
ln z + c

w
ln

[

cos
(w

c
x
)]

which gives for the vector potential

�A(x, z, t) = az sin(wt) cos
(w

c
x
)

ẑ

and the scalar
V (x, z, t) = −ac

w
cos(wt) cos

(w

c
x
)

where the imaginary parts were taken. The Lorentz force is now, without including
magnetic interaction

�F = ea cos(wt) sin
(w

c
x
)

x̂ − eawz

c
cos(wt) cos

(w

c
x
)

ẑ

which has now two components, one along the polarization direction and the other
parallel to the direction of the two counter propagating waves.

Linear increase in the polarization is not physical, because that implies infinite
power carried by the wave. It is therefore necessary to make a cutoff in this increase,
and for the moment the problem how to adjust the potentials to accommodate this
change is of no concern. It is assumed that the essential dynamics of a charge in
this field is all contained well within these bounds. In general the cutoff will be at
the distance that is much larger than the wave length of the standing wave, for the
reasons that will be discussed in Sect. 5.3.4.

Few estimates will be given in order to get insight into the general features of
dynamics of a charge in this standing wave. In general one solves trajectory equation
along the x axes first, which is

m ẍ = ea cos(wt) sin
(w

c
x
)

and its solution is not given in a closed form. However, for the sake of estimate it is
assumed that because the interaction is weak solution is that for a free particle

x = x0 + vx0t

and trajectory equation in the z direction is

m z̈ = −eakz cos (wt) cos [k (x0 + vx0t)] (5.24)
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This is equation for a harmonic force with a time dependent frequency, which could
be either attractive or repulsive. Therefore in general the electromagnetic wave of
this form does not necessarily confine a charge, this only happens under special
circumstances. Simple qualitative arguments could be given why this is the case. If
the force is slowly oscillating then in the repulsive regime the charge would not have
a bounded trajectory, and in general its time dependence is an exponential increase.
As soon as the sign of the force is reversed trajectory becomes bounded and therefore
it is confined to a limited space. Upon the next reversal of the sign the trajectory is
again unbounded with the rapid increase in the coordinate, and the result of these
successive reversals of sign is in general a non confinement of the charge. However, if
the time between the two reversals is short then on the average the charge is confined.

Equation (5.24) does not have a general solution, instead one takes into account
that vx0 is small compared to c, in which case one writes

cos (wt) cos [k (x0 + vx0t)] ≈ cos (wt) cos (kx0) − wt
vx0

c
cos (wt) sin (kx0)

(5.25)
and the zeroth order equation is

z̈ = −ε z cos (wt) (5.26)

where

ε = eka cos (kx0)

m

Solution is

z = b1C

(

0,− 2ε

w2
,
tw

2

)

+ b2S

(

0,− 2ε

w2
,
tw

2

)

where C (0, s, u) is even Mathieu function and S (0, s, u) is odd. It is typical of the
Mathieu functions that they could be given in the form

M(0, s, u) = eirug(u)

where g(u) is a function with the period 2π and r is their characteristic exponent.
In general r is either real or complex, and in the latter case trajectory for the charge
is not bounded. Therefore, depending on the arguments of the Mathieu functions
the charge is either confined or it is not. For the particular Mathieu functions in the
solution for the trajectory approximate condition that r is real is

|s| =
∣

∣

∣

∣

2ea cos (kx0)

mwc

∣

∣

∣

∣

< 0.9

or

η = ea

mwc
=

√
4πα�

mcw

√
P < 0.45
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where P is the modulus of the Poyting vector. The condition is well satisfied for
proton, the frequency of the field ν = 1015 s−1 and P = 1W/m2, when η ≈ 10−15.
For such a small parameter η the Mathieu functions approximate as

C (0, s, z) ≈ cos

(

s√
2
z

)

; S (0, s, z) ≈ sin

(

s√
2
z

)

and solution for trajectory is

z = z0 cos

(

ε√
2w

t

)

+ vz0

√
2w

ε
sin

(

ε√
2w

t

)

(5.27)

which oscillates with either the amplitude (approximate) zmax = z0 or

zmax =
∣

∣

∣

∣

∣

vz0

√
2

wη cos (kx0)

∣

∣

∣

∣

∣

whichever is greater. For confinement it is necessary that both amplitudes should be
approximately equal, in which case

∣

∣

∣

∣

∣

vz0

√
2

wη cos (kx0)

∣

∣

∣

∣

∣

= z0 ⇒ |vz0| ≈ |z0| wη√
2

A fundamental question is being now suggestive: is the uncertainty principle violated
for this condition? The principle requires that

|vz0| = dwη√
2

>
�

2md
⇒ d >

√

�

mwη
√
2

where d is the width of the probability density. For the parameters that were used
earlier the width should be greater than d > 8.5 × 10−5 m.

5.3.4 Gaussian Polarization

Results based on linearly dependent polarization with coordinate could be used for
analyzing more general functional dependence. In general, however, this depen-
dence should be of a particular symmetry. The argument is qualitative but it applies
for a general case. If polarization has a general functional dependence a(z) then it
is reasonable to assume that it is either symmetric function, i.e. a(−z) = a(z), or
antisymmetric, i.e. a(−z) = −a(z). As this function plays the role of a force then the
scalar potential that is derived from it is in the former case antisymmetric function
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Fig. 5.11 Typical
antisymmetric polarization
function with two extrema a(

z)

z

and in the latter it is symmetric. The first is a non binding potential and the latter is
binding, which means that symmetric a(z) does not stabilizes the probability density
in the z coordinate.

It is therefore reasonable to assume that dynamics of a charge is approximately
governed by the linearized polarization, inwhich case the dynamics equation is (5.26)
where

ε = ek
∣

∣a′(0)
∣

∣ cos (kx0)

m

with the approximate solution (5.27). Physically acceptable assumption for a(z) is
that it goes to zero for large |z|, and because it is antisymmetric function it is zero at
z = 0. From this general property it follows that in between these two extremes polar-
ization has a maximum/minimum at ±zmax, which are dividing points9: for smaller
|z| than zmax polarization is confining and for larger it is not. Typical function a(z) is
shown in Fig. 5.11. Based on this property of the polarization function condition for
confinement is that the trajectories should stay in the space |z| < |zmax|. However,
this means that the initial position of the charge should also be within these bounds,
and because approximate trajectories are given by

z = z0 cos

(

ε√
2w

t

)

+ vz0

√
2w

ε
sin

(

ε√
2w

t

)

(5.28)

then the condition implies

∣

∣

∣

∣

∣

vz0

√
2w

ε

∣

∣

∣

∣

∣

< zmax ⇒ |vz0| < zmax

∣

∣

∣

∣

ε√
2w

∣

∣

∣

∣

9Function a(z) may have several maxima but here the assumption is that there is only one.
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A possible functional form that describes the antisymmetric polarization function
with that general shape is

a(z) = a0ze
− z2

D2 (5.29)

for which the extremes are at

dza(z) = 0 ⇒ zmax = ± D√
2

However, it is not clear that such a choice could in principle bemade, but as discussion
in Sect. 3.3.4 showed it could be done but the question is of stability of this wave.
Here it is assumed that these conditions are met and proceed with the confinement
properties of it. As the consequence of the finite width of the wave scalar potential
appears, which is calculated from the Lorentz condition (3.7), and it is given by

V = a0
k

(

1 − 2z2

D2

)

e− z2

D2 cos (kx) cos(wt)

and so the Lorentz force, without the magnetic component because velocities of
charges are small, is

�F = ea0

(

1 − 2z2

D2

)

e− z2

D2 sin (kx) cos(wt) x̂ − ea0kze
− z2

D2 cos (kx) cos(wt) ẑ

where only the leading term in the z component was retained. The force along the
line of the wave propagation is small compared to the force along the direction of
polarization, it is of the order kD smaller, therefore it could be neglected in further
analysis. However, one should bear in mind that if fine effects are investigated then
this neglect is to be accounted for.

It is convenient to re-scale the coordinates and time in units of the wave length
λ of the electromagnetic wave. One writes for the coordinate z → z/λ and time
t → ct/λ, in which case equation for trajectory is10

z̈ = −εze− z2

D2 cos(2πt) (5.30)

where the coupling parameter is

ε = 2πeλa0
mc2

and D is dimensionless, being defined as a fraction of λ. It is more convenient to
relate the coupling parameter to the power that is transmitted by the plane wave, but

10For simplicity it is assumed that the effects due to the motion in the x direction are not essential
for investigating confinement in the z direction, and so the choice x = 0 is made.

http://dx.doi.org/10.1007/978-3-662-52878-5_3
http://dx.doi.org/10.1007/978-3-662-52878-5_3
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this time the Poyting vector has no meaning because the cross section of the beam
of the electromagnetic wave is finite. Instead one uses the total power as the relevant
parameter, which gives

W = 2π
∫ ∞

0
dz z 〈P(z, t)〉 = ck2a20

4

∫ ∞

0
dz z3e− z2

D2 = ck2a20D
4

32

The coupling parameter is now

ε = 4eλ2

mc2D2

√

2W

c
= 4λ2

mc2D2

√
2Wα�

and for the proton and the power W = 1W its numerical value is ε ≈ 3.3 ×
10−8λ2/D2.

For the initial phase space density one chooses

ρ0(z, vz) = Ne− z2

d2
−κ2d2v2z

where κ is the wave number for the proton. Even if a moderately large value for d,
say d = 10−8 m, the product κd is very large, being of the order κd ≈ 3 × 108. Such
a large parameter implies that typical velocities of the proton are so small that during
one oscillation of the field the proton makes a tiny move, whilst it should transverse
large distance before confinement sets in. Therefore one needs to calculate z(t) for
long time during which the oscillatory term in equation (5.30) makes large number
of oscillations.

The confinement problem could be solved approximately by noting that the cou-
pling parameter is small. In the first approximation, therefore, solution of the equation
is

z(0) = z0 + tv0

and together with the correction to it is

z = ε

(2π)2
z(0)e− z(0)2

D2 cos(2πt) − ε

(2π)2
z(0)e− z(0)2

D2 + z(0)

In the trajectory equation (5.30) the coordinate z is replaced by the approximate
solution, and subsequently the replacement z(0) → z is made. Averaging over time
gives

z cos(2πt) → ε

(2π)2
ze− z2

D2 cos2(2πt) → ε

2(2π)2
ze− z2

D2

and the force in the equation is now of the order ε2. Equation that one solves now is

z̈ = − ε2z

2(2π)2
e− 2z2

D2 (5.31)
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which does not have a rapidly oscillating component. This, however, means that the
charge moves in a time independent potential, which in this case is a potential well
of the width �z = D/2 and the height

V0 = Dε2

16π2
√
e

5.3.5 Quantum Dynamics

Classical dynamics in the previous analysis is very useful for getting insight into the
basic parameters that determine confinement, but for accurate results one need to use
quantum dynamics. The basic equation for the vector potential (5.23) is

2πi∂t f = −η

2
∂2
x f − η

2

[

∂z − i
ε

η
za(z) sin (2πt) cos (2πx)

]2

f (5.32)

where only the dominant term in the vector potential is taken and the scalar potential
is neglected. The equation is given in the same scaling as that used for equation (5.30),
where η = k/κ and κ = mc/� is the wave number of the charge. The parameter η
is very small, its value for proton and a typical wave length λ = 5 × 10−7 m of the
electromagnetic wave is η = 2. 642 8 × 10−9. By assuming that the width of the
electromagnetic wave is finite, with a typical functional form (5.29), the coupling
term for the same λ and the mass is

ε

η
= 2λ3

πcD2

√

2Wα

�
= 12

√
W

D2

where W is power in watts and D is in the units of λ.
In further analysis dependence on the x coordinate is neglected, because the inter-

est is to investigate the possible confinement along the polarization of the wave.
Equation to be solved is

2πi∂t f = −η

2

[

∂z − i
ε

η
za(z) sin (2πt)

]2

f

where η is small, which means that during one period of oscillations of the field,
which is T = 1, the probability amplitude does not changes appreciable. Linear term
in ε could be neglected and the term with ε2 averages to 1/2 and the equation is now

4π

η
i∂t f = −∂2

z f + ε2

2η2
[za(z)]2 f (5.33)
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and represents dynamics of a particle in a time independent potential, which is solved
by standard numerical methods. Approximation is valid under the condition that the
right side is small, in other words

η

4π

〈

−∂2
z + ε2

2η2
[za(z)]2

〉

<< 1

where the bracket indicates an estimate. For the second derivative one has

〈

∂2
z

〉 = 1

D2

which is assumed to be smaller than the estimate of the second term. The approximate
equation, therefore, fails when

〈

η

4π

ε2

2η2
[za(z)]2

〉

≈ ε2D2

8πη
� 1

Equation (5.33) describes dynamics of a particle in a potential well, which has a
typical shape as shown in Fig. 5.12. It is formally solved by writing solution as

f (z, t) =
∫ ∞

0
dE A(E)g(E, z)e−i ηE

4π t

Fig. 5.12 Effective
confining potential for a
charge in the
electromagnetic standing
wave with coordinate
dependent polarization

z2
 a

2 (
z)

z
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where g(E, z) satisfies stationary equation

Eg = −∂2
z g + ε2

2η2
[za(z)]2 g = −∂2

z g + V (z) g (5.34)

subject to appropriate boundary conditions. The simplest is to assume the scattering
boundary conditions, which should be defined in both asymptotic spaces z → ±∞.

Thus the two solutions are defined as

eikz + u+
r (E)e−ikz ←−

z→−∞ g+(E, z) −→
z→∞ u+

t (E)eikz

and
u−
t (E)e−ikz ←−

z→−∞ g−(E, z) −→
z→∞ e−ikz + u−

r (E)e+ikz

where k = √
E, and they are complex conjugate of each other, i.e.

[

g+(E, z)
]∗ =

g−(E, z). One derives a very important property for any two of these solutions by
forming a combination

(

E′ − E
)

g∗
1(E

′, z)g2(E, z) = g∗
1(E

′, z)∂2
z g2(E, z) − g2(E, z)∂2

z g
∗
1(E

′, z)

from which it is obtained

(

E′ − E
)

∫ L

−L
dz g∗

1(E′, z)g2(E, z) = g∗
1(E′, L)∂z g2(E,L) − g2(E,L)∂zg

∗
1(E′, L)

+g2(E,−L)∂zg
∗
1(E′, −L) − g∗

1(E′,−L)∂z g2(E,−L)

where the limit L → ∞ is assumed. It follows that

∫ L

−L
dz

[

g+(E′, z)
]∗

g−(E, z) = 0

whilst (the details of derivation are omitted)

(

E′ − E
)

∫ L

−L
dz

[

g+(E′, z)
]∗

g+(E, z) = 2(
√
E′ + √

E) sin
[(√

E′ − √
E

)

L
]

where it was taken into account that

∣

∣u+
r (E)

∣

∣

2 + ∣

∣u−
r (E)

∣

∣

2 = 1

From the definition of delta function (see C.1)

∫ ∞

−∞
dz

[

g±(E′, z)
]∗

g±(E, z) = 2πδ
(√

E′ − √
E

)

= 4π
√
Eδ

(

E′ − E
)
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From the two stationary solutions one derives the probability amplitude as

f (z, t) =
∫ ∞

0
dE

[

A+(E)g+(E, z) + A−(E)g−(E, z)
]

e−i 4πEη t

where the coefficients are

A±(E) = 1

4π
√
E

∫

dz
[

g±(E, z)
]∗
f0(z) (5.35)

where f0(z) is the initial probability amplitude. The most interesting energy range is
when E < max [V (z)], in which case solution g+(E, z), because the amplitude of its
incoming component is fixed to unity, is asymptotically

eikz + e−ikz+iα ←−
z→−∞ g+(E, z) −→

z→∞ ≈ 0

and similarly for the other solution. However, around certain discrete values of E the
probability amplitude undergoes a rapid change from this form into

eikz + u+
r (E)e−ikz ←−

z→−∞ g+(E, z) −→
z→∞ u+

t (E)eikz

which is parametrized as

eikz +
(

1 + γrEi

E − Er + iEi

)

e−ikz ←−
z→−∞ g+(E, z) −→

z→∞
γtEi

E − Er + iEi
eikz (5.36)

where Ei > 0 is small. There are discrete number of these energies, and so the
probability amplitudes could be parametrized as

g±(E, z) = g±
b (E, z) +

∑

n

γ±
n (E, z)

E − E(n)
res

where g±
b (E, z) is the background probability amplitude and γ±

n (E, z) is the residue
of the probability amplitude. E(n)

res is the resonance energy, which is complex with
a small negative imaginary part. It is important to note that both the background
and the residue of the probability amplitudes are smoothly varying functions of the
variable E. The probability amplitude is now

f (z, t) = fb(z, t) +
∑

n

∫ ∞

0

dE

E − E(n)
res

[

A+(E)γ+
n (E, z) + A−(E)γ−

n (E, z)
]

e−i ηE
4π t

and if the width of A±(E) is contained within the interval E < max [V (z)] then
the background probability amplitude fb(z, t) is negligible or not important. The
resonance term, however, has special significance because by shifting the integration
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path in E into the lower half complex plane one gets

f (z, t) ∼ −2πi
∑

n

[

A+(E(n)
res )γ

+
n (E(n)

res , z) + A−(E(n)
res )γ

−
n (E(n)

res , z)
]

e−i ηE(n)
res
4π t (5.37)

and diminishes in time with the decay rate of the form

f (z, t) ∼
∑

n

f (n)
res e

− ηE(n)
i
4π t

If imaginary part of a resonance is very small then this component of the probability
amplitude stays nearly constant for a long time, longer that any other contribution,
and so it acts as a bound state, but called quasi bound because it has no infinite
lifetime.

Calculation of resonance energies E(n)
res is therefore essential for understanding

confinement in a potential, however, it is not a simple task. The most straightforward
would be to integrate equation (5.34) for the known initial conditions, for example
by starting in the space z → ∞ with the boundary condition

g(E, z) = ei
√
Ez

and integrate the equation to z → −∞ and fit it to the asymptotic form

g(E, z) = c(E)eikz + d(E)e−ikz

and vary E until the coefficients undergo a rapid change, and find when it is maximal.
This task is far from being simple, and in fact entirely impractical because of severe
accumulation of numerical errors in the space of the potential barrier. However, even
if the coefficients are calculated there is still the task of obtaining complex resonance
energies, most importantly their imaginary part. Therefore that integration should
have been done for complex E with negative imaginary part, and find the roots of
equation

c(E) = 0

which, by definition, defines resonance energies. Again, this is not a simple task
because for complex E the probability density increases exponentially with z, thus
also contributing towards severe numerical instabilities. This implies that all the
numerical methods must relay on using real values of E, however, in that case no
resonance energies could be calculated, except by perturbationmethod. The equation
to be solved by perturbation for the resonance energy is

c(Eres) = c(E0 + E1) ≈ c(E0) + E1 c̊(E0) = 0
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where the dot designates derivative with respect to E. E0 is real approximation to the
resonance energy and E1 is complex correction that contains its width. Resonance
energy is then approximately

Eres ≈ E0 − c(E0)

c̊(E0)
(5.38)

and the energy derivative of solution g(E, z) satisfies equation

g + E g̊ = −∂2
z g̊ + V (z) g̊ (5.39)

5.3.5.1 Properties of Resonances

One model example illustrates properties of resonances in a potential well that is
discussed in Sect. 5.3.5, but somewhat more general by being asymmetric

V (z) = (

z + z2
)

e− 1
25 z

2

which is shown in Fig. 5.13.
By definition probability amplitude for a resonance state that is formed inside a

potential well, i.e. for E < 7 in Fig. 5.13, have the same property as for a bound state.
Thismeans that it decrease exponentially through the potential barrier at both its ends,
but instead of going asymptotically to zero it goes to a finite, but small, value, which
in this respect makes resonance different from a bound state. Locating the energies at
which resonances are formed is therefore the first task, which is done by integrating
equation (5.34) from both ends of the potential. One fixes z1 on the left side of the
potential and z2 on the right, both far away from it, and assumes that g (z1) = g (z2) =
0 whilst derivatives are arbitrary, say g′ (z1) = g′ (z2) = 1. Equation (5.34) is then
integrated towards the origin, say a point z0 inside the potential, and E is varied until

Fig. 5.13 Model potential
that is typical of asymmetric
confining potential

-20 -10 0 10 20
0

5

10V(
z)

z
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the log-derivative g′/g of both branches are identical. In other words, if solution from
the left is g1 whilst that from the right is g2 then one is looking for a root of equation

δ(E, z0) = g′
1(z0)/g1(z0) − g′

2(z0)/g2(z0) = 0

The plot of function δ(E, z0) is shown in Fig. 5.14, fromwhere one finds that there are
5 solutions of equation (5.34) that satisfy the imposed boundary condition, except the
one encircled. In general the curve δ(E, z0) is a smooth function of E, except for few
singularities where solution g(z0) goes through zero. However, there are very narrow
intervals ofEwhere this change is very rapid, as indicated by a circle, andwithin them
the curve δ(E, z0) has also a zero value. The corresponding probability amplitude is
not representative of a bound state, in fact its modulus is at the minimumwith respect
to its value outside of potential well, and in this respect it is like an “anti-bound”
state.

For the obtained En one solves the following boundary problem. For the positive
and large z it is assumed that solution of equation (5.34) is in the form

g+
2 (z) = ei

√
Enz

and the equation is integrated from z2 to z0. For z negative and far away from the
potential two solutions are assumed with the boundary conditions

g±
1 (z) = e±i

√
Enz

and the equation is integrated from z1 to z0. At the mid point all three solutions are
joined smoothly into the connection

c eikz + de−ikz ←−
z→−∞ g+

r (E, z) −→
z→∞ eikz (5.40)

Fig. 5.14 Functional
dependence of the difference
of logderivatives on E for
potential in Fig. 5.13 for a
given boundary condition
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Table 5.1 Resonance energies for potential in Fig. 5.13, and estimates of their widths by the WKB
tunneling probabilities

n En � Ptunn

1 0.7216 −4.354 × 10−10 1.3 × 10−15

2 2.5916 4.151 × 10−11 2.7 × 10−10

3 4.3171 2.411 × 10−7 1.7 × 10−6

4 5.8695 2.193 × 10−4 1.8 × 10−3

5 7.1647 0.0376 0.38

and resonances are calculated from equation (5.38) where E0 = En. In the perturba-
tion formula one still needs solution of equation (5.39) with the boundary conditions
in the space z → ∞ that is appropriate for the solution g+

r , and these are

g̊+
r (E, z) = iz

2
√
En

ei
√
Enz , dzg̊

+
r (E, z) = i

2
√
En

ei
√
Enz − z

2
ei

√
Enz

The equation is integrated backwards to z → −∞ by using already obtained solution
g+
r (z). The energy derivative of the coefficient c(E) is then

c̊(En) = e−ikz1

2ik

[

ikg̊+
r + dzg̊

+
r −

(

iz1
2k

+ 1

2En

)

dzg
′+
r + z1

2
g+
r

]

where k = √
En. Resonance energy is then given by equation (5.38).

“Bound” state energies and the (negative) imaginary part of resonance energies
� = − Im(Eres) are given in Table 5.1. All except the first have the correct sign,
which is attributed to extremely narrow energy width of resonance and this causes
numerical instabilities in calculation. However, these widths could be approximately
calculated by another method that is based on theWKBmethod for solving equation
(5.34). From the method one calculates the tunneling probabilities

Ptunn = e−2
∫ b
a dz

√
V (z)−En

where a and b are the turning points of kinetic energy in the lower potential barrier,
which gives reasonable widths as shown in Table 5.1. Although they are nearly
an order of magnitude larger than the resonance widths, nevertheless as the quick
estimates they are valuable data.

5.3.5.2 Confinement of Quantum Particle

Based on the classical analysis in Sect. 5.3.4 the potential (5.29) supports bound
states, however, quantum analysis should give a more precise answer and one of
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them is that bound states are not formed but resonances of certain lifetime. This
is shown here by calculating resonance energies for those examples, by using the
method that is described in Sect. 5.3.5.

The choice D = 10 is analyzed first, for which ε = 10−9 and η = 2.64 × 10−9.
One finds 3 decaying states, whose widths are calculated from equation (5.38), how-
ever, they are in the units that are not directly related to their real lifetimes. These
are obtained by using expansion (5.37) and express each term in the form

f (z, t) ∼ e−i ηE(n)
res
4π t ∼ e− t

�

and by recalling the units that are used here then

ηE

4π
t → η2E

8π2

mc2

�
t = t

�

or

�m = 8π2

η2
∣

∣

∣Im
(

E(m)
res

)∣

∣

∣

�

mc2

Numerical values for each decaying state are given in Table 5.2, and they range from
very long to short lived, however, the short lived are still long on the scale of typical
motion in the confining potential (Fig. 5.15).

Similar analysis for parameter D = 1 in Sect. 5.3.4 does not produces any decay-
ing state, thus contradicting the classical prediction. As already mentioned, clas-
sical study did not have the aim at giving precise prediction, but indication that
bound (decaying) states could be formed. However, such contradictory predictions
are expected when the potential marginally supports one or two states, but when
there are more than both are in agreement.

Interesting question to analyze is time evolution of an initial probability density
of a width d (in units of λ), which is centred around z = 0 and for simplicity it is
symmetric. As an example a Gaussian probability amplitude is taken

f0(z) = Ne− z2

2d2

Table 5.2 Resonance
energies and their lifetimes
for a confining potential

m Eres �/s

1 0.252 − i 1.46 × 10−9 5443

2 0.721 − i 9.71 × 10−6 0.818

3 1.103 − i 2.64 × 10−3 3.01×10−3
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Fig. 5.15 Decaying states in
confining potential (black
line)
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which gives probability amplitude in momentum space (in non scaled parameters)

G0(p) = Ne− d2p2

2�2

From this momentum distribution one derives a quantity that is of particular interest
in theoretical modelling, the time that it takes for a free particle to spread over the
range of potential whose width is D. This quantity gives an indication of the relative
importance of the decaying states in the time evolution of the probability density.
The time could be defined as

tspread = D

v

where v is average velocity of particle, which is approximately v = �/(md). The
right side is now transformed into the units in terms of λ, when

tspread = 8π2D

wη
√
E

≈ 4π2dD

wη
(5.41)

where w is the angular frequency of the standing wave. For the parameters that
were used in Table 5.2 the spreading time for the free probability density is tspread =
4 × 10−5 s, which is short even for the fastest decaying resonance.

In the process of confinement it is important to calculate what fraction of the
initial probability density stays within the potential well, bound in decaying states.
The unbound components of the probability density leave the confining potential
in time (5.41) and therefore by the bound components it is meant those that decay
with the much longer lifetime than this. Formally this fraction should be obtained by
calculating

f0(z) =
∫ ∞

0
dE

[

A+(E)g+(E, z) + A−(E)g−(E, z)
]
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where the coefficients are given by equation (5.35), but one should be careful about
the exact procedure. Initial idea is to assume that the resonance states are like bounds
states, they are normalized to unity and then for them the relevant projections are
obtained as in expansion in a complete set of discrete functions.Whilst this procedure
might be plausible for the resonance states with very narrow width, it does not have
meaning for thosewithwider because they have a non negligible tail outs the potential
well, and hence they are not normalizable. Therefore the answermust be derived from
the first principles, and this is to start from the fact that f0(z) is normalized to unity,
which means

∫

dz |f0(z)|2 = 4π
∫ ∞

0
dE

√
E

[

∣

∣A+(E)
∣

∣

2 + ∣

∣A−(E)
∣

∣

2
]

= 1

The coefficient A+(E) is calculated from equation (5.35)

A+(E) = 1

4π
√
E

∫

dz
[

g+(E, z)
]∗
f0(z)

but the irregular solution g+(E, z) is not normally calculated, instead one does that
for the regular one, which is defined by the boundary condition (5.40). However, the
two are related and so the coefficient is

A+(E) = 1

4πc∗(E)
√
E

∫

dz
[

g+
r (E, z)

]∗
f0(z)

and because in vicinity of a resonance energy Er one has approximately

1

c(E)
≈ iEiγt (Er)

E − Er + iEi
eiδt(Er)

the coefficient is finally

A+(E) = − 1

4π
√
Er

iEiγt (Er)

E − Er − iEi
e−iδt(Er)

∫

dz
[

g+
r (Er, z)

]∗
f0(z)

It was assumed that near the resonance energy the regular solution g+
r (E, z) is nearly

constant because it is essentially determined by the boundary condition at z → ∞,
which is nearly constant in the same vicinity.

From the amplitudeA+(E) one calculates contribution to the probability of finding
particle in the resonance state with the energy Er

P+
r = 4π

∫

Er

dE
√
E

∣

∣A+(E)
∣

∣

2

= |γt (Er)|2
4π

√
Er

∣

∣

∣

∣

∫

dz
[

g+
r (Er, z)

]∗
f0(z)

∣

∣

∣

∣

2 ∫

Er

dE
E2
i

(E − Er)
2 + E2

i
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Similarly the contribution from A−(E) is calculated, but for real and symmetric f0(z)
it is equal to the contribution from A+(E), therefore the total probability is

Pr = Ei |γt (Er)|2
2
√
Er

∣

∣

∣

∣

∫

dz
[

g+
r (Er, z)

]∗
f0(z)

∣

∣

∣

∣

2

For d = 1 the probability to find the particle in state m = 1 is P1 = 0.245 whilst
in statem = 3 it isP1 = 0.115 (in statem = 2 the probability is zero because of sym-
metry), which is about one half of that predicted by classical mechanics in Sect. 5.3.4.

5.4 Extreme Confinement

5.4.1 One Particle

By extreme confinement one understands that a particle is localized within a very
small volume, the definition that needs clarification. A small volume is the one in
which average momentum of a particle implies that its velocity is very close to
the speed of light, as deduced from uncertainty principle. If a particle of mass m is
confined to a space of radius r0 then by the uncertainty principle its typicalmomentum
is

p = �

2r0

and velocity

v = pc
√

c2m2 + p2
= c

√

4κ2r20 + 1

where κ = mc/� is the Compton wave number. For a Hydrogen like atom with Z
protons, and Zr0 being the Bohr radius of the ground state, velocity of the electron is
v ≈ 3.6 × 10−3 cZ, and even for a nucleus with large Z it is non-relativistic. On the
other hand if the electron is confined to a nucleus, with a typical radius r0 = 10−15 m
then it has velocity v ≈ 0.99999c whilst that of the proton is v ≈ 0.1c, which is
nearly relativistic.

Dispersion of momenta due to the uncertainty principle has a very important
impact on dynamics of particles. One particular consequence is discussed in the
context of a decaying system, in Sect. 5.1.2. In here discussion is devoted to the
change in mass of a particle due to this effect. The mass effect, on its the most
elementary level, is derived by calculating the relativistic energy due to the dispersion
of momenta. The simplest distribution is
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P (p) = d3

�3π3/2
e− d2p2

�2

where p is momentum of particle. The mass of particle is then its relativistic energy
equivalent

m = 1

c

∫

d3p P (p)
√

m2
0c

2 + p2

where m0 is its rest mass. Definition of the rest mass should be carefully examined,
but at this point it is used as an arbitrary parameter. For the Gaussian distribution the
mass is

m = cdm2
0√

π�
e

c2d2m20
2�2 K1

(

c2d2m2
0

2�2

)

whereK1 (u) is Bessel function. In the non-relativistic limit d → ∞ the mass has the
value m = m0, with the correction of the order d−2. The rest mass is now defined as
that which corresponds to a particle delocalized over the whole space. On the other
hand in the relativistic limit for small d the mass of particle is

m ≈ 2�√
πcd

(5.42)

and irrespective of its rest mass m0. Similar analysis for more general distributions
give the same result, thus for example for the Hydrogen atom this limit gives the
same order d−1 and with approximately the same coefficient.

If particle has the overall relativistic momentum−→p 0, with the property
p0d
�

>> 1,
then its relativistic energy is

m = 1

c

∫

d3p P (p)
√

m2
0c

2 + (−→p − −→p 0
)2

and by expanding it for large p0 the dominant terms are

m = p0
c

+ cm2
0

2p0
+ �

2

2cp0d2
+ O

(

k−3
0

)

The expression is approximation of

m ≈ 1

c

√

p20 + m2
0c

2 + �2

d2

which means that the rest mass m0 is modified by

m2
0 → m2

0 + �
2

c2d2
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thus giving the same estimate for the change in mass as earlier, i.e. correction is of
the order d−1.

Previous analysis is demonstrated on the experiments with elementary particles,
and one example is decay of charged negative pion into a muon and muon antineu-
trino. Initially pion, like in almost all other examples, is moving with relativistic
velocity, resulting from collision of, say, two protons. Previous analysis, however,
assumes that decay takes place in the rest frame of pion, when it is greatly simplified,
and so direct comparison of theory with the experimental evidence should take this
fact into account. The objective of this simplification is to emphasize the role of
confinement and the consequences on kinematics and dynamics of particles, and the
example is pion.

Mechanism that leads to decay of pion is of no consequence on the outcome of
the subsequent kinematics. The fact is that muon is produced (muon antineutrino is
not essential in the analysis, only in determining initial conditions) within the size
of pion, which determines initial probability density for its position. Initial overall
momentum of muon is determined from the energy and momentum conservation
laws, and by assuming that the rest mass of antineutrino is zero the two laws give

p0
mc

= k0 = 1

2mπ

(

m2
π − m2

μ

) = 59

where m is mass of the electron. Mass of pion and muon are with respect to the
mass of the electron. Radius of pion (charged) is approximately 7 × 10−16 m and if
this is assumed to be the size of confinement for the muon then its mass (5.42), in
the units of the electron mass, would appear to be mμ ≈ 622. This value exceeds by
far all that is known about the mass of muon, and therefore it should be assumed
that its initial confinement is orders of magnitude larger. For the extreme case of the
radius of confinement 10−12 m stability of the initial probability density is preserved
up to time (5.5), which in this example is t ≈ 10−18 s. It appears that the probability
density spreads fast, so fast that experimental detection of muon would be almost
impossible. At infinite time, however, the probability density spreads by angle (5.6),
and in this example it is α ≈ 6.5 × 10−3 rad, which means that it looks like a very
collimated beam enabling detection of muons.11

The true test of the impact of momentum distribution on the mass of a particle
is to do dynamic calculations, essentially “mass time acceleration equals force”.
The problem with this test is that one can do this analysis provided the coordinate
probability distribution stays stable for sufficiently long time. There are two ways
to achieve this, one is that the particle has relativistic velocity, when according to
discussion in Sect. 5.1.1 the coordinate probability density is stable. The other way
is to do the test on a bound particle, for example on a Hydrogen like ion where the
increase of its mass is due to the confined electron.

11This conclusion does not take into account other effects in detection of elementary particles,
which are not reviewed here.
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5.4.1.1 Force on Unbound Particle

The mass effect is analyzed for an unbound particle when it has large momentum p0
in the x direction and the force that is applied is constant and perpendicular in the
z direction. The idea is that if there is an effect on the mass of the particle which
arrises from the momentum distribution then the solution for the average trajectory
would be different from that which is expected from classical relativistic dynamics.12

According to it particle that has momentum p0 is introduced in dynamics equations
with the increased, relativistic, mass. More precisely, relativistic dynamics equation
for a particle that is subject to the force

−→
F is

dt
−→p = dt

⎛

⎝

m
√

1 − v2

c2

−→v
⎞

⎠ = dt
(

γ−→v ) = −→
F (5.43)

where −→v is its velocity and γ is its relativistic mass. Before further steps it is con-
venient to work with scaled variables, thus one introduces k = p/ (�κ) instead of
momentum, d stand for dκ and τ = ctκ, where κ = mc/� is Compton wave number.
For a particle that is subject to a constant force in z direction, with general initial
conditions, solution of equation (5.43) is

x = x0 + kx0u, y = y0 + ky0u, (5.44)

z = z0 +
√

1 + −→
k 2 −

√

1 + −→
k 2

0

F

where

u = 1

F
log

kz +
√

1 + −→
k 2

kz0 +
√

1 + −→
k 2

0

,
−→
k = −→

k 0 + τ
−→
F

Variables with the subscript 0 are their initial values at τ = 0.
Initial phase space density is

ρ
(−→r ,

−→
k , τ

)

= Ne
− r2

d2
−d2

(−→
k −−→

k 0

)2

and its time evolution is obtained by replacing−→r with (5.44) but τ is replaced by−τ .

Momentum
−→
k is replaced by

−→
k − −→

F τ . Resulting expression is quite complicated
but one is not interested in detailed structure of the coordinate probability density

12It should be noted here that the tracks which the charged elementary particles produce in detectors
are analyzed precisely in this way.
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but the average coordinate in the z direction, along which the force is applied. This
average is

z (τ ) =
∫

d3r d3k z ρ
(−→r ,

−→
k , τ

)

where the integrals in the coordinates and ky could be evaluated without too many
difficulties. The result is

z (τ ) =
∫

dkx dkz Z (kx, kz, τ )

where

Z (kx, kz, τ ) = N

F
e−d2P2(kx,kz−Fτ )U

(

−1

2
, 0, d2P2 (kx + k0, kz)

)

−N

F
e−d2P2(kx,kz−Fτ )U

(

−1

2
, 0, d2P2 (kx + k0, kz − Fτ )

)

where
P2 (kx, kz) = 1 + k2x + k2z

U (a, b, u) is hypergeometric function. From the relativistic assumption for k0 it fol-
lows that the argument u inU (a, b, u) is large, when one replaces it by its asymptotic
expansion

U (a, b, u) ≈ √
u + 1

4
√
u

Z (kx, kz, τ ) is now a function of P (kx − k0, kz) with large k0 and small other para-
meters, the fact to use to expand combination of the hypergeometric functions for
large k0. The result is a combination of powers in kx and kz when the integrals could
be evaluated with the result (non scaled variables are used)

z (t) ≈
(

1 − m2c2

2p20
− �

2

4d2p20

)

cFt2

2p0
≈ cFt2

2
√

p20 + m2c2 + �2

2d2

The dominant term is relativistic trajectory for a point-like particle under the impact
of a constant force, but with a correction to its rest mass. This correction is only
dependent on the width of the probability density.

5.4.2 Two Particles

Two particles that are bounded together, and the system as the whole is confined
within a small space, should be analyzed within relativistic dynamics. Transition
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from non relativistic to relativistic dynamics is not straightforward, and even for
a single particle some of the problems are revealed in Sect. 5.4.1. Difficulties that
are encountered when treating more than one particle are much greater, even to the
extent that one could assume to be insurmountable. Few of these problems shall
be discussed here on a simplified model, but two the greatest should be mentioned.
One is that with each particle one should associate its own time, therefore for two
particles there is no unique time variable that is used for describing their dynamics.
Their dynamics should be treated with the invariant time, and in quantum dynamics
it is not clear what it should be. The second problem is that one should taken into
account finite speed of propagation for theirmutual interaction. If this is done then the
two particle system is not a solvable dynamics unless some simplifying assumptions
are made. The source of the problem is that the initial conditions are not well defined,
in particular force that acts between the particles (for more details see [9]).

Before attempting to analyze twoparticle relativistic systems, however, one should
select the problems of interest. In fact there are not many examples of the systems
that one should attempt to analyze, for example, one is Hydrogen like Uranium ion.
Strictly speaking this ion ismarginally relativistic,muchbetter examplewould be, say
the neutron as a bound state of proton and the electron. This, however, is dismissed as
a non physical problem because the structure of the neutron has different description.
The same is with the other elementary particles. Therefore discussion that follows
could be treated as an exercise to describe problems, and the effects, that result from
treating relativistically a two particle system.

The simplest system to analyze consists of a heavy particle and a light one (for
example proton and the electron) mutually bound by a scalar potential.13 In the
examples like this a simplification is possible: dynamics of the heavier particle could
be treated as non relativistic and therefore one could define universal time variable.
Further simplification is that a one dimensional problem is treated, however, the con-
clusions are of a general nature that could be applied for systems in three dimensions.
Additionally it is assumed that a constant, but time dependent, force is applied on
the particle with large mass.

Classical equations of motion for this system are

q
··
X = F (t) − G (x − X) , dtp = G (x − X)

where X is the coordinate of the particle with large mass, q = M/m is the ratio of
the large and small mass and

p =
·
x

√

1 − ·
x
2

c2

.

The force between the two particles is G (x − X) and it is normalized with respect
to m.

13Again an approximation because this is not relativistically invariant interaction. Justification for
it is that one of the partner particles has large mass and therefore moves non relativistically.
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From the equations one derives two essential conservation laws. One is conser-
vation of momentum law, which is given by

d

dt
(p + P) = F (t) (5.45)

where

P = q
·
X

If the external force is zero the total momentum is constant. The other is conservation
of energy law, and for relativistic particle it is derived from equation for the fourth
component of the four momentum

d

dt
p4 = ·

xG (x − X) = −·
x∂xV (x − X)

where
p4 =

√

1 + p2

and it is assumed that the force G is derived from a scalar potential V . By com-
bining equation for p4 with the one for the non relativistic particle it is shown that
(contribution from the external force is neglected)

p4 + 1

2q
P2 + V (x − X) = E

is conserved, the total energy of the system. In the non relativistic dynamics for both
particles the total energy could be conveniently divided up into contributions from
themotion of their centre of mass and their relativemotion (in the scaling here energy
is normalized with respect to m)

Enr =
( ·
x + P

)2

2 (1 + q)
+

q

(

·
x − ·

X

)2

2 (1 + q)
+ V (x − X)

This is the necessary step towards reducing the problem from a two particle dynamics
into a single particle dynamics in the relative coordinates. Motion of the centre of
mass is associated with the conservation of the the total momentum for the two
particles. When the motion of one particle is relativistic the same fragmentation of
the total energy is in a more complicated form. The details are omitted and the final
result is

E = 1

2

(

p4 + 1

p4

)

+ (p + P)2

2 (p4 + q)
+ qp4

2 (p4 + q)

(

p

p4
− P

q

)2

+ V (x − X) (5.46)
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where one recognizes the same structure as in the non relativistic dynamics except for
the first term, which in the limit of small velocity is the energy equivalent of the rest
mass. Furthermore, each term is a function of p4, therefore a function of p, and this
means that in two particle relativistic dynamics there is no way one could disentangle
motion of their centre of mass (the second term) from that for their relative motion
(the third term).

Solving dynamics of the system when external force is applied requires formu-
lation of initial phase space density, for which certain assumptions should be made.
One is that initial, average, total momentum of the system is zero. The next is that
bound state of the two particles is stationary, the assumption that could be made in
the nonrelativistic dynamics because their relativemotion is disentangle from that for
their centre of mass. In the relativistic dynamics this disentanglement is not possible
and therefore a more general assumption should be made. By a general theorem a
stationary phase density is a function of dynamic invariants (conservation laws) and
one of them is the total energy for the system of, in this case two, particles. This
means that in relativistic dynamics the total energy for two particles (5.46) should be
used as dynamic invariant. Another dynamic invariant is the total momentum of the
system, and through the functional dependence of the phase space density on it one
defines its initial value. Yet another dynamic invariant is the total angular momentum
of the system, but in this discussion it will not be considered.

For those initial conditions the phase space density should be a function of total
energy and the total momentum of the two particles.14 Indeed the initial phase space
density is stationary but in the trivial sense. The total energy is function of only
the relative coordinates of the two particles and therefore the phase space density is
spread over the whole space and as such stationary, regardless of nonrelativistic or
relativistic dynamics. The term that is missing is localizing the system as the whole
around certain point in space and for that one uses the coordinates for the centre of
mass and this parameter needs some discussion. Total momentum of the two particles
is well defined, and it is the invariant of motion if no force is applied, as it follows
from (5.45). In non relativistic dynamics centre of mass is deduced from this law,
however, the same is not possible in the relativistic dynamics and therefore it should
be defined as its generalization. From (5.46) it could be inferred that the variable p4
plays the role of mass for the relativistic particle and then the obvious definition for
the centre of mass coordinate is

xcm = qX + p4x

q + p4

14It should be noted that the total energy, both in nonrelativistic and relativistic dynamics, has term
with the total momentum of the particles. In the former this term could be omitted, being replaced
by explicit reference in the phase space density by the total momentum. In the latter this is not
possible and therefore the total momentum term appears in two places.
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Phase space density has therefore a functional form

ρ (x,X, p,P) = f

(

E, d2x (p + P)2 ,
x2cm
d2x

)

from which the average total energy E

Eav =
∫

dx dX dp dP E f

(

E, d2x (p + P)2 ,
x2cm
d2x

)

,

has contribution from two terms with the total momentum. The same is also true
in nonrelativistic dynamics if this term is not omitted from the total energy, and a
model example is analyzed in order to demonstrate how this affects Eav . Convenient
functional form of the phase space density is assumed with a note that in classical
dynamics there is no restriction on its choice, and also bound state energy is not
quantized. The simplest is to choose exponential function, in which case phase space
density is (scaling is the same as in Sect. 5.4.1)

ρ = Ne
− E

de
−d2x (p+P)2− x2cm

d2x

where the uncertainty principle is incorporated by the choice of the widths for
momentum and coordinate variables. The parameter de is the measure for the width
of (5.46) whilst dx gives the range of the confinement for the system as the whole.
From the phase space density one calculates the average total energy of the system,
which is given by

Eav = N
∫

dx dX dp dP Ee
− E

de
−d2x (p+P)2− x2cm

d2x

Potential is assumed for harmonic oscillator

V (u) = 1

2
ω2u2

when Eav is

Eav = de + 1

1 + 2de
d2x
�2 (m + M)

de
2

where the parameters are again non-scalled. The total energy equals essentially to
de, in particular in the limit of infinite delocalization of the system, dx → ∞.
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5.4.2.1 Classical Dynamics of Bound States

Before further analysis it is instructive to discuss relativistic theory of bound states
and the problems one encounters. They are reviewed on a one dimensional example
of a particle in harmonic oscillator. There are two basic quantities that play important
role in relativistic dynamics, one is momentum of particle and the other its velocity.
The first is very important because one of the basic laws, conservation of momentum
law, could be formulated, and the other is that it has the property, together with
its fourth component, of the relativistic four vector. On the other hand velocity is
a directly measured quantity given as the time rate of coordinates, the two basic
parameters of dynamics. The two quantities are related by a parameter, the mass of
particle, which is by default taken positive because it essentially measures amount of
matter. However, there is nothing to prevent defining the mass parameter negative,
one could very well use the existing force law but the force should have to be defined
with the opposite sign. On the other hand if the sign of the force is not changed then
the two signs of the mass describe two separate space regions where the particle
moves. This is best described from the expression for the total energy of the particle
(for harmonic force)

E = p2

2m
+ k

2
x2

If the mass is positive that he trajectory of the particle is bounded within the interval

−
√

2
k E < x <

√

2
k E whilst if it is negative then it moves in the intervals x >

√

2
k E

or x < −
√

2
k E. In both cases trajectories are solution of the force law, except that

when the mass is negative velocity of particle points in opposite direction to the
momentum.

The discussion about mass appears rather artificial but it is not so in relativistic
dynamics. The basic equations of relativistic classical dynamics are (there are now
four equations, three for the spatial coordinates and one for the time coordinate)

dt
−→p = −→

F , dtp4 = −→v · −→
F

where −→v is velocity of the particle and

−→p = m−→v , p4 = mc2

where
m = m0γ = ± m0

√

1 − v2

c2

Relationship between momentum −→p and velocity −→v is formally the same as in the
non relativistic dynamics except that now what one calls mass is no longer a fixed
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parameter, and furthermore it has arbitrary sign. This mass is called kinematic mass
in order to distinguish it from the (rest) mass m0 in the non relativistic theory. By
convention, but mainly to be in the unison with non relativistic dynamics, the sign of
the mass is chosen positive. However, this choice, if it is not treated carefully, may
lead to missleading conclusions. In order to see this one derives the conservation law
from that set of equations, by assuming that the force is a (negative) gradient of a
scalar function V

(−→r )

, the potential. By combining together the four equations one
gets the fundamental relationship

p24 − c2p2 = m2
0c

4 (5.47)

and from the fourth equation
p4 = E − V

where E is defined as the total energy of the particle and it has arbitrary sign. As
it was mentioned, the concept of momentum is important but it is velocity that has
physical significance,15 which is deduced from the relationship (5.47)

v = c2

|E − V |
√

1

c2
(E − V )2 − c2m2

0 ≡ p

|m| (5.48)

In this relationship positive sign is implicitly assumed for the square root and also
absolute value of mass. It follows from (5.48) that velocity is real in two disjoint
intervals, which are divided by the interval where the square root is imaginary. This
means that a particle could move even in the interval where its potential energy
greatly exceeds its kinetic energy, which in non relativistic dynamics is forbidden,
however, provided its mass is fixed positive. On the other hand if in non-relativistic
dynamics mass is taken negative then in that region velocity is real. In order to bring
the two findings in agreement velocity of the particle is defined more precisely as

v = c2

E − V

(

E − V

c
− cm0

)1/2 (

E − V

c
+ cm0

)1/2

This form has another important property, which must be satisfied in both classical
and quantum dynamics, it is analytic function of the coordinates. Without satisfying
it many erroneous conclusions are easily obtained.

Nonrelativistic limit is defined when kinetic energy of particle is much smaller
than the energy equivalent of its rest mass m0c2. Although one should also apply
the same reasoning for the potential energy, however, for harmonic oscillator, in
principle, the potential may go to infinity yet kinetic energy of the particle could

15One should be careful when using the term “physical significance”, in this context it is meant
that velocity does not have arbitrary signature whilst momentum does.
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be non-relativistic. One writes E = m0c2 + En and because En is small velocity is
approximately

v ≈ c2

−V + c2m0

√

2cm0 − V

c

√

En

c
− V

c

The expression simplifies further for small V , for example around the equilibrium

point of harmonic oscillator, when v ≈
√

2
m0

√
En − V , which is awell known expres-

sion for a particle whose total energy is En. On the other hand, when V > 2m0c2

then velocity is again real which agrees with the previous discussion about the sign
for the mass of particle.

For potentials that go to infinity at large distances classical relativistic, but also
non-relativistic, dynamics allows particle to move in twomutually disjoint regions of
space. Between the two regions there is a barrier that prevents particle to get across
from one to the other, however, in quantum dynamics the barrier is not the obstacle
because of the tunneling effect. The implication is that such potentials do not support
bound states.

It is entirely different situation with potentials that have finite well depth, for
example harmonic potential that has a finite height V0. For convenience one could
shift the potential to have negative well depth −V0 in which case if −m0c2 < E <

m0c2 then particle could only move in one region and in this energy range particle
is bound. For E < −m0c2 particle again could move in two space regions and for
E > m0c2 it moves in the whole space.

If the well is very deep, and |E| is smaller than m0c2 (bound state regime) then
velocity of the particle is

v ≈ c − m2
0c

5

2V 2

and its mass is m ≈ V/c2.

5.4.2.2 Quantum Dynamics

Strictly speaking bound state problems should be treated within quantum dynamics,
and as discussed in Chap.2 Dirac set of equations is the proper to use.16 For a particle
in a scalar potential V this set is (in the scaling with the Compton wave number for
the electron)

i∂tF = −i�S · ∇G + VF + F, (5.49)

i∂tG = −i�S · ∇F + VG − G.

16Chapter 2 is devoted to relativistic dynamics, and here the emphasis is on bound states.

http://dx.doi.org/10.1007/978-3-662-52878-5_2
http://dx.doi.org/10.1007/978-3-662-52878-5_2
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where F and G are two component single row matrices and the spin matrices �S
(details of Dirac equations are found in Sect. 2.3.4). This set is solved by writing

F =
∫ ∞

−∞
de f (�r, e) e−iet, G =

∫ ∞

−∞
de g (�r, e) e−iet (5.50)

where now the functions f and g satisfy equations

ef = −i�S · ∇g + V f + f , eg = −i�S · ∇f + V g − g (5.51)

For spherically symmetric potential solution is factored in a product of angular and
radial functions

f
(−→r ) = 1

r
F (r) � (θ,φ)

and similarly for the function g.
Time evolution of the probability amplitude (5.50) for a spherically symmetric

potential reduces to time evolution of its radial component. By omitting from analysis
the angular functions, and by replacement F → F/r and G → G/r one has

F =
∫ ∞

−∞
de A (e) f (r, e) e−iet, G =

∫ ∞

−∞
de B (e) g (r, e) e−iet

If the radial functions are defined with the asymptotic limit r → ∞ (it applies only
for those that represent unbound states)

f (r, e) ⇒ cos
[

r
√

e2 − 1 + δ (e)
]

g (r, e) ⇒
√
e2 − 1

1 + e
sin

[

r
√

e2 − 1 + δ (e)
]

one shows that they are normalized as

∫ ∞

0
dr

[

f
(

e′) f (e) + g
(

e′) g (e)
] = π

√

e − 1

e + 1
δ

(

e′ − e
)

(5.52)

From their asymptotic limit one could also show that individual radial functions are
normalized as

lim
r→∞

∫ R

0
dr f (r, e) f

(

r, e′) = π
√
e2 − 1

2 |e|
[

δ
(

e′ − e
) + δ

(

e′ + e
)]

,

lim
r→∞

∫ R

0
dr g (r, e) g

(

r, e′) = π
√
e2 − 1

2 |e|
[

e − 1

e + 1
δ

(

e′ − e
) − δ

(

e′ + e
)

]

http://dx.doi.org/10.1007/978-3-662-52878-5_2
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which is consisted with the normalization (5.52). The coefficients are then

A (e) = |e|
π
√
e2 − 1

∫

f (r, e)F0 (r) dr

B (e) = |e|
π
√
e2 − 1

e + 1

e − 1

∫

g (r, e)G0 (r) dr

which are only defined in the interval |e| > 1.
The details of how to find the angular functions, and what are the equations

that the radial functions satisfy could be found in Sect. 2.3.4. Important term in the
radial equations is the centrifugal energy having a general form as in non-relativistic
dynamics, with one exception for the indices σ = 1 and l = 0 (these are defined in
(2.61)) when it is zero. In this case one could show from (2.61) that F (r) satisfies
equation

d2r F = (F − rdrF) drV

r (e − V + 1)
− [

(e − V )2 − 1
]

F (5.53)

whilst the other function is

G = F − rdrF

r (e − V + 1)

In the same spirit one could isolate the radial function G that corresponds to
σ = −1 and l = 1 for which the equation is

d2r G = (G − rdrG) drV

r (e − V − 1)
− [

(e − V )2 − 1
]

G

and

F = − G − rdrG

r (e − V − 1)

Those equations do not include the centrifugal contribution, and its impact could
be estimated from a simple model. Relativistic effects are expected for potentials of
a small width, for example of the order 10−15 m, which is the scale of a nucleus. The
lowest centrifugal energy isEc = 2�

2/(mr2) and for the assumed range of interaction
its estimated value is Ec ≈ 2.7 × 103 MeV, which is so large that the only relevant
equation to describe these systems is (5.53).

Often in the analysis of dynamics one uses model potentials with sharp edges,
for example a square well. Sharp edges require the use of the connection formula
that propagates the solution smoothly across it. In the nonrelativistic dynamics the
connection is simple, the log-derivate of the probability amplitude upon crossing
does not changes the value. However, in the relativistic dynamics this is not the case
because in equation (5.53) there is derivative of potential that in the vicinity where
the potential changes as the step function it is a delta function. If the potential makes
a step from V0 to zero at r = r0 then in its vicinity equation (5.53) is approximately

http://dx.doi.org/10.1007/978-3-662-52878-5_2
http://dx.doi.org/10.1007/978-3-662-52878-5_2
http://dx.doi.org/10.1007/978-3-662-52878-5_2
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d2r F = − (F − rdrF) V0δ (r − r0)

r (e − V + 1)
− [

(e − V )2 − 1
]

F

and by integrating it from r = r0 − ε to r = r0 + ε, where ε in the end is taken zero,
then

drF
+ − drF

− ≈
(

F− − r0
2

(

drF+ + drF−))

V0

r0 (e − V0/2 + 1)

where the signs ± refers to r = r0 ± ε, and for V at r = r0 one takes the value V0/2.
In the limit ε → 0 the last relationship is exact, from which one gets the connection
formula

drF
+ = F−V0

r0 (e + 1)
+ e − V0 + 1

e + 1
drF

−

besides the oneF+ = F−, which is implicitly assumed. This is relativistic generaliza-
tion of the nonrelativistic connection formula (which is derived in the limit e → ∞)
for Dirac equation. The same steps could be repeated for the other function G, thus
obtaining

drG
+ = G−V0

r0 (e − 1)
+ e − V0 − 1

e − 1
drG

−

These connection formulas are used for the analysis of bound states for a square
well potential with the well depth V0. For r < r0 the radial function is

R (r) = sin (rK) (5.54)

for both indices σ, whilst K =
√

(e − V0)
2 − 1. Thus F (r) = R (r) for σ = 1 and

G = sin (rK) − rK cos (rK)

r (e − V0 + 1)

whilst G (r) = R (r) is for σ = −1 and

F = − sin (rK) − rK cos (rK)

r (e − V − 1)

In the space r > r0 the radial functions are

R (r) = as e
rk + bs e

−rk

where s is the sign of mass and k = √
1 − e2. It should be recalled that e2 < 1. The

coefficients are calculated from the connection formula, thus the coefficient as is

2ase
r0k =

(

1 + V0

kr0 (e + s)

)

sin (r0K) +
(

1 − V0

e + s

)

K cos (r0K)

k
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and condition for a bound state is that as = 0. For |V0| very large the approximate
equation for the energies of these states is (V0 is negative)

as ∼ cos (r0K) = 0

with the solution

r0

√

(en − V0 )2 − 1 =
(

n + 1

2

)

π ⇒ en = − |V0| +
√

√

√

√

(

n + 1
2

)2
π2

r20
+ 1 (5.55)

where the integer n is chosen so that en is from that interval −1 < en < 1. On this
level of approximation these energies are degenerate with respect to the sign s of the
mass, and degenerate with respect to spin states (for their definition see 2.60).

For the bound states the coefficient bs is exactly

bse
−r0k = sin (r0K) ≈ ±1

Typical graph for −K2 is shown in Fig. 5.16 and in the space with the negative
values classical trajectory for particle is real. For example when e > 1, or mc2 in
the non scaled variables, this is the whole range of the radial coordinate. On the
other hand, for e < −mc2 there are two disjoint intervals where this is the case and
the shape of the curve is very much like in the nonrelativistic quantum dynamics
when potential has a barrier. Particle could tunnel through this barrier and hence the
potential does not support bound states, instead resonances are formed. For the sharp
square well that is discussed here the width of this barrier is zero and therefore no
resonances could be formed because of the their important property: their energy
width is proportional to the tunneling probability.

Few general properties could be derived for the bound states from the assumption
that the width of the potential is very small, and by that it is meant it is much smaller
than the Compton wave length for the bound particle. If the potential is modelled by a
square well then it means that in (5.55) there is inequality r0 << 1.Very small space
within which a bound state is formed means that the potential well should be deep,

Fig. 5.16 Graph that shows
classically allowed intervals
of radial coordinates where
particle could move for two
energy intervals. The
example is for a square well
that is much deeper than the
energy equivalent of its mass,
and goes to zero beyond r0

-K
2

rr0e < -mc2

0

-K
2

r0 r

 e > mc2

0

http://dx.doi.org/10.1007/978-3-662-52878-5_2
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V0 >> 1 in the model. The equation for the bound states then assumes approximate
form

as ∼ 1

r0
sin (r0 (e + |V0|)) − |V0| cos (r0 (e + |V0|)) = 0

where dependence on e is negligible because |e| < 1. It is, therefore, expected that
the bound states energies are determined by |V0|, and the role of e is marginal as long
as it is from the interval −1 < e < 1.

There is, however, another important property of the relativistic bound states.
On the approximate level probability density for bound states could be divided up
into two regions, one inside the potential and the other outside of it, the tunneling
space. If inside the potential probability density has constant value P and outside it
is exponentially decaying then the total probability is

P r0 + P
∫ ∞

r0

dr e−2k(r−r0) = 1

where it is assumed that the probabilities connect smoothly across r = r0. By calcu-
lating the integral the ratio of the two probabilities, that from outside to that within
the potential, is

Q = 1

2kr0
(5.56)

which is large by the assumption that the Compton wave length is much larger than
r0. This means that finding particle outside the potential, in the tunneling space, is
much larger than finding it inside.

Exact, numerical, calculation is done for the probability density in the Gaussian
potential

V (r) = V0e
− r2

r20

by solving (5.53). The parameters are those that mimic the electron confined within
the radius of a nucleus: r0 = 0.0025 (approximately 10−15 m). For the chosen para-
meter r0 bound state solution of (5.53) with no nodes (ground state, so to speak,
but meaning the shallowest potential that supports a bound state) is not taken as an
example but the one with 6 nodes. For the well depth V0 = −9116.91 mc2 (m is
mass of the electron and so the well depth is ≈4.7GeV) energy of this bound state
is e = −0.9 mc2. The probability density within the potential, and its tail within the
tunneling space, is shown in Fig. 5.17, upper graph (the curve is not normalized as
the probability density, for convenience of presentation). Its shape resembles that
of classical probability density for a particle in a square well, it is constant with
slight oscillations, which is in contrast with a nonrelativistic probability density that
oscillates with a variable amplitude.

In the graph bellow in Fig. 5.17 the probability density is shown in all its extent,
and as noticed it goes to the distance far exceeding r0, in fact the average distance of
the particle from the centre of potential is rav ≈ 1.1 ≈ 4.2 × 10−13 m. This is more
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Fig. 5.17 Probability
density

than 100 times larger than the range of potential, and this means that probability of
finding particle within the tunneling space far exceeds the probability of finding it
within r = r0. The ration of the two probabilities is

Q = 381

and in fact it is almost independent of the order of a bound state. The estimate (5.56)
gives≈459, relatively a good guess, which depends very much on the choice of r0 in
its derivation. In any case, both results indicate that in fact the electron is not confined
within the potential well, its presence could be noticed at distance that are relevant
for the atomic structure.

Negative Energy States

Integration variable e in the solution (5.50) is defined in the whole interval from
negative to positive values. However, for potentials that go to zero at infinity this
energy range is interrupted for the values from the interval −mc2 < e < mc2, where
solutions are either bound states or not defined. In the case of bound states the integral
is replaced by a sum over the corresponding energy values. For a free particle, as
the simplest example, the integral is split into two, one over the negative energies
below −mc2 and the other over the positive ones larger than mc2. Negative energy
states attract particular attention because for a free particle they do not appear to
have much meaning, they appear as non-physical. It is shown here in the analysis
for a free particle dynamics in one dimension that these states are essential when its
motion is relativistic. For this example the set of Dirac equations is

i∂tF = −i∂zG + F , i∂tG = −i∂zF − G (5.57)
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where now F and G are ordinary functions. Solution for these functions is

F =
∫ ∞

−∞
dp

[

a(p) e−ite(p) + b(p) eite(p)
]

eipz (5.58)

G =
∫ ∞

−∞
dp

[

c(p) e−ite(p) + d(p) eite(p)
]

eipz

where e = √

1 + p2. Integration variable is now changed from the energy to momen-
tum in order to take explicitly into account two separate signs of energy. Components
of the solution with a(p) and c(p) correspond to the positive energy states for e > 1
and those with b(p) and d(p) correspond to the negative ones for e < −1. If one
assumes that the negative energy states are not physical, and they are omitted from
expansion, then the “proper” solution is

F(z, t) =
∫ ∞

−∞
dp a(p) eipz−ite(p) (5.59)

and the coefficient a(p) is determined from the initial condition

F0(z) =
∫ ∞

−∞
dp a(p) eipz ⇒ a(p) = 1

2π

∫ ∞

−∞
dz F0(z)e

−ipz (5.60)

In order to understand the meaning of the “negative energy” states one chooses
the initial probability amplitude that is zero outside certain interval in the coordinate
z. The simplest choice is17

F0(z) =
{

f (z) ; |z| < z0
0 ; |z| > z0

=
{ (

z2 − 1
)2 ; |z| < 1

0 ; |z| > 1
(5.61)

and the amplitude a(p, z0) is analytic in the complex p plane. If this were not the
case, say the amplitude has a branch point in the half plane Im(p) > 0, then for any
z > z0 in F0(z) one could not transform the integral in p along the path Im(p) → ∞
in order to get its zero value. Indeed for the explicit choice of F0(z) one gets

a(p, z0) = − 8

πp5
[

3z0p cos (z0p) + (

z20p
2 − 3

)

sin (z0p)
]

which is indeed analytic in the whole p-plane. As the result for any z > z0 the
integral in p is transformed to the semi-circle p = Peiβ , where P → ∞, along which
the integrand is zero and hence F0(z) = 0, as it should. Similarly for z < −z0 the
integration path is transformed into the half plane Im(p) < 0.

17When the probability amplitude is strictly zero outside certain finite nterval then it should also
be zero at the end points of the interval, otherwise uncertainty principle is violated. For example,
constant probability amplitude within the interval is not a physically acceptable choice.
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Those observations about the general properties of a(p) are essential for the time
evolution of the probability amplitude F(z, t). Physical requirement is that if this
amplitude is strictly localized within the interval |z| < z0 then at time t it cannot
extend beyond the coordinates |z| > z0 + t, i.e. it should be strictly zero there. How-
ever, this means that at any time the integrand in equation (5.59) should be analytic,
but this is not the case because the function e(p) introduces the branch points at
p = ±i. As the consequence F(z, t) is not zero for large |z| and the principle of
Lorentz invariance is violated. This problem could only be remedied by introduc-
ing the “negative energy” component into the expansion of the solution of Dirac
equation, because the combination of the two removes the branch points of e(p).

In order to show that one needs both energy components to get physically accept-
able solution of Dirac equation one first writes solutions (5.58) in the form that is
consistent with the differential equations (5.57). These are

F =
∫

dp

[

a(p) e−ite(p) − p

e(p) + 1
d(p) eite(p)

]

eipz

G =
∫

dp

[

p

e(p) + 1
a(p)e−ite(p) + d(p) eite(p)

]

eipz

and if the initial functions are F0(z) and G0(z) then in terms of the coefficients

A(p) = 1

2π

∫ ∞

−∞
dz F0(z)e

−ipz

B(p) = 1

2π

∫ ∞

−∞
dz G0(z)e

−ipz

the solutions are

F =
∫

dp

{

e(p) cos
[

te(p)
] − i sin

[

te(p)
]

e(p)
A(p) − ipB(p)

e(p)
sin

[

te(p)
]

}

eipz

G =
∫

dp

{

e(p) cos
[

te(p)
] + i sin

[

te(p)
]

e(p)
B(p) − ipA(p)

e(p)
sin

[

te(p)
]

}

eipz

The integrand in both functions is an even function of e(p), which means that the
square root branch point is removed and it is analytic function in the whole p-plane.
In this way physics of solution is preserved, but for that both “energy components”
must be included.
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As an illustrative example it is assumed that G is zero (initial probability current
is zero), in which case

F(z, t) =
∫

dp
e(p) cos

[

te(p)
] − i sin

[

te(p)
]

e(p)
A(p)eipz

G(z, t) = −i
∫

dp
pA(p)

e(p)
sin

[

te(p)
]

eipz

For the initial F one chooses (5.61) when

A(p) = − 8

p5π

[

3p cos p + (

p2 − 3
)

sin p
]

but the integrals do not have solution in a closed form. Probability density

P(z, t) = |F(z, t)|2 + |G(z, t)|2

that is calculated numerically at t = 8 is shown in Fig. 5.18 by solid line (initial
probability density is shown by broken line). It is strictly zero beyond the interval
|z| > 9, as it should from the requirement of the Lorentz invariant dynamics.

It was shown that the negative energy components are essential for getting phys-
ically correct solution of Dirac equation. The question is if these components are
always required for solving Lorentz invariant dynamics? The answer depends very
much on the initial probability amplitudesF andG, which if they are strictly localized
within certain interval negative energy components cannot be avoided. However, if
this requirement is relaxed by allowing the amplitudes to have infinite extent then
indeed one could have solution of Dirac equation with only a single energy compo-
nent, say positive, in which case

Fig. 5.18 Probability
density in Lorentz invariant
dynamics, which is initially
strictly zero outside the
interval |z| < 1 (dashed
line), after time t = 8 (solid
line)
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F =
∫

dp a(p) e−ite(p)eipz , G =
∫

dp
e(p) − 1

p
a(p)e−ite(p)eipz

From the structure of the integrand in G it is explicitly evident that having a single
energy component in solution one cannot form the initial probability density other
than of the infinite extent. In fact the square root branch point of e(p) determines the
asymptotic form of this probability density, which is of the order

P(z) ∼|z|→∞
e−|z|

Possibility of solution with only single energy component does not invalidate
previous remark that both components are required for getting physically correct
solution. The latter applies to the examples where the Lorentz invariance is directly
tested, but if this is not possible, such as when the probability density has infinite
extent, then single energy component solutions are also acceptable. The only problem
is how does one form such states, but this is the matter of other discussion.

5.4.3 Charge Density

When two oppositely charged particles are bound together there is separation of
charge density within the system, as discussed in Sect. 1.2.3. It is shown that the
separation depends on the mass ratio between the two charges, two examples of
Hydrogen and Muonic Hydrogen showed that. However, there are two approxima-
tions made in that analysis, one is that position of the centre of mass of the system
is delta function and the other is that relativistic effects on the mass of particles is
not taken into account. The choice of delta function for the position of the centre of
mass is in direct contradiction with the nonrelativistic approximation, the width in
the momentum distribution is infinite.

Charge distribution for two oppositely charged particles that are bound together
is analyzed here by amending previously mentioned drawbacks in the case of a
Hydrogen-like atom. Two particles, one with the mass of the electron and the other
with that of proton, are interacting through a scalar potential.18 Themodel lacks rigor
if it is not analyzed in the Lorentz invariant dynamics, but in this case one confronts
four important obstacles. The most obvious is that proper Lorentz invariant interac-
tion between the two partners is not taken into account because scalar potential19

should be properly generalized for the systems where a typical velocity is nearly the
speed of light. Generalization from the scalar potential towards the Lorentz invariant
four vector interaction is not a unique procedure, for example, Maxwell equations

18This choice is inspired by measurement of the charge density in neutron [20], and as the model
it is assumed that it is result of bound state of the electron and proton.
19Scalar interaction could be Lorentz invariant if it is function of the Lorentz scalar, which in this
case this is not the case. The interaction is function of the relative distance of two particles.

http://dx.doi.org/10.1007/978-3-662-52878-5_1
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could be derived from theCoulombpotential, but only if certain additional constraints
are assumed [9].

The second problem is the question of defining the centre of mass of the system,
which was discussed earlier in this chapter.

The third problem is even more serious. Interaction among particles are delayed,
e.g. in analysis of Hydrogen atom one should in principle take into account delay of
interaction due to the finite speed of electromagnetic field. The delay is in this case
negligible because (a) velocity of the electron is less than 1% of c and (b) proton is
assumed to be infinitely massive and so dynamics around the common centre of mass
is negligible (motion around this centre results in the time variation of the Coulomb
interaction and hence delay). In the case when particles move fast, and there is no
apparent stationary centre of mass, this delay could affect dynamics in an essential
way.

The fourth problem is that in relativistic dynamics one works with four coordi-
nates, space and time define whereabouts of a particle and therefore for two particles
there are two separates sets of these variables. In classical relativistic dynamics one
defines invariant time that is universal for both particles, in terms of which their
equations of motion are solved. In quantum relativistic dynamics it is not clear what
analogous “time variable” should be. It is assumed here that ordinary time variable
is universal for both particles, in fact only stationary states are analyzed when it does
not enter the equations.

Proper formulation of Lorentz invariant dynamics for two particles therefore
appears an impossible task, especially in the view of the fourth comment. However
under some conditions one could formulate a solvable model but it is not strictly
Lorentz invariant. One assumption is that stationary systems are studied when the
time component is not present and the second is that the particles interact by a scalar
potential that is function of their relative distance.

As it had been discussed proper quantum relativistic treatment is by Dirac equa-
tion, however, its generalization for two particle interaction is not straightforward.
One way to derive it for the previous assumptions is to start from the nonrelativistic
equation for stationary states for two particles

e f = − �
2

2m1
�1f − �

2

2m2
�2f + V

(−→r 2 − −→r 1
)

f

The equation could be put in a set of first order equations in the space variables

eF = −i�
(−→

� 1 · ∇s1 + −→
� 2 · ∇s2

)

G + VF (5.62)

G = − i�

2m

(−→
� 1 · ∇s1 + −→

� 2 · ∇s2

)

F

where F and G are single column matrices and the number of rows depends on the
properties of the matrices

−→
� 1 and

−→
� 2. The parameter m plays the role of mass and

its value is as yet arbitrary. These matrices are defined by the requirements
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−→
� 1

−→
� 1 = −→

� 2
−→
� 2 = I

−→
� 1

−→
� 2 + −→

� 2
−→
� 1 = 0

and for one dimensional model they are

�1 =
∣

∣

∣

∣

1 0
0 −1

∣

∣

∣

∣

, �2 =
∣

∣

∣

∣

0 1
1 0

∣

∣

∣

∣

(5.63)

for two dimensional model

�1x = iγx , �1y = iγy , �2x = iγz , �2y =
∣

∣

∣

∣

0 I
I 0

∣

∣

∣

∣

and three dimensional model

−→
� 1 =

∣

∣

∣

∣

0 −−→γ−→γ 0

∣

∣

∣

∣

,

�2x =

∣

∣

∣

∣

∣

∣

∣

∣

0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

∣

∣

∣

∣

∣

∣

∣

∣

, �2y =

∣

∣

∣

∣

∣

∣

∣

∣

0 0 iI 0
0 0 0 −iI

−iI 0 0 0
0 iI 0 0

∣

∣

∣

∣

∣

∣

∣

∣

,

�2z =

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 iI
0 0 iI 0
0 −iI 0 0

−iI 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

where the gamma matrices are defined in (2.4) and I is two dimensional unit matrix.
The scaled coordinates −→s 2 and

−→s 1 are defined as

−→s 1 = √
μ1

−→r 1 , −→s 2 = √
μ2

−→r 2

where μ1 and μ2 are dimensionless parameters, masses of the two particles that are
normalized with respect tom. The set (5.62) is generalized into the Lorentz invariant
form in the same manner as it is done for a single particle, with the final result

eF = −i�c
(−→

� 1 · ∇s1 + −→
� 2 · ∇s2

)

G + VF + mc2F (5.64)

eG = −i�c
(−→

� 1 · ∇s1 + −→
� 2 · ∇s2

)

F + VG − mc2G

By defining new coordinates

−→r = −→r 2 − −→r 1 =
−→s 2√

μ2
−

−→s 1√
μ1

,
−→
R = a−→s 1 + b−→s 2

http://dx.doi.org/10.1007/978-3-662-52878-5_2
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where the parameters a and b are determined later, the set of equations transforms
into

eF = i�c
[−→
� · ∇r − −→

� c · ∇R

]

G + VF + mc2F

eG = i�c
[−→
� · ∇r − −→

� c · ∇R

]

F + VG − mc2G

where −→
� = 1√

μ1

−→
� 1 − 1√

μ2

−→
� 2 ,

−→
� c = a

−→
� 1 + b

−→
� 2

and the matrices have the property

−→
� · −→p −→

� · −→p = μ2 + μ1

μ2μ1
p2 ,

−→
� c · −→p −→

� c · −→p = (

a2 + b2
)

p2

The two equations are transformed into a single one and for a spherically symmetric
potential it is

c2�2 μ2 + μ1

μ2μ1
�rF+ c2�2

μ1 + μ2
�RF + c2�2 �r∂rV

e − V + mc2

(−→
� · ∇rF − −→

� c · ∇RF
)

(5.65)
= − [

(e − V )2 − m2c4
]

F

and

G = i�c

e − V + mc2

[−→
� · ∇r − −→

� c · ∇R

]

F

In the derivation it was assumed that

−→
� · ∇r

−→
� c · ∇R + −→

� c · ∇R
−→
� · ∇r = 0

from where the parameters a and b are determined

a =
√

μ1

μ1 + μ2
, b =

√
μ2

μ1 + μ2

Equation (5.65) resembles two body equation in the center of mass coordinates,
except for the term containing spin matrices

−→
� and

−→
� c. However, even without

this term separation of solution into two independent for the relative and the centre
of mass coordinates is not straightforward, as it is in the non relativistic dynamics.
Before further discussion it is advatnageous to introduce scaling that would simplify
equations. The dimensionless mass μ1 is set to unity μ1 = 1, meaning thatm = m1 is
assumed. It is also assumed that μ2 is larger than μ1 in which case one parametrizes
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μ2 = 1/ε2 where ε plays the role of perturbation parameter. Energy is scaled with
respect tomc2 and the coordinatewith respect to theComptonwave number. Equation
(5.65) is now

(

1 + ε2
)

�rF + ε2

1 + ε2
�RF + ∂rV

e − V + 1
�r

(−→
� · ∇rF − −→

� c · ∇RF
)

(5.66)

= − [

(e − V )2 − 1
]

F

For further analysis the spin matrices
−→
� and

−→
� c should be represented in the spher-

ical coordinates, and it could be shown that for the relative coordinates spherical
components of

−→
� are

�n =
∣

∣

∣

∣

0 σn

σ̃∗
n 0

∣

∣

∣

∣

; n = r, θ,φ

where σn are 4 × 4 matrices that are defined as

σr = −γr − ε

∣

∣

∣

∣

I2 sin θeiφ iI2 cos θ
iI2 cos θ I2 sin θe−iφ

∣

∣

∣

∣

,

σθ = −γθ + ε

∣

∣

∣

∣

−I2 cos θeiφ iI2 sin θ
iI2 sin θ −I2 cos θe−iφ

∣

∣

∣

∣

,

σφ = −γφ + ε

∣

∣

∣

∣

−iI2eiφ 0
0 iI2e−iφ

∣

∣

∣

∣

where Io is a o × o unit matrix and γn are defined in (2.5). The matrices �n are
normalized as

�n�n = 1 + ε2

Similarly one could show that for the spherical components of
−→
� c the matrices

σn are replaced by

σR = − ε2

1 + ε2
γR + ε

1 + ε2

∣

∣

∣

∣

I2 sin θeiφ iI2 cos θ
iI2 cos θ I2 sin θe−iφ

∣

∣

∣

∣

,

σ� = −γ� + ε

∣

∣

∣

∣

−I2 cos θeiφ iI2 sin θ
iI2 sin θ −I2 cos θe−iφ

∣

∣

∣

∣

,

σ� = −γ� + ε

∣

∣

∣

∣

−iI2eiφ 0
0 iI2e−iφ

∣

∣

∣

∣

It should be noted that because of the structure of the �n matrices the set of
eight equations (5.66) de-couples into two sets with four equations. The two sets are
coupled only if external field is included that couples the spin of particles.

The set (5.66) de-couples radial and angular components only if solution F is
eigenfunction of three angular momentum operators: two for the angular momen-
tum squared operators in the kinetic energies of the relative and the centre of mass

http://dx.doi.org/10.1007/978-3-662-52878-5_2
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coordinates, and the angular part of the operator

�r

(−→
� · ∇r − −→

� c · ∇R

)

= (

1 + ε2
)

∂r − �r�R∂R

+ 1

r
�r

(

�θ∂θ + �φ

sin θ
∂φ

)

− 1

r
�r

(

��∂� + ��

sin�
∂�

)

From the form of the operator it is evident that the radial center of mass coordinate
is coupled to the angular coordinates for both the centre of mass and the relative
coordinates, as it was qualitatively argued before. As the result the radial and angular
motions cannot be de-coupled. Nevertheless one solves the set by deriving a complete
set of angular functions for one of the set of coordinates, for example for the relative
ones, and the complete solution is then expand in this bases. For the remaining
coordinates the resulting set of equations is solved numerically.

Angular eigenfunctions for the relative coordinates satisfy the eigenvalue equation
(in addition they also satisfy eigenvalue equation for the angular part of the kinetic
energy operator for the relative motion)

�r

(

�θ∂θ + �φ

sin θ
∂φ

)

� = λr�

where � is a single column matrix with 8 elements. If the elements are parametrized
as

�j = Pj (θ) e
iμjφ

then the eigenvalue equation becomes

�r

(

�θ∂θ + i�φ

sin θ
M

)

P = λrP

where M is a diagonal matrix with the elements

Mj,j = m δj,1 + (m + 1) δj,2 + (m − 1) δj,3 + m δj,4 + (m − 1) δj,5

+m δj,6 + m δj,7 + (m + 1) δj,8

It is convenient to define new matrix A such that the eigenvalue equation is para-
metrized as

A

(

�φ∂θ − i�θ

sin θ
M

)

P = λrP

and in the next step one transforms the solution by defining an 8 × 8 transformation
matrix ϒ whose elements are

ϒi,j = δi,1δj,1 + δi,2δj,4 + δi,3δj,2 + δi,4δj,3 + δi,5δj,6 + δi,6δj,7 + δi,7δj,8 + δi,8δj,5
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In the new basis the transformed eigenfunction and the other components in the
eigenvalue equation are

O = ϒP , �ϒ
n = ϒ�nϒ

−1 , Aϒ = ϒAϒ−1

where

Aϒ =

∣

∣

∣

∣

∣

∣

∣

∣

0 α 0 0
−α̃∗ 0 0 0
0 0 0 β

0 0 −˜β∗ 0

∣

∣

∣

∣

∣

∣

∣

∣

, Aϒ
R = iε

1 + ε2

∣

∣

∣

∣

∣

∣

∣

∣

0 α 0 0
α̃∗ 0 0 0
0 0 0 β

0 0 ˜β∗ 0

∣

∣

∣

∣

∣

∣

∣

∣

where

α =
∣

∣

∣

∣

∣

2ε
ε+i

1−ε2

ε+i

ε2−1
ε+i

2ε
ε+i

∣

∣

∣

∣

∣

, β =
∣

∣

∣

∣

0 −i − ε
i + ε 0

∣

∣

∣

∣

In this form the set of equations is block diagonal, where on the diagonal are 4 × 4
matrices, so that finally the set of equations is in the matrix form

∂θ

∣

∣

∣

∣

O(1)

O(2)

∣

∣

∣

∣

=
∣

∣

∣

∣

U(1) 0
0 U(2)

∣

∣

∣

∣

∣

∣

∣

∣

O(1)

O(2)

∣

∣

∣

∣

or
∂θO

(n) = U(n)O(n)

Each O(n) could be divided up into 2 × 2 block matrices and for these the set of
equations to be solved is

∂θO
(n)
1 = U(n)

1,1O
(n)
1 + U(n)

1,2O
(n)
2

∂θO
(n)
2 = U(n)

2,1O
(n)
1 + U(n)

2,2O
(n)
2

From the first equation

O(n)
2 = U(n)−1

1,2

[

∂θO
(n)
1 − U(n)

1,1O
(n)
1

]

and by replacing it in the second the equation to be solved is

∂2
θO

(n)
1 −

[

U(n)
1,1 + U(n)

1,2U
(n)
2,2U

(n)−1
1,2

]

∂θO
(n)
1

−
[

∂θU
(n)
1,1 + U(n)

1,2U
(n)
2,1 − U(n)

1,2U
(n)
2,2U

(n)−1
1,2 U(n)

1,1

]

O(n)
1 = 0

The set of two equations is de-coupled and the solutions are Legendre polynomials
from which the eigenvalues are

λr = − (

1 + ε2
)

lr ; lr = l, −l − 1
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where l = 0, 1, 2, . . . Solution, for example for �(1), when all the back transforma-
tions are made, is

�(1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1Ym
l (θ,φ)

i(c1+εc2)
√

(l−m)(l+1+m)

(i−ε)(lr+m+1) Ym+1
l (θ,φ)

i(c2−εc1)
√

(l+m)(l+1−m)

(i−ε)(lr−m+1) Lm−1
l (cos θ)

c2Ym
l (θ,φ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

which is determined by four “quantum numbers”, the choice for lr and the constants
c1 and c2. The same also applies for�(2). The constants cn are determined by requiring
that the solutions are ortho-normal for any combination of the “quantum numbers”,
and when this is imposed on them the solutions are

�(1)
sl,s =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ε
√
2l+1−(2m−1)sl+is

√
2l+1+(2m+1)sl

2
√
2
√
1+ε2

√
2l+1

Ym
l (θ,φ)

ssl
√
1+ε2

√
(l−m)(l+m+1)

(−i+ε)
√
2
√
2l+1

√
2l+1+(2m+1)sl

Ym+1
l (θ,φ)

isl
√
1+ε2

√
(l+m)(l−m+1)

(−i+ε)
√
2
√
2l+1

√
2l+1−(2m−1)sl

Ym−1
l (θ,φ)

−
√
2l+1−(2m−1)sl−isε

√
2l+1+(2m+1)sl

2
√
2
√
1+ε2

√
2l+1

Ym
l (θ,φ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

�(2)
sl,s =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

isl
√
1+ε2

√
(l+m)(l−m+1)

(i+ε)
√
2
√
2l+1

√
2l+1−(2m−1)sl

Ym−1
l (θ,φ)

√
2l+1−(2m−1)sl+isε

√
2l+1+(2m+1)sl

2
√
2
√
1+ε2

√
2l+1

Ym
l (θ,φ)

− ε
√
2l+1−(2m−1)sl−is

√
2l+1+(2m+1)sl

2
√
2
√
1+ε2

√
2l+1

Ym
l (θ,φ)

ssl
√
1+ε2

√
(l−m)(l+m+1)

(i+ε)
√
2
√
2l+1

√
2l+1+(2m+1)sl

Ym+1
l (θ,φ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where sl takes values±1 that correspond to l or−l − 1, respectively. Likewise s also
takes values±1 that correspond to two linearly independent choices of coefficients cn.

Equation (5.66) in the expanded form is now

(

1 + ε2
)

�rF +
(

1 + ε2
)

∂rV

e − V + 1
∂rF + ∂rV

r (e − V + 1)
�r

(

�θ∂θ + �φ

sin θ
∂φ

)

F

+ ε2

1 + ε2
�RF − ∂rV

e − V + 1
�r�R∂RF − ∂rV

r (e − V + 1)
�r

(

��∂� + ��

sin�
∂�

)

F

= − [

(e − V )2 − 1
]

F

and one way of solving it is to represent the solution in the series

F =
∑

l,m,sl,s

Gl,m,sl,s�
(n)
l,m,sl,s

(θ,φ)
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when the coefficients Gl,m,sl,s (r,R,�,�) satisfy the set of multichannel equations

(

1 + ε2
)

r2
∂r

(

r2∂r
)

Gl,m,sl,s −
(

1 + ε2
)

l (l + 1)

r2
Gl,m,sl,s

+
(

1 + ε2
)

∂rV

e − V + 1
∂rGl,m,sl,s + ∂rV

r (e − V + 1)
λrGl,m,sl,s

+ ε2

1 + ε2
�RGl,m,sl,s − ∂rV

e − V + 1

∑

l,′m,′s′l,s′
∂RGl,′m,′s′l,s′T(l,m,sl,s),(l,′m,′s′l,s′) (�,�)

− ∂rV

r (e − V + 1)

∑

l,′m,′s′l,s′

̂Q(l,m,sl,s),(l,′m,′s′l,s′)Gl,′m,′s′l,s′ = − [

(e − V )2 − 1
]

Gl,m,sl,s

where

T(l,m,sl,s),(l,′m,′s′l,s′) (�,�) =
∫

dθ dφ �
(n)+
l,m,sl,s

(θ,φ)�r�R�
(n)
l,′m,′s′l,s′

(θ,φ) sin θ

and

̂Q
(l,m,sl ,s),

(

l,′m,′s′l ,s′
) =

∫

dθ dφ �
(n)+
l,m,sl ,s

(θ,φ) �r

(

��∂� + ��

sin�
∂�

)

�
(n)
l,′m,′s′l ,s′

(θ,φ) sin θ

Solving the set is quite a demanding task, but for the physical content of the solution
it is instructive to solve much simpler one dimensional problem.

5.4.3.1 One Dimensional Model

One dimensional dynamics of two bodies that interact by a bounding potential is
described by equations

eF = i (�∂x − �X∂X)G + VF + F

eG = i (�∂x − �X∂X)F + VG − G

that are reduced from the set (5.64) to single dimension. The matrices are

� = �1 − ε�2 =
∣

∣

∣

∣

1 −ε
−ε −1

∣

∣

∣

∣

,

�X = ε2

1 + ε2
�1 + ε

1 + ε2
�2 = ε

1 + ε2

∣

∣

∣

∣

ε 1
1 −ε

∣

∣

∣

∣
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where �1 and �2 are defined in (5.63). Solution is represented in the form

F (x,X) =
∫

dk A (k) eikX f (x, k) (5.67)

G (x,X) =
∫

dk A (k) eikX g (x, k)

where now the functions f and g satisfy equations

ef = i (�∂x − ik�X) g + V f + f

eg = i (�∂x − ik�X) f + V g − g

or in a more explicit form

∂xg − ikε

1 + ε2

∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

g − i
V + 1 − e

1 + ε2

∣

∣

∣

∣

1 −ε
−ε −1

∣

∣

∣

∣

f = 0 (5.68)

∂xf − ikε

1 + ε2

∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

f − i
V − 1 − e

1 + ε2

∣

∣

∣

∣

1 −ε
−ε −1

∣

∣

∣

∣

g = 0

The amplitudeA(k) determines the probability amplitude for the system as thewhole,
for example, for the Hydrogen atom that would be the delocalization of the atom as
the whole.

The system of two equations is reduced to a single of the second order by replacing
g from the second equation

g = i

V − 1 − e

∣

∣

∣

∣

−1 ε
ε 1

∣

∣

∣

∣

∂xf − kε

(V − 1 − e)
(

1 + ε2
)

∣

∣

∣

∣

ε 1
1 −ε

∣

∣

∣

∣

f (5.69)

in the first equation, giving equation for f

f ′′ = − V ′

1 + e − V
f ′ +

1 − (e − V )2 + ε2

(1+ε2)
k2

1 + ε2
f (5.70)

+ iεkV ′
(

1 + ε2
)

(1 + e − V )

∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

f

The set is decoupled into two independent equations by diagonalizing the coupling
matrix

U+
∣

∣

∣

∣

0 1
−1 0

∣

∣

∣

∣

U =
∣

∣

∣

∣

i 0
0 −i

∣

∣

∣

∣

where

U = 1√
2

∣

∣

∣

∣

1 i
i 1

∣

∣

∣

∣
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and by parametrizing f (x) = UfT (x) the equation (5.70) transforms into

f ′′
T = − V ′

1 + e − V
f ′

T +
1 − (e − V )2 + ε2

(1+ε2)
k2

1 + ε2
fT

− εkV ′
(

1 + ε2
)

(1 + e − V )

∣

∣

∣

∣

1 0
0 −1

∣

∣

∣

∣

fT

Solutions are degenerate with respect to the change in sign of k, and they are selected
by initial conditions, thus f (+)

T is zero in the lower component (fT is a single column
matrix with two rows, the lower component implies the second row) whilst f (−)

T has
the upper component zero. The two components differ in the sign of k. Based on
this observation one parametrizes solutions as f (±) = f (±)

T Ur(±), where f (±)
T is now

scalar function and satisfies equation

f (±)′′
T = − V ′

1 + e± − V
f (±)′
T +

1 − (

e± − V
)2 + ε2

(1+ε2)
k2

1 + ε2
f (±)
T

∓ εkV ′
(

1 + ε2
)

(1 + e± − V )
f (±)
T

where

r(±) = 1

2

∣

∣

∣

∣

1 ± 1
1 ∓ 1

∣

∣

∣

∣

For the component (5.69) one writes g(±) = Ug(±)
T where now g(±)

T is given by

g(±)
T = 1

1 + e − V

[

f (±)′
T

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

− kε f (±)
T

1 + ε2

∣

∣

∣

∣

1 0
0 −1

∣

∣

∣

∣

]

s(±)

where

s(±) = 1

2

∣

∣

∣

∣

− (1 + iε) (1 ∓ 1)
(1 − iε) (1 ± 1)

∣

∣

∣

∣

Bound state energies e are functions of k, the dependence vanishes for ε = 0
i.e. when one of the particles has infinite mass. The centre of mass motion is then
decoupled from the relative motion of the two particles.

Function fT has asymptotic form for |x| → ∞ as

fT → e

√

1−e2+ ε2

1+ε2
k2√

1+ε2
x
u1 + e

−
√

1−e2+ ε2

1+ε2
k2√

1+ε2
x
u2 (5.71)

and for the solution to have the finite norm it is required that u2 = 0 for x → −∞
whilst in the limit x → ∞ this requirement is satisfied if u1 = 0. This means that e
should be within the bounds
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|e| <

√

1 + ε2

1 + ε2
k2 (5.72)

which is generalization of the requirement for a single particle when |e| < 1, and
if the non-scaled parameters are used then |e| < mc2. This means that in (5.72) the
additional term plays the role of increased bare mass of the particle and therefore the
energy interval within which the bound states are possible is increased. Furthermore
this “increased mass” has additional effect on the solution f in its asymptotic tail.
If the range of potential well is x0 then beyond this limit the tail, its exponentially
decreasing component, is given by (5.71). For k = 0 it is a slowly decaying function
that extends much beyond x0, however, as |k| increases the decay is more rapid and
in the limit |k| → ∞ is of the order x0.

Typical features of solutions are demonstrated on an explicit example, where the
bound potential V is Gaussian

V (x) = V0 e
− x2

d2

and the amplitude A (k) in (5.67) is

A (k) =
√

D√
π
e− D2

2 (k−k0)
2

(5.73)

which in the coordinate space represents Gaussian probability amplitude, and indi-
cates that the system of the two particles has momentum �k0 (in the units of the
Compton momentum) that corresponds to the velocity

v = c
k0

√

k20 + 1

of the system. The parameters chosen for the potential in this example are d = 1
and V0 = −10 whilst ε = 0.1 (mass of particle 2 is 100 time larger that of particle
1). The width d of the potential well is in the units of the Compton wavelength of
particle 1, and if this is the electron then the system is confined within 10−12 m.

Dependence of e on k is calculated and the results are shown in Fig. 5.19 for
k > 0 (for negative k the line is symmetric) for two values of ε. As k increases so
the bounds within which the bound states are possible increases, and in the example
with ε = 0.1 for k = 100 this bounds are ethr = ±10.0 (10 times the rest mass of the
particle 1 with respect to which scaling is made).

Probability density

P (x) = f + (x) f (x) + g+ (x) g (x)
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Fig. 5.19 k−dependence of bound state energy e for the system of two particles. Dotted lines
represent the bounds within which relativistic bound states are possible for a single particle. The
width of potential is D = 1 and dependence is shown for two values of the mass ratio ε

Fig. 5.20 Bound state probability densities for two extreme values of k shown against the potential
well within which they are formed. The broken line represents energy at which these states are
formed, and the index indicates its “non-relativistic” value * for the definition see discussion of
equation (5.74)

for example in Fig. 5.19 with ε = 0.1 it is shown in Fig. 5.20 for the two extreme
values of k. The curve P (x) resembles closely the WKB solution for a particle in a
well, more so for large k. However its oscillatory structure indicates that this is as an
excited state for a non-relativistic particle in a well, but here it is ground state when
k = 0 because no other is available below, until the limit e = −1. Furthermore one
observes the shrinking effect in the width of P(x), which is for large k nearly the
width of the well, as explained in discussion following (5.71).

Energy interval within which bound states of the system are possible expands
with increasing k and it is possible that new bound states appear. Thus for k = 100
in Fig. 5.20 (ε = 0.1) several new states appear and the lowest in energy is shown in
Fig. 5.21 (upper curve). Natural question is what happens to this bound state when
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Fig. 5.21 For large k new
bound states may appear, and
one of them is shown for
k = 100. In fact it is the true
ground state for this system.
When k is lowered this
bound state disappears, and
at this threshold it is shown
in the lower graph together
with its energy

k is lowered? In this case energy of this state decreases whilst the interval for the
bound states shrinks and at some point e meets the lower boundary. For the state in
Fig. 5.21 e meets the lower bound for k ≈ 44, (enr = −3.14) and it is shown by the
lower graph, together with its energy.

By decreasing k even further than the value that is shown in Fig. 5.21 the bound
state becomes a resonance and the system decays into its constituents. Energy of the
resonance states, which are complex and not real, are calculated by the same recipe
as in non-relativistic dynamics, and follows from the physical reasoning. The states
of this kind have only the outgoing components in the form of a plane wave, thus
for x < 0 they have the form exp (iKx) (moving away from the origin) whilst for
x > 0 they are exp (−iKx) (also moving away from the origin). It should be pointed
out that because e is negative velocity of particle is opposite to its momentum, for
this reason these boundary conditions have the chosen form. In order to satisfy the
prescribed boundary conditions one makes the choice exp (iKx) for x < 0 but then
from (5.71) it follows that resonance energies are solutions of equation

u1 (e) ∼ J (e) = δf + f ′ = 0

where

δ =
√

(

1 − e2
) (

1 + ε2
) + ε2k2

(

1 + ε2
)

Calculation of complex energies for resonances is a demanding task, but the simplest
is to use perturbation technique. At real value of resonance energy e the module of
function J (e) (traditionally it is called the Jost function) has a minimum, close to
zero, which means that the product J∗ (e) deJ (e) is zero. If this is calculated then
from perturbation theory the complex resonance energy is
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er = e − J (e)

deJ (e)

where the energy derivative of the Jost function is calculated by taking the energy
derivative of the set (5.68), which is the most straightforward way of doing it.

For the example in Fig. 5.21 resonance at k = 40, just below the value of k where
still the bound state prevails, has the energy e = −4.80 − 0.00015i, however for
k = 0 it is e = −6.73 − 0.047 i. The two resonances have large difference in their
imaginary part, indicating that their decay time is different. Probability density for
the two resonances is shown (5.22), together with

K2 (x) = 1 − [e − V (x)]2 + ε2

1 + ε2
k2

in order to show the source of this difference. The resonances are formed in the well
around the origin but between it and the space where the particles move away from
each other there is a barrier (positive value of K2 (x)) through which the systemmust
tunnel. The barrier for k = 40 is much higher than that for k = 0. It should be noted
that for x >> 0 the probability density oscillates, which is an artifact of using the
perturbation technique for calculating resonance energies (the graphs are calculated
for real e) (Fig. 5.22).

The energy e could be split into several components, and to show this it is assumed
that A (k) is non-zero around a narrow interval around k0 and could be approximated
by a delta function. Energy is defined as

e =
∫

dx dX
∣

∣F+ G+ ∣

∣

∣

∣

∣

∣

V + 1 i (�∂x − �X∂X)

i (�∂x − �X∂X) V − 1

∣

∣

∣

∣

∣

∣

∣

∣

F
G

∣

∣

∣

∣

Fig. 5.22 Probability density P (x) for resonances that are formed when k is lower than that in
Fig. 5.21. Imaginary part of resonance energies is due to tunneling through the barrier that is formed
in K2 (x)
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and if

A (k) = 1

2π
δ (k − k0)

then

e = i
∫

dx
[

f + (x)�∂xg (x) + g+ (x) �∂x f (x)
]

(5.74)

+ k0

∫

dx
[

f + (x) �X g (x) + g+ (x) �X f (x)
]

+
∫

dx V (x)
[

f + (x) f (x) + g+ (x) g (x)
]

+
∫

dx
[

f + (x) f (x) − g+ (x) g (x)
]

= ek + ekc + ev + em

In the case of resonances this energy is infinite because solutions f and g are nor
square integrable in which case one calculates it from

e = i
[

f +
∞�∂xg∞ + g+

∞�∂x f∞
]

N + k0
[

f +
∞�X g∞ + g+

∞�Xf∞
]

N

+ [

f +
∞ f∞ − g+

∞ g∞
]

N = ek + ekc + em

where ∞ indicates that solutions are calculated for x → ∞ and N indicates that the
bracket is normalized with respect to P (x → ∞).

Energy is a sum of four terms: first is kinetic energy (ek), second is kinetic energy
associated with the motion of the system (ekc), the third is potential energy (ev) and
the last contribution is from the effective mass (em). The energy that is equivalent
with the total energy in non-relativistic dynamics is the sum of kinetic and potential
energies, and it is given by enr = ek + ev . Thus in example in Fig. 5.20 enr has the
value enr = −0.176 for k = 0 and enr = −1.96 for k = 100. Both values are what
one would consider “physical”, meaning that they are negative, within the limits
of the potential well. Interesting case is the example in Fig. 5.21 for k = 100 when
ekv = −8.96, which is close to the bottom of the potential well and plays the role of
the ground state, which is confirmed by the shape of P(x) in the same figure.

If the two particles are of different charge then one could calculate charge density
in the system, along the lines in Sect. 1.2.3. One starts from the overall density

P (x,X) = F+ (x,X)F (x,X) + G+ (x,X)G (x,X)

and replacing solutions with (5.67), with the amplitude (5.73), one gets

P (x1, u) = �
+ (x1, u) � (x1, u) + �+ (x1, u) � (x1, u)

http://dx.doi.org/10.1007/978-3-662-52878-5_1
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where

� (x1, u) = 1
√

dk
√

π

∫

dk e
− k2

2d2k
+ik

(

x1+ 1
1+ε2

u
)

f (u, k)

and the same for � (x1, u) except that f is replaced by g. By taking k0 = 0 it is
assumed that the system is in the rest frame. The charge density for particle 1 (its
mass is 1 in the scaled units) is then

ρ1 (x1) = −Q
∫

du P (x1, u)

where the minus sign of the charge Q indicates that it is negative.
Similarly the density could be parametrized as

P (x2, u) = �
+ (x2, u) � (x2, u) + �+ (x2, u) � (x2, u)

where now

� (x2, u) = 1
√

dk
√

π

∫

dk e
− k2

2d2k
+ik

(

x2− ε2

1+ε2
u
)

f (u, k)

and the charge density for particle 2 is

ρ2 (x2) = Q
∫

du P (x2, u)

and so the entire charge density is

ρ (x) = ρ1 (x) + ρ2 (x)

Charge density is not very sensitive on ε, the ratio of the mass of particle 1 with
that for particle 2, except when ε is nearly one in which case it goes to zero. More
important is dependence of the charge density on the width dk , for a very physical
reason. Larger dk , which implies narrower width of the probability density in the
coordinates, means that the system gets into the relativistic regime, and these affects
the masses of particles and implication on the charge density. There is, however,
the limit of taking dk very large, in general there is no meaning for the system if
dk > d−1 (the width of the potential well), and the largest to choose dk ≈ d−1. The
other extreme is dk → 0 and it is the simplest, the charge density is zero because
individual densities are uniformly spread around the space.

In order to demonstrate the effect of confinement on the charge density it is
assumed that ε = 1 whilst the size of the potential well is d = 0.001, which is the
size of neutron (approximately) if particle 1 is the electron. The results for the entire
charge densities are shown in Fig. 5.23 for two examples of confinements. The left
graph is calculated when the confinement is hundred times larger than the size of the
potential well, and distribution of charges is similar to that in Fig. 1.1 for Hydrogen

http://dx.doi.org/10.1007/978-3-662-52878-5_1
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Fig. 5.23 Charge density for
two oppositely charged
particles, lighter particle has
it negative. On the left is
charge density when the
width of confinement is
about 100 times the size of
the potential well. On the
right the system is confined
to the size of the potential
well, approximately the size
of neutron. In both case
system is relativistic

like atom (for muon as particle 1). However, at extreme confinement, right graph,
when it is of the size of the potential well, the distribution of charge density is
reversed, most of the negative charge is around the centre of interaction.



Chapter 6
Atom in Electromagnetic Field

Abstract When electromagnetic wave interacts with atom both the electrons and
its nucleus are affected. Several effects emerge that have roots in inter dependence
of the electron and the atom as the whole dynamics. Some of the effects are classical
in origin and the others are typical of quantum dynamics.

6.1 General Remarks

Atom is a conglomerate ofmany electrons and a single nuclei, and its interactionwith
the electromagnetic wave affects all of them, in principle. In typical approach many
simplifying assumptions are made, but here this will be avoided as much as possible,
or arguments will be given why they are used. For a free single charged particle in the
electromagnetic wave both classical and quantum analysis were made, however, for
atoms this is not possible. The reason is simple, motion of electrons even without the
electromagnetic interaction is highly unstable in the classical treatment, meaning that
the auto-ionization process occurs almost instantaneously (one electron in collision
with another ejects it free but after that it is more tightly bound). There is a remedy in
classical mechanics to avoid such events, but a complete reformulation of it in terms
of probability densities is required. Application of classical mechanics will be used
only when sufficient simplifications are made within the quantum treatment.

Isolated atom is described by a probability amplitude that includes both the elec-
trons and its nuclei. Roughly speaking, atom as a whole is the same as a free particle,
within which electrons are bound whose motion should be described in the relative
coordinates with respect to its nuclei. The nuclei is normally associated with the
centre of mass of atom, which is a good approximation, and therefore the probability
amplitude could be written as a product

f
( �R; �r1, �r2, �r3, ... �rn

)

= fN
( �R

)

fe (�r1, �r2, �r3, ... �rn)
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where �R is position of the nuclei with respect to some coordinate system (absolute
coordinate system, for short) and �r j is position of the j-th electron with respect to
the nuclei. This factorization is the bases of all analysis of electron structure because
the nuclear degree of freedom is neglected. However, when the nuclear coordinate
is taken into account then the probability amplitude for the electrons takes a more
complicated form because relative to that coordinate electronic states are stationary
but with respect to the absolute ones they are not. The probability amplitude for the
nuclei evolves in time because it is that for a free particle, it spreads, and therefore
probability density for, say, electron 1 it is given by

P
( �R1, t

)

=
∫

∣

∣

∣ fN
( �R, t

)

fe
( �R1 − �R, �R2 − �R, ..., �R1 − �R

)∣

∣

∣

2
d3R d3R2...d

3Rn

where �R j is the absolute position of the j-th electron. This may appear a somewhat
artificial conclusion because the intrinsic properties of atoms do not depend on the
whereabouts of atom as the whole. However, when it comes to interaction with forces
that vary over the spatial distances then it is indeed necessary to work in the absolute
coordinates for the electrons. Namely, variation of the force over the localization
distance of the j-th electron in atom may be small but because localization of the
atom as the whole is much larger, and spreading, then this variation may be large.

Probability density for the electron in Hydrogen atom is analyzed in order to
demonstrate the difference when it is treated in terms of the absolute coordinates
as opposed to the relative. Strictly speaking it should be done in the absolute, and
one starts from the probability amplitude for the entire atom, nuclei (proton) and the
electron. The simplest is to assume Gaussian type probability density of the width d
for the proton and the 1S state for the electron in the relative coordinates. Together
they give probability amplitude for the whole hydrogen atom as

f
( �R; �r

)

= √
N e− R2

2d2 e− r
2a

However, position of the electron is determined in the absolute coordinates, in the
same coordinate system inwhich position of the proton is given. If the coordinates for
the electron are �Re then in the absolute coordinates the atom probability amplitude is

f
( �R; �Re

)

= √
N e− R2

2d2 e−| �Re− �R|
2a

The probability density for the electron is now

P
( �Re

)

= N
∫

d3R e− R2

d2
−| �Re− �R|

a = N
∫

d3R e− ( �Re− �R)
2

d2
− R

a
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Fig. 6.1 Probability density
for the electron in the 1S
state of Hydrogen if
delocalization of the atom is
taken into account. For the
atom that is localized to
twice the width of the
electron state the probability
density is shown in left figure
and when its delocalization
is much wider (right figure)
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and its explicit expression is

P
( �Re

)

= N

Re

[(

d

2a
+ Re

d

)

erf c

(

d

2a
+ Re

d

)

e
Re
a −

∣

∣

∣

∣

d

2a
− Re

d

∣

∣

∣

∣

erf c

∣

∣

∣

∣

d

2a
− Re

d

∣

∣

∣

∣

e− Re
a

]

where
erf c(z) = 1 − erf(z)

and er f (z) is the error function. Two extreme examples are shown in Fig. 6.1, one
when d = 2a (left graph) and the other when d = 10a (right graph). For a very
wide probability density of the nuclei the electron probability density is that of a
Gaussian shape of the width that is comparable to d. On the other hand, for a small
d the probability density for Re < d2/(2a) is a Gaussian shape but otherwise it is
that of the 1S state.

When the probability density evolves in time the only change is in the width of
the Gaussian, when d is replaced by an increasing function in time. This means that
eventually the probability density for the electron acquires the shape of the probability
density for the nuclei, and gets delocalized over the entire space.

6.2 Atom in Electromagnetic Wave

6.2.1 Basic Equation

Equation for an atom in the electromagnetic wave is

i�∂t f = − �
2

2M

[

∇R + ine

�c
�A
(

n̂ · �R
c

− t

)]2

f
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− �
2

2m

[

∇R1 − ie

�c
�A
(

n̂ · �R1

c
− t

)]2

f

. . . − �
2

2m

[

∇Rn − ie

�c
�A
(

n̂ · �Rn

c
− t

)]2

f + V f

where �R is position of the nuclei of the mass M and the total charge n, �R j is position
of the j-th electron in the absolute coordinates and V is the Coulomb interaction
among electrons and the nuclei. In order to simplify somewhat derivations indexing
of the particles is modified. The nuclei is particle 1 and the electrons are particles 2,
3, …, N, so that there are N – 1 electrons. The equation is now

i�∂t f = −�
2

2

N
∑

j=1

1

m j

[

∇R j + ie j
�c

�A
(

n̂ · �R j

c
− t

)]2

f + V f (6.1)

where e j = ne for j = 1 but otherwise e j = −e. The coordinates are transformed
into the centre of mass system, but in such a way that the bilinear form

K =
N

∑

j=1

1

m j

[∇R j

]2

is again diagonal. The final result of the necessary transformations are given in (D),
and for the case of N – 1 identical particles (electrons) and the mass of the nuclei
(particle 1) being much larger than the mass of the electrons, the expression for K is

K = 1

M
�R + 1

m

n
∑

j=1

�r j

where now �R is position of the centre of mass but it (approximately) coincides with
the position of the nuclei and �r j is position of the j-th electron with respect to the
nuclei, i.e.

�r j = �R j − �R

The vector potential in (6.1) can be approximated as

�A
(

n̂ · �R j

c
− t

)

= �A
(

n̂ · �r j
c

+ n̂ · �R
c

− t

)

≈ �A
(

n̂ · �R
c

− t

)

+ n̂ · �r j
c

�A′
(

n̂ · �R
c

− t

)
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with the argument that although over the distance R it may vary considerably, over
the distances r j it is nearly constant. When the square in (6.1) is evaluated then with
this expansion the cross term is

T =
N

∑

j=1

e j
m j

�A
(

n̂ · �R j

c
− t

)

· ∇R j ≈ �A
(

n̂ · �R
c

− t

)

·
N

∑

j=1

e j
m j

∇R j

+ 1

c
�A′

(

n̂ · �R
c

− t

)

·
N

∑

j=2

e j
m j

(

n̂ · �r j
) ∇R j

In the centre of mass coordinates the operators in this expression are given in (D),
so that

T = − e

m

n
∑

j=1

[

�A
(

n̂ · �R
c

− t

)

· ∇r j +
(

n̂ · �r j
)

c
�A′

(

n̂ · �R
c

− t

)

· ∇r j

]

− e
∑n

j=1

(

n̂ · �r j
)

Mc
�A′

(

n̂ · �R
c

− t

)

· ∇R

Equation (6.1) is now

i�∂t f = − �
2

2M
�R f − �

2

2m

n
∑

j=1

�r j f (6.2)

+ i�e

mc

n
∑

j=1

[

�A
(

n̂ · �R
c

− t

)

· ∇r j +
(

n̂ · �r j
)

c
�A′

(

n̂ · �R
c

− t

)

· ∇r j

]

+ i�e

Mc2

n
∑

j=1

(

n̂ · �r j
) �A′

(

n̂ · �R
c

− t

)

· ∇R f +
(

n2

M
+ n

m

)

e2

2c2
�A2

(

n̂ · �R
c

− t

)

f + V f

where dependence of the vector potential on the coordinate of the nuclei was retained,
to indicate that the probability amplitude for the atom as the whole may have large
spread.

It is assumed that electrons are all bound, and that the eigenfunctions and eigen-
values of equation

Eλ hλ = − �
2

2m

n
∑

j=1

�r j hλ + V hλ

are known. The probability amplitude f then have expansion

f
( �R; �r j

)

=
∑

λ

gλ

( �R, t
)

hλ

(�r j
)

e−i Eλt/� (6.3)



222 6 Atom in Electromagnetic Field

which is replaced in (6.2) and a set of equations for gλ

( �R, t
)

is obtained. If for the

vector potential one writes
�A (u) = a(u)ŝ

and if the orthonormal property of the eigenfunctions hλ is used, this set is

i�∂tgλ

( �R, t
)

= − �
2

2M
�gλ

( �R, t
)

(6.4)

+ i�e

mc

∑

μ

[

a(u) r (s)
λ,μ + 1

c
a′(u)qλ,μ

]

e−i(Eμ−Eλ)t/�gμ

( �R, t
)

+ i�e

Mc2
a′(u)

∑

μ

r (n)
λ,μ e−i(Eμ−Eλ)t/� ŝ · ∇gμ

( �R, t
)

+
(

n2

M
+ n

m

)

e2

2c2
a2 (u) gλ

( �R, t
)

where

r (s)
λ,μ =

n
∑

j=1

∫

dV hλ

(

ŝ · ∇r j

)

hμ

r (n)
λ,μ =

n
∑

j=1

∫

dV hλ

(

n̂ · ∇r j

)

hμ

qλ,μ =
n

∑

j=1

∫

dV hλ

(

n̂ · �r j
) (

ŝ · ∇r j

)

hμ

and

u = n̂ · �R
c

− t

More convenient expression for the matrix elements r (s,n)
λ,μ is obtained by using the

relationship for two bound state eigenfunctions

(e1 − e2)
∫

f1�r f2 = �
2

m

∫

f2∇ f1

in which case

r (s)
λ,μ = nm

�2

(

Eμ − Eλ

)

∫

dV hλ

(

ŝ · �r j
)

hμ

r (n)
λ,μ = nm

�2

(

Eμ − Eλ

)

∫

dV hλ

(

n̂ · �r j
)

hμ
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where the symmetry property of the probability amplitudewith respect to interchange
of two electrons was utilized.

6.2.2 First Order Interaction

There are various levels of approximation to the set of equations (6.4), and the leading
one is to neglect all terms of the order c−2, when

i�∂tgλ

( �R, t
)

= − �
2

2M
�gλ

( �R, t
)

+ i�e

mc
a(u)

∑

μ

r (s)
λ,μ e−i(Eμ−Eλ)t/�gμ

( �R, t
)

(6.5)
which indicates that there is coupling between the motion of the atom and the elec-
trons (degrees of freedomof electrons are contained in the indices λ andμ). However,
before any further analysis one must specify initial conditions for this set of equa-
tions, for example initially the atom is in one of the eigenstates of electrons, say
the ground state. The probability amplitude for the whole atom should represent its
initial localization, and without much loss of generality the overall initial probability
amplitude is

f0
( �R; �r j

)

= g0

( �R
)

hλ0

(�r j
)

The simplest to assume is that g0
( �R

)

is spherically symmetric, but that does not allow

to decompose equations for gλ in spherical coordinates, because of the argument in
the vector potential. More appropriate would be cylindrical coordinates, where the
z axes is chosen to lie along the vector n̂.

Approximate solution gλ is obtained by transforming the equation in the integral
equation form, by using Green function (B.1.1). It is given by

gλ

( �R, t
)

= g0

( �R, t
)

δλ,λ0

+ i�e

mc

∑

μ

r (s)
λ,μ

∫

d3Q
∫ t

0
ds G

( �R − �Q, t − s
)

a

(

n̂ · �Q
c

− s

)

e−i
(

Eμ−Eλ

)

s/�gμ

( �Q, s
)

and the first iteration gives correction

gλ

( �R, t
)

= g0

( �R, t
)

δλ,λ0

+ i�e

mc
r (s)
λ,λ0

∫

d3Q
∫ t

0
ds G

( �R − �Q, t − s
)

a

(

n̂ · �Q
c

− s

)

e
−i

(

Eλ0−Eλ

)

s/�
g0

( �R, t
)

= g0

( �R, t
)

δλ,λ0 + i�e

mc
r (s)
λ,λ0

I
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By replacing Green function with its explicit expression, and

g0

( �R, t
)

= 1

(2π)3

∫

d3k B
(�k

)

ei
�k· �R−i �k2

2M t

then the correction term I is

I = − i

�(2π)3

∫

d3Q
∫ t

0
ds

∫

d3κ ei �κ·( �R− �Q)−i κ2�

2M (t−s)

a

(

n̂ · �Q
c

− s

)

e−i(Eλ0−Eλ)s/�

∫

d3k B
(�k

)

ei
�k· �Q−i �k2

2M s

The simplest assumption is that the electromagnetic interaction is a plane wave

a (u) = a0 cos(u) = a0
2

(

eiwu + e−iwu
)

but, as argued before, one should take great care not to make conclusions that require
the wave to have begging and end. If one uses expansion of the plane wave into a
sum of two exponential functions, as shown, then the integrals I split into two, each
corresponding to one of them. The integrals in the variables �Q then given the delta
function

∫

d3Q . . . = (2π)3δ

(

−�κ ± w
n̂

c
+ �k

)

and in the variable s

∫ t

0
ds . . . = e

i
(

± w�

cM
�k·n̂+ w2

�

2c2M
−(Eλ0−Eλ)/�∓w

)

t − 1

i
(

±w�

cM
�k · n̂ + w2�

2c2M − (

Eλ0 − Eλ

)

/� ∓ w
) (6.6)

where it was taken into account that

�κ = ±w
n̂

c
+ �k

which follows from the delta function. It is assumed that the frequency w is close to
the value when

1

cM

(

±��k · n̂ + �w

2c

)

w − Eλ0 − Eλ

�
∓ w = 0 (6.7)

which is approximately satisfied for the resonance frequency

w = Eλ − Eλ0

�
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under the assumption that Eλ > Eλ0 . Correction to this value comes from the other
terms in (6.7), but it is small because

1

cM

(

��k · n̂ + �w

2c

)

is the ratio between total momentum of the atom and its Compton momentum. Total
momentum of the atom is a sum of its momentum from the dispersion of momenta in
the initial probability amplitude and the momentum imparted by the electromagnetic
wave. If this term is treated as perturbation then approximate solution of equation
(6.7) is

w = Eλ − Eλ0

�
+ �k · n̂

cM

(

Eλ − Eλ0

) +
(

Eλ − Eλ0

)2

2c2M�

The first correcting term, which includes �k comes from the Doppler effect due to
dispersion ofmomenta in the initial probability amplitude of the atom. The remaining
term comes from the change in velocity of the atom due to the frequency dependent
momentum transfer onto the atom (the photon effect). Frequency of the wave that
has this value is also called resonance frequency.

For the resonance frequency of the electromagnetic wave the time integral is

∫ t

0
ds . . . = t

and so the correction term I is

I = −a0i

2�
t
∫

d3k B
(�k

)

e
i
(

w n̂
c +�k

)

· �R−i
(w n̂

c +�k)
2

�

2M t

= −a0i

2�
t
∫

d3k B

(

�k − w
n̂

c

)

ei
�k· �R−i k

2
�

2M t

where the contribution from the frequency term eiwt in the plane wave was neglected.
The probability amplitude for the atom is therefore

gλ

( �R, t
)

= g0

( �R, t
)

δλ,λ0 + ea0t

2mc
r (s)
λ,λ0

∫

d3k B

(

�k − w
n̂

c

)

ei
�k· �R−i k

2
�

2M t

and increases linearly in time. However, correction to the probability amplitude for
the atom is the same as the unperturbed except that it is moving with the additional
velocity

�vatom = w�

Mc
n̂ (6.8)
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Linear increase in time is obviously a sign of a very efficient energy transfer
from a ground state into some excited one, and cannot go on indefinitely because
perturbation expansion fails. In such a case alternative analysis that goes beyond
perturbation theory is required. One obvious objection is that for the resonance
frequency it was assumed that it has some fixed value, whilst in fact it varies with �k.
More accurate assumption would be that it is solution of equation

w2
�

2c2M
+ (

Eλ − Eλ0

)

/� − w = 0

and it has the value w0. In this case I is

I = − cM

2�2w0

∫

d3k B
(�k

)

e
i
(

w0
n̂
c +�k

)

· �R−i
(w0

n̂
c +�k)

2
�

2M t ei
w0�

cM
�k·n̂ t − 1

�k · n̂
and if one defines cylindrical coordinate system, with the z axes defined along the
vector n̂, then

I = − cM

2�2w0

∫ ∞

−∞
dkne

i(
w0
c +kn)Rn−i

( w0
c +kn)

2
�

2M t

ei
w0�

cM kn t − 1

kn

∫

d2κ B
(

knn̂ + �κ)

ei �κ· �R−i κ2�

2M t

where kn = �k · n̂, Rn = n̂ · �R and the vector �κ is perpendicular to n̂. Formally the
integral in kn could now be calculated, and to demonstrate its properties it is assumed

that B
(�k

)

is a Gaussian

B
(�k

)

= N e
− k2

d2k = N e
− k2n

2d2k e
− κ2

2d2k

in which case

I = − icMπ

2�2w0

√

dk
√

π
e−i

(n̂· �R)w0
c −i

�w2
0

2Mc2
t

[

erf

(

Rn√
2�(t)

)

− erf

(

Rn − �w0
Mc t√

2�(t)

)]

where

�(t) =
√

1

d2
k

+ i
�t

M

where erf(z) is the error function. The remaining integrals in κ where omitted because
they represent the unperturbed probability amplitude.

The function I (t) is time dependent, and for short times it is approximately
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I (t) ≈ −i

√

dk
√

π√
2�

t e− 1
2 (n̂· �R)2d2

k

which has a linear increase in time, as expected, and it has the initial Gaussian shape.
More general estimate of I (t) is based on using property of the error function erf(z)
that for z < −2 it has the value erf(z) = −1 whilst for z > 2 its value is erf(z) = 1,
and erf(0) = 0. As the time increases one error function remains centred at the origin
and the centre of the other moves with the velocity (6.8). After sufficiently long time
function I has estimate

I ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ; Rn√
2 |�(t)| < −2

2 ; Rn√
2 |�(t)| > 2 ; Rn− �w0

Mc t√
2 |�(t)| < −2

0 ; Rn− �w0
Mc t√

2 |�(t)| > 2

(6.9)

and one typical example of this limiting case is shown in Fig. 6.2. The shape is result
of the separation of the two centres of the error functions, and the transition time
from the initial Gaussian shape is estimated from the following observation; if in
time t the edge of the transition interval of the first error function is

Rn√
2�(t)

= 2

and this point is on the edge of the interval of the second error function, i.e.

2
√
2�(t) − �w0

Mc t√
2 |�(t)| = −2

Fig. 6.2 Long time behavior
of the correction to the
probability amplitude for
atom in interaction with a
plane electromagnetic wave.
Initial functional form of the
probability amplitude for the
atom is Gaussian

0 200 400 600
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then for the times greater than this the function I acquires the shape (6.9) or as shown
in Fig. 6.2. From the last equation one obtains

t = 1

w0

16Mc2

�w0

(

1 +
√

1 + w2
0

8c2d2
k

)

which gives time when the shape in Fig. 6.2 starts forming, before that being the
Gaussian function whose maximum increases in time.

In the limit t → ∞ the modulus of I is constant, in the interval given by (6.9),
and within it

gλ

( �R, t
)

= g0

( �R, t
)

δλ,λ0 + Ma0e

m�w0

πr (s)
λ,λ0

√

dk
√

π
e−i

(n̂· �R)w0
c −i

�w2
0

2Mc2
t

therefore the correction term to the probability amplitude for the atom is constant,
but large.

Very often the limit t → ∞ is taken in the beginning of analysis, in the expression
(6.6), where one of the integrals is delta function

∫ t

0
ds . . . ∼ δ

(

w�

cM
�k · n̂ + w2

�

2c2M
− (

Eλ0 − Eλ

)

/� − w

)

and based on that very elaborate analysis for transitions between electronic states is
made. In fact this limit is not allowed, because, as it was shown, the perturbation
increases linearly in time and beyond certain value it fails. Various justifications of
this limit, such as formulation of transition probabilities per second (derivative of
perturbation is constant), only confuse the issue, and that is how to handle this limit.
It was shown above how this can be done within the perturbation theory, but there is
another approach by which one solves the problem beyond it.

One important finding of the previous analysis is importance of the resonance
frequencies. Any other frequency perturbs atom but has little effect on it. Therefore
from now on it is a very good approximation to consider only two states from the
set (6.4) or (6.5). In order to simplify notation the two states are labeled as 1 and 2,
where 2 is higher in energy than 1. The plane wave propagates in direction of z axes
and it is polarized along the x axes. The set of two equations that one has to solve is

∂tg1

( �R, t
)

= i�

2M
�g1

( �R, t
)

(6.10)

+ ea0r1,2
mc

cos(
wz

c
− wt) e−i(E2−E1)t/�g2

( �R, t
)

∂tg2

( �R, t
)

= i�

2M
�g2

( �R, t
)

− ea0r1,2
mc

cos(
wz

c
− wt) e−i(E1−E2)t/�g1

( �R, t
)
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where it was taken into account that r1,2 = −r2,1. The frequency is nearly resonante,
and therefore it is expected thedominant component of the planewave that contributes
to dynamics is1

cos(
wz

c
− wt) ≈ 1

2
e−i wz

c +iwt

in the first equation, whilst the other is dominant in the second equation. The set that
needs to be solved now is

∂tg1

( �R, t
)

= i�

2M
�g1
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)

+ ε e−i wz
c +i	 tg2
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)

− ε ei
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c −i	 tg1
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)

where de-tuning is

	 = w − (E2 − E1)

�

and
ε = ea0r1,2

2mc

One defines now new function by
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2 t h1
( �R, t

)
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)
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2 t h2
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(6.11)

and equations for them are

�h1 − iw

c
∂zh1 + 2iM

�
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(
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4c2
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h1 − 2iεM
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c
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�
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4c2
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�
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h2 + 2iεM
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These functions in the Fourier transform are

h1
( �R, t

)

=
∫

d3k b1(�k, t)ei �k· �R (6.12)

h2
( �R, t

)

=
∫

d3k b2(�k, t)ei �k· �R

1This choice is called the rotatingwave approximation for the reasons that are somewhatmysterious,
and go back to the early developments of quantum theory. In this text this name is not used for the
sake of clarity of associating name with a substance of theory.
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and equations for the coefficients are

dtb1 = −
(

i�k2

2M
− i�kzw

2Mc
+ i�w2

8Mc2
+ i	
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)

b1 + εb2 (6.13)
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They have exact solution, which is
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b1(�k, 0)

where


 =
√

4ε2 +
(

�kzw

Mc
− 	

)2

It was assumed in this solution that at t = 0 the initial conditions are

g1

( �R, 0
)

= e−i wz
2c

∫

d3k b1(�k, 0)ei �k· �R

g2
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= 0 ⇒ b2(�k, 0) = 0
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b1(�k, 0) = 1

(2π)3

∫

d3R e+i wz
2c −i �k· �Rg1

( �R, 0
)

Time evolution of either g1
( �R, t

)

or g2
( �R, t

)

is very complicated, but numeri-

cally straightforward in particular this is a relatively simple task if initial g1
( �R, 0

)

is a Gaussian. As noted before time evolution of the probability amplitude along
the z axes is then de-coupled from its time evolution along the other axis. Coupling
with the electromagnetic wave is along the z axes and therefore only this degree of
freedom is considered. The assumed Gaussian is (the atom is at rest initially)

g1 (z, 0) = 1

d1/2π1/4
e− z2

2d2

and b1(k, 0) is (only one coordinate is used, where now k stands for kz)

b1(k, 0) =
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d

2π3/2
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2 (k− w
2c )

2
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The coefficient b1(k, t) is now
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where
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and the solution for g1 (z, t) is
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where now


 =
√

4ε2 +
(

�kw

Mc
+ �w2

2Mc2
− 	

)2

because the integration variable k was shifted.
Similarly the coefficient b2(k, t) is obtained as
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and g2 (z, t) is
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Information that g2 (z, t) gives is too detailed, one is more interested in the overall
probability to find atom in the electronic state 2

P2(t) =
∫ ∞

−∞
dz |g2 (z, t)|2
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If solution (6.14) is replaced in the integral then
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Typical features of the probability P2(t) depend on a number of parameters. Few
typical choices are shown, and the other are gauged against them. In calculations the
parameters M and � where set to unity, whilst w = 15, c = 100 and d = 100. For
de tuning 	 = 0 (w is the resonance frequency) two values of ε are chosen, and the
corresponding P2(t) are shown in Fig. 6.3. One notices that the probability oscillates
between the two extreme values with the period that depends on this parameter, and
it is approximately given by

T = π

ε
(6.15)

It appears that the oscillations go indefinitely, with the amplitude between 0 and
1, however, on the longer time scale a different conclusion emerges, as shown in
Fig. 6.4 where only the envelopes of the oscillations are shown because individual

Fig. 6.3 Short time
dependence of the
probability for the excited
state in a two level system
under the impact of an
electromagnetic wave with
the resonance frequency, and
two coupling parameters ε.
The (Rabi) period is given by
(6.15)

0 20 40 60 80 100
0.0

0.5

1.0


P 2(t
)

t



0 20 40 60 80 100
0.0

0.5

1.0

P 2(t
)

t



6.2 Atom in Electromagnetic Wave 233

Fig. 6.4 Long time
dependence of the
probability for the excited
state in a two level system
under the impact of an
electromagnetic wave with
the resonance frequency.
Only the envelope of the
oscillations is shown

0 10000 20000 30000 40000 50000
0.0

0.2

0.4

0.6

0.8

1.0

P 2
(t)

t



Fig. 6.5 Dumping of
oscillations for the
probability of the excited
state in a two level system, as
a function of de tuning
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ones are not distinguishable. Dumping of the amplitudes occurs, and eventually the
probability P2(t) acquires a stationary value. The time when this stationary value is
achieved depends greatly on the chosen parameters. However, in the limit c → ∞
this time is infinite when the period of oscillations, Rabbi oscillations, is (6.15), and
it is referred to as the Rabbi period.

Dumping is also affected by de tuning 	 , and two typical examples for ε = 0.1
are shown in Fig. 6.5, one for the positive and the other for the negative de tuning
(again only the envelopes of the oscillations are shown). For the positive de tuning
dumping gets negligible whilst for the negative it becomes more efficient.

The meaning of the dumping of the transition probability is that atom eventually
acquires a permanent electric dipole moment. Namely, oscillations of the probability
amplitude between two states occurs primarily between those that have different
symmetry properties,whichmeans that the electric dipolemoment oscillates between
zero value (when the electrons are in one of the eigenstates) and somemaximal value
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Fig. 6.6 Probability density
of atom under the impact of a
plane electromagnetic wave
in resonance with its two
levels. Short (upper figure)
and long (lower figure) time
behavior is shown
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(for example when P2(t) = 0.5). Eventually due to damping the probability acquires
a constant value somewhere between its two extremes, which also means that the
electric dipole moment of atom has a constant value.

Probability density for the atom, along the z direction, is defined as

P(z, t) =
∫

dVel f ∗ f =
∑

λ

g∗
λ

( �R, t
)

∇Rgλ

( �R, t
)

= g∗
1 (z, t) g1 (z, t) + g∗

2 (z, t) g2 (z, t)

Two typical instants in time are chosen, one when the probability P2(t) is still oscil-
lating (in Fig. 6.4 this corresponds to t = 10000), and the other when this probability
reached a constant value (t = 50000 in Fig. 6.4). The probability density retains its
Gaussian shape for a long time, but spreads, and eventually it becomes a shape with
two extremes, which are not well separated. Both examples are shown in Fig. 6.6.

Another useful quantity to calculate is velocity of atom, which is defined for the
total probability amplitude (6.3) as

�vatom =
∫

dVel d
3R f ∗

(

− i�

M
∇R

)

f

= − i�

M

∫

dVel d
3R

∑

λ

g∗
λ

( �R, t
)

hλ

(�r j
)

ei Eλt/�∇R

∑

μ

gμ

( �R, t
)

hμ

(�r j
)

e−i Eμt/�

and if the orthonormal property of the electron eigenfunctions are used then

�vatom = − i�

M

∑

λ

∫

d3R g∗
λ

( �R, t
)

∇Rgλ

( �R, t
)
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For the example that is analyzed velocity, and only its component in the z direction
is

vatom =
− i�

M

[∫

d3R g∗
1

( �R, t
)

ẑ · ∇Rg1

( �R, t
)

+
∫

d3R g∗
2

( �R, t
)

ẑ · ∇Rg2

( �R, t
)

]

= 4d�ε2

π1/2M

∫ ∞

−∞
dk ke−d2k2 sin2

(

t
2


)


2

+ d�

π1/2M

∫ ∞

−∞
dk ke−d2k2

[

cos2
(


t

2

)

+
(

�kw

Mc
+ �w2

2Mc2
− 	

)2 sin2
(

t
2


)


2

]2

+ w�

Mc

4dε2

π1/2

∫ ∞

−∞
dk ke−d2k2 sin2

(

t
2


)


2

and from the definition of 
 one obtains

vatom = w�

Mc
P2(t) (6.16)

This means that the atom acquires velocity that is proportional to the probability of
finding electrons in the state 2 and the frequency dependent momentum from the
electromagnetic wave, photon momentum transfer to the atom. Average value of the
atom velocity is obtained by neglecting oscillating terms in P2(t), which gives

P2(t) = 2dε2

π1/2

∫ ∞

−∞
du

e−d2(u− w
2c + Mc

w�
	)

2

4ε2 + (

�w
Mc

)2
u2

The integral has analytic solution and the probability is

P2(t) = Mcdεπ1/2

2w�
e−a2 [1 − erf (ia)] + C.C.

where C.C. means the complex conjugate of the previous term, and

a = dw

2c
− Mcd

w�
	 − i

2Mcd

w�
ε

The argument of the error function erf(z) is large and from its asymptotic value

erf(z) ≈ 1 − 1

z
√

π
e−z2
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the average probability is

P2(t) = 2ε2

4ε2 +
(

w2�

2c2M − 	
)2

For the example in Fig. 6.6 the average P2(t) gives the value ≈ 0.5, and so the
motion of themaximumof the probability density P(z, t) is governed by the equation

zatom ≈ 15

100
0.5 t = 0.075 t

which is a good estimate.

6.2.3 Second Order Interaction

Second order interaction involves terms in the set (6.4) of the order c−2

i�∂tgλ

( �R, t
)

= − �
2

2M
�gλ

( �R, t
)

+
(

n2

M
+ n

m

)

e2

2c2
a2 (u) gλ

( �R, t
)

+ i�e

mc2
∑

μ

1

c
a′(u)qλ,μe

−i(Eμ−Eλ)t/�gμ

( �R, t
)

+ i�e

Mc2
a′(u)

∑

μ

r (n)
λ,μ e−i(Eμ−Eλ)t/� ŝ · ∇gμ

( �R, t
)

Some of the terms have relatively simple explanation, which is based on the analysis
in the previous chapters. Thus the time average of a2 (u) is the contribution to the

phase of gλ

( �R, t
)

that is interpreted as velocity of atom

Vdri f t =
(

n2

M
+ n

m

)

e2

4Mc3
a20

in which the drift velocity (4.6) is recognized that gets contribution from both the
nuclei and the electrons. The oscillatory part of a2 (u) has double the frequency of
the electromagnetic wave so that both the nuclei and the electrons oscillate at this
frequency. It should be noted that Vdri f t increases as the square of the nuclear charge
whilst it only increases linearly with the number of electrons, an indication that Vdri f t

is indeed the drift velocity.
The term

Vquadr = i�e

mc2
a′(u)qλ,μe

−i(Eμ−Eλ)t/�

http://dx.doi.org/10.1007/978-3-662-52878-5_4
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is very similar in its structure with that analyzed in the previous section, except that
now it is of order c smaller and that it has also coupling along the propagation of the
electromagnetic wave. The coupling element r (s)

λ,μ (dipole interaction) in the previous
section involves only the states that are connected by the polarization direction of
the electromagnetic wave, on the other hand qλ,μ is a product of the dipole terms in
the n̂ and ŝ directions, which is a quadrupole interaction. These transitions are ana-
lyzed separately from those coupled by only the dipole interaction because the states
involved may have different eigenenergies. Analyses of Vquadr , however, follows the
same arguments as in the case for the dipole interaction.

The remaining term is

Vlong = i�e

Mc2
a′(u) r (n)

λ,μ e−i(Eμ−Eλ)t/� ŝ · ∇

and involves the dipole interaction along propagation of the electromagnetic wave,
the longitudinal interaction. Treating this term in isolation from the others should be
done with some caution. Although the selection rules are different from the dipole
interaction r (s)

λ,μ the states involved may have equal eigenenergies., the states only
couple different angular momentum states. Nevertheless, this interaction is analyzed
here on its own.

By using the same arguments as in using the set (6.10) the two coupled equations
that need to be solved are

i�∂tg1

( �R, t
)

= − �
2

2M
�g1

( �R, t
)

+ i�e

Mc2
a′(u) r1,2 e

−i(E2−E1)t/� ∂xg2

( �R, t
)

i�∂tg2

( �R, t
)

= − �
2

2M
�g2

( �R, t
)

− i�e

Mc2
a′(u) r1,2 e

−i(E2−E1)t/� ∂xg1

( �R, t
)

where polarization is assumed to be along the x axes, and the superscript (n) was
omitted. Again the structure of equations is the same as in the set (6.10), except the

selection rules are different and derivatives of gn
( �R, t

)

are involved. Analysis of

the solutions is the same as for the set (6.10), which means that for a plane wave of
the frequency w the set is transformed into

∂tg1

( �R, t
)

= i�

2M
�g1

( �R, t
)

− iε e−i wz
c +i	 t ∂xg2

( �R, t
)

∂tg2

( �R, t
)

= i�

2M
�g2

( �R, t
)

+ iε ei
wz
c −i	 t ∂xg1

( �R, t
)

where
ε = ewr1,2

2Mc2



238 6 Atom in Electromagnetic Field

The set is first transformed by defining new functions, as in (6.11), which satisfy
the equations

�h1 − iw

c
∂zh1 + 2iM

�
∂t h1 −

(

w2

4c2
+ M	

�

)

h1 − 2εM

�
∂xh2 = 0

�h2 + iw

c
∂zh2 + 2iM

�
∂t h2 −

(

w2

4c2
− M	

�

)

h2 + 2εM

�
∂xh1 = 0

The solutions are represented in the Fourier transform as in (6.12), and for the coef-
ficients the set of equations is

dtb1 = −
(

i�k2

2M
− i�kzw

2Mc
+ i�w2

8Mc2
+ i	

2

)

b1 + εkxb2

dtb2 = −
(

i�k2

2M
+ i�kzw

2Mc
+ i�w2

8Mc2
− i	

2

)

b2 − εkxb1

This is almost the same as the set (6.13) except that the coupling constant ε is
multiplied by kx , which means that instead with a single dimension problem one
solves a two dimensional, at least. Detailed analysis of this dynamics is not made.



Chapter 7
Radiation by Charge

Abstract Charge under non uniform motion, more general than uniform accelera-
tion, radiates and the radiation patter carries information about the structure of charge
density. Radiation by created charge, by bound charge, rotating and vibrating mole-
cule is calculated and analyzed. Line shift of atomic spectral lines is derived when
atom is interacting with electromagnetic wave.

7.1 Radiation Zone

Charge in a nonuniform motion generates time dependent electromagnetic field that
could be analyzed in two regions of space. One is far away from the source, the
radiation zonewhere the outflowing electromagnetic field carries away energy and the
measure of this is Poyting vector (3.3). The other region is where the electromagnetic
field overlaps with the probability density of the charge and it is the source of field
reaction (4.3). Electromagnetic field in the radiation zone is analyzed in this chapter
and how its properties give information about its source.

A point-like classical charge has no meaning because of the uncertainty principle
that should be imposed on dynamics of particles. Therefore, a single charge should be
treated as an extended source of the electromagnetic field, of the sort as charge density
that is discussed in Sect. 4.3. The two most important quantities that determine the
field are the charge and the charge current, which in this case are defined as

ρ (�r, t) = e |f (�r, t)|2 , �j (�r, t) = e�

m
Im

(

f ∗∇f
)

(7.1)

where f is the probability amplitude for the particle of massm and charge e (for more
details see Sect. 1.2).

Vector and scalar potentials for a time varying charge distribution are derived
from (3.9), and the acceptable retarded solution is derived in Chap. 2, with result for
scalar

V (�r, t) =
∫

d3q
ρ
(�q, t − 1

c |�r − �q|)
|�r − �q| (7.2)
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and vector

�A (�r, t) = 1

c

∫

d3q
�j (�q, t − 1

c |�r − �q|)
|�r − �q| (7.3)

potential.
Both results indicate that the potentials at a certain point, and at certain time,

are given by the charge density and the current at some earlier time, also called
retardation time, being result of the finite velocity at which the perturbation in the
field propagates. If the size of the source is small compared to the distance �r where
the field is observed then one could write

|�r − �q| ≈ r − r̂ · �q (7.4)

and the scalar potential is

V (�r, t) ≈
∫

d3q
ρ
(�q, t − 1

c r + 1
c r̂ · �q)

r

It is tempting to conclude that because q is small compared to r one could write
expansion

ρ

(

�q, t − 1

c
r + 1

c
r̂ · �q

)

≈ ρ

(

�q, t − 1

c
r

)

+ 1

c
r̂ · �q ρ̇

(

�q, t − 1

c
r

)

(7.5)

and that it is valid in all circumstances. However, this is not the case, which is shown
by noting that the probability density for charge is determined roughly by the phase
space density �

(�r,−→v , t
)

as the integral (for simplicity velocity variable is used
instead of the momentum variable)

ρ
(−→q , t

) =
∫

d3v �
(−→q ,−→v , t

)

If at some initial instant the phase space density is �0
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interval, within which the particle is assumed to move freely, it is given by
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1

c
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)
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c
r̂ · �q,−→v

)

where for simplicity it was assumed that t = 1
c r. Expansion in the powers of c−1 is

now

�
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1

c
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)

≈ �0
(−→q ,−→v )+ 1

c
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where Liouville equation was used in the last step. The probability (charge) density
is now

ρ

(

�q, 1
c
r̂ · �q

)

≈ ρ (�q, 0) − r̂ · �q
〈−→v 〉
c

· ∇qρ (�q, 0)

where in the phase space
〈−→v 〉 is the average velocity of the particle. Expansion

(7.5) is, therefore, accurate under more stringent conditions then suggested in the
derivation (7.5), and in fact the condition

〈−→v 〉 � c should be more appropriate.
By assuming that expansion (7.5) is accurate the scalar potential is

V (�r, t) ≈ 1

r
+ 1

cr

∫

d3q r̂ · �j
(

�q, t − 1

c
r

)

where the continuity equation

ρ̇ (�r, t) = −∇ · �j (�r, t)

for the charge density and the current was used. Similarly the vector potential is
obtained

�A (�r, t) = 1

cr

∫

d3q �j
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�q, t − 1

c
r

)

− 1

c2r

∫

d3q r̂ · �q dt �j
(

�q, t − 1

c
r

)

and the second term can be neglected because it is of the order c−2.
The electric component of the field is

�E = −∇V − 1

c
∂t �A ≈ r̂

c2r

∫
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c
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c
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∫

d3q dt �j
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c
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whilst the magnetic is

�H = ∇ × �A ≈ − 1

c2r
r̂ ×

∫

d3q dt �j
(

�q, t − 1

c
r

)

where only the dominant power of r was retained, which is r−1. The Poyting vector
from these components is

�P = c

4π
�E × �H = 1

4πc3r2
r̂

[

r̂ ×
∫

d3q dt �j
(

�q, t − 1

c
r

)]2

(7.6)

which shows that the energy flows in the radial direction, out of the surface sur-
rounding the charge. Another finding is that the electric and magnetic components
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are perpendicular to each other, which is characteristic of the electromagnetic wave.
Total power outflow is the integral over the surface that surrounds the charge is

W =
∫

d� r̂ · �P = 2

3c3r2

[∫

d3q dt �j
(

�q, t − 1

c
r

)]2

(7.7)

Previous derivation should be taken with some caution. In the expansion of the
scalar and vector potentials one encounters the integral

�vav =
∫

d3q �j
(

�q, t − 1

c
r

)

which has the meaning of the average velocity of the charge. It could be replaced
by its classical result (in most cases, especially for unbound charges), in particular
if the charge is acted upon by a constant force F then

�vav = �F
m

t

where m is mass of the charge. Scalar potential is in this case

V (�r, t) ≈ 1

r
+ 1

mcr

(

t − 1

c
r

)

r̂ · �F

= 1

r
+ t

mcr
r̂ · �F − 1

mc2
r̂ · �F

and likewise the vector potential

�A (�r, t) = t

mcr
�F − 1

mc2
�F

In the calculation of the electric andmagnetic components one neglects contributions
of the order r−2 or higher, in which case

�E ≈ − 1

mc2

(

�r · �F
) �r
r

and
�H ≈ ∇ × t

mcr
�F = 0

because magnetic component decays more rapidly with the distance then r−1. There-
fore a uniformly accelerating charge does not radiate, a surprising result in view of
the intuitive belief that in these circumstances radiation is produced.
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Analysis of W is the subject of spectroscopy, in particular connection between
the structure of a cluster of charges, epitomized in their current, and the dominant
frequencies at which the system radiates. The subject is well studied [21–23] because
this is almost the only information that one gets about the structure of atoms and
molecules. This aspect of radiation by charges is not discussed in details here, but
few additional remarks are necessary for later analysis.

Poyting vector (7.6) gives very detailed information about the radiation intensity
from non uniformly moving charges, because it is a function of time, and this is very
difficult to measure. It also gives limited information because in its derivation it was
assumed that over the range of the charge density the electromagnetic wave travels at
infinite speed. The finite speed is taken into account by deriving the radiation intensity
without expansion into the powers in c−1, and as the result various correlation effects
within the charge density are described. Correction that takes into account retardation
effect within charge density is done by replacing the current in (7.6) with

�j
(

�r′, t − r

c

)

→ �j
(

�r′, t − r

c
+ n̂ · �r′

c

)

In addition to this modification one also replaces normalization of the power per unit
surface area, the Poyting vector (7.6), with power per unit solid angle

dP

d�
= 1

4πc3

[∫

d3r′n̂ × ∂t�j
(

�r′, t − r − n̂ · �r′

c

)]2

, n̂ = �r
r

(7.8)

As it was argued, information contained in (7.8) is too detailed, and it is replaced by
integrating radiation power over the whole radiation time thus giving the total energy
emitted in a given solid angle

W =
∫ ∞

−∞
dt

dP

d�
(7.9)

where the limits of integration should be carefully examined. Formally they extend
over the infinite time interval, but in fact the power P(t) is non-zero over a finite time
interval.

Having that in mind one defines Fourier transform of the current

�j (�r, t) = 1

(2π)7/2

∫

d3k e−i�k·�r
∫

dω �j�k,ωeiωt ⇒
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∫

dt �j (�r, t) e−iωt

when the integral over the current, that enters the radiation intensity (7.8), is
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c

)

= i
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c ,ωe
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c )
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and when replaced in the expression for emitted energy W one gets

W = 1

4πc3

∫

dωω2
(

n̂ ×�j�k,ω
)2

where
�k = ω

c
n̂

is the wave number of radiation. Instead of the unit vector n̂ one now defines W as
a function of the polarization vector â of the emitted radiation, whose property is
�k · â = 0. This is achieved by replacing

(

n̂ ×�j�k,ω
)

·
(

n̂ ×�j�k,ω
)−→

(

â · �j�k,ω
)2

,

which differs from the original expression in the factor cos2(�), where � is the
angle between â and the unit vector in direction of the perpendicular component of
the current�j�k,ω with respect to �k. The radiation intensity gives now information about
the polarization of the emitted radiation, besides its frequency dependence.

Spectrum is defined as emitted energy per unit frequency interval

W (ω) = ω2

4πc3
∣

∣I(â,ω)
∣

∣

2
(7.10)

where

I(â, �k,ω) =
∫

d3r ei
�k·�r â · �jω (�r) = 1√

2π

∫

dt
∫

d3r �A(�r, t) · �j (�r, t) (7.11)

is radiation amplitude, and
�A = â ei

�k·�r−iωt (7.12)

is the vector potential of emitted electromagnetic wave. The current is in general
given by

�j (�r, t) = �e

2im

(

f ∗∇f − f∇f ∗)− e2

mc
�Ain |f (�r, t)|2 (7.13)

where �Ain is vector potential of external electromagnetic field that determines dynam-
ics of a charge. f (�r, t) is probability amplitude for the charge, which in momentum
space is

f (�r, t) =
∫

d3p de g (�p, e) ei �p·�r−i et
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and the current is

�j (�r, t) = �e

m

∫

d3p de d3p′ de′g (�p, e) g∗ (�p′, e′) ei (�p−�p′)·�r−i (e−e′)t
( �p + �p′

2
− e

c�
�Ain

)

It contains two terms, without and with the external field, and the radiation amplitude
for the former is

I (1)(â, �k,ω) = 1√
2π

∫

dt
∫

d3r â · �j (�r, t) ei�k·�r−iωt

= (2π)7/2
�e

2m
â ·

∫

d3p de g∗
(

�p + �k, e + ω
)

g (�p, e)
(

2�p + �k
)

Contribution from the external field field �Ain in radiation amplitude simplifies for a
plane wave

�Ain = �A0in cos
(�kin · �r − ωint

)

when it is parametrized as

I (2)(â, �k,ω) = I (2)+(â, �k,ω) + I (2)−(â, �k,ω)

where

I (2)±(â, �k,ω)

= − (2π)7/2
e2

2mc
â · �A0in

∫

d3p de g∗
(

±�kin + �p + �k, ±ωin + e + ω
)

g (�p, e)

Radiation amplitude is essentially an overlap integral between two momentum
space probability amplitudes. One,g (�p, e), is the original amplitude, before the inter-

action takes place, and the other, g∗
(

�p + �k, e + ω
)

or g∗
(

±�kin + �p + �k, ±ωin+
e + ω

)

, is the amplitude after the interaction. Both final state amplitudes indicate

thatmomentumdistribution of the charge changed by a discrete amount. In the ampli-
tude without the external field the change is by the wave number of the radiated field
whilst when the external field is included then there is additional change due to its
wave number. If it is assumed that momentum probability amplitude has maximum

for �p = 0 then g∗
(

�p + �k, e + ω
)

means that the charge recoiled as if the wave num-

ber of the radiated field is associated with a momentum or as if a particle is emitted
of momentum �k rather than being the field. By the same token, the wave number of
the external field could be treated in the same wave, it changes momentum of the
charge.
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7.2 Radiation by Created Charge

When a charge is created, or a charge changes itsmotions almost instantly, radiation is
produced.Although the problem appearswell defined, but it is not so if the retardation
effect is strictly taken into account. The problem is that one does not have information
about the charge prior to that instant. However, in specific situations this problem
could be solved, and one is creation of a charge when it is initially confined to a small
volume. By small it is meant that due to the uncertainty relation charge moves in
confinement with relativistic velocity in which case its dynamics is relativistic, and
its radiation should be treated accordingly. If�r measures the width of this confining
volume then in1

�r �v = h

4πm

one replaces �v with the velocity of light and gets an estimate of its size. If �r
is smaller than the tenth of the Compton wave length of a charge then relativistic
dynamics is required to describe its radiation when it is freed from the confinement.
For Hydrogen atom�r is of the order of the Bohr radius h/ (2πmcα), whereα is fine
structure constant, and dynamics is not relativistic. However, relativistic effects for
the lowest energy electron in Uranium atom would be appreciable. If the electron is
confined to a nucleus, whose typical radius is roughly one hundredth of the electron
Compton wavelength, it is required to use relativistic theory. Treatment here shall be
relativistic, from Dirac equation.

The set of relativistic equations is

i�

c
∂tF = �S · �

i
∇G + mcF,

i�

c
∂tG = �S · �

i
∇F − mcG (7.14)

where �S = Sxx̂ + Syŷ + Szẑ are spin matrices. Solution is

ψ =
(

F

G

)

and for a free charge solution the two components are

F =
√

e + mc2

2e
e−iet/�+i�p·�r/�F0, G =

√

e + mc2

2e
e−iet+i�p·�rG0 (7.15)

where
G0 = c

mc2 + e
�S · �pF0.

1Warning! The uncertainty relationship is non relativistic and so the estimate is used only as a crude
guidance.
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Solution is normalized as
1 = F+F + G+G

provided F+
0 F0 = 1.

There are three initial conditions that determine dynamics of a charge: probability
density, probability current and orientation of spin. One starts by parameterizing F0

as

F0 =
( ei

φ0
2 cos θ0

2

e−i φ0
2 sin θ0

2

)

in which case
F+
0

�SF0 = ŝ

is the unit vector that points in direction of the spin. The three initial conditions for
ψ could now be fitted by parametrization (units in which m = c = � = 1 are used,
for details see Appendix A)

ψ0 =
√

e0 + 1

2e0

(

F0
1

e0+1
�S · �p0 eiβF0

)

f0(�r) (7.16)

when the probability density is

P0 = F+F + G+G = |f0(�r)|2

the probability current

−→
J 0 = F+�SG + G+�SF = |f0(�r)|2

( �p0
e0

cosβ + ŝ0 × �p0
e0

sin β

)

and spin −→s 0 = F+�SG + G+�SF = |f0(�r)|2 ŝ0

The phase β is determined from the initial condition for the current.
By defining initial conditions one formulates solution ψ in the form

ψ =
∫

d3p
[

A(+)(�p)W (+)e−iet+i�p·�r + A(−)(�p)W (−)eiet+i�p·�r
]

(7.17)

where

W (±) =
(

F0
1

1±e
�S · �p F0

)

(7.18)



248 7 Radiation by Charge

The unknown amplitudes A±(�p) in (7.17) are obtained from the initial amplitude
(7.16) by setting t = 0, in which case

A(±)(�p) =
√

e0 + 1

2e0

e ± 1

2e

(

1 + eiβ

1 ± e

1

e0 + 1
(�p · �p0 − i �p · ŝ × �p0)

)

h (�p)

where

h (�p) = 1

(2π)3

∫

d3r f0(�r)e−i�p·�r . (7.19)

and
(

W (+)
)+

W (−) = 0 was used.
Solution is

ψ = −i
∫

d3p

(
[

cos et − i sin ete

]

F0

−i sin ete
�S · �p F0

)

h (�p) ei�p·�r

and the charge density is
P = Pr + Ps

where

Pr = |f |2 +
∣

∣

∣

−→
j
∣

∣

∣

2

and
Ps = −îs ·

(−→
j ∗ × −→

j
)

with the definitions

f = (2π)−3/2
∫

d3p

(

cos et − i
sin et

e

)

h (�p) ei�p·�r , (7.20)

−→
j = (2π)−3/2 ∇

∫

d3p
sin et

e
h (�p) ei�p·�r

The index r indicates that this is radial part and s the spin part of the probability
density. In the same way one obtains the current

−→
J = −2Re

[

f ∗
(−→
j + i ŝ × −→

j
)]

There are two limits of interest. One is the non relativistic limit, which is when
f0(�r) is very broad whilst h (�p) is narrow and all p of significance are small compared
to the rest mass of the charge (here this is m = 1). In this limit

e ≈ 1 + p2

2
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and

fnr = (2π)−3/2 e
−it

∫

d3p h (�p) ei�p·�r− i
2 p

2t ,

f −
nr = (2π)−3/2 e

it

∫

d3p h (�p) ei�p·�r+ i
2 p

2t ,

−→
j nr = 1

2i
∇ f −

nr − 1

2i
∇ fnr

where the superscript − indicates that sign of energy e is negative. The probability
density is

P = Pnr + ∣

∣∇ f −
nr

∣

∣

2 + |∇ fnr |2 − 2Re
[ (∇f −

nr

)∗ · ∇ fnr
]+ Ps (7.21)

and the probability current

−→
J = −→

J nr − 1

2
ŝ × ∇ |fnr |2 − Im

[

f ∗
nr

(−îs × ∇ f −
nr + ∇f −

nr

)]

The index nr indicates the quantities that have usual expression in the non relativistic
theory. The corrections are of two kind, one is due to the spin, index s, but the other
is the effect that needs little more attention. In the expression for the probability
amplitude (7.17) there are two components differing in the sign of energy e. This
fact is the source of many discussions, involving the concept of particle and anti
particle, but in fact it has a very similar interpretation as the “negative frequency”
solution for electromagnetic waves, as discussed in Chap. 2. Negative energy is not
specific to only (relativistic) quantum theory but it is also important in classical
relativistic dynamics, as discussed in [9, Sect. 8.3], where it must be introduced in
order to resolve inconsistencies that appear if only positive energies are considered.
Based on this finding negative energies do not have any deeper physical meaning,
they are purely of mathematical significance specific to relativistic theory. They
are needed for a proper mathematical formulation of the theory. Negative energy
components in the solution have impact on the charge and current densities and one
expects their effect on the radiation intensity, in this example, of a free charge. In the
charge (probability) density the effect of the negative energy is in the interference
term in (7.21), but an estimate shows that its contribution is of the order (v/c)2, where
v is typical velocity of the charge and c is the speed of light. However, in the non
relativistic dynamics radiation intensity is determined by the probability (charge)
current (7.8), and if the spin contribution is neglected then

−→
J = (2π)−3

∫

d3q h∗ (−→q ) e−i−→q ·�r+ i
2 q

2t ·

∇
(∫

d3p h (�p) ei�p·�r− i
2 p

2t − e
2it
∫

d3p h (�p) ei�p·�r+ i
2 p

2t

)

http://dx.doi.org/10.1007/978-3-662-52878-5_2
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imaginary part of the right side being assumed. The second part contains the oscil-
latory term e

2it
, which oscillates at the frequency that is equivalent to the energy of

the two rest mass of the charge. This term is direct consequence of the interference
between positive and negative energy contributions in the probability amplitude.
However, the first and the second term are of the same order and the question is
if the rapid oscillations of radiation could be observed? In order to verify this one
calculates transform

−→
J �k,ω of the current

−→
J �k,ω = 1

(2π)4

∫

d3r
∫

dt
−→
J ((�r, t)) ei�k·�r−iωt

but here one encounters a problem. The integral in time variable runs from far past
to far future, but the solution is determined in the far future by the initial condition
at t = 0. Nothing is known about its past, but if formally the time is reversed at
t = 0 then the solution evolves in the same way as in the future, and this is not very
realistic. One assumption is that in the past the probability amplitude is zero, hence
the solution describes creation of a charge. The time integral then runs from t = 0
to infinity, and

−→
J �k,ω is

−→
J �k,ω = i(2π)−4

∫

dt h∗
(�k + �p

)

e−iωt ·
(∫

d3p �ph (�p) ei�k·�pt+ 1
2 ik

2t − e
2it
∫

d3p �ph (�p) ei�k·�pt+ 1
2 ik

2t+ip2t

)

and the integral has the formas in (C.3). In this discussion only the estimate is required
(more detailed analysis shall be in a separate section) and only the contribution from
delta function is considered (equivalent to assuming that the probability amplitude
evolves into the past as it does into the future). One then obtains for the spectrum
(7.10)2

W (ω) = ω2

4πc3

∣

∣

∣n̂ · �j�k,ω
∣

∣

∣

2

where it was taken into account that �k is parallel to n̂ and h (�p) depends only on the
modulus p. The scalar product is then

n̂ · −→
J �k,ω ∼ 1

ω

∫

dpp h (p) h
(

2ω + p2
)+ 2 − ω

ω2

∫

dpp h (p) h
(

2ω − p2 − 4
)

The first term is ordinary contribution that result from spreading of the non relativistic
probability amplitude, and originates from only the positive energy component. As
h (p) is negligible outside a narrow interval around p = 0 this contribution in the

2Polarization vector â is perpendicular to the vector
−→
k in which case radiation intensity is zero,

and therefore the original expression with the vector n̂ is used.
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spectrumdecays rapidlywhenω is larger than itswidth.On the other hand, the second
term results from interference of positive and negative energy components, but for
the same reason, it is negligible for all ω that are smaller than 2. In the standard units
this means that the spectrum is non negligible in a very narrow frequency interval,
which is determined by the width of h (p), around ω ≈ 2mc2

�
. This line, if observed, is

an indication of the presence of negative energy component in dynamics of a charge.
When considering relativistic dynamics one distinguishes two general cases. One

is when a charge has relativistic velocity and the other when its probability amplitude
is very narrow. For a relativistic charge one should also include the possibility that
the probability amplitude is also very narrow but the modulus of momentum �p0, that
is associated with the motion of a charge, is also much larger than the width of h (�p),
which in this case is also very large. The functions (7.20) are then

f ≈ (2π)−3/2
∫

d3p cos (et) h (�p − �p0) ei�p·�r ,
−→
j = (2π)−3/2 ∇

∫

d3p
sin (et)

e
h (�p − �p0) ei�p·�r

and by decomposing the momentum �p into the parallel p‖ and orthogonal p⊥ com-
ponents with respect to �p0 one gets for f

f ≈ (2π)−3/2
∫

dp‖ d2p⊥ cos (et) h
(

p‖,−→p ⊥
)

eip‖r‖+i−→p ⊥·−→r ⊥+ip0‖r‖

where

e =
√

(

p0 + p‖
)2 + p2⊥ + 1 ≈ p0 +

(

1 − 1

2p20

)

p‖ + p2⊥
2p0

The integral is now

f ≈ (2π)−3/2 e
ip0‖r‖−ip0t

2

∫

dp‖ e
ip‖r‖−i

(

1− 1
2p20

)

p‖t

∫

d2p⊥h
(

p‖,−→p ⊥
)

ei
−→p ⊥·−→r ⊥−i

p2⊥
2p0

t

from where it follows that along the space coordinate that is parallel to �p0 the prob-
ability amplitude translates with velocity

v = c

(

1 − m2c2

2p20

)

without changing shape, whilst along the orthogonal component it spreads as a non-
relativistic charge but of the mass p0/c. As this is much larger mass then the rest mass
of the charge then the orthogonal spread is very slow. In other words, the probability
amplitude for a charge moving at relativistic velocity is practically non spreading.
Similar analysis for

−→
j shows that it represents a current-like non spreading vector

function for a charge traveling at nearly a speed of light. For such a charge radiation
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field is that of a classical charge density that does not spread (stationary probability
density), a point-like classical charge when the density is narrow.

The other relativistic example is a very narrow probability amplitude but p0 is
small, for simplicity one puts p0 = 0. In this case e ≈ p and for a spherically
symmetric h (�p) one gets

f ≈ (2π)−1/2

r

∫

dp p h (p) sin
[

p (r − t)
]

, (7.22)

−→
j ≈ − (2π)−1/2 r̂

r

∫

dp p h (p) sin
[

p (r − t)
]

where it was assumed that r is large. This means that the initial shape is translated
in time, at the speed of light (in fact nearly because higher order corrections in e are
not taken into account). More detailed analysis of the functions f and

−→
j is made by

using the stationary phase method (C.3) because h (p) in (7.22) is broad, therefore a
slowly varying function of p. Stationary point of the oscillatory function is

pst = r√
t2 − r2

in which case the integral is

f ≈ − t
(

t2 − r2
)5/4 h

(

r√
t2 − r2

)

sin
(
√

t2 − r2 + π/4
)

(7.23)

Figure7.1 shows two typical examples of the modulus squared of f , when h(p) is a
Gaussian with large width, both from the exact expression (7.20) (broken line) and
approximate (7.23) (solid line), for two time instances, one for t = 200 (upper graph)
and t = 2000 (lower graph). The two results for f are nearly identical.

Fig. 7.1 Examples of the
modulus squared of f .
Exact expression (7.20)
(broken line) and
approximate (7.23)
(solid line), for two time
instances, one for t = 200
(upper graph) and t = 2000
(lower graph)
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Similarly one calculates
−→
j , in which case one gets for the probability density

P = t4
(

t2 − r2
)7/2 sin

2
(
√

t2 − r2 + π/4
)

h2
(

r√
t2 − r2

)

(7.24)

≈ t4

2
(

t2 − r2
)7/2 h

2

(

r√
t2 − r2

)

and the probability current

−→
J ≈ t2

(

t2 − r2
)5/2 h

2

(

r√
t2 − r2

)

(

r
(

t2 − r2
)1/2 r̂ − ŝ × r̂

)

(7.25)

where the oscillatory part was averaged over the oscillations and r was assumed
large. Both functions are in a form of a pulse, being zero for t < r, of the width

r ≈ ct

(

1 − m2c2

2�2

)

where� is thewidth of h(p). Based on this estimate onemakes further approximation
t + r ≈ 2t in which case

P ≈ 1

29/2

√
r

(t − r)7/2
h2
( √

r√
2
√
t − r

)

where η = t/r. Similarly one obtains approximation for the current.
Radiation field is now calculated from the charge and current densities, thus the

scalar potential is (7.2) but its explicit form from (7.24) is difficult to obtain. However,
it could be shown that its general parametrization is (for a spherically symmetric h(p))

V (r, t) = 1

r
U

(

t

r

)

�(t − r)

where �(u) is the step function. Similarly one obtains for the vector potential

−→
A = 1

r

[

Ar

(

t

r

)

r̂ − As

(

t

r

)

ŝ × r̂

]

�(t − r)

which has two components, the radial Ar and spin As. From the potentials one cal-
culates the components of the electromagnetic field, the electric

−→
E = −∇V − ∂t

−→
A ≈ 1

r

[

U

(

t

r

)

r̂ − Ar

(

t

r

)

r̂ + As

(

t

r

)

ŝ × r̂

]

δ (t − r)
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and magnetic
−→
H = ∇ × −→

A ≈ 1

r
As (1) δ (t − r) r̂ × ( ŝ × r̂)

where it was assumed that t is large. The Poyting vector is then

−→
P = 1

4π
�E × �H

= 1

4πr2
[

As (1) [U (1) − Ar (1) ] r̂ × ŝ − A2
s (1)

(

1 − ( ŝ · r̂)2) r̂] δ2 (t − r)

which displays essential singularity because the total energy transmitted by radia-
tion (7.9) is infinite due to the delta function squared. However, it should be noted
that the delta function is an approximation, and in reality the front of the pulse is
steep but not a step function, hence the field is of the delta function character. One
thing, nevertheless, is correct, the intensity of the radiation power decreases as r−2,
characteristic feature of the radiation field that extends to infinity.

On encounter with a charge radiation field changes its momentum, due to the delta
function (the same is correct if delta function is replaced by a more realistic one),
in accordance with the theory that is described in Chap.4. Another feature of the
radiation field should also be mentioned, angular momentum that is carried by it. Its
general definition is

−→
S =

∫

d3r −→r × −→
P

from where one gets

−→
S = As (1) [U (1) − Ar (1) ]

4π

∫

d3r
δ2 (t − r)

r
ŝ

which is large (but not infinite) and points in direction of the spin of the charge.
One could argue that the electromagnetic radiation, in this example, carries angular
momentum that of the spin of the charge.

7.3 Radiation by a Bound Charge

7.3.1 Hydrogen Atom

The simplest radiation system of a bound charge is Hydrogen atom, which is in a
mixture of states the origin of which is not discussed. Time evolution of this system
is governed by equation

http://dx.doi.org/10.1007/978-3-662-52878-5_4
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i�∂tF
(−→r p,

−→r e, t
) =

(

− �
2

2mp
�p − �

2

2me
�e + V

)

F
(−→r p,

−→r e, t
)

in which the term that includes loss of energy (field reaction) is not included. Radi-
ation field is a combination of that produced by proton and the electron and it is
calculated from the probability

P = q
∫

d3re
∣

∣F
(−→r p,

−→r e, t
)∣

∣

2 − q
∫

d3rp
∣

∣F
(−→r p,

−→r e, t
)∣

∣

2

and current density

−→
J = q�

2

mp
Im

(∫

d3re F
∗∇pF

)

− q�
2

me
Im

(∫

d3rp F
∗∇eF

)

where q is charge of proton. The probability amplitude is very well approximated as
a product

F
(−→r p,

−→r e, t
) = f

(−→r e − −→r p, t
)

g

(

mp
−→r p + me

−→r e

mp + me
, t

)

where f describes dynamics of the electron with respect to proton and g describes
the atom as the whole in the centre of mass coordinates. Time evolution of the two
functions is

f
(−→r , t

) =
∑

n

anfn
(−→r ) e−i en

�
t

where fn
(−→r ) are eigenstates of the atom (continuum states are excluded), and

g
(−→
R , t

)

= 1

(2π)3

∫

d3p G
(−→p ) ei

−→p ·−→R −it p
2

�

2M

where M = mp + me is mass of Hydrogen atom.
Radiation field is obtained from the scalar and vector potentials, and the spectrum

of radiation from (7.10). Scalar potential is

V = q
∫

d3red
3rp

∣

∣f
(−→r e − −→r p, t − 1

c

∣

∣
−→r − −→r p

∣

∣

)∣

∣

2
∣

∣

∣g
(

mp
−→r p+me

−→r e
mp+me

, t − 1
c

∣

∣
−→r − −→r p

∣

∣

)∣

∣

∣

2

∣

∣
−→r − −→r p

∣

∣

−q
∫

d3red
3rp

∣

∣f
(−→r e − −→r p, t − 1

c

∣

∣
−→r − −→r e

∣

∣

)∣

∣

2
∣

∣

∣g
(

mp
−→r p+me

−→r e
mp+me

, t − 1
c

∣

∣
−→r − −→r e

∣

∣

)∣

∣

∣

2

∣

∣
−→r − −→r e

∣

∣
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and by changing integration variables

V = q
∫

d3u d3rp

∣

∣f
(−→u , t − 1

c

∣

∣
−→r − −→r p

∣

∣

)∣

∣

2
∣

∣

∣g
(−→r p + me

mp+me

−→u , t − 1
c

∣

∣
−→r − −→r p

∣

∣

)∣

∣

∣

2

∣

∣
−→r − −→r p

∣

∣

−q
∫

d3re d
3u

∣

∣f
(−→u , t − 1

c

∣

∣
−→r − −→r e

∣

∣

)∣

∣

2
∣

∣

∣g
(−→r e − mp

mp+me

−→u , t − 1
c

∣

∣
−→r − −→r e

∣

∣

)∣

∣

∣

2

∣

∣
−→r − −→r e

∣

∣

For sufficiently large r one makes approximation (7.4) in which case

V = q

r

∑

l,n

ana
∗
l e

i
el−en

�
τ

∫

d3q
eiτ

��l,n
M r̂·−→q

1 − � r̂·−→q
cM

G

(

−→q + 1

2
�l,nr̂

)

G∗
(

−→q − 1

2
�l,nr̂

)

∫

d3u fn
(−→u ) f ∗

l

(−→u )
(

e−i
me�l,n
mp+me

r̂·−→u − ei
mp�l,n
mp+me

r̂·−→u
)

where τ = t − r
c and

�l,n = el − en

�c
(

1 − �̂r·−→q
cM

)

In the simplest case when only one state is present the scalar potential is zero, as
it should because Hydrogen atom is neutral. When two states are present then the
potential gets contribution from the mixed terms of indices, for an insight into its
structure one makes approximation that does not affect the essence of it but enables
detailed calculation. The obvious approximation is to assume thatM is large and me

is small. In this approximation the potential is

V = q

r
Re

⎡

⎢

⎣

a1a∗
2e

i(e2−e1)
τ
�

∫

d3q eiτ
e2−e1
Mc r̂·−→q

1+ � r̂·−→q
cM

G
(−→q + e2−e1

2�c r̂
)

G∗ (−→q − e2−e1
2�c r̂

) ∫

d3u f2
(−→u ) f ∗

1

(−→u )
(

1 − e−i
e2−e1

�c r̂·−→u
)

⎤

⎥

⎦

(7.26)

where some terms that containMwere retainedbecause they are essential for analysis.
If for the momentum probability amplitude G

(−→p ) is taken Gaussian

G
(−→p ) = 1

π3/4δ
3/2
p

e
− p2

2δ2p

then the integral in the momentum variable is

∫

d3q .... =
(

1 + i�τ (e2 − e1)

2δ2r c
2M2

)

e
− δ2r (e2−e1)

2

4c2�2 − τ2(e2−e1)
2

4M2c2δ2r
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where the width δr of the probability density in the coordinates is used rather than the
width δp in the momentum space, they are related by δr = 1/δp. This integral gives
the overall effective charge density for Hydrogen atom as seen from large distance,
and it is time dependent, decaying at a slow rate.

The other integral is in the relative coordinates between proton and the electron,
and it is in general independent of the parity of the eigenfunctions for Hydrogen
atom, however, its magnitude depends on the parity. Thus for example if the mixture
is 1S and 2S states then

∫

d3u ... = − 16384
√
2α2

81
(

16 + α2
)3

whereα is fine structure constant. Together the two contributions give small deviation
from the neutral Hydrogen atom, which is also oscillating.

More interesting is calculation of the spectrum of the emitted radiation by Hydro-
gen atom, and for that one needs to calculate the probability current. The spectrum (or
more appropriately, spectrum amplitude) is essentially given by the Fourier transform
of the integral in (7.8)

I (ω) =
∫

dt eiωt
∫

d3r′−→J
(

�r′, t − r − n̂ · �r′

c

)

where the current is given by

−→
J = q�

2

mp
Im

(∫

d3re F
∗∇pF

)

− q�
2

me
Im

(∫

d3rp F
∗∇eF

)

(7.27)

and the coordinates �r′ are either for proton or the electron. The contribution of the
individual currents is of similar form as (7.26) thus for proton is

∫

d3rp
−→
J p

(

�rp, t − r − n̂ · �rp
c

)

(7.28)

∼ Im
∑

l,n
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l ane

iτ
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�
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2�l,nr̂
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G∗ (−→p − 1
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)
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cM

eiτ
��l,n
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j

where

−→
j = q�

2

mp

∫

d3u

[

−f ∗
l

(−→u )∇fn
(−→u )+ i
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2�l,nr̂

)

mp
(

mp + me
) f ∗

l

(−→u ) fn
(−→u )

]

e
i
me�l,n
mp+me

r̂·−→u

(7.29)
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For the electron one modifies
−→
j into

−→
j = q�

2

me

∫

d3u

[

f ∗
l

(−→u )∇fn
(−→u )+ i

(−→p + 1
2�l,nr̂

)

me
(

mp + me
) f ∗

l

(−→u ) fn
(−→u )

]

e
−i

mp�l,n
mp+me

r̂·−→u

Spectrum amplitude is therefore proportional to the Fourier integral of (7.28)

I (ω) ∼ δ

(

ω ± el − en
�

± ��l,n

M
r̂ · −→p

)

= Mc |el − en|
�2ω2 δ

(

r̂ · −→p − Mc

�
± Mc (el − en)

�2ω

)

from where one also obtains that the frequency of radiation is

ω = ∓ (el − en)

�

(

1 − �̂r·−→p
cM

)

which is Doppler shifted, due to dispersion of momenta in the probability density,
familiar resonance frequency for transition between two discrete states. The integral
over themomenta in (7.28) is now evaluated exactly and for the Gaussianmomentum
distribution it is given by

∫

d3p.... ∼ ±Mc

�ω
e
− 1

(2δpc)2

[

ω2+
(

2Mc2

�

)2(

1∓ el−en
�ω

)2
]

Properties of the spectrum depend on interplay of three parameters, one is the fre-
quency ωM that is associated with energy of the rest mass of the system (essentially
that of proton) and the frequency ωl,n that is associated with the energy difference
between the states l and n. The third parameter is the width of the distribution of
momenta δp. It could be assumed that δp is small (spectroscopic study of Hydrogen
atom is in the environment where it is delocalized in relatively large space), ωM is
large and ωl,n is small relative to it. In this case the spectrum consist of two lines at
ω = ± ωl,n whenM is infinite, but only the one with the positive sign (if el −en > 0)
gives contribution in the spectrum. For a finite value of M, but large, perturbation
theory gives corrected position of the line

ω = el − en
�

[

1 − (el − en)
2

4c4M2

]

and the spectroscopic width of the line is �ω = 2δpc.

�ω = |el − en| δp
Mc

The integral
−→
j is in the relative separation between proton and the electron,

and in general determines the amplitude of the spectrum whilst the integral (7.28)
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determines its structure as a function of ω. The first term in (7.29) is well known
from analysis of transition probabilities, and involvesmomentum operator. Deviation
from the standard form is in the additional exponential factor that contains the phase
that indicates “photon” transfer of momentum to the proton (in the integral

−→
j for the

electron the momentum transfer is to the electron). The momentum of the “photon”,
when M is large, is ��l,n ≈ el−en

c and its direction where is emitted is r̂. This
factor indicates that when atom emits radiation then both proton and the electron
are affected in the form of a recoil as if a “particle” (a “photon”) is emitted. As
a consequence the transition probabilities are corrected by this effect, thus for the
transition 1(n=2,l=1) → 2(n=1,l=0) the first term in

−→
j is

−→
j I = 48

√
2α5M4

(

3α2M2 + 4m2
pη

2
1,2

)

(

9α2M2 + 4m2
pη

2
1,2

)3 r̂

where mp is replaced by me when
−→
j is calculated for the electron and

η = ω1,2�

mec2
∼ O

(

α2
)

Impact of the “photon” emission has greater consequence on the “forbidden”
transition 1(n=2,l=0) → 2(n=1,l=0), when

−→
j I = 32

√
2iα4M3mpη1,2

(

3α2M2 + 4m2
pη

2
1,2

)

(

9α2M2 + 4m2
pη

2
1,2

)3 r̂

which is not zero, but it is smaller by a factor α relative to the “allowed” transition.
However, the main consequence is that there are always “spontaneous” transitions
from any excited states. The cause of instability of excited states is that the radiating
system “jiggles” around the centre of mass which does not coincide with the nuclei.
This is shown by taking the limitmp → ∞when the “forbidden” transition intensity
of radiation, when calculated from (7.27), is indeed zero.

The second term in
−→
j results from the motion of atom as the whole, and it is in

the form of a product of momentum of atom and a function that is entirely a function
of the internal coordinates of the atom. In the simplest case when l = n this part of

−→
j

is not zero, in contrast with the first term, and represents, together with the integral
in the momentum, the current for the proton. When l �= n momentum of the atom−→p is modified by the momentum of the emitted radiation, thus indicating that it has
an effect on the motion of atom. As an illustration contribution is calculated in

−→
j

for the same transitions as in the examples before. Thus for 1(n=2,l=1) → 2(n=1,l=0)

it is given by
−→
j II =

(−→p + 1
2�l,nr̂

)

mp
(

mp + me
)

384
√
2α5M5mpη1,2

(

9α2M2 + 4m2
pη

2
1,2

)3



260 7 Radiation by Charge

whilst for 1(n=2,l=0) → 2(n=1,l=0)

−→
j II = −

(−→p + 1
2�l,nr̂

)

mp
(

mp + me
)

256
√
2α4M4m2

pη
2
1,2

(

9α2M2 + 4m2
pη

2
1,2

)3

Relativistic corrections are essential when analyzing fine details of radiated elec-
tromagnetic field from Hydrogen atom. Unfortunately one encounters a problem of
fundamental nature, because strictly speaking one must take into account relativistic
dynamics of both proton and the electron. In general, relativistic two body problem is
not a solved problem (for details see discussion in Sect. 5.4.2) and it is not discussed
here.

7.3.2 Radiation by Rotating Molecule

Molecules are structures that are defined by positions of nuclei of atoms, and the
excess or lack of the electron charge density that surrounds themmakes atoms slightly
negatively or positively charged. Motion of nuclei, their vibrations around the equi-
librium points or rotation around their centre of mass, causes this charge density to
be time dependent resulting in electromagnetic radiation. Problem of radiation by
this conglomerate of charges is solved by assuming a model for dynamics of such a
system. At the extreme is the rigid rotor model, where the nuclei do not change their
relative positions, but it is relaxed by allowing the nuclei to move around their equi-
librium positions (semirigid model), in a harmonic potential. In both cases dynamics
is solved for the eigenstates of the system and their set determines which lines in the
spectrum are in principle observed. However, what is missing is information about
charge density in molecule whose dynamics alone determines which lines shall in
fact be observed, from the set of all possible.

Both classical and quantum dynamics is for a single, point-like, particle, and the
concept such as the rigid rotor model is derivable by a suitable approximations in the
many particle dynamics. In order to derive suitable model for analysis of radiation by
amolecule one starts by defining suitable coordinates. Positions of the nuclei, if there
are N of them, are given by rn (notation is that of Sect.D.2), and their equilibrium
positions are rn0, which are either fixed or time dependent. Position of the centre of
mass of the nuclei is always fixed (translation of molecule is not considered) and the
origin of the coordinate system in which dynamics is described is centred there.

Radiation is emitted by charge density, which is distributed mainly on the surface
of molecule but concentrated on individual atoms. As an approximation one defines
charge for each of the atoms that represents charge density on it, and calculating this
charge is described in Sect. 1.2.2. Therefore the main problem is to find dynamics of
these charges as a function of internal coordinates of atoms in molecule, rotation of
the equilibrium points rn0 and separation εn of nuclei from them.

http://dx.doi.org/10.1007/978-3-662-52878-5_5
http://dx.doi.org/10.1007/978-3-662-52878-5_1
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General treatment of radiation by molecule starts from Schroedinger equation
for the motion of nuclei in a potential that binds them together. In matrix form this
equation is

− �
2

2
M−1�f + V f = Ef (7.30)

where M is diagonal matrix for the masses of atoms and � is also diagonal matrix.
Eigenvalues of this equation give possible spectral lines that could in principle be
observed when themolecule radiates. However, this analysis is very crude, because it
does not say anything about relationship between actual charge density distribution in
amolecule and radiation intensity. In other words, the spectrum that one obtains from
(7.30) implicitly assumes that it is derived from probability density and probability
current for atoms, which is associated with the charge density and charge current for
these species as if they have unit charge. This assumption is based on the requirement
that the probability density is normalized to unity, which also implicitly assumes that
the total charge is unity. Much better description of distribution of charges is given
in Sect. 1.2.4, where it is treated as an overall dipole moment of a molecule. The
shortcoming of this treatment is that for relatively simple molecules, such as carbon
dioxide, electric dipole moment is zero, nevertheless charge density is non zero on
atoms thus allowing for radiation, in principle. For more complex molecules electric
dipole moment may not have meaning.

Estimate of radiation intensity from a rotating molecule could be made by assum-
ing that it comes from point like charges that are at the position of atomic nuclei.
These charges are defined in Sect. 1.2.2. The simplest is to assume that molecule
rotates around the z axes, in which case trajectory of the n-th atom is

rn = Rn cos (ω0t + δn) x̂ + Rn sin (ω0t + δn) ŷ + zn ẑ

where Rn is its radius of rotation. Radiation energy per unit solid angle per unit
frequency interval after s rotations is now

d2P

dω d�
= 1

4π2c3

∣

∣

∣

∣

∣

N
∑
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qn

∫ 2πs
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)

eiω(t−̂r·rn/c)
∣

∣

∣

∣

∣

2

(7.31)

where r̂ is the unit vector that points in direction of the solid angle and qn is charge on
the n-th atom. This radiation energy is often too detailed and of sufficient interest is
just the total energy per unit frequency (spectrum), which is obtained by integrating
it over all angles, thus giving (retardation term in the exponent is neglected)

dP

dω
= 2ω4

0

3 πc3

∣

∣

∣

∣

∣

∑

n
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∣

∣

∣

2

http://dx.doi.org/10.1007/978-3-662-52878-5_1
http://dx.doi.org/10.1007/978-3-662-52878-5_1
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where trajectory of charges was taken into account. By integrating in time variable
one gets
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and the total radiated energy is
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⎦ (7.32)

where xn and yn are the coordinates of charges. The absolute value of this energy
gets more meaning if it is compared with some reference parameters, and the most
obvious is rotational kinetic energy of molecule. If one defines angular momentum of
rotating molecule from Iinω0 = �L, which is the classical equivalent of the quantum
number, and rotational kinetic energy as

K = 1

2
Iinω

2
0

then normalized radiated energy is
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where transformation to SI units was made. For convenience one defines momentum
of inertia Iin in terms of protonmass and angstroms and charge in terms of the electron
charge, in which case
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This shows that rotating molecule radiates energy that is only a small fraction of the
energy stored in its rotation.

In the same way one could estimate energy radiated by a vibrating molecule from
its n-th vibration state, which has roughly the same structure as (7.32). ˜Um1/2ε could
be normalized with respect to the energy of harmonic oscillator n�ωvib, when one
gets the rate of lose of energy from this state. However, one is interested in the relative
importance of radiation from rotation of molecule and its vibration. The ratio of the
two is
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Q ∼ Lm2η4

nI2in

where the distance η is obtained from the estimate for the frequency of harmonic
oscillator from equation

m

2
ω2

vibη
2 = n�ωvib

Momentum of inertia of the molecule is roughlyMr2mol, where rmol is of the order of
the size of molecule and M is its mass, in which case

Q ∼ L

n

(m

M

)2
(

η

rmol

)4

Since the ratio η/rmol is small, andm is roughly of the order ofM because there areN
oscillators, it essentially determines the rate at which rotational energy of molecule
is lost compared to energy lose from vibrations. This ratio is small meaning that
molecule relaxes to its vibrational ground state much faster than to its rotational
ground state. In that respect the two modes of dynamics of molecule are de-coupled
in the first approximation.

Classical and quantum theory of rigid rotor is described in Appendix D.2, where
also the charge current for a quantum system is given by (D.16). One starts by
calculating radiation energy from the classical expression for point like charges
(7.31), and when applied to the rigid rotor one has
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(7.33)

where vn is velocity of the n-th charge and for the rigid rotor (xyz rotation angles are
used)

rn = R (α,β, γ) dn(0)

where dn(0) is position of the n-th charge at some initial instant. r̂ · rn/c is small
and therefore the exponential function could be expanded in the powers of c−1. One
word of caution, in principle ω could be large, meaning that the product ω̂r · rn/c
could be large, however, for molecules this is not the case. For better understanding
of radiation by rigid rotor two leading terms in the expansion are chosen and by
integrating over the spherical angles � one gets

∫
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and
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because contribution in (7.33) of the order c−1 is zero. In the last expression the second
term could be written in alternative form, thus facilitating the final expression for
the spectrum of radiation. One notices that the product in the second term could be
written as

(

r′
n · rn

)

( ·
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v
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)

= Tr
[

˜X ′X
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where Tr is trace of a matrix and X is direct product of two vectors rn and
·
vnwith the
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]

i,j
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)

j

where the indices run over the three Cartesian coordinates.
The spectrum, with the two leading terms, is now
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where the absolute value of the last term should be understood as the product of
Hermite conjugate matrix with the matrix itself. This is classical expression for the
spectrum of radiation but the quantum is obtained by making replacement (D.16),
and when integrated over all rotational angles one has

vne
−iω̂r·rn/c ⇒ −�

∫

d� R (α,β, γ) ι−1dn(0) × Im
[

f ∗
̂�f
]
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Radiation intensity, when retardation is neglected, is then given by
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dω
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3πc3
|Jω|2 (7.35)
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where

Jω =
∫

d� R (α,β, γ) ι−1� ×
∫

dt Im
·

[

f ∗
̂�f
]

eiωt

f is probability amplitude for the rigid rotor and

� =
N
∑

n=1

qndn(0)

is its dipole moment.
The same thing could be done for the correction term to the spectrum, but obvi-

ously the expression is quite complicated. However, what it transpires is that the
spectrum is no longer defined by dipole term, but radiation carries information about
more detailed distribution of charges.

The spectrum is determined by the probability amplitude f for the rigid rotor. In
the stationary state its time dependence is

f (α,β, γ) = e−itEκ/�gκ (α,β, γ)

and there is no radiation. Therefore at least two, non degenerate, states should com-
pose the probability amplitude, when the mixing term between the two in the charge
current would produce radiation.

gκ (α,β, γ) is an eigenfunction for a rigid rotor (symbols are defined in Appendix
D.2) that satisfies equation

−�
2

2
˜
̂� ι−1

̂�gκ = Eκgκ

where κ designates a set of quantum numbers that characterizes its rotational state.
The equation, in the expanded form, is
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(7.36)

1

ιz
̂�z · ̂�zgκ = −8Eκ

�2
gκ

where
̂�± = ̂�x ± î�y

In order to solve this equation one must define basis functions that could be used
for this purpose. These functions are Wigner rotation functions, eigenfunctions of
the operator ̂�E · ̂�E , however, the problem is that they are defined for the Euler
angles whilst the formalism for the rigid body (and semi rigid body) dynamics here
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is formulated in the xyz set of angles (for details see D.2). It could be shown that from
the Wigner functions Dm,m′

l (α,β, γ) one obtains eigenfunctions Bm,m′
l (α,β, γ) of

the operator ̂� · ̂� by replacement β → β + π/2, but the problem is that the new
angle β is defined in the limits −π

2 < β < π
2 . In applications in quantum dynamics

it is therefore more convenient to use Wigner functions, but if required the functions
Bm,m′
l (α,β, γ) are obtained through the replacements discussed in (D.2.2). Wigner

functions have properties
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7.3.2.1 Dipole Radiation

The simplest rigid body is a two atom molecule. Its axis is assumed to be along the
z coordinate axis, and its centre of mass is at the origin. Atom, of the mass m1 is at
the distance d1 above the origin of the z axis whilst the other atom of the mass m2 is
below it. The starting point is to calculate the momentum of inertia of the molecule
from the general expression for the coordinates of atoms. Thus if the spherical angles
of atom 1 are θ1 (polar angle) and φ1 (azimuthal angle) then the position of atoms
are

r1,2 = ±d1,2 {sin θ1 cosφ1, sin θ1 sin φ1, cos θ1}

from where the matrix Xn, defined in (D.10), is calculated, and then the momentum
of inertia I is derived. Two eigenvalues ι of I are degenerate and one is zero, and
their sequence in the diagonalization procedure is arbitrary. In this case they should
be arranged so that degenerate eigenvalues should correspond to x and y components
in the body fixed frame and the third (in this case zero) should correspond to the z
component. The non zero diagonal components for a diatom molecule are

ιx = ιy = m1d
2
1 + m2d

2
2
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In the expression for the spectrum of rotating molecule (7.35) one also needs the
dipole moment�, and because the atoms are along the z axis of the body fixed frame
then

� = q (d1 − d2) ẑ

where q is the charge on atom 1. The inverse ι−1 in the spectrum is infinite in its z
component, but it has no impact because this component in the vector product of �

and the operator for the angular momentum ̂� is zero.
The integral over the current in the spectrum (7.35) is (Euler angle representation

is used)

J =
∫

d� RE (α,β, γ) ι−1� ×
∫

dt Im
[

f ∗
̂�Ef

]

eiωt

where f (α,β, γ, t) is some arbitrary function, subject to symmetry properties, which
is in general a linear combination of eigenfunctions for the rigid rotor. These are
solutions of the equation (7.36), where the inverse ι−1 enters. Infinite value of ι−1

z
implies that the eigenvalues of the operator ̂�z are zero, and so the eigenfunctions
for the rigid rotor diatom molecule are

(α,β, γ) = Dm,0
l (α,β, γ) = e−imαdlm,0 (β) =

√

4π

2l + 1
Ym∗
l (β,α)

and the appropriate eigenvalues are

El = �
2l (l + 1)

2
(

m1d21 + m2d22
)

At this point it should be mentioned that the eigenfunctions are in terms of the
Euler angles (zyz rotation). In the angles appropriate for the xyz rotation the angle β
is replaced by β + π/2 and the orthogonality relationship among the eigenfunctions
is

∫ π/2

−π/2
dβ cos (β) g∗

l′,m′ (α,β, γ) gl,m (α,β, γ) = 4π

2l + 1
δl′,l

which defines the angle β in the interval that is not convenient for analysis.
The probability amplitude f , although general, it is not function of the angle γ,

and so the vector product in the current J is

q (d1 − d2) ẑ ×
∫

dt Im
[

f ∗
̂�Ef

]

eiωt

= q (d1 − d2)
∫

dt eiωt Im

∣

∣

∣

∣

∣

∣

− sin γ
sin β

f ∗∂αf − cos γf ∗∂β f
− cos γ

sin β
f ∗∂αf + sin γf ∗∂β f

0

∣

∣

∣

∣

∣

∣
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and the current itself is (the solid angle d� is the product dα dβ dγ sin β)

J = q (d1 − d2)

m1d21 + m2d22

∫

d�

∫

dt eiωt Im

∣

∣

∣

∣

∣

∣

f ∗∂β f sin β
−f ∗∂αf

cosα
sin β

− f ∗∂β f cosβ sinα

−f ∗∂αf
sinα
sin β

+ f ∗∂β f cosβ cosα

∣

∣

∣

∣

∣

∣

From this current the spectrum (7.35) is obtained by taking time derivative of the
vector in the integrand, which is not zero unless the probability amplitude is amixture
of the rigid rotor eigenstates. The simplest is a mixture of two

f (α,β, γ, t) = a gl,m (α,β, γ) e−itEl/� + b gk,n (α,β, γ) e−itEk/�

in which case time derivative restricts the product f ∗∂β,αf to the mixing terms

Im
·

[

f ∗∂β f
] = NA (β) cos (nα − mα + tEk/� − tEl/� + δ)

and

Im
·

[

f ∗∂αf
] = NB (β) (m + n ) sin (nα − mα + tEk/� − tEl/� + δ)

where
A (β) = Pn

k (cosβ) ∂βP
m
l (cosβ) − Pm

l (cosβ) ∂βP
n
k (cosβ)

and
B (β) = Pn

k (cosβ)Pm
l (cosβ)

The constant N is

N = Ek − El

�
|ab|

√

(l − m)!
(l + m)!

(k − n)!
(k + n)!

When the time derivative is included in the current then

Jω = 2π3q (d1 − d2)N

m1d21 + m2d22
δ (ω − |Ek/� − El/�|) [JI + (m + n ) JII

]

where

JI =
∫

dβA (β)

∣

∣

∣

∣

∣

∣

2δn,m sin2 β
− i

(

δn+1,m − δn−1,m
)

sin β cosβ
(

δn+1,m + δn−1,m
)

sin β cosβ

∣

∣

∣

∣

∣

∣

and

JII =
∫

dβB (β)

∣

∣

∣

∣

∣

∣

0
−i
(

δn+1,m + δn−1,m
)

(

δn+1,m − δn−1,m
)

∣

∣

∣

∣

∣

∣
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It should be noted that the delta function is only approximately (limits in the time
integral do not extend to infinity), and that when squared the result should be treated
in the average sense, as shown in (C.5).

7.3.3 Radiation by Vibrating Molecule

In general molecule rotates and vibrates and as such it is called semirigid body,
if vibrations of atoms around their equilibrium points are in a harmonic potential.
General theory of such a body is described in D.3, which is a very complex dynamics,
especially if external force is applied. Here it is assumed the simplest case when there
is no external force on molecule and it is not rotating.

Position of the n-th atom in a molecule, with respect to its centre of mass, is
(notation is defined in D.2)

rn = dn + εn

where dn is position of its equilibrium point and εn is the distance from it (called
local coordinates). For a non rotating molecule dn is time independent. The potential
withinwhich the n-th atommoves is (D.18)which could bewritten in amore compact
form as

V = 1

2
ε̃W (d) ε

where the matrix elements of W are determined from the second derivatives of the
exact potential around the equilibrium points of atoms. Classical equations of motion
for the n-th atom are

mn
··
εn =

∑

j

Wn,jεj

where the initial conditions for εj should satisfy the set of restrictions (D.28). On the
other hand, quantum equation for this dynamics is

− �
2

2

∑

n

1

mn
�εn f + V f = Ef (7.37)

and it should be reminded that position of the n-th atom is dn + εn, and hence f
is a function of this variable. Both classical and quantum approaches give identical
results for the dynamics of vibratingmolecule, however, classical dynamics should be
appropriately formulated from the Liouville equation [9]. Depending on the problem
one could use one or the other.

In classical dynamics one first solves equations of motion for εn, details of which
are given in (D.3.1). Slight generalization is made by including external force on the
charges of atoms, for simplicity only that which is constant in coordinates but it has
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arbitrary time dependence.3 However, approximation is that molecule is fixed not to
rotate and translate, which implies that the results could be used for large molecules
when calculating internal flow of energy and its impact on radiation.

Classical equations, when external force � is included, are in the matrix notation

m
··
ε = Wε + � (7.38)

where for simplicity � is assumed to be only time dependent. One defines a unitary
matrix with the property

˜U m−1/2Wm−1/2 U = −�2

and when the local coordinates ε are transformed with this matrix as

η = ˜Um1/2ε (7.39)

then the set of equations for them is

··
η = −�2η + ˜Um−1/2

� (t) (7.40)

The set η is called normal coordinates. General solution of the set (7.40) is

η = cos (�t) η0 + �−1 sin (�t)
·
η0 +

∫ t

0
du �−1 sin [� (t − u)]˜Um−1/2

� (u)

(7.41)
where η0 and

·
η0 are initial conditions and must be chosen in accordance with the

conditions (D.28) for ε and
·
ε. It should be noted that also the average position of

atoms dn is for the normal coordinates given by ˜Um1/2d.
The essential step in using classical dynamics is its formulation in the phase space

and imposing the uncertainty principle (for details see [9]). One starts by choosing
initial phase space probability density but for that there is a choice between either
the local coordinates ε, and the appropriate conjugate momenta κ = m

·
ε or the

normal coordinates η and the appropriate conjugate momenta κ = ·
η. Physically

important are the local coordinates ε because their time dependence determines
radiation, however, in the normal coordinates the equations are de-coupled, and so
it is expected that the phase space density is product separable. Therefore it is of
advantage to use normal coordinates for determining initial conditions but analysis
of radiation should be done in the local ones.

3More general force that is linearly dependent on the coordinates also gives identical result as
quantum dynamics.
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Initial phase space density that is in accord with the uncertainty principle is para-
metrized for the normal coordinates4 as

ρ0 (η,κ) = 1

�3Nπ3N

∫

d3Nq f ∗
0 (η + q) f0 (η − q) e2ĩqκ/�

where f0 (η) is initial probability amplitude which is determined from the initial
probability density P0 (η) as

f0 (η) = √

P0 (η)ei�0(η)

and the phase from the probability current. In the simplest case the phase could be
chosen as

�0 (η) = κ̃0ε/�

whereκ0 is the average initialmomentumof the particles. The phase of the amplitude,
in the form that is given, indicates that the atoms are given initial momentum, say
by impulsive collision by some external force. It is implicitly assumed that f0 (η) has
functional dependence f0

(

η + ˜Um1/2d
)

Time evolution of the phase space density, for the initial phase space density
ρ0 (η,κ), is obtained by solving (7.40) and the solution for coordinates is given by
(7.41) and for the momentum κ is

κ = −� sin (�t) η0 + cos (�t) κ0

+
∫ t

0
du cos [� (t − u)]˜Um−1/2

� (u)

because κ = ·
η. The essence in the calculation of ρ (η,κ, t) is to make replacements

η ←→ η0, κ ←→ κ0, t → −t and � (u) → � (t − u) in the solutions (for the
details see (Sect. 12.6 in [9])), which gives

η0 = cos (�t) η − sin (�t) �−1κ + �−1
∫ t

0
du sin [� (t − u)]˜Um−1/2

� (t − u)

and

κ0 = � sin (�t) η + cos (�t) κ −
∫ t

0
du cos [� (t − u)]˜Um−1/2

� (t − u)

4It could be shown, but not elaborated, that the conditions (D.28) are automatically satisfied for any
function that is dependant on one of the normal coordinates.
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Time evolution of the phase space density is then given by

ρ (η,κ, t) = ρ0 (η0,κ0)

= 1

�3Nπ3N

∫

d3Nq f ∗
0 (η0 + q) f0 (η0 − q) e2ĩqκ0/�

from where one calculates charge current for the n-th atom

jn = qn
mn

1

�3Nπ3N

∫

d3Nκ κn

∫

d3Nq f ∗
0 (η0 + q) f0 (η0 − q) e2ĩqκ0/� (7.42)

where qn is its effective charge. In this expression velocity of the n-th atom is given
in the local coordinates because the appropriate current determines radiation.

Spectrum of radiation is given by (7.34) where the expressions for velocities and
coordinates should be appropriately modified. Thus

qnvn →
∫

d3Nη jn

and

qn (vn × rn) →
∫

d3Nη jn × rn

where

jn × rn = qn
�3Nπ3N

∫

d3Nκ
(

m−1/2Uκ
)

n × (

m−1/2Uη
)

n
∫

d3Nq f ∗
0 (η0 + q) f0 (η0 − q) e2ĩqκ0/�

and similarly

jn · rn = qn
mn�

3Nπ3N

∫

d3Nκ
(

m−1/2Uκ
)

n · (m−1/2Uη
)

n
∫

d3Nq f ∗
0 (η0 + q) f0 (η0 − q) e2ĩqκ0/�

The dominant term in the spectrum (7.34) is now

dI

dω
= 2

3πc3

∣

∣

∣

∣

∣

N
∑

n=1

∫

dt
∫

d3Nη
·
jne

iωt

∣

∣

∣

∣

∣

2

(7.43)
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where
∫

d3Nη j = �qm−1/2U cos (�t) Im

[∫

d3Nx f ∗
0 (x)∇xf0 (x)

]

− � sin (�t) qm−1/2U
∫

d3Nx f ∗
0 (x) f0 (x) x

+ qm−1/2U
∫ t

0
du cos (�u)˜Um−1/2

� (t − u)

and apart from the term that contains external force the frequencies of radiation are
�n. The intensity of particular line is, however, a complex function of the average
value for xn and∇xn in the initial probability amplitude. One should note that in (7.43)
the integral is infinite if t extends without limits, in that case it should be treated in
the sense of the average value, as defined in (C.5).

Higher order correction in the spectrum are more complex, but in essence it
produces frequencies of radiation that are combinations �n ± �m.

Radiation by molecule is result to motion of charges on individual atoms, and
this motion is determined from the probability density in the local coordinates. By
definition this probability density is

P (ε) =
∫

d3Nκ ρ
(

˜Um1/2ε,κ, t
)

and when the integrals are evaluated the final expression is

P (ε) = 1

(2π)3N
|A|

where

A =
∫

d3Nu eiu
∫ t
0 du �−1 sin[�u]˜Um−1/2

�(t−u)−iuη+i �

4 u
2�−1 sin 2t�

f0
(

u��−1 sin t� + ˜Um1/2d
)

where η = ˜Um1/2ε.

7.3.3.1 Three Atom Linear Molecule

Linear, three atom, molecule is not the most general example to analyze vibrations
of molecules, however it has specific features of its own. One starts by defining
potential V that binds the molecule, which is a function of the relative separations
among atoms. Thus if the relative separation of two atoms is

rl,k = dl − dk + εl − εk ≡ dl,k + εl,k
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where dl is equilibrium position of atom l and εl is its separation from it, then the
potential is a function of combinations of the moduli5

∣

∣rl,k
∣

∣ = √

r̃l,k rl,k

By convention position vector for atom l is rl = {xl, yl, zl} and when written without
the index its meaning is r = {r1, r2, r3} (for three atom molecule). The potential
is then expanded into the series of powers ε, at most harmonic, and fitted into the
bilinear form

V = V0 + 1

2
ε̃Wε (7.44)

where W is symmetric 9 × 9 matrix. Specific feature of linear molecules is that
motion of atoms is independent in their Cartesian coordinates, which implies thatW
is a diagonal block matrix provided that convention for the coordinates is redefined.
The matrix r stands for r = {x, y, z}, where x = {x1, x2, x3} and xl is the x Cartesian
coordinate of atom l, and likewise for y and z. In this convention the matrix W is

W =
∣

∣

∣

∣

∣

∣

Wx 0 0
0 Wy 0
0 0 Wz

∣

∣

∣

∣

∣

∣

and the unitarymatrixU that transforms local coordinates into the normal coordinates
η, which is defined by (7.39), is also a diagonal block matrix

U =
∣

∣

∣

∣

∣

∣

Ux 0 0
0 Uy 0
0 0 Uz

∣

∣

∣

∣

∣

∣

The equilibrium positions of atoms are assumed to be along the x coordinate axis,
which means that dx = {d1, d2, d3} and dy = dz = {0, 0, 0}. In order to get results
that are in an analytic form one simplifies the system by assuming that the masses
of atoms 1 and 3 are equal and that d1 − d2 = d2 − d3; d1 > d2 > d3. The block
matrices in W are then given by

Wx=
∣

∣

∣

∣

∣

∣

V (0,2,0) + 2V (1,1,0) + V (2,0,0) V (1,0,1) − V (2,0,0) −V (0,2,0) − V (1,0,1) − 2V (1,1,0)

V (1,0,1) − V (2,0,0) −2V (1,0,1) + 2V (2,0,0) V (1,0,1) − V (2,0,0)

−V (0,2,0) − V (1,0,1) − 2V (1,1,0) V (1,0,1) − V (2,0,0) V (0,2,0) + 2V (1,1,0) + V (2,0,0)

∣

∣

∣

∣

∣

∣

5Potential could also be a function angles among the position vectors of atoms but here simpler
case is assumed.
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and

Wy= Wz=

∣

∣

∣

∣

∣

∣

∣

V (0,1,0)

d1,7
+ V (1,0,0)

d1,4
− V (1,0,0)

d1,4
− V (0,1,0)

d1,7

− V (0,1,0)

d1,7
2 V (1,0,0)

d1,4
− V (1,0,0)

d1,4

− V (0,1,0)

d1,7
− V (1,0,0)

d1,4
V (0,1,0)

d1,7
+ V (1,0,0)

d1,4

∣

∣

∣

∣

∣

∣

∣

where the short hand notation is used for derivatives of potential. Thus for example
V (1,1,0) means

V (1,1,0) = ∂

∂
∣

∣r1,2
∣

∣

∂

∂
∣

∣r1,3
∣

∣

V
(∣

∣r1,2
∣

∣ ,
∣

∣r1,3
∣

∣ ,
∣

∣r2,3
∣

∣

)

The block matrices in the unitary matrix U are

Ux= Uy= Uz=

∣

∣

∣

∣

∣

∣

∣

∣

∣

√

m1
2m1+m2

√

m2
2(2m1+m2)

− 1√
2

√

m2
2m1+m2

−
√

2m1
2m1+m2

0
√

m1
2m1+m2

√

m2
2(2m1+m2)

1√
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

and the eigenvalues (7.39) are

�x =
(

0,
(2m1 + m2)

(

V (1,0,1) − V (2,0,0)
)

m1m2
,
2V (0,2,0) + V (1,0,1) + 4V (1,1,0) + V (2,0,0)

m1

)

and

�y = �z =
(

0,
(2m1 + m2) V (1,0,0)

m1m2d1,4
,
2d1,4V (0,1,0) + d1,7V (1,0,0)

m1d1,4d1,7

)

It is characteristic of the frequencies � that at least three are zero, and additional
two are also zero because

2d1,4V
(0,1,0) + d1,7V

(1,0,0) = 0

The equations of motion for the relevant normal coordinates are the same as for
free particles, hence they are unbounded in time variable unless their initial time
derivatives are zero. The requirements that select the initial conditions for these
normal coordinates are that the molecule does not move, that ε do not shift its centre
of mass and that molecule does not rotate along the axes that are perpendicular to
the axis of the molecule. If the positions of atoms are

rl = dl + εl

then the centre of mass is

m1r1 + m2r2 + m2r3 = √

2m1 + m2
{

ηx1, ηy1, ηz1
}
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which is zero if the initial conditions for the normal coordinates
{

ηx1, ηy1, ηz1
}

are
zero. The centre of mass of the molecule does not move if the initial time derivatives
of the same coordinates is zero.

Total angular momentum of the molecule is

L = m1r1 × ·
r1 + m2r2 × ·

r2 + m2r3 × ·
r3

and the only condition that its y and z components are zero is that ηy3 = ηz3 = ·
ηy3 =

·
ηz3 = 0 in which case

L =
{

ηy2
·
ηz2 − ηz2

·
ηy2, ηz2

·
ηx2 − ηx2

·
ηz2, ηx2

·
ηy2 − ηy2

·
ηx2

}

Angular momentum has all three components, but according to the requirements on
dynamics only the component along the x axis should be non zero. The only, non
trivial, solution is that vibrations of molecule cannot be combination of three normal
vibrations, one with frequency �x2 and the other two with frequency �y2 = �z2 .
When this selection is made only the normal mode ηx2 is retained and then L = 0,
whilst if the two normal modes with the degenerate frequencies are retained then the
angular momentum is

L =
{

ηy2
·
ηz2 − ηz2

·
ηy2, 0, 0

}

(7.45)

and these normal modes are acceptable.
In the conclusion, vibrations of molecule that are acceptable are based on the nor-

mal modes ηx2, ηy2, ηz2 and ηx3, or their linear combinations, subject to the restric-
tions. Thus the mode ηx3 could mix with any other mode, however, modes ηx2 and
ηy2 (ηz2) cannot mix, the former having no angular momentum whilst the latter has
and it is given by (7.45). The meaning of the modes is determined by calculating
all rl, from where one obtains that ηx3 corresponds to asymmetric stretch, ηx2 to
symmetric stretch and ηy2 (ηz2) to bending of molecule.

That analysis was classical, based on analysis of individual trajectories. Quantum
dynamics is based on solving (7.37), however, the same result is obtained by using
previous classical analysis but by appropriately solvingLiouville equation. The result
for the spectrumof radiation is summarized in (7.43), forwhich one needs to calculate
the integral

∫

d3Nη j = � cos (�t) qm−1/2U Im

[∫

d3Nη f ∗
0 (η)∇ηf0 (η)

]

− � sin (�t) qm−1/2U
∫

d3Nη |f0 (η)|2 η

The frequencies � are the same as those previously calculated. However, the role of
initial conditions is now played by the probability amplitude, which is, in the simplest
case, a product of 9 = 3N functions, each one for a different normal coordinate.
Restrictions are now in the form of averages, thus the average angular momentum
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should not have components other the one along the x axis. These conditions are
satisfied provided the averages for the normal modes are satisfied. For example,
from previous analysis ηx1 mode and its time derivative should be zero, which means
that

∫

dηx1
∣

∣fηx10 (ηx1)
∣

∣

2
ηx1 = 0

and

Im

[∫

dηx1 f
∗
ηx10 (ηx1)∇ηx1 fηx10 (ηx1)

]

= 0

where fηx10 (ηx1) is the probability amplitude for this mode. This condition is satisfied
for any function that is symmetric with respect to reflection ηx1 ⇔ −ηx1, despite the
fact that it may be time dependent for t > 0.

Minimum requirement that themolecule radiates, for example in the normalmode
ηx3, is that arbitrary function fηx30 (ηx3) is a mixture of two functions of different
symmetry, one symmetric and the other antisymmetric with respect to reflection
ηx3 ⇔ −ηx3, or that symmetric function is complex (for example that it has the
phase γηx3).

7.3.4 Spectral Line Shifts

The spectral lines that result from the bound charges being placed in external elec-
tromagnetic field are shifted. This effect is the most pronounced when the field is
static, for example in the Stark effect, and its analysis is primarily analyzed as the
perturbation on the stationary states of the bound charge. On the other hand when the
field is time dependent, for example if it is a plane wave, the effect needs alternative
analysis. There are two distinctive situations, one is when the confining potential for
the charge has no unbound states (harmonic potential) and the other when it does
(Coulomb potential). In fact most of potentials do have unbound states, but very often
the effect of ionization that result from the charge being placed in the external field
is neglected. Calculation of the line shifts could be approached in two ways; from
(i) perturbation theory and (ii) by solving the dynamics equations numerically.

7.3.4.1 Perturbation Theory

Dynamics of a charge that is bound in potential V and it is affected by external
electromagnetic field in the form of a plane wave is described by equation

i∂t f = −1

2

[

∇ − iα�A (̂κ · �r − t)
]2

f + V f ≈

−1

2
∇2 f + iα�A (̂κ · �r − t) · ∇ f + V f
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where the scaling is used inwhich interaction ismeasured in terms of the fine structure
constant α. The simplest form of the vector potential is

�A (̂κ · �r − t) = A0ŝ sin
[

ω (̂κ · �r − t)
]

where polarization vector ŝ is perpendicular to the line of the wave propagation κ̂.
The equation is solved by converting equation into the integral one by using Green
function (B.3)

f (r, t) = f0 (r, t) + iα
∫

d3r′dt′ G
(

r − r,′ t − t ′) �A (κ̂ · �r ′ − t ′) · ∇ f
(

r,′ t ′)

and by replacing f (r, t) with expansion

f (r, t) =
∑

n

an(t)fn(
−→r )e−itEn +

∫ ∞

0
d3k a−→

k
(t)f−→

k
(−→r )e−itEk (7.46)

one gets

an = δn,n0 + αA0

2i

∑

m

∫ t

0
dt′ei(En−Em)t′

[

e−iωt′p+
n,m − eiωt

′
p−
n,m

]

am
(

t′
)

(7.47)

where the index n represents the set of numbers that specify bound states and also
includes continuum states. The matrix elements are defined as

p±
n,m =

∫

d3r fn
(−→r ) e±iωκ̂·�r ŝ · ∇fm

(−→r ) (7.48)

The continuum basis functions are defined as

f−→
k

=
√
2

kr
√

π

∑

l

l
∑

m=−l

fl (r, k) Y
∗
l,m (θk,φk)Yl,m (θ,φ) (7.49)

where the radial functions are defined with the asymptotic limit

fl (r, k) ⇒
r→∞ sin (kr + δl)

when they are normalized as

∫

dV f (−→r ,
−→
k )f (−→r ,

−→
k ′) = δ

(−→
k − −→

k ′
)
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The coefficients in (7.46) satisfy also set of differential equations

ȧn = αA0

2i

∑

m

[

e−iωt+itEn−itEmp+
n,m − eiωt+itEn−itEmp−

n,m

]

am

where the sum also implies integration over the continuum states. At t = 0 the only
non zero coefficient is an0 = 1.

Integral equation (7.47) is solved by iteration. However, before that few words
about the matrix elements (7.48). Their most revealing structure is obtained by trans-
forming the basis functions into the momentum space

fn
(−→r ) = 1

(2π)3

∫

d3p ei
−→p ·−→r gn

(−→p ) ⇒ gn
(−→p ) =

∫

d3r e−i−→p ·−→r fn
(−→r )

and bymanipulating equation for the stationary solutions fn
(−→r ) and the plane waves

one gets relationship

(

Ek − Ep
)

g−→
k

(−→p ) =
∫

d3r V e−i−→p ·−→r f−→
k

(−→r )− 1

2
lim
r→∞

[

r2
∫

d�
(

f ∗
0 ∇r f − f∇r f

∗
0

)

]

which only applies for the continuum states. By using expansion (7.49) and (C.7)
one gets relationship for the radial functions

∫

dr
√
rJn+1/2(pr)gn (r, k) = πδ (k − p)√

2pπ
+ 2
(

k2 − p2
)

∫

dr V
√
rJn+1/2(pr)gn (r, k)

or

g−→
k

(−→p ) = (2π)3/2 δ (k − p)

kp

∑

n=0

(−i)n
n
∑

μ=−n

Yn,μ
(

θp,φp
)

Y∗
n,μ (θk,φk)

+ 2
(

k2 − p2
)

∫

dr V (r) e−i−→p ·−→r f−→
k

(−→r )

The matrix elements, in the momentum space, are therefore

p±
n,m = i

(2π)3

∫

d3p
(

ŝ · −→p ) g∗
n

(−→p ± iωκ̂
)

gm
(−→p )

which shows that the electromagnetic wave transfers momentum ±ω
c � to the atom.

Iterating integral equation (7.47) produces a series

an =
∑

K

a(K)
n (7.50)
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where K indicates the K-th iteration and it is of the order αK . The term a(K)
n is

given in a closed form, which is a combination of exponentials and the appropriate
coefficients, and each exponential is distinguished by a sequence s1ω+s2ω+· · ·+sKω
in the exponent, where si is either of the sign ± of ω. There are 2K such sequences.
For a given sequence L the coefficient a(K)

n (L) is

a(K)
n (L) = −

(

αA0

2

)K

R

[

K
∑

l=1

(−1)l
(

Eml − En − Wl
)

Ql
e−it(Eml−En−Wl) − 1

PK

]

(7.51)

where

Wl = ω

l
∑

j=1

sj , R = (−1)K
K
∏

j=1

sj p
−sj
mj−1,mj

, PK =
K
∏

l=1

(

Eml − En − Wl
)

Ql = exp

⎡

⎣

K−1
∑

i=1

K
∑

j=i+1

(

δi,l + δj,l
)

log

(

Emi − Emj + ω

j
∑

k=i+1

sk

)

⎤

⎦

Summation is over all indices mj except m0 = n and mK = n0. The overall a(K)
n is

then
a(K)
n =

∑

L

a(K)
n (L) (7.52)

Iteration produces the coefficients an that could be represented as the series

an =
∞
∑

ν=−∞
bn,ν (t) eiνωt =

∑

K

K
∑

ν=−K

b(K)
n,ν (t) eiνωt

where the K-th iteration in (7.50) contributes with the terms from e−iKωt to eiKωt .
The coefficient eiνωt−itEnbn,ν (t) in the expansion is interpreted as the probability
amplitude for finding state n after time t, which is coupled to the frequency νω of
the external field, if initially the system is in the state n0. The basic frequencies,
therefore, at which the system oscillates in time are En + νω, albeit all ν �= 0 with
smaller amplitudes. Typical term in the current (7.13) that produces radiation is then
given by

j ∼ b∗
m2,ν2

(t) bm1,ν1 (t) ei(ν1−ν2)ωt−i(Em1−Em2)t

whichmeans that radiation is composed of infinite number of basic spectral lines, and
if bm1,ν1 (t) could be represented as bm1,ν1 (t) ∼ exp

(

itεm1,ν1

)

then εm1,ν1 is defined
as the spectral line shift for the “state” whose “energy” is Em1 − ν1ω�.

In general bn,ν (t) could be parametrized as (the indices are omitted)

b (t) = σ (t) e−itε (7.53)



7.3 Radiation by a Bound Charge 281

where the line shift ε and σ (t) have expansion in the powers of α

ε = αε(1) + α2ε(2) + · · ·
σ (t) = σ(0) (t) + ασ(1) (t) + α2σ(2) (t) + · · ·

These expansions are replaced in (7.53) and from the equality with the expansion
for an in α, which results from iterating equation (7.47), one gets (the index n is not
included for simplicity)

∑

K

b(K)
n,ν (t) (7.54)

= σ(0) + α
(

σ(1) − itσ(0)ε(1)
)

+ α2
[

σ(2) − itσ(1)ε(1) + σ(0)
(

−itε(2) − 1

2
t2ε(1)2

)]

+ · · ·

from where one deduces the line shift. Calculating line shifts is therefore the task
of finding the terms in (7.50) that are in the form of powers in t. In doing so one
distinguishes two situations, one is when the external frequency ω of the field is
arbitrary and the other when it corresponds to one of the transition frequencies
among the states.

7.3.4.2 Arbitrary Frequency ω

In general the coefficients a(K)
n are oscillatory and have terms of various orders in

powers of t that play the role in the expansion (7.54) when extracting the level shifts.
Those terms that are of the higher order than t0 are selected by isolating the sequences
L in (7.51) that have zero denominators. For the path L and the K-th perturbation
order a typical factor in the denominator produces then the equation

Eml − En − Wl = 0 ; l ≤ K

and for arbitrary ω the solution is

l
∑

j=1

sj = 0

and
Eml = En

The sum of signs for ω could only be zero if l is even. The number of possible
combinations when the sum is zero increases rapidly with l, for example if l =
2 there are 2 possible choices of signs: {+,−} and {−,+} , but for l = 4 there
are 6 : {+,−,+,−} , {+,−,−,+} , {−,+,+,−} , {−,+,−,+} , {+,+,−,−} ,

{−,−,+,+} . For a given l there are more than 2l/2 paths but one should also note
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that this is only one set of these for a given order K , so that the overall number of
them is quite large.

Initial and Final States Are the Same.

For the lowest order of perturbation K = 0 the initial state is n0 and with this choice
the next order K = 1 gives

a(1)
n = iη

[

eit(En−En0+ω)

ω + En − En0

p−
n,n0 + eit(En−En0−ω)

ω + En0 − En
p+
n,n0

]

(7.55)

− iη

[

p−
n,n0

ω + En − En0

+ p+
n,n0

ω + En0 − En

]

where

η = αA0

2i

and because p±
n0,n0 = 0 then a(1)

n0 = 0. For the next order of perturbation K = 2 and
arbitrary sequence L one gets

a(2)
n (L) = η2

∑

m1

s1s2p−s2
n,m1

p−s1
m1,n0e

it(En−Em1)
(

Em1 − En0 + s1ω
) (

En − Em1 + s2ω
)eits2ω (7.56)

− η2
∑

m1

s1s2p−s2
n,m1

p−s1
m1,n0e

it(En−En0)
(

Em1 − En0 + s1ω
) (

En − En0 + (s1 + s2)ω
)eit(s1+s2)ω

+ η2
∑

m1

s1s2p−s2
n,m1

p−s1
m1,n0

(

Em1 − En − s2ω
) (

En − En0 + (s1 + s2) ω
)

and for n = n0 the denominator is zero for two sequences, s1 = ± and s2 = ∓.
When this limit is taken then

a(2)
n0 (L) = itη2

∑

m1

ps1n,m1
p−s1
m1,n0

Em1 − En0 + s1ω
+ η2

∑

m1

ps1n0,m1
p−s1
m1,n0e

it(En0−Em1)

E2
n0 − (

Em1 + s1ω
)2 e−its1ω

where the first term is proportional to t. The coefficients in the series (7.54), when
n = n0, are now σ(0) = 1, σ(1) = 0 and ε(1) = 0 which gives

bn0,0 (t) ≈ 1 + α2
[

σ(2) − itε(2)
]

where σ(2) is the second term in a(2)
n0 (L) and

ε(2) =
(

A0

2

)2
∑

m1

2
(

En0 − Em1

)

p−
n0,m1

p+
m1,n0

(

En0 − Em1 + ω
) (

Em1 − En0 + ω
)

is the second order correction in α for the level shift of the state n0.
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The next order is K = 3 and a(3)
n (L) is more complicated but the factors in the

denominators in (7.51) that produce termsof the powers in t areEn0−Em2+(s1 + s2)ω
and Em1 − En + (s2 + s3) ω. This means there are 4 paths that produce terms linear
in t, two for the sum s1 + s2 = 0 and two for s2 + s3 = 0. However, for n = n0 these
terms are zero and hence the third order correction does not contribute to the level
shift.

The fourth order K = 4 is even more complex, and without giving the details one
obtains both the terms liner and quadratic in t. The coefficient bn0,0 (t) of this order
is

bn0,0 (t) ∼ α4

(

− t2

2
ε(2)2 − itε(2)σ(2) − itε(4) + σ(4)

)

and the quadratic term in t matches the same term in a(4)
n0 . The term of the order t

combines with the same term in a(4)
n0 and gives ε(4).

Initial and Final States Are Not the Same.

When n �= n0 then

bn,0 (t) ≈ ασ(1) + α2σ(2) + α3
(−itε(2)σ(1) + σ(3)

)

. . .

and one expects that expansion in the third order K = 3 produces the level shift.
σ(1) is extracted from a(1)

n in (7.55) but from there it is obvious that there would be 3
independent level shifts, each one corresponding to different exponential functions.
The third order correction a(3)

n (L) is

a(3)
n (L) = iη3

∑

m1,m2

s1s2s3p
−s3
n,m2p

−s2
m2,m1p

−s1
m1,n0e

it
(

En−Em1
)

eitω(s2+s3)
(

Em1 − En0 + s1ω
) (

Em2 − Em1 + s2ω
) (

En − Em1 + (s2 + s3) ω
)

− iη3
∑

m1,m2

s1s2s3p
−s3
n,m2p

−s2
m2,m1p

−s1
m1,n0e

it
(

En−Em2
)

eitωs3
(

Em2 − En0 + (s1 + s2) ω
) (

Em2 − Em1 + s2ω
) (

En − Em2 + s3ω
)

− iη3
∑

m1,m2

s1s2s3p
−s3
n,m2p

−s2
m2,m1p

−s1
m1,n0e

it
(

En−En0
)

eitω(s1+s2+s3)
(

Em1 − En0 + s1ω
) (

Em2 − En0 + (s1 + s2) ω
) (

En − En0 + (s1 + s2 + s3) ω
)

+ iη3
∑

m1,m2

s1s2s3p
−s3
n,m2p

−s2
m2,m1p

−s1
m1,n0

(

En − Em2 + s3ω
) (

En − Em1 + (s2 + s3) ω
) (

En − En0 + (s1 + s2 + s3) ω
)

and there are three possible instances when one gets terms of the order t. One is when
s1 + s2 = 0, in which case

a(3)
n (L) = tη3 s3p

−s3
n,n0e

it(En−En0)

En − En0 + s3ω
eitωs3

∑

m1

p−s2
n0,m1

ps2m1,n0

En0 − Em1 + s2ω
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where also the case s2 + s3 = 0 is included. Likewise when s2 + s3 = 0 then

a(3)
n (L) = −tη3 s1p−s1

n,n0

En − En0 + s1ω

∑

m2

ps2n,m2
p−s2
m2,n

En − Em2 − s2ω

and also s1 + s2 = 0 is included.
The level shifts are calculated from the expression for b(3)

n,ν (t), but there are three

of them, b(3)
n,±1 (t) and b(3)

n,0 (t). The coefficient σ(1) for b(3)
n,0 (t) is obtained from (7.55)

and the level shift is calculated from

−tη3 s1p−s1
n,n0

En − En0 + s1ω

∑

m2

ps2n,m2
p−s2
m2,n

En − Em2 − s2ω
= −itε(2)σ(1)

where

σ(1) = −iη

(

p−
n,n0

ω + En − En0

+ p+
n,n0

ω + En0 − En

)

and

ε(2) = η2
∑

m2

2
(

En − Em2

)

p+
n,m2

p−
m2,n

(

En − Em2

)2 − ω2

Similar derivation gives for the level shifts for the lines b(3)
n,±1 (t)

ε(2) = η2
∑

m2

2
(

En − Em2

)

p+
n0,m2

p−
m2,n0

(

En − Em2

)2 − ω2

which is the same as the previous one except that the matrix elements p±
n,m2

are
replaced by p±

n0,m2
.

Higher order corrections are obtained in the same way, but the procedure gets
more complicated.

7.3.4.3 Resonant Frequency ω

When the frequency ω equals the difference
En−En0

�
the analysis in Sect. 7.3.4.2 must

be modified in order to take into account some specific differences. This is best
demonstrated on the first order correction (7.55), which gives for this choice of ω

a(1)
n = iη

e2it(En−En0) − 1

2
(

En − En0

) p−
n,n0 + tηp+

n,n0 (7.57)
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There is the term proportional to t, which is not present when ω is arbitrary. How-
ever, besides this term there is another one that does not have this structure, and
as the consequence parametrization of the kind (7.53) is not adequate. Generalized
parametrization that takes into account this feature of the first order correction is

an =
∑

ν

[

sν(α) sin (tαεν) e
αγν t2 + cν(α) cos (tαεν) e

αδν t2
]

eitν(En−En0)

=
∑

ν

bνe
itν(En−En0)

where εν , γν and δν are functions of α. Exponential function that contains power
t2 shall become clear later, and in fact there is a succession of higher powers. After
expansion in the powers ofα one gets a series with the leading term cν(0)whichmust
be zero if n �= n0. The series, up to the order α2, is now ( the superscript indicates
order of derivative with respect to α)

bn,ν = α
(

ts(0)n,νε
(0)
ν + c(1)

n,ν

)

+ α2

(

t3s(0)n,νε
(0)
ν γ(0)

ν + t2c(1)
n,νδ

(0)
ν + ts(0)n,νε

(1)
ν + ts(1)n,νε

(0)
ν + 1

2
c(2)
n,ν

)

+ · · ·

and by comparing it with the first order correction (7.57) one determines coefficients
up to the power α

c(1)
n,0 = −A0

4

p−
n,n0

En − En0

, c(1)
n,2 = A0

4

p−
n,n0

En − En0

, c(1)
n,ν = 0; ν > 2

s(0)n,0ε
(0)
0 = A0

2i
p+
n,n0 , s(0)n,νε

(0)
ν = 0; ν > 0

The product s(0)n,0ε
(0)
0 itself does not determine individual coefficients, but by noting

that ε(0)
0 should be real one writes p+

n,n0 = eiϕ
∣

∣p+
n,n0

∣

∣ in which case

s(0)n,0 = −ieiϕ, ε(0)
0 = A0

2

∣

∣p+
n,n0

∣

∣

The second order correction a(2)
n , it could be shown, does not contain powers of

t, which implies that γν(0) = δν(0) = ε(1)
ν = s(1)n,ν = 0, in which case the series up to

the order α3 is

bn,ν = α
(

ts(0)n,ν ε(0)
ν + c(1)

n,ν

)

+ 1

2
α2c(2)

n,ν

+ α3
(

− t3

6
s(0)n,ν ε(0)3

ν + t3s(0)n,ν ε(0)
ν γ(1)

ν − t2

2
c(1)
n,ν ε(0)2

ν + t2c(1)
n,νδ(1)

ν + t

2
s(0)n,νε(2)

ν + t

2
s(2)n,νε(0)

ν + 1

6
c(3)
n,ν

)

+ · · ·
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The third order correction a(3)
n is quite lengthy, but the coefficient of the leading power

t3 is identical with the first term in the coefficient with the power α3 and therefore
γ(1)

ν = 0. The coefficient in a(3)
n with the power t2 is

a(3)
n ≈ iη3t2

e2it
(

En−En0
)

− 1

4
(

En − En0

)

∣

∣p+
n,n0

∣

∣

2
p−
n,n0

− iη3t2

⎡

⎣

∑

m2 �=n0

(

Em2 − En
) ∣

∣p+
m2,n

∣

∣

2
p+
n,n0

(

Em2 − En0

) (

Em2 + En0 − 2En
) +

∑

m1 �=n

(

Em1 − En0

) ∣

∣p+
m1,n0

∣

∣

2
p+
n,n0

(

Em1 − En
) (

Em1 + En − 2En0

)

⎤

⎦

and by comparing with expansion for bn,ν one verifies that

−α3

2
c(1)
n,νε

(0)2
ν = iη3 e

2it(En−En0) − 1

4
(

En − En0

)

∣

∣p+
n,n0

∣

∣

2
p−
n,n0

The remaining term of the order t2 gives

p−
n,n0δ

(1)
0

= −A20
2

∑

m2 �=n0

⎡

⎢

⎢

⎢

⎢

⎣

−
(

Em2 − En
)

∣

∣

∣p+
m2,n

∣

∣

∣

2

(

En0 − En
)

[

(

Em2−En
)2

(

En0−En
)2 − 1

] +
(

Em2 − En0
)

∣

∣

∣p+
m2,n0

∣

∣

∣

2

(

En − En0
)

[

(

Em2−En0
)2

(

En0−En
)2 − 1

]

⎤

⎥

⎥

⎥

⎥

⎦

p+
n,n0



Appendix A
Units

Universally adopted are the SI units, however, one sometime uses another system of
units, the CGS. The reason is that in the latter units dynamics equations are given in
a relatively simple form, very convenient in theoretical analysis, and not the least of
importance is that the velocity of light is explicitly present when the electromagnetic
field is involved.1 For this reason alone the CGS units are employed in this book
when manipulating dynamics equations, but in the explicit examples the SI are used.
Transformation of important quantities between the two unit systems is reviewed
here.

One way to obtain electromagnetic quantity in a certain unit is to relate it to
the quantities that are easy to transform from one units into the other. For example
charge e is related to the scalar potential energy in two ways (sign in this case is not
important)

VCGS = e2CGS

r
; VSI = e2SI

4πε0r

where

ε0 = vaccum permittivity = 8.854187817 × 10−12 As

mV

Transformation of (potential) energy from one units into the other is simple, being
related to the quantity

V = Mass Length2

Time2

1In the SI units it is the permeability and permittivity constants that are present in the equations of
the electromagnetic field and not the speed of light.
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and so, for example, charge in the SI units is given by

eSI = √

4πε0rSIVSI =
√

4πε0rSI
VSI

VCGS
VCGS = eCGS

√

4πε0
VSI

VCGS

rSI
rCGS

= eCGS

√

4πε010−9 = eCGS

√

4π10−9

μ0

1

cSI
= eCGS

10cSI

where
μ0 = vacuum permeability = 1.2566370614 × 10−6 NA−2

and the relationship
ε0μ0c

2
SI = 1

was used.
In the same way other quantities are interrelated. For example magnetic field

(more exactly magnetic flux) is obtained from the force relationship

FCGS = eCGS
vCGS

cCGS
HCGS; FSI = eSIvSIHSI

where

F = Mass Length

Time2

Therefore

HSI = FSI

eSIvSI
= FSI

eSIvSIFCGS
FCGS = eCGSvCGSFSI

eSIvSIFCGScCGS
HCGS

= cSI10−2

cCGS
HCGS = 10−4 HCGS

where the relationship between eSI and eCGS was used. Likewise transformation of
the electric field is

ESI = 10−6cCGSECGS

In the context of the magnetic field is vector potential A, which is obtained from its
(symbolic) definition

H = 1

r
A

and its transformation is

ASI = rSIHSI = rSI
rCGS

HSI

HCGS
ACGS = 102ACGS
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A very important quantity is the energy flux in the electromagnetic field, which is
measured by the Poyting vector P, whose dimension is Joule Second−1 Meter−2.
The flux is measured and from that one would want to extract information about the
amplitude of the magnetic field, for a particular case of a plane wave. The Poyting
vector in the two units is

PCGS = cCGS

4π
ECGSHCGS; PSI = 1

μ0
ESIHSI

and by using transformations of the field one gets

PSI = 10−3PCGS

For a plane wave the electric and magnetic components are interconnected through
the relationship

ECGS = HCGS; ESI = cSIHSI

and therefore magnetic field in the SI units is

HSI =
√

μ0

cSI
PSI

In many applications one is confronted with a large number of constants, and for a
general analysis they are often not required. One removes most of them by a proper
re-scaling of coordinates, time and the amplitude of the field, in fact by making
them dimensionless quantities. By doing that one also gains better insight into the
importance or unimportance of certain parameters. The best known scaling uses as
the basic parameters the Compton wave number for the electron and the energy
equivalent of its mass. The wave number is

κ = melectronc

�

and so the dimensionless coordinates and time are defined as

�ρ = κ �r; τ = κ ct

Transformation into these units is formally achieved by puttingm = c = � = 1. The
electromagnetic field is the simplest to scale through the potentials. Charge times
scalar or vector potential have the units of energy, in the CGS units. One possibility
for scaling is to divide them by the energy equivalent of the rest mass of the electron.
In other words, one writes

� = eV

melectronc2
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for the scalar potential, and similarly for the vector potential. However, this is not
a practical way of scaling because if it is done for the Coulomb potential then it
is not consistent with the scaling of the coordinates. Therefore one first factors the
potentials with charge by writing V = eW in which caseW has the unit of length−1,
which is scaled with the Compton wave number, hence

� = e2

melectronc2
W = e2

melectronc2
melectronc

�
U = e2

c�
U = αU

where α was given the name the fine structure constant. The potential is now

U = V

eκ

and α plays the role of charge. In these units the dynamics equations appear simpler,
especially for the electron, when Newton equation with Lorentz force is

..

�r = α �E + α �v × �H

and Schroedinger equation

i∂t f = −1

2

[

∇ − iα�A
]2

f + αV f

where for simplicity the same notation for coordinates, time and potentials is used.
The sign of α should be gauged against the sign of charges that define the fine
structure constant. If other than the electron particle is chosen then its mass enters
as a dimensionless parameter, it is the ratio with respect to the electron mass.
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B.1 Time Dependent

Defining equation for the time dependent Green function for a free particle is

i�∂tG(�r − �q, t − s) + �
2

2m
�G(�r − �q, t − s) = δ(�r − �q)δ(t − s)

and if the delta function is represented as

δ(�r − �q)δ(t − s) = 1

(2π)4

∫

d3κ dω ei�κ·(�r−�q)−iω(t−s) (B.1)

and Green function as

G(�r, t) = 1

(2π)4

∫

d3κ dω F(�κ, w) ei�κ·�r−iωt (B.2)

then the amplitude F(�κ, w) is

F(�κ, w) = 1

�

1

ω − �κ2

2m + iη

where the parameter η is real and small, and it was introduced to avoid integration
over the singular point of the integrand. In the end the limit η → 0 is taken. Therefore,
Green function is

G(�r, t) = 1

�(2π)4

∫

d3κ dω

ω − �κ2

2m + iη
ei�κ·�r−iωt
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and the integral that is calculated first is in the variable ω, but the result depends
in essential way on the sign of η. If it is positive then for t < 0 Green function is
zero because the integrand is not singular in the complex plane Im ω > 0. However,
for t > 0 the integration path in ω must be closed in the plane Im ω < 0, in which
case the integral is not zero because of the presence of the first order pole there. The
Green function for t > 0 is therefore

G(�r, t) = − i

�(2π)3

∫

d3κ ei�κ·�r−i κ2�

2m t �(t)

where �(z) is the step function. The integral is most conveniently calculated in
the spherical coordinates of the vector �κ, in which case integration in the angular
variables gives

G(�r, t) = − 1

�(2π)r

∫ ∞

−∞
dκ κ eiκr−i κ2�

2m t �(t)

and final integration gives

G+(�r, t) = 1

�

[

mi

2π�t

]3/2

ei
mr2

2t� +i π
4 �(t).

From this Green function solution for the probability amplitude of the equation

i�∂t f (�r, t) = − �
2

2m
�f (�r, t) + W (�r, t)f (�r, t)

is obtained in the form of integral equation

f (�r, t) = fhom(�r, t) +
∫

d3q ds G(�r − �q, t − s)W (�q, s) f (�q, s)

where fhom(�r, t) is solution of the equation when the potential W is zero. Charac-
teristic feature of this integral equation is that the solution at time t is obtained from
the solution that is known from before this instant, which is consistent with the usual
sequence of the cause and event, or the causality principle. This is why the Green
function is called retarded, and will have the superscript +.

Green function could be generalized to arbitrary potential, when its defining equa-
tion is

i�∂tG(�r − �q, t − s) + �
2

2m
�G(�r − �q, t − s) − V (r)G(�r − �q, t − s) = δ(�r − �q)δ(t − s)

There are two possibilities that give quite different results. One is when the potential
allows only the bound states (e.g. harmonic oscillator), and the other when it allows
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only the unbound ones (e.g. repulsive force). There is the third possibility when both
bound and unbound states are allowed (e.g. attractive Coulomb potential), but this
case is not considered.

If the potential allows only bound states then the corresponding eigenstates satisfy
condition of completeness, in which case the product of two delta functions is written
as

δ(�r − �q)δ(t − s) = 1

2π

∑

n

f ∗
n (�q)fn(�r)

∫

dk e−ik(t−s)

Likewise the Green function is written as expansion

G(�r − �q, t − s) = 1

2π

∑

n

∫

dk gn(k)e
−ik(t−s)f ∗

n (�q)fn(�r)

from where one obtains solution for the coefficients

g(k, n) = 1

�
(

k − en
�

+ iη
)

where again a small parameter η is introduced for the same reason as for a free
particle. For a retarded Green function η > 0. Green function for t > s is now

G(�r − �q, t − s) = − i

�

∑

n

e−i en
�

(t−s)f ∗
n (�q)fn(�r) (B.3)

where en are eigenvalues of equation

− �
2

2m
�fn + V (r)fn = enfn

that is subject to the boundary condition which makes the eigenfunctions fn square
integrable.

Deriving Green function for non binding potentials is more complicated and shall
be demonstrated in one dimension. In three dimensions the procedure is the same
but more complicated.

It is assumed that along the x axes potential is repulsive for x << 0 and x >> 0,
meaning that the force on the particle is directed towards the positive x values. One
example of this potential linear, for example in the Starck effect. The basic equation
that needs solution is

− �
2

2m
∂2
x fe + V (x)fe = e fe

with the boundary condition
lim

x→−∞ fe → 0
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and

lim
x→∞ fe ∼ 1

[e − V (x)]1/4
sin

(∫

dx
√

e − V (x) + β

)

(B.4)

which implicitly assumes that for x → ∞ the potential acquires large negative values,
in which case e takes values on the whole real axes. In deriving Green function it is
necessary to normalize the functions fe(x) as (for the assumed boundary conditions
these functions are real)

∫ ∞

−∞
de fe(x)fe(y) = 2πδ (x − y) (B.5)

The easiest to obtain the proper normalization is for large x, where the asymptotic
value for these functions is given by equation (B.4). The product of two of these
asymptotics for different coordinates is

fe(x)fe(y) ≈ 1
[−V (y)

]1/4
[−V (x)]1/4

sin

(∫

dx
√−V (x) + 1

2

∫

dx
e√−V (x)

+ β

)

sin

(∫

dy
√−V (y) + 1

2

∫

dy
e√−V (y)

+ β

)

where it was assumed that V (x) is large negative so that

√

e − V (x) ≈ √−V (x) + 1

2

e√−V (x)

By transforming the product of the two sin functions into a sum of two, and when
integrating in the variable e between the limits ±E one gets

∫ E

−E
de fe(x)fe(y)

= 2 cos
(∫

dx
√−V (x) − ∫

dy
√−V (y)

)

[−V (y)
]1/4

[−V (x)]1/4
(

∫

dx 1√−V (x)
− ∫

dy 1√−V (y)

)

sin

[

E

2

(∫

dx
1√−V (x)

−
∫

dy
1√−V (y)

)]

and in the limit
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lim
E→∞

∫ E

−E
de fe(x)fe(y)

= π cos
(∫

dx
√−V (x) − ∫

dy
√−V (y)

)

[−V (y)
]1/4

[−V (x)]1/4

δ

[

1

2

(∫

dx
1√−V (x)

−
∫

dy
1√−V (y)

)]

= 2πδ
[

x − y
]

which proves that (B.4) is the proper normalization for the identity (B.5).
Green function for this potential is obtained by generalizing it from (B.3) as

G(x − q, t − s) = − i

2π�

∫ ∞

−∞
de e−i e

�
(t−s)fe(q)fe(x)

where the function fe(x) has asymptotic form (B.4).

B.1.1 Time Independent

Time independent Green function is defined as

[

E − V (�r − �q)]G(�r − �q) + �
2

2m
�G(�r − �q) = δ(�r − �q)

where it is assumed that a particle interacts with a potential. As for the time dependent
Green function one writes

G(�r) = 1

(2π)3

∫

d3κ F(�κ) ei�κ·�r

and so the equation is

[

E − V (�r − �q)]
∫

d3κ F(�κ) ei�κ·(�r−�q) − �
2

2m

∫

d3κ κ2F(�κ) ei�κ·(�r−�q) =
∫

d3κ ei�κ·(�r−�q)

from which one obtains

(

E − �
2

2m
p2
)

F(−→p ) −
∫

d3κ F(�κ) W
(�κ − −→p ) = 1 (B.6)

where

W
(�κ − −→p ) = 1

(2π)3

∫

d3rV (�r) ei(�κ−−→p )·�r
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The function F(−→p ) is solution of an integral equation, which is not easily solvable.
However, if interaction is weak then it is solved by iteration resulting in the series

F(−→p ) = F(0)(−→p ) + F(1)(−→p ) + F(2)(−→p ) + . . .

which is essentially given in the powers of the potential. Thus the zeroth order
solution is

F(0)(−→p ) = 1

E − �2

2mp
2 + iη

which givesGreen function for a free particle. The parameter η is small and eventually
its value is set to be zero, but depending on its sign one distinguishes two solutions. In
order to investigate its role in the solution the Green function is calculated explicitly,
for a free particle.

The Green function for a free particle is

G(�r) = 1

(2π)3

∫

d3κ
1

E − �2

2mκ2 + iη
ei�κ·�r

and after integrating over the angles one has

G(�r) = − 1

r(2π)2

∫ ∞

−∞
dκκ

eirκ

�2

2mκ2 − E − iη

The integration path along the real axes could now be extended into the upper half
complex κ plane where the integrand is zero in the limit Im (κ) → ∞. The value of
the integral, however, is not zero because there is a pole of the integrand in that half
of the plane, which is located at

κp =
√

2m

�2
E + iη; η > 0

κp = −
√

2m

�2
E + iη; η < 0

Final value of the integral, therefore, depends on the sign of η, hence

G(�r) = − im

2πr�2
eir

√
2mE/�; η > 0

and

G(�r) = − im

2πr�2
e−ir

√
2mE/�; η < 0

As in the time dependent Green function the sign of η determines two different kind
of solutions, when this parameter is positive then it represents outgoing waves and
the incoming otherwise.
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In the next iteration one gets the first order correction to the functionF(−→p ), which
is

F(1)(−→p ) = 1

E − �2

2mp
2 + iη

∫

d3κ
W
(�κ − −→p )

E − �2

2mκ2 + iη

and for a spherically symmetric potential

W
(�κ − −→p ) = 1

2π2
∣

∣�κ − −→p ∣∣
∫

dr rV (r) sin
(∣

∣�κ − −→p ∣∣ r)

If this potential is of a Coulomb type

V (r) = q

r
e−γr

then

W
(�κ − −→p ) = q

2π2

1
∣

∣�κ − −→p ∣∣2 + γ2

which gives

F(1)(−→p ) = mi

p�2

q

E − �2

2mp
2 + iη

ln
iγ − p +

√

2mE
�2 + iη

iγ + p +
√

2mE
�2 + iη

In the derivation one encounters the integral of the form

I =
∫ ∞

−∞
dz

ln (z − z0)

P(z)

where z0 is a complex number with Im(z0) > 0 and P(z) is a polynomial of the order
higher than the first and with the roots that are not real. The integral is then

I = 2πi
∑

res

res

[

ln (z − z0)

P(z)

]

− 2πi
∫ z0

−∞+Im(z0)

dz

P(z)

where res is the residue at the pole with Im(z) > 0 and it is the root of P(z). Gener-
alization to other than polynomials is straightforward.

Higher order corrections are obtained in the same way but they are obviously
gettingmore complicated.However, a general solution could be found in a symbolical
form by writing integral equation (B.6) as

̂F =
(

E − �
2

2m
p̂2 + iη

)−1

+
(

E − �
2

2m
p̂2 + iη

)−1

̂V̂F (B.7)
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where now the hat indicates that these are not ordinary functions but the “operators”.
On its own this equation has no meaning except when additional rules are defined. If
one of the operators is multiplied as

〈−→p ∣∣ ̂O then the meaning of this as if one writes

〈−→p ∣∣ ̂O = 1

(2π)3/2
Oe−i−→p ·−→r

and so one defines the matrix element

〈−→p ∣∣ ̂O ∣∣−→κ 〉 ≡ O

(

−→κ − −→p
)

In particular one defines the “vacuum state” as

|0〉 = 1

(2π)3/2

then
〈−→p ∣∣ ̂O ∣∣0〉 means

〈−→p ∣∣ ̂O ∣∣0〉 ≡ O(−→p ) = 1

(2π)3

∫

d3r Oe−i−→p ·−→r

Completeness of the plane waves is written as

∣

∣
−→p 〉 〈−→p ∣∣ ≡ 1

(2π)3

∫

d3p ei
−→q ·−→p −i−→r ·−→p = δ

(−→q − −→r )

in which case from the symbolic form of the integral equation one gets the “opera-
tional” by the following steps

〈−→p ∣∣̂F |0〉 = 〈−→p ∣∣
(

E − �
2

2m
p̂2 + iη

)−1

|0〉 + 〈−→p ∣∣
(

E − �
2

2m
p̂2 + iη

)−1

̂V̂F |0〉 =
(

E − �
2

2m
p2 + iη

)−1

+ 〈−→p ∣∣
(

E − �
2

2m
p̂2 + iη

)−1
∣

∣
−→κ 〉 〈−→κ ∣∣ ̂V

∣

∣

∣

−→
λ
〉 〈−→

λ
∣

∣

∣

̂F |0〉 =
(

E − �
2

2m
p2 + iη

)−1

+
(

E − �
2

2m
p2 + iη

)−1 ∫

d3λW
(−→

λ − −→p
)

F
(−→

λ
)

where the identity

〈−→p ∣∣
(

E − �
2

2m
p̂2 + iη

)−1
∣

∣
−→κ 〉 =

(

E − �
2

2m
p2 + iη

)−1

δ
(−→κ − −→p )

was used.



Appendix B: Nonrelativistic Green Functions 299

The advantage of this formal treatment is that manipulation with the Green func-
tion is made easier, thus the iteration of equation (B.7) gives the series

̂F = ̂F0 +̂F0
(

̂V̂F0
)+̂F0

(

̂V̂F0
) (

̂V̂F0
)+ . . .

where

̂F0 =
(

E − �
2

2m
p̂2 + iη

)−1

The series is formal expansion

̂F = ̂F0
(

I − ̂V̂F0
)−1 = [(

I − ̂V̂F0
)

̂F−1
0

]−1 =
(

E − �
2

2m
p2 − ̂V + iη

)−1

which is also the Green function. However, it should again be emphasized that this
is only a symbolic solution and that it has only meaning in the form of expansion,
and as such it has a limited radius of convergence.
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Useful Relationships

C.1 Delta Function

Standard symbol for one dimensional delta function is

delta function = δ (x − x0)

and its basic property is

∫ x0+ε

x0−ε

dx δ (x − x0) f (x) = f (x0)

where ε is arbitrarily small but not zero. There are various useful representations of
the delta function, the most common are

δ (x − x0) = 1

2π

∫

dk eik(x−x0)

= 1

2π
+ 1

π

∞
∑

n=1

cos [n (x − x0)]

= 1

π
lim
ε→0

ε

(x − x0)
2 + ε2

= 1

π
lim
ε→∞

sin [ε (x − x0)]

x − x0

= 1

2
√

π
lim

ε→0+

1√
ε
e− (x−x0)

2

4ε
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Delta function of a more complicated argument is expanded as

δ [g(x)] =
∑

n

δ (x − xn)

|g′(xn)| ; g(xn) = 0

δ
[

f (x, y)
]

δ
[

g(x, y)
] = δ [x − x0] δ

[

y − y0
]

∣

∣

∣

∣

det

∣

∣

∣

∣

∂xf ∂yf
∂xg ∂yg

∣

∣

∣

∣

∣

∣

∣

∣

; f (x0, y0) = 0 , g(x0, y0) = 0

where xn is the nth root of g(x). Derivatives of delta function are evaluated by using
the expression

∫

dx f (x) dnx δ (x − x0) = −
∫

dx dxf (x) d
n−1
x δ (x − x0)

Generalization of delta function to three dimensions is straightforward, and it is

δ (�r) = δ(x)δ(y)δ(z)

whilst in spherical coordinates it is given by

δ (�r − �r0) = 1

r2
δ (r − r0) δ (φ − φ0) δ (cos θ − cos θ0)

= 1

r2
δ (r − r0)

∑

l,m

Y∗
l,m (θ0,φ0) Yl,m (θ,φ)

Closely related to delta function is the Cauchy principal value of integral. It is defined
as

¶

[

f (x)

x

]

≡ lim
ε→0

[∫ −ε

a
dx

f (x)

x
+
∫ b

ε

dx
f (x)

x

]

(C.1)

and its connection to delta function is through the limit

lim
η→0

d

dx
ln (x − iη) = lim

η→0

1

x − iη
= iπδ(x) + ¶

[

1

x

]

(C.2)

or

lim
X→∞

∫ 0

−X
dx eikx = lim

X→∞
1 − e−ikX

ik
= (C.3)

lim
X→∞

[

sin (kX)

k
− i

1 − cos (kX)

k

]

= πδ(k) − i ¶

[

1

k

]



Appendix C: Useful Relationships 303

This relationship is shorthand for evaluation of integrals

lim
η→0

∫ b

a
dx

f (x)

x − iη
= iπf (0) + ¶

[

f (x)

x

]

(C.4)

Cauchy principal value is calculated by using the formula

¶

[∫ b

a

f (x)

x

]

=
∫ b

a

f (x) − f (0)

x
+ ln(

b

−a
)f (0)

or by using perturbation method if the denominator is perturbed by a small value ε

¶

[∫

dx
1

x + ε
f (x)

]

= ¶

[∫

dx
1

x
f (x − ε)

]

= ¶

[∫

dx
1

x
f (x)

]

− ε¶

[∫

dx
1

x
f ′ (x)

]

In applications one often requires the principal value of the integral that contains
exponential function, which is given by

¶

[∫

dx
eixa

x − q

]

=
{−iπe−iaq; a > 0

iπe−iaq; a < 0

In various examples one gets integrals of the type

I =
∫ ∞

−∞
dx δ2 (x − x0) f (x) = 1

π2

∫ ∞

−∞
dx

[

lim
ε→∞

sin [ε (x − x0)]

x − x0

]2

f (x) (C.5)

For finite, but large, ε it is expected that most of contribution comes from the vicinity
of x = x0 hence one expands f (x) in Taylor series and the dominant term I is

I = ε

π
f (x0) + O

(

ε0
)

which is large. One defines the average integral by

〈I〉 = lim
ε→∞

I

ε
= f (x0)

π

which is finite.
Closely related to delta function is the unit step function

�(x) = 1

2

(

1 + x

|x|
)

= lim
d→0

1

1 + e−x/d
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which has the integral representation

�(x) = 1

2πi
lim
η→0

∫ ∞

−∞
dy

eixy

y − iη
; η > 0 (C.6)

It follows from it
x

|x| = 1

π
lim
η→0

∫ ∞

−∞
dy

sin xy

y − iη

C.2 Expansions

A plane wave has expansion in spherical waves as

ei �p·�r =
√

π

2pr

∑

n=0

in(2n + 1)Jn+1/2(pr)Pn (cos�) (C.7)

where

Pn (cos�) = 4π

2n + 1

n
∑

m=−n

Y∗
n,m

(

θp,φp
)

Yn,m (θ,φ)

Related to this expansion is that for the spherical wave

e±ik|�r−�r0|

|�r − �r0| = ±4πki
∞
∑

n=0

jn (kr<) h(3/2∓1/2)
n (kr>)

n
∑

m=−n

Y∗
n,m (θ0,φ0) Yn,m (θ,φ)

where the spherical Bessel jn and Hankel h(1)
n functions are

jn (z) =
√

π

2z
Jn+1/2(z)

h(1)
n (z) =

√

π

2z

[

Jn+1/2(z) + i Nn+1/2(z)
]

In the limit k → 0 the spherical wave has expansion

1

|�r − �r0| = 4π
∑

n,m

1

2n + 1

rn<
rn+1
>

Y∗
n,m (θ0,φ0)Yn,m (θ,φ)

1

|�r − �q| = 1

2π2

∫

d3κ
1

κ2 + η2
ei �κ·(�r−�q) (C.8)
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|�r − �q| = 1

π2

∫

d3k
3η2 − k2
(

k2 + η2
)3 e

i �k·(�r−�q)

C.3 Stationary Phase Method

In the applications one often encounters integrals of the form

I =
∫

du Z(u)eiφ(u)

where the function Z(u) is a slowly varying function of u2 whilst the phase of the
integrand φ(u) is large and also a slowly varying with u. The integral averages to a
small value unless the phase at some points is stationary, meaning that its variation
is second order in u. These points are solutions of equation

dφ(u)

du
= 0

and if there are several solutions they must be well separated, i.e. in between the
points the phase oscillates very rapidly thus the contribution to the integral averages
to a small value. From vicinity of one stationary point the integral approximates as

I ≈ Z(ust)
∫

du eiφ(ust)+ i
2 (u−ust)2φ′′(ust) =

√
2πZ(ust)√|φ′′(ust)| e

iφ(ust)+i π
4 sign(φ′′(ust))

provided thatZ(u) is nearly constantwithin this interval. If there are several stationary
points then the integral is the sum of the same contribution from all of them.

If the integral is two dimensional

I =
∫

du dv Z(u, v)eiφ(u,v)

then the condition for the stationary phase is

∂uZ(u, v) = 0 , ∂vZ(u, v) = 0

in which case the phase in their vicinity approximates as

φ(u, v) ≈ φ(ust, vst) + 1

2
�2

uφ
′′
u(ust, vst) + 1

2
�2

vφ
′′
v(ust, vst) + �v�uφ

′′
u,v(ust, vst)

2Slowly has a relative meaning, but in general it means that it is almost a constant function within
the range in which the oscillatory part makes a large number of oscillations.
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and the integral transforms into

I ≈ eiφ(ust)Z(ust, vst)
∫

du dv e
i
2 φ′′

u

(

�u+�v
φ′′
u,v
φ′′
u

)2

+ i
2 �2

v

[

φ′′
v− (φ′′

u,v)
2

φ′′
u

]

with the result

I ≈ eiφ(ust ,vst)
2πZ(ust, vst)

√|φ′′|
√

∣

∣

∣

∣

φ′′
v − (φ′′

u,v)
2

φ′′
u

∣

∣

∣

∣

e
i π
4 sign(φ

′′)+i π
4 sign

(

φ′′
v− (φ′′

u,v)
2

φ′′
u

)

Again, for several stationary points, well separated, the integral is the sum of the
individual contribution.

Special case of the two dimensional integral is when the second derivatives are
zero but the mixed is not, i.e.

I ≈ eiφ(ust)Z(ust, vst)
∫

du dv ei�u�vφ
′′
u,v

when its value is
I ≈ 2πeiφ(ust)

Z(ust, vst)
∣

∣φ′′
u,v

∣

∣

C.4 Transformation of Volume Element

Volume element in Cartesian coordinates {x1, x2, . . . , xN } is
dV = dx1 dx2, . . . , dxN

By transforming the coordinates into the new ones by

yn = fn (x1, x2, . . . , xN )

the volume element transform into

dx1 dx2, . . . , dxN = dy1 dy2, . . . , dyN
|J (y, x)| = |J (x, y)| dy1 dy2, . . . , dyN

where J is called Jacobian and it is defined as

J (y, x) = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x1y1 ∂x1y2 · · · ∂x1yN
∂x2y1 ∂x2y2 · · · ∂x2yN

...
...

. . .
...

∂x1y1 ∂x1y1 · · · ∂x1y1

∣

∣

∣

∣

∣

∣

∣

∣

∣
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System of N Particles

D.1 Centre of Mass

In many applications it is necessary to transform the coordinates of N particles from
arbitrary coordinate system, often referred to as the laboratory, into the centre of
mass coordinate system. The centre of mass vector is defined as

�R =

N
∑

n=1

mn �Rn

N
∑

n=1

mn

(D.1)

and the rest of N − 1 position vectors are arbitrarily defined, but in here they must
satisfy a specific requirement. The bilinear form of Laplacians

K =
N
∑

n=1

1

mn
�Rn

must in new coordinates {�R, �r1, �r2, . . . , �rN−1} be diagonal, i.e. again a sum of Lapla-
cians. It can be shown that these new coordinates are defined as the following: the
vector �rj is the difference between the vector �Rj+1 and the vector of the centre of
mass of the previous j vectors �Rn; n ≤ j. The first few vectors are

�r1 = �R2 − �R1

�r2 = �R3 − m1�R1 + m2 �R2

m1 + m2

�r3 = �R4 − m1�R1 + m2 �R2 + m3�R3

m1 + m2 + m3
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By straightforward analysis it is shown that in these coordinates the bilinear form is

K = 1
N
∑

n=1

mn

�R +
N−1
∑

n=1

1

μn
�rn

where μn is reduced mass of the particle n + 1 and the mass of all particles with the
indices j < n + 1, i.e.

μn =
mn+1

n
∑

j=1

mj

n+1
∑

j=1

mj

Another important is the sum

�T =
N
∑

n=1

1

mn
∇Rn

which in the centre of mass coordinates is

�T = N
N
∑

n=1

mn

∇R +
N−1
∑

n=1

1

ηn
∇rn

where the mass ηn is

ηn =
mn+1

n
∑

j=1

mj

n
∑

j=1

mj − nmn+1

Single gradient operator transforms into d

1

mj
∇Rj = 1

N
∑

n=1

mn

∇R + 1

mj
∇rj−1 +

N−1
∑

n=j

1
n
∑

i=1

mi

∇rn; j = 2, 3, . . . ,N − 1



Appendix D: System of N Particles 309

1

m1
∇R1 = 1

N
∑

n=1

mn

∇R +
N−1
∑

n=1

1
n
∑

i=1

mi

∇rn

1

mN
∇RN = 1

N
∑

n=1

mn

∇R + 1

mN
∇rN−1

Another transformation is with respect to the coordinates of the centre of mass (D.1),
which shall be demonstrated for single dimension. If the coordinate of the nth particle
is xn, and its mass is mn, then the centre of mass of the N particle is

X = m1x1 + m2x2 + m3x3 + · · ·
m1 + m2 + m3 + · · ·

One defines a coordinate dn of the nth particle as

dn = xn − X

in which case derivatives
∂ ≡ {∂x1 , ∂x2 , ∂x3 , ..}

are transformed as
∂ = D∂d

where D has matrix elements

Di,j = ∂dj
∂xi

Kinetic energy operator is then transformed as

K = −�
2

2

N
∑

n=1

1

mn

∂2

∂x2n
= −�

2

2
˜∂ m−1 ∂ = −�

2

2
˜∂d ˜Dm

−1 D∂d

One defines a unitary matrix U that diagonalizes symmetric matrix between the two
operators ∂d , to give

K = −�
2

2
˜∂q κ−1∂q

where κ is a diagonal matrix

κ−1 = ˜U
(

˜Dm−1 D
)

U (D.2)
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and the new coordinates are
q = ˜Ud (D.3)

D.2 Rigid Body

Special system ofN particles is a rigid body, which is formedwhen all the separations
among the constituents are fixed. This restriction on the motions of the individual
particles greatly simplifies dynamics of the body, in fact it is reduced to three coor-
dinates that determine its orientation in space and three coordinates that determine
position of its centre of mass. For the analysis of dynamics of the rigid body one has
two choices of reference frames, laboratory and centre of mass coordinate frames
(see Sect.D.1). Laboratory coordinate frame is designated by X whilst the centre
of mass one is C. Unit vectors that define X system are ̂X, which are conveniently
fixed and are time independent, whilst in the C system unit vectors may either be
fixed, and conveniently chosen to be parallel with those in the X system and therefore
designated bŷX, or time dependent and designated bŷC (this referred to as the body
fixed reference frame). Position of any particle is therefore determined from either
of the coordinate systems and relationship among them is

˜Rn(t)X = r̃n(t)X + r̃C(t)X = r̃n(0)C(t) + r̃C(t)X

where a simplified notation is used. X stands for the set of unit vectors along the axes
that define laboratory frame, say they are X = {x1, x2, x3}, C(t) stand for the similar
unit vectorsC(t) = {c1, c2, c3} (which are time dependent), rn = {x(n)

1 , x(n)
2 , x(n)

3 } and

rC = m1r1 + m2r2 + · · · + mNrN
m1 + m2 + · · · + mN

is position of the centre of mass of this system.
Basic operation in analysis of motion of a system of particles is rotation of a

vector,mainly to conveniently choose a coordinate frame inwhich the system appears
simpler, analogous to translation transformation for the choice of the centre of mass
point as the origin of it. Rotation of any vector is achieved in three steps, requiring
three angles that represent three consequent rotations around Cartesian {x, y, z} axes.
The best known are the three Euler angles (zyz angles) representing rotations around
z, y and z axes, in this order. For the rigid body dynamics, however, it is often more
convenient to choose three consecutive rotations around x, y and z axes(xyz angles),
both rotations are in the reference frame X. Rotation of a vector rn, therefore, goes
in three steps and this transformation is particularly convenient when the modulus of
the vector is fixed, as in the rigid body, because time dependence of it is transferred
to time dependence of rotation angles. So, for example, transforming vector rn(0)
into rn(t), if its modulus is preserved, is by xyz rotation

rn(t) = R (α,β, γ) rn(0) = Rx (α)Ry (β)Rz (γ) rn(0) (D.4)
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where

R (α,β, γ) =
∣

∣

∣

∣

∣

∣

1 0 0
0 cosα − sinα
0 sinα cosα

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cosβ 0 sin β
0 1 0

− sin β 0 cosβ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

∣

∣

∣

∣

∣

∣

which is unitary, meaning that˜RR is the unit matrix. The angles are time dependent.
Rigid body is now defined as a system of particles when the scalar product

r̃n(t)X · r̃m(t)X = x(n)
1 x(m)

1 + x(n)
2 x(m)

2 + x(n)
3 x(m)

3

is time independent, or in other words rotation affects all positions of particles in the
same way.

For the following analysis it is convenient to define relationship between an an-
tisymmetric 3 × 3 (three independent elements) matrix and a single column matrix
(vector), where the association between them is

A =
∣

∣

∣

∣

∣

∣

0 −a3 a2
a3 0 −a1

−a2 a1 0

∣

∣

∣

∣

∣

∣

⇔ a =
∣

∣

∣

∣

∣

∣

a1
a2
a3

∣

∣

∣

∣

∣

∣

(D.5)

In this way a vector product with a could be alternatively written as a matrix product

a × b = Ab

Important property of this association is that if a is rotated as (D.4) then A is trans-
formed as

a ′ = R (α,β, γ) a ⇒ R (α,β, γ)A˜R (α,β, γ) = A′ (D.6)

In the laboratory frame velocity of particles is related to the time derivative of the
rotation angles but it is convenient to define angular velocity vector ω with the
property

·
rn(t) = ω × rn(t) ≡ � rn(t) =

∣

∣

∣

∣

∣

∣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x(n)
1

x(n)
2

x(n)
3

∣

∣

∣

∣

∣

∣

(D.7)

From (D.4) one finds

·
rn(t) = ·

R (α,β, γ) rn(0) = ·
R (α,β, γ)˜R (α,β, γ) rn(t) = � rn(t)

and by comparing the elements the angular velocity vector is

ω = ϒ
·
q =

∣

∣

∣

∣

∣

∣

1 0 sin β
0 cosα − sinα cosβ
0 sinα cosα cosβ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

·
α
·
β
·
γ

∣

∣

∣

∣

∣

∣

∣

(D.8)
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Closely related, and important, quantity is total angular momentum of the system of
particles that are forming a rigid body. It is defined as

L = {L1,L2,L3} =
N
∑

n=1

mnrn(t) × ·
rn(t) = I ϒ

·
q = Iω (D.9)

where (D.7) was used. The matrix I is momentum of inertia tensor

I =
N
∑

n=1

mn˜XnXn

where

X =
∣

∣

∣

∣

∣

∣

0 −x(n)
3 x(n)

2

x(n)
3 0 −x(n)

1

−x(n)
2 x(n)

1 0

∣

∣

∣

∣

∣

∣

(D.10)

In general, the inertia tensor is a non-diagonal symmetric matrix, but there is a
reference frame where it is diagonal. To find this frame one defines a unitary matrix
U that diagonalizes I , in which case

ι = ˜UIU =
N
∑

n=1

mn
˜

(

˜U XnU
)

˜U XnU

and from (D.6) one obtains rotation matrix

R (αd,βd, γd) = ˜U

The anglesαd,βd andγd determine rotation bywhich original reference frame should
be transformed in the one where the inertia tensor is diagonal. If the new reference
frame is defined by unit vectors X ′ then they are connected with the unit vectors X
of the original frame by transformation

X ′ =˜R (αd,βd, γd)X = UX

Although it is convenient to define the principal axes reference frame, in the labo-
ratory one, it should be emphasized that this applies only if the rigid body does not
rotate. When it does then in this frame the inertia tensor becomes non-diagonal

I = R (α,β, γ) ι˜R (α,β, γ) (D.11)



Appendix D: System of N Particles 313

D.2.1 Classical Dynamics

When an external force is applied on a system of particles, that form a rigid body,
then in general its centre of mass moves and the system rotates. Equation of motion
for the particle n of mass mn at the position rn is

mn
··
rn = Fn (rn) + Fin

n (D.12)

whereFn (rn) is a force that acts on this particle andFin
n is the force that binds particles

together, and it is in the form of a gradient of a potential that is a sum of the terms
like

V in
i,j ∼ δ

(

∣

∣ri − rj
∣

∣− r(0)
ij

)

where r(0)
ij is a distance between the particles i and j. The coordinates rn refer to a

laboratory frame and they could be decomposed as

rn = rc + dn (D.13)

where rc are coordinates of the centre of mass and dn are the coordinates of the nth
particle with respect to it. There are now two sets of equations, one for the motion
of the centre of mass and the other for the nth particle. The former is obtained by
summing the equations (D.12) when one gets

∑

n

mn
··
rn = M

··
rc =

∑

n

Fn (rn)

where the sum of all internal forces is zero.
In order to obtain equation of motion for the rotation of the system one starts from

equation for the nth particle

mn
··
rn = mn

··
dn + mn

··
R = dn

|dn|
dn
|dn| · Fn + dn

|dn| ×
(

Fn × dn
|dn|

)

where dn = rn − rc. The binding force is omitted because it does not have effect on
the moduli |dn|, they are time independent. The force is decomposed into the parallel
component with the distance dn, and has impact on the centre of mass, and the one
that is perpendicular to it. By vector product of the equation with dn the result is

mn
d

dt

(

dn × ·
dn

)

+ mndn × ··
R = dn × Fn

and when summing over all particles the final expression is

d

dt
L = Q
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whereQ is total torque by the forces on the rigid body and L is the angularmomentum
of it.

This concludes setting up equations of motion for a system of particles that to-
gether form a rigid body. The two sets of equations describe motion of the centre of
mass and the orientation of this system of particles, the rigid body. The two motions
are coupled, which is shown by assuming that the external force changes by small
amount from its value at the centre of mass, when one could write

Fn (rc + dn) ≈ Fn (rc) + (dn · ∇)Fn (rc)

The equation for the centre of mass is then

M
··
rc ≈

∑

n

Fn (rc) − ∇rc × Q (rc) −
∑

n

∇rc [dn · Fn (rc)]

where Q (rc) is the torque on the rigid body in the approximation when the forces
have the value at the centre of mass. Equation for the angular momentum, rotation
of the rigid body, is approximately

d

dt
L ≈ Q (rc) +

∑

n

dn × [dn · ∇]Fn (rc) = Q (rc) + Q′ (rc)

where Q′ (rc) has the structure of a torque where the force is modification of the
original one.

If no external force is applied on a rigid body then the angular momentum is
constant, and the equations of motion for the angular velocities ω are derived from
relationship

dL

dt
== 0 = d (I ω)

dt
(D.14)

and when the expression (D.11) is used one gets

ι
·
W = −�W ι W = −W × ιW (D.15)

where (the set of angles {α,β, γ} equals {αd,βd, γd})

W =˜R (α,β, γ) ω

and

�W =˜R (α,β, γ) � R (α,β, γ) =
∣

∣

∣

∣

∣

∣

0 −W3 W2

W3 0 −W1

−W2 W1 0

∣

∣

∣

∣

∣

∣
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where the relationship (D.6) was used. Equation (D.15) has a special feature that
momentum of inertia is angle independent and refers to the reference frame where it
is diagonal, according to the definition that it is the body fixed frame. In this frame
W plays the role of angular velocity and if multiplied by ι this is angular momentum
in the body fixed frame. This is a convenient frame to analyze motion of a rigid
body that is not subjected to an external force, however when it is applied then the
laboratory frame should be used. Disadvantage is that in the body fixed frame angular
momentum, in general, is not conserved, which follows from (D.15), however, its
modulus is conserved.

Total energy of a rigid rotor is derived in an analogous way as angular momentum.
By utilizing (D.13) in the set (D.12) equations of motion are

mn

··
dn + mn

··
rc = Fn

and by scalar product with R and dn and combining the two products one obtains

mn

2

d

dt
·
rc

2 + mn

2

d

dt

·
d
2

n + mn
d

dt

·
dn · ·

R = − ·
R∇nV − ·

dn∇nV

By summing over all particles the total energy is finally

E = M

2

d

dt
·
rc

2 +
∑

n

mn

2

d

dt

·
d
2

n + V (rc + d1, rc + d2, . . . , rc + dN )

Initial conditions for a rotating rigid body are determined in the laboratory frame
by specifying components of the angular momentum, however, these are derived
quantities because the basic ones are angular velocities to which one would want to
refer to. Components of ω are only formally called angular velocities, because they
are related to the time derivatives of the rotation angles by (D.8), which one could
call the true angular velocities but they are also not convenient to specify. The most
intuitive to specify initial conditions are those in the reference framewhich is defined
by the principal axes of a rigid body, where the inertia tensor I is diagonal. Angular
momentum in this body fixed reference frame is ιW where now component Wi is
angular velocity around the axes i. In the laboratory frame the angular momentum is

L = R (α,β, γ) ιW = R (α,β, γ) Lb

A very important parameter is velocity of a particle in a rigid body, and from its
definition (D.7) one obtains

·
dn(t) = −R (α,β, γ) ι−1dn(0) × Lb

which is related to the angular momentum Lb in the body fixed frame.
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D.2.2 Quantum Dynamics

In order to formulate quantum equations for dynamics of rigid rotor one must define
appropriate coordinates and derive the conjugate variables for which one applies
the principle of correspondence. There are two sets of variables, coordinates of
the centre of mass and the rotation angles for rotation of the rigid body. For the
former the conjugate variables are components of the centre of mass momentum
pc, and hence by the correspondence principle the operator that is associated with
it is p̂c = −i�∇rc . Conjugate variables for the rotation angles are derived from the
Lagrangian, in fact only its kinetic energy part because potential is assumed to be
only coordinate dependent. Kinetic energy of the rigid rotor is

K = 1

2

∑

n

mn

·
dn(t) · ·

dn(t) + 1

2
M

·
rc(t) · ·

rc(t) = 1

2
·̃
q ˜ϒ Iϒ

·
q + 1

2
M

·
rc(t) · ·

rc(t)

and momentum conjugate variables are

pi = ∂K

∂
·
qi

where
·
qi is time derivative of one of the Euler angles. One finds that

p = ˜ϒ I ϒ
·
q ≡ Q

·
q

and the kinetic energy for the rotor is

K = 1

2
p̃ Q̃−1p

The expression simplifies if one defines angular momentum in terms of the conjugate
variables

L = I ϒ
·
q = (

˜ϒ
)−1

p = 1

cosβ

∣

∣

∣

∣

∣

∣

cosβ 0 0
sinα sin β cosα cosβ − sinα

− cosα sin β sinα cosβ cosα

∣

∣

∣

∣

∣

∣

p ≡ �cp

or in the body fixed frame

L = R (α,β, γ) Lb = (

˜ϒ
)−1

p ⇒

Lb = 1

cosβ

∣

∣

∣

∣

∣

∣

cos γ cosβ sin γ − sin β cos γ
− sin γ cosβ cos γ sin β sin γ

0 0 cosβ

∣

∣

∣

∣

∣

∣

p ≡ �bp
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when

K = 1

2
˜L I−1L = 1

2
˜Lb ι−1Lb

Going over to quantum dynamics one uses the correspondence principle and replaces

p ⇒ p̂ = −i�

∣

∣

∣

∣

∣

∣

∂α

∂β

∂γ

∣

∣

∣

∣

∣

∣

≡ −i�∇�

If one defines operator

̂� = i

�
�bp

with the explicit components

̂� =
∣

∣

∣

∣

∣

∣

̂�z
̂�y
̂�x

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

cos γ
cosβ

∂α + sin γ∂β − tan β cos γ∂γ

− sin γ
cosβ

∂α + cos γ∂β + tan β sin γ∂γ

∂γ

∣

∣

∣

∣

∣

∣

and
̂�2 = 1

cos2 β

(

∂2
α + ∂2

γ

)− 2
tan β

cosβ
∂α∂γ + 1

cosβ
∂β

(

cosβ∂β

)

then Schroedinger equation is

− �
2

2M
�rc f − �

2

2
˜
̂� ι−1

̂�f + V (rc + d1, rc + d2, . . . , rc + dN ) f = Ef

which, for simplicity, it is formulated in the body fixed frame. When the potential
energy does not changes appreciable from its value at the centre of mass then the
equation approximates

− �
2

2M
�rc f − �

2

2
˜
̂� ι−1

̂�f + V (rc) f +
∑

n

(

dn · ∇rn

)

V (rc) f = Ef

Solution is approximately a product f (rc, rn) = fc (rc) fb (rn) when the equation is
replaced by two

− �
2

2M
�rc fc + V (rc) fc = Ecfc

−�
2

2
˜
̂� ι−1

̂�fb +
∑

n

(

dn · ∇rn

)

V (rc) fb = Ebfb
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Important quantity in the analysis is the probability current, which is essentially the
average of the velocity of a particle. In classical dynamics velocity of the nth particle
is ·

rn(t) = ·
rc(t) − R (α,β, γ) ι−1dn(0) × Lb

and by the correspondence principle it is replaced by the operator

·̂
rn(t) = − i�

M
∇rc + i�R (α,β, γ) ι−1dn(0) × �b∇�

The charge current for the nth particle is now

jn = qn� Im

[

f ∗
(

1

M
∇rc − R (α,β, γ) ι−1dn(0) × ̂�

)

f

]

(D.16)

where qn is its charge. The total charge current is

j =
∑

n

jn

Previous analysis was based on the xyz rotation matrix (D.4), which is convenient
for classical dynamics but not in quantum. In the latter the most convenient is to use
the zyz Euler rotation, which is represented by the rotation matrix

R (α,β, γ) = Rz (α)Ry (β)Rz (γ)

Following the same steps as previously one finds

̂�E =
∣

∣

∣

∣

∣

∣

− cos γ
sin β

∂α + sin γ∂β + cot β cos γ∂γ
sin γ
sin β

∂α + cos γ∂β − cot β sin γ∂γ

∂γ

∣

∣

∣

∣

∣

∣

and
̂�2

E = 1

sin2 β

(

∂2
α + ∂2

γ

)− 2
cot β

sin β
∂α∂γ + 1

sin β
∂β

(

sin β∂β

)

Important quantity is the current (D.16), which with the Euler angles is

jn = qn� Im

[

f ∗
(

1

M
∇rc − RE (α,β, γ) ι−1dn(0) × ̂�E

)

f

]

D.3 Semirigid Body

N particles that are bound together by a force that does not fixes their position with
respect to the centre of mass of the system display collective motion in which motion
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of a single particle is not independent of the motion of the others. The conglomerate
of these particles form a semirigid body. In general this collective motion is chaotic
but an important special case is when around the equilibrium points the force on
particle is harmonic. The forces of this kind are result of approximating interparticle
interaction around the equilibrium points by power expansion and by assuming that
the resulting vibrations are of sufficiently small amplitude.

Position of the nth particle has three Cartesian components, and shall be denoted
by rn = {x1, x2, x3}, where n = 1, 2, . . . ,N (notation is along the lines as in Sect.D.2,
except one should note additional complication that each constituent of the body is
allowed to move). Thus the position of the nth particle is

rn = rc + dn + εn (D.17)

where rc are coordinates of the centre of mass of the system, dn are coordinates of
its equilibrium position with respect to rc and εn are its coordinates with respect to
dn. Coordinates dn define rigid body, meaning that not only the moduli of dn are time
independent but also any scalar product dn · di. If the particles could move away from
the equilibrium points dn by a small distance εn then the body is a semirigid body.
The potential that binds the particles into a stable system is in general a function
of the separations between any two of them. This ensures that the forces which
bind the particles into a single body are independent of the choice of the reference
frame. However, the choice of the forces should ensure two additional requirements:
vibrations of the particles should not have impact on the centre of mass motion
and also should not change angular momentum of the body as the whole. It could be
shown that the two requirements are fulfilled if the potential energy is a function of the
modulus of the relative separations ri − rj and the scalar products

(

ri − rj
) · (ri − rk).

Potential energy is therefore a function of the form V
(

ri − rj
) ; i < j, and har-

monic approximation assumes that around the equilibriumpointsdn one could replace
it by expansion

V
(

di,j + εi,j
) = V

(

di,j
)+ (D.18)

1

2

N
∑

i>j=1

(

εi,j · ∇i
) (

εi,j · ∇i
)

V
(

di,j
)+

N
∑

i �=j=1

N
∑

k>i,l>j

(

εi,k · ∇i
) (

εj,l · ∇j
)

V
(

di,k, dj,l
)

where di,j = di − dj and εi,j = εi − εj. The expansion is written in a simplified form

V = V (d) + 1

2
ε̃W (d) ε

where the matrix elements of W (d) are deduced from the expansions (D.18) and
ε = {ε1, ε2, . . . , εN }. The matrix elements satisfy two conditions, there is no net
force on the body due to the forces among its constituents3

3The conditions are valid only if no external force is applied on the body.
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∑

i,j

Wi,j (d) · εj = 0

no net torque
∑

i,j

di × Wi,j (d) εj = 0

Besides these there is also requirement that both di and εj are defined with respect
to the centre of mass of the body, in which case

∑

i

midi = 0 (D.19)

and
∑

i

miεi = 0

D.3.1 Classical Dynamics

Classical equation of motion for the nth particle is

mn
··
rn = −∇nV − ∇nVext (D.20)

where Vext is potential energy of the nth particle due to some external force. Internal
potential is a function of the relative separations of the particles, whilst external
potential is a function of the absolute positions (with respect to a laboratory frame)
of the particles. The set should be manipulated in order to prepare it for analysis the
basic problem, the motion of the semirigid body as the whole in which the amplitude
of vibrations of its constituents is small compared to their average separations. The
simplest transformation is to sum the equations in which case one obtains equation
for the motion of its center of mass

M
··
rc = −

∑

n

∇nVext

where M is mass of the entire body.
For the next step on needs a small introduction. If the separation vector of the nth

particle from the centre of mass rc is sn then one could define rotation (for definition
of rotation transformation see Sect. D.2)

sn = R (α,β, γ) s0n
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where the rotation angles are independent of the indexn and rotate the position vectors
from some of their initial orientations. Both the angles and s0n are time dependent for
the semirigid body, in which case time derivative of sn is

·
sn = ω × sn + R (α,β, γ)

·
s
0

n = ω × sn + vn (D.21)

This time derivative has an important property

sn × ·
sn = ω × sn + R (α,β, γ)

·
s
0

n = sn × (ω × sn) = ˜XnXnω

where the definition (D.9) was used. One also shows that

sn · ··
sn = sn · [ω × (ω × sn)] + sn · ·

vsn

Equation that sn satisfy are obtained by using the equation for the centre of mass
coordinates, when one gets

mn
··
sn = −

∑

j

sn − sj
∣

∣sn − sj
∣

∣

V ′ (∣
∣sn − sj

∣

∣

)+
∑

i

(mn

M
− δi,n

)

∇iVext

for which it could be shown that

∑

n

mn
··
sn = 0

By vector multiplying the equation with sn and summing them the resulting equation
is

d

dt

∑

n

mnsn × ·
sn =

∑

i,n

(mn

M
− δi,n

)

sn × ∇iVext = d

dt

∑

n

mnsn × (ω × sn)

andwhen one uses definition for themomentumof inertia and the angularmomentum
(D.9)

d

dt
L = d

dt
Iω =

∑

i,n

(mn

M
− δi,n

)

sn × ∇iVext (D.22)

Similarly if equation for sn is scalar multiplied by sn and when they are summed one
obtains

∑

i

misi · ·
vsi =

∑

i

mi (ω × si)
2 − 1

2

∑

i,j

∣

∣si − sj
∣

∣ V ′ (∣
∣si − sj

∣

∣

)+
∑

i

∑

j

(mi

M
− δi,j

)

si · ∇jVext
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Equation for vsn is now derived by taking gradient of this equation with respect to
sn4

mn
·
vsn = −2mnω × (ω × sn) + F0

n + Fn (D.23)

where the external force is

Fn =
∑

j

(mn

M
− δn,j

)

∇jVext +
∑

i

∑

j

(mi

M
− δi,j

)

si · ∇j (∇nVext)

and the force, internal force, from the other particles

F0
n = −

∑

j

sn − sj
∣

∣sn − sj
∣

∣

V ′ (∣
∣sn − sj

∣

∣

)−
∑

j

(

sn − sj
)

V
′′ (∣
∣sn − sj

∣

∣

)

The first term on the right is the Coriolis force, whilst the rest of the terms depend
on the forces that act on particles.

Equation for the angular momentum of the body is (D.22), and besides it one
should also derive equation for the total energy. From equation (D.20) one derives

d

dt

(

M

2
·
r
2

c + 1

2

∑

n

mn
·
s
2

n

)

= − d

dt
(V + Vext)

and by using expression for
·
sn one finally obtains

d

dt

(

M

2
·
r
2

c + 1

2
˜LI−1L + 1

2

∑

n

mnv
2
n

)

= − d

dt
(V + Vext)

On the left of equation is time rate of change of kinetic energy of the body, which is
a sum of the kinetic energy for the motion of its centre of mass, rotation of the body
and the motion of its constituents.

Previous equations are given in terms of the quantities that are only indirectly
related to the parameters which are relevant for the study of dynamics of the body,
such as the rotation angles α,β and γ and the stretching coordinates s0n. In order to
transform them into these parameters one defines

� =˜R (α,β, γ) ϒ
·
q = �

·
q =

∣

∣

∣

∣

∣

∣

cosβ cos γ sin γ 0
− cosβ sin γ cos γ 0

sin β 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

·
α
·
β
·
γ

∣

∣

∣

∣

∣

∣

∣

(D.24)

4It should be noted that one is essentially saying that solution of equation d · r = 0 is r = 0, which
is not correct. However, if r is a function of t then the solution is correct if equation should be
valid for any t. Solution is undetermined up to an additional component d × a, where a is arbitrary
vector.
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Equations for (D.23) are then transformed into

mn
··
s
0

n = −mn � × ·
s
0

n − 2mn� × (

� × s0n
)−

∑

j

s0n − s0j
∣

∣

∣s0n − s0j

∣

∣

∣

V ′ (∣
∣s0n − s0j

∣

∣

)−
∑

j

(

s0n − s0j
)

V
′′ (∣
∣s0n − s0j

∣

∣

)+˜RFn

where definition (D.21) was used. Similarly, equation for the angular momentum
(D.22) is transformed into

··
q = −A

·
q − BI−1

0 � × I0� − BI−1
0

·
I0� + BI−1

0
˜R
∑

i,n

(mn

M
− δi,n

)

sn × ∇iVext

where

A = ϒ−1
·
ϒ = 1

cosβ

∣

∣

∣

∣

∣

∣

∣

∣

0 − ·
α sin β

·
β

0 0 − ·
α cos2 β

0
·
α − ·

β sin β

∣

∣

∣

∣

∣

∣

∣

∣

,

B = ϒ−1R = 1

cosβ

∣

∣

∣

∣

∣

∣

cos γ − sin γ 0
cosβ sin γ cosβ cos γ 0

− sin β cos γ sin β sin γ cosβ

∣

∣

∣

∣

∣

∣

This equation simplifies considerably if there is no external force, in which case the
total angular momentum is conserved and equal to L0, when

Iω = L0 ⇒ ·
q = BI−1

0
˜RL0

Kinetic energy is transformed into

K = M

2
·
r
2

c + 1

2
�̃I0� + 1

2

∑

n

mn
˜·
s
0

n
·
s
0

n

Characteristic feature of a semirigid body is that sn could be approximated as a
sum of a large component dn, whose modulus is fixed, and a small component ηn
that measures the space within which the nth particle moves. Previous equations
should be therefore formulated in terms of the new variables, and for that one uses
perturbation analysis. If sn is written as a sum

sn = dn + ηn (D.25)

then
s0n =˜Rsn = d0n + εn
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where time derivatives of d0n are zero. Force on the nth particle due to the other
particles is then approximated as

F0
n = −

∑

j �=n

(

d0n − d0j

) [(

d0n − d0j

)

· (εn − εj
)

]

+ (

εn − εj
)

∣

∣

∣d0n − d0j

∣

∣

∣

2 V
′′ (∣
∣d0n − d0j

∣

∣

)

where it was taken into account that d0n − d0j is the equilibrium distance of the two
particles. Also, the leading term that is εn − εj independent was neglected and it was
assumed that the potential V is harmonic. For further convenience it is assumed that
the force F0

n is represented in the matrix form

F0
n =

∑

j

Wn,jεj; Wn,n = 0

Equation for s0n transforms now into equation for the shifts εn

mn
··
εn = −mn � × ·

εn − 2mn� × (

� × d0n
)+

∑

j

Wn,jεj +˜RFn

where the contribution of εj in the Coriolis term was neglected. For the rotation
angles the equation approximates as

··
q = −A

·
q − BI−1

0 � × I0� − BI−1
0

·
I0� + BI−1

0

∑

i,n

(mn

M
− δi,n

)

s0n × (

˜R∇iVext
)

Special attention should be devoted to the momentum of inertia, which is defined in
terms of s0n, and from the definition of I0 it approximates as

I0 = ι0 +
N
∑

n=1

mn
(

˜EnD
0
n +˜D0

nEn
)

(D.26)

where D0
n is the matrix of the form (D.5) with the elements of d0n whilst En has the

elements εn. The equation for q is now

··
q = −A

·
q − Bι−1

0 � × ι0� + Bι−1
0

N
∑

n=1

mn

[ ·
εn × (

d0n × �
)+ d0n ×

( ·
εn × �

)]

−

Bι−1
0 d0n × (

˜R∇nVext
)

where the term for the external force that is of the order ε was neglected. The first
two terms on the right are the same as for the rotation of a rigid body. The third term
is contribution due to the oscillations of the body, whilst the last term drives the body.
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Kinetic energy is approximately

K = M

2
·
r
2

c + 1

2
�̃ι0� −

N
∑

n=1

mn

( ·
εn × �

)

· (d0n × �
)+ 1

2

∑

n

mn
·
εn · ·

εn

Those were the most general equations that describe dynamics of a semirigid body,
its rotation, vibration and translation under the impact of external force. However, in
some circumstances it is sufficient to analyze vibrations only, without external force,
which could only be de-coupled from rotations if the angular momentum of the body
is zero. In this case the equations are

mn
··
εn =

∑

j

Wn,jεj (D.27)

and they are not coupled to the other degrees of freedom if initial conditions are
chosen so that

∑

n

mn
·
εn =

∑

n

mnεn =
∑

n

mnd
0
n × εn = 0 (D.28)

Solving equations (D.27) is greatly facilitated if written in a matrix form

m
··
ε = Wε

where � is a symmetric matrix. The equations are solved by modifying them as

··
(

m1/2ε
) = m−1/2Wm−1/2

(

m1/2ε
)

and by defining coordinates ρ that are related to ε by transformation m1/2ε = Uρ
where

˜U m−1/2Wm−1/2 U = −�2

then equations have simple solution

ε = m−1/2U
(

ρ0 cos�t + ·
ρ0�

−1 sin�t
)

The initial conditions ρ0 and
·
ρ0 should be chosen in accordance with conditions

(D.28).



326 Appendix D: System of N Particles

D.3.2 Quantum Dynamics

Quantum dynamics for the semirigid body is formulated along the same lines as for
the rigid body in Sect.D.2. One starts by defining the coordinates, and these are for
the centre of mass, rotation angles and coordinates for vibrations. For these one must
derive conjugate momentum variables from the Hamilton equations, entirely from
kinetic energy of the semirigid body, which is given by

K = M

2
·
r
2

c + 1

2
·̃
q˜�I0�

·
q + 1

2

∑

n

mn
˜·
s
0

n
·
s
0

n

The conjugate momentum for the centre of mass coordinates is therefore

pc = ∂K

∂
·
rc

= M
·
rc (D.29)

for the rotation angles
pq = ˜�I0�

·
q (D.30)

and for vibrations
psn = mn

·
s
0

n (D.31)

In terms of the conjugate momenta the kinetic energy is

K = 1

2M
p̃cpc + 1

2
p̃q
(

˜�I0�
)−1

pq + 1

2

∑

n

1

mn
p̃snpsn

Going over to quantum dynamics one uses the correspondence principle, which
states that if the conjugate momentum of the coordinates x = {x1, x2, x3} is p =
{p1, p2, p3} then

p ⇒ p̂ = −i�

∣

∣

∣

∣

∣

∣

∂x1
∂x2
∂x3

∣

∣

∣

∣

∣

∣

≡ −i�∇x

From this correspondence one obtains kinetic energy operator, however, one should
use the Laplace-Beltrami transformation. It states that for a bilinear form

B = x̃g−1x

where g is a matrix with the elements that are functions of x, the corresponding
Laplace operator in the derivatives ∇x takes the form

̂B = G−1/2
˜∇x
(

G1/2g−1
)∇x
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where G is determinant of g. It follows that the parts of the kinetic energy operator
that correspond to the centre of mass motion and vibrations have simple structure.
For the rotations one makes useful observation that

˜�−1p̂q = cos−1 β p̂q �−1 cosβ

and if one defines the operator ̂� as

̂� = i

�

˜�−1p̂q =
∣

∣

∣

∣

∣

∣

cos γ
cosβ

∂α + sin γ∂β − tan β cos γ∂γ

− sin γ
cosβ

∂α + cos γ∂β + tan β sin γ∂γ

∂γ

∣

∣

∣

∣

∣

∣

then kinetic energy operator is

̂K = − �
2

2M
�c − �

2

2
˜
̂� I−1

0
̂� − �

2

2

∑

n

1

mn
�sn

The operator ̂� corresponds, up to a constant, to the angular momentum, and has a
very useful property

̂� × ̂� = ̂�

For the semirigid body one replaces the coordinate vectors sn by (D.25), in which
case the inverse of the momentum of inertia that enters the kinetic energy operator
is approximately

I−1
0 ≈ ι−1

0 − ι−1
0

[

N
∑

n=1

mn
(

˜EnD
0
n +˜D0

nEn
)

]

ι−1
0

where the appropriate symbols are defined in (D.26). Approximate operator ̂K is
now

̂K = − �
2

2M
�c − �

2

2
˜
̂� ι−1

0
̂� − �

2

2

∑

n

1

mn
�εn −

�
2

2
˜
̂� ι−1

0

[

N
∑

n=1

mn
(

˜EnD
0
n +˜D0

nEn
)

]

ι−1
0
̂�

One important quantity to calculate is the probability current that one could associate
with each constituent of the body. It is derived from the classical expression for
velocity of the nth particle, which is given by

·
rn = ·

rc + ·
dn + ·

ηn = ·
rc − Xnϒ

·
q + ·

(Rεn)
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which is further transformed into

·
rn = ·

rc − Xnϒ
·
q − REn� + R

·
εn

where the matrix En is of the same character as Xn but with the components of εn.
Finally one uses relationship with

·
q to obtain

·
rn = ·

rc − R
(

X0
n + En

)

�
·
q + R

·
εn

and in terms of conjugate momenta

·
rn = 1

M
pc + 1

mn
Rpεn − R

(

X0
n + En

)

I−1
0
˜�−1pq

By replacing conjugatemomenta with the operators one gets operator for the velocity

v̂n = − i�

M
∇c − i�

mn
R∇εn + i�R

(

X0
n + En

)

I−1
0
̂�

and the current is defined as

jn = � Im

{

f ∗
[

1

M
∇c + 1

mn
R∇εn − R

(

X0
n + En

)

I−1
0
̂�

]}
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Doppler effect, 225
first order correction, 223
photon energy transfer, 225, 235
Rabbi oscillations, 233
resonance energy transfer, 224
second order correction, 236
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B
Born-Oppenheimer approximation, 19
Bound states

classical, 186
quantum, 188
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Caustics, 91
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many particles, 307
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in confinement, 133
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time dependent, 150
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slit experiment, 136
uniform motion

relativistic, 136
Charge density
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self energy, 4
two particles, 198

D
Delta function, 301
Diabatic approximation, 23
Dipole
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induced, 9
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Dirac equation, 41, 54
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two particles, 200
Drift velocity, 106, 114, 236

E
Electromagnetic field, 2, 67

beam focusing, 91
continuity equation, 42
electric component, 2
energy density, 69
energy-momentum densities

with vector potential, 73
gauge invariance, 72
Green function, 43

for charge density, 45
for quantum density, 46
transversal, 72

Lorentz condition, 71
magnetic component, 2
momentum density, 69
potential, 2, 69
radiation field

free particle, 49
ray equation, 91
scalar potential

for free particle, 51
short pulses, 80
static force, 2
vector potential

ortho-longitudinal components, 72
waves, 74

caustics, 91
finite width, 85
Poyting vector, 75

weak, 117
Electromagnetic pulse, 119

atom, 125
hydrogen atom, 119

Electromagnetic wave, 74
doubling the frequency, 106
drift velocity, 106, 114
initial condition, 106
interaction, 101

classical, 101
onset, 107, 112
quantum, 108

momentum transfer, 112
Elementary charges, 1
Energy

positive-negative interference, 250

F
Field reaction, 127

G
Green functions

nonrelativistic
time dependent, 291
time independent, 295

H
Hydrogen

atom in harmonic oscillator
classical theory, 28
quantum theory, 30

two atoms, 14, 17

K
Klein-Gordon equation, 41, 52

continuity equation, 42
physical meaning, 53

L
Lamb shift, 128
Line shift, 277

hydrogen atom, 258
perturbation theory, 277

M
Mass of particle, 177

dynamic, 180
rest, 178

Molecular rotational spectroscopy, 260
dipole radiation, 266

Molecular vibrational spectroscopy, 269,
272

three atoms, 273
Momentum

change by radiation, 245
Momentum transfer

frequency dependent, 112

N
Negative energy states, 194

P
Paraxial approximation, 91

phase space solution, 93
Photon, 112, 119, 124, 259
Potential

Coulomb, 2
electromagnetic field, 2
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magnetic dipole, 2
Van der Waals, 14

Poyting vector, 69, 75

R
Rabbi oscillations, 233

Rabbi period, 233
Radiation, 239

amplitude, 244
by bound charge, 254
by created charge, 246
charge momentum change, 245
condition for, 240
hydrogen atom, 254
in polarization angle, 244
line shift

hydrogen atom, 258
positive-negative interference, 250
rotating molecule, 260

dipole, 266
total power

differential, 243
uniform aceleration, 242
vibrating molecule, 269

spectrum, 272
three atoms, 273

Ray equation, 91
Relativistic

wave equations, 33
Dirac equation, 34
electromagnetic field, 34
homogeneous solutions, 35
inhomogeneous solutions, 41
Klein-Gordon equation, 34

Resonances
in charge confinement, 171

Rigid body, 310
classical dynamics, 313
quantum dynamics, 316

Rotating wave approximation, 229

S
Semirigid body, 318

classical dynamics, 320
quantum dynamics, 326

Spectrum, 244
line shifts, 277

Stationary phase method, 305

U
Units, 287

W
Wigner function, 93


	Preface
	Contents
	About the Author
	1 Introduction
	1.1 Properties of Elementary Charges
	1.2 Charge Density in Molecules
	1.2.1 Self Energy of Hydrogen Atom
	1.2.2 Charge Density in Molecules
	1.2.3 Charge Density in Hydrogen-Like Atom
	1.2.4 Electric Dipole of Molecules
	1.2.5 Van der Waals Potential

	1.3 Structure of Molecules
	1.3.1 Adiabatic Approximation
	1.3.2 Hydrogen Atom in Harmonic Oscillator


	2 Relativistic Wave Equations
	2.1 Unifying Equation
	2.2 Homogeneous Equation
	2.3 Inhomogeneous Equation
	2.3.1 General Features
	2.3.2 Electromagnetic Field
	2.3.3 Klein-Gordon Equation
	2.3.4 Dirac Equation


	3 Electrodynamics
	3.1 Basic Principles
	3.2 Vector and Scalar Potentials
	3.3 Electromagnetic Waves
	3.3.1 General Features
	3.3.2 Plane Waves
	3.3.3 Short Pulses
	3.3.4 Finite Width Waves
	3.3.5 Beam Focusing (Paraxial Approximation)


	4 Charge in Electromagnetic Wave
	4.1 Basic Effects
	4.1.1 Classical Dynamics
	4.1.2 Quantum Dynamics

	4.2 Very Short Electromagnetic Pulse
	4.2.1 Impact on Hydrogen Atom
	4.2.2 Impact On Atom

	4.3 Field Reaction

	5 Confinement of Charge
	5.1 General Remarks
	5.1.1 Uniform Velocity
	5.1.2 Decay of Two Particle System

	5.2 Confinement by Magnetic Field
	5.2.1 Time Dependent Magnetic Field

	5.3 Confinement with Electromagnetic Wave
	5.3.1 Classical Dynamics
	5.3.2 Charge in Standing Wave
	5.3.3 Generalized Standing Wave
	5.3.4 Gaussian Polarization 
	5.3.5 Quantum Dynamics

	5.4 Extreme Confinement
	5.4.1 One Particle
	5.4.2 Two Particles
	5.4.3 Charge Density


	6 Atom in Electromagnetic Field
	6.1 General Remarks
	6.2 Atom in Electromagnetic Wave
	6.2.1 Basic Equation
	6.2.2 First Order Interaction
	6.2.3 Second Order Interaction


	7 Radiation by Charge
	7.1 Radiation Zone
	7.2 Radiation by Created Charge
	7.3 Radiation by a Bound Charge
	7.3.1 Hydrogen Atom
	7.3.2 Radiation by Rotating Molecule 
	7.3.3 Radiation by Vibrating Molecule
	7.3.4 Spectral Line Shifts


	Appendix A Units
	Appendix B Nonrelativistic Green Functions
	Appendix C Useful Relationships
	Appendix D System of N Particles
	References
	Index



