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The grand aim of all science is to cover the
greatest number of empirical facts by logical
deduction from the smallest number
of hypotheses or axioms.

Albert Einstein



Preface

Electrodynamics is the unified description of electric and magnetic phenomena, in
terms of the electromagnetic field, conceived as carrier of energy. This study can be
performed in two ways: either phenomenologically, for media at rest or moving
slowly as compared to the speed of light, or in a relativistically-covariant form, for
any possible speed. As a matter of fact, electrodynamics is intrinsically linked to the
theory of relativity. Terms like “non-relativistic” or “relativistic” electrodynamics
are meaningless, since the two approaches differ only by the mathematical for-
malism and not in a deep conceptual way. As the reader will further learn, the
theory of relativity appeared and developed within the study of the electrodynamics
of moving media, allowing us to state that electrodynamics is relativistic.

The above two possible ways of describing the electromagnetic phenomena
represent the basis of the structure of this book. The pedagogical principle of
moving from simple to complex, in strong connection with the chronological order
of the elaboration of theories, has also been respected.

The first part of the book contains five chapters devoted to the basic principles,
fundamental notions and the laws of electrostatics, the theory of stationary currents,
the equations of the electromagnetic field, the generation and propagation of the
electromagnetic waves, as well as to a border discipline, the magnetofluid
dynamics.

The second part consists of three chapters. As soon as the experimental basis and
the principles of the theory of relativity are given, the reader gets familiar with the
fundamental consequences of the Lorentz transformations. Next, the analytical and
tensor formalisms are used in the relativistically-covariant formulation of the fun-
damental phenomena of mechanics and electrodynamics.

The third part concludes with an introduction to the general theory of relativity,
with application to the general-relativistic study of the electromagnetic field.

The book also contains six appendices, whose purpose is to provide the reader
with the fundamentals of the necessary mathematics used in the book: tensor cal-
culus, Dirac’s delta function, the Green function method, differential operators in
various coordinate systems, etc.
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This book is intended for both undergraduate and graduate students who have
physics as major subject. Since any general course in physics should contain a
chapter regarding the theory of the electromagnetic field, it can also be used by
those studying engineering, mathematics, chemistry, astrophysics, and related
subjects. There are only few disciplines whose applicability can be compared to that
of electrodynamics. Practically, all electric and electronic devices used around the
world work on the basis of the laws of electromagnetism.

The electromagnetic field theory has special harmony and beauty, fully con-
firming the statement “Great truths are simple”. Indeed, it was Maxwell, one of the
greatest physicists of all times, who succeeded in creating the first unified
description of electric and magnetic phenomena by his famous system of equations.
Maxwell’s theory contained intrinsically also the relativistic invariance of the
special relativity, a fact which was discovered only a few decades later. Nowadays,
the attempts and successes in unifying all the known forces (except the gravitational
one) in Nature into a single theory, the so-called grand unified theory (GUT), or
further developments which include also the gravitational force, such as string
theory, in essence have the same aim. It is worthwhile to mention that, chrono-
logically speaking, the electromagnetic field was also the first one to be quantized,
by Paul Dirac in 1927. This achievement initiated the development of one of the
most efficient theoretical tools in all physical disciplines, the quantum theory of
fields.

This book is the outcome of the authors’ lectures and teaching experiences over
many years in different countries and for students of diverse fields of physics,
engineering, and applied mathematics. The authors believe that the presentation and
the distribution of the topics, the various applications presented in different areas
and the set of solved and proposed problems, make this book a comprehensive tool
for students and researchers.

During the preparation of this book, the authors have benefited from discussing
various topics with many of their colleagues and students. It is a pleasure to express
our deep gratitude to all of them and to acknowledge the stimulating discussions
and their useful advice.

October 2016 Masud Chaichian
Ioan Merches
Daniel Radu

Anca Tureanu
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Short History

More than two millennia passed between the incipient, qualitative observations on
electric and magnetic phenomena, due to Thales of Miletus (c. 620–c. 546 BCE),
Democritus (c. 460–c. 370 BCE), Aristotle (384–322 BCE), and up to the first
quantitative result, Coulomb’s law, written towards the end of the eighteenth
century.

During antiquity were known the compass, the magnetic properties of the solid
bodies, as well as the electricity produced by friction.

In the Middle Ages appeared some investigations on terrestrial magnetism. Petrus
Peregrinus (fl. 1261–1269), in “Epistola de magnete” (1269) defined the terms north
pole and south pole of a magnet and described how to identify them. The English
physicianWilliam Gilbert (1544–1603) in his book “Demagnete” (1600) recognized
that the Earth was itself a magnet and defined the terrestrial magnetic poles. He
described many experiments on electric and magnetic static phenomena and
invented the electroscope, which was the first electrical measuring instrument.

Gilbert’s research considerably enlarged the experimental study of electrostatics
and magnetostatics. Later on, in the famous work of Otto von Guericke (1602–
1686) “Experimenta Nova Magdeburgica de Vacuo Spatio” (1672), for the first
time substances were divided into conductors and insulators. Another milestone in
experimental research took place in 1731, when Stephen Gray (1666–1736) suc-
ceeded in sending electricity through metal wires. Charles François du Fay (1698–
1739) discovered that charged bits of metal foil can attract or repel each other, and
concluded that there were two kinds of charges, which were then called “fluids”. It
took almost one century to settle the controversy whether there existed one or two
types of electric charges.

During the eighteenth century the Leyden/electric jar was invented in 1765 by
Pieter van Musschenbroeck (1692–1761). Many discoveries in electricity and
magnetism are due to Benjamin Franklin (1706–1790). He proved that lightening is
an electric discharge and invented the lightening rod. Inspired by the Leyden jar, he
invented the plane capacitor. He also introduced the concepts of “positive” and
“negative” electricity and discovered the law of conservation of charge. The
investigations carried out in this period are based upon the hypothesis of the

xv



existence of an imponderable medium called æther, as a medium for the electric,
magnetic, and light phenomena.

A new era in the study of electric and magnetic phenomena began in 1785, when
Charles Augustin de Coulomb (1736–1806) postulated his famous law. An
impressive amount of research on the subject is connected with the names of Carl
Friedrich Gauss (1777–1855), Pierre-Simon de Laplace (1749–1827), Siméon Denis
Poisson (1781–1840), Alessandro Volta (1745–1827),Humphry Davy (1778–1829),
Georg Simon Ohm (1789–1854), James Prescott Joule (1818–1889), etc.

In 1820 the Danish physicist Hans Christian Ørsted (1777–1851) discovered the
magnetic effect of the electric current. Thus, for the first time, a connection between
electric and magnetic phenomena was established. Ørsted’s research was success-
fully continued by André-Marie Ampère (1775–1836), who discovered in 1823 his
circuital law connecting the circulation of the magnetic field around a closed loop
and the electric current passing through the loop, found the connection between a
circular current and a magnetic foil, and established the formula for the force of
interaction between two currents.

One of the most influential figures in the development of modern electrody-
namics was Michael Faraday’s (1791–1867). In 1831 he discovered the phe-
nomenon of electromagnetic induction, which was a crucial step in the unification
of electric and magnetic processes. In 1833 he established the laws of electrolysis,
and in 1836 – the theory of electric and magnetic field lines. He also introduced the
notion of a field, as a continuous material medium, defined at each point by its
intensity. Unlike the mechanical interpretation of his predecessors, Faraday
believed that the electric interactions do not propagate “instantly”, but in a finite
time interval, step by step, by contiguity or adjacency, through the medium of the
field. He defined the magnetic permeability and discovered the dia- and
para-magnetism. In 1832, Faraday submitted to the Royal Society of London a
sealed envelope which was opened after more than one hundred years, in 1937. The
content of the letter showed that he prefigured already then the existence of the
electromagnetic waves. An excerpt of that letter reads as follows: “I am inclined to
compare the diffusion of magnetic forces from a magnetic pole, to the vibrations
upon the surface of disturbed water, or those of air in the phenomena of sound, i.e.,
I am inclined to think the vibratory theory will apply to these phenomena, as it does
to sound, and most probably to light. By analogy I think it may possibly apply to the
phenomena of induction of electricity of tension also.” In 1846, Faraday published
his paper “Thoughts on Ray Vibrations” in which he expounded on the conception
of electromagnetic pulses or waves, and which Maxwell considered to be identical
in substance with his own theory of electromagnetism.

The revolutionary ideas of Faraday were brilliantly developed by James Clerk
Maxwell (1831–1879). His fundamental work was “A Treatise on Electricity and
Magnetism”, published in 1873. There he wrote down his famous system of
equations (whose modern form was given by Oliver Heaviside (1850–1925) in
1881), and used them to elaborate the electromagnetic theory of light and to pos-
tulate the existence of electromagnetic waves. Maxwell’s theory denied the
Newtonian concept of instantaneous action at a distance, but still conceived the
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field as being a state of elastic tension of the æther. By generalizing the funda-
mental laws of stationary currents in electromagnetism, Maxwell defined the notion
of displacement current and thus was led to acknowledge the fact that the elec-
tromagnetic phenomena can also take place in vacuum. The year 1888 is the year
of the triumph of Maxwell’s theory, when Heinrich Rudolf Hertz (1857–1894)
produced electromagnetic waves, proving their reflection, refraction, diffraction,
and interference.

The discovery of the electron in 1897, by Joseph John Thomson (1856–1940),
led to the elaboration of the microscopic theory of electromagnetic phenomena. The
most prominent contributions in this respect are due to Hendrik Antoon Lorentz
(1853–1928), Henri Poincaré (1854–1912), and Paul Langevin (1872–1946). The
electronic theory made possible the explanation of some phenomena, such as dia-,
para-, and ferromagnetism, the polarization of dia-, para-, and ferroelectric sub-
stances, light dispersion, etc., which cannot be explained in the framework of
Maxwell’s macroscopic theory.

The elaboration of the electrodynamics of moving media, by Hertz and Lorentz
at the end of the nineteenth century, led to contradictions concerning the hypo-
thetical absolute, quiescent, ubiquitous cosmic æther. These contradictions were
solved in 1905, by the special theory of relativity of Albert Einstein (1879–1955).
The unification of the notions of space and time is a great conceptual leap in
theoretical physics. The principles of this theory, its formalism, and some of its
applications are discussed in the second part of the book.

The special theory of relativity was born within the study of electrodynamics,
and the next aim of Einstein was to incorporate gravity in this relativistic frame-
work. In the first paper on this subject in 1907, Einstein introduced the equivalence
principle, which is the cornerstone of the general theory of relativity. Until 1915, he
developed the mathematical structure of the theory, based on Riemannian geometry
and tensor calculus, and finally came to the famous equations which encapsulate the
interplay between gravitational field and matter. As John A. Wheeler succinctly
summarized the core of the theory, “spacetime tells matter how to move; matter tells
spacetime how to curve.” General relativity is the first modern theory of gravity and
the basis of the fast developing field of cosmology. In the third part of the book we
introduce the fundamentals of general relativity, as the natural continuation and
development of the theories and ideas elaborated on in the previous chapters.

The quantization of the electromagnetic field (quantum electrodynamics), the
study of the interaction between conducting fluids and electromagnetic field
(magnetofluid dynamics), microwave propagation, cosmology, etc., are subjects and
disciplines developed during the twentieth century and even nowadays.
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Electrodynamics: Phenomenological

Approach



Chapter 1
Electrostatic Field

1.1 Electrostatic Field in Vacuum

1.1.1 Coulomb’s Law

In 1773, Henry Cavendish (1731–1810) established, by analogy to Newton’s univer-
sal law of gravity, the formula expressing the interaction force between two point
charges. Cavendish’s research remained unknown for more than one century, until
1879, when it was published by James Clerk Maxwell (1831–1879).

Experimentally, the electrostatic interaction law was discovered by the French
engineer Charles Augustin de Coulomb (1736–1806), by means of a torsion bal-
ance and an electric pendulum. His paper was published in 1785, much before the
publication of Cavendish’s discovery, and so the formula is known as Coulomb’s
law.

Coulomb’s law represents the inverse-square law of variation of electric force
with distance, i.e. two point charges q1 and q2, placed in vacuum, interact with each
other with an electrostatic force

F12 = ke
q1q2

|r1 − r2|3 (r1 − r2) = ke
q1q2
r312

r12, (1.1)

where the vectors r1, r2, r12 are shown in Fig. 1.1.
The unit for electric charge in the International System of Units (abbreviated SI)

is the coulomb, with the symbol C, representing the quantity of electricity carried in 1
second by a current of 1 ampere. The ampere is the only electromagnetic fundamental
unit of SI and it will be defined in Chap.2. The constant ke depends on the system
of units. For example, in SI it is ke = 1

4πε0
, where ε0 = 8.854 × 10−12 F · m−1 is

the vacuum permittivity. (By the term “vacuum” is understood “free space”.) In the
above value of the permittivity, the symbol F stands for farad, which is the SI unit for
the electric capacity, defined as the capacitance of a capacitor between the plates of

© Springer-Verlag Berlin Heidelberg 2016
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4 1 Electrostatic Field

Fig. 1.1 Coulomb force of
interaction between two
point charges.

which there appears a potential difference of 1 volt when it is charged by a quantity
of electricity of 1 coulomb.

Since r12 = −r21, this means that F12 = −F21, consequently the electrostatic
interactions satisfy the action and reaction principle. But, unlike the universal gravity
force (Newton’s law), the electrostatic force can be either attractive, or repulsive.

For an arbitrary dielectric medium, ε0 is replaced in the formula (1.1) by the
absolute permittivity ε, with the expression ε = ε0εr , where εr is the relative permit-
tivity of the medium.

If n point charges q1, q2, . . . , qn, characterised by the position vectors ri, i =
1, . . . , n, interact with the point charge q, then the resulting force that acts on q is

F(r) =
n∑

i=1

ke
qqi

|r − ri|3 (r − ri), (1.2)

where r determines the position of q.

1.1.2 Charge Density

If we consider a continuous distribution of electric charge, we can characterize this
distribution by the notion of charge density. Since the charge distribution over a body
depends on its geometric form, we may distinguish three cases:

(a) Linear distribution:

λ = lim
Δl→0

Δq

Δl
= dq

dl
, q =

∫

C
λ dl; (1.3)

(b) Superficial distribution:

σ = lim
ΔS→0

Δq

ΔS
= dq

dS
, q =

∫

S
σdS; (1.4)
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(c) Volume (space) distribution:

ρ = lim
Δτ→0

Δq

Δτ
= dq

dτ
, q =

∫

V
ρ dτ , (1.5)

where dτ ≡ dr = dx dy dz is the volume element.
The concept of charge density can be defined also for point charges, using the

Dirac δ function (see Appendix E). By means of the delta distribution, the density
of the point charge q, situated at the point P0(r0), is written as

ρ(r) = qδ(r − r0). (1.6)

By integrating over the infinite three-dimensional volume V , which includes the
point P0, we obtain

lim
V →∞

∫

V
ρ(r)dτ = q

∫
δ(r − r0) dr = q.

The density of a discrete system of n point charges is

ρ(r) =
n∑

i=1

qiδ(r − ri). (1.7)

The Coulomb force of interaction between a point charge q and a body filling up
a volume V ′, assuming that the charge of density ρ is continuously distributed inside
the body, is obtained by dividing the body in infinitely small domains of volume
dτ ′ = dr′ and charge dq′, and then integrating the elementary force between q and
dq′, with the result

F = q

4πε0

∫

V ′

r − r′

|r − r′|3 ρ(r′)dr′, (1.8)

where r is the radius-vector of the charge q.

1.1.3 Electrostatic Field Strength

If an electric force acts everywhere in a spatial domain, we say that in this domain
there exists an electric field. If the electric field does not vary in time, it is called
stationary or electrostatic.

The electrostatic field created by a point charge Q is characterized by its intensity
E, which is defined as the ratio between the force F acting on a positive test charge
q, placed in the field, and this test charge, i.e.

E(r) = F(r)
q

= Q

4πε0

r − R
|r − R|3 , (1.9)
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Fig. 1.2 The intensity E(r)
of the electrostatic field
generated by a positive
charge Q.

where the charge Q, generating the field, is located at the point P′(R), as in Fig. 1.2.
If the charge Q is placed at the origin of coordinates, then

E(r) = Q

4πε0

r
r3

. (1.10)

The field intensity E(r) of n point charges qi, i = 1, 2, . . . , n, produced at a point
P(r), is

E(r) = 1

4πε0

n∑

i=1

qi
r − ri

|r − ri|3 . (1.11)

If the charge is continuously distributed on both the volume and the surface of a
body, the field it produces at a point P(r) will be

E(r) = 1

4πε0

[∫

V ′
ρ(r′)

r − r′

|r − r′|3 dτ ′ +
∫

S′
σ(r′)

r − r′

|r − r′|3 dS′
]

. (1.12)

The vector quantity E is called also electric field strength or, simply, electric field.

1.1.4 Field Lines

Let us consider the curve C given by its parametric equations xi = xi(s), i = 1, 2, 3.
If at any point of C the field E is tangent to the curve, then the curve is a line of the
field E. (This definition is valid for any vector field.) The electrostatic field lines are
also called lines of force.

Denoting by ds an oriented element of the field line, then by definition we may
write ds × E = 0, or, in projection on axes of an orthogonal Cartesian reference
system,

dx

Ex
= dy

Ey
= dz

Ez
, (1.13)
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which are the differential equations of the electrostatic field lines, written inCartesian
coordinates. In spherical coordinates, the differential equations of the field lines are

dr

Er
= rdθ

Eθ
= r sin θ dϕ

Eϕ
, (1.14)

while in cylindrical coordinates they become

dρ

Eρ
= ρdϕ

Eϕ
= dz

Ez
, (1.15)

etc.
If the solution of the system of equations (1.13) is unique, then through each point

of the considered domain passes only one line of force. By definition, the sense of
the field lines is given by the sense of the field.

1.1.5 Flux of the Electrostatic Field

The flux of the field E through the surface S is defined as

Φe =
∫

S
E · dS =

∫

S
E · n dS =

∫

S
EndS, (1.16)

where n is the unit vector of dS and by En is denoted the projection of E on the
direction of n. In case of a point charge, using (1.10) we can write

Φe = q

4πε0

∫

S

1

r3
r · n dS = q

4πε0

∫

S

dS cosα

r2
= q

4πε0

∫

Ω

dΩ, (1.17)

where α is the plane angle between the vectors r and n, and dΩ is the elementary
solid angle through which dS is “seen” from the point charge q (Fig. 1.3). If the
surface S is closed, then

∮
dΩ equals 4π when the charge is inside the surface, and

zero, when the charge is outside. Then, from (1.17) we have

Φe =
∮

S
E · dS =

{ q
ε0

, if q is inside S;
0, if q is outside S,

(1.18)

which is the integral form of Gauss’s law. The law was formulated by Carl
Friedrich Gauss (1777–1835). Remarkably, from this theorem follows immediately
the Coulomb law itself, which we postulated in Sect. 1.1.1 as a purely empirical law.
Indeed, by placing one of the charges in Fig. 1.1 inside a closed spherical surface,
one immediately finds Eq. (1.1).
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Fig. 1.3 The elementary
solid angle dΩ through
which dS is seen from the
point charge q.

If the distribution of n point charges inside the closed surface S is discrete, Gauss’s
law gives

Φe = 1

ε0

n∑

i=1

qi, (1.19)

while for a continuous distribution inside a domain of volume V ,

Φe = 1

ε0

∫

V
ρ dτ . (1.20)

Applying the divergence theorem (A.32), we find that

Φe =
∮

S
E · n dS =

∫

V
∇ · E dτ ,

which, by comparison with (1.20), leads to the differential form of Gauss’s law:

∇ · E = 1

ε0
ρ. (1.21)

If we denote D = ε0E, Gauss’s law can be re-written as

divD = ρ. (1.22)

It results from (1.21) that divE �= 0 at the points where ρ �= 0. These points
are called generically sources of the electric field. They can be positive (ρ > 0)
or negative (ρ < 0). Consequently, the electrostatic field is a source field, electric
charges being the sources of the field. By convention, the field lines enter into a
negative source and come out from a positive one. (According to a more precise
terminology, a positive charge is termed source, while a negative charge is called
sink.) Besides, for any configuration of positive and/or negative electric charges,
there is at least one field line which goes to or comes from infinity, i.e. there is
always one “open” field line at least.
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1.1.6 Electrostatic Field Potential

Let us consider a vector field a(r, t). If there exists a scalar function ϕ(r, t), such
that

a(r, t) = −∇ϕ(r, t),

then we say that a is a potential field, while ϕ is the potential of this field. The field
is called conservative if ϕ does not depend explicitly on time.

Such a field is, for example, the electrostatic field of a point charge. If the charge
is placed at the origin, one can write

E(r) = q

4πε0

r
r3

= − q

4πε0
∇
(
1

r

)
= −∇

(
1

4πε0

q

r

)
.

With the notation

V (r) = 1

4πε0

q

r
, (1.23)

we have
E = −∇V . (1.24)

Formula (1.23) defines the potential of the field produced in vacuum by the point
charge q, at a distance r from q, while (1.24) expresses the connection between the
field E and its potential V .

If the charge is at a point defined by the radius-vector R, then the potential at the
point P(r) will be

V (r) = 1

4πε0

q

|r − R| . (1.25)

The potential produced at P(r) by n point charges q1, q2, . . . , qn is

V (r) = 1

4πε0

n∑

i=1

qi

|r − ri| , (1.26)

while the potential created by a continuous charge distribution (a charged body) is

V (r) = 1

4πε0

[∫

V ′

ρ(r′) dτ ′

|r − r′| +
∮

S′

σ(r′) dS′

|r − r′|
]

, (1.27)

i.e. the electrostatic field satisfies the principle of superposition. Having in view
Eq. (1.24) and using the fact that ∇ operates only on quantities dependent on r, it
can be easily seen that −∇ applied to (1.27) leads to E given by (1.12).
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Let us now calculate the circulation of the vector E along the closed curve C.
Using the properties of total differentials, we can write

∮

C
E · dl = −

∮

C
∇V · dl = −

∮

C
dV = 0. (1.28)

Applying the Stokes theorem (A.34), we obtain

∮

C
E · dl =

∫

S
(∇ × E) · dS = 0,

meaning that the curl of the vector E vanishes,

∇ × E = 0, (1.29)

at each point of the electrostatic field. This is another way to express the conservative
property of the electrostatic field. Any field satisfying a condition similar to (1.29)
is called irrotational or vorticity-free.

Let us write again the circulation of the field E, but this time taken between two
points A and B of an arbitrary contour:

∫ B

A
E · dl = −

∫ B

A
dV = VA − VB. (1.30)

Since the integral on the l.h.s. of (1.30) is numerically equal to the mechanical work
done by the electric forces to displace a unit charge from A to B,

L =
∫ B

A
F · dl = q

∫ B

A
E · dl, (1.31)

from Eq. (1.30) we find

VA = VB +
∫ B

A
E · dl. (1.32)

The potential difference VA − VB is uniquely determined (the electric field E is
determined by the charge distribution, and the circulation does not depend on the
integration path), but the potential at a point (say, A) does not have this property. To
determine uniquely the potential at the point A, we displace the point B to infinity
and choose V (∞) = 0. Then we have

VA =
∫ ∞

A
E · dl. (1.33)

This relationdefines thepotential at a point of the electrostaticfield.The interpretation
of Eq. (1.33) is that the potential at a point A is numerically equal to the mechanical
work done by electric forces to displace a unit point charge from that point to infinity.
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Let us write the potential of the field produced by a point charge, placed at the
origin of coordinates, as

V (r) = q

4πε0

∫ ∞

r

r · dl
r3

.

If α is the plane angle between r and dl, then r · dl = rdl cosα = rdr, leading to

V (r) = q

4πε0

∫ ∞

r

dr

r2
= 1

4πε0

q

r
. (1.34)

If the charge is located at the point P′(r′), then

V (r) = 1

4πε0

q

|r − r′| . (1.35)

Remark that the form V ∼ 1/r of the Coulomb potential is valid only in the case
of three spatial dimensions. Generally, for n space dimensions (n = 1, 3, 4, . . .), the
corresponding Coulomb potential V behaves as V ∼ 1/r(n−2), while for n = 2, the
potential goes as V ∼ log r.

The unit for potential and potential difference in SI is the volt, with the symbol
V, thus named in honour of Alessandro Volta (1745–1827). The volt is the potential
difference between two points of a conducting wire carrying a constant current of 1
ampere, when the power dissipated between these points is equal to 1 watt. Equiv-
alently, it is the potential difference between two parallel, infinite planes spaced 1
metre apart that create an electric field of 1 newton per coulomb, or the potential
difference between two points that will impart one joule of energy per coulomb of
charge that passes through it.

1.1.7 Equipotential Surfaces

Let us consider a stationary surface S, whose equation is given by the constancy of
the potential on it, i.e.

V (x1, x2, x3) = V0 = const.,

where x1 = x, x2 = y, and x3 = z. By differentiation, one obtains

dV =
3∑

i=1

∂V

∂xi
dxi = ∇V · dr = −E · dr = 0. (1.36)

Since dr is in the plane tangent to the surface S, (1.36) tells us that at each point
of the surface, the vector E is oriented along the normal to the surface. By giving
different values to V0 we obtain a family of surfaces, called equipotential surfaces.
In other words, by equipotential surface we mean the locus of all points having the
same potential.
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Fig. 1.4 Equipotential
surfaces and field lines.

Formula (1.36) also says that the electrostatic field lines are oriented along the
normal to the equipotential surface at each point of the field. Consequently, the family
of field lines is orthogonal to the family of equipotential surfaces (Fig. 1.4).

The shape of the equipotential surfaces depends on the geometry of the charge
distribution that generates the field. For example, Eq. (1.23) shows that the equipo-
tential surfaces of a point charge are concentric spheres, r = const., with the source
charge at the centre.

1.1.8 Equations of the Electrostatic Potential

1.1.8.1 Differential Form

From (1.21), (1.24), and (A.50), we obtain

ΔV (r) = − 1

ε0
ρ(r), (1.37)

which is a second order non-homogeneous elliptic partial differential equation, called
Poisson’s equation, thus named after the Frenchmathematician and physicist Siméon
Denis Poisson (1781–1840), who published it in 1813.At the pointswhere no charges
are present, Eq. (1.37) reduces to the homogeneous Laplace’s equation, named after
Pierre-Simon de Laplace (1749–1827),

ΔV (r) = 0. (1.38)

The solutions of the Laplace equation are called harmonic functions. It follows
from (1.38) that the function V (r), together with its first and second order deriva-
tives, must be continuous within a certain three-dimensional domain D, including
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its boundary. By solving the Poisson (or Laplace) equation, we determine V (r) and
then E(r) by the formula E = −∇V .

In view of (1.6), Poisson’s equation for a single point charge is

ΔV (r) = − 1

ε0
qδ(r − r0), (1.39)

while for n point charges it becomes

ΔV = − 1

ε0

n∑

i=1

qiδ(r − ri). (1.40)

The scalar field V in the domainD is uniquely determined by the Poisson equation,
together with the boundary conditions on the closed surface S which borders the
domain D.

1.1.8.2 Integral Representation

By means of the second Green identity (A.41), one can find the integral repre-
sentations of Poisson’s and Laplace’s equations. Introducing (1.35) into (1.39) and
dividing by q �= 0, we have

Δ

(
1

|r − r′|
)

= −4πδ(r − r′). (1.41)

Let us now apply Δ to the expression (1.27). Using (1.41) and (E.21), we obtain

ΔV = 1

4πε0

∫

V ′
ρ(r′)Δ

(
1

|r − r′|
)

dτ ′

= − 1

ε0

∫

V ′
ρ(r′)δ(r − r′)dτ ′ = − 1

ε0
ρ(r),

i.e. Poisson’s equation.
Assume, again, that the charge is continuously distributed inside the three-

dimensional domainD′ (including its boundary) and consider two continuous, differ-
entiable, and singularity-free functions ϕ(r) and ψ(r). Then we have, using (A.41)
and in the notation of Fig. 1.5,

∫

V ′

(
ϕΔ′ψ − ψΔ′ϕ

)
dτ ′ =

∮

S′

(
ϕ

∂ψ

∂n′ − ψ
∂ϕ

∂n′

)
dS′, (1.42)

wheredτ ′ anddS′ are a volume element ofD′ and a surface element of S′, respectively,
and Δ′ implies derivatives with respect to the components of r′.
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Fig. 1.5 A continuously
distributed electric charge.

If we choose

ϕ(r′) ≡ 1

4π

1

|r − r′| and ψ(r′) ≡ V (r′), (1.43)

then (1.42) leads to

∫

V ′

[
1

4π

1

|r − r′|Δ
′V (r′) − V (r′)Δ′

(
1

4π

1

|r − r′|
)]

dτ ′

= 1

4π

∮

S′

[
1

|r − r′|
∂V

∂n′ − V (r′)
∂

∂n′

(
1

|r − r′|
)]

dS′.

Observing that

∇
(

1

|r − r′|
)

= −∇′
(

1

|r − r′|
)

, (1.44)

∇ · ∇
(

1

|r − r′|
)

= Δ

(
1

|r − r′|
)

= −∇ · ∇′
(

1

|r − r′|
)

= −∇′ · ∇
(

1

|r − r′|
)

= ∇′ · ∇′
(

1

|r − r′|
)

= Δ′
(

1

|r − r′|
)

, (1.45)

and using (1.37) and (1.41), we find

∫

V ′

[
− 1

4πε0

1

|r − r′|ρ(r′) + V (r′)δ(r − r′)
]

dτ ′

= 1

4π

∮

S′

[
1

|r − r′|
∂V

∂n′ − V (r′)
∂

∂n′

(
1

|r − r′|
)]

dS′.

Integrating the second term in the l.h.s according to (E.21), we arrive at
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V (r) = 1

4πε0

∫

V ′

ρ(r′)
|r − r′|dτ ′

+ 1

4π

∮

S′

[
1

|r − r′|
∂V

∂n′ − V (r′)
∂

∂n′

(
1

|r − r′|
)]

dS′, (1.46)

which is the integral representation of Poisson’s equation.
If there is no charge distribution in D′, i.e. ρ = 0, Eq. (1.46) leads to the integral

representation of Laplace’s equation:

V (r) = 1

4π

∮

S′

[
1

|r − r′|
∂V

∂n′ − V (r′)
∂

∂n′

(
1

|r − r′|
)]

dS′. (1.47)

If the charges are located in a finite region, but we extend the integration domain to
the whole three-dimensional space and use the condition V (∞) = 0, we are left with

V (r) = 1

4πε0

∫
ρ(r′)

|r − r′|dτ ′,

as expected. From now on, as in the above formula, whenever we do not indicate the
domain of integration, it will mean integration over the whole space.

We can rewrite (1.46) and (1.47) by means of the Green function G(r, r′), and the
Dirichlet or Neumann conditions on the boundary surface S′ (see Appendix F). By
definition, the Green function of our problem is the solution of the equation

ΔG(r, r′) = −δ(r − r′). (1.48)

Comparing (1.48) and (1.41), we find that

G(r, r′) = 1

4π

1

|r − r′| + η(r, r′), (1.49)

where η(r, r′) is a solution of the Laplace equation inside the domain D′, i.e.
Δη(r, r′) = 0. Introducing now the expression (1.49) into (1.46) and (1.47), we
obtain, respectively

V (r) = 1

ε0

∫

V ′
ρ(r′)G(r, r′) dτ ′ (1.50)

+
∮

S′

[
G(r, r′)

∂V (r′)
∂n′ − V (r′)

∂G(r, r′)
∂n′

]
dS′, for ρ �= 0,

and

V (r) =
∮

S′

[
G(r, r′)

∂V (r′)
∂n′ − V (r′)

∂G(r, r′)
∂n′

]
dS′, for ρ = 0. (1.51)
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From the above expression, it would seem that for a complete determination of
V (r), one must know both the functions V and ∂V/∂n on the boundary surface
S′. Actually, imposing conditions on both the potential and the electric field on the
boundary S′ would mean an overspecification of the problem: the existence and
uniqueness theorem requires knowledge of only one of these functions. Therefore,
we shall use the natural Dirichlet or Neumann boundary conditions, i.e.

G(r, r′)
∣∣∣
S′

= 0 for Dirichlet’s problem; (1.52)

∂G(r, r′)
∂n′

∣∣∣
S′

= C(const.) for Neumann’s problem. (1.53)

The Dirichlet condition is equivalent to specifying the potential on the boundary,
while the Neumann condition is equivalent to specifying the electric field.

We do not take the Neumann condition (1.53) with zero on the r.h.s, since inte-
grating (1.48) over a three-dimensional domain and using the properties of the δ
distribution, we find

∫

V ′
∇′ · (∇′G)dτ ′ =

∮

S′
∇′G · dS′ =

∮

S′

∂G

∂n′ dS′ = −1. (1.54)

Thus, (1.53) is the only choice compatible with (1.54), leading to C = −1/S′, where
S′ is the boundary surface of integration. Noting that

〈V 〉 = 1

S′

∮

S′
V (r′)dS′ (1.55)

is the mean value of the potential on S′, the integral representations of Poisson’s
equation, with Dirichlet and Neumann boundary conditions, are respectively

V (r) = 1

ε0

∫

V ′
ρ(r′)GD(r, r′)dτ ′ −

∮

S′
V (r′)

∂GD(r, r′)
∂n′ dS′, (1.56)

V (r) = 1

ε0

∫

V ′
ρ(r′)GN (r, r′)dτ ′ +

∮

S′
GN (r, r′)

∂V (r′)
∂n′ dS′ + 〈V 〉. (1.57)

The integral representations of the Laplace equation, with Dirichlet and Neumann
boundary conditions, are similarly obtained.

In general, finding the Green function of an operator is a difficult task. There are,
however, some special methods of finding the solution of the Laplace and Poisson
equations, that do not involve the explicit integration of these equations, such as:
the method of electric images, the expansion of the potential in series of orthogonal
functions, the method of conjugate functions, the method of inversion, the method
of conformal mapping, the wedge problem, etc. We shall consider some of these
applications in Sect. 1.3.
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1.1.9 Electrostatic Field Energy

Themechanicalwork done to bring a point charge+q from infinity to a pointA, where
the potential is V (A), is performed against the electrostatic force, and, consequently,
it transforms into potential energy accumulated by the charge:

W pot
e (A) = qV (A). (1.58)

Let us calculate, by means of (1.58), the potential energy of interaction between
two point charges q1 and q2, situated in vacuum, at a distance r from each other. If
q2 is absent, no work is performed if one brings q1 from infinity to a point A. If q2 is
brought to a pointB, at a distance r fromA, with q1 atA, one performs themechanical
work W (1)

e = q2V2,where V2 is the potential of the field created by q1 at B. Similarly,
the work done to bring q1 at A, with q2 being already at B, is W (2)

e = q1V1, where V1

is the potential of the field created by q2 at A. Since

V1 = 1

4πε0

q2
r

and V2 = 1

4πε0

q1
r

,

it follows that

We = W (1)
e = W (2)

e = 1

4πε0

q1q2
r

, (1.59)

or, equivalently,

We = 1

2

(
W (1)

e + W (2)
e

) = 1

2
(q1V1 + q2V2) . (1.60)

This relation can be generalized for n charges q1, q2, . . . , qn, as

We = 1

2

n∑

i=1

qiVi, (1.61)

where Vi is the potential of the charges qk (k �= i) at the location of the point charge
qi:

Vi = 1

4πε0

∑

k �=i

qk

rik
, (1.62)

rik being the distance between qi and qk . Thus, we may write (1.61) in the form

We = 1

8πε0

n∑

i,k=1

qiqk

rik
(i �= k). (1.63)
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If the charges are continuously distributed in a three-dimensional domain, or on
a surface, the total interaction energy of the system is

We = 1

2

∫

V
ρ(r)V (r) dτ or We = 1

2

∫

S
σ(r)V (r)dS, (1.64)

respectively.
The electrostatic field energy can also be expressed in terms of the field intensity

E. If charges are continuously distributed in the finite three-dimensional domain D,
of volume V , including the boundary S, then Gauss’s law (1.21) together with (A.32)
and (A.43), give

We = 1

2

∫

V
ρV dτ = ε0

2

∫

V
V (∇ · E) dτ = ε0

2

∫

V
E2dτ + ε0

2

∮

S
VE · dS.

If we extend the integration over the whole space (in other words, the integration
is performed on a sphere with radius R → ∞) and one observes that V En → 0 as
1/R3, while dS ∼ R2, then we are left with

We = ε0

2

∫
E2dτ = 1

2

∫
E · D dτ . (1.65)

Here we used the notation D = ε0E for the electric displacement in vacuum. Unlike
relations (1.64), which show that the electrostatic field energy differs from zero only
at the points where there are charges, formula (1.65) tells us that We �= 0 even at
points where there is no charge, but there is a field E �= 0. This means that the
electrostatic field is an energy carrier.

There is one more essential distinction between (1.64) and (1.65). According
to (1.64), the energy may be either positive, or negative, depending on the sign of
the charge, while (1.65) says that the energy cannot take negative values (E2 > 0).
Furthermore, by (1.63) the energy of a point charge is zero, while by (1.65) this
energy is infinite. The explanation consists in the fact that (1.63) does not take into
account the interaction between charges and their own field, while (1.65) expresses
namely the self-energy of the charge.

Let us calculate the total energy of the electrostatic field produced by two point
charges, q1 and q2. IfE1 andE2 are the fields created by the charges, taken separately,
then the total field is E = E1 + E2, such that

We = ε0

2

∫
E2dτ = ε0

2

∫
E2
1dτ + ε0

2

∫
E2
2dτ + ε0

∫
E1 · E2dτ .

The first two terms give the self-energy of the charges, while the last term expresses
the mutual energy of interaction.
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Since (E1 − E2)
2 ≥ 0, we have E2

1 + E2
2 ≥ 2(E1 · E2), meaning that the self-

energy of the charges is always greater than (in particular, equal to) their mutual
energy.

1.1.10 Electrostatic Dipole

By dipole we mean a system of two point charges, equal in magnitude and having
opposite signs, their mutual distance being negligible as compared to the distance
from the dipole to the point where the action of the system is determined. Using
(1.25) and the notation in Fig. 1.6, the potential of the dipole at the point P(r) is

V (r) = q

4πε0

(
1

|r − r′ − l| − 1

|r − r′|
)

.

Since, by definition |l| � |r|, we may expand in series the first term and obtain

|r − r′ − l|−1 = [
(r − r′)2 − 2l · (r − r′) + l2

]−1/2

= 1

|r − r′|
[
1 − 2l · (r − r′)

|r − r′|2 + l2

|r − r′|2
]−1/2

= 1

|r − r′|
[
1 + l · (r − r′)

|r − r′|2 + . . .

]
 1

|r − r′| − l · ∇
(

1

|r − r′|
)

,

where the terms in l2, l3, etc. have been neglected. If we define p = q l as the electric
dipole moment, one can write the dipole potential as

V (r) = − 1

4πε0
p · ∇

(
1

|r − r′|
)

= 1

4πε0

p · (r − r′)

|r − r′|3 . (1.66)

For the necessities of the infinitesimal calculus one defines the point dipole. The
moment of such a system is

Fig. 1.6 Geometrical
representation of an electric
dipole.
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Fig. 1.7 Forces acting on
the charges of an electric
dipole placed in a
non-uniform electric field.

p = lim
l→0

q→∞
(ql) . (1.67)

Let us calculate the electric field of a dipole. Using (1.24) and (A.54), we have

E = −∇V = − 1

4πε0
∇
[
p · (r − r′)
|r − r′|3

]

= 1

4πε0

{
3[p · (r − r′)](r − r′)

|r − r′|5 − p
|r − r′|3

}
,

or, if the origin of the coordinate system is chosen at the location of the point dipole,

E(r) = 1

4πε0

[
3(p · r)r

r5
− p

r3

]
. (1.68)

Suppose now that the dipole is situated in a non-uniform electric field and let us
calculate the resultant R of the forces acting on the dipole. Figure1.7 shows that

R = q(E′ − E). (1.69)

Expanding E′ in MacLaurin series, we have

E′ = E(r + l) = E(r) + (l · ∇)E + . . .

and, keeping only the linear term and using it in (1.69), we find

R = q(l · ∇)E. (1.70)

This result shows that the dipole rotates under the action of a torque determined by
the forces −qE and +qE on the individual charges and moves along its axis. If the
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fieldE is homogeneous, thenR = 0, which means that the action of the field reduces
to the torque

M = l × (qE) = p × E. (1.71)

The energy of the dipole placed in the external field E is

We = qV (r + l) − qV (r)  ql · ∇V = p · ∇V = −p · E. (1.72)

Electrical Double Layer
A large number of dipoles with their momenta parallel and oriented in the same
direction form a double layer (see Fig. 1.8). The potential of the field of such a
system, at a certain point P, is

V (P) = 1

4πε0

[∫

Σ

σdS

r
+
∫

Σ ′

σ′dS′

r′

]
.

Since the distance between the surfacesΣ andΣ ′ is very small, we may integrate
over a median surface S. Noting that

1

r′  1

r
+ l · ∇

(
1

r

)
, (1.73)

the potential at P reads

V (P) = 1

4πε0

∫

S
σ

(
1

r
− 1

r′

)
dS = − 1

4πε0

∫

S
σln · ∇

(
1

r

)
dS.

But

−n · ∇
(
1

r

)
dS = n · r

r3
dS = dS cosα

r2
= dΩ,

and, if we call
τe = σl

the moment or power of the double layer, we finally have

Fig. 1.8 Geometrical
representation of an
electrical double layer.
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V (P) = 1

4πε0

∫

Ω

τedΩ. (1.74)

If the double layer is homogeneous, τe = const. and (1.74) leads to

V (P) = 1

4πε0
τeΩ, (1.75)

whereΩ is the solid angle under which the whole surface S is seen from P. It follows
from (1.75) that inside a closed double layer with τe = const., the potential is τe/ε0
for both the positive and the negative interior surfaces while outside the double layer
it is zero. Thismeans that the electrical double layers present surfaces of discontinuity
for the potential function.

1.1.11 Electrostatic Multipoles

A set of electric charges of both signs, situated at small mutual distances as compared
to the point where the effect of the system is considered, distributed discretely or con-
tinuously, give rise to an electrostatic multipole. By definition, an n-order multipole
is a system of 2n poles, formed by two n − 1 order multipoles and having charges
situated at the corners of a spatial geometric system with the sides l1, l2, . . . , ln. The
moment of such a system is

∣∣p(n)
∣∣ = n! lim

l1...ln→0
q→∞

(ql1l2 . . . ln) . (1.76)

Here are a few examples of multipoles:

(a) Monopole (zeroth-order multipole), with a single point charge;
(b) Dipole (first-order multipole), of moment (see Sect. 1.1.10):

p(1) = lim
l→0

q→∞
(ql) ;

(c) Quadrupole (second-order multipole), formed by two opposite, parallel dipoles,
situated at small mutual distances, with charges at the corners of a parallelogram
(Fig. 1.9). The quadrupole moment is

∣∣p(2)
∣∣ = 2! lim

l1,l2→0
q→∞

(ql1l2) ; (1.77)

(d) Octupole (third-order multipole), composed of two opposite, parallel
quadrupoles, at small distances, the charges being placed at the corners of a
parallelepiped (Fig. 1.10). Its moment is
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Fig. 1.9 Geometrical
representation of an electric
quadrupole.

Fig. 1.10 Geometrical
representation of an electric
octupole.

∣∣p(3)
∣∣ = 3! lim

l1,l2,l3→0
q→∞

(ql1l2l3) . (1.78)

1.1.11.1 Potentials of a Continuous Distribution
of Stationary Electric Charges

Consider a continuous charge distribution inside a three-dimensional domain D′, of
volume V ′, bounded by the surface S′. (The case of a discrete distribution is treated
in a similar way, integrals being replaced by sums.) As we know, the potential of the
field of such a distribution, at a point P(r), with the notations from Fig. 1.5, is

V (r) = 1

4πε0

∫

V ′

ρ(r′)dτ ′

|r − r′| . (1.79)

It is convenient to choose the origin of the coordinate system at an arbitrary point of
D′ and, assuming |r′| � |r|, we expand in series the ratio 1/|r − r′|. The result is:

1

|r − r′| = 1

r
− x′

i

1!
∂

∂x′
i

(
1

r

)
+ 1

2!x′
ix

′
k

∂2

∂xi∂xk

(
1

r

)
− . . .

=
∞∑

l=0

(−1)l

l! (r′ · ∇)(l)
(
1

r

)
, (1.80)

whereweused the summation convention, i.e. the repeated indices i and k are summed
over. Introducing the expansion into (1.79), we have
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V (r) = 1

4πε0

∞∑

l=0

(−1)l

l!
∫

V ′
ρ(r′)(r′ · ∇)(l)

(
1

r

)
dτ ′

= V (0) + V (1) + V (2) + . . . =
∞∑

l=0

V (l)(r). (1.81)

By definition,

pi =
∫

V ′
ρ(r′)x′

idτ ′ (1.82)

are the components of a vector called electric dipole moment of the distribution,
while

pik =
∫

V ′
ρ(r′)

(
3x′

ix
′
k − r′2δik

)
dτ ′ (1.83)

are the components of a second-order symmetric tensor called electric quadrupole
moment of the distribution, and so on. Expression (1.83) is easily obtained from
(1.81), taking l = 2 and subtracting the null term:

r′2δik
∂2

∂xi∂xk

(
1

r

)
= r′2 ∂2

∂xi∂xi

(
1

r

)

r �=0

= 0.

In general, the 2l-order multipole electric moment is defined by

pi1...il = (l + 1)
∫

V ′
ρ(r′)x′

i1 . . . x′
il dτ ′. (1.84)

The potential V of the distribution can be then written as

V (r) = 1

4πε0

∞∑

l=0

(−1)l

(l + 1)!pi1...il ∂i1 . . . ∂il

(
1

r

)
.

We are now able to interpret the terms V (0), V (1), V (2) . . . in (1.81), as follows:

V (0) = 1

4πε0

Q

r

is the monopole potential produced at distance r by the charge Q = ∫
V ′ ρ(r′)dτ ′,

situated at the origin;

V (1) = − 1

4πε0
pi

∂

∂xi

(
1

r

)
= − 1

4πε0
p · ∇

(
1

r

)

is the dipole potential (see (1.66)), the dipole being at the origin;
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V (2) = 1

4πε0

1

6
pik

∂2

∂xi∂xk

(
1

r

)
= 1

4πε0

1

6
pik

(
3xixk

r5
− δik

r3

)

is the quadrupole potential, assuming again that the system is at the origin, and so
on.

1.1.11.2 Energy of a Continuous Distribution of Stationary
Charges in an External Electric Field

Consider a system of discrete electric charges, distributed in the three-dimensional
domainD and placed in the electrostatic fieldE. The fieldE is considered as external,
or background field, therefore ∇ · E = 0. The potential energy of the charge qk , at
the point where the potential is V (rk), is Wk = qk V (rk), which means that the total
energy of the system is

We =
∑

k

Wk =
∑

k

qk V (rk).

For a continuous distribution, the last formula becomes

We =
∫

V ′
ρ(r′)V (r′)dτ ′. (1.85)

Expanding now V (r′) in Taylor series around the origin O, chosen at an arbitrary
point of D, we obtain

V (r′) = V (0) + x′
i

(
∂V

∂xi

)

0

+ 1

2
x′

ix
′
k

(
∂2V

∂xi∂xk

)

0

+ . . .

= V (0) − x′
iEi(0) − 1

2
x′

ix
′
k

(
∂Ek

∂xi

)

0

− . . .

= V (0) − x′
iEi(0) − 1

6
(3x′

ix
′
k − r′2δik)

(
∂Ek

∂xi

)

0

+ . . . , (1.86)

where we added the null term

r′2δik

(
∂Ek

∂xi

)

0

= r′2(∇ · E)0 = 0.
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Introducing this expression for V (r′) into (1.85), we find finally that

We = QV (0) − piEi(0) − 1

6
pik

(
∂Ek

∂xi

)

0

+ . . . =
∞∑

l=0

W (l). (1.87)

From the expression (1.87) we can deduce the significance of the terms W (0),
W (1), W (2) etc., as follows:

(a) W (0) = QV (0) is the potential energy of the distribution, assuming that thewhole
charge is concentrated at the origin;

(b) W (1) = −p · E(0) is the dipole potential energy of the system (see (1.72)), with
the dipole at the origin;

(c) W (2) = − 1
6pik

(
∂Ek
∂xi

)

0
is the quadrupole potential energy of the charges, with the

quadrupole at the origin, etc.

The terms W (0), W (1), W (2), . . . indicate the specific way of interaction between the
field and various multipole formations: charge versus field potential, dipoles versus
field intensity, quadrupoles versus the field gradient, etc.

The multipole theory is important not only in electrostatics or magnetostatics, but
also in the multipole radiation theory, nuclear physics, solid state physics, etc.

1.2 Electrostatic Field in Polarized Media

1.2.1 Dielectric Polarization

A dielectric is an insulator which becomes polarized when introduced in an electric
field. By polarization we mean the appearance of dipoles in each volume element
of the body. If the dipoles exist already in the material, they orient themselves under
the action of the field.

The polarization of a medium is studied by means of a vector quantity called
polarization density or, simply, polarization, defined as the electric dipole moment
per unit volume:

P = lim
Δτ→0

Δp
Δτ

= dp
dτ

, (1.88)

where p is the dipole moment. Using this definition, we write the potential created
by an infinitesimal, three-dimensional domain of a continuous distribution of elec-
tric dipoles. In view of (1.66), we may write the potential of a continuous dipole
distribution as

V (r) = 1

4πε0

∫

V ′
P(r′) · ∇′

(
1

|r − r′|
)

dτ ′, (1.89)

or, using (A.43) and the divergence theorem,
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V (r) = 1

4πε0

∫

V ′

(−∇′ · P)

|r − r′| dτ ′ + 1

4πε0

∮

S′

Pn(r′)
|r − r′|dS′, (1.90)

where Pn(r′) is the polarization component orthogonal to the surface element dS′
around the point defined by r′.

Comparing (1.90) with (1.27) which gives the potential of a continuous charge
distribution, one can write by analogy

V (r) = 1

4πε0

[∫

V ′

ρp(r′)dτ ′

|r − r′| +
∮

S′

σp(r′)dS′

|r − r′|
]

, (1.91)

where
ρp(r′) = −∇′ · P and σp(r′) = Pn (1.92)

are the spatial and superficial charge densities, respectively, appearing as a result of
the polarization. Remark, however, that

Qp =
∫

V ′
ρp(r′)dτ ′ +

∮

S′
σp(r′)dS′ = −

∫

V ′
∇′ · P dτ ′ +

∮

S′
P · dS′ = 0,

meaning that the total polarization charge is zero.
The above considerations tell us that a continuous dipole distribution, in a finite

domain, from the point of view of exterior electrostatic actions, behaves like a con-
tinuous distribution of both spatial and superficial fictitious charges. These charges
appear only as a result of and during the polarization. To distinguish polarization
charges from free charges, one may call the first bound charges.

1.2.2 Gauss’s Law for Dielectric Media

Let ρ be the density of free point charges located in a dielectric, and

ρp = −∇ · P

the density of polarization charge, due to the field produced by the free charges.
Gauss’s law in the dielectric then reads

∇ · E = 1

ε0
(ρ + ρp) = 1

ε0
(ρ − ∇ · P).

Combining the two divergence terms, we obtain

∇ · (ε0E + P) = ρ,
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or, in integral form, ∮

S
(ε0E + P) · dS = Q. (1.93)

The vector field defined as
D = ε0E + P (1.94)

is called electric displacement.
In vacuum, P = 0 since there is no polarization, such that D = ε0E. Using the

definition (1.94), we have ∮

S
D · dS = Q, (1.95)

which is the integral form of Gauss’s law for dielectric media.
The differential form of Gauss’s law reads:

∇ · D = ρ, (1.96)

where we emphasize that ρ is the density of free charge.
This law stands as a fundamental element used by Maxwell in elaborating his

theory of the electromagnetic field.

1.2.3 Types of Dielectrics

From the point of view of the polarization property, a medium can be homogeneous,
when polarization does not depend on the point, or non-homogeneous, when it does.
If the polarization of the medium does not depend on direction, then the medium is
isotropic; if it depends, the medium is anisotropic.

In general, the polarization P is a function of the field strength, P = P(E). If
the field is not very strong and the existence of a spontaneous polarization P0 is
presumed, we may write

P  P0 + αE,

where α is a coefficient called polarizability. If P0 = 0 and α does not depend on
the applied field, the medium is said to be linear. From now on we shall consider
only linear media.

The experimental data show that in case of linear, homogeneous, and isotropic
media there exists the relation

D = εE, with ε = ε0εr, (1.97)

which represents a constitutive relation. Other constitutive equations of electromag-
netism we shall encounter in Chap.2, Sect. 2.2.1, relating the magnetic induction B

http://dx.doi.org/10.1007/978-3-642-17381-3_2
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and the magnetic field intensity H. The constitutive equations describe the response
of bound charges and currents to the applied fields.

Using (1.94), we find that

P = ε0(εr − 1)E = ε0κE = αE. (1.98)

Here,
κ = εr − 1

is the electric susceptibility of the medium, which is related to the polarizability by
the relation

α = ε0κ.

In isotropic, non-homogeneous media, the permittivity depends on the point,
D = ε(x, y, z)E, meaning that the coefficients κ and α are also functions of the
point:

P = ε0κ(x, y, z)E = α(x, y, z)E. (1.99)

The ferroelectric media are characterized by a polarization P0 �= 0 in the absence
of the external electric field and a nonlinear response of the polarization to the applied
electric field:

P = P0 + α1E + α2E2 + α3E3 + . . . , (1.100)

where α1 � α2 � α3 � . . .

In linear anisotropic media, the relation between P and E has the form

Pi = ε0κikEk, i, k = 1, 2, 3, (1.101)

whereκik is the electric susceptibility tensor of themediumandEinstein’s summation
convention has been used. We can then write for the electric displacement

Di = εikEk = ε0(εr)ikEk = ε0δikEk + Pi,

and
Di = ε0

[
(εr)ik − δik

]
Ek = ε0κikEk,

where
κik = (εr)ik − δik . (1.102)

The electric polarization can be:

(a) diaelectric, as a result of the displacement of positive and negative charge centres
in atoms (molecules) under the action of the field E;

(b) paraelectric, due to the orientation of dipoleswithp �= 0when the field is absent,
but having P = 0 as a result of thermal motion;

(c) ferroelectric, characterized by P0 �= 0 in the absence of an external electric field.
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Fig. 1.11 An elementary prism ABCDEFGH used to determine the jump relations for the normal
and tangent components of the fields E andD. Remark that, while n1 and n2 are the normal versors
of dS1 and dS2, the unit vectors T and N are mutually orthogonal, but otherwise arbitrary in the
tangent plane.

1.2.4 Jump Conditions for the Components
of the Fields E and D

When passing through interfaces which separate media with different permittivities,
the fields E and D vary rapidly from one point to another, and, as a result, the field
lines undergo discontinuous variations (refractions). This shows that the interfaces
are surfaces of discontinuity for the field components. The relations describing the
variation of tangent and normal components of the fields E,Dwhen passing through
such surfaces are called jump conditions.

Consider two homogeneous and isotropic neighbouring dielectric media, of per-
mittivities ε1 and ε2, separated by an interface in which it is assumed that there are
electric charges.

Let E1,D1 and E2,D2 be the fields in the two media. Let us also delimit on the
two sides of the interface an elementary right prism, of basis dS, thickness dl, and
volume dτ . The unit vectors of the two bases are shown in Fig. 1.11.

Each of the fields E and D can be decomposed into two vector components: one
normal and the other tangent to dS. In the following we shall find the jump relations
for the normal and tangent components of the fields E and D.

1.2.4.1 Jump Conditions for the Normal Components

Gauss’s law (1.95), applied to the elementary prism ABCDEFGH (see Fig. 1.11),
yields

D · dS = dQ,
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where
D · dS = dΦ1 + dΦ2 + dΦl,

dΦ1 and dΦ2 being the elementary fluxes through the bases, dΦl – the flux through
the lateral sides, and

dQ = ρdτ = ρdSdl.

If one chooses n2 = −n1 = n, we have

dΦ1 = D1 · dS1 = −D1 · ndS = −D1n dS,

dΦ2 = D2 · dS2 = D2 · ndS = D2n dS.

In the limit dl → 0, the area of the lateral surfaces is infinitesimal compared to the
bases and the lateral flux practically vanishes:

lim
dl→0

dΦl = 0.

The charge gets distributed in fact on the surface dS, with the surface density σ. Since
the charge must remain finite and equal to dQ, we have

dQ = σdS.

Introducing all these results into Gauss’s law, we obtain

(D2 − D1) · n = D2n − D1n = σ. (1.103)

This relation expresses the discontinuity of the normal component of the electric
displacement. Since D1 = ε1E1 and D2 = ε2E2, we may write also

ε2E2n − ε1E1n = σ. (1.104)

We conclude that the normal components of E and D vary discontinuously across
the interface. If the surface density of the free charge is zero on the interface, σ = 0,
but ε1 �= ε2, Dn presents no jump, but En still varies discontinuously.

1.2.4.2 Jump Conditions for the Tangent Components

Let us calculate the circulation of the field E along the elementary closed contour
ABCDA in Fig. 1.11. Using (1.28), we can write

∮

ABCDA
E · ds =

∫

AB
E1 · ds1 +

∫

BC
E · ds +

∫

CD
E2 · ds2 +

∫

DA
E · ds = 0.



32 1 Electrostatic Field

We have ds1 = −Tds and ds2 = Tds, and the contribution of the circulation on the
sides BC and DA vanishes in the limit dl → 0, leading to

(E2 − E1) · T = E2T − E1T = 0. (1.105)

Observing that T = N × n, we obtain

(E2 − E1) · (N × n) = N · [n × (E2 − E1)] = 0,

or, by eliminating the trivial case of coplanarity of the vectors,

n × (E2 − E1) = 0.

Since E1T = D1T/ε1 and E2T = D2T/ε2, the relation (1.105) can be written as

D2T

ε2
− D1T

ε1
= 0. (1.106)

Recall that the direction of T is arbitrary in the tangent plane, therefore we can
conclude that the tangent component of the field E varies continuously, while the
tangent component of D makes a jump of magnitude ε1/ε2. There is no jump, of
course, if ε1 = ε2.

Observations:

(a) Since the electrostatic field is conservative, the jump relations (1.104) and (1.105)
give rise to the following boundary conditions for the potential:

(
∂V

∂T

)

1

=
(

∂V

∂T

)

2

,

ε1

(
∂V

∂n

)

1

− ε2

(
∂V

∂n

)

2

= σ. (1.107)

Considering two points situated on each side of the interface, we have

∫ 2

1
E · ds = −

∫ 2

1
dV = V1 − V2.

If the two points are infinitesimally close to the interface and the electric field is
considered to be finite on the surface, we find

V1 = V2,

i.e. the potential is continuous across the interface on which there is a surface
distribution of charges.
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(b) From the electrostatic point of view, materials are divided into conductors and
dielectrics (insulators). All the internal points of a conductor, in view of Ohm’s
law (see (2.19)), are characterized by E = 0. As a result, on the surface of a
conductor,

σ = Dn = εEn,

which means

VS = const.; σ = −ε

(
∂V

∂n

)

S

, (1.108)

i.e. E is oriented along the normal to the conducting surface.

Inside a dielectric the electric field is not null. At every internal point the potential
obeys the Poisson equation, as well as the jump conditions (1.104) and (1.105)
on the boundary.

1.3 Special Methods of Solving Problems in Electrostatics

As mentioned in Sect. 1.1.8.2, the integration of the Poisson equation is not difficult
if the associated Green’s function is known. But finding Green’s function is not an
easy task, therefore some special methods of solving electrostatics problems have
been elaborated. Here we present some of these methods.

The general procedure consists in identifying the boundary conditions satisfied
by the potential V of the electrostatic field, using the following criteria:

(a) The potential is finite everywhere, except for the points where the sources (point
charges) are located;

(b) The potential is continuous everywhere, including the surface of a conducting
or dielectric body, except for double layers;

(c) On the surface of a conductor one must know either V = V |S = const., or (see
(1.108))

σ = −ε

(
∂V

∂n

)

S

;

(d) At the interface between two dielectric media, if σ = 0, we have (see (1.107))

ε1

(
∂V

∂n

)

1

− ε2

(
∂V

∂n

)

2

= 0; (1.109)

(e) The potential is null at infinity, and sources are at a finite distance.

http://dx.doi.org/10.1007/978-3-642-17381-3_2
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1.3.1 Method of Electric Images

This method is used to determine some essential electric quantities (potential, charge
density, force of interaction, etc.) for one (or more) point charges, in the presence
of certain separation surfaces, such as conductors connected to the ground, or main-
tained at a constant potential.

The method of images is based on the fact that, depending on the geometry of
the problem, a small number of point charges, conveniently chosen and located, can
simulate the boundary conditions required by the problem. These are called image
charges.

This method gives the possibility to determine, among other things, the charge
density σ on the surface of a simply-shaped conductor (plane, sphere, etc.), in the
presence of one or more point charges, without really solving Poisson’s equation.

The essence of themethod of images is the uniqueness of the solution of Poisson’s
equation with given boundary conditions. A complicated configuration is mimicked
by a simple one, with identical boundary conditions. As a result, the solution of the
complicated problem is found by solving the simple one. There are a few aspects to
be taken into account when using this method:

• The boundary conditions naturally separate the space into a domain of interest,
D, where the potential has to be determined, and a complementary domain, D′,
which is “hidden behind” the boundary. The method does not produce the correct
potential for the region D′, but this is of no concern, since one is interested in the
potential only in D;

• The Poisson equation in the domain of interest has to be the same in the original
problem and in the changed configuration, therefore no addition of charge or any
other modification can be made in D;

• In the domainD′ we can add charges at chosen locations, change permittivities etc.,
such that the new configuration in D′ produces exactly the boundary conditions at
the interface between D and D′.

All these requirements insure that the Poisson equation with its boundary con-
ditions does not change in D, while the problem is rendered much simpler by the
changes made in the complementary domain D′. Below we shall demonstrate the
method with a few illuminating examples.

1.3.1.1 Plane Conductor

Let us consider ametallic plane surface, connected to the ground (i.e.V = 0), situated
in vacuum, under the influence of the positive point charge q (Fig. 1.12), placed at a
distance d from the metalic plate, at the point A. The problem is to find the potential
above the plate.

The potential at an arbitrary point P is given by the sum of two potentials: the
potential of the charge q and the potential of the charge distribution on the plane, due
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Fig. 1.12 Method of electric
images: a plane conductor.

to the influence of q:

VP = 1

4πε0

q

|r1| + 1

4πε0

∫

S

σ(r)
|r| dS. (1.110)

It is hard to determine the induced charge distribution σ(r). But if we think in
general terms, we actually have to solve Poisson’s equation with a point charge at
the point (d, 0, 0), satisfying the boundary conditions V = 0 on the plane x = 0 and
V → 0 at infinity (i.e. far away from the charge, where x2 + y2 + z2 � d2). Thus,
the boundary condition separates the space into the domain D which is above the
plate, and the complementary domain D′ below.

The task is to find a new and simple configuration of charges in D′, which would
simulate the boundary conditions. We notice that these conditions are fulfilled by
a configuration in which the metalic plate is removed and an “image” point charge
q′ = −q is placed at the point B, symmetric to A with respect to the plane x = 0. For
this new configuration, the potential at any arbitrary point P of the domain D is

VP = 1

4πε0

(
q

r1
− q

r2

)
(1.111)

= q

4πε0

{ [
(x − d)2 + y2 + z2

]−1/2 − [
(x + d)2 + y2 + z2

]−1/2
}
.

The uniqueness of the solution of Poisson’s equation with given boundary conditions
ensures that this potential is the one produced by the original configuration as well.
Hence, formula (1.111) can nowbe used to calculate the charge density on the original
metallic plate. According to (1.108), we have

σ = −ε0

(
∂V

∂n

)

S

= −ε0

(
∂V

∂x

) ∣∣∣
x=0

= − q

2π

d

r30
, (1.112)
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Fig. 1.13 The total induced
charge on the plane
conductor.

where r0 = (
d2 + y2 + z2

)1/2
. The total charge induced on the plate can be obtained

by integration of (1.112) on the whole plane x = 0. Not surprisingly, the result is
−q.

Indeed, we have (see Fig. 1.13):

∫

Σ

σ dS = − qd

2π

∫

Σ

dS

r30
= − qd

2π

∫ ∞

0

ρdρ
(
ρ2 + d2

)3/2
∫ 2π

0
dθ = −q.

Remark, however, that the method gives the correct result for the potential only
above the metallic plate, i.e. in the region where the original charge was placed.

1.3.1.2 Two Orthogonal Metallic Half-Planes

Let us consider two orthogonal and groundedmetallic half-planes, and a point electric
charge q placed inside the “corner”, at a distance a from the half-plane A and b from
the half-plane B, as in Fig. 1.14. We have to find the potential at any point inside the
metallic corner.

In this case, the method of images requires us to remove the metallic plates and
to place point charges outside the corner, such that the boundary conditions of the
original problem are exactly matched, i.e. V = 0 on the half-planes A and B. The
symmetry of the problem and the experience acquired in the previous case suggest
that we shall have to place three image charges, as illustrated in Fig. 1.14.

The potential at an arbitrary point P inside the metallic corner is

V = q

4πε0

(
1

r1
+ 1

r2
− 1

r3
− 1

r4

)
,
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Fig. 1.14 A point charge q
close to a grounded metallic
corner.

and the electric field at the same point is

E = q

4πε0

(
r1
r31

+ r2
r32

− r3
r33

− r4
r34

)
.

To find the induced charge on the half-plane A, we shall use E = σ
ε0
n. Let us then

find the electric field on the plane A, where r1 = r3 and r2 = r4. From Fig. 1.15 we
observe that r1 − r3 = −2anA and r2 − r4 = 2anA. Thus, the electric field at a point
on the half-plane A will be

EA = q

4πε0

(
r1 − r3

r31
+ r2 − r4

r32

)
= − q

2πε0
a

(
1

r31
− 1

r32

)
nA,

where
r1 =

√
a2 + (y − b)2 + z2, r2 =

√
a2 + (y + b)2 + z2.

The density of charge is then

σA = − qa

2π

(
1

r31
− 1

r32

)
,

while the total charge induced on the half-plane A is

qA = − qa

2π

∫ ∞

0
dy
∫ ∞

−∞

{
1

[
a2 + (y − b)2 + z2

]1/2 − 1
[
a2 + (y + b)2 + z2

]1/2

}
dz

= − 2

π
q arctan

b

a
.
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Fig. 1.15 The electric field
EA at an arbitrary point of
the half-plane A.

An analogous calculation for the half-plane B gives

qB = − 2

π
q arctan

a

b
.

The total charge induced on the two half-planes is

q′ = qA + qB = − 2

π
q

(
arctan

b

a
+ arctan

a

b

)
= −q,

as it would be expected.

1.3.1.3 Plane Interface Between Two Dielectrics

Let us consider now that the plane x = 0 separates two dielectric media of permit-
tivities ε1 for x > 0 and ε2 for x < 0. The point charge q is situated in the same place
as in Fig. 1.12, at the point A, and we have to find the potential at any point in space.

Since there are no free charges on the separation surface, the continuity of the
potential and electric field across the boundary implies

V1|S = V2|S, ε1

(
∂V1

∂n

)

S

= ε2

(
∂V2

∂n

)

S

, (1.113)

where V1 = V (x > 0) and V2 = V (x < 0).
To find the potential V1 in the domain D1 by the method of images, we shall

consider the space filled with the dielectric of permittivity ε1 and mimic the effect
of the other dielectric upon the region x > 0 by an “image charge” q′ symmetrically
situated at the point B (see Fig. 1.12). The value of the charge q′ has to be determined.
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The potential in the region D1 will read

V1 = 1

4πε1

(
q

r1
+ q′

r2

)
.

The potential V2, in the region D2, will be simulated by a configuration in which
the whole space is filled with the dielectric of permittivity ε2, and with a charge q′′
placed at the original location of the charge q:

V2 = 1

4πε2

q′′

r2
.

Now we have to find the values of the fictitious charges q′ and q′′. To this end, we
shall use the boundary conditions (1.113) and consider the point P on the interface,
at the origin of the coordinate system (see Fig. 1.12). We arrive at the system of
equations

q − q′ = q′′,
ε2(q + q′) = ε1q′′,

with the solution

q′ = ε1 − ε2

ε1 + ε2
q, q′′ = 2ε2

ε1 + ε2
q.

The superficial density of the polarization charge on the plane x = 0, in view of
(1.92), (1.94), and (1.113), as well as the constitutive relation D = εE, is then

σp = P1n − P2n = (ε1 − ε0)E1n − (ε2 − ε0)E2n

= (ε2 − ε0)

(
∂V2

∂x

)

x=0

− (ε1 − ε0)

(
∂V1

∂x

)

x=0

.

Performing the calculations, we obtain

σp = ε0

4π

[
q(x − d)

ε1
[
(x − d)2 + y2 + z2

]3/2 + q′(x + d)

ε1
[
(x + d)2 + y2 + z2

]3/2

− q′′(x − d)

ε2
[
(x − d)2 + y2 + z2

]3/2

]

x=0

= ε0qd

4πε1r30

[
−1 + ε1 − ε2

ε1 + ε2
+ 2ε1

ε1 + ε2

]

= ε0qd

2πε1r30

ε1 − ε2

ε1 + ε2
, (1.114)

where r0 has the same significance as in (1.112). If ε1 = ε2, we have σ = 0, as
expected.
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Fig. 1.16 Method of electric
images: a spherical
conductor.

1.3.1.4 Spherical Conductor

Consider a conducting sphere of radius R, grounded and placed in vacuum, with its
centre situated at the distance a from a point charge q placed at the point A. We have
to find the potential at an arbitrary point P outside the sphere.

Obviously, in this case the boundary condition is V = 0 on the spherical shell.
The shell separates the space into the domain D which is outside of the sphere and
the domain D′ which is inside the sphere. We can modify the charge configuration
inside the sphere, in order to simulate the null potential on the spherical shell. To this
end, we place an “image” charge q′ at the point B, located at the distance b (b < R)
from the centre O of the sphere (Fig. 1.16). The potential at the point P is similar to
that given by (1.112), i.e.

VP = 1

4πε0

(
q

r
+ q′

r′

)
. (1.115)

Using the condition V |S = 0, we have to find both the value of the fictitious charge
q′ and the distance b where it is placed. We have

q√
a2 + R2 − 2aR cos θ

+ q′
√

b2 + R2 − 2bR cos θ
= 0,

or
q

a

(
1 + R2

a2
− 2R

a
cos θ

)−1/2

+ q′

R

(
1 + b2

R2
− 2b

R
cos θ

)−1/2

= 0.

This equality becomes an identity if one chooses

ab = R2 and q′ = −R

a
q, (1.116)

which leads to the formula for the potential at an arbitrary point P outside the sphere:
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VP = 1

4πε0

(
1

r
− R

a

1

r′

)
. (1.117)

The relation (1.116) shows that q′ is located at a point which is the inverse of the
point A (where q is) with respect to the sphere.

The charge density on the sphere is then

σ = −ε0

(
∂V

∂ρ

)

ρ=R

= q

4πb2

b2

R2 − 1
(

R2

b2 − 2R
b cos θ + 1

)3/2 . (1.118)

This result can be expressed in terms of a only. In view of (1.116), we find

σ = − q

4π

a2 − R2

Rr30
, (1.119)

where
r0 = r|ρ=R =

√
a2 + R2 − 2aR cos θ.

The solution of this problem by the method of images led us also to a general
result, valid for any two point charges of different signs: the locus of points of null
potential for such a system is a sphere with the centre on the line which connects the
two charges, but located not in between the charges.

1.3.2 Integration of the Laplace Equation by the Method
of Separation of Variables

Using the Laplace equation, it is now our purpose to determine the electrostatic field
potential produced by a uniformly charged body. Since many problems of electrosta-
tics present a spherical or cylindrical geometry, we exemplify themethod in spherical
and cylindrical coordinates.

The method of separation of variables is employed very often in solving partial
differential equations. The idea is to seek the solution by writing it as the product of
functions, each of them depending only on one coordinate.

1.3.2.1 Laplace Equation in Spherical Coordinates

Let r, θ,ϕ be the spherical coordinates of the point where the potential is to be
determined. Using (D.28), we write the Laplace equation as

1

r2

{
∂

∂r

(
r2

∂V

∂r

)
+ 1

sin θ

[
∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

sin θ

∂2V

∂ϕ2

]}
= 0,
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or, in a more convenient form,

1

r

∂2

∂r2
(rV ) + 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

r2sin2θ

∂2V

∂ϕ2
= 0. (1.120)

We seek a solution of this equation of the form

V (r, θ,ϕ) = R(r)Θ(θ)Φ(ϕ). (1.121)

Introducing (1.121) into (1.120) and using the substitution

R(r) = 1

r
U(r),

one obtains

1

r

d2U

dr2
ΘΦ + U

r3

[
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
Φ + U

r3
Θ

sin2 θ

d2Φ

dϕ2
= 0,

or, by amplifying with r2 sin2 θ/UΦΘ ,

r2 sin θ

U

d2U

dr2
+ sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+ 1

Φ

d2Φ

dϕ2
= 0. (1.122)

On the one hand, by definition of Φ, the expression 1
Φ

d2Φ
dϕ2 depends on ϕ only. On

the other hand, according to Eq. (1.122), it depends only on r and θ. This is possible
only if

r2 sin θ

U

d2U

dr2
+ sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
= − 1

Φ

d2Φ

dϕ2
= γ, (1.123)

where γ is a constant. The general solution of the equation

Φ ′′ + γΦ = 0

is
Φ = C1e

√−γ ϕ + C2e−√−γ ϕ. (1.124)

In order to have Φ as a periodical function, of period 2π,
√

γ must be a positive
integer number, i.e. γ = m2, with m = 0,±1,±2, . . .

In electrostatic applications one usually considers only the first termof the solution
(1.124), that is

Φ = const. × eimϕ, (1.125)

or some real combinations of cosmϕ and sinmϕ.
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Equation (1.123) also gives

r2

U

d2U

dr2
+ 1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= 0.

Repeating the procedure shown above and denoting the separation constant by
l(l + 1), we arrive at the following two equations in r and θ:

d2U

dr2
= l(l + 1)

r2
U, (1.126)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ l(l + 1)Θ − m2

sin2 θ
Θ = 0. (1.127)

If in the θ-equation we make the substitution x = cos θ, we obtain the generalized
Legendre equation, whose solutions are the associated Legendre functions. The finite
solutions exist only if l is a positive integer number, such that −l ≤ m ≤ +l. One
can show that the associated Legendre functions satisfy the formula

Pm
l (x) = 1

2l l!
(
1 − x2

) m
2

dl+m

dxl+m

(
x2 − 1

)l
, where x = cos θ. (1.128)

The solutions of (1.126) are sought in the form

U(r) = Arα. (1.129)

After performing the derivatives, one obtains

[α(α − 1) − l(l + 1)]U(r) = 0. (1.130)

This relation says that α can be either l + 1, or l, leading to

U(r) = Arl+1 + B

rl
,

and, consequently,

R(r) = 1

r
U(r) = Arl + Br−(l+1). (1.131)

Since the sum of two solutions of the Laplace equation is also a solution, we finally
have

V (r, θ,ϕ) =
∞∑

l=0

+l∑

m=−l

(
Almrl + Blmr−(l+1)

)
Ylm(θ,ϕ), (1.132)
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where we have denoted by Ylm(θ,ϕ) the spherical harmonics

Ylm(θ,ϕ) = (−1)m

√
2l + 1

4π

(l − m)!
(l + m)! Pm

l (cos θ)eimϕ, (1.133)

while Alm and Blm are coefficients of the expansion, i.e. constants which have to be
determined from the boundary conditions.

Special cases:

(a) Inside a conductor the potential must be finite, meaning that for r = 0 we have
to take Blm = 0, and (1.132) yields

V (r, θ,ϕ) =
∞∑

l=0

+l∑

m=−l

AlmrlYlm(θ,ϕ). (1.134)

(b) Outside a conductor the potential must satisfy two conditions: be finite, and
become zero at infinity. It means that for r → ∞we are obliged to take Alm = 0,
and (1.132) gives

V (r, θ,ϕ) =
∞∑

l=0

+l∑

m=−l

Blmr−(l+1)Ylm(θ,ϕ). (1.135)

(c) If the potential is symmetric with respect to the z-axis (azymuthal symmetry),
we have m = 0 and (1.132) leads to

V (r, θ,ϕ) =
∞∑

l=0

(
Almrl + Blmr−l−1)

√
2l + 1

4π
P0

l (cos θ)

=
∞∑

l=0

(
Cl rl + Dl r−l−1

)
P0

l (cos θ), (1.136)

where P0
l = Pl are the Legendre polynomials:

P0 = 1, P1 = cos θ, P2 = 1

2

(
3 cos2 θ − 1

)
, etc.

The Legendre polynomials form a complete orthogonal set, therefore they can
be used for the series expansion of quantities with azymuthal symmetry.

As an application, let us expand in series the factor 1
|r−r′| , appearing in the formula

giving the potential of a point charge:
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1

|r − r′| = 1
(
r2 + r′2 − 2rr′ cos θ

)1/2

= 1

r

[
1 + r′

r
cos θ +

(
r′

r

)2 3 cos2 θ − 1

2
+ . . .

]
,

which can also be written as

1

|r − r′| = 1

r

∞∑

l=0

(
r′

r

)l

Pl(cos θ) =
∞∑

l=0

(r′)l

rl+1
Pl(cos θ). (1.137)

Comparing this result with the analysis presented in Sect. 1.1.11, we realize that
the first term of (1.137) (multiplied by q

4πε0
) stands for the monopole potential, the

second – for dipole potential, the third – for quadrupole potential, etc.

1.3.2.2 Laplace Equation in Cylindrical Coordinates

Using formula (D.34) fromAppendix D, wewrite the Laplace equation in cylindrical
coordinates as

1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+ 1

ρ2
∂2V

∂ϕ2
+ ∂2V

∂z2
= 0. (1.138)

We separate the variables and seek the solution in the form

V (ρ,ϕ, z) = R(ρ)Φ(ϕ)Z(z). (1.139)

From similar considerations as in the case of spherical coordinates, the following
ordinary differential equations for the functions R, Φ, and Z are obtained:

d2Z

dz2
+ C1Z = 0,

d2Φ

dϕ2
− C2Φ = 0, (1.140)

ρ
d

dρ

(
ρ

dR

dρ

)
− (

C1ρ
2 − C2

)
R = 0.

The single valuedness of Φ leads again to the requirement C2 = −m2, while C1

is arbitrary. For convenience, we put C1 = −k2 and consider k a real and positive
constant. As a result, Eqs. (1.140)1,2 have solutions of the form sinh kz, cosh kz, and
sinmθ, cosmθ, respectively, while (1.140)3 becomes

d2R

dρ2
+ 1

ρ

dR

dρ
+
(

k2 − m2

ρ2

)
R = 0, (1.141)
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which is known as Bessel’s equation. This equation can be written in a more conve-
nient form by using the change of variable x = kρ, as

x
d

dx

(
x

dR

dx

)
+ (

x2 − m2
)

R = 0. (1.142)

The solution is sought for as the power series

R =
∞∑

n=0

anxn+p, (1.143)

where the coefficients an and the index p are to be determined. Introducing (1.143)
into (1.142), we have

∞∑

n=0

[
(n + p)2 − m2 + x2

]
anxn+p = 0.

This leads to the following recurrence relations for an:

(
p2 − m2

)
a0 = 0,

[
(1 + p)2 − m2

]
a1 = 0,

[
(2 + p)2 − m2

]
a2 + a0 = 0, (1.144)

...[
(n + p)2 − m2

]
an + an−2 = 0, (n ≥ 2).

If we admit a0 �= 0 (which implies a1 = 0), it follows that p = ±|m|. Consider the
case p ≥ 0. In general, we can write

a2n+1 = 0, n = 0, 1, 2, . . . ,

a2n = − a2n−2

22n(n + |m|) , n = 1, 2, 3, . . . .

Replacing n by n − 1, n − 2, . . . successively, andmultiplying the resulting relations,
one obtains

a2n = (−1)na0
22nn!(|m| + 1)(|m| + 2) . . . (|m| + n)

, n = 1, 2, 3, . . . . (1.145)

For the choice
a0 = 1/2|m||m|!,
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we obtain a solution of Bessel’s equation known as the Bessel function of the first
kind:

J|m|(x) =
∞∑

n=0

(−1)nx2n+|m|

22n+|m|n!(n + |m|)! . (1.146)

For p = −|m|, one obtains another solution J−|m| which, for m integer, is linearly
dependent on J|m|. Since (1.142) is a second-order differential equation, there exists
one more linearly independent solution Np(ρ), called Bessel’s function of the second
kind. The general solution of Bessel’s equation then reads

R(ρ) = AJm(kρ) + BNm(kρ). (1.147)

The solution of the z-equation is of the form Aekz, where k can be either positive and
negative.

Now we can write the solution of the Laplace equation as

V (ρ,ϕ, z) =
+∞∑

m=−∞

∫ +∞

−∞
[Am(k)Jm(kρ) + Bm(k)Nm(kρ)] ekzeimϕdk. (1.148)

1.3.3 Two-Dimensional Electrostatic Problems
and Conformal Mapping

Some problems of electrostatics can be studied in two dimensions. Such situations
occur in the systems where charge distributions obey certain symmetry rules. If, for
instance, the symmetry is cylindrical, the problem is studied in a plane orthogonal
to the symmetry axis, and then the solution is extended to three dimensions. Such
problems are called two-dimensional (plane) and are elegantly solved with the help
of complex functions.

Consider the complex variable z = x + iy. If to each value of z is associated a
complex number f (z) = ϕ(x, y) + iψ(x, y), where the functions ϕ and ψ are real,
we call f (z) a function of the complex variable z. Let us calculate

lim
Δz→0

f (z + Δz) − f (z)

Δz
= lim

Δx→0
Δy→0

[
ϕ(x + Δx, y + Δy) − ϕ(x, y)

Δx + iΔy

+ i
ψ(x + Δx, y + Δy) − ψ(x, y)

Δx + iΔy

]
(1.149)

= lim
Δx→0
Δy→0

⎡

⎣

(
∂ϕ
∂x Δx + i ∂ψ

∂y Δy
)

+ i
(

∂ψ
∂x Δx − i ∂ϕ

∂y Δy
)

Δx + iΔy

⎤

⎦ .
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The limit (1.149) does not depend on the order in which the limit is taken, on the
real or the imaginary direction, if ϕ(x, y) and ψ(x, y) satisfy the Cauchy–Riemann
conditions

∂ϕ

∂x
= ∂ψ

∂y
and

∂ϕ

∂y
= −∂ψ

∂x
. (1.150)

A holomorphic function is a complex function which is differentiable at every point
of a domain. A function f (z) = ϕ(x, y) + iψ(x, y), whose real and imaginary parts
are real-differentiable functions, is holomorphic if and only if the Cauchy–Riemann
relations (1.150) are satisfied throughout the domain of definition. If f (z) is holo-
morphic at every point of a vicinity of z, then f (z) is analytical at z.

In view of the Cauchy–Riemann conditions (1.150), we have

df (z)

dz
= ∂ϕ

∂x
+ i

∂ψ

∂x
= ∂ψ

∂y
− i

∂ϕ

∂y
= ∂ϕ

∂x
− i

∂ϕ

∂y
, (1.151)

as well as

Δϕ = 0, Δψ = 0, (1.152)
∂ϕ

∂x

∂ψ

∂x
+ ∂ϕ

∂y

∂ψ

∂y
= (∇ϕ) · (∇ψ) = 0, (1.153)

meaning that ϕ and ψ are harmonic functions, while the families of curves ϕ =
const.,ψ = const. are orthogonal. The function f (z) is also called a complex poten-
tial, being denoted by w.

We shall apply these general considerations to solving certain problems of elec-
trostatics by the method of complex functions and conformal transformations.

Let us consider an electrostatic field E(x, y) defined in the (x, y) plane where the
electric charge density is zero. Since in vacuum ∇ × E = 0 as well as ∇ · E = 0, we
can express E both in terms of a scalar potential V as

ΔV = 0,

and in terms of a vector potential U as

E = ∇ × U.

Wemay takeU = (0, 0, U) and, projecting on the coordinate axes the vector relation
∇ × U = −∇V , we obtain

∂U

∂x
= ∂V

∂y
,

∂U

∂y
= −∂V

∂x
, (1.154)

meaning that U(x, y) and V (x, y) can be regarded as the real and imaginary parts,
respectively, of the complex potential
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w(z) = U(x, y) + iV (x, y), z = x + iy, (1.155)

satisfying the Cauchy–Riemann conditions (1.150). According to (1.13), the lines of
force are defined by

dx

Ex
= dy

Ey
,

which in this case is equivalent to U = const. The family of curves V = const. are,
in turn, equipotential lines. According to (1.153), the two families of curves are
orthogonal.

Remark also that, on the one hand,

E2 = E2
x + E2

y =
(

∂V

∂x

)2

+
(

∂V

∂y

)2

,

and on the other hand, according to (1.151) and (1.154),

∣∣∣∣
dw

dz

∣∣∣∣
2

=
(

dw

dz

)(
dw

dz

)∗
=
(

∂U

∂x
+ i

∂V

∂x

)(
∂U

∂x
− i

∂V

∂x

)

=
(

∂U

∂x

)2

+
(

∂V

∂x

)2

=
(

∂V

∂x

)2

+
(

∂V

∂y

)2

.

Comparing the last two relations, we find

E =
∣∣∣∣
dw

dz

∣∣∣∣ . (1.156)

In other words, to know the complex potential associated with a certain electrostatic
configuration means to determine the field of that configuration using (1.156). In its
turn, the complex potential is determined by the form of the plane cross section of a
conductor or, still, by the charge distribution that generates the field.

The relation (1.155) maps the plane (x, y) to the plane (U, V ). One also observes
that to the net of orthogonal curves U(x, y) = const., V (x, y) = const. in the (x, y)-
plane corresponds a net of orthogonal straight lines U = const., V = const. in the
(U, V )-plane. A map which preserves the angle between curves, when passing from
the plane (x, y) to the plane (U, V ), is called conformal transformation.

Since dw = dU + idV = ∣∣w′(z)
∣∣ (dx + idy), the relation between the arc ele-

ments of the two representations is

dL2 = dU2 + dV 2 = ∣∣w′(z)
∣∣2 (dx2 + dy2

) = ∣∣w′(z)
∣∣2 dl2.

To illustrate the advantages of the complex method, we shall consider further
some simple examples.
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Fig. 1.17 The equipotential
lines and the lines of force
corresponding to the choice
(1.157) for the complex
potential.

1.3.3.1 Linear, Uniformly Charged Conductor

Let the complex potential be

w(z) = Ai ln z + B, (1.157)

where A is a real constant and B a complex number, B = C1 + iC2. Writing z in
trigonometric form as

z = r eiθ

and applying (1.155), we have

U = −Aθ + C1 , V = A ln r + C2, (1.158)

showing that the lines of force U = const. (θ = const.) are radii outgoing from the
coordinate origin, while the equipotential lines V = const. (r = const.) are concen-
tric circles with the common centre at the origin of coordinates, as in Fig. 1.17.

Using (1.156), we find the modulus of the field:

E2 =
∣∣∣∣
dw

dz

∣∣∣∣
2

= A2

|z|2 = A2

r2
. (1.159)

The same result is obtained by expressing the field components in polar coordi-
nates,

Er = −∂V

∂r
, Eθ = −1

r

∂V

∂θ
,

then calculating the derivatives and finally using the relation E2 = E2
r + E2

θ .
The shape of the equipotential and field lines shows that the charge configuration

whose potential was analyzed corresponds to a linear conductor (the electrosta-
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tic potential is constant on the surface of a conductor), oriented along the z-axis,
uniformly charged and long enough to have the same configuration of the lines
U = const., V = const. at any cross section z = const.

To determine the constant A one applies the divergence theorem to a cylindrical
surface of radius r and length l, with the axis along the conducting wire:

Φ =
∫

E · dS = Er(2πrl) = q

ε0
.

Since Er = −A/r, we obtain

A = − λ

2πε0
,

where λ = q/l is the linear charge density.

1.3.3.2 Two Orthogonal Conducting Plates

Consider the map
w(z) = kz2 = k(x + iy)2, (1.160)

k being a constant. Applying the already known procedure, we find

U(x, y) = k
(
x2 − y2

)
, V (x, y) = 2kxy. (1.161)

The net of curves x2 − y2 = const. and xy = const. represent two families of
equilateral hyperbolas, as in Fig. 1.18. The components of the electrostatic field are

Fig. 1.18 The equipotential
lines and the lines of force
corresponding to two
orthogonal charged plates,
whose complex potential is
given by (1.160).
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Ex = −∂V

∂x
= −2ky, Ey = −∂V

∂y
= −2kx,

so that,
E2 = E2

x + E2
y = 4k2

(
x2 + y2

) = 4k2r2. (1.162)

The same result is obtained if one uses (1.156):

E2 =
(

dw

dz

)(
dw

dz

)∗
= 4k2|z|2 = 4k2r2.

This means that the magnitude of the field intensity is proportional to the magni-
tude of the radius vector of some point in the (x, y)-plane. Such a field can be found
in the vicinity of a system of orthogonal plane conductors, and is used for focusing
a flux of electric charges, as in an electron microscope, particle accelerators, etc.

1.3.3.3 Cylindrical Dipole

As a final example, let us take the complex potential of the form

w(z) = A2

z
, (1.163)

where A is a real constant. One can write

U(x, y) = A2x

x2 + y2
, V (x, y) = − A2y

x2 + y2
.

In this case, both the lines of force and the equipotential curves are circles, tangent
at the origin to the coordinate axes Ox and Oy, as depicted in Fig. 1.19. Indeed,

U(x, y) = A2x

x2 + y2
= const. ≡ C,

V (x, y) = − A2y

x2 + y2
= const. ≡ D, (1.164)

can be straightforwardly brought to the easier interpretable form

(
x − A2

2C

)2

+ y2 =
(

A2

2C

)2

,

x2 +
(

y + A2

2D

)2

=
(

A2

2D

)2

. (1.165)
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Fig. 1.19 The equipotential
lines and the lines of force
corresponding to a
cylindrical dipole.

The system with such a configuration of the field and equipotential lines is an
infinite cylindrical dipole, placed at the origin and oriented along the axis Oz.

The magnitude of the field intensity is calculated by means of (1.156). The result
is

E = A2

r2
,

which is a Coulomb-type electric field.

1.4 Mechanical Action of the Electrostatic Field
on Dielectric Media. Electrostriction

Consider a dielectric medium placed in an external electric field. The polarization
phenomenon implies mechanical displacements within the molecules (atoms) of the
dielectric. If these molecules are initially neutral, in the presence of the field will
appear a continuously distributed polarization charge. Let ρe and ρ be the charge and
mass densities, respectively. Assuming the dielectric to be linear and isotropic but
not homogeneous, the permittivity will be a function of position and mass density,
which is denoted here by ρ(r):

ε = ε (r, ρ(r)) . (1.166)

The external field acts on the dielectric with a force Fe, called ponderomotive
force. Let fe be its volume density. Our purpose is to calculate fe. To this end, we
shall use two ways of writing the energy variation of the dielectric in the external
field.
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On the one hand, since by definition Fe = ∫
fedτ , we have

δL = −δWe =
∫

fe · δs dτ , (1.167)

where δs is an elementary virtual displacement of some particle of the dielectric, and
δL is the infinitesimal mechanical work done by all the particles of the dielectric as
a result of this displacement.

On the other hand, using (1.65), i.e.

We = 1

2

∫
E · Ddτ = 1

2

∫
εE2dτ ,

we have

δWe = −1

2

∫
E2δε dτ +

∫
E · δDdτ .

But
∫

E · δDdτ = −
∫

∇V · δDdτ = −
∫

∇ · (V δD)dτ +
∫

V ∇ · (δD)dτ .

If we extend the integration domain over the whole space, apply the divergence
theorem, and remember that at infinity the potential is zero, the first integral on the
r.h.s. vanishes, while the second can be re-written using the Gauss law in the form
(1.96), ∇ · (δD) = δρe, where by ρe we denoted the charge density. Then the energy
variation is

δWe = −1

2

∫
E2δε dτ +

∫
V δρe dτ . (1.168)

To compare (1.167) and (1.168), we must express the local variations δε and δρe

in terms of δa. From the mechanics of continuous media it is known that the local
variations are connected to the substantial variations Dε and Dρe by the relations

Dε

dt
= ∂ε

∂t
+ (u · ∇)ε,

Dρe

dt
= ∂ρe

∂t
+ (u · ∇)ρe,

where u = δs/δt is the velocity of the virtual displacement of the particle of fluid.
We may write also

Dε = δε + δs · ∇ε, Dρe = δρe + δs · ∇ρe. (1.169)

If we assume that the observer moves together with the fluid particle, the permit-
tivity ε will be a function of only the mass density ρ, such that

Dε = ∂ε

∂ρ
Dρ,



1.4 Mechanical Action of the Electrostatic Field on Dielectric Media. Electrostriction 55

or, by means of (1.169) and the equation of continuity ∂ρ
∂t = −∇ · (ρ∂s

∂t

)
,

δε + δs · ∇ε = ∂ε

∂ρ
(δρ + δs · ∇ρ) = −ρ

∂ε

∂ρ
∇ · (δs),

that is

δε = −δs · ∇ε − ρ
∂ε

∂ρ
∇ · (δs). (1.170)

Using a similar procedure, the equation of continuity for the electric charge leads to

δρe = −∇ · (ρeδs). (1.171)

Plugging (1.170) and (1.171) into relation (1.168), we find

δWe = 1

2

∫
E2∇ε · δs dτ + 1

2

∫
E2ρ

∂ε

∂ρ
∇ · (δs)dτ −

∫
V ∇ · (ρeδs)dτ .

But
∫

E2ρ
∂ε

∂ρ
∇ · (δs)dτ =

∫
∇ ·

(
E2ρ

∂ε

∂ρ
δs
)

dτ −
∫

∇
(

E2ρ
∂ε

∂ρ

)
· δs dτ ,

∫
V ∇ · (ρeδs)dτ =

∫
∇ · (V ρeδs)dτ −

∫
ρeδs · ∇V dτ ,

and thus, using the divergence theorem and extending to infinity the integration
domain, we obtain

δWe = −
∫ [

ρeE − 1

2
E2∇ε + 1

2
∇
(

ρ
∂ε

∂ρ
E2

)]
· δa dτ . (1.172)

Comparing now (1.167) and (1.172), the ponderomotive force density is

fe = ρeE − 1

2
E2∇ε + 1

2
∇
(

ρ
∂ε

∂ρ
E2

)
. (1.173)

If in our discussion we had considered the existence of other forces, for example of
gravitational or hydrostatic nature, then we should have added extra terms on the
r.h.s. of (1.173).

Relation (1.173) leads us to an interesting interpretation. In fluid mechanics, the
volume density forces f can be represented in terms of a system of tensions (stresses)
applied on the boundary surface of the fluid. These tensions form a second-order
tensor Tik , called stress tensor. The forces and stresses are related by equations of
motion called Cauchy’s equations, which read
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ρai = ρFi + ∂Tik

∂xk
, (1.174)

where ai is the component of the acceleration of the particle of fluid and F is the
specific mass force, ρF = f . At equilibrium (a = 0), Eq. (1.174) yields

fi = −∂Tik

∂xk
. (1.175)

In the framework of this formalism, let us project (1.173) on the xi-axis, using
also Gauss’s formula, ∇ · D = ρe:

(f)i = Ei
∂Dk

∂xk
− 1

2
E2 ∂ε

∂xi
+ 1

2

∂

∂xi

(
ρ

∂ε

∂ρ
E2

)
.

Using the fact thatE is conservative, while the dielectric is linear, non-homogeneous,
and isotropic, after some re-arrangements of terms we obtain

(fe)i = −∂T (e)
ik

∂xk
,

where the stress tensor has the form

T (e)
ik = −εEiEk + 1

2
E2

(
ε − ρ

∂ε

∂ρ

)
δik . (1.176)

The quantities T (e)
ik are the components of a symmetric, second-order tensor, called

by Maxwell electric stress tensor.
Anticipating, we mention that in the case of the magnetostatic field one obtains

Maxwell’s magnetic stress tensor

T (m)

ik = −μHiHk + 1

2
H2

(
μ − ρ

∂μ

∂ρ

)
δik, (1.177)

where H is the magnetic field intensity and μ is the magnetic permeability of the
medium.

Application
Consider a dielectric fluid, characterized by ρe = 0 and ε = ε(ρ). In the case of
an isotropic dielectric, the permittivity ε is related to the polarizability α by the
Clausius–Mossotti formula:

ε − ε0

ε + 2ε0
= C

3
ρ, C = α

m
, (1.178)
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where α is the molecular polarizability and m is the mass of a molecule. The formula
is thus named in honour of Ottaviano-Fabrizio Mossotti (1791–1863) who studied
the relation between the dielectric constants of two different media, and of Rudolf
Clausius (1822–1888), who gave the formula in 1879. It is straightforward to show
that the expression ρ ∂ε

∂ρ
which appears in (1.176) can then be written as

ρ
∂ε

∂ρ
= 1

3ε0
(ε − ε0)(ε + 2ε0). (1.179)

We also assume that the dielectric liquid is at equilibrium, under the action of
electrostatic, hydrostatic, and gravitational forces:

fe + fhydro + fgrav = 0. (1.180)

Since ε depends only on ρ, we have ∇ε = ∂ε
∂ρ

∇ρ, such that

fe = −1

2
E2∇ε + 1

2
∇
(

ρ
∂ε

∂ρ
E2

)
= 1

2
ρ∇
(

E2 ∂ε

∂ρ

)
.

We also have

fhydro = −∇p,

fgrav = ρg∇h,

where p is the pressure inside the fluid, g is the gravitational acceleration and h is
the height inside the fluid. The equilibrium equation (1.180) then becomes

1

2
ρ∇
(

E2 ∂ε

∂ρ

)
− ∇p + ρg∇h = 0. (1.181)

In Fig. 1.20 is shown a liquid in which is partially immersed a plane condenser
connected to a static potential difference. Denote by p the pressure at the level where
the electric field is E, and by p0 the pressure at the level where the field is null.
Neglecting the action of the gravitational field, we have

p = p0 + 1

2
ρ

(
E2 ∂ε

∂ρ

)
,

and finally, making use of (1.179),

p = p0 + 1

6ε0
E2(ε − ε0)(ε + 2ε0). (1.182)

Consequently, at the free surface of the dielectric liquid appears an excess of
“hydrostatic” pressure which diminishes its volume, as shown in Fig. 1.20. The effect
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Fig. 1.20 Schematic
representation of the
electrostriction phenomenon.

of variation (decrease) of the volume of a dielectric under the action of an electrostatic
field is called electrostriction. This phenomenon must not be confounded with the
inverse piezoelectricity, which appears only in the case of anisotropic media.

Electrostriction has many applications, such as the ultrafine adjustment of certain
dielectric layers known as optical plates: half-wave plates and quarter-wave plates.

The magnetostriction phenomenon, meaning the volume variation of a medium
under the action of a magnetic field, is approached in a similar way.

1.5 Solved Problems

Problem 1. Determine the shape of the equipotential surfaces of the electric field
produced by a uniformly distributed charge λ = const. along a straight wire of length
2c.

Solution. Let us consider the coordinate system as in Fig. 1.21. The potential at
an arbitrary fix point P in the (x, y)-plane is

VP = ke

∫ +c

−c

dq

r
= keλ

∫ +c

−c

dξ

r
, ke = 1

4πε0
, (1.183)

where dξ is a length element of the wire. The relation

r = [
(x − ξ)2 + y2

]1/2

suggests the substitution
u = x − ξ + r,

which gives
dr

dξ
= −x − ξ

r
= 1 − u

r
. (1.184)
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Fig. 1.21 A uniformly
distributed charge q along a
straight wire of length 2c.

But dr = du + dξ, such that
dξ

r
= −du

u
. (1.185)

The potential at the point P then becomes

VP = −keλ

∫ u2

u1

du

u
= keλ ln

x + c + r1
x − c + r2

. (1.186)

To find the equipotential surfaces we equate the argument of the logarithm in
(1.186) to a constant K . Denoting x + c = x1 and x − c = x2, we have

x1 + r1 = K(x2 + r2), (1.187)

where
r21 = x21 + y2 and r22 = x22 + y2,

and, in view of (1.187), it follows that

r2 − x2 = K(r1 − x1). (1.188)

From (1.187) and (1.188) we find

r1 + r2 = 2c
K + 1

K − 1
≡ 2a = const. (1.189)

Therefore, the locus of the points which satisfy the condition VP = const. (K
fixed) is an ellipse with foci at the ends of the wire. Rotating the figure around the
x-axis and giving to K different values, we obtain homofocal ellipsoids of revolution
with foci at A and B. The field lines are orthogonal to the equipotential surface at
any point of the field (see Fig. 1.22).

It is easy to show that K = a+c
a−c , and the final result is
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Fig. 1.22 Plane projection of the field lines and equipotential surfaces for a uniformly distributed
charge q along a straight wire of length 2c.

VP = 1

4πε0
λ ln

a + c

a − c
. (1.190)

In particular, if the points A and B approach each other until they coincide, the
ellipsoids degenerate into concentric spheres, while if they move away to infinity the
equipotential surfaces are coaxial cylinders with the wire as common axis.

Problem 2. Show that the quadrupole moment tensor of a homogeneous charge
distribution with axial symmetry has one single distinct component, and calculate
the potential of the system.

Solution. The geometry of the problem suggests to use cylindrical coordinates
ρ,ϕ, z. Taking Oz as symmetry axis, and observing that the charge density ρe is
independent of ϕ, ρe = ρe(ρ, z), we have by definition (see (1.83)):

pik =
∫

ρe(ρ, z)
(
3xixk − r2δik

)
dτ . (1.191)

The tensor pik is symmetric, in general being defined by six components. Its non-
diagonal components are

p12 = pxy = 3
∫

ρe(ρ, z)ρ3dρdz
∫ 2π

0
sinϕ cosϕdϕ = 0,

p23 = pyz = 3
∫

ρe(ρ, z)ρ2zdρdz
∫ 2π

0
sinϕdϕ = 0,
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p31 = pzx = 3
∫

ρe(ρ, z)ρ2zdρdz
∫ 2π

0
cosϕdϕ = 0.

Since x = ρ cosϕ, y = ρ sinϕ, and r2 = ρ2 + z2, the three diagonal components of
pik are

p33 = pzz = 2π
∫

ρe(ρ, z)
(
2z2 − ρ2

)
ρdρdz,

p11 = pxx =
∫

ρe(ρ, z)
[
3x2 − (

ρ2 + z2
)]

ρdρdϕdz

= −π

∫
ρe(ρ, z)

(
2z2 − ρ2

)
ρdρdz = −p33

2
,

p22 = pyy =
∫

ρe(ρ, z)
[
3y2 − (

ρ2 + z2
)]

ρdρdϕdz = pxx = −p33
2

.

Thus, only p33 is independent, the other two nonvanishing components being express-
ible in terms of p33. Obviously, we have

Tr(pik) =
3∑

i=1

pii = 0.

The quadrupole potential is (see Sect. 1.1.11):

V (2) = ke

6
pik

(
3xixk

r5
− δik

r3

)
, where ke = 1

4πε0
. (1.192)

Introducing the components of the quadrupole moment tensor and denoting p33 = p,
we have

V (2) = ke

[
p11

(
3x2

r5
− 1

r3

)
+ p22

(
3y2

r5
− 1

r3

)
+ p33

(
3z2

r5
− 1

r3

)]

= ke
p

6r3

[
3z2

r2
− 3

2

(
x2 + y2

r2

)]
.

Since x2 + y2 = r2 − z2 and z = r cos θ, we finally obtain

V (2) = 1

8πε0

p

r3
P2(cos θ), (1.193)

where

P2(cos θ) = 3 cos2 θ − 1

2

is the Legendre polynomial of second degree.
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Problem 3. Determine the potential V and the electrostatic field intensity E(r)
in two points, one internal and the other external to a sphere of radius R, uniformly
electrized with charge Q.

Solution. The potential V results as a solution of Poisson’s equation

ΔV =
{− ρ

ε0
, inside the sphere,

0, outside the sphere,
(1.194)

where ρ = 3Q
4πR3 is the charge density inside the sphere.

Since the formulation of the problem suggests a spherical geometry, we shall use
spherical coordinates to express the Laplacian of the potential:

ΔV = 1

r2

{
∂

∂r

(
r2

∂V

∂r

)
+ 1

sin θ

[
∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

sin θ

∂2V

∂ϕ2

]}
. (1.195)

Because of the radial symmetry, the potential V depends only on r and (1.195)
reduces to

ΔV = 1

r2

[
∂

∂r

(
r2

∂V

∂r

)]
. (1.196)

Case I - The potential and the field intensity at an arbitrary point inside the sphere.
Denoting these quantities by Vi(r) and Ei(r), and using (1.194) and (1.196), we

find
1

r2

[
∂

∂r

(
r2

∂Vi

∂r

)]
= − ρ

ε0
. (1.197)

The first integration of (1.197) gives

r2
∂Vi

∂r
= − ρ

ε0

r3

3
+ C1, (1.198)

where C1 is a constant which is to be determined. The second integration of (1.197)
then leads to

Vi(r) = −ρr2

6ε0
− C1

r
+ C2. (1.199)

The field intensity Ei = −∇Vi results immediately from (1.198):

Ei(r) = −
(

∂V

∂r

)

i

= ρr

3ε0
− C1

r2
. (1.200)

Case II - The potential and the field intensity at an arbitrary point outside the
sphere.

Let Ve(r) and Ee(r) be the quantities we are looking for. At an arbitrary point
outside the sphere the potential Ve satisfies Laplace’s equation ΔVe = 0, i.e.
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1

r2

[
∂

∂r

(
r2

∂Ve

∂r

)]
= 0. (1.201)

Integrating, one obtains the field

r2
∂Ve

∂r
= C3 ⇒ ∂Ve

∂r
= C3

r2
= −Ee(r), (1.202)

while a second integration yields

Ve(r) = −C3

r
+ C4. (1.203)

The constants of integrationC1, . . . , C4 are determined by imposing the boundary
conditions

Ve(r → ∞) = 0, Vi(r → 0) = finite,

as well as the continuity conditions

Vi(R) = Ve(R), Ei(R) = Ee(R).

Using these conditions, we find

C1 = 0, C4 = 0, C2 = ρR2

2ε0
, C3 = −ρR3

3ε0
.

Now we are able to write the final form of both the potential and the field, inside
and outside the sphere:

Vi(r) ≡ V (r)|r≤R = ρR2

2ε0

(
1 − r2

3R2

)
= 3Q

8πε0R

(
1 − r2

3R2

)
,

Ei(r) ≡ E(r)|r≤R = ρr

3ε0
= Q

4πε0

r

R3
, (1.204)

and

Ve(r) ≡ V (r)|r>R = ρR3

2ε0

1

r
= Q

4πε0r
,

Ee(r) ≡ E(r)|r>R = ρR3

3ε0r2
= Q

4πε0r2
. (1.205)

The graphical representations of the potential and the field, for both situations, are
given in Figs. 1.23 and 1.24.
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Fig. 1.23 Graphical representation of the potential V as a function of the distance r (Problem 3).

Fig. 1.24 Graphical representation of the field E as a function of the distance r (Problem 3).

Observation:
In agreement with Gauss’s law, the potential generated by the uniformly charged

sphere at an arbitrary point outside the sphere is the same as the potential of a point
charge Q situated at the centre of the sphere.

Problem 4. Determine the field intensity at some point on the axis of a uniformly
chargeddisk. The radius of the disk isR and its superficial charge density isσ = const.

Solution. A conveniently chosen coordinate system (see Fig. 1.25) allows us to
write the potential at some point of the z-axis:
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Fig. 1.25 A uniformly
charged disk (Problem 4).

V (0, 0, z > 0) = 1

4πε0

∫

S

dq

r
= 1

4πε0

∫

S

σ dS

r
= 1

4πε0

∫ R

0

σ2πr′dr′

r
(1.206)

= σ

2ε0

∫ R

0

r′dr′
√

r′2 + z2
= σ

2ε0

√
r′2 + z2

∣∣∣
R

0
= σ

2ε0

(√
R2 + z2 − z

)
.

For z � R, the series expansion

√
R2 + z2 − z = z

⎡

⎣
√

1 +
(

R

z

)2

− 1

⎤

⎦  z

(
1 + 1

2

R2

z2
− 1

)
= R2

2z

leads to

V (z � R) = σ

2ε0

R2

2z
= q

4πε0z
. (1.207)

This result was expected, because for z � R the disk appears point-like.
By symmetry reasons, the potential must have the same values for z < 0:

V (0, 0, z < 0) = σ

2ε0

(√
R2 + z2 + z

)
. (1.208)

The potential V has a singular behaviour at the point z = 0 (see Fig. 1.26). For
z < 0 the function V (z) is ascending and the slope of the graph is positive, while for
z > 0, V (z) is descending and the slope is negative. In other words, the potential V (z)
presents a sudden change in the sign of the slope at the origin of the coordinate axes.
Since E = −∇V , it results that at the point z = 0 the field intensity also presents a
discontinuity. Let us find this discontinuity.

For z = 0 we have

V (z)
∣∣
z=0 = σR

2ε0
. (1.209)
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Fig. 1.26 Graphical
representation of the
potential V as a function of
the distance z (Problem 4).

On the symmetry axis Oz, the electric field E has only the z-component, E =
(0, 0, Ez):

Ez+ = Ez(z > 0) = −dV (z > 0)

dz
= σ

2ε0

(
1 − z√

z2 + R2

)
, (1.210)

and

Ez− = Ez(z < 0) = −dV (z < 0)

dz
= − σ

2ε0

(
1 + z√

z2 + R2

)
. (1.211)

Calculating the limit of (1.210) and (1.211) at the point z = 0 we arrive at

lim
z→0
z>0

Ez = lim
z→0

Ez+ = σ

2ε0
, (1.212)

and
lim
z→0
z<0

Ez = lim
z→0

Ez+ = − σ

2ε0
. (1.213)

Relations (1.212) and (1.213) show that the values of the electric field created
by a charged disk at the point z = 0 are identical to those of a uniformly charged
(σ = const.) infinite plane, situated in vacuum. This result is as expected, since for
z → 0 the disk appears as an infinite plane. In addition,

(Ez+ − Ez−)

∣∣∣
z=0

= σ

2ε0
−
(

− σ

2ε0

)
= σ

ε0
, (1.214)

meaning that at the point z = 0, while passing from one side of the disk to the other,
the electric field jumps, and the value of the jump is σ

ε0
(Fig. 1.27).
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Fig. 1.27 Jump of the
electric field while passing
from one side of the disk to
the other (Problem 4).

Problem 5. A point charge q is placed at point P0(x0, y0, z0) inside a grounded
metallic parallelipipedic box (0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c).Determine the elec-
trostatic potential inside the box.

Solution. To avoid expressing the charge density of a single point charge andwork
with it from the beginning – which is a difficult task – we start by assuming that the
charge q is uniformly distributed in an elementary parallelepiped whose walls are
parallel to the walls of the box (see Fig. 1.28). Then, in due course, we shall make
this volume tend to zero. Under this assumption, the charge density is

ρ(x, y, z) = q

8hkl
, (1.215)

for x0 − h < x < x0 + h, y0 − k < y < y0 + k, z0 − l < z < z0 + l and 0 for the
rest of the values of x, y, z.

The potential V (x, y, z) inside the box is obtained by solving the Poisson equation

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= − 1

ε0
ρ(x, y, z), (1.216)

with the boundary conditions

⎧
⎨

⎩

V (0, y, z) = V (a, y, z) = 0, for any y, z inside the box;
V (x, 0, z) = V (x, b, z) = 0, for any x, z inside the box;
V (z, y, 0) = V (x, y, c) = 0, for any x, y inside the box.

(1.217)

The homogeneous equation corresponding to Poisson’s equation (1.216) is the
Laplace equation

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0, (1.218)
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Fig. 1.28 Schematic representation of the parallelepipedic box from Problem 5.

whose solution can be obtained by the Fourier’s method (the method of separation
of variables). Due to the rectangular symmetry of the problem, the solution of the
Eq. (1.218) must be sought of the form

V (x, y, z) = X(x)Y(y)Z(z), (1.219)

where X, Y , and Z are functions which will be determined using the boundary con-
ditions. Using the standard procedure, we introduce (1.219) into (1.218) and the
resulting equation is divided by X(x)Y(y)Z(z), obtaining

1

X(x)

d2X(x)

dx2
+ 1

Y(y)

d2Y(y)

dy2
+ 1

Z(z)

d2Z(z)

dz2
= 0. (1.220)

This relation can be satisfied only if each of the three terms in the right-hand side is
a constant, such that the algebraic sum of the three constants vanishes:

1

X(x)

d2X(x)

dx2
= χ2,

1

Y(y)

d2Y(y)

dy2
= −λ2, (1.221)

1

Z(z)

d2Z(z)

dz2
= −μ2,

with
χ2 = λ2 + μ2. (1.222)

The solutions of the last two equations of (1.221) have the general form
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Y(y) = A1 cos(λy) + B1 sin(λy),

Z(z) = A2 cos(μz) + B2 sin(μz),

whereAi andBi, i = 1, 2 are arbitrary integration constants, whichwill be determined
using the boundary conditions. Thus, the conditions

V (x, 0, z) [= X(x)Y(0)Z(z)] = 0, ∀x ∈ [0, a], z ∈ [0, c],
V (x, y, 0)

[= X(x)Y(y)Z(0)
] = 0, ∀x ∈ [0, a], y ∈ [0, b]

lead to Ai = 0, i = 1, 2, while from the conditions

V (x, b, z) [= X(x)Y(b)Z(z)] = 0, ∀x ∈ [0, a], z ∈ [0, c],
V (x, y, c)

[= X(x)Y(y)Z(c)
] = 0, ∀x ∈ [0, a], y ∈ [0, b]

it follows that λ and μ have to be of the form

λ ≡ λm = mπ

b
, m ∈ Z,

μ ≡ μn = nπ

c
, n ∈ Z.

We have thus found that the potential V (x, y, z), which is the solution of the
Poisson equation (1.216), has to be written as a double series, as follows:

V (x, y, z) =
∞∑

m=1

∞∑

n=1

umn(x) sin
(mπ

b
y
)
sin
(nπ

c
z
)

, (1.223)

where umn(x), m, n ∈ Z are unknown functions of x, which have to be determined.
Introducing (1.223) into (1.216), we obtain the differential equation for umn(x):

∞∑

m=1

∞∑

n=1

[
d2umn(x)

dx2
− α2

mnumn(x)

]
sin
(mπ

b
y
)
sin
(nπ

c
z
)

= − 1

ε0
ρ(x, y, z),

(1.224)
where

αmn = π

√
m2

b2
+ n2

c2
. (1.225)

Using the orthogonality conditions

∫ b

0
sin
(nπ

b
y
)
sin
(mπ

b
y
)

dy = b

2
δmn,

∫ c

0
sin
(nπ

c
z
)
sin
(mπ

c
z
)

dz = c

2
δmn,
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it follows from (1.216) that

d2umn(x)

dx2
− α2

mnumn(x) = − 4

bcε0

∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)

× sin
(nπ

c
ζ
)

dηdζ. (1.226)

The general solution of this equation can be obtained by themethod of variation of
parameters. The solutions of the characteristic equation attached to the homogeneous
equation corresponding to (1.226) are r1,2 = ±αmn, and the fundamental system of
solutions of the homogeneous equation reads

{
u(1)

mn(x) = sinh(αmnx),
u(2)

mn(x) = cosh(αmnx).

According to the method of variation of parameters, the general solution of the
non-homogeneous equation is

umn(x) = u(1)
mn(x) Amn(x) + u(2)

mn(x) Bmn(x), (1.227)

where A′
mn(x) and B′

mn(x) are the solutions of the system

u(1)
mn(x)A

′
mn(x) + u(2)

mn(x)B
′
mn(x) = 0,

du(1)
mn(x)

dx
A′

mn(x) + du(2)
mn(x)

dx
B′

mn(x)

= − 4

bcε0

∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)

dηdζ,

which can be re-written as

sinh(αmnx)A′
mn(x) + cosh(αmnx)B′

mn(x) = 0,

αmn cosh(αmnx)A′
mn(x) + αmn sinh(αmnx)B′

mn(x)

= − 4

bcε0

∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)

× sin
(nπ

c
ζ
)

dηdζ.

Extracting B′
mn(x) from the first equation and introducing it in the second one, we

have

αmnA′
mn(x) = −4 cosh(αmnx)

bcε0

∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)

dηdζ,

(1.228)
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where thewell-known relation cosh2 ψ − sinh2 ψ = 1,∀ ψ ∈ R, has been used. Inte-
grating (1.228), one obtains straightforwardly

Amn(x) =
∫

A′
mn(x)dx = −

∫ [∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)

dηdζ

]

× 4

αmnbcε0
cosh(αmnx)dx + Amn, (1.229)

where Amn are arbitrary constants of integration. Then

B′
mn(x) = −A′

mn(x) tanh(αmnx) = 4 sinh(αmnx)

αmnbcε0

×
∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)

dηdζ, (1.230)

which by integration yields

Bmn(x) =
∫

B′
mn(x)dx =

∫ [∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)

dηdζ

]

× 4

αmnbcε0
sinh(αmnx)dx + Bmn, (1.231)

where Bmn are also arbitrary constants of integration. Both Amn and Bmn have to be
determined from the boundary conditions umn(0) = umn(a) = 0.

The general solution of (1.224) is then

umn(x) = sinh(αmnx)

{
− 4

αmnbcε0

∫ [∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)

× sin
(nπ

c
ζ
)

dη dζ

]
cosh(αmnx)dx + Amn

}
+ cosh(αmnx)

{
4

αmnbcε0

×
∫ [∫ b

0

∫ c

0
ρ(x, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)

dη dζ

]
sinh(αmnx)dx + Bmn

}

= Amn sinh(αmnx) + Bmn cosh(αmnx) − 4 sinh(αmnx)

αmnbcε0

∫ x

0

∫ b

0

∫ c

0

×ρ(ξ, η, ζ) sin
(mπ

b
η
)
sin
(nπ

c
ζ
)
cosh(αmnξ)dξdηdζ + 4 cosh(αmnx)

αmnbcε0

×
∫ x

0

∫ b

0

∫ c

0
ρ(ξ, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)
sinh(αmnξ)dξdηdζ

= Amn sinh(αmnx) + Bmn cosh(αmnx) − 4

αmnbcε0

∫ x

0

∫ b

0

∫ c

0

×ρ(ξ, η, ζ) sin
(mπ

b
η
)
sin
(nπ

c
ζ
) [

sinh(αmnx) cosh(αmnξ)
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Fig. 1.29 An auxiliary construction used to explain the solution to Problem 5.

− cosh(αmnx) sinh(αmnξ)
]
dξdηdζ (1.232)

= Amn sinh(αmnx) + Bmn cosh(αmnx)

− 4

αmnbcε0

∫ x

0

∫ b

0

∫ c

0
ρ(ξ, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)
sinh[αmn(x − ξ)]dξdηdζ.

For x < x0, the last term goes to zero when we take the volume of the small charged
paralellipiped to zero. To explain this, let us consider the corresponding simpler
problem in two dimensions (Fig. 1.29).

For x < x0, i.e. on the left side of x0, for any value of x, say xs (which cannot be
greater than x0), when passing to the limit h → 0, xs will always remain outside the
rectangle of side 2h. But, if x > x0, nomatter how long is the integration segment over
x, say xd < a, when taking the limit h → 0, the little rectangle becomes more and
more narrow until it becomes the segment described by equation x = x0, of length
2k, and oriented orthogonal to x-axis. Then it will always exist a small rectangle of
sides 2h, 2k, inside the integration interval, in which ρ = λ

4hk �= 0, where λ is a linear
charge density. In other words, for any xd , with x0 < xd < a, there exists h < xd −
x0 �= 0. The generalization of this reasoning to three dimensions is straightforward.

Consequently, for x < x0 the last term of (1.232) goes to zero when taking the
limit, while for x > x0, in view of (1.215), we may write

I(h, k, l) ≡
∫ x

0

∫ b

0

∫ c

0
ρ(ξ, η, ζ) sin

(mπ

b
η
)
sin
(nπ

c
ζ
)
sinh[αmn(x − ξ)]dξdηdζ

= q

8hkl

∫ x0+h

x0−h

∫ y0+k

y0−k

∫ z0+l

z0−l
sin
(mπ

b
η
)
sin
(nπ

c
ζ
)
sinh[αmn(x − ξ)]dξdηdζ

= q

8hkl

∫ x0+h

x0−h
sinh[αmn(x − ξ)] dξ

∫ y0+k

y0−k
sin
(mπ

b
η
)

dη

∫ z0+l

z0−l
sin
(nπ

c
ζ
)

×dζ = −q

8hkl

bcπ−2

mnαmn

{
cosh[αmn(x − ξ)]

}x0+h

x0−h

[
cos

(mπ

b
η
)]y0+k

y0−k

×
[
cos

(nπ

c
ζ
)]z0+l

z0−l
= qbcπ−2α−1

mn

8hklmn

{
cosh[αmn(x − x0 + h)] − cosh[αmn
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×(x − x0 − h)]
} {

cos
[mπ

b
(y0 + k)

]
− cos

[mπ

b
(y0 − k)

]}

×
{
cos

[nπ

c
(z0 + l)

]
− cos

[nπ

c
(z0 − l)

]}
,

and, taking the limit,

lim
h→0
k→0
l→0

I(h, k, l) = qbcα−1
mn

π2mn
sinh[αmn(x − x0)] sin

(mπ

b
y0
)
sin
(nπ

c
z0
)

× lim
h→0

sinh(αmnh)

h
lim
k→0

sin
(

mπ
b k
)

k
lim
l→0

sin
(

nπ
c l
)

l
= q sinh[αmn(x − x0)]

× sin
(mπ

b
y0
)
sin
(nπ

c
z0
)
lim
h→0

sinh(αmnh)

αmnh
lim
k→0

sin
(

mπ
b k
)

mπ
b k

lim
l→0

sin
(

nπ
c l
)

nπ
c l

= q sinh[αmn(x − x0)] sin
(mπ

b
y0
)
sin
(nπ

c
z0
)

.

Therefore, we can write the functions umn(x) as

umn(x) = Amn sinh(αmnx) + Bmn cosh(αmnx) (1.233)

+
{
0, x < x0
− 4q

αmnbcε0
sinh[αmn(x − x0)] sin

(
mπ
b y0

)
sin
(

nπ
c z0

)
, x > x0.

Time has come to determine the constants of integration. The boundary condition
umn(0) = 0 gives Bmn = 0, while the condition umn(a) = 0 leads to

Amn = 4q

αmnbcε0

sinh[αmn(a − x0)] sin
(

mπ
b y0

)
sin
(

nπ
c z0

)

sinh(αmna)
.

We are now able to write the solution of Poisson’s equation in the form

V = 4q

bcε0

∞∑

m=1

∞∑

n=1

sinh[αmn(a − x0)] sin
(

mπ
b y0

)
sin
(

nπ
c z0

)

αmn sinh(αmna)

× sinh(αmnx) sin
(mπ

b
y
)
sin
(nπ

c
z
)

, for x < x0,

V = 4q

bcε0

∞∑

m=1

∞∑

n=1

sinh[αmn(a − x0)] sin
(

mπ
b y0

)
sin
(

nπ
c z0

)

αmn sinh(αmna)

× sinh(αmnx) sin
(mπ

b
y
)
sin
(nπ

c
z
)

− 4q

bcε0

∞∑

m=1

∞∑

n=1

sinh[αmn(x − x0)]
αmn

× sin
(mπ

b
y0
)
sin
(nπ

c
z0
)
sin
(mπ

b
y
)
sin
(nπ

c
z
)

, for x > x0. (1.234)
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We can still write some terms in a compact form by using the identity

sinh(α − β) sinh γ + sinh(β − γ) sinhα + sinh(γ − α) sinh β = 0,

with α = αmna,β = αmnx0, γ = αmnx. The final result is

V (x, y, z)
∣∣∣
x<x0

= 4q

bcε0

∞∑

m=1

∞∑

n=1

sinh[αmn(a − x0)] sin
(mπ

b y0
)
sin
( nπ

c z0
)

αmn sinh(αmna)

× sinh(αmnx) sin
(mπ

b
y
)
sin
(nπ

c
z
)

,

V (x, y, z)
∣∣∣
x>x0

= 4q

bcε0

∞∑

m=1

∞∑

n=1

sinh(αmnx0) sin
(mπ

b y0
)
sin
( nπ

c z0
)

αmn sinh(αmna)
sinh[αmn(a − x)]

× sin
(mπ

b
y
)
sin
(nπ

c
z
)

, (1.235)

with αmn given by (1.225).

1.6 Proposed Problems

1. The potential of the electrostatic field created in vacuum by a dipole of moment
p = const. is

V = 1

4πε0

p · r
r3

.

Determine the electric field E and find the field lines in spherical coordinates.
2. Determine the field produced by a uniformly charged straight circular cylinder,

of radius R and infinite length. The superficial charge density is σ.
3. The charge Q is distributed on a sphere of radius R. In the neighbourhood of the

sphere there is a point charge +q. Find:
a) The charge density σ on the sphere, in particular at punctum remotum and
punctum proximum with respect to the point charge;
b) The force of interaction between the point charge and the charged sphere.

4. A point charge q is situated at the distance a with respect to a conducting sphere
of radius R (a > R). Using the method of electrical images, determine the charge
distribution on the sphere in the following cases:
a) The sphere is insulated and grounded;
b) The sphere is insulated and charged with charge Q;
c) The sphere is grounded and R → ∞;
d) The sphere is neutral, insulated, and placed in a uniform electric field E0.

5. Determine the equipotential surfaces and the force lines for the case of a complex
potential w(z) = √

z. What is the contour of the grounded conductor which
corresponds to such a potential?
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6. A point charge q is placed at the centre of a homogeneous dielectric sphere of
radiusR and relative permittivity εr . If the sphere is situated in vacuum, determine
the polarization charge density on the surface of the sphere.

7. Determine the Fourier components of the electrostatic potential V and of the
electric field E produced by a point charge q.

8. Determine the quadrupole electric moment of a uniformly charged ellipsoid.
9. The permittivity of an inhomogeneous dielectric sphere of radius R, placed in

vacuum, varies according to the law ε(r) = ε0
(

r
R + 2

)
. Find the electrostatic

field intensity created by the charge Q, uniformly distributed in the volume of
the sphere.

10. Suppose that the potential on the surface of a straight circular cylinder of radius
R depends onϕ only: V (R, z,ϕ) = f (ϕ), where f (ϕ) is a given function. If there
are no sources inside the cylinder, determine the potential in this space.



Chapter 2
Fields of Stationary Currents

2.1 Magnetostatic Field in Vacuum

2.1.1 Stationary Electric Current

If at the ends A and B (or at any two points) of a conductor is applied a potential
difference or voltage, this will produce in the conductor an oriented displacement of
electric charges. In other words, in the conductor will circulate an electric current.
This phenomenon exists as long as VA �= VB . If the potential difference is constant
in time, the current is called continuous or stationary.

The electric current is characterized by its intensity. The instantaneous intensity
I is defined as

I = dq

dt
, (2.1)

being numerically equal to the rate of electric charge passing in unit time the cross
section of the conductor.

To describe the local behaviour of the electric current (in other words, the behav-
iour at a certain point inside the conductor), one introduces the current density j by
the relation

I =
∫

S
j · dS, (2.2)

where S is the area of the conductor’s cross section. The current density j is oriented
along the direction of displacement of positive charges. Thus, the modulus of the
current density is numerically equal to the intensity of the current passing a surface
of unit area, orthogonal to the direction of the displacement of charges.

If |j| = const. and j ‖ dS, Eq. (2.2) leads to j = I/S. If S → 0, I being finite, it
follows that j → ∞. Therefore, a (geometrically) linear current represents a line of
singularity for the quantity j.

© Springer-Verlag Berlin Heidelberg 2016
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In SI, the unit for electric current is the ampere, denoted by A, and defined as that
constant current which, if maintained in two straight parallel conductors of infinite
length, of negligible circular cross section, and placed 1 metre apart in vacuum,
would produce between these conductors a force equal to 2×10−7 newton per metre
of length. The ampere is one of the seven fundamental units of SI, and the only one
specific to electromagnetism.

2.1.2 Fundamental Laws

2.1.2.1 Electric Charge Conservation and Continuity Equation

One of the fundamental principles of physics is the electric charge conservation law.
This principle is quantitatively expressed by the continuity equation.

Let Q be a charge continuously distributed at the time t0 in the three-dimensional
domain D0, of volume V0, bounded by the surface S0, and let ρ(r0, t0) be the cor-
responding charge density. The form and dimensions of the considered volume, as
well as the density, vary in time, so that at the time t the same charge Q of density
ρ(r, t) will occupy the domain D, of volume V , bounded by the surface S (Fig. 2.1).
The invariance of charge is represented by the equality Q(t0) = Q(t), or

∫

V0

ρ(r0, t0)dτ0 =
∫

V
ρ(r, t)dτ . (2.3)

To find the connection between ρ(r, t) and ρ(r0, t0), one observes that the position
of a particle P , at time t , depends on both the time t and its initial position r0, that is

r = r(r0, t). (2.4)

Assume that to each particle P0 of D0 corresponds only one particle P of D. This
fact is mathematically expressed by

Fig. 2.1 Time evolution of
the domain D, of volume V ,
bounded by the surface S.
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J = ∂(x1, x2, x3)

∂(x01 , x
0
2 , x

0
3 )

�= 0, (2.5)

where J is the functional determinant (Jacobian) of the transformation (2.4). The
condition (2.3) can be written in a more convenient form by setting the same inte-
gration domain on both sides. To this end, we use (2.4) and write

dτ = dx1dx2dx3 = ∂(x1, x2, x3)

∂(x01 , x
0
2 , x

0
3 )

dx01dx
0
2dx

0
3 = Jdτ0. (2.6)

Denoting ρ(r0, t0) = ρ0, ρ(r, t) = ρ, we obtain

∫

V0

(ρ0 − Jρ)dτ0 = 0.

Since this equality must be valid for any V0, it follows that the integrand must be
identically null, i.e.

Jρ = ρ0. (2.7)

This is the continuity equation in the formulationof Jean-Baptiste leRondd’Alembert
(1717–1783).

The continuity equation can be written in an alternative form, as a first-order
partial differential equation, frequently encountered in the theoryof continuousmedia
(fluids). Let us take the total derivative with respect to time of (2.7):

ρ
d J

dt
+ J

dρ

dt
= 0. (2.8)

The Jacobian can be expressed in the form

J =
3∑

j=1

∂xi
∂x0j

A j
i , (2.9)

where A j
i is the algebraic complement of the element ∂xi

∂x0j
in the determinant J , when

the determinant J is expanded with respect to the elements of the i th row. (Note that
there is no summation over the index i in (2.9)). If in J the elements of the row i are
replaced by the elements of another row, say k, the determinant vanishes. Then (2.9)
can be re-written as

3∑

j=1

∂xk
∂x0j

A j
i = Jδik . (2.10)
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Using the derivative rule for determinants, we find

d J

dt
=

∑

i

∑

j

d

dt

( ∂xi
∂x0j

)
A j
i

=
∑

i

∑

j

∂

x0j

(dxi
dt

)
A j
i =

∑

i

∑

j

∂vi

∂x0j
A j
i ,

where vi with i = 1, 2, 3 are the components of the instantaneous velocity of a
charged particle whose motion we are following. In view of (2.10), we obtain

d J

dt
=

∑

i

∑

j

∑

k

∂vi

∂xk

∂xk
∂x0j

A j
i = J

∑

i

∑

k

∂vi

∂xk
δik

= J
∑

i

∂vi

∂xi
= J ∇ · v. (2.11)

This formula was established by Leonhard Euler (1707–1783). Substituting (2.11)
into (2.8) and simplifying by J ( �= 0), we get

dρ

dt
+ ρ∇ · v = 0. (2.12)

But ρ = ρ(r, t), hence

dρ

dt
= ∂ρ

∂t
+ ∂ρ

∂xi

dxi
dt

= ∂ρ

∂t
+ v · ∇ρ.

By means of (A.43), we can then write Eq. (2.12) as

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.13)

This is the differential form of the continuity equation and (2.13) connects the velocity
field v(r, t) with the scalar field of charge density ρ(r, t).

The physical interpretation of the continuity equation is revealed by integrating
(2.13) over a three-dimensional domain D, fixed with respect to the observer, of
volume V and bounded by the surface S:

∫

V

∂ρ

∂t
dτ = −

∫

V
∇ · (ρv)dτ .

As the integration domain is fixed we can apply the divergence theorem (A.32), with
the result:

d

dt

∫

V
ρdτ = −

∮

S
ρv · dS. (2.14)
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Fig. 2.2 Intuitive
representation of the
conservation of charge.

This is the integral form of the law of conservation of electric charge: the rate of
change of the electric charge in the domain D equals the difference between the
outgoing and ingoing charges, per unit time, through the boundary surface S. In
other words, the charge leaves the domain D, in unit time, as a flux of the vector field
ρv through the boundary surface S.

Obviously, the charges (positive and/or negative) can enter and leave the volume
V through the boundary surface S. Then, the l.h.s. of (2.14) represents the rate of
variation of the charge within the volume V . To emphasize the physical significance
of the r.h.s. of (2.14), let v be the velocity of the charge1 passing through S during
the time interval dt . The charge dQ is proportional to the volume of an infinitesimal
cylinder, of base dS and generatrix vdt (Fig. 2.2):

dQ = ρv · dSdt.

The quantity ρv · dS is then the charge which flows in unit time through the surface
element dS, and the quantity

∮
S ρv · dS represents the total charge which leaves

or enters the volume V per unit time. Choosing the outward normal, the quantity
ρv · dS is positive if the charges leave the volume V (v · n > 0), and negative if
the charges enter the volume (v · n < 0). The physical significance of the vector
field ρv becomes clear by observing that its direction coincides to that of the velocity,
while its magnitude represents the positive charge passing, in unit time, a unit surface
orthogonal to the direction of velocity, i.e. the density of current:

[ρv] =
[Q
V

l

t

]
=

[Q/t

V/ l

]
=

[ I
S

]
= [ j].

Therefore, we may write the continuity equation in the form:

∂ρ

∂t
+ ∇ · j = 0. (2.15)

1Here, the notion of particle must be understood in the framework of the theory of continuous
media. In this context, by a charged particle we do not mean a “customary” charged particle (like
an electron, or a proton, etc.), because in the theory of continuous deformable media, a particle is
an infinitely small entity (see Sect. 3.2).

http://dx.doi.org/10.1007/978-3-642-17381-3_3
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2.1.2.2 Ohm’s Law

Experimental observations show that the ratio of the potential difference (voltage)
V1 − V2 �= 0 between two different points of a conductor and the resulting current
intensity, in certain limits of external factors (pressure, temperature, etc.), is a constant
called electric resistance:

V1 − V2

I
= R = const. (2.16)

This is the integral form of Ohm’s law, written for a fragment of a homogeneous
circuit. The law is named after theGerman physicistGeorg SimonOhm (1789–1854),
who proposed a first form of it in 1827 based on his experimental observations.

The electric resistance of a conductor, assumed to be homogeneous and having a
constant cross section, depends on the nature, form, and dimensions of the conductor
by the relation

R = ρ
l

S
, (2.17)

where l is the length of the conductor, S – the area of the cross section, and ρ –
the resistivity of the material. The inverse of ρ is denoted by λ and it is known as
electric conductivity, λ = 1/ρ. The SI unit for electric resistance is the ohm, with
the symbol Ω . The ohm is the electric resistance between two points of a conductor
when a constant potential difference of 1 volt, applied to these points, produces in the
conductor a current of 1 ampere, the conductor not being the seat of any electromotive
force.

The integral form of Ohm’s law can also be written as

V1 − V2 =
∫ 2

1
E · dl = RI. (2.18)

To establish the differential (local) form of Ohm’s law, valid for a fragment of
circuit, we shall use (2.18):

∫ 2

1
E · dl =

∫ 2

1
Eldl = I

l

λS
= j

l

λ
.

If the studied sample is a homogeneous and isotropic conducting cylinder, then
El = const., while the vectors j and E have the same orientation, and the last
formula yields

j = λE, (2.19)

which is the differential (local) form of Ohm’s law. It shows that, if there is a field
E �= 0 at some point of a conductor, then at this point will also exist a current of
density j. Ohm’s law is also valid in case of variable fields and of non-homogeneous
isotropic conductors. In case of anisotropic bodies, the conductivity is a symmetric
tensor λik , and Ohm’s law reads
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ji = λik Ek, i, k = 1, 2, 3. (2.20)

If the only acting forces are of electrostatic type, in a very short time the potential
becomes equal everywhere, meaning that there is no electric current. To maintain
the current in a conductor, it is necessary to apply a force field of non-electrostatic
nature (mechanical, chemical, thermal, nuclear, etc.), denoted by Eext . Ohm’s law
(2.19) then becomes

j = λ(E + Eext ), (2.21)

which stands for the local generalized Ohm’s law. The integral form of this law is

∫ 2

1
E · dl +

∫ 2

1
Eext · dl = R I. (2.22)

The integral
∫ 2
1 Eext · dl represents the electromotive force between the points 1 and

2.

2.1.2.3 Joule–Lenz Law

This law refers to the caloric effect of the electric current. The integral form of this
law is

W = (V1 − V2)I t = RI 2t, (2.23)

or
P = RI 2,

where W is the caloric energy (the heat) released in the conductor by the electric
current and P is the power of the current.

The differential form of this law is written in terms of the power density p of
the electric current. The power density is defined by the expression P = ∫

V p dτ ,
where dτ is a volume element of the conductor in which the heat is released. If the
conductor is a homogeneous cylinder, of length l and cross section S, we have

p = RI 2

Sl
= 1

λ
j2, (2.24)

or

P =
∫

V

j2

λ
dτ .

The law was discovered in studies of resistive heating by the English physicist James
Prescott Joule (1818–1889) in 1841 and, independently, by the Russian physicist of
German Baltic origin Heinrich Lenz (1804–1865) in 1842.
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2.1.3 Magnetic Field of a Stationary Electric Current

In 1820, Hans Christian Ørsted (1777–1851) discovered the magnetic effect of a
stationary current. In his experiments he showed that the interactions between cur-
rents (or between currents and permanent magnets) are of the same nature as the
interaction between magnetized bodies. Jean-Baptiste Biot (1774–1862) and Félix
Savart (1791–1841), in 1820, and André-Marie Ampère (1775–1836), between 1820
and 1826, discovered the basic experimental laws relating the magnetic flux density
(magnetic induction) B to the currents and also established the law of force between
one current and another.

The magnetic field of a stationary current is a magnetostatic field. It can vary
from one point to another, but remains constant in time at any point. Such a field
can be described by the same procedure as the electrostatic field, with the essential
difference that, unlike the electric charges, no free magnetic charges (or magnetic
monopoles) have ever been observed.

It is proven experimentally that, at large distances, the magnetic field produced
by a circular current has the same properties as the field produced by a permanent
magnet (magnetic dipole).

There are two important laws, which we shall present in the following, describing
the magnetic action of a stationary electric current.

The Biot–Savart–Laplace law expresses the magnetic flux density (magnetic
induction) B of the magnetic field produced by the stationary electric current I , in
vacuum at some point P (Fig. 2.3):

B = k
∫

C

Idl × r
r3

. (2.25)

Here, dl is an oriented line element of thewire conducting the current, I dl is a current
element, r is the radius vector of the point P with respect to the current element, C is
the current (wire) contour (AB in Fig. 2.3a), and the magnitude and dimension of the

Fig. 2.3 (a) A current element I dl which produces at the point P the magnetic field B; (b) Forces
acting on an elementary electric circuit, placed in the magnetic field B.
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constant k depends on the system of units used. For instance, in Gaussian units the
constant is empirically found to be k = 1/c, where c is the speed of light in vacuum,
while in SI units, k = μ0/4π, where μ0 = 4π × 10−7H · m−1 = 4π × 10−7N · A−2

is the magnetic permeability of the vacuum. Remark that (2.25) is an inverse square
law, just like Coulomb’s law in electrostatics. However, the vector character is very
different: the intensity of the electrostatic field E is a genuine vector (a polar vector),
whereas the magnetic induction B is a pseudovector (an axial vector, as it is obtained
by the cross product of two polar vectors).

Formula (2.25) can be written by means of the current density j. Note that

I dl = j Sdl = jSdl = jdτ ,

leading to

B = μ0

4π

∫

V

j × r
r3

dτ , (2.26)

where V is the volume occupied by the current. The ratio B/μ0 is usually denoted
by H,

H = B/μ0, (2.27)

and it is called intensity of the magnetic field in vacuum.
The force law describing the interaction between an electric circuit C traveled

by the current I and a magnetic field of induction B (Fig. 2.3b) was discovered by
Ampère. The field acts on the “dipole” (i.e. circuit) tending to orient it along the
field. On each current element I dl acts the elementary Laplace force

dF = I dl × B,

such that the force acting on the whole circuit is

F =
∮

C
I dl × B. (2.28)

Ampère studied the interaction between loop circuits and found that the force
between two loops traveled by the currents I1 and I2 (see Fig. 2.4) is

F12 = μ0

4π
I1 I2

∮

C1

∮

C2

dl1 × (dl2 × r12)

r312
. (2.29)

After some vector manipulations, the formula can be put in a form symmetric in dl1
and dl2, emphasizing the law of action and reaction:

F12 = − μ0

4π
I1 I2

∮

C1

∮

C2

(dl1 · dl2)r12
r312

= −F21. (2.30)
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Fig. 2.4 Interaction between two current-carrying loops.

2.1.4 Magnetic Dipole

An elementary circuit behaves like a magnetic dipole of moment m = I S, where
I is the current intensity and S is the oriented surface of the circuit (loop), the
direction being given by the right-hand rule. A finite circuit may be covered by a net
of imaginary, elementary circuits, each of them behaving like a magnetic dipole. As
a matter of fact, such a system is a magnetic double layer, called magnetic sheet.

As electric and magnetic dipoles are almost perfectly analogous, we shall review
some fundamental definitions and formulas.

The magnetic dipole moment is defined by

m = M l (dm = l dM) , (2.31)

whereM is the fictitious magnetic charge (this quantity is analogous to the electric
charge q in electrostatics).

Themagnetic scalar potential, at some point of the field produced by themagnetic
dipole, is

Vm = μ0

4π

m · r
r3

= − μ0

4π
m · ∇

(
1

r

)
, (2.32)

allowing to calculate the induction B of the magnetic field produced by the dipole
by taking the gradient of the scalar potential:

B = −∇Vm = μ0

4π

[
3(m · r)r

r5
− m

r3

]
. (2.33)

The resultant of forces acting on a magnetic dipole is (see Eq. (1.70)) Rm =
M(l · ∇)B and, for a uniform field,

Rm = m × B. (2.34)

http://dx.doi.org/10.1007/978-3-642-17381-3_1
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The energy of the magnetic dipole in the external magnetic field of induction B is

Wm = −m · B. (2.35)

Magnetic Double Layer

Let us find the scalar potential of a magnetic double layer, using the almost perfect
analogy between the electric and magnetic dipoles. Since an electric or a magnetic
double layer is nothing else but a large number of dipoles with parallel moments, the
principle of superposition ensures the extension of the analogy to double layers as
well, noting that

p = ql ↔ m = Ml

V dipole
e = 1

4πε0

p · r
r3

↔ V dipole
m = μ0

4π

m · r
r3

(2.36)

V double layer
e = 1

4πε0

∫

S

n · r
r3

τe dS ↔ V double layer
m = μ0

4π

∫

S

n · r
r3

τm dS

Edipole = 1

4πε0

[
3(p · r)r

r5
− p

r3

]
↔ Bdipole = μ0

4π

[
3(m · r)r

r5
− m

r3

]

Edouble layer = −∇V double layer
e ↔ Bdouble layer = −∇V double layer

m ,

where S is the median surface between the surfaces Σ si Σ ′ of the double layer (see
Fig. 2.5, where σm si σ′

m = −σm represent the density of fictitious magnetic charges
on the two surfaces of the double layer).

The scalar potential of the magnetic field created by the double layer at the point
P (see Fig. 2.5) is

Fig. 2.5 A magnetic double
layer (magnetic sheet).
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Vm(P) = μ0

4π

[∫

Σ

σmdΣ

r
+

∫

Σ ′

σ′
mdΣ ′

r ′

]
.

As the distance between the two surfaces of the double layer is very small, both
integrals can be considered on the median surface S. For the same reason, 1/r ′ can
be approximate as

1

r ′ 	 1

r
+ l · ∇

(
1

r

)
,

such that

Vm(P) = μ0

4π

∫

S
σm

(
1

r
− 1

r ′

)
dS = − μ0

4π

∫

S
σml n · ∇

(
1

r

)
dS.

Noting that

−n · ∇
(
1

r

)
dS = n · r

r3
dS,

we find the potential Vm(P) (see also (2.36)):

Vm(P) ≡ V double layer
m = μ0

4π

∫

S

n · r
r3

τm dS, (2.37)

with the notation σml = τm , where τm is called the moment or the power of the
magnetic double layer. Since

n · r
r3

dS = dS cosα

r2
= dΩ,

we obtain

Vm = μ0

4π

∫

Ω

τm dΩ, (2.38)

where Ω is the solid angle subtended by the double layer from the observation point
P of potential Vm . This solid angle and the fictitious magnetic charges situated on
that side of the double layer which is “seen” from the observation point P should
have the same sign (Fig. 2.5). If the double layer is homogeneous, then

Vm = μ0

4π
τm Ω. (2.39)

We find the power of the magnetic double layer using the fact that the density of
fictitious magnetic charge is dσm = dM

dS and taking into account the relation (2.31):

τm = σml = l dM
dS

= l dm

l dS
= l I dS

l dS
= I,
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i.e. the power of a magnetic double layer equals the current I which circulates
through the closed loop representing the contour of the double layer “generated” by
that current (for example, the closed loop Γ in Fig. 2.5).

The nature of the quantity τm can be easily found also by using dimensional
analysis. Thus, from the third and the last relation in (2.36) we have

[
Edouble layer

Bdouble layer

]

SI

=
[

τe

τm

]

SI

[
1

ε0μ0

]

SI

.

From here, taking into account (4.5) and (4.23), follows that

[τm]SI = [τe]SI [c]SI ,

where c is the speed of light in vacuum. Since τe = σl, where σ is the density
of electric charge on one surface of an electric double layer, and l is the distance
between the two charges of the electric dipole, we can write

[τm]SI = [σl]SI [c]SI = 1C

1s
= 1A,

meaning that the power τm of a magnetic double layer has to be an electric current.

2.1.5 Ampère’s Circuital Law

Let us calculate the circulation of the field B along a closed contour (path) C , around
a wire carrying the current I (Fig. 2.6). If the observer is at a fixed origin O , while
the field is determined at the point P(r), the Biot–Savart law (2.26) reads

B(r) = μ0

4π

∫

V ′

j(r′) × (r − r′)
|r − r′|3 dτ ′, (2.40)

Fig. 2.6 A current I
surrounded by the contour C
(the arrows show the
orientation of the curve).

http://dx.doi.org/10.1007/978-3-642-17381-3_4
http://dx.doi.org/10.1007/978-3-642-17381-3_4
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where V ′ is the volume of the three dimensional domain D′ occupied by the sources
of the magnetic field, i.e. by the current density j(r′).

As the operator ∇ acts only on vector and scalar functions which depend on r,
we observe that

r − r′

|r − r′|3 = −∇
(

1

|r − r′|
)

,

consequently

∇ ×
(

j(r′)
|r − r′|

)
= 1

|r − r′|∇ × j(r′) − j(r′) × ∇
(

1

|r − r′|
)

.

The first term on the r.h.s. of the last relation is null as j(r′) does not depend on r,
and thus we can express (2.40) as

B(r) = μ0

4π

∫

V ′
∇ ×

(
j(r′)

|r − r′|
)
dτ ′ = ∇ ×

[
μ0

4π

∫

V ′

j(r′)
|r − r′|dτ ′

]
. (2.41)

Formula (2.41) can be recast into the form

B(r) = ∇ × A(r), (2.42)

where

A(r) = μ0

4π

∫

V ′

j(r′)
|r − r′|dτ ′. (2.43)

The vector field A(r) is called the vector potential of the stationary vector field
B(r). If the distribution of currents is both in volume and on surface, by analogy with
the discussion in Chap.1, we may write

A(r) = μ0

4π

∫

V ′

j(r′)
|r − r′|dτ ′ + μ0

4π

∫

S′

i(r′)
|r − r′|dS

′, (2.44)

where S′ is any open surface bounded by the closed curve (of elemental length dl)
which carries the current i, while i(r) is the linear current density, i.e. the current
distributed per unit length,

I =
∫ 2

1
i · dl.

Let us go back and apply the operator curl (∇×) to (2.41). In view of (A.51), we
have

∇ × B(r) = μ0

4π

[
∇

∫

V ′
j(r′) · ∇

(
1

|r − r′|
)
dτ −

∫

V ′
j(r′)Δ

(
1

|r − r′|
)
dτ ′

]
.

Using the expressions (1.41) and (1.45),

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
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Δ

(
1

4π|r − r′|
)

= −δ(r − r′) and ∇
(

1

|r − r′|
)

= −∇′
(

1

|r − r′|
)

,

and then integrating by parts the first term in the square bracket and extending the
integration domain over the whole space,

∇ × B(r) = μ0

4π
∇

∫
1

|r − r′|∇
′ · j(r′)dτ ′ + μ0

∫
j(r′) δ(r − r′)dτ ′.

Since our field is stationary, the first term is null by virtue of the continuity equation.
Using the sifting property of Dirac’s δ-distribution in the second term, we obtain
finally

∇ × B(r) = μ0j(r), (2.45)

which is the differential form of Ampère’s law. Integrating this relation over an open
surface S bounded by the integration contourC surrounding the current, we canwrite

∫

S
∇ × B(r) · dS = μ0

∫

S
j · dS = μ0 I,

or, using the Stokes theorem (A.34),

∮

C
B · dl = μ0 I, (2.46)

which is the integral form of Ampère’s law. The current I above represents the total
current passing through the surface S enclosed by the curve C , which includes both
free and bound currents. We shall revisit this issue in Sect. 2.2.1.

We conclude that the circulation of the fieldB along a closed contour, surrounding
the current I , depends on the current intensity only. (It can be shown that, if the
contour does not surround the current, the circulation is zero).

2.1.6 Vector Potential of the Field of a Stationary Current

Taking the divergence of (2.42), and using (A.48), we find that

∇ · B = 0 or ∇ · H = 0. (2.47)

Therefore, the field B is a solenoidal field (without sources). The lines of such a field
are closed curves. This result can be also obtained by means of Gauss’s law for a
system of N fictitious magnetic charges,
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∮
B · dS = μ0

N∑

i=1

Mi = 0, (2.48)

and of the divergence theorem.
Note that the vector potentialA is not uniquely defined by (2.42). Indeed, if instead

of A one takes
A′ = A + ∇ψ, (2.49)

where ψ = ψ(r) is an arbitrary differentiable function of coordinates, one obtains
the same field

B′ = ∇ × A′ = ∇ × A + ∇ × (∇ψ) = ∇ × A = B. (2.50)

The relation (2.49) is known as gauge transformation of the vector potential, while
the fact that both A and A′ lead to the same field B is called gauge invariance of
the field. Therefore, to be uniquely defined, the field A must obey a supplementary
condition, for example

∇ · A = χ, (2.51)

where χ is a given function.
By choosing χ = 0 in (2.51) and using (2.42), one obtains

ΔA = −μ0j. (2.52)

This particular choice of the vector potential is known as Coulomb gauge (see
Sect. 3.9). Equation (2.52) is a second-order partial differential equation, analogous
to Poisson’s equation of electrostatics (1.37). The solution of this equation is given
by (2.44) being, in its turn, analogous to the scalar potential formula of a continuous
distribution of electric charges (1.29).

2.1.7 Energy of the Magnetic Field of Stationary Currents

Let us calculate first the potential energy of a circuitC traveled by a stationary current
I , and placed in a magnetic field of induction B. The field acts on the current by the
Laplace force (see Eq. (2.28)),

F = I
∮

dl × B.

Due to this force, the circuitC will suffer an elementary displacement ds as in Fig. 2.7
and, as a result, it will perform the elementary mechanical work

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
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Fig. 2.7 Displacement of an
electric circuit C placed in
the magnetic field B.

dL = F · ds = I
∮

B · (ds × dl) .

But ds×dl = − δS is an oriented element of the surfaceΣ , swept out by the contour
C as a result of displacement, so that

dL = −I
∫

Σ

B · δS.

The surface Σ can be expressed as the difference between the surface S bounded
by C and passing through C ′, and the surface S′ bounded by C ′ which – except for
Σ – coincides with S. Hence,

δL = −I

[∫

S
B · dS −

∫

S′
B · dS

]
= −I δ

∫

S
B · dS,

or, by means of the Stokes theorem (A.34),

δL = −I δ

∮

C
A · dl.

The potential energy of the circuit C in the field B is then

Wm = I
∮

C
A · dl. (2.53)

If the circuit is not linear, we can pass to an integral over the domain occupied by
the current using the substitution (see Eq. (2.2)) I dl → j dτ , which means

Wm =
∫

V
A · j dτ . (2.54)

Recalling the procedure leading to the energy of the electrostatic field, one observes
that B, in its turn, is created by a current of density j′ which in the field B′ generated
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by the circuit C has the potential energy

W ′
m =

∫

V
A · j′dτ .

But Wm = W ′
m , showing that the energy of the system is

Wm = 1

2

∫

V
A · j dτ , (2.55)

where the integral extends over the domain occupied by both currents.
Using Ampère’s law, we find that

Wm = 1

2

∫

V
A · ∇ × H dτ = 1

2

∫

V
∇ · (H × A) dτ + 1

2

∫

V
H · ∇ × A dτ .

With the help of the divergence theorem (A.32), the first integral in the r.h.s of
the above formula can be transformed into a surface integral. When we extend the
integration domain over the whole space, this integral goes to zero as the fields vanish
at infinity, and we finally obtain

Wm = 1

2

∫
H · B dτ , (2.56)

analogous to the formula (1.65), which expresses the energy of the electrostatic field.

2.1.8 Magnetic Multipoles

The definition of themagnetic multipole is analogous to that of the electric multipole.
A magnetic multipole is, therefore, a system of magnetic dipoles situated at small
mutual distances.

In the following, we shall calculate the vector potential for various magnetic
multipoles. Using the procedure given in Sect. 1.1.11, one expands in series 1

|r−r′|
(see Eq. (1.80)). The component Ai of (2.43) can then be cast into the form

Ai (r) = μ0

4π

[
1

r

∫

V ′
ji (r′)dτ ′ + 1

r3
r ·

∫

V ′
r′ ji (r′)dτ ′

+ 1

6

∂2

∂x j∂xk

(
1

r

)∫

V ′

(
3x ′

j x
′
k − r ′2δ jk

)
ji (r′)dτ ′ + . . .

]

= A(0)
i + A(1)

i + A(2)
i + . . . (2.57)

Here A(0),A(1),A(2), etc. are the vector potentials of the monopole, dipole, quadru-
pole, octupole, ..., respectively. In a condensed form, (2.57) can be written as

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1


2.1 Magnetostatic Field in Vacuum 95

Ai (r) = μ0

4π

∞∑

l=0

(−1)l

l!
∫

V ′
ji (r′)

(
r′ · ∇)(l)

(
1

r

)
dτ ′. (2.58)

In what follows, we shall calculate the first two terms of (2.57). We start by
showing that, if f (r′) and g(r′) are two well-behaved functions (i.e. continuous and
differentiable), then

∫ [
f j(r′) · ∇′g + g j(r′) · ∇′ f

]
dτ ′ = 0. (2.59)

Integrating by parts the second term of (2.59), we have

∫
f j · ∇′g dτ ′ +

∫
∇′ · (g f j) dτ ′ −

∫
f j · ∇′g dτ ′ = 0,

wherewe used the fact that the currents are stationary and localized, i.e.∇′ ·j(r′) = 0.
The middle integral goes to zero when extending the integration domain over the
whole space and this completes the proof.

By choosing f = 1, g = x ′
i in (2.59), it follows that

∫
j(r′)dτ ′ = 0, i.e. A(0) = 0, (2.60)

which is expected, since magnetic monopoles have not been observed.
Next, consider f = x ′

i , g = x ′
k in (2.59), which leads to

∫ (
x ′
i jk + x ′

k ji
)
dτ ′ = 0.

Using this formula and after some manipulations of the terms, we obtain

A(1)
i = μ0

4π

[
1

r3
xk

∫
x ′
k ji dτ ′

]
= μ0

4π

1

r3

[
1

2
xk

∫ (
ji x

′
k − jk x

′
i

)
dτ ′

]

= μ0

4π

1

r3

[
1

2
εkil xk

∫
(r′ × j)l dτ ′

]

= μ0

4π

1

r3

[
εilk

(
1

2

∫
r′ × j dτ ′

)

l

xk

]

= μ0

4π

1

r3

[(
1

2

∫
r′ × j dτ ′

)
× r

]

i

.

By definition, the quantity

m = 1

2

∫
r′ × j(r′) dτ ′ (2.61)
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is the magnetic dipole moment of the distribution of stationary currents. Thus,

A(1)(r) = μ0

4π

1

r3
(m × r) . (2.62)

The field B(1) of the magnetic dipole (first-order multipole) is found by means of
(2.42) and (A.44):

B(1) = μ0

4π
∇ ×

(
m × r
r3

)

= μ0

4π

[
1

r3
∇ × (m × r) + ∇

(
1

r3

)
× (m × r)

]
,

and finally

B(1) = μ0

4π

[
3(m · r)r

r5
− m

r3

]
. (2.63)

This formula is analogous to the expression of the field of an electric dipole. If by r̂
we denote the unit vector of r,

B(1) = μ0

4πr3
[ 3(m · r̂)r̂ − m]. (2.64)

The same result is found if, by similarity to the treatment of the electrostatic field,
one defines the scalar potential of the magnetostatic field as (see Eq. (2.32)):

Vm = μ0

4π

m · r
r3

, (2.65)

and one calculates B(1) by formula

B(1) = −∇Vm . (2.66)

At first sight, (2.66) contradicts Ampère’s law: according to (2.66), ∇ × B = 0,
while according to Ampère’s law, ∇ × B = μ0j �= 0. In fact, there is no contra-
diction: in the formula of Ampère’s law the circulation is taken along a closed path
surrounding the currents, while (2.66) is calculated far from (and outside) the circuit,
where

∮
B ·dl = 0. In the discussion to follow, we shall use only the vector potential.

Observations:

(a) If the circuit is plane, the magnetic moment m is orthogonal to the surface of
the circuit. Substituting j dτ by I dl, we obtain
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m = 1

2
I
∮

r′ × dl′ = IS, (2.67)

where S is the plane area bounded by the circuit, whatever its form.
(b) Using (2.58), we can write the vector potential of a distribution of magnetic

dipoles in a condensed form:

A(r) = μ0

4π

∞∑

l=0

(−1)l

(l + 1)!Mi1...il ∂i1 ... ∂il

(
1

r

)
, (2.68)

where

Mi1...il = (l + 1)
∫

V ′
x ′
i1 ... x

′
il j(r

′) dτ ′ (2.69)

is the 2l -th order multipolar magnetic moment tensor.
(c) Although magnetic monopoles have not been observed, their existence is not

forbidden by any law of Nature. On the contrary, various quantum theories
predict the existence of magnetic monopoles. However, the calculated masses
of monopoles are extremely large, such that their production in the laboratory
at the presently attainable energies is not possible. The theoretical research on
magnetic monopoles is very active. In 2008, it was reported that quasi-particles
in materials called spin ices resembled in behaviour magnetic monopoles (but
of course such monopoles can not be isolated from the spin ice).

2.2 Magnetostatic Field in Magnetized Media

2.2.1 Polarized Magnetic Media

It has been experimentally shown that any substance, when introduced in a magnetic
field, is magnetically polarized. As proven by Ampère, the magnetization can be
explained by the equivalence between molecular currents and magnetic dipoles.

To study the magnetic polarization one introduces some quantities and definitions
similar to those encountered in the case of the dielectric polarization (see Sect. 1.2).
One of these is the magnetization intensity, or magnetic polarization vector,

M = lim
Δτ→0

Δm
Δτ

= dm
dτ

, (2.70)

where m is the magnetic dipole moment.

http://dx.doi.org/10.1007/978-3-642-17381-3_1
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According to (2.62), the vector potential of a continuous distribution of magnetic
dipoles is

A(r) = − μ0

4π

∫

V ′
dm × ∇

(
1

|r − r′|
)

= μ0

4π

∫

V ′
M(r′) × ∇′

(
1

|r − r′|
)
dτ ′.

Using (A.39) and (A.44), it follows that

A(r) = − μ0

4π

∫

V ′
∇′ ×

(
M(r′)
|r − r′|

)
dτ ′ + μ0

4π

∫

V ′

∇′ × M(r′)
|r − r′| dτ ′

= μ0

4π

∮

S′

M × n′

|r − r′|dS
′ + μ0

4π

∫

V ′

∇′ × M(r′)
|r − r′| dτ ′. (2.71)

Comparing now (2.71) and (2.44), one observes that the two relations are formally
identical, therefore we may take

jm = ∇ × M, im = M × n′. (2.72)

Consequently, from the point of view of magnetic external actions, a continuous
distribution of magnetic multipoles behaves as a fictitious distribution of currents,
located both in the volume and on the surface. These currents are equivalent to the
bound charges encountered in electrostatics and are due to the orbital motion of
electrons in the atoms.

Recall that in the formula expressing Ampère’s law (2.45) the current represents
the sum of free and bound currents. The bound currents are precisely those corre-
sponding to the magnetic polarization. Thus,

∇ × B
μ0

= j f ree + jm = j f ree + ∇ × M,

or
∇ × H = j f ree, (2.73)

where, by definition,

H = B
μ0

− M (2.74)

is the magnetic field intensity in the medium under consideration. We would like
to emphasize that the curl of H is determined solely by the free current, which
makes Ampère’ law in the form (2.73) (together with the definition (2.74)) extremely
important in solving magnetostatics problems.

Unlike Ampère’s law, the equation ∇ · B = 0 remains unchanged in a medium.
This is obvious, since any magnetic field is source-free. Anticipating, the equations
(2.45), (2.47), and (2.73) are at the basis of Maxwell’s electromagnetic field theory.
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The phenomenon of magnetization appears due to the bound magnetic charges,
which are due to the motion of elementary charged particles in atoms and molecules.
Similarly to the electric polarization, themagnetizationM is microscopically defined
by

M = Nm, (2.75)

where N is the number of elementary currents (or particles bearing a magnetic
moment m) per unit volume.

Consider an electron on its orbit around the nucleus. Associated with this motion
is a dipole orbital moment

mL = e

2m
L, (2.76)

where e is the electron charge, m is its mass, and L is the electron’s orbital angular
momentum. Moreover, the electron has also an intrinsic angular momentum or spin
S which leads to a magnetic moment. This is a quantum effect:

mS = egs
m

S, (2.77)

where S = ±�/2 (� is the reduced Planck constant) and gs ∼ 2.002 is the gyromag-
netic ratio of the electron. The customary unit for elementary magnetic momenta is
the Bohr magneton,

mB = e�

2m
= 9.274 × 10−24J · T−1.

The total magnetic moment of the electron is

m = e

2m
(L + 2S).

A similar expression to (2.77) gives the proton magnetic moment, but as its mass
Mp is much greater thanm (Mp ∼ 1840m), the proton has a magnetic moment three
orders of magnitude smaller than the electron. In the low energy (non-relativistic)
case of electron motion inside an atom placed in a magnetic field, two independent
magnetic moments appear, orbital and spin, interacting with each other and con-
tributing to the total energy of the electron in the atom. These two contributions play
an important role in determining the magnetic properties of matter.

2.2.2 Types of Magnetizable Media

Using the definition (2.74), one can establish the relation between the magnetization
intensityM and the fieldH. Homogeneous and isotropic media are characterized by
the constitutive relation

B = μH,
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where μ = μ0μr is the (absolute) magnetic permeability of the considered medium,
while μr is its relative magnetic permeability. Thus,

M = (μr − 1)H = χH, (2.78)

where
χ = μr − 1 (2.79)

is called the magnetic susceptibility of the medium. Obviously,

μ = μ0(1 + χ). (2.80)

In isotropic, non-homogeneous media, the coefficients μ and χ depend on the
point:

B = μ(x, y, z)H, M = χ(x, y, z)H. (2.81)

In anisotropic media, the relations betweenB,M, andH, have tensorial character:

Bi = μik Hk; Mi = [(μr )ik − δik] Hk = χik Hk, (2.82)

where μik and χik are the (absolute) magnetic permeability tensor and the magnetic
susceptibility tensor, respectively.

2.2.2.1 Diamagnetism and Paramagnetism

Substances characterized by a small susceptibility, |χ| � 1, are called diamagnetic
if χ < 0, while those with χ > 0 are called paramagnetic. The magnetization in
diamagnetic and paramagnetic media depends linearly on the applied magnetic field.

In diamagnetic media, as a result of the action of the external field H, a magne-
tization M of opposite direction to H is created, and the magnetic susceptibility is
therefore negative. This arises because the external field induces elementary currents
in the substance. The external field also acts independently on the spin magnetic
moments, but the net effect of this action on the system of electrons of a diamagnetic
medium is negligible, as compared to the effect produced by the orbital motion of
the charges.

According to Lenz’s law, the field created by the moving charges is opposed to
the applied external field H. Inside the substance, the magnetic field decreases and
the medium expels the magnetic lines of force. The magnetic lines of force within
a diamagnetic substance have opposite direction to the external field H, and the net
result of embedding a diamagnetic substance in a magnetic field H is the expulsion
of the lines of force (Fig. 2.8a).

The phenomenon of diamagnetism is particularly important in superconductors.
In some substances there exist permanent magnetic dipoles associated with the

electron spin. Under the action of an external magnetic fieldH, the magnetic dipoles
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Fig. 2.8 (a) A diamagnetic
body placed in a magnetic
field expels the lines of
force. (b) A paramagnetic
body placed in a magnetic
field attracts the lines of
force and tends to
concentrate them inside it.

line up parallel to the field. This effect is referred to as paramagnetism. Not all the
dipoles are aligned parallel to the field, since the ordering action of the magnetic
field is opposed by the disordering action of thermal motions, which increases with
temperature.

In a paramagnetic medium, the lines of force of the external field H tend to
concentrate inside the substance (Fig. 2.8b). If the magnetic field is switched off,
the dipoles become disordered again and the substance does not retain magnetic
properties.

2.2.2.2 Ferromagnetism

Some media show a non-linear relation between M and H, such as

M = χ1H + χ2H
2 + χ3H

3 + · · · . (2.83)

This type of connection appears, for example, in the case of ferromagnetic substances.
Here, χ (which is positive) and μ are not constants, but depend on H, and typically
have high values. The curve μ = μ(H) is experimentally determined. Ferromagnetic
substances can present a magnetic polarization M0 �= 0 even when H is absent
(permanent magnetization):

M = M0 + χH. (2.84)

In ferromagnetic substances there is a spontaneous tendency for parallel neigh-
bouring spins to couple. This is a purely quantum effect. When an external magnetic
fieldH is applied to a ferromagnetic substance, the substance acquires a macroscopic
magnetizationM parallel to the field. When the external fieldH is removed, the sub-
stance preserves some magnetization M and behaves as a permanent dipole, like a
common magnet.

In a ferromagnetic substance there are elementary regions or domains with spon-
taneous magnetization (see Fig. 2.9a). Ferromagnetic materials exhibit the phenom-
enon of hysteresis, which is depicted in Fig. 2.9b. If an external magnetic field H is
applied, the domains align themselves with H up to some maximum value called
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Fig. 2.9 (a) In a ferromagnetic material there are domains with spontaneous magnetization. Under
the action of an external field, the magnetic moments of the domains line up parallel to the applied
field. If the external field is turned off, the ferromagnetic substance retains the acquired magnetiza-
tion and behaves as a permanent dipole. (b) Hysteresis cycle for a ferromagnet.

saturation magnetizationMS (above which the magnetization does not increase any-
more, if we increase the applied magnetic field). If H decreases, the ferromagnet
maintains some magnetization, and even when the external field H becomes zero,
part of the alignment is retained, as a memory, and the sample would stay magne-
tized indefinitely. To demagnetize the ferromagnet, it would be necessary to apply a
magnetic field in the opposite direction. For a large enough negative field −H, we
can reach a negative saturation magnetization −MS . The change in magnetization
from−MS toMS follows a similar path to the previous one, from negative to positive
magnetization, closing the cycle of hysteresis. (The element of memory in a hard
disk drive is based on this effect).

If the temperature is increased, the ferromagnetic property disappears at some tem-
perature Tc characteristic of each ferromagnetic substance. For T > Tc the material
behaves like a paramagnet. This critical temperature Tc is called the Curie tempera-
ture, in honour of Pierre Curie (1859–1906).

As the temperature decreases, the magnetic susceptibility of a ferromagnetic sub-
stance varies, becoming infinite at the Curie temperature Tc. Furthermore, a sponta-
neous magnetization M appears in the substance even in the absence of an external
field H. Here occurs a phenomenon called second order phase transition. The fer-
romagnetic substance reaches its minimal energy, or ground state, when all dipoles
are oriented in one direction, at a nonzero value of its magnetization.

2.2.3 Jump Conditions for the Components of the Fields
H and B

The relations describing the behaviour of the normal and tangent components of the
fieldsH and B, when passing through interfaces which separate media with different
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Fig. 2.10 An elementary prism ABCDEFGH used to determine the jump conditions for the
normal and tangent components of the fields B and H.

permeabilities are obtained using a procedure very similar to the one described in
Sect. 1.2.4.

Consider two homogeneous and isotropic magnetizable media of permeabilities
μ1 and μ2, separated by an interface in which we assume that there are electric
currents. Let H1,B1 and H2,B2 be the corresponding fields in the two media. To
obtain the desired relations we shall use Fig. 2.10.

2.2.3.1 Jump Conditions for the Normal Components

The flux of B through the elementary prism ABCDEFGH is

dΦm = B · dS = dΦ1 + dΦ2 + dΦl = (B2n − B1n) dS
′ + dΦl = 0.

Since
lim
dl→0

dΦl = 0,

it follows that
B2n − B1n = 0, (2.85)

as well as
μ2H2n − μ1H1n = 0, (2.86)

meaning that, ifμ1 �= μ2, the normal component of the fieldH varies discontinuously
(suffers a refraction).

http://dx.doi.org/10.1007/978-3-642-17381-3_1
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2.2.3.2 Jump Conditions for the Tangent Components

Let us now apply Ampère’s law (2.46) to the closed contour ABCDA shown in
Fig. 2.10:

∮

ABCDA
H · ds =

∫

AB
H1 · ds1 +

∫

BC
H · ds +

∫

CD
H2 · ds2 +

∫

DA
H · ds

=
∫

dS
j · dS.

Since the current must remain finite when taking the limit dl → 0, one obtains

∫
(H2 − H1) · T ds = lim

dl→0

∫
j · dS = lim

dl→0

∫
jN dS =

∫
iNds,

where iN is the component of the linear density of current along the direction of the
unit vector N. Therefore, we have

H2T − H1T = iN , (2.87)

or, in vector form,
n × (H2 − H1) = i,

as well as
B2T

μ2
− B1T

μ1
= iN . (2.88)

These relations show that the tangent component ofH and B present a discontinuous
variation (if iN �= 0). There is no jump if μ1 = μ2 and iN = 0.

2.3 Solved Problems

Problem 1. Show that the magnetostatic uniform field B0 admits as vector potential
A = 1

2B0 × r.
Solution. Using the Levi-Civita symbol εi jk , we have

∇ × A = 1

2
∇ × (B0 × r) = 1

2
εi jk∂ j (B0 × r)kui = 1

2
εi jk∂ j (εklm B0l xm)ui

= 1

2
εi jkεklm B0l(∂ j xm)ui = 1

2
εi jkεklm B0lδ jmui = 1

2
εimkεklm B0lui

= 1

2
εimkεlmk B0lui = 1

2
2 δil B0lui = B0i ui = B0.
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Fig. 2.11 Schematic
representation of the infinite,
rectilinear current I , given in
Problem 2.

Problem 2. Find the scalar and vector potentials corresponding to amagnetostatic
field created by an infinite, rectilinear current of intensity I .

Solution. Since
∇ × H = ∇ × (∇Vm) = 0 (2.89)

anywhere around the current, it follows that one can define a scalar potential Vm such
that

H = −∇Vm . (2.90)

The geometry of the problem suggests the use of cylindrical coordinates r,ϕ, z,
with the z-axis oriented along the current. The magnetic field lines are then circles
orthogonal to the wire, with centres on the wire, while the magnitude of the field
is constant along a field line (Fig. 2.11). Applying Ampère’s law (2.46) in the form∮
H · dl = I , we have

Hr = Hz = 0, Hϕ = I

2πr
. (2.91)

On the other hand, projecting (2.90) on the coordinate axes, one obtains

Hr = −∂Vm

∂r
,

Hϕ = −1

r

∂Vm

∂ϕ
, (2.92)

Hz = −∂Vm

∂z
.

The magnetostatic potential is then

Vm = − I

2π
ϕ + V0, (2.93)
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where V0 is an arbitrary real constant. Equation (2.93) shows that the magnetostatic
equipotential surfaces are meridian planes.

To determine the vector potential A we use (2.42):

B = ∇ × A =
(
1

r

∂Az

∂ϕ
− ∂Aϕ

∂z

)
er +

(
∂Ar

∂z
− ∂Az

∂r

)
eϕ

+
[
1

r

∂(r Aϕ)

∂r
− ∂Ar

∂ϕ

]
ez . (2.94)

Since the only non-zero component of the current is oriented along the z-axis, from
(2.43), i.e.

A(r) = μ0

4π

∫

V ′

j(r′)
|r − r′|dτ ′.

we find that Ar = Aϕ = 0. Consequently,

Br = 1

r

∂Az

∂ϕ
,

Bϕ = −∂Az

∂r
, (2.95)

Bz = 0,

and, in view of (2.91), we finally obtain

Az = −μ0 I

2π
ln r + A0, (2.96)

where A0 is an arbitrary real constant.
Problem 3. Determine the field B produced in vacuum by a stationary, rectilinear

current of length 2L and intensity I .
Solution. This time we choose a Cartesian coordinate system, with the z-axis

along the wire and the origin at its middle (Fig. 2.12).
At the point P defined by the radius vector r, the vector potential is

A(r) = μ0

4π

∫
j(r′)dτ ′

|r − r′| . (2.97)

As
jdτ = j S dl = j S dl = I dl,

it follows that

A(r) = μ0 I

4π

+L∫

−L

dl
r

, (2.98)
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Fig. 2.12 The geometry
of the finite current in
Problem 3.

which, projected on the coordinate axes, reads

Ax = Ay = 0, Az = μ0 I

4π

∫ +L

−L

dξ

r
. (2.99)

To perform the integration in (2.99) we make the change of variable z−ξ = u. Since
r = √

R2 + u2, dξ = −du, we have

Az = μ0 I

4π

∫ z+L

z−L

du√
R2 + u2

= μ0 I

4π

(
arcsinh

z + L

R
− arcsinh

z − L

R

)
. (2.100)

Due to the cylindrical symmetry of the problem, we find immediately (see
Appendix D):

Br = Bz = 0, Bϕ = −∂Az

∂R
,

and, performing the derivatives,

Bϕ = μ0 I

4πR

[
z + L√

R2 + (z + L)2
− z − L√

R2 + (z − L)2

]
. (2.101)

Remark that, for L → ∞ and z �= 0, (2.101) leads to the expected formula,
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Bϕ = μ0 I

2πR
.

Problem 4. A stationary electric current I passes through a thin wire of an elliptic
form, with the semi-major axis a and eccentricity e. Determine the magnetic field
intensity H at the centre of the wire.

Solution. Consider the ellipse described by the canonical equation

x2

a2
+ y2

b2
= 1,

in which case the parametric equations are

x = a cosϕ, y = b sinϕ, ϕ ∈ [−π,+π], (2.102)

with the eccentricity e = √
1 − b2/a2. The field intensity at the centre of the ellipse

is

H = I

4π

∮

elli pse

dl × r
r3

, (2.103)

where dl = (dx, dy, 0) is an arc element of ellipse and r = (−x,−y, 0) is the radius
vector of the centre O with respect to dl (Fig. 2.13). Therefore

dl × r =
∣∣∣∣∣∣

i j k
dx dy 0
−x −y 0

∣∣∣∣∣∣
= (x dy − y dx)k,

showing that the only non-zero component of H at O is orthogonal to the surface of
the ellipse (i.e. oriented along the z-axis):

Hz = H · k = I

4π

∮

elli pse

x dy − y dx

r3
. (2.104)

Fig. 2.13 A stationary
electric current I passing
through a thin wire of an
elliptic form (Problem 4).



2.3 Solved Problems 109

Using (2.102), we may write

r2 = x2 + y2 = a2(1 − sin2 ϕ) + b2 sin2 ϕ

= a2
[
1 −

(
a2 − b2

a2

)
sin2 ϕ

]
= a2(1 − e2 sin2 ϕ), (2.105)

and thus (2.104) becomes

Hz = I

4π

∫ +π

−π

[(−b sinϕ)(−a sinϕ) + (a cosϕ)(b cosϕ)]dϕ

a3(1 − e2 sin2 ϕ)3/2
(2.106)

= b I

4πa2

∫ π

−π

dϕ

(1 − e2 sin2 ϕ)3/2
= I

√
1 − e2

4πa

∫ π

−π

dϕ

(1 − e2 sin2 ϕ)3/2

= I
√
1 − e2

2πa

∫ π

0

dϕ

(1 − e2 sin2 ϕ)3/2
= I

√
1 − e2

πa

∫ π/2

0

dϕ

(1 − e2 sin2 ϕ)3/2
.

Here we used the facts that the integrand is an even function and the integration
interval is symmetric about the origin. Also, we took into account that sin2 ϕ is a
positive periodical function (the period is π). To calculate the integral (2.106) one
uses the change of variable

1 − e2 sin2 ϕ = 1 − e2

1 − e2 sin2 α
. (2.107)

Then

sinϕ = cosα√
1 − e2 sin2 α

, cosϕ =
√
1 − e2

sinα√
1 − e2 sin2 α

,

and

cosϕdϕ =
− sinα

√
1 − e2 sin2 α dα + e2 sinα cos2 α dα√

1−e2 sin2 α

1 − e2 sin2 α

= −(1 − e2) sinα

(1 − e2 sin2 α)3/2
dα.

The last formula leads to

dϕ = − sinα(1 − e2)

cosϕ(1 − e2 sin2 α)3/2
dα = −

√
1 − e2

1 − e2 sin2 α
dα.
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Returning to (2.106), the z-component of the field H is

Hz = − I
√
1 − e2

πa

∫ 0

π/2

(1 − e2 sin2 α)3/2
√
1 − e2 dα

(1 − e2)3/2(1 − e2 sin2 α)
(2.108)

= I

πa
√
1 − e2

∫ π/2

0

√
1 − e2 sin2 α dα = I E(e)

πa
√
1 − e2

= I E(e)

πb
,

where

E(e) =
∫ π/2

0

√
1 − e2 sin2 α dα

is Legendre’s trigonometric form of the complete elliptic integral of the second kind.
To conclude, the magnetic field intensity produced by the current in the wire is

orthogonal to the plane of the wire, its magnitude being given by (2.108).
Problem 5. Calculate the vector potential A of the field produced by a current I

passing through a circular loop of radius R.
Solution. It is convenient to use a cylindrical coordinate system ρ,ϕ, z, with the

origin at the centre of the loop, and the z-axis orthogonal to its surface (Fig. 2.14).
Let P(ρ,ϕ, z) be the point where A is determined, P ′ – its orthogonal projection
on the plane of the loop, Q – an actual point on the loop, and I dl – an elementary
current with the origin at Q. The triangle PP ′Q is a right triangle, with the right
angle at P ′, while the unit vectors eρ, eϕ, ez are shown in Fig. 2.14.

Fig. 2.14 A current I passing through the circular loop of radius R (Problem 5).
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Fig. 2.15 An auxiliary
geometrical construction for
the Problem 5.

The vector potential is defined by

A = μ0

4π
I
∮

loop

dl
r

, (2.109)

where
r2 = r ′2 + z2 = R2 + ρ2 − 2ρR cosα + z2. (2.110)

The components of A in cylindrical coordinates are obtained by performing the dot
product between A and the unit vectors eρ, eϕ, ez . Since dl ⊥ ez , we have

Az = A · ez = 0. (2.111)

From Fig. 2.15 we note that

dl · eρ = dl cos
(
α + π

2

)
= dl sinα, dl = R dα,

such that

Aρ = A · eρ = μ0 I R

4π

∫ +π

−π

sinα dα

r
= 0, (2.112)

because the integrand is an odd function ofα, and the integration interval is symmetric
with respect to the origin O .

The only non-zero component of A is Aϕ :

Aϕ = A · eϕ = μ0 I

4π

∮

loop

dl · eϕ

r
= μ0 I R

4π

∫ +π

−π

cosα dα

r

= μ0 I R

2π

∫ +π

0

cosα dα

r
. (2.113)
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By using the substitution α = 2ψ, we obtain

Aϕ(ρ, z) = μ0 I R

π

∫ π/2

0

(2 cos2 ψ − 1)dψ

(ρ2 + R2 + z2 − 2ρR cos 2ψ)1/2

= μ0 I R

π

∫ π/2

0

(2 cos2 ψ − 1)dψ
[
(ρ + R)2 + z2 − 4ρR cos2 ψ

]1/2 (2.114)

= μ0 Iξ

2π

√
R

ρ

∫ π/2

0

(2 cos2 ψ − 1)dψ

(1 − ξ2 cos2 ψ)1/2
= μ0 Iξ

2π

√
R

ρ
I(ξ),

where

ξ2 = 4ρR

(ρ + R)2 + z2
and I(ξ) =

∫ π/2

0

(2 cos2 ψ − 1)dψ

(1 − ξ2 cos2 ψ)1/2
.

Remark that

ξ2 ≤ 4ρR

(ρ + R)2
= 1 −

(
ρ − R

ρ + R

)2

≤ 1.

meaning that 0 ≤ ξ ≤ 1.
Formula (2.114) can be expressed in terms of Legendre’s trigonometric form of

complete elliptic integrals of the first and second kind:

K (ξ) =
∫ π/2

0

dψ√
1 − ξ2 sin2 ψ

, (2.115)

E(ξ) =
∫ π/2

0

√
1 − ξ2 sin2 ψ dψ, 0 ≤ ξ ≤ 1.

Using these auxiliary formulae, let us now go back to (2.114) and perform the
integration. This can be done by a suitable change of variable, namely cosψ = sin θ.
Then

I(ξ) =
π/2∫

0

(
2 cos2 ψ − 1

)
dψ

(
1 − ξ2 cos2 ψ

)1/2 =
π/2∫

0

(
2 sin2 θ − 1

)
dθ

(
1 − ξ2 sin2 θ

)1/2

= − 2

ξ2

π/2∫

0

−ξ2 sin2 θ dθ√
1 − ξ2 sin2 θ

−
π/2∫

0

dθ√
1 − ξ2 sin2 θ

= − 2

ξ2

π/2∫

0

(
1 − ξ2 sin2 θ − 1

)
dθ

√
1 − ξ2 sin2 θ

−
π/2∫

0

dθ√
1 − ξ2 sin2 θ



2.3 Solved Problems 113

= − 2

ξ2

π/2∫

0

√
1 − ξ2 sin2 θ dθ +

(
2

ξ2
− 1

) π/2∫

0

dθ√
1 − ξ2 sin2 θ

= − 2

ξ2
E(ξ) +

(
2

ξ2
− 1

)
K (ξ).

Hence,

Aϕ(ρ, z) = μ0 Iξ

2π

√
R

ρ

∫ π/2

0

(
2 cos2 ψ − 1

)
dψ

(
1 − ξ2 cos2 ψ

)1/2

= μ0 Iξ

2π

√
R

ρ

[
− 2

ξ2
E(ξ) +

(
2

ξ2
− 1

)
K (ξ)

]
,

or, after some arrangement of terms,

Aϕ(ρ, z) = μ0 I

πξ

√
R

ρ

[(
1 − ξ2

2

)
K (ξ) − E(ξ)

]
. (2.116)

2.4 Proposed Problems

1. Find the stationary current distribution in a metallic rectangular plate with the
sides a, b, thickness h, and electric conductivityλ. The electrodes throughwhich
the potential difference is applied to the plate are placed on two opposite sides.

2. Find the stationary current distribution in a metallic circular plate of thickness h,
radius a, and electric conductivity λ. The electrodes through which the potential
difference is applied to the plate are placed at two diametrically opposed points.

3. Show that the force of interaction between two circuitsC1 andC2, traveled by the
stationary currents I1 and I2, satisfies the action and reaction principle, while the
force of interaction between two elements of C1 and C2 does not obey this law.
(Hint: Derive the formula (2.30) and interpret it in terms of action and reaction
principle.)

4. Show that the magnetic lines of force of a linear, plane circuit of an arbitrary
form, situated in vacuum, are curves symmetric with respect to the plane of the
circuit.

5. Determine the magnetic moment of a non-magnetic, homogeneously filled
sphere with charge Q, uniformly rotating (ω = const.) around an axis pass-
ing through its centre. The radius of the sphere is R.

6. A stationary electric current I travels through an n-sided convex regular polygon,
whose circumscribed circle has radius R. Calculate the magnetic field both at
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Fig. 2.16 The electric
circuit closing through the
pendulum in Problem 10.

the centre of the polygon, and at some point of the polygon axis, situated at a
distance z relative to its centre.

7. Determine the magnetic field produced by an infinite electric current I , situated
at a distance a with respect to the plane surface of an iron block of permeability
μ.

8. Determine the shape of the lines of the magnetic field produced by a stationary
electric current I passing through a circular loop of radius R.

9. Show that far from the loop in Problem 8, the vector potential is given by

Aϕ(r) = μ0

4π

m × r
r3

,

where r is the radius-vector (with respect to the centre of the loop) of the point
where the field is determined, and m is the magnetic moment of the loop.

10. A mathematical pendulum of length L whose rod is made of a conducting mate-
rial moves so that its inferior end slides without friction on a metallic support in
the shape of an arc of circle. The rod is rigid, of negligible mass, and it moves in
a static magnetic field of induction B, orthogonal to the plane of the pendulum.
The bob of the pendulum is a point mass m. The metallic support and the fix
end of the pendulum are connected through an ideal capacitor of capacity C , the
electric circuit closing through the rod, as depicted in Fig. 2.16.
Show that, neglecting the resistance and the inductance of the circuit, the period
of oscillation of the pendulum is

T = 2π

√
L

g

(
1 + CB2L2

4m

)
.



Chapter 3
The Electromagnetic Field

3.1 Maxwell’s Equations in Vacuum

The study of time-variable electric and magnetic fields showed the strong
interdependence between them: a variable electric field produces a magnetic field
and vice-versa.

Based on Ampère’s and Faraday’s research, James Clerk Maxwell (1831–1879)
elaborated the theory of the electromagnetic field. As shown in his fundamental work,
A Treatise on Electricity and Magnetism (1873), the variable electric and magnetic
fields are not only interdependent, but also carriers of energy.

The fundamental principles of Maxwell’s electromagnetic theory are contained
in a system of linear partial differential equations, known as Maxwell’s equations.
Two of these equations show the time variation of electric and magnetic fields, being
deduced by generalizing Ampère’s law for non-stationary regime and Faraday’s law
of electromagnetic induction. Let us deduce and discuss these two equations.

3.1.1 Maxwell–Ampère Equation

Let us consider Ampère’s equation in the form (2.73),∇ × H = j, where on the r.h.s.
we have the free (not bound) current, since we wish to write the Maxwell–Ampère
equation in terms of free currents, i.e. the currents which we can turn on and off at
will. By applying the operator divergence to (2.73), it follows that

∇ · j = 0.

On the other hand, the equation of continuity (2.15) produces

∇ · j = −∂ρ/∂t.
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Consequently, while in stationary regime these two equations coincide, in a non-
stationary situation (∂ρ/∂t �= 0) these equations seem to contradict each other. This
apparent inconsistency was brilliantly solved by Maxwell, by introducing the notion
of displacement current.

The current density j appearing in the equation of continuity is due to the motion
of charges and generally contains conduction and convection currents. In contrast,
the current appearing in Ampère’s law is subject to the condition ∇ · j = 0, i.e. it
is a closed current. This means that in Ampère’s equation should appear not only
conduction and convection currents, but also an additional current which “closes the
circuit”.

Maxwell postulated the validity of Ampère’s law in non-stationary regime, pro-
vided that j is composed of two parts:

j = jcond + jdisp,

where jdisp is termed displacement current.1 Ampère’s equation then reads

∇ × H = jcond + jdisp. (3.1)

Taking the divergence of this equation, one obtains ∇ · jcond + ∇ · jdisp = 0, which
means

∇ · jdisp = −∇ · jcond = ∂ρ

∂t
,

or, in view of Gauss’s theorem (1.96) and taking into account that the operators ∇
and ∂/∂t are independent,

∇ · jdisp = ∂

∂t
(∇ · D) = ∇ ·

(
∂D
∂t

)
.

The simplest solution of the last equation is

jdisp = ∂D
∂t

, (3.2)

and (3.1) becomes

∇ × H = j + ∂D
∂t

, (3.3)

known as the Maxwell–Ampère equation. Remark that in (3.3) we abandoned the
subindex “cond” attached to j in (3.1); we shall use this notation in the discussion to
follow. Equation (3.3) is valid in any polarizable medium, with j denoting the current
density produced by the motion of free charges.

1The name displacement current comes from the fact that this current is produced by the time
variation of the electric displacement D, see Eq. (3.2).

http://dx.doi.org/10.1007/978-3-642-17381-3_1
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In vacuum, H = B/μ0 and D = ε0E, and (3.3) becomes

∇ × B = μ0 j + 1

c2
∂E
∂t

, (3.4)

where c = 1/
√

ε0μ0 is the speed of light in vacuum.Actually, the formof theEq. (3.4)
is valid in any polarizable medium, as long as the current on the r.h.s. includes also
the contribution of the bound electric and magnetic charges:

∇ × B = μ0 J + 1

c2
∂E
∂t

, (3.5)

where

J = j + ∇ × M + ∂P
∂t

. (3.6)

The displacement currents can also exist in vacuum. They are produced not by
the motion of charges, but by the time variation of the electric field E.

Equation (3.4) expresses the fundamental fact that the time variation of an electric
field produces a variable magnetic field.

3.1.2 Maxwell–Faraday Equation

In 1831, Michael Faraday (1791–1867) discovered the phenomenon of electromag-
netic induction. The integral form of Faraday’s law of induction reads

E =
∮

C
E · dl = − d

dt

∫

S
B · dS = −dΦm

dt
, (3.7)

where E is the electromotive force, S is an open surface bounded by a simple (or Jor-
danian2) closed contourC (Fig. 3.1), both being time-independent,Φm = ∫

S B · dS is
themagnetic flux through the surface S, whileE is the electric field induced in the cir-
cuit C by the changing magnetic flux Φm . The SI unit for magnetic flux is the weber,
with the symbol Wb, named in honour of Wilhelm Eduard Weber (1804–1891). The
weber is the magnetic flux that, linking a circuit of one turn, would produce in it an
electromotive force of 1 volt if it were reduced to zero at a uniform rate in 1 second.

The flux Φm can be varied by changing the magnetic induction B or by changing
the shape, or orientation, or position of the circuit.

Electromagnetic induction was discovered, independently and almost at the same
time, by Joseph Henry (1797–1878). The quantitative expression (3.7) of Faraday’s
law was given by Franz Neumann (1798–1895) in 1845.

2A contour C is called simple or Jordanian if xi (t1) = xi (t2) only for t1 = t2, where xi = xi (t),
t1 ≤ t ≤ t2, (i = 1, 2, 3) are the parametric equations of the contour. In other words, a contour is
called Jordanian if it does not intersect itself.
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Fig. 3.1 A closed circuit in
a variable magnetic field.
According to Faraday’s law
of induction, a current is
induced in the circuit.

The sign “minus” in (3.7) expresses the Lenz rule: the magnetic flux produced by
the induced current opposes the flux variation that generated it. Note that in a variable
regime characterized by

∮
C E · dl �= 0, the induced electric field is not conservative.

Maxwell generalized the induction law (3.7) admitting its universal validity,which
means that the law is valid even if C is an arbitrary closed curve (i.e. not necessarily
a conductor), in a medium or even in vacuum.

The theory presented in this chapter is based on the assumption that the medium
and the observer are at restwith respect to eachother.Mathematically, this assumption
is expressed by the fact that the fields E and B do not explicitly depend on the
coordinates x, y, z. Consequently, we may write

d

dt

∫

S
B · dS =

∫

S

∂B
∂t

· dS.

By means of the Stokes theorem (A.34), Eq. (3.7) leads to

∫

S

(
∇ × E + ∂B

∂t

)
· dS = 0,

or, since the surface S is arbitrary,

∇ × E = −∂B
∂t

. (3.8)

This is the Maxwell–Faraday equation. It expresses the fact that a time variable
magnetic field gives rise to a (spatial) variable electric field, both in material media
and/or in vacuum.

Equations (3.3) and (3.8) are not enough to describe the space-time variation of
the fields E and B. To complete the system, we must add the differential forms of
Gauss’s theorem (1.96) and (2.48), describing the nature of the fields (with or without
sources).

We can conclude that the electromagnetic field in anymedium, including vacuum,
is described by the following system of linear partial differential equations of the
first order

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_2
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∇ × H = j + ∂D
∂t

,

∇ × E = −∂B
∂t

,

∇ · B = 0, (3.9)

∇ · D = ρ.

We emphasize that in this manner of writing the Maxwell equations, j represents the
free current density and ρ – the free charge density. In order to solve them, one needs
as well the constitutive relations D(E) and H(B), which for the vacuum read

D = ε0E, H = B/μ0. (3.10)

Equivalently, Maxwell’s equations can be written only in terms of the fields E
and B,

∇ × B = μ0J + ε0μ0
∂E
∂t

,

∇ × E = −∂B
∂t

,

∇ · B = 0, (3.11)

∇ · E = ρtotal

ε0,

but in this case J and ρtotal represent the densities of total current (free and bound)
and total charge (free and bound), respectively.

Moreover, for a complete description of the electromagnetic field, we have to
define the energy of the electromagnetic field as

Wem = 1

2

∫

V
(E · D + H · B) dτ , (3.12)

which in vacuum becomes

Wem = 1

2
ε0

∫

V
E2dτ + 1

2μ0

∫

V
B2dτ . (3.13)

Maxwell’s equations can be grouped as follows:

(a) Equations (3.11)1,2 show the space-time variation of the field components E,B.
They are called evolution equations. The remaining equations (3.11)3,4 are con-
dition equations (see Sect. 3.2).

(b) Equations (3.11)1,4 are called source equations, while (3.11)2,3 are source-free
equations. The names are obvious.

Maxwell’s system of equations expresses the fundamental principles of the the-
ory of electromagnetic field. According to these equations, the variable electric and
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magnetic fields cannot be separated; they represent a unity, called by Maxwell elec-
tromagnetic field, while the electrostatic and magnetostatic fields appear as special
cases of the electromagnetic field.

3.2 Maxwell’s Equations for Polarizable Media

The discovery of the electron by J.J. Thomson (1856–1940) in 1895 (recall that
Maxwell died in 1879) led to some conclusions that contradict the concept of electric
charge continuity embraced by Maxwell’s theory. At the end of the 19th century, the
Dutch physicist Hendrik Antoon Lorentz (1853–1928) elaborated the microscopic
electrodynamics, taking into account the atomic structure of matter. In this theory,
the material media are regarded as a set of charged particles, electrons and atomic
nuclei, moving in vacuum.

According to Lorentz, the charged particles in amaterial give rise to amicroscopic
electromagnetic field e,b, while the macroscopic fields E,D,H,B are obtained by
taking the space and time average of the corresponding microscopic quantities.

The interactions between microscopic charges and microscopic fields take place
in vacuum. Lorentz postulated the microscopic field equations as being Maxwell’s
equations for vacuum:

1

μ0
∇ × b = jmicro + ε0

∂e
∂t

,

∇ × e = −∂b
∂t

,

∇ · b = 0, (3.14)

ε0∇ · e = ρmicro,

where jmicro and ρmicro are themicroscopic current and charge densities, respectively.
Equations (3.14) are called Maxwell–Lorentz equations.

The microscopic electromagnetic field is characterized by a rapid variation over
small distances, of the order of the atomic dimensions (approx. 10−10 m). The mea-
suring instruments cannot follow these variations, so that what we can detect are
only themean values of these quantities, taken over large space and time intervals as
compared to the microscopic ones. These average values are the macroscopic fields.
Besides, in a medium can exist both free charges and currents (ρ f ree, j f ree), and
bound charges and currents (microscopic circuits) (ρbound , jbound ). The free charges
(currents) can become bound charges (currents) and vice-versa, depending on the
intensity of the external electric and/or magnetic fields.

Under these assumptions, the obvious question which arises is: how large has to
be the space and time domain of averaging? To answer this question, let us consider
a microscopic quantity Ψ (x, y, z, t) as being any of e, b, ρmicro or jmicro. The space-
time mean value of this quantity is by definition
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〈Ψ (x, y, z, t)〉 = 1

ΔV

1

Δt

∫
Ψ (x + ξ, y + η, z + ζ, t + θ) dξ dη dζ dθ, (3.15)

where ΔV is a spatial vicinity of an arbitrary point P(x, y, z) of the polarizable
medium, and Δt is a temporal vicinity of the instant t , while the integral (3.15) is
taken over the domain ΔVΔt .

To be uniquely determined, the mean value (3.15) must be independent of the
choice of ΔV and Δt . In other words, on the r.h.s. of (3.15) we mean, in fact, the
limit of this expression when the product ΔVΔt becomes infinitely small (tends
to zero). But the mathematical procedure of performing the limit is restricted by
the possibility of having no particle in ΔV , meaning ρ = 0. To solve this problem,
Lorentz defined the notion of physically infinitesimal domain. This is either a volume
ΔV , a duration Δt , or a surface ΔS etc., each of them satisfying two conditions:

(a) it is large as compared to the space-time inhomogeneities of the microscopic
quantities;

(b) it is small as compared to the space-time inhomogeneities of the macroscopic
quantities, detectable by the measuring instruments.

In other words, the domain is chosen large enough to contain so many particles
that the behaviour of an individual particle has a negligible effect on the average of
a quantity, but it is taken small enough to let the average of a quantity follow all the
changes that are observable at the macroscopic level.

For example, if 10−4 m is the sensitivity of the instrument and 10−10 m the dimen-
sion of an atom, then a line element of 10−7 m can be conceived as physically infin-
itesimal. So, if we take the limit of (3.15) in view of the above assumptions, we
have

〈Ψ (x, y, z, t)〉 = 1

V

1

τ

∫

D

θ=+ τ
2∫

θ=− τ
2

Ψ (x + ξ, y + η, z + ζ, t + θ) dξ dη dζ dθ, (3.16)

where D is a three-dimensional physically infinitesimal spatial domain of volume
V = ∫

dξ dη dζ, and τ – a physically infinitesimal duration.
Regarding the order of magnitude of the physically infinitesimal time interval, we

have to consider the fact that the periods of the temporal microscopic fluctuations
are situated in a relatively large domain of variation, going from 10−13 s for nuclear
vibrations, up to 10−17 s for the orbital motion of the electrons. For example, if the
sensitivity of the measurement device is 10−6 s, then an interval of 10−10 s is an
infinitesimal time interval.

Bymacroscopic quantitywe therefore mean the average value of the correspond-
ing microscopic quantity over a physically infinitesimal domain:

Ψmacro = 〈Ψmicro〉.

Since the integration in (3.16) is independent of x, y, z, t , we can write
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∇〈Ψ 〉 = 〈∇Ψ 〉, ∂

∂t
〈Ψ 〉 =

〈
∂Ψ

∂t

〉
, etc. (3.17)

Observations:

(a) The Maxwell–Lorentz equations are written only in terms of the field compo-
nents e and b. Since in vacuum the polarization phenomenon does not exist (all
field sources are included in ρmicro and jmicro), the macroscopic field components
D and H do not have microscopic correspondents d andh.

(b) Rigorously speaking, at the macroscopic level, the result of averaging the micro-
scopic distribution of molecular electric charge is a system of multipoles. In the
considerations to follow we shall take into account only the first-order approx-
imation, that is only the first-order multipoles (i.e. dipoles). In other words, the
quadrupolar, octupolar, etc. macroscopic densities of electric charge shall be
neglected, as being very small quantities. We shall limit the averaging of micro-
scopic current densities to the non-relativistic approximation. In addition, all
higher-order terms (as compared to the first-order terms, representing themacro-
scopic magnetization) appearing as a result of averaging, shall be neglected as
being small. This operation is allowed because themolecular velocities are small
(such as thermal velocities in gases, or oscillation velocities in the crystal nets of
solid bodies); moreover, there are random fluctuations in velocities, so that their
macroscopic mean value is very close to zero. The only exception is the global
motion of the medium as a whole; this case is studied separately in Sect. 3.12.

(c) Even if at microscopic level we deal with atoms and molecules, which should
be described by means of the quantum formalism, we shall use an eminently
classic description. There is a double reason for this choice: on the one hand,
a classical description is easier and simpler (but not simplistic); on the other, a
quantum approach would replace the classical quantities with the corresponding
probabilistic ones, specific to quantum mechanics, but the qualitative reasoning
would remain the same.

(d) Finally, one last observation refers to the fact that spatial averaging is the only
necessary. As we shall see in the following, within the first-order approxima-
tion the Lorentz approach does not imply concrete performing of any averaging,
spatial or temporal. In fact, the time variable is irrelevant for systems in sta-
tistical equilibrium. The time averaging is not necessary because in a spatially
small infinite there are so many electrons/nuclei, that upon spatial averaging the
microscopic time fluctuations of the medium are completely erased. Indeed, the
time variations of the microscopic fields, for any microscopic system at statisti-
cal equilibrium and in normal external conditions, are totally non-correlated on
distances comparable to the dimensions of a spatially small infinity.

We are nowprepared to perform theLorentzian averaging of theMaxwell–Lorentz
equations (3.14). By definition, we take

〈e〉 = E and 〈b〉 = B. (3.18)
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3.2.1 Source-free Equations

Using the definitions (3.18) and the properties (3.17), we have

〈∇ × e〉 = ∇ × 〈e〉 = ∇ × E,〈
∂b
∂t

〉
= ∂

∂t
〈b〉 = ∂B

∂t
,

〈∇ · b〉 = ∇ · 〈b〉 = ∇ · B.

Taking the average of (3.14)2,3 in which we plug the above results, we find the
corresponding Maxwell’s equations for the macroscopic fields:

∇ × E = −∂B
∂t

,

∇ · B = 0. (3.19)

3.2.2 Equations with Sources

Let us start by averaging Eq. (3.14)4:

〈ε0 ∇ · e〉 = ε0 〈∇ · e〉 = ε0 ∇ · 〈e〉 = ε0 ∇ · E = 〈ρmicro〉. (3.20)

Toperform the average ofρmicro, we have to take into account the fact that it comprises
two terms:

(a) ρ f ree, corresponding to the free charges (electrons in metals, ions in gases and
solutions, etc.);

(b) ρbound , due to the bound charges that are subjected to infinitesimally small dis-
placements under the action of the field and form dipoles (electrons in atoms,
ions in crystal nets and in neutral molecules, etc.).

Hence,
〈ρmicro〉 = 〈ρ f ree〉 + 〈ρbound〉. (3.21)

The quantity 〈ρ f ree〉 is the macroscopic charge density as determined by the mea-
surement instruments:

〈ρ f ree〉 = ρ. (3.22)
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Regarding the bound charges, recall that, in the first-order approximation, they
appear as elementary dipoles formed (and/or oriented) by the external electric field.
The electric moment of a continuous dipole distribution is (see Eq. (1.82)):

p =
∫

V ′
ρ(r′) r′dτ ′. (3.23)

The charge density ρ in the last relation is a macroscopic quantity and appears as a
result of the formation of dipoles, therefore we can write

p =
∫

V ′
〈ρbound〉 r′dτ ′. (3.24)

On the other hand, the definition (1.88) of the electric polarization intensity P
allows us to write

pi =
∫

V ′
Pi (r′) dτ ′ =

∫

V ′
Pk δik dτ ′ =

∫

V ′
Pk

∂x ′
i

∂x ′
k

dτ ′

=
∫

V ′

∂

∂x ′
k

(Pkx
′
i ) dτ ′ −

∫

V ′
x ′
i ∇′ · P dτ ′.

Applying now the divergence theorem to the first term on the r.h.s., and extending
the integration domain over the whole space, we have

∫
∂

∂x ′
k

(Pkx
′
i ) dτ ′ =

∮
Pk x

′
i dS

′
k = 0,

because there are no sources at infinity. Thus,

p = −
∫

r′ ∇′ · P dτ ′. (3.25)

Combining now (3.24) and (3.25), we find

∫ (〈ρbound〉 + ∇′ · P)
r′dτ ′ = 0.

Since the dimensions and shape of the body are arbitrary, we arrive at

〈ρbound〉 = −∇′ · P = −div P, (3.26)

which is an already known result (see Eq. (1.92)). Substituting (3.22) and (3.26) in
(3.21), then in (3.20), we obtain the expected equation

∇ · (ε0E + P) = ρ,

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
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or
∇ · D = ρ, (3.27)

where
D ≡ ε0E + P (3.28)

is the electric induction, or electric displacement. Obviously, in vacuum P = 0, i.e.
D = ε0E.

Next, let us apply Lorentz’s averaging procedure to the Maxwell–Ampère equa-
tion (3.14)1. We have

〈
1

μ0
∇ × b

〉
= 〈jmicro〉 +

〈
ε0

∂e
∂t

〉
,

or, by virtue of (3.17),

1

μ0
∇ × B = 〈jmicro〉 + ε0

∂E
∂t

. (3.29)

As was the case with the charge density, the microscopic current density jmicro is
also composed of two parts:

jmicro = j f ree + jbound ,

where:

(a) j f ree is produced by the motion of free charges (free electrons in metals, ions in
gases and electrolytes, etc.);

(b) jbound is produced by the bound charges. In its turn, jbound consists of two terms:
jbound = jmolec + jpol , where:
(i) jmolec is the density ofmolecularmicroscopic currents, produced by the orbital
motion of electrons in atoms;
(ii) jpol stands for the polarization microscopic current densities, which in the
first-order approximation are due to the relative displacement of the poles in
dipoles, or, in other words, to the polarization of molecules.

We may then write

〈jmicro〉 = 〈j f ree〉 + 〈jmolec〉 + 〈jpol〉. (3.30)

The quantity 〈j f ree〉 is the density j of macroscopic current determined by the mea-
surement instruments:

〈j f ree〉 = 〈(ρ v) f ree〉 = 〈ρ f reev f ree〉 = j, (3.31)
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where v f ree is the velocity of the free charges with respect to a fixed observer.
The current density j is generally formed of a conduction and a convection part:
j = jcond + jconv . In metals, jconv = 0, such that j = jcond .

The current density jmolec is created by the motion of electrons in atoms, meaning
that the atoms behave like elementary magnets (magnetic sheets). By the definition
(2.61), the dipole magnetic moment of a continuous distribution of such dipoles is

m = 1

2

∫

V ′
r′ × 〈 j(r′)molec〉 dτ ′. (3.32)

On the other hand, the definition (2.70) gives

m =
∫

V ′
M(r′) dτ ′. (3.33)

To compare the last two relations we use (A.46) and write

∇′(r′ · M) = r′ × (∇′ × M) + (r′ · ∇′)M + (M · ∇′)r′.

In a Cartesian reference frame, the last term can be written as

(M · ∇′)r′ = Mi
∂

∂x ′
i

(x ′
ku

′
k) = Miδiku′

k = Miu′
i = M,

leading to

∫

V ′
M(r′) dτ ′ =

∫

V ′
∇′(r′ · M) dτ ′

−
∫

V ′
r′ × (∇′ × M) dτ ′ −

∫

V ′
(r′ · ∇′)M dτ ′. (3.34)

Applying (A.37) and extending the integration domain over the whole space, one
observes that ∫

∇′(r′ · M) dτ ′ =
∮

(r′ · M) dS′ = 0,

because at infinity there are neither charges, nor currents. This procedure is legitimate,
since the electric charges are localized and the fields fall off very fast at a distance
from the charges.

Let us consider the xi -component of the last integral in (3.34):

−
∫

x ′
k

∂Mi

∂x ′
k

dτ ′ = −
∫

∂

∂x ′
k

(x ′
kMi ) dτ ′ +

∫
Mi

∂x ′
k

∂x ′
k

dτ ′

= −
∮

x ′
kMi dS

′
k + 3

∫
Mi dτ ′ = 3

∫
Mi dτ ′,

http://dx.doi.org/10.1007/978-3-642-17381-3_2
http://dx.doi.org/10.1007/978-3-642-17381-3_2
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since the surface integral vanishes for the already known reasons. In this case (3.34)
leads to

m =
∫

V ′
M dτ ′ = 1

2

∫

V ′
r′ × (∇′ × M) dτ ′. (3.35)

Comparing now (3.32) and (3.35), we find (since the dimensions and shape of the
body are arbitrary):

〈jmolec〉 = ∇′ × M = curl M. (3.36)

To calculate the last term of (3.30) we remember that, in the first-order approxi-
mation, jpol is due to the time variation of the distance l between the dipole charges,
so that

〈jpol〉 = ne l̇ = ∂

∂t
(ne l) = ∂P

∂t
, (3.37)

because

ne l = Np
V

= P,

where we denoted by e the charge of one electron. Then we can write

〈jbound〉 = ∇ × M + ∂P
∂t

. (3.38)

It is worthwhile to observe that the last relation follows as an immediate consequence
of averaging the equation of continuity written for bound charges in the first-order
approximation, when 〈ρbound〉 = ∂P

∂t . Indeed,

∇ · (〈jbound〉) = − ∂

∂t
〈ρbound〉 = ∂

∂t
(∇ · P) = ∇ · ∂P

∂t
,

which proves the statement.
Using (3.31) and (3.38) in (3.30), we find

〈jmicro〉 = j + ∇ × M + ∂P
∂t

, (3.39)

and (3.29) becomes

∇ ×
( B
μ0

− M
)

= j + ∂

∂t
(ε0E + P). (3.40)

Using the familiar notations

B
μ0

− M = H,

ε0E + P = D, (3.41)
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we finally obtain

∇ × H = j + ∂D
∂t

. (3.42)

Observations:

(a) We shall continue to call the equations established in this section Maxwell’s
equations, without ignoring Lorentz’s contribution to the explanation of the
phenomena in polarizable media;

(b) We remind the reader that our study concerns only linear media;
(c) Taking the divergence of the source-free equation (3.19)1, we have

∇ · (∇ × E) = − ∂

∂t
(∇ · B) = 0,

meaning that the source-free equations are not completely independent. As one
can see, equation ∇ · B = 0 appears as an initial condition for the equation
∇ × E = − ∂B

∂t . Similarly, taking the divergence of the source equation (3.42),
we find

∇ · (∇ × H) = −∂ρ

∂t
+ ∂

∂t
(∇ · D) = ∂

∂t
(∇ · D − ρ) = 0.

Therefore, the source equations, in their turn, are not completely independent, and
equation∇ · D = ρ acts as an initial condition for the equation ∇ × H = j + ∂D

∂t .

For these reasonswe calledMaxwell’s equations∇ · B = 0, and∇ · D = ρ equa-
tions of condition;

(d) Since strictly independent are only Maxwell’s equations of evolution (six equa-
tions when written in components), while the number of unknown quantities is
16 (Ei , Di , Hi , Bi , ji , ρ, with i = 1, 2, 3), the system has to be completed with
10 more equations. Nine of them are the constitutive relations:

D = D(E), B = B(H), j = j(E).

In linear, homogeneous, and isotropic media these relations are

D = εE, B = μH, j = λ(E + Eext ).

The tenth equation is the equation of continuity.We then have a system of 16 lin-
ear partial differential equationswith 16 unknown quantities. To connect the field
and mechanical quantities, one postulates the expression of the electromagnetic
energy (3.12).
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Maxwell’s equations, together with the constitutive relations, the equation of
continuity, and the definition of electromagnetic energy (if no discontinuity surfaces
are present, i.e. in infinite media) represent the fundamental axioms of Maxwell’s
phenomenological electrodynamics.

3.3 Jump Conditions

We want to specify, for the beginning, that the jump conditions (1.103), (1.105),
(2.85), and (2.87), obtained separately for the electrostatic and magnetostatic fields,
remain unchanged in a variable regime. Let us write them out, at the same time
indicating the integral fundamental law from which they emerge:

∮
D · dS = Q → D2n − D1n = σ,

∮
E · dl = 0 → E2T − E1T = 0,

∮
B · dS = 0 → B2n − B1n = 0, (3.43)

∮
H · dl = I → H2T − H1T = iN .

To check up these assertions, we first observe that Eqs. (3.43)1 and (3.43)3 have
been obtained using Gauss’s theorem for the fieldsD and B, respectively, that do not
change in a variable regime.

To ascertain the Eq. (3.43)2, let us integrate Maxwell’s equation (3.19)1 over a
fixed surface S bounded by the contour C :

∫

S
(∇ × E) · dS =

∮

C
E · dl = −

∫

S

(
∂B
∂t

)
· dS = − d

dt

∫

S
B · dS.

Using Fig. 1.11, one calculates the circulation on the closed contour ABCDA by
means of a procedure analogous to that given in Sect. 1.2.4. In the limit dl → 0, the
surface dS vanishes, therefore

∫
dS B · dS → 0. We are then left with (3.43)2.

Finally, to justify the Eq. (3.43)4 let us integrate Maxwell’s equation (3.42) on the
above defined fixed surface S. We have

∫

S
∇ × H · dS =

∮
H · dl =

∫

S
j · dS + d

dt

∫

S
D · dS.

Choosing again ABCDA as the integration contour, andobserving that limdl→0
∫
S D ·

dS = 0, we arrive at the jump relation (3.43)4.
Let us now write again the jump relations, also showing the corresponding

Maxwell’s equations (in their partial differential form):

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_2
http://dx.doi.org/10.1007/978-3-642-17381-3_2
http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
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∇ · D = ρ → D2n − D1n = σ,

∇ × E = − ∂B
∂t → E2T − E1T = 0,

∇ · B = 0 → B2n − B1n = 0,

∇ × H = j + ∂D
∂t → H2T − H1T = iN .

(3.44)

These equations are appliedwhenever the field quantitiesE,D,H,B suffer refrac-
tions when passing through sheets separating media with different material constants
ε,μ, and λ. Consequently, for problems involving the existance of such surfaces,
Maxwell’s equations must be supplemented with the jump conditions (3.44).

3.4 Electromagnetic Field Energy. Poynting’s Theorem

As we mentioned in Sect. 3.1, one postulates the energy of the electromagnetic field
as being

Wem = 1

2

∫

V
(E · D + H · B) dτ , (3.45)

where the integration is performed over a volume V , bounded by the surface S.
Our purpose is to evaluate the time variation of the energy Wem . Taking the total

time derivative of (3.45), we have

dWem

dt
= 1

2

∫

V

∂

∂t
(E · D + H · B) dτ .

Since the medium is linear, homogeneous, and isotropic (this assumption has been
previously made), the constitutive relations are

D = εE, B = μH, j = λ(E + Eext ). (3.46)

Then, we can write

dWem

dt
= 1

2

∫

V

∂

∂t

(
εE2 + μH2

)
dτ

=
∫

V

(
εE · ∂E

∂t
+ μH · ∂H

∂t

)
dτ =

∫

V

(
E · ∂D

∂t
+ H · ∂B

∂t

)
dτ .

Using Maxwell’s evolution equations ∇ × H = j + ∂D
∂t , ∇ × E = − ∂B

∂t , we find
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dWem

dt
=

∫

V
[E · (∇ × H) − H · (∇ × E)] dτ −

∫

V
j · E dτ

= −
∫

V
∇ · (E × H) dτ −

∫

V
j · E dτ ,

or, using the divergence theorem,

dWem

dt
= −

∮

S
(E × H) · dS −

∫

V
j · E dτ . (3.47)

Denoting Poynting’s vector
� = E × H (3.48)

and using (3.46)3, we finally obtain

dWem

dt
= −

∮

S
� · dS −

∫

V

j2

λ
dτ +

∫

V
j · Eext dτ . (3.49)

This relation expresses the energy conservation law in electromagnetic processes
and is known asPoynting’s theorem, after the English physicist John Poynting (1852–
1914)who pubished it in 1884. The first termon the r.h.s. is the flux of the electromag-
netic energy passing through the surface S in unit time. This shows that Poynting’s
vector � signifies the radiant flux, crossing a unit area in unit time, orthogonal to
�. In other words, the normal component Πn of Poynting’s vector represents the
power density dissipated as electromagnetic radiation. The second term in (3.49)
represents the Joule heat dissipated in unit time and unit volume by the conduction
currents, while the last term gives the mechanical work done on conduction currents,
in unit time, by the external electromotive forces.

Thus, Poynting’s theorem can be formulated as follows: the electromagnetic
energy is dissipated into electromagnetic radiation and Joule heat, being recovered
from the external sources (if they exist).

Observing that
dWmec

dt
=

∫

V
j · E dτ

is themechanicalworkdone in unit timeby thefieldE on the currents j, andneglecting
the external sources, we can give an alternative formulation of Poynting’s theorem:

d

dt
(Wem + Wmec) = −

∮

S
� · dS. (3.50)

According to (3.50), if the system is closed (there is no radiation), the sum
W = Wmec + Wem is conserved.

By definition, the quantity
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wem = 1

2
(E · D + H · B) (3.51)

is the electromagnetic energy density, and (3.47) can also be written as

∂wem

∂t
+ ∇ · � = −j · E.

If j · E = 0 (for example, if λ = 0), the last equation reduces to

∂wem

∂t
+ ∇ · � = 0, (3.52)

which is an equation of continuity.

Observation:
There exist mechanisms of dissipation of electromagnetic energy which we have

not considered. This is the case, for example, when the electromagnetic energy is
dissipated as a result of hysteresis.

3.5 Uniqueness of the Solutions of Maxwell’s Equations

Poynting’s theorem is an essential ingredient in finding the boundary conditions
under which Maxwell’s equations (supplemented with constitutive relations, jump
conditions, and the definition of the electromagnetic energy), have a unique solution.
Let us prove the following

Theorem. If at the initial moment t = 0 are given E(r, 0),H(r, 0) at any point of
the spatial domain D, of volume V , bounded by the surface S, while on the boundary
S is given either ET (r, t) or HT (r, t) for 0 ≤ t ≤ t1, then the electromagnetic field
is uniquely determined by Maxwell’s equations at any time t1 > t .

The proof is based on reductio ad absurdum. Let us assume that there exist at least
two solutions of Maxwell’s equations, denoted by E1,H1 and E2,H2. The linearity
of Maxwell’s equations implies the superposition property, meaning that the field
E′,H′, given by

E′ = E1 − E2,

H′ = H1 − H2,

is also a solution of Maxwell’s equations, satisfying both the initial and the boundary
conditions:

E′(r, 0) = E1(r, 0) − E2(r, 0) = 0,

H′(r, 0) = H1(r, 0) − H2(r, 0) = 0, (3.53)
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with
either E ′

T (r, t) = 0 or H ′
T (r, t) = 0, for 0 ≤ t ≤ t1. (3.54)

It should be emphasized that, if E1,H1 and E2,H2 are solutions of Maxwell’s equa-
tions with sources, then E′,H′ is a solution of the sourceless Maxwell’s equations,
consequently it satisfies the sourceless Poynting’s theorem:

d W ′
em

dt
= 1

2

∫

V

∂

∂t

(
εE′2 + μH′2

)
= −

∮

S
(E′ × H′) · dS (3.55)

One observes that, on the one hand,

W ′
em = 1

2

∫

V

(
εE′2 + μH′2

)
dτ ≥ 0

with
W ′

em = 0 at t = 0, (3.56)

due to (3.53). On the other hand, we have at any time 0 ≤ t ≤ t1

P ′
rad(t) =

∮
(E′ × H′) · n dS = 0, (3.57)

since, due to the boundary conditions (3.54),

(E′ × H′) · n = (n × E′) · H′ = (H′ × n) · E′ = 0.

(Recall that n × E′ picks up the tangent component of E′ and similarlyH′ × n picks
up the tangent component ofH′.) Consequently,W ′

em is constant on the time interval
0 ≤ t ≤ t1 and, having in view (3.58), we infer that

W ′
em(t) = 0 for 0 ≤ t ≤ t1. (3.58)

This is possible if and only if E1(r, t) = E2(r, t) and H1(r, t) = H2(r, t), which
proves the theorem.

Remark that the crucial step of the proof was to show that the radiated power
P ′
rad(t) vanishes at any moment, which was possible due to the specific boundary

conditions involving the tangent components of the fields. In other words, Poynting’s
theorem indicates unequivocally the type of boundary conditions needed to prove
the uniqueness of the solutions of Maxwell’s equations. When V → ∞, uniqueness
is guaranteed if the fields go to zero fast enough for r → 0, such that the r.h.s. of
(3.55) vanishes.
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3.6 Electromagnetic Momentum. Momentum Theorem

The electromagnetic field (E,B) acts on a charge q moving in the field with the force

Fem = q(E + v × B), (3.59)

called electromagnetic force. If the charge q is continuously distributed in a volume
V , bounded by the surface S, then the electromagnetic force density is

fem = ρ(E + v × B) = ρE + j × B,

where ρ is the charge density, and j – the conduction current density. The equation
of motion of the charge q = ∫

V ρ dτ in the electromagnetic field (E,B) is then

Fmec = dPmec

dt
=

∫

V
(ρE + j × B) dτ . (3.60)

Using Maxwell’s equations

∇ · D = ρ,

∇ × H = j + ∂D
∂t

,

∇ × E = −∂B
∂t

,

we shall write (3.60) in terms of fields only. Thus, we have

ρE + j × B = E∇ · D + (∇ × H) × B − ∂D
∂t

× B

= E∇ · D − D × (∇ × E) − B × (∇ × H) − ∂

∂t
(D × B).

Adding the null term H∇ · B on the r.h.s. and integrating over the fixed volume V ,
we find

d

dt
Pmec + d

dt

∫

V
D × B dτ (3.61)

=
∫

V
[E∇ · D − D × (∇ × E) + H∇ · B − B × (∇ × H)] dτ .

The integral on the l.h.s. of (3.61) has the dimension of momentum. Let us denote
it by Pem and call this quantity momentum of the electromagnetic field, or, shorter,
electromagnetic momentum:
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Pem =
∫

V
D × B dτ . (3.62)

Its volume density is
pem = D × B,

and in vacuum it has the expression

pem = ε0μ0 E × H = 1

c2
�, (3.63)

� being Poynting’s vector (3.48).
The r.h.s. of (3.61) can be written in a more convenient form. Thus, the xi -

component of the first two terms is

ε

(
Ei

∂Ek

∂xk
− εi jkεklm E j

∂Em

∂xl

)
= ε

[
Ei

∂Ek

∂xk
− (δilδ jm − δimδ jl)E j

∂Em

∂xl

]

= ε

[
Ei

∂Ek

∂xk
+ El

∂Ei

∂xl
− 1

2

∂

∂xi
(EmEm)

]

= ∂

∂xk

(
Ei Dk − 1

2
E · D δik

)
.

The quantity in parentheses is nothing else but Maxwell’s electric stress tensor,
defined in formula (1.176) in Chap.1 for the more general case of the variation of
permittivity with respect to the density. Denoting

T (e)
ik = 1

2
E · D δik − Ei Dk, (3.64)

we have

[E∇ · D − D × (∇ × E)]i = − ∂

∂xk
T (e)
ik .

A similar calculation for the magnetic part gives

[H∇ · B − B × (∇ × H)]i = − ∂

∂xk
T (m)
ik ,

with

T (m)
ik = 1

2
H · B δik − Hi Bk . (3.65)

The xi -component of the vectorial equation (3.61) is then

d

dt
(Pmec + Pem)i = −

∫

V

∂Tik
∂xk

dτ = −
∮

S
Tik dSk, (3.66)

http://dx.doi.org/10.1007/978-3-642-17381-3_1
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where

Tik = T (e)
ik + T (m)

ik = 1

2
(E · D + H · B) δik − Ei Dk − Hi Bk (3.67)

isMaxwell’s electromagnetic stress tensor.
The term “stress” comes fromMaxwell’s concept of theæther as being a perfectly

elastic medium, which gets deformed under the action of the electromagnetic field,
in other words the existence of the electromagnetic forces leads to the appearance
of elastic tensions which deform the æther. Thus, Maxwell’s electromagnetic stress
tensor is analogous to the elastic stress tensor, which expresses the deformations in
elastic media. Equation (3.66) can also be written in a vector form, which is

d

dt
(Pmec + Pem) = −

∮

S
TTTT · dS = −

∮

S
TTTT · n dS, (3.68)

where the dyadic form of the tensor Tik has been used. Therefore, Maxwell’s stress
tensor represents the momentum flux density, per unit time, of the electromagnetic
field. In other words, the electromagnetic energy flux, of density �, is accompanied
by an electromagnetic momentum flux, of density TTTT .

If the integration boundary surface goes to infinity, or if on S we have bothE = 0,
and H = 0, then it follows from (3.68) that the momentum is conserved:

Pmec + Pem = const.

All these observations lead to the conclusion that formula (3.68) expresses the
law of conservation of momentum in electromagnetic processes.

3.7 Electromagnetic Angular Momentum. Angular
Momentum Theorem

Taking advantage of the fact that Maxwell’s stress tensor is symmetric and using
relations (3.60) and (3.66), let us write the balance of the forces acting on a unit
volume of the spatial fixed domain D:

fem + ∂pem
∂t

= −∂Tl

∂xl
, (3.69)

where T is the dyadic representation of the tensor Ti j , i, j = 1, 2, 3, i.e.

T = Txx ii + Txy ij + Txz ik + Tyx ji + Tyyjj + Tyzjk + Tzxki + Tzykj + Tzzkk.
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Multiplying this equation by the radius-vector r of an arbitrary point P(r) in D and
then integrating over D, we have

∫

V
r × fem dτ + d

dt

∫

V
r × pem dτ = −

∫

V

∂

∂xl
(r × Tl) dτ = −

∮

S
r × Tl dSl ,

(3.70)
where we used the fact that r does not depend on time as the domain D is fixed,
while

r × ∂Tl

∂xl
= ∂

∂xl
(r × Tl) − ul × Tl = ∂

∂xl
(r × Tl),

because ul and Tl have the same direction.
The first term on the l.h.s. of (3.70) is the moment of the electromagnetic force.

According to the angular momentum theorem, this equals the total time derivative
of the mechanical angular momentum Lmec. The second integral on the l.h.s. is the
angular momentum of the electromagnetic field Lem . Thus we can write

d

dt
(Lmec + Lem) = −

∮

S
r × Tl dSl , (3.71)

or, as projected on the xi -direction,

d

dt
(Lmec + Lem)i = −

∮

S
LildSl , (3.72)

where
Lil = εi jk x j Tlk = εi jk x j Tkl (3.73)

is a tensor signifying the flux density of the angularmomentum of the electromagnetic
field.

If the integration surface in (3.72) covers thewhole space, orE|S = 0 andH|S = 0
simultaneously, then (3.72) leads to

Lmec + Lem = const.

Thus, Eq. (3.71) expresses the law of conservation of angular momentum in elec-
tromagnetic processes.

3.8 Electrodynamic Potentials

To know the electromagnetic field at a point situated either in vacuum, or in a homo-
geneous and isotropic medium whose material constants are given, one has to know
six quantities: the components of the vector fields E and B.
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This problem is simplified by expressing the field in terms of its potentials. The
electrostatic field and the magnetic field of stationary currents can be written in terms
of scalar (V ) and vector (A) potentials, respectively. In a variable regime the electric
and magnetic fields are connected, and this leads to a change in the relations between
the fields and their potentials. Let us find these new relationships.

To this end, we use Maxwell’s source-free equations

∇ · B = 0,

∇ × E = −∂B
∂t

. (3.74)

As we already know, the first equation gives

B = ∇ × A. (3.75)

Introducing (3.75) into (3.74)2, we have

∇ × E = − ∂

∂t
(∇ × A) = −∇ ×

(
∂A
∂t

)
⇒ ∇ ×

(
E + ∂A

∂t

)
= 0,

or, since the curl of a gradient is zero (∇ × ∇ϕ = 0),

E = −∇V − ∂A
∂t

. (3.76)

The functionsA(r, t) and V (r, t) are twice differentiable. They are called electro-
dynamic (electromagnetic)potentials andplay an essential role in the electromagnetic
field theory. For the moment we only mention that the problem of determining the
electromagnetic field (six real quantities) reduces to the knowledge of electrodynamic
potentials (four real components). This representation will prove its usefullness in
the theory of the propagation of the electromagnetic field and even more in the
relativistically covariant approach to electromagnetism.

3.9 Differential Equations for the Electrodynamic
Potentials

Let us introduce (3.75) and (3.76) into Maxwell’s source equations

∇ × B = μj + εμ
∂E
∂t

,

∇ · E = ρ

ε
, (3.77)
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written for a homogeneous and isotropic medium, characterized by the constitutive
relations D = εE and B = μH. Using (A.51), we have

∇ × (∇ × A) = ∇(∇ · A) − ΔA

= μj − εμ∇
(

∂V

∂t

)
− εμ

∂2A
∂t2

,

or

ΔA − εμ
∂2A
∂t2

= −μj + ∇
(

∇ · A + εμ
∂V

∂t

)
. (3.78)

Using a similar procedure, we obtain

∇ ·
(

−∇V − ∂A
∂t

)
= −ΔV − ∂

∂t
(∇ · A) = ρ

ε
,

or, by adding the term εμ ∂2V/∂t2 to both sides,

ΔV − εμ
∂2V

∂t2
= −ρ

ε
− ∂

∂t

(
∇ · A + εμ

∂V

∂t

)
. (3.79)

Equations (3.78) and (3.79) form a system of four second order partial differential
equations for Ai , i = 1, 2, 3, and V . Recall fromChap.2 (see (2.51)), that the vector
potential A(r, t) is fixed if one imposes ∇ · A = χ, where χ = χ(r, t) is a given
function. Equations (3.78) and (3.79) suggest as a possible choice χ = −εμ∂V

∂t , or

∇ · A + εμ
∂V

∂t
= 0, (3.80)

known as Lorenz condition, after the Dutch physicist Ludvig Lorenz (1829–1891),
who proposed it in 1867. In this case, Eqs. (3.78) and (3.79) acquire the simpler form

ΔA − εμ
∂2A
∂t2

= −μj, (3.81)

ΔV − εμ
∂2V

∂t2
= −ρ

ε
, (3.82)

and, more importantly, they become uncoupled. Using the Lorenz condition, the two
electrodynamic potentials satisfy the same type of equation: a non-homogeneous
wave propagation equation. This fact is very important for the relativistically covari-
ant canonical quantization theory of the electromagnetic field.

Once A = A(r, t) and V = V (r, t) are obtained as solution of (3.81) and (3.82),
the electromagnetic field can be determined by means of (3.75) and (3.76). We shall
dedicate to this problem a special section in Chap.4.

http://dx.doi.org/10.1007/978-3-642-17381-3_2
http://dx.doi.org/10.1007/978-3-642-17381-3_4
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In some cases it is more advantageous to choose

∇ · A = χ = 0, (3.83)

known as the Coulomb condition. Equations (3.78) and (3.79) then become

ΔA − εμ
∂2A
∂t2

= −μj + εμ∇
(

∂V

∂t

)
,

ΔV = −ρ

ε
.

The last equation is formally identical to Poisson’s equation (1.37). Recall that the
solution of this equation is

V (r, t) = 1

4πε

∫

V ′

ρ(r′, t)
|r − r′| dτ ′.

Using this expression, as well as the equation of continuity

∂ρ

∂t
= −∇′ · j(r′, t),

one obtains the following equation for A(r′, t):

ΔA − εμ
∂2A
∂t2

= −μj − μ

4π
∇

∫

V ′

∇′ · j(r′, t)
|r − r′| dτ ′. (3.84)

To interpret the r.h.s. of (3.84), we shall establish an identity satisfied by any
vector function, for example j(r, t). We have

∇ ×
[
∇ ×

∫

V ′

j(r′, t)
|r − r′| dτ ′

]
= ∇

[
∇ ·

∫

V ′

j(r′, t)
|r − r′| dτ ′

]
− Δ

∫

V ′

j(r′, t)
|r − r′| dτ ′,

or, in view of (1.41), (1.45), and the divergence theorem,

∇ ×
[
∇ ×

∫

V ′

j(r′, t)
|r − r′| dτ ′

]

= −∇
∫

V ′
j(r′, t) · ∇′

(
1

|r − r′|
)
dτ ′ +

∫

V ′
j(r′, t)

[
4πδ(r − r′)

]
dτ ′

= ∇
∫

V ′

∇′ · j(r′, t)
|r − r′| dτ ′ + 4π j(r, t),

where a surface integral has been eliminated by the usual procedure. We then obtain

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_1
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j(r, t) = 1

4π
∇ ×

[
∇ ×

∫

V ′

j(r′, t)
|r − r′| dτ ′

]
− 1

4π
∇

∫

V ′

∇′ · j(r′, t)
|r − r′| dτ ′

= jtrans + jlong, (3.85)

meaning that j has been separated into two vector components, one transversal and
the other longitudinal, so that

∇ · jtrans = 0, ∇ × jlong = 0,

i.e. jtrans is a solenoidal current, while jlong is an irrotational one.
The terms “longitudinal” and “transversal” are connected with the possible polar-

izations of a plane wave, characterized by either ∇ × a = 0, or ∇ · a = 0, where
a = a(r, t) is a vector field. Then, by means of (3.85), Eq. (3.84) finally reads

ΔA − εμ
∂2A
∂t2

= −μ(j − jlong) = −μ jtrans . (3.86)

Thus, if Coulomb’s condition is chosen, then jtrans plays the role of source for
the vector potential A. Equation (3.86) is used to find A, then the field (E,B) is
determined by means of (3.75) and (3.76).

3.9.1 Gauge Transformations

The vector and scalar potentials (A, V ) are not uniquely determined by theEqs. (3.75)
and (3.76). Indeed, if we choose

A′ = A + ∇ψ, (3.87)

where ψ is an arbitrary differentiable function of position and time, we obtain the
same field B:

B′ = ∇ × A′ = ∇ × A + ∇ × (∇ψ) = ∇ × A = B.

Introducing (3.87) into (3.76), we find

E = −∇V − ∂

∂t
(A′ − ∇ψ) = −∇

(
V − ∂ψ

∂t

)
− ∂A′

∂t
≡ E′.

Obviously, to obtain the same field, i.e. to have E′ = E, we have to take

V ′ = V − ∂ψ

∂t
. (3.88)
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The transformations (3.87) and (3.88) leave unchanged the electromagnetic field.
The property of the electromagnetic field to remain unchangedwhile transformations
(3.87), (3.88) are performed is called gauge invariance (Eichinvarianz in German,
invariance de jauge in French, etc.), while (3.87) and (3.88) are named gauge trans-
formations.

The freedom offered by the gauge transformations allows us to choose those elec-
trodynamic potentials which uncouple the second-order partial differential equations
satisfied by these potentials. Indeed, it is always possible to choose the electrody-
namic potentials in such a way as to satisfy the Lorenz condition. Let us assume that
the pair of potentials V and A satisfy the coupled equations (3.78) and (3.79), but
do not satisfy the Lorenz condition, and let us perform a gauge transformation to a
new set of potentials V ′ and A′ which satisfy the Lorenz condition:

0 = ∇ · A′ + εμ
∂V ′

∂t
= ∇ · (A + ∇ψ) + εμ

∂

∂t

(
V − ∂ψ

∂t

)

= ∇ · A + εμ
∂V

∂t
+ Δψ − εμ

∂2ψ

∂t2
.

Thus, if the gauge function ψ satisfies the relation

Δψ − εμ
∂2ψ

∂t2
= −

(
∇ · A + εμ

∂V

∂t

)
,

then V ′ and A′ will satisfy both the Lorenz condition and the non-homogeneous,
decoupled, wave equations.

The gauge transformation whose gauge function satisfies the homogeneous wave
equation

Δψ − εμ
∂2ψ

∂t2
= 0

is a restricted gauge transformation. It maintains the Lorenz condition for the new
set of potentials, on condition that the initial potentials have already satisfied it. The
potentials connected by such restricted gauge transformation are called Lorenz gauge
potentials.

The Lorenz gauge is independent of the choice of coordinate system (which
makes possible a straight generalization to the relativistic case) and, in addition,
allows a manifestly covariant canonical quantization of the electromagnetic field.
The disadvantage of this type of quantization resides in the necessity to introduce
unphysical degrees of freedom whose effects are further eliminated by means of
some relatively complicated procedures. Due to this inconvenience, with the price of
the loss of the manifest relativistic covariance of the theory, sometimes the Coulomb
gauge (also called radiation gauge or transversal gauge) is preferred instead. In this
gauge, we have

∇ · A = 0,
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while the scalar potential V is a solution of the Poisson equation (and not of the
inhomogeneous wave equation (3.82)). The scalar potential V is, therefore, precisely
the instantaneous Coulomb potential

V (r, t) = 1

4πε

∫

V ′

ρ(r′, t)
|r − r′| dτ ′.

For this reason, this type of gauge is called “Coulomb gauge”. As we have seen, in
this case the vector potential A satisfies the inhomogeneous wave equation in which
the term responsible for inhomogeneity (i.e. the source-term in the equation forA) is
expressed only by means of the transversal component of the density current, jtrans .
Consequently, the Coulomb gauge is also called “transversal gauge”. The third name
of this gauge, “radiation gauge”, is given by the fact that the transverse radiation
fields are essentially determined by the vector potential A – remark that even the
field E involves the change in time of the vector potential A, not only the gradient
of the instantaneous Coulomb potential. In other words, although the inobservable
scalar potential at a given time depends on the charge density distribution at that
moment, the propagation of the measurable electric field is not instantaneous. Due
to its simplicity, the Coulomb gauge is mostly preferred when sources are absent.

The gauge invariance is preserved in the quantum theory of electromagnetism,
called quantum electrodynamics, or QED. Maxwell’s gauge theory is the prototype
of gauge theories formulated at different stages and in various contexts mainly by
Hermann Weyl (1885–1955), Chen-Ning Yang (b. 1922), and Robert Mills (1927–
1999).

3.10 Different Types of Electrodynamic Potentials

If the medium is homogeneous and isotropic, free of charges (ρ = 0) and conduction
currents (j = 0), the electromagnetic field can be expressed in terms of some other
potentials, such as antipotentials or the Hertz vector.

3.10.1 Antipotentials

Maxwell’s source equations, written for ρ = 0, j = 0, are

∇ · D = 0,

∇ × H = ∂D
∂t

. (3.89)

The form of these equations is similar to those we have already used to define the
electromagnetic field in terms of the potentials A, V . This fact suggests to write D
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and H as

D = εE = −∇ × A∗,

H = 1

μ
B = −∇V ∗ − ∂A∗

∂t
,

which give

E = −1

ε
∇ × A∗,

B = −μ

(
∇V ∗ + ∂A∗

∂t

)
. (3.90)

It is easy to prove that the potentials A∗, V ∗ satisfy the homogeneous second order
partial differential equations

ΔA∗ − εμ
∂2A∗

∂t2
= 0,

ΔV ∗ − εμ
∂2V ∗

∂t2
= 0, (3.91)

if the Lorenz-type condition

∇ · A∗ + εμ
∂V ∗

∂t
= 0 (3.92)

is fulfilled. The potentialsA∗ and V ∗ are (improperly) called antipotentials and their
usage is less frequent.

3.10.2 Hertz’s Vector Potential

HeinrichHertz (1857–1894) showed that, instead of the potentialsA(r, t) and V (r, t)
can be used a single vector field Z(r, t), known as the Hertz vector. This is defined
by observing that the Lorenz condition (3.80) is identically satisfied if we choose,
on the one hand

A = εμ
∂Z
∂t

, (3.93)

and on the other

V = −∇ · Z. (3.94)
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Being a potential for the potentials A and V , the Hertz vector appears as a “super-
potential”. The electromagnetic field E,B is then expressed in terms of Z by

E = −∇V − ∂A
∂t

= ∇(∇ · Z) − εμ
∂2Z
∂t2

,

B = ∇ × A = εμ∇ ×
(

∂Z
∂t

)
. (3.95)

The partial differential equation satisfied by Z is found using Maxwell’s equation

1

μ
∇ × B = ε

∂E
∂t

, (3.96)

then (3.95), and finally integrating with respect to time. This gives

ΔZ − εμ
∂2Z
∂t2

= 0. (3.97)

A similar reasoning allows us to define Z in terms of the antipotentials A∗, V ∗.
Choosing

A∗ = εμ
∂Z∗

∂t
, V ∗ = −∇ · Z∗ (3.98)

and using (3.90), one easily finds

D = −∇ × A∗ = −εμ∇ ×
(

∂Z∗

∂t

)
,

H = −∇V ∗ − ∂A∗

∂t
= ∇(∇ · Z∗) − εμ

∂2Z∗

∂t2
, (3.99)

while the partial differential equation satisfied by Z∗ (the Hertz antipotential) is

ΔZ∗ − εμ
∂2Z∗

∂t2
= 0.

The physical significance of the potentials Z and Z∗ is closely related to the
electric and magnetic polarization vectors P and M, respectively. Let us admit the
existence of an electric polarization (P0 �= 0) and a magnetic polarization (M0 �= 0)
when the external polarizing fields are absent. Using (1.100) and (2.84), we have

P = P0 + αE = P0 + ε0(εr − 1)E,

M = M0 + χH = M0 + (μr − 1)H,

leading to

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_2
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D = ε0E + P = εE + P0,

B = μ0(H + M) = μH + μ0M0.

Let us consider two special cases:

(a) M0 = 0. Integrating with respect to time Maxwell’s equation

∇ × H = ∂D
∂t

,

we then obtain as the simplest solution

ΔZ − εμ
∂2Z
∂t2

= − 1

ε0
P0, (3.100)

showing that P0 is the source of the vector field Z. For this reason, the Hertz
vector Z is also called potential of electric polarization.

(b) P0 = 0. This time we consider Maxwell’s equation

∇ × E = −∂B
∂t

and obtain
1

ε
∇ × D = −μ

∂H
∂t

− μ0
∂H0

∂t
.

Expressing D and H in terms of Z∗ (see (3.99)) and integrating with respect to
time, one obtains as the simplest solution

ΔZ∗ − εμ
∂2Z∗

∂t2
= −μ0

μ
M0. (3.101)

SinceM0 is the source of the fieldZ∗, the latter is also called potential ofmagnetic
polarization.

3.11 Electrodynamic Potentials and the Analytical
Derivation of Some Fundamental Equations

The formalism of analytical mechanics is very powerful in the derivation of some
fundamental equations in field theory, in particular in the electromagnetic field theory.
The expressions of the fields E and B in terms of the potentialsA and V allow one to
apply the analytical formalism in the derivation of the equations of motion for both
discrete and continuous systems, i.e. point charges and fields, respectively.
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3.11.1 Analytical Derivation of the Equation of Motion
of a Point Charge in an External Electromagnetic
Field

Let us consider a point charge (e.g. an electron), of mass m and charge e, moving
with the velocity v in the electromagnetic field E and B. The Lagrangian of such a
system is composed of two terms, the kinetic part, customarily denoted by L0, and
the interaction part (between charge and the field), Lint :

L = L0 + Lint = m

2
ẋk ẋk − eV + e ẋk Ak, (3.102)

where Einstein’s summation convention has been used. The differential equations of
motion of the particle are Lagrange’s equations of second kind, written for natural
systems (the force is conservative, in the general sense3):

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= 0, j = 1, 2, . . . , n, (3.103)

where q j are generalized coordinates and q̇ j the generalized velocities. In our case,
since the particle is not subjected to any constraints, as generalized coordinates we
can choose the Cartesian coordinates:

qi = xi , q̇i = ẋi = vi , i = 1, 2, 3.

Thus, we have

pi = ∂L

∂ ẋi
= mẋkδik + eAkδik = mẋi + eAi ,

d

dt

(
∂L

∂ ẋ j

)
= mẍi + e

d Ai

dt
= mẍi + e

(
∂Ai

∂t
+ vk

∂Ai

∂xk

)
,

∂L

∂xi
= −e

∂V

∂xi
+ evk

∂Ak

∂xi
.

Introducing these results into (3.103), we obtain

mẍi = −e
∂V

∂xi
− e

∂Ai

∂t
+ evk

(
∂Ak

∂xi
− ∂Ai

∂xk

)
.

It can be easily verified that the expression in parentheses on the r.h.s. is a second order
antisymmetric tensor, denoted by Fik , defined on the three-dimensional Euclidean

3The potential of the interaction between a point charge and the electromagnetic field is a generalized
potential, i.e. a potential which depends not only on the generalized coordinates qi = qi (t) and time
t , but also on the generalized velocities q̇i = q̇i (t), i.e. V = V (q, q̇, t).
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space E3. If we denote by Bs the components of the dual pseudovector associated to
Fik , we have (see (A.60)):

Fik = ∂Ak

∂xi
− ∂Ai

∂xk
= εikm Bm, i, k,m = 1, 2, 3.

Hence

Bs = 1

2
εsik Fik = 1

2
εsik

(
∂Ak

∂xi
− ∂Ai

∂xk

)
= εsik∂i Ak = (∇ × A)s .

The equation of motion then becomes

mẍi = e

(
−∂V

∂xi
− ∂Ai

∂t

)
+ eεiksvk Bs, (3.104)

and finally, in view of (3.75) and (3.76):

mẍi = e(E + v × B)i , mr̈ = e(E + v × B), (3.105)

which is the well-known equation of motion of a point charge in an external electro-
magnetic field.

3.11.2 Analytical Derivation of Maxwell’s Equations

The electromagnetic field is treated analytically as a continuous systems, i.e. as
a system with an infinity of degrees of freedom, corresponding to each point in
space. The components of the electromagnetic field are the generalized coordinates.
Consequently, from each point in space one has a contribution to the total Lagrangian
of the system. Let us denote byL(r) the contribution to theLagrangian froma vicinity
of the point defined by the radius vector r. Then the total Lagrangian will be given
by the volume integral

L =
∫

L(r)dτ .

Thus,L is nothing else but the density of Langrangian. The study of continous media
starts always from the construction of the Lagrangian densityL of the studied model.
Once the Lagrangian density is established, the evolution in time and space of the
system is found by solving the second order partial differential equations called
Euler–Lagrange equations:

∂L
∂ϕ(s)

− ∂

∂xJ

(
∂L

∂ϕ(s)
,J

)
= 0, s = 1, 2, . . . , h, J = 1, 2, . . . , n, (3.106)
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where L(x j ,ϕ
(s),ϕ(s)

,J ) is the Lagrangian density, xJ labels the space-time points,
ϕ(s) are the components of the fields, i.e. the generalized coordinates (variational
parameters), and we use the notation

ϕ(s)
,J = ∂ϕ(s)

∂xJ
= ∂Jϕ

(s).

Choosing
x1 = x, x2 = y, x3 = z, x4 = t,

the system (3.106) becomes

∂L
∂ϕ(s)

− ∂

∂xi

(
∂L

∂ϕ(s)
,i

)
− ∂

∂t

(
∂L

∂ϕ(s)
,t

)
= 0, i = 1, 2, 3. (3.107)

The Lagrangian density L is composed of two terms: a kinetic term L0, which
is formally the same as the Lagrangian density of the free field, and a part Lint that
expresses the interaction between the field and the sources:

L = L0 + Lint .

Supposing that the interactions take place in a homogeneous and isotropic medium,
it can be shown that the Lagrangian density of the electromagnetic field is

L0 = 1

2
εE2 − 1

2μ
B2. (3.108)

This expression is relativistically invariant and was found in 1900 by Joseph Larmor
(1857–1942) (see Part II).

The interaction Lagrangian density Lint is found by dividing Lint from (3.102)
by the infinitesimal volume Δτ where the charge e is distributed:

Lint = e

Δτ
(−V + v · A) = − ρV + j · A. (3.109)

The Lagrangian density of the field, in the presence of the sources, is then

L = 1

2
ε EmEm − 1

2μ
BmBm − ρV + jm Am . (3.110)

The variables ϕ(s) are, in our case, Ai , i = 1, 2, 3 and V , therefore we shall use
relations (3.75), (3.76) between the field and its potentials:

Em = −V,m − Am,t ,

Bm = εmsj A j,s . (3.111)
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Choosing, for the beginning, ϕ(1,2,3) ≡ Ak, k = 1, 2, 3 in (3.107), we have

∂L
∂Ak

− ∂

∂xi

(
∂L

∂Ak,i

)
− ∂

∂t

(
∂L

∂Ak,t

)
= 0, i, k = 1, 2, 3. (3.112)

Performing the calculations, we successively obtain

∂L
∂Ak

= jmδmk = jk,

∂L
∂Ak,i

= ∂L
∂Bm

∂Bm

∂Ak,i
= − 1

μ
Bmεmsjδ jkδsi = − 1

μ
εikm Bm,

∂

∂xi

(
∂L

∂Ak,i

)
= − 1

μ
εikm Bm,i = 1

μ
(∇ × B)k = (∇ × H)k,

∂L
∂Ak,t

= ∂L
∂Em

∂Em

∂Ak,t
= εEm(−δmk) = −εEk = −Dk,

∂

∂t

(
∂L

∂Ak,t

)
= −∂Dk

∂t
.

Introducing these results into (3.112), we find

(∇ × H)k = jk + ∂Dk

∂t
,

which is the xk-component of Maxwell’s source equation (3.42). The last step is
achieved by choosing ϕ(4) = V in (3.107). We then obtain a single equation,

∂L
∂V

− ∂

∂xi

(
∂L
∂V,i

)
− ∂

∂t

(
∂L
∂V,t

)
= 0, i = 1, 2, 3. (3.113)

Similar calculations as above give

∂L
∂V

= −ρ,

∂L
∂V,i

= ∂L
∂Em

∂Em

∂V,i
= εEm(−δim) = −εEi = −Di ,

∂

∂xi

(
∂L
∂V,i

)
= −Di,i ,

∂L
∂V,t

= 0,

and (3.113) leads to
Di,i = ∇ · D = ρ,
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which is the remaining Maxwell’s source equation.

Observation:

In the above example we have used the source-free Maxwell’s equations to define
the electromagnetic field in terms of its potentials and, by applying the analytic
formalism,we have deduced the other group, i.e. theMaxwell equationswith sources.
The problemmay also be posed the other way around: knowingMaxwell’s equations
with sources, determine the electromagnetic field in terms ofA and V , as in formulas
(3.111), which finally lead to the source-free Maxwell equations. To this end, we
construct the following Lagrangian density:

L = 1

2
εE2 − 1

2μ
B2 − V (ε∇ · E − ρ) + A ·

(
1

μ
∇ × B − ε

∂E
∂t

− j
)

. (3.114)

Here the variational parameters are the field components Ei , Bi , i = 1, 2, 3, while
the source equations have been used as constraints for these components, introduced
by the Lagrange multipliers V (r, t) andA(r, t). Choosingϕ(1,2,3) = Ek, k = 1, 2, 3
and ϕ(4,5,6) = Bk, k = 1, 2, 3, we find (3.111)1 and (3.111)2, respectively. Using
then the procedure described above, the source-free equations are obtained immedi-
ately.

3.12 Electromagnetic Field Equations for Moving Media

The theory presented up to this point is based on the assumption that the medium
where the electromagnetic phenomena take place is at rest with respect to the
observer; in other words, all measurements are done in the reference system attached
to the medium. Under these circumstances we have deduced, among other results,
Maxwell’s system of equations.

The formulation of the system of equations describing the electromagnetic field
for moving media can be unitarily treated only in the framework of the theory of
relativity. In this section, nevertheless, we shall present a pre-relativistic approach to
this problem, based on the mechanics of continuous media and valid only for small
velocities as compared to the speed of light in vacuum. This theory was developed by
Heinrich Hertz and Hendrik Antoon Lorentz. It is of a special importance, since the
special theory of relativity, as we shall see in the second part of the book, appeared
and was developed within the framework of the electrodynamics of moving media.

3.12.1 Source-free Equations

The motion of the medium affects only the equations of evolution. Indeed, if in a
certain reference frame the field B is solenoidal, it will retain this property in any
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reference frame which is in a uniform motion of translation with respect to the first
(inertial frame). In other words, the equation ∇ · B = 0 will keep its form, no matter
in which inertial frame it is considered. As we have already specified, we assume
that the medium moves uniformly with the velocity |v| � c.

Let C(t) be a closed contour connected to the body, and S(t) a surface bounded
by C . The equation expressing the time variation of B is then given by Faraday’s law
of electromagnetic induction:

∮

C
E · dl = − d

dt

∫

S
B · dS = −dΦm

dt
. (3.115)

Since the surface is variable in time, one has to know the rule for performing the time-
derivative of the magnetic flux in (3.115). To this end we shall apply the formalism
of the mechanics of continuous media.

Assume that at the initial time t = t0 the medium occupies the spatial domain
D0, of volume V0, bounded by the surface S0. These elements define the so-called
configuration of themedium at the initialmoment t0. Next, assume that at themoment
t > t0 the same medium (therefore the same number of particles) fills up a domain
D, of volume V , bounded by the surface S. Thus, if r0 is the initial radius vector of
a particle (molecule) P0 of D0, and r is the radius vector of the same particle in D at
the time t , we note that r is a function of r0 and t :

r = r(r0, t), xi = xi (x
0
j , t), i, j = 1, 2, 3. (3.116)

For r0 fixed and t variable, these equations define the trajectory of the particle under
observation,while for t fixed, r describes the domain Dwhen r0 describes the domain
D0. In the latter case Eq. (3.116) defines an application of the Euclidean space onto
itself. We call material manifold any manifold (curve, surface, volume) formed by
particles of the medium. For example, the parametric equations of a material surface
S0 in D0 is

x0i = x0i (q1, q2), i = 1, 2, 3, (3.117)

while the equations of its image S in D is

xi = xi [r0(q1, q2), t] = xi (q1, q2, t). (3.118)

Since, by hypothesis, the particles keep their individuality (to a point P0 of D0

corresponds a single point P of D and reciprocally), from the mathematical point of
view this is an example of a one-to-one correspondence, expressed by

J = det

(
∂xi
∂x0j

)
= ∂(x1, x2, x3)

∂(x01 , x
0
2 , x

0
3 )

�= 0, (3.119)
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where J is the functional determinant (Jacobian) of the transformation (3.116)
(t being fixed).

By means of (3.119), we can prove that the image of a material manifold is a
manifold of the same order. For example, if the material manifold is a surface, we
have

∂xi
∂qα

= ∂xi
∂x0j

∂x0j
∂qα

, i, j = 1, 2, 3, α = 1, 2.

Thus, according to (3.119):

rank

∣∣∣∣

∣∣∣∣
∂xi
∂qα

∣∣∣∣

∣∣∣∣ = rank

∣∣∣∣∣

∣∣∣∣∣
∂x0j
∂qα

∣∣∣∣∣

∣∣∣∣∣ = 2.

Based on these preliminary observations, let us consider the total time derivative

d

dt

∫

S
a · dS, (3.120)

where S(t) is a material surface and a(r, t) – an arbitrary vector field. To perform the
integration in (3.120), one has to calculate the time derivative of the surface element
dS. To this end, we shall use the parametric representation and write dS as the cross
product of the vectors ∂r

∂q1
dq1 and ∂r

∂q2
dq2, tangent to the curves q1 = λ1 and q2 = λ2,

respectively:

dS = ∂r
∂q1

× ∂r
∂q2

dq1dq2,

dSi = εi jk
∂x j

∂q1

∂xk
∂q2

dq1dq2, i, j, k = 1, 2, 3. (3.121)

The determinant of any 3 × 3 matrix A can be written as

det A = εi jk A1i A2 j A3k, i, j, k = 1, 2, 3,

in which case is valid also the relation

εlmn(det A) = εi jk Ali Amj Ank, i, j, k, l,m, n = 1, 2, 3.

Since in our case det A = J , we have

Jεlmn = εi jk
∂xi
∂x0l

∂x j

∂x0m

∂xk
∂x0n

, i, j, k, l,m, n = 1, 2, 3. (3.122)

Let us write (3.121) in the form
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dSi = εi jk
∂x j

∂x0m

∂xk
∂x0n

∂x0m
∂q1

∂x0n
∂q2

dq1dq2, i, j, k,m, n = 1, 2, 3,

and multiply it by ∂xi
∂x0l

∂x0l
∂xk

= δik, i, k, l = 1, 2, 3. The result is

dSk = J
∂x0l
∂xk

dS0l , k, l = 1, 2, 3. (3.123)

The derivative (3.120) implies the calculation of d
dt

(
∂x0l
∂xk

)
, k, l = 1, 2, 3. To this end,

we take an arbitrary elementary variation dx0l = ∂x0l
∂xk

dxk, k, l = 1, 2, 3 and calculate

(taking into account that dx0l does not vary in time):

0 = d

dt
(dx0l ) = d

dt

(
∂x0l
∂xk

)
dxk + ∂x0l

∂xk
dvk, vk = dxk

dt
, k, l = 1, 2, 3.

In the last relation we replace dvk by ∂vk
∂xi

dxi , i, k = 1, 2, 3 and interchange the
summation indices. Since dxk is arbitrary, this yields

d

dt

(
∂x0l
∂xk

)
= −∂x0l

∂xi

∂vi

∂xk
, i, k, l = 1, 2, 3. (3.124)

We are now prepared to perform the time derivative of the surface element (3.123).
Using (3.124) and Euler’s formula (2.11), which we re-write here for convenience:

d J

dt
= J ∇ · v,

we have

d

dt
(dSi ) =

[
J (∇ · v)∂xl

∂xi
− J

∂x0l
∂xk

∂vk

∂xi

]
dS0l

= (∇ · v)dSi − ∂vk

∂xi
dSk, i, k, l = 1, 2, 3.

The derivative (3.120) then becomes

d

dt

∫

S
ai dSi =

∫

S

{
dai
dt

dSi + ai

[
(∇ · v)dSi − ∂vk

∂xi
dSk

]}

=
∫

S

[
da
dt

+ a∇ · v − (a · ∇)v
]

· dS, i, k = 1, 2, 3.

The last two terms can be manipulated by means of the vector relation (see (A.47)):

http://dx.doi.org/10.1007/978-3-642-17381-3_2
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∇ × (a × v) = a∇ · v − v∇ · a + (v · ∇)a − (a · ∇)v,

while the substantial time derivative da/dt is given by

da
dt

= ∂a
∂t

+ (v · ∇)a.

One then finally obtains

d

dt

∫

S
a · dS =

∫

S

Da
Dt

· dS =
∫

S

[
∂a
∂t

+ ∇ × (a × v) + v∇ · a
]

· dS. (3.125)

The notation
Da
Dt

= ∂a
∂t

+ ∇ × (a × v) + v∇ · a

belongs to Lorentz, being called Lorentzian derivative.
Let us apply now the above results to the electromagnetic field theory. We take

a(r, t) ≡ B(r, t), which means ∇ · a = ∇ · B = 0, so that

d

dt

∫

S
B · dS =

∫

S

[
∂B
∂t

+ ∇ × (B × v)
]

· dS. (3.126)

Denoting byE′ the electric fieldmeasured by an observer which is at rest with respect
to the moving medium, let us write the induction law (3.115) in the form

∮

C
E′ · dl = −

∫

S

[
∂B
∂t

+ ∇ × (B × v)
]

· dS, (3.127)

or, by means of the Stokes–Ampère theorem and a convenient arrangement of the
terms,

∇ × (E′ − v × B) = −∂B
∂t

. (3.128)

The vector E′ − v × B is nothing else but the field E, measured by a stationary
observer, therefore we can write

∇ × E = −∂B
∂t

, (3.129)

as well as
E = E′ − E′′, (3.130)

where E′′ ≡ v × B was termed by Lorentz effective electric field.
Thus we came to the conclusion that Maxwell’s equation expressing the induction

law does not change its form when passing from a medium at rest to a uniformly
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moving medium. The relation (3.130) is also written as

E′ = E + v × B, (3.131)

i.e. the field E′, measured by the mobile observer, is the sum of E, measured by
the stationary observer, and the effective field E′′, that appears as a result of the
displacement of the medium. We shall encounter again Eq. (3.131) when discussing
the relativistic approach to electrodynamics.

Observations:

(a) We emphasize, for very good reasons, that the velocity of the medium is much
smaller than the speed of light in vacuum.

(b) Relation (3.128) also says that the two observers determine the same magnetic
field: B′ = B.

(c) The three terms appearing in the integral (3.125) have the following significance:
the first term expresses the time variation of the flux of the vector a due to the time
variation of a; the second gives the flux variation through the surface bounded
by the moving contour; the third appears as a result of the surface S passing
through an inhomogeneous region of the field.

3.12.2 Source Equations

Recall that by averaging the Maxwell–Lorentz microscopic equations we obtained
(see Sect. 3.2):

∇ × B
μ0

= 〈jmicro〉 + ε0
∂E
∂t

,

∇ · (ε0E) = 〈ρmicro〉, (3.132)

and found

〈jmicro〉 = j + ∇ × M + ∂P
∂t

,

〈ρmicro〉 = ρ − ∇ · P, (3.133)

leading to the following source equations for media at rest:

∇ ×
(
B
μ0

− M
)

= j + ∂

∂t
(ε0E + P),

∇ · (ε0E + P) = ρ. (3.134)
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If themedium ismoving, Eq. (3.134)2 will remain unchanged,while the derivation
of some terms in (3.134)1 must be reconsidered. First, besides the conduction current
we have to consider the convection current

〈ρmicro〉 v = (ρ − ∇ · P) v. (3.135)

Secondly, the currents produced by the time variation of P as a result of the motion
of the medium are now given by the Lorentzian derivative of P, which means that
the term ∂P/∂t in (3.133) has to be replaced by

DP
Dt

= ∂P
∂t

+ ∇ × (P × v) + v∇ · P (3.136)

This conclusion can also be drawn from the fact that, since the medium is moving,

〈jpol〉 = n e〈l̇〉 = D

Dt
(n e〈l〉) = DP

Dt
.

Therefore, instead of Eq. (3.134)1 we have to write

∇ × H = j + ρv + ∇ × (P × v) + ∂D
∂t

, (3.137)

where the fields H,D have the usual significance:

H = B
μ0

− M,

D = ε0E + P. (3.138)

Let us write the source equations for two particular cases.

3.12.2.1 The Moving Medium Is a Non-polarizabile Conducting Fluid
(P = 0, M = 0)

The source equations read

1

μ0
∇ × B = j + ρv + ε0

∂E
∂t

,

ε0 ∇ · E = ρ. (3.139)

As shown by M.G. Calkin,4 Eq. (3.139) can be written in a symmetric form, similar
to that of the source-free equations:

4M.G. Calkin, An Action Principle for Magnetohydrodynamics, Can. J. Phys., 41, 1963, p. 2241.



158 3 The Electromagnetic Field

∇ ×
(
B
μ0

−PPPP
)

= ∂

∂t
(ε0E +PPPP),

∇ · (ε0E +PPPP) = 0, (3.140)

by means of the vector field PPPP , called pseudo-polarization and defined by

j = ∂PPPP
∂t

+ ∇ × (PPPP × v) + v∇ ·PPPP,

ρ = −∇ ·PPPP. (3.141)

This formalism is justified by the fact that the equation of continuity

∂ρ

∂t
+ ∇ · (j + ρv) = 0 (3.142)

is identically satisfied by (3.141). Since the field described by the Eq. (3.140) is,
formally, source-free, these can serve to define the electromagnetic field (E, B) in
terms of the generalized antipotentialsMMMM and ψ as

E = 1

ε0
(∇ ×MMMM −PPPP),

B = μ0

(
∇ψ +PPPP × v + ∂MMMM

∂t

)
. (3.143)

Equations (3.143) generalize the definition of the electromagnetic field in terms of
the antipotentials (3.90). (The sign does not have any significance).

The generalized antipotentials are useful in the study of moving charged fluids
(magnetofluid dynamics, plasma theory, etc.).

3.12.2.2 The Moving Medium Is a Polarized (P �= 0) Dielectric
(M = 0), without Sources (j = 0,ρ = 0)

In this case, the source equations become

∇ ×
(
B
μ0

− P × v
)

= ∂D
∂t

,

∇ · D = 0. (3.144)

Comparing (3.144)1 and (3.134) one observes that a polarized dielectric behaves,
from the macroscopic point of view, as a magnetized body, possessing the magneti-
zation intensity

Md = P × v.
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The Hertz–Lorentz theory was experimentally confirmed by Wilhelm Röntgen
(1845–1923) in 1888. He investigated the magnetic effect accompanying the motion
of a polarized dielectric. The current density∇ × (P × v), corresponding to this type
of magnetization, is called Röntgen current. Röntgen’s studies were resumed in 1903
by Alexander Eichenwald (1863–1944), and in 1904 by Harold A. Wilson (1874–
1964), the latter performing the polarization of a dielectric cylinder, while rotating
in a magnetic field parallel to the cylinder axis. In 1903–1904, Nicolae Vasilescu-
Karpen (1870–1964) proved experimentally, with a high precision, that the magnetic
field produced by the convection current is the same with the effect produced by the
conduction current, in any conditions. All these facts show that a moving polarized
dielectric gives rise to a magnetic field of the same nature as the field produced by
permanent magnets.

Summarizing the previous discussion, let us write the system of equations of the
electromagnetic field for slowly moving media, as given by Lorentz:

∇ × E = −∂B
∂t

,

∇ · B = 0,

∇ × H = j + ρv + ∇ × (P × v) + ∂D
∂t

,

∇ · D = ρ, (3.145)

where by ρ and jwemean the free charge density and the conduction current density,
respectively. Equations (3.145) have to be completed with constitutive relations and
jump conditions.

The differential form of Ohm’s law for moving media, due to (3.131), becomes

j = λ(E + v × B). (3.146)

Observation:
In the derivation of Eqs. (3.145) Lorentz neglected the possibility of variation of

the magnetic polarization of moving media. Subsequent research and, first of all, the
theory of relativity, showed the connection between the two types of polarization and
gave the appropriate form of the relations between fields. This issue will be discussed
in Part II of the book.

3.13 Solved Problems

Problem 1. Determine the expression (3.102) of the Lagrangian used in Sect. 3.11
to find the equation of motion of a point charge in an external electromagnetic field.
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Solution. In the frameworkof theLagrangian formalism, the differential equations
of motion are generally written as

d

dt

( ∂T

∂q̇k

)
− ∂T

∂qk
= Qk, k = 1, 2, . . . , n, (3.147)

where q1, q2, . . . , qn are the generalized coordinates, T (q, q̇, t) is the kinetic energy,
and Qk, k = 1, 2, . . . , n are the associated generalized forces. If the applied force
comes from a generalized potential, linear in q̇k , of the form

U (q, q̇, t) =
n∑

k=1

Ckq̇k +U0 = U1 +U0, Ck = Ck(q, t),

Eqs. (3.147) can be put in a more convenient form. To this end, one adds to both sides
of (3.147) the expression

∂U

∂qk
− d

dt

(
∂U

∂q̇k

)
,

obtaining

d

dt

[
∂(T −U )

∂q̇k

]
− ∂(T −U )

∂qk
= Qk − d

dt

(
∂U

∂q̇k

)
+ ∂U

∂qk
.

If one may write

Qk = d

dt

(
∂U

∂q̇k

)
− ∂U

∂qk
, (3.148)

and define the Lagrangian of the system as

L(q, q̇, t) = T (q, q̇, t) −U (q, q̇, t), (3.149)

then we get the usual form of the Lagrange equations:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0. (3.150)

Our Lagrangian falls into this general description. Since there are no definite laws
to construct a Lagrangian, we should mention that the Lagrangian associated with a
physical system is not unique, but it has to obey certain rules. First, it must contain
all the quantities necessary to describe the system and, finally, to lead to the desired
equation(s) of motion. Secondly, it has to be as simple as possible. Thirdly, it must
have the dimension of energy. Fourthly, it has to be invariant with respect to a set of
space-time transformations (see Part II). Since there are no constraints on the motion
of the particle, it has three degrees of freedom. Thus, we can choose as general
coordinates its Cartesian coordinates, and as general velocities – its usual velocity
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components:
qk = xk, q̇k = ẋk = vk, k = 1, 2, 3.

In the Lagrangian formalism, the general coordinates and general velocities are con-
sidered independent quantities.

In the absence of the magnetic field, the Lagrangian is

L = T −U = T − e V,

where V is the potential of the electric field. To consider the contribution of the
magnetic field, we use the above mentioned properties and observe that, in order
to be a scalar, the Lagrangian must contain the vector potential A only as a dot
product with another vector. There are three meaningful possibilities: A · A,A · ṙ
and A · r̈. The first possibility would give a term proportional to B2 in the equation
of motion, and since such a term does not exist, the first possibility is excluded. The
third case implies the existence of a term containing the derivative of acceleration in
the equation of motion; this option is also out of the question, since customarily the
equations of motion are of the second order. Therefore, it remains only the second
solution, and the Lagrangian acquires the form (see (3.102)):

L = 1

2
m v2 − eV + eA · v. (3.151)

Problem 2. Starting from the Lagrangian (3.151), find the equation of motion
of a charged particle in the electromagnetic field E and B, using the Hamiltonian
formalism.

Solution. Let us write the Lagrangian (3.151) in the form

L = 1

2
m v j v j − eV + e v j A j , j = 1, 2, 3, (3.152)

where Einstein’s summation convention has been used. The first step in the Hamil-
tonian formalism is to determine Hamilton’s function H(q, p, t), where p stands for
the generalized momenta

p j = ∂L

∂q̇ j
= mv j + eA j . (3.153)

The Hamiltonian of the system is then

H = p j q̇ j − L = v j (mv j + eA j ) − 1

2
m v j v j + eV − e v j A j = 1

2
mv jv j + eV .

Using (3.153) we shall express the Hamiltonian in terms of coordinates and canoni-
cally conjugated momenta:
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H = 1

2
(p j − eA j )(p j − eA j ) + eV . (3.154)

Next step is to write Hamilton’s canonical equations

ẋk = ∂H

∂ pk
,

ṗk = −∂H

∂xk
. (3.155)

For the Hamiltonian (3.154) these equations become

ẋk = 1

m
(pk − eAk),

ṗk = e

m
(p j − eA j )

∂A j

∂xk
− e

∂V

∂xk
. (3.156)

Taking the total time derivative of (3.156)1, and using (3.156)2, we find the equation
of motion in the form

ẍk = −e
∂V

∂xk
− e

∂Ak

∂t
+ ev j

(
∂A j

∂xk
− ∂Ak

∂x j

)
, j, k = 1, 2, 3,

or, in terms of the electric and magnetic fields,

mẍk = eEk + e(v × B)k, k = 1, 2, 3, (3.157)

as we have expected. The last equation has been already obtain in Sect. 3.11 bymeans
of the Lagrangian formalism, and the final results coincide.

Problem 3. Find the transformation of the Lagrangian of a charged particle,
moving in an external electromagnetic field, as a result of a gauge transformation of
the potentials.

Solution. Let us consider L(V,A) and L ′(V ′,A′), where (see (3.87), (3.88)):

A′ = A + ∇ψ,

V ′ = V − ∂ψ

∂t
, (3.158)

ψ(r, t) being a differentiable function. Then, we have

L = 1

2
mv2 − eV + e(v · A),

and, in view of (3.158):
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L = 1

2
mv2 − e

(
V ′ + ∂ψ

∂t

)
+ ev · (A′ − ∇ψ) = L ′ − ev · ∇ψ − e

∂ψ

∂t

= L ′ − e

[
∂ψ

∂t
+ (v · ∇)ψ

]
= L ′ − e

dψ

dt
= L ′ − d

dt
(eψ). (3.159)

But two Lagrangian functions, which differ from each other by a termwhich is a total
time derivative of an arbitrary scalar function of coordinates and time, are equivalent.
In other words, they give the same description of themotion. In conclusion, the gauge
transformation (3.158) does not affect the equations of motion.

Problem 4. The Lagrangian of a charged particle, subject to an electromagnetic
force is (see (3.151)):

Lem = 1

2
m v2 − eV + ev · A, (3.160)

while the Lagrangian of a particle of massm, in motion with respect to a non-inertial
frame S′ (see Fig. 3.2) is

Lmech = 1

2
m |vr |2 + 1

2
m |ω × r′|2 + m vr · (ω × r′) − m a0 · r′ − Wpotential ,

(3.161)
where ω is the instantaneous vector of rotation, vr – the relative velocity, and
Wpotential – the potential energy of the particle.

a) Using the correspondences m ↔ e si ω ↔ ∇ × A′, show that the equation of
motion of a massive and electrically neutral particle in a non-inertial system can be
obtained from the Lagrangian of a charged particle moving under the action of a
force which derives from a generalized potential (depending on velocities), where
the generalized potential energy is of the form

W ′ = m (V ′ − 2v · A′),

Fig. 3.2 The two
referentials: S – the inertial
reference frame (IRF) and
S′ – the non-inertial
reference frame (NIRF) for
Problem 4.
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with

V ′ = r · a0 − 1

2
|ω × r|2 and A′ = 1

2
ω × r,

and the magnetic field is considered constant and homogeneous.
b) Show that the “new fields” E′ and B′ (corresponding to the potentials V ′ si A′

defined above) satisfy the sourceless Maxwell equations.
Solution. Starting from the Lagrangian (3.161) one obtains the equation ofmotion

of the particle with respect to the non-inertial frame as the Lagrange equation:

m ar = F − m a0 − m ω̇ × r′ − m ω × (ω × r′) − 2m ω × vr . (3.162)

The analogy between the two systems whose Lagrangians are (3.160) and (3.161)
appears at various levels, as follows. First, one observes that both the Coriolis force
Fc = 2m vr × ω and the Lorentz force are gyroscopic (their power is zero). Since
we deal with a motion in a non-inertial frame, we are allowed to use r, v, instead
of r′, vr , respectively. Secondly, each Lagrangian contains two velocity-dependent
terms. Thirdly, if the field B is constant and homogeneous, then it is easy to show
(see Problem 1, Chap.2) that A can be written as A = 1

2B × r. This means that the
terms m v · (ω × r) and e v · A are equivalent, if we set the correspondence m ↔ e,
and choose

A′ = 1

2
ω × r, (3.163)

i.e.
ω = ∇ × A′. (3.164)

This analogy leads to the following Lagrangian of the particle, relative to the non-
inertial frame:

L = 1

2
m |v|2 − m V ′ + 2m v · A′ − V (r), (3.165)

where A′ is defined by (3.163) and V ′ by

V ′ = r · a0 − 1

2
|ω × r|2. (3.166)

We emphasize that the potentials A′ and V ′ are functions of coordinates and time,
whileWpotential yields the potential force. By the above settled convention, ṙ = v and
r̈ = a are determined relative to the non-inertial frame. Using the Lagrange equations
and performing the calculations, we obtain the following equation of motion:

m r̈ + 2m A′ + m ∇V ′ − 2m ∇(r · A′) + ∇W = 0,

or, if we use (A.46) and make some re-arrangements of the terms,

http://dx.doi.org/10.1007/978-3-642-17381-3_2
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m r̈ = m (E′ + v × B′) + F, (3.167)

where

E′ = −∇V ′ − ∂

∂t
(2A′),

B′ = ∇ × (2A′). (3.168)

Equation (3.167) shows that the terms E′ and v × B′ have the units of an acceler-
ation. It also shows that the particle moves in an inertial force field, defined by the
potentials A′, V ′, and in an applied force field F = −∇ V as well. If the frame S′
becomes inertial, and F = 0, then a0 = 0, ω = 0, and Eq. (3.167) yields r̈ = 0, as
expected. We reach the same result if the charged particle is neither accelerated by
the electric field E nor rotated by the magnetic field B.

We can still go further with this analogy, and observe that the fields E′ and B′
satisfy the source-free Maxwell equations,

∇ × E′ = −∂B′

∂t
,

∇ · B′ = 0. (3.169)

We can then conclude that the study of a massive (m �= 0), non-charged particle,
moving in a non-inertial frame, can be accomplished by using the same Lagrangian
as for a charged particle, moving in a velocity-dependent force field, the generalized
potential energy being given by

W = m (V ′ − 2v · A′). (3.170)

Problem 5. Using the Hamiltonian formalism, study the motion of a charged
particle in a stationary magnetic field with axial symmetry.

Solution. Since the field is stationary, the vector potential A does not explicitly
depend on time and the magnetic field is given by

B = ∇ × A. (3.171)

The geometry of the problem indicates to choose a cylindrical system of coordi-
nates ρ, ϕ, z, with the z-axis directed along the symmetry axis, and assume that
Aρ = 0, Aϕ �= 0, Az = 0. Since by definition of the field with axial symmetry
Bϕ = 0, the non-zero components of B are

Bρ = −∂Aϕ

∂z
,

Bz = 1

ρ

∂

∂ρ

(
ρAϕ

)
.
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Observing that A is independent of ϕ, we may write the Hamiltonian as

H = 1

2m

{
p2ρ + 1

ρ2
[
pϕ − eρAϕ(ρ, z)

]2 + p2z

}
. (3.172)

Hamilton’s equations for the conjugate variables ϕ and pϕ are

ϕ̇ = ∂H

∂ pϕ
= 1

mρ2
(pϕ − e ρ Aϕ),

ṗϕ = −∂H

∂ϕ
= 0.

The second equation leads to the first integral

pϕ = mρ2ϕ̇ + eρAϕ = const. (3.173)

Since H does not explicitly depend on time, there exists also the energy first integral

E = 1

2
m(ρ̇2 + ρ2ϕ̇2 + ż2) = const. (3.174)

The differential equations of motion for ρ and z are then

m(ρ̈ − ρϕ̇2) = eρ̇Bz,

mz̈ = −eρϕ̇Bρ. (3.175)

Assume now that B is constant and homogeneous. Then, according to the result
of Problem 1, Chap.2,

Aϕ = 1

2
(B × r)ϕ = 1

2
ρBz,

and the first integral (3.173) reads

mρ2ϕ̇ + 1

2
eρ2Bz = C (const.), (3.176)

known as Busch’s relation, after the German physicist Hans Busch (1884–1973). If
at the initial moment t = 0 the particle is at the origin O of the reference frame,
where ρ = 0 and vϕ = ρϕ̇ = 0, then C = 0 and (3.176) yields

ϕ̇ = −eBz

2m
, (3.177)

meaning that the particle performs a motion of precession around the z-axis. This
effect is applied in the construction of magnetic focusing devices, called magnetic
lenses. Substituting (3.177) into the energy first integral (3.174) (and noting that for

http://dx.doi.org/10.1007/978-3-642-17381-3_2
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B = (0, 0, Bz), the second equation in (3.175) leads to ż = const.), one obtains the
following second-order differential equation:

ρ̈ +
(
eBz

2m

)2

ρ = 0. (3.178)

Assume that the particle moves close to the z-axis, while the magnetic field acts
only over a small portion of the beam (paraxial beam). The components of the
velocity along ρ and ϕ are then negligible as compared to the component along z.
As ż = v = const., we have

ρ̈ = ż2
d2ρ

dz2
= v2 d

2ρ

dz2
,

and (3.178) yields
d2ρ

dz2
+

(
eBz

2mv

)2

ρ = 0. (3.179)

Since d2ρ/dz2 < 0, the magnetic lens is convergent, independently of the sign of
charged particles.

The electric lens is based on a similar focusing principle. Both electric and mag-
netic lenses are used in electronic microscopy, television devices, etc.

3.14 Proposed Problems

1. Write Maxwell’s equations (3.9), as well as the relations between fields and
potentials, in spherical and cylindrical coordinates.

2. Show that, if in a homogeneous conducting medium one can neglect the dis-
placement current as compared with the conduction current, then the density j
of the conduction current satisfies the equations

∇ · j = 0, Δj = λμ
∂j
∂t

,

whereλ is the electric conductivity. Also, show that the fieldsE, D, H, B satisfy
analogous relations.

3. Given the Lagrangian density of the electromagnetic field in the presence of
sources (3.110), find Maxwell’s equations by using the Hamiltonian formalism
for continuous media.

4. Using the Hamiltonian approach, determine the energy of a dipole in an external,
constant, and homogeneous electromagnetic field.

5. Show that Maxwell’s equations (3.9) are not covariant (do not keep their form)
under the Galilei–Newton group of transformations:
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r′ = r − Vt,

t ′ = t.

Later on, we shall see that they are covariant under the Lorentz group of trans-
formations, which represents the symmetry of special relativity.

6. A flux of charged particles is radially and uniformly ejected from the surface
of an empty sphere, towards the outside. The result is a radial current, having
the same magnitude in all directions. Let R be the radius of the sphere, Q(r)
the charge inside a given spherical surface of radius r > R, j(r) the density
of the radial current, and E(r) the intensity of the electric field at any point
of the spherical surface of radius r > R. Determine j(r) in terms of Q(r) and
E(r). Using Maxwell’s equations, find also the magnetic field produced by the
currents.

7. Show that the vector potential A, in the Coulomb gauge, can be derived from a
superpotential in such away that the Eq. (3.86) and theCoulomb condition (3.83)
are both satisfied, the superpotential having to satisfy only awave equation. (Hint:
one takes A = ∇ ×ZZZZ .)

8. Derive Maxwell’s equations in Hamiltonian formalism, when no sources are
present, by using the complex functionψk = Ek − i Bk , where i is the imaginary
unit.

9. An electric charge q is uniformly distributed inside a cone whose height h equals
the radius of its basis. The cone rotates around its symmetry axiswith the constant
angular velocity ω. A particle whose internal magnetic moment m is tilted by
the angle α with respect to the axis, is placed at the tip of the cone. Show that
the magnetic energy of interaction between the particle and the cone is given by
the expression

W = 3(4 − 3
√
2)

2

μ0

4π

mωq

h
cosα.

10. A bounded distribution of electric currents j produces in vacuum a field whose
total energy isW0. In amagnetizable (non-ferromagnetic) medium, the same dis-
tribution gives rise to a field whose total energy isW . Show that the contribution
of the medium to the energy is

δW = W − W0 = 1

2

∫
M · B0 dτ ,

where M is the magnetization of the medium, and B0 is the initial value in
vacuum of the magnetic induction.



Chapter 4
Electromagnetic Waves

4.1 Conductors, Semiconductors, Dielectrics

The electromagnetic field propagates both in vacuumand inmedia as electromagnetic
waves. In this respect, it is necessary to establish a classification criterion of material
media regarding the propagation phenomenon of electromagnetic waves.

Consider a linear, homogeneous, and isotropic medium, characterized by the per-
mittivity ε, the permeability μ, and the conductivity λ. If the medium is fixed relative
to the observer, the constitutive equation are:

D = εE, B = μH, j = λE.

In this case, the sum of the conduction and displacement current densities arising in
Maxwell’s equation (3.42) is:

jtot = jcond + jdisp = λE + ε
∂E
∂t

.

Let us define the ratio

β = |jcond |
|jdisp|

.

Depending on the value of this ratio, one can distinguish three cases:

(a) β � 1. Such a situation is found in case of conductors, where jdisp is negligible
with respect to jcond ;

(b) β � 1. This property characterizes the dielectric media;
(c) β � 1, which means that both currents have to be considered. This is the case

of semiconductors.
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Assuming that there is no spatial charge (ρ = 0), consider now Maxwell’s evolution
equations

1

μ
∇ × B = λE + ε

∂E
∂t

,

∇ × E = −∂B
∂t

.

Taking the curl of both equations and usingMaxwell’s condition equations∇ · B = 0
and ∇ · E = 0, one obtains:

ΔE − εμ
∂2E
∂t2

= λμ
∂E
∂t

,

ΔB − εμ
∂2B
∂t2

= λμ
∂B
∂t

. (4.1)

According to the above discussion, these equations describe the propagation of
the electromagnetic waves in semiconductive media. The dielectrics and conductors
will then appear as particular cases of semiconductors, by neglecting either the term
εμ ∂2E/∂t2 (conductors), or the term λμ∂E/∂t (dielectrics).

For given λ, ε, and μ, the type of a material depends, from the point of view of
wave propagation, on the frequency of the incident radiation. Let us consider the
electric field varying periodically according to the lawE = E0 exp(iωt). In this case,

β = |jcond |
|jdisp|

= λ

εω
.

Take, as an example, the silicon (Si), characterized by λ/ε � 5 × 107 Hz. Here are
three values for β for three different frequencies (since we do not take into account
the dispersion, the figures are only indicative):

ω = 103 Hz → β = 5 × 104 (metal-type),

ω = 1011 Hz → β = 5 × 10−4 (dielectric-type),

ω = 5 × 107 Hz → β = 1 (semiconductor-type).

Therefore, the type of one and the same material depends on the frequency of the
incident radiation. To avoid this complication, we shall consider the type of material
as being exclusively given by its intrinsic parameters (permittivity, permeability,
conductivity, etc.).

We shall beginwith the analysis of electromagneticwavepropagation in dielectric-
typemedia. This is the simplest case and allows us to settle some notions with general
validity.
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4.2 Propagation of Electromagnetic Waves
in Dielectric Media

Consider a homogeneous and isotropic, non-dissipative and non-dispersive dielectric
medium, free of charge and conduction currents. Maxwell’s equations describing the
electromagnetic field in such a medium are

∇ × H − ε
∂E
∂t

= 0,

∇ · H = 0,

∇ × E + μ
∂H
∂t

= 0, (4.2)

∇ · E = 0.

Taking the curl of the evolution equations and using the condition equations and
formula (A.51), we are led to the following two homogeneous second order partial
differential equations:

εμ
∂2E
∂t2

− ΔE = 0,

εμ
∂2H
∂t2

− ΔH = 0. (4.3)

This means that both E and H satisfy the d’Alembert wave equation

1

u2
∂2f
∂t2

− Δf = 0, f = f(r, t). (4.4)

Comparing (4.3) and (4.4), we find

u = 1√
εμ

; in vacuum u0 = 1√
ε0μ0

= c. (4.5)

Plugging the numerical values of ε0 and μ0 into (4.5), we obtain

u0 = c � 3 × 108 m · s−1,

We conclude that the electromagnetic field, characterized by the vectors E and H,
propagates in dielectric media as waves. Their (phase) velocity in vacuum equals the
speed of light in vacuum.

Assume the x-axis as the direction of propagation, and take f = f(x, t).
D’Alembert’s equation (4.4) then becomes

1

u2
∂2f
∂t2

− ∂2f
∂x2

= 0. (4.6)
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To integrate this equation, one uses the substitution

ξ = x − u t,

η = x + u t,

which gives
∂2f

∂ξ∂η
= 0.

Integrating, we have

∂f
∂ξ

= F(ξ), f =
∫

F(ξ)dξ + g2(η),

and, finally,

f(x, t) = g1(ξ) + g2(η) = g1(x − u t) + g2(x + u t), (4.7)

where g1(x − u t) and g2(x + u t) are two arbitrary functions. The solution g1 gives
the propagation in the positive direction of the x–axis, while g2 gives the propagation
in the negative direction. The first corresponds to a progressive wave and the second
to a regressive wave. We can write also

f(x, t) = f1
(
t − x

u

)
+ f2

(
t + x

u

)
. (4.8)

In the theory of wave propagation, only the progressive wave is practically used. It
is chosen as

fp1(x, t) = f0 cosω
(
t − x

u

)
= f0 cos(ωt − k x), (4.9)

where f0 is the amplitude of the wave, k = 2π/λ – the wave number, λ – the wave-
length, while the argument (ωt − k x) of the trigonometric function is the phase of
the wave.

Another solution can be

fp2(x, t) = f0 sin(ωt − k x). (4.10)

According to the superposition principle, the combination

f(x, t) = fp1(x, t) + i fp2(x, t)

= f0[cos(ωt − k x) + i sin(ωt − k x)] = f0ei(ωt−k x) (4.11)

is also a solution of the wave equation (4.6).
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If the wave propagates in an arbitrary direction, defined by the unit vector
s(α,β, γ), where α,β, γ are the directional cosines of the normal to the wavefront,
then the wave vector is

k = ks = 2π

λ
s, (4.12)

and the general form of (4.11) is

f(r, t) = f0 ei(ωt−k·r). (4.13)

The solution (4.13) is the equation of a monochromatic plane wave. The termmono-
chromatic shows that the frequency of the wave is always the same, while plane
means that at every moment the equal phase surfaces are planes. Indeed, the locus
of the points which, at a given moment (t = const.), are characterized by the same
phase, is given by

ωt − k · r = ωt − 2π

λ
(αx + βy + γz) = const., (4.14)

which is the normal equation of a plane, called phase plane of the wave.
In conclusion, the solutions of the partial differential equations (4.3) are

E(r, t) = E0 e
i(ωt−k·r),

H(r, t) = H0 e
i(ωt−k·r), (4.15)

and describe the plane monochromatic electromagnetic waves. (The amplitudes E0

and H0 can be either real, or complex.)

4.2.1 Spherical Waves

A wave is characterized, among other properties, by the shape of its wavefront (i.e.
of the equal-phase surface). By this criterion, a wave can be: plane, spherical, cylin-
drical, etc. In a homogeneous and isotropic medium, a point source gives rise to
spherical waves. When studying the propagation of a spherical wave, one has to
distinguish the shape (curvature) of the wave front very near to the source (say, at
100m), and very far from it (say, at 1000 km). Since the spherical waves play an
important role in the study of wave propagation in various media, let us determine
the law of propagation of such a wave.

We shall use again the d’Alembert wave equation (4.4) where, this time, the
Laplacian has to be written in spherical coordinates. Assuming the wave to be mono-
chromatic, we choose the solution in the form

f(r, t) = f0 ϕ(r)eiωt .
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Then the wave equation (4.4) yields

Δf = f0eiωtΔϕ(r), − 1

u2
∂2f
∂t2

= ω2

u2
f0ϕ(r)eiωt,

hence

Δϕ(r) + ω2

u2
ϕ(r) = Δrϕ(r) + ω2

u2
ϕ(r) = 0,

or
d2ϕ

dr2
+ 2

r

dϕ

dr
+ k2ϕ = 0, (4.16)

where

k = ω

u
= 2π

λ
(4.17)

is the wave number. Using the substitution ϕ = ψ/r, one obtains the equation

d2ψ

dr2
+ k2ψ = 0,

with the solution (for the progressive wave) ψ = A e−ikr , which gives

ϕ(r) = A

r
e−ikr,

so that

f(r, t) = f0
r
ei(ωt−kr). (4.18)

It is easily seen that the equal-phase surfaces are given by r = const., representing a
system of concentric spheres, with their common centre at the point source.

Thus, a spherical, monochromatic, electromagnetic wave is expressed by

E(r, t) = X0

r
ei(ωt−kr),

H(r, t) = Y0

r
ei(ωt−kr). (4.19)

Note that, this time, the amplitudes X0,Y0 do not have dimensions of electric or
magnetic field, respectively.
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4.2.2 Transversality of Electromagnetic Waves

Consider an electromagnetic plane wave, described by the Eq. (4.15). Introducing E
and H into Maxwell’s equations (4.2)2,4, we find

∇ · E = E0 · ∇ei(ωt−k·r) = −i k · E0e
i(ωt−k·r) = −i k · E = 0,

∇ · H = H0 · ∇ei(ωt−k·r) = −i k · H0e
i(ωt−k·r) = −i k · H = 0, (4.20)

expressing the fact that the vector fields E and H are orthogonal to the propaga-
tion direction of the wave. Using the same procedure in the remaining Maxwell’s
equations (4.2)1,3, we obtain

∇ × E = ∇ei(ωt−k·r) × E0 = −μH0
∂

∂t

[
ei(ωt−k·r)] ,

∇ × H = ∇ei(ωt−k·r) × H0 = εE0
∂

∂t

[
ei(ωt−k·r)] .

Performing the derivative and taking into account the relation

ω

k
= λ

T
= u = 1√

εμ
,

we find

E =
√

μ

ε
(H × s),

H =
√

ε

μ
(s × E). (4.21)

These two relations are equivalent. Taking the dot product of (4.21)1 by H, and/or
of (4.21)2 by E, we obtain the same result

E · H = 0, (4.22)

meaning that E and H are reciprocally orthogonal.
Summarizing our results, we conclude that the vectorsE,H, and s form a right tri-

hedron, and, therefore, in homogeneous and isotropic dielectrics, the electromagnetic
field propagates as transverse waves.

Expressions (4.21) also give the relation between the magnitudes of E and H:

|E| =
√

μ

ε
|H|. (4.23)
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Fig. 4.1 Transversality of a plane electromagnetic wave propagating through a homogeneous and
isotropic dielectric medium.

This relation shows that |E| and |H| are proportional. In other words, the two vector
fields oscillate in phase or synchronously.

ChoosingE to oscillate in the xOy-plane andH in the plane zOx, one can represent
a progressive, plane electromagnetic wave as shown in Fig. 4.1.

This analysis makes it possible to calculate several quantities which characterize
the electromagnetic field in dielectrics. For example, since

εE2 = μH2 and wem = 2we = 2wm, (4.24)

wherew is the energy density, we find that the energy carried by the electromagnetic
wave is equally distributed between the electric and magnetic components.

In its turn, Poynting’s vector is

� = E × H = E H s,

|�| = E H =
√

ε

μ
E2 =

√
μ

ε
H2, (4.25)

while the momentum density of the electromagnetic field is

pem = εμ (E × H) = εμ�,

|pem| = ε
√

εμE2 = μ
√

εμH2 = √
εμ wem. (4.26)

Since in vacuum
√

ε0μ0 = 1/c, we have in that case

|pem| = 1

c
wem. (4.27)
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4.2.3 Electromagnetic Theory of Light

In 1865, Maxwell realized that between the electromagnetic waves, predicted by his
theory, and the light waves exists a close analogy. Both types of waves:

a) are transversal;
b) satisfy d’Alembert’s homogeneous equations;
c) propagate with the same velocity in vacuum.

The ratio between the velocity of light in vacuum, and the phase velocity of light in
a transparent medium is called the refractive index, n, of that medium. According to
Maxwell’s theory, we should have (see (4.5)):

n = c

u
= √

εrμr , (4.28)

known as theMaxwell relation. In transparentmediawithμr � 1, the refractive index
becomes

n = √
εr . (4.29)

This relation is verified for gases, transparent crystals1 and certain liquids
(toluene, benzene, etc.). There are, however, some considerable mismatches between
Maxwell’s theory and experimental data. For example, in the case ofwater, the results
are

ntheor = √
εr = √

81 = 9, nexp = 1.3.

These deviations come from the fact that Maxwell’s theory does not take into consid-
eration the phenomenon of dispersion, i.e. the variation of εr and μr (and, implicitly,
of n) with the frequency of the incident radiation. The variation of the permittivity
and permeability of the medium with frequency can only be explained by taking into
account the discontinuous, atomic structure of substance. Such a theory was given
by Lorentz.

Maxwell’s theory was a great success, in spite of being incomplete. It predicted
the existence of the electromagnetic field and electromagnetic waves, leading to the
unification of optical and electromagnetic phenomena, for many years considered as
being independent.

1According to Max Planck, “Ludwig Boltzmann studied particularly Maxwell’s asserted relation
between the refractive index and the dielectric constant, and verified it completely by extremely
careful experiments on various substances, especially on gases.” (James Clerk Maxwell, A Com-
memoration Volume 1831–1931, With Essays By J.J. Thomson, Max Planck, Albert Einstein and
others, Cambridge University Press, 1931)
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4.3 Polarization of the Electromagnetic Waves

Let u(r, t) be the vector defining an oriented wave. In Cartesian coordinates,

u(r, t) = ux + uy + uz = uxi + uyj + uzk.

Choosing the z-axis as the direction of propagation and examining Fig. 4.2, one can
write

u(r, t) = u⊥(r, t) + u‖(r, t), (4.30)

whereu⊥ = ux + uy is orthogonal to the direction of propagation, andu‖ = uz is par-
allel to it. Here, u⊥ is called transverse component and u‖ – longitudinal component
of the field.

A transverse wave is a wave for which, at every moment, u‖ = 0, while a longi-
tudinal wave is characterized by u⊥ = 0. There are also mixed waves, in which the
field oscillates both transversally and longitudinally.

In the case of a transverse wave, the direction defined by u⊥ is called direction of
polarization, while the plane defined by u⊥ and the propagation direction of the wave
is the plane of polarization. The plane containing u⊥, orthogonal to the direction of
propagation (i.e. to the plane of polarization), is called plane of oscillation.

The polarization of a transverse wave can be:

a) linear, if the oscillations of u⊥ take place along a fixed direction. In this case,
the arrow of u⊥ describes a straight line;

b) plane, if the arrow of u⊥ describes a curve in the plane of oscillation. Depending
on the shape of the curve, the plane polarization can be:
(i) elliptical (right or left);
(ii) circular (right or left), as a particular case of the elliptic polarization.

Under certain circumstances, the elliptic polarization can become linear. Let us
point out some characteristics of the elliptic polarization. We can write u⊥(x, t) as

Fig. 4.2 A convenient
decomposition of the vector
u, defining an oriented wave.
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u⊥(z, t) = i ux(z, t) + j uy(z, t)

= i u0xeiαei(ωt−kz) + j u0yeiβei(ωt−kz), (4.31)

where u0x and u0y are real amplitudes, while α and β are the phase differences of the
components.With the notationΦ = ωt − kz, wewrite the real part of the components
ux and uy as

Re ux = u0x cos(Φ + α),

Re uy = u0y cos(Φ + β).

Expanding the trigonometric functions and denoting ϕ = cosΦ, we have

Re ux
u0x

= ϕ cosα −
√
1 − ϕ2 sinα,

Re uy
u0y

= ϕ cosβ −
√
1 − ϕ2 sin β.

These relations are used to extract ϕ and
√
1 − ϕ2 :

ϕ =
Re ux
u0x

sin β − Re uy
u0y

sinα

sin θ
,

√
1 − ϕ2 =

Re ux
u0x

cosβ − Re uy
u0y

cosα

sin θ
,

where θ = β − α. Squaring and adding, we arrive at

(
Re ux
u0x

)2

+
(
Re uy
u0y

)2

− 2
(Re ux)(Re uy)

u0xu0y
cos θ = sin2 θ.

This is the equation of an ellipse, whose axes are rotated by an angle (that depends
on the value of θ) relative to the plane yOz, and inscribed in the rectangle of sides
2u0x and 2u0y. The eccentricity, the direction of the axes, and the orientation of the
ellipse all depend on the value θ of the phase difference. The possibilities are the
following:

(i) 0 < θ < π – the orientation of the ellipse is counterclockwise (left-handed ellip-
tic polarization, or positive helicity);

(ii) π < θ < 2π – the orientation of the ellipse is clockwise (right-handed elliptic
polarization, or negative helicity);

(iii) θ = ±π
2 , u0x = u0y = u0 – the ellipse becomes a circle, inscribed in a square

of side 2u0 (circular left-handed/right-handed polarization);
(iv) θ = (2n + 1) π

2 – the axes of the ellipse (circle) coincide with the coordinate
axes;
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Fig. 4.3 Some examples of Lissajous figures.

(v) θ = nπ – the ellipse (circle) degenerates into a straight line, and the polarization
becomes linear. For example, if θ = 0 or θ = π, the corresponding straight lines
are Re ux = ± u0x

u0y
(Re uy).

If the two components ux and uy have different frequencies, such that ω1/ω2 is a
rational number, then the tip of the vector u⊥ describes some complicated closed
curves, called Lissajous figures or Bowditch curves, after the American mathemati-
cian Nathaniel Bowditch (1773–1838), who studied them in 1815, and the French
physicist Jules Lissajous (1822–1880), who embarked on their detailed analysis in
1857 (see Fig. 4.3). If the ratio ω1/ω2 is irrational, the curves will be open.

Assumeaplanemonochromatic electromagneticwave, givenby (4.15), in a homo-
geneous and isotropic medium, and let k = k s be its direction of propagation. The
wave transversality, expressed by (see (4.21)):

B = √
εμ s × E, (4.32)

suggests the definition of three reciprocally orthogonal vectors e1, e2, s, so that the
amplitudes E0 and B0 are given either by

E0 = e1 E01, B0 = e2
√

εμE01, (4.33)

or by
E0 = e2 E02, B0 = −e1

√
εμE02. (4.34)

The wave described by (4.33) has the vector E permanently oriented in direction
e1, while in the case of the wave described by (4.34), E is always oriented along
e2. The first wave is linearly polarized in the direction e1, and the second in the
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Fig. 4.4 Orientation of the
field vectors E1 and E2 in a
polarized wave.

direction e2. The two waves can be combined to give a plane wave, propagating in
the k = k s direction, whose most general form is

E(r, t) = (e1E01 + e2E02)e
i(ωt−k·r). (4.35)

The amplitudes E01 and E02 are, in general, complex quantities:

E01 = |E01| eiα, E02 = |E02| eiβ .

If E01 and E02 are in phase, then (4.35) describes a linearly polarized wave; its
polarization vector makes with e1 the angle

θ = arctan
E02

E01
,

and has the modulus E0 =
√
E2
01 + E2

02 (see Fig. 4.4). If E01 and E02 have different
phases, the wave (4.35) is elliptically polarized. In particular, if |E01| = |E02| = E0

(real), while the phase difference is π/2, then (4.35) gives

E(r, t) = (e1 ± ie2)E0 e
i(ωt−k·r). (4.36)

Let us now consider e1 and e2 in the directions of the x- and y-axes, respectively.
The real parts of the components of E are then

Ex(r, t) = E0 cos(ωt − kz),

Ey(r, t) = ∓E0 sin(ωt − kz). (4.37)

At a fixed point in space, (4.36) shows that the vector E has constant modulus,
while its tip describes a circle, with the frequency ν = ω/2π, in the xOy-plane.
In the case e1 + ie2, an observer placed so that the wave propagates towards him
detects a counterclockwise rotation ofE (left-handed circular polarization, or positive
helicity), while in the case e1 − ie2 the rotation of E is clockwise (right-handed
circular polarization, or negative helicity).
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Let us introduce the unit orthogonal vectors

e± = 1√
2
(e1 ± ie2),

with the properties

e∗
± · e± = 1, e∗

± · e∓ = 0, e∗
± · k = 0.

Then (4.35) becomes equivalent to

E(r, t) = (e+E0+ + e−E0−)ei(ωt−k·r), (4.38)

where E+ and E− are complex amplitudes. If E0+ and E0− have different moduli
but the same phase, then (4.38) describes an elliptically polarized wave, with the
principal axes of the ellipse oriented along e1 and e2. Denoting E−/E+ ≡ r, the ratio
between the major and the minor axes of the ellipse is

∣∣∣∣
1 + r

1 − r

∣∣∣∣ .

If there exists a phase difference between amplitudes, i.e. E−/E+ = r eiθ, then the
axes of the ellipse described by E are rotated by θ/2 (see Fig. 4.5). For r = 1, we
recover the case of linear polarization.

Fig. 4.5 An elliptically
polarized wave, with the
oscillation plane xOy.
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4.4 Reflection and Refraction of Plane
Electromagnetic Waves

Consider two different, homogeneous and isotropic, transparent dielectric media,
characterized by permittivities ε1 and ε2 (ε1 = ε2) and permeabilities μ1 = μ2, sep-
arated by the plane surface S, like in Fig. 4.6.

The experiment shows that the incident beam SI is partially reflected and refracted
at the point I . To distinguish them from each other, we attach an index to each wave:
1 – for the incident wave, 2 – for the refracted wave, and 3 – for the reflected wave.
Suppose that the field E1 is known. We shall decompose its amplitude E01 into a
component parallel to the y-axis, denoted by Ey

01, and a component orthogonal to the
direction of propagation of the incident wave and situated in the zOx-plane, denoted
by E⊥

01. The same significance have the amplitudes Ey
02 and E⊥

02 for the refracted
wave, and Ey

03 and E⊥
03 for the reflected one.

If the incident wave is plane and monochromatic, the field E1 can be written as

E1 = E01e
i(ωt−k1·r) = E01 exp

[
iω

(
t − s1 · r

u1

)]
. (4.39)

Let us denote the vector components as follows:

E1 = (X1,Y1,Z1), s1 = (l1,m1, n1),

E01 = (E⊥
01 cosϕ,Ey

01,−E⊥
01 sinϕ).

Since

l1 = sinϕ, m1 = 0, n1 = cosϕ,

u1 = u3 = 1√
ε1μ1

, u2 = 1√
ε2μ2

,

Fig. 4.6 Reflection and
refraction of a plane
electromagnetic wave.
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we can write

X1 = E⊥
01 cosϕ exp

{
iω
[
t − √

ε1μ1 (x sinϕ + z cosϕ)
]}

.

Expressing the last two components of the field E1 and summarizing, we have

E1 ≡
⎧
⎨

⎩

X1 = E⊥
01η1 cosϕ ,

Y1 = Ey
01 η1 ,

Z1 = −E⊥
01η1 sinϕ,

(4.40)

where

η1 = exp

[
iω

(
t − s1 · r

u1

)]
= exp

{
iω
[
t − √

ε1μ1 (x sinϕ + z cosϕ)
]}

is the periodical part of the incident wave.
Next, letB1 = (α1,β1, γ1) be the magnetic induction vector in the incident beam.

Using (4.21), we can write

B1 = μ1H1 = √
ε1μ1 s1 × E1. (4.41)

The x-component of (4.41) is

B1x = α1 = √
ε1μ1 (m1Z1 − n1Y1) = −√

ε1μ1E
y
01 η1 cosϕ.

Calculating the other two components, then grouping the terms, one obtains

B1 ≡
⎧
⎨

⎩

α1 = −√
ε1μ1 E

y
01η1 cosϕ ,

β1 = √
ε1μ1 E⊥

01η1 ,

γ1 = √
ε1μ1 E

y
01η1 sinϕ.

(4.42)

In a similar way, we find for the reflected wave

E3 ≡
⎧
⎨

⎩

X3 = E⊥
03η3 cosψ ,

Y3 = Ey
03η3 ,

Z3 = −E⊥
03η3 sinψ,

B3 ≡
⎧
⎨

⎩

α3 = −√
ε1μ1 E

y
03η3 cosψ ,

β3 = √
ε1μ1 E⊥

03η3 ,

γ3 = √
ε1μ1 E

y
03η3 sinψ,

(4.43)

and, finally, for the refracted wave

E2 ≡
⎧
⎨

⎩

X2 = E⊥
02η2 cos θ ,

Y2 = Ey
02η2 ,

Z2 = −E⊥
02η2 sin θ,

B2 ≡
⎧
⎨

⎩

α2 = −√
ε2μ2 E

y
02η2 cos θ ,

β2 = √
ε2μ2 E⊥

02η2 ,

γ2 = √
ε2μ2 E

y
02η2 sin θ.

(4.44)
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4.4.1 Laws of Reflection and Refraction

Now we shall find the relations between the angles ϕ, Ω , θ, and ψ shown in Fig. 4.6.
To this end, we use the boundary conditions: on the plane separation surface z = 0,
the incident, reflected, and refracted waves must have the same phase:

η1 = η2 = η3,

or, since μ1 = μ2, √
ε1 sinϕ = √

ε2 sin θ = √
ε1 sinψ. (4.45)

Hence,

(a) sinϕ = sinψ = sin(π − Ω), which means

ϕ = Ω, (4.46)

i.e. the angles of incidence and of reflection are equal. This is the reflection law;
(b) By definition, n2/n1 ≡ n21 is the relative refractive index of medium 2 with

respect to medium 1. In view of Maxwell’s relation (4.28), we then have

sinϕ

sin θ
=
√

ε2

ε1
= n2

n1
= n21, (4.47)

known as the refraction law or the Snellius–Descartes law, after the Dutch
astronomer Willebrord Snellius (1580–1626) and the French philosopher and
mathematician René Descartes (1596–1650), although the law was discovered
as early as 984 by the Persian mathematician Ibn Sahl (c. 940–1000). One can
distinguish two cases:
(i) ε2 > ε1, implying sinϕ > sin θ. Since 0 ≤ ϕ, θ ≤ π

2 , and the sinus function
is monotonically increasing on this interval, we conclude that, when passing
to a more refringent medium (n21 > 1), the refracted wave bends towards the
normal;
(ii) ε2 < ε1. This implies sinϕ < sin θ, therefore ϕ < θ, meaning that, when
entering a less refringent medium, the refracted wave bends away from the
normal.

There exists a specific incident angle, called limit angle and denoted ϕl, for which
θ = θl = π

2 . Then (4.47) gives

sinϕl = n21 sin θl = n21 < 1.

To keep constant the ratio n21, for ϕ > ϕl we should have sin θ > sin θl. In reality,
sin θ

(
θ > π

2

)
decreases when ϕ increases. Since this is not possible, we conclude

that for ϕ > ϕl there is no refraction, the incident ray being totally reflected on the
separation surface. This phenomenon is called total (internal) reflection.
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4.4.2 Fresnel’s Formulas

Equations (4.40)–(4.44) allow us to find some relations between the amplitudes of
reflected and refractedwaves, on the onehand, and the amplitude of the incidentwave,
on the other hand. To this end, we use the boundary conditions: on the separation
surface, the normal and tangent components of the fields E and H satisfy the jump
conditions (3.43). Since there are no sources on the plane surface S (j|S = 0, ρ|S = 0),
these equations are written as

D2n − D1n = 0,

B2n − B1n = 0,

E2T − E1T = 0,

H2T − H1T = 0.

In our case, bothE andH have two tangent components (in theOx andOy directions),
and a normal component (in the Oz direction). Recalling that μ1 = μ2, we have

E :
{
E1T + E3T = E2T ,

ε1(E1n + E3n) = ε2E2n,
H :

{
H1T + H3T = H2T ,

H1n + H3n = H2n.

On the separation surface the phases are equal (η1 = η2 = η3), so that

⎧
⎨

⎩

X1 + X3 = X2,

Y1 + Y3 = Y2,
ε1(Z1 + Z3) = ε2Z2,

⎧
⎪⎨

⎪⎩

α1 + α3 = α2,

β1 + β3 = β2,

γ1 + γ3 = γ2,

or, if we use (4.40)–(4.44),

E :

⎧
⎪⎨

⎪⎩

E⊥
01 cosϕ + E⊥

03 cosψ = E⊥
02 cos θ,

Ey
01 + Ey

03 = Ey
02,

ε1(E⊥
01 sinϕ + E⊥

03 sinψ) = ε2E⊥
02 sin θ ,

B :

⎧
⎪⎨

⎪⎩

Ey
01

√
ε1 cosϕ + Ey

03
√

ε1 cosψ = Ey
02

√
ε2 cos θ,

E⊥
01

√
ε1 + E⊥

03
√

ε1 = E⊥
02

√
ε2,

Ey
01

√
ε1 sinϕ + Ey

03
√

ε1 sinψ = Ey
02

√
ε2 sin θ.

(4.48)

According to (4.45), Eq. (4.48)6 reduces to (4.48)2, and (4.48)3 to (4.48)5, so that
only four of the relations (4.48) are independent. Then, we are left with

http://dx.doi.org/10.1007/978-3-642-17381-3_3
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(E⊥
01 − E⊥

03) cosϕ = E⊥
02 cos θ,

Ey
01 + Ey

03 = Ey
02,√

ε1 (Ey
01 − Ey

03) cosϕ = √
ε2 E

y
02 cos θ, (4.49)√

ε1 (E⊥
01 + E⊥

03) = √
ε2 E

⊥
02.

If the angles ϕ and θ, and permittivities ε1 and ε2 are given, then Eq. (4.49) serve to
determine E⊥

02, E
y
02, E

⊥
03, and Ey

03 in terms of E⊥
01 and Ey

01:

E⊥
02 = E⊥

01

2
√

ε1 cosϕ√
ε1 cos θ + √

ε2 cosϕ
,

Ey
02 = Ey

01

2
√

ε1 cosϕ√
ε1 cosϕ + √

ε2 cos θ
,

E⊥
03 = E⊥

01

√
ε2 cosϕ − √

ε1 cos θ√
ε2 cosϕ + √

ε1 cos θ
, (4.50)

Ey
03 = Ey

01

√
ε1 cosϕ − √

ε2 cos θ√
ε1 cosϕ + √

ε2 cos θ
,

known as Fresnel’s formulas.
It is not difficult to show that, making use of the refraction law

√
ε1 sinϕ = √

ε2 sin θ,

we can write (4.50) in a form which does not contain ε1 and ε2 anymore:

E⊥
02 = E⊥

01
2 sin θ cosϕ

sin(ϕ + θ) cos(ϕ − θ)
,

Ey
02 = Ey

01

2 sin θ cosϕ

sin(ϕ + θ)
,

E⊥
03 = E⊥

01
tan(ϕ − θ)

tan(ϕ + θ)
, (4.51)

Ey
03 = −Ey

01

sin(ϕ − θ)

sin(ϕ + θ)
.

Let us discuss the following five cases:

(a) If Ey
01 = 0 and ϕ = 0, it follows that Ey

03 = 0. In particular, the case ϕ = 0
(normal incidence) implies θ = 0 and (4.50)4, for ε1 = ε2, gives

Ey
03 = Ey

01

√
ε1 − √

ε2√
ε1 + √

ε2
= 0,

therefore the component of the reflected wave orthogonal to the plane of inci-
dence never disappears. In other words, by reflection an electromagnetic wave
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can never be polarized perpendicular to the plane of incidence. We have, in
general, a partial polarization in the plane of incidence;

(b) Formula (4.51)3 shows that the amplitude E⊥
03 decreases whenϕ increases (start-

ing from 0). There is a certain angle of incidenceϕ = ϕB, called Brewster angle,
for which ϕ + θ = π/2. In this case E⊥

03 = 0, because tan(π/2) = ∞, so that
only Ey

03 = 0 remains in the reflected wave, its oscillations being perpendicular
to the plane of incidence. This means that the reflected wave is totally linearly
polarized in the plane of incidence;

(c) Let us consider the ratio Ey
03/E

⊥
03. Using (4.51)3,4, we have

Ey
03

E⊥
03

= −Ey
01

E⊥
01

cos(ϕ − θ)

cos(ϕ + θ)
.

Choosing 0 < θ < ϕ < π/2, one obtains

∣∣∣∣
cos(ϕ − θ)

cos(ϕ + θ)

∣∣∣∣ > 1 ⇒
∣∣∣∣
Ey
03

E⊥
03

∣∣∣∣ >
∣∣∣∣
Ey
01

E⊥
01

∣∣∣∣ .

Suppose that the reflected wave reflects again, the amplitudes being E′⊥
03 and E

′y
03,

respectively. A similar reasoning then leads us to the conclusion that

∣∣∣∣∣
E′y
03

E′⊥
03

∣∣∣∣∣ >
∣∣∣∣
Ey
03

E⊥
03

∣∣∣∣ >
∣∣∣∣
Ey
01

E⊥
01

∣∣∣∣ , etc.

The increase in the ratio |Ey
03/E

⊥
03| happens on account of the decrease in E⊥

03,
and not of the increase in Ey

03. This means that, by multiple reflections, E⊥
03

vanishes. Therefore we find again a linear polarization, in the plane of incidence,
by multiple reflections;

(d) Let us now consider the refracted wave. Using (4.51)1,2, we have

Ey
02

E⊥
02

= Ey
01

E⊥
01

cos(ϕ − θ).

Since | cos(ϕ − θ)| < 1, it follows that |Ey
02/E

⊥
02| < |Ey

01/E
⊥
01|, and, if the wave

is refracted again, ∣∣∣∣∣
E′y
02

E′⊥
02

∣∣∣∣∣ <
∣∣∣∣
Ey
02

E⊥
02

∣∣∣∣ <
∣∣∣∣
Ey
01

E⊥
01

∣∣∣∣ , etc.

Thus, by multiple refractions, the ratio |Ey
02/E

⊥
02| → 0. Since E⊥

02 cannot go
to infinity, this means Ey

02 → 0. The refracted wave is thus linearly polarized,
perpendicular to the plane of incidence (the oscillations take place in the plane
of incidence);
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(e) Let us now calculate the reflection and transmission coefficients R, respectively
T . To this end, we define the complex Poynting’s vector

�̃ = 1

2
(E × H∗), (4.52)

where the symbol ∗ means complex conjugation.
Using this definition, let us first show that the average flux density of electro-
magnetic energy emitted per unit time is the real part of the normal component
of �̃:

〈Φem〉 = 1

2

[
Re
(
E × H∗)] · n, (4.53)

where 〈 〉 signifies the average over a period τ . To show this, let us take

E = Re
[
E0e

iϕei(ωt−kx)
]
,

H = Re
[
H0e

iϕ′
ei(ωt−kx)

]
,

or

E = E0 cos(Φ + ϕ),

H = H0 cos(Φ + ϕ′), (4.54)

where the amplitudes E0 and H0 are real, while Φ = ωt − kx.
Consider now the product

EH = E0H0 cos(Φ + ϕ) cos(Φ + ϕ′).

Using the trigonometric formula

cosα cosβ = 1

2
[cos(α + β) + cos(α − β)]

one finds α = 2Φ + ϕ + ϕ′, β = ϕ − ϕ′, which give

EH = 1

2
E0H0

[
cos(2Φ + ϕ + ϕ′) + cos(ϕ − ϕ′)

]
.

The average of this expression over a period is

〈EH〉 = 1

2
E0H0

1

τ

∫ τ

0

[
cos(2Φ + ϕ + ϕ′) + cos(ϕ − ϕ′)

]
dt

= 1

2
E0H0 cos(ϕ − ϕ′).
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On the other hand,

Re(EH∗) = Re
[
E0H0 e

i(ϕ−ϕ′)
]

= E0H0 cos(ϕ − ϕ′).

The last two relations imply

〈EH〉 = 1

2
Re(EH∗),

in which case

〈E × H〉 = 〈�〉 = 1

2
Re(E × H∗) (4.55)

is also true. Taking the dot product of (4.55) with n (the unit vector of the normal
to the surface S that bounds the volume V in which the electromagnetic field is
considered), one finds (4.53).
Using (4.21)2, we have

�̃ = 1

2
(E × H∗) = 1

2

√
ε

μ
E × (s × E∗)

= 1

2

√
ε

μ
(E · E∗) s = 1

2

√
ε

μ
|E0|2 s.

Thus,

〈Φem〉 = 1

2

√
ε

μ
|E0|2 s · n. (4.56)

Using this preliminary analysis, let us now come back to the main subject of this
case. By definition, the ratio between the modulus of the average energy flux of
the reflected electromagnetic wave and the average energy flux of the incident
electromagnetic wave is called reflection coefficient (or reflection power):

R = |〈Φem〉3|
|〈Φem〉1| . (4.57)

The transmission coefficient is defined as:

T = |〈Φem〉2|
|〈Φem〉1| . (4.58)

Using (4.56) and observing that |n · s1| = cosϕ, |n · s2| = cos θ, |n · s3| =
cosϕ, one obtains

R = |E03|2
|E01|2 , T = |E02|2

|E01|2
√

ε2 cos θ√
ε1 cosϕ

. (4.59)
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The law of conservation of energy implies

n · �̃1 = n · (�̃2 + �̃3),

or √
ε1 |E01|2 cosϕ = √

ε1 |E03|2 cosϕ + √
ε2 |E02|2 cos θ. (4.60)

Using (4.59) and (4.60), we find

R + T = 1.

Since 0 ≤ R ≤ 1 and 0 ≤ T ≤ 1, this relation gives rise to a probabilistic inter-
pretation: R is the probability of reflection of the incident wave, while T is the
probability of transmission of the incident wave. Since their sum equals one, it
is certain that at least one of the events will happen.
Fresnel’s formulas (4.50) allow us to verify the relation R + T = 1 in the case
of normal incidence (ϕ = θ = 0). Indeed,

E⊥
03 = E⊥

01

√
ε2 − √

ε1√
ε2 + √

ε1
= E⊥

01
n − 1

n + 1
, E⊥

02 = E⊥
01

2

n + 1
,

which yields

R = (n − 1)2

(n + 1)2
, T = 4n

(n + 1)2
, R + T = 1.

In case of total reflection (θ = π/2), relation (4.60) gives |E03|2 = |E01|2, and,
by virtue of (4.59), R = 1 and T = 0, which is obvious.

To conclude, Fresnel’s formulas are of major importance, since they:

(a) give a unitary explanation of the phenomena connected to the reflection and
refraction of electromagnetic waves;

(b) describe the polarization by reflection and refraction of the electromagnetic
waves;

(c) allow the determination of the relative intensity of reflected and refracted waves
in terms of the refractive index.

4.5 Propagation of Electromagnetic Waves in Massive
Conductors. Skin Effect

Suppose that the plane xOy coincides with the plane surface of a massive metallic
conductor, that occupies the whole half-space z > 0 (Fig. 4.7). Consider a plane
electromagnetic wave propagating in the z-direction (normal incidence), the vectors
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Fig. 4.7 Propagation of an
electromagnetic wave in a
massive conductor.

E(r, t) and B(r, t) being chosen as shown in Fig. 4.7. The phenomenon that happens
when the wave falls on the metal is described by Maxwell’s equations in which,
according to the assumptions made in the beginning of this chapter, the displacement
current is negligible compared to the conduction current. If we take the incident
wave as

E(r, t) = E(r)eiωt, B(r, t) = B(r)eiωt, (4.61)

then
∂B
∂t

= iω B = 1

iω

∂2B
∂t2

. (4.62)

On the other hand, taking the curl of Maxwell’s equation

1

μ
∇ × B = j = λE,

then using (4.62) and the results given in Sect. 4.1, we find

ε̃μ
∂2B
∂t2

− ΔB = 0, (4.63)

where we denoted
ε̃ = −i λ/ω. (4.64)

Thus, the wave equation for B is the homogeneous d’Alembert-type equation
(4.3), the only (but essential) difference being the fact that now the permittivity is
imaginary. To an imaginary (in general, complex) permittivity corresponds a complex
phase velocity

ũ = 1√
ε̃μ

, (4.65)
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as well as a complex wave number

k̃ = ω

ũ
= k1 − i k2 = ω

√
1 − i

λ

ω
μ. (4.66)

Separating the real and imaginary parts, we find k21 = k22 = ωλμ/2. Choosing the
sign + for solutions, we have

k̃ = k(1 − i) = 1 − i

δ
, (4.67)

where k = k1 = k2 = √
λμω/2, and

δ =
√

2

λμω
(4.68)

is called the penetration depth. Since the propagation occurs in the z-direction, the
field B(z) is obtained as a solution of the equation

d2B(z)

dz2
+ k̃2B(z) = 0.

Choosing the progressive wave, the solution is

B(z) = B0e
−ik̃z.

Having in view (4.61), we find the field B(z, t):

B(z, t) = B0e
i
(
ωt−k̃z

)

= B0e
− z

δ ei(ωt−
z
δ ). (4.69)

Since the wave is transverse, the field E(z, t) is expressed by a relation of the form
(4.21)1:

E(z, t) =
√

μ

ε̃
H × s = ũB × s = 1 + i

λμδ
B × s

= 1 + i

λμδ
(B0 × s) e− z

δ ei(ωt−
z
δ ). (4.70)

According to our convention, the field E is oriented along the x-axis and B along
the y-axis, so that we may denote E ≡ Ex and B ≡ By. Since E = (1 + i)B/λμδ, the
real parts of the two fields are:
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ReE = B0

λμδ
e− z

δ

[
cos
(
ωt − z

δ

)
− sin

(
ωt − z

δ

)]

=
√
2B0

λμδ
e− z

δ cos
(
ωt − z

δ
+ π

4

)
, (4.71)

ReB = B0e
− z

δ cos
(
ωt − z

δ

)
. (4.72)

Comparing (4.71) with (4.72), we notice that the phase difference between the fields
E and B of the wave propagating through the conductor is π/4. Since j = λE, the
phase difference between B and j is also π/4. The factor exp(−z/δ) shows that the
two fields are attenuated; also the current density decays exponentially starting with
z = 0 (the surface of the conductor). The smaller δ is, i.e. the greater λ,μ,ω are, the
greater the wave attenuation is. For given λ and μ, the penetration depth decreases
with increasing wave frequency. This means that the high frequency currents are
localized in a thin layer at the surface of the conductor. The wave only penetrates a
few wavelengths into a good conductor before decaying away. The phenomenon is
known as skin effect, and δ is also termed skin depth.

The experiment confirms this theoretical investigation. Consider a typical metal-
lic conductor such as copper, whose electrical conductivity at room temperature is
about 6 × 107 (� · m)−1. Copper, therefore, acts as a good conductor for all elec-
tromagnetic waves of frequency below about 1018 Hz. The skin-depth in copper for
such waves is

δ =
√

2

λμω
= 6√

ω(Hz)
cm.

It follows that the skin-depth is about 6 cm at 1Hz, but only about 2mm at 1 kHz.
As another example, the conductivity of sea water is about λ � 5 (� · m)−1. This

conductivity is high enough for the sea water to behave as a good conductor for
frequencies ω < 109 Hz. The skin depth at 1MHz (λ ∼ 2 km) is about 0.2m, while
at 1 kHz is about 7m. This effect is important for submarines: to stay away from the
surface of the sea, they have to communicate at very low frequencies (under 100Hz),
which means λ greater than 104 km, but such wavelengths are produced only by very
large antennas.

Observation:
In the case of a conductor, the ratio between the magnetic and the electric com-

ponents of the electromagnetic energy is

wm

we
∼
(

λ

ωε

)2

= β2. (4.73)

Since metals are characterized by β � 1 (see Sect. 4.1), it follows that in conductors,
unlike dielectrics, the energy is not equally distributed between the two components,
but wm � we.
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4.6 Propagation of Electromagnetic Waves
in Semiconductors

As previously mentioned in Sect. 4.1, the propagation of electromagnetic waves in
semiconductors is described by Eq. (4.1), which we repeat here for convenience:

εμ
∂2E
∂t2

− ΔE = −λμ
∂E
∂t

,

εμ
∂2B
∂t2

− ΔB = −λμ
∂B
∂t

.

Consider a monochromatic wave, characterized by the pulsation ω; simple calcula-
tions along the lines of the previous section lead to

ε̃ μ
∂2E
∂t2

− ΔE = 0,

ε̃ μ
∂2B
∂t2

− ΔB = 0, (4.74)

where

ε̃ = ε − i
λ

ω
(4.75)

is the complex permittivity.
It follows that, formally, the wave equation in semiconductors is similar to the

case of dielectrics, except for the complex permittivity. This implies a complex phase
velocity ũ = 1/

√
ε̃μ, and, consequently, a complex wave number

k̃ = ω

ũ
= ω
√

ε̃μ = ω

√

μ

(
ε − i

λ

ω

)
= k1 − i k2. (4.76)

To find the real and imaginary parts of the complexwave number k̃ in terms of ε,λ,μ,
and ω, we square (4.76), then identify the real and imaginary parts on both sides,
thus obtaining:

k21 − k22 = εμω2, k1k2 = 1

2
λμω.
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The solutions of this system are

k21 = εμω2

2

[√
1 + λ2

ω2ε2
+ 1

]
,

k22 = εμω2

2

[√
1 + λ2

ω2ε2
− 1

]
. (4.77)

Thus

k̃ = k1 − i k2 =
√
k21 + k22 e

iϕ, tanϕ = k2
k1

. (4.78)

Let us now exploit the analogy between Eqs. (4.74) and (4.3). As for dielectrics,
the solutions are

(E,B) = (E0,B0)e
i(ωt−k̃ s·r) = (E0,B0)e

−k2s· rei(ωt−k1· r). (4.79)

By means of (4.20) and (4.21), we also have

s · E = 0,

s · H = 0, (4.80)

H =
√

ε̃

μ
s × E = k̃

μω
s × E,

and, by virtue of (4.78) and (4.79):

H =
√
k21 + k22

μω
s × E0 e

−k2s· r eiϕ ei(ωt−k1· r). (4.81)

These results show that in semiconductor-type media the electromagnetic field
propagates as plane, transverse, damped waves, with a phase difference ϕ between
E andH. The attenuationof thewave is due to its absorptionby themedium, expressed
by the factor exp(−k2 s · r), which contains the imaginary part of the complex wave
number. If λ = 0, (4.77) gives k2 = 0, in which case there is no absorption, the two
fields are in phase, and we find the case of dielectrics.

Observations:

(a) The presence of a complex permittivity ε̃ yields a complex refractive index

ñ = c

ũ
= c

ω
k̃ = n1 − i n2. (4.82)

Generally speaking, the refractive index varieswith thewavelength,meaning that
the semiconductors are not only absorbent, but also dispersive. The phenomenon
of dispersion will be separately studied;



4.6 Propagation of Electromagnetic Waves in Semiconductors 197

(b) For β � 1 (dielectrics), expanding in series the radical in (4.77), we have

√
1 + λ2

ω2ε2
� 1 + 1

2

λ2

ω2ε2
, (4.83)

so that

k21 � εμω2

(
1 + 1

4

λ2

ω2ε2

)
, k22 � 1

4

μλ2

ε
, (4.84)

meaning that the attenuation is independent of ω. If λ → 0, we get the already
known (and expected) result

k2 = 0, k1 = k = ω
√

εμ; (4.85)

(c) In the case of conductors (β � 1), we can write

√
1 + λ2

ω2ε2
� λ

εω
, (4.86)

and (4.77) yields the familiar result

k21 = k22 = 1

2
ωλμ. (4.87)

Thus, the conductor and dielectric media can be studied as two limit cases of
semiconductors, corresponding to β � 1 and β � 1, respectively.

4.7 Propagation of Electromagnetic Waves
in Anisotropic Media

The anisotropic media (e.g. crystals) have different properties in different directions,
and, consequently, the permittivity and permeability are tensor quantities. In this
case, the constitutive relations are written as

Di = εikEk, Bi = μikHk, i, k = 1, 2, 3. (4.88)

In the following, we shall limit ourselves to dielectric-type crystals, transparent for
electromagnetic waves, with μr � 1. Since

E · D = EiDi = EkDk,

we have
Ei(εikEk) = Ek(εkiEi),
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meaning that the permittivity tensor is symmetric:

εik = εki.

In a similar way it can be shown that

μik = μki.

4.7.1 Fresnel’s Ellipsoid

Assume that the magnetic characteristics of a generic crystal are close to those of
the vacuum. An immediate consequence of this assumption is that We � Wm. The
density of the electric component of electromagnetic energy is then

2we = εikEiEk =
∑

i

εiiE
2
i + 2

∑

i>k

εikEiEk (i, k = 1, 2, 3).

Dividing by 2we and denoting Xi = Ei/
√
2we, we have

∑

i

εiiX
2
i + 2

∑

i>k

εikXiXk = 1. (4.89)

This is the equation of a quadric, namely an ellipsoid (all εik > 0). One can conve-
niently rotate the coordinate axes

(
xi → X ′

i

)
, so that the new axesX ′

i coincidewith the
principal axes of the ellipsoid. In this case the permittivity tensor becomes diagonal,
and Eq. (4.89) reduces to the canonical form

∑

i

ε′
iiX

′2
i = 1.

Denoting

ε′
ii ≡ ε′

i,

√
ε′
i ≡ 1

a′
i

, (4.90)

we find ∑

i

X ′2
i

a′2
i

= X ′2

a′2 + Y ′2

b′2 + Z ′2

c′2 = 1, (4.91)

where we put a′
1 = a′, a′

2 = b′, and a′
3 = c′. The components ε′

i , i = 1, 2, 3 of the
permittivity tensor, reduced to the diagonal form, are themedium permittivities along
the principal axes of the ellipsoid, and are called principal permittivities, while the
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ellipsoid (4.91) is known as Fresnel’s ellipsoid. Dropping the “prime” index, we
write (4.91) as

εxX
2 + εyY

2 + εzZ
2 = 1,

or, taking into account that n2i = (εr)i = εi/ε0, i = 1, 2, 3,

ε0
(
n2xX

2 + n2yY
2 + n2z Z

2
) = 1. (4.92)

Since along the principal axes of Fresnel’s ellipsoid we have

Dx = εxEx, Dy = εyEy, Dz = εzEz, (4.93)

we may conclude that, if the direction of the field E coincides with the direction of
one of the principal axes of Fresnel’s ellipsoid, the field D has the same direction.
For any other direction of E, the two fields E and D are no more collinear.

4.7.2 Fresnel’s Law of Velocities for Electromagnetic Waves

We shall now turn our attention towards establishing a relation between the veloc-
ity and the direction of propagation of an electromagnetic wave in an anisotropic
medium. Assume that in a crystal characterized by j = 0, ρ = 0, μr � 1 propagates
a plane, monochromatic, electromagnetic wave, given by

E = E0 e
i(ωt−k·r),

D = D0 e
i(ωt−k·r), (4.94)

H = H0 e
i(ωt−k·r).

If the direction of propagation of thewave is defined by the unit vector s = (α ,β , γ),
then the phase of the wave will be

ωt − k · r = ω

(
t − αx + βy + γz

u

)
= ω

(
t − αkxk

u

)
,

with the notations α1 = α, α2 = β, α3 = γ.
We shall use a convenient form of Maxwell equations, namely

∇ × H = ∂D
∂t

,

∇ × E = −μ
∂H
∂t

,

∇ · H = 0, (4.95)

∇ · D = 0.
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Supposing that the permittivity tensor εik is diagonal, we compress the relations
(4.93) and write them in the form

Di = εiEi (no summation), i = 1, 2, 3. (4.96)

Denoting by li, i = 1, 2, 3 the direction cosines of the field D, we have

Di = li|D| = liD.

Using (4.94)2 in (4.95)4, we obtain

D · s = αklkD = 0. (4.97)

This shows that D is orthogonal to the direction of propagation. However, due to
(4.96), the vectors E and D are not parallel and E is not orthogonal to s.

As μr has the same value in all directions, we haveH ‖ B. Moreover, from (4.95)3
follows that H ⊥ s, while (4.95)1,2 yield H ⊥ D and H ⊥ E. Putting all this infor-
mation together, we deduce that E, D, and s lie all in one plane, and H and B are
orthogonal to this plane. Remark that in this case, the Poynting vector � = E × H
is not parallel to the direction of the wave vector k.

Let us now turn to determining the law of velocities for the anisotropic medium.
Equation (4.95)1,2 can be combined to give

μ
∂2D
∂t2

= ΔE − ∇(∇ · E). (4.98)

The xi-component of this equation is

μ
∂2Di

∂t2
= 1

εi
ΔDi − ∂

∂xi

(
1

εk

∂Dk

∂xk

)
,

with summation over the index k and no summation over i. This can also be written as

μ li
∂2D

∂t2
= li

εi
ΔD − ∂

∂xi

(
lk
εk

∂D

∂xk

)
,

or, in view of (4.94)2

μli = li
εiu2

− αiαk

εku2
lk .

Denoting
1

μεi
= v2

i ,
lkαk

μεk
= K2, (4.99)
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we find
li = − αi

u2 − v2
i

K2.

Nowwemultiply this equation byαi and perform the summation over i. Using (4.97),
we obtain

3∑

i=1

α2
i

u2 − v2
i

= 0,

or, by denoting v1 = a, v2 = b, v3 = c,

α2

u2 − a2
+ β2

u2 − b2
+ γ2

u2 − c2
= 0, (4.100)

which is Fresnel’s law of velocities, or Fresnel’s formula.
To find the significance of a, b, and c let us successively suppose that the wave

propagates along the Ox, Oy, and Oz axes. For example, when propagation takes
place in the x-direction we have α = 1, β = γ = 0, and (4.100) yields

(
u2 − b2

) (
u2 − c2

) = 0,

whichmeans eitheru2 = b2 oru2 = c2. This can also bewritten asu21x = b2,u22x = c2.
In a similar way we find u21y = a2, u22y = c2, and u21z = a2, u22z = b2. We therefore
conclude that a, b, and c signify the velocities of the electromagnetic wave along the
principal axes of Fresnel’s ellipsoid. They are called principal velocities.

Fresnel’s formula is a biquadratic algebraic equation in u with real coefficients,
therefore it admits two roots u21 and u22. Thus, for a given direction of propagation s
of the incident electromagnetic wave, there are two distinct absolute values for the
velocity in a crystal, meaning two waves with different velocities u1 and u2. Let us
analyze these velocities, admitting, for instance, that a > b > c.

a) Suppose, first, that the wave propagates in the yOz-plane (α = 0). Then the
velocity law (4.100) gives

(
u2 − a2

) [
β2(u2 − c2) + γ2(u2 − b2)

] = 0,

which leads to

u21 − a2 = 0,

β2(u22 − c2) + γ2(u22 − b2) = 0.

As α = 0, we have β2 + γ2 = 1, and the last relation yields

u22 = β2c2 + γ2b2. (4.101)
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Fig. 4.8 Propagation of an electromagnetic wave in an anisotropic medium. Note that the axes are
the principal axes of Fresnel’s ellipsoid.

This means that, in a crystal, the electromagnetic wave suffers the phenomenon of
birefringence. It is decomposed into two waves (rays):

(i) the ordinary ray (orO-ray), travellingwith the velocity |u1| = a in all directions
(since it does not depend on β and γ), and

(ii) the extraordinary ray (or E-ray), with the velocity |u2| = √β2c2 + γ2b2,
which depends on the direction of propagation through the direction cosines β and γ.

In the plane of propagation (yOz-plane) the first represents a circle, and the
latter – an ellipse. The intersections of the ellipse with the coordinate axes are found
from (4.101), by setting γ = 0, leading to u2y = ±c, respectively β = 0, leading to
u2z = ±b (see Fig. 4.8a). As a > b > c, we note that u1 = u2 for any direction of
propagation in the yOz-plane.

b) Let us now assume that the direction of the wave propagation lies in the zOx-
plane (β = 0). Then (4.100) leads to

(
u2 − b2

) [
α2(u2 − c2) + γ2(u2 − a2)

] = 0,

with the solutions

u21 = b2,

u22 = α2c2 + γ2a2 ⇒
{
u2x = ±c,
u2z = ±a.

There are two directions in the zOx-plane corresponding to u1 = u2 (see Fig. 4.8b).
These two directions define the optical axes of the crystal. A crystal possessing a
single optical axis is called uniaxial, and that having two optical axes – biaxial. A
crystal may have maximum two optical axes.
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Fig. 4.9 Geometrical
representation of the
velocities of ordinary and
extraordinary rays along
different directions.

c) As the third possible situation, suppose that the direction of propagation is
situated in the xOy-plane. In this case, (4.100) leads to

(
u2 − c2

) [
α2(u2 − b2) + β2(u2 − a2)

] = 0,

whose solutions are

u21 = c2,

u22 = α2b2 + β2a2 ⇒
{
u2x = ±b,
u2y = ±a,

as shown in Fig. 4.8c. Again, as in the first case, there are no optical axes in the
xOy-plane.

The three geometric representations of Fig. 4.8 can be unified in a single picture
as shown in Fig. 4.9. This gives the spatial geometric representation of the velocities
of the ordinary and extraordinary rays along different directions.

Let us now determine the direction cosines α,β, and γ of the optical axis of the
crystal in terms of principal velocities a, b, c. To this end, we write Fresnel’s velocity
law as

u4 − [α2
(
b2 + c2

)+ β2
(
a2 + c2

)+ γ2
(
a2 + b2

)]
u2

+ α2b2c2 + β2a2c2 + γ2a2b2 = 0.

Using the general formula for solving biquadratic equation, in order to have no
distinct roots (u21 = u22), which would correspond to an optical axis, we must have

[
α2
(
b2 + c2

)+ β2
(
a2 + c2

)+ γ2
(
a2 + b2

)]2

− 4(α2 + β2 + γ2)(α2b2c2 + β2a2c2 + γ2a2b2) = 0,
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where the last term has been multiplied by 1 = α2 + β2 + γ2. Making a convenient
arrangement of terms, we obtain

[
α2
(
b2 − c2

)]2 + [β2
(
c2 − a2

)]2 + [γ2
(
a2 − b2

)]2

− 2
[
α2
(
b2 − c2

)] [
β2
(
c2 − a2

)]− 2
[
β2
(
c2 − a2

)] [
γ2
(
a2 − b2

)]

− 2[γ2(a2 − b2)][α2(b2 − c2)] = 0,

or
A2 + B2 + C2 − 2AB − 2BC − 2CA = 0,

where

A ≡ α2
(
b2 − c2

)
,

B ≡ β2(c2 − a2), (4.102)

C ≡ γ2(a2 − b2).

The last equation can also be written as

(A + B − C)2 − 4AB = 0. (4.103)

Maintaining the supposition a > b > c (see Figs. 4.8 and 4.9), we haveA > 0,B < 0,
and C > 0, which means − 4AB > 0. Then (4.103) yields

A + B − C = 0,

AB = 0. (4.104)

If A = 0, it follows from (4.104)1 that B = C. Since B and C have opposite signs,
the only possibility is B = C = 0. But A = B = C = 0 means a = b = c, which
corresponds to an isotropic medium. Therefore, to have an anisotropic medium, we
must have A = 0, which implies B = 0, while (4.104)1 gives A = C, leading to the
system

β2(c2 − a2) = 0,

α2(b2 − c2) = γ2(a2 − b2). (4.105)

Since, by hypothesis, a > b > c, the possibility c = a would presume a = b = c,
corresponding to an isotropic medium. Excluding this possibility, we are left with
β = 0. By means of the relations α2 + γ2 = 1 and (4.105)2, it then follows that

α = ±
√
a2 − b2

a2 − c2
,

γ = ±
√
b2 − c2

a2 − c2
. (4.106)
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Thus, the principal optical axis lies in the plane xOz (as we already know) and its
direction parameters are defined by (4.106). Since a > b > c, this parameters are
real.

Let E1, D1 be the field vectors attached to the ordinary ray, and E2, D2 those
corresponding to the extraordinary ray. Using (4.94) and (4.95), we have

D = 1

u
H × s,

H = 1

μu
s × E,

or, by eliminating H,

D = 1

μu2
[E − (s · E) s] . (4.107)

Let us now transcribe this relation for the two rays:

μu21D1 = E1 − (s · E1) s,

μu22D2 = E2 − (s · E2) s,

then multiply them by D2 and D1, respectively, and finally subtract one from the
other. The result is

μ
(
u21 − u22

)
D1 · D2 = E1 · D2 − E2 · D1 = 0,

because

E1 · D2 = E1iD2i = εiE1iE2i,

E2 · D1 = E2iD1i = εiE2iE1i.

Therefore, if u1 = u2, we have D1 ⊥ D2, meaning that the vectors D1 and D2 are
reciprocally orthogonal and oscillate in perpendicular planes. The plane containing
the optical axis and the incident ray is calledprincipal planeof the crystal, orprincipal
section.

We conclude that when propagating in a crystal, the incident ray splits into two
rays, polarized in planes perpendicular to each other: the ordinary ray, polarized in
the plane of principal section, and the extraordinary ray, which is polarized perpen-
dicularly to this plane. The two rays have different velocity of propagation, therefore
they experience different refraction indices, and thus they refract at different angles
when entering the anisotropic medium.
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4.8 Dispersion of Electromagnetic Waves

Let f (x) be a function defined on the whole real axis. By definition, the Fourier
transform of f (x) is

F(k) = 1√
2π

∫ +∞

−∞
f (x)e−ikx dx. (4.108)

The function F(k) is the spectral distribution of f (x), or, in short, the spectrum of
f (x). The inverse operation

f (x) = 1√
2π

∫ +∞

−∞
F(k)eikx dk, (4.109)

is the inverse Fourier transform. Replacing formally F(k) in (4.109), and changing
x to x′ in (4.108), we have

f (x) =
∫ +∞

−∞
f (x′)

[
1

2π

∫ +∞

−∞
eik(x−x′)dk

]
dx′. (4.110)

Comparing (4.110) with the relation expressing the sifting property of Dirac δ func-
tion (see (E.7)),

f (x) =
∫ +∞

−∞
f (x′)δ(x − x′)dx′, (4.111)

we find the Fourier representation of the Dirac δ function:

δ(x − x′) = 1

2π

∫ +∞

−∞
eik(x−x′) dk. (4.112)

Let, now, f (x, t) be the solution of the propagation equation in the x-direction (see
(4.6)), of a plane monochromatic wave. The Fourier representation of f (x, t), at any
fix t, is

f (x, t) = 1√
2π

∫ +∞

−∞
F(k, t)eikx dk. (4.113)

Plugging this expression into the wave equation

∂2f

∂x2
− 1

u2
∂2f

∂t2
= 0,

we find
1√
2π

∫ +∞

−∞

[
k2F(k, t) + 1

u2
∂2F(k, t)

∂t2

]
eikxdk = 0.



4.8 Dispersion of Electromagnetic Waves 207

If the Fourier transform of some function is zero, this means that the function itself
is zero, hence

∂2F(k, t)

∂t2
+ u2k2F(k, t) = 0. (4.114)

The general solution of this differential equation is

F(k, t) = A(k)e−ikut + B(k)eikut, (4.115)

and f (x, t) is thus expressed in Fourier series as

f (x, t) = 1√
2π

∫ +∞

−∞

[
A(k)eik(x−ut) + B(k)eik(x+ut)

]
dk.

The first term corresponds to a progressive wave, while the second represents a
regressive wave. According to our previous convention, we shall use only the first
term, i.e.

f (x, t) = 1√
2π

∫ +∞

−∞
A(k)eik(x−ut) dk, (4.116)

where u is the phase velocity and k – the wave number, so that

ku = 2π

λ
u = 2πν = ω.

The solution (4.116) can be interpreted as a superposition of an infinite number of
waves of amplitudes A(k), all propagating in the x-direction and having a continuous
frequency spectrum.

Suppose that at time t = 0, the function f (x, 0) = g(x) is known:

f (x, 0) = g(x) = 1√
2π

∫ +∞

−∞
A(k)eikx dk.

The spectrum A(k) is obtained by the inverse Fourier transform,

A(k) = 1√
2π

∫ +∞

−∞
g(x′)e−ikx′

dx′,

and (4.116) becomes

f (x, t) = 1√
2π

∫ +∞

−∞
g(x′)

[
1

2π

∫ +∞

−∞
eik(x−x′−ut)dk

]
dx′

=
∫ +∞

−∞
g(x′)δ(x − x′ − ut)dx′ = g(x − ut),



208 4 Electromagnetic Waves

which is nothing else but the term corresponding to a progressive wave in the general
solution (4.7). In the analysis abovewe did not consider the dispersion of themedium.

In three dimensions, the passage from the space of radius vectors to that of wave
vectors is accomplished by the transformation

f (r, t) = 1

(2π)3/2

∫ +∞

−∞
A(k) ei(k·r−ωt)dk, (4.117)

where dk = dkxdkydkz.
Formula (4.117) is also valid for the electromagnetic field vectors, for example

E(r, t) = 1

(2π)3/2

∫ +∞

−∞
Ẽ(k) ei(k·r−ωt)dk. (4.118)

Observation:
The Fourier transforms (4.108) and (4.109) are inverse of each other, therefore the

choice of sign in the exponential function in (4.108), as well as in (4.118), is arbitrary.
This is also shown by the fact that Re{exp[i(k · r − ωt)]} is an even function.

4.8.1 Phase Velocity and Group Velocity

The analyses in the present chapter have been based on the hypothesis of propagation
of electromagnetic perturbations as plane, monochromatic waves, through linear and
homogeneous media, meaning that the wave function (i.e. the solution of the wave
equation) is proportional to exp[i(k · r − ωt)], where k and ω are independent of r
and t. We have also assumed that two waves may exist simultaneously, independent
of each other.

In reality, the angular frequency ω is a function of the wave vector: ω = ω(k).
This relation is the dispersion equation, and characterizes each medium in which the
wave propagation takes place. In isotropic media all directions are equivalent, and ω
depends only on |k| = k, i.e. ω = ω(k). For example, the frequency of a light wave
in a linear dielectric is ω = k u = k c/n = k c/

√
εrμr .

The phase k · r − ωt can be written as

k ·
(
r − ω

k
t s
)

,

where s is the unit vector of k. The locus of the points of constant phase, termed
wave front, is given by the equation

r − ω

k
s t = r0 = const.,
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or
r = up t + r0,

The vector quantity

up = ω

k
s (4.119)

is called phase velocity.
The model of plane monochromatic wave, used by us as a working frame, corre-

sponds only approximately to the reality. Indeed, such an ideal wave has no spatial
and/or temporal limits, while its characteristic elements (frequency, amplitude, wave-
length) are permanently constant. In order to transmit and receive a signal, this has to
be limited in space and variable in amplitude or/and frequency. The signals emitted
by a source of electromagnetic waves are in fact groups of waves, or wave pack-
ets, obtained by superposition of waves with frequencies close to each other. In a
dispersive medium, the phase velocity is not the same for all the frequencies which
compose the real wave. As a result, the components of the wave propagate with dif-
ferent velocities and the phase differences between the components change in time,
resulting in a loss of the original coherence. Moreover, in a dispersive medium the
velocity of energy propagation by a real wave can differ sometimes quite a lot from
the average phase velocity of the component waves.

Let us elucidate the meaning of a wave packet. Consider a wave propagating in
the x–direction. Suppose that the signal is characterized by the function ϕ(x), whose
spectral decomposition is:

ϕ(x) = 1√
2π

∫ +∞

−∞
A(k)eikxdk.

Assume that the perturbation is localized around a position x0, being formed of a
set of wave numbers distributed around some value k0 (Fig. 4.10a and b).

Fig. 4.10 Graphical representations of: (a) the perturbation ϕ(x) as a function of the distance x;
(b) the Fourier transform A(k) as a function of k = |k|, where k is the wave vector.
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Let Δx and Δk be the extensions of the wave packet in the coordinate space and
in the wave vector space, respectively. In this case, a wave eikx will suffer a phase
variation k Δx, from one end of the packet to the other, while a wave ei(k+Δk)x will
be subject to a phase change (k + Δk)Δx. Due to the superposition of components
with different wave numbers, at the ends of the packet ϕ(x) � 0. Therefore, the two
in-phase positions give the difference

(k + Δk)Δx − kΔx = ΔkΔx � 2π .

In three dimensions, according to (4.117), we have

ϕ(r, t) = 1

(2π)3/2

∫ +∞

−∞
A(k) ei[k·r−ω(k)t]dk, (4.120)

where ω(k) is supposed to be a real function (there is no absorption). If the values of
k are distributed within a narrow interval around an arbitrary k0, and the variation
of ω with respect to k in that interval is not very large, then ω(k) can be expanded
in series around this value:

ω(k) = ω(k0) + (k − k0)i

[(
dω

dk

)

i

]

k=k0

+ ..., i = 1, 2, 3, (4.121)

where the gradient of ω in the k-space was formally written as dω/dk, meaning

dω

dk
≡ ∂ω

∂k1
k̂1 + ∂ω

∂k2
k̂2 + ∂ω

∂k3
k̂3,

k̂i, i = 1, 2, 3 being the three unit vectors of the corresponding axes in the k-space.
Suppose that the third term in the series expansion (4.121) is much smaller than

the second one, so that we keep only two terms. Denoting

ω(k0) = ω0 and

[(
dω

dk

)

i

]

k=k0

= (ug)i, (4.122)

we have
ω(k) = ω0 + ug · (k − k0). (4.123)

Writing k · r = k0 · r + (k − k0) · r in (4.120) and using (4.123), we obtain

ϕ(r, t) = ei(k0·r−ω0t)
1

(2π)3/2

∫
A(k)ei(k−k0)·(r−ug t)dk. (4.124)
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Fig. 4.11 A modulated wave and the group envelope.

This wave is called modulated, i.e. composed of many frequencies. Such a wave can
be regarded as the result of multiplying the phase factor ei(k0·r−ω0t) by a perturbation
of the form (4.120) (an envelope-amplitude) that depends on space and time only
through the combination r − ugt:

ϕ(r, t) = η(r − ugt)e
i(k0·r−ω0t).

The shape of the waves, as well as their envelope, are illustrated in Fig. 4.11. The
group envelope is constant along the trajectories r − ugt = r0 = const., or

r = r0 + ugt. (4.125)

This means that, excepting a phase factor, the real wave (or the wave packet) propa-
gates practically undistorted, with the group velocity

ug = ∇k ω, (4.126)

where ∇k signifies the gradient in the k-space, formally written as dω
dk .

The analysis above is valid in the case of a wave packet with a rather narrow
spectrum of frequencies or propagating in a weakly dispersive medium, in which the
frequency varies slowly with the wave number (under these circumstances we are
allowed to ignore the higher order terms in the series expansion (4.121)). The general
case of a strongly dispersive medium or of a sharply localized wave packet, which
contains a very large number of component frequencies, is much more complex and
beyond our present scope.

In isotropic media ug = (dω/dk)s, while in vacuum

ω = c k = c(k · k)1/2 → up = ug = c.
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One can establish a relation between the phase and the group velocities. Indeed,
we have

ug = dω

dk
= d

dk
(upk) = up + k

dup
dk

= up + 1

λ

dup
dλ

/
d(1/λ)

dλ
= up − λ

dup
dλ

, (4.127)

known as Rayleigh’s dispersion relation.
Application
Consider a group of light waves propagating along the x-axis, and assume that

the wave numbers of the constitutive waves are contained in the interval k0 − Δk
2 ≤

k ≤ k0 + Δk
2 , with |Δk| � k0. We also assume that the amplitudes of the component

waves are equal to each other, for any k. Since in the light wave the effect on matter
of the electric field E is overwhelming compared to that of the magnetic field B, we
shall characterize the wave packet (according to formula (4.124)) by:

E(x, t) = ei(k0x−ω0t)
E0√
2π

∫ k0+ Δk
2

k0− Δk
2

ei(k−k0)(x−ug t)dk,

where E0 = E(k0). Using the substitution k − k0 = ξ, we have

E(x, t) = ei(k0x−ω0t)
E0√
2π

∫ +Δk/2

−Δk/2
eiξ(x−ug t)dξ.

The integral is easily worked out and the result is

E(x, t) = 2E0√
2π

ei(k0x−ω0t)
sin
[
(x − ugt)

Δk
2

]

x − ugt
. (4.128)

In this expression the first factor,
√

2
π
E0ei(k0x−ω0t), represents a spatially homoge-

neous wave, propagating with the average “carrier” frequency ω0. The amplitude of
the resulting wave varies from one point to another due to the second factor,

sin
[
(x − ugt)

Δk
2

]

(x − ugt)
Δk
2

Δk

2
≡ g

[
(x − ugt)

Δk

2

]
≡ g(α). (4.129)

This factor is sharply peaked at x = ugt, as limα→0
sinα

α
= 1. This maximum is not

fixed, but propagates with the velocity ug , which is the group velocity (Fig. 4.12).
The width of the principal maximum, in units of α, equals π, which means that its

space extension, Δx, at a certain moment, can be obtained from Δα = Δk
2 Δx � π,

that is
Δk Δx � 2π. (4.130)
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Fig. 4.12 Graphical
representation of the
function g(α), the envelope
of a wave group.

Fig. 4.13 Space localization
of an electromagnetic signal.

If the secondary maxima are also considered, then

Δk Δx ≥ 2π. (4.131)

This relation furnishes information regarding the space localization of an electro-
magnetic signal. Take, for example, Δx = d (the transverse width of the signal),
Δk = 2ky, and D the distance from source (see Fig. 4.13).
Then,

ky = k
d

2D
= πd

λD
,

in which case (4.131) gives 2kyD ≥ 2π. This yields

d ≥ √
λD.

Note that the transverse width of the signal is directly proportional to the square
root of the wavelength. That is why the controlled transmission of electromagnetic
radiation (e.g. in a radar) is performed by means of short wavelength radio waves or
microwaves (λ ∼ 10−3 − 10−2 m).

Following a similar reasoning, the inequality (4.131) can also be written for the
pair of variables Δω and Δt: the time duration Δt of a signal, received at a fixed
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point of space (x = const.), is determined by the relation Δα = Δω
2 Δt � π, or, if

the secondary maxima are also considered,

Δω Δt ≥ 2π. (4.132)

This relation conditions the frequency width Δω of a signal and the time interval Δt
necessary for its detection.

In conclusion, the more concentrated in space a wave packet is, the larger the
interval Δk. Also, the shorter its time duration is, the larger the frequency dispersion
of the wave group.

4.8.2 Classical Theory of Dispersion

As we have previously mentioned, there are some phenomena – as the dispersion
of electromagnetic waves – that cannot be explained by Maxwell’s theory. An accu-
rate theory of dispersion could only be elaborated by considering the discontinuous
structure of substance. It was Lorentz who elaborated such a theory, based on the
classical model of damped linear oscillators. The approach is known as Lorentz
oscillator model.

Consider an electromagnetic wave propagating in an electrically neutral, linear,
homogeneous, and isotropic medium. LetN be the number of atoms per unit volume,
each atom having an electron of charge q = −e (where e = +1.602 × 10−19C) and
massm, bound by a positive nucleus. Each electron is subject to three types of force:

(i) the quasi-elastic force −mω2
0r, where ω0 is the natural frequency of the oscil-

lator;
(ii) the damping force −mγṙ, equivalent to a friction force, due to the proper field

of the electron;
(iii) the electromagnetic force Fem = −e(E + v × B).

Since our model is non-relativistic (v � c), the magnetic component of this force is
negligible as compared to the electric component. Supposing ε ∼ ε0 and μ ∼ μ0 (as
for gases), we have indeed

|v × B| = vμ0H sin(v̂,H) = v

c2
H

ε
sin(v̂,H) � |E|.

The equation of motion of the electron therefore is

mr̈ = −mω2
0r − mγṙ − eE,

or
r̈ + γṙ + ω2

0r = − e

m
E. (4.133)
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To integrate this equation, we seek the solution in the form

r = r0e−iωt . (4.134)

Since the wave is plane, that is

E = E0e
i(k·r−ωt), B = B0e

i(k·r−ωt),

we easily find

r0 = e

m

1

ω2 − ω2
0 + iωγ

E0e
ik·r

and

r = e

m

1

ω2 − ω2
0 + iωγ

E. (4.135)

Hence, we obtain the electron velocity v = ṙ = − iωr, which permits us to write the
conduction current density

j = Nqv = −Nev = i Neωr = i
Ne2

m

ω

ω2 − ω2
0 + iωγ

E. (4.136)

Since we have considered a semiconductor-type medium, the complex permittivity
is given by (4.75). However, due to the choice of the phase of the field vectors, this
time we have

ε̃ = ε + i
λ

ω
. (4.137)

Using Ohm’s law, j = λE, from (4.136) we obtain

λ = i
Ne2

m

ω

ω2 − ω2
0 + iωγ

, (4.138)

which leads to

ε̃ = ε

(
1 + Ne2

mε

1

ω2
0 − ω2 − iωγ

)
. (4.139)

The refractive index of the studied medium is then

ñ = c

ũ
= c
√

ε̃μ �
√

ε̃

ε0
�
(
1 + Ne2

mε0

1

ω2
0 − ω2 − iωγ

)1/2

, (4.140)

where we assumed μr � 1, and in (4.139) we considered the real part of the permit-
tivity to be ε0. Relation (4.140),
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ñ =
(
1 + Ne2

mε0

1

ω2
0 − ω2 − iωγ

)1/2

,

is called the dispersion equation for the medium under consideration.
Since the refractive index is complex, it is convenient to write it as

ñ = n1 + in2,

which gives

(ñ)2 = n21 − n22 + 2in1n2 = 1 + Ne2

mε0

ω2
0 − ω2 + iωγ

(ω2
0 − ω2)2 + ω2γ2

,

or, by separating the real and imaginary parts,

n21 − n22 = 1 + Ne2

mε0

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2γ2

,

2n1n2 = Ne2

mε0

ωγ

(ω2
0 − ω2)2 + ω2γ2

. (4.141)

Relations (4.141) have been obtained for N oscillators with the natural frequency
ω0. For N types of oscillators, these formulas are written as follows

n21 − n22 = 1 + e2

mε0

N∑

i=1

Ni(ω
2
i − ω2)

(ω2
i − ω2)2 + ω2γ2

,

2n1n2 = e2

mε0

N∑

i=1

Niωγ

(ω2
i − ω2)2 + ω2γ2

, (4.142)

where ωi is the natural frequency of the i-type oscillators, Ni being their volume
density.

It is obvious that a complex refraction index implies a complex wave number,
k̃ = k1 + i k2. The following discussion is therefore valid for both n and k. Keeping
in mind that the propagation takes place along the x-axis and the field vector E is
proportional to exp(ikx), one can distinguish three cases:

(i) k1 = 0: thewave number is purely imaginary, and thewave is rapidly attenuated,
its amplitude dropping precipitously with no propagation in the medium. This
is the case of an evanescent wave;

(ii) k2 = 0: the wave propagates without damping;
(iii) k1, k2 = 0: the amplitude of the wave decreases exponentially with x. The larger

k2, the greater the attenuation of the wave.
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One can conclude that the imaginary part k2 of k̃ describes the absorption of the wave
in the medium, due to the energy dissipated as a result of damping of the electron by
its own electromagnetic field.

As an immediate application, suppose our medium to be a neutral plasma (e.g. the
ionosphere or a metal), withN electrons per unit volume. Neglecting the quasielastic
(ω0 = 0) and friction (γ = 0) forces, relation (4.140) reduces to

n2 = 1 − Ne2

mε0

1

ω2
= 1 − ω2

pl

ω2
< 1, (4.143)

where

ω2
pl = Ne2

mε0

is called plasma frequency. Formula (4.143) is useful, for example, when studying
reflection and refraction of X-rays at the surface of a metal (neutral plasma). If ϕ
and θ are the incidence and the refraction angles, respectively, we have

sin2 ϕ

sin2 θ
= n2 = 1 − ω2

pl

ω2
.

If the X-ray frequency ω is smaller than ωpl, the refraction index becomes purely
imaginary, which means that the X-ray beam is totally reflected.

Let us go back and apply the equation of dispersion (4.140) to the case of gases
and/or vapors. Since the density of polarized atoms is small, the square root can be
expanded in series; retaining only the first two terms of the expansion, we have

ñ = n1 + i n2 � 1 + Ne2

2mε0

1

ω2
0 − ω2 − iωγ

, (4.144)

which yields

n1 − 1 = f1(ω) = Ne2

2mε0

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2γ2

,

n2 = f2(ω) = Ne2

2mε0

ωγ

(ω2
0 − ω2)2 + ω2γ2

. (4.145)

The graphical representation of the functions f1(ω) and f2(ω) (see Fig. 4.14) allows
us to draw some important conclusions. For the resonance frequency ω = ω0, the
function f1(ω) vanishes, while f2(ω) exhibits a sharp peak. Since the imaginary part
of the complex refractive index (or, equivalently, of the wave number) gives the
absorption, the medium is opaque for the incident wave in the vicinity of ω0.

It is not difficult to find the extrema of f1(ω), by equalizing to zero its derivative
with respect to ω. This function admits a maximum for ω = ωmax = ω0 − 1

2γ, and
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Fig. 4.14 Normal and anomal dispersion.

a minimum for ω = ωmin = ω0 + 1
2γ. Thus, in the frequency intervals ω < ω0 − 1

2γ

andω > ω0 + 1
2γ the real part of the refractive index increases asω increases, and this

is the case of normal dispersion. In the frequency interval ω0 − 1
2γ < ω < ω0 + 1

2γ,
that is, close to the resonance frequency, the refractive index decreases asω increases,
in which case we have anomal dispersion.

We can conclude that a substance has a limited transparency domain for the
electromagnetic waves, and the width of this interval depends on the frequency of
the incident waves. This conclusion contradicts Maxwell’s theory, regarding the
transparency of dielectric media for all electromagnetic waves, irrespective of their
frequencies.

Lorentz’s theory, based on the simplistic model of atomic oscillators, turns out to
be valid only in some special cases, such as vapors and ideal gases (this is the reason
why we considered above εr � 1 and μr � 1). Nevertheless, its fundamental ideas
remain valid.

Observation:
Rayleigh’s dispersion law (4.127) can also be written as

ug = 1(
dk
dω

) = 1
n
c + ω

c
dn
dω

= c

n + ω dn
dω

.

For frequencies ω corresponding to normal dispersion, the derivative dn/dω is pos-
itive. In case of media with n > 1, we then have

ug < up < c.

In the vicinity of the resonance frequency ω0, the derivative dn/dω is negative (see
Fig. 4.14), which might be interpreted as ug > c. However, in this region ω varies
very rapidly with respect to k, and the approximation (4.121) is no more valid.
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Consequently, in the nonlinear regime, the group velocity is no more relevant for
such a situation as velocity of propagation of signal.

In its turn, the phase velocity up may be greater than c. As an example, let us use
the dispersion relation (4.143) for a neutral plasma (e.g. the ionosphere):

ω2 = ω2
pl + ω2n2 = ω2

pl + c2k2

and calculate

ug = dω

dk
= c2

k

ω
< c, up = ω

k
=
√

c2 + ω2
pl

k2
> c,

since ck < ω. We also have upug = c2.
We therefore arrived at a notable result: the phase velocity of an electromagnetic

wave can exceed the speed of light in vacuum. As we shall show in Part II of the
book, this result does not contradict the special theory of relativity.

4.8.3 Kramers–Kronig Dispersion Relations

Amore rigorous formulation of dispersion theory was given by Ralph Kronig (1904–
1995) and Hans A. Kramers (1894–1952) in the third decade of the 20th century.
Nowadays, their results are extended and derived based on the theory of complex
functions. The Kramers–Kronig relations connect the real and imaginary parts of
any complex function which is analytic in the upper half plane.

Let us start by recalling Cauchy’s formula. If f (z) is a holomorphic function on
an open set containing the domain D of the complex plane, bounded by the closed
simple curve C, then for any z ∈ D is valid Cauchy’s formula:

f (z) = 1

2πi

∮

C

f (ζ) dζ

ζ − z
. (4.146)

As the function which interests us is ñ = ñ(ω), and this is analytic in the whole
upper half-plane, we shall choose the contour C composed of the axis of real ζ
and a half-circle of infinite radius (Im f (ζ) > 0). If the function |f (ζ)| tends to zero
sufficiently fast at infinity (such a condition is satisfied by the physical quantity
represented by the generic function f ), the contribution to the integral from the half-
circle vanishes, and the Cauchy integral can be written as

f (z) = 1

2πi

∫ +∞

−∞
f (ζ) dζ

ζ − z
, (4.147)
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where now z is an arbitrary point in the upper half-plane, and the integral is taken
on the real axis. Clearly, the integrand in (4.147) has a pole on the real axis, at

ζ = z. (If f (ζ) = 0, limζ→z

(
f (ζ)

ζ−z

)
= ∞, and the integral (4.147) is called in this

case singular). For such integrals, which can generally be defined on a rectifiable
curve γ, one defines the Cauchy principal value by the relation

P
∫

γ

f (ζ) dζ

ζ − z
= lim

ε→0

∫

γ−γε

f (ζ) dζ

ζ − z
, (4.148)

when the limit exists and it is finite. In (4.148), γε is the arc of the curve γ situated
inside the circle with the centre at z and of radius ε (see Fig. 4.15). In our case,
the curve γ is the real axis, and the arc γε can be chosen as a half-circle of radius
ε, centred at z, such that the pole is contained inside the integration contour (see
(Fig. 4.16)).

Fig. 4.15 Graphical
representation of the arc of
curve γε appearing in the
definition of the Cauchy
principal value.

Fig. 4.16 Choice of the
integration contour leading
to the dispersion relations.
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Having in view the above considerations, we can express f (z) as

f (z) = 1

2πi
lim
ε→0

[∫ z−ε

−∞
f (ζ) dζ

ζ − z

+
∫ +∞

z+ε

f (ζ) dζ

ζ − z

]
+ 1

2πi
lim
ε→0

∫ z+ε

z−ε

f (ζ) dζ

ζ − z
. (4.149)

According to (4.148), the limit of the square bracket is the Cauchy principal value
of the integral at ζ = z,

lim
ε→0

[∫ z−ε

−∞
f (ζ) dζ

ζ − z
+
∫ +∞

z+ε

f (ζ) dζ

ζ − z

]
= P

∫ +∞

−∞
f (ζ) dζ

ζ − z
. (4.150)

The last integral of (4.149) is easily worked out by using the parameterization
ζ − z = ε eiθ. Then,

lim
ε→0

∫ z+ε

z−ε

f (ζ) dζ

ζ − z
= lim

ε→0

∫ 2π

π

f
(
z + εeiθ

)

εeiθ
(
i θ ε eiθ

)
dθ = π i f (z). (4.151)

Putting together (4.149)–(4.151), we find

f (z) = 1

π i
P
∫ +∞

−∞
f (ζ) dζ

ζ − z
. (4.152)

Writing f (ζ) in the complex form as

f (ζ) = Re(ζ) + i Im(ζ),

where Re(ζ) and Im(ζ) are real functions, then (4.152) yields

Re(z) = 1

π
P
∫ +∞

−∞
Im(ζ)dζ

ζ − z
,

Im(z) = − 1

π
P
∫ +∞

−∞
Re(ζ)dζ

ζ − z
. (4.153)

To apply these relations in the case of dispersion, the function f (z) becomes ñ(ω),
with

ñ(ω) = n1(ω) + i n2(ω), (4.154)
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where n1(ω) and n2(ω) are defined by (4.145). Then

n1(ω0) = 1 + 1

π
P
∫ +∞

−∞
n2(ω) dω

ω − ω0
,

n2(ω0) = − 1

π
P
∫ +∞

−∞
[n1(ω) − 1] dω

ω − ω0
. (4.155)

These formulas are called dispersion relations, or Kramers–Kronig relations. They
were derived independently by Ralph Kronig in 1926 and by Hans Kramers in 1927,
and they are important not only for electrodynamics, but also in some other branches
of physics, for example, in elementary particle physics or solid state physics.

Since in classical electrodynamics negative frequencies have no physical mean-
ing, the dispersion relations (4.155) can be written as integrals only over positive
frequencies. This is possible due to the symmetry properties of the real and imagi-
nary parts of the complex refraction index ñ: the real part, n1(ω), is an even function
of ω, while the imaginary part, n2(ω), is an odd function. This follows from the
property

ñ(−ω) = ñ∗(ω∗).

This relation can be easily deduced from the representation2 of ñ(ω) as

ñ(ω) =
(
1 +
∫ ∞

0
G(τ ) e−iωτdτ

)1/2

.

In this expression was used the kernel3 G(τ ) of the integral giving the most general
linear, spatially local, and causal relation between D and E in a uniform isotropic
medium,

D(r, t) = ε0E(r, t) + ε0

∫ ∞

0
G(τ )E(r, t − τ )dτ .

One uses as well the fact that E and D (and implicitly G(τ )) are real, measurable
quantities.

Returning to the refraction index and using the above considerations, let us show
that we can write the relations (4.155) in the form

2This expression is valid assuming that the relative permeability μr of the considered medium is
very close to unity, μr � 1.
3In fact, the kernel G(τ ) is the Fourier transform of the electric susceptibility of the medium,
χe = ε(ω)

εo
− 1:

G(τ ) = 1

2π

∫ +∞

−∞
χe(ω) e−iωτdω.
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n1(ω0) = 1 + 2

π
P
∫ ∞

0

ω n2(ω) dω

ω2 − ω2
0

,

n2(ω0) = −2ω

π
P
∫ ∞

0

[n1(ω) − 1] dω

ω2 − ω2
0

. (4.156)

We shall prove only the first relation (4.156), since the second can be derived anal-
ogously. Taking into account that n2(−ω) = −n2(ω), from (4.155)1 we have

n1(ω0) = 1 + 1

π
P
∫ +∞

−∞
n2(ω) dω

ω − ω0

= 1 + 1

π
P

[∫ ∞

0

n2(ω) dω

ω − ω0
+
∫ 0

−∞
n2(ω) dω

ω − ω0

]

= 1 + 1

π
P

[∫ ∞

0

n2(ω) dω

ω − ω0
+
∫ ∞

0

n2(−ω) dω

−ω − ω0

]

= 1 + 1

π
P
∫ ∞

0
n2(ω)

(
1

ω − ω0
+ 1

ω + ω0

)
dω

= 1 + 2

π
P
∫ ∞

0

ω n2(ω) dω

ω2 − ω2
0

.

Usually, the imaginary part of the refraction index, n2(ω), is determined experi-
mentally from the absorption spectra, and the real part is subsequently derived from
(4.156)1. Moreover, the dispersion relations (4.155) or (4.156) contain as well the
connection between the absorption and anomalous dispersion presented in Fig. 4.14.

The Kramers–Kronig relations show that the dispersion of electromagnetic waves
must be accompanied by absorption. Indeed, if there is no absorption (n2 = 0),
(4.155) gives n1 = n = 1, the phase velocity is

up = ω

k
= c

n
= c,

and we have no dispersion.

4.8.4 Dispersion in Crystals

Let us resume the analysis of the electromagnetic wave propagation in anisotropic
media, briefly discussed in Sect. 4.7, in order to emphasize some important charac-
teristics of dispersion in such media. Limiting ourselves to light waves, let us write
the phase of a plane wave as

ϕ(r, t) = −ωt + k · r = −ωt + k s · r = −ωt + ω

c
ψ(x, y, z).
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The function ψ is called eikonal (from the Greek eikon, meaning image), being a
common concept in ray optics and particle mechanics. The gradient of the eikonal is

∇ψ = n, where k = ω

c
n. (4.157)

Themagnitude ofn is the refractive index of the (transparent)medium. In an isotropic
medium n = |n| depends on frequency, but in anisotropic media like crystals n
depends on both frequency and direction.

To establish the equation that explains the “shape” of light rays, we start from
Fermat’s principle: along the ray trajectory between two points A and B, the integral

ψ =
∫ B

A
n · ds =

∫ B

A
n ds

is minimum. This means that the variation of ψ vanishes:

δψ =
∫ B

A
[δn(ds) + n δ(ds)] = 0. (4.158)

Let τ = dr/ds be the unit vector of the tangent to the ray. Then we can write

δn = δr · ∇n, δ(ds) = τ · d(δr).

Using these relations and integrating by parts (4.158), one obtains

δψ =
∫ B

A

[(
∇n − d(nτ )

ds

)
· δr
]
ds = 0,

which leads to
d(nτ )

ds
= ∇ n.

As dn/ds = τ · ∇n, we have

dτ

ds
= 1

n
[∇n − τ (τ · ∇n)]. (4.159)

An interesting conclusion is obtained by using the Serret–Frenet frame. Here, in
addition to τ , one introduces the unit vector of the principal normal, ν, orthogonal
to τ and defined by

dτ

ds
= 1

ρ
ν,
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where ρ is the radius of curvature, and 1/ρ is the curvature of the ray at the chosen
point. So we have

1

ρ
= ν · ∇n

n
, (4.160)

saying that the curvature of the ray depends on the refractive index: the curvature
increases with n.

The propagation velocity of the light ray is the group velocity ug = dω/dk, its
orientation being given by the unit vector τ .

Let us nowdetermine thedispersion lawof electromagnetic radiation in anisotropic
media. We start from Eq. (4.107):

D = ε [E − (s · E)s] , Di = ε [Ei − (s · E)si] = εikEk .

Since ε/ε0 = εr ∼ n2 and εik = ε0(εr)ik , we have

n2 [Ei − (s · E)si] = (εr)ikEk .

But ns = n, hence
n2Ei − (nkEk) ni = (εr)ikEk,

or [
n2δik − nink − (εr)ik

]
Ek = 0. (4.161)

The system of three equations (4.161) has nontrivial solutions if the determinant of
the matrix of coefficients vanishes:

∣∣n2δik − nink − (εr)ik
∣∣ = 0. (4.162)

If x, y, and z are the principal directions of the tensor (εr)ik , and (εr)x, (εr)y, and (εr)z
are the principal relative permittivities, then expanding the determinant (4.162) we
arrive at the following equation:

n2
[
(εr)xn

2
x + (εr)yn

2
y + (εr)zn

2
z

]− {n2x(εr)x[(εr)y + (εr)z]
+ n2y(εr)y[(εr)x + (εr)z] + n2z (εr)z[(εr)x + (εr)y]

}
(4.163)

+ (εr)x(εr)y(εr)z = 0.

This equation gives the implicit form of the dispersion law: the dependence of the
wave vector on frequency. For a given direction of n and also of k, it is a quadratic
equation in n2 with real coefficients. This means that to each direction n correspond,
in general, two distinct absolute values of the wave vector.

Assuming (εr)i, i = 1, 2, 3 to be constants, and taking ni, i = 1, 2, 3 as coordi-
nates, Eq. (4.163) represents a surface, called the wave vector surface, or the surface
of normals.
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Remark that Eq. (4.163) is nothing else but a different form of Fresnel’s equation
encountered in Sect. 4.7, emphasizing the phenomenon of dispersion.

The direction of light rays is given by the group velocity vector ug = dω/dk. In
isotropic media, its direction coincides with that of k; in anisotropic media, their
directions do not coincide. Let σ be a vector oriented in the ug direction, called the
ray vector, and defined such that

n · σ = 1. (4.164)

Consider the divergent beam of monochromatic light emitted by a point source.
The eikonal is

ψ =
∫

n · ds =
∫

n · σ

σ
ds =

∫
ds

σ
.

In a homogeneous medium, σ is constant along the ray, that is ψ = L/σ, where L
is the length of the ray segment. If on each ray of the beam one takes a segment
proportional to σ, one obtains a surface, whose points are all in phase. This is the
ray surface.

Equation (4.163) can be written in a condensed form as f (kx, ky, kz) = 0. We may
write

∂ω

∂ki
= ∂f

∂ki

/ ∂f

∂ω
,

meaning that the group velocity components are proportional to the derivatives
∂f /∂ki, therefore to ∂f /∂ni. Since the vector df /dn is oriented along the normal
to the surface f = 0, we conclude that the direction of σ, at any point, is given by
the normal to the wave vector surface at that point.

4.9 Propagation of Electromagnetic Waves in Waveguides

A waveguide is a structure used for the efficient transfer of electromagnetic power.
Waveguides differ in their geometry, their names coming from the shape of the cross
section: circular, rectangular, elliptic, etc. Waveguides can be constructed to carry
waves over a wide portion of the electromagnetic spectrum, but are especially useful
in the microwave and optical frequency ranges. Depending on the frequency, they
can be constructed from either conductive or dielectric materials. The first waveguide
was imagined by J.J. Thomson in 1893 and experimentally verified by O.J. Lodge
(1851–1940) in 1894; the mathematical analysis of the propagating modes within a
hollow metal cylinder was first performed by Rayleigh in 1897.

Waveguides used at optical frequencies are typically dielectric waveguides, struc-
tures in which a dielectric material with high permittivity, and thus high index of
refraction, is surrounded by a material with lower permittivity. These devices guide
optical waves by total internal reflection, as in optical fibers.
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Waveguides arewidely utilized in electronics, nuclear physics, safety engineering,
etc.

There are several methods of theoretical approach to electromagnetic waves trans-
mission through waveguides. In the following analysis, we shall use the simplest
procedure, by a direct application of Maxwell’s equation. At the end of the section
we shall briefly mention an alternative method.

4.9.1 Rectangular Waveguides

Suppose that the cross section of thewaveguide is a rectangle, with length a andwidth
b. The internal walls of the pipe are considered to possess a very high conductivity
(λ → ∞), and the dielectric is supposed to be air (ε ∼ ε0, μ ∼ μ0).

The equations describing the electromagnetic field inside the waveguide are
Maxwell’s equations, supplemented with jump conditions and the constitutive equa-
tions. We write Maxwell’s equations in the form:

∇ × H = ε0
∂E
∂t

,

∇ · B = 0,

∇ × E = −μ0
∂H
∂t

,

∇ · E = 0,

then take the curl of the equations of evolution and find

ε0μ0
∂2E
∂t2

− ΔE = 0,

ε0μ0
∂2H
∂t2

− ΔH = 0. (4.165)

The shape of the cross section prompts us to use Cartesian coordinates. If the
z-axis is oriented along the pipe axis, the solutions of the equations (4.165) are

E(x, y, z) = E(x, y)ei(ωt−kzz),

H(x, y, z) = H(x, y)ei(ωt−kzz). (4.166)

Observing that ∂/∂t → iω and Δz → − k2z , Eqs. (4.165) yield

(
Δ2 + α2

)
E(x, y) = 0,

(
Δ2 + α2

)
H(x, y) = 0, (4.167)
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where

α2 = ω2

c2
− k2z = k2 − k2z , (4.168)

and

Δ2 = ∂2

∂x2
+ ∂2

∂y2

is the two-dimensional Laplacian.
The solutions of the equations of propagation (4.167) have to obey the boundary

conditions (see (3.43)):

D2n − D1n = σ,

E2T − E1T = 0,

B2n − B1n = 0,

H2T − H1T = iN .

Choosing the xz-plane as being one of the internal metallic walls, and the unit vectors
N,T, and n as shown in Fig. 4.17, the second and the third jump conditions give

(E − Ec) · n = 0,

(B − Bc) · n = 0, (4.169)

where Ec and Bc are the field vectors on the internal walls of the waveguide.
Since the wall is highly conductive, according to Ohm’s law, j = λE, for λ → ∞

and j finite, we must have Ec = 0, which implies Bc = 0. Then we are left with

ET |S = 0 → Ez|S = 0, or Ex|S = 0,

Hn|S = 0, or
∂Hz

∂n

∣∣∣
S

= 0. (4.170)

Fig. 4.17 Geometry of a
rectangular waveguide with
the axis along the z-direction.

http://dx.doi.org/10.1007/978-3-642-17381-3_3
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The last relation has been obtained by taking the x-component ofMaxwell’s equation
∇ × H = ε0

∂E
∂t , and using it at the waveguide wall.

Combining the general solutionswith the boundary conditions,we can have differ-
ent types (modes) of waves, both longitudinal and transverse. The transverse waves,
which is our case, are classified into: TM (Transverse Magnetic), TE (Transverse
Electric), TEM (Transverse ElectroMagnetic), and hybrid modes (which have both
electric and magnetic field components in the direction of propagation). In the fol-
lowing we shall discuss the first two modes:

(a) TM (or E) modes have no magnetic field in the direction of propagation:Hz = 0
everywhere, with the boundary condition Ez|S = 0;

(b) TE (or M) modes have no electric field in the direction of propagation: Ez = 0

everywhere, with the boundary condition ∂Hz

∂n

∣∣∣
S

= 0.

4.9.1.1 Transverse Magnetic (TM) Modes

We start by projecting Maxwell’s evolution equations on x and y directions:

∂Ez

∂y
− ∂Ey

∂z
= −iωμ0Hx,

∂Ex

∂z
− ∂Ez

∂x
= −iωμ0Hy,

∂Hz

∂y
− ∂Hy

∂z
= iωε0Ex,

∂Hx

∂z
− ∂Hz

∂x
= iωε0Ey,

or, since ∂/∂z → −ikz, Hz = 0,

∂Ez

∂y
+ ikzEy = −iωμ0Hx,

ikzEx + ∂Ez

∂x
= iωμ0Hy,

kzHy = ε0ωEx,

−kzHx = ε0ωEy.

Oneobserves that thefield components canbe expressed in termsof partial derivatives
of Ez. Using (4.168), one obtains
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Ex = − ikz
α2

∂Ez

∂x
,

Ey = − ikz
α2

∂Ez

∂y
,

Hx = iε0ω

α2

∂Ez

∂y
, (4.171)

Hy = − iε0ω

α2

∂Ez

∂x
,

Hz = 0.

The field component Ez is determined as solution of the z-projection of (4.167)1:

(
Δ2 + α2) Ez(x, y) = 0.

To separate the variables, we take

Ez(x, y) = X(x)Y(y), (4.172)

which leads to

X ′′ + α2
1X = 0,

Y ′′ + α2
2Y = 0, (4.173)

where
α2
1 + α2

2 = α2. (4.174)

The solutions of (4.173) are of the form

X(x) = A sinα1x + B cosα1x, Y(y) = C sinα2y + D cosα2y.

The constants are determinedbyusing the boundary conditionEz|S = 0,whichmeans
Ez = 0 for x = 0, x = a, y = 0, and y = b. We find B = D = 0, as well as

α1 = n1π

a
, α2 = n2π

b
. (4.175)

Thus,
Ez(x, y) = E0 sin

n1π

a
x sin

n2π

b
y,

and the complete solution is

Ez(x, y, z, t) = E0 sin
n1π

a
x sin

n2π

b
yei(ωt−kzz). (4.176)
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As the last step, we use (4.171) to obtain all the other field components in the TM
wave:

Ex = − ikz
α2

E0
n1π

a
cos

n1π

a
x sin

n2π

b
yei(ωt−kzz),

Ey = − ikz
α2

E0
n2π

b
sin

n1π

a
x cos

n2π

b
yei(ωt−kzz),

Ez = E0 sin
n1π

a
x sin

n2π

b
y ei(ωt−kzz), (4.177)

Hx = iωε0

α2
E0

n2π

b
sin

n1π

a
x cos

n2π

b
yei(ωt−kzz),

Hy = − iωε0

α2
E0

n1π

a
cos

n1π

a
x sin

n2π

b
yei(ωt−kzz),

Hz = 0.

4.9.1.2 Transverse Electric (TE) Modes

In this case the solution is found by using the same procedure, except for the fact
that the field components are expressed in terms of partial derivatives of Hz, while

the boundary conditions are of the form ∂Hz

∂n

∣∣∣
S

= 0, leading to

dX

dx
= 0, for x = 0 and x = a,

dY

dy
= 0, for y = 0 and y = b.

We leave to the reader the derivation of the field components for the TE modes,
which will read as follows:

Ex = iωμ0

α2
H0

n2π

b
cos

n1π

a
x sin

n2π

b
y ei(ωt−kzz),

Ey = − iωμ0

α2
H0

n1π

a
sin

n1π

a
x cos

n2π

b
y ei(ωt−kzz),

Ez = 0, (4.178)

Hx = ikz
α2

H0
n1π

a
sin

n1π

a
x cos

n2π

b
y ei(ωt−kzz),

Hy = ikz
α2

H0
n2π

b
cos

n1π

a
x sin

n2π

b
y ei(ωt−kzz),

Hz = H0 cos
n1π

a
x cos

n2π

b
y ei(ωt−kzz).
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Discussion:

(a) With α = ωc/c, (4.168) yields

k2z = ω2

c2
− ω2

c

c2
, kz = 1

c

√
ω2 − ω2

c . (4.179)

Thewavepropagateswithout absorption (damping) only if k2z > 0,which implies
ω ≥ ωc = ωmin. Therefore, the wave must have a minimum frequency, called
critical, or cut-off frequency, in order to propagate through the waveguide:

ωc = ωmin = 2πνmin = 2π
c

λmax
. (4.180)

If ω < ωc, the wave is attenuated by absorption and does not propagate. Thus,
the waveguide plays the role of a frequency filter.

(b) Combining (4.168) with (4.164) it follows that

α2 = α2
1 + α2

2 = π2

(
n21
a2

+ n22
b2

)
= ω2

c

c2
,

which gives

λc = λmax = 2πc

ωc
= 2√

n21
a2 + n22

b2

. (4.181)

The cut-off wavelength is usually denoted by two indices, corresponding to the
values of n1 and n2 that make λ = λmax. In the case of TM modes, the smallest
values of n1 and n2 are n1 = n2 = 1 (the value zero is not possible, since it would
annul the wave). Thus,

λmax = λ11 = 2√
1
a2 + 1

b2

. (4.182)

If a = b, this means λ11 = a
√
2, being of the order of the side of the rectangular

cross section.
The cut-off frequency for the TE modes is found by analyzing the solution
(4.178), in particular H ′

z. Unlike the previous case, the value zero for n1 and n2
is possible, and we find

λ10 = 2a, λ01 = 2b. (4.183)

We note that the propagation of electromagnetic waves through waveguides
is strongly connected to the technique of production of high frequency waves
(∼ GHz). Such waves are called microwaves.

(c) The phase and group velocities of the wave propagating through the waveguide
are
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up = ω

kz
= k

kz
c > c,

ug = dω

dkz
= ckz√

α2 + k2z
= c2 kz

ω
= kz

k
c < c.

Obviously up ug = c2, as expected.
(d) An important quantity to be determined is the energy carried by the wave

in the waveguide. We choose a TM-mode and use the complex Poynting’s
vector �, defined in Sect. 4.4.2. From (4.53), the average of the electromag-
netic flux density for one period is

〈Φem〉 = 1

2

[
Re(E × H∗)

] · n

= 1

2
Re(E × H∗)z = 1

2
Re
(
ExH

∗
y − EyH

∗
x

)
,

and, by means of (4.171),

〈Φem〉 = 1

2

kzε0ω

α4

(
∂Ez

∂x

∂E∗
z

∂x
+ ∂Ez

∂y

∂E∗
z

∂y

)

= 1

2

kzε0ω

α4
(∇2Ez) · (∇2E

∗
z ),

where ∇2 is the “nabla” operator in the xOy-plane. The electromagnetic energy
flux through the cross section S of the guide is

Φem =
∫

S
〈Φem〉dS = 1

2

kzε0ω

α4

∫

S
(∇2Ez) · (∇2E

∗
z ) dS.

Integrating by parts, we find

∫

S
(∇2Ez) · (∇2E

∗
z )dS =

∮

C
E∗
z

∂Ez

∂n
dl −

∫

S
E∗
z Δ2EzdS,

where C is the contour of the cross section. Since Ez|S = 0 andΔ2Ez = −α2Ez,
the contour integral vanishes and we are left with

Φem = 1

2

kzε0ω

α2

∫
|Ez|2dS.

The energy per unit length of the waveguide is

Wem

l
= Φem

t

l
= Φem

uz
= 1

2

kzε0ω

α2uz

∫

S
|Ez|2dS.
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In vacuum, for the cut-off frequency, we find

Wem

l
= 1

2
ε0

∫

S
|Ez|2dS.

A similar result is obtained for the TE-mode:

Wem

l
= 1

2
μ0

∫

S
|Hz|2dS.

4.9.2 Circular Waveguides

The natural choice in this case is to work in cylindrical coordinates ρ, ϕ, z. Choosing
again the z-axis oriented along the waveguide axis, the solutions of Eq. (4.165),
written in cylindrical coordinates, are

E(ρ,ϕ, z) = E(ρ,ϕ)ei(ωt−kzz),

H(ρ,ϕ, z) = H(ρ,ϕ)ei(ωt−kzz). (4.184)

Introducing (4.184) into (4.165), we find again (4.167), where the notation (4.168)
remains valid, while the two-dimensional Laplacian Δ2 this time is expressed in
cylindrical coordinates:

Δ2 = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2
∂2

∂ϕ2
.

Using the method of separation of variables, we take as solution for the TM wave

Ez(ρ,ϕ) = F(ρ)Φ(ϕ),

which leads to

ρ2
F ′′

F
+ ρ

F ′

F
+ α2ρ2 = −Φ ′′

Φ
≡ p,

where p is a constant. The solution we are looking for must be periodical, with period
2π. Therefore, the solution of the equation

Φ ′′ + pΦ = 0,

which is Φ ∼ e±i
√
pϕ, requires

√
p = m to be integer. We then have

F ′′ + 1

ρ
F ′ +

(
α2 − m2

ρ2

)
F = 0,
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or, by a suitable change to a new variable ρ1 = αρ:

d2F

dρ21
+ 1

ρ1

dF

dρ1
+
(
1 − m2

ρ21

)
= 0 . (4.185)

As we know (see (1.141)), this is a Bessel-type equation. The only solution of this
equation which satisfies the physical conditions is the Bessel function of integer
order m, Jm(ρ1) = Jm(αρ).

Thus, the field components for the TM modes are

Eρ = − ikzαJ
′
m(αρ)

sin
cos

(mϕ)ei(ωt−kzz),

Eϕ = − ikz
m

ρ
Jm(αρ)

cos
− sin

(mϕ)ei(ωt−kzz),

Ez = α2Jm(αρ)
sin
cos

(mϕ)ei(ωt−kzz), (4.186)

Hρ = ik2

μωρ
m Jm(αρ)

cos
− sin

(mϕ)ei(ωt−kzz),

Hϕ = − ik2

μω
α J ′

m(αρ)
sin
cos

(mϕ)ei(ωt−kzz),

Hz = 0.

Using the same procedure, one finds the field components for the TE modes:

Eρ = iωμ

ρ
m Jm(αρ)

cos
− sin

(mϕ)ei(ωt−kzz),

Eϕ = − iωμα J ′
m(αρ)

sin
cos

(mϕ)ei(ωt−kzz),

Ez = 0,

Hρ = i kzαJ
′
m(αρ)

sin
cos

(mϕ)ei(ωt−kzz), (4.187)

Hϕ = ikzm

ρ
Jm(αρ)

cos
− sin

(mϕ)ei(ωt−kzz),

Hz = −α2 Jm(αρ)
sin
cos

(mϕ)ei(ωt−kzz),

where J ′
m(αρ) = J ′

m(ρ1) = dJm/dρ1.
Since E is oriented along the normal to the waveguide wall (ρ-direction), this

implies for the tangent components (see Fig. 4.18):

Ez|ρ=R = Eϕ|ρ=R = 0,

http://dx.doi.org/10.1007/978-3-642-17381-3_1
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Fig. 4.18 Geometry of a
circular waveguide.

which leads to the equations

Jm(αR) = 0, for TM modes,

J ′
m(αR) = 0, for TE modes. (4.188)

Let us denote by μ(m)
1 , μ(m)

2 , . . . , μ(m)
i , . . . the zeros of the Jm function in (4.188)1,

and by ν(m)
1 , ν(m)

2 , . . . , ν(m)
i , . . . the zeros of the J ′

m function in (4.188)2. We find

αmi ≡ αi = μ(m)
i

R
for TM modes,

α′
mi ≡ α′

i = ν(m)
i

R
for TE modes. (4.189)

Thus, we have obtained a double series of values α, each being characterized by
two indices, for which the propagation in the waveguide is possible. For a given k,
that is for a given frequency, there exists the following double series with possible
values for kz:

k2z = k2 − α2
mi (TM mode), or k2z = k2 − α′2

mi (TE mode). (4.190)

To each value of kz corresponds a wavelength and a phase velocity of the wave given
by

λ = 2π

kz
, up = ω

kz
.

According to the dispersion relation in vacuum ω = c k, it then follows that

up = k

kz
c > c. (4.191)

To calculate the group velocity, we give up the indices of α and obtain

ug = dω

dkz
= c kz√

k2z + α2
= c2kz

ω
= kz

k
c < c,
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which leads to the same result as for rectangular waveguides,

up ug = c2.

In order to propagate without damping, the wave must satisfy

k2z = 1

c2
(ω2 − ω2

c ) > 0,

where ωc is the minimum (cut-off) frequency, expressing the border between trans-
mission and absorption. We may write

ωc = 2πνmin = cαmin = c
μ(0)
1

R
,

where μ(0)
1 = 2.4 is the zeroth-order root of Eq. (4.188)1. Thus,

νmin = 2.4 c

2πR
, λmax = c

νmin
= 2πR

2.4
. (4.192)

For example, if R = 10 cm, an approximative calculation gives

ν ≥ νmin � 109 Hz, λ ≤ λmax � 30 cm.

This frequency (wavelength) corresponds tomicrowaves. These are electromagnetic
waves with wavelengths ranging from as long as one meter down to as short as one
millimeter, or equivalently, with frequencies between 300 MHz (0.3 GHz) and 300
GHz. This is a broad definition including both ultra-high frequencies (UHF), 0.3–3
GHz and extremely high frequencies (EHF) (millimeter waves), 30–300 GHz. The
technical problems of production and transmission are beyond the scope of this book.

4.9.3 Borgnis’ Method

An alternative approach to the theoretical study of electromagnetic waves propa-
gation through waveguides was offered by Fritz Edward Borgnis. Below we shall
sketch the idea of the method, and the intermediate calculations are left to the reader.

Borgnis’ method starts with the electromagnetic field equations (4.2), written in
curvilinear orthogonal coordinates q1, q2, q3 (see Appendix D), with the choice

h1 = 1,
h2
h3

independent of q1.
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We remark that these two conditions are fulfilled in the cases treated in Sects. 4.9.1
and 4.9.2. Supposing the field vectors to be given by

E = E0 e
iωt,

H = H0 e
iωt, (4.193)

Borgnis showed that Maxwell’s equations (in number of eight when written in com-
ponents) can be reduced to a single equation, where a single function U(q1, q2, q3),
called Borgnis’ function, takes the place of the field variables Ei,Bi. This can be done
either by the substitution

E1 = k2U + ∂2U

∂q21
, E2 = 1

h2

∂2U

∂q1∂q2
, E3 = 1

h3

∂2U

∂q1∂q3
,

H1 = 0, H2 = ik2

μωh3

∂U

∂q3
, H3 = − ik2

μωh2

∂U

∂q2
, (4.194)

or by the substitution

E1 = 0, E2 = iωμ

h3

∂U ′

∂q3
, E3 = − iωμ

h2

∂U ′

∂q2
,

H1 = − k2U ′ − ∂2U ′

∂q21
, H ′

2 = − 1

h2

∂2U ′

∂q1∂q2
, H ′

3 = − 1

h3

∂2U ′

∂q1∂q3
. (4.195)

It is not difficult to show that these choices lead to

∂2U

∂q21
+ 1

h2h3

[
∂

∂q2

(
h3
h2

∂U

∂q2

)
+ ∂

∂q3

(
h2
h3

∂U

∂q3

)]
+ k2U = 0, (4.196)

known as Borgnis’ equation. The two types of solutions (4.194) and (4.195) give
the already known TM and TE modes. Taking the z-axis along the waveguide axis,
Borgnis’ function can be written as

U(q1, q2, q3, t) = U0(q2, q3)e
i(ωt−kzz).

The next step is to impose boundary conditions and find the corresponding solutions.
Borgnis’ approach contains the results presented in Sects. 4.9.1 and 4.9.2 as par-

ticular cases, however the substitutions (4.194) and (4.195) are not obvious and it
takes time to find them.

Observation:
Since thewaves transmitted bywaveguides are collimated, themicrowave receiver

must “see” the emitting source.
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A special type of waveguides, mostly used for guiding light waves, are the so-
called optical fibers. Light is kept in the core of the optical fiber by total internal
reflection. This causes the fiber to act as a waveguide. Fibers which support many
propagation paths or transverse modes are called multi-mode fibers (MMF), while
those which can only support a single mode are called single-mode fibers (SMF).
Optical fibers are used for a variety of applications, including communications at
long distances and sensors and fiber lasers.

4.10 Electromagnetic Radiation

4.10.1 Solutions of the Electrodynamic Potential Equations

When discussing electrostatic and magnetostatic multipole systems, we defined the
concepts of scalar and vector potentials (see (1.79) and (2.43)):

V (r) = 1

4πε

∫

V ′

ρ(r′)dτ ′

|r − r′| , A(r) = μ

4π

∫

V ′

j(r′)dτ ′

|r − r′| , (4.197)

where the integrals are taken on the volume V ′ of the three-dimensional domainD′ of
the sources (see Fig. 4.19). In the formulas above, r is the radius vector of an arbitrary
point, P(r), of the domainD, where the effect is observed (where the electromagnetic
field produced by the sources is detected). The fact that sources are considered
stationary is mathematically expressed by their explicit time independence: ρ = ρ(r)
and j = j(r).

In the general case, the sources are variable both in space as well as in time,
ρ = ρ(r′, t′) and j = j(r′, t′) (where t′ is the time of the sources), which represent
the cause of the electromagnetic field. The principle of causality requires that the
time of the effect, t, be different from the time of sources, t′, because the electromag-

Fig. 4.19 The domain D′ of
the sources (the cause) and
the domain D of the fields
(the effect).

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_2
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netic perturbation needs a certain finite time (exactly the difference Δt = t − t′) to
propagate from P′(r′) to P(r). In the following, when the sources are not involved in
the calculations, but only generically mentioned, we shall drop the index ′ (prime),
writing simply ρ = ρ(r, t) and j = j(r, t).

In a non-stationary regime, the electrodynamic potentials are solutions of the non-
homogeneous d’Alembert equations, in the Lorenz gauge (see (3.81) and (3.82)):

εμ
∂2V

∂t2
− ΔV = ρ

ε
,

εμ
∂2A
∂t2

− ΔA = μj, (4.198)

where the sources ρ and j are functions of both position and time, ρ = ρ(r, t) and
j = j(r, t).

The purpose of this section is to find the solutions of Eq. (4.198) by using the
Green’s function method (see Appendix F). As a first observation, since Eqs. (4.198)
have a similar form, we may write them as a single equation

�ψ = f (r, t), (4.199)

where� = 1
u2

∂2

∂t2 − Δ is the d’Alembert operator, also called d’Alembertian orwave
operator (u = 1/

√
εμ = c/n is the phase velocity of the electromagnetic perturbation

which propagates through the non-dispersive medium having the refraction index
n = √

εrμr), while f (r, t) is either ρ(r, t)/ε or μj(r, t).
The corresponding Green function is defined as the solution of the equation

�G(r, t; r′, t′) = δ(r − r′)δ(t − t′). (4.200)

If we succeed to determine G, then the solution of (4.199) is written as

ψ(r, t) =
∫

dr′
∫

dt′G(r, t; r′, t′) f (r′, t′), (4.201)

where dr′ is a volume element in the domain D′ (for example, in Cartesian coordi-
nates, dr′ = dx′dy′dz′).

To determine the Green function G, we shall Fourier transform it, as well as the
source term δ(r − r′)δ(t − t′). Let k and ω be the new variables (corresponding to r
and t, respectively), and g(k,ω) the Fourier transform of the Green function. Then

G(r, t; r′, t′) = 1

(2π)2

∫
dk
∫

dω eik·(r−r′)e−iω(t−t′)g(k,ω) (4.202)

and

δ(r − r′)δ(t − t′) = 1

(2π)4

∫
dk
∫

dω eik·(r−r′)e−iω(t−t′), (4.203)

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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where dk is a volume element in the k-space (for example, dk = dkxdkydkz), and the
integrals are taken from−∞ to+∞, if not specified otherwise. Denoting r − r′ ≡ R
and t − t′ ≡ τ and introducing (4.202) into (4.200), we have

(2π)2g(k,ω)�
(
eik·Re−iωτ

) = ei(k·R−ωτ ). (4.204)

Since

�
[
eik·Re−iωτ

] =
(
1

u2
∂2

∂t2
− Δ

)[
eik·(r−r′)e−iω(t−t′)

]

=
(
k2 − ω2

u2

)
ei(k·R−ωτ ),

from (4.204) it follows that

g(k,ω) = 1

(2π)2

1

k2 − ω2

u2

, (4.205)

and the Green function (4.202) becomes

G(r, t; r′, t′) = 1

(2π)4

∫
dk
∫

dω
ei(k·R−ωτ )

k2 − ω2

u2

. (4.206)

The existence of the poles at ω = ±uk in the denominator makes the integral
(4.206) divergent. To perform the integration, we shall analytically continue the
integrand in the complex ω-plane and treat the problem as a contour integral of a
function of the complex variable ω and use the residue theorem. In the following,
we shall use this method to calculate the Green function G(r, t; r′, t′) for an infinite
domain, assuming the medium to be nondispersive (k = ω/u).

The two simple poles of the integrand in

∫ +∞

−∞
ei(k·R−ωτ )

k2 − ω2

u2

dω (4.207)

are on the real axis, symmetrically with respect to the origin (see Fig. 4.20). By
choosing various integration contours in the complex plane we shall obtain Green
functions with different properties.

In Fig. 4.21 are given two examples of the most important contours, denoted by r
and a. These contours can be closed at infinity by half-circles in the lower or upper
half-planes, depending on the sign of τ = t − t′ on the boundary.

Retarded Green Function

Let us consider first the casewhen τ > 0. In this situation, the exponential exp(−iωτ )

grows unlimitedly in the upper half-plane, and for Im ω → ∞ it becomes infinite.
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Fig. 4.20 The two simple
poles of the integrand in
(4.207).

Fig. 4.21 Two integration
contours for the integral
(4.207), physically
significant in the theory of
the electromagnetic
radiation.

If we wish to have no contribution to the integral from the half-circle that closes the
contour at infinity, thenwe cannot choose the half-circle in the upper half-plane, but in
the lower half-plane, where it is easy to see that the integrand becomes zero for τ > 0.
In Fig. 4.22 is represented the contour r which satisfies the above requirements.

According to the residue theorem, the integral with respect to ω on the contour
r ≡ C− is given by the sum of the residues at the two poles which are enclosed by
the integration contour:

∮

C−

e−iωτ

k2 − ω2

u2

dω ≡
∮

C−
w(ω)dω = −2πi

2∑

j=1

Res{w, ωj} (4.208)

= −2πi (Res{w, ω1 = −uk} + Res{w, ω2 = uk}) ,

Fig. 4.22 Integration contour for the retarded (causal) Green function.
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where Res{w, ωj}, j = 1, 2 are the residues of the function

w(ω) = e−iωτ

k2 − ω2

u2

at the poles ωj = ±uk. The minus sign in front of the sum accounts for the fact that
the contour C− ≡ (r) is negatively oriented (clockwise).

For simple poles, as it is our case, the formula for calculating the residues is

Res{w, ωj} = lim
ω→ωj

(ω − ωj)w(ω), j = 1, 2. (4.209)

Hence,

Res{w, ω1 = −ku} = u

2

eikuτ

k
, Res{w, ω2 = ku} = −u

2

e−ikuτ

k
,

and plugging these results into (4.208),

∮

(r)
w(ω)dω = 2πu

k
sin kuτ .

Thus, the Green function G(r, t; r′, t′), given by (4.206), becomes

G(r, t; r′, t′) = 1

(2π)4

∫
dk
∫

ei(k·R−ωτ )

k2 − ω2

u2

dω = u

(2π)3

∫
sin kuτ

k
eik·Rdk.

(4.210)
The integral over k becomes simpler in spherical coordinates, where we have
dk = k2 sin θ dkdθ dϕ and k · R = kR cos θ. We obtain

G(r, t; r′, t′) = u

(2π)3

∫ ∞

0
dk

(
k sin kuτ

∫ π

0
eikR cos θ sin θ dθ

) ∫ 2π

0
dϕ

= u

(2π)2

∫ ∞

0

(
k sin kuτ

∫ +kR

−kR

eiξ

kR
dξ

)
dk

= 2u

(2π)2R

∫ ∞

0
sin kuτ sin kR dk

= u

(2π)2R

∫ ∞

0
[cos(kR − kuτ ) − cos(kR + kuτ )] dk

= u

2(2π)2R

∫ +∞

−∞
[cos(kR − kuτ ) − cos(kR + kuτ )] dk

= u

2(2π)2R

∫ +∞

−∞

{
[cos(kR − kuτ ) + i sin(kR − kuτ )]
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− [cos(kR + kuτ ) + i sin(kR + kuτ )]
}
dk

= u

2(2π)2R

(∫ +∞

−∞
eik(R−uτ ) dk −

∫ +∞

−∞
eik(R+uτ ) dk

)

= u

2(2π)2R
2π [δ(R − uτ ) − δ(R + uτ )]

= u

4πR
δ(R − uτ ) = 1

4πR
δ

(
τ − R

u

)
, (4.211)

for which we have used, successively:

(1) change of variable kR cos θ = ξ ;
(2) trigonometric formula sinα sin β = 1

2 [cos(α − β) − cos(α + β)] ;
(3) the fact that cosine is an even function:∫∞

0 cos[kf (R, τ )]dk = 1
2

∫ +∞
−∞ cos[kf (R, τ )]dk ;

(4) the fact that sine is an odd function:
∫ +∞
−∞ sin[kf (R, τ )]dk = 0 ;

(5) Euler’s formula: cos x ± i sin x = e±ix ;
(6) the Fourier representation of the delta function: δ(x) = 1

2π

∫ +∞
−∞ eikxdk ;

(7) δ(R + uτ ) = 0 , because R > 0, u > 0 and τ > 0 ⇒ R + uτ > 0;
(8) the property of the delta function that ∀a > 0, δ(ax) = δ(x)

a .

Reverting to the initial notation, for τ > 0 and the integration contour r closing in
the lower half-plane, we obtained the retarded Green function:

G(r, t; r′, t′)
[

≡ Gr(r, t; r′, t′)
]

= 1

4π|r − r′| δ

(
t − t′ − |r − r′|

u

)
. (4.212)

This Green function is also called causal, because the time of observation, t, is
always later than the time of the source, t′. In other words, the relation (4.212)
expresses the fact that the effect observed at time t at the point r is due to the cause
(disturbance) which took place at the point r′, at the earlier time t′ = t − R/u < t.
The time difference Δt = t − t′ = R/u, where R = |r − r′| is the distance between
the points corresponding to the cause and effect, and u = c/n is the phase velocity
of the electromagnetic perturbation, is nothing but the time necessary to the signal
to propagate between the two points.
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Fig. 4.23 Integration contour for the advanced Green function.

Advanced Green Function

When τ = t − t′ < 0, an analogous line of reasoning leads to the choice of the
integration contour a as in Fig. 4.23. Consequently, one obtains the advanced Green
function:

G(r, t; r′, t′)
[

≡ Ga(r, t; r′, t′)
]

= 1

4π|r − r′| δ

(
t − t′ + |r − r′|

u

)
. (4.213)

Plugging (4.212) and (4.213) into (4.201) and integrating over t′, one obtains the
particular solutions of the inhomogeneous equation (4.199):

ψr(r, t) =
∫

dr′
∫

dt′Gr(r, t; r′, t′) f (r′, t′)

= 1

4π

∫
dr′
∫ δ

(
t − t′ − |r−r′|

u

)

|r − r′| f (r′, t′) dt′ (4.214)

= 1

4π

∫ f
(
r′, t − |r−r′|

u

)

|r − r′| dr′,

as well as

ψa(r, t) =
∫

dr′
∫

dt′Ga(r, t; r′, t′) f (r′, t′)

= 1

4π

∫
dr′
∫ δ

(
t − t′ + |r−r′|

u

)

|r − r′| f (r′, t′) dt′ (4.215)

= 1

4π

∫ f
(
r′, t + |r−r′|

u

)

|r − r′| dr′.
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Therefore, to know ψ(r, t) (the effect), it is necessary to know f (the cause) at a
retarded (i.e. earlier) time t′ = t − |r − r′|/u, at the point determined by r′.

To each of the particular solutions (4.214) and (4.215) one has to add the general
solution of the homogeneous equation�ψ(r, t) = 0, in order to have the description
of a given physical problem. Considering a distribution of sources f (r′, t′) localized
in time and space, the source term is different from zero only during a finite interval
of time around t′. For simplicity, one can choose t′ = 0. Below are presented two
limit cases customarily considered:

(1) We assume that at t → −∞ there is a waveψin(r, t)which satisfies the homoge-
neous wave equation, and which propagrates without any limitation in space or
time. At a given moment, the source is turned on and it starts to generate its own
waves. In this situation, the general solution of the inhomogeneous equation is

ψ(r, t) = ψin(r, t) +
∫

dr′
∫

dt′Gr(r, t; r′, t′) f (r′, t′)

= ψin(r, t) +
∫ f

(
r′, t − |r−r′|

u

)

4π|r − r′| dr′. (4.216)

The retarded Green function Gr(r, t; r′, t′) ensures that before turning on the
source there is no contribution from the integral, but only the wave ψin(r, t);

(2) For very late moments of time, t → +∞, the wave is again a solution,ψout(r, t),
of the same homogeneous wave equation. In this case, the complete solution of
the inhomogeneous equation is

ψ(r, t) = ψout(r, t) +
∫

dr′
∫

dt′Ga(r, t; r′, t′) f (r′, t′)

= ψout(r, t) +
∫ f
(
r′, t + |r−r′|

u

)

4π|r − r′| dr′. (4.217)

Now it is the advanced Green function, Ga(r, t; r′, t′), which ensures that after
turning off the source, its signals do not appear explicitly in the solution, being
included by assumption in the solution of the homogeneous equation, ψout(r, t).

The most common physical situation is described by (4.216) with ψin(r, t) = 0:

ψ(r, t) =
∫

1

4π|r − r′| f
(
r′, t − |r − r′|

u

)
dr′. (4.218)

If here we replace the function f by ρ/ε or μ j, respectively, then ψ(r, t) will stand
for the scalar potential V (r, t) or the vector potential A(r, t), respectively:
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V (r, t) = 1

4πε

∫

V ′

1

|r − r′| ρ

(
r′, t − |r − r′|

u

)
dr′,

A(r, t) = μ

4π

∫

V ′

1

|r − r′| j
(
r′, t − |r − r′|

u

)
dr′, (4.219)

which are called retarded electrodynamic potentials. Once the potentials are known,
the electromagnetic field can be determined. Thus, to know the electromagnetic field
E and B at the point r and time t, one must know the sources ρ and j, at the point r′
and retarded time t′ = t − |r − r′|/u.

The quasi-stationary regime is characterized by |r − r′|/u � T , where T is the
period of the electromagnetic oscillation. For example, if ν = 1/T = 50Hz (indus-
trial alternating current), then, assuming n � 1 we have R � cT = 6 × 103 km,
which means that low frequency currents are practically quasi-stationary. Thus, the
electrodynamic potentials describing quasi-stationary electromagnetic phenomena
become

V (r, t) = 1

4πε

∫

V ′

ρ(r′, t)
|r − r′| dr

′,

A(r, t) = μ

4π

∫

V ′

j(r′, t)
|r − r′| dr

′. (4.220)

Finally, in a purely stationary regime the sources ρ and j do not depend on time
explicitly, and one obtains the relations (1.79) and (2.43) of the stationary potentials:

V (r) = 1

4πε

∫

V ′

ρ(r′)
|r − r′| dr

′,

A(r) = μ

4π

∫

V ′

j(r′)
|r − r′| dr

′.

The solutions of Maxwell’s equations have been obtained in the Lorenz gauge.
We may now convince ourselves that the Lorenz gauge condition (see (3.80)),

∇ · A + εμ
∂V

∂t
= 0 (4.221)

is satisfied indeed by the solutions. As this condition must be satisfied at the obser-
vation point P(r) (see Fig. 4.19), at the moment t, we have

∂V

∂t
= ∂

∂t
V (r, t) = 1

4πε

∂

∂t

[∫

V ′

1

|r − r′| ρ

(
r′, t − |r − r′|

u

)
dr′
]

= 1

4πε

∫

V ′

1

R

∂ρ
(
r′, t − R

u

)

∂
(
t − R

u

)
∂
(
t − R

u

)

∂t
dr′ = 1

4πε

∫

V ′

1

R

∂ρ
(
r′, t − R

u

)

∂
(
t − R

u

) dr′.

http://dx.doi.org/10.1007/978-3-642-17381-3_1
http://dx.doi.org/10.1007/978-3-642-17381-3_2
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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We also observe that

∇ · j = ∇ · j
(
r′, t − R

u

)
= ∂j

∂
(
t − R

u

) · ∇
(
t − R

u

)

= −1

u

∂j

∂
(
t − R

u

) · ∇R = 1

u

∂j

∂
(
t − R

u

) · ∇′R,

∇′ · j = (∇ · j)t− R
u =const. −

1

u

∂j

∂
(
t − R

u

) · ∇′R,

leading to
∇ · j = (∇′ · j)t− R

u =const. − ∇′ · j.

By using this result, if one applies the divergence theorem and disregards the van-
ishing term, the divergence of A (given by (4.219)2):

∇ · A(r, t) = μ

4π
∇ ·
[∫

V ′

1

|r − r′| j
(
r′, t − |r − r′|

u

)
dr′
]

≡ μ

4π
∇ ·
[∫

V ′

j
R
dr′
]

= μ

4π

∫

V ′

[
1

R
∇ · j + j · ∇

(
1

R

)]
dr′

= μ

4π

∫

V ′

1

R

(∇′ · j)t− R
u =const. dr

′ − μ

4π

∫

V ′
∇′ ·

(
j
R

)
dr′

= μ

4π

∫

V ′

1

R

(∇′ · j)t− R
u =const. dr

′ −
∮

S′

1

R
j · dS′

can be written as

∇ · A = μ

4π

∫

V ′

1

R

(∇′ · j)t− R
u =const. dr

′.

Introducing all these results into the Lorenz condition (4.221), we have

∇ · A + εμ
∂V

∂t
= μ

4π

∫

V ′

1

R

[
∂ρ

∂
(
t − R

u

) + (∇′ · j)
t− R

u =const.

]
dr′ = 0,

which finally leads to

∂ρ

∂
(
t − R

u

) + (∇′ · j)t− R
u =const. = 0. (4.222)

This is nothing else but the equation of continuity, valid at the moment t′ = t − R
u

(the time of the sources), at an arbitrary point P′(r′) from the domain of the sources
D′ (see Fig. 4.19).
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Thus, the Lorenz gauge condition is satisfied by the obtained potentials, as it
translates into the equation of continuity for the electric charge. However, the Lorenz
gauge condition is not equivalent to the equation of continuity. For example, if the
solutions ofMaxwell’s equations are found in another gauge, say theCoulomb gauge,
and we plug the solutions into the Lorenz gauge condition, the latter will not be
satisfied. However, the equation of continuity for electric charge will always be
valid, irrespective of which gauge condition we are using. The equation of continuity
expresses a physical law, which is the conservation of electric charge, while gauge
fixing conditions do not have any physical significance, being just some relations by
which we pick up a certain form for the potentials out of an infinity of physically
equivalent possibilities.

4.10.2 Liénard–Wiechert Potentials

Let us determine the potentialsV (r, t) andA(r, t) corresponding to thefield produced
by a point charge moving in vacuum. It is supposed that the motion of the charge is
known. Denote by e the charge of the particle and by x(t) its trajectory. The velocity
of the particle can be written as

dx
dt

= cβ(t), (4.223)

where c is the speed of light in vacuum. The charge density ρ(r, t) and the current
density j(r, t) are expressed by means of the Dirac delta function:

ρ(r, t) = eδ [r − x(t)] ,

j(r, t) = ecβ(t)δ [r − x(t)] . (4.224)

Let us start with the scalar potential V . According to (4.219)1 (written for the
vacuum) and (4.224)1, this is

V (r, t) = e

4πε0

∫ δ
[
r′ − x

(
t − |r−r′|

c

)]

|r − r′| dr′.

The delta function in the integrand can be written as

δ

[
r′ − x

(
t − |r − r′|

c

)]
=
∫

δ
[
r′ − x(t′)

]
δ

(
t′ − t + |r − r′|

c

)
dt′,
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such that

V (r, t) = e

4πε0

∫
dt′
∫ δ[r′ − x(t′)]δ

(
t′ − t + |r−r′|

c

)

|r − r′| dr′

= e

4πε0

∫
dt′

1

|r − x(t′)|δ
(
t′ − t + |r − x(t′)|

c

)
. (4.225)

On the other hand, according to the properties of delta function (see Appendix E),

∫
g(t′)δ[f (t′) − t]dt′ =

[
g(t′)
df /dt′

]

f (t′)=t

. (4.226)

Since in our case

g(t′) = 1

|r − x(t′)| , f (t′) = t′ + |r − x(t′)|
c

,

and

df

dt′
= 1 + 1

c

d

dt′
{[
ri − xi(t

′)
] [
ri − xi(t

′)
]}1/2

= 1 + 1

c

ri − xi(t′)
|r − x(t′)|

(
−dxi
dt′

)
= 1 − ri − xi(t′)

|r − x(t′)| βi = 1 − n · β,

where n is the unit vector of the direction r − x(t′), we finally obtain

V (r, t) = e

4πε0

[
1

|r − x| (1 − n · β)

]

t=t′+ |r−x(t′)|
c

, (4.227)

where n, β, and x are functions of t′.
In a similar way, one finds for the vector potential

A(r, t) = μ0 e c

4π

[
β

|r − x| (1 − n · β)

]

t=t′+ |r−x(t′)|
c

. (4.228)

These expressions were found in part by Alfred-Marie Liénard (1869–1958) in 1898
and independently by Emil Johann Wiechert (1861–1928) in 1900. They are known
as Liénard–Wiechert potentials. These potentials describe relativistically correctly
the time-varying classical electromagnetic field of a point charge in arbitrary motion.

Thus we realize that it is not correct to express the potential (say, scalar) of the
field produced by a number of moving electrons by the formula

V (r, t) = 1

4πε

∫

V ′

ρ(r′, t′)
|r − r′| dτ ′ = 1

4πε

q

R
,
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because the microscopic charge density depends on the retarded time t′, which in its
turn depends on |r − r′|.

Turning now towards the Hertz potential Z, its source is the polarization P (see
(3.100)). Since Eq. (3.100) is perfectly analogous to the equations satisfied by A and
V , the solution

Z(r, t) = 1

4πε

∫

V ′

P
(
r′, t − |r−r′|

u

)

|r − r′| dr′, (4.229)

is the retarded Hertz vector (potential).

4.11 Potentials of a Time-Variable Continuous
Charge Distribution

Consider a continuous charge distribution placed in air (ε ∼ ε0, μ ∼ μ0), the sources
j and ρ varying periodically with time according to the laws

ρ

(
r′, t − R

c

)
= ρ(r′) e− iω(t− R

c ) = ρ(r′) e−iωteikR ,

j
(
r′, t − R

c

)
= j(r′) e− iω(t− R

c ) = j(r′) e−iωteikR , (4.230)

where R = |r − r′|. The corresponding retarded potentials (4.219) are

V (r, t) = 1

4πε0
e−iωt

∫

V

1

R
ρ(r′)eikR dτ ′,

A(r, t) = μ0

4π
e−iωt

∫

V

1

R
j(r′)eikR dτ ′, (4.231)

where obviously dτ ′ ≡ dr′.
Given the potentials A and V , one can determine the electromagnetic field com-

ponents E and B at the point P(r), at time t, through (3.75) and (3.76). The field
distribution depends upon the distance between the sources and the point P. The
sources ρ(r′, t′) and j(r′, t′) are located in a spatial region whose dimensions are
of the order d � λ, where λ is the wavelength of the electromagnetic radiation.
Depending on the distance from the region of the sources to the observation point
P(r), one can distinguish three zones of interest:

(i) near zone (or static), characterized by d � r � λ;
(ii) intermediate (or induction) zone, defined by (d � r � λ);
(iii) far (or radiation) zone, where (d � λ � r).

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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We shall focus on the propagation phenomena in the radiation zone, and all math-
ematical approximations will be made accordingly. Moreover, since in the region
where there are no sources Maxwell’s equation ∇ × B = μ0j + ε0μ0

∂E
∂t becomes

∇ × B = ε0μ0
∂E
∂t = 1

c2
∂E
∂t , and the time-dependence is given by the exponential

exp(−iωt), we have

∂E
∂t

= c2∇ × B ⇔ −iωE = c2∇ × B ⇒ E = ic2

ω
∇ × B = ic

k
∇ × B.

As a result, both B (through the relation B = ∇ × A), and E (through the above
equation, E = ic

k ∇ × ∇ × A) are determined only by the retarded vector potential
A(r, t), which reads, in Lorenz gauge,

A(r, t) = μ0

4π

∫
dr′
∫

dt′
j(r′, t′)
|r − r′| δ

(
t − t′ − |r − r′|

c

)
,

as long as there are no boundary surfaces. The delta function ensures the causal
behaviour of fields and, if we assume a time-variation of the source j as in (4.230)2,
then A(r, t) is given by (4.231)2. In the following we shall analyze only this case.

Before discussing various types of radiation (electric dipole, magnetic dipole,
electric quadrupole, etc.), let us examine briefly the electric fields generated by time-
variable point-like sources. The scalar potential V (r, t) is given by the relation

V (r, t) = 1

4πε0

∫
dr′
∫

dt′
ρ(r′, t′)
|r − r′| δ

(
t − t′ − |r − r′|

c

)

= 1

4πε0

∫
dr′
∫

dt′
ρ(r′, t′)
|r − r′| δ

(
t′ + |r − r′|

c
− t

)
.

The contribution of the monopole is obtained by replacing under the integral |r − r′|
by |r| ∼= R, with the result

Vmonopole(r, t) = q
(
t′ = t − R

c

)

4πε0R
,

where q(t′) is the total charge of the source. Since the electric charge is conserved
and a localized source is by definition a source into which and out of which charge
does not flow, it follows that the total charge q is time independent. Thus, the electric
monopole contribution to the potentials and fields of a localized source is necessarily
static. The time-harmonic fields (i.e. fields whose time variation is of the type e−iωt)
do not have monopole terms.

Let us return to the multipole fields of the lowest order. Since these fields can
be calculated by using only the vector potential, as we have shown earlier, in the
following we shall omit to refer explicitly to the scalar potential V (r, t).
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The series expansion of the factor 1
R which appears in the integrand of (4.231)

gives

1

R
= 1

|r − r′| = 1

r
− x′

i

∂

∂xi

(
1

r

)
+ ... ∼= 1

r
+ x′

ixi
r3

= 1

r

(
1 + r′ · s

r

)
,

leading to

R ∼= r

1 + r′ ·s
r

∼= r

(
1 − r′ · s

r

)

as well as

e− ikr′ ·s ∼= 1 − ikr′ · s,
e− ikr′ ·s

R
∼= 1

r
(1 − ikr′ · s)

(
1 + r′ · s

r

)
∼= 1

r

[
1 +
(
1

r
− ik

)
(r′ · s)

]
,

where s is the unit vector, with the components (α1,α2,α3), in the direction of r.
With these results, the vector potential becomes

A(r, t) = μ0

4π

ei(kr−ωt)

r

[∫

V ′
j(r′)dr′ +

(
1

r
− ik

)∫

V ′
j(r′)(r′ · s)dr′ + ...

]

=
∞∑

i=1

A(i)(r, t). (4.232)

The first term of the series (4.232) represents the vector potential of the field produced
by an oscillating electric dipole:

A(1)(r, t) = μ0

4π

ei(kr−ωt)

r

∫

V ′
j(r′)dr′. (4.233)

In the stationary case, such a concept is meaningless, as the integral in (4.233)
vanishes; this is the simplest mathematical justification in classical non-relativistic
electrodynamics for the non-existence of the magnetic monopole.

To find the significance of the second term of the series (4.232),

A(2)(r, t) = μ0

4π

ei(kr−ωt)

r

(
1

r
− ik

)∫

V ′
j(r′)(r′ · s)dr′, (4.234)

we shall transcribe the integrand in the form

j(r′)(r′ · s) ≡ j(r′ · s) = 1

2

[
(s · r′)j − (s · j)r′

]
+ 1

2

[
(s · r′)j + (s · j)r′

]
, (4.235)
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which suggests to write A(2) as a sum of two terms: A(2) = A(2)
1 + A(2)

2 , associated
with the antisymmetric and the symmetric part of A(2), respectively. We note that

1

2

[
(s · r′)j − (s · j)r′

]
= 1

2
(r′ × j) × s

and (
1

2

∫

V ′
r′ × j dr′

)
× s = m × s, (4.236)

wherem = 1
2

∫
V ′ r′ × j dr′ is the magnetic dipole moment of a continuous distribu-

tion of currents (magnetic sources) (see (2.61)). As a result,

A(2)
1 (r, t) = μ0

4π

ei(kr−ωt)

r

(
1

r
− ik

)
(m × s), (4.237)

showing that A(2)
1 (r, t) represents the vector potential of the field produced by a

magnetic dipole. Remark that, if the regime were stationary (k → 0, ω → 0), we
would fall back on formula (2.62):

A(r) = μ0

4π

m × s
r2

= μ0

4π

m × r
r3

.

Next, let us find the significance of the symmetric part of A(r, t),

A(2)
2 (r, t) = μ0

8π

ei(kr−ωt)

r

(
1

r
− ik

)∫

V ′

[
(s · r′)j + (s · j)r′

]
dr′. (4.238)

Assuming that the sources are localized in a region of space whose characteristic
dimensions are much smaller than the distance from observer and sources to the
origin of the coordinate system (see Fig. 4.24), d � λ � r, the projection on the
xi-direction of the expression in the right-hand side of (4.238) is

∫

V ′

[
(s · r′)j + (s · j)r′

]

i
dr′ = αk

∫

V ′

(
jix

′
k + jkx

′
i

)
dr′

= αk

∫

V ′

(
x′
kjm

∂x′
i

∂x′
m

+ x′
i jm

∂x′
k

∂x′
m

)
dr′

= αk

∫

V ′

[
∂

∂x′
m

(2jmx
′
ix

′
k) − x′

i

∂

∂x′
m

(jmx
′
k) − x′

k

∂

∂x′
m

(jmx
′
i)

]
dr′

= 2αk

∫

V ′

∂

∂x′
m

(x′
ix

′
kjm)dr′ − 2αk

∫

V ′
x′
ix

′
k∇′ · j dr′

− αk

∫

V ′
(x′

i jk + x′
kji)dr

′ = 2αk

∮

S′
jmx

′
ix

′
kdSm

http://dx.doi.org/10.1007/978-3-642-17381-3_2
http://dx.doi.org/10.1007/978-3-642-17381-3_2
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Fig. 4.24 Sources localized
within a small region,
|r′| � |r| ∼= |R|.

− 2αk

∫

V ′
x′
ix

′
k∇′ · j dr′ − αk

∫

V ′
(jix

′
k + jkx

′
i)dr

′

= −2αk

∫

V ′
x′
ix

′
k∇′ · j dr′ − αk

∫

V ′
(jix

′
k + jkx

′
i)dr

′,

where the divergence theorem has been used and we took into account the fact that
the sources are localized (consequently, at infinity there are no sources).

Thus, we obtain

αk

∫

V ′
(jix

′
k + jkx

′
i)dr

′ = −2αk

∫

V ′
x′
ix

′
k∇′ · j dr′ − αk

∫

V ′
(jix

′
k + jkx

′
i)dr

′,

hence ∫

V ′
(jix

′
k + jkx

′
i)dr

′ = −
∫

V ′
x′
ix

′
k∇′ · j dr′.

In view of the continuity equation and recalling the time-dependence of the electric
charge density as e−iω t (leading to ∇′ · j = −∂ρ/∂t = iωρ), we can further write:

∫

V ′
(jix

′
k + jkx

′
i)dr

′ = −
∫

V ′
x′
ix

′
k∇′ · j dr′ = −iω

∫

V ′
x′
ix

′
kρ(r′)dr′

= − iω

3

∫

V ′
3x′

ix
′
kρ(r′)dr′ = − iω

3

∫

V ′

(
3x′

ix
′
k − r′2δik

)
ρ(r′)dr′

− iω

3

∫

V ′
r′2ρ(r′)δik dr′ = − iω

3
pik − iω

3

∫

V ′
r′2ρ(r′)δik dr′,
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where we used the definition of the tensor of electric quadrupole moment of a con-
tinuous and stationary charge distribution,

pik =
∫

V ′

(
3x′

ix
′
k − r′2δik

)
ρ(r′)dr′.

Hence,

∫

V ′

[
(s · r′)j + (s · j)r′

]

i
dr′ = αk

∫

V ′
(jix

′
k + jkx

′
i)dr

′

= − iωαk

3

(
pik +

∫

V ′
r′2ρ(r′)δik dr′

)
,

which we plug into (4.238), with the result:

[
A(2)

2 (r, t)
]

i
= μ0

8π

ei(kr−ωt)

r

(
1

r
− ik

)∫

V ′

[
(s · r′)j + (s · j)r′

]

i
dr′

= μ0

8π

(
− iω

3

)
ei(kr−ωt)

r

(
1

r
− ik

)
pikαk + μ0

8π

(
− iω

3

)
ei(kr−ωt)

r

×
(
1

r
− ik

)
αkδik

∫

V ′
r′2ρ(r′) dr′ = iμ0ω

24π

ei(kr−ωt)

r

(
1

r
− ik

)

× pikαk − iμ0ω

24π

ei(kr−ωt)

r

(
1

r
− ik

)
αi

∫

V ′
r′2ρ(r′) dr′

= iμ0ω

24π

ei(kr−ωt)

r

(
1

r
− ik

)
pikαk .

In obtaining the above expression we omitted the term

−iμ0ω

24π

ei(kr−ωt)

r

(
1

r
− ik

)(∫

V ′
r′2ρ(r′) dr′

)
αi

as this is proportional to the unit vector s along the vector r, and the field does not
change if one adds to the vector potential an arbitrary vector proportional to s. Thus,
the symmetric part of A(2)(r, t) is proportional to the electric quadrupole moment.

The higher order terms (A(3), A(4), ...) of the series (4.232) lead to all the compo-
nents of the vector potential of this type of charge distribution (magnetic quadrupole,
electric octupole, magnetic octupole radiation, etc.). Thus, the multipole analysis
brings with each new term a higher degree of complexity of the electromagnetic
radiation field produced by an arbitrary electric and magnetic charge distribution.
If the dimensions d of the source are small as compared to the wavelength, given
that r′ is of the order of d, and kd is small compared to the unity by assumption, the
contribution of the higher order terms in the expansion of A(r, t) decreases fast with
the order of the multipole.
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4.11.1 Electric Dipole Radiation

In the following we shall calculate the electromagnetic field E, B generated by
an oscillating electric dipole at an arbitrary point situated in the radiation zone,
characterized by d � λ � r. We shall perform the calculations using two different
methods.

4.11.1.1 Method of Vector Potential A(r, t)

We re-write the expression of the electromagnetic field in terms of the vector
potential:

E = ic

k
∇ × ∇ × A,

B = ∇ × A, (4.239)

where A(r, t), for the case of the oscillating electric dipole, is given by (4.233):

A(r, t) = μ0

4π

ei(kr−ωt)

r

∫

V ′
j(r′)dr′.

The xi-component of the integral in the above relation is

∫

V ′
ji(r′) dr′ =

∫

V ′
jk(r′)

∂x′
i

∂x′
k

dr′ =
∫

V ′

∂

∂x′
k

(
jk(r′)x′

i

)
dr′ −

∫

V ′
x′
i

∂jk(r′)
∂x′

k

dr′

=
∮

S′
jk(r′)x′

idSk −
∫

V ′
x′
i

∂jk(r′)
∂x′

k

dr′ = −
∫

V ′
x′
i ∇′ · j(r′) dr′,

where the surface integral vanishes, since the sources are localized and there are no
sources at infinity. As a result, in vectorial form we can write

∫

V ′
j(r′) dr′ = −

∫

V ′
r′ ∇′ · j(r′) dr′ = −iω

∫

V ′
r′ρ(r′) dr′, (4.240)

where we used the fact that, due to the time-dependence of the sources of the form
e−iω t , we have ∇′ · j = −∂ρ/∂t = iωρ. According to the definition of the electric
dipole moment of a distribution of stationary electric charges, the last integral in the
relation (4.240) is

∫
V ′ r′ρ(r′) dr′ = p0, such that the vector potential A(r, t) given

by (4.233) becomes

A(r, t) = −iω
μ0

4π

p0 ei(kr−ωt)

r
= μ0

4π

(−iωp
r

)
= μ0

4π

ṗ
r
. (4.241)



258 4 Electromagnetic Waves

We denoted above the moment of the oscillating electric dipole by p = p0 ei(kr−ωt)

and we used the fact that ṗ = dp/dt = −iωp.
The magnetic component of the electromagnetic field created by the dipole is

given by (4.239)2:

B = ∇ × A = ∇ ×
(−iωμ0

4π

p0 ei(kr−ωt)

r

)
= − iωμ0

4π

ei(kr−ωt)

r
(∇ × p0)

− iωμ0

4π
∇
(
ei(kr−ωt)

r

)
× p0 = − iωμ0

4π

(
− r
r3
ei(kr−ωt) + ik

r
ei(kr−ωt)

)

× p0 = iωμ0

4π
∇
(
ik

r
− 1

r2

)
p × s ∼= μ0

4πcr
(−ω2p) × s = μ0

4πcr
p̈ × s,

where we used the appropriate approximations for the radiation zone (r � λ � d),
i.e. we neglected all the terms with powers of r bigger than 2 in the denominator.

For the electric component of the field we have

E = ic

k
∇ × ∇ × A ∼= − ic

k

μ0ω
2

4πc
∇ ×

(
p × s
r

)
= − iω

4πε0c
∇ ×

(
p × s
r

)

= − iω

4πε0cr

[
p∇ · s − s∇ · p + (s · ∇)p − (p · ∇)s

]
+ iω

4πε0c

s × (p × s)
r2

∼= − iω

4πε0cr

[
p∇ · s − s∇ · p + (s · ∇)p − (p · ∇)s

]
= − iω

4πε0cr

×
[
2p
r

− ik s(s · p) + ik (s · s)p − p
r2

+ s(s · p)

r

]
∼= − (iω)(ik)

4πε0cr

×
[
p(s · s) − s(s · p)

]
= − ω2

4πε0c2r
s × (s × p) = 1

4πε0c2
s × (s × p̈)

r
,

where we used again the approximationO(r−2) = 0. Thus, in the radiation zone, the
field of the oscillating electric dipole is given by

E = 1

4πε0c2
s × (s × p̈)

r
,

B = μ0

4πc

p̈ × s
r

. (4.242)

Equation (4.233) shows that in the wave zone the vector potential behaves like an
emerging spherical wave, and relations (4.242) show that E and B are orthogonal to
the radius-vector and fall off like r−1, in other words they correspond to radiative
fields. For these reasons it it preferable to work in spherical coordinates r, θ, ϕ (in
the wave zone, the wave front can be considered spherical). We shall consider the
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Fig. 4.25 Orientation of the
electric dipole moment p
with respect to the axes of a
Cartesian reference system.

dipole oriented along the z-axis (see Fig. 4.25) and we shall re-write the fields in
Eq. (4.242) as

E = 1

4πε0c2r

[
(s · p̈)s − p̈

]
,

H = uϕ

4πc r
p̈ sin θ. (4.243)

The components of the electromagnetic field are then

Er = E · s = 0, Eθ = E · uθ = p̈ sin θ

4πε0c2r
, Eϕ = E · uϕ = 0,

Hr = H · s = 0, Hθ = H · uθ = 0, Hϕ = H · uϕ = p̈ sin θ

4πc r
. (4.244)

These relations serve, among other things, to calculate the average power radiated
by the oscillating electric dipole (regarded as an antenna), in other words the elec-
tromagnetic energy which passes in the unit time through a surface S located in the
wave zone.

Defining the complex Poynting vector as

�̃ = 1

2
E × H∗, (4.245)

where “∗” represents complex conjugation, one can straightforwardly show that the
average of the density flux of electromagnetic energy emitted in the unit time is the
real part of the normal component of the vector �̃, i.e.

〈Φem〉 = 1

2

[
Re(E × H∗)

]
· n, (4.246)

where 〈 〉 represents the average over one period, and in the wave zone n ∼= s.
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To demonstrate relation (4.246) one starts from the expressions of the fields |E|
and |H|, which, for calculational simplicity, we can choose as

E = Re
[
E0 e

iϕ ei(kx−ωt)
]

= E0 cos(θ + ϕ),

H = Re
[
H0 e

iϕ′
ei(kx−ωt)

]
= H0 cos(θ + ϕ′),

where θ ≡ kx − ωt, and E0 and H0 are real amplitudes. Then, the average power
radiated by the oscillating electric dipole is

〈Prad〉 =
∮

S
〈Φem〉dS =

∮

S
(Re �̃) · s dS. (4.247)

The calculations can be done

(a) either in Cartesian coordinates, using (4.242), in which case

�̃ = 1

2
E × H∗ = 1

32π2ε0c3r2
[s × (s × p̈)] × (p̈ × s)∗

= s
32π2ε0c3r2

[
|p̈|2 − (s · p̈)(s · p̈∗)

]
, (4.248)

(b) or in spherical coordinates, using (4.244).

If we adopt the first approach, then

(Re �̃) · s = 1

32π2ε0c3r2
Re
[
|p̈|2 − (s · p̈)(s · p̈∗)

]

= |p̈|2 sin2 θ

32π2ε0c3r2
= ω4p20 sin

2 θ

32π2ε0c3r2

and taking into account dS = r2 sin θ dθ dϕ, we find

〈Prad〉 =
∮

S
(Re �̃) · s dS = ω4p20r

2θ

32π2ε0c3r2

∫ π

0
sin3 θdθ

∫ 2π

0
dϕ = ω4p20

12πε0c3
.

Since in vacuum ω = 2πc/λ, we finally obtain

〈Prad〉 = 4π3p20c

3ε0

1

λ4
. (4.249)

Equation (4.249) shows that the average power radiated by the oscillating dipole
varies inversely proportional to the fourth power of the wavelength. As a result, the
smaller the wavelength of the emitted waves, the larger the electromagnetic energy
which reaches a receiver in unit time. For example, the broadcasts of faraway radio
stations are much better received in the shortwave bands than in the medium or
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longwave bands. For the same reason, mobile telephony uses microwaves for signal
transmission.

Relation (4.249) is known as the Rayleigh scattering law. Based on it, one can
explain why the colour of the sky is blue. Lord Rayleigh approached quantitatively
the subject of the sky colour for the first time in thework published inPhil.Mag.,XLI
107–120, 274–279 (1871),which later became famous. The scattering of theSun light
by the atmosphere is due almost entirely to the oscillations of electric dipoles, since
themagneticmoments ofmost of the atmospheric gases are negligible as compared to
their electric dipolemoments.According to theλ−4 scattering law, the redwavelength
is scattered the least while violet is scattered the most. The light received away from
the direction of the incident beam contains more high-frequency components (blue–
violet) as compared to the incident beam. The light transmitted along the direction
of the incident beam is richer in low-frequency components (yellow–red) and has a
diminished intensity. Thismakes the sky to appear overall blue and bright and the Sun
to be yellow, as viewed from the Earth. (It should be pointed out that, as seen from
the space, the sky is black and the Sun is white, as it would be expected without the
atmospheric scattering of the light.) Actually, the problem is more complicated, due
to the influence of other factors, like the atmospheric instability, the water vapours
(which have strong absorption bands in infrared), the ozone (which absorbs the violet
wavelength), the other molecular species and the dust, the gradients of temperature,
etc.

Observation:
Since p = q l, we also have p̈ = q l̈, meaning that according to (Re �̃) · s =

|p̈|2 sin2 θ
32π2ε0c3r2

and (4.247), the average power of dipole radiation is proportional to the
acceleration of the electric charges. In other words, only an accelerated charged
system can produce electromagnetic waves.

The planetary model of the atom was conceived in 1911 by Ernest Rutherford
(1871–1937) as such a system. The deficiency of this model is the inconsistency of
its build-up. Due to a continuous emission of radiation, the electron should “fall” on
the nucleus. In fact, the atoms are very stable systems, and there is no relation between
the electron rotation frequency in this model and the frequency of emitted radiation.
Therefore, at this level of matter organization, the classical electrodynamics laws
cannot offer a correct explanation of the observations. Themodelwas refined byNiels
Bohr (1885–1962) in 1913, by the introduction of quantumpostulateswhich state that
the electrons revolve around the atomic nucleus on certain stationary orbits, without
radiating electromagnetic energy. The energy is gained or lost by the electrons only
when they jump fromone stationary orbit to another. Thiswas thefirst quantummodel
of the atom and, although it was soon superseded by accurate quantum mechanical
models, it remains a cornerstone of the history of physics in the conceptual leap from
the classical to the quantum approach.
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4.11.1.2 Method of Hertz’s Vector

As shown in Chap.3, Hertz’s vector satisfies Eq. (3.100), which is written in vacuum
as

ε0μ0
∂2Z
∂t2

− ΔZ = 1

ε0
P, (4.250)

and whose solution is the retarded potential (4.229):

Z(r, t) = 1

4πε0

∫

V ′

P
(
r′, t − |r−r′|

c

)

|r − r′| dr′ = 1

4πε0

∫

V ′

P
(
r′, t − R

c

)

R
dr′. (4.251)

Considering a time-periodical variation of the source of the form

P
(
r′, t − R

c

)
= P(r′) e−iω(t−R/c) = P(r′) e−iωt eikR, (4.252)

the Hertz vector (4.251) becomes

Z(r, t) = 1

4πε0

∫

V ′

P(r′) e−iωt eikR

R
dr′ = e−iωt

4πε0

∫

V ′

P(r′) eikR

R
dr′. (4.253)

In the first approximation (R � r), this is

Z(r, t) = e−iωt

4πε0

∫

V ′

P(r′) eikR

R
dr′ ∼= ei(kr−ωt)

4πε0r

∫

V ′
P(r′) dr′

= p0
4πε0r

ei(kr−ωt) = 1

4πε0

p
r
, (4.254)

where we made the notation p0 = ∫V ′ P(r′) dr′, while the oscillating electric dipole
moment is p = p0 ei(kr−ωt).

Using Eq. (3.95) for vacuum, the electromagnetic field (E,B) is expressed by
means of the Hertz potential as

E = ∇(∇ · Z) − ε0μ0
∂2Z
∂t2

,

B = ε0μ0∇ ×
(

∂Z
∂t

)
.

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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Let us find first E:

E = ∇(∇ · Z) − ε0μ0
∂2Z
∂t2

= 1

4πε0
∇
[
∇ ·
(p
r

)]
− 1

4πε0c2r

∂2p
∂t2

= 1

4πε0
∇
[
ik(s · p)

r
− p · s

r2

]
+ ω2p

4πε0c2r
∼= ik

4πε0
∇
( s · p

r

)
− −ω2p

4πε0c2r

= ik

4πε0

[
(s · p)∇

(
1

r

)
+ 1

r
∇(s · p)

]
− p̈

4πε0c2r
∼= ik

∇(s · p)

4πε0r
− p̈

4πε0c2r

= 1

4πε0c2r

[
(s · p̈)s − p̈

]
.

The magnetic component of the field is

B = ε0μ0∇ ×
(

∂Z
∂t

)
= 1

4πε0
ε0μ0∇ ×

[
∂

∂t

(p
r

)]
= − iωμ0

4π
∇ ×

(p
r

)

= − iωμ0

4π

[
ik s × p

r
− s × p

r2

]
∼= kωμ0

4πr
s × p.

In the above calculations we have used everywhere the approximation O(r−2) = 0,
which is valid in the wave zone.

Summarizing, we obtained for the electromagnetic field (E, B) the expressions

E = 1

4πε0c2r

[
(s · p̈)s − p̈

] = 1

4πε0c2
s × (s × p̈)

r
,

B = kωμ0

4πr
s × p = μ0

4πc

p̈ × s
r

,

where we took into account the fact that p̈ = −ω2p. As expected, we re-obtained the
relations (4.242).

4.11.2 The Centre-Fed Thin Linear Antenna

In this section we focus on a simple radiative system, but very useful in practice,
since by a convenient arrangement of such simple systems, with suitably chosen
current phases, more complex combinations – with a large angular distribution of
radiative power – can be obtained.
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4.11.2.1 The Sinusoidal Current Approximation

We shall determine the angular distribution of the time average of the power radiated
in a unit of solid angle by a thin, linear antenna of length d, excited at its centre,
assuming that the current is sinusoidally distributed along the antenna.

Let us consider that the antenna is oriented along the z-axis, as in Fig. 4.26. The
average flux density of the electromagnetic energy emitted per unit time (in other
words, the time average of the power radiated per unit surface) is the real part of the
normal component of the complex Poynting vector �̃:

〈Φem〉 ≡ dPrad

dS
= Re Π̃n = 1

2
Re
[
n · (E × H∗)] = 1

2
Re
[
s · (E × H∗)] , (4.255)

where 〈 〉 represents the average value over a period of time, and s is the unit vector
along the direction of r (which is orthogonal to the surface S and determines the
solid angle Ω). This relation follows immediately if one uses the relation

〈�〉 ≡ 〈E × H〉 = Re �̃ = 1

2
Re
(
E × H∗) , (4.256)

where� = E × H = EH s is the Poynting vector, signifying the radiant flux per unit
time and unit surface orthogonal to s (the unit vector of the direction of propagation
of the wave in the far zone). In relation (4.255) the average brackets for power have
been omitted, but the significance of the expression is the time average of the power
radiated per unit surface. This notation convention will be used everywhere from
now on. Thus, we write the time average of the power radiated by the antenna per
unit solid angle as

Fig. 4.26 Orientation of the
linear antenna with respect to
a Cartesian reference frame.
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dPrad

dΩ
= Re

(
r2Π̃n

)
= 1

2
Re
[
r2 s · (E × H∗)] . (4.257)

In order to calculate dPrad/dΩ , the components E and H of the field emitted by
antenna have to be first determined. Supposing that the antenna is situated in vacuum,
the magnetic field is given by the relation

H = 1

μ0
∇ × A,

while E can be determined by means of Maxwell’s equation, with the assumption
that no conduction currents are present in the zone where the field is calculated:

μ0 ∇ × H = 1

c2
∂E
∂t

. (4.258)

Outside the source we consider a periodical time variation for the field E of the
form E(r, t) = E0(r) e−iωt . Then from (4.258) it follows that

E = ic2

ω
∇ × B = i

ωε0
∇ × H = i

k

√
μ0

ε0
∇ × H. (4.259)

Consequently, to determine dPrad/dΩ it is only necessary to know the vector poten-
tial A, since

dPrad

dΩ
= 1

2
Re
[
r2 s · (E × H∗)]

= 1

2
Re

{
i r2

k

√
μ0

ε0

[
(∇ × H) × H∗] · s

}
, (4.260)

while the magnetic field H (and, implicitly, H∗) are directly expressed in terms of
A which, if no significant boundary surfaces are present, is the retarded (causal)
potential:

A(r, t) = μ0

4π

∫
dr′
∫

dt′
j(r′, t′)
|r − r′| δ

(
t′ + |r − r′|

c
− t

)
. (4.261)

For a system of charges and time variable currents one can perform a Fourier analy-
sis of the time dependence, and thus each component can be separately handled;
consequently, there is no loss of generality if the potentials, fields, and radiation of a
system of localized charges and currents, as in our case, is described by a sinusoidal
time variation of the form

j(r, t) = j(r) e−iωt .
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Plugging the above expression into (4.261), A(r, t) becomes

A(r, t) = μ0

4π
e−iωt

∫

V ′
j(r′)

eik|r−r′|

|r − r′| dr
′, (4.262)

with the integral taken over the spatial domain of volume V ′, where the sources are
distributed; in the present case, since the antenna is considered to be thin, this domain
is represented by a cylinder of length d, with infinitely small transversal section.

In the wave zone (k r � 1), the exponential eik|r−r′| oscillates very fast and deter-
mines the behaviour of the vector potentialA(r, t). In this region we use the approx-
imation |r − r′| ∼= r − s · r′. This relation is valid also for r � l, where l is the
dimension of the source, independently of the value of the product kr. Therefore,
this approximation is adequate even for the (static) near-zone, which is character-
ized by d � r � λ, as well as for the intermediate (induction) zone, defined by
d � r ∼ λ, where λ = 2πc/ω is the wavelength of the electromagnetic radiation.
Moreover, if only themain term is required, then the inverse of the distance appearing
in (4.262) can be simply replaced by r, and the vector potential becomes

A(r, t) = μ0

4π

ei(kr−ωt)

r

∫

V ′
j(r′) e−ik(s·r′)dr′. (4.263)

This formula shows that in the far zone the vector potential behaves like an emer-
gent spherical wave, with an angle-dependent coefficient. Besides, it can be easily
shown that the relations H = μ−1

0 ∇ × A and E = ik−1√μ0/ε0 ∇ × H yield fields
orthogonal to the radius vector r and decreasing like |r|−1, i.e. radiative fields.

If the damping due to radiation is neglected and the antenna is thin enough, then
it can be considered that along the antenna the current varies sinusoidally in space
and time, the wave number being k = ω/c. In addition, the current is symmetrically
distributed in the two sides of the antenna and it vanishes at its ends. These properties
are mathematically modeled by the expression

j(r) = I sin

(
kd

2
− k|z|

)
δ(x) δ(y)u3, (4.264)

where u3 ≡ ẑ is the unit vector of the Oz-axis. The delta functions restrict the flow
of the current only along the Oz-axis. If kd ≥ π, then I is the maximum value of the
current, while at the origin of the coordinate system (i.e. the excitation point of the
antenna) the current has the constant value I sin(kd/2).
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Introducing (4.264) into (4.263), it follows that in the radiation zone the vector
potential A(r, t) is oriented along the Oz-axis and has the form

A(r, t) = μ0

4π

ei(kr−ωt)

r

∫

V ′
j(r′) e−ik(s·r′)dr′

= u3
μ0Ieikre−iωt

4πr

∫ +∞

−∞
δ(x′)dx′

∫ +∞

−∞
δ(y′)dy′

×
∫ +d/2

−d/2
sin

(
kd

2
− k|z′|

)
e−ikz′ cos θdz′ (4.265)

= u3
μ0Ieikre−iωt

4πr

∫ +d/2

−d/2
sin

(
kd

2
− k|z′|

)
e−ikz′ cos θdz′,

where the integration domain over x′ and y′ has been extended from −∞ to +∞. In
order to calculate the integral

J ≡
∫ +d/2

−d/2
sin

(
kd

2
− k|z′|

)
e−ikz′ cos θdz′,

we consider the auxiliary integral

K ≡
∫ +d/2

−d/2
cos

(
kd

2
− k|z′|

)
e−ikz′ cos θdz′

and form the complex conjugated combinations C1 = K − i J and C2 = K + i J ,
which are easier to calculate, the integral K being then given by J = C2−C1

2i .
Using Euler’s formula, one finds

C1 =
∫ +d/2

−d/2
e−i( kd

2 −k|z′ |) e−ikz′ cos θdz′

= i

k

e−i kd2

sin2 θ

[
2 − 2ei

kd
2 cos

(
kd

2
cos θ

)
+ 2iei

kd
2 cos θ sin

(
kd

2
cos θ

)]
,

and

C2 =
∫ +d/2

−d/2
ei(

kd
2 −k|z′ |) e−ikz′ cos θdz′

= −i

k

ei
kd
2

sin2 θ

[
2 − 2e−i kd2 cos

(
kd

2
cos θ

)
− 2ie−i kd2 cos θ sin

(
kd

2
cos θ

)]
.



268 4 Electromagnetic Waves

Then, we have

J =
∫ +d/2

−d/2
sin

(
kd

2
− k|z′|

)
e−ikz′ cos θdz′ = C2 − C1

2i

= 2

k sin2 θ

[
cos

(
kd

2
cos θ

)
− cos

kd

2

]
. (4.266)

Introducing this result into (4.265), one obtains the expression for the vector potential
A(r, t),

A(r, t) = A0
eikr

r
u3, (4.267)

where

A0 = μ0I

2πk

cos
(
kd
2 cos θ

)− cos kd
2

sin2 θ
e−iωt . (4.268)

To obtain the angular distribution of the power radiated by the antenna, dPrad/dΩ ,
using relation (4.260), one must calculate the quantity

[
(∇ × H) × H∗] · s, where

H = μ−1
0 ∇ × A. We have

H = μ−1
0 ∇ × A = μ−1

0 A0∇ ×
(
eikr

r
u3

)
= μ−1

0 A0 e
ikr

(
ik

r
− 1

r2

)
r
r

× u3.

(4.269)

In the wave zone this relation acquires the asymptotic form (ignoring the O(r−2)

terms)

H = iI

2πr

cos
(
kd
2 cos θ

)− cos kd
2

sin2 θ
e−i(ωt−kr)(s × u3), (4.270)

or, in a simpler form,

H = ik

μ0
s × A, (4.271)

which yields

|H| = √
H · H∗ = I

2πr

cos
(
kd
2 cos θ

)− cos kd
2

sin θ
. (4.272)

For ∇ × H one finds

∇ × H = ∇ ×
[
μ−1
0 A0 e

ikr

(
ik

r
− 1

r2

)
r
r

× u3

]
= kI e−i(ωt−kr)

2πr

× cos
(
kd
2 cos θ

)− cos kd
2

sin2 θ
(s × u3) × s + I e−i(ωt−kr)

πk
(4.273)

× cos
(
kd
2 cos θ

)− cos kd
2

sin2 θ

(
ik

r2
− 1

r3

)
(s × u3) × s.
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Thus, in the radiative zone, the electric field takes the asymptotic form

E = i

k

√
μ0

ε0
∇ × H = iIe−i(ωt−kr)

2πr

cos
(
kd
2 cos θ

)− cos kd
2

sin2 θ

√
μ0

ε0
(s × u3) × s

=
√

μ0

ε0
H × s. (4.274)

Putting together the previous results, for the wave zone we can write

[
(∇ × H) × H∗] · s =

{[
k Ie−i(ωt−kr)

2πr

cos
(
kd
2 cos θ

)− cos kd
2

sin2 θ

× (s × u3) × s] ×
[
i Ie−i(ωt−kr)

2πr

cos
(
kd
2 cos θ

)− cos kd
2

sin2 θ
s × u3

]∗}
· n

= − ikI2

4π2r2

∣∣∣∣∣
cos
(
kd
2 cos θ

)− cos kd
2

sin2 θ

∣∣∣∣∣

2

sin2 θ.

Introducing this expression into (4.260), we find

dPrad

dΩ
= I2Z0

8π2

∣∣∣∣∣
cos
(
kd
2 cos θ

)− cos kd
2

sin θ

∣∣∣∣∣

2

, (4.275)

where Z0 = √
μ0/ε0 ∼= 376.7� is the impedance of the free space.

The electric vector is oriented along the component of A orthogonal to s (that is,
the direction of the vector (s × u3) × s, or, equivalently, the direction of the vector
H × s). Consequently, the polarization of the radiation lies in the plane defined by
the antenna and the radius vector of the observation point.

The angular distribution (4.275) depends, obviously, on the value of the product
kd. It can be easily shown that, for large wavelengths, this result reduces to the one
corresponding to the dipole, that is

dPrad

dΩ
= I2Z0

32π2

(
kd

2

)4

sin2 θ = π2I2d4

32
Z0 sin2 θ

1

λ4
, (4.276)

i.e. the Rayleigh scattering law (dPrad/dΩ ∼ λ−4). Indeed, for kd � 1 we have

cos

(
kd

2

)
∼= 1 − k2d2

8
,

cos

(
kd

2
cos θ

)
∼= 1 − k2d2 cos2 θ

8

and then
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∣∣∣∣∣
cos
(
kd
2 cos θ

)− cos kd
2

sin θ

∣∣∣∣∣

2

∼=
∣∣∣∣∣

k2d2

8 (1 − cos2 θ)

sin θ

∣∣∣∣∣

2

= k4d4

64
sin2 θ.

Thus, (4.275) leads to (4.276).
For the special values kd = π and kd = 2π, corresponding to the length of the

antenna being equal to one half or two halves of the wavelength (d = λ/2 and d = λ,
respectively) of the current oscillating along the antenna, the angular distributions
are

dPrad

dΩ
= I2Z0

8π2

cos2
(

π
2 cos θ

)

sin2 θ
×
⎧
⎨

⎩

1, kd = π
(
d = λ

2

) ;

4 cos2
(

π
2 cos θ

)
, kd = 2π (d = λ) .

(4.277)

These angular distributions are graphically represented in Fig. 4.27a for the half-wave
antenna and Fig. 4.27b for the full-wave antenna. In Fig. 4.27c both distributions are
drawn on the same figure, for comparison.

Fig. 4.27 Dipole angular
distributions for a thin,
linear, centrally-fed antenna.
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The distribution for the half-wave antenna is very similar to a simple dipole
picture, while the distribution of the full-wave antenna is much sharper. The full-
wave antenna distribution can be imagined as the coherent superposition of the fields
corresponding to two half-wave antennas, one above the other, both of them being
excited in phase. The intensity at θ = π/2, where the waves add algebraically, is
four times bigger than that of a half-wave antenna. Far from θ = π/2, the amplitudes
interfere giving a sharper graph. Using a convenient arrangement of basic antennas,
such as half-wave antennas, with the phases of the currents suitably chosen, one can
form by coherent superposition arbitrary radiative figures.

The total power emitted by the antenna is

Prad =
∫

dPrad =
∫∫

dPrad

dΩ
dΩ = I2Z0

8π2

∫ π

0

∣∣∣∣∣
cos
(
kd
2 cos θ

)− cos kd
2

sin θ

∣∣∣∣∣

2

× sin θ dθ

∫ 2π

0
dϕ = I2Z0

4π

{
γ − 2 cos2

(
kd

2

)
Ci(kd) + ln(kd)

+ 1

2

[
γ + Ci(2kd) + ln

(
kd

2

)]
cos(kd)

+ 1

2
[Si(2kd) − 2 Si(kd)] sin(kd)

}
, (4.278)

where

γ = lim
n→∞

[( ∞∑

k=1

1

k

)
− ln n

]
∼= 0.577216

is the Euler–Mascheroni constant (sometimes simply called the Euler constant),

while Si z =
z∫

0

sin t
t dt and Ci z = −

∞∫
z

cos t
t dt are the special functions sine integral

and cosine integral, respectively.
We note that, for a fixed excitation current, the total radiated power depends on

frequency through the function

F(k) = F

(
2πν

c

)
= γ − 2 cos2

(
kd

2

)
Ci(kd) + ln(kd)

+ 1

2

[
γ + Ci(2kd) + ln

(
kd

2

)]
cos(kd) (4.279)

+ 1

2
[Si(2kd) − 2 Si(kd)] sin(kd).
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The relative extremum points of the function F(k) can be determined by solving the
equation

0 = dF(k)

dk
= 1

k
− 2

k
cos(kd) cos2

(
kd

2

)
+ cos(kd)

2k
[1 + cos(2kd)] + 2d

× cos

(
kd

2

)
Ci(kd) sin

(
kd

2

)
− d sin(kd)

2

[
γ + Ci(2kd) + ln

(
kd

2

)]

+ sin(kd)

2k
[sin(2kd) − 2 sin(kd)] + d cos(kd)

2
[Si(2kd) − 2 Si(kd)] .

For a typical antenna with d = 2 × 10−1m, the first solution of the above equation
(the first relative maximum) is kM1

∼= 28.1617m−1, corresponding to the frequency
νM1

∼= 1.345GHz and to the wavelength λM1
∼= 22.31 cm.

Figure4.28 shows the dependence of the total power radiated by the antenna on
the wave number k = 2πν/c, for the value I = 10mA of the excitation current. This
representation corresponds to the interval k ∈ [(2π/3) × 10−6, 10π] for the wave
number, or, equivalently, the frequency interval ν ∈ [0.1 kHz, 1.5GHz], or, still, the
wavelength interval λ ∈ [20 cm, 3000 km].

Using the power series expansion of the sine and cosine functions, as well as of
the special functions sine integral

Si x = x − x3

18
+ x5

600
− x7

35280
+ O(x9)

and cosine integral

Ci x = γ + ln x − x2

4
+ x4

96
− x6

4320
+ O(x8),

Fig. 4.28 Dependence of the total power radiated by a thin, linear, centrally-fed antenna on the
wave number k = |k|, for k ∈ [(2π/3) × 10−6, 10π].
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for a fixed excitation current and small frequency values (corresponding to large
wavelengths, kd � 1), the radiated power increases with frequency to approximately
the fourth power. Indeed, we have

F(k) = k4d4

48
+ O [(kd)6

] ∼= k4d4

48
,

showing that in the range of large wavelengths this type of antenna behaves like an
electric dipole radiator.

Due to the contribution of the multipoles of higher order, the approximation
F(k) ∼= k4d4/48 (in other words, O[(kd)6] = 0) is valid only in the limit of large
wavelengths. This fact is displayed in Fig. 4.29, showing the dependencies

Pexact
rad = Pexact

rad (k) = I2Z0
4π

F(k)

and

Pdipole type
rad ≡ Pdtype

rad (k) = I2Z0
4π

k4d4

48
.

Remark that the two curves overlap with a good approximation only for frequencies
not higher than 477MHz, or, equivalently, wavelengths not lower than λ � 62.8 cm.
The percentage error in calculating the total power radiated by the antenna when
taking into consideration only the dipole-type component (i.e., if the contribution
of the higher-order dipoles is neglected) is graphically represented in Fig. 4.30 as a
function of the wave vector modulus k = |k|:

Fig. 4.29 Contribution of higher order multipoles to the total power radiated by a thin, linear,
centrally-fed antenna.
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Fig. 4.30 Dependence of the percentage relative error of the total power radiated by a thin, linear,
centrally-excited antenna on the wave number modulus k = |k|.

Pdipole type
rad − Pexact

rad

Pdipole type
rad

· 100% ≡ Pdtype
rad − Prad

Pdtype
rad

· 100%

=
{
1 − 48

k4d4

(
[Si(2kd) − 2 Si(kd)]

sin(kd)

2

− 2 cos2
(
kd

2

)
Ci(kd) + γ + ln(kd)

+ 1

2

[
γ + ln

(
kd

2

)
+ Ci(2kd)

]
cos(kd)

)}
· 100%.

As can be observed from Fig. 4.30, at least within the frequency domain correspond-
ing to the interval k ∈ [0, 40]m−1, the larger the wavelength, the smaller this relative
“error” is.

Going to larger frequencies, one remarks an “oscillatory” behaviour of the total
power radiated by the antenna in terms of the wave number/frequency (see Fig. 4.31,
representing the dependence Prad = Prad(k), for I = 10mA and d = 20 cm in the
frequency interval ν ∈ [0.1 kHz, 55GHz]). The values of k at the points of relative
minimum and maximum can be determined using numerical analysis.

The unit of the coefficient of I2/2 appearing in (4.278) is that of a resistance; it
is called the radiative resistance, Rrad , of the antenna. It corresponds to the second
term in the relation

R = 1

|Ie|2 (4.280)

×
{
Re
∫

(V )

j∗ · E dr + 2
∮

(S−Se)
�̃ · s dS + 4ω Im

∫

(V )

(wmag − wel)dr
}

,

expressing the real part of the entrance impedance of an arbitrary, linear, passive
electromagnetic system, with two terminals. This relation can be deduced by means
of the complex Poynting theorem
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Fig. 4.31 The total power radiated by a thin, linear, centrally-fed antenna, as a function of the wave
number modulus, k = |k|, for an extended frequency interval.

1

2

∫

V
j∗ · E dr + 2iω

∫

V
(wel − wmag) dr +

∮

S
�̃ · s dS = 0, (4.281)

written for harmonic fields, i.e. fields with the time dependence of the form e−iωt ,
i.e.,

E(r, t) = Re(E(r)eiωt) = 1

2

[
E(r)eiωt + E∗(r)eiωt

]
.

In the relations (4.280) and (4.281), V denotes the volume of the three-dimensional
spatial domain occupied by the passive electromagnetic system, S is the sur-
face bounding the volume V , Ie is the entrance current (complex quantity), Se
is the “entrance surface” through which the transfer of the entrance power takes
place (usually, it is the section of the entrance coaxial line), wel = 1

4 (E · D∗) and
wmag = 1

4 (B · H∗) are the (complex) harmonic electric and magnetic energy den-
sities, respectively, �̃ is the complex Poynting’s vector, and 1

2

∫
V j∗ · E dr is the

integral (corresponding to formula
∫
V j · E dr, valid for real quantities and signi-

fying the power of conversion of electromagnetic energy into some other forms of
energy: mechanical, thermal, etc.), whose real part represents the average velocity
of performing the mechanical work by the fields in the volume V .

The factor 1/2 which appears in the definition of the radiative resistance (which,
as we previously mentioned, is not the coefficient of I2 – as it could appear at the
first sight – but of I2/2, in the formula of the total radiative power) is due to the
complex character of harmonic fields. The most obvious effect – as we previously
mentioned – consists in the replacement of the real Poynting’s vector with the com-
plex one, and of the real mechanical work performed in unit time by the field E on
currents j, by the complex correspondent
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� = E × H → �̃ = 1

2
E × H∗,

∫

V
j · E dr → 1

2

∫

V
j∗ · E dr.

The use of complex quantities offers a significant advantage: it allows an easier
identification and, at the same time, tracking of the active from reactive quantities. For
example, the real coils and capacitors have both an active and a reactive component.
Another example is offered by the complex Poynting’s theorem: the real part of the
mathematical relation expressing the theorem gives the conservation of energy for
the time-averaged quantities, while the imaginary part is connected to the reactive
energy (stocked in the system) and its alternating “flow” between various reactive
components of the circuit.

Coming back to the problem of the radiative resistance of the antenna, in view of
the relation (4.278) and its definition, we can write

Rrad = Z0
2π

{
γ − 2 cos2

(
kd

2

)
Ci(kd) + ln(kd)

+ 1

2

[
γ + Ci(2kd) + ln

(
kd

2

)]
cos(kd) (4.282)

+ 1

2
[Si(2kd) − 2 Si(kd)] sin(kd)

}
.

Just as in the case of the angular distribution of the power radiated by the antenna,
here also there exist two cases of interest, namely:

(i) “half-wave” antenna, for which d = λ
2 (kd = π) and

(ii) “full-wave” antenna, for which d = λ (kd = 2π).

In these cases, we have

Rhalf−wave
rad = Z0

2π

{
γ + ln π − 1

2

[
γ + Ci(2π) + ln

(π

2

)]}

∼= 1.22
Z0
2π

∼= 73.14� (4.283)

and, respectively,

Rfull−wave
rad = Z0

2π

{
γ − 2Ci(2π) + ln(2π) + 1

2
[γ + Ci(4π) + ln π]

}

∼= 3.32
Z0
2π

∼= 199.05�. (4.284)

As can easily be observed, in these two particular cases the radiative resistance of
the antenna does not depend on frequency.
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4.11.2.2 The Method of Multi-polar Expansion

Supposing that the antenna is excited in such a way that a sinusoidal current performs
a complete wavelength oscillation as in Fig. 4.32, the current distribution along the
antenna is

j(r) = I0 sin(kz)δ(x)δ(y)ẑ. (4.285)

If the dimensions of the source are small compared to the wavelength of the electro-
magnetic radiation, it is convenient to expand the integral (4.263) in powers of k:

lim
kr→∞

A(r) = μ0

4π

ei(kr−ωt)

r

∫

V ′
j(r′) e−ik(s·r′) dr′

= μ0

4π

ei(kr−ωt)

r

∞∑

n=0

(−ik)n

n!
∫

V ′
j(r′) (s · r′)n dr′.

For n = 0, the electric dipole contribution is obtained (see (4.240)), that is

Ael dipole = μ0

4π

ei(kr−ωt)

r

∫
j(r′) dr′ = μ0I0

4π

ei(kr−ωt)

r
ẑ

×
∫

δ(x′) dx′
∫

δ(y′) dy′
∫ +d/2

−d/2
sin(kz′) dz′ (4.286)

= μ0I0
4π

ei(kr−ωt)

r
ẑ
∫ +d/2

−d/2
sin(kz′) dz′ = 0.

Thus, in this particular case, the electric dipole contribution vanishes.
For n = 1, themagnetic dipole and electric quadrupole contributions are obtained

(see relation (4.235), aswell as the related discussions).According to relation (4.235),
the magnetic dipole contribution is

Fig. 4.32 Excitation of a thin, linear, centrally-fed antenna with a sinusoidal current performing a
complete wavelength oscillation.
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Amag dipole = − μ0

4π

ei(kr−ωt)

r

ik

2

∫ [
(s · r′)j − (s · j)r′] dr′

= − μ0

4π

ei(kr−ωt)

r

ik

2

∫
(r′ × j) × s dr′ (4.287)

= μ0I0
4π

ei(kr−ωt)

r

ik

2
s ×
∫

δ(x′)δ(y′) sin(kz′) (r′ × ẑ′) dx′dy′dz′

= μ0I0
4π

ei(kr−ωt)

r

ik

2
(s × x̂)

∫
y′δ(y′)dy′

∫ +d/2

−d/2
sin(kz′) dz′

− μ0I0
4π

ei(kr−ωt)

r

ik

2
(s × ŷ)

∫
x′δ(x′) dx′

∫ +d/2

−d/2
sin(kz′) dz′ = 0,

because the integrals over x′ and y′ can be extended over the whole real axis, in which
case both integrals are null. As a result, in this particular case the magnetic dipole
contribution is also null.

Finally, according to the same relation (4.235), the electric quadrupole contribu-
tion is given by

Ael quadrupole = − μ0

4π

ei(kr−ωt)

r

ik

2

∫ [
(s · r′)j − (s · j)r′] dr′

= −ẑ
μ0I0
4π

ei(kr−ωt)

r

ik

2

∫ [
z′ cos θ sin(kz′) + z′ cos θ sin(kz′)

]

× δ(x′)δ(y′)dx′dy′dz′ = −ẑ
μ0I0
4π

ei(kr−ωt)

r
ik cos θ

×
∫

δ(x′)dx′
∫

δ(y′)dy′
∫ +d/2

−d/2
z′ sin(kz′)dz′ (4.288)

= ei(kr−ωt) μ0I0
4π

ikẑ cos θ

r

∫ +d/2

−d/2

∂

∂k
[cos(kz′)] dz′

= ei(kr−ωt) μ0I0
4π

ikẑ cos θ

r

∂

∂k

[∫ +d/2

−d/2
cos(kz′)dz′

]

= iẑ
μ0I0
4π

ei(kr−ωt)

kr

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]
cos θ.

The temporal average of the power radiated by the antenna per unit solid angle is

dPrad

dΩ
= Re

(
r2Π̃n

)
= 1

2
Re
[
r2s · (E × H∗)] = r2

2μ0
Re
[(
E × B∗) · s] . (4.289)
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In the wave zone (O(r−2) = 0), the magnetic component of the field is

B = ∇ × A = ∇ ×
{
iẑ

μ0I0
4π

ei(kr−ωt)

kr

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]
cos θ

}

= i
μ0I0
4πk

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]
cos θ ∇

(
ei(kr−ωt)

r

)
× ẑ

= i
μ0I0
4πk

cos θ

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]
ei(krt−ωt)

r

[
ik − 1

r

]
(s × ẑ)

∼= −uϕ
μ0I0
4π

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]
ei(kr−ωt)

r
sin θ cos θ, (4.290)

and the electric component is given by

E = i

k

√
μ0

ε0
∇ × H,

which, as a result of some calculations similar to those leading to relation (4.274),
within the same approximation O(r−2) = 0, becomes

E =
√

μ0

ε0
H × s = cB × s.

Then, using relation (4.290),

Re
[(
E × B∗) · s] = cRe

{[
(B × s) × B∗] · s} = c

(|B|2 − |s · B|2) = c |B|2

= cμ2
0I

2
0

16π2r2

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]2
sin2 θ cos2 θ.

Under these conditions, the angular distribution of the power radiated by the
antenna is

dPrad

dΩ
= Re

(
r2Π̃n

)
= 1

2
Re
[
r2s · (E × H∗)] (4.291)

= cμ0I20
32π2

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]2
sin2 θ cos2 θ.

It can be easily shown that, in the limit of large wavelengths (kd � 1), this result
leads to an oscillatory, spheroidal distribution of electric charge, representing one of
the simplest examples of quadrupolar radiative source:

dPrad

dΩ
= cμ0I20

32π2

k6d6

144
sin2 θ cos2 θ = ck6Q2

0

512ε0π2
sin2 θ cos2 θ. (4.292)
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The quadrupolar momentum tensor corresponding to this symmetric charge distrib-
ution is diagonal; the elements of the tensor are

Q33 = Q0, Q11 = Q22 = −1

2
Q0,

where

Q0 = I0d3

3c
.

Indeed, for kd � 1 we have cos
(
kd
2

) ∼= 1 − k2d2

8 , as well as sin
(
kd
2

) ∼= kd
2 − k3d3

48 ,
therefore

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]2 ∼=
[
kd

(
1 − k2d2

8

)
− 2

(
kd

2
− k3d3

48

)]2

= k6d6

144
.

Introducing this relation into (4.291), we arrive at (4.292).
For the special values kd = π and kd = 2π, corresponding to one half-wave (d =

λ/2) and two half-waves (d = λ) of the current oscillating along the antenna, the
angular distributions are

dPrad

dΩ
= cμ0I20

32π2
sin2 2θ ×

⎧
⎨

⎩

1, kd = π
(
d = λ

2

) ;

π2, kd = 2π (d = λ) .

(4.293)

Relations (4.293) show that both the half-wave and the full-wave antennas have
the same angular distribution of radiated power. This distribution is graphically
represented in Fig. 4.33. The figure has four lobes, with maxima for θ = π/4 and
θ = 3π/4. The total power radiated by such a quadrupole is

Prad =
∫

dPrad =
∫∫

dPrad

dΩ
dΩ = cμ0I20

32π2

[
kd cos

(
kd

2

)
− 2 sin

(
kd

2

)]2

×
∫ π

0
sin2 θ cos2 θ sin θ dθ

∫ 2π

0
dϕ (4.294)

= cμ0I20
30π

[
kd

2
cos

(
kd

2

)
− sin

(
kd

2

)]2
.

Remark that, in the general case, the total radiated power depends on the frequency.
The radiative resistance of the antenna is the coefficient of I20/2 appearing in the

expression (4.294) of the power, that is
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Fig. 4.33 Quadrupole
angular distribution for a
thin, linear, centrally-fed
antenna.

Rrad = Rrad(k) = cμ0

15π

[
kd

2
cos

(
kd

2

)
− sin

(
kd

2

)]2
. (4.295)

For the special values kd = π and kd = 2π, the total radiated power is

Prad = cμ0I20
30π

×
⎧
⎨

⎩

1, kd = π
(
d = λ

2

) ;

π2, kd = 2π (d = λ) ,

(4.296)

and depends only on the current I0 traveling through the antenna. In this case, the
radiative resistance in the two cases is

Rrad = cμ0

15π
×
⎧
⎨

⎩

1, kd = π, d = λ
2 ;

π2, kd = 2π, d = λ
= Z0

15π
×
⎧
⎨

⎩

1, kd = π, d = λ
2 ;

π2, kd = 2π, d = λ

∼=
⎧
⎨

⎩

8�, kd = π, d = λ
2 ;

78.96�, kd = 2π, d = λ.

(4.297)

Note that there is a considerable difference between the values of the radiative
resistance of the “half-wave” and the “full-wave” antennas when we use the model
which provides a “closed”-form result compared to themultipolar expansionmethod.
This outcome can be easily understood, since in the latter case only the first two
terms of the infinite series corresponding to the multipolar expansion (4.286) have
been considered. Practically, the values given by the relation (4.297) represent only
the contribution of the electric quadrupole momentum (which is the lowest order
momentum whose contribution to the vector potential is not null).
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4.12 Solved Problems

Problem 1. Using the Hertz potential Z(r, t), determine the electromagnetic field
generated by a radiating dipole, placed at the origin of the coordinate system and
oriented along the z-axis.

Solution. Using (4.229) and the notation |p| = pz ≡ p, we have

Zz ≡ Z = 1

4πε0

p0ei(kr−ωt)

r
,

Az ≡ A = − iωμ0

4π

p

r
, (4.298)

leading to

A = − ik

4π

√
μ0

ε0

p

r
. (4.299)

We also have

V = − 1

4πε0
p0 · ∇

(
ei(kr−ωt)

r

)
,

or, by neglecting the terms proportional to r−n (n ≥ 2),

V � p cos θ

4πε0r

(
1

r
− ik

)
. (4.300)

Since the geometry of the problem suggests to use spherical coordinates, one has to
write the components of the vector A in such coordinates, namely

Ar = A cos θ,

Aθ = −A sin θ, (4.301)

Aϕ = 0.

Now we are able to determine the electromagnetic field at some point P, far
enough from the source to fulfill the conditionO(r−2) = 0. Taking only the real part
of the field components, we have

Er = −∂V

∂r
− ∂Ar

∂t
= −p cos θ

4πε0

(
ik

r2
− 2

r3

)
− ik p cos θ

4πε0r

(
1

r
− ik

)
� 0,

Eθ = −1

r

∂V

∂θ
− ∂Aθ

∂t
= p sin θ

4πε0r2

(
1

r
− ik

)
− ωk p sin θ

4πr

√
μ0

ε0

� − ω2 sin θ

4πε0c2r
p0 cos(kr − ωt), (4.302)

Eϕ = − 1

r sin θ

∂V

∂ϕ
= 0.
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In a similar way are calculated the components of the magnetic field B:

Br = 1

r2 sin θ

[
∂

∂θ
(sin θAϕ) − ∂

∂ϕ
(rAθ)

]
= 0,

Bθ = 1

r sin θ

[
∂

∂ϕ
(Ar) − ∂

∂r
(r sin θAϕ)

]
= 0, (4.303)

Bϕ = 1

r

[
∂

∂r
(r Aθ) − ∂

∂θ
(Ar)

]
= − ω2μ0 sin θ

4πrc
p0 cos(kr − ωt).

Note that
|Eθ| = c|Bϕ|. (4.304)

Observation:
There is an alternative method to reach the same result. Using (3.95) and (4.298),

we have

∇ · Z = ik · Z = ikZ cos θ,

∇(∇ · Z) = −k2 cos θ s,
∂Z
∂t

= iωZ,

∂2Z
∂t2

= −ω2Z,

which allow us to write

E = ∇(∇ · Z) − ε0μ0
∂2Z
∂t2

= −k2 Z cos θ s + k2 Z uz,

B = ε0μ0∇ ×
(

∂Z
∂t

)
= ε0μ0ik × (−iωZ) = −k2

c
Z sin θ uϕ.

The field components are then

Er = 0, Eϕ = 0, Eθ = − k2 Z sin θ,

Br = 0, Bθ = 0, Bϕ = − k2

c
Z sin θ.

If now Z is expressed in terms of p, we find (4.302) and (4.303), as expected.
Problem 2. An atom radiates electromagnetic waves and remains in an excited

state during the time interval τ . The time dependence of the electric field emitted by
the atom is given by

E(t) = E0 e
− t

τ − iω0t .

http://dx.doi.org/10.1007/978-3-642-17381-3_3
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Determine the halfwidth of the spectral line emitted by the atom, which is given by
the expression

I

(
ω0 ± Δω

2

)
= 1

2
I(ω0), (4.305)

where I(ω) represents the intensity of the emitted radiation.
Solution. Before emission, both the magnetic and the electric components of

the field are obviously null. Since the magnitude of the magnetic component of the
emitted electromagnetic field is much smaller than the electric component, we shall
further consider only the latter.

Taking into consideration these preliminary observations, we may write the time
dependence of the emitted field as

E(t) =
{

0, for t < 0;
E0 e− t

τ − iω0t, for t > 0.
(4.306)

Due to the fact that the dependence on time andω is continuous, the Fourier expansion
of the field is

E(t) = 1√
2π

∫ +∞

−∞
E(ω)e−iωt dω, (4.307)

where E(ω) is the Fourier transform of E(t):

E(ω) = 1√
2π

∫ +∞

−∞
E(t) eiωt dt = 1√

2π

∫ 0

−∞
0 · eiωtdt

+ 1√
2π

∫ +∞

0
E0 e

− t
τ − iω0t eiωtdt

= E0√
2π

∫ +∞

0
e−t[ 1

τ +i(ω0−ω)]dt

= E0√
2π

[
−1

1
τ

+ i(ω0 − ω)
e−t[ 1

τ +i(ω0−ω)]
]t=+∞

t=0

= E0√
2π
[
1
τ

+ i(ω0 − ω)
] .

The intensity of the emitted radiation I(ω) is, by definition,

I(ω) ∼ |E(ω)|2 = E2
0

2π

1
∣∣ 1
τ

+ i(ω0 − ω)
∣∣2

= E2
0

2π

1
1
τ 2 + (ω0 − ω)2

,

or

I(ω) = I0
1
τ 2 + (ω0 − ω)2

. (4.308)
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Here I0 comes from

I0 =
∫ +∞

−∞
I(ω)dω,

but its exact expression is not important for this problem.
Using (4.305) in which we plug the expression (4.308), we find

I0
1
τ 2 + [ω0 − (ω0 ± Δω

2

)]2 = 1

2

I0
1
τ 2

= I0τ 2

2
,

leading to
1

τ 2
+
[
ω0 −

(
ω0 ± Δω

2

)]2
= 2

τ 2
,

which finally gives

Δω = 2

τ
. (4.309)

Problem 3. Decompose in plane waves the electromagnetic field generated by an
electron, moving uniformly along a straight line in vacuum.

Solution. Let v be the velocity and e the modulus of the charge of the electron,
ρ – the charge density, and A(r, t), V (r, t) – the potentials associated to the field of
the electron. Choosing as origin of a reference system the position of the electron
at the time t = 0, we can write the charge density of the physical system under
consideration by means of the Dirac delta function

ρ = eδ(r − vt). (4.310)

The inhomogeneous d’Alembert-type equations satisfied by A(r, t) and V (r, t) are,
respectively,

ΔA − 1

c2
∂2A
∂t2

= −μ0e v δ(r − vt), (4.311)

ΔV − 1

c2
∂2V

∂t2
= − e

ε0
δ(r − vt). (4.312)

We note that

A = V

c2
v, (4.313)

meaning that we may study only one potential, for example V . Keeping t unchanged
and denoting by Vk(t) the Fourier transform of V (r, t), we have

V (r, t) = 1

(2π)3/2

∫
Vk(t) e

ik·rdk. (4.314)
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Now we introduce (4.314) into (4.312) and write on the right-hand side the Fourier
transform of δ(r − vt):

1

(2π)3/2

∫ [
− k2Vk(t) − 1

c2
∂2Vk(t)

∂t2

]
eik·rdk = − e

(2π)3ε0

∫
eik·(r−vt)dk,

finding the equation for the Fourier transform Vk(t):

∂2Vk(t)

∂t2
+ c2k2Vk(t) = c2 e

(2π)3/2ε0
e− ik·vt . (4.315)

We seek a solution of this equation of the form

Vk(t) = V (0)
k e− ik·vt, (4.316)

which we plug into (4.315), with the result

Vk(t) = e

(2π)3ε0

e− ik·vt

k2 − ( k·v
c

)2 . (4.317)

Using this expression, we obtain both V (r, t) from (4.314):

V (r, t) = e

(2π)3ε0

∫
eik·(r−vt)

k2 − ( k·v
c

)2 dk, (4.318)

and A(r, t) from (4.313):

A(r, t) = e v
(2π)3ε0c2

∫
eik·(r−vt)

k2 − ( k·v
c

)2 dk. (4.319)

Summarizing, the Fourier transforms of the scalar and vector potentials are

Vk(r, t) = e

(2π)3ε0

eik·(r−vt)

k2 − ( k·v
c

)2 , (4.320)

and
Ak(r, t) = v

c2
Vk(r, t). (4.321)

In this representation, the electromagnetic field associated to the electron is given
by

ek = −∇Vk − ∂Ak

∂t
= −∇Vk − v

c2
∂Vk

∂t
, (4.322)
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and

bk = ∇ × Ak = − 1

c2
v × ∇Vk. (4.323)

Using (4.320) and (4.321) and carrying out the calculation, we finally obtain

ek = − ie

(2π)3ε0

k − 1
c2 v(k · v)

k2 − ( k·v
c

)2 eik·(r−vt), (4.324)

and

bk = ieμ0

(2π)3

k × v

k2 − ( k·v
c

)2 e
ik·(r−vt), (4.325)

Note that, unlike the free plane waves which are purely transverse, the electric com-
ponent ek has also a longitudinal component, whose modulus is

|elongk | = C
k · s − (v·s)(v·k)

c2

k2 − ( k·v
c

)2 = C

k
, (4.326)

where C is a constant, and s is the unit vector of k. Then,

elongk = C

k
s = − i e

(2π)3ε0

k
k2

eik·(r−vt). (4.327)

One also observes that
blongk = 0. (4.328)

If v → 0, etransk → 0, and we fall back on the electrostatic field case.
Problem 4. An anisotropic dielectric, withN0 electrons per unit volume, is placed

in a combination of electric and magnetic fields, such that the electric component
varies periodically with time, while the magnetic component B0 is uniform and
homogeneous. Determine the relative permittivity tensor (εr)ik, i, k = 1, 2, 3 of the
dielectric. It is assumed that all electrons have the same natural frequency ω0, while
the damping (friction) force is neglected.

Solution. The electron obeys the equation of motion

m
d2r
dt2

= −mω2
0r + eE + ev × B0 = −mω2

0r + eE0 e
−iωt + e

dr
dt

× B0. (4.329)

Taking the z-axis along B0, we get

m
d2r
dt2

= −mω2
0r + eE0 e

−iωt + e
dy

dt
B0i − e

dx

dt
B0j, (4.330)
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where i and j are the unit vectors of the x- and y-axes, respectively. This equation,
projected on the axes, gives

m
d2x

dt2
= −mω2

0x + eEx + e
dy

dt
B0,

m
d2y

dt2
= −mω2

0y + eEy − e
dx

dt
B0, (4.331)

m
d2z

dt2
= −mω2

0z + eEz.

The calculation is simplified if one introduces the pair of coordinates

ξ = − 1√
2
(x + iy),

η = 1√
2
(x − iy), (4.332)

in the xOy-plane, orthogonal to B. To re-write (4.331) in the new variables ξ, η, z,
we first multiply (4.331)1 by −1/

√
2 and (4.331)2 by −i/

√
2, then add the resulting

equations side by side. The result is

d2ξ

dt2
+ 2 iΩ

dξ

dt
+ ω2

0ξ = e

m
E+, (4.333)

where

Ω = eB0

2m
,

E+ = −(1/
√
2)(Ex + i Ey).

Further, we multiply (4.331)1 by 1/
√
2 and (4.331)2 by −i/

√
2, then add the results

side by side. This yields the equation for η:

d2η

dt2
− 2iΩ

dη

dt
+ ω2

0η = e

m
E−, (4.334)

where E− = 1√
2
(Ex − iEy). The last equation (4.331)3 remains unchanged,

d2z

dt2
+ ω2

0z = e

m
Ez. (4.335)
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For each Eqs. (4.333)–(4.335), the solution is sought in the form (variable) =
(amplitude) e−iωt . Introducing these solutions into the equations, one obtains the
amplitude for each variable. The solutions are then

ξ = e

m

E+
ω2
0 − ω2 + 2ωΩ

, (4.336)

η = e

m

E−
ω2
0 − ω2 − 2ωΩ

, (4.337)

z = e

m

Ez

ω2
0 − ω2

. (4.338)

Returning now to the old variables x, y, z, we first observe that

x = − 1√
2
(ξ − η),

y = i√
2
(ξ + η),

z = z.

The desired expressions are obtained by some simple manipulations of (4.336)–
(4.338). For example, to find x one multiplies (4.336) by −1/

√
2 and (4.337) by

1/
√
2, then add side by side. A similar procedure is used to determine y. The results

are

x = e

m

aEx − ibEy

a2 − b2
,

y = e

m

aEy + ibEx

a2 − b2
, (4.339)

z = e

m

Ez

a
,

where a = ω2
0 − ω2 and b = 2ωΩ .

Within this simple model of dielectric polarization, the dipole moment induced
in a single atom/molecule is p = qr. The dipole moment per unit volume then is
P = N0 p = eN0 r, where N0 is the number of dipoles (electron-ion pairs) per
unit volume, i.e. the electron number density. We assume, therefore, that each
atomic/molecular system consists of a pair ion-electron, which is an elementary
dipole. In this case, the electric induction is

D = ε0E + P = ε0E + eN0 r. (4.340)
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Taking the components of (4.340) and using (4.339), one obtains

Dx = ε0Ex + eN0x = ε0Ex + eN0
e

m

aEx − ibEy

a2 − b2

=
[
ε0 + ae2N0

m(a2 − b2)

]
Ex − ibe2N0

m(a2 − b2)
Ey, (4.341)

Dy = ε0Ey + eN0y = ε0Ey + eN0
e

m

aEy + ibEx

a2 − b2

=
[
ε0 + ae2N0

m(a2 − b2)

]
Ey + ibe2N0

m(a2 − b2)
Ex, (4.342)

Dz = ε0E+eN0z = ε0Ez + eN0
e

m

Ez

a
=
(

ε0 + e2N0

ma

)
Ez. (4.343)

Comparing (4.341)–(4.343) with the general tensor relations

Di = εikEk = ε0(εr)ikEk, i, k = 1, 2, 3,

one finds the components of the relative permittivity tensor

(er)ik =
⎛

⎜⎝
1 + ae2N0

ε0m(a2−b2) − ibe2N0
ε0m(a2−b2) 0

ibe2N0
ε0m(a2−b2) 1 + ae2N0

ε0m(a2−b2) 0

0 0 1 + e2N0
ε0ma

⎞

⎟⎠ . (4.344)

Problem 5. Determine the electromagnetic field associated with an electron per-
forming an arbitrary (accelerated, but non-relativistic) motion.

Solution. The electromagnetic field associated with the moving electron is given
by

E = −∇V − ∂A
∂t

,

B = ∇ × A, (4.345)

where

V (r, t) =
[

e

4πε0|r − x| (1 − n · β)

]

t=t′+ |r−x(t′)|
c

, (4.346)

A(r, t) =
[

μ0 e cβ

4π|r − x|(1 − n · β)

]

t=t′+ |r−x(t′)|
c

(4.347)

are the Liénard–Wiechert potentials. Here x = x(t′) is the parametric equation of
the electron trajectory, r is the radius-vector of the observation point, n is the unit
vector of the direction r − x, and cβ = dx/dt′, with v = dx/dt′, is the velocity of
the electron on its trajectory. If P(r) is the observation point and P′(x) the actual
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Fig. 4.34 The relative
position P′ of the electron in
motion, with respect to the
fixed observation point P.

position of the electron (see Fig. 4.34), then the electromagnetic signal emitted by
the electron at time t′ will arrive at the observation point P at the later time

t = t′ + |r − x(t′)|
c

= t′ + R(t′)
c

, R = |r − x|.

For convenience, from now on we shall omit the “index” t = t′ + R
c , but keep

in mind that all quantities on the r.h.s. are considered at the time t′ = t − R
c . Since

A = v
c2 V (see also (4.313)), we can write

E = − ∂V

∂r
− ∂A

∂t
= −

(
∂

∂r
+ v

c2
∂

∂t

)
V − V

c2
∂v
∂t

= − e

4πε0

(
∂

∂r
+ v

c2
∂

∂t

)(
R − R · v

c

)−1

− V

c2
∂v
∂t′

∂t′

∂t
(4.348)

= e

4πε0
(
R − R·v

c

)2

(
∂

∂r
+ v

c2
∂

∂t

)(
R − R · v

c

)
− aV

c2
∂t′

∂t
,

where a = ∂v/∂t′ is the acceleration of the electron.
The derivative ∂t′/∂t is found using R = c(t − t′) and observing that

∂t′

∂t
= c

c + ∂R
∂t′

,

∂R2

∂t′
= 2R · ∂

∂t′
(r − x) = −2R · v,

2R · ∂R
∂t′

= 2R
∂R

∂t′
= − 2R · v,

∂R

∂t′
= −R · v

R
,
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where we used the facts that r does not explicitly depend on t′, v = dx/dt′ = ∂x/∂t′,
while R and ∂R/∂t′ are collinear. Thus,

∂t′

∂t
= c

c + ∂R
∂t′

= c

c − R·v
R

= R

R − R·v
c

and E becomes

E = e

4πε0
(
R − R·v

c

)2

(
∂

∂r
+ v

c2
∂

∂t

)(
R − R · v

c

)
− eRa

4πε0c2
(
R − R·v

c

)2 .

(4.349)
The four derivatives appearing in (4.349) are calculated as follows. Since x, y, z, t
are independent variables, while R can be expressed in terms of both the coordinates
of the observation point x, y, z, t and those of the electron x′, y′, z′, t′, we have

∂t′

∂r
= ∂

∂r

(
t − R

c

)
= −1

c

∂R

∂r
,

∂R

∂r
= ∂R

∂x′
i

∂x′
i

∂r
+ ∂R

∂t′
∂t′

∂r
, i = 1, 2, 3; x1 = x, x2 = y, x3 = z,

∂R

∂x′
i

∂x′
i

∂r
= ∂R

∂xk

∂xk
∂x′

i

∂xm
∂r

∂x′
i

∂xm
= ∂R

∂xk

∂xm
∂r

δkm

= ∂R

∂xk

∂xk
∂r

= ∇R = R
R

, i, k,m = 1, 2, 3.

Therefore,
∂R

∂r
= R

R
+ ∂R

∂t′
∂t′

∂r
= R

R
− R · v

R

∂t′

∂r
,

as well as
∂t′

∂r
= − 1

c

∂R

∂r
= R · v

cR

∂t′

∂r
− R

cR
,

leading to
∂t′

∂r
= − R

cR

1

1 − R·v
cR

= − R

c
(
R − R·v

c

) ,

so that
∂R

∂r
= −c

∂t′

∂r
= R

R − R·v
c

. (4.350)

Next derivative, ∂R/∂t, is easily obtained using the previous calculations:

∂R

∂t
= c

(
1 − ∂t′

∂t

)
= c

(
1 − R

R − R·v
c

)
= − R · v

R − R·v
c

. (4.351)



4.12 Solved Problems 293

The third derivative is

∂

∂r
(R · v) = ∂

∂r
[(r − x) · v] = v + r · ∂v

∂r
− ∂x

∂r
· v − x · ∂v

∂r
. (4.352)

But
∂v
∂r

= ∂v
∂t′

∂t′

∂r
= a

∂t′

∂r
= − Ra

c
(
R − R·v

c

) ,

∂x
∂r

= ∂x
∂t′

∂t′

∂r
= − R

c
(
R − R·v

c

)v,

so that

∂

∂r
(R · v) = v + r ·

[
− aR

c
(
R − R·v

c

)
]

−
[
− R

c
(
R − R·v

c

)v
]

· v

− x ·
[
− aR

c
(
R − R·v

c

)
]

= v − (r − x) · aR

c
(
R − R·v

c

) + v2 R

c
(
R − R·v

c

)

= v + v2 − R · a
c
(
R − R·v

c

) R. (4.353)

The last derivative gives

∂

∂t
(R · v) = ∂

∂t
[(r − x) · v] = ∂r

∂t
· v + r · ∂v

∂t
− ∂x

∂t
· v − x · ∂v

∂t
.

Since r does not explicitly depend on t′ we have

∂r
∂t

= ∂r
∂t′

∂t′

∂t
= 0,

∂x
∂t

= ∂x
∂t′

∂t′

∂t
= v

R

R − R·v
c

,

∂v
∂t

= ∂v
∂t′

∂t′

∂t
= a

R

R − R·v
c

,

and then

∂

∂t
(R · v) = (r − x) · a R

R − R·v
c

− v2R

R − R·v
c

= R · a − v2

R − R·v
c

R. (4.354)
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Introducing now the derivatives (4.350), (4.351), (4.353), and (4.354) into (4.349),
we successively have

E = e

4πε0
(
R − R·v

c

)2

{
R

R − R·v
c

− v
c2

R · v
R − R·v

c

− 1

c

[
v + v2 − R · a

c
(
R − R·v

c

) R
]

− v
c2

R · a − v2

R − R·v
c

R

}
− eRa

4πε0c2
(
R − R·v

c

)2 = e

4πε0
(
R − R·v

c

)3

×
{[(

1 − v2

c2

)
+ R · a

c2

](
R − Rv

c

)
− Ra

c2

(
R − R · v

c

)}
.

Taking A ≡ R,B ≡ R − Rv
c ,C ≡ a and using the vector formula (A.13), we finally

obtain

E = e

4πε0

(
1 − v2

c2

) (
R − Rv

c

)+ R
c2 × [(R − Rv

c

)× a
]

(
R − R·v

c

)3 = Ev + Ea, (4.355)

where

Ev = e

4πε0

(
1 − v2

c2

) (
R − Rv

c

)

(
R − R·v

c

)3

is the electric component of the electromagnetic field created by the moving electron
which depends on the velocity only, and

Ea = μ0

4π

eR × [(R − Rv
c

)× a
]

(
R − R·v

c

)3

is the component depending on both the velocity and the acceleration of the electron.
Next, let us calculate the magnetic component B:

B = ∇ × A = ∇ ×
(
vV
c2

)
= 1

c2
(∇V ) × v + V

c2
∇ × v. (4.356)

We have

∇V = ∂V

∂r
= − e

4πε0

1
(
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c

)2
∂

∂r

(
R − R · v

c

)

= − e

4πε0
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(
R − R·v
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{
R
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c
(
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= − e

4πε0

R
(
1 − v2

c2 + R·a
c2

)
− v

c

(
R − R·v

c

)

(
R − R·v

c

)3 , (4.357)
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as well as

∇ × v = εijk
∂vk

∂xj
ui = εijk

∂vk

∂t′
∂t′

∂xj
ui = εijkak

(
− 1

c

Rj

R − R·v
c

)
ui

= − 1

c

R × a

R − R·v
c

, (4.358)

where we have used the xj-projection of the relation

∂t′

∂r
= −R

c

1

R − R·v
c

.

With (4.357) and (4.358), (4.356) becomes

B = − 1

c2
e

4πε0
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(
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c2

)
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c

(
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)
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)
(R × v) + (R − R·v
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) R×a
c

(
R − R·v

c

)3 . (4.359)

The electric and magnetic components of the electromagnetic field created by the
moving electron are given by (4.355) and (4.359). If the electron ismoving uniformly
(a = 0) along a straight line, and |v| � c, not only the ratio v2/c2, but also v/c can
be neglected, and we are left with the field of an “inertial” electron,

E = e

4πε0

R
R3

,

B = μ0 e

4π

v × R
R3

. (4.360)

As an application, let us calculate the energy of the non-relativistic electron,
conceived as a sphere of radius R0, uniformly charged with electricity of superficial
density σ = e/4π R2

0:

W = ε0

2

∫

V
E2dr + 1

2μ0

∫

V
B2dr = e2

32π2ε0

∫ ∞

R0

∫ π

0

∫ 2π

0

1

r2
sin θ dr dθ dϕ

+ μ2
0e

2v2

32π2

∫ ∞

R0

∫ π

0

∫ 2π

0

1

r2
sin3 θ dr dθ dϕ

= e2

8πε0R0

(
1 + 2

3

v2

c2

)
� e2

8πε0R0
, (4.361)
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which is very close to the energy of the electron at rest. We may conclude that the
non-relativistic, uniform motion of the electron does not affect very much its energy,
or its classical radius, whose order of magnitude is 10−15 m. This spatial dimension
shows, at the same time, the applicability limits of classical electrodynamics for the
electron.

4.13 Proposed Problems

1. Given the vector potentialA = A0 ei(ωt−k·r), and the conditions V = 0, ∇ · A =
0, j = 0 and ρ = 0,
(a) Prove the transversality of the electromagnetic waves in a homogeneous and
isotropic medium;
(b) Determine the magnitude and orientation of Poynting’s vector.

2. On a plane surface separating two dielectric media falls a plane wave, the angle
of incidence being ϕ and the angle of refraction being θ. The wave is polarized,
the electric vector field of the incident wave making the angle γi with the plane
of incidence. Determine the angles γrfl and γrft between the electric vector and
the plane of incidence in both the reflected and refracted waves. Show that, if
γi = 0, π/2, there is no change in these angles as compared to the incident wave.

3. Two dielectric plates of refractive index n are separated by an air layer of refrac-
tive index 1 and thickness d. Determine the ratio between the amplitude of the
wave transmitted in one plate, and the amplitude of the wave incident on the
layer from the other plate.

4. Determine the electric andmagnetic energydensities of a planewavepropagating
in the direction s, in an anisotropic dielectric medium.

5. Consider a metal with N charge carriers per unit volume, each having charge e
and mass m and satisfying the equation of motion

m
dv
dt

+ m

τ
v = eE,

where τ is the relaxation time (the time constant of an exponential return of the
system to equilibrium after disturbance). Find
(a) The complex electric conductivity λ̃;
(b) The dispersion equations for the conductivity;
(c) The connection between Re(λ) and the energy loss by Joule effect.

6. Determine the wavelength λmax of a TE mode propagating in a rectangular
waveguide, of sides a and b, the waveguide being filled with a semiconduct-
ing medium.

7. Calculate the phase velocity of the magnetic field generated by an electric oscil-
lating dipole, situated in vacuum.

8. A linear quadrupole is composed of the charges −q, 2q, −q placed on z-axis
at the points −a, 0, a, respectively. The quadrupole moment is P = P0 sin ωt,



4.13 Proposed Problems 297

where P0 = a2 q. Determine the field generated by the quadrupole at some point
r � a.

9. A plane polarized electromagnetic wave of frequency ω falls normally on a flat
surface of a medium with ε = 1, μ = 1, λ = 0. Calculate the amplitude and
phase of the reflected wave relative to the incident wave and discuss the limiting
cases of good and poor conductors.

10. Find the reflection coefficients corresponding to a perpendicular/parallel polar-
ization with respect to the plane of incidence, if the angle of incidenceϕi is close
to the total reflection angle ϕl (ϕl − ϕi = δ � 1).



Chapter 5
Elements of Magnetofluid Dynamics

In the fourth decade of the 20th century appeared a new branch of physical sciences,
as a border discipline between the electromagnetic field theory, on the one side, and
the fluid mechanics, on the other, known as magnetofluid dynamics, or magnetohy-
drodynamics – MHD. By its object and applications, this discipline can be included
in the larger framework of plasma physics.

Plasma is conceived as a mixture of electrons, ions, photons, neutral atoms, and
molecules. The density of negative charges is close to that of the positive charges,
so that, on the whole, plasma is quasineutral. In some cases, the “electron gas” in
metals can be studied using methods of plasma physics.

If no external electric or/and magnetic field acts on the plasma, then it behaves
like an ordinary fluid (liquid, gas). In the presence of a field, the interaction with the
fluid leads to modifications of the dimensions and shape of the fluid.

There are two fundamental methods of study of plasma:

(a) Statistical method, which uses the statistical physics formalism, in particular the
kinetic theory of gases, Boltzmann and Fokker–Planck equations, etc.

(b) Magnetohydrodynamical method, which conceives plasma as a conducting, ion-
ized fluid, subject to the action of an external electromagnetic field. The equa-
tions describing the behaviour of such a model are fluid mechanics equations,
combined with the equations of the electromagnetic field.

The plasma state is somewhat uncommon on Earth, and can be found in some special
cases: aurora borealis, lightning, ball lightning, etc. On the contrary, in the Universe
the condensed state of matter is an exception and more than 99% of matter is in
plasma state.

The basic source of solar energy is given by thermonuclear fusion reactions of
light atoms (hydrogen, deuterium, tritium) at very high temperatures (106−108 K).
Under these physical circumstances, the matter is in a hot plasma state. Fundamental
research and advanced techniques are directed towards obtaining similar reactions in
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laboratory conditions. Over the years, starting with the 1950s, various devices have
been invented and built, like the stellarator, tokamak, magnetic traps, etc.

To continuously produce controlled thermonuclear reactions, it is necessary for
plasma to simultaneously satisfy three conditions: aminimum temperature (∼108 K),
aminimumconcentration (∼1015 nuclei/cm3), and aminimum timeof stability (frac-
tions of seconds). This triple criterion has already been fulfilled in laboratory con-
ditions and it is hoped that the need of energy of our civilization will be (at least)
partially covered through the achievements in hot plasma research.

Applications of plasma physics have been also developed in some other directions,
such as: construction ofmagnetohydrodynamical generators, plasma burners, plasma
chemistry, plasma deposition, plasma surface modification, etc.

In the following we shall present a summary of the most interesting phenomena
of plasma physics, in the framework of the magnetohydrodynamical approach.

5.1 Basic Equations of Magnetofluid Dynamics

The basis ofmagnetofluid dynamicswere established around 1930, by the astrophysi-
cists who were studying the origin of the solar and star energy. Initially, research was
directed towards investigating the solar magnetism, the origin of the solar spots,
stellar structure, as well as the magnetic storms accompanying the solar promi-
nences. In this respect, we quote the pioneeringwork of Joseph Larmor (1857–1942),
Thomas George Cowling (1906–1990), and Sydney Chapman (1888–1970). During
the 1930s began the laboratory research of phenomena that appear in a conducting
fluid submitted to the action of a magnetic field.

Magnetofluid dynamics became an independent science when the Swedish physi-
cist Hannes Olof Gösta Alfvén (1908–1995) settled the fundamental system of equa-
tions describing the behaviour of a magnetofluid in an external field. In 1970 he was
awarded the Nobel Prize in Physics for his work “on magnetohydrodynamics with
fruitful applications in different parts of plasma physics”.

We consider a model consisting of a conducting fluid, of conductivity λ, moving
with the velocity v in the external electromagnetic field (E, B). The mass density of
the fluid is ρ, the electric charge density is ρe, and the static pressure of the fluid is p.
We also assume that the displacement current ∂D/∂t is much smaller than j, which
is the sum of conduction and convection current densities. Maxwell’s equations are
then

∇ × E = − ∂B
∂t

,

∇ · B = 0,

∇ × B
μ

= j, (5.1)

∇ · D = ρe.
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To these equations we have to add Ohm’s law for a medium whose velocity is much
smaller than the speed of light (see (3.146)):

j = λE′ = λ(E + v × B). (5.2)

Using Maxwell’s equation (5.1)3 and Ohm’s law, we find

1

μ
∇ × (∇ × B) = ∇ × j = λ∇ × E + λ∇ × (v × B).

Using (5.1)1 in the above formula we obtain

∂B
∂t

= ∇ × (v × B) + νmΔB, (5.3)

where the quantity νm = (λμ)−1 is called the coefficient of magnetic viscosity. The
name comes from the similarity between Eq. (5.3) and the vortex equation of fluid
dynamics, where instead of B appears the vorticity

Ω = 1

2
(∇ × v) .

Equation (5.3) is the induction equation.
The equation of motion of the magnetofluid is obtained by adding the magnetic

force density
fem = ρe(E + v × B) � ρev × B = j × B,

to the equation of motion of a perfectly viscous, or Newtonian fluid, known from
fluid mechanics. Thus, the equation of motion of our model of magnetofluid is

ρa = ρF − ∇ p + (ξ + η)∇θ′ + ηΔv + j × B, (5.4)

where ρ is the mass density, ξ and η are the coefficients of dynamical viscosity, F is
the non-electromagnetic (e.g. the gravitational) force per unit mass, and θ′ = ∇ · v.

Another essential equation of the model is the equation of mass conservation,
written as the equation of continuity

∂ρ

∂t
+ ∇ · (ρv) = 0. (5.5)

Replacing ρ by ρe, one obtains the equation of charge conservation.
To these equations we have to add the energy equation. This equation says that

in the unit volume of fluid and per unit time, due to viscosity, thermal conductivity,
and Joule loss, the heat ρT ds/dt is dissipated, that is

http://dx.doi.org/10.1007/978-3-642-17381-3_3
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ρT

[
∂s

∂t
+ (v · ∇) s

]
= T ′

ik

∂vi
∂xk

+ ∇ · (κ ∇T ) + j · E, (5.6)

where s is the entropy per unit mass of fluid, κ is the thermal conductivity coefficient,
while T ′

ik is the viscous stress tensor, defined by

Tik = − p δik + T ′
ik,

where Tik is the stress tensor. In the case of homogeneous and isotropic fluids, T ′
ik

is given by
T ′
ik = ξ θ′ δik + 2η′ e′

ik,

where

e′
ik = 1

2

(
∂vk
∂xi

+ ∂vi
∂xk

)

is the velocity of deformation tensor.
Since the above equations are not enough to characterize the system from the

thermodynamic point of view, we have to add also the equation of state, usually
written as

f (p, ρ, T ) = 0. (5.7)

Equations (5.3)–(5.7), together with (5.1)4 form the fundamental system of
equations of magnetofluid dynamics. If the fluid is perfect and infinitely con-
ducting (perfect fluids have no shear stresses, viscosity, or heat conduction), then
ξ = η = 0,λ → ∞ (or νm → 0), and the motion is isentropic (s = const.); in other
words, there are no dissipative processes, and the fundamental system of equations
reduces to

∂B
∂t

= ∇ × (v × B),

ε∇ · E = ρe,

ρ a = ρF − ∇ p + j × B,

∂ρ

∂t
+ ∇ · (ρv) = 0, (5.8)

ds

dt
= 0,

f (p, ρ, T ) = 0.

Using this system of equations, we shall survey some of the most interesting
applications.
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5.2 Freezing-In of Magnetic Field Lines

Consider a perfect magnetofluid (λ → ∞), moving with the velocity v in the mag-
netic field B, and expand the r.h.s. of Eq. (5.8)1:

∂B
∂t

= −B∇ · v + (B · ∇)v − (v · ∇)B,

or
dB
dt

= −B∇ · v + (B · ∇)v. (5.9)

Multiplying (5.9) by 1/ρ and using the equation of continuity (5.5), we have

1

ρ

dB
dt

= B
ρ2

∂ρ

∂t
+ B

ρ2
v · ∇v +

(
B
ρ

· ∇
)
v

= B
ρ2

dρ

dt
+
(
B
ρ

· ∇
)
v,

or
d

dt

(
B
ρ

)
=
(
B
ρ

· ∇
)
v, (5.10)

which is very similar to Beltrami’s diffusion equation of fluid mechanics.
To extract the physical significance of Eq. (5.10), let us consider two current lines

Γ andΓ ′, so that all the fluid particles which are onΓ at the time t , will be situated on
Γ ′ at the time t + dt . Let δl be an element of Γ , and δl′ an element of Γ ′, composed
of the same number of particles as δl (Fig. 5.1). The conservation of the current lines
implies

δl′ − δl = d

dt
(δl) dt. (5.11)

Fig. 5.1 Geometrical
construction auxiliary to the
freezing-in of magnetic field
lines.
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If vA and vB are the displacement velocities of the points A and B belonging to Γ

(with respect to an orthogonal Cartesian frame), within the time interval dt , we can
write

δl′ = δl + vBdt − vAdt = δl + v(r + δl)dt − vAdt

= δl + [vA + (δl · ∇)vA + ...] − vAdt � δl + (δl · ∇)vAdt,

or
d

dt
(δl) � (δl · ∇)v. (5.12)

Comparing Eqs. (5.10) and (5.12) we realize that they have a similar form, mean-
ing that the time variation of the vectors δl andB/ρ obey the same law. Consequently,
the conservation of the current lines of the fluid implies the conservation of the lines
of the field B (in fact, of a vector collinear with B). This latter vector moves together
with the fluid, as if being “stuck” into the current lines. The phenomenon is known
as the freezing-in of magnetic field lines.

An alternative formulation of this conclusion is that the magnetic induction flux
Φm crossing a surface S(t) bounded by a closed contour composed by fluid particles
(material contour), is conserved. Indeed, recalling the theory developed in Sect. 3.12
on the electrodynamics of moving media, we have

dΦm

dt
= d

dt

∫

S
B · dS =

∫

S

[
∂B
∂t

− ∇ × (v × B)

]
· dS = 0,

meaning that Φm = ∫
S B · dS = const.

5.3 Magnetohydrodynamic Waves

According to the mechanics of continuous media, in a homogeneous medium (e.g.
air) the small perturbations propagate as compression waves called sound waves.
The speed of these waves is

vs =
[(

∂ p

∂ρ

)

S

]1/2
, (5.13)

where p is the mechanical pressure, ρ is the density of the medium, and the index S
shows that the derivative is taken at constant entropy (isentropic process).

http://dx.doi.org/10.1007/978-3-642-17381-3_3
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In case of a conducting medium, besides the mechanical pressure p there will
be present a magnetic pressure B2/2μ (see next section). Thus we expect to have
both sound waves, whose phase velocity is given by (5.13), and some specific waves
characteristic for conducting media, that propagate with the velocity (see further):

v ∼ B√
μρ

. (5.14)

To determine the nature and properties of these waves, we consider the model of
a compressible, homogeneous, conducting fluid, placed in a constant and uniform
magnetic field B0. We also suppose that we may neglect the energy dissipation by
Joule effect, viscosity, and thermal conductivity. In this case, (5.6) gives s = const.,
so that the process may be considered isentropic.

To study the propagation of small oscillations in such a medium, we use the
equations (see (5.8)):

∂B
∂t

− ∇ × (v × B) = 0,

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇ p − 1

μ
B × (∇ × B), (5.15)

∂ρ

∂t
+ ∇ · (ρv) = 0,

as well as the law of conservation of entropy (5.8)5, and the state equation (5.8)6.
Suppose that

B = B0 + B′(r, t),
ρ = ρ0 + ρ′(r, t), (5.16)

v = v′(r, t),

where B0, ρ0 are the equilibrium, constant quantities, while B′, ρ′ are small pertur-
bations from equilibrium. The equilibrium velocity is considered zero, and v′ is also
a small quantity, of the same order of magnitude as B′ and ρ′. Introducing (5.16) into
(5.15) and keeping only the first order quantities, we arrive at the following system
of linear partial differential equations

∂B′

∂t
− ∇ × (v′ × B0) = 0,

ρ0
∂v′

∂t
+ v2s∇ρ′ + 1

μ
B0 × (∇ × B′) = 0, (5.17)

∂ρ′

∂t
+ ρ0∇ · v′ = 0.
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We take now the time derivative of (5.17)2 and use the other two equations. Thus,
we find the following equation in v′:

ρ0
∂2v′

∂t2
− v2sρ0∇(∇ · v′) + 1

μ
B0 × {∇ × [∇ × (v′ × B0)]} = 0.

If one introduces the Alfvén velocity

vA = B0√
μρ0

, (5.18)

the last equation can also be written as

ρ0
∂2v′

∂t2
− v2s∇(∇ · v′) + vA × {∇ × [∇ × (v′ × vA)]} = 0. (5.19)

Suppose that v′ propagates as a plane wave of the form

v′(r, t) = v′
0 e

i(k·r−ωt). (5.20)

The last term of (5.19) then yields:

vA × {∇ × [− vA∇ · v′ + (vA · ∇)v′]}
= vA × {− [∇(∇ · v′)] × vA + (vA · ∇)∇ × v′}
= vA × {− [k(k · v′)] × vA + (vA · k)(k × v′)}
= v2Ak(k · v′) − (vA · k)(k · v′)vA − (vA · k)[(vA · v′)k − (vA · k)v′],

and from (5.19) we obtain

− ω2v′
0 + (v2s + v2A)(k · v′

0)k

+ (vA · k)[(vA · k)v′
0 − (vA · v′

0)k − (k · v′
0)vA] = 0. (5.21)

If vA ⊥ k, the last term (containing the square bracket) vanishes and one obtains
as solution for v′

0 a wave called longitudinal magnetoacoustic, whose phase velocity
is

ulong =
√
v2s + v2A. (5.22)

If vA ‖ k, Eq. (5.21) reduces to

(
v2Ak

2 − ω2
)
v′

0 +
(
v2s
v2A

− 1

)
k2(vA · v′

0)vA = 0. (5.23)
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In this case, two types of periodical motion are possible: an ordinary longitudinal
wave (v′

0 ‖ k, vA) with phase velocity vs , and a transversal wave, whose phase veloc-
ity is the Alfvén velocity vA. This Alfvén wave is a pure magnetodynamical phenom-
enon, that depends only on the magnetic field and the fluid density. Under laboratory
conditions we have vA � vs , irrespective of the intensity of the magnetic field; under
cosmic conditions, due to small densities, vA can reach considerable values. Let us
illustrate this point numerically: taking the density of the solar photosphere to be
ρ ∼ 2.2 × 10−4kg · m−3 and the solar magnetic field at the surface of the Sun about
2 × 10−4 T (it is much larger around the solar spots), we find vA = 12 km · s−1. For
comparison, the sound velocity in photosphere is ∼10 km · s−1.

The magnetic fields corresponding to the three types of wave defined above can
be determined from (5.17)1:

B′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k
ω
v′B0 , for k ⊥ B0,

0 , for k ‖ B0 (longit.),

− k
ω
v′B0 , for k ‖ B0 (transv.),

(5.24)

where we used the fact that vA and B0 are collinear. The magnetoacoustic wave,
moving orthogonally to v0, produces compressions and rarefactions of the magnetic
field lines, without changing their direction (Fig. 5.2a), while the Alfvén wave prop-
agates parallel to B0 and makes the field lines oscillate laterally, and back and forth
(Fig. 5.2b). In each case, since the magnetic viscosity is zero, the magnetic field lines
are “frozen” in the conducting fluid.

Fig. 5.2 The behaviour of: (a) the magnetoacoustic wave; (b) the Alfvèn wave.
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If we take into account the losses due to viscosity and Joule effect, the first two
equations (5.17) must be replaced by

∂B′

∂t
− ∇ × (v′ × B0) = 1

λμ
ΔB′,

ρ0
∂v′

∂t
+ v2s∇ρ′ + 1

μ
B0 × (∇ × B′) = ηΔv′. (5.25)

To analyze the change produced by adding the two dissipative terms, we assume that
B′ and v′ propagate as plane waves of the form (5.20). Thus, we have

∂B′

∂t
− 1

λμ
ΔB′ = − iω

(
1 + k2

ωλμ

)
B′ =

(
1 + ik2

ωλμ

)
∂B′

∂t
,

ρ0
∂v′

∂t
− ηΔv′ = ρ0

(
1 + ik2η

ωρ0

)
∂v′

∂t
.

Therefore, Eqs. (5.25) are equivalent to

∂B′

∂t
= 1(

1 + ik2
ωλμ

)∇ × (v′ × B0),

ρ0
∂v′

∂t
= − 1(

1 + ik2η
ωρ0

)
[
v2s∇ρ′ + 1

μ
B0 × (∇ × B′)

]
. (5.26)

Resuming the arguments leading to Eq. (5.21), but this time taking into account
the dissipative terms, we obtain a similar equation, where v2s is amplified by
(1 + ik2/ωλμ), and ω2 by (1 + ik2/ωλμ)(1 + ik2η/ωρ0).

Let us now apply this result to the case of the Alfvén wave. Taking v′ · vA = 0 in
(5.23), it follows that

k2v2A = ω2

(
1 + ik2η

ωρ0

)(
1 + ik2

λμω

)
. (5.27)

Assuming that the corrective terms due to electric resistivity and viscosity are small
enough to neglect their product, we have

k2v2A � ω2

[
1 + ik2

ω

(
η

ρ0
+ 1

λμ

)]
,
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which yields

k2 = ω2

v2A − iω
(

η
ρ0

+ 1
λμ

) =
ω2
[
v2A + iω

(
η
ρ0

+ 1
λμ

)]

v4A + ω2
(

η
ρ0

+ 1
λμ

)2

� ω2

v2A

[
1 + iω

v2A

(
η

ρ0
+ 1

λμ

)]
,

finally giving the dispersion relation for our case:

k � ω

vA
+ i

ω2

2v3A

(
η

ρ0
+ 1

λμ

)
. (5.28)

Since the wave number is complex, the wave is attenuated. The damping increases
with frequency, but decreases even faster with the magnetic field. If the dissipation
is considerable, that is, if

k2η

ωρ0
� 1,

k2

λμω
� 1,

then k2 in (5.27) becomes negative, meaning that the wave number is purely imagi-
nary, and the wave attenuates very rapidly, irrespective of the magnitude of B0.

5.4 Some Problems of Magnetohydrostatics

In the absence of external sources, the presence of a static magnetic field in a fluid
at rest is possible only if the fluid conductivity is infinite (see Sect. 5.2), otherwise
the magnetic energy would dissipate as Joule heat.

Magnetohydrostatics is the study of the equilibrium conditions of an infinitely
conducting fluid, under the action of (hydrostatic) pressure, as well as Lorentz and
gravitational forces. If the fluid is at rest (v = 0), the equation of motion (5.8)3
reduces to

− ∇ p + 1

μ
(∇ × B) × B + ρg = 0, (5.29)

where ρg is the gravitational force density. If the gravitational force is negligible as
compared to the other two forces, the state of equilibrium impliesB and j = 1

μ
∇ × B

orthogonal to ∇ p, which means that B and j are placed on the constant pressure
surface p = const.

In the following we shall present two applications of this formalism, one encoun-
tered in laboratory practice, and the other in astrophysics.
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5.4.1 Magnetic Thermal Insulation. The Pinch Effect

We consider again an ideal magnetofluid (no dissipative effects) at rest (v = 0).
Neglecting the gravitational forces, Eq. (5.29) gives

∇ p = 1

μ
(∇ × B) × B.

Since (see (A.46))

B × (∇ × B) = 1

2
∇B2 − (B · ∇)B,

we can write
∇
(
p + 1

2μ
B2

)
= 1

μ
(B · ∇)B. (5.30)

It follows that the dimension of the quantity pm = B2/2μ is that of a pressure; it is
called the magnetic pressure. In some simple geometric dispositions, like that of a
one-component field, the r.h.s. of (5.30) vanishes and we are left with

p + 1

2μ
B2 = const. (5.31)

Let us choose the magnetic field B on the Ox-axis. In this case ∇ · B = 0 leads to
∂B/∂x = 0, and

(B · ∇)B =
(
B

∂

∂x

)
(B i) = B

∂B

∂x
i = 0.

According to (5.31), any increase in mechanical pressure must be compensated by
a lowering of the magnetic pressure, and vice-versa. If the mechanical pressure
decreases close to zero in some region, the magnetic pressure has to increase very
much in that region if we want to confine the fluid. This is the principle of the
pinch effect: the confinement of a conducting fluid by its own plasma field, created
by electric currents inside the fluid. This effect is very important in thermonuclear
research, and we shall briefly discuss below this application.

Consider an infinite cylinder of our conducting medium, with its axis oriented
along the Oz-direction (see Fig. 5.3), and let jz = j (r) be the axial current density,
and Bθ = B(r) the azimuthal magnetic field created by j (r). Our problem is to find
a possible equilibrium state, in which the fluid is confined in a cylinder of radius R,
under the action of its own magnetic field B.

The geometry of the problem requires us towork in cylindrical coordinates r, θ, z.
Beforehand, we observe that, denoting by ur ,uθ,k the unit vectors of the cylindrical
frame directions, the r.h.s of (5.30) can be written as

(B · ∇)B =
(
Bθ

1

r

∂

∂θ

)
(Bθ uθ) = B2

r

duθ

dθ
= − B2

r
ur .
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Fig. 5.3 The column of
conducting fluid in
cylindrical coordinates.

Projecting (5.20) on the r -direction, one obtains

d

dr

(
p + B2

3μ

)
= − B2

μr
,

or
dp

dr
= − 1

2μr2
d

dr

(
r2B2

)
, (5.32)

with the solution

p(r) = p(0) − 1

2μ

∫ r

0

1

r2
d

dr

(
r2B2

)
dr, (5.33)

where p(0) is the pressure of the fluid for r = 0. If the fluid is confined inside the
cylindrical column r ≤ R, at the limit r = R the pressure p decreases to zero, so
that

p(0) = 1

2μ

∫ R

0

1

r2
d

dr

(
r2B2

)
dr, (5.34)

and (5.33) becomes

p(r) = 1

2μ

∫ R

r

1

r2
d

dr

(
r2B2

)
dr, (5.35)

The average pressure 〈p〉 inside the cylinder can be expressed in terms of the
current intensity traveling through the fluid. By definition,

〈p〉 =

R∫

0
r p(r)dr

R∫

0
rdr

= 2

R2

R∫

0

r p(r) dr.
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Integrating by parts and using (5.32), we find

〈p〉 = 2

R2

[
p
r2

2

∣∣∣∣
R

0

− 1

2

∫ R

0
r2 dp

]

= 1

2μR2

∫ R

0
d
(
r2B2

) = 1

2μ
B2
∣∣
r=R . (5.36)

But, according to the Biot–Savart–Laplace law, the field of magnetic induction gen-
erated by a current I passing through an infinite, rectilinear wire, at the distance r
from the cylinder axis, is B = μI/2πr , and we finally obtain

〈p〉 = μI 2

8π2R2
. (5.37)

One observes that, according to (5.36), the average pressure equals the pressure at
the surface of the cylinder of fluid.

In thermonuclear experiments one works with hot plasmas at temperatures of
about 108 K and densities of about 1015 particle/cm3. These figures correspond to
pressures p = nkT ∼ 14 atm.To confine such plasmas, if we assume B|R = 20 kGs,
one must have I ∼ (9 × 104 R)A, with R in cm.

To determine the radial variation of pressure, we assume that j (r) is a constant
for r < R. The field B at some point inside the plasma column is then

B(r) = μ I

2πR2
r, r < R.

With this relation, (5.35) gives

p(r) = μ I 2

4π2R2

(
1 − r2

R2

)
, (5.38)

indicating that the pressure depends parabolically on r .
The r -dependence of the pressure, magnetic induction, and current density is

shown in Fig. 5.4.

Fig. 5.4 The r -dependence
of the pressure, magnetic
field, and current density in
the pinch effect.
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5.4.2 Force-Free Fields

A special interest in astrophysical observations is presented by those magnetic fields
that do not produce any mechanical action on the conducting medium, i.e. those
characterized by

(∇ × B) × B = 0, (5.39)

which means
∇ × B = α(r)B. (5.40)

These fields are called force-free fields. For example, such a field is the relatively
strong magnetic field in a region where the pressure of the ionized fluid (plasma)
is very low, as above solar spots. Indeed, since the temperature above solar spots is
smaller than the temperature of the surrounding solar surface, according to p = nkT
it results that the pressure is also smaller.

To justify the equilibrium of the solar spots, we therefore have to explain why the
surrounding plasma cannot penetrate the spots. First, we shall prove that a force-free
field (with α = const.) represents, in a closed system, a state of minimum energy.
We begin by showing that the integral

I1 =
∫

V
A · B dτ =

∫

V
A · ∇ × A dτ , (5.41)

where V is a fixed volume, is a constant of motion (first integral) for the system of
equations (5.8). We have

d

dt

∫

V
A · ∇ × A dτ =

∫

V

∂A
∂t

· ∇ × A dτ +
∫

V
A · ∇ × ∂A

∂t
dτ .

But, according to (5.8)1,

∂

∂t
(∇ × A) = ∇ ×

(
∂A
∂t

)
= ∇ × [v × (∇ × A)],

or, by a convenient choice of the gauge,

∂A
∂t

= v × (∇ × A). (5.42)

This yields
∂A
∂t

· (∇ × A) = 0, (5.43)
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so that

d

dt

∫

V
A · ∇ × A dτ =

∫

V

∂A
∂t

· ∇ × A dτ +
∫

V
∇ ·

(
A × ∂A

∂t

)
dτ .

The first integral vanishes according to (5.43). The same happens with the second
integral due to the divergence theorem

∫

V
∇ ·

(
A × ∂A

∂t

)
dτ =

∮

S

(
A × ∂A

∂t

)
· dS = 0, (5.44)

because the system is closed, which means that the internal motion cannot affect
the vector potential outside the system, and, since A is supposed to be a continuous
function, the quantity ∂A/∂t must vanish on the boundary surface S.

Next, let us calculate the extremum of the magnetic energy

Wm = 1

2μ

∫

V
B2dτ , (5.45)

subject to the first integral (5.41). This is a constrained extremum problem which
can generally be formulated as follows: given a constraint equation of the form
g(x, y, z) = 0 and a function f (x, y, z), find the extremum values of f (x, y, z), with
the restriction that the point (x, y, z) must be a solution of the constraint equation
g(x, y, z) = 0. The problem can also be expressed this way: find the extremum of a
functional, if an integral has a given value.

To solve our constraint problem,wemultiply the constraint (5.41) by a Lagrangian
multiplier β and add it to (5.45). The result is the functional

Φ =
∫

V

[
1

2μ
(∇ × A)2 − βA · (∇ × A)

]
dτ . (5.46)

The necessary conditions of existence of an extremum for the functional (5.46) are
given by the Euler–Lagrange equations

∂ f

∂Ai
− ∂

∂xk

(
∂ f

∂Ai,k

)
− ∂

∂t

(
∂ f

∂Ai,t

)
= 0, (5.47)

where

f = 1

2μ
(∇ × A)2 − β A · (∇ × A) ,

Ai,k = ∂Ai

∂xk
,

Ai,t = ∂Ai

∂t
.
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Performing the derivatives, one finds

∂ f

∂Ai
= −β(∇ × A)i = −β Bi ,

∂ f

∂Ai,k
= 1

μ
εmki Bm − β εmki Am,

∂

∂xk

(
∂ f

∂Ai,k

)
= 1

μ
εmki Bm,k − β εmki Am,k = − 1

μ
(∇ × B)i + β Bi .

Replacing these results into (5.47) and denoting 2μβ ≡ α, we finally obtain

∇ × B = αB,

meaning that the magnetic energy has an extremum if the field B is force-free. (From
the physical point of view, this extremum can only be a minimum.) It follows, on
the one hand, that such a field is relatively stable against small perturbations, and on
the other, that a system where the magnetic forces are dominant and in which there
exists a mechanism of dissipation, the force-free fields (with α = const.) are final
natural configurations.

To conclude, if there are no Joule losses, but the motion can be damped due to
viscosity or some other causes, the most probable final states are those corresponding
to force-free fields.

5.5 Solved Problems

Problem 1. Using the representation of the electromagnetic field in terms of the gen-
eralized antipotentials M, ψ (see (3.143)), determine in the Lagrangian formalism
the equation of motion of a compressible, non-viscous, infinitely conducting fluid,
which performs an isentropic motion in the external electromagnetic field (E,B).

Solution. As we have seen, the electromagnetic field (E, B) can be expressed in
terms of the generalized antipotentials M, ψ as

E = 1

ε0
(∇ × M − P) ,

B = μ0

(
∇ψ + P × v + ∂M

∂t

)
. (5.48)

The quantities describing the behaviour of the fluid are connected by the equation
of continuity

dρ

dt
+ ρ∇ · v = 0, (5.49)

http://dx.doi.org/10.1007/978-3-642-17381-3_3
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as well as the fundamental equation of thermodynamics for quasistatic, reversible
processes (the entropy equation):

T ds = dε + pd

(
1

ρ

)
, (5.50)

where s is the entropy and ε is the internal energy, both taken for unit mass. Since
the motion of the fluid is isentropic,

ds

dt
= 0. (5.51)

To determine the equation of motion, one first needs to construct the Lagrangian
density. Recall that the choice of the Lagrangian function is not unique; therefore
a suitable Lagrangian density has to be simple, but contain all the characteristic
physical quantities. To construct a suitable Lagrangian, we shall use the method of
Lagrangian multipliers (see Sect. 5.4). In mathematical optimization, this method
provides a strategy for finding the extremum of a function subject to constraints. For
example, consider the variational problem:maximize/minimize f (x, y, z), subject to
the constraint g(x, y, z) = C . We then introduce a new variable λ, called Lagrangian
multiplier, and study the Lagrange function defined by

Λ(x, y, z,λ) = f (x, y, z) + λ (g(x, y, z) − C) ≡ f (x, y, z) + λg(x, y, z).

This method can be extend to more than one Lagrangian multiplier, depending on
the concrete problem. In our case, for example, Eqs. (5.49) and (5.51) play the role
of constrains, and our choice for the Lagrangian density is

L = 1

2μ0
B2 − 1

2
ε0E

2 + 1

2
ρv2 − ρε − α

(
dρ

dt
+ ρ∇ · v

)
− ρβ

ds

dt
. (5.52)

Here all quantities, including the Lagrangian multipliers α and β, are functions
of the space coordinates and time. Denoting, generically, the space-time coordi-
nates by xγ, γ = 1, 2, 3, 4, and the variational parameters by σi , i = 1, 2, . . . , 6, the
Euler–Lagrange equations read

(L)i ≡ ∂L
∂σi

− ∂

∂xγ

(
∂L

∂σi,γ

)
= 0, γ = 1, 2, 3, 4. (5.53)

Expressing the electromagnetic field (E, B) in terms of the antipotentials M, ψ,
and taking M,ψ, P, v, ρ, and s as variational parameters, one obtains



5.5 Solved Problems 317

(L)M = − ∂B
∂t

− ∇ × E = 0,

(L)ψ = ∇ · B = 0,

(L)P = E + v × B = 0,

(L)v = ρv + B × P + ρ∇α − βρ∇s = 0, (5.54)

(L)ρ = 1

2
v2 − ε − p

ρ
+ v∇α + ∂α

∂t
= 0,

(L)s = v · ∇β + ∂β

∂t
− T = 0.

Thus, we have found Maxwell’s source-free equations (5.54)1,2, as well as Ohm’s
law for infinite conductivity (5.54)3. Relation (5.54)4 is a generalization of the rep-
resentation of the velocity field v in terms of the Clebsch potentials which, in our
case, are α, β, and ρ.

To find the equation of motion of the magnetofluid, we eliminate the Lagrangian
multipliers α and β from the equations (5.54)4,5,6. Let us first take the gradient of
(5.54)5. Using (5.54)4, we have

∇(β v · ∇s) + ∇
(

∂α

∂t

)
− ∇

(
v2

2

)
= ∇

[
ε + p

ρ
+ 1

ρ
v · (B × P)

]
. (5.55)

Next, we use (5.51), (5.54)6, as well as the vector formula (see AppendixA):

∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · A)A,

and find

∂v
∂t

+ (v · ∇)v = −1

ρ
∇ p + ∂

∂t

(
1

ρ
B × P

)

+ v ×
[
∇ ×

(
1

ρ
B × P

)]
+ ∇

[
1

ρ
v · (P × B)

]
. (5.56)

As a last step, we take advantage of the vector identity

∇[A · (B × C)] = A × [∇ × (B × C)] + B × [∇ × (C × A)]
+ C × [∇ × (A × B)] − (A × B)∇ · C
− (B × C)∇ · A − (C × A)∇ · B,

and observe that some terms disappear in (5.56). Therefore, we arrive at the required
equation of motion

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇ p + j × B. (5.57)
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Problem 2. The equation of motion of an electronic plasma, in which the hydro-
static pressure is neglected, but the collisions between electrons are considered, is
written as

∂v
∂t

+ (v · ∇)v = e

m
(E + v × B) − ν v, (5.58)

where ν is the collision frequency. Show that in the presence of static, uniform
electric and magnetic fields (E, B), Ohm’s law is

ji = λik Ek, i, k = 1, 2, 3, (5.59)

where the conductivity tensor λik is given by

λik = ε0ω
2
p

ν
(
1 + 4ω2

B
ν2

)

⎛

⎝
1 2ωB

ν
0

− 2ωB
ν

1 0

0 0 1 + 4ω2
B

ν2

⎞

⎠ . (5.60)

Here ωp is the electronic plasma frequency, ωB – the Larmor precession frequency,
while B is oriented along the z-axis. It is assumed that ε ∼ ε0 and μ ∼ μ0.

Solution. Wemultiply (5.58) by the electric charge density ρe and use the relation
j = ρev, with the result

ρe
dv
dt

= eρe
m

E + e

m
j × B − ν j. (5.61)

To calculate the l.h.s. of (5.61) we use the equation ∇ × B = μ0 j = μ0ρev. In
view of the equation of continuity, and recalling that the magnetic field is static
(dB/dt = 0), we can write

dv
dt

= d

dt

(
1

μ0ρe
∇ × B

)
= 1

μ0

ρe∇ × dB
dt − dρe

dt ∇ × B

ρ2e
,

and

ρe
dv
dt

= 1

μ0
∇ × dB

dt
− ∇ × B

μ0

1

ρe

dρe

dt

= − ∇ × B
μ0

1

ρe

dρe

dt
= − j

1

ρe

dρe

dt
= j∇ · v.

In the linear approximation, we may take ρ0 � ρe0, where ρe0 = e n0 is the equilib-
rium electronic charge density. Then we may write

∇ · v = ∇ ·
(

1

μ0ρe
∇ × B

)
� ∇ ·

(
1

μ0 n0e
∇ × B

)
= 1

μ0 n0e
[∇ · (∇ × B)] = 0,
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and (5.61) becomes

ε0ω
2
pE + e

m
j × B − νj = 0, (5.62)

where ω2
p = n0e2

mε0
is the plasma frequency. Introducing the notation

ωB = eBz

2m
� eB0

2m

for the Larmor precession frequency, and recalling that B = (0, 0, B0), we project
on axes the vector equation (5.62) and obtain

ε0ω
2
pEx + 2ωB jy − ν jx = 0,

ε0ω
2
pEy + 2ωB jx − ν jy = 0, (5.63)

ε0ω
2
pEz − ν jz = 0.

Equation (5.63)3 gives

jz = ε0ω
2
p

ν
Ez,

which can also be cast into the form

jz = 0 · Ex + 0 · Ey + ε0ω
2
p

ν
Ez

= ε0ω
2
p

ν
(
1 + 4ω2

B
ν2

)
[
0 · Ex + 0 · Ey +

(
1 + 4ω2

B

ν2

)
Ez

]
. (5.64)

The first two equations (5.63) are used to find jx and jy . We have

jx = ε0νω2
pEx + 2ε0ωBω2

pEy

ν2 + 4ω2
B

,

or

jx = ε0ω
2
p

ν
(
1 + 4ω2

B
ν2

) Ex + ε0ω
2
p

ν
(
1 + 4ω2

B
ν2

) 2ωB

ν
Ey + 0 · Ez

= ε0ω
2
p

ν
(
1 + 4ω2

B
ν2

)
(
1 · Ex + 2ωB

ν
Ey + 0 · Ez

)
. (5.65)
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The component jy is found by means of (5.63)1 and (5.65):

jy = ν jx − ε0ω
2
pEx

2ωB
= − 4ω2

Bω2
pEx + 2νωBω2

pEy

ωB(ν2 + 4ω2
B)

ε0,

or

jy = −ε0
ω2

p

ν
(
1 + 4ω2

B
ν2

) 2ωB

ν
Ex + ε0ω

2
p

ν
(
1 + 4ω2

B
ν2

) Ey + 0 · Ez

= ε0ω
2
p

ν
(
1 + 4ω2

B
ν2

)
(

− 2ωB

ν
Ex + 1 · Ey + 0 · Ez

)
. (5.66)

Equations (5.64)–(5.66) can be unified as

ji = λik Ek,

where

λik = ε0ω
2
p

ν
(
1 + 4ω2

B
ν2

)

⎛

⎝
1 2ωB

ν
0

− 2ωB
ν

1 0

0 0 1 + 4ω2
B

ν2

⎞

⎠

is the electric conductivity tensor (5.60).
Problem 3. Resume the previous problem assuming that, in addition to the mag-

netic field B = (0, 0, B), at the time t = 0 is instantly applied an electric field
E = (E, 0, 0). If j = 0 at the time t = 0, determine the time dependence of the
current density components.

Solution. Suppose, first, that the convective term (v · ∇)v arising in the equation
of motion (5.58) is small as compared to the first term (linearized equation). The
components of the equation of motion (5.58) are then

∂vx
∂t

= eE

m
+ eB

m
vy − νvx ,

∂vy
∂t

= −eB

m
vx − νvy, (5.67)

∂vz
∂t

= −νvz .

Integrating Eq. (5.67)3, one obtains

vz = C1(x, y, z) e
−νt . (5.68)
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Taking the derivative with respect to time of (5.67)1 and using (5.67)2, we have

∂2vx
∂t2

= ω′
B

∂vy
∂t

− ν
∂vx
∂t

= −ω′
B
2vx − νω′

Bvy − ν
∂vx
∂t

= −ω′
B
2vx − ν

(
∂vx
∂t

+ νvx − eE

m

)
− ν

∂vx
∂t

,

where ω′
B = eB/m = 2(eB/2m) = 2ωB . Thus,

∂2vx
∂t2

+ 2ν
∂vx
∂t

+
(
ν2 + ω′

B
2
)
vx = νeE

m
. (5.69)

This is a linear inhomogeneous second order differential equation, with constant
coefficients. The general solution of this equation is the sum of the general solu-
tion of the corresponding homogeneous equation with a particular solution of the
inhomogeneous equation, which can be determined by the method of variation of
constants.

The homogeneous equation attached to Eq. (5.69) is

∂2vx
∂t2

+ 2ν
∂vx
∂t

+
(
ν2 + ω′

B
2
)
vx = 0.

Its characteristic equation

r2 + 2ν r + (ν2 + ω′
B
2
) = 0

has two complex conjugate solutions

r1,2 = − ν ± i ω′
B .

The general solution of the homogeneous equation therefore is

vx0 = C ′
2(x, y, z)e

−νt eiω
′
B t + C ′

3(x, y, z)e
−νt e− iω′

B t . (5.70)

Let vxp = Kp = const. be a particular solutionof the inhomogeneous equation (5.69).
Imposing on this solution to verify (5.69), we find

Kp = ν e E

m(ν2 + ω′
B
2
)
.

The general solution of (5.69) then is

vx = vx0 + vxp

= C ′
2(x, y, z)e

−νt eiω
′
B t + C ′

3(x, y, z)e
−νt e− iω′

B t + ν eE

m
(
ν2 + ω′

B
2
) ,
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or, in an alternative form,

vx = [
C2(x, y, z) sinω′

Bt + C3(x, y, z) cosω′
Bt
]
e− νt + ν e E

m
(
ν2 + ω′

B
2
) ,

(5.71)
with C2 = i(C ′

2 − C ′
3) and C3 = C ′

2 + C ′
3.

The component vy of the velocity results from (5.67)1:

vy = 1

ω′
B

∂vx
∂t

+ ν vx
ω′
B

− eE

mω′
B

(5.72)

= [
C2(x, y, z) cosω′

Bt − C3(x, y, z) sinω′
Bt
]
e− νt − eEω′

B

m(ν2 + ω′
B
2
)
.

Consider now the simplest case when C1, C2, and C3 are true constants. Using
again the approximation ρ0 � ρe0 = en0, the time dependence of the current density
components ji = ρevi , i = 1, 2, 3 is given by

jx = en0
[
C2 sinω′

Bt + C3 cosω′
Bt
]
e− νt + n0e2Eν

m
(
ν2 + ω′

B
2
) ,

jy = en0
[
C2 cosω′

Bt − C3 sinω′
Bt
]
e− νt − n0e2Eω′

B

m
(
ν2 + ω′

B
2
) , (5.73)

jz = en0C1 e
−νt .

The three constants Ci , i = 1, 2, 3 are determined using the initial conditions,
ji (t = 0) = 0, leading to three algebraic equations

0 = en0C1,

0 = en0C2 − n0e2Eω′
B

m
(
ν2 + ω′

B
2
) ,

0 = en0C3 + n0e2Eν

m
(
ν2 + ω′

B
2
) ,

with the solution

C1 = 0,

C2 = eEω′
B

m(ν2 + ω′
B
2
)
, (5.74)

C3 = − eEν

m
(
ν2 + ω′

B
2
) .
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Introducing (5.74) into (5.73), one finally obtains the time dependence of the current
density components:

jx = en0

⎡

⎣ eEω′
B

m
(
ν2 + ω′

B
2
) sinω′

Bt − eEν

m
(
ν2 + ω′

B
2
) cosω′

Bt

⎤

⎦ e−νt

+ n0νe2E

m
(
ν2 + ω′

B
2
) ,

jy = en0

⎡

⎣ eEω′
B

m
(
ν2 + ω′

B
2
) cosω′

Bt + eEν

m
(
ν2 + ω′

B
2
) sinω′

Bt

⎤

⎦ e−νt

− n0ω′
Be

2E

m(ν2 + ω′
B
2
)
,

jz = 0,

or, in a more condensed form,

jx = n0e2E

m
(
ν2 + ω′

B
2
)
[
ω′
B sinω′

Bt + ν(eνt − cosω′
Bt)
]
e− νt ,

jy = n0e2E

m
(
ν2 + ω′

B
2
)
[
ν sinω′

Bt − ω′
B(eνt − cosω′

Bt)
]
e− νt , (5.75)

jz = 0.

Problem 4. A plasma is placed in the static and homogeneous magnetic field B0.
(a) Assuming that the plasma is a rarefied electronic gas, determine the motion of

the electrons subject to a plane, monochromatic wave propagating in the direction
of B0, and find the corresponding dispersion relation.

(b) Determine the group velocity of the electromagnetic wave, and discuss the
particular case n − 1 � 1.

Solution
(a) Suppose that B0 is oriented along the z-axis. Since the electronic gas is rar-

efied, the plasma electrons can be considered as being free, so that the quasi-elastic
force between electrons and nuclei may be neglected. In addition, we also neglect
the damping force, due to the field produced by the electrons, as well as the elec-
tric component of the Lorentz force as compared to the magnetic component. The
equation of motion of an electron of plasma then is

m
d2r
dt2

= eE + e
dr
dt

× B0, (5.76)
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where E is the electric component of the electromagnetic wave propagating through
plasma, and B0 the external magnetic field in which the plasma is placed. Expanding
the cross product in (5.76), we have

m
d2r
dt2

= eE + eẏB0i − eẋ B0j, (5.77)

with i, j,k being the unit vectors of the coordinate axes. Since there are no z-
components of E and v × B0, we next consider only the x- and y-components of the
equation of motion, which are

ẍ = e

m
Ex + eB0

m
ẏ,

ÿ = e

m
Ey − eB0

m
ẋ . (5.78)

Let us now make the change of variables

u = x + iy,

E = Ex + i Ey . (5.79)

Multiplying (5.78)2 by the imaginary unit i and adding it to (5.78)1, one obtains

ü + iω0u̇ = e

m
E, where ω0 = eB0

m
. (5.80)

On the other hand, as stated in the problem, the direction of propagation of the plane
monochromatic wave and the direction of B0 coincide. Since the electromagnetic
wave is transversal, the electric component E of the wave lies in a plane orthogonal
to the direction of propagation which, in our case, is the xOy-plane, so that Ez = 0.
Recalling that Bz = B0 = const., the x- and y-projections of Maxwell’s equations

∇ × E = −∂B
∂t

,

∇ × B = μ0j + 1

c2
∂E
∂t

,

become

− ∂Ey

∂z
= − ∂Bx

∂t
,

∂Ex

∂z
= −∂By

∂t
, (5.81)

− ∂By

∂z
= μ0 jx + 1

c2
∂Ex

∂t
,

∂Bx

∂z
= μ0 jy + 1

c2
∂Ey

∂t
. (5.82)
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We now use again the change of variables (5.79) and, in addition, denote

B ≡ Bx + i By,

J ≡ jx + i jy = Neẋ + i Neẏ = Ne(ẋ + i ẏ) = Neu̇,

N being the density of the plasma electrons. Since the plasma is rarefied, the electrons
may be considered as free particles. A convenient multiplication by the imaginary
unit i of (5.81)2 and (5.82)2, then addition to (5.81)1 and (5.82)1, give

i
∂E
∂z

= − ∂B
∂t

, i
∂B
∂z

= μ0J + 1

c2
∂E
∂t

.

Thus, we arrive at the following system of three coupled differential equations for
the variables u, E , and B:

ü + iω0u̇ = e

m
E,

∂E
∂z

− i
∂B
∂t

= 0, (5.83)

∂B
∂z

+ i

c2
∂E
∂t

= −iμ0Neu̇.

Having in view the formulation of the problem, we search the unknown quanti-
ties u, E , and B as plane waves of the same frequency and the same wave number
(monochromatic waves), all propagating in the z-direction (direction of B0):

u = U e±i(kz−ωt),

E = V e±i(kz−ωt), (5.84)

B = W e±i(kz−ωt).

Then, the three equations (5.83) lead to

−ω2U + iω0(∓iωU ) = e

m
V,

±ikV ∓ ωW = 0,

±ikW + i

c2
(∓iωV ) = −iμ0Ne(∓iωU ),

or, in a more organized form,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−ω2 ± ωω0
)
U − e

m V +0 · W = 0

0 ·U +ikV −ωW = 0

μ0NeωU + ω
c2 V +ikW = 0.

(5.85)
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In order to obtain non-trivial solutions of (5.85), one must have

∣∣∣∣∣∣

−ω2 ± ωω0 − e
m 0

0 ik −ω
μ0Neω ω

c2 ik

∣∣∣∣∣∣
= 0,

that is (
1 − k2c2

ω2

) (
ω2 ∓ ω ω0

) = Ne2

ε0m
.

This yields

k2c2

ω2

(
= c2

v2ph
= n2

)
= 1 −

Ne2

mε0

ω2 ∓ ωω0
,

and, finally,

n2 = 1 − ω2
p

ω2 ∓ ωω0
, (5.86)

where vph = ω/k is the phase velocity of the wave, and ω2
p = Ne2

mε0
is the squared

plasma frequency.
To find the equation of motion of the electrons, one must determine u. Taking the

ratio of (5.84)1 and (5.84)2, we have

u = U

V
E =

e
m

−ω2 ± ωω0
E = − eE

mω(ω ∓ ω0)
. (5.87)

Recalling that u = x + iy, E = Ex + i Ey , and separating the real and imaginary
parts, we arrive at

x = − eEx

mω(ω ∓ ω0)
,

y = − eEx

mω(ω ∓ ω0)
,

or, in the vector form,

r = − e

m

E

ω2 ∓ ω eB0
m

. (5.88)

Observation:
If B0 = 0, the relations (5.86) and (5.88) lead to

εr (� n2) = 1 − ω2
p

ω2
(μr ∼ 1), r = − eE

mω2
,

as expected.
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(b) According to the definition of the group velocity, vg = dω/dk, we can write

1

vg
= dk

dω
= d

dω

(nω

c

)
= n

c
+ ω

c

dn

dω
. (5.89)

Since the density N of electrons (in fact, of the polarized atoms) is small by hypoth-
esis, we may approximate (see (5.86)):

n =
√

1 − ω2
p

ω(ω ∓ ω0)
� 1 − ω2

p

2ω(ω ∓ ω0)
,

so that
dn

dω
= ω2

p

2

2ω ∓ ω0

ω2(ω ∓ ω0)2
,

and (5.89) gives

1

vg
= 1

c

[
1 − ω2

p

2ω(ω ∓ ω0)

]

+ ωω2
p

2c

2ω ∓ ω0

ω2(ω ∓ ω0)2
= 1

c

[
1 + ω2

p

2(ω ∓ ω0)2

]
,

which finally leads to

vg = c
1

1 + 1
2

(
ωp

ω∓ω0

)2 < c. (5.90)

Problem 5. A viscous, homogeneous, and incompressible conducting fluid is
placed between the conducting planes z = 0 and z = d. The plane z = dmoves along
the x-axis with a constant velocity v0. If along the z-axis acts a uniform magnetic
field H0, and along the y-axis a uniform electric field E0, determine the velocity
distribution in the fluid undergoing a stationary motion.

Solution. The equation of motion of a viscous, conducting fluid (see (5.4)) is

ρa = ρF − ∇ p + (ξ + η)∇θ′ + ηΔv + j × B, (5.91)

where ρ is the mass density of the fluid, a = ∂v/∂t + (v · ∇)v is the acceleration of
a fluid particle, F is the density of the force of non-electromagnetic nature (force per
unit mass), and θ′ = ∇ · v.

Since the fluid is homogeneous and incompressible, which means ρ(r, t) =
const., the equation of continuity leads to θ′ = ∇ · v = 0. Neglecting the
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gravitational force, which is very weak as compared to the electromagnetic terms,
and recalling that the motion is stationary, the equation of motion (5.91) becomes

∇ p = ηΔv + j × B. (5.92)

To write the components of (5.92), let us first consider the last term. The compo-
nents of j, according to Ohm’s law j = λE′, are

jx = λEx + λ(vy Bz − vz By) = 0,

jy = λEy + λ(vz Bx − vx Bz) = λE0 − μ0λvx (z)H0,

jz = λEz + λ(vx By − vy Bx ) = 0.

Here we considered the fact that the fluid is moving along the x-axis, and its velocity,
at any point, depends only on the position of that point between the two planes, given
by the coordinate z: v = vx (z)ux . We have

(j × B)x = jy Bz − jz By = jy B0 = μ0λH0[E0 − μ0vx (z)H0],
(j × B)y = jz Bx − jx Bz = 0,

(j × B)z = jx By − jy Bx = −μ0λHx [E0 − μ0vx (z)H0].

Projecting (5.92) on axes, one then obtains

∂ p

∂x
= η

∂2vx
∂z2

+ μ0λH0(E0 − μ0vx H0),

∂ p

∂y
= 0, (5.93)

∂ p

∂z
= −μ0λHx (E0 − μ0vx H0).

Due to the geometry of the problem, there is no pressure gradient along the x-axis.
In addition, since vx = vx (z), we have ∂2vx/∂z2 = d2vz/dz2, and (5.94)1 yields

d2vx
dz2

− 1

d2
0

vx = − 1

d2
0

E0

μ0H0
, where

1

d2
0

= λμ2
0H

2
0

η
. (5.94)

This is an ordinary second-order inhomogeneous differential equation, with con-
stant coefficients. Again we shall write the general solution of (5.94) as the sum of
the general solution of the homogeneous equation and a particular solution of the
inhomogeneous equation. The general solution of the homogeneous equation is

v0x (z) = V1e
z/d0 + V2e

−z/d0 ,
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or, in an alternative form,

v0x (z) = W1 sinh
z

d0
+ W2 cosh

z

d0
. (5.95)

Here V1, V2, and W1,W2 are constants of integration. A particular solution of the
inhomogeneous equation is of the form vpx = W3, where W3 is a real, non-zero
constant. One easily finds

W3 = E0

μ0H0
. (5.96)

The general solution of (5.94) therefore is

vx (z) = v0x (z) + vpx = W1 sinh
z

d0
+ W2 cosh

z

d0
+ E0

μ0H0
. (5.97)

The arbitrary constants of integration W1,W2 are obtained using the boundary con-
ditions: vx (z = 0) = 0, vx (z = d) = v0. Thus,

vx (0) = W2 + E0

μ0H0
= 0,

vx (d) = W1 sinh
d

d0
+ W2 cosh

d

d0
+ E0

μ0H0
= v0.

Solving this system of algebraic equations, one finds

W1 =
v0 − E0

μ0H0

(
1 − cosh d

d0

)

sinh d
d0

,

W2 = − E0

μ0H0
. (5.98)

Now, we are able to write the solution of (5.94) as

vx (z) =
v0 − E0

μ0H0

(
1 − cosh d

d0

)

sinh d
d0

sinh
z

d0
− E0

μ0H0
cosh

z

d0
+ E0

μ0H0

= v0
sinh d

d0

sinh
z

d0
+ E0

μ0H0

⎡

⎣1 − cosh
z

d0
−
(
1 − cosh d

d0

)

sinh d
d0

sinh
z

d0

⎤

⎦

= v0
sinh d

d0

sinh
z

d0
+ E0

μ0H0

×
⎡

⎣1 −
(
sinh d

d0
cosh z

d0
− sinh z

d0
cosh d

d0

)
+ sinh z

d0

sinh d
d0

⎤

⎦ .
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Using the trigonometric formula

sinh(x − y) = sinh x cosh y − sinh y cosh x,

we finally obtain the velocity distribution as

vx (z) = v0
sinh z

d0

sinh d
d0

+ E0

μ0H0

[
1 − sinh d−z

d0
+ sinh z

d0

sinh d
d0

]
. (5.99)

For weak magnetic fields, i.e. d � d0 =
√

η
λ

1
μ0H0

, one can use the series expansion

sinh x = x

1! + x3

3! + · · · + x2n+1

(2n + 1)! + · · · ,

and retain only the first term. The result is

vx (z) = v0
z

d
. (5.100)

This means that, if the magnetic field is weak, the velocity increases linearly with
the distance between the two planes, being 0 at z = 0 and v0 at z = d.

If, on the contrary, the magnetic field is strong, which means d � d0 =
√

η
λ

1
μ0H0

,

we may approximate

sinh z
d0

sinh d
d0

� 0,

sinh d−z
d0

sinh d
d0

= e
d−z
d0 − e

z−d
d0

e
d
d0 − e− d

d0

= e− z
d0 − e− 2d−z

d0

1 − e− 2d
d0

� e− z
d0 ,

and in this case (5.99) leads to the exponential variation of the velocity with distance,

vx (z) = E0

μ0H0

(
1 − e− z

d0

)
= E0

μ0H0

(
1 − e− μ0H0

√
λ√

η z
)

. (5.101)

5.6 Proposed Problems

1. Show that the expression I2 = ∫
V v · B dτ , where V is a fixed volume occupied

by an ideal magnetofluid, is also a first integral of the system of equations (5.8).
2. Show that the equation of motion of a viscous magnetofluid (5.4), assuming that

F = 0, can also be written as a momentum conservation equation
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∂

∂t
(ρ vi ) = − ∂Πik

∂xk
, i, k = 1, 2, 3,

where

Πik = ρ vi vk + p δik + 1

2
(H · B)δik − Hi Bk − σ′

ik

is the stress tensor of the system composed of fluid and field, and σ′
ik is a term

representing the viscosity.
3. Given a plasma composed of elastically coupled charged particles, with different

elastic constants for mutually orthogonal directions, find the electric permittivity
tensor of the medium. The particle density is N .

4. A plane electromagnetic wave given by E = E0ei(kx−ωt),B = B0ei(kx−ωt) prop-
agates in a neutral plasma (metal, ionosphere). The following forces are consid-
ered to act on the electrons (of density N and charge − e):
(i) the electric force: − eE;
(i i) the friction force: − (m/τ )v, where τ is the average time between two col-
lisions of electrons and ions;
(i i i) the quasi-elastic force: −mω2

0r.
Find the dispersion relation n = n(ω).

5. Consider a magnetofluid moving orthogonal to a magnetic field B. As a result
of the fluid motion, the magnetic lines of force will become deformed. Find the
variation of magnetic energy in such a process and show that the deformation of
the magnetic lines corresponds to strengthening of the magnetic field.

6. Using the representation of the electromagnetic field in terms of the general-
ized antipotentials M, ψ (see (3.143)), write the Hamiltonian density H and
determine the equation of motion of a compressible, non-viscous, infinitely long
conducting fluid, undergoing an isentropic motion in the external electromag-
netic field (E,B). Hamilton’s canonical equations for continuous systems (fields)
are

q̇i = ∂H
∂ pi

,

ṗi = − ∂H
∂qi

+ ∂

∂xk

(
∂H
∂qi,k

)
,

where qi stand for the generalized coordinates, and pi for the associated gener-
alized momenta.

7. Using the Clebsch representation for all vector fields (E,B, v,A), and taking
the Clebsch potentials as independent variational parameters, find the system of
equations governing the behaviour of an ideal magnetofluid.
(Hint: According to Clebsch’s theorem, for any vector field A is possible to find
three scalar quantities ξ, η, and ζ, functions of coordinates and time, so as to
have A = −∇ξ + η∇ζ.)

http://dx.doi.org/10.1007/978-3-642-17381-3_3
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8. According to Noether’s theorem, to each infinitesimal symmetry transformation
corresponds a conservation equation. This equation can be written as

∂

∂t

∫

V
γdτ = −

∮

S
G · dS,

where

γ =
[
L − ∂L

∂ϕ(s)
,t

ϕ(s)
,t

]
δt − ∂L

∂ϕ(s)
,t

(δx · ∇)ϕ(s) + ∂L
∂ϕ(s)

,t

δϕ(s) + δΩt ,

G = −∂L
∂(∇ϕ(s))

ϕ(s)
,t δt +

[
Lδx − ∂L

∂(∇ϕ(s))
(δx · ∇)ϕ(s)

]

+ ∂L
∂(∇ϕ(s))

δϕ(s) + δΩ.

Find an appropriate Lagrangian density L (xα, ϕ(s), ϕ(s)
,α

)
, α = 1, 2, 3, 4 and

show that the equation of conservation associatedwith the infinitesimal displace-
ment of the time origin t → t ′ = t + δt (δt = const.) is the equation of conserva-
tion of energy of an ideal magnetofluid. Here x1 = x, x2 = y, x3 = z, x4 = t.

9. Resume the preceding application and show that the equation of conservation
associated with the infinitesimal displacement of the origin of axes
x → x′ = x + δx (δx = const.) is the momentum conservation equation of the
system composed of fluid and field.

10. Consider a fully ionized plasma. If τ is the time corresponding to the mean
free path of electrons, m is the electron mass, ve – its velocity, and only E is
present, the friction force mveτ−1 is compensated by the electric field force
mveτ−1 = − eE, which gives the current density

j = − N e ve = − Ne2τ

m
E = λE.

If both E and B act upon electrons, Ohm’s law is written as

j = λE − Ne2τ

m
v × B = λE − eτ

m
j × B = λE − α (j × B).

Study the relation between the vector quantities j, E, and B in two cases: E ‖ B
and E ⊥ B.



Part II
Relativistic Formulation

of Electrodynamics



Theory of relativity is a discovery, not an invention



Chapter 6
Special Theory of Relativity

6.1 Experimental Basis of Special Relativity

At the end of the 19th century and the beginning of the 20th century, in physics
appeared some revolutionary discoveries: in 1895 Wilhelm Conrad Röntgen (1845–
1923) (Nobel Prize 1901) discovered the X-rays; in 1896 Henri Antoine Becquerel
(1853–1908) discovered natural radioactivity; in 1897 Joseph John Thomson (1856–
1940) (Nobel Prize 1906) discovered the electron; in 1900Max Planck (1858–1947)
(Nobel Prize 1918) postulated the idea that the energy emitted by a black body could
only take on discrete values; in 1905 Albert Einstein (1879–1955) (Nobel Prize
1921) elaborated the special theory of relativity. These discoveries marked genuine
turning points that shook classical physics andmarked out the fundamental directions
of further development of physics: quantum theory, theory of elementary particles,
special and general theory of relativity, etc.

The inception of the theory of relativity is closely intertwined with the devel-
opment of electrodynamics of moving media, as well as the attempts to solve the
so-called “æther problem”. For centuries, scientists like Newton, Maxwell, Hertz,
used as an absolute frame of reference a transparent, perfectly elastic, invisible and
imponderablemedium, calledæther. This concept played a crucial role in the appear-
ance and development of the theory of relativity.

Once postulated, the existence of æther gave rise to a very natural question: is
the æther dragged by bodies in motion, or is it not? For example, does the Earth in
its orbital motion drag with it the æther? In other words, is there a “wind” of æther?
And, still, if this dragging exists, is it total, or partial? Here are the answers to this
question, given by three prominent physicists:

– Augustin-Jean Fresnel (1788–1827) proved (theoretically) that the æther is
partially dragged by the moving bodies;

– Hendrik Antoon Lorentz (1853–1928) considered the æther as being immobile;
– George Gabriel Stokes (1819–1903), on the contrary, conceived the æther as

completely dragged by media in motion.
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Fresnel’s theory, elaborated in 1818, even if it is the first in chronological order,
contains the other two theories as particular cases. In 1817, Fresnel had introduced
the transverse wave theory of light which could account for all the known phenomena
of optics; consequently he conceived the æther as solid-like and rigid, yet allowing
the free passage of heavenly bodies. In Fresnel’s theory, the æther flowed through
the interstices of material bodies even on the smallest scale; but he did allow for
matter to have a small dragging effect on the aether. Let us follow Fresnel’s ideas
regarding the æther.

Let u be the phase velocity of a transversal (e.g. light) wave, propagating in an
infinite, elastic, homogeneous, and isotropic medium. The theory of elasticity shows
that the velocity u is related to the density ρ of the medium through the formula
u = √

μ/ρ, where μ is the coefficient of elasticity. For vacuum we should have
c = √

μ/ρ0. Fresnel considered ρ as also being the density of æther in the medium,
while ρ0 was the density ofæther in vacuum. Since the refractive index of themedium
is n = c/u = √

ρ/ρ0 > 1, it follows that ρ > ρ0.
Denote by V the velocity of a body with respect to the æther, supposed to be

fixed. Then V is also the velocity of the æther that penetrates the body. Since no
accumulations of the æther in the body are allowed (the opposite situation would
lead to changes in optical properties), the mass of the æther entering the body with
velocity V has to be equal to that leaving the body with velocity V ′, at any moment:
ρV ′ = ρ0V . Since ρ0 < ρ, it follows that V ′ < V . We also have n2 = ρ/ρ0 = V/V ′,
so that the æther is dragged along the direction of motion of the body with the
velocity vd = V − V ′ = V

(
1 − 1

n2

)
. This means that a stationary external observer

determines the velocity

u′ = c

n
± vd = c

n
± V

(
1 − 1

n2

)
, (6.1)

where the + sign stands for the case when the light and the body move in the same
direction, and the − sign when they move in opposite direction. Fresnel’s formula
(6.1) shows that in case of water, for example, the drag coefficient of the æther by
water is k = 1 − 1/n2 = 0.437.

One also observes that if the æther is undragged, the speed of light in the medium
would be u1 = c

n , while if it is completely dragged, the speed of light would be
u2 = c

n + V . Consequently, according to (6.1), we have u1 < u′ < u2.
Obviously, the “æther problem” could have been solved only by the experiment.

But, in its turn, the experiment could not offer a unique solution. Indeed, some famous
experiments performed especially during the second half of the 19th century, came
to certify various assumptions regarding theæther dragging. (It is important to notice
the fact that all these theories were concerned with the æther drag, but none of them
was questioning the existence of æther itself).

Let us approach, in chronological order, some of the most prominent effects and
experiments, and show how they were explained on the basis of the existence of the
hypothetical æther.
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6.1.1 Aberration of Light

The phenomenon of aberration of light, also referred to as astronomical aberration
or stellar aberration, was discovered by James Bradley (1693–1762) in 1727. For
an observer connected to the Earth, the celestial objects seem to perform an apparent
motion about their real locations. Bradley explained the phenomenon as a result of
the finite speed of light and the motion of Earth on its orbit around the Sun. The
stellar aberration should not be confused with stellar parallax, or with the refraction
of light when passing through terrestrial atmosphere.

Let S A be the real direction of propagation of light coming from the star S, and
O P the direction of motion of the Earth (observer). To make the explanation easier,
we consider that the two directions are orthogonal (see Fig. 6.1).

The star light propagates on the direction S A. If the Earth were stationary, the
telescope should be placed along S A in order to have the star at the centre of the
field. However, the Earth is in motion, and while the star light travels to the Earth
with the speed c, the Earth itself moves on its orbit with the speed V . As a result,
due to the displacement of the Earth, to see the star the observer must incline the
telescope in the direction of motion of the Earth, until O coincides with O ′ (the eye
of the observer). The star is observed at the position S′. The angle α between the
optical axis of the telescope and the direction of the light ray is called aberration
angle.

As shown in Fig. 6.1, the time for the light ray to pass from A to O ′ equals the
time for the Earth to cover the distance O O ′ with velocity V , so that AO ′

c = O O ′
V .

Since AO ′ = AO sin θ and O O ′ = AO sinα, it follows that

sinα = V

c
sin θ. (6.2)

Fig. 6.1 Aberration of light (with exaggerated aberration angle).
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The maximum of aberration is produced when the star is situated at its zenith (the
position of the star on the vertical direction opposite to the net gravitational force at
the location of the observer), in which case θ � π

2 . Since the aberration angle is very
small, we may write

sinα � α = V

c
. (6.3)

The velocity of the Earth on its elliptical orbit around the Sun is V = 30 km · s−1,
which gives α � 10−4 rad = 20 arc seconds. As a result, the star seems to describe,
over the course of a year, an elliptic orbit. This phenomenon is encountered for any
“fixed” star.

If the instrument (telescope) is filled up with water, according to the theory the
aberration angle will be different (say, β). According to the refraction law,

n = sin β

sinα′ � β

α′ ,

or, by means of (6.2) with u instead of c,

β = n α′ = n
V

u
sinϕ = n2 V

c
sinϕ = n2α. (6.4)

But the experiment invalidates this theoretical result. In 1871, the British
astronomer George Biddell Airy (1801–1892) proved that the aberration does not
depend on the refracting medium (water), i.e. β = α. This results led to the conclu-
sion that the medium (water, in this case), being at rest with respect to the Earth,
does not drag the æther.

6.1.2 Doppler Effect

This effect, also called Doppler shift, is named after the Austrian physicist Christian
Andreas Doppler (1803–1853), who discovered it in 1842. It consists in the variation
of the frequency of a signal (acoustic, luminous, etc.), emitted by a source S and
detected by an observer O (see Fig. 6.2), when the source and the observer are in
relative motion with respect to each other. Let ν be the frequency of the signal
emitted by the source, ν ′ the frequency detected by the observer, Vs the velocity of
the source, V0 the velocity of the observer, c the velocity of the signal (all velocities
are determined relative to the medium), θs the angle between the direction of motion
of the source and SO , and θ0 the angle between the direction ofmotion of the observer
and O S (Fig. 6.2).
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Fig. 6.2 Doppler effect: a
particular example of
observer–source relative
motion.

One can distinguish three situations:
1) S – stationary, O – mobile. In this case

ν ′ = ν

(
1 ± V0

c
cos θ0

)
, (6.5)

where the “+” sign is taken when the observer is approaching the source, and “−”
when the observer is moving away from the source.

2) O – stationary, S – mobile. In this situation

ν ′ = ν

1 ∓ Vs
c cos θs

. (6.6)

Here “+” corresponds to the situation when the source is moving towards the
observer, and “−” when the source is receding from the observer. If Vs � c, one
can expand in series (6.6) to obtain

ν ′ = ν

(
1 ± Vs

c
cos θs∓ . . .

)
� ν

(
1 ± Vs

c
cos θs

)
,

and we find the result of the previous case.
3) Both S and O are mobile. The relation between frequencies is

ν ′ = ν
1 + V0

c cos θ0

1 − Vs
c cos θs

, (6.7)

where θ0 and θs are the angles, at a certain moment, between the directions of motion
of the source and the observer, respectively, with the straight line connecting them.

We note that the frequency detected by the observer does not depend on the
relative motion source–observer (as it should, according to the principle of classic
relativity), but depends on the absolute motion relative to the æther (or the medium,
which is the same thing). Since the medium is considered to be fixed, it follows that
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the Doppler effect, together with the aberration of light, proves the hypothesis of
totally undragged æther.

6.1.3 Fizeau’s Experiment

In 1851, the French physicist Hippolyte Fizeau (1819–1896) carried out the exper-
iment schematically represented in Fig. 6.3, designed to verify formula (6.1) and
Fresnel’s theory regarding the effect of the motion of a dispersive medium on the
speed of light passing through the medium.

The tube C is filled up with water. The light coming from the source S falls on
a semitransparent mirror which acts as a beam splitter and is afterwards collimated
by the lens L1. The screen E helps to separate the light into two beams which are
reflected on the mirror M and subsequently reunited, so that in Q are produced
interference fringes, detectable by an interferometer.

When water is moving in the tube, one beam travels against the flow of water
(light is “dragged backwards”), while the other beam travels in the same direction as
the water (light is “dragged forward”). The interference fringes suffer a displacement
and the drag coefficient of the æther can be determined. Fizeau found k = 0.460,
in good agreement with Fresnel’s theoretical value. Later, Michelson and Morley in
1886, then Zeeman in 1915, resumed the experiment and showed that there is an
almost perfect agreement between the experimental data and Fresnel’s hypothesis of
partial æther drag.

Fig. 6.3 Fizeau’s experiment – schematic representation.
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6.1.4 Michelson–Morley Experiment

Acrucialmoment in the evolution of the ideas regarding theætherwas the experiment
imagined and carried out in 1887 by Albert Abraham Michelson (1852–1931) and
Edward Williams Morley (1838–1923).

Since the Fizeau experiment, whichMichelson andMorley had refined, seemed to
prove the existence of the undraggedæther, the two collaborators decided to conceive
an experiment sufficiently accurate to detect the “æther wind”. The device they used
in the experiment was an interferometer, which Michelson had invented earlier and
which is schematically represented in Fig. 6.4. Here S is a coherent light source, L –
a semi-silvered mirror used as a beam splitter, M1 and M2 – two plane mirrors, D – a
detector for interference fringes, while the direction SO coincides with the direction
of motion of the Earth. The velocity of the Earth through the æther is denoted by
V. Consequently, a wind of æther with the velocity −V should be detected by an
observer at rest with respect to the Earth. The arms of the device were of about
l = 1.2m (but, as later shown, this detail is not essential).

Let us calculate the time intervals t ′ and t ′′ for the light rays to cover the paths
O M2O and O M1O . According to the theory of æther that Michelson and Morley
were attempting to prove, the speed of light is c with respect to the æther itself. We
denote by t1 the time necessary for the light beam to travel in the longitudinal arm
from O to M2, and by t2 the time for coming back. The Earth is moving with respect
to the æther with the velocityV. When the light travels from O to M2, it goes against
the wind of æther, therefore one expects its speed with respect to Earth to be c − V .
When the light travels backwards, with the wind of æther, its expected speed would
be c + V . Thus, we may write

l = (c − V )t1, l = (c + V )t2,

Fig. 6.4 Schematic representation of the Michelson–Morley interferometer.
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Fig. 6.5 The scheme of the
geometric path L M1L ′ of the
light beam, with respect to
the æther.

which gives

t1 = l

c − V
, t2 = l

c + V
,

consequently

t ′ = t1 + t2 = 2l

c

1

1 − V 2

c2

. (6.8)

For the transverse direction with respect to the æther wind, the beam propagates
from L , is reflected on M1 and reaches back to L ′. The scheme of the geometric path
L M1L ′ is given in Fig. 6.5.

The time for the light beam to cover the geometric path L M1L ′ equals the time
for the Earth to move from L to L ′, so that

L M1L ′ = ct ′′ = 2 L M1, L L ′ = V t ′′ = 2 L O,

therefore

l2 =
(

ct ′′

2

)2

−
(

V t ′′

2

)2

,

which yields

t ′′ = 2l

c

1√
1 − V 2

c2

. (6.9)

The time difference between the coherent beams interfering in D is then

Δt = t ′′ − t ′ = 2l

c

⎛

⎝ 1√
1 − V 2

c2

− 1

1 − V 2

c2

⎞

⎠ . (6.10)
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Since V = 3 × 104 m · s−1, it follows that V 2/c2 � 1, which allows us to expand
in power series the square root in (6.10). Keeping only the terms up to V 2/c2, we
obtain

Δt � − l

c

(
V

c

)2

.

This time difference corresponds to a phase difference between the two beams and,
as a result, the telescope D will detect interference fringes.

Rotating the interferometer by 90 degrees, the longitudinal and the transverse
beams change places, and O M1 becomes parallel to V . In this case, the time differ-
ence between the two light beams is

Δt∗ � l

c

(
V

c

)2

.

As a result of turning the device, there appears a time difference

ΔT = Δt∗ − Δt = 2l

c

(
V

c

)2

,

which should produce a displacement of the fringes by a number of fringes given by

N = ΔT

T
= 2l

λ

(
V

c

)2

, (6.11)

where T is the period and λ is the wavelength of themonochromatic radiation used in
the experiment. Choosing λ = 6 × 10−7 m, Michelson should have found N � 0.1,
i.e. a displacement of at least one tenth of a fringe.

Even if the precision of the measuring system was one-hundredth of an inter-
fringe, Michelson was surprised to detect no displacement of fringes. The experi-
ment was resumed, with higher precision and various improvements, by Morley and
Miller in 1902–1904, Dayton ClarenceMiller (1866–1941) in 1921–1926, and again
Michelson et al. in 1929, etc., but the result was always the same. (In fact, mea-
surements showed very small displacements, but these were within the range of the
experimental error.)

Under these circumstances, Michelson and Morley were forced to draw one of
the two conclusions: either the Earth is immobile, which is absurd, or there is no
“æther wind”, or, in other words, the æther is completely dragged by the Earth in
its motion. But this last idea came in contradiction with previous experiments and
effects of æther and its dragging.

Michelson was very disappointed about the “negative result” of his experiment,
that became what might be called the “most famous failed experiment to date”. But,
as the development of science showed, the experiment “offered the most important
negative result in the history of science” (John Desmond Bernal).
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There were various attempts to explain the unexpected result of the Michelson–
Morely experiment. Among these endeavours was the ad-hoc hypothesis suggested
in 1889 by the Irish physicist George Francis FitzGerald (1851–1901), and a few
years later, in 1892, independently, by H.A. Lorentz. They supposed that the longitu-
dinal arm O M2 of the interferometer suffers a contraction of ratio lreal/ ldetermined =√
1 − V 2/c2. In this case, we would have ΔT = 0 in (6.11), and this would explain

why the fringes are not displaced. But this hypothesis did not have any theoretical
support, and it was not confirmed by experiments specially imagined for this purpose
(Rayleigh 1902, Brace 1905, Trouton and Rankine 1908, etc.).

All this experimental work led to a natural conclusion: the existence of æther,
either immobile or dragged by the moving bodies, cannot be experimentally proved.
As we shall see, Einstein’s special relativity explains the FitzGerald–Lorentz con-
traction, being consistent with the null result of the Michelson–Morley experiment.

In 1907, Michelson was awarded the Nobel Prize in Physics for his extremely
precise interferometric method, with multiple applications in physics and astron-
omy. In the presentation speech at the Royal Swedish Academy of Sciences, a great
emphasis was put on the fact that Michelson’s interferometer “rendered it possible
to obtain a non-material standard of length, possessed of a degree of accuracy never
hitherto attained. By its means we are enabled to ensure that the prototype of the
metre has remained unaltered in length, and to restore it with absolute infallibility,
supposing it were to get lost.” Indeed, Michelson was the first to measure with an
interferometer the standard metre, in 1893. His method led, in 1960, to the definition
of the metre in the International System, as equal to 1 650 763.73 wavelengths of the
orange-red emission line in the electromagnetic spectrum of the krypton-86 atom in
a vacuum. This conceptual and experimental achievement is in no way less important
than the merit of theMichelson–Morley experiment in the development of the theory
of relativity.

6.2 Principles of Special Relativity

6.2.1 Einstein’s Postulates

It has been known for centuries that the classical mechanics laws are covariant, i.e.
they keep their form when passing from one inertial reference frame to another.

Let S(Oxyz) and S′(O ′x ′y′z′) be two inertial frames. If x, y, z are the Cartesian
coordinates of a point P determined at time t by an observer from S, and x ′, y′, z′
are the coordinates of the same point measured at time t ′ by an observer connected
to S′, then one can write

r′ = r − Vt,

t ′ = t. (6.12)
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Here r = (x, y, z), r′ = (x ′, y′, z′), while V is the relative velocity of the inertial
frames S and S′. The time origin is conveniently chosen.

Relations (6.12) are called the Galilei–Newton transformation relations. It can
be shown that these transformations fulfill the axioms of an additive Abelian group
structure. If the displacement of frames takes place along the common axis Ox ≡
O ′x ′, the transformations (6.12) become, in components,

x ′ = x − V t,

y′ = y,

z′ = z (6.13)

t ′ = t.

As an example, consider a group of particles interacting by central-type forces.
The equation of motion of a particle i , in S′, reads

mi
dv′

i

dt ′ = −∇′
i

∑

k

Vik
(∣∣r′

i − r′
k

∣∣) . (6.14)

Using (6.12), we find

v′
i = vi − V,

∇′
i = ∇i ,

dvi

dt ′ = dvi

dt
,

r′
i − r′

k = ri − rk,

and (6.14) leads to

mi
dvi

dt
= −∇i

∑

k

Vik(|ri − rk |), (6.15)

which is the equation of motion of the particle i with respect to S. We conclude
that the Galilei–Newton transformation (6.12) leaves unchanged the form of the
equation of motion (6.14) (and all the equations of classical mechanics as well).
This property is termed covariance and represents an expression of the principle of
classical relativity.

In contrast with classical mechanics laws, the equations governing the wave phe-
nomena are not covariant with respect to the transformation (6.12). Take, again, an
example. If in S′ the well-known wave equation is written as

(
Δ′ − 1

c2
∂2

∂t ′2

)
ψ(r′, t ′) = 0, (6.16)
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it is straightforward to show that in S this equation becomes

[
Δ − 1

c2
∂2

∂t2
− 2

c2
(v · ∇)

∂

∂t
− 1

c2
(v · ∇)2

]
ψ(r, t) = 0. (6.17)

This means that the wave equation (6.16) is not covariant with respect to the Galilei–
Newton transformations. It was shownbyHendrik Lorentz that the equations describ-
ing wave phenomena are covariant with respect to the transformations (written for
Ox ≡ O ′x ′):

x ′ = 1√
1 − V 2

c2

(x − V t) ,

y′ = y

z′ = z (6.18)

t ′ = 1√
1 − V 2

c2

(
t − V

c2
x

)
,

where c is the velocity of light in vacuum. Lorentz obtained these relations by math-
ematical considerations in 1904. One year later, Albert Einstein reinterpreted the
transformations to be a statement about the nature of both space and time, and
he independently re-derived these transformations from his postulates of special
relativity.

Under these circumstances, there were only three possibilities:

(i) to maintain unchanged mechanics, and modify electrodynamics so as to be
covariant with respect to the Galilei–Newton transformations;

(ii) to maintain unchanged electrodynamics, and modify mechanics in order to be
covariant with respect to the Lorentz transformations (6.18);

(iii) to change both mechanics and electrodynamics.

Some attempts were made to modify electrodynamics. But, at the beginning of the
20th century, the electromagnetic field theory was very well established, so that to
change theMaxwellian edifice was an inconceivable idea, and those attempts did not
succeed at all. Since the third possibility would have implied a lot of work, scientists
chose the second way, and this is one of the auspices under which the theory of
relativity came to life.

This theory was elaborated in 1905 by Albert Einstein, in his paper “Zur Elektro-
dynamikbewegterKörper” (“On theElectrodynamics ofMovingBodies”), published
in Annalen der Physik, IV. Folge. 17. Seite 891–921. Juni 1905. Einstein’s theory,
known as the special theory of relativity, or, shorter, special relativity, is based on
two postulates:

(i) The laws of physics are the same in all inertial reference frames. This postulate
is an extension from the Newtonian principle of relativity, which states that the
laws of mechanics are the same for all observers in uniform motion.
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(ii) The speed of light in empty space is the same in all inertial frames. Thismeans that
the velocity of light in free space appears the same to all observers, regardless of
the motion of the source of light and of the observer. This postulate was based on
the fact that there were no experiments to contradict the constancy of the speed
of light. On the contrary, the astronomical observations performed by Daniel
Frost Comstock (1910) and Willem de Sitter (1913) on the double-star orbits,
and by Alexey Bonch-Bruyevich (1957) on the light coming from different parts
of the Sun, showed that Einstein’s second postulate had a strong experimental
justification.

As one can see, the æther plays no role in Einstein’s theory, and Einstein deemed it
“superfluous” in his first paper on the subject. Special relativity does not need privi-
leged reference systems to explain physical phenomena. Themotion of bodies/waves
is not referred to the hypothetical, absolute reference system, the æther, but to other
bodies.

6.2.2 Lorentz Boosts

In 1904, Lorentz proved that the electromagnetic field equations are covariant with
respect to the transformations (6.18). In the same year, the French mathematician,
physicist and philosopher of science Henri Poincaré (1854–1912) presented a lecture
at the world scientific congress of Saint-Louis (Missouri, September 1904), in which
he postulated the “Principle of Relativity”: “The laws of physical phenomena must be
the same for a fixed observer and for an observer in rectilinear and uniform motion
so that we have no possibility of perceiving whether or not we are dragged in such
a motion”. This principle was essentially based on the negative results of all æther
experiments of that time. In 1905, Poincaré showed that Lorentz transformations form
a group on a four-dimensional manifold in which the time-coordinate is imaginary,
gave a geometric interpretation to the Lorentz transformations, and constructed a
tensor representation of the electromagnetic field.

Einstein’smerit was, among other things, that he realized the physical significance
of the Lorentz transformations. Let us show that the transformations (6.18) result
necessarily from Einstein’s postulates.

Taking the reference frames and their relative motion as shown in Fig. 6.6, the
transformations we are looking for have to satisfy the following three conditions:

(1) be symmetric with respect to the frames S and S′, that is the relations expressing
x, y, z, t as functions of x ′, y′, z′, t ′ must have the same form as the inverse
relations. This condition is required by the equivalence of the two frames.

(2) be linear, as the Galilei–Newton transformations (6.12), which are the limiting
case for velocities much smaller than the speed of light. Such a requirement can
be satisfied simultaneously with condition (1), while a non-linear transformation
(e.g. quadratic) could not.
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Fig. 6.6 Two inertial
reference frames S and S′.

(3) for V = 0, one obtains the identical transformation (x ′ = x, y′ = y,

z′ = z, t ′ = t).

Let the transformations we are searching for be generically represented as

x ′
i = x ′

i (xk, t),

t ′ = t ′(xk, t), (6.19)

where x1 = x, x2 = y, x3 = z, and i, k = 1, 2, 3. According to condition (2), there
also exists the inverse transformation

xi = xi (x ′
k, t ′),

t = t (x ′
k, t ′). (6.20)

By differentiating (6.19), one obtains

dx ′
i = ∂x ′

i

∂xk
dxk + ∂x ′

i

∂t
dt,

dt ′ = ∂t ′

∂xk
dxk + ∂t ′

∂t
dt. (6.21)

Here (dxi , dt) signifies the distance and the time interval between two infinitely
closed points, determined from S, and (dx ′

i , dt ′) the same quantities, determined by
an observer at rest with respect to S′. Recalling that Ox ≡ O ′x ′, we have

dx ′ = b11 dx + b14 dt,

dy′ = dy,

dz′ = dz, (6.22)

dt ′ = b41 dx + b44 dt,

where

bik ≡ ∂x ′
i

∂xk
. (6.23)



6.2 Principles of Special Relativity 349

Fig. 6.7 Geometrical representation of the path of a reflected light-beam in two inertial reference
systems, S and S′.

Consider a plane mirror M , fixed with respect to S′ (Fig. 6.7). A light beam, emitted
at a point A situated on O ′x ′ is reflected by M and comes back to the same point.
Therefore, an observer from S′ determines

dx ′
1 = 0, dt ′

1 = 2
dy′

1

c
= 2

dy1
c

. (6.24)

The same experiment, recorded by an observer from S, gives

dx1 = V dt1 = 2

√(
c dt1
2

)2

− dy21 . (6.25)

Eliminating dy2 between the last two relations, one finds

dt ′
1 = dt1

√
1 − V 2

c2
. (6.26)

With (6.24) and (6.26), the relations (6.22) lead to

b11 V + b14 = 0,

b41 V + b44 =
√
1 − V 2

c2
. (6.27)

Let us now repeat the experiment, but this time with the mirror M fixed with
respect to S. The observer from S determines

dx2 = 0,

dt2 = 2
dy2
c

= 2
dy′

2

c
, (6.28)
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and the observer from S′

dx ′
2 = − V dt ′

2 = 2

√(
cdt ′

2

2

)2

− dy′
2
2
. (6.29)

The last two relations serve to eliminate dy′
2, which leads to

dt2 = dt ′
2

√
1 − V 2

c2
. (6.30)

Introducing (6.28)–(6.30) into (6.22), we find

b44 = 1√
1 − V 2

c2

,

b14 = − 1√
1 − V 2

c2

V, (6.31)

and (6.27) yields

b11 = 1√
1 − V 2

c2

,

b41 = − 1√
1 − V 2

c2

V

c2
. (6.32)

The transformations (6.22) therefore become

dx ′ = Γ (dx − V dt),

dy′ = dy,

dz′ = dz, (6.33)

dt ′ = Γ

(
dt − V

c2
dx

)
,

where

Γ = 1√
1 − V 2

c2

. (6.34)
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The postulated equivalence of the inertial frames S and S′ makes it possible to
find the inverse transformations by substituting V with − V , that is

dx = Γ
(
dx ′ + V dt ′) ,

dy = dy′,
dz = dz′, (6.35)

dt = Γ

(
dt ′ + V

c2
dx ′

)
.

The transformations (6.33) and (6.35) are inverse of each other: if one set (any of
them) is called direct, the other one is the inverse of the first.

Since the coefficients of x and t depend only on V and c, and not on x or t ,
the transformations (6.33) are linear, in agreement with condition (2). We can then
integrate and obtain

x ′ − x ′
0 = Γ [x − x0 − V (t − t0)] ⇔ Δx ′ = Γ (Δx − V Δt), (6.36)

t ′ − t ′
0 = Γ

[
t − t0 − V

c2
(x − x0)

]
⇔ Δt ′ = Γ

(
Δt − V

c2
Δx

)
.

If, in particular, at the initial moment t0 = t ′
0 = 0 the two frames have the same origin

(O ≡ O ′) and x0 = x ′
0 = 0, we can finally write

x ′ = Γ (x − V t),

y′ = y,

z′ = z, (6.37)

t ′ = Γ

(
t − V

c2
x

)
,

which is nothing else but the Lorentz transformations (6.18). Such transformations
between inertial frames in relative motion are customarily called Lorentz boosts;
together with the set of space rotations, they form the Lorentz group, on which we
shall elaborate further in Sect. 7.3.

Observations:

(a) In the limit V
c → 0, the Lorentz transformations (6.37) go to the Galilei–Newton

transformations (6.13). Still we draw the reader’s attention upon the fact that the
relations (6.37) have been deduced assuming the the speed of light c is invariant,
while non-relativistic physics does not admit a velocity which is the same in all
reference frame.

(b) The velocity of light in vacuum, c, is not only an invariant, but also the speed limit
in the Universe. Indeed, if we had V > c, the factor Γ would become imaginary,
and all physical laws obtained by these transformations would be meaningless.

http://dx.doi.org/10.1007/978-3-642-17381-3_7
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Fig. 6.8 Two inertial
frames, one moving with
respect to the other in an
arbitrary direction, with the
velocity V.

The Lorentz boost (6.37) is written for the particular case Ox ≡ O ′x ′ (V ‖ i,
where i is the versor of Ox-axis). Let us now generalize this result for the case when
the motion of the inertial frames takes place in an arbitrary direction, defined by the
unit vector v0 = V/V (V = |V|).

Take an arbitrary point P , and let r = (x, y, z) and r′ = (x ′, y′, z′) be the radius
vectors of P with respect to O and O ′, respectively. Using Fig. 6.8, we can write

r = r‖ + r⊥,

r′ = r′‖ + r′⊥.

The vector r′⊥ is orthogonal to the direction of motion. Thus, according to (6.37),
we have

r′⊥ = r⊥. (6.38)

Since r′‖ lies along V, we also have

r′‖ = Γ
(
r‖ − Vt

)
. (6.39)

Therefore
r′ = r⊥ + Γ

(
r‖ − Vt

)
. (6.40)

But r‖ = ∣∣r‖
∣∣ v0 = (r · v0)v0, so that

r⊥ = r − r‖ = r − (r · v0)v0,

and (6.40) yields
r′ = r + (Γ − 1)(r · v0)v0 − Γ Vt. (6.41)
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In its turn, the time transformation is

t ′ = Γ

(
t − V

c2
∣∣r‖

∣∣
)

= Γ

(
t − r · V

c2

)
. (6.42)

The relations (6.41) and (6.42) can also be written as

r′ = (Γ − 1)(r × v0) × v0 + Γ (r − Vt),

t ′ = Γ

[
t − V

c2
(r · v0)

]
. (6.43)

These relations are a vectorial generalization of the Lorentz transformations (6.37).

6.3 Some Consequences of the Lorentz Transformations

6.3.1 Relativity of Simultaneity

In classical mechanics, the simultaneity has an absolute character: two events simul-
taneous in one inertial reference frame S, are simultaneous in any other inertial
frame S′. One of the most striking consequences of the Lorentz transformations is
that simultaneity, as an absolute concept, has to be abandoned. In contrast, special
relativity shows that simultaneity is relative, in the sense that it depends on themotion
of the reference frames.

In order to discuss any consequences of the Lorentz transformations, we have to
define the concept of relativistic reference frame. For this, we shall assume that the
postulates of special relativity are valid in every frame; moreover, the speed of light
is the maximum speed at which signals are transmitted. Although this assumption is
not part of the postulates, it needs to be incorporated in the theory in order for the
principle of causality to hold, as we shall see later.

Themain difference between a nonrelativistic frame and a relativistic one consists
in the procedure for the synchronization of clocks. If we wish to have reliable time
measurements in a given frame, any clock at rest in that frame, placed at any point of
space, has to show the same time. This synchronization is easily achieved in Galilean
mechanics, where instantaneous transmission of signals is conceivable. However,
the synchronization of clocks is much more subtle in relativity. The synchronization
agent is a light signal, assuming that the speed of light in vacuum is the same in
all directions of space. In his first paper on special relativity, Einstein described a
synchronization procedure which goes as follows: having placed at the space points
A and B two clocks which are stationary with respect to a given reference frame, one
sends a light signal from the clock at A, at the time tA (measured by the clock at A),
towards the clock at B. The clock at B receives the signal at the time tB (measured
by the clock at B). This clock is provided with a mirror, which reflects back the
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light signal to A, where the reflected light is detected at the time t ′
A. Light has to

travel the same length back and forth, and by assumption its speed is the same, c,
whether it goes from A to B, or from B to A. Consequently, the clocks at A and B
are synchronized if

tB − tA = t ′
A − tB,

in other words, the time of the clock at B has to be set to

tB = 1

2
(tA + t ′

A) (6.44)

when the light signal is received and reflected.
The synchronization is reflexive (each clock is synchronized with itself), symmet-

ric (if the clock at A is synchronized with the clock at B, then the clock at B is
synchronized with the clock at A), and transitive (if the clock at A is synchronized
with the clock at B, and the clock at B is synchronized with the clock at C , then the
clock at A and the clock at C are synchronized). We emphasize once more that this
synchronization procedure is valid for clocks which are at rest with respect to each
other, i.e. clocks rigidly attached to a given inertial frame.

With this synchronization procedure, we define a relativistic frame of reference
as a coordinate system of rigid axes and a set of synchronized clocks fixed rigidly to
this system.

The relativity of simultaneity is the concept that simultaneity is not absolute,
but dependent on the frame of reference. Let us recall a Gedanken Experiment to
illustrate this fact, the famous train-and-platform experiment. Imagine that a train is
passing with constant speed the platform of a railway station. The frame of reference
attached to the train will be denoted by S and the frame attached to the platform – by
S′. A flash of light is shot from the middle of a traincar towards the two ends of it. An
observer which is riding with the train measures the light as arriving simultaneously
to the front and rear of the traincar (see Fig. 6.9a). For an observer which is stationary
on the platform, the rear of the traincar moves towards the point from which the flash
of light was shot, while the front moves away. As a result, as measured from the

Fig. 6.9 (a) The train-and-platform experiment from the reference frame of an observer on board
the train; (b) The same sequence of events in the frame of an observer standing on the platform
(length contraction not depicted).
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Fig. 6.10 (a) The spacetime diagram of the flashlights propagation in the frame of the observer
on the train: the vertical lines represent the wordlines of the ends of the traincar. The light reaches
the two ends of the traincar simultaneously; (b) The same diagram in the frame of an observer who
sees the train moving to the right. The light reaches the two ends of the traincar at different times.

platform, the light reaches the rear before it reaches the front of the traincar, that is,
the same two events are not simultaneous in S′ (see Fig. 6.9b).

We canmake use of (6.37) to expressmathematically the relativity of simultaneity.
Let us denote by (x1, y1, z1, t1) and (x2, y2, z2, t2) the points in the frame S which
represent the arrival of the light signal to the front and to the end of the traincar. As
the two events are simultaneous in S, it means that t1 = t2, i.e. Δt = 0. An observer
fixed with respect to the frame S′, according to (6.37), determines the durationΔt ′ =
Γ

(− V
c2 Δx

)
, meaning that the two events are not necessarily simultaneous in S′.

The events could be simultaneous only if Δx = 0, which is obvious. In other words,
according to the special theory of relativity, it is impossible to say in an absolute
sense whether two events occur at the same time, if those events are separated in
space. The space-time diagrams corresponding to the two observers are depicted in
Fig. 6.10.

Now, to see how this differs from the nonrelativistic approach, let us imagine
that two bullets are shot from the middle of the traincar towards the front and the
rear, with equal speeds, v. For the observer connected to the traincar, the two bullets
arrive simultaneously at the ends of the traincar. For the observer on the platform,
the bullet reaching the rear travels a shorter distance than the bullet reaching the
front. However, for this observer, the two bullets have different speeds: the speed of
the bullet shot towards the front is v + V , while the speed of the bullet shot towards
the rear is v − V . As a result, for the observer on the platform the two bullets reach
the ends of the traincar simultaneously. The fact that the speed of light does not
depend on the speed of the object which emits it is the key to the understanding of
the relativity of simultaneity.

It should be emphasized that the relativity of simultaneity does not contradict
the principle of causality. To prove this statement, we use the method of reductio
ad absurdum. Suppose that an event occurs at point A, an effect of this event is
recorded at point B, while O is an observer which receives light signals from A and
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Fig. 6.11 Relativity of
simultaneity and causality.

B (Fig. 6.11). If the signal from B reached the observer before the signal from A (the
effect would precede the cause in time), we would have t1 + t3 < t2, that is

ct2 − ct3 > ct1.

On the other hand, in the triangle AO B we have

ct2 − ct3 < V t1.

The last two relations yield V > c. From the point of view of special relativity, this
is a contradiction.

6.3.2 Length Contraction

Let us consider again the two inertial frames S and S′ in relative motion along
Ox ≡ O ′x ′, and a rigid bar AB attached to S′ and placed along the Ox ′-axis, as in
Fig. 6.12.

Fig. 6.12 The length of the
bar AB is contracted when
observed from the reference
system S which is in motion
with respect to the bar.
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We shall call proper length (l0) of the bar the length as measured by an observer
in the reference frame in which the object is at rest, in our case S′. The frame with
respect to which the bar is at rest is called proper frame. Thus,

x ′
2 − x ′

1 = l0.

The length of the bar, determined by an observer attached to S, is

x2 − x1 = l.

The measurements are performed exclusively by light signals. Since the speed of
light is finite, the observer from S must determine the two ends A and B of the bar
at the same time, t1 = t2 (otherwise, during the measurements the bar would change
its place). Taking Δt = 0,Δx ′ = l0,Δx = l, we have

l0 = Γ l, or l = l0

√
1 − V 2

c2
< l0. (6.45)

We arrive at the same result by using the inverse transformation Δx = Γ (Δx ′ +
V Δt ′), where Δt ′ is replaced with its value extracted from Δt = 0 =
Γ

(
Δt ′ + V

c2 Δx ′).
Suppose, now, that the bar is attached to the frame S (proper frame), that is

x2 − x1 = l0. The observer attached to S′ will determine, at the same time (t ′
1 = t ′

2)
the lengthΔx = Γ Δx ′, or l = l0

√
1 − V 2/c2 < l0,which is the same result as (6.45).

The above considerations lead to the following conclusions:

(i) The maximum length of the bar is the proper length. Measured from any other
reference frame the bar is shorter, as if being contracted along the direction
of relative motion. The effect is called length contraction, or the FitzGerald–
Lorentz contraction;

(ii) There is no Lorentz contraction in a direction orthogonal to the relative direction
of motion;

(iii) There is no speed greater than the speed of light in vacuum. For V ≥ c, one of
the dimensions of the body would disappear, or even become imaginary.

Observations:

(a) The relativistic contraction is not produced by a force, or by any modification of
structure of the body. This effect is exclusively due to the observation by means
of light signals. All the experiments imagined to prove a real contraction along
the direction of motion have failed;

(b) The notion of reference frame is an abstraction, used to describe the physical
phenomena. There is no material frame apart from moving or steady bodies and
media. The inertial frame to which the bar is attached, is the bar itself.
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Fig. 6.13 GedankenExperiment showing that the proper time interval between two events is always
less than the time interval recorded from a moving frame.

6.3.3 Time Dilation

Any real phenomenon develops in space and time. Setting the place (where) and a
time (when), we have an event.1 In relativistic theories, space and time are combined
into a new mathematical and physical entity, called the space-time.2

Let us consider again the reference frames S and S′ and a Gedanken Experiment
to see how durations change when we pass from one frame to another. At the origin
O ′ of the system S′ there is a clock and a light source; at a point M on the O ′z′-axis,
at a distance h from the origin, is placed a mirror, at rest in the frame S′. When the
origins O and O ′ of the two frames coincide, a light flash is emitted by the source
towards the mirror. As observed from the frame S′, the flash is reflected by the mirror
and it returns to O ′ in the time interval

Δt ′ = 2h

c
.

This interval is measured by the same clock, which means that the two events (the
emission of the flash of light and the detection of the reflected light) took place at
the same point in space. This sequence is represented in Fig. 6.13a. A time interval
between events registered by the same clock (which implies that the events occurred
at the same point in space) is called proper time.

1An event is “an occurrence that happens in a small space and lasts a short time” (J.L. Synge).
2On the 21st of September 1908, Hermann Minkowski (1864–1909) began his talk at the 80th
Assembly of German Natural Scientists and Physicians with the following introduction, which has
become by now famous: “The views of space and time which I wish to lay before you have sprung
from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth
space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.”
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However, in the reference frame S the sequence of events will be observed differ-
ently, as in Fig. 6.13b: the emission takes place at the point O (which at that moment
coincides with O ′), but the reflection on the mirror happens at a point of coordinates
(x1, 0, h) and the reception of the reflected light at another point, (x2, 0, 0). In the
frame S, the time of the emission and detection of light are recorded by two synchro-
nized clocks, placed at different points on the Ox-axis. Clearly, the path of the light
signal is longer in the frame S and the duration between emission and detection is
expressed implicitly by

Δt = 2

√

h2 +
(

V Δt

2

)2

,

leading to

Δt = 2h

c

1√
1 − V 2

c2

= Γ Δt ′ > Δt ′. (6.46)

We see from Eq. (6.46) that the time interval between events is the least in the
reference frame in which the events take place at the same point in space, in our case
S′. The duration between the same events, determined from any other inertial frame,
appears as dilated. As a plastic image, a clock associated with a non-proper observer
moves its hands slower than the clock which belongs to the proper observer. This
relativistic effect is called time dilation. The proper time is sometimes denoted by
the Greek letter τ . We should emphasize that, by Lorentz transformations, we can
always find a reference frame in which two given events occur at a given point.

Various interpretations and speculations about time dilation, scientific or philo-
sophical, have been put forward. One of them is the twin paradox. Suppose that at
the instant when the origins of the inertial frames S and S′ coincide, a pair of twins
are born. One of them remains on Earth, in the frame S, and the other one, associ-
ated with S′, begins to travel with a cosmic rocket with the velocity V ≤ c. For the
traveling twin the time will pass faster than for his brother, and after some time – say
1 year for the traveling brother – their eventual meeting would prove a paradoxical
fact: the brother remaining on Earth is an old men. One version of the twin paradox
appeared in Einstein’s first paper on special relativity.

As any other paradox, the twin paradox is explicable. The twins can meet only
once, without any further possibility of comparing their age by direct encounter,
because coming back to Earth implies either an acceleration (deceleration), or a
change of the shape of trajectory, or simply that the traveling twin switches between
two inertial frames on the outbound and inbound journeys. In any case, this problem
does not involve only two inertial frames of reference. In fact, in the framework of
special relativity one can show that the age of the twin (1), determined by his brother
(2) by light signals, is exactly the same with the age of twin (2), determined by his
brother (1).

Starting with the French physicist Paul Langevin (1872–1946) in 1911, over the
time there have been various explanations of this paradox. These explanations can
be grouped into those that focus on the effect of different standards of simultaneity
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in different frames, and those that designate the acceleration as the main reason. For
instance, Max von Laue (1879–1960) argued in 1913 that since the traveling twin
must be in two separate inertial frames, one on the way out and another on the way
back, this frame switch is the reason for the aging difference. Explanations put forth
by Albert Einstein and Max Born (1882–1970) invoked gravitational time dilation
to explain the aging as a direct effect of acceleration.

Gravitational time dilation and special relativity were used to explain the Hafele–
Keating experiment. This experiment was a test of the theory of relativity. In October
1971, theAmerican physicist JosephC.Hafele and theAmerican astronomerRichard
E. Keating took four cesium-beam atomic clocks aboard commercial airliners. They
flew twice around the world, first eastward, then westward, and finally compared the
clocks against others that remained at the United States Naval Observatory. It turned
out that there were differences between the three sets of clocks, and these differences
were consistent with the predictions of Einstein’s theory of relativity (special and
general relativity). The experiment was made more precise in 1975 by a team of
physicists from the University of Maryland, which achieved an accuracy of 1.6%
compared to the theoretical predictions.

The Lifetime of Muons

The lifetime of the μ lepton (muon), measured in its proper frame is Δt0 � 2.2µs.
Traveling at relativistic speeds (i.e. speeds close to the speed of light in vacuum),
this would allow a survival distance of about 0.66 km at most. In the original cosmic
rays experiments by which the muons were first detected, they were known to be
produced at higher distances and part of them survived the flight to theEarth’s surface.
The explanation was given in 1941 by the Italian physicist Bruno Benedetto Rossi
(1905–1993): the lifetime of muons as measured from the Earth has to be affected
by the time dilation, making it much longer than the proper lifetime. Using the
relativistic relation (6.46), with V/c = 0.99, he found Δt = Γ Δt0 � 2.2 × 10−5 s,
which corresponds to a survival distance of about 6 km, in very good agreement with
the experimental data.

6.3.4 Relativistic Doppler Effect

Consider, again, the two reference frames S and S′, with Ox ≡ O ′x ′, and assume
that there is a light source at O ′, which produces monochromatic waves. If the point
P is far enough, the waves arriving at P can be considered as being plane waves.
Let s and s′ be the unit vectors normal to the wave fronts in P with respect to S
and S′, respectively. Due to the symmetry of the problem with respect to the axis
Ox ≡ O ′x ′, it is sufficient to study the phenomenon in an orthogonal plane, say the
plane x Oy (Fig. 6.14).
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Fig. 6.14 Schematic
representation for the
relativistic Doppler effect.

The solution of the wave equation corresponding to a plane wave is

ψ ∼ ei(ωt−k·r) = eiϕ(r,t).

Since k = 2π
λ
s, we can write the phase as

ϕ(r, t) = ωt − k · r = 2πν
(

t − s · r
c

)
= 2πν

(
t − x cos θ + y sin θ

c

)
,

because r · s = (x i + yj) · (i cos θ + j sin θ), where θ is the angle between the x-axis
and the direction O P (source–observer) in the frame S. In the frame S′, the wave is

ψ ∼ ei(ω′t ′−k′ ·r′) = eiϕ(r′,t ′),

where

ϕ(r′, t ′) = ω′t ′ − k′ · r′ = 2πν ′
(

t ′ − x ′ cos θ′ + y′ sin θ′

c

)
,

and θ′ is the angle between the x ′-axis (along the direction of motion of the source)
and O ′ P , which is the direction source–observer in S′. The covariance principle
requires that ϕ(r, t) = ϕ(r′, t ′), i.e.

ν

(
t − x cos θ + y sin θ

c

)
= ν ′

(
t ′ − x ′ cos θ′ + y′ sin θ′

c

)
.

Using the Lorentz transformation (6.37), this yields

νΓ

(
t ′ + V

c2
x ′

)
− ν

c
Γ

(
x ′ + V t ′) cos θ − ν

c
y′ sin θ

= ν ′t ′ − ν ′

c
x ′ cos θ′ − ν ′

c
y′ sin θ′.
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Equating the coefficients of t ′, x ′, and y′, one obtains

νΓ

(
1 − V

c
cos θ

)
= ν ′,

νΓ

(
cos θ − V

c

)
= ν ′ cos θ′, (6.47)

ν sin θ = ν ′ sin θ′.

Writing explicitly the expression of Γ and recalling that ν ′ is the proper frequency
ν0, (6.47)1 leads to

ν = ν0

√
1 − V 2

c2

1 − V
c cos θ

. (6.48)

Remark that the relativistic formula (6.48) and the analogous classical one (6.6)

differ by the factor
√
1 − V 2

c2 . We distinguish two particular cases:

(i) θ = π
2 . Relation (6.48) then yields

ν = ν0

√
1 − V 2

c2
< ν0. (6.49)

The effect described by (6.49) is called transverse Doppler effect. The classi-
cal formula, for θ = π

2 , gives ν = ν0, which means that the transverse Doppler
effect is a purely relativistic effect. One also observes that (6.49) is the relativis-
tic formula for time dilation. The transverse Doppler effect was experimentally
detected in 1938 by Herbert E. Ives (1882–1953) and G.R. Stilwell. The Ives–
Stilwell experiment tested the contribution of relativistic time dilation to the
Doppler shift of light. The result was in good agreement with the formula for
the transverse Doppler effect, and was the first direct, quantitative confirmation
of the time dilation factor. Together with the Michelson–Morley experiment and
theKennedy–Thorndike experiment, it represents one of the fundamental tests of
Einstein’s special theory of relativity. Other tests confirming the relativistic
Doppler effect are the Mössbauer rotor experiment and modern Ives–Stilwell
experiments (performed with increased precision). The transverse Doppler
effect, predicted by Einstein in 1905, is very small as compared to the longi-
tudinal Doppler effect (the first is expressed in terms of V 2/c2, while the latter
in terms of V/c), and the separation of the two effects required a lot of experi-
mental ingenuity.

(ii) θ = 0. This case is named longitudinal Doppler effect. According to (6.48), we
have

ν = ν0

√
1 + V

c√
1 − V

c

> ν0. (6.50)
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If the source is at rest in the frame S, the frequency ν in (6.50) becomes the
proper frequency ν0, while ν0 becomes the frequency determined by the observer
attached to S′. Since S moves with the velocity −V with respect to S′, we have

ν0 = ν

√
1 − V

c√
1 + V

c

< ν,

i.e. the same formula. This result shows that the value of the measured frequency
depends only on the relative velocity between the source and the observer. For
V/c � 1, formula (6.48) becomes the classical relation (6.6).

From (6.47)1,2 we find also

cos θ′ = cos θ − V
c

1 − V
c cos θ

,

cos θ = cos θ′ + V
c

1 + V
c cos θ′ . (6.51)

Each of these relations can be obtained from the other by interchanging V ↔ − V
and θ ↔ θ′. To clarify the significance of relations (6.51), consider the particular
case θ′ = π/2, which means

cos θ = V

c
.

Since θ is the angle between the direction of motion of the source and the direction
source–observer in the frame S, we may write (see Fig. 6.15):

cos θ = cos
(π

2
− α

)
= sinα,

and, for small angles α,

sinα ≈ α = V

c
,

Fig. 6.15 Aberration of
light always accompanies the
Doppler effect.



364 6 Special Theory of Relativity

which is nothing else but the aberration of light discovered by the English astronomer
James Bradley in 1727 (see (6.3)). If θ = 0, then also θ′ = 0. In summary:

(i) Relations (6.51) give the relativistic explanation of the aberration of light. The
classical theory of the Doppler effect cannot explain this phenomenon;

(ii) The aberration of light always accompanies the Doppler effect. The transverse
Doppler effect corresponds to a maximum of aberration, while the longitudinal
Doppler effect reveals no aberration.

6.3.5 Composition of Velocities and Accelerations

6.3.5.1 Relativistic Composition of Velocities

Letv′
x = dx ′/dt ′ be the instantaneous velocity of a body (material point),with respect

to the reference frame S′, along the axis Ox ≡ O ′x ′, and vx = dx/dt the velocity of
the same material point with respect to S. Using the Lorentz transformations (6.33),
we have

v′
x = dx ′

dt ′ = dx − V dt

dt − V
c2 dx

= vx − V

1 − V
c2 vx

,

v′
y = vy

Γ
(
1 − V

c2 vx
) , (6.52)

v′
z = vz

Γ
(
1 − V

c2 vx
) .

These formulas give the rule of composition of velocities when the motion takes
place along the Ox ≡ O ′x ′ axis. A similar procedure using the inverse Lorentz
transformations (6.35) leads to

vx = v′
x + V

1 + V
c2 v

′
x

,

vy = v′
y

Γ
(
1 − V

c2 v
′
x

) , (6.53)

vz = v′
z

Γ
(
1 − V

c2 v
′
x

) .

In the limit of low speeds, V/c → 0, we obtain the expected result

vx = v′
x + V,

vy = v′
y,

vz = v′
z,

that is, the composition law of velocities in classical mechanics.
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Suppose that v′
x = c. Then, following (6.53)1 we have vx = c, in agreement with

Einstein’s second postulate.
As an immediate application of the relativistic rule of composition of velocities,

let us explain Fresnel’s formula (6.1), as well as Fizeau’s experiment. If v′
x = c/n

is the phase velocity with respect to the water, and the water moves with velocity
V � c with respect to the Earth, we can write

vx =
c
n + V

1 + V
cn

=
( c

n
+ V

) (
1 − V

cn
+ . . .

)
� c

n
+ V

(
1 − 1

n2

)
,

namely relation (6.1).
To write the vector form of the velocity composition rule, we use the Lorentz

transformation (6.43), and obtain

v′ = (Γ − 1)(v × v0) × v0 + Γ (v − V)

Γ
[
1 − V

c2 (v · v0)
] . (6.54)

The inverse Lorentz transformation

r = (Γ − 1)(r′ × v0) × v0 + Γ
(
r′ + Vt ′) ,

t = Γ

[
t ′ + V

c2
(
r′ · v0

)]
(6.55)

serves to define the rule of the inverse velocity composition:

v = (Γ − 1)(v′ × v0) × v0 + Γ (v′ + V)

Γ
[
1 + V

c2 (v
′ · v0)

] . (6.56)

If, in particular, we take |V| = Vx = V , (6.54) and (6.56) go to (6.52) and (6.53).

6.3.5.2 Relativistic Composition of Accelerations

Let a′
x = dv′

x/dt ′ and ax = dvx/dt be the instantaneous accelerations of a particle
along the Ox ≡ O ′x ′ axis, determined in the frames S′ and S, respectively. Using
(6.52), one finds

dv′
x = dvx

Γ 2
(
1 − V

c2 vx
)2 ,

dv′
y = dvy + V

c2 (vy dvx − vx dvy)

Γ
(
1 − V

c2 vx
)2 , (6.57)

dv′
z = dvz + V

c2 (vz dvx − vx dvz)

Γ
(
1 − V

c2 vx
)2 .
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Therefore,

a′
x = ax

Γ 3
(
1 − V

c2 vx
)3 ,

a′
y = ay + V

c2 (vyax − vx ay)

Γ 2
(
1 − V

c2 vx
)3 , (6.58)

a′
z = az + V

c2 (vzax − vx az)

Γ 2
(
1 − V

c2 vx
)3 .

The vectorial formula of acceleration composition is found by taking the derivative
a′ = dv′/dt ′, with dv′ found by means of (6.54). The result is

a′ =
[
1 − V

c2 (v · v0)
]
[a + (Γ − 1)(a · v0)v0]

Γ 2
(
1 − V·v

c2
)3

+
V
c2 (a · v0) [v + (Γ − 1)(v · v0)v0 − ΓV]

Γ 2
(
1 − V·v

c2
)3 , (6.59)

and we leave the proof to the reader.
The acceleration composition formula corresponding to the inverse Lorentz trans-

formations is easily obtained from (6.59) by substitutingV ↔ −V, v ↔ v′, a ↔ a′.

6.4 Solved Problems

Problem 1. Show that the wave equation

∂2ψ

∂x2
− 1

c2
∂2ψ

∂t2
= 0 (6.60)

is covariant with respect to the Lorentz transformations (see (6.37)):

x = Γ (x ′ + V t ′),
y = y′,
z = z′, (6.61)

t = Γ

(
t ′ + V

c2
x ′

)
.

Solution. We have

∂ψ

∂x ′ = ∂ψ

∂x

∂x

∂x ′ + ∂ψ

∂t

∂t

∂x ′ = Γ
∂ψ

∂x
+ Γ

V

c2
∂ψ

∂t
.
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We deduce that the operator correspondence is

∂

∂x ′ = Γ
∂

∂x
+ Γ

V

c2
∂

∂t
. (6.62)

which leads to

∂2ψ

∂x ′2 =
(

Γ
∂

∂x
+ Γ

V

c2
∂

∂t

) (
Γ

∂ψ

∂x
+ Γ

V

c2
∂ψ

∂t

)

= Γ 2 ∂2ψ

∂x2
+ 2Γ 2 V

c2
∂2ψ

∂x∂t
+ Γ 2 V 2

c4
∂2ψ

∂t2
. (6.63)

In the same way

∂ψ

∂t ′ = ∂ψ

∂x

∂x

∂t ′ + ∂ψ

∂t

∂t

∂t ′ = Γ V
∂ψ

∂x
+ Γ

∂ψ

∂t
,

with the operator correspondence

∂

∂t ′ = Γ V
∂

∂x
+ Γ

∂

∂t
. (6.64)

Next,

∂2ψ

∂t ′2 =
(

Γ V
∂

∂x
+ Γ

∂

∂t

) (
Γ V

∂ψ

∂x
+ Γ

∂ψ

∂t

)

= Γ 2V 2 ∂2ψ

∂x2
+ 2Γ 2V

∂2ψ

∂x∂t
+ Γ 2 ∂2ψ

∂t2
. (6.65)

It is easily seen that
∂2ψ

∂x ′2 − 1

c2
∂2ψ

∂t ′2 = ∂2ψ

∂x2
− 1

c2
∂2ψ

∂t2
,

which completes the proof.

Problem 2. Denoting V
c = tanh θ and u = ct , show that the Lorentz transforma-

tion (6.37) can be written as

x ′ = x cosh θ − u sinh θ,

u′ = − x sinh θ + u cosh θ. (6.66)

Using this result, show that a succession of Lorentz boosts, performed in the same
direction (Fig. 6.16), is also a Lorentz boost.
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Fig. 6.16 Schematic representation of three inertial reference frames (Problem 2).

Solution. Using the formulas

cosh2 θ − sinh2 θ = 1,

cosh θ = 1√
1 − tanh2 θ

= 1√
1 − V 2

c2

= Γ,

sinh θ =
√
cosh2 θ − 1 = V

c
Γ,

we can write

x ′ = Γ

(
x − V

c
c t

)
= x cosh θ − u sinh θ,

ct ′ = u′ = Γ

(
u − V

c
x

)
= −x sinh θ + u cosh θ,

and relations (6.66) are proved.
Next, let us consider three inertial frames S, S′, and S′′, and suppose that the

velocity of S′ with respect to S is V , while S′′ moves with velocity V ′ with respect
to S′, and V ′′ with respect to S.

One observes that the Lorentz transformation (6.66) can be written in a matrix
form as

X ′ = B X,

where

X =
(

x
u

)
, X ′ =

(
x ′
u′

)
, B =

(
cosh θ − sinh θ

− sinh θ cosh θ

)
. (6.67)
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Using this representation, we also have X ′′ = AX ′, so that the total transformation
is X ′′ = AX ′ = AB X = C X , where C is given by

C = AB =
(

cosh θ′ − sinh θ′
− sinh θ′ cosh θ′

) (
cosh θ − sinh θ

− sinh θ cosh θ

)
.

Since the element ci j of the matrix product AB is

ci j =
2∑

r=1

air br j , i, j = 1, 2,

and in view of the trigonometric formulas

sinh(θ + θ′) = sinh θ cosh θ′ + cosh θ sinh θ′,
cosh(θ + θ′) = cosh θ cosh θ′ + sinh θ sinh θ′,

we obtain

C =
(

cosh(θ + θ′) − sinh(θ + θ′)
− sinh(θ + θ′) cosh(θ + θ′)

)
=

(
cosh θ′′ − sinh θ′′

− sinh θ′′ cosh θ′′

)
, (6.68)

where θ′′ = θ + θ′. The parameter θ is called rapidity. This name was given in 1911
by the English physicist Alfred Robb (1873–1936), being an alternative to speed as
a method of measuring motion. For low speeds, rapidity and speed are proportional,
but for high speeds rapidity becomes very large and tends to infinity for v = c.

Returning to our problem, formula (6.68) shows that the successive application
of two Lorentz boosts in the same direction is also a Lorentz boost. Note that the
rapidity does not obey the rule of relativistic transformation of coordinates and time.

Problem 3. A particle moves with respect to the inertial frame S′ with the constant
velocity v′ that makes an angle θ′ with Ox ≡ O ′x ′. Determine the angle θ between
the trajectory of the particle and Ox ≡ O ′x ′ in the inertial frame S.

Solution. Without any loss of generality, we can study the motion of the particle
in the xy-plane (Fig. 6.17). The components of the velocity of the particle in the two
frames are

vx = v cos θ, vy = v sin θ (S),

v′
x = v′ cos θ′, v′

y = v′ sin θ′ (S′).

But

vx = v′
x + V

1 + V
c2 v

′
x

, vy = v′
y

Γ
(
1 + V

c2 v
′
x

) ,
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Fig. 6.17 A particle moving
with the constant velocity v′
that makes an angle θ′ with
Ox ≡ O ′x ′.

which gives

tan θ = vy

vx
= v′

y

Γ (v′
x + V )

= 1

Γ

sin θ′

cos θ′ + V
v′

,

tan θ′ = 1

Γ

sin θ

cos θ − V
v

. (6.69)

Then

cos θ = 1√
1 + tan2 θ

= cos θ′ + V
c

1 + V
c cos θ′ , (6.70)

which is the formula expressing the relativistic Doppler effect (6.51).
We also have

sin θ′ = tan θ′
√
1 + tan2 θ′ =

√
1 − V 2

c2 sin θ

1 − V
c cos θ

. (6.71)

If V
c � 1, we may take Γ ≈ 1 and write

sin θ′ � sin θ

(
1 − V

c
cos θ

)−1

� sin θ + V

c
sin θ cos θ,

or

2 sin
θ′ − θ

2
cos

θ′ + θ

2
= V

c
sin θ cos θ. (6.72)

Since θ′ � θ, one can approximate θ′ + θ = 2θ. Denoting θ′ − θ = α, we also realize
that α is very small, so that we may take sinα/2 ≈ α/2, and (6.72) becomes

α � V

c
sin θ. (6.73)
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If the light is coming from an object situated at the zenith of the observer (θ = π/2),
we finally arrive at the formula for the aberration of light,

α � V

c
.

Problem 4. Maxwell’s equations are covariant under the Lorentz transformation
of frames (6.37). Find the transformation properties of the electromagnetic field
vectors E and B, in vacuum.

Solution. Following Einstein, let us use Maxwell’s source-free equations

∂B
∂t

= −∇ × E, ∇ · B = 0. (6.74)

If the motion of the inertial frame takes place along the Ox ≡ O ′x ′ axis, then

∂

∂z
= ∂

∂z′ ,
∂

∂y
= ∂

∂y′ ,

and so, in the frame S′, we can write

∂B ′
x

∂t ′ = ∂E ′
y

∂z
− ∂E ′

z

∂y
,

∂B ′
y

∂t ′ = ∂E ′
z

∂x ′ − ∂E ′
x

∂z
, (6.75)

∂B ′
z

∂t ′ = ∂E ′
x

∂y
− ∂E ′

y

∂x ′ .

Since E′, B′ are functions of x ′, t ′, we can use the operators (6.62) and (6.64) to
re-write (6.75), that is

Γ V
∂B ′

x

∂x
+ Γ

∂B ′
x

∂t
= ∂E ′

y

∂z
− ∂E ′

z

∂y
,

Γ V
∂B ′

y

∂x
+ Γ

∂B ′
y

∂t
= Γ

∂E ′
z

∂x
+ V

c2
Γ

∂E ′
z

∂t
− ∂E ′

x

∂z
, (6.76)

Γ V
∂B ′

z

∂x
+ Γ

∂B ′
z

∂t
= ∂E ′

x

∂y
− Γ

∂E ′
y

∂x
− V

c2
Γ

∂E ′
y

∂t
.

Grouping the terms in the last two equations (6.76), we find

∂

∂t

[
Γ

(
B ′

y − V

c2
E ′

z

)]
= ∂

∂x
[Γ (E ′

z − V B ′
y)] − ∂E ′

x

∂z
,

∂

∂t

[
Γ

(
B ′

z + V

c2
E ′

y

)]
= ∂E ′

x

∂y
− ∂

∂x
[Γ (E ′

y + V B ′
z)]. (6.77)
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Equations (6.77) are covariant with respect to Lorentz transformations, that is they
keep their form (6.75)2,3, if the field components satisfy the following relations

Ex = E ′
x ,

Ey = Γ (E ′
y + V B ′

z),

Ez = Γ (E ′
z − V B ′

y), (6.78)

By = Γ

(
B ′

y − V

c2
E ′

z

)
,

Bz = Γ

(
B ′

z + V

c2
E ′

y

)
.

Replacing V by− V , andmoving the “primed” index to the “unprimed” components,
we also have the inverse transformations:

E ′
x = Ex ,

E ′
y = Γ (Ey − V Bz),

E ′
z = Γ (Ez + V By), (6.79)

B ′
y = Γ

(
By + V

c2
Ez

)
,

B ′
z = Γ

(
Bz − V

c2
Ey

)
.

Introducing these results into (6.76)1 and conveniently grouping the terms, we find

∂B ′
x

∂t
= V

(
∂B ′

x

∂x
+ ∂By

∂y
+ ∂Bz

∂z

)
= ∂Ey

∂z
− ∂Ez

∂y
.

Maxwell’s equation ∇ · B = 0 keeps its form if we take

B ′
x = Bx . (6.80)

This relation, together with (6.79), or (6.78), give the whole picture of the transfor-
mation relations for the field components. One observes that the field components
oriented along the direction of motion of frames do not change, while the compo-
nents orthogonal to this direction change according to the above formulas. These
formulas can synthetically be written as

E′‖ = E‖,
E′⊥ = Γ (E + V × B)⊥,

B′‖ = B‖, (6.81)

B′⊥ = Γ

(
B − 1

c2
V × E

)

⊥
.



6.4 Solved Problems 373

To summarize, Maxwell’s source-free equations

Bi,t + εi jk Ek, j = 0, i, j, k = 1, 2, 3 (6.82)

are covariant if the space coordinate and time obey the Lorentz transformation (6.37),
while the field components E, B transform according to (6.81). The reader is invited
to resume the calculation forMaxwell’s equationswith sources (taking j = 0, ρ = 0),
and show that the result is the same.

In case of small velocities, V � c, one can approximate

E′ � E + V × B,

B′ � B. (6.83)

Problem 5. Show that the generalized Lorentz transformations (6.43) can be
derived by three successive proper space-time transformations.

Solution. Let us consider the inertial frames S and S′, V being their relative
velocity. Without loss of generality, we may assume that V is situated in the x Oy-
plane (see Fig. 6.18). The transition from S to S′ can be performed in three steps:

(i) A counterclockwise rotation of angle θ, in the x Oy-plane, until the x-axis
becomes parallel to O O ′. By this transition one passes from S(Oxyzt) to
S1(Ox1y1z1t1) ≡ S1(Ox1y1zt). The transformation relations are

Fig. 6.18 Transition from S to S′ in three steps (Problem 5).
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x1 = x cos θ + y sin θ,

y1 = − x sin θ + y cos θ,

z1 = z, (6.84)

t1 = t.

(ii) A Lorentz boost, along the x1-axis, until O coincides with O ′, and the frame
S1 becomes S′

1(O ′x ′
1y′

1z′
1t

′
1) ≡ S′

1(O ′x ′
1y1z1t ′

1). This transformation is

x ′
1 = Γ (x1 − V t1),

y′
1 = y1,

z′
1 = z1, (6.85)

t ′
1 = Γ

(
t1 − V

c2
x1

)
.

(iii) The last transformation is a clockwise rotation of angle − θ about the x ′-axis,
until S′

1 coincides with S′. This transformation is given by

x ′ = x ′
1 cos θ − y′

1 sin θ,

y′ = − x ′
1 sin θ + y′

1 cos θ,

z′ = z′
1, (6.86)

t ′ = t ′
1.

Introducing (6.84) into (6.85), and the result into (6.86), we find

x ′ = [
1 + (Γ − 1) cos2 θ

]
x + (Γ − 1)y sin θ cos θ − V Γ t cos θ,

y′ = (Γ − 1)x sin θ cos θ + [
1 + (Γ − 1) sin2 θ

]
y − V Γ t sin θ,

z′ = z, (6.87)

t ′ = − V

c2
Γ x cos θ − V

c2
Γ y sin θ + Γ t.

These relations can be also obtained by taking the matrix product

X ′ = R1B R2 X = A X, (6.88)

where

X =

⎛

⎜⎜⎝

x
y
z
t

⎞

⎟⎟⎠ , X ′ =

⎛

⎜⎜⎝

x ′
y′
z′
t ′

⎞

⎟⎟⎠ , R1 =

⎛

⎜⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ ,
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B =

⎛

⎜⎜⎝

Γ 0 0 −V Γ

0 1 0 0
0 0 1 0

− V
c2 Γ 0 0 Γ

⎞

⎟⎟⎠ , R2 =

⎛

⎜⎜⎝

cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ .

Let us now return to (6.87) and observe that

r · V = xVx + yVy = V (x cos θ + y sin θ),

that is

x cos θ + y sin θ = 1

V
r · V = r · v0,

where v0 is the unit vector of V. Then we can write (6.87) as follows

x ′ = x + (Γ − 1)(r · v0) cos θ − V Γ t cos θ,

y′ = y + (Γ − 1)(r · v0) sin θ − V Γ t sin θ,

z′ = z, (6.89)

t ′ = Γ

[
t − V

c2
(r · v0)

]
.

If we nowmultiply relations (6.89) by the unit vectors of the axes x ′, y′, and z′, which
are the same as those of the axes x, y, and z (the frames are inertial), we arrive at the
desired result (see (6.43)):

r′ = r + (Γ − 1)(r · v0)v0 − ΓVt,

t ′ = Γ

[
t − V

c2
(r · v0)

]
.

In short, we proved that a boost in an arbitrary direction can be obtained by rotating
first the coordinates to align one coordinate axis of each reference system with the
relative velocity of the system, followed by a boost in that direction, and then rotating
the coordinates back.

6.5 Proposed Problems

1. Show that two Lorentz boosts performed with non-parallel velocities are not
commutative, but they are commutative if the velocities are parallel.

2. A bar of length l0 makes the angle ϕ0 with respect to the direction of motion of
two inertial reference frames S and S′. Taking one of these frames as a proper
frame, determine the length of the bar in the other frame.
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3. Show that if two velocities v1 and v2 have the same modulus, but are not parallel
in the inertial frame S, they do not have the samemodulus in the frame S′ (except
for the case v1x = v2x ).

4. Using the result of the solved problem (4), show that the expressions E · B and
E2 − c2B2 are invariant under the Lorentz transformations (6.37). Show that,
except for the case when E and B are orthogonal, one can find a reference frame
in which E and B are parallel.

5. Let S and S′ be two inertial reference frames. A particle is moving in a straight
line and uniformly with respect to S′, with the velocity v′ = (v′

x , v′
y, v′

z). Show
that the motion of the particle with respect to S is also uniform, and calculate
the components of its velocity v = (vx , vy, vz).

6. Show that the velocity of the particle given in the previous exercise satisfies the
following relation:

√
1 − v2

c2
= 1

Γ
(
1 + V

c2 v
′
x

)
√
1 − v′2

c2
.

7. Using the Lorentz transformation (6.43), find the vector formula of the acceler-
ation composition (6.59).

8. Show that two successive Lorentz boosts in different directions are equivalent to
the composition of a Lorentz boost and a three-dimensional space rotation. This
fact shows that the Lorentz boosts by themselves cannot form a group structure,
unless we include also the space rotations.

9. Two reference frames move uniformly with velocities v1 and v2 with respect to
a third, arbitrary reference frame. Show that their relative velocity v satisfies the
relation

v2 = (v1 − v2)2 − (v1 × v2)2

(1 − v1 · v2)2 .

10. The relative velocity between two inertial frames S and S′ is V. In S′ a bullet
with velocity v′ is shot under the angle θ′ with respect to the direction of V.
Determine the corresponding angle θ in S. What happens if the bullet is replaced
by a photon?



Chapter 7
Minkowski Space

The special theory of relativity was given a remarkable geometric interpretation by
Hermann Minkowski (1864–1909). While teaching at the Eidgenössische Polytech-
nische Schule of Zürich (today the ETH Zürich), one of his students was Albert
Einstein. Minkowski presented his ideas on Einstein’s theory in some papers and
lectures, between 1907 and 1909.

The connection between space and time in Einstein’s theory led Minkowski to
realize that the special theory of relativity could be represented on a four-dimensional
vector space, which is commonly denoted by M4. In Minkowski space, M4, an event
is represented by a point (“world point”), while the motion of a body is represented
by a succession of points, called world line.

Let (x1, y1, z1, t1) and (x2, y2, z2, t2) be the coordinates of two events in
Minkowski space, representing the emission and reception of a light signal. The light
flash travels the distance

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, with the speed c,

during the time interval t2 − t1. Then we can write

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 = c2 (t2 − t1)

2.

By analogy with the distance between two points in the three-dimensional Euclid-
ean space E3, one can define the relativistic interval between the two events by

s212 = c2 t212 − l212, (7.1)

where t12 = t2 − t1, l212 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. Remark that in the
case of light signals we have s12 = 0. If the two events are infinitely close, we may
write

ds2 = c2 dt2 − dx2 − dy2 − dz2 = c2dt2 − dl2. (7.2)

This symmetric bilinear form represents the Lorentzian inner product of vectors, as
well as the metric on Minkowski space. There are three possibilities for the interval
(7.2): ds2 > 0, if c dt > dl; ds2 < 0, if c dt < dl, and ds2 = 0, if c dt = dl (the
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case of a light beam). Such an inner product is called indefinite and sometimes we
speak about an indefinite metric.

Let us now show that the space-time interval is a relativistic invariantwith respect
to the Lorentz transformations (6.33). Suppose that (7.2) expresses the interval in
the reference frame S, while in S′ the interval is

ds ′2 = c2 dt ′2 − dx ′2 − dy′2 − dz′2 = c2dt ′2 − dl ′2. (7.3)

As the speed of light c is invariant in accordance with Einstein’s second postulate,
it follows that for light signals ds and ds ′ vanish, therefore they necessarily satisfy
the relation

ds2 = λ ds ′2. (7.4)

where λ is a factor of proportionality. Since the space is homogeneous and isotropic,
and the time passes uniformly, λ can depend neither on x, y, z, t , nor on the direction
of relative displacement between the frames S and S′. The last possible situation for
λ is to depend on the modulus of V. For three inertial frames S, S′, S′′, we would
then have

ds2 = λ(V ′) ds ′2 = λ(V ′′) ds ′′2,
ds ′2 = λ(Vrel) ds ′′2, (7.5)

where Vrel is the modulus of the relative velocity of frames. Thus,

λ(V ′′)
λ(V ′)

= λ(Vrel).

But if λ depends on V ′ and V ′′, it will also depend on the angle between them, which
contradicts our hypothesis. Consequently, λ could only be a constant (equal to 1,
according to (7.5)) and (7.4) goes to

ds2 = ds ′2. (7.6)

The reader could arrive at the same result by direct calculation, introducing (6.33)
into (7.6).

The invariant (7.2) is the fundamental invariant of special relativity.
One observes that

ds = c dt

√
1 − V 2

c2
= cdτ. (7.7)

Comparing (7.7)with (6.46),we conclude thatdτ is the infinitesimalproper duration.
Since the space-time interval ds is an invariant, it follows that the proper time is also
an invariant, which is an already known result.

The definition (7.2) of the space-time interval also shows that, if the world line lies
in xt-plane, then ds2 = c2dt2 − dx2, that is the square of the hypotenuse is equal

http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
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to the difference of the squares of the other two sides. Consequently, our space-time
is not Euclidean, but pseudo-Euclidean. In such a manifold the Euclidean geometry
has to be replaced by an adequate geometric representation. The essence of this new
geometry will be presented in the following.

7.1 Time-Like and Space-Like Intervals

Let

s212 = c2 t212 − l212,

s ′2
12 = c2 t ′2

12 − l ′212 (7.8)

be the finite intervals between two events determined from the inertial frames S and
S′, respectively. Since the space-time interval is an invariant, we may write

s212 = c2 t212 − l212 = c2 t ′2
12 − l ′212. (7.9)

Take l ′12 = 0, which means that the two events happen at the same place in S′. Then
(7.9) yields

s212 = c2 t212 − l212 = c2 t ′2
12 > 0. (7.10)

Such an interval is called time-like. Reciprocally, for any time-like interval one can
find an inertial reference frame in which the two events occur at the same place.

Take now t ′
12 = 0, meaning that the two events occur at the same time in S′. In

this case (7.9) leads to
s212 = c2 t212 − l212 = − l ′212 < 0. (7.11)

This type of interval is called space-like.
To give an intuitive geometric interpretation to time-like and space-like intervals,

let us consider an event placed at the coordinate origin O and analyze the relation
between the O–event and all the other possible events in space-time. Since in the xt-
plane the light signals are defined by s2 = c2t2 − x2 = 0 ⇒ x = ±c t , the straight
lines ac and bd in Fig. 7.1 represent two light signals propagating in opposite direc-
tions.

The rectilinear and uniform motion of a particle passing through the space-time
point (x = 0, t = 0) is represented by a straight linewhichmakes an angleα with the
ct-axis, such that tan α = v/c, where v is the speed of the particle. Since vmax = c,
it follows that α < αmax = π/4 (see Fig. 7.1). Consequently, the arbitrary motion of
a body, represented by the world line AB, can lie only inside the domains I and I I .
For any event inside the domain I ,

tan α = x

ct
= v

c
< 1 ⇒ c2t2 − x2 > 0,
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Fig. 7.1 The intersection of the light cone by the plane (x, ct).

which shows that the interval between O and any other event of the domain I is
time-like. In other words, the two events cannot be simultaneous in any frame S′.
Consequently, any event which belongs to the domain I happens after the event of
O in any inertial reference frame. For this reason, the domain I is called absolute
future.

In a similar way it can be shown that all events from the region I I happen before
the event O , in any reference frame S′. The domain I I is named absolute past.

Any event situated inside the domains I I I and I V satisfies the condition

tan α = x

ct
= v

c
> 1 ⇒ c2t2 − x2 < 0,

meaning that the interval between O and any other event from the regions I I I or
I V is space-like. We can always find by Lorentz transformations reference frames in
which any event of these domains can happen either simultaneously with the event
O , or precede O in time, or, finally, succeed in time the event O . These events are
called absolutely remotewith respect to O . They cannot affect and cannot be affected
by the event O , i.e. they are not in a causal relation with the event at O .

If we consider all three spatial dimensions, the figure becomes a cone in four
dimensions (a hypercone) called light cone (see Fig. 7.2, in which two of the three
spatial dimensions are depicted). The name comes from the fact that it can be imag-
ined as being generated by theworld line x = c t , representing a light signal. Because
signals and other causal influences cannot travel faster than light in relativity, the light
cone plays an essential role in defining the concept of causality. For a given event O ,
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Fig. 7.2 Schematical representation of a hypercone (only two of the three spatial axes are depicted).

the set of events that lie on (or inside) the past light cone of O would also be the set of
all events that could send a signal that would have time to reach O and influence it in
some way. Events that lie neither in the past nor in the future light cone of O cannot
influence or be influenced by O in special relativity. In other words, two events can
be causally related only if the world line which connects them lies inside the light
cone.

7.2 Various Representations of Minkowski Space

7.2.1 Euclidean-Complex Representation

Let us take the time coordinate as imaginary and denote τ = ict . The metric (7.2)
then becomes

− ds2 = dτ 2 + dx2 + dy2 + dz2, (7.12)

which is, formally, an Euclidean metric of an Euclidean-complex four dimensional
space.

We shall show that in this notation, the transformation from the reference frame
S to the frame S′ is given by a rotation of angle θ around O ≡ O ′ in the xτ -plane
(see Fig. 7.3). Let us consider an event P in the frames S(x Oτ) and S′(x ′O ′τ ′),
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Fig. 7.3 The transformation
from S to S′ is performed by
a rotation around O ≡ O ′ in
the xτ -plane.

respectively. Since O P = O ′ P , we have

x = x ′ cos θ − τ ′ sin θ,

τ = x ′ sin θ + τ ′ cos θ. (7.13)

In the frame S, the motion of O ′ is given by x ′ = 0, that is

x = − τ ′ sin θ,

τ = τ ′ cos θ,

which gives

tan θ = i
V

c
. (7.14)

The use of the trigonometric formulas

sin θ = tan θ√
1 + tan2 θ

= i
V

c
Γ, cos θ = 1√

1 + tan2 θ
= Γ (7.15)

and (7.13) yield

x = Γ (x ′ + V t ′), t = Γ

(
t ′ + V

c2
x ′
)

,

which is nothing else but the Lorentz transformation (6.37).
Thus, we can say that a Lorentz boost is equivalent to a rotation of imaginary

angle in the xτ -plane (or any plane made up by the time coordinate and one spatial
coordinate) of Minkowski space in the Euclidean complex representation. In other
words, in this representation ofMinkowski space, uniform and rectilinear translations
along the x-axis in the physical space can be represented as rotations in the xτ -plane,
with complex time coordinate τ .

http://dx.doi.org/10.1007/978-3-642-17381-3_6
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Fig. 7.4 Geometrical
interpretation of length
contraction.

Fig. 7.5 Geometrical
interpretation of time
dilation.

This representation allows one to give a suggestive geometrical interpretation to
the length contraction and time dilation. In Fig. 7.4, consider a bar AB at rest with
respect to the frame S′ (proper frame). Since the bar is rigidly connected to S′, the
world lines of the ends A and B are straight lines parallel to Oτ ′ passing through
A and B and intersecting Ox ′ in E and D. The length of the bar, determined by an
observer connected to S, is the segment AC delimited by AE and B D on a straight
line parallel to Ox . Then (7.15) and Fig. 7.4 lead to the relation (6.45):

AC

AB
= l

l0
= 1

cos θ
= 1

Γ
⇒ l = l0

Γ
< l0.

Similarly, a graphical representation of the time dilation can be given. Consider a
clock at rest in S′ (proper frame). In this case, since x ′ = const., the world line of the
clock is the straight line passing through A and B, where A and B are two arbitrary
events recorded by the clock (Fig. 7.5).

The time interval determined from S is the segment BC delimited by B D and
AE on a straight line parallel to Oτ :

http://dx.doi.org/10.1007/978-3-642-17381-3_6
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Elapsed time in S

Elapsed time in S′ = BC

B A
= Δt

Δt0
= cos θ = Γ ⇒ Δt = Γ Δ t0 > Δt0,

which is the known result (6.46).
Observation:
According to (7.15)2, for V �= 0 we would have cos θ = Γ > 1, which, taken

as such, is absurd. To make sense of this, we recall that the angle θ is imaginary,
therefore cos θ is not a trigonometric, but a hyperbolic function.

7.2.2 Hyperbolic Representation

Denote u = ct , by this choice assuming that the time coordinate is real. The metric
(7.2) is then

ds2 = du2 − dx2 − dy2 − dz2. (7.16)

The transformations which leave invariant the metric (7.16) are all space rotations,
together with the Lorentz transformations written as (see (6.66)):

x ′ = +x cosh α − u sinh α,

u′ = −x sinh α + u cosh α. (7.17)

Let us show that the transformation (7.17) can be obtained in a manner similar to
that shown in Sect. 7.2.1, but this time using a real angle. Taking θ = iα in (7.14),
we have

tan(iα) = i tanh α = i
V

c
⇒ tanh α = V

c
,

sin(iα) = i sinh α,

cos(iα) = cosh α,

τ = iu,

and (7.13) yield

x = x ′ cosh α + u′ sinh α,

u = x ′ sinh α + u′ cosh α,

which is the inverse of the Lorentz transformation (7.17). Therefore, to express the
Lorentz transformations by means of a real angle, it is necessary to use hyperbolic
functions.

Let us consider again the plane defined by the space coordinate x and the time
coordinate u = ct . In this plane, themetric is s2 = u2 − x2. Thismeans that the locus
of events characterized by the same interval (s = const.) with respect to O is the

http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
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Fig. 7.6 The hyperbolic
representation of Minkowski
space.

equilateral hyperbola u2 − x2 = const. Giving different values to the constant, one
obtains a family of equilateral hyperbolas, having as asymptotic lines the bisectors
of the quadrants of the coordinate system.

Consider the pair of equilateral hyperbolas

u2 − x2 = 1,

u2 − x2 = −1. (7.18)

Each hyperbola intersects only one coordinate axis. Hyperbola (7.18)1 intersects the
u-axis at the points x = ±1. We conclude that the segment O A in Fig. 7.6 is the unit
length in the frame S, and O B the unit duration in the same frame.

To draw the axes of the frame S′, we use the Lorentz transformations (6.37)written
in the variables x and u:

x ′ = Γ

(
x − V

c
u

)
,

u′ = Γ

(
u − V

c
x

)
. (7.19)

The equation of the x ′-axis is obtained by setting u′ = 0, which means u − V
c x = 0.

This is a straight line that makes with the x-axis the angle α, given by

tan α = u

x
= V

c
.

To draw the u′-axis we take x ′ = 0 in (7.19) and have

tan α = x

u
= V

c
,

http://dx.doi.org/10.1007/978-3-642-17381-3_6
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showing that between the u-axis and the u′-axis there is the same angle α. As a result
of Einstein’s second postulate, the angles x̂ Ou and x̂ ′Ou′ have the same bisector.

The invariance of the interval also leads to the covariance of the equations of the
hyperbolas:

u2 − x2 = u′2 − x ′2 = +1,
u2 − x2 = u′2 − x ′2 = −1.

It then follows that the segment O A′ is the unit length in the frame S′, and O B ′ is
the unit duration in the same frame.

Let us give a geometric illustration, in this representation, of the relativistic effects
of length contraction and time dilation. Separating the first quadrant of Fig. 7.6,
consider AO = 1 as being the unit length of a bar attached to the frame S. Since the
ends of the bar are fixed in S, the world lines of these points are straight lines parallel
to Ou, in this case Ou itself, and AA′′ (see Fig. 7.7). The hyperbola which passes
through A intersects the x ′-axis in A′, therefore O A′ = 1.

To ensure that an observer of S′ simultaneously determines the ends of the bar,
the world lines Ou and AA′′ must intersect the straight line u′ = const., for example
the x ′-axis (corresponding to u′ = 0). The length of the same bar, determined by
the observer of S′, therefore is O A′′ < O A′ = 1. The maximum length of the bar is
determined in the proper frame.

To represent the effect of time dilation, consider a clock at rest in S′, situated at
the origin O ≡ O ′. Its world line coincides with the u′-axis, therefore O B ′ is (as
previously defined) the unit duration in S′. But in S the points B ′ and B ′′ lie on the
same straight line u = const., therefore they are simultaneous. Since Ou is the world
line for the clock placed at O and attached to S, it follows that O B ′′ is the duration
determined by the observer from S, corresponding to the unit duration determined

Fig. 7.7 Geometrical
interpretation of length
contraction and time dilation
in the hyperbolic
representation of Minkowski
space.
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by the observer of S′. Figure7.7 shows that O B ′′ > O B = 1. In conclusion, the
minimum duration is that determined in the proper frame.

7.3 Four-Vectors

7.3.1 Euclidean-Complex Representation

The coordinates x, y, z, τ = ict of an event in Minkowski space can be consid-
ered as the components of a four-vector, called position four-vector. Denoting these
components by xμ, μ = 1, 2, 3, 4, we choose

x1 = x,

x2 = y,

x3 = z, (7.20)

x4 = ict.

With this notation, the metric (7.12) is written as

− ds2 = dxμdxμ, μ = 1, 2, 3, 4,

where we used Einstein’s summation convention. The Lorentz transformation (6.37)
becomes

x ′
1 = Γ

(
x1 + i

V

c
x4

)
,

x ′
2 = x2,

x ′
3 = x3, (7.21)

x ′
4 = Γ

(
− i

V

c
x1 + x4

)
,

or, in condensed form,

x ′
μ = aμν xν, μ, ν = 1, 2, 3, 4, (7.22)

where aμν are the elements of the matrix of the transformation x → x ′,

A =

⎛

⎜⎜⎝

Γ 0 0 i V
c

0 1 0 0
0 0 1 0

−i V
c 0 0 Γ

⎞

⎟⎟⎠ . (7.23)

http://dx.doi.org/10.1007/978-3-642-17381-3_6
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A system of quantities Vμ, μ = 1, 2, 3, 4 which, when changing the coordinate
system (S → S′), transform according to (7.22), that is

V ′
μ = aμνVν , μ, ν = 1, 2, 3, 4 (7.24)

form a four-vector. Minkowski space is a vector space.
The inverse of the Lorentz transformation (7.22) is the transformation

xμ = a′
μν x ′

ν ≡ aνμ x ′
ν , μ, ν = 0, 1, 2, 3, (7.25)

where aνμ are the elements of the matrix of the inverse transformation

A−1 =

⎛

⎜⎜⎝

Γ 0 0 −i V
c

0 1 0 0
0 0 1 0

i V
c 0 0 Γ

⎞

⎟⎟⎠ . (7.26)

From (7.22) and (7.25) we deduce that the transformation matrix A satisfies the
orthogonality condition (see Appendix A):

aμν aμλ = δνλ, μ, ν, λ = 1, 2, 3, 4. (7.27)

This shows that the Lorentz transformation (7.22) is an orthogonal linear transfor-
mation in Minkowski space, represented in the Euclidean-complex form.

The transformation (7.22) can also be expressed in the matrix form

X ′ = A X, (7.28)

where A = (aμν) stands for the matrix (7.23), while X and X ′ are the one-column
matrices

X =

⎛

⎜⎜⎝

x1
x2
x3
x4

⎞

⎟⎟⎠ , X ′ =

⎛

⎜⎜⎝

x ′
1

x ′
2

x ′
3

x ′
4

⎞

⎟⎟⎠ . (7.29)

The inverse of transformation (7.28) is then

X = A−1 X ′, (7.30)

where A−1 is the matrix (7.26) of the inverse transformation (7.25). Obviously,

A−1 A = A A−1 = I, (7.31)
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where I is the unit (or identity) 4 × 4 matrix. This relation can also be written as

aμνa′
νλ = δμλ. (7.32)

Multiplying (7.32) by aμρ and using (7.27), we arrive at

a′
ρλ = aλρ, i.e. A−1 = AT , (7.33)

hence the elements of the inverse transformation matrix are obtained by transposing
the elements of the direct transformation matrix. Clearly, the matrices (7.23) and
(7.26) satisfy the conditions (7.31)–(7.33).

7.3.2 Hyperbolic Representation

Starting with the metric in the hyperbolic representation of Minkowski space (7.16),
let us choose

x0 = ct,

x1 = x,

x2 = y, (7.34)

x3 = z,

as the components of the position four-vector xμ.
Unlike theEuclidean-complex representation,whichmakes nodifferencebetween

contravariant and covariant vectors (tensors), in hyperbolic representation the choice
(7.34) leads to the metric (see Appendix B):

ds2 = gμνdxμdxν = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2. (7.35)

The components of the metric tensor therefore are

gμν = diag (1, −1, −1, −1),

that is

gμν =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ . (7.36)

The Lorentz transformation (7.19) is then written as
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x ′0 = Γ

(
x0 − V

c
x1

)
,

x ′1 = Γ

(
− V

c
x0 + x1

)
,

x ′2 = x2, (7.37)

x ′3 = x3.

The inverse transformation is

x0 = Γ

(
x ′0 + V

c
x ′1

)
,

x1 = Γ

(
V

c
x ′0 + x ′1

)
,

x2 = x ′2, (7.38)

x3 = x ′3,

or, in a condensed form,

x ′μ = Λμ
ν xν,

xμ = Λ̄μ
ν x ′ν, (7.39)

where Λμ
ν and Λ̄μ

ν are the matrices of the transformations x → x ′ and x ′ → x ,
respectively (see Appendix B):

Λ = (Λμ
ν) =

(
∂x ′μ

∂xν

)
=

⎛

⎜⎜⎝

Γ − V
c Γ 0 0

− V
c Γ Γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ ,

Λ̄ = (Λ̄μ
ν) =

(
∂xμ

∂x ′ν

)
=

⎛

⎜⎜⎝

Γ + V
c Γ 0 0

+ V
c Γ Γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ .

These matrices satisfy the orthogonality condition

Λμ
νΛ̄

η
μ = δη

ν , (7.40)

as well as condition (7.31):

ΛΛ̄ = Λ̄Λ = ΛΛ−1 = Λ−1Λ = I. (7.41)
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Also,
[ detΛ]2 = 1 ⇒ detΛ = ±1. (7.42)

In the hyperbolic representation of Minkowski space, a contravariant four-vector
transforms according to the rule (7.39):

A′μ = Λμ
ν Aν,

Aμ = Λ̄μ
ν A′ν, (7.43)

while a covariant four-vector obeys the rule

B ′
μ = Λ̄ν

μ Bν,

Bμ = Λν
μ B ′

ν . (7.44)

In a similar way can be defined contravariant, covariant, and mixed four-tensors of
any order (see Appendix B).

Observation:
Sometimes it is convenient to choose x0 = t , in which case the components of

the metric tensor are

g00 = 1

c2
,

g00 = c2,

gii = gii = − 1 (no summation over i).

With this notation, the Lorentz transformation is written as

x ′0 = Γ

(
x0 − V

c2
x1

)
,

x ′1 = Γ
(−V x0 + x1) ,

x ′2 = x2, (7.45)

x ′3 = x3.

Such a representation is used, as we shall see, in the general theory of relativity.
As far as we are concerned, while working in Minkowski space we shall use

the choice x0 = ct , as being the most commonly found in the literature. Here and
hereafter, the contravariant space-like components of four-vectors will be considered
as components of the usual vectors (r for xi , p for pi , etc.).

7.3.3 Lorentz Group

We consider the Minkowski space M4 with x0 = ct, x1 = x, x2 = y, x3 = z and
the metric
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ds2 = gμνdxμdxν,

where gμν = diag(+1,−1,−1,−1) is the metric tensor. The set of transformations

xμ → x ′μ = Λμ
νxν, μ, ν = 0, 1, 2, 3, (7.46)

or, in matrix form,
x ′ = Λx,

which leave invariant the interval (or, equivalently, the norm of the four-vectors) in
Minkowski space form a group, called the Lorentz group. The transformations (7.46)
represent “rotations” in the four-dimensional space, i.e. usual three-dimensional rota-
tions and Lorentz boosts (7.37). In the following, by Lorentz transformation we shall
understand any element of the Lorentz group.

Besides the Lorentz transformations, the space-time translations

xμ → x ′μ = xμ + aμ, μ, ν = 0, 1, 2, 3, (7.47)

also leave invariant the interval. The translations form an Abelian group.
Thus, an isometry of the interval in Minkowski space is written in general as

xμ → x ′μ = Λμ
νxν + aμ, μ, ν = 0, 1, 2, 3, (7.48)

or in matrix form
x ′ = Λx + a.

where by x, x ′, and a we denoted the corresponding four-vectors in one-column
matrix form. The group of transformations (7.48) is called the Poincaré group, or the
inhomogeneous Lorentz group. The general concept of relativistic invariance means
invariance under Poincaré transformations. The Poincaré group plays a fundamental
role in the relativistic theory of quantized fields, where particle states are constructed
as irreducible unitary representations of this group. This classification of particles
was introduced by Eugene Paul Wigner (1902–1995), who received the Noble Prize
in Physics in 1963 for this seminal theory.

The invariance of the norm of four-vectors under a Lorentz transformation is
written as

x ′
μx ′μ = xνxν, μ, ν = 0, 1, 2, 3,

or
x ′2 = x2,

where
x ′2 = gμνx ′μx ′ν = (Λx)T G(Λx) = xT (ΛT GΛ)x

and
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x2 = gμνxμxν = xT Gx,

with the notation for the metric tensor G = (gμν). We have thus obtained that

G = ΛT GΛ. (7.49)

From (7.49) it follows that det G = det G (detΛ)2, which, recalling that det G �= 0,
implies

detΛ = ±1. (7.50)

In components, relation (7.49) reads

gλρ = Λμ
λgμνΛ

ν
ρ.

Let λ = ρ = 0. Then

g00 = Λμ
0gμνΛ

ν
0 = (Λ0

0)
2 − (Λ1

0)
2 − (Λ2

0)
2 − (Λ3

0)
2,

that is
(Λ0

0)
2 = 1 + (Λ1

0)
2 + (Λ2

0)
2 + (Λ3

0)
2,

leading to
(Λ0

0)
2 ≥ 1.

From here we infer that |Λ0
0| ≥ 1, such that

Λ0
0 ≥ +1 or Λ0

0 ≤ −1. (7.51)

Thus, the Lorentz group can be written as

L = {
Λ ∈ GL(4, R) | ΛT GΛ = G, detΛ = ±1, |Λ0

0| ≥ 1
}
,

where GL(4, R) is the general linear group of degree 4, which represents the set
of the 4 × 4 real invertible matrices, together with the operation of ordinary matrix
multiplication as the group law.

The conditions detΛ = ±1 and |Λ0
0| ≥ 1 lead to a division of the Lorentz group

into four subsets. We introduce the following notions and notations: proper Lorentz
transformations, denoted by L+, are the subset of Lorentz transformations with
detΛ = +1; improper Lorentz transformations, denoted by L−, are the transforma-
tions with detΛ = −1; orthochronous Lorentz transformations, denoted by L↑, is
the subset of Lorentz transformations with Λ0

0 ≥ 1; antichronous Lorentz trans-
formations, denoted by L↓, are characterized by Λ0

0 ≤ −1. The proper Lorentz
transformations preserve the orientation of spatial axes, while the orthochronous
transformations preserve the direction of time. Having settled these definitions, the
Lorentz group is divided into the following classes:
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1) L↑
+ = {

Λ ∈ L | detΛ = +1, Λ0
0 ≥ +1

} ;

2) L↓
+ = {

Λ ∈ L | detΛ = +1, Λ0
0 ≤ −1

} ;

3) L↑
− = {

Λ ∈ L | detΛ = −1, Λ0
0 ≥ +1

} ;

4) L↓
− = {

Λ ∈ L | detΛ = −1, Λ0
0 ≤ −1

}
.

The unit matrix, which is the unit of the group, is included among the first class, of
proper orthochronous Lorentz transformations. As a result, this subset is the only one
which forms a subgroup of the Lorentz group. In other words, the proper orthochro-
nous transformations are those Lorentz transformations which are continuously con-
nected with the unit transformation.

Observations:

(a) For the proper Lorentz transformations the condition detΛ = +1 is necessary,
but not sufficient, as there exist improper Lorentz transformations for which
detΛ = +1. An example is the space-time inversion described by Λ = −I ,
which is an improper transformation, but still satisfies detΛ = +1;

(b) For the improper Lorentz transformations, the condition detΛ = −1 is suffi-
cient, but not necessary. The fact that the condition detΛ = ±1 does not select
unequivocally the proper and improper transformations is due to the indefi-
nite metric on Minkowski space. For example, the space inversion Λ = G =
diag(+1,−1,−1,−1) has detΛ = −1, while the space-time inversionΛ = −I
= diag(−1,−1,−1,−1) has detΛ = +1, but both are improper Lorentz trans-
formations.

Infinitesimal Lorentz Transformations
An infinitesimal Lorentz transformation is written as

xα → x ′α = xα + ωα
β xβ (7.52)

meaning that
Λα

β = δα
β + ωα

β, (7.53)
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withO(ω2) = 0. The quantities ωα
β are the infinitesimal parameters of the transfor-

mation. From gαβ = Λμ
αgμνΛ

ν
β it follows that

gαβ = (δμ
α + ωμ

α) gμν

(
δν

β + ων
β

) = gαβ + ωβα + ωαβ.

Consequently,
ωβα + ωαβ = 0, (7.54)

which shows that ωαβ are antisymmetric quantities. Let us consider the group of
proper orthochronous Lorentz transformations, L↑

+. This set forms a Lie group
structure, whose elements in exponential parametrization are written as

Λ = exp

(
− i

2
ωαβ Lαβ

)
, (7.55)

where Lαβ are the generators of the group, which are 4 × 4 matrices.1

One can easily see that the generators are antisymmetric, since

ωαβ Lαβ = 1

2

(
ωαβ Lαβ + ωαβ Lαβ

) = 1

2
ωαβ

(
Lαβ − Lβα

)
,

leading to

Lαβ = 1

2

(
Lαβ − Lβα

) ⇒ Lαβ = −Lβα.

Due to this property, which is the only condition on the generators, instead of sixteen
generators on the four-dimensional space-time, there are only six. The six distinct
components of ωαβ represent the parameters of the Lorentz group. Physically, three
of these parameters are the angles necessary for the unequivocal determination of
the relative orientation of the coordinate axes of the inertial frames S and S′ (for
example, Euler’s angles), while the other three parameters are the three components
of the relative velocity V between the two inertial frames.

In the case of infinitesimal transformations, relation (7.55) becomes

Λ = I − i

2
ωμν Lμν, (7.57)

or, in components,

1The exponential function with a matrix as an argument is a formal way of writing. The actual
meaning of eM , where M is a n × n matrix, is the power series expansion

eM = I + M + 1

2! M2 + 1

3! M3 + . . . =
∞∑

k=0

1

k! Mk , (7.56)

where I represents the n × n unit matrix.
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Λα
β = δα

β − i

2
ωμν

(
Lμν

)α
β
. (7.58)

Comparing the latter equation with Λα
β = δα

β + ωα
β , we obtain

ωα
β = − i

2
ωμν

(
Lμν

)α
β
,

leading to (
Lμν

)α
β

= i
(
gνβδα

μ − gμβδα
ν

)
, (7.59)

since

ωα
β = gγβωαγ = 1

2
gγβωαγ + 1

2
gγβωαγ = 1

2
δα

μgνβωμν + 1

2
δα

νgμβωνμ

= 1

2
ωμν

(
gνβδα

μ − gμβδα
ν

)
.

The Lorentz group has thus six generators: L01, L02, L03, L12, L23, and L31.
The group algebra is given by the commutator of the generators, which reads

[
Lαβ, Lμν

] = −i
(
gαμLβν + gβν Lαμ − gαν Lβμ − gβμLαν

)
. (7.60)

Each of the tensor generators can be put into correspondence with a vector through
the relations Li j = εi jk Jk and L0i = Ki , α, β = 0, 1, 2, 3; i, j, k = 1, 2, 3. The gen-
erators Ki , i = 1, 2, 3 represent the boosts along the three space directions, while
the vectors Jk , k = 1, 2, 3 generate the space rotations. The generators in the vector
form can be shown to satisfy the commutation relations

[
Ji , Jj

] = iεi jk Jk,[
Ji , K j

] = iεi jl Kl , (7.61)[
Ki , K j

] = −iεi jk Jk .

The expressions of the six generators of the Lorentz group are:

J1 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 +i 0

⎞

⎟⎟⎠ , J2 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 +i
0 0 0 0
0 −i 0 0

⎞

⎟⎟⎠ , J3 =

⎛

⎜⎜⎝

0 0 0 0
0 0 −i 0
0 +i 0 0
0 0 0 0

⎞

⎟⎟⎠ ,

K1 =

⎛

⎜⎜⎝

0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , K2 =

⎛

⎜⎜⎝

0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , K3 =

⎛

⎜⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

⎞

⎟⎟⎠ . (7.62)
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The first of the commutation relations (7.61) represents the commutator of the
components of the angular momentum,2 the second relation (7.61) shows that the set
Ki , i = 1, 2, 3, transforms like a vector under the action of rotations, while the third
commutator (7.61) shows that in general the Lorentz boosts are not commuting.

Introducing the combination of generators

Si = 1

2
(Ji + i Ki ) ,

Ti = 1

2
(Ji − i Ki ) , (7.63)

the commutation relations (7.61) become

[
Si , Sj

] = i εi jk Sk,[
Ti , Tj

] = i εi jk Tk,[
Si , Tj

] = 0.

Clearly, the combinations Si , i = 1, 2, 3 generate one SU (2) group and the combi-
nations Ti , i = 1, 2, 3 generate another, such that the Lorentz group can be written
as the direct product SU (2)S × SU (2)T , where the subscripts refer to the symbols
given to the generators. This fact is important in finding the finite dimensional irre-
ducible representations of the Lorentz group, but this issue is beyond the scope of
our discussion.

7.4 Relativistic Kinematics

Kinematics is the study of the possible motions of mechanical systems, without
considering the cause of motion, i.e. the force. Kinematics is concerned with how
the body moves on its trajectory; in short, one must know the velocity and the
acceleration of the body.

The non-relativistic definitions guide us in the relativistic case as well. However,
if we take the derivative of the position vector with respect to time, neither of them
have definite transformation properties under the Lorentz transformations. In order
to produce a sensible definition, we should take the derivative of the position four-
vector with respect to a scalar (i.e. a Lorentz invariant), such that the result is a
four-vector. In relativistic kinematics, the velocity four-vector and the acceleration
four-vector are both defined by means of the invariants ds (the interval) or/and dτ

(the proper time). Recalling that

2The angular momentum conservation is obtained, through Noether’s theorem, from the invariance
of the action with respect to three-dimensional rotations (see Sect. 8.7.3).

http://dx.doi.org/10.1007/978-3-642-17381-3_8
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ds = c dt

√
1 − v2

c2
= c

γ
dt = c dτ, (7.64)

one defines the velocity four-vector of a particle as

uμ = dxμ

ds
= γ

c

dxμ

dt
, or uμ = dxμ

dτ
= γ

dxμ

dt
= cuμ. (7.65)

Remark that the components of uμ are dimensionless, while uμ have dimension
of velocity. We shall mostly use the first definition. The velocity of the particle
with respect to the frame S has the components vi = dxi/dt and the corresponding
Lorentz factor is γ = (1 − v2/c2)−1/2. If themotion is observed from another inertial
frame S′, moving with respect to the frame S with the velocityV, the transformation
between the two frames will involve as usual the factor Γ = (1 − V 2/c2)−1/2.

In the hyperbolic representation of the Minkowski space, the components of the
velocity four-vector are, respectively

u0 = γ

c

dx0

dt
= γ,

ui = γ

c

dxi

dt
= γ

c
vi , i = 1, 2, 3 , (7.66)

i.e.
uμ = γ

(
1,

v
c

)
.

The covariant components are

uμ = gμνuν = γ
(
1,−v

c

)
. (7.67)

The last two relations yield

uμuμ = u0 u0 + ui ui = γ 2 − v2

c2
γ 2 = 1, μ = 0, 1, 2, 3 ; i = 1, 2, 3 , (7.68)

therefore the components of the velocity four-vector are not independent, but must
satisfy (7.68). Equation (7.68) also shows that uμ is a unit four-vector tangent to the
world line of the moving particle.

The acceleration four-vector can be defined either by

aμ = duμ

ds
= γ

c

duμ

dt
(7.69)

with the components
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a0 = a0 = γ

c

dγ

dt
,

ai = −ai = γ

c2
d

dt

(
γ vi

)
, (7.70)

or by

aμ = duμ

dτ
= γ

d

dt

(
γ

dxμ

dt

)
= γ 2 d2xμ

dt2
+ 1

2

dγ 2

dt

dxμ

dt
.

Note that

aμ uμ = a0 u0 + ai ui = γ 2

c

dγ

dt
− γ 2

c3

(
v2 dγ

dt
+ γ vi dvi

dt

)
= 0, (7.71)

which means that the velocity and the acceleration four-vectors are orthogonal.

7.5 Relativistic Dynamics in Three-Dimensional Approach

7.5.1 Notions, Quantities, and Fundamental Relations

Using the analytical mechanics formalism, let us first define some fundamental quan-
tities of relativistic dynamics: momentum, energy, mass, force, etc.

Consider a free particle of proper mass (also called rest mass) m0. Let us find the
expression of the action for a free relativistic particle. As the action integral should
not depend on the choice of the inertial reference frame, it means that the action has
to be Lorentz invariant, i.e. to transform like a scalar under Lorentz transformations.
Moreover, since the equations of motion must be differential equations maximum of
second order, it follows that the integrand should be a differential expression of the
first order. The only quantity which describes the free particle motion and satisfies
the above conditions is the interval ds. Therefore we shall take the action to be the
integral over the interval, multiplied by a positive constant α which takes care of the
dimensionality and has to be determined. In this case, the principle of Maupertuis is
written as

δS = −α δ

∫ b

a
ds = 0, (7.72)

where a and b are two events. The minus sign is necessary because the variational
problem shows that in the case of the free particle, the straight trajectory is the
longest worldline between two events. By taking the negative of the interval under
the integral, one insures that the maximum is transformed into a minimum. We
can re-write the action in a more familiar manner, as integral over time, using the
relation (7.64) and considering that the integration limits a and b correspond to the
time moments t1 and t2, respectively:
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S = −α

∫ t2

t1

√
1 − v2

c2
dt = 0, (7.73)

For small velocities (v � c), we may take

√
1 − v2

c2
� 1 − 1

2

v2

c2
,

which yields

S = −αc
∫ t2

t1

dt + α

2c

∫ t2

t1

v2dt. (7.74)

The first term of (7.74) does not affect the form of the equations of motion and may
be omitted. Comparing (7.74) with the action of a free non-relativistic particle,

S =
∫

Ldt =
∫

T dt = 1

2
m0

∫
v2dt, (7.75)

it follows that α = m0c and the action (7.73) becomes

S = −m0c2
∫ t2

t1

√
1 − v2

c2
dt. (7.76)

The Lagrangian of the free particle therefore is

L = −m0c2
√
1 − v2

c2
= − m0c2

γ
. (7.77)

The relativistic linearmomentumof the particle is obtainedby the usual procedure:

pi = ∂L

∂vi
= m0γ vi , i = 1, 2, 3 , or p = m0γ v. (7.78)

For v � c, one retrieves the classical formula p = m0v.
Tofind the relativistic energyof the particlewe shall use theHamiltonian definition

H = pi q̇i − L , where q̇ i = vi are the generalized velocities. In case of conservative
systems, the Hamiltonian is the total energy E of the system, so that

E = pivi − L = m0γ vivi + m0c2

γ
= m0γ v2 + m0c2

γ
,

that is,
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E = m0γ c2. (7.79)

For small velocities (v � c), the series expansion of γ leads to

E = m0c2
(
1 − v2

c2

)−1/2

� m0c2
(
1 + 1

2

v2

c2

)
,

or

E = m0c2 + 1

2
m0v

2 = E0 + T . (7.80)

The relativistic kinetic energy, T , is no longer defined as T = 1
2mv2, like in the non-

relativistic case (even if m is the so-called motion mass, m = m0γ ), but it is defined
as the difference between the total energy, E , and the rest energy, or proper energy
E0 = m0c2, which results from (7.79) for v = 0 (i.e. γ = 1):

T = E − E0 = (γ − 1)m0c2. (7.81)

Thus, Eq. (7.79) shows that the total energy of the particle is different from zero
even if the particle is at rest (v = 0). The notion of rest energy is valid not only for
particles, but also for macroscopic bodies, in which case m0 is the mass of the whole
body.

Unlike classical mechanics, in relativistic mechanics m0c2 does not mean the
sum of the rest energies of the constitutive particles, since m0c2 also contains the
interaction energy of particles. Therefore, we cannot write m0 = ∑N

i=1 m0i , where
N is the total number of constitutive particles, meaning that in relativistic mechanics
the mass conservation law is not valid. The valid law is the law of conservation of
total energy.

Using (7.78) and (7.79), one finds the following relation between the energy,mass,
and velocity of a free particle:

p = E

c2
v . (7.82)

According to (7.78) and (7.79), if v = c, the energy andmomentum of the particle
become infinite, showing that amassive particle (m0 �= 0) cannotmovewith the speed
of light in vacuum. On the other hand, if m0 = 0 and v < c, the momentum and the
energy of the particle vanish. To clarify the special case of a particle with v = c and
m0 = 0, let us square (7.78) and (7.79), then subtract term by term. The result is

E2

c2
= p2 + m2

0c2. (7.83)

A particlewith velocity v = c has, according to (7.82), themomentum |p| = E/c; by
virtue of (7.83), this means m0 = 0. Conversely, a particle with m0 = 0 has, because



402 7 Minkowski Space

of (7.83), the momentum |p| = E/c, in which case, according to (7.82), the velocity
of the particle equals c. Consequently, massless particles (m0 = 0) move in vacuum
with the speed of light c.

Particles with E � m0c2 are called ultrarelativistic (the acronym is UR), while
those for which E � m0c2 are called non-relativistic (the acronym being NR).

The reader is invited to show that between the time derivatives of E and p there
exists the following relation:

d E

dt
= v · dp

dt
, (7.84)

which is very useful in many applications.

7.5.2 Variation of Mass with Velocity

By analogy with Newtonian mechanics, the force is defined as the time derivative of
the relativistic momentum

FN = dp
dt

= d

dt
(m0γ v), (7.85)

where the upper index N stands for ”Newtonian”. In classicalmechanics, this relation
(with γ = 1) serves to give an unequivocal definition of mass, as being the ratio
between the magnitude of the force acting on a body, and the magnitude of the
acceleration which the body acquires under the action of the force. In relativistic
mechanics, the definition of mass by means of (7.85) is not unequivocal, as we shall
see shortly.

Let us calculate the derivative in (7.85):

FN = m0v
dγ

dt
+ m0γ

dv
dt

= m0γ
3 v

c2

(
v · dv

dt

)
+ m0γ

dv
dt

,

and take the xi -component

F N
i = m0γ

3 vi

c2

(
vk

dvk

dt

)
+ m0γ

dvi

dt
.

Denoting aN = dv/dt , we have

F N
i = m0γ

3 vi

c2
(
vkaN

k

) + m0γ aN
i

= m0γ
3aN

k

[
1

c2
vivk +

(
1 − v2

c2

)
δik

]
, (7.86)

or, in short,
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F N
i = mikaN

k , (7.87)

where

mik = m0γ
3

[
1

c2
vivk +

(
1 − v2

c2

)
δik

]
(7.88)

is the mass tensor.
Further, let us multiply (7.86) by vi . We obtain

F N
i vi = m0γ

3aN
k vk,

that is, if FN ⊥ v, then aN ⊥ v as well. We can distinguish two limit cases:

(a) FN ⊥ v. Since aN · v = 0, (7.86) reduces to

F N
i = m0γ aN

i ,

so that ∣∣FN
∣∣

∣∣aN
∣∣ = m0γ = m0√

1 − v2

c2

= mt , (7.89)

which is called transverse mass.
(b) FN ‖ v. Taking FN = λv, one obtains

F N
i vi = λv2 = m0γ

3aN
k vk

and (7.86) yields

F N
i = λ

c2
v2vi + m0γ aN

i = v2

c2
F N

i + m0γ aN
i ,

or
F N

i = m0γ
3aN

i ,

hence ∣∣FN
∣∣

∣∣aN
∣∣ = m0γ

3 = ml, (7.90)

called longitudinal mass.

This result is confusing, since it shows that the mass in not uniquely determined,
but depends on the values of the angles between force and velocity. This conclusion
is not confirmed by experiments, even if by relativistic mass one usually understands
the transverse mass. Even Einstein, in 1949, noticed: “It is not good to introduce the
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concept of the mass M = m/
√
1 − v2/c2 (Einstein’s notation) of a moving body for

which no clear definition can be given. It is better to introduce no other mass concept
than the rest mass. Instead of introducing M it is better to mention the expression for
the momentum and energy of a body in motion”. (The concepts of longitudinal and
transverse mass of the electron were introduced by Lorentz, in 1904, in his paper
“Electromagnetic Phenomena in a System Moving with Any Velocity Less than That
of Light”, in Proceedings of the Royal Academy of Amsterdam 6 (1904): 809.)

We should mention that one can define a notion of relativistic mass as the ratio
between the moduli of momentum and velocity,

m = m0γ = |p|
|v| . (7.91)

The so-called “transverse mass” is traditionally named relativistic mass, and the
experiments validate relation (7.91); still, in our further discussions we shall avoid
the use of this concept. Unless otherwise specified, by mass we shall always mean
the invariant mass of the body or particle.

7.5.3 Relationship Between Mass and Energy

According to (7.79), each body of mass m0 possesses m0c2 of “rest energy”, which
potentially is available for conversion into other forms of energy. Such a conversion
occurs in ordinary chemical reactions, but much larger conversions occur in nuclear
reactions. If in a process appears a variationΔm of themass, thiswill be accompanied
by a variation of energy given by

ΔE = c2Δm. (7.92)

Einstein’s mass–energy relation was verified not only by the atomic bomb, but
also bymore recent developments of particle physics. The nucleons, for example, are
formed of subatomic particles known as quarks, which are massive, bound together
by massless gluons. The contribution of the valence quarks to the nucleon mass
is however very small, most of the mass coming from the large amount of energy
associated with the strong nuclear force.

In 1948, Einstein was explaining the equivalence of mass and energy as follows:
“It followed from the special theory of relativity that mass and energy are both but
different manifestations of the same thing – a somewhat unfamiliar conception for the
average mind. Furthermore, the equation E = mc2, in which energy is put equal to
mass, multiplied by the square of the velocity of light, showed that very small amounts
of mass may be converted into a very large amount of energy and vice versa. The
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mass and energy were in fact equivalent, according to the formula mentioned above.
This was demonstrated by Cockcroft and Walton in 1932, experimentally.”

7.6 Relativistic Dynamics in Four-Dimensional Approach

Using the variational formalismand tensor calculus,we shall resume somedefinitions
and formulas obtained in the previous section. First, let us re-write the principle of
Maupertuis,

δS = −m0c δ

∫ b

a
ds = 0. (7.93)

Suppose that xμ = xμ(λ) are the parametric equations of the integration path (world
line) between λ = a and λ = b. Since ds = (dxμdxμ)1/2 and recalling (7.65), we
find

δS = − m0c
∫ b

a

dxμ δ(dxμ)√
dxν dxν

= − m0c
∫ b

a
uμd(δxμ),

or, integrating by parts,

δS = −m0c uμ δxμ|ba + m0c
∫ b

a
aμδxμ ds, (7.94)

where aμ = duμ/ds is the acceleration four-vector.
If the initial and final events a and b are fixed, then the variations of the trajectory

at the initial and final points vanish, δxμ|a = δxμ|b = 0. Thus, the postulate δS =
0, for δxμ arbitrary, gives aμ = 0, implying uμ = const., which is obvious for a
free particle. To find δS as a function of coordinates, we suppose that only one
end point is fixed, say a, (δxμ|a = 0), while the point b describes the world line
δxμ|b = δxμ. Taking into consideration only those trajectories which satisfy the
equations of motion (aμ = 0), we have from (7.94):

δS = − m0 c uμδxμ. (7.95)

By definition, the four-vector

pμ = − ∂S

∂xμ
= m0 c uμ. (7.96)

is the covariant momentum four-vector of the free particle. Its components are
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p0 = m0cu0 = m0cγ = E

c
,

pi = − pi = − m0γ vi , (7.97)

while the components of the contravariant vector are

p0 = g00 p0 = p0 = E

c
,

pi = m0γ vi . (7.98)

Resuming, the contravariant and covariant components of themomentum four-vector
are

pμ =
(

E

c
, p

)
,

pμ =
(

E

c
,−p

)
. (7.99)

Recall from non-relativistic analytical mechanics that ∂S
∂x , ∂S

∂y , and
∂S
∂z are the com-

ponents of the momentum three-vector, while − ∂S
∂t is the energy E of the particle.

Taking into account the minus sign in (7.96), we find that the space components of
the contravariant four-momentum are associated with the three-dimensional momen-
tum. Thus, the rule is to associate the contravariant components of a four-vector to
the corresponding three-dimensional vectors, with the “correct” positive sign.

As one observes, the time component of themomentum four-vector is connected to
the energy, while the spatial components represent the three-dimensional relativistic
momentum. For this reason, pμ is called energy-momentum four-vector. Among
other things, the significance of its components shows that the conservation of both
energy and momentum can be simultaneously expressed by the law of conservation
of pμ.

When passing from one inertial frame to another, in relative motion with velocity
V along the x-axis, the components of the energy-momentum four-vector transform
according to (7.37), i.e.

p′0 = Γ

(
p0 − V

c
p1

)
,

p′1 = Γ

(
− V

c
p0 + p1

)
,

p′2 = p2,

p′3 = p3,
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or

E ′ = Γ (E − V px ),

p′
x = Γ

(
− V

c2
E + px

)
,

p′
y = py, (7.100)

p′
z = pz .

In view of (7.68), we have on the one hand

pμ pμ = (m0cuμ)(m0cuμ) = m2
0c2, (7.101)

and on the other

pμ pμ = E2

c2
− |p|2.

The last two relations give
E2

c2
= |p|2 + m2

0c2,

which we have already derived (see (7.83)).

7.6.1 Hamilton–Jacobi Equation

By virtue of (7.96), we can write (7.101) as

∂S

∂xμ

∂S

∂xμ

= gμν ∂S

∂xμ

∂S

∂xν
= m2

0 c2, (7.102)

or (
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2

− 1

c2

(
∂S

∂t

)2

+ m2
0 c2 = 0. (7.103)

This is the Hamilton–Jacobi equation in relativistic mechanics. To write it in a
form leading to the classical equation in the limit (v/c) → 0, we remember that the
relativistic energy contains the term m0c2, which is missing in classical mechanics.
Then, the time components of (7.96) suggests to take S′ = S − m0c2 t instead of S,
and (7.103) becomes

∂S′

∂t
+ 1

2m0

[(
∂S′

∂x

)2

+
(

∂S′

∂y

)2

+
(

∂S′

∂z

)2
]

− 1

2m0c2

(
∂S′

∂t

)2

= 0. (7.104)
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In the limit (v/c) → 0, the last term vanishes and (7.104) becomes the classical
Hamilton–Jacobi equation.

7.6.2 Force Four-Vector

Using the definition of the momentum four-vector (7.96), we define the force four-
vector, also called the force-power four-vector, f μ, by

f μ = dpμ

ds
= m0caμ. (7.105)

(The definition can also use derivative with respect to proper time, instead:
f

μ = dpμ/dτ = m0c duμ/dτ = m0duμ/dτ = m0aμ). The time and space compo-
nents of f μ are

f 0 = f0 = m0c a0 = m0γ
dγ

dt
= γ

c2
d E

dt
,

f i = − fi = γ

c

dpi

dt
= γ

c

(
F N

)i
. (7.106)

Multiplying (7.106) by uμ and using (7.71), we find

f μ uμ = f 0 u0 + f i ui = 0,

which yields

f 0 = − f i ui

u0
= − γ

c2
vi

dpi

dt
= γ

c2
vi dpi

dt
. (7.107)

Comparing (7.107) with (7.106)1, we regain (7.84). It is worthwhile to mention that
in our representation the product vi vi is not an invariant. In this respect, one also
observes that the components F N

i of the Newtonian force do not represent the spatial
components of a four-vector.

7.6.3 Angular Momentum Four-Tensor

In Newtonian mechanics, in the case of an isolated system not only the energy and
momentum are conserved, but also the angular momentum L = ∑

r × p, where
the summation refers to all the particles of the system. The conservation of angular
momentum is a consequence of the invariance of the Lagrangian of an isolated system
with respect to rotations (when all the particles of the system perform a rotation of
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angle θ , about a certain axis, i.e. the system rotates as a whole). This invariance is
an expression of the isotropy of space.

To transpose this property in Minkowski space, let xμ be the position four-vector
associated with a particle. By an infinitesimal rotation we pass to the coordinates
x ′μ, related to the original coordinates xμ by

x ′μ = xμ + xνδω
μν, (7.108)

where δωμν are the components of an infinitesimal four-tensor. Since under the
rotation (7.108) the norm of the position four-vector xμ must remain invariant, i.e.

x ′μ x ′
μ = xμxμ,

it then follows that

(xμ + xνδω
μν) (xμ + xλδωμλ) = xμ xμ,

or, if we neglect the terms of second order in δωμν ,

xμxνδωμν = 0.

Since this relation must be satisfied for arbitrary xμ, and because the
quantity xμxν – from the algebraic point of view – is a symmetric second-order
tensor, the infinitesimal four-tensor δωμν must be antisymmetric,

δωμν = − δωνμ.

Indeed, if Si j = S ji is a symmetric second-order tensor, and Ai j = −A ji is an anti-
symmetric second-order tensor (in the same pair of indices, i j), then

Si j Ai j = 1

2

(
Si j Ai j + Si j Ai j

) = 1

2

(
Si j Ai j − S ji A ji

)

= 1

2

(
Si j Ai j − Si j Ai j

) = 0.

According to (7.95), the variation of the action under the infinitesimal transfor-
mation (7.108) is

δS = δωμν

∑
pμxν,

or, if we recall that δωμν is antisymmetric and use (B.21),

δS = 1

2
δωμν

∑
(pμxν − pνxμ).
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The summation symbol refers to all the particles of the system. Since the system is
isolated, the rotation parameters δωμν are cyclic coordinates (do not appear in the
Lagrangian), implying that the generalized momenta associated with these parame-
ters, defined as

p̃νμ = ∂S

∂ωμν

= 1

2

∑
(pμxν − pνxμ),

are conserved. Consequently, the components of the antisymmetric second-order
tensor

Lμν =
∑

(xμ pν − xν pμ), (7.109)

called angular momentum four-tensor, are conserved. Its six independent compo-
nents are

Lik =
∑

(xi pk − xk pi ) = εikm Lm, (L12 = L3, etc.),

Li0 =
∑(

xi E

c
− ctpi

)
, i, k, m = 1, 2, 3, (7.110)

where Lm are the components of the three-dimensional pseudovector associated with
the antisymmetric tensor Lik . Since the system of particles is isolated, the angular
momentum and the energy of the system are conserved. Dividing (7.110)2, written
in vector form, by

∑
E (which is also conserved), one obtains

∑
Er∑
E

− c2
∑

p∑
E

t = const. (7.111)

This shows that the point described by the radius-vector

R =
∑

Er∑
E

(7.112)

moves uniformly with velocity

v = c2
∑

p∑
E

. (7.113)

Relation (7.111) expresses the relativistic law of motion of the centre of mass of a
closed system of particles. Formula (7.112) gives the relativistic definition of the
radius-vector of the centre of mass, while (7.113) represents its velocity.
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7.7 Some Applications of Relativistic Mechanics

7.7.1 Collision Between Two Particles

7.7.1.1 Laboratory Frame

Consider an elastic collision between two particles of masses m1, m2, with the ener-
gies E1, E2 before collision, and E ′

1, E ′
2 after collision. If one of the particles, say

particle 2, is in the proper frame, its momentum before collision is p2 = 0.When one
of the colliding particles is at rest, we say that we study the motion in the laboratory
frame, denoted by L . The four-momentum conservation law is written as

pμ
1 + pμ

2 = p′μ
1 + p′μ

2 , (7.114)

where

pμ
1 = (E1/c,p1), pμ

2 = (m2c, 0),

p′μ
1 = (E ′

1/c,p′
1), p′μ

2 = (E ′
2/c,p′

2), (7.115)

Separating the space and time parts, we have

p1 = p′
1 + p′

2 ,

E1 + E2 = E ′
1 + E ′

2, with E2 = m2c2. (7.116)

Let us project now (7.116) on two directions: one along p1, and the other orthog-
onal to p1 (see Fig. 7.8). Denoting |p1| = p1, |p′

1| = p′
1, and |p′

2| = p′
2, the result

is

p′
1 cos θ + p′

2 cosϕ = p1,

p′
1 sin θ − p′

2 sin ϕ = 0. (7.117)

Fig. 7.8 Geometry of the
relativistic collision between
two particles in the
laboratory frame.
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The angles θ and ϕ, between the direction of the incident particle and the directions
of the particles after collision, are called scattering angles. We thus note that there
are four unknown quantities, p′

1, p′
2, θ, ϕ, which characterize the two particles after

collision.
Let us determine, for example, the scattering angles of the two particles. To find

θ , we re-write (7.114) as
pμ
1 + pμ

2 − p′μ
1 = p′μ

2 (7.118)

and square it, recalling that pμ
1 p1μ = p′μ

1 p′
1μ = m2

1c2 and pμ
2 p2μ = p′μ

2 p′
2μ = m2

2c2.
We thus obtain

m2
1c4 + E1m2c2 − E ′

1m2c2 − E1E ′
1 + c2p1 · p′

1 = 0,

leading to the relation between the scattering angle θ and the energies of the particles
between and after collision:

cos θ = E ′
1(E1 + m2c2) − E1m2c2 − m2

1c4√
E2
1 − m2

1c4
√

E ′2
1 − m2

1c4
. (7.119)

Similar calculations give

cosϕ = (E1 + m2c2)(E ′
2 − m2c2)√

E2
1 − m2

1c4
√

E ′2
2 − m2

2c4
. (7.120)

If the incident particle is more massive than the target particle, i.e. m1 > m2, the
angle θ under which the incident particle is scattered is bounded according to the
relation

sin θmax = m2

m1
. (7.121)

This coincides with the classical result, and we leave its proof to the reader (see
Problem 6). Customarily, the laboratory frame is used in the analysis of scatterings
in which the target particle is more massive than the incident one.

7.7.1.2 System of the Centre of Momentum (COM)

By definition, the reference system in which the total momentum of the interacting
particles is zero is called centre of momentum frame,3 denoted by COM. We shall
denote the quantities in this frame by the subindex 0. Thus, for a two-particle colli-
sion in the COM-frame, p01 = −p02 ≡ p0 (see Fig. 7.9). The law of conservation of
momentum implies that in the COM-frame the momenta of the two particles after

3This reference system is also called in literature system of the centre of inertia or the “C-system”.
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Fig. 7.9 Geometry of the relativistic collision between two particles in the centre of momentum
(COM) and laboratory (L) frames.

the collision remain equal and in opposite directions, and the law of conservation of
energy ensures that the absolute values of the momenta after collision are the same
as before.

The velocity V of the COM-system with respect to the L-system can be easily
obtained using the relativistic relation between the energy, momentum, and velocity
of a free particle (7.82). As the particle of mass m2 is at rest in the L-frame, the total
energy of the system of two colliding particles is E = E1 + E2 = E1 + m2c2, and
the total momentum is p = p1 + p2 = p1, such that relation (7.82) leads to

V = p
E

c2 = p1c2

E1 + m2c2
. (7.122)

Let us denote by ζ the scattering angle in the COM-frame (see Fig. 7.9a), that is
the angle by which the momentum vectors p01 and p02 are rotated compared to the
direction on which the particles moved before the collision.
When the angle ζ goes through all the possible values, from 0 to 2π , the tip of the
vector p′

1 denoted by D in Fig. 7.9b describes an ellipse (see Fig. 7.10), whose major
axis is on the direction AB (the direction of the incident particle in the L-frame).
The point B is obviously fix due to momentum conservation, and it is located on the
ellipse, while the point A (the origin of the vector p1) can be

i) outside the ellipse, if m1 > m2 (Fig. 7.10a);
ii) inside the ellipse, if m1 < m2 (Fig. 7.10b);
iii) on the ellipse, if m1 = m2 (Fig. 7.11).
To show that the tip of the vector p′

1 describes an ellipse in the L-frame, we make
use of the relations (7.100), but for the inverse transformation, in this case from the
COM-frame to the L-frame, written for the energies and momenta after collision:
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Fig. 7.10 In the L-frame, the tip of the vector p′
1 describes an ellipse when the scattering angle ζ

in the COM-frame goes through all the possible values.

Fig. 7.11 The minimum
angle between the directions
of two particles of equal
masses, after the collision, in
the L-frame.

E = Γ
(

E0 + V p0x

)
,

px = Γ

(
p0x + V

c2
E0

)
,

py = p0y, (7.123)

pz = p0z,

where Γ = (
1 − V 2/c2

)−1/2
, with V given by (7.122).

For the particle of mass m1, the relations (7.123)2,3 read:

p′
1x = Γ

(
p0x + V

c2
E0

)
= Γ

(
p0 cos ζ + V

c2
E0

)
,

p′
1y = p0y = p0 sin ζ = p0 sin ζ, (7.124)

which, upon elimination of the angle ζ , lead to

(
p′
1x

√
1 − V 2

c2
− V

c2
E0

)2

+ p′2
1y = p2

0,
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that is (
p′
1x − V

c2 Γ E0

p0Γ

)2

+
(

p′
1y

p0

)2

= 1.

This is the equation of an ellipse, with the semi-major axis p0Γ and the semi-minor
axis p0, whose centre O (see Fig. 7.10b) is displaced by V E0Γ/c2 with respect to
the point A (which is described by the condition p′

1 = 0).
Since the speed of the particle of mass m2 with respect to the COM-frame is V ,

it follows that

p0 ≡ p01 = p02 = m2V√
1 − V 2

c2

= m2V Γ,

such that the semi-major and semi-minor axes can be expressed in terms of the
momentum p1 and energy E1 of the incident particle with mass m1 in the L-frame:

p0 = m2cp1√
m2

1c2 + m2
2c2 + 2m2E1

,

p0Γ = m2V Γ 2 = m2V

1 − V 2

c2

= m2 p1(E1 + m2c2)

m2
1c2 + m2

2c2 + 2m2E1
. (7.125)

If θ = 0, then p′
1 coincides with p1, and the segment AB is equal to p1 = |p1|.

Comparing p1 with the major axis of the ellipse, it follows that the point A will be
located outside the ellipse if m1 > m2 (see Fig. 7.10a), or inside, if m1 < m2 (see
Fig. 7.10b). As can be seen on Fig. 7.10a, when m1 > m2, the angle θ cannot be
larger than a certain maximum value (corresponding to the vector p′

1 being tangent
to the ellipse), which is given by (7.121).

If the masses of the colliding particles are equal, than the point A is on the ellipse,
and the angle between the directions of the particles after the collision cannot go
below a limit value. As it can be observed on Fig. 7.11, the minimum value of the
above-mentioned angle corresponds to the situation when the point D is located at
the end of the minor axis and, using (7.125) with m1 = m2 = m, we find

tan
Φmin

2
= |O D|

|O A| = p0

p0Γ
=

√
2mc2

E1 + mc2
,

leading to the minimum angle between the particles after collision in L-frame:

Φmin = arccos

(
E1 − mc2

E1 + 3mc2

)
. (7.126)
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The scattering angle ζ in the COM-frame determines completely the scattering
in any frame of reference (in particular, in the COM- and L-frames), being the only
undetermined parameter after the application of energy andmomentum conservation
laws. Let us find the final energies of the particles in the L-frame in terms of the
parameter ζ . To this end, we shall use relation (7.118). Squaring (7.118) and taking
into account that the scalar product of two four-vectors is an invariant, we shall
express the resulting terms conveniently in the two frames, COM and L. Thus, we
find

m2
1c2 + p1μ pμ

2 − p2μ p′μ
1 − p1μ p′μ

1 = 0. (7.127)

We express the first two scalar products in the L-frame, and the third in the COM-
frame. Using (7.115), we can write

p1μ pμ
2 = m2E1,

p2μ p′μ
1 = m2E ′

1. (7.128)

The four-momenta of the particles before and after collision, in the COM-frame, are

pμ
01 = (E01/c,p01), pμ

02 = (E02/c,p02),

p′μ
01 = (E ′

01/c,p′
01), p′μ

02 = (E ′
02/c,p′

02), (7.129)

such that

p1μ p′μ
1

(
= p01μ p′μ

01

)
= E01E ′

01

c2
− p01 · p′

01 = E2
01 − p2

0 cos ζ

= p2
0(1 − cos ζ ) + m2

1c2, (7.130)

where we took into account the fact that the energies of the particles before and
after collision are the same in the COM-frame, i.e. E ′

01 = E01. Plugging (7.128) and
(7.130) into (7.127), we obtain

E ′
1 = E1 − p2

0

m2
(1 − cos ζ ). (7.131)

Now we have to express p2
0 in terms of quantities which characterize the collision

in the L-frame. To this end, we make use of the invariance of the scalar product of
four-vectors and equate the value of p1μ pμ

2 in the L-frame (given by the first relation
in (7.128)) with its value in the COM-frame, which is (see (7.129))

p01μ pμ
02 = E01E02/c2 − p01 · p02,

obtaining

m2E1 = E01E02

c2
− p01 · p02.
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Taking into account that p02 = −p01 (= −p0) and

E01 =
√

p2
0c2 + m2

1c4, E02 =
√

p2
0c2 + m2

2c4,

it follows that

p2
0 = m2

2(E2
1 − m2

1c4)

m2
1c2 + m2

2c2 + 2m2E1
. (7.132)

Introducing (7.132) into (7.131), we finally obtain

E ′
1 = E1 − m2(E2

1 − m2
1c4)

m2
1c2 + m2

2c2 + 2m2E1
(1 − cos ζ ). (7.133)

The final energy of the second particle is found from the law of conservation of
energy written in the L-frame:E1 + m2c2 = E ′

1 + E ′
2, and it reads

E ′
2 = m2c2 + m2(E2

1 − m2
1c4)

m2
1c2 + m2

2c2 + 2m2E1
(1 − cos ζ ). (7.134)

The second term in the relations (7.133) and (7.134) represents the energy lost
by the particle of mass m1 and transferred to the particle of mass m2. Obviously, the
maximum transferred energy is obtained for ζ = π and it is given by the expression

E ′
2max − m2c2 = E1 − E ′

1min = 2m2(E2
1 − m2

1c4)

m2
1c2 + m2

2c2 + 2m2E1
. (7.135)

From here we can find the ratio between the minimum kinetic energy of the incident
particle after the collision and its initial kinetic energy:

E ′
1min − m1c2

E1 − m1c2
= (m1 − m2)

2c2

m2
1c2 + m2

2c2 + 2m2E1
. (7.136)

According to non-relativistic mechanics, if m2 � m1 (the mass of the particle at rest
is large compared to the mass of the incident particle), then the lighter particle can
transfer only a negligible amount of energy to the very massive one. As one can see
from (7.135), this is not valid in the relativistic case; indeed, for sufficiently large
energies E1, the fraction of the transferred energy can approach unity. For this it is
not enough that the velocity of the lighter particle be close to the speed of light in
vacuum, c, but it is necessary that E1 ∼ m2c2, in other words the light particle has
to have a total energy comparable with the rest energy of the massive particle.

In the opposite situation, when m2 � m1 (a heavy particle scatters on a light
particle at rest), the non-relativistic result is that the energy transfer is again negligible.
In this case, the relativistic calculation shows that the fractionof the energy transferred
to the other particle is significant only if E1 ∼ m2

1c2/m2, meaning that the total
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energy of the incident particle has to be large compared to its rest energy (i.e. ultra-
relativistic). Indeed, in the limit of large energies E1, the ratio (7.136) tends to zero,

and E ′
1min tends to the constant value E ′

1min = (m2
1+m2

2)c
2

2m2
(which can be easily shown

using the second equality in the relation (7.135)).

7.7.2 Compton Effect

The Compton effect is the increase in the wavelength of an X-ray or gamma-ray
radiation, when it interacts with matter. The phenomenon was first observed by
Arthur Compton (1892–1962) in 1923. This increase in wavelength is caused by
the interaction of the radiation with the weakly bound electrons in matter, where
the scattering takes place. The Compton effect illustrates one of the fundamental
aspects of the interactions between radiation and matter and displays the quantum
nature of electromagnetic radiation. Arthur Compton was awarded the Nobel Prize
in Physics in 1927 for this discovery. In the following, we shall present the relativistic
kinematics involved in the explanation of the Compton effect, and obtain the formula
expressing the Compton wavelength shift. The rigorous relativistic quantum study
of Compton’s effect is performed in the framework of quantum field theory.

Consider a photon colliding with an electron, the latter being at rest, i.e. in the
laboratory frame. Denoting by pμ

e , pμ
p the momentum four-vectors of the electron

and photon before collision, and by p′μ
e , p′μ

p the four-momenta of the particles after
collision, we may write the four-momentum conservation as

pμ
e + pμ

p = p′μ
e + p′μ

p , μ = 0, 1, 2, 3. (7.137)

To express the four-momenta of the particles, we recall that the photon has zero
mass, and the energy of the photon is related to its frequency by the famous Planck
formula, E = hν, where h is the Planck constant. The same formula can be written
also as E = �ω, where � = h/2π is the reduced Planck constant and ω = 2πν is
the angular frequency of the photon. The absolute value of the photon’s momentum
is |pp| = �ω/c. With these clarifications, we can write the four-momenta appearing
in (7.137) as follows:

pμ
e = (m0c, 0) ,

pμ
p =

(
1

c
�ω,pp

)
,

p′μ
e = (

m0γ c, p′
e

)
, (7.138)

p′μ
p =

(
1

c
�ω′,p′

p

)
,
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where m0 is the mass of the electron, ω and ω′ are the angular frequencies of the
incident and scattered photons, respectively, while k and k′ are the corresponding
wave-vectors. Squaring (7.137) and observing that

(pe)
μ(pe)μ = (p′

e)
μ(p′

e)μ = m2
0 c2,

(pp)
μ(pp)μ = (p′

p)
μ(p′

p)μ = 0, (m0p = 0),

we have
(pe)

μ(pp)μ = (p′
e)

μ(p′
p)μ.

On the other hand, the multiplication of (7.137) by (p′
p)μ leads to

(p′
e)

μ(p′
p)μ = (pe)

μ(p′
p)μ + (pp)

μ(p′
p)μ .

The last two relations give

(pe)
μ(pp)μ = (pe)

μ(p′
p)μ + (pp)

μ(p′
p)μ , (7.139)

or, using (7.138),

(
1

c
m0c2

)(
−1

c
�ω

)
=

(
1

c
m0c2

)(
−1

c
�ω′

)

+ pp p′
p cos θ +

(
1

c
�ω

)(
−1

c
�ω′

)
,

where θ is the angle under which the photon is scattered. Grouping the terms in the
last relation, we are left with

m0(ω
′ − ω) = 1

�
pp p′

p cos θ − �

c2
ω ω′.

From here we obtain the shift in wavelength between the scattered and the incident
photons:

Δλ = λ′ − λ = h

m0c
(1 − cos θ) = 2Λ sin2

θ

2
, (7.140)

where

Λ = h

m0c

is called Compton wavelength. The Compton wavelength of a particle of mass
m0 represents the wavelength of a photon whose energy is equal to the rest
energy of that particle. For example, the Compton wavelength for the electron is
Λe = 2.43 × 10−12 m.
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Relation (7.140) is the well-known Compton scattering formula. It shows that the
wavelength shift does not depend on the wavelength of the incident radiation or on
the target material. It depends only on the scattering angle, and attains its maximum
for θ = π .

7.7.3 Cherenkov Effect

The Cherenkov effect is the emission of light from a transparent substance like water
or glass when a charged particle (e.g. an electron) travels through the material with
a speed faster than the phase velocity of light in that material. Denoting by v the
velocity of the electrons and by u = c/n the phase velocity of light in the medium,
this implies u < v < c. Cherenkov radiation had been theoretically predicted by the
English scientist Oliver Heaviside (1850–1925) around 1888–1889.

The effect is named after the Russian physicist Pavel Cherenkov (1904–1990),
who discovered the phenomenon in 1934 in the laboratory led by Sergey Vavilov
(1891–1951) (some authors call it Vavilov–Cherenkov effect) at the Lebedev Phys-
ical Institute in Moscow. The effect was interpreted theoretically by the Russian
physicists Igor Tamm (1895–1971) and Ilya Frank (1908–1990) in 1937. In 1958,
Cherenkov, Tamm, and Frank received the Nobel Prize in Physics “for the discovery
and interpretation of the effect”. The Cherenkov effect has numerous applications,
especially in high energy physics.

The effect was discovered by bombarding a transparent medium (water) with
gamma-rays, which gives rise to a nice bluish light (see Fig. 7.12). In fact, most
Cherenkov radiation is not in the visible, but in the ultraviolet part of the spectrum.
In vacuum, a uniformly moving electron does not radiate, but in a dielectric medium
the velocity of the electron can exceed the phase velocity of light in that medium
u = c/n, which means to exceed the propagation of its own field. This field detaches
from the electron and spreads into themedium as a specific radiation. The Cherenkov
radiation is analogous to the formation ofMach waves in mechanics: all the spherical
wavefronts expand at the speed of sound and bunch along the surface of a cone. In the
case of a wave source in a fluid like water or air, the cone signifies a shockwave and is
referred to as theMach cone, thus named after the Austrian physicist and philosopher

Fig. 7.12 The bluish glow
of the Cherenkov radiation
appearing when gamma-rays
pass through water (color
figure online).
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Fig. 7.13 The “visual” boom accompanying the sonic boom that appears when a supersonic aircraft
exceeds the speed of sound. This image clearly exhibits the Mach cone in mechanics.

Ernst Mach (1838–1916). The process can be compared to that of a shock wave of
sound generated when an airplane exceeds the speed of sound in air. This shock wave
has not only an audible effect (the sonic boom), but sometimes a visible one too (the
“visual” boom), as can be seen in Fig. 7.13. The visual effect is the result of water
condensing and getting trapped between two high-pressure surfaces of air flowing
off the aircraft. As one can see in Fig. 7.14, the angle θ between the direction of
motion of the electron and the direction of the emission of radiation is given by

cos θ =
c
n t

vt
= u

v
≤ 1, (7.141)

which means v ≥ u. Therefore in vacuum, where u = c > v, the Cherenkov effect
is impossible. The electron which produces the Cherenkov radiation is called super-
luminal.

To obtain the radiation conditionwhen taking into account also the recoil electron,
we use the four-momentum conservation law in the process of emission of a photon
by an electron which moves uniformly in a medium.

If pμ
e , p′μ

e are the four-momenta of the electron before and after emission, and
p′μ

p is the momentum four-vector of the emitted photon, we have

(pe)
μ = (p′

e)
μ + (p′

p)
μ. (7.142)

We write this relation as (p′
e)

μ = (pe)
μ − (p′

p)
μ, then square it, and obtain

(p′
e)

μ(p′
e)μ = (pe)

μ(pe)μ + (p′
p)

μ(p′
p)μ − 2(pe)

μ(p′
p)μ.
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Fig. 7.14 Schematic representation of the Cherenkov effect.

Since (p′
e)

μ(p′
e)μ = (pe)

μ(pe)μ = m2
0c2 (with m0 denoting the mass of the elec-

tron), and (p′
p)

μ(p′
p)μ �= 0 (the photon moves in a medium, which means that its

velocity is smaller than c), we have

(p′
p)

μ(p′
p)μ = 2(pe)

μ(p′
p)μ,

or, expanding over μ = 0, 1, 2, 3:

(p′
p)

0(p′
p)0 + (p′

p)
i (p′

p)i = 2
[
(pe)

0(p′
p)0 + (pe)

i (p′
p)i

]
, i = 1, 2, 3.

Recalling that (p′
p)

μ = (
�ω
c , �k

)
, where k is the wave vector of the photon, the above

equation becomes:

�
2ω2

c2
− �

2k2 = 2

(
1

c2
Ee�ω − pe�k cos θ

)
,

where pe = |pe| and k = |k|. Then

cos θ = 1

pe�k

[
Ee

c2
�ω + 1

2
�
2k2

(
1 − ω2

c2k2

)]
.

But, by virtue of (7.83),

1

pe

Ee

c
=

√
p2

e + m2
0c2

√
p2

e

=
√

1 + m2
0c2

m2
0v

2γ 2
=

√

1 + c2

v2

(
1 − v2

c2

)
= c

v
,
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leading to

cos θ = ω

kv
+ �k

2pe

(
1 − ω2

k2c2

)
. (7.143)

Using the formulas

ω = c k

n
, pe = m0γ v,

we can cast (7.143) into the form

cos θ = c

vn

[
1 + �ω

2m0c2
(
n2 − 1

)
√
1 − v2

c2

]
. (7.144)

If the energy of the photon is much smaller than the rest energy of the electron
(�ω � m0c2), which is true for the visible part of the spectrum, (7.144) becomes
cos θ � c/nv, which is the classical condition (7.141). Formula (7.144) also shows
that in vacuum (n = 1)wewould obtain cos θ = c/v > 1, andone regains the already
known conclusion: the Cherenkov effect does not occur in vacuum.

Let us now show that the Cherenkov effect is intimately connected with the
Doppler effect. In this respect, consider the four-vector

kμ = 1

�
pμ

p =
(ω

c
,k

)
, (7.145)

named the wave four-vector associated with the photon. If the photon propagates in
a medium with refraction index n, then

k = 2π

λ
s = 2πν

u
s = ω

c
n s

and (7.145) becomes

kμ =
(ω

c
,
ω

c
n s

)
. (7.146)

Suppose that the medium is at rest with respect to the reference frame S′, and
choose the plane x ′O ′y′ as the plane of propagation of the photon. According to
(7.37), we then have

k ′0 = Γ

(
k0 − V

c
k1

)
,

k ′1 = Γ

(
− V

c
k0 + k1

)
,

k ′2 = k2,

k ′3 = k3.
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If θ is the angle between s (the direction of propagation of photon) and the x-axis in
S, and θ ′ is the corresponding angle in S′, the first two relations yield

ω′ = Γ ω

(
1 − V

c
n cos θ

)
,

ω′ n cos θ ′ = Γ ω

(
n cos θ − V

c

)
. (7.147)

If the source emitting photons is at rest in S′ (proper frame), then ω′ = ω0 (proper
frequency), and (7.147)1 gives

ω =
ω0

√
1 − V 2

c2

1 − V
c n cos θ

, (7.148)

which is the relativistic Doppler formula for the medium with refraction index n (see
(6.48)).

Inspecting (7.148), we notice that for n > 1 (glass, water, etc.), the quantity
V
c n cos θ can be greater than 1, even if V < c, and the denominator can become
zero, or negative. Since a change of sign in (7.148) implies, at the most, a change of
phase

cos(−ωt) = cosωt,

sin(−ωt) = − sinωt = cos
(
ωt + π

2

)
,

the frequency can always be considered a positive quantity. For this reason, the
relativistic Doppler formula (for n > 1) reads

ω =
ω0

√
1 − V 2

c2∣∣1 − V
c n cos θ

∣∣ . (7.149)

On the other hand, dividing side by side the two equations in (7.147), we get

n cos θ ′ = n cos θ − V
c

1 − V
c n cos θ

, (7.150)

which is the relativistic formula of the aberration of light for the considered medium
(see (6.51)).

Thus, we have found that the medium does not at all affect the transverse Doppler
effect: for θ = π/2 we found the same formula as for vacuum (see (6.49)). This
proves, once more, that the transverse Doppler effect is due only to the relativistic
transformation of time intervals.

http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
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Fig. 7.15 The Cherenkov
cone divides the space into
the regions of the anomalous
and normal Doppler effect.

Suppose, now, that the denominator in (7.149) vanishes, that is

1 − v

c
n cos θ0 = 0,

where V = v is the velocity of the electron. Thus, we regained condition (7.141)
for the Cherenkov effect. The geometric representation of this condition, for given
v and n, is a cone, called Cherenkov cone. This cone divides the space into two
domains relatively to theDoppler effect. Condition 1 − v

c n cos θ > 0 is valid outside
the Cherenkov cone, where a normal Doppler effect is observed, always found in
vacuum, while condition 1 − v

c n cos θ < 0 is valid inside the Cherenkov cone and
corresponds to an anomalous Doppler effect (see Fig. 7.15). One also observes that
inside the Cherenkov cone dω/dθ < 0, and outside the cone dω/dθ > 0.

Among several applications of the Cherenkov effect we mention the well known
Cherenkov counter. This is a device that identifies particles passing through it by
observing a flash of light generated in a manner similar to a sonic boom. Cherenkov
counters are superior to some other radiation registrators, like Geiger–Müller coun-
ters, due to their selectivity: they identify only high energy particles, capable to
produce Cherenkov radiation.

7.8 Solved Problems

Problem 1. Deduce the Lorentz boost transformation formula using the invariance
property of the space-time interval.

Solution. We assume that the two inertial frames move relative to each other
along the x-axis, with the velocity V. The transformation we are looking for has to
be symmetric and linear, of the form
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x ′ = k(x − V t), x = k ′(x ′ + V t ′),
y′ = y, (7.151)

z′ = z,

where the dimensionless coefficients k and k ′ depend on velocity only. Extracting t ′
from (7.151), we have

t ′ = 1

V

( x

k ′ − x ′
)

= 1

V

[(
1

k ′ − k

)
x + kV t

]
. (7.152)

The interval invariance requirement is written as

c2t ′2 − x ′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2,

or, using (7.151) and (7.152),

c2

V 2

[(
1

k ′ − k

)
x + kV t

]2
− k2(x − V t)2 = c2t2 − x2. (7.153)

Equating the coefficients of t2 in (7.153), we obtain

k = ± 1√
1 − V 2

c2

= ±Γ. (7.154)

The choice of the sign depends on the mutual orientation of the axes x and x ′. It is
customary to take + if the axes are parallel, and − if they are antiparallel.

The last step is to equate the coefficients of xt (or of x2) in (7.153). Some very
simple algebra leads to

k = k ′ = Γ,

which completes the proof.
Problem 2. Determine the relativistic, rectilinear motion of a uniformly acceler-

ated particle, knowing that the magnitude w0 of its acceleration remains constant in
the proper frame of reference.

Solution. The acceleration four-vector is defined, according to (7.69) as

aμ = duμ

ds
= γ

c

duμ

dt
, where uμ = dxμ

ds
= γ

c

dxμ

dt
. (7.155)

Note that with this definition, the dimension of the four-acceleration differs from
the dimension of the ordinary acceleration w0 by a factor c−2. If the particle moves
along the Ox ≡ O ′x ′-axis, in the proper frame (v = 0) we have
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a0 = 0,

a1 = w0

c2
,

a2 = 0, (7.156)

a3 = 0.

Since aμaμ = w2
0

c4 = const., we can write

γ 2

c2

(
dγ

dt

)2

− γ 2

c4

[
d

dt
(γ v)

]2
= w2

0

c4
,

where v = dx1/dt . Some simple calculations give

dγ

dt
= v

c2
γ 3 dv

dt
,

d

dt
(γ v) = γ

dv

dt

(
1 + v2

c2
γ 2

)
= γ 3 dv

dt
,

γ 6

c4

(
dγ

dt

)2

= γ 2

c4

[
d

dt
(γ v)

]2
− γ 2

c2

(
dγ

dt

)2

,

leading to
d

dt
(γ v) = w0. (7.157)

Integrating (7.157), we find

v√
1 − v2

c2

= w0t + C.

Taking as initial conditions v = 0 at t = 0, one finds C = 0. Since v = dx1/dt , we
can separate the variables:

v = w0t√
1 + w2

0 t2

c2

= dx

dt
. (7.158)

By integrating, with the initial condition x = 0 at t = 0, we obtain

x = c2

w0

⎛

⎝

√

1 + w2
0 t2

c2
− 1

⎞

⎠ . (7.159)
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If w0t � c, a series expansion of (7.158) and (7.159) gives

x = c2

w0

(
1 + 1

2

w2
0t2

c2
+ . . . − 1

)
� 1

2
w0t2,

v = w0t, (7.160)

which are classical results. If w0t → ∞, then v → c.
Problem 3. Determine the world-line of a particle of mass m0, performing a

one-dimensional motion under the action of a constant force F .
Solution. Since themotion is one-dimensional, wemay discard the vector symbol

in this application, and write

F = dp

dt
= d

dt

[
m0v

(
1 − v2

c2

)−1/2
]

. (7.161)

The derivative gives

F = m0

(
v

dγ

dt
+ γ

dv

dt

)
= m0γ

3 dv

dt
,

that is
F

m0
dt = dv

(
1 − v2

c2

)3/2 ,

and by integrating, with the initial condition v = 0 at t = t0, we find

F

m0
(t − t0) =

∫ v

0

(
1 − v2

c2

)−3/2

dv . (7.162)

The integral can be worked out by using the change of variable v = c sin ϕ ⇒ dv =
c cosϕ dϕ, which gives

F

m0
(t − t0) = c

∫ arcsin(v/c)

0

dϕ

cos2 ϕ
= c tan ϕ|arcsin(v/c)

0

= c tan
[
arcsin

(v

c

)]
= c

sin
[
arcsin

(
v
c

)]

cos
[
arcsin

(
v
c

)] = v√
1 − (

v
c

)2 ,

or, by squaring the result,

v2

[
1 + (F/m0)

2

c2
(t − t0)

2

]
= (F/m0)

2 (t − t0)
2,
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and

v = dx

dt
= (F/m0) (t − t0)√

1 + (F/m0)2

c2 (t − t0)2
.

This relation can also be written as

dx = c2

F/m0
d

[√
1 + (F/m0)2

c2
(t − t0)2

]
.

Taking as initial condition x = x0 at t = t0, one obtains by integration

x − x0 = c2

F/m0

√
1 + (F/m0)2

c2
(t − t0)2,

or, finally,
(x − x0)2
(

c2
F/m0

)2 − (t − t0)2
(

c
F/m0

)2 = 1. (7.163)

This formula shows that the world-line of the particle is a hyperbola. For this reason,
the motion of a particle under the action of a constant force is sometimes called
hyperbolic. This motion tends asymptotically to a uniform motion with velocity c.

In the non-relativistic limit, using the same initial conditions, relation (7.163)
becomes

x − x0 = 1

2

F

m
(t − t0)

2, (7.164)

which is, obviously, an arc of parabola.
Problem 4. Using the energy-momentum conservation law, show that a free elec-

tron (i.e. an electron in vacuum) cannot emit or absorb a photon.
Solution. We shall prove that the relativistic energy-momentum conservation

relation
pμ

e = p′μ
e + p′μ

p (7.165)

cannot hold in vacuum. Here pμ
e is the momentum four-vector of the incident particle

(electron) before emission (absorption), and p′μ
e , p′μ

p are the four-momenta of the
emitted electron and photon, respectively.

Squaring relation (7.165), we have

(pe)
μ(pe)μ = (p′

e)
μ(p′

e)μ + (p′
p)

μ(p′
p)μ + 2(p′

e)
μ(p′

p)μ. (7.166)

Since
(pe)

μ(pe)μ = (p′
e)

μ(p′
e)μ = m2

0c2,
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and
(p′

p)
μ(p′

p)μ = 0,

it follows that
(p′

e)
μ(p′

p)μ = 0. (7.167)

We use (7.99) to write:

(p′
e)

0 = E ′
e

c
, |p′

p| = E ′
p

c
, (p′

p)
0 = E ′

p

c
,

and, with the notation pe = |pe|, (7.167) becomes

1

c
E ′

e E ′
p − p′

e E ′
p cos θ = 0.

Using now the energy-momentum dispersion relation (7.83) for the recoil electron,

E ′
e

c
=

√
|p′

e|2 + m2
0c2,

we obtain

E ′
p

[
p′

e cos θ −
√

|p′
e|2 + m2

0c2
]

= 0.

Since E ′
p �= 0, we must have

cos θ =
√

1 + m2
0c2

|p′
e|2

≥ 1, (7.168)

which is absurd.
Problem 5. Study the one-dimensional motion of a particle of mass m0, under

the action of a quasi-elastic force.
Solution. Let F = − k0x , with k0 > 0, be the quasi-elastic force. According to

Newtonian mechanics, the particle would perform a harmonic oscillatory motion of
frequency ω0 = √

k0/m0, the solution of the equation of motion being

x = a sinω0(t − t0). (7.169)

Since the particle is relativistic, the equation of motion is

d

dt
(m0γ v) = − k0x, with γ =

(
1 − v2

c2

)−1/2

. (7.170)



7.8 Solved Problems 431

This equation admits the total energy first integral

m0c2(γ − 1) + 1

2
m0ω

2
0x2 = W0. (7.171)

To determine W0, we make use of the initial conditions: at t = 0, x = a and v = 0.
Then W0 = 1

2m0ω
2
0a2, and the first integral (7.171) leads to

v = c

{
1 −

[
1 + ω2

0

2c2
(a2 − x2)

]−2
}1/2

= dx

dt
. (7.172)

We note that the velocity of the particle obeys the condition v ≤ c, while the constant
a signifies the amplitude of the periodic motion (− a ≤ x ≤ a).

To integrate (7.172), it is convenient to make the notations

A2 = a2 + 2c2

ω2
0

,

A′2 = a2 + 4c2

ω2
0

, (7.173)

and (7.172) becomes
(A2 − x2)dx√

(a2 − x2)(A′2 − x2)
= cdt. (7.174)

Setting

k2 = a2

A′2 =
(
1 + 4c2

ω2
0a2

)−1

< 1 , (7.175)

the integration of (7.174) gives

(
A2

A′ − A′
)

F(ϕ, k) + A′ E(ϕ, k) = c(t − t0) , (7.176)

where ϕ = arcsin(x/a), while

F(ϕ, k) =
∫ ϕ

0

dψ√
1 − k2 sin2 ψ

,

E(ϕ, k) =
∫ ϕ

0

√
1 − k2 sin2 ψ dψ (7.177)

are the incomplete elliptic integral of the first and second kind, respectively.
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If we denote

k ′2 = 1 − k2 = 4c2

ω2
0 A′2 , (7.178)

and take into account (7.174) and (7.175), relation (7.176) can also be written as

1

k ′
[
2E

(
arcsin

x

a
, k

)
− k ′2F

(
arcsin

x

a
, k

)]
= ω0(t − t0). (7.179)

In the limit of small velocities (v/c → 0), we have k → 0, k ′ → 1, E(ϕ, 0) =
F(ϕ, 0) = ϕ, and (7.179) reduces to (7.169), as expected.

The period of the classical harmonic motion is T0 = 2π/ω0. The relativistic
motion is also periodic, its period being given by the equation

1

k ′
[
2E(ϕ + 2π, k) − k ′2F(ϕ + 2π, k)

] = ω0(t + T − t0). (7.180)

But

F(ϕ + 2π, k) = F(ϕ, k) + F(2π, k),

E(ϕ + 2π, k) = E(ϕ, k) + E(2π, k),

and

F(2π, k) = 4F(k),

E(2π, k) = 4E(k),

where

F(k) = F
(π

2
, k

)
,

E(k) = E
(π

2
, k

)

are complete elliptic integrals of the first and second kind, respectively. Then (7.179)
and (7.180) yield

ω

ω0
= π

2

k ′

2 E(k) − k ′2F(k)
, (7.181)

where ω = 2π/T is the relativistic angular frequency.
Thus, the angular frequency ω is a function of m0, k0, and a. If ω0 and a are

chosen in such a way that ω0a � c, then k � ω0a
2c � 1, and we can use the series

expansions
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E(k) � π

2

(
1 − 1

4
k2

)
,

F(k) � π

2

(
1 + 1

4
k2

)
,

k ′ � 1 − 1

2
k2.

In this case, formula (7.181) becomes

ω

ω0
� 1 − 3

4
k2 � 1 − 3

16

ω2
0a2

c2
. (7.182)

Since the particle covers in a period the path 4a, and its velocity cannot be
greater than c, there exists a minimum time for the particle to move on that distance,
Tmin = 4a/c, or, equivalently, a maximum angular frequency

ωmax = 2π

Tmin
= πc

2a
. (7.183)

7.9 Proposed Problems

1. Consider two Lorentz transformations, Λ1 and Λ2, which differ infinitesimally:
Λ1 = eX , Λ2 = eX+δX . Using the formula (7.56) show that, in the first order in
δX , the expression

I + δX +
∞∑

n=2

1

n!
[

X,
[
X, . . . [X, δX ] ] . . .

]

︸ ︷︷ ︸
n−1

brackets

,

(where [a, b] = ab − ba), represents the Lorentz transformation Λ = Λ2Λ
−1
1 .

2. In the proper reference frame, S′, the angular momentum of a body does not
depend on the point with respect to which it is defined. However, in another
inertial frame, S, which moves with the velocity V with respect to S′, the value
of the angular momentum depends on this choice. Find the relation between the
angular momenta of the body in S and S′, if in both cases the angular momentum
is defined with respect to the centre of mass of the body in S′.

3. A particle of massm1 and velocity v1 collides with a particle of massm2 which is
at rest. The result is a composite particle. Determine the mass m and the velocity
v of the resulting composite particle.

4. A particle of mass m0 moves under the action of the force F. Determine the
acceleration a of the particle in terms of force and velocity.

5. Two particles of masses m1 and m2, and energies E1 and E2 collide elastically.
If before the collision the particle 2 is at rest, find the scattering angles in the
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laboratory frame of reference, as functions of the energies E ′
1 and E ′

2 after
collision.

6. Show that for a scattering of two particles, 1 and 2, in the laboratory frame in
which the particle 2 is at rest, the scattering angle θ of the incident particle 1
(see Fig. 7.8) is bounded by the relation

sin θmax = m2

m1
, (7.184)

if the incident particle is more massive than the target, i.e. m1 > m2.
7. Consider the decay relation A → B + C . Calculate the energy WB of the particle

B, if A is at rest in the laboratory reference frame. The masses m A, m B , and mC

are supposed to be known.
8. A particle of mass m at rest decays into n fragments of masses

mi , i = 1, 2, . . . , n, such that

m −
n∑

i=1

mi = Δm.

Show that the maximum kinetic energy of particle i (with the mass mi ) is given
by the relation

T max
i = c2Δm

(
1 − mi

m
− Δm

2m

)

and calculate the maximum kinetic energies (in MeV) for each of the products
of the following decay processes (we consider that the decaying particles are at
rest):

μ− → e− + νμ + νe,

n0 → p+ + e− + νe,

Λ0 → p+ + π−.

The masses of the particles are:
mμ− = 105.658 MeV/c2, me− = 0.510 MeV/c2, mn0 = 939.565 MeV/c2,
m p+ = 938.272 MeV/c2, mΛ0 = 1115.683 MeV/c2, mπ− = 139.570 MeV/c2.
The neutrinos and antineutrinos are considered massless.

9. A particle A decays in motion into two fragments, B and C . Show that the
scattering angle θ of the particle B (see Fig. 7.16) is given by the relation

cos θ = 2E A EB + c4
(
m2

C − m2
A − m2

B

)

2
√(

E2
A − m2

Ac4
) (

E2
B − m2

Bc4
) ,
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Fig. 7.16 Decay of the
particle A into two
fragments, B and C . The
scattering angle of particle B
is denoted by θ .

where m A, m B , and mC are the masses of the three particles and E A and EB are
the energies of the particles A and B.

10. A plane mirror moves along its normal, in the opposite sense, with a velocity V .
A light ray falls on the mirror at an angle θ . Determine the frequency shift and
the angle of reflection of the reflected ray. (Hint: use the transformation of the
wave four-vector kμ = (

ω
c , k

)
.)



Chapter 8
Relativistic Formulation of Electrodynamics
in Minkowski Space

8.1 Point Charge in Electromagnetic Field

8.1.1 Three-Dimensional Approach

Consider a charged particle of mass m0 and charge e, moving in the electromagnetic
field E, B, defined in terms of the usual electromagnetic potentials V, A. Let us
deduce the fundamental quantities characterizing the particle (momentum, energy,
etc.), as well as the equation of motion.

In the non-relativistic case, the Lagrangian of the point charge is L = L0 + Lint

(see (3.102)), where L0 = 1
2mv2 is the Lagrangian of the free particle, and

Lint = − eV + ev · A is the Lagrangian of interaction between the charge and
the field. If one considers the relativistic effect, L0 will be given by (7.77), and the
Lagrangian of the point charge is

L = −m0c
2

√
1 − v2

c2
− eV + evk Ak, k = 1, 2, 3. (8.1)

The components pi of the generalized momentum, associated with the generalized
coordinates xi , are

pi = ∂L

∂q̇ i
= ∂L

∂vi
= m0γvi + eAi , i = 1, 2, 3, (8.2)

or, in vector notation,
p = m0γv + eA = p0 + eA, (8.3)

where p0 = m0γv is the momentum of the free particle. The Hamiltonian of the
particle is

H = pivi − L = m0γc
2 + eV = E0 + eV, (8.4)
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where E0 = m0γc2 is the mechanical energy of the free particle. Written in terms of
generalized coordinates and generalized momenta, using (7.83), the Hamiltonian is

H = c
√

(p − eA)2 + m2
0c

2 + eV . (8.5)

Replacing here H = − ∂S/∂t and p = ∇S, one obtains the Hamilton–Jacobi
equation of the point charge:

(∇S − eA)2 − 1

c2

(
∂S

∂t
+ eV

)2

+ m2
0c

2 = 0. (8.6)

The equation of motion is found from the Lagrange equations (see (3.103)):

d

dt

(
∂L

∂vi

)
− ∂L

∂xi
= 0, (8.7)

which yield

d

dt
(m0γv)i = − e

∂V

∂xi
− e

∂Ai

∂t
+ evk

(
∂Ak

∂xi
− ∂Ai

∂xk

)
,

or (see (3.104)):
d

dt
(m0γv) = e (E + v × B) , (8.8)

which is the equation of motion of the relativistic charged particle.

8.1.2 Covariant Approach

We can also adopt a covariant treatment of the Lagrangian problem. The action
obtained by the time integration of the Lagrangian (8.1) reads

S =
∫ tb

ta

(
−m0c

2

√
1 − v2

c2
− eV + evk Ak

)
dt,

= −
∫ b

a

(
m0c

2dτ + eAμdxμ

)
, (8.9)

where we defined the four-vector potential Aμ of the electromagnetic field as

Aμ =
(
V

c
, A
)

. (8.10)

http://dx.doi.org/10.1007/978-3-642-17381-3_7
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Further, we apply the principle of least action:

δS = −
∫ b

a

[
m0c

2δdτ + eδ(Aμdxμ)
]

= −
∫ b

a

(
m0

dxμδdxμ

dτ
+ eAμδdxμ + eδAμdxμ

)

= −
∫ b

a

(
m0ū

μdδxμ + eAμdδxμ + eδAμdxμ

) = 0, (8.11)

where we used the definition (7.65) of the velocity four-vector, ūμ = dxμ

dτ
. Integrating

by parts the first two terms, we find

δS =
∫ b

a

(
m0dū

μδxμ + eδxμd A
μ − eδAμdxμ

)

− (m0ū
μ + eAμ) δxμ|ba = 0. (8.12)

The second term vanishes since the ends of the integration domain are fixed, therefore
the variations (δxμ)a and (δxμ)b are zero. Thus, (8.12) becomes

∫ b

a

(
m0dū

μδxμ + e
∂Aμ

∂xν
δxμdxν − e

∂Aμ

∂xν
δxνdxμ

)

=
∫ b

a

[
m0

dūμ

dτ
− e

(
∂Aν

∂xμ
− ∂Aμ

∂xν

)
uν

]
δxμdτ = 0. (8.13)

The arbitrariness of the variations δxμ implies that the the integrand has to be zero,
that is

m0
dūμ

dτ
= e

(
∂Aν

∂xμ
− ∂Aμ

∂xν

)
uν . (8.14)

Let us introduce the notation

Fμν = ∂Aν

∂xμ
− ∂Aμ

∂xν
, (8.15)

to specify the components of a second-order antisymmetric tensor, called the elec-
tromagnetic field tensor. This tensor plays an essential role in the derivation of the
covariant form of the fundamental laws of the electromagnetic field theory. Using
(8.15), equation (8.14) becomes

d

dτ
(m0ū

μ) = eFμν ūν, (8.16)

or, written in terms of uμ = dxμ

ds ,

http://dx.doi.org/10.1007/978-3-642-17381-3_7
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dpμ

ds
= d

ds
(m0cu

μ) = eFμνuν, (8.17)

which is the covariant form of the equation of motion of the point charge, moving in
the electromagnetic field E, B.

We shall derive now the generalized momentum four-vector. Customarily, this is
done by taking the derivative of the Lagrangian with respect to the time derivative
of the generalized coordinate (in our case, xμ). However, we have not identified the
Lagrangian in this formalism and worked only with the action.1 We can continue
in the same manner, by noting the following: we consider the action integral on the
generalized trajectory, such that only one of the two end-points is fixed:

S(q, q̇, t) =
∫ t

t0

L(q, q̇, t ′)dt ′,

and take its variation on all possible trajectories:

δS =
n∑

j=1

[
∂L

∂q̇ j
δq j

]t

t0

+
∫ t

t0

n∑

j=1

[
∂L

∂q j
− d

dt

(
∂L

∂q̇ j

)]
δq jdt

′.

The Lagrange equations are satisfied on any of these trajectories and thus the second
term vanishes and we arrive at

δS =
n∑

j=1

∂L

∂q̇ j
δq j =

n∑

j=1

p jδq j ,

which yields

p j = δS

δq j
, j = 1, . . . , n. (8.18)

We apply this method to the action (8.9). Inspecting formula (8.12), we notice
that the integral has led to the Euler–Lagrange equations, therefore this term will
vanish if we take the variation only on the possible trajectories. The second term
survives and we obtain thus the generalized momenta for the relativistic particle in
electromagnetic field:

Pμ = δS

δxμ
= −m0cu

μ − eAμ. (8.19)

As uμuμ = 1, we obtain

1There exists also the possibility to define a Lorentz-invariant Lagrangian whose integral with
respect to an invariant parameter leads to the action of the relativistic particle in the covariant
formalism. The procedure is thoroughly and transparently presented in the book of H. Goldstein,
Classical Mechanics (2nd ed.), Addison-Wesley, 1980.
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(Pμ + eAμ)(Pμ + eAμ) = m2
0c

2

and, ifwe replace above Pμ by ∂S
∂xμ

, wefind the covariant formof theHamilton–Jacobi
equation: (

∂S

∂xμ
+ eAμ

)(
∂S

∂xμ
+ eAμ

)
− m2

0c
2 = 0. (8.20)

8.2 Electromagnetic Field Tensor

The electrodynamic potentials V and A in vacuum are the solutions of the non-
homogeneous d’Alembert equations, in the Lorenz gauge (see (4.198)):

ε0μ0
∂2V

∂t2
− ΔV = ρ

ε0
,

ε0μ0
∂2A
∂t2

− ΔA = μ0j, (8.21)

which can also be written with the help of the d’Alembertian operator

� = 1

c2
∂2

∂t2
− Δ, c2 = 1

ε0μ0
,

as

� V = ρ

ε0
,

� A = μ0j. (8.22)

From now on we shall use for derivatives also the notations

∂μ = ∂

∂xμ
, ∂μ = ∂

∂xμ
. (8.23)

The symbol of partial derivative ∂
∂xμ is a covariant four-vector, while the the symbol

∂
∂xμ

is a contravariant four-vector. Given that the operator nabla is defined as ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂x

)
= (

∂
∂x1 ,

∂
∂x2 ,

∂
∂x3
)
, it follows that in this notation

∂μ =
(

∂

∂x0
,−∇

)
. (8.24)

http://dx.doi.org/10.1007/978-3-642-17381-3_4
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Thus, the d’Alembertian is written covariantly as

� = ∂μ∂μ. (8.25)

The form (8.22) of the differential equations for the potentials suggests us a
covariant formulation, by defining the four-potential as in (8.10) and a four-current
as

jμ = (cρ, j) . (8.26)

Then Eqs. (8.22) become

� Aμ = μ0 j
μ. (8.27)

In this covariant notation, the Lorenz gauge condition∇ ·A + εμ∂V
∂t = 0 (see (3.80))

will be written as
∂μAμ = 0, (8.28)

while the equation of continuity ∂ρ
∂t + ∇ · (ρv) = 0 (see (2.13)) becomes

∂μ jμ = 0. (8.29)

All these covariant equations suggest that we should find a way of writing also the
electric and magnetic fields, expressed in terms of the scalar and vector potentials,

E = −∇V − ∂A
∂t

, (8.30)

B = ∇ × A,

in a covariant manner. We shall express the x-components of the fields E and B
and show that the covariant expression of the electromagnetic field strength is given
through the electromagnetic field tensor Fμν defined in (8.15). As the tensor Fμν is
antisymmetric by definition, it has six distinct components, which correspond exactly
to the six components of the fields E and B. Explicitly, we have

Ex = E1 = −1

c

∂A1

∂t
− ∂V

∂x1
= −(∂0A1 − ∂1A0),

Bx = B1 = ∂Az

∂y
− ∂Ay

∂z
= ∂A3

∂x2
− ∂A2

∂x3
= −(∂2A3 − ∂3A2). (8.31)

Thus, the detailed matrix form of the electromagnetic field strength tensor is

Fμν = ∂μAν − ∂ν Aμ =

⎛

⎜⎜⎝

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎞

⎟⎟⎠ . (8.32)

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_2
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(The first Lorentz index of the field tensor denotes the line and the second index
denotes the column.) The components of the covariant tensor Fμν are then easily
found from the formula Fμν = gμρgνλFρλ. If one writes explicitly the components
of Fμν , one notices that they are obtained from Fμν by putting E → −E.

In addition to (8.32), another useful way to write the components of Fμν is the
following:

F0i = −1

c
Ei ,

Fi j = εi jk Bk, i, j, k = 1, 2, 3, (8.33)

where εi jk is the usual three-dimensional Levi-Civita symbol (with ε123 = +1) and

E1 = Ex , E2 = Ey, E3 = Ez,

B1 = Bx , B2 = By, B3 = Bz . (8.34)

8.2.1 Gauge Invariance of Fμν

If we make a transformation of Aμ as follows:

A′
μ = Aμ − ∂μψ, (8.35)

where ψ(xν) is an arbitrary differentiable function of xν , we observe that

F ′
μν = ∂A′

ν

∂xμ
− ∂A′

μ

∂xν
= ∂Aν

∂xμ
− ∂2ψ

∂xμ∂xν
− ∂Aμ

∂xν
+ ∂2ψ

∂xν∂xμ
= Fμν .

Consequently, the transformation (8.35) leaves invariant the tensor Fμν . Having in
view the significance of the components of Fμν , we conclude that this transforma-
tion does not modify the fields E, B. Moreover, according to (8.16) or/and (8.17),
the equation of motion of a relativistic charged particle that moves in an external
electromagnetic field remains also unchanged under this transformation.

The space and time components of (8.35) are

A′ = A + ∇ψ,

V ′ = V − ∂ψ

∂t
, (8.36)

i.e. the gauge transformations of the electrodynamic potentials (3.87) and (3.88),
respectively. We thus conclude that Fμν is gauge invariant (as expected, given the
significance of its components), and the relativistic equation of motion of the charged
particle in electromagnetic field is gauge covariant.

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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8.2.2 Lorentz Transformations of the Electromagnetic Field

Recall that the proper orthochronous Lorentz transformations are the
three-dimensional space rotations and the Lorentz boosts. Under the space rota-
tions, the electric and magnetic field vectors E and B transform like any other space
vector, for example the radius vector. Now we shall find the transformations of the
electromagnetic field under the Lorentz boosts.

Let us derive the transformation relations of the components of the tensor Fμν .
Since it is a second-order tensor, its components transform according to (B.16), that
is

F ′μν = Λ
μ
λΛ

ν
ρF

λρ , (8.37)

where the matrix Λ designates a boost in the x-direction, for example. According to
(7.40), the only non-zero elements of the transformation matrix Λ are

Λ0
0 = Λ1

1 = Γ,

Λ2
2 = Λ3

3 = 1, (8.38)

Λ0
1 = Λ1

0 = −V

c
Γ .

Writing only the non-zero terms, we find, for instance,

F ′12 = Λ1
1Λ

2
2F

12 + Λ1
0Λ

2
2F

02 = Γ

(
F12 − V

c
F02

)
,

or, in view of (8.32) (see (6.79)):

B ′
z = Γ

(
Bz − V

c2
Ey

)
.

Take, now, a time-like component of Fμν , for example F01, which yields

F ′01 = Λ0
1Λ

1
0F

10 + Λ0
0Λ

1
1F

01,

leading to
E ′
x = Ex .

The remaining transformation relations are obtained in the same way. Summarizing,
the transformation relations are (see also (6.79) and (6.80)):

E ′
x = Ex , B ′

x = Bx ,

E ′
y = Γ (Ey − V Bz), B ′

y = Γ

(
By + V

c2
Ez

)
,

http://dx.doi.org/10.1007/978-3-642-17381-3_7
http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
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E ′
z = Γ (Ez + V By), B ′

z = Γ

(
Bz − V

c2
Ey

)
, (8.39)

or, in vector form (see also (6.81)),

E′‖ = E‖,
E′⊥ = Γ (E + V × B)⊥,

B′‖ = B‖, (8.40)

B′⊥ = Γ

(
B − 1

c2
V × E

)

⊥
.

If the relative displacement of the two reference frames S and S′ takes place in an
arbitrary direction, of unit vector v0, the transformation relations are

E′ = (1 − Γ )(E · v0)v0 + Γ (E + V × B),

B′ = (1 − Γ )(B · v0)v0 + Γ

(
B − 1

c2
V × E

)
, (8.41)

and we leave the proof to the reader.
The analysis of formulas (8.39)–(8.41) leads to the following conclusions:

1. The components of E and B orthogonal to the direction of relative motion change
when passing from one inertial frame to another, but the parallel components do
not change;

2. The fieldsE andB have a relative character, whichmeans that they depend on the
reference frame. For example, if in the frame S the field is electrostatic (B = 0),
in S′ we have B′ �= 0; if in S the field is magnetostatic (E = 0), in S′ we have
E′ �= 0. The “appearance” and “disappearance” of one of the fields depends on
the choice of reference frame;

3. In the limit (V/c) → 0, the relations (8.40) go to

E′ = E + V × B, B′ = B,

already derived in Chap.3, while studying the electrodynamics of moving media
with small velocity compared to the speed of light (see (3.131)).

8.2.3 Invariants of the Electromagnetic Field

An essential role in the study of the electromagnetic field is played by quantities
that do not change when changing the reference frame – the so-called invariants.
The invariants of the electromagnetic field are easily formed with the help of the
electromagnetic field tensor Fμν . But, first, here are some preliminary considerations.

http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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Let Sμν be a symmetric second-order four-tensor and Aμ an arbitrary four-vector.
Then the quantities Bμ = Sμν Aν form a covariant four-vector. If Aμ and Bμ are
collinear (Bμ = λAμ), then Bμ defines the principal direction of Sμν , while λ is the
principal value of Sμν . To determine λ, we write

Sμν A
ν = λAμ = λgμν A

ν, (8.42)

that is
(Sμν − λgμν)A

ν = 0,

or, using the tensor properties,

(Sν
μ − λδν

μ)Aν = 0. (8.43)

This homogeneous system of algebraic equations admits non-zero solutions for Aν

only if the determinant of the matrix of coefficients is zero, i.e.

|Sν
μ − λδν

μ| = 0, (8.44)

known as secular equation.2

Multiplying (8.42) by Aμ, we also have

Sμν A
μAν = λAμAμ = λgμν A

μAν = invariant,

meaning that λ is an invariant, and so are the roots λ1,λ2,λ3,λ4 of the secular
equation (8.44), as well as all their possible combinations. There are four distinct
combinations of the roots λρ, ρ = 1, 2, 3, 4, i.e. four fundamental invariants of the
symmetric tensor Sμν , namely:

J1 =
∑

λρ, ρ = 1, 2, 3, 4,

J2 =
∑

λρλσ, ρ,σ = 1, 2, 3, 4, ρ < σ,

J3 =
∑

λρλσλη, ρ,σ, η = 1, 2, 3, 4, ρ < σ < η, (8.45)

J4 =
∑

λρλσληλζ = λ1λ2λ3λ4, ρ < σ < η < ζ.

In the case of an antisymmetric tensor, such as the electromagnetic field tensor
Fμν , the roots of the secular equation do not signify principal values of the tensor,
but we can use this procedure to find its invariants. Putting Fν

μ instead of Sν
μ in (8.44)

and observing that

2Since Aν is non-zero, this means that the matrix S − λI is singular, which in turn means that its
determinant is 0 (non-invertible). Thus, the roots of the function det (S − λI ) are the eigenvalues
of S, so it is clear that this determinant is a polynomial in λ.
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Fν
μ = gμρF

ρν,

Fμ
ν = − Fν

μ,

one obtains the secular equation

∣∣∣∣∣∣∣∣

−λ −Ex/c −Ey/c −Ez/c
Ex/c −λ −Bz By

Ey/c Bz −λ −Bx

Ez/c −By Bx −λ

∣∣∣∣∣∣∣∣
= 0. (8.46)

Expanding the determinant, one easily finds

λ4 +
(
B2 − 1

c2
E2

)
λ2 − 1

c2
(E · B)2 = 0, (8.47)

which means that the expressions

I1 = B2 − 1

c2
E2,

I2 = E · B (8.48)

are also invariant.
The above analysis shows that I1 and I2 are the only independent invariants.

In fact, only (E · B)2 is a true invariant, since I2 is not a (Lorentz) scalar, but a
pseudoscalar (the dot product of a polar and an axial vector). In other words, subject
to an improper Lorentz transformation, it changes sign (see Appendix A). I2 is a
Lorentz scalar only for a proper Lorentz transformation.

The invariants (8.48) show that, if E · B = 0 in some frame S, then this property
survives in any inertial frame S′. They also show that, if in S the angle between E
and B is acute (obtuse), then it remains acute (obtuse) in any inertial frame S′.

The invariants (8.48) can be expressed in terms of the electromagnetic field tensor
Fμν . To this end, we form the Lorentz invariant expression (see Appendix B):

FμνFμν = Fik Fik + 2 F0i F0i ,

or, in view of (8.32) and (A.10):

FμνFμν = (
εikl Bl

) (
εikm B

m
)+ 2 F0i F0i = 2

(
B2 − 1

c2
E2

)
= 2 I1,

that is

I1 = 1

2
FμνFμν . (8.49)
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Another invariant (in fact, pseudoscalar) is Fμν F̃μν , where F̃μν is the dual elec-
tromagnetic field tensor,

F̃μν = 1

2
εμνλρFλρ =

⎛

⎜⎜⎝

0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0

⎞

⎟⎟⎠ . (8.50)

Here εμνλρ is the completely antisymmetric unit pseudotensor of the fourth order,
or Levi-Civita symbol, with εμνλρ = +1 for an even permutation of 0, 1, 2, 3. The
transition from Fμν to F̃μν and vice-versa is schematically shown by

1

c
E ↔ B,

B ↔ −1

c
E.

The dual electromagnetic field tensor F̃μν can also be expressed as follows:

F̃0i = −Bi ,

F̃ i j = −1

c
εi jk Ek, i, j, k = 1, 2, 3, (8.51)

where εi jk is the usual three-dimensional Levi-Civita symbol (with ε123 = +1).
We then have

Fμν F̃μν = Fik F̃ik + 2F0i F̃0i = −4

c
(E · B),

therefore
I2 = − c

4
Fμν F̃μν . (8.52)

The sign of the above invariant depends on the convention used for the Levi-Civita
symbol. The convention used here is ε0123 = +1 (some authors use ε0123 = +1).

The two invariants I1 and I2 can also be derived by using an alternative, three-
dimensional method. Consider the complex vector

F = B + i

c
E. (8.53)

Write the field transformations (inverse of (8.39)):

Ex = E ′
x ,

Ey = Γ (E ′
y + V B ′

z),

Ez = Γ (E ′
z − V B ′

y),
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Bx = B ′
x , (8.54)

By = Γ

(
B ′
y − V

c2
E ′
z

)
,

Bz = Γ

(
B ′
z + V

c2
E ′
y

)
,

and use them to project F on coordinate axes:

Fx = Bx + i

c
Ex = B ′

x + i

c
E ′
x = F ′

x ,

Fy = By + i

c
Ey = Γ

(
B ′
y − V

c2
E ′
z

)
+ i

c
Γ (E ′

y + V B ′
z) = Γ

(
F ′
y + i

c
V F ′

z

)
,

Fz = Bz + i

c
Ez = Γ

(
B ′
z + V

c2
E ′
y

)
+ i

c
Γ (E ′

z − V B ′
y) = Γ

(
F ′
z + i

c
V F ′

y

)
.

Setting now tanh θ = V/c, we obtain

Fy = F ′
y cosh θ + i F ′

z sinh θ,

Fz = F ′
z cosh θ − i F ′

y sinh θ, (8.55)

or, if the usual trigonometric functions sin θ and cos θ are used,

Fy = F ′
y cos(iθ) + F ′

z sin(iθ),

Fz = F ′
z cos(iθ) − F ′

y sin(iθ). (8.56)

It then results that a rotation in the plane (x, t) of the four-dimensional space is,
for the vector F, equivalent to a rotation of imaginary angle in the plane (x, y) of the
three-dimensional space. The totality of possible rotations in the four-dimensional
space (including the usual rotations about the axes x, y, z) is equivalent to the totality
of rotations of imaginary angles in three-dimensional space (to the six rotation angles
in four-space correspond three imaginary angles in three-dimensional space).

The only invariant with respect to rotations that can be formed with the vector F,
according to (8.55) and (8.56), is its square

F2 = B2 − 1

c2
E2 + 2i

c
(E · B), (8.57)

which shows that the real expressions B2 − E2/c2 and E ·B are the only independent
invariants of the four-tensor Fμν .
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8.3 Covariant Form of the Equation of Continuity

The formalism of tensor calculus allows us to write the laws of conservation of
some fundamental quantities (electric charge, electromagnetic field energy, electro-
magnetic field momentum, etc.) in a covariant form, as the vanishing of the four-
divergence of a vector or tensor, depending on the analyzed physical quantity.

The law of conservation of electric charge is expressed (see (2.13)) by the equation
of continuity

∂ρ

∂t
+ ∇ · (ρv) = 0, (8.58)

where ρ = ρ(r, t) is the volume charge density, and j = ρv is the conduction current
density. Since charges are considered point-like, the charge density is written in terms
of the Dirac delta function (see (1.6)) as

ρ =
∑

a

qaδ(r − ra), (8.59)

where summation is taken over all charges, and ra is the radius-vector of the charge
qa . The current density is then

j = ρv =
∑

a

qavaδ(r − ra) , (8.60)

where va = dra/dt .
Let us define a four-vector with ji = ρvi as space components. This can be done

multiplying dq = ρ dr by dxμ

dqdxμ = ρdrdxμ = ρ
dxμ

dt
dt dr = ρ

dxμ

dt
dΩ. (8.61)

The total charge in a given volum, dq, is of course the same in any reference frame
and the element of volume in Minkowski space, dΩ = drdt = dx dy dz dt , is also
Lorentz invariant. As a result, the left-hand side of (8.61) is clearly a four-vector.
Consequently,

jμ = ρ
dxμ

dt
= (cρ, j) (8.62)

has to be a four-vector. The time-like and space-like components of jμ are

j0 = j0 = cρ,

j i = − ji = ρ vi . (8.63)

http://dx.doi.org/10.1007/978-3-642-17381-3_2
http://dx.doi.org/10.1007/978-3-642-17381-3_1
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The four-vector defined by (8.62) is the current density four-vector, or four-current.
By means of jμ, the equation of continuity (8.58) is written as

∂μ jμ = 0 . (8.64)

The total electric charge in the space is obviously

Q =
∫

ρdr = 1

c

∫
j0dr, (8.65)

where the integral is taken over the whole three-dimensional space in a given frame
of reference. This expression is not manifestly Lorentz covariant, but it can be cast
in a Lorentz covariant form with the help of the current density four-vector jμ:

Q = 1

c

∫
jμdSμ , (8.66)

where the integral is over a region on a space-like three-dimensional hypersurface3

for which the elements of surface, in the direction of the surface, are dSμ. If we took
the integral 1

c

∫
jμdSμ over an arbitrary hypersurface we would obtain the sum of

charges whose wordlines intersect that hypersurface (not necessarily the total charge
in space).

The charge Q defined according to (8.66) is clearly a Lorentz invariant. Further,
we shall prove that the equivalence of (8.66) and (8.65) takes place, provided that
the current density jμ satisfies the equation of continuity (8.64). To this end, let us
consider ∮

jμ dSμ =
∫

S1+S2+S3

jμ dSμ, (8.67)

where the integral is taken over the closed hypersurface which includes the hyper-
planes S1(x0)1 = const., an arbitrary space-like hypersurface S2, and the “side”
time-like surface S3 (see Fig. 8.1). The integration over the “side” hypersurface is
actually an integration over time, for r fixed. We assume an infinite integration vol-
ume, such that S3 is situated at infinity, i.e. where all the fields and charges are
zero. Due to the latter property, the contribution of the “side” hypersurface S3 to the
integral (8.67) vanishes.

In addition, since the normal unit vectors are opposite, the integral (8.67) becomes

∮
jμ dSμ =

∫

(x0)1=const.
jμ dSμ −

∫

S2

jμ dSμ

=
∫

(x0)1=const.
j0 dV −

∫

S2

jμ dSμ. (8.68)

3A hypersurface is a generalization of an ordinary two-dimensional surface embedded in three-
dimensional space, to an (n − 1)-dimensional surface embedded in n-dimensional space; in our
case, n = 4.



452 8 Relativistic Formulation of Electrodynamics in Minkowski Space

Fig. 8.1 Intuitive
representation of the
four-volume enveloped by
the hyperplane
S1 = (x0)1 = const., the
arbitrary space-like
hypersurface S2 and the
“side” time-like hypersurface
S3, situated at infinity.

On the other hand, in view of the equation of continuity (8.64) and the divergence
theorem (C.36), we have as well

∮
jμ dSμ =

∫
∂ jμ

∂xμ
dΩ = 0. (8.69)

Here dΩ is the element of the four-volume enveloped by the hypersurfaces S1, S2,
and S3. Putting together (8.68) and (8.69), we find the equivalence of the formulas
(8.66) and (8.65), i.e. ∫

(x0)1=const.
j0 dV =

∫

S2

jμ dSμ.

If the second hypersurface is also a constant-time hyperplane, S2 = (x0)2 = const.,
then

∫

(x0)1=const.
jμ dSμ −

∫

(x0)2=const.
jμ dSμ = Q

∣∣∣
(x0)1

− Q
∣∣∣
(x0)2

= 0, (8.70)

which expresses the electric charge conservation.

Observation:
This analysis is suitable for an important generalization. If V μ is a four-vector that
satisfies the equation ∂V μ/∂xμ = 0, then this property is equivalent to the conser-
vation of the integral

∫
V μ dSμ, extended to a hypersurface which covers the whole
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three-dimensional space. This statement remains valid if instead of V μ one takes a
second-order tensor Fμν , or a third-order tensor T μνλ, etc.

8.4 Covariant Form of Maxwell’s Equations

8.4.1 Maxwell’s Equations for Vacuum

8.4.1.1 Source Equations

Using the analytical formalism, we shall deduce Maxwell’s source equations by
means of the Euler–Lagrange formalism for continuous systems.

The action S of the electromagnetic field, in the presence of electric charges, is
formed of two parts: one corresponding to the free field S0 and the other describing
the interaction between sources and the field Sint . Since

S =
∫

Ldt = 1

c

∫
Ldr (c dt) = 1

c

∫
L dx0dx1dx2dx3 = 1

c

∫
L dΩ, (8.71)

the composition of the action S is also valid for the Lagrangian density L, that is

L = L0 + Lint , (8.72)

where (see (3.108)–(3.109)):

L0 = 1

2
ε0E

2 − 1

2μ0
B2 (8.73)

and
Lint = −ρV + j · A. (8.74)

The two Lagrangian densities can be expressed in terms of the four-potential Aμ

and the electromagnetic field tensor Fμν . Using (8.49):

I1 = 1

2
FμνFμν = B2 − 1

c2
E2,

as well as Maxwell’s relation ε0μ0 = 1
c2 , we may write

L0 = − 1

4μ0
FμνFμν . (8.75)

Similarly, one finds
Lint = − jμAμ. (8.76)

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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The Lagrangian density of the system composed of the field and sources is then

L = − 1

4μ0
FηλFηλ − jλAλ. (8.77)

The corresponding Euler–Lagrange equations, with the components of Aμ taken as
dynamical variables, read

∂L
∂Aμ

− ∂

∂xν

(
∂L

∂Aμ,ν

)
= 0, μ, ν = 0, 1, 2, 3. (8.78)

Recalling that Fηλ = ∂ηAλ − ∂λAη, we have

∂L
∂Aμ,ν

= − 1

2μ0
Fηλ ∂Fηλ

∂Aμ,ν
= − 1

2μ0
Fηλ(δ

μ
λ δν

η − δμ
η δν

λ) = 1

μ0
Fμν .

Besides,
∂L
∂Aμ

= − jμ,

and thus (8.78) yield

∂νF
νμ = μ0 j

μ, μ, ν = 0, 1, 2, 3, (8.79)

which is the covariant form of Maxwell’s source equations. Indeed, giving values to
the Lorentz index μ in (8.79) we have:
1) μ = 0:

∂Fk0

∂xk
= μ0 j

0,

that is (see (8.33)):
1

c

∂Ek

∂xk
= μ0cρ,

or
∇ · (ε0E) = ρ,

which is one of Maxwell’s source equations.
2) μ = i :

∂F0i

∂x0
+ ∂Fki

∂xk
= μ0 j

i ,

or, in view of (8.33),

− 1

c2
∂Ei

∂t
− εkil∂k Bl = μ0 j

i ⇔ − 1

c2
∂Ei

∂t
+ (∇ × B)i = μ0 j

i . (8.80)
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Relation (8.80) can be cast in vector form:

1

μ0
∇ × B = j + ε0

∂E
∂t

,

which is the other Maxwell source equation. Denoting

1

μ0
Fμν = Gμν

0 , (8.81)

Maxwell’s source equations can also be written as

∂Gνμ
0

∂xν
= jμ, μ, ν = 0, 1, 2, 3. (8.82)

8.4.1.2 Source-Free Equations

Taking the partial derivative with respect to xλ of (8.15):

∂Fμν

∂xλ
= ∂2Aν

∂xλ∂xμ
− ∂2Aμ

∂xλ∂xν
,

then permuting indices, we obtain two more similar relations. Adding all these rela-
tions term by term, one obtains

∂Fμν

∂xλ
+ ∂Fνλ

∂xμ
+ ∂Fλμ

∂xν
= 0. (8.83)

It is not difficult to prove that the l.h.s. of (8.83) is a completely antisymmetric
third-order tensor. Since the number of distinct components of such a tensor is (see
Appendix B) C3

4 = 4, (8.83) contains four distinct equations. If we suitably multiply
(8.83) by 1

2 ε
μνλσ and perform summation over three pairs of indices, we have

εμνλσ ∂Fλσ

∂xν
= 0,

or, in view of (8.50):
∂ν F̃

μν = 0, (8.84)

which areMaxwell’s source-free equations. In order to prove this, let us recall (8.51),
that is

F̃0i = −Bi ,

F̃ i j = −1

c
εi jk Ek, i, j, k = 1, 2, 3,
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where εi jk is the usual three-dimensional Levi-Civita symbol (ε123 = +1) Giving
values to μ in (8.84), we find
1)μ = 0:

∂ F̃0i

∂xi
= 0 ⇔ −∂Bi

∂xi
= 0 ⇔ ∇ · B = 0.

2)μ = i :
∂ F̃ i0

∂x0
+ ∂ F̃ ik

∂xk
= 0,

or
1

c

∂Bi

∂t
+ 1

c
εik j

∂E j

∂xk
= 0,

which can be re-written as

1

c

∂Bi

∂t
+ 1

c
(∇ × E)i = 0,

or, in vector form
∂B
∂t

+ ∇ × E = 0.

Observation:
The equation of continuity (8.64) can be straightforwardly obtained by means of
Maxwell’s source equations (8.79). To show this, we take the partial derivative of
(8.79) with respect to xμ:

∂2Fμν

∂xμ∂xν
= μ0

∂ jμ

∂xμ
.

Because Fμν is an antisymmetric second-order tensor and ∂2/∂xμ∂xν is a symmetric
second-order tensor, their tensorial product (double contraction) is zero, and the
above relation yields

∂μ j
μ = 0.

8.4.2 Maxwell’s Equations for Media

For convenience we re-write Maxwell’s equations for linear, isotropic, polarizable
media:

∇ ×
(

B
μ0

− M
)

= j + ∂

∂t
(ε0E + P),

∇ · (ε0E + P) = 0, (8.85)
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with

∇ × M + ∂P
∂t

= jp,

∇ · P = − ρp, (8.86)

where jp and ρp are the polarization (bound) current density and charge density,
respectively.

The form of Eqs. (8.86) is similar to that ofMaxwell’s equations for vacuum. This
observation allows us to write (8.86) in a covariant form. To this end, we define the
antisymmetric four-tensor Mμν called polarization four-tensor, as being given by

M0i = cPi ,

Mik = εikl Ml, i, k, l = 1, 2, 3, (8.87)

where ε123 = +1, as well as the polarization four-vector

jμp = (cρp, jp). (8.88)

Then Eqs. (8.86) can be written in the compact form

∂Mμν

∂xμ
= jνp . (8.89)

Equation (8.85) then reads
∂Fμν

∂xμ
= μ0( j

ν + jνp ) (8.90)

or
∂Gμν

∂xμ
= jν, (8.91)

where the antisymmetric tensor

Gμν = 1

μ0
Fμν − Mμν (8.92)

is the excitation four-tensor. Equations (8.91) are called Maxwell–Minkowski equa-
tions.

The time-like and space-like components of Gμν are

G0i = − 1

cμ0
Ei − cPi = − cDi ,

Gik = εikl
(

1

μ0
Bl − Ml

)
= εikl Hl,
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where εi jk is the usual three-dimensional Levi-Civita symbol. As a 4× 4 matrix, the
excitation four-tensor Gμν is written as follows:

Gμν =

⎛

⎜⎜⎝

0 −cDx −cDy −cDz

cDx 0 −Hz Hy

cDy Hz 0 −Hx

cDz −Hy Hx 0

⎞

⎟⎟⎠ . (8.93)

In vacuum, Mμν = 0 and we fall back on (8.82).
Performing calculations similar to those leading to the field transformation rela-

tions (8.39), for the components of Gμν we find

H′‖ = H‖, H′⊥ = Γ (H − V × D)⊥,

D′‖ = D‖, D′⊥ = Γ

(
D + 1

c2
V × H

)

⊥
. (8.94)

In this way we justify, among other things, the analysis presented in Sect. 3.9 for
the propagation of electromagnetic field throughmediamovingwith velocity smaller
than the velocity of light.

Observation:
The source-free equations are not affected by the presence of the polarizablemedium;
they keep their form (8.83).

8.5 Covariant Form of Constitutive Relations

Using the tensor formalism, let us now obtain the four-dimensional form of the con-
stitutive relations. For a linear, homogeneous, and isotropic medium, these relations
are (see Sect. 3.2):

D = εE,

B = μH, (8.95)

j = λ(E + Eext ),

which in this case are valid in the frame inwhich themedium is at rest (proper frame).
Since the first two formulas imply relations only between the field tensors Fμν and
Gμν , while in the differential form of the generalized Ohm’s law appears the current
density j, we shall analyze them separately.

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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8.5.1 Relation Between Fμν and Gμν

Formula (8.95)1, written in the reference frame in which the medium is at rest, is

Di
(0) = εEi

(0),

or, taking into account (8.32) and (8.93),

1

c2
G0i

(0) = εF0i
(0).

Wemultiply now this equation by u(0)
μ = (1, 0, 0, 0), i.e. the time-like component of

the velocity four-vector in the proper frame, with the result:

1

c2
G0i

(0)u
(0)
0 = εF0i

(0)u
(0)
0 ,

or, since u(0)
k = 0, k = 1, 2, 3,

1

c2
Gμi

(0)u
(0)
μ = εFμi

(0)u
(0)
μ . (8.96)

Obviously, we may write as well

1

c2
Gk0

(0)u
(0)
k = εFk0

(0)u
(0)
k . (8.97)

Putting together (8.96) and (8.97) and taking into consideration the antisymmetry of
the two tensors, we find

1

c2
Gμν

(0)uμ = εFμν
(0)uμ.

But a covariant tensor relation written in an inertial reference frame is valid in any
inertial frame, so we may write in general

1

c2
Gμνuμ = εFμνuμ. (8.98)

We proceed in a similar way with (8.95)2. In the proper reference frame, it reads

Bi
(0) = μHi

(0).

Since Gμν is antisymmetric, we can define its dual

G̃μν = 1

2
εμνηθGηθ, (8.99)
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with

G̃μν =

⎛

⎜⎜⎝

0 −Hx −Hy −Hz

Hx 0 cDz −cDy

Hy −cDz 0 cDx

Hz cDy −cDx 0

⎞

⎟⎟⎠ . (8.100)

Using (8.50) and (8.100), then multiplying by u(0)
0 and proceeding as above, we

obtain
F̃μνuμ = μG̃μνuμ. (8.101)

Equations (8.98) and (8.101) are the covariant form of the constitutive relations
(8.95)1 and (8.95)2.

Let us now write the explicit relations between the fields E, D, H, B, for media
moving with relativistic velocities. These relations can be obtained either by expand-
ing relations (8.98) and (8.101), or expressing (8.95)1,2 in the rest frame:

D(0) = εE(0),

B(0) = μH(0),

then using (8.39) and (8.94). Some simple manipulations lead to the following two
relations:

D + 1

c2
V × H = ε(E + V × B),

B − 1

c2
V × E = μ(H − V × D), (8.102)

calledMinkowski’s equations. These relations are essentially different from the Eqs.
(8.95)1,2 for stationary media, since they simultaneously imply all vector fields
E, D, H, B.

Eliminating either B or D between the relations (8.102), one finds two vector
relations for E, D, H:

D‖ = εE‖,(
1 − εμ

ε0μ0

V 2

c2

)
D⊥ = ε

(
1 − V 2

c2

)
E⊥ + (εμ − ε0μ0)(V × H),

or for E, H, B:

B‖ = μH‖,(
1 − εμ

ε0μ0

V 2

c2

)
B⊥ = μ

(
1 − V 2

c2

)
H⊥ + (εμ − ε0μ0)(V × E).
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Remark that, if D ‖ E and B ‖ H in an isotropic medium at rest with respect to a
frame S′, in any other inertial frame S this property is not valid anymore.

In the non-relativistic limit, by neglecting the terms in V 2/c2 and n2 V 2/c2 (see
Maxwell’s relation), we have

D = εE + 1

c2
(n2 − 1)(V × H),

B = μH + 1

c2
(n2 − 1)(V × E). (8.103)

In vacuum (n = 1), from (8.103) we recover D = ε0E and B = μ0H, as expected.

8.5.2 Covariant Form of Ohm’s Law

To write the four-dimensional form of Ohm’s law (8.95)3, we assume that Eext = 0.
The following considerations are not at all affected by this assumption.

Proceeding like in the previous cases, we write first (8.95)3 in the proper reference
frame:

j i(0) = λEi
(0) = λcF0i

(0)u
(0)
0 = λcFμi

(0)u
(0)
μ . (8.104)

Unlike the other constitutive relations considered in Sect. 8.5.1, this relation cannot
be directly generalized to four dimensions. To attain our purpose, we shall consider
the current density j as the sum of conduction and convection current densities.
Written in the proper frame, this relation is

j i(0) = j i(0)(cond) + j i(0)(conv). (8.105)

The two current densities can be chosen as

jμ(0)(cond) = (
0, j(0)

)
,

jμ(0)(conv) = (
cρ(0), 0

)
, (8.106)

where ρ(0) is the charge density in the proper reference frame. We then have

j0(0)(conv) = cρ(0) = cρ(0)u
0
(0).

We multiply the above relation by u(0)
0 , recalling that u(0)

ν uν
(0) = 1 and u(0)

i = 0; then

cρ(0) = j0(0)u
(0)
0 = jν(0)u

(0)
ν .

In this case
j0(0)(conv) = (

jν(0)u
(0)
ν

)
u0(0),
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or, since jμ(0)(conv) has only the time-component,

jμ(0)(conv) = (
jν(0)u

(0)
ν

)
uμ

(0). (8.107)

Substituting (8.104) and (8.107) into (8.105), we obtain

jμ(0) + (
jν(0)u

(0)
ν

)
uμ

(0) = λcFμν
(0)u

(0)
ν .

This tensor relation, being valid in the proper reference frame, is valid in any inertial
reference frame, that is

jμ + ( jνuν)u
μ = λcFμνuν, (8.108)

which is the covariant form of Ohm’s law.
It is instructive to express the space-like and time-like components of Ohm’s law

(8.108). Thus, for
1) μ = 0, we have

j0 + ( jνuν)u
0 = λcF0i ui ,

or (using the relations j0 = cρ, u0 = γ, F0i = − 1
c E

i , and ui = − γ
c vi ):

cρ + ( jνuν)γ = λc

(
−1

c
Ei

)(
−γ

c
vi

)
= λγ

c
(v · E)

= λγ

c
(v · E∗), (8.109)

where E∗ = E + v × B.
2) μ = i , we have

j i + ( jνuν)u
i = λc

(
Fi0u0 + Fikuk

)
,

or (using the expressions of the components of uμ, Fμν , and uμ):

j i + ( jνuν)
γ

c
vi = λc

(γ

c
Ei + γ

c
εiklvk Bl

)
= λγ(E + v × B)i

= λγE∗i . (8.110)

Relation (8.109) is used to extract the expression ( jνuν)γ, and introduce it into
(8.110). In vector form, the result is

j − ρv = λγ
[
E∗ − v

c2
(v · E∗)

]
. (8.111)

This is the relativistic, three-dimensional form of Ohm’s law for moving media.
If v � c, then γ � 1 and the last term in (8.111) can be neglected. The result is

j − ρv(= jc) = λ(E + v × B),
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which isOhm’s law for slowlymovingmedia (see (3.146)). The difference j−ρv = jc
represents, in this case, the conduction current.

If, finally, v = 0, we arrive at the well-known form of Ohm’s law for stationary
media, j = λE.

Observation:
One can easily verify that the space-like components of the force four-vector satisfy
the following relation of transformation

F′N = γ
[
FN + v

c2
(FN · v)

]
, (8.112)

which is similar to (8.111).

8.6 Four-Potential and Its Differential Equations

The differential equations (8.22) of the electrodynamics potential in vacuum, in the
Lorenz gauge, can be cast in the manifestly covariant form

�Aμ = μ0 j
μ. (8.113)

Todetermine the solutionof (8.113),we shall use again theGreen functionmethod.
In this case, we have to find the Green function of the d’Alembertian operator, i.e.
the solutions of the equation

�xG(x, x ′) = δ(4)(x − x ′), (8.114)

where by x and x ′ we understand the corresponding four-vectors, and

δ(4)(x − x ′) = δ(x0 − x ′0)δ(r − r′) (8.115)

is the four-dimensional Dirac δ function. In the absence of discontinuity surfaces, the
Green function can only depend on the difference zμ = xμ − x ′μ, and thus (8.114)
becomes

�zG(z) = δ(4)(z). (8.116)

To solve this equation we shall Fourier transform it. For the Green function we
obtain

G(z) =
∫

g(k)e−ikzd4k, (8.117)

http://dx.doi.org/10.1007/978-3-642-17381-3_3


464 8 Relativistic Formulation of Electrodynamics in Minkowski Space

Fig. 8.2 The two simple
poles of the integrand in the
expression (8.120).

where

kz = kμzμ = k0z0 + ki zi = k0z0 − k · (r − r′) = k0z0 − k · R.

Since the Fourier transform of δ(4)(z) is

δ(4)(z) = 1

(2π)4

∫
e−ikzd4k, (8.118)

we find

g(k) = − 1

(2π)4

1

k2
, (8.119)

where
k2 = kμkμ = (k0)2 − k2.

Therefore

G(z) = − 1

(2π)4

∫
e−ikz

k2
d4k, (8.120)

which is nothing else but the four-dimensional form of (4.206) (Fig. 8.2).
The derivation of the solution of equation (8.113) is similar to that developed in

Sect. 4.9.4 Various physically significant Green’s functions are obtained by choosing
suitably the integration contours and including one or the other pole, or both. For
example, in order to obtain the retarded Green’s function, we choose the contour as
in Fig. 8.3 and the integral analogous to (4.209) reads

∫ +∞

−∞
e−k0z0

k2
dk0 =

{
0, t < t ′

2πc
|k| sin (c|k|τ ) , t > t ′,

= θ
(
z0
) 2πc

|k| sin
(|k|z0) ,

4In comparing the formulas with those in Sect. 4.9, note that the symbol k there means |k|, while
in this section it signifies the four-vector kμ.

http://dx.doi.org/10.1007/978-3-642-17381-3_4
http://dx.doi.org/10.1007/978-3-642-17381-3_4
http://dx.doi.org/10.1007/978-3-642-17381-3_4
http://dx.doi.org/10.1007/978-3-642-17381-3_4
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Fig. 8.3 Integration contour for the retarded (causal) Green’s function.

where θ
(
z0
) = θ

(
x0 − x ′0) is the Heaviside step function, also called the unit

step function:

θ
(
z0
) =

{+1, z0 > 0,
0, z0 < 0.

(8.121)

The retarded Green’s function then reads

Gret (x − x ′) = c

4πR
θ
(
x0 − x ′0) δ

(
x0 − x ′0 − R

)
. (8.122)

The retarded Green’s function is also called causal Green’s function, because the
perturbation is produced at the moment t ′, which precedes in time the moment t of
observation.

In a similar way, choosing the contour depicted in Fig. 8.4, one obtains the
advanced Green function

Gadv(x − x ′) = c

4πR
θ
[−(x0 − x ′0)] δ

(
x0 − x ′0 + R

)
. (8.123)

Using (E.27), we can write

δ
[
(x − x ′)2

] = δ
[
(xμ − x ′μ)(xμ − x ′

μ)
] = δ

[
|r − r′|2 − (

x0 − x ′0)2]

= δ
[(
x0 − x ′0 − R

) (
x0 − x ′0 + R

)]

= 1

2R

[
δ
(
x0 − x ′0 − R

)+ δ
(
x0 − x ′0 + R

)]
. (8.124)

Since the functions θ
(
x0 − x ′0) and θ

[−(x0 − x ′0)] = θ
(
x ′(0) − x (0)

)
select one or

the other of the two terms in the right-hand side of relation (8.124), we have
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Fig. 8.4 Integration contour for the advanced Green’s function.

Gret (x − x ′) = θ
(
x0 − x ′0) δ

[
(x − x ′)2

]
,

Gadv(x − x ′) = θ
(
x ′0 − x0

)
δ
[
(x − x ′)2

]
. (8.125)

The Heaviside functions θ
(
x0 − x ′0) and θ

(
x ′0 − x0

)
, which are not covariant,

become covariant with respect to the proper orthochronous Lorentz transformations
when taken in combination with the corresponding delta functions. Thus, (8.125)
provides manifestly covariant expressions for the Green functions. The theta and
delta functions in (8.125) show that the retarded and advanced Green functions are
nonzero only inside the lightcone ahead and behind the source.

The general solution of the wave equation in vacuum (8.113) obeyed by the four-
potential of the electromagnetic field Aμ(x) can be written now with the help of the
causal Green function:

Aμ(x) = Aμ
in(x) + μ0

∫
Gret (x − x ′) jμ(x ′)d4x ′, (8.126)

or by means of the advanced Green function:

Aμ(x) = Aμ
out (x) + μ0

∫
Gadv(x − x ′) jμ(x ′)d4x ′, (8.127)

where Aμ
in and Aμ

out are two particular solutions (corresponding to the two situations)
of the homogeneous wave equation. In (8.126) appears the retarded Green’s func-
tion. In this case, in the limit x0 → −∞, the integral over the sources vanishes,
assuming that the sources are localized in space and time (there are no sources at
infinity). We see then that the four-potential Aμ

in of the free field has the significance
of incident or incoming four-potential, specified by x0 → −∞. Similarly, in (8.127)
with the advanced Green function, the solution Aμ

out is the asymptotic emerging or
outgoing four-potential, specified for x0 → +∞. The radiation fields are defined as
the difference between the outgoing and incoming fields, that is
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Aμ
rad(x) = Aμ

in(x) − Aμ
out (x) = μ0

∫
G(x − x ′) jμ(x ′) d4x ′, (8.128)

where
G(x − x ′) = Gret (x − x ′) − Gadv(x − x ′). (8.129)

8.7 Conservation Laws of Electrodynamics in Covariant
Formulation

As we have mentioned in Sect. 8.3, tensor calculus gives the possibility of writing in
covariant form some fundamental laws of the electromagnetic field: the lawof conser-
vation of electromagnetic energy, electromagnetic momentum, and electromagnetic
angular momentum.

We shall first present the general theory, applicable to any field, and then apply it
to the electromagnetic field. In this respect, we presume the field as of unspecified
tensor order.

To set the stage for themain discussion, let us start again from the Euler–Lagrange
equations,

∂L
∂ϕ(s)

− ∂

∂xμ

(
∂L

∂(∂μϕ(s))

)
= 0, s = 1, 2, ..., h; μ = 0, 1, 2, 3, (8.130)

where the Lagrangian densityL is, in general, a function of the independent variables
x ≡ xμ, the dynamical variables (fields) ϕ(s)(x), and their derivatives with respect to
time, ϕ̇(s)(x). The variables x count, in this case, the number of degrees of freedom
of the system, which is infinite. We shall assume only local interactions, i.e. the
Lagrangian density is a function of one point only,L(x).Havingonly time-derivatives
of the fields in the Lagrangian is, however, an overly restrictive condition, since such a
model cannot cover wave propagation. To relax this constraint, we allow interactions
between the field at a space point x and its infinitesimally close neighbours, since
the maximum speed of propagation of signals is finite and equal to the speed of light
in vacuum. We thus consider

L = L (x,ϕ(s)(x), ϕ̇(s)(x),ϕ(ct, x + dx)
)
.

For infinitesimal displacements we can write

ϕ(ct, x + dx) = ϕ(ct, x) + ∂ϕ

∂xi
(ct, x + dx)dxi ,

therefore the Lagrangian can be cast into a manifestly covariant form as a function

L(x) = L (x,ϕ(s)(x), ∂μϕ
(s)(x)

)
.
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We cannot have higher order derivatives of ϕ(s) because they would lead to equa-
tions of motion of order higher than two; however, the equations of physics (for
example, Newton’s law, the wave propagation equation, Schrödinger’s equations)
are differential equations of second order, and not higher, in the time variable.

The requirement of relativistic invariance of the theory is equivalent to requiring
the Lorentz invariance of the action. Since the action of a system of fields extending
infinitely in space and time is

S =
∫

d4xL(x),

with the integrals covering the whole space-time, and the volume element d4x is
Lorentz invariant, we deduce that the Lagrangian density has to be also a Lorentz
scalar. This gives us an excellent framework for constructing Lagrangian densities
from fields of various tensorial orders.

Another property that we shall require is the invariance of action with respect to
translations in space and time. This invariance is the mathematical expression of the
assumed homogeneity of space-time, just as the Lorentz invariance expresses the
postulated isotropy of space-time. The way to account for the translational invari-
ance of the Lagrangian density is by discarding the explicit x-dependence. Under a
translation transformation

xμ → x ′μ = xμ + aμ, (8.131)

where aμ is an arbitrary constant four-vector, the fields transform trivially as

ϕ(s)(x) → ϕ′(s)(x + a) = ϕ(s)(x), (8.132)

in other words all fields are scalars under translations.5 It is easy to see that

L′ (x + a,ϕ′(s)(x + a), ∂μϕ
′(s)(x + a)

) = L′ (x + a,ϕ(s)(x), ∂μϕ
(s)(x)

)

�= L (x,ϕ(s)(x), ∂μϕ
(s)(x)

)
,

and that this non-invariance is due to the explicit dependence of the Lagrangian
density on x .

Putting together the results inferred from the physical requirements of Poincaré
invariance, locality, and correspondence with the classical non-relativistic theory, we
deduce that the Lagrangian density is a Lorentz scalar, with a functional dependence
of the form

L(x) = L (ϕ(s), ∂μϕ
(s)
)
. (8.133)

5The reason is that the translation group is a real continuous Abelian group (it is obvious that any
two translations commute among themselves) and as such it admits only scalar, or trivial, irreducible
representation. Proving this statement is beyond the scope of this book.
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Since the tensor order of the field is not specified, by (s) we mean a group of
indices which:

(a) does not exist if the tensor order of the field is zero (scalar field): ϕ(s) ≡ ϕ;
(b) is composed of a single index in case of a first-order tensor, i.e. a vector: ϕ(s) ≡

ϕμ. Such a field is, for example, the electromagnetic field;
(c) is formed of two indices to characterize a second-order tensor field (such as

gravitational field): ϕ(s) ≡ ϕμν , etc.

8.7.1 Noether’s Theorem

The connection between symmetries under continuous transformations and conser-
vation laws is known as Noether’s theorem. It is due to Emmy Noether (1882–1935),
a German-Jewish mathematician who proved it in 1918. The theorem has had long-
lasting influence on the development of modern theoretical physics. Starting with the
second half of the 20th century, symmetry has been themost dominant concept in for-
mulating the fundamental laws of physics. Actually, after the 1905 papers of Einstein
on special relativity, symmetries have been viewed as essential properties of Nature,
while the dynamical laws are regarded as mere consequences of the symmetries.

Let us consider a system of local fields ϕ(s)(x), described by the Lagrangian

L(x) = L (ϕ(s)(x), ∂μϕ
(s)(x)

)
.

Suppose we have an N -parametric group of continuous transformations of the space-
time:

xμ → x ′μ = xμ + δxμ, δxμ = Xμ
κωκ, (8.134)

ϕ(s)(x) → ϕ′(s)(x ′) = ϕ(s)(x) + δϕ(s)(x), δϕ(s)(x) = Φ(s)
κ ωκ, (8.135)

where ωκ,κ = 1, 2, . . . , N are the parameters of the infinitesimal transformations
and Xμ

κ and Φ(s)
κ are the matrix generators of the transformations for the coordinates

and fields, respectively.
The theory defined by L(x) is invariant, or symmetric, under the transformations

(8.134) and (8.135) if the action does not change, which can be expressed by the
equality

L′(x ′) d4x ′ = L(x) d4x . (8.136)

Noether’s theorem can be stated as follows: If the theory is invariant under any
continuous N -parametric group of transformations which satisfy (8.136), than there
are correspondingly N conserved quantities, commonly called charges.
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We shall prove now the theorem starting from the invariance condition (8.136),
which leads to

δ
(L(x) d4x

) = δ(L(x))d4x + L(x)δ(d4x) = 0. (8.137)

We shall consider one by one the two terms in (8.137). Since a finite continuous
transformation can be written as an infinite sum of infinitesimal transformations, it
is sufficient to analyze only the latter ones. All the formulas will be considered up to
the first order in the transformation parameters ωk .

Under a transformation of coordinates, the functional form of the fields and of
the Lagrangian changes, as one can see from Eqs. (8.135) and (8.136), where upon
transformation we wrote ϕ′ instead of ϕ and L′ instead of L. The form variation is
denoted by δ̄ and in the case of the Lagrangian, it is written as

δ̄L = L′(x) − L(x). (8.138)

Note that this variation is defined at a given space-time point x . The total variation
of the Lagrangian δ(L(x)) can be written as

δ(L(x)) = L′(x ′) − L(x) = L′(x ′) − L′(x) + L′(x) − L(x)

= (∂νL′(x))δxν + δ̄(L(x))

= (∂νL(x))δxν + δ̄(L(x)), (8.139)

where the last equality is valid in the considered order in the transformation parame-
ters. Thus, the total variation of the Lagrangian density is due to the form variation
δ̄(L(x)) and to the variation of the coordinates, (∂νL(x))δxν . In its turn, the form
variation of the Lagrangian δ̄(L(x)) is due to the form variation of the fields ϕ(s)(x)
and their derivatives:

δ̄(L(x)) = ∂L
∂ϕ(s)

δ̄ϕ(s) + ∂L
∂(∂μϕ(s))

δ̄(∂μϕ
(s)) (8.140)

=
[

∂L
∂ϕ(s)

− ∂ν

(
∂L

∂(∂νϕ(s))

)]
δ̄ϕ(s) + ∂ν

(
∂L

∂(∂νϕ(s))
δ̄ϕ(s)

)
.

The second term in the last line of the above equation was written making use of the
fact that the form variation δ̄ is taken at a fixed point, consequently it commutes with
the derivative operator ∂ν . The form variation of the fields is, by the same reasoning
as it was shown for the Lagrangian density (see (8.139)),

δ̄ϕ(s) = δϕ(s) − (∂νϕ
(s))δxν (8.141)

= [
Φ(s)

κ − (∂νϕ
(s))Xν

κ

]
ωκ,

where we took into account (8.134) and (8.135) in writing the last equality. Intro-
ducing (8.140) and (8.141) into (8.139) and observing that the factor in the square
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brackets vanishes due to the Euler–Lagrange equations (8.130), we obtain:

δ(L(x)) = ∂ν

(
∂L

∂(∂νϕ(s))

[
Φ(s)

κ − (∂ρϕ
(s))Xρ

κ

])
ωκ + (∂νL(x))Xν

κωκ. (8.142)

Let us now consider the second term in (8.137). The variation of the volume
element d4x under the transformations (8.134) and (8.135) is

d4x ′ = | det J | d4x, (8.143)

where J is the Jacobian matrix of the coordinate transformation (8.134):

det J = det

(
∂x ′ν

∂xμ

)
= det

(
δν
μ + ∂μ(X

ν
κωκ)

)
= 1 + ∂ν(X

ν
κωκ) + O(ω2)

(8.144)
(assuming that the parameters of the transformations may depend on the space-time
point). Using this expression in (8.143), we find that the second term of (8.137)
becomes

L(x)δ(d4x) = L(x)∂ν(X
ν
κωκ)d

4x . (8.145)

Now we can express the invariance condition (8.137) in terms of fields and their
variations, using (8.142) and (8.145), with the result:

0 = ∂ν

(
∂L

∂(∂νϕ(s))
Φ(s)

κ − ∂L
∂(∂νϕ(s))

(∂ρϕ
(s))Xρ

κ

)
ωκ + ∂ν

(LXν
κ

)
ωκ (8.146)

= −∂ν

{[
∂L

∂(∂νϕ(s))
(∂ρϕ

(s)) − L(x)δν
ρ

]
Xρ

κ − ∂L
∂(∂νϕ(s))

Φ(s)
κ

}
ωκ

Since the parameters ωκ are arbitrary, Eqs. (8.146) can be satisfied only if the coef-
ficients of ωκ vanish. Thus, we obtain N continuity equations,

∂ν J
ν
κ = 0, κ = 1, 2, . . . , N , (8.147)

where the currents J ν
κ , called Noether currents, have the expressions

J ν
κ (x) =

[
∂L

∂(∂νϕ(s))
(∂ρϕ

(s)) − Lδν
ρ

]
Xρ

κ − ∂L
∂(∂νϕ(s))

Φ(s)
κ . (8.148)

Finally, we define the corresponding N charges:

Qκ(t) =
∫

V
d3x J 0

κ , κ = 1, 2, . . . , N , (8.149)
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where V is the space volume occupied by the system of fields. The charges so defined
are conserved, i.e. time-independent, as can be easily shown:

dQκ

dt
(t) =

∫

V
d3x ∂0 J

0
κ (x)

=
∫

V
d3x

(
∂μ J

μ
κ − ∂i J

i
κ

)

= −
∫

V
d3x∂i J

i
κ = −

∫

∂V
dSi J

i
κ,

where we used the equation of continuity and the divergence theorem (C.36). Assum-
ing that on the boundary surface of V there are no charges, nor currents, that is

J iκ|∂V = 0,

we obtain
dQκ

dt
= 0, κ = 1, 2, . . . , N .

The Noether theorem is thus proven. The great usefulness of the formalism is
that it not only states the existence of conserved quantities once the system is sym-
metric under certain transformations, but it also gives a prescription to derive those
conserved quantities.

In 1911, the Germanmathematician Gustav Herglotz (1881–1953) used the varia-
tional method to derive the conservation of energy-momentum and angular momen-
tum from thePoincaré invariance.Thisworkwas oneof themost important precursors
to Emmy Noether’s celebrated theorem. In the following, we shall use the method of
Noether and Herglotz to find the conserved energy-momentum tensor and angular
momentum tensor for a general system of fields.

8.7.2 Energy-Momentum Tensor

The conservation of energy and momentum is a consequence of the space-time
translational invariance. This is a well-known result in the non-relativistic mechanics
of particles. In the following, we shall derive the expression of the energy-momentum
tensor usingNoether’s prescription. Recalling the translation transformations (8.131)
and (8.132), which we re-write for convenience, with aμ replaced by ωμ:

xμ → x ′μ = xμ + ωμ,

ϕ(s)(x) → ϕ′(s)(x + a) = ϕ(s)(x),

and comparing them with formulas (8.134) and (8.135), we observe that
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δxμ = ωμ, δϕ(s)(x) = 0,

that is
Xρ

κ = δρ
ν , Φ(s)

κ = 0.

There are four Noether currents in this case, corresponding to the translations in each
space-time direction. Their expressions are:

J ν
μ ≡ T ν

μ = ∂L
∂(∂νϕ(s))

(∂μϕ
(s)) − Lδν

μ. (8.150)

These currents formactually aLorentz tensor, called the canonical energy-momentum
tensor. The property of symmetry (or antisymmetry) of a second-order tensor, closely
connected with some physical quantities, can be easily analyzed only if the two
indices have the same variance. In our case, the contravariant form of the canonical
energy-momentum tensor is

T μν = ∂L
∂νϕ(s)

∂μϕ(s) − Lgμν . (8.151)

We shall adopt the contravariant form and derive the conserved charges, by putting
ν = 0 and integrating over the space volume V occupied by the field, in a given
Lorentz frame. The first charge is obtained for μ = 0:

T 00 = ∂L
∂(∂0ϕ(s))

∂0ϕ(s) − L. (8.152)

We observe that the momentum densities, canonically conjugated to the fields ϕ(s)

are

π(s) = ∂L
∂(∂0ϕ(s))

(8.153)

and the Hamiltonian density is

H = π(s)∂0ϕ
(s) − L, (8.154)

Thus, we deduce that T 00 signifies the energy density of the system of fields, com-
monly denoted by w, and

E =
∫

T 00d3x (8.155)

represents the total energy of that system, which is conserved.
We expect that the space components, obtained for ν = i , i = 1, 2, 3, i.e.

Pi = const.
∫

T i0d3x
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will give the total momentum of the system of fields. Recalling that for a relativistic
particle the time-component of the energy-momentum vector is p0 = 1

c E, where E
is the energy of the particle, we infer that the constant above is the inverse of the
speed of light in vacuum, 1/c. Thus, the conserved three-momentum of the system
of fields is given by

Pi = 1

c

∫
d3xT i0 = ∂L

∂(∂0ϕ(s))
∂iϕ(s). (8.156)

The quantities

pi = 1

c
T i0 (8.157)

form a three-dimensional vector, called momentum density of the system of fields.
The energy-momentum tensor (8.151) does not have a definite symmetry property

in the Lorentz indices, therefore it contains sixteen independent elements. We can
now find the physical significance of the other elements, for which ν �= 0. Let us
take, next, μ = 0 in ∂νT μν = 0:

∂T 0i

∂xi
+ ∂T 00

∂x0
= 0,

then integrate over the three-dimensional domain of volume V :

∂

∂t

∫

V
T 00d3x = − c

∫

V

∂T 0i

∂xi
d3x = − c

∮

∂V
T 0i dSi ,

where divergence theorem has been applied. The left-hand side of this equation gives
the time variation of the total energy of the field, therefore the vector

πi = c T 0i (8.158)

stands for the energy flux density, which is the energy passing in unit time through
the closed surface ∂V = S bounding the integration domain of volume V .

Finally, we consider μ = i in ∂νT μν = 0, and integrate over the space volume:

∂

∂t

(
1

c

∫

V
T i0d3x

)
= −

∫

V

∂T ik

∂xk
d3x = −

∮

∂V
T ikdSk .

In view of (8.157), this relation shows that

πik = T ik (8.159)

represents the momentum flux density of the field.
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Summarizing, here is the significance of all the sixteen components of the tensor
T μν :

T 00 = w → energy density;
T i0 = cpi → c × momentum density;
T 0i = 1

cπ
i → 1

c × energy flux density;
T ik = πik → momentum flux density.

(8.160)

Thus, we have justified the name of energy-momentum tensor given to T μν . Since, in
fact, its components have the significance of densities, the name of energy-momentum
density tensor would be more appropriate, but this term is not used in scientific
literature.

The formulas (8.155) and (8.156) define the energy-momentum vector in the
proper reference frame. The Lorentz covariant definition is

Pμ = 1

c

∫
T μνdSν, (8.161)

where the integration is over a region on a space-like hypersurface for which the
elements of surface, in the direction of the surface normal, are dSν , as discussed in
Sect. 8.3.

It is important to observe that the tensor T μν is not uniquely determined by
∂νT μν = 0 and (8.161). Indeed, if to T μν we add a tensor ∂Bμλν/∂xλ, where Bμλν

is a third-order tensor, antisymmetric in its last two indices
(
Bμλν = −Bμνλ

)
, i.e.

T μν
B = T μν + ∂

∂xλ

(
Bμλν

)
, (8.162)

we have
∂T μν

B

∂xν
= ∂T μν

∂xν
+ ∂2

∂xν∂xλ

(
Bμλν

) = ∂T μν

∂xν
= 0,

because the second-order derivative is symmetric in the index pair (ν,λ), while Bμλν

is antisymmetric.
Substituting (8.162) into (8.161), we obtain

Pμ
B =

∫
T μν
B dSν =

∫
T μνdSν +

∫
∂λB

μλν dSν .

But
∫

∂λB
μλνdSν = 1

2

∫ (
∂λB

μλν + ∂λB
μλν

)
dSν

= 1

2

∫ (
∂λB

μλν dSν + ∂νB
μνλ dSλ

) = 1

2

∫ (
∂λB

μλν dSν − ∂νB
μλν dSλ

)
,
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or, in view of (C.19),

∫
∂λB

μλν dSν = 1

2

∫
Bμλν dσ̃νλ. (8.163)

where dσ̃νλ is an element of the two-dimensional surface bounding the
three-dimensional hypersurface of element dSν . This two-surface is extended to
infinity and, since we assume the field vanishing at infinity, the integral (8.163)
vanishes as well and we are left with Pμ

B = Pμ. Therefore, the four-momentum
remains unchanged under the transformation (8.162). Consequently, the transforma-
tion (8.162) modifies neither the equation of conservation

∂νT
μν = 0, (8.164)

nor the four-momentum (8.161).

8.7.3 Angular Momentum Tensor

The angular momentum of a system of fields is obtained from Noether’s theorem as
conserved charge when the system is invariant under Lorentz transformations. Under
infinitesimal Lorentz transformations, the space-time points and the fields transform
as follows:

xμ → x ′μ = xμ + δxμ = xμ + Xμ
αβ ωαβ, (8.165)

ϕ(s)(x) → ϕ′(s)(x ′) = ϕ(s)(x) + δϕ(s)(x) = ϕ(s)(x) + Φ
(s)
αβωαβ, (8.166)

where ωαβ are the antisymmetric parameters of the Lorentz transformations (see
(7.54)). Note that the generic index κ in (8.134) and (8.135) is replaced by the pair
of Lorentz indices αβ. We have to find the quantities (Xαβ)μν and Φ

(s)
αβ , in order to

utilize them in the formula (8.148) for Noether’s conserved current. The form of Xμ
αβ

can be easily read off from Eqs. (7.52)–(7.59). In the language of Sect. 7.3.3,

x ′μ = xμ + ωμ
νx

ν = xμ − i

2
ωαβ(Lαβ)μνx

ν,

with
(Lαβ)μν = i

(
gβνδ

μ
α − gανδ

μ
β

)
.

Comparing these equations with (8.165), we find

Xμ
αβ = 1

2

(
xβδμ

α − xαδμ
β

)
. (8.167)

The infinitesimal transformations of the fields (8.166) have to be of the form

http://dx.doi.org/10.1007/978-3-642-17381-3_7
http://dx.doi.org/10.1007/978-3-642-17381-3_7
http://dx.doi.org/10.1007/978-3-642-17381-3_7
http://dx.doi.org/10.1007/978-3-642-17381-3_7
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ϕ′(s)(x ′) = ϕ(s)(x) + 1

2
Σ

(s,r)
αβ ωαβϕ(r)(x), (8.168)

where the summation over the repeated indices r and s labeling the fields is implied.
The coefficientsΣ

(s,r)
αβ ωαβ are antisymmetric in the indicesα andβ, just likeωαβ , and

they are determined by the concrete transformation properties of the fields under the
Lorentz group (in other words, by the representation of the Lorentz group assigned
to those fields). They define the intrinsic angular momentum of the fields, i.e. the
spin. We call Σ(s,r) a spin matrix. Comparing (8.166) and (8.168), we find

Φ
(s)
αβ = 1

2
Σ

(s,r)
αβ ϕ(r)(x). (8.169)

Having settled the transformations of the space-time points and fields, we can
write down the conserved Noether currents, which will be the components of a order
three tensor:

J ν
αβ (x) =

[
∂L

∂(∂νϕ(s))
(∂ρϕ

(s)) − Lδν
ρ

]
Xρ

αβ − ∂L
∂(∂νϕ(s))

Φ
(s)
αβ

= −1

2

[(
xαT

ν
β − xβT

ν
α

)+ ∂L
∂(∂νϕ(s))

Σ
(s,r)
αβ ϕ(r)

]
, (8.170)

which was obtained by plugging (8.167) and (8.169) into (8.148). The second term,

S ν
αβ = ∂L

∂(∂νϕ(s))
Σ

(s,r)
αβ ϕ(r), (8.171)

is called canonical spin tensor.
The angular momentum tensor is defined as

Mαβν = (
xαT βν − xβT αν

)+ Sαβν (8.172)

and it satisfies the continuity equation

∂νMαβν = 0. (8.173)

The conserved charges are obtained by putting ν = 0 and integrating over the
whole three-dimensional space:

Mαβ = 1

c

∫
d3x

(
xαT β0 − xβT α0 + Sαβ0

)
, (8.174)

or covariantly

Mαβ = 1

c

∫ (
xαT βν − xβT αν + Sαβν

)
dSν, (8.175)
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and they represent the components of the total angular momentum, the first two terms
signifying the orbital angular momentum, while the last signifies the contribution of
the intrinsic angular momentum, or spin.

8.7.4 Belinfante Energy-Momentum Tensor

In 1939, Frederik Belinfante (1913–1991) proposed a method of symmetrization
of the energy-momentum tensor, based on a combination of the canonical energy-
momentum tensor and canonical spin tensor. Taking advantage of the fact that the
continuity equation remains the same if one performs a transformation of the canon-
ical energy-momentum tensor of the form (see (8.162)):

T μν
B = T μν + ∂

∂xλ

(
Bμλν

)
, (8.176)

with Bμλν = −Bμνλ, one defines the Belinfante tensor:

Bμλν = 1

2

(
Sμλν − Sμνλ − Sλνμ

)
. (8.177)

This expression has the required antisymmetry property in the last two indices.
The tensor T μν

B in (8.176) is called the Belinfante energy-momentum tensor and
has the remarkable property that it is a symmetric tensor. A symmetric energy-
momentum tensor is necessary when matter fields are coupled to gravity, in the
framework of the general theory of relativity.

Using the Belinfante energy-momentum tensor, the expressions for the four-
momentum and angular momentum become:

Pμ = 1

c

∫
d3x T μ0

B , (8.178)

Mμν = 1

c

∫
d3x

(
xμT ν0

B − xνT μ0
B

)
. (8.179)

8.7.5 Energy-Momentum Tensor of the Electromagnetic
Field

Let us now particularize the above general analysis to the case of the electromagnetic
field. The Lagrangian density L of the free electromagnetic field is (see (8.75)):

L = − 1

4μ0
FμνFμν .
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In our case, the field functions ϕ(s) are the components of the four potential
Aμ, μ = 0, 1, 2, 3. According to (8.151), the canonical energy-momentum tensor
T μν

(c) is then

T μν
(c) = 1

4μ0
FρσFρσg

μν + ∂L
∂(∂ν Aλ)

(∂μAλ).

But
∂L

∂(∂ν Aλ)
= − 1

μ0
Fνλ,

and we obtain

T μν
(c) = 1

4μ0
FρσFρσg

μν − 1

μ0
Fνλ(∂μAλ). (8.180)

This tensor is not symmetric, but it can be symmetrized by using the Belinfante
procedure. To this end, we need the canonical spin tensor for the electromagnetic
field, which is easily read off from the Lorentz transformation property of the field,
i.e.

Aμ(x) → A′μ(x ′) = Aμ + ωμ
ν A

ν(x) = Aμ(x) − i

2
ωαβ(Lαβ)μν A

ν(x),

with
(Lαβ)μν = i

(
gβνδ

μ
α − gανδ

μ
β

)
.

in full analogy with the transformation properties of the coordinate four-vector xμ.
Thus, the spin matrix for the electromagnetic field, according to (8.168), is

(Σαβ)μν = gβνδ
μ

α − gανδ
μ

β . (8.181)

Introducing this spinmatrix into the general formula (8.175), we obtain the canonical
spin tensor of the electromagnetic field:

Sαβν = ∂L
∂(∂ν Aλ)

(Σαβ)λσA
σ = − 1

μ0

(
AαFβν − AβFαν

)
, (8.182)

which leads, by (8.177), to the Belinfante tensor

Bμλν = − 1

μ0
AμFλν . (8.183)

According to the procedure of symmetrizing the energy-momentum tensor, we have
to add to the canonical tensor the divergence of the Belinfante tensor, i.e.

∂λB
μλν = 1

μ0

(
∂Aμ

∂xλ
Fλν + Aμ ∂Fλν

∂xλ

)
. (8.184)
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From Maxwell’s equations (8.79), written for jμ = 0 (the field is source-free), the
last term of (8.184) vanishes. In addition,

∂Aλ

∂xμ
− ∂Aμ

∂xλ
= Fμλ,

and thus, formulas (8.176), (8.180), and (8.184) lead to the symmetric energy-
momentum tensor of the electromagnetic field

T μν = 1

4μ0
FληFληg

μν − 1

μ0
FμλFν

λ. (8.185)

(We have omitted the subscript B for convenience.) It has also the property of gauge
invariance (i.e. invariance under the transformations (8.35)), which can be immedi-
ately seen if we recall that the electromagnetic field tensor is gauge invariant.

Since T μν is symmetric, it should have
(
C2
4

) = C2
5 = 4·5

1·2 = 10 distinct compo-
nents. But, as it can easily be shown, its trace is zero,

Tr {T } =
3∑

μ=0

T μ
μ = 0, (8.186)

and the number of distinct components reduces to nine. Following the general theory,
let us find the expressions and the physical significance of these components.

In view of (8.33) and (8.49), the component T 00 is

T 00 = 1

4μ0
FμνFμν − 1

μ0
F0i F0

i = 1

4μ0
2

(
B2 − E2

c2

)
+ 1

μ0c2
E2

= 1

2

(
ε0E

2 + 1

μ0
B2

)
= wem, (8.187)

where

wem = 1

2
ε0E

2 + 1

2μ0
B2 (8.188)

is the energy density of the electromagnetic field.
Also,

T i0
(= T 0i

) = − 1

μ0
FiλF0

λ = − 1

μ0
Fik F0

k = − 1

μ0

(−εikl Bl
) (1

c
Ek

)

= ε0c(E × B)i = c(D × B)i = c piem, (8.189)



8.7 Conservation Laws of Electrodynamics in Covariant Formulation 481

where
pem = D × B (8.190)

is the momentum density of the electromagnetic field (see (3.63)).
The space-like components of T μν are (see (8.33) and (8.49)):

T ik = 1

4μ0
FμνFμνg

ik − 1

μ0
FiλFjλg

k j

= 1

2μ0

(
B2 − E2

c2

)
gik − 1

μ0
Fi0Fj0g

k j − 1

μ0
Fis Fjsg

k j

= 1

2μ0

(
B2 − E2

c2

)
gik + ε0E

i E jg
k j − 1

μ0

(
δijδ

l
r − δirδ

l
j

)
Bl B

rgk j .

Since gik = −δik , we obtain

T ik = − 1

2μ0

(
B2 − E2

c2

)
δik − ε0E

i E jδ
k j + 1

μ0
Bl Blδ

ik − 1

μ0
Bi B jδ

k j

= −1

2
H · B δik + 1

2
E · D δik − Ei Dk + H · B δik − Hi Bk

= 1

2
(E · D + H · B) δik − Ei Dk − Hi Bk

= wemδik − Ei Dk − Hi Bk = T ik
Maxwell , (8.191)

where T ik
Maxwell is Maxwell’s stress tensor (3.67) and represents, as we know, the

momentum density flux of the electromagnetic field.
Finally, recalling that T μν is symmetric, its components T 0i are obtained directly

from (8.189), but this time in the form of the components of Poynting’s vector:

T 0i = T i0 = 1

c
(E × H)i = 1

c
�i . (8.192)

Written in compact form, the energy-momentum tensor of the electromagnetic
field is

T μν
em =

⎛

⎜⎝
wem · · · cpiem

...
...

1
c�

i
em · · · T ik

Maxwell

⎞

⎟⎠ . (8.193)

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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8.7.6 Laws of Conservation of Electromagnetic Field
in the Presence of Sources

So far we have assumed that the electromagnetic field is free, that is neither charges,
nor currents are present. If sources are considered, the equation of conservation
(8.164) will change its form. Supposing that the sources do not interact, let us deter-
mine the appropriate equation of conservation.

Denote by T ν( f )
μ the components of the energy-momentum tensor of the electro-

magnetic field itself (the superscript index ( f ) comes from “field”):

T ν( f )
μ = 1

4μ0
FληFληδ

ν
μ − 1

μ0
FμλF

νλ, (8.194)

and take the partial derivative with respect to xν . Using Maxwell’s source equations
(8.79) and taking into account that Fλη δ

(
Fλη

) = Fλη δ
(
Fλη

)
, we have

∂T ν( f )
μ

∂xν
= 1

2μ0
Fλη ∂Fλη

∂xμ
− 1

μ0

∂Fμλ

∂xν
Fνλ − 1

μ0
Fμλ

∂Fνλ

∂xν

= 1

2μ0
Fνλ ∂Fνλ

∂xμ
− 1

μ0
Fνλ ∂Fμλ

∂xν
− Fμλ j

λ,

or, if the second term is written as a sum of two halves, and we make a convenient
change of indices by taking into account the antisymmetry property of Fμλ,

∂T ν( f )
μ

∂xν
= 1

2μ0
Fνλ

(
∂Fνλ

∂xμ
+ ∂Fλμ

∂xν
+ ∂Fμν

∂xλ

)
− Fμλ j

λ.

According to the relation (8.83), the sum between parentheses vanishes, and we are
left with

∂T ν( f )
μ

∂xν
= Fλμ j

λ,

or, equivalently,

∂T νμ( f )

∂xν
= Fλμ jλ = − Fμλ jλ, λ,μ, ν = 0, 1, 2, 3. (8.195)

As expected, the energy-momentum tensor of the field alone is not conserved. Recall-
ing the definition of the current density four-vector (see (8.63)):

j0 = j0 = cρ,

j i = − ji = ρ vi ,

we then have
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1) μ = 0:
∂T 00( f )

∂x0
+ ∂T i0( f )

∂xi
= Fi0 ji ,

or
1

c

∂wem

∂t
+ 1

c

∂�i
em

∂xi
=
(
1

c
Ei

)
(−ρvi ) ,

where we have used (8.33), (8.34), (8.63), (8.187), (8.189), and (8.192). Integrating
over the three-dimensional domain D of volume V , we obtain

d

dt
Wem = −

∮

S
� · dS −

∫

V
ρv · E dr = −

∮

S
� · dS −

∫

V
j · E dr, (8.196)

that is Poynting’s theorem (3.47).
2) μ = i :

∂T 0i( f )

∂x0
+ ∂T ki( f )

∂xk
= F0i j0 + Fki jk,

or

1

c2
∂�i

∂t
+ ∂�ki

∂xk
=
(

−1

c
Ei

)
(cρ) + (−εkil Bl

)
(−ρvk) = −ρ

[
Ei + (v × B)i

]
,

where we have used (8.33), (8.34), (8.63), (8.189), (8.191), and (8.192). But

ρ (E + v × B)i = (ρE + j × B)i = (fem)i

is the xi -component of the electromagnetic force density acting on sources, and the
electromagnetic force is (see (3.60)):

Fem =
∫

V
(ρE + j × B) dr = dPmec

dt
.

Integrating over a three-dimensional, fixed domain D of volume V , bounded by the
surface S, we then have

d

dt
(Pmec + Pem)i = −

∮

S
�ki dSk = −

∮

S
�ikdSk, (8.197)

or, in dyadic form,
d

dt
(Pmec + Pem) = −

∮
{�} · dS, (8.198)

expressing the equation of conservation of momentum of the system formed of field
and sources.

http://dx.doi.org/10.1007/978-3-642-17381-3_3
http://dx.doi.org/10.1007/978-3-642-17381-3_3
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We shall show that the tensor Eq. (8.195) can bewritten as a conservation equation
∂T μν/∂xμ = 0,where T μν is given by a sumof two tensors, one being T μν( f ), and the
other being the energy-momentum tensor of the system of particles. Let us determine
the last one.

We consider a system of point-like charges. Their electric charge density is given
by (8.269),

ρ =
∑

a

qaδ(r − ra),

where summation is taken over all charges, and ra is the radius-vector of the particle
of charge qa and mass ma , while the mass density is defined analogously as

ρm =
∑

a

maδ(r − ra). (8.199)

Since for one particle the energy-momentum four-vector is Pμ = m0cuμ, the density
of the energy-momentum vector for the system of particles will be pμ = ρmcuμ.
According to (8.160), for the electromagnetic field the space-like components of the
four-momentum density are given by the elements T i0. By analogy, we shall identify
for the system of charges pi by 1

c T
i0(p), i.e.

pi = ρmcu
i ≡ 1

c
T i0(p),

which gives
T i0(p) = c2ρmu

i , (8.200)

or

T i0(p) = cρmu
i dx

0

dt
.

We infer then the form of the general element of T μν(p):

T μν(p) = cρmu
μ dx

ν

dt
. (8.201)

By analogy with the current density four-vector, we define the mass density four-
vector as

J ν = ρm
dxν

dt
(8.202)

such that (8.201) becomes
T μν(p) = cuμ J ν . (8.203)
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Now we take the derivative of (8.203) with respect to xν :

∂T μν(p)

∂xν
= c

∂uμ

∂xν
J ν + cuμ ∂ J ν

∂xν
= cJ ν ∂uμ

∂xν
= cρm

dxν

dt

∂uμ

∂xν
= cρm

duμ

dt
, (8.204)

where we have used the mass conservation equation ∂ J ν/∂xν = 0.
On the other hand, the equation of motion of a point charge in the electromagnetic

field E, B is (see (8.17)):

m0c
duμ

ds
= eFμνuν .

If the mass and charge are continuously distributed, this equation becomes

ρm c
duμ

ds
= ρFμνuν

or

ρmc
duμ

dt
= ρFμν dxν

dt
= Fμν jν .

Introducing this result into (8.204), we find

∂T μν(p)

∂xν
= Fμν jν . (8.205)

Adding (8.195) and (8.205), we finally obtain the desired equation of conservation

∂ν

(
T ν( f )

μ + T ν(p)
μ

) = ∂νT
ν
μ = 0, (8.206)

where T ν
μ = T ν( f )

μ + T ν(p)
μ is the energy-momentum tensor of the whole system

composed of field and particles.
The equation of continuity (8.206) expresses the laws of conservation of energy,

momentum, and angular momentum of the whole system.

Observation:
Denoting by ρm0 = ρm/γ the rest mass density, the energy-momentum tensor asso-
ciated with the sources can be written as

T μν(p) = cρmu
μ dx

ν

ds

ds

dt
= ρm0c

2uμuν . (8.207)

This form is frequently used in fluid mechanics.
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8.8 Elements of Relativistic Magnetofluid Dynamics

8.8.1 Fundamental Equations

Using the above analysis, let us now write the fundamental equations of relativis-
tic magnetofluid dynamics for an ideal magnetofluid (the dissipative processes are
negligible).

A part of these equations, i.e. Maxwell’s equations, have already been written in
a covariant form (see (8.79) and (8.84)):

∂Fνμ

∂xν
= μ0 j

μ,
∂ F̃μν

∂xν
= 0. (8.208)

Another fundamental equation is the equation of motion. To write it in a covariant
form, we must first determine the energy-momentum tensor for a macroscopic fluid.
The composition of this tensor has to bemore complex than (8.207), since in deriving
(8.207) we did not take into account the mechanical interactions between particles,
that is the pressure. Conversely, the tensor we seek has to reduce to (8.207) when
mechanical interactions are neglected.

An ideal fluid moves through space-time with constant four-velocity with respect
to any inertial frame. To start with, we shall consider the rest frame of the fluid. The
mechanics of continuous media shows that in an ideal fluid can exist only normal
tensions, such that the stress tensor Tik is proportional to the isotropic pressure,
p > 0:

T ( f luid)

ik = p δik . (8.209)

Since the physical dimension of pressure is energy density, while the general theory
(see (8.160)) indicates that one component of the energy-momentum tensor signifies
the energy density, which will be denoted by ε, we come to the conclusion that T 00

and T ik are components of the energy-momentum tensor of the fluid, T μν( f luid).
Written in the proper reference frame, this tensor is

T μν ( f luid)

0 =

⎛

⎜⎜⎝

ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞

⎟⎟⎠ . (8.210)

By performing a Lorentz transformation to a frame with respect to which the fluid
has the the velocity uμ, we find the general expression

T μν( f luid) = (p + ε)uμuν − p gμν, (8.211)

which reduces to (8.210) for uμ = (1, 0, 0, 0).
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If the velocities of the particles composing the fluid are small as compared to the
speed of light, then T μν( f luid) takes a simpler form. In this case, the energy density ε
is approximately equal to the rest energy density ρm0c2, where ρm0 is the proper mass
density (more precisely, the sum of the masses of particles per unit proper volume).
In its turn, the pressure p determined by the microscopic motion of molecules is also
small as compared with the rest energy density. Under these assumptions, (8.211)
reduces to

T μν( f luid) = T μν(p) = ρm0c
2uμuν,

which coincides with (8.207), as expected.
The energy-momentum tensor of the system composed of fluid and electromag-

netic field is then

T μν = T μν( f ) + T μν( f luid)

= 1

4μ0
FληFληg

μν − 1

μ0
FμλFν

λ + (p + ε)uμuν − p gμν, (8.212)

and the relation
∂T μν

∂xν
= 0 (8.213)

is the covariant form of the equation of motion (the momentum conservation law)
of the considered ideal magnetofluid, under the action of the electromagnetic field.
As we already know, (8.213) also expresses the conservation of energy and angular
momentum of the system.

To these equations we have to add:

• the equation of continuity:

∂ jμ

∂xμ
= ∂

∂xμ

(
ρm

dxμ

dt

)
= ∂

∂xμ

(
ρm

dxμ

ds

ds

dt

)
= 0,

that is
∂

∂xμ
(ρm0u

μ) = 0; (8.214)

• the entropy conservation law. Let us denote by σ the entropy density of the fluid.
Then σuμ is the entropy current and its conservation is expressed as usual by a
continuity equation:

uμ dσ

dxμ
= 0; (8.215)

• the equation of state. In our case, this equation takes the form of the fundamental
equation of reversible thermodynamic processes,

TdS = dU + pdV,
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or, written for densities (σ for entropy S, ε for internal energy U , and w for the
enthalpy H = U + pV ):

dw = Tdσ + dp, (8.216)

where
w = ε + p. (8.217)

Equations (8.208), (8.213)–(8.216) represent the fundamental system of equations
of relativistic magnetofluid dynamics for an ideal magnetofluid.

8.8.2 Bernoulli’s Equation in Relativistic Magnetofluid
Dynamics

It is convenient to write Eq. (8.213), using (8.217), as

∂

∂xν
(wuμu

ν − pδν
μ) = − ∂T ν( f )

μ

∂xν
. (8.218)

Since uμ ∂
∂xμ = d

ds , and assuming ρm0 = const. (incompressible fluid), we have

d

ds
(wuμ) − ∂ p

∂xμ
= d

ds
(wuμ) − ∂w

∂xμ

∣∣∣
σ=const.

= − ∂T ν( f )
μ

∂xν
, (8.219)

where the equation of continuity (8.214) has been used.
It is not difficult to verify that the homogeneous equation

d

ds
(wuμ) − ∂w

∂xμ

∣∣∣
σ=const.

= 0 (8.220)

has the solution
∂ϕ

∂xμ
= w uμ, (8.221)

where ϕ = ϕ(xν) is an arbitrary function of coordinates. The proof is carried out
multiplying (8.221) by uμ, then introducing the result into (8.220).

For μ = i , Eq. (8.221) corresponds to the vorticity-free condition of classical
fluid mechanics, v = ∇ϕ, while μ = 0 leads to the Bernoulli equation in relativistic
hydrodynamics,

∂ϕ

∂t
− cγw = 0. (8.222)

To integrate the inhomogeneous Eq. (8.218) we consider the solution as a linear
combination
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∂ϕ

∂xμ
= wuμ + λμ, (8.223)

where λμ = λμ(xν). To determine λμ, we take the partial derivative with respect to
xν of (8.223) and we use the Schwarz integrability condition for ϕ(xν):

∂2ϕ

∂xν∂xμ
= ∂2ϕ

∂xμ∂xν
,

i.e.
∂

∂xν
(wuμ + λμ) = ∂

∂xμ
(wuν + λν).

Next, we multiply this result by uν and we get

d

ds
(wuμ) + d

ds
(λμ) = ∂w

∂xμ
− w uν

∂uν

∂xμ
+ uν ∂

∂xμ
(λν),

or, using the relation uμuμ = 1,

d

ds
(wuμ) − ∂w

∂xμ

∣∣∣
σ=const.

= − d

ds
(λμ) + uν ∂

∂xμ
(λν).

Suppose that λν does not explicitly depend on time. The time-like component of the
last equation is then

d

ds
(w u0) − ∂w

∂x0

∣∣∣
σ=const.

= − d

ds
(λ0). (8.224)

Comparing (8.224) with the fourth component of (8.219), we find

λ0 =
∫

∂T ν( f )
0

∂xν
ds, (8.225)

where the integral extends on the world line on which we have previously chosen
the origin. Replacing (8.225) into (8.223), we finally arrive at

∂ϕ

∂t
+ cγw − c

∫
∂T ν( f )

0

∂xν
ds = 0,

or, after performing the summation over the index ν,

∂ϕ

∂t
+ cγw −

∫ [
∂wem

∂t
+ ∇ · (E × H)

]
ds = 0. (8.226)
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The integro-differential equation (8.226) represents the generalization of
Bernoulli’s equation in relativistic magnetofluid dynamics. If the electromagnetic
field is absent, we get back to equation (8.222), as expected.

8.9 Solved Problems

Problem 1. UsingMaxwell’s equations and the Lorentz transformation (6.37), deter-
mine the transformation relations of the electric charge and current densities when
passing from one inertial frame S to another S′, moving with respect to each other
with the velocity V in the x-direction. Show that the four-volume Ω and the electric
charge q are Lorentz invariants.

Solution. Taking ε � ε0,μ � μ0, Maxwell’s source equations are

∇ × H = j + ∂D
∂t

= ρev + ∂D
∂t

, (8.227)

∇ · D = 0. (8.228)

Using (6.62), (6.64), (6.79), and (8.228), we have

ρ′
e = ∂D′

x

∂x ′ + ∂D′
y

∂y′ + ∂D′
z

∂z′

=
(

Γ
∂

∂x
+ Γ

V

c2
∂

∂t

)
Dx + ε0

∂

∂y

[
Γ
(
Ey − V Bz

)]+ ε0
∂

∂z

[
Γ
(
Ez + V By

)]

= Γ ∇ · D + Γ
V

c2

[
∂Dx

∂t
− 1

μ0
(∇ × B)x

]
= Γ ρe

(
1 − V

c2
vx

)
. (8.229)

In the same way, we find

j ′x = ρ′
ev

′
x = Γ ρe

(
1 − V

c2
vx

)
vx − V

1 − V
c2 vx

= Γ ( jx − ρeV ) = Γ ρe (vx − V ) .

(8.230)
Since |V| = Vx = V , and using (6.45) and (6.46), we obtain the invariance of the
element of volume in Minkowski space:

dΩ ′ = dx ′0dx ′1dx ′2dx ′3 = cdx ′dy′dz′dt ′

= cdx

√
1 − V 2

c2
dydzdt

1√
1 − V 2

c2

= cdxdydzdt = dΩ. (8.231)

Also,

ρ′
e = q ′

Δτ ′ = q ′ Δx ′0

ΔΩ ′ = Γ ρe

(
1 − V

c2
vx

)
= Γ

(
1 − V

c2
vx

)
q

Δx0

ΔΩ
,

http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
http://dx.doi.org/10.1007/978-3-642-17381-3_6
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where Δτ ′ is the element of three-dimensional space volume in the frame S′. Since
Δx ′0 = Γ Δx0

(
1 − V

c2 vx
)
, we find

q ′

ΔΩ ′ = q

ΔΩ
⇔ q ′ = q. (8.232)

Problem 2. Determine the electric and magnetic components of the electromag-
netic field created by an electric point charge q, in uniform motion along a straight
line with velocity v.

Solution. Suppose that the charge q is situated at the origin O ′ of the proper
reference frame S′, being in uniform, straight motion along the Ox ≡ O ′x ′ axis. In
S′ we obviously have

E′ = q

4πε0

r′

r ′3 ,

B′ = 0. (8.233)

According to the discussion in Sect. 8.2.2, since the x-components of E and B are
not affected by the relative motion of the frames, we have from (8.39):

Ex = E ′
x = q

4πε0

x ′

r ′3 = γ
1

4πε0

q

s3
(x − vt) ,

Ey = Γ
(
E ′
y + vB ′

z

) = γ
1

4πε0

q

s3
y,

Ez = Γ
(
E ′
z − vB ′

y

) = γ
1

4πε0

q

s3
z, (8.234)

where s2 = [γ(x − vt)]2 + y2 + z2, as well as

Bx = B ′
x = 0,

By = γ
(
B ′
y − v

c2
E ′
z

)
= − v

c2
Ez = − 1

4πε0
γ

v

c2
q

s3
z = − μ0

4π
γ
qv

s3
z,

Bz = γ
(
B ′
z + v

c2
E ′
y

)
= v

c2
Ey = μ0

4π
γ
qv

s3
y. (8.235)

Thus, we find that in the frame S the expressions of the electric and magnetic fields
produced by the moving charge are

E = γ
q

4πε0

r − vt
s3

,

B = γ
μ0 q

4π

v × r
s3

= 1

c2
v × E. (8.236)
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Problem 3. Study the relativisticmotion of an electron placed in a uniform electric
field E. At the time t0 = 0, the particle is situated at the common origin of the proper
reference frame and laboratory frame, and it has the momentum p(0).

Solution. Taking the proper time τ as parameter in the equation of motion (see
(8.16)), and taking into account that the electron has negative charge (we consider
e > 0), we have

d

dτ
(m0ū

μ) = −eFμν ūν, μ, ν = 0, 1, 2, 3. (8.237)

We consider the x-direction parallel to the electric field E. Since in this case the only
non-zero components of Fμν are

F01 = −F10 = −1

c
Ex = −1

c
E,

the components of the tensor equation

d

dτ
(m0u

μ) = −eFμνuν, μ, ν = 0, 1, 2, 3,

(which are obtained from (8.237) taking into account that ūμ = cuμ and ūμ = cuμ)
are

m0
du0

dτ
= m0

du0
dτ

= (−e)F01u1 = e
1

c
Eu1,

m0
du1

dτ
= −m0

du1
dτ

= (−e)F10u0 = −e
1

c
Eu0,

m0
du2

dτ
= −m0

du2
dτ

= 0, (8.238)

m0
du3

dτ
= −m0

du3
dτ

= 0.

We have arrived at a system of four equations for the four components of the velocity
four-vector uμ = uμ(τ ). The second equation gives

du0
dτ

= c

eE
m0

d2u1
dτ 2

. (8.239)

The first equation (8.238) then leads to

d2u1
dτ 2

= ω2
0 u1, (8.240)

where

ω0 = eE

m0c
. (8.241)
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The solution of (8.240) is

u1 = C0 sinhω0τ + C1 coshω0τ , (8.242)

whereC0 andC1 are two constants of integration. Introducing (8.242) into the second
equation (8.238), we find

u0 = C0 coshω0τ + C1 sinhω0τ . (8.243)

The rest of the equations (8.238) give

u2 = C2,

u3 = C3. (8.244)

To determine the constants of integration, we use the initial conditions: x1(0) =
x2(0) = x3(0) = 0, at τ0 = t0 = 0. Recalling (7.96) and (7.99), we write the
four-velocity in terms of the components of the four-momentum:

u0 = p0
m0c

= W

m0c2
,

ui = pi
m0c

, i = 1, 2, 3, (8.245)

and then

u0(0) = W0

m0c2
,

ui (0) = − pi (0)

m0c
, i = 1, 2, 3, (8.246)

where W0 is the total energy of the particle at the initial time. The constants of
integration are then

C0 = W0

m0c2
,

Ci = − pi (0)

m0c
, i = 1, 2, 3, (8.247)

and the solution (the four-velocity) becomes

u0 = − px (0)

m0c
sinhω0τ + W0

m0c2
coshω0τ ,

u1 = − px (0)

m0c
coshω0τ + W0

m0c2
sinhω0τ ,

http://dx.doi.org/10.1007/978-3-642-17381-3_7
http://dx.doi.org/10.1007/978-3-642-17381-3_7
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u2 = − py(0)

m0c
, (8.248)

u3 = − pz(0)

m0c
.

Since

u0 = u0 = 1

c

dx0

dτ
= dt

dτ
,

ui = −ui = 1

c

dxi

dτ
, i = 1, 2, 3, (8.249)

we integrate (8.248) with respect to τ . The result is

t = − px (0)

m0ω0c
coshω0τ + W0

m0ω0c2
sinhω0τ + C ′

0,

x = px (0)

m0ω0
sinhω0τ − W0

m0ω0c
coshω0τ + C ′

1,

y = py(0)

m0
τ + C ′

2, (8.250)

z = pz(0)

m0
τ + C ′

3.

The constants of integration C ′
0,C

′
1,C

′
2,C

′
3 are determined from the initial condi-

tions:

C ′
0 = − px (0)

m0ω0c
,

C ′
1 = W0

m0ω0c
,

C ′
2 = C ′

3 = 0. (8.251)

Replacing the determined constants of integration into (8.250), we arrive at the para-
metric solutions of the equations of motion:

t = px (0)

m0ω0c
(1 − coshω0τ ) + W0

m0ω0c2
sinhω0τ ,

x = px (0)

m0ω0
sinhω0τ + W0

m0ω0c
(1 − coshω0τ ),

y = py(0)

m0
τ , (8.252)

z = pz(0)

m0
τ .
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To determine the motion in the laboratory frame of reference S, that is x =
x(t), y = y(t), z = z(t), the proper time τ must be expressed in terms of the time
t elapsed in S. This can be easily done by means of the last relation (8.252). Using
the definition of hyperbolic functions, we have

t = px (0)

m0ω0c

(
1 − λ + λ−1

2

)
+ W0

m0ω0c2

(
λ − λ−1

2

)
, (8.253)

with λ = eω0τ . Denoting

r = px (0)

m0ω0c
,

q = W0

m0ω0c2
,

we arrive at the quadratic equation

λ2(q − r) − 2(t − r)λ − (q + r) = 0, (8.254)

whose solutions are

λ1,2 = t − r ±√
(t − r)2 + (q + r)(q − r)

q − r
.

The only acceptable solution from the physical point of view is

λ1 =
eEt − px (0) +

√
[eEt − px (0)]

2 + m2
0c

2 + p2y(0) + p2z (0)

W0
c − px (0)

,

which gives

τ = 1

ω0
ln

eEt − px (0) +
√
[eEt − px (0)]

2 + m2
0c

2 + p2y(0) + p2z (0)

W0
c − px (0)

. (8.255)

We are now able to express the coordinates of the particle in terms of the time t . The
result is

x(t) = c

eE

[
W0

c
−
√
[eEt − px (0)]

2 + m2
0c

2 + p2y(0) + p2z (0)

]
, (8.256)

y(t) = cpy(0)

eE
ln

eEt − px (0) +
√
[eEt − px (0)]

2 + m2
0c

2 + p2y(0) + p2z (0)

W0
c − px (0)

,

z(t) = cpz(0)

eE
ln

eEt − px (0) +
√
[eEt − px (0)]

2 + m2
0c

2 + p2y(0) + p2z (0)

W0
c − px (0)

.
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Let us now show that in the non-relativistic limit, i.e. p(0) � m0c, t �
m0c/eE, W0 � m0c2, one must obtain the classical (and expected) result

x(t) = px (0)

m0
t − eE

2m0
t2,

y(t) = py(0)

m0
t, (8.257)

z(t) = pz(0)

m0
t.

Indeed, in the non-relativistic approximation we have

√
[eEt − px (0)]2 + m2

0c
2 + p2y(0) + p2z (0)

=
√
e2E2t2 − 2eEpx (0)t + m2

0c
2 + p2(0)

�
√
e2E2t2 − 2eEpx (0)t + m2

0c
2 = m0c

√
1 − ξ,

with

ξ = 2eEpx (0)t

m2
0c

2
− e2E2t2

m2
0c

2
� 1.

Expanding
√
1 − ξ in Taylor series and retaining only the first two terms, we have

m0c
√
1 − ξ � m0c

(
1 − ξ

2

)
= m0c

(
1 − eEpx (0)t

m2
0c

2
+ 1

2

e2E2t2

m2
0c

2

)
.

With this approximation, (8.256)1 yields

x(t) = W0

eE
− c

eE

√
[eEt − px (0)]

2 + m2
0c

2 + p2y(0) + p2z (0)

� W0

eE
− m0c2

eE

(
1 − eEpx (0)t

m2
0c

2
+ 1

2

e2E2t2

m2
0c

2

)
� px (0)

m0
t − 1

2

eE

m0
t2,

which proves (8.257)1. To justify (8.257)2, we observe that

√
[eEt − px (0)]2 + m2

0c
2 + p2y(0) + p2z (0) � m0c,

which allows us to write

eEt − px (0) +
√
[eEt − px (0)]

2 + m2
0c

2 + p2y(0) + p2z (0)

W0
c − px (0)
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� eEt − px (0) + m0c
W0
c − px (0)

� eEt − px (0) + m0c

m0c − px (0)

� eEt + m0c

m0c
= 1 + eEt

m0c
.

Since

ln(1 + ζ) = ζ − ζ2

2
+ ζ3

3
− ζ4

4
+ · · · =

∞∑

n=1

(−1)n+1 ζn

n
,

with

ζ = eEt

m0c
� 1,

we consider only the first term in the expansion of ln(1 + ζ). Then (8.257)2 yields

y(t) = cpy(0)

eE
ln(1 + ζ) � cpy(0)

eE
ζ = py(0)

m0
t,

which completes the proof. Relation (8.257)3 is verified in a similar way.
Thus, we have found that in the non-relativistic case, the motion along the x-

axis is uniformly accelerated, with acceleration eE/m0. The graph of this motion is
represented in Fig. 8.5 (the first part of the solid line).

After a sufficiently long time (t � m0c/eE) the particle becomes relativistic
(v → c), even if at the beginning of the motion it was not. In the ultrarelativistic
limit, the parametric equations of motion are given by

x(t) = m0c2

eE
− ct,

y(t) = cpy(0)

eE
ln

2eEt

m0c
, (8.258)

z(t) = cpz(0)

eE
ln

2eEt

m0c
.

Indeed, we have

√
[eEt − px (0)]2 + m2

0c
2 + py(0)2 + pz(0)2 � eEt

and (8.256) leads to (8.258)1:

x(t) = c

eE

(
W0

c
− eEt

)
= m0c2

eE
− ct.
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Fig. 8.5 Graphical
representation of the law of
motion x(t) for an electron
moving in a uniform electric
field E.

Fig. 8.6 Graphical
representation of y(t).

Also,

y(t) � cpy(0)

eE
ln

eEt − px (0) +√
(eEt)2

m0c2

c − px (0)
= cpy(0)

eE
ln

2eEt

m0c
,

and similarly for z(t). The graph for the ultrarelativistic limit is represented by the
dashed line in Fig. 8.5 for x(t), and in Fig. 8.6 for y(t).

Problem 4. Study the relativistic motion of an electron placed in a uniform mag-
netic field B oriented along the z-axis. At the initial time t0 = 0, the particle is
situated at the common origin of the proper reference frame and laboratory frame,
and has the momentum p(0).

Solution. We shall use again the covariant form of the equation of motion for the
electron (8.237):

d

dτ
(m0u

μ) = − e Fμνuν, μ, ν = 0, 1, 2, 3. (8.259)

This time, the non-zero components of the electromagnetic field tensor Fμν are

F12 = −F21 = − Bz = − B.
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Then the equations of motion have the form

m0
du0
dτ

= 0,

m0
du1
dτ

= −eBu2,

m0
du2
dτ

= +eBu1, (8.260)

m0
du3
dτ

= 0.

Taking the derivative with respect to τ of the second equation, then introducing the
result into the third, we obtain a second-order, linear differential equation for u1:

d2u1
dτ 2

+ ω2
0u1 = 0, ω0 = eB

m0
. (8.261)

The solution of this equation is

u1 = A1 sin(ω0τ + α), (8.262)

α and A1 being two constants of integration. With (8.262), Eq. (8.260)3 provides the
solution u2:

u2 = −A1 cos(ω0τ + α). (8.263)

The first and the last of the equations (8.260) yield

u0 = A0,

u3 = A3. (8.264)

According to the initial conditions, at τ0 = t0 = 0 we have

u0(0) = W0

m0c2
,

u1(0) = − px (0)

m0c
,

u2(0) = − py(0)

m0c
, (8.265)

u3(0) = − pz(0)

m0c
,
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that is

W

m0c2
= A0,

− px (0)

m0c
= A1 sinα,

py(0)

m0c
= A1 cosα , (8.266)

pz(0)

m0c
= A3.

The constants α and A1 are found to be

tanα = − px (0)

py(0)
⇒ α = − arctan

px (0)

py(0)
(8.267)

and

A1 = 1

m0c

√
p2x (0) + p2y(0). (8.268)

The components of the four-velocity are then

u0 = W

m0c2
,

u1 = 1

m0c

√
p2x (0) + p2y(0) sin

(
ω0τ − arctan

px (0)

py(0)

)
,

u2 = − 1

m0c

√
p2x (0) + p2y(0) cos

(
ω0τ − arctan

px (0)

py(0)

)
,

u3 = pz(0)

m0c
. (8.269)

Integrating (8.249), we obtain the law of motion:

t = W0

m0c2
τ + b0,

x =
√
px (0)2 + py(0)2

eB
cos

(
ω0τ − arctan

px (0)

py(0)

)
+ b1,

y =
√
px (0)2 + py(0)2

eB
sin

(
ω0τ − arctan

px (0)

py(0)

)
+ b2, (8.270)

z = pz(0)

m0
τ + b3.
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The constants of integration bν, ν = 0, 1, 2, 3 are determined, in their turn, from the
initial conditions:

b0 = 0,

b1 = −
√
p2x (0) + p2y(0)

eB
cos

(
− arctan

px (0)

py(0)

)
,

b2 = −
√
p2x (0) + p2y(0)

eB
sin

(
− arctan

px (0)

py(0)

)
, (8.271)

b3 = 0.

Using the trigonometric formulas

sin ξ = tan ξ√
1 + tan2 ξ

,

cos ξ = 1√
1 + tan2 ξ

,

one can also write

b1 = −
√
p2x (0) + p2y(0)

eB
cos

(
− arctan

px (0)

py(0)

)

=
√
p2x (0) + p2y(0)

eB
cos

(
arctan

px (0)

py(0)

)

= −
√
p2x (0) + p2y(0)

eB

[
1 + tan2

(
arctan

px (0)

py(0)

)]−1/2

= −
√
p2x (0) + p2y(0)

eB

[
1 +

(
px (0)

py(0)

)2
]−1/2

= − py(0)

eB
.

Also,

b2 =
√
p2x (0) + p2y(0)

eB
sin

(
arctan

px (0)

py(0)

)

=
√
p2x (0) + p2y(0)

eB

tan
(
arctan px (0)

py(0)

)

√
1 + tan2

(
arctan px (0)

py(0)

)
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=
√
p2x (0) + p2y(0)

eB

px (0)
py(0)√

1 +
(

px (0)
py(0)

)2 = px (0)

eB
.

Relations (8.270) then become

t (τ ) = W0

m0c2
τ ,

x(τ ) =
√
p2x (0) + p2y(0)

eB
cos

(
ω0τ − arctan

px (0)

py(0)

)
− py(0)

eB
,

y(τ ) =
√
p2x (0) + p2y(0)

eB
sin

(
ω0τ − arctan

px (0)

py(0)

)
+ px (0)

eB
, (8.272)

z(τ ) = pz(0)

m0
τ .

The last step is to express the space-like coordinates in terms of time t . This is done
by means of the last relation of (8.272):

τ = m0c2

W0
t,

and we finally obtain

x(t) =
√
p2x (0) + p2y(0)

eB
cos

(
ω0m0c2

W0
t − arctan

px (0)

py(0)

)
− py(0)

eB
,

y(t) =
√
p2x (0) + p2y(0)

eB
sin

(
ω0m0c2

W0
t − arctan

px (0)

py(0)

)
+ px (0)

eB
,

z(t) = pz(0)c2

W0
t, (8.273)

or, in a more condensed form,

x(t) = − py(0)

eB
+ p1(0)

eB
cos(ω1t + α),

y(t) = px (0)

eB
+ p1(0)

eB
sin(ω1t + α), (8.274)

z(t) = pz(0)c2

W0
t,

with the notations
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ω1 = ω0
m0c2

W0
,

p1(0) =
√
p2x (0) + p2y(0), (8.275)

and recalling that arctan[px (0)/py(0)] = −α.
The trajectory of the electron is, therefore, a helix rolled up on a right cylinder

with the axis oriented along Oz (direction of the field), of radius

R = p1(0)

eB
=
√
p2x (0) + p2y(0)

eB
(8.276)

and of constant pitch

δ = 2πz

ω1t
= 2π pz(0)

ω0m0
= 2π pz(0)

eB
. (8.277)

Problem 5. If S is the intrinsic angular momentum of the electron (the spin) and
M its magnetic moment, then in the proper frame of the electron one can write

(
dS
dt

)

rest

= M × B′. (8.278)

Here B′ � B − 1
c2 v × E is the magnetic field in the rest frame of the electron, v is

the velocity of the electron in an arbitrary inertial frame, and

M = gs
e

2m0
S, (8.279)

where gs is the spin gyromagnetic factor and m0 is the mass of the electron. Write
Eq. (8.278) in the relativistically-covariant form.

Solution. Recall fromSect. 8.7.3 that the intrinsic angularmomentum can bewrit-
ten in Lorentz covariant form. In the following we shall denote by prime superscript
the quantities in the rest frame. Let Sμ be an axial four-vector with three indepen-
dent components, which in the rest frame of the electron reduces to the spin vector,
i.e. S′μ = (0, S). As any four-vector, the time component of the spin four-vector
transforms like x ′0 = Γ

(
x0 − v · r/c

)
, that is

S′0 = Γ

(
S0 − 1

c
v · S

)
. (8.280)

Take now the contracted product between Sμ and the velocity four-vector uμ =(
Γ, Γ

c v
)
:

uμS
μ = u0S

0 + ui S
i = Γ

(
S0 − 1

c
v · S

)
. (8.281)
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From the last two relations, (8.280) and (8.281), we infer that

S′0 = uμS
μ. (8.282)

According to (8.282), the condition S′0 = 0 can be imposed covariantly as

uμS
μ = 0, (8.283)

while (8.280) yields

S0 = Γ

c
v · S. (8.284)

Using (8.279), we put (8.278) in the form

(
dS
dt

)

rest

= gse

2m0

(
S × B′) . (8.285)

To write this equation in a covariant form, we first observe that both sides have to
be four-vectors. In the l.h.s., the derivative must be taken with respect to an invariant
(either the interval s, or the proper time τ ), while the r.h.s. has to contain covariant
combinations of only the four-velocity uμ, four-acceleration aμ, the spin four-vector
Sμ, and the electromagnetic field tensor Fμν , and to be linear in Sμ and Fμν . Last but
not least, in the rest frame the equation has to go to (8.285). The only non-vanishing
combinations with four-vector structure, satisfying the above conditions, are

FμνSν,
(
SνF

νλuλ

)
uμ,

(
Sν

duν

ds

)
uμ.

Therefore we take as a four-dimensional generalization of (8.285) the equation

dSμ

ds
= C1F

μνSν + C2
(
SνF

νλuλ

)
uμ + C3

(
Sν

duν

ds

)
uμ, (8.286)

where the constants C1, C2, C3 are to be determined. Taking the derivative with
respect to s of the constraint equation (8.283), and using the relation uμuμ = 1, we
find

(C3 + 1)Sμ
duμ

ds
+ (C2 − C1)F

νμSνuμ = 0. (8.287)

If the electromagnetic field is absent (Fμν = 0), while duμ/ds �= 0, then C3 = − 1.
Equation (8.287) therefore becomes

(C2 − C1)F
νμSνuμ = 0, (8.288)

which means that in the presence of the electromagnetic field, C1 = C2. Thus we
obtain from (8.286)
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dSμ

ds
= C1F

μνSν + C1SνF
νλuλu

μ − Sν
duν

ds
uμ. (8.289)

Recalling that in the rest reference frame S′μ = (0, S) and u′μ = (1, 0), let us write
the i-component of (8.289):

dSi

ds
= dSi

cdt ′
= C1(S × B′)i ,

or (
dS
dt

)

rest

= cC1(S × B′). (8.290)

This equation is identical to (8.285) if one takes

C1 = gse

2m0c
, (8.291)

and the equation of motion (8.286) becomes

dSμ

ds
= gse

2m0c
(FμνSν + SνF

νλuλu
μ) − Sν

duν

ds
uμ. (8.292)

Using the covariant form of the equation ofmotion of a charged particle in an external
electromagnetic field,

dpν

ds
= m0c

duν

ds
= eFνλuλ,

we finally cast the equation of spin motion for the electron in the form

dSμ

ds
= e

m0c

[gs

2
FμνSν +

(gs

2
− 1

)
SνF

νλuλu
μ
]
. (8.293)

This equation is known as Bargmann–Michel–Telegdi (BMT) equation and describes
relativistically the spin precession of high-velocity particles. The equation is named
after Valentine Bargmann (1908–1989), Louis Michel (1923–1999), and Valentine
Telegdi (1922–2006). It is the key formula used in high-energyphysics experiments to
compute the gs −2 factor, or anomalous magnetic moment of the electron and muon.
Its use is based on the fact that, according to the quantummechanical treatment of the
electron by Dirac equation, the gyromagnetic ratio gs is exactly equal to 2. However,
quantum field theory gives higher order corrections, such that gs − 2 �= 0. Roughly,
the idea of the experiment is to have electrons move in an orthogonal magnetic field.
The electrons describe a circle with the cyclotron frequency ωc = e

m0

1
Γ

|B|. When
the electrons complete one circle, their velocity returns to the initial direction, but
the spin has precessed according to the first term in formula (8.293) by an amount
proportional to gs−2. The experiment is donewith electrons whose spins are initially
polarized in the direction ofmotion. Due to the precession phenomenon, they develop
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(very slowly) a component of polarization transverse to the direction of motion.
The gs factor of the electron is measured in very high precision experiments to
be 2.00231930436182, with an uncertainty of 5.2 × 10−13. This is one of the most
preciselymeasured values in physics, and a stringent test of quantumelectrodynamics
(QED).

8.10 Proposed Problems

1. A particle of mass m and electric charge e is placed in a static combination of
electric and magentic fields, E, B. Find the law of motion, r = r(t), and the
equation of the trajectory by means of the Hamilton–Jacobi formalism (based
on Eq. (8.6)), if at the initial moment the particle is at the point P0(x0, y0, z0)
and it has the velocity v0 = (0, v0 sinα, v0 cosα), while E = (0, E, 0) and
B = (B, 0, 0).

2. Calculate:

a) ˜̃Fμν , where F̃μν is the dual electromagnetic field tensor;

b) the contracted product T μνTμν , where T μν is the energy-momentum tensor of
the electromagnetic field.

3. The electromagnetic field tensor associated to a monochromatic plane wave in
vacuum is Fμν = F0

μν e
ikρxρ , where F0

μν are constant amplitudes and kμ = (
ω
c , k

)

is the wave four-vector. Show that Fμνkμ = 0, and write the space-like and time-
like components of this relation.

4. A particle of mass m0 and charge q performs a relativistic motion in the exter-
nal electromagnetic field E, B, in the laboratory frame. Using the covariant
formalism presented in Sect. 8.1.2, find the differential equations of motion of
the particle. If E = (0, 0, E), B = (0, B, 0), v0 = (v0 cosα, 0, v0 sinα) and
r0 = (0, 0, 0), find the law of motion and the trajectory of the particle.

5. Given the components E, B of a uniform electromagnetic field in a fixed inertial
frame, with the property E · B > 0, find the velocity V of the frame in which E
and B are parallel.

6. In the inertial reference frame S, the angle between the static fields E and B is
θ, and |B| = k|E|/c, while in the inertial frame S′ they are parallel and E ⊥ V,
B ⊥ V, where V is the relative velocity of the frames.
a) Show that α = V/c satisfies the equation

α2 − α
1 + k2

k sin θ
+ 1 = 0.

Use the following two methods:
(i) geometrical, starting from the relative position of the vectors E, E′, B, B′, and
V and using relations (8.40);
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(ii) starting from the general relations of transformation of the vectors E and B,
(8.41);
b) Show that the equation found previously always admits a real solution and
calculate α = α(θ) when k = 1. What happens when θ = π/2 ?

7. In the reference frame S the static fieldsE andB are orthogonal and have different
moduli. Determine
a) the velocity VB of an inertial frame S′ in which the electric field is zero;
b) the velocity VE of an inertial frame S′ in which the magnetic field is zero.

8. Show that the four-dimensional Liénard–Wiechert potential can be written as

Aμ(x) = μ0qc

4π

uμ(τ )

(x − ξ)u

∣∣∣∣
τ=τ0

,

where x, ξ, u are four-vectors, and τ is the proper time of the charged particle.
Here ξ is the radius-vector of the particle, whose velocity is v(t) = dξ/dt ,
ξμ = (ct0, r0), uμ(s) = dξμ/ds = 1

c
dξμ

dτ
= 1

c u
μ(τ ).

9. A Lagrangian density leading directly to the equations of the electromagnetic
field in covariant form, � Aμ = 0, was proposed by Paul Dirac and Vladimir
Fock:

L = − 1

2μ0
∂μAν∂

μAν .

To obtain the source equations,

� Aμ = μ0 j
μ,

one has to consider the Lagrangian density

L = − 1

2μ0
∂μAν∂

μAν − jμA
μ. (8.294)

a) Write the Euler–Lagrange equations for the Lagrangian density (8.294) and
determine in which conditions they coincide with Maxwell’s equations;
b) Show that the Lagrangian density (8.294) differs from the one given by Eq.
(8.77) by a four-divergence. Does this modify in any way the action or the
equations of motion?

10. The system composed of the zero-rest mass vector field (the electromagnetic
field) and sources is described by the Lagrangian density (8.77). For the system
composed of a massive vector field and sources, an appropriate Lagrangian
density was first proposed in 1930 by Alexandru Proca (1897–1955) as

L = − 1

4μ0
FμνFμν + m2c2

2μ0h2
AμAμ − jμAμ, (8.295)

where h is the Planck constant.



508 8 Relativistic Formulation of Electrodynamics in Minkowski Space

a) Using the Euler–Lagrange equations for the Lagrangian density (8.295), find
the Proca equations (the equations of motion of the massive vector field in
interaction with its sources):

∂νF
νμ + m2c2

h2
Aμ = μ0 j

μ, μ, ν = 0, 1, 2, 3, (8.296)

i.e. the analogues of Maxwell’s source in covariant form, (8.79);
b) Show that the conservation law for the four-current, expressed as continuity
equation in Lorentz covariant form, implies that the massive vector field sat-
isfies necessarily the condition ∂μAμ = 0. (Remark that for the massive field
this condition is not an arbitrary gauge fixing, but a necessary constraint con-
dition. Actually, the action of the massive vector field is not gauge invariant,
due to the mass term.) Making use of this constraint, show that Aμ satisfies an
inhomogeneous equation of the Klein–Gordon type:

(
� + m2c2

h2

)
Aμ = μ0 j

μ, μ = 0, 1, 2, 3;

c) Starting from the static limit6 of the Proca equations with the constraint
∂μAμ = 0, and considering that the sources are represented by a single point-
like charge q at rest in the origin (in which case only the time component of
the four-potential, A0 = V/c is nonvanishing), show that one obtains the static
potential with spherical symmetry, called Yukawa7 potential:

V (r) = q

4πε0

e− mc
h r

r
.

6In the static limit the d’Alembertian operator becomes the Laplacian operator.
7This is a potential used in particle and atomic physics and it is also called a screened Coulomb
potential. The name of this potential comes from the Japanese theoretical physicist (and the first
Japanese Nobel laureate) Hideki Yukawa (1907–1981).
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Chapter 9
General Theory of Relativity

Einstein developed his ideas about the relativistic approach to gravity over many
years, culminating with his 1915 papers presented to the Prussian Academy of
Science.

Soon after the elaboration of special relativity, Einstein started pondering about
the introduction of accelerated motion, in particular due to gravitational interaction,
in his theory. In 1907 a conceptual breakthrough took place, when Einstein realized
that Galileo’s law of free fall was the key element for expanding the principle of
relativity to systems moving non-uniformly relative to each other. The mathematical
description of these ideas was still to follow. Its development was partly facilitated
by Einstein’s personal friendship and collaboration with the Swiss mathematician
Marcel Grossmann (1979–1936), who introduced Einstein to fundamental concepts
in differential geometry and tensor calculus, developed by Elwin Bruno Christof-
fel (1829–1900), Gregorio Ricci-Curbastro (1853–1925), and Tullio Levi-Civita
(1873–1941), as well as Riemannian geometry, initiated in 1854 by the German
mathematician Bernhard Riemann (1826–1866). During the following eight years,
Einstein worked out the conceptual and most of the technical details of general rela-
tivity, whose epitome are the second-order nonlinear differential equations known as
Einstein’s field equations which connect the curvature of space-time to the energy-
momentum tensor of matter.

General relativity is a geometric theory of gravitation. In this theory, gravity is not
seen as a force, but as an intrinsic distortion of space-time. According to Newtonian
gravity, particles’ trajectories deviate from the straight line due to the gravitational
force. In general relativity, matter and energy deform the space-time into a curved
manifold, which encodes all the gravitational effects. Particles still move on the
straightest possible lines of the distorted space-time.

Newton’s theory of gravitation gave a correct description of the majority of gravi-
tational phenomena, but there were some effects which could not be explained within
the Newtonian framework. Einstein’s theory was brilliantly confirmed by the astro-
physical and experimental observations. The most well-known are:
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1) Precession of the perihelion of planets;
2) Deviation of light in intense gravitational fields;
3) Redshift of the spectral lines of atoms situated in intense gravitational fields;
4) Retardation of radar signals due to gravity;
5) Direct detection of gravitational waves.

General relativity and the modern theories of gravitation have developed tremen-
dously during the past century, influencing and being influenced by the progress in
mathematics, astrophysics, and cosmology. There are many extensive monographs
dedicated to this subject. In the following, we shall present an outline of the main
concepts and basic techniques, from a historical perspective. We hope to make the
reader interested in pursuing this topic at an advanced level.

9.1 Classical Theory of Gravitation

The Newtonian theory of gravitation is based on the law

F = − k
MM ′

r3
r, (9.1)

which expresses the force of attraction between two point masses M and M ′, situated
at a distance r from each other. The value of the constant k depends on the system
of units.

The gravitational and electrostatic fields are inmanyways alike: they are described
by similar laws, and both gravitational and electrostatic forces obey the action and
reaction principle. One difference is that the gravitational acceleration does not
depend on the mass of the body, while in a given electrostatic field the accelera-
tion of a particle depends on its charge e (a = eE/m).

There are two kinds of mass that can be defined for a body:

a) inertial mass, m, encountered in the fundamental equation of Newtonian
mechanics, F = ma;

b) gravitational mass, M, appearing in the formula of the gravitational force,
G = Mg.

Since the gravitational acceleration of a body does not depend on its mass, it means
that the ratio C = M/m must be the same for all bodies, therefore (9.1) can be
written as

F = −k C2 m m′

r3
r. (9.2)

If one postulates m = M, then C = 1, and (9.2) becomes

F = −k
m m′

r3
r. (9.3)
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The constant k is usually denoted by G. Its value in SI is

G = 6.67384(80) × 10−11N · m2 · kg−2, (9.4)

with relative standard uncertainty 1.2 × 10−4. Since both relations (9.3) and F = mg
express the same gravitational force, we may write

F = − G
m m′

r3
r = m′g,

which yields

g = − G
m

r3
r. (9.5)

Here by g we mean the intensity of the gravitational field, produced at a point deter-
mined by the radius vector r, by the point mass m situated at the origin of the
coordinate axes.

The equality of the inertial and the gravitational masses of a body is postulated
in the principle of equivalence, which is one the cornerstones of Einstein’s general
theory of relativity. One of the famous experiments giving substance to Einstein’s
ideas was performed by Lórand Eötvös (1848–1919) in 1889 and reported in 1890.
Here is the essence of the experiment.

On a body situated on the surface of the Earth act simultaneously the gravity
force Fg = Mg, which depends on the gravitational mass, and the centrifugal force
of inertia f = mω2r, which depends on the inertial mass. The ratio |Fg|/|f | will then
depend on the ratio C = M/m. Eötvös placed two bodies, of gravitational masses
M1, M2 and inertial masses m1, m2 on a torsion balance with its rod oriented East-
West (to have a maximum moment of the force f). The rod of the balance can rotate
in the horizontal plane. The forces Fg1, f1 and Fg2, f2 acting upon the two bodies
are in equilibrium.

Denote C1 = M1/m1, C2 = M2/m2. If C1 and C2 were different, the centrifugal
forces acting on the two bodies would be different and create a torque capable of
producing the rotation of the rod of the balance. Even if the precision of determination
was very high (10−8), such an effect was not observed. The experiment was repeated
for about 30 years, by Eötvös and other researchers, but the result was always the
same. Einstein had postulated the equivalence between inertial and gravitational
masses in 1907 without knowing about Eötvös’s experiment, however he later cited
this high precision experiment in support of his ideas.

The similarity between electrostatic and gravitational quantities allows one to
establish the following analogy between the fundamental equations which govern
the two types of phenomena (G is the gravitational constant and ke = 1

4πε0
is the

electrostatic constant1):

1All these formulas are written in SI.
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E = Fe

q
= ke

q

r3
r = −∇V g = Fg

m
= −G

m

r3
r = −∇ϕ

V = ke
q

r
ϕ = −G

m

r

V = ke

n∑

i=1

qi

ri
ϕ = −G

n∑

i=1

mi

ri

V = ke

∫
ρe(r′)dr′

|r − r′| ϕ = −G
∫

ρm(r′)dr′

|r − r′|
∮

E · dS = 4πke

n∑

i=1

qi

∮
g · dS = −4πG

n∑

i=1

mi

∇ · E = 4πkeρe ∇ · g = −4πGρm

ΔV = −4πkeρe Δϕ = 4πGρm

Consequently, the gravitational potential ϕ, at some point of the field produced by
a point mass (or a continuous/discrete mass distribution) can be determined if one
knows the mass density ρm (or mass m), by using Poisson’s (or Laplace’s) equation.
This formalism allows one to determine the trajectory of a planet, the geometric
elements of the trajectory, etc. The theory is in good agreement with observational
data so that, at the beginning of the 19th century, the Newtonian theory of gravitation
was providing a good enough frame for the description of gravitational phenomena.

But in 1859 the French mathematician and astronomer Urbain Le Verrier (1811–
1877) was the first to realize that the slow precession of Mercury’s orbit around
the Sun could not be completely explained by Newtonian mechanics. He observed
an advance of Mercury’s perihelion of approximately 565 arc seconds per century,
but when calculating the advance due to the outer planets, he found it to be 527
arc seconds per century, leaving a residual 38 arc seconds that he was not able to
explain using Newton’s theory. Later, in 1895, Simon Newcomb (1835–1909) gave
an improved value for the precession aberration, namely about 43 arc seconds per
century and also realized that the phenomenon was happening with other planets,
like Mars and Venus.

There were several attempts to explain the perihelion advance within the New-
tonian theory. Here are two of them:

1) The phenomenon could be produced by one or a ring of several unidentified small
planets. But a single planet big enough to explain the perihelion advance should
have been identified. On the other hand, the existence of a ring of small planets
could not have explained, eventually, the perihelion advance of a single planet
(Mercury).

2) The phenomenon could be caused by a broad non-sphericity of the Sun or of its
crown, but the astronomical observations did not confirm this hypothesis.
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To solve the problem, Newcomb suggested in 1895 to modify Newton’s law (9.1),
by replacing r2 by rn, with n = 2.0000001612. Another proposal was to multiply
instead by a factor (1 + α/rn), or by e−αr(α > 0). But these corrections cannot be
applied to all planets.

All these failed attempts led to the conclusion that the perihelion advance cannot
be explainedwithin the frame of Newtonian theory. A new theorywas necessary, able
to give a consistent and unitary explanation of the phenomenon. The explanation of
the perihelion anomaly was one of the first successes of Albert Einstein’s relativistic
theory of the gravitational field. We shall return to this calculation in Sect. 9.10.1.

9.2 Principles of General Relativity

Einstein’s relativistic theory of the gravitational field, known as the general theory
of relativity, is based on three postulates:

1) Equivalence principle: The gravitational field and the field of inertial forces,
in a reference system conveniently accelerated, are equivalent in small enough
regions of space-time.

2) Covariance principle: The form of physical laws under arbitrary differentiable
coordinate transformations is invariant.

3) Local Lorentz invariance: The rules of special relativity apply locally for all
inertial observers.

Let us briefly justify these postulates. First of all, we observe that we can only
locally use inertial frames in general relativity, because gravitation is omnipresent.
For example, a frame attached to a body moving in the gravitational field is not
inertial, but in this frame the effect of the gravitational field is eliminated.

In this context, Einstein imagined the following experiment. A person, in an
elevator, is able to realize the existence of the gravitational field by feeling his own
weight. If the elevator falls freely, the gravitational field is canceled by the field of
inertial forces on the elevator (conveniently accelerated). Hence, the observer is not
able to realize whether he is situated in an inertial frame in the absence of gravitation,
or freely falls down in gravitational field. He ascertains the validity of the principle of
inertia, but not the existence of the gravitational field. The acceleration generated by
the gravitational field is independent of the mass of the body, just as the acceleration
due to inertial forces.

One can then conclude that in a small region of space, the inertial and gravitational
forces are indiscernible. It is necessary to specify that the phenomenon takes place
in a limited place in space, because on the one hand the gravitational field is a
source-field, while the field of inertial forces is source-free, and on the other hand
the gravitational field goes to zero at infinity, while the field of inertial forces is
either zero, or infinite at infinity. This conclusion was given by Einstein the status of
a principle, known as the equivalence principle.
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Consider a limited domain of the space-time continuum, where a gravitational
field acts. For such a system the metric is (see Appendix C):

ds2 = gμνdxμdxν, μ, ν = 0, 1, 2, 3, (9.6)

where gμν is the metric tensor. In an inertial frame, as we know, the components of
gμν are constant, while the interval (9.6) is Lorentz-invariant.

In a non-inertial frame, the components of the metric tensor become functions of
coordinates, and, consequently,ds2 cannot bewritten anymore as a sumof the squared
coordinate differentials. For example, when passing from the reference frame S to
the frame S′, which rotates about the Oz ≡ Oz′ axis with constant angular velocity
ω, the space coordinates transform according to

x = x′ cosωt − y′ sinωt,

y = x′ sinωt + y′ cosωt,

z = z′.

To determine the metric in the new coordinates, we replace the differentials of the
above coordinates in the Minkowski metric,

ds2 = c2dt2 − dx2 − dy2 − dz2,

to obtain

ds2 = [c2 − ω2
(
x′2 + y′2)] dt2 − dx′2 − dy′2 − dz′2 + 2ω

(
y′dx′ − x′dy′) dt.

Whatever transformation of time we consider, this expression cannot be brought to
a Galilean form, such as

∑4
μ=1 (dx′μ)2, which means that the metric tensor cannot

be brought to a diagonal form.
This is the situation with the gravitational field: the metric cannot be brought to

diagonal form, because the gravitational field cannot be eliminated by any coordinate
transformation. The space-time continuum characterized by such a property is called
curved, the curvature being represented by the Riemann tensor (see Sect. 9.6). In
special relativity, the Riemann tensor is identically zero, which is expressed by the
statement that Minkowski space is flat.

According to Einstein’s postulates, the existence of a gravitational field implies a
metric describing a curved non-Euclidean space. The local equivalence means that
on infinitesimal domains the curved space coincides with its tangent space, which is
Euclidean (or pseudo-Euclidean, in the case of Minkowski space).

A space which satisfies the condition that the metric

ds2 = gμνdxμdxν
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is invariant under the general coordinate transformation

x′μ = x′μ(xν), μ, ν = 0, 1, 2, 3

is a Riemannian space with indefinite metric. (“Indefinite” means either a bilinear
form, a sesquilinear form, or a non-linear functional of a certain degree of homo-
geneity, defined on the space under consideration.)

Consequently, the space-time manifold with the metric (9.6) is a Riemannian
manifold. While in Euclidean space an inertial test particle moves along a straight
line, in a curved space the shortest distance between two points of the space, for
an inertial particle, is the geodesic of the space. The geodesic is defined as a curve
whose tangent vectors remain parallel if they are transported along the curve.

In Einstein’s general relativity, the dynamical laws of physics are therefore
replaced by a set of geometric conditions satisfied by the components of the metric
tensor gμν , also called gravitational potentials, while the forces due to the presence
of bodies are replaced by space curving.

To understand Einstein’s fundamental ideas, one needs some preliminary math-
ematical preparations. Since the following approach makes use of elements of Rie-
mannian geometry, we recommend the reader to go through the Appendices B and C.

9.3 Geodesics

According to the local equivalence principle, a particle in inertial motion (i.e. not
accelerated) moves along a line which corresponds to the straight line of Euclidean
space. This line is called geodesic. Let us establish the differential equations of
geodesic lines.

Let xμ, μ = 0, 1, 2, 3 be the general coordinates that define the position of a
particle in the Riemannian space R4, and xμ = xμ(s) – the parametric equations of a
curve passing through two given world-points P1 and P2, where s is the arc length of
the curve. By definition, this curve is a geodesic if the distance between the world-
points P1 and P2, measured on the curve, has a minimum value. The curve satisfying
this condition is given by the variational principle

δ

∫ P2

P1

ds = δ

∫ P2

P1

(
gμνdxμdxν

)1/2 = 0,

or, if we denote ẋμ = dxμ/ds,

δ

∫ P2

P1

(
gμν ẋμẋν

)1/2
ds = 0.
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The functional

I =
∫ 2

1
f
(
xμ(s), ẋμ(s), s

)
ds

has an extremum only if f satisfies the Euler–Lagrange equations

d

ds

(
∂f

∂ẋλ

)
− ∂f

∂xλ
= 0 . (9.7)

Replacing f = (gμν ẋμẋν
)1/2

into (9.7), and using the constraint f ≡ 1, we have

∂f

∂ẋλ
= 1

2

(
gμν ẋμẋν

)−1/2 [
gμν

(
δ

μ
λ ẋν + δν

λ ẋμ
)] = gλν ẋν,

∂f

∂xλ
= 1

2

(
gμν ẋμẋν

)−1/2 ∂gμν

∂xλ
ẋμẋν = 1

2

∂gμν

∂xλ
ẋμẋν, (9.8)

leading to
d

ds
(gλν ẋν) − 1

2

∂gμν

∂xλ
ẋμẋν = 0. (9.9)

Denoting

ϕ = 1

2
gμν ẋμẋν, (9.10)

we have also
d

ds

(
∂ϕ

∂ẋλ

)
− ∂ϕ

∂xλ
= 0,

showing that the variational equations

δ

∫ 2

1

(
gμν ẋμẋν

)1/2
ds = 0

and

δ

∫ 2

1
gμν ẋμẋνds = 0

are equivalent.
Going back to Eq. (9.9), let us carry out the derivative in the first term. Some

convenient index manipulation gives

d

ds
(gλν ẋν) = ∂gλν

∂xμ
ẋμẋν + gλν ẍν

= 1

2

(
∂gλν

∂xμ
+ ∂gλμ

∂xν

)
ẋμẋν + gλν ẍν,
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and thus (9.9) becomes

gλν ẍν + 1

2

(
∂gλν

∂xμ
+ ∂gμλ

∂xν
− ∂gμν

∂xλ

)
ẋμẋν = 0. (9.11)

With the notation

Γμν,λ = 1

2

(
∂gλν

∂xμ
+ ∂gμλ

∂xν
− ∂gμν

∂xλ

)
, (9.12)

equation (9.11) yields
gλν ẍν + Γμν,λ ẋμẋν = 0. (9.13)

The quantities Γμν,λ, also denoted by [μν,λ] are called Christoffel symbols of the
first kind. Multiplying (9.13) by gλρ and recalling (B.30), gλρgλν = δρ

ν , we finally
find

ẍρ + Γ ρ
μν ẋμẋν = 0, (9.14)

where the quantities

Γ ρ
μν = gλρΓμν,λ = 1

2
gλρ
(
∂μgλν + ∂νgμλ − ∂λgμν

)
, (9.15)

also denoted as
{ ρ

μν

}
, are the Christoffel symbols of the second kind, also called

connection coefficients. The definitions (9.12) and (9.15) show that the Christoffel
symbols of the second kind are symmetric in the lower indices:

Γ λ
μν = Γ λ

νμ. (9.16)

The name is given in honour of the German mathematician Elwin Bruno Christoffel
(1829–1900).

Equations (9.14) are the differential equations of geodesic lines in the Riemannian
space R4. They also represent the equations ofmotion of a particle in the gravitational
field. The quantities

aρ = ẍρ + Γ ρ
μν ẋμẋν (9.17)

are the contravariant components of the acceleration four-vector. In contrast with
special relativity, the quantities ẍρ are not four-vectors. This property can be easily
verified by writing their relations of transformation. The same procedure can be used
to show that the Christoffel symbols of the first and second kind are not four-tensors,
as we shall show further. The covariant components of the acceleration four-vector
are found in the usual manner:

aλ = gλρaρ = gλρẍρ + Γμν,λẋμẋν . (9.18)
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Remark that the acceleration of a particle in the gravitational field depends only on
the geometric properties of the Riemannian space, that is on the metric tensor and its
derivatives with respect to coordinates. As we shall see, the components of gμν play
the role of potentials of the gravitational field, while the quantities Γ ρ

μν determine the
intensity of the field.

Equations (9.14) and (9.18) emphasize the fact that motion on a geodesic is unac-
celerated motion, i.e. a particle moving only under the effect of gravity (freely falling
on a geodesic) is unaccelerated.

9.4 Covariant Derivatives

9.4.1 Levi-Civita Connection

Let Aμ, μ = 0, 1, 2, 3 be the components of a covariant four-vector, defined on the
Riemannian space R4. Using the transformation rule between two systems of coor-
dinates (see (B.13)):

A′
μ = ∂xν

∂x′μ Aν = xν
μAν, (9.19)

the derivative ∂A′
μ/∂x′λ and the total differential dA′

μ transform according to

∂A′
μ

∂x′λ = ∂

x′λ

(
∂xν

∂x′μ

)
Aν + ∂xν

∂x′μ
∂Aν

∂xρ

∂xρ

∂x′λ

= ∂2xν

∂x′λ∂x′μ Aν + xν
μxρ

λ

∂Aν

∂xρ
. (9.20)

Multiplying (9.20) by dx′λ = xλ
σdxσ , we also have

dA′
μ = ∂2xν

∂x′λ∂x′μ
∂x′λ

∂xρ
Aνdxρ + xν

μdAν . (9.21)

Relations (9.20) and (9.21) show that in curvilinear coordinates the derivatives of a
vector do not transform, in general, like a tensor, while the differential of a vector does
not transform, in general, like a vector. This observation is also valid for contravariant
vectors. The derivative is a tensor, and the differential is a vector only in the case of
linear transformations, when the second derivative ∂2xν

∂x′λ∂x′μ is zero.
We wish to obtain a tensor which plays, in general (arbitrary) coordinates, the

same role as the partial derivative ∂μ in Galilean coordinates. To achieve this, we
have to find the law of transformation of derivatives when passing from Galilean to
general coordinates.

To understand the principle of the procedure, let us first consider an Euclidean
three-dimensional space. Define in this space an arbitrary vector fieldA, and suppose
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that A(P) and A(Q) are the values of A at two infinitely close points P and Q. To
calculate the differential dA, the origins of the two vectors have to be at the same
point, say Q. This is accomplished by displacing A(P) parallel to itself, until its
origin coincides with Q. Then we can write (see Fig. 9.1):

dA = A(Q) − A(P). (9.22)

The parallel transport of the vector A is expressed by

A · τ = const., (9.23)

where τ is the unit vector of PQ. Equation (9.23) expresses the fact that during the
transport of the vector, the angle between the vector and the direction on which we
transport it remains constant, and this is exactly what we mean by parallel transport.

Oncurved space, the concept of parallel transport is not unequivocal, but it depends
on the path on which the vector is parallel transported. An example of parallel trans-
port on a two-sphere is illuminating. Let us consider, as in Fig. 9.2, a vector A on the

Fig. 9.1 Parallel transport of
the vector A on an Euclidean
three-dimensional space (flat
space).

Fig. 9.2 Parallel transport
on a two-sphere. The result
of parallel transport on a
curved space depends in
general on the path on which
it is performed.
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Fig. 9.3 Intuitive representation of the Levi-Civita parallel transport on a two-dimensional surface.

equator of the sphere, tangent to a line of constant longitude. Let us parallel trans-
port it to the north pole along that line. Then consider a different path: transport the
vector on the equator by an angle θ and then again towards the north pole along the
corresponding line of constant longitude. Quite obviously, at the north pole arrived
two different vectors, as a result of the parallel transport along two different paths.
This is a general geometrical consequence of the curvature of the space. We shall
come to describe it quantitatively in Sect. 9.6.

Let us now express in quantitative terms the result of parallel transport along a
given curve, which we shall take to be a geodesic of the Riemannian space. We
consider on it two infinitely close points P(xμ) and Q(xμ + dxμ). Let Aμ be an
arbitrary covariant vector field, with values Aμ(P) and Aμ(Q) at the two points. To
find the differential of Aμ we displace Aμ(P) to the point Q in such a way that the
angle between the vector and the tangent to the geodesic is always the same (an
intuitive image is given in Fig. 9.3).

If xμ = xμ(s) are the parametric equations of the geodesic, then dxμ/ds = ẋμ are
the components of the unit four-vector of the tangent to the geodesic, while the
relation

Aμẋμ = const. (9.24)

is a four-dimensional generalization of condition (9.23): the displacement of the
vector Aμ along the geodesic preserves the angle between Aμ and the tangent to the
geodesic. Such a transport of a vector is called Levi-Civita parallel transport.2

2Actually, the notion of Levi-Civita parallel transport includes two components: the first is the
one mentioned above, namely the fact that under parallel transport the inner product of vectors is
preserved (in our case, the inner product between the vector Aμ and the tangent to the geodesic); the
second component is more subtle, as it is the requirement that the vectors do not “twist”. Roughly
speaking, this means that the result of parallel transporting a vector field X along a vector field Y is
the ‘same’ as parallel transporting Y along X .
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Let us find the variation δAμ of Aμ, when transporting it in Levi-Civita manner.
Relation (9.24) yields

ẋμδAμ + Aμδẋμ = 0. (9.25)

Since ẋμ is tangent to the geodesic, its components must satisfy Eq. (9.14):

ẍσ + Γ σ
μν ẋμẋν = 0,

which gives
dẋμ = −Γ

μ
νλẋνdxλ(= δẋμ),

and (9.25) becomes
ẋμδAμ = − Aμδẋμ = Γ

μ
νλAμẋνdxλ.

Some index manipulation allows one to identify the coefficients of ẋμ of both sides,
to get

δAμ = Γ ν
μλAνdxλ. (9.26)

Thus, the Levi-Civita variation of the components of Aμ depends on the connection
coefficients of the Riemannian space. On flat space, in Cartesian coordinates, the
Christoffel symbols of the second kind are all zero, therefore δAμ = 0, and we fall
back on (9.22).

As a result of parallel transport, the components of Aμ at the point Q are

Aμ + δAμ = Aμ + Γ ν
μλAνdxλ.

The difference

DAμ = Aμ(Q) − [Aμ(P) + δAμ] = dAμ − Γ ν
μλAνdxλ, (9.27)

where dAμ = Aμ(Q) − Aμ(P) is the usual differential, is called the absolute differ-
ential of the covariant four-vector Aμ. Since dAμ = (∂Aμ/∂xν)dxν , we can write
also

DAμ = (∂νAμ − Γ λ
μνAλ

)
dxν . (9.28)

Being the difference of two four-vectors, the absolute differential is also a four-
vector. Since dxν , in its turn, is a four-vector, it results that the expression between
parentheses is a second-order four-tensor. It is called the covariant derivative of the
covariant four-vector Aμ:

∇νAμ ≡ Aμ;ν = ∂νAμ − Γ λ
μνAλ. (9.29)

Sometimes the covariant derivative along a curve is called absolute or intrinsic deriv-
ative. It is also denoted as Aμ|ν . The covariant derivative∇ν expressed by (9.29), with
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the connection coefficients given by (9.15), is also called Levi-Civita connection (but
sometimes also Christoffel connection or Riemannian connection).

Similarly one can define the covariant derivative of a contravariant four-vector. To
this end, one uses the fact that a scalar like AμBμ is invariant under parallel transport
(recall that the inner product of vectors is preserved), that is

δ(AμBμ) = AμδBμ + BμδAμ = 0,

or, by means of (8.37) and a suitable change of summation indices,

δBμ = −Γ
μ
νλBνdxλ. (9.30)

The absolute differential of Bμ therefore is

DBμ = dBμ − δBμ = (∂νBμ + Γ
μ
νλBλ

)
dxν . (9.31)

The mixed tensor
∇νBμ ≡ Bμ

;ν = ∂νBμ + Γ
μ
νλBλ (9.32)

is the covariant derivative of the contravariant four-vector Bμ.
In inertial systems, all the 40 distinct quantities Γ λ

μν are zero, and the covariant
derivative reduces to the common one.

The covariant derivative can be applied to tensors of any order and any variance.
Take, for example, the contravariant tensor Tμν . Its components transform like the
product AμBν (see Appendix B, Sect. B.3). The variation of these quantities under
parallel transport is

δ(AμBν) = (δAμ)Bν + Aμ(δBν) = −(Γ μ
σρAσdxρ)Bν − Aμ(Γ ν

σρBσdxρ),

consequently, the variation of Tμν upon parallel transport is given by

δTμν = −(Γ μ
σρTσν + Γ ν

σρTμσ)dxρ.

The absolute differential of Tμν is then

DTμν = d Tμν − δ Tμν = (∂ρTμν + Γ μ
σρTσν + Γ ν

σρTμσ
)

dxρ, (9.33)

leading to the covariant derivative of Tμν as

Tμν
;ρ = ∂ρTμν + Γ μ

σρTσν + Γ ν
σρTμσ, (9.34)

which is a third-order tensor, once-covariant and twice-contravariant. In a similar
way one can define the covariant derivative of a covariant tensor Tμν ,

Tμν;ρ = ∂ρTμν − Γ λ
ρνTμλ − Γ λ

ρμTλν, (9.35)

http://dx.doi.org/10.1007/978-3-642-17381-3_8
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and of a mixed tensor,

T ν
μ;ρ = ∂ρT ν

μ + Γ ν
λρTλ

μ − Γ λ
ρμT ν

λ . (9.36)

We can give a general rule to obtain the covariant derivative of an arbitrary tensor
T ...

... with respect to xρ: to the usual derivative one adds a term (−Γ λ
μρT ...

.λ.) for each
covariance index μ (T ...

.μ.), and a term (Γ
μ
ρλT .λ.

... ) for each contravariance index ν (T .ν.
... ).

Observation:
We can define a directional covariant derivative along a curve xμ(s) by

D

ds
= dxρ

ds
∇ρ. (9.37)

If we divide by ds the expression (9.26), we obtain

d

ds
Aμ − Γ ν

μλAν
dxλ

ds
= 0. (9.38)

This is called the equation of parallel transport. It is equivalent to writing

dxλ

ds
(∂λAμ − Γ ν

μλAν) = 0,

or, in view of (9.29) and (9.37),

DAμ

ds
= dxρ

ds
∇ρAμ = 0. (9.39)

The same would be valid for any parallel-transported tensor,

DTμ1μ2...
ν1ν2...

ds
= dxρ

ds
∇ρTμ1μ2...

ν1ν2...
= 0. (9.40)

Thus, the parallel transport of a tensor along the path xμ(s) is equivalent to the
requirement that the covariant derivative of the tensor along the path vanishes.

9.4.2 Transformation Properties of the Connection
Coefficients

Using the concept of absolute differential, let us analyze the tensor character of the
connection coefficients Γ μ

νκ. We consider a contravariant four-vector Aρ and write its
absolute differential

DAρ = dAρ + Γ ρ
νκAνdxκ. (9.41)
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Being a four-vector, the absolute differential transforms according to (B.8):

DA′ρ = xρ
λDAλ,

or, in view of (9.41),

dA′ρ + Γ ′ρ
νκA′νdx′κ = ∂x′ρ

∂xλ
(dAλ + Γ λ

νκAνdxκ). (9.42)

The differential dA′ρ is obtained in a way similar to that leading to (9.21):

dA′ρ = ∂2x′ρ

∂xν∂xκ
Aνdxκ + ∂x′ρ

∂xν
dAν . (9.43)

Introducing (9.43) into (9.42) and using the transformation relations for A′ν and dx′κ,
we have

∂2x′ρ

∂xν∂xκ
Aνdxκ + ∂x′ρ

∂xν
dAν + Γ ′ρ

νκ

∂x′ν

∂xλ

∂x′κ

∂xσ
Aλdxσ

= ∂x′ρ

∂xλ
dAλ + Γ λ

νκ

∂x′ρ

∂xλ
Aνdxκ.

Now we conveniently interchange the summation indices λ ↔ ν,σ ↔ κ, then iden-
tify the coefficients of Aνdxκ on both sides. The result is

Γ λ
νκ

∂x′ρ

∂xλ
= Γ

′ρ
λσ

∂x′λ

∂xν

∂x′σ

∂xκ
+ ∂2x′ρ

∂xν∂xκ
,

or, multiplying by ∂xμ/∂x′ρ and performing summation over ρ:

Γ μ
νκ = Γ

′ρ
λσ

∂x′λ

∂xν

∂x′σ

∂xκ

∂xμ

∂x′ρ + ∂2x′ρ

∂xν∂xκ

∂xμ

∂x′ρ . (9.44)

This relation shows that, in general, the quantities Γ μ
νκ are not tensors (except for

the case when the coordinate transformation is linear, and the last term of the r.h.s
vanishes). This was of course expected, since the role of the connection coefficients
is to compensate for the fact that the partial derivative of a vector on a curved space
does not transform as a tensor, but it has an extra term, as in (9.20). Thus, the addition
of two objects which are not tensors, Eq. (9.29), gives in the end a tensor, Aν;μ.

If a tensor has vanishing components in one coordinate system, it has vanishing
components in any coordinate system. SinceΓ μ

νκ are not tensors, they can be chosen in
such away that all Christoffel symbols are zero along a given curve, or at a given point.
Let such a point be the coordinate origin, and let the coordinate transformation be

x′ρ = xρ + 1

2
(Γ ρ

νκ)0xνxκ, (9.45)
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where (Γ ρ
νκ)0 are given. We then have

∂x′ρ

∂xν
= δρ

ν + (Γ ρ
νκ)0xκ ⇒

(
∂x′ρ

∂xν

)

0

= δρ
ν;

∂2x′ρ

∂xν∂xκ
= (Γ ρ

νκ)0. (9.46)

Introducing these results into (9.44), we find

Γ μ
νκ = Γ

′ρ
λσ

∂x′λ

∂xν

∂x′σ

∂xκ

∂xμ

∂x′ρ + (Γ ρ
νκ)0

∂xμ

∂x′ρ .

At the origin, this relation becomes

(Γ μ
νκ)0 = (Γ

′ρ
λσ)0 δλ

ν δσ
κ δμ

ρ + (Γ ρ
νκ)0 δμ

ρ = (Γ ′μ
νκ)0 + (Γ μ

νκ)0

which yields
(Γ ′μ

νκ)0 = 0. (9.47)

Such a coordinate system is called locally inertial, or locally-geodesic. In fact, at
each point, there exist coordinate systems in which the Christoffel symbols vanish
at that point.

9.4.3 Other Connections and the Torsion Tensor

The Levi-Civita connection corresponding to the covariant derivative (9.32) is not
the only connection that can exist on a curved space-time. It is nevertheless the
connection that one obtains by defining geodesics as curves of minimal distance
between two points, and in this sense the most intuitive. However, one can define
covariant derivatives ∇ more generally, by asking that they generalize the notion
of partial derivative on flat space while satisfying a set of natural conditions. These
conditions are (below T1 and T2 are tensors):

1) linearity: ∇(T1 + T2) = ∇T1 + ∇T2;
2) Leibniz rule: ∇(T1 ⊗ T2) = (∇T1) ⊗ T2 + T1 ⊗ (∇T2);
3) commutativity with contractions: ∇μ(T ν

νρ) = (∇T) ν
μ νρ;

4) reduction to partial derivatives on scalars: ∇μϕ = ∂μϕ.

With these conditions fulfilled, various connections can be defined by specifying
in a given coordinate system the set of connection coefficients Γ ρ

μν . In general, the
connection coefficients need not be symmetric in the lower indices, hence in four
dimensions there will be 64(= 43) independent components. Thus, any number of
connections can be defined on a Riemannian space, each of themwith its correspond-
ing covariant derivative. However, once the metric is given, this defines a unique
connection, as we shall show below.
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To this end, let us first note that the difference of two connections is a tensor.
Consider a vector V λ and the connections ∇μ and ∇̃μ, specified by the connection
coefficients Γ ρ

μν and Γ̃ ρ
μν , respectively. Let us now take the difference of the two

covariant derivatives:

∇μV ρ − ∇̃μV ρ = ∂μV ρ + Γ ρ
μν V ν − ∂μV ρ − Γ̃ ρ

μν V ν = Sρ
μν V ν . (9.48)

Clearly, the left-hand side is a tensor, by definition. The right-hand side has to be
a tensor as well, consequently Sρ

μν is a tensor. This simple calculation leads to the
conclusion that by adding a tensor to a set of connection coefficients, we obtain
another connection:

Γ ρ
μν = Γ̃ ρ

μν + Sρ
μν . (9.49)

Then, starting from a connection specified by the Christoffel symbols Γ ρ
μν , we can

define an antisymmetric tensor by the relation

Tρ
μν = Γ ρ

μν − Γ ρ
νμ = Γ

ρ
[μν]. (9.50)

This is known as the torsion tensor. Clearly, if the connection is symmetric in the
lower indices, i.e.

Γ ρ
μν = Γ

ρ
(μν), (9.51)

the torsion tensor vanishes and the connection is called torsion-free.
Another important notion in Riemannian geometry is the metric compatibility

of the connection. By definition, a connection is metric compatible if the covariant
derivative of the metric with respect to that connection is everywhere zero, in other
words the connection preserves the metric tensor:

∇ρgμν = 0. (9.52)

A metric-compatible connection is called also metric connection.
The fundamental theorem of Riemannian geometry states that on a Riemannian

manifold endowed with a metric gμν , there exists a unique torsion-free metric con-
nection, which is the Levi-Civita connection of the given metric.

To prove this result, we shall derive in terms of the metric the unique connection
Γ ρ

μν which satisfies the requirements of the theorem.Wewrite themetric compatibility
condition (9.52) for three different permutations of the indices:

∇ρgμν = ∂ρgμν − Γ λ
ρμgλν − Γ λ

ρνgμλ = 0,

∇μgνρ = ∂μgνρ − Γ λ
μνgλρ − Γ λ

μρgνλ = 0, (9.53)

∇νgρμ = ∂νgρμ − Γ λ
νρgλμ − Γ λ

νμgρλ = 0.
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By adding the last two relations and subtracting the result from the first and subse-
quently using the symmetry of the connection (9.51), we find:

∂ρgμν − ∂μgνρ − ∂νgρμ + 2Γ λ
μνgλρ = 0. (9.54)

Multiplying by gσρ, we finally obtain the connection coefficients

Γ σ
μν = 1

2
gσρ
(
∂μgνρ + ∂νgρμ − ∂ρgμν

)
, (9.55)

which is exactly the expression of the Levi-Civita connection coefficients obtained
in (9.15).

In general relativity, the Levi-Civita connection is the only one used, as it arises
naturally from the metric and any other connection can be obtained from it by the
addition of an appropriately chosen tensor.

Coming back to the notion of geodesic, we can think about it also as a curve on
which the tangent vector is parallel transported with respect to a given connection
∇μ, not necessarily symmetric. This is another way of generalizing the straight line,
since on a straight line the tangent vector is parallel transported. However, with
this definition, there are as many equations of geodesics as there are connection.
Using our definition of directional covariant derivative (9.37) and recalling that for a
curve xμ(s) the tangent vector is ẋμ = dxμ/ds, the condition that the latter be parallel
transported is

D

ds

dxμ

ds
= dxρ

ds
∇ρ

(
dxμ

ds

)
= 0. (9.56)

Using above (9.32) with arbitrary connection coefficients we obtain the equation

ẍρ + Γ ρ
μν ẋμẋν = 0, (9.57)

which is indeed the equation of a geodesic (9.14), assuming that the parallel transport
is performed with respect to an arbitrary connection ∇μ specified by the Christoffel
symbols Γ ρ

μν . The second term on the left-hand side of (9.57) is symmetric in xμ and
xν , therefore we may as well write (9.57) as

ẍρ + Γ
ρ
(μν)ẋ

μẋν = 0.

We thus conclude that only the symmetric part of an arbitrary connection contributes
to the geodesics.

Remark that the two definitions for a geodesic coincide if and only if the connec-
tion is the Levi-Civita connection.

Returning briefly to the torsion tensor, we note that in Einstein’s general relativity
it does not play any significant role. However, it has a prominent role in the Einstein–
Cartan theory of gravitation, thus named in honour of Élie Cartan (1869–1951), who
proposed it first in 1922. The torsion tensor can be coupled to the spin of matter, just
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as the curvature tensor is coupled to the energy and momentum of the matter, as we
shall see in Sect. 9.7. Although the Einstein–Cartan theory is still a classical theory
of gravitation, the coupling between gravity and the spin of matter fields is crucial
in developing a quantum theory of gravity.

Further on, as we do not intend to exceed the limits of general relativity, by
covariant derivative we shall always understand the one associated with the Levi-
Civita connection.

9.5 Equations of Electrodynamics in the Presence
of Gravitation

With this preparation, we can write now the fundamental equations of electrody-
namics in a covariant form which takes into account the presence of the gravitational
field. We shall focus on Maxwell’s equations, the equation of continuity, and the
equation of motion of a point charge.

9.5.1 Maxwell’s Equations

In general relativity, the components xμ of the position four-vector are usually chosen
as

x0 = ct, x1 = x, x2 = y, x3 = z.

Since the invariant form of the four-volume element, in general coordinates, is

√−g dx0 dx1 dx2 dx3 = √−gdΩ,

(see (C.46)), the action of the electromagnetic field, when both sources and gravita-
tional field are present, is expressed as

S =
∫ (

− 1

4μ0
FλρFλρ − jλAλ

)√−g dΩ. (9.58)

As the four-potential Aμ is a vector, clearly Aμ,ν is no more a vector on curved
space-time, so the original definition of the electromagnetic field strength Fμν has to
be replaced by a definition with covariant derivatives, i.e.

Fμν = Aμ;ν − Aν;μ. (9.59)
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Using Eq. (9.29) and the symmetry of the connection coefficients in the lower indices,
Eq. (9.16), one can easily show (see (C.62)) that

Fμν = Aμ;ν − Aν;μ = Aμ,ν − Aν,μ. (9.60)

Thus, the expression of the electromagnetic field strength in terms of the four-
potential is practically unchanged in the presence of gravity.

Maxwell’s source equations, in the presence of gravitation, are then obtained
by using the Euler–Lagrange equations in which partial derivatives are replaced by
covariant derivatives, and the Lagrangian density is

L =
(

− 1

4μ0
FλρFλρ − jλAλ

)√−g. (9.61)

Remark that the Lagrangian density defined as above is not a bona fide scalar, but the
factor in brackets is. However, when multiplying (9.61) by the four-volume element
dΩ , the result is a scalar, consequently the action (9.58) is well defined. Recalling
that g depends on coordinates only and not on the electromagnetic field, we have

∂L
∂Aμ;ν

= ∂L
∂Aμ,ν

= 1

μ0

√−gFμν,
∂L
∂Aμ

= −√−g jμ,

therefore Euler–Lagrange equations lead to

1√−g

∂

∂xν
(
√−g Fνμ) = μ0jμ, μ, ν = 0, 1, 2, 3,

or, observing that the l.h.s. is the covariant four-divergence of the antisymmetric
tensor Fνμ, we obtain

Fνμ; ν = μ0 jμ, μ, ν = 0, 1, 2, 3. (9.62)

These are Maxwell’s source equations in the presence of gravitation. Multiplying
(9.62) by gμρ, and using the fact that the covariant derivative of the metric tensor is
zero, we also have

Fν
ρ ; ν = μ0jρ. (9.63)

Due to (9.60), one observes that Maxwell’s source-free equations, in the presence of
gravitation, have the same form as in the absence of gravitation, Eq. (8.83), which
means

∂Fμν

∂xλ
+ ∂Fνλ

∂xμ
+ ∂Fλμ

∂xν
= 0. (9.64)

or, using covariant notation,

Fμν ; λ + Fνλ ; μ + Fλμ ; ν = 0 , (9.65)

as the reader can easily verify.

http://dx.doi.org/10.1007/978-3-642-17381-3_8
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9.5.2 Equation of Continuity

Using the procedure presented in Sect. 8.3, we multiply by dxμ the infinitesimal
charge dq = ρedτ = ρedx1dx2dx3 :

dq dxμ = ρe dτ dxμ = ρe
dτ cdt√−g

dxμ

cdt

√−g = 1√−g
ρe

dxμ

cdt
(
√−g dΩ).

Since dq dxμ is a four-vector and (
√−g dΩ) an invariant, it follows that

jμ = 1√−g
ρe

dxμ

dt
= 1√−g

ρec
dxμ

dx0
(9.66)

is also a four-vector, called current density four-vector. Onflat space-time, the expres-
sion (9.66) is reduced to (8.62). To write the equation of continuity in covariant form
and in the presence of gravitation, we use the definition of covariant four-divergence
in general coordinates (C.55), and obtain

jμ; μ = 1√−g

∂

∂xμ
(
√−g jμ) = 0, (9.67)

where jμ is defined by (9.66).

9.5.3 Equation of Motion of a Point Charge

If both electromagnetic and gravitational fields act simultaneously on a particle of
rest mass m0 and electric charge e, its equation of motion is found by replacing the
usual differential duμ by the absolute differential Duμ = duμ + Γ

μ
νλuν dxλ:

m0c

(
duμ

ds
+ Γ

μ
νλuν dxλ

ds

)
= eFμνuν, (9.68)

or, equivalently,
m0c

(
ẍμ + Γ

μ
νλẋν ẋλ

) = e Fμ
ν uν . (9.69)

If the electromagnetic field is absent, Eq. (9.69) reduces to the Eq. (9.14) of geodesic
lines, as expected.

http://dx.doi.org/10.1007/978-3-642-17381-3_8
http://dx.doi.org/10.1007/978-3-642-17381-3_8
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9.6 Riemann Curvature Tensor

If in flat space a vector is parallel transported along a closed curve, at the end of the
path the vector coincides with itself. In a curved space, the vector’s orientation may
not coincide to its original orientation when its origin returns to the initial position.

As an example, consider a two-dimensional curved manifold, which means an
arbitrary curved surface, and on this surface take a closed curve, formed by three
segments of geodesics, as in Fig. 9.4.

Let V be a vector with its origin at A, and parallel transport it along the closed
contour ABCA, in the sense shown by arrows. The vector V′′′ obtained as a result of
the parallel transport does not coincide withV, consequently its variation is not zero.

Consider now a covariant four-vector Aμ, μ = 0, 1, 2, 3 and use a similar pro-
cedure (this time on a 4-dimensional curved manifold), letting the vector perform
a Levi-Civita parallel transport along a closed contour. If ΔAμ is the variation of
vector components as a result of the parallel transport along the closed curve, then
according to (9.26) we have

ΔAμ =
∮

δAμ =
∮

Γ λ
μνAλdxν . (9.70)

In view of the generalized Stokes theorem (C.37), we can write

ΔAμ = 1

2

∫ [
∂

∂xν
(Γ λ

μρAλ) − ∂

∂xρ
(Γ λ

μνAλ)

]
dσνρ

= 1

2

∫ (
∂Γ λ

μρ

∂xν
Aλ − ∂Γ λ

μν

∂xρ
Aλ + Γ λ

μρ

∂Aλ

∂xν
− Γ λ

μν

∂Aλ

∂xρ

)
dσνρ.

Fig. 9.4 The parallel
transport of the vector V
along a suitably chosen
closed path ABCA in a
curved space (here, a
2-dimensional curved
manifold).
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Using (9.26), i.e. δAλ = Γ κ
λρAκ dxρ, we find

∂Aλ

∂xρ
= Γ κ

λρ Aκ,
∂Aλ

∂xν
= Γ κ

λν Aκ

and then, after a convenient change of summation indices,

ΔAμ = 1

2

∫ (
∂Γ λ

μρ

∂xν
− ∂Γ λ

μν

∂xρ
+ Γ κ

μρΓ
λ
κν − Γ κ

μνΓ
λ
κρ

)
Aλ dσνρ.

Denoting
Rλ

μνρ = ∂νΓ
λ
μρ − ∂ρΓ

λ
μν + Γ κ

μρΓ
λ
κν − Γ κ

μνΓ
λ
κρ, (9.71)

we can write also

ΔAμ = 1

2

∫
Rλ

μνρ Aλ dσνρ. (9.72)

The quantities (9.71) are the components of a mixed tensor, once contravariant and
three times covariant, called the Riemann tensor, or the Riemann–Christoffel curva-
ture tensor. If all components of Rλ

μνρ are zero, then ΔAμ = 0, which corresponds
to a flat space. Conversely, in a flat space the curvature tensor is identically zero.

As we have seen, in a curved space one can choose a locally-inertial coordinate
system in which all the components of the Christoffel symbols are zero at some
conveniently chosen point. However, the components of the Riemann tensor are not
zero at that point, because the derivatives of Γ λ

μν do not vanish together with Γ λ
μν .

Properties of the Curvature Tensor

1) According to the definition (9.71), the curvature tensor is antisymmetric in the
last two covariance indices:

Rρ
μνλ = −Rρ

μλν . (9.73)

2) It satisfies the following identity:

Rρ
μνλ + Rρ

λμν + Rρ
νλμ = 0. (9.74)

3) The covariant curvature tensor is obtained by the usual procedure:

Rκμνλ = gκρRρ
μνλ. (9.75)
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By means of (9.71) we have

Rμνλρ = gμκ

(
∂Γ κ

νρ

∂xλ
− ∂Γ κ

νλ

∂xρ
+ Γ σ

νρΓ
κ
σλ − Γ σ

νλΓ
κ
σρ

)

= ∂

∂xλ

(
Γνρ,μ

)− ∂

∂xρ

(
Γνλ,μ

)− Γ κ
νρ

(
Γ σ

κλgμσ + Γ σ
μλgσκ

)

+ Γ κ
νλ

(
Γ σ

ρκgμσ + Γ σ
ρμgσκ

)+ gμκΓ
σ
νρΓ

κ
σλ − gμκΓ

σ
νλΓ

κ
σρ.

After some index manipulation, we finally obtain

Rμνλρ = 1

2

(
∂2gμρ

∂xν∂xλ
+ ∂2gνλ

∂xμ∂xρ
− ∂2gμλ

∂xν∂xρ
− ∂2gνρ

∂xμ∂xλ

)

+ gσκ

(
Γ σ

μρΓ
κ
νλ − Γ σ

μλΓ
κ
νρ

)
, (9.76)

and the resulting properties

Rμνλρ = −Rνμλρ,

Rμνλρ = −Rμνρλ, (9.77)

Rμνλρ = +Rλρμν .

That is, the curvature tensor is antisymmetric in the first two indices and in the
last two indices, and symmetric upon the interchange of the first pair of indices
with the second pair. Consequently, those components with μ = ν, or λ = ρ, are
zero.

4) The covariant curvature tensor satisfies an identity similar to (9.74):

Rμνλρ + Rμρνλ + Rμλρν = 0, (9.78)

called the first Bianchi identity, or the algebraic Bianchi identity.
5) The curvature tensor satisfies also the identity

Rλ
μνρ ; κ + Rλ

μκν ; ρ + Rλ
μρκ ; ν = 0, (9.79)

known as the second Bianchi identity or differential Bianchi identity. To prove it,
we use a locally-geodesic coordinate system (see Sect. 9.4.2). In such a frame, all
connection coefficients Γ λ

μν are zero and, according to (9.71), we have

(Rρ
μνλ)0 =

(
∂Γ

ρ
μλ

∂xν

)

0

−
(

∂Γ ρ
μν

∂xλ

)

0

.
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The covariant derivative is composed of the usual derivative plus terms containing
Γ λ

μν , which are zero, that is

(
Rρ

μνλ;κ
)

0
=
(

Rρ
μνλ,κ

)

0
=
(

∂2Γ
ρ
μλ

∂xν∂xκ

)

0

−
(

∂2Γ ρ
μν

∂xλ∂xκ

)

0

.

Writing two more relations obtained by cyclic permutation of the indices ν, λ, κ
and adding the results, we arrive at the Bianchi identity (9.79).

6) Contracting the mixed Riemann tensor (9.71), one can construct the second-order
covariant tensor

Rμλ = Rν
μνλ = ∂Γ ν

μλ

∂xν
− ∂Γ ν

μν

∂xλ
+ Γ

ρ
μλΓ

ν
ρν − Γ ρ

μνΓ
ν
ρλ, (9.80)

called theRicci curvature tensor. (For a Levi-Civita connection, one can show that
the above contraction is the only independent one.) According to the definition
(9.80), the Ricci tensor is symmetric:

Rμλ = Rλμ. (9.81)

The contracted product
R = gμλ Rμλ (9.82)

is an invariant, called scalar curvature, or curvature invariant, or Ricci scalar.
We emphasize that a manifold can be curved, though all the components of the
Ricci tensor are zero. (The Ricci scalar is the simplest curvature invariant of a Rie-
mannian manifold. Some other scalars can also be formed, like the Kretschmann
invariant K = RμνλρRμνλρ, etc.).

7) To determine the number of distinct components of the Riemann tensor, it is
useful to introduce the following correspondence

0 1 2 3 4 5

01 02 03 12 13 23

The Riemann tensor can then be written as RΨ Φ = RΦΨ (Ψ, Φ = 0, . . . , 5). Here
we have omitted the components which are zero according to (9.77). RΨ Φ is
a second-order, symmetric tensor, defined on a six-dimensional manifold. The
number of independent components of this tensor shouldbe

(
C2

n

) = n(n + 1)/2 =
6(6 + 1)/2 = 21 (see (B.38)), but the components with all different indices must
satisfy the relation (9.78):

R0123 + R0312 + R0231 = 0.

This relationdiminishes byone thenumber of distinct components of the curvature
tensor, and the final result is 20 components.
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9.7 Einstein’s Equations

The gravitational field can be expressed in terms of its potentials, which are the
components of the metric tensor, just as the electromagnetic field is defined with the
help of the potential four-vector. The difference is that the electromagnetic field is
a first-order tensor field, while the gravitational field is a second-order tensor field.
The components of gμν are called gravitational potentials.

Going further with the analogy between the two fields, we presume that the gravi-
tational potentials satisfy a system of second order, partial differential equations, like
the equations �Aν = μ0jν , where Aν is the electromagnetic potential four-vector.

To establish these equations, we use the analytical formalism. Since the desired
partial differential equations have to be of the second order, the Lagrangian density
must be an invariant which contains the components gμν of the metric tensor, and at
most their first derivative with respect to coordinates.3 But an invariant fulfilling all
these conditions does not exist, and we have to use a different strategy. The idea is to
use the curvature invariant R, the only independent invariant that can be constructed
from the Riemann tensor, which contains second derivatives of the metric. Even if it
contains, linearly, second partial derivatives of gμν , at the end of the procedure these
terms separate into a four-divergence, which can be omitted. In variational calculus,
such a case is called degenerate.

In 1915, David Hilbert (1862–1943) proposed as Lagrangian of the gravitational
field the Ricci scalar R and derived the equations of motion of the metric, known as
Einstein’s equations. Einstein himself had adopted a different approach in deriving
the same equations. For this reason, the action of the gravitational field,

SG = 1

2κ

∫
R
√−g d4x, (9.83)

is called Einstein–Hilbert action. Here, κ = 8πG/c4, where G is the gravitational
constant and c is the speed of light in vacuum (this choice of the constant κ is justified
by the correspondence principle, which requires thatNewton’s gravitation is obtained
as a limiting case). Besides the action of the gravitational field, we have to include
also the action of all the other fields interacting with the gravitational field. They
will be called in the following matter fields and their action denoted by SM . Here,
matter is a generic term, and by matter fields we understand any non-gravitational
fields which carry energy, including fields of radiation. The rule for constructing
the Lagrangian density LM of the matter fields on curved space-time is simple: take
the Lagrangian density of the corresponding fields on the flat space, replace the
partial derivatives by covariant derivatives and multiply the result by

√−g. We have
seen this rule used in writing the Lagrangian density (9.61) of the electromagnetic

3However, we have seen that at any point of the Riemannian manifold we can set the metric to the
Minkowski one, which means that the derivatives of the metric are set to zero. So we have to involve
necessarily in the Lagrangian also second derivatives of the metric.
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field. Thus, the total action of the system composed of the gravitational and matter
fields is

S =
∫ [

1

2κ
R + LM

]√−g d4x. (9.84)

When applying the action principle, we may consider going directly to the Euler–
Lagrange equations written for the metric gμν as dynamical variable and its covariant
derivative. But recall that the Levi-Civita connection satisfies the condition of metric
compatibility, i.e. ∇ρgμν = 0. Hence, the strategy to adopt is to vary directly the
action (9.84) with respect to the inverse metric:

0 = δS (9.85)

=
∫ [

1

2κ

δ(
√−gR)

δgμν
+ δ(

√−gLM)

δgμν

]
δgμνd4x

=
∫ [

1

2κ

(
δR

δgμν
+ R√−g

δ
√−g

δgμν

)
+ 1√−g

δ(
√−gLM)

δgμν

]
δgμν√−g d4x.

The variationwith respect to the inversemetric is taken for convenience. As gμρgρν =
δμ
ν , and the variation of δμ

ν is always zero, it follows that the variations of the metric
and its inverse are in the relation

gμρδgρν = −gμσδgσν, (9.86)

consequently the stationary points with respect to either of them are the same.
Since the variations δgμν in (9.85) are arbitrary, we find the equation of motion

for the metric in the form

δR

δgμν
+ R√−g

δ
√−g

δgμν
= −2κ

1√−g

δ(
√−gLM)

δgμν
. (9.87)

The right-hand side of this equation is proportional to the energy-momentum
tensor of the matter fields, which is by definition

Tμν = −2√−g

δ(
√−gLM)

δgμν
. (9.88)

Now let us focus on the left-hand side and perform the required variations. The
first term involves the variation of the Ricci scalar, which can be traced back to the
variation of the Riemann tensor, defined in (9.71), i.e.

Rρ
σμν = ∂μΓ

ρ
νσ − ∂νΓ

ρ
μσ + Γ

ρ
μλΓ

λ
νσ − Γ

ρ
νλΓ

λ
μσ.
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Its variation is

δRρ
σμν = ∂μδΓ

ρ
νσ − ∂νδΓ

ρ
μσ

+ δΓ
ρ
μλΓ

λ
νσ + Γ

ρ
μλδΓ

λ
νσ − δΓ

ρ
νλΓ

λ
μσ − Γ

ρ
νλδΓ

λ
μσ. (9.89)

Wenote thatΓ ρ
νμ andΓ ′ρ

νμ = Γ ρ
νμ + δΓ ρ

νμ represent two sets of connection coefficients.
Recall that in (9.49) we showed that two sets of connection coefficients differ by a
tensor, as they are the difference of two covariant derivatives. Thus, δΓ ρ

νμ is a tensor
and we can calculate its covariant derivative:

∇λ(δΓ
ρ
νμ) = ∂λ(δΓ

ρ
νμ) + Γ

ρ
σλδΓ

σ
νμ − Γ σ

νλδΓ
ρ
σμ − Γ σ

μλδΓ
ρ
νσ. (9.90)

It is straightforward to show that the variation of the Riemann tensor expressed by
(9.89) is equal to the difference of two such terms,

δRρ
σμν = ∇μ(δΓ

ρ
νσ) − ∇ν(δΓ

ρ
μσ). (9.91)

Consequently, the variation of the Ricci tensor Rμν = Rρ
μρν is

δRμν = δRρ
μρν = ∇ρ(δΓ

ρ
νμ) − ∇ν(δΓ

ρ
ρμ), (9.92)

which is called the Palatini identity in honour of the Italian mathematician Attilio
Palatini (1889–1949), who proved it in 1919 in a paper in which he was introducing
an alternative variational formalism for obtaining Einstein’s equations.

Now we can easily find the variation of the Ricci scalar, defined as the trace of
the Ricci tensor:

R = gμνRμν .

Its variation with respect to the inverse metric gμν is found using the Palatini identity
(9.92) and the metric compatibility of the covariant derivative, ∇σgμν = 0:

δR = Rμνδg
μν + gμνδRμν (9.93)

= Rμνδg
μν + ∇σ

(
gμνδΓ σ

νμ − gμσδΓ ρ
ρμ

)
. (9.94)

Let us write the last term as ∇σV σ = ∇σ(gμνδΓ σ
νμ − gμσδΓ ρ

ρμ). Recall formula
(C.55), written here in terms of V σ:

∇σV σ = 1√−g

∂

∂xσ

(√−gV σ
)
.

Introducing this term under the integral in (9.85), we obtain

∫
∇σV σ√−g d4x =

∫
∂

∂xσ

(√−gV σ
)

d4x.



540 9 General Theory of Relativity

Using the Stokes theorem, this integral yields a boundary term, which is set to zero
as the variations of the metric δgμν vanish on the boundary. Thus, the first term in
(9.87) becomes

δR

δgμν
= Rμν . (9.95)

Let us move further to the second term in (9.87). We note that

δ(
√−g) = − 1

2
√−g

δg. (9.96)

Expanding formally the determinant g by minors,

g = gμνGμν,

where Gμν is the algebraic complement of the element gμν of g, we obtain4

δg = Gμνδgμν .

The components of the inversemetric, gμν , are given by theminors of the determinant
of gμν divided by g (see (B.29)):

gμν = 1

g
Gμν,

which, combined with the previous formula, gives

δg = ggμνδgμν .

Since gμνg
μν = δμ

μ = 4, we have gμνδg
μν + gμνδgμν = 0, leading to gμνδgμν =

−gμνδg
μν . Thus, δg can be written as

δg = −ggμνδg
μν . (9.97)

Putting together (9.96) and (9.97) we find

δ(
√−g) = −1

2

√−ggμνδg
μν . (9.98)

Using (9.98), we can put the energy-momentum tensor given by (9.88) in the form

Tμν = −2√−g

δ(
√−gLM)

δgμν
= −2

δLM

δgμν
+ gμνLM . (9.99)

4This is a formal writing, because Gμν is not a contravariant tensor, but the product between the
minor corresponding to gμν and the sign (−1)μ+ν .
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We can write now the equations of motion of the metric field (9.87), using (9.95)
and (9.98), in the form known as Einstein’s equations:

Rμν − 1

2
R gμν = κTμν . (9.100)

Einstein’s equations are a set of ten coupled nonlinear partial differential equations
for the metric components. Nonlinearity distinguishes general relativity from other
physical theories (Maxwell’s equations are linear in the electric and magnetic fields;
Schrödinger’s equation is linear in the wave function, etc.) and makes it so difficult
to quantize, as the superposition principle used customarily in quantum mechanics
and the theory of quantized fields is no more valid.

In the case of weak gravitational fields, Einstein’s equations can be linearized in
the first approximation. Since the field is weak, the space is only slightly curved,
which means that gμν differs by a small amount from the metric tensor of Minkowski
space,which is denoted by ημν . Transposedmathematically, these considerations lead
to the linear approximation of the general relativity, which allows the quantization
of a weak gravitational field.

By analogy with the equation of motion of the electromagnetic field,�Aν = μ0jν ,
we interpret the right-hand side of Einstein’s equations (9.100) as the sources of the
gravitational field. Thus, the physical meaning of the equations is that matter and
energy lead to the curvature of space-time.

Let us now show that in the limit of small velocities and implicitly weak gravita-
tional field, Einstein’s equations (9.100) reduce to Poisson’s equation (see Sect. 9.1),

Δϕ = − 4πGρm, (9.101)

where ϕ is the Newtonian gravitational potential and ρm is the density of mass. To do
this, we write Einstein’s equations in a slightly different form. Contracting (9.100)
with gμν , we obtain

R = −κ T ,

where R = Rμ
μ, T = Tμ

μ , and Eq. (9.100) can be written, upon contraction with the
inverse metric tensor, as

Rν
μ = κ

(
T ν

μ − 1

2
Tδν

μ

)
. (9.102)

In the non-relativistic limit ( v
c → 0), themotion of a free particle ofmassm is studied

by means of the Lagrangian function (7.77):

L0 = − mc

√
1 − v2

c2

 −mc2 + 1

2
mv2.

http://dx.doi.org/10.1007/978-3-642-17381-3_7
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If the particle moves under the action of the gravitational field, then the
Lagrangian is

L = L0 − mϕ = 1

2
mv2 − mc2 − mϕ. (9.103)

We shall use (9.103) to find the metric.
The corresponding action is then

S =
∫

Ldt = −mc
∫ (

c − v2

2c
+ ϕ

c

)
dt. (9.104)

Comparing this result and (7.76), we realize that in our limit case

ds =
(

c − v2

2c
+ ϕ

c

)
dt.

Squaring this relation and omitting the vanishing terms in the limit v
c → 0, we have

ds2 = (c2 + 2ϕ)dt2 − |dr|2 =
(
1 + 2ϕ

c2

)
c2dt2 − |dr|2, (9.105)

where dr = v dt. From here we immediately deduce that

g00 = 1 + 2ϕ

c2
. (9.106)

The rest of the metric components are not important for our further considerations.
Suppose, next, that T ν

μ is given by (8.207), where the rest mass density ρ̃0 will be
denoted (here and further) by ρm:

T ν
μ = ρmc2uμuν .

Since the motion is slow, we may take

u0 = u0 = 1,

ui = γ

c
vi 
 0.

Thus, the only non-zero component of T ν
μ is

T 0
0 = T = ρmc2, (9.107)

which we plug into (9.102) to obtain

R0
0 = κ

(
T 0
0 − 1

2
Tδ00

)
= 1

2
κρmc2. (9.108)

http://dx.doi.org/10.1007/978-3-642-17381-3_7
http://dx.doi.org/10.1007/978-3-642-17381-3_8
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Using now the definition (9.80) of the Riemann tensor, one observes that in our
approximation the terms containing products of Γ λ

μν are negligible. Also, the terms
involving derivatives with respect to x0 are small as compared to those containing
derivatives with respect to xi, i = 1, 2, 3. Consequently, in this approximation,

R00 
 R0
0 
 ∂Γ i

00/∂xi.

According to (9.106),

Γ i
00 
 −1

2
gij ∂g00

∂xj
= 1

c2
∂ϕ

∂xi
,

leading to

R0
0 = 1

c2
∂2ϕ

∂xi∂xi
= 1

c2
Δϕ . (9.109)

Combining (9.108) and (9.109) we obtain

Δϕ = 1

2
κρmc4,

or, using κ = 8πG/c4,
Δϕ = 4πGρm,

which is Poisson’s equation for the gravitational potential ϕ. Thus, the proof is
complete. The solution of this equation, for a continuous mass distribution is

ϕ = −G
∫

ρm(r′)
|r − r′|dr′,

as we already know.

Observations:

(a) The tensor

Gμν = Rμν − 1

2
R gμν (9.110)

is called the Einstein’s tensor. With this notation, Eqs. (9.100) become

Gμν = κ Tμν . (9.111)

(b) In free space Tμν = 0, and Einstein’s equations (9.100) are

Rμν − 1

2
R gμν = 0. (9.112)
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Equivalently, if we start from (9.102), we obtain Einstein’s equations in vacuum
in the form

Rμν = 0. (9.113)

(c) It can be shown that ∇νGν
μ = 0. This leads to ∇νT ν

μ = 0, expressing the fact that
the energy-momentum tensor is conserved.

(d) We should point out that the symmetry of the left-hand side of Einstein’s equa-
tions (9.100) implies that the energy-momentum tensor is symmetric. Recall
from Sect. 8.7.1 that the canonical energy-momentum tensor obtained from
Noether’s theorem is not symmetric, and in Sect. 8.7.4 we described Belinfante’s
prescription for its symmetrization. However, using the procedure presented
in this section, one obtains automatically the symmetric form of the energy-
momentum tensor, (9.88) or (9.99). This procedure can be applied also on flat
space-time, by going to general curvilinear coordinates as an intermediate step
in the derivation.

(e) Einstein proposed a modification of his original theory by introducing in 1917
the so-called cosmological constant Λ, in order to describe the static universe,
and wrote his equations in the form

Rμν − 1

2
Rgμν + Λgμν = 8πG

c4
Tμν, (9.114)

which can be derived from the action

S =
∫ [

1

2κ
(R − 2Λ) + LM

]√−g d4x.

Naturally, the term containing the constantΛ is the simplest possible Lagrangian
that can be constructed on a curved space.
In 1912, Vesto Slipher (1875–1969) discovered that the light received from far
away galaxies is redshifted. Later on, it was found in 1927 by Georges Lemaître
(1894–1966) and in 1929 by Edwin Hubble (1889–1953) that the redshifts are
roughly proportional to the distances to those far-away galaxies. This is known
asHubble’s law and it marked the introduction of the expanding space paradigm.
At that moment, Einstein abandoned the cosmological constant. However, the
discovery of the accelerating expansion of the Universe in 1998, simultaneously
by two independent projects (Supernova Cosmology Project and High-Z Super-
nova Search Team) renewed the interest in the cosmological constant.
The simplest explanation for the accelerating expansion is the existence of a
hypothetical form of energy, called dark energy, which permeates the whole
space. The dark energy has to have negative pressure, distributed isotropically
in space, in order to drive the accelerated expansion in spite of the attractive
nature of the gravitational force. According to the latest release of the Planck
mission team in 2015, out of the total energy of the observable Universe dark

http://dx.doi.org/10.1007/978-3-642-17381-3_8
http://dx.doi.org/10.1007/978-3-642-17381-3_8
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energy represents 68.3%, while 26.8% is dark matter, and 4.9% is ordinary
(baryonic) matter.
The term containingΛ in the field equations (9.114) can be moved algebraically
to the other side,

Rμν − 1

2
Rgμν = 8πG

c4
Tμν − Λgμν .

If by Tμν we understand the energy-momentum tensor of matter, by the term
−Λgμν we may understand the energy-momentum tensor of vacuum,

T (vac)
μν = − c4

8πG
Λgμν, (9.115)

because in gravity absolute values of energy are important, and not only energy
differences as in the case of the other fundamental forces. In other words, the
energy density of the vacuum is

ρ(vac) = c4

8πG
Λ.

This is equivalent to adding a vacuum term to the Lagrangian in (9.84),

L(vac) = −ρ(vac).

Comparing (9.115) to the energy-momentum tensor of a perfect fluid,

Tμν(fluid) = (p + ρ)uμuν − p gμν,

we see that
p(vac) = −ρ(vac),

as expected for the dark energy. A positive vacuum energy density resulting from
a positive cosmological constant implies a negative pressure, and vice versa.
According to the observational data, the energy density corresponding to the
cosmological constant is of the order

ρ(vac)
obs ≤ 10−9J · m−3.

In contrast, quantum field theoretical considerations which we shall not detail
here, lead to an expectation of

ρ(vac)
QFT ≈ 10111J · m−3.

This huge discrepancy is a topic of active research.
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9.8 Central Gravitational Field. Schwarzschild Metric

We shall now solve Einstein’s equations in the simplest case of a gravitational field
with central symmetry, produced by a point-like static source.

The geometry of the problem suggests to choose spherical coordinates, with the
origin at the centre of the field. If the source of the field is placed in vacuum, the
components of the energy-momentum tensor Tμν are everywhere zero, except at the
origin of the coordinates. Einstein’s equations outside of the source are then

Rμν − 1

2
R gμν = 0. (9.116)

To find the metric, i.e. the solution of the above equations, we shall take advantage
of the central symmetry of the field and, also, of the fact that the source is static. The
latter feature indicates that all the components of the metric are time-independent,
and there are no time-space cross terms (dtdxi + dxidt) in the metric. The spheri-
cal symmetry suggests that we can consider the Minkowski (flat space) metric in
spherical coordinates,

ds2Minkowski = c2dt2 − dr2 − r2 dΩ2,

where dΩ2 = dθ2 + sin2 θ dϕ2, and simply multiply the terms by different coeffi-
cients, all of them depending only on the radial coordinate r. Taking into account all
these aspects, we consider the solution of (9.116) of the form

ds2 = A(r) dt2 − B(r) dr2 − r2 dΩ2

= A(r) dt2 − B(r) dr2 − r2 dθ2 − r2 sin2 θ dϕ2. (9.117)

We could add also a coefficient for the term proportional to dΩ2, but that can be
absorbed into the definition of r, so we shall continue with this simplified expression.

Now we have to determine the function A(r) and B(r) by solving Einstein’s equa-
tions. To do this, we must determine the connection coefficients Γ λ

μν , the components
of the Ricci tensor Rμν , and the curvature invariant R.

The first step is to choose the coordinates. As customary in general relativity, we
take x0 = ct, x1 = r, x2 = θ, x3 = ϕ. Then (9.117) yields

g00 = A, g11 = −B, g22 = −r2, g33 = −r2 sin2 θ,

g00 = 1

A
, g11 = − 1

B
, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
. (9.118)

gμν = gμν = 0, for μ = ν.

The Christoffel symbols can be determined either directly, by using the definition
(9.15), or indirectly (but with less effort) by the help of the equation of geodesic lines
(9.14). We shall use the second option.



9.8 Central Gravitational Field. Schwarzschild Metric 547

According to (9.117), the variational principle δ
∫

ds = 0 can be written as

δ

∫
ds2

ds2
ds = δ

∫
fds = 0,

where
f = Aṫ2 − Bṙ2 − r2θ̇2 − r2 sin2 θ ϕ̇2 ≡ 1. (9.119)

Here the “dot” over letters means derivative with respect to s. Applying Euler’s
equations (9.7),

d

ds

(
∂f

∂ẋμ

)
− ∂f

∂xμ
= 0, μ = 0, 1, 2, 3, (9.120)

we find

ẗ + A′

A
ṙṫ = 0,

r̈ + A′

2B
ṫ2 + B′

2B
ṙ2 − r

B
θ̇2 − r2 sin2 θ

B
ϕ̇2 = 0,

θ̈ + 2

r
ṙθ̇ − ϕ̇2

2
sin 2θ = 0, (9.121)

ϕ̈ + 2

r
ṙϕ̇ + 2θ̇

tan θ
ϕ̇ = 0,

where A′ = dA/dr, B′ = dB/dr. The identification of (9.121) with the equation of
geodesic lines (9.14) gives us the Christoffel symbols:

Γ 0
10 = Γ 0

01 = A′

2A
,

Γ 1
00 = A′

2B
, Γ 1

11 = B′

2B
, Γ 1

22 = − r

B
, Γ 1

33 = − r

B
sin2 θ,

Γ 2
12 = Γ 2

21 = 1

r
, Γ 2

33 = −1

2
sin 2θ, (9.122)

Γ 3
13 = Γ 3

31 = 1

r
, Γ 3

23 = Γ 3
32 = cot θ .

The components of the Ricci tensor are calculated according to the definition (9.80):

Rμν = Rλ
μλν = ∂Γ λ

μν

∂xλ
− ∂Γ λ

μλ

∂xν
+ Γ ρ

μνΓ
λ
ρλ − Γ

ρ
μλΓ

λ
ρν .
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For example, the component R00 is

R00 = ∂Γ 1
00

∂r
+ Γ 1

00

(
Γ 0
10 + Γ 1

11 + Γ 2
12 + Γ 3

13

)− 2Γ 1
00Γ

0
10

= 1

2

A′′B − A′B′

G2
+ A′

2B

(
B′

2B
+ 2

r
+ A′

2a

)
− 2

A′

2B

A′

2A

= 1

2B

(
A′′ − A′B′

2B
+ 2A′

r
− A′2

2A

)
.

In the same way, the other three components are found:

R11 = − A′′

2A
+ A′B′

4AB
+ A′2

4A2
+ B′

rB
,

R22 = 1 + rB′

2B2
− 1

B

(
1 + rA′

2A

)
,

R33 = sin2 θ

[
1 + rB′

2B2
− 1

B

(
1 + rA′

2A

)]
.

Using these results, the curvature invariant (9.82) is found to be

R = −2

(
A′′

2AB
− A′2

4A2B
− A′B′

4AB2
− B′

rB2
+ 1

r2B
− 1

r2
+ A′

rBA

)
.

Since the tensors Rμν and gμν are diagonal, Einstein’s equations are

Rμμ − 1

2
Rgμμ = 0 (no summation overμ),

that is

1

r
− B

r
+ A′

A
= 0,

A′B′

2AB
+ A′2

2A2
− A′′

A
− A′

rA
+ B′

rB
= 0, (9.123)

1

r
− 1

rB
+ B′

B2
= 0.

The last equation, written as

d

dr

(
1

B

)
+ 1

r

(
1

B

)
= 1

r
,
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can be easily integrated by separation of variables. Its solution is

1

B
= −λ

r
+ 1,

where −λ
r is the general solution of the homogeneous equation, with λ a constant

of integration, and “1” is a particular solution of the non-homogeneous equation.
Therefore

B(r) =
(
1 − λ

r

)−1

. (9.124)

With this solution, Eq. (9.123)1 gives as a result of integration

ln r − ln(r − λ) + lnA = ln c2,

where c is an integration constant. One then obtains

A(r) = c2
(
1 − λ

r

)
. (9.125)

With these results for B and A, the metric (9.117) is brought to the form

ds2 = c2
(
1 − λ

r

)
dt2 − dr2

1 − λ
r

− r2dθ2 − r2 sin2 θ dϕ2. (9.126)

Now, we have to find the integration constants c and λ. For r → ∞, the metric
(9.126) approaches the Minkowski metric,

ds2 = c2 dt2 − dr2 − r2 dθ2 − r2 sin2 θ dϕ2,

which shows that the integration constant c is the velocity of light in vacuum.
For determining the constant λ we use the weak field approximation. We saw in

Sect. 9.7, formula (9.105), that in the limit of non-relativistic velocities and weak
gravitational fields, i.e. far from the gravitational source, the component g00 of the
metric has the expression

g00 = 1 + 2ϕ

c2
,

where ϕ is the Newtonian gravitational potential, which in our case is produced by
a point-like mass M placed at the origin of coordinates, i.e.

ϕ = −G
M

r
.
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Consequently, we immediately find that

λ ≡ rS = 2GM

c2
, (9.127)

called Schwarzschild radius or gravitational radius. Thus, we have obtained the
vacuum solution of Einstein’s equation for a gravitational fieldwith central symmetry
as

ds2 = c2
(
1 − rS

r

)
dt2 − dr2

1 − rS
r

− r2dθ2 − r2 sin2 θ dϕ2. (9.128)

This is the Schwarzschild solution (metric) for Einstein’s equations. It can be
proven (Birkhoff’s theorem) that the Schwarzschild solution is the most general
spherically symmetric vacuum solution of Einstein’s field equations. The solution
was discovered in 1915, only one month after the publication of Einstein’s theory
on general relativity. Its discoverer was the German physicist and astronomer Karl
Schwarzschild (1873–1916).

There are two singularities in the Schwarzschild metric, at r = 0 and r = rS .
The latter singularity can be transformed away with a change of coordinates, but the
former remains as a true singularity. Since the Schwarzschild metric is only expected
to be valid for radii larger than the radius R of the massive body which acts as source,
there is no problem as long as R > rS . For ordinary stars and planets this is always
the case. For instance, the radius of the Sun is approximately 700,000km, while its
Schwarzschild radius is only 3km.

The coordinates used to write the Schwarzschild metric (9.128) are called
Schwarzschild coordinates. The singularity at r = rS divides the Schwarzschild coor-
dinates into two disconnected patches:

1) the outer patch with r > rS is the one that is related to the gravitational fields of
stars and planets;

2) the inner patch 0 < r < rS , which contains the singularity at r = 0, is completely
separated from the outer patch by the singularity at r = rS .

In Schwarzschild coordinates there is no physical connection between the two
patches, which may be viewed as separate solutions. As already mentioned, the
singularity at r = rS is not a true singularity, but a coordinate singularity. As the
name implies, the singularity arises from the choice of coordinates or coordinate
conditions. For example, the tortoise coordinates are defined by the relation

r∗ = r + rS ln

∣∣∣∣
r

rS
− 1

∣∣∣∣ ,

satisfying
dr∗

dr
=
(
1 − rS

r

)−1
.
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Thus, r∗ approaches −∞ as r → rS . By replacing the time coordinate t with v =
t + r∗/c or u = t − r∗/c, we obtain the so-called ingoing and outgoing Eddington–
Finkelstein coordinates. In these coordinates, the Schwarzschild metric reads:

ds2 =
(
1 − rS

r

)
c2dv2 − 2c dv dr − r2dΩ2,

or
ds2 =

(
1 − rS

r

)
c2du2 + 2c du dr − r2dΩ2,

for the ingoing and outgoing cases, respectively, where dΩ2 = dθ2 + sin2 θdϕ2 is
the standard metric on a unit radius two-sphere.5 Remark that in this formulation,
the metric has no singularity for r = rS .

There are also other systems of coordinates (Lemaître coordinates, Kruskal–
Szekeres coordinates, Novikov coordinates, or Gullstrand–Painlevé coordinates) in
which the metric becomes regular at r = rS and the two patches can be related to
each other.

For r = 0 the singularity cannot be removed and this is called a gravitational
singularity. The criterion for establishing which singularity is physical is that the
curvature becomes infinite. Moreover, the quantities which we analyze must be
independent of the choice of coordinates, i.e. scalars. Any scalar derived from the
Riemann tensor (which measures the curvature of space-time) would be a reason-
able indicator of a singularity. One can construct various such invariants and it is not
necessary that they are all simultaneously divergent as we approach a certain point,
but it is enough to have one of them going to infinity. One such important quantity
is the Kretschmann invariant, which is given by

K = RμνλρRμνλρ = 12r2S
r6

= 48G2M2

c4r6
. (9.129)

Thus, at r = 0 the curvature becomes infinite, indicating the presence of a singularity.
At this point the metric, and space-time itself, are no longer well-defined. Such
singularities are a generic feature of general relativity, as proven in the 1960s by

5Incidentally, if we allow the mass parameter M to turn into a function of the corresponding null
coordinate, M(u) or M(v), we obtain the simplest non-static generalization of the non-radiative
Schwarzschild solution, known as the Vaidya metric (ingoing and outgoing):

ds2 =
(
1 − rS(v)

r

)
c2 dv2 − 2 dv dr − r2

(
dθ2 + sin2 θ dϕ2

)
,

ds2 =
(
1 − rS(u)

r

)
c2 du2 + 2 du dr − r2

(
dθ2 + sin2 θ dϕ2

)
.

The Vaidya metric describes the non-empty external space-time of a spherically symmetric and
non-rotating star which is either emitting or absorbing null dust (sometimes called null fluid, i.e. a
fluid for which the Einstein tensor is null). It is named after the Indian physicist and mathematician
Prahalad Chunnilal Vaidya (1918–2010) and it is also called the radiating/shining Schwarzschild
metric.
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Roger Penrose (b. 1931) and Stephen Hawking (b. 1942). Although for some time
they were deemed non-physical, they are now known to exist and are called black
holes – a name coined by John Wheeler (1911–2008).

The Schwarzschild solution, taken to be valid for all r > 0, describes the Schwarz-
schild black hole. The surface r = rS demarcates what is called the event horizon of
the black hole. It represents the point past which particles and light can no longer
escape the gravitational field. Any physical object whose radius R becomes less than
or equal to the Schwarzschild radius will undergo gravitational collapse and become
a black hole.

We shall not expound further on the subject of black holes. This is a fascinating
topic to which whole books and an impressive amount of research are devoted. We
just note that in 1972, the research on gravity took an entirely new turn with the
introduction of the notion of entropy of a black hole by Jacob Bekenstein (1947–
2015). This groundbreaking work revolutionized the quest for quantum gravity and
it is still the subject of intensive theoretical research.

9.9 Other Solutions of Einstein’s Equations

During the past century the mathematical formalism needed for finding and charac-
terizing solutions of Einsteins field equations has been thoroughly developed. After
these solutions are found, they are classified by their symmetry group, their algebraic
structure (Petrov type) or other invariance properties such as special subspaces or
tensor fields and embedding properties.

In the following we present some of the most important metrics obtained as exact
solutions, with physical or cosmological significance.

Reissner–Nordström Metric (Reissner 1916; Nordström 1918)

The Reissner–Nordström metric is a static solution of the Einstein–Maxwell field
equations, describing the gravitational field created by a spherically symmetrical
body, with mass M and total electric charge Q. The solution was found by Hans
Reissner (1874–1967) (a German aeronautical engineer whowas passionate of math-
ematical physics), and the Finnish theoretical physicist Gunnar Nordström (1881–
1923).

The line element for the Reissner–Nordström metric is given by

ds2 =
(
1 − rS

r
+ r2Q

r2

)
c2dt2 −

(
1 − rS

r
+ r2Q

r2

)−1

dr2

− r2
(
dθ2 + sin2 θ dϕ2

)
, (9.130)

where rS = 2GM
c2 is the Schwarzschild radius, while r2Q = Q2G

4πε0c4 is a characteristic
length scale, determined by the fact that the body which creates the gravitational
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field is charged with the total electric charge Q. In the limit Q → 0 (or, equivalently,
rQ → 0) one re-obtains the Schwarzschild metric.

Kerr Metric (Kerr 1963)

TheKerr solution describes exterior gravitational fields of stationary rotating axisym-
metric isolated and uncharged sources; till now, no satisfactory interior solutions are
known.

The Kerr solution was found by the New Zealand mathematician Roy Kerr (b.
1934) by a systematic study of algebraically special vacuum solutions. The Kerr met-
ric characterizing the space-time outside a body of mass M and angular momentum
J is written as follows, in Boyer–Lindquist coordinates (r, θ,ϕ):

ds2 =
(
1 − rSr

Σ2

)
c2dt2 − Σ2

Δ
dr2 − Σ2dθ2 (9.131)

−
(

r2 + α2 + α2rSr sin2 θ

Σ2

)
sin2 θdϕ2 + 2αrSr sin2 θ

Σ2
c dt dϕ.

In the above relation, Σ and Δ are given by

Σ2 = r2 + α2 cos2 θ,

Δ = r2 − rSr + α2.

The Boyer–Lindquist coordinates are a generalization of the coordinates used
for the Schwarzschild metric. The coordinate transformation from Boyer–Lindquist
coordinates r, θ,ϕ to Cartesian coordinates x, y, z is given by (Boyer and Lindquist,
1967):

x =
√

r2 + α2 sin θ cosϕ,

y =
√

r2 + α2 sin θ sinϕ,

z = r cos θ.

The Kerr metric is extremely important in the study of black holes, since it is
believed that most of them are spinning, just as the stars from whose gravitational
collapse they were born.

Kerr–Newman Metric (Kerr 1963; Newman 1965)

Soon after the discovery of theKerr solution, theAmerican physicist Ezra T.Newman
(b. 1929) generalized it to include also the electric charge. Thus, the Kerr–Newman
solution is both the spinning generalization of Reissner–Nordström and the electri-
cally charged version of the Kerr metric. In Boyer–Lindquist coordinates, the line
element for this metric is given by the expression
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ds2 = (cdt − α sin2 θ dϕ
)2 Δ

Σ2
−
(

dr2

Δ
+ dθ2

)
Σ2 (9.132)

− [(r2 + α2
)

dϕ − αcdt
]2 sin2 θ

Σ2
,

where α and Σ have the same expressions as for the Kerr metric, while Δ is given
by

Δ = r2 − rSr + r2Q + α2 = ΔKerr + r2Q,

where

r2Q = Q2G

4πε0c4

has the same significance as in the case of the Reissner–Nordström metric.

Friedmann–Lemaître–Robertson–Walker (FLRW) metric (Friedmann 1922,
1924; Lemaître 1927; Robertson 1929, 1935, 1936; Walker 1936)

The name of this metric was given after the scientists who found and studied it,
namely, the Russian physicist and mathematician Alexander Friedmann (1888–
1925), the Belgian physicist Georges Lemaître (1894–1966), the American math-
ematician and physicist Howard P. Robertson (1903–1961), and the British mathe-
matician Arthur G. Walker (1909–2001).

Alexander Friedmann studied the Einstein equations as applied to the Universe,
assuming a homogeneous and isotropic density, and he concluded that there are two
possible solutions: the closed and the open models. The latter leads to a perpetual
expansion. At the boundary between the open and the closed models, there is the flat
solution. Physically, the condition for open, closed, or flat Universe is determined
by the density of matter or energy. We shall discuss in more detail this model, as it
is at the core of modern Big Bang cosmology.

If the distance between two galaxies is taken as d(t) = R(t)d0, their relative speed
can be written as v = [Ṙ(t)/R(t)]d(t), i.e., the speed is proportional to the separation
between the two galaxies, with a proportionality factor H(t) = Ṙ(t)/R(t) which is
called the Hubble parameter. Its present value is usually represented byH0 and called
Hubble’s constant. We call R(t) the cosmic scale factor, and here we take it to be
dimensionless, while d0 has the dimension of length. Below we shall consider R(t)
frequently as containing implicitly the d0 factor and having dimensions of length.
Concerning H(t), it has the dimension of inverse time.

We shall discuss the problem of the motion of a galaxy by using the Newtonian
mechanics, but taking into account Hubble’s law. Let us consider the mass of the
galaxy as m, under the gravitational attraction of the rest of the Universe, of mass
M. As M � m, one has M + m 
 M and the total energy is

1

2
mv2 − GMm

r
= E. (9.133)
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Let us write v = Ṙ(t) = H(t)R(t) and r = R, where H(t) is the Hubble parameter
and R is the radius of the Universe. For a spherical mass distribution, the total mass is
M = 4

3πR3ρ, where ρ is the average mass density of the Universe, and we substitute
this expression into (9.133). This gives

Ṙ2(t)

2
− 4πρGR2(t)

3
= E

m
= −K

2
. (9.134)

This is a non-relativistic way of obtaining Einstein’s equation from the Friedmann
model for the expansion of the homogeneous and isotropic Universe. The latter
is identical to the one obtained using the relativistic formalism starting from the
Robertson–Walkermetric, which is ametric compatible with the conditions of homo-
geneity and isotropy (these conditions are sometimes called cosmological principle):

ds2 = c2dt2 − R2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (9.135)

Here k = −1, 0, 1 correspond to open, flat, and closed cosmologies, respectively.
Observe that K in (9.134) has the dimension of the square of a velocity, while k
in (9.135) is dimensionless, because R(t) has the dimension of length, and r is
dimensionless. Then we have K ∼ kc2. According to (9.134), the critical condition
to bring the expansion asymptotically to a halt occurs for k = 0, that is to say, for
the density

ρc = 3H2

8πG
. (9.136)

With the present-day value of the Hubble parameter, H0, the value of ρc is of the
order of 10−29 g · cm−3.

But the Robertson–Walker metric does not tell us anything about the time
dependence of the scale factor R(t). To obtain this information, one must solve
not only the Einstein equations, that is, Eqs. (9.134) and (9.138) below, but also
the equation of conservation of energy and the equation of state. Let us discuss the
simplest case of a flat Universe. If we expand R(t) in a power series around the
reference time t0, taken as the present time, we get R(t) = R(t0)[1 + H0(t − t0) −
1
2q(t0)H2

0 (t − t0)2 + · · · ], where the so-called deceleration parameter is given by

q(t) = − R̈(t)R(t)

Ṙ2(t)
. (9.137)

This quantity was estimated to be of the order of −0.5 at present, indicating that the
expansion of the Universe is accelerated. The value of the deceleration parameter is
a major topic in the present day cosmological research.
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Together with Eq. (9.134) we must consider the other Einstein equation,

R̈(t) = −4πG

3
R(t)

(
ρ + 3p

c2

)
. (9.138)

For ρ > 0 and p > 0, the acceleration R̈ is negative, and consistent with a positive
deceleration. But as will be pointed out later, dark energy may provide a negative
value for the factor (ρ + 3p/c2), producing an accelerated expansion of the Universe.
We shall omit the discussion of this case and continue with the solutions for standard
cosmology. We denote Ω = ρ/ρc. Then we can write Eq. (9.134) in terms of the
Hubble parameter as follows:

H2(Ω − 1) = KR−2(t). (9.139)

If one assumes the pressure to be negligible compared with the density, that is to say
p 
 0, simple solutions of the Friedmann model are found. In the flat case (k = 0,
q0 < 0.5, Ω = 1), one has

R(t) = [3GM/π]1/3t2/3, H = 2/3t. (9.140)

In the closed case (k = +1, q0 > 0, Ω > 1), the Universe has a finite volume, but
it is unbounded (this corresponds to the previously mentioned space which can be
regarded as a generalization of the spherical surface to three dimensions). In such a
case, one obtains solutions in terms of a parameter η, defined by dη = R(t)dt:

R(η) = (2GM/3πc2)(1 − cos η), t(η) = (2GM/3πc3)(η − sin η). (9.141)

In both the open (k = −1, Ω < 1) and the flat cases, the Universe is infinite and
unbounded. In the open case, one has

R(η) = (2GM/3πc2)(cosh η − 1), t(η) = (2GM/3πc3)(sinh η − η).

(9.142)
In none of the three cases is the Universe static, and it should be either expanding
or contracting. Expansion is interpreted as meaning that the galaxies separate with
increasing speed because their mutual separation increases. But if this occurs, there
should be a redshift in the spectra of light coming from remote galaxies. The effect
was observed for the first time in 1912 by Vesto Slipher (1875–1969) at the Lowell
Observatory in Flagstaff, Arizona.Wediscussed the consequences of this observation
at the end of Sect. 9.7.

Einstein Metric (Einstein 1917)

This metric, describing Einstein’s static universe, can be obtained as a special case
of the Friedmann–Lemaître–Robertson–Walker solutionwith cosmological constant,
and is classified as spatially-homogeneous perfect fluid solution. Einstein introduced
the cosmological constant in 1917 in order to compensate for the attractive force of
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gravity and find a static solution, according to the then dominating paradigm of a
static Universe.

The line elements of Einstein’s metric is obtained from the FLRW case (9.135)
with k = 1 and R(t) = R0,

ds2 = c2dt2 − R2
0

[
dr2

1 − r2
+ r2(dθ2 + sin2 θdϕ2)

]
, (9.143)

whereR0 = 1√
Λ0

= c√
4πGρ0

andp0 = 0. In the above relations,ρ0 is the energydensity
and p0 is the pressure of the perfect fluid (dust). Note that the cosmological constant
has a precise value with respect to the energy density, which renders the solution
static. However, the solution is unstable, meaning that any small deviation of either
Λ0, or ρ0, or R0 from the above prescribed values would turn the Universe into one
which either expands or collapses forever. For this reason, the solutionwas abandoned
rather early as a plausible description of the Universe.

Lemaître–Tolman–Bondi (LTB) Metric (Lemaître 1933; Tolman 1934; Bondi
1947)

Initially, theLemaître–Tolmanmetricwas obtained as an exact spherically symmetric
solution of Einstein’s equations for cosmic dust (matter with p = 0). Later on, due
to its inherent inhomogeneities, it gave rise to a whole class of models, known as
LTB models, some of them being still the subject of active research as an appealing
alternative to the prevailing interpretation of the acceleration of the universe in terms
of aΛ-CDMmodel with a dominant dark energy component. Since we observe light
rays from the past light cone, not the expansion of the Universe, spatial variation in
matter density and Hubble rate can have the same effect on redshift as acceleration
in a perfectly homogeneous Universe.

The Lemaître–Tolman–Bondi metric was found by Georges Lemaître, in 1933,
then by the American mathematical physicist Richard C. Tolman (1881–1948), in
1934. It was studied later by the Anglo-Austrian mathematician and cosmologist
Hermann Bondi (1919–2005), in 1947.

The line element for the Lemaître–Tolman–Bondi metric, describing a spherically
symmetric cloud of cosmic dust, finite or infinite, which can expand or collapse under
the action of its own gravitational field, is given, in comoving coordinates,6 by the
expression:

ds2 = c2dt2 − A′2(r, t)

1 − k(r)
dr2 − A2(r, t)

(
dθ2 + sin2 θ dϕ2

)
, (9.144)

where A(r, t) is a function with dimension of length in SI, A′ = ∂A
∂r , while k(r) is a

function associated with the curvature of t = const. hypersurfaces. All the functions
depend on r, therefore the metric is inhomogeneous. In the limit A(r, t) → R(t)r and
k(r) → kr2, one obtains the FLRW metric (9.135).

6To choose spatial coordinates to comove with the matter means to take dxi

dt = 0.
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The pressure of the cosmic dust is zero, while its mass density ρM is given by the
relation

8πG

c2
ρM = M ′(r)

A2(r, t)A′(r, t)
,

where M(r) is a non-negative function that is fixed by the boundary condition (it has
SI units of length). One can define, by comparison with the homogeneous FLRW
model, a local Hubble rate by H(r, t) = Ȧ(r,t)

A(r,t) , where Ȧ = dA
dt .

De Sitter and anti de Sitter metrics (de Sitter 1932)

Aspecial set of spaceswhich can be obtained as solutions of Einstein’s field equations
are the maximally symmetric ones. The concept of maximal symmetry is defined by
analogy with the symmetry of the Euclidean n-dimensional space, whose isometries
are the translations and rotations in n dimensions. The number of independent trans-
lations is n, while the number of independent rotations is 1

2n(n − 1). In the case of
curved spaces, these operations cannot be defined globally, but only in the neighbour-
hood of an arbitrary fixed point. A maximally symmetric manifold with 1

2n(n + 1)
independent symmetries is a maximally symmetric space. One special feature of the
maximally symmetric spaces is that the curvature is the same at any point. For any
such space, at any point and in any coordinate system, the following relation is valid:

Rμνσρ = K(gμσgνρ − gμρgνσ),

where

K = R

n(n − 1)
,

with R the constant Ricci scalar.
Thus, the curvature scalar essentially determines the maximally symmetric space-

times and classifies them into three categories: Minkowski space (R = 0, K = 0),
de Sitter space (R > 0, K > 0), and anti de Sitter space (R < 0, K < 0). The de
Sitter space is the simplest solution of Einstein’s field equations with Λ > 0 and it
was found by the Dutch mathematician, physicist, and astronomer Willem de Sitter
(1872–1934) in 1932.

Let us note still that, by taking the trace of the above equation, we find that the
Ricci tensor is proportional to the metric in maximally symmetric spaces, i.e., in four
dimensions,

Rμν = 3Kgμν, R = 12K .

Moreover, Einstein’s tensor is also proportional to the metric,

Gμν = Rμν − 1

2
Rgμν = −3Kgμν
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and, by Einstein’s field equations (9.100), so is the energy-momentum tensor:

Tμν = −3K

κ
gμν .

Recall that (see Eq. (9.115)) an energy-momentum tensor proportional to the metric
is specific to the vacuum energy, i.e. to the cosmological constant. Consequently, de
Sitter and anti de Sitter space-times are maximally symmetric vacuum solutions of
Einstein’s equations. The cosmological constant, positive for de Sitter and negative
for anti de Sitter, is the only source of curvature for the space-time. The metric can
be put in the form

ds2 = (1 − Kr2
)

c2dt2 − dr2

1 − Kr2
− r2

(
dθ2 + sin2 θ dϕ2

)
, (9.145)

in the so-called static coordinates. This line element corresponds to a de Sitter space
(dS) if K > 0, or to an anti de Sitter space (AdS) if K < 0. In this form, it becomes
apparent that the (anti) de Sitter space-time is a static space, i.e. a space-time whose
geometry does not change in time (due to time translation symmetry) and which is
irrotational (due to rotation symmetry). However, the physical spatial dimensions
expand according to a FLRW model, where the cosmic scale factor is given by
R(t) = eHt , with H – the constant Hubble parameter, proportional to the square root
of the cosmological constant, H ∼ √

Λ. It has a cosmological horizon surrounding
any observer. Unlike the black hole event horizon, which is a future horizon (i.e. the
particles can enter the black hole crossing the horizon, but they cannot cross it in
the opposite direction), the cosmological horizon in a Big Bang-type cosmology is
a past horizon (i.e. the particles can only cross the horizon from inside out).

Schwarzschild–De Sitter Metric (Schwarzschild 1915; de Sitter 1932)

The Schwarzschild–de Sitter metric describes the gravitational field of a spherically
symmetric body of mass M in a Universe with cosmological constant Λ.

The line element for the de Sitter–Schwarzschild metric can be written as

ds2 = f (r)c2dt2 − f −1(r)dr2 − r2
(
dθ2 + sin2 θ dϕ2

)
, (9.146)

where

f (r) = 1 − rS

r
− 1

3
Λr2.

An observer who has not “fallen” into the black hole, but who can still see it
in spite of the expansion of the Universe, is caught in between the two horizons,
the black hole event horizon corresponding to the Schwarzschild solution and the
cosmological one, corresponding to the de Sitter solution.
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9.10 Tests of General Relativity

9.10.1 Precession of the Perihelion of Planets

Wementioned in Sect. 9.1 that the “anomalous” precession of the perihelion of Mer-
cury (and of other planets) could not be fathomed within the framework of the
Newtonian theory of gravitation. Here we shall show how the discrepancy between
the experimental data and the non-relativistic theory of gravitation is explained in
general relativity.

Suppose that the central field created by the Sun, of mass M, is described by the
Schwarzschild metric (9.128). A planet gravitating around the Sun will describe a
geodesic of Riemannian spacewith themetric (9.128). Let us determine the trajectory
of this planet.

We should apply the variational principle δ
∫

fds = 0, with f given by

f = c2
(
1 − rS

r

)
ṫ2 − ṙ2

1 − rS
r

− r2
(
θ̇2 + ϕ̇2 sin2 θ

)
, (9.147)

and solve a system of Euler-type equations, together with the constraint equation
f ≡ 1, which arises from the definition of the function f . Since this procedure is very
difficult, we shall use two simplifying elements, based on experimental data:

a) A planet acted upon by a central force describes a plane trajectory (ϕ = const.,
ϕ̇ = 0);

b) The trajectory of the planet is, to the first approximation, an ellipse with the
Sun at one of the foci. This means that instead of solving Eulerian equations,
we shall calculate the deviation of the trajectory from the elliptical shape.

We obtain three differential equations of motion by applying the Euler equations
(9.120)with respect to the remaining three independent variables r, θ, t, the function
f being given by

f = c2
(
1 − rS

r

)
ṫ2 − ṙ2

1 − rS
r

− r2θ̇2. (9.148)

The differential equations corresponding to the variables t and θ are then

∂f

∂ ṫ
= 2c2

(
1 − rS

r

)
ṫ = 2A,

∂f

∂θ̇
= −2r2θ̇ = −2B,

where A and B are constants, while the third differential equation is the constraint
equation

f = c2
(
1 − rS

r

)
ṫ2 − ṙ2

1 − rS
r

− r2θ̇2 ≡ 1.
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We then have the following system of differential equations:

c2
(
1 − rS

r

)
ṫ2 − ṙ2

1 − rS
r

− r2θ̇2 = 1,

c2
(
1 − rS

r

)
ṫ = A, (9.149)

r2θ̇ = B.

To find the differential equation of the trajectory r = r(θ), we first observe that

ṙ = dr

ds
= dr

dθ

dθ

ds
= B

r2
dr

dθ
= −B

d

dθ

(
1

r

)
, (9.150)

where we used (9.150)3. The remaining equations can be now combined to eliminate
ṫ and θ̇ from (9.149)1, which yields

(
dσ

dθ

)2

= rSσ
3 − σ2 + rS

B2
σ + 1

B2

(
A2

c2
− 1

)
,

where we made the notation σ = 1/r. The separation of variables leads to

dθ = dσ
√

rSσ3 − σ2 + rS
B2 σ + 1

B2

(
A2

c2 − 1
) = dσ√

F(σ)
. (9.151)

Denoting by σ1,σ2,σ3 the roots of the equation F(σ) = 0, we can write

dθ = dσ√
rS(σ − σ1)(σ − σ2)(σ − σ3)

, (9.152)

leading to an elliptic integral. Since there is no analytical solution, we shall exploit
it by recalling that, in the first approximation, the trajectory is an ellipse. In polar
coordinates, with the origin at one focus and the angular coordinate θ measured from
the major axis, the equation of the ellipse is

σ = 1

r
= 1 + r cos θ

p
, (9.153)

where p = b2/a = a(1 − e2) is the focal parameter of the ellipse (with a and b the
semi-major and semi-minor axes, e = c/a the eccentricity, and c2 = a2 − b2).

Observing that F(σ) = (dσ/dθ)2, we realize that the roots σ1,σ2,σ3 are, at the
same time, extreme values of the function σ = σ(θ). Then we may choose
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σ2 = σmax = 1

rmin
= 1 + e

p
(perihelion: θ = 0),

σ3 = σmin = 1

rmax
= 1 − e

p
(aphelion: θ = π).

Then, σ is a periodical function, varying between σ2 and σ3, which suggests the
choice

σ = σ2 + σ3

2
+ σ2 − σ3

2
cosϕ, (9.154)

or, if we plug in the expressions for σ2 and σ3,

σ = 1 + e cosϕ

p
, (9.155)

which is also the equation of an ellipse. To determine the deviation of the trajectory
from the classical Newtonian form, one must find the relation between θ and ϕ.

We may write

σ − σ2 = e

p
(cosϕ − 1),

σ − σ3 = e

p
(cosϕ + 1),

(σ − σ2)(σ − σ3) = − e2

p2
sin2 ϕ,

dσ = − e

p
sinϕ dϕ,

and (9.152) becomes

dθ = ∓ dϕ√
rS (σ1 − σ)

. (9.156)

Taking into account the fact that the orbits of planets are very close to perfect circles
(σ2 − σ3 � σ2 + σ3), one can approximate

σ 
 σ2 + σ3

2
,

and (9.156) becomes

dθ = ∓ dϕ√
rS
(
σ1 − σ2+σ3

2

) . (9.157)

We observe that

σ1 − σ2 + σ3

2
= σ1 + σ2 + σ3 − 3

2
(σ2 + σ3) = 1

rS
− 3

p
,
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that is

rS

(
σ1 − σ2 + σ3

2

)
= 1 − 3rS

p
= 1 − 3rS

a
(
1 − e2

) . (9.158)

The variation Δθ of θ, for a 2π variation of ϕ, is obtained by integrating (9.157)
from 0 to 2π. Using (9.158) we then have

Δθ = 2π

[
1 − 3rS

a(1 − e2)

]−1/2


 2π

[
1 + 3

2

rS

a(1 − e2)

]
,

or, by replacing rS with (9.127):

Δθ − 2π = Δω = 6πGM

c2a(1 − e2)
, (9.159)

which gives the advance of the perihelion of a planet after a full revolution around
the Sun. The trajectory is, therefore, a rosette with elliptical loops, with the same
focus on the Sun (Fig. 9.5).

The perihelion advance (9.159) is determined by an observer fixed with respect
to the Sun. Since the measurements are made from the Earth, we have to consider
the motion of the Earth around the Sun. If TEarth and Tplanet are the revolution periods
of the Earth and the observed planet, then the advance of the perihelion of the planet
during one terrestrial year is

ΔΩ = TEarth

Tplanet
Δω,

Fig. 9.5 Trajectory of a
planet around the Sun
(supposing the Sun does not
have a translation motion
through the Universe).
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and for one terrestrial century

ΔΩ = 100
TEarth

Tplanet
Δω. (9.160)

With the mass of the SunM� = 1.98 × 1030 kg, and TEarth = 365.25 days, we finally
obtain

ΔΩ = 2.094 × 1016

a(1 − e2)Tplanet
arc seconds per century. (9.161)

We note that the relativistic effect of the perihelion precession depends on the semi-
major axis a of the orbit trajectory: the smaller a, the greater ΔΩ . The closest
planet to the Sun is Mercury (TMercury = 88 days, a = 5.8 × 1010m, e = 0.2056)
and, according to (9.161),

ΔΩMercury = 42.89 arc seconds per century,

in very good agreement with the observational data (42.45′′ ± 0.94′′).

9.10.2 Deflection of Light by the Sun

The phenomenon of deflection of light in strong gravitational fieldswas first signaled
by Henry Cavendish (1731–1810) in 1784 (in an unpublished manuscript), then by
Johann Georg von Soldner (1776–1833) in 1804, and by Siméon Poisson (1781–
1840) in 1833. These calculations were made within the framework of Newtonian
mechanics. Einstein was the first to calculate the correct value for the light bending.

Let us consider a light ray propagating in the Sun’s gravitational field. Its path,
according to general relativity, is a geodesic of the Riemannian space, character-
ized by ds = 0 (the so-called null geodesic). Admitting that the trajectory is plane,
Schwarzschild’s metric (9.128) becomes

c2
(
1 − rS

r

)
dt2 − dr2

1 − rS
r

− r2dθ2 = 0.

We also have

c2
(
1 − rS

r

)
dt = A

B
r2 dθ,

where A/B = const. (see (9.149)). Eliminating the time from the last two equations,
one obtains (

dσ

dθ

)2

= rSσ
3 − σ2 + A2

B2

1

c2
,
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or, by taking the derivative with respect to θ,

∂2σ

∂θ2
+ σ = 3rS

2
σ2. (9.162)

To integrate this equation we shall use the method of successive approximations.
As it can be remarked, the effect of gravitation is expressed by the right-hand side,
which means that equation σ′′ + σ = 0 gives the trajectory of light in the absence of
gravitation. The solution of this equation is, obviously, a straight line:

σ0 = 1

R
cos θ, (9.163)

where σ0 is the zeroth order approximation, and 1/R a constant of integration. To
obtain the first-order approximation to the solution, we replace (9.163) into the right-
hand side of (9.162) and obtain

∂2σ

∂θ2
+ σ = 3rS

2

1

R2
cos2 θ,

with the solution
σ1 = rS

2R2

(
cos2 θ + 2 sin2 θ

)
.

In the first-order approximation, the solution of Eq. (9.162) therefore is

σ = σ0 + σ1 = 1

R
cos θ + rS

2R2

(
cos2 θ + 2 sin2 θ

)
, (9.164)

and represents the parametric equation of the trajectory of the light ray in the gravi-
tational field of the Sun.

It is more convenient to use Cartesian coordinates instead of the polar ones. By
means of the transformation equations x = r cos θ, y = r sin θ, Eq. (9.164) takes the
form

x = R − rS

2R

x2 + 2y2√
x2 + y2

, (9.165)

which is a hyperbola, with the Sun at its focus. The value of the deviation is given
by the angle between the asymptote to the trajectory and the straight line x = R (see
Fig. 9.6), namely

tan
α

2
= lim

y→∞
R − x

y
= rS

2R
lim

y→∞
x2 + 2y2√

x2 + y2
= rS

r
.

For small angles,

tan
α

2

 α

2
= rS

R
,
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Fig. 9.6 Deflection of a
light beam by the Sun.

which yields

α 
 2
rS

R
= 4GM

c2R
. (9.166)

Approximating R with the radius of the Sun, one obtains α = 1.75 arc seconds. The
observations performed in 1919 by Arthur Eddington (1822–1944) and his collab-
orators during a total solar eclipse (in Africa), so that the stars near the Sun could
be observed, produced a spectacular confirmation of Einstein’s theory. Astronomers
now refer to this displacement of light as gravitational lensing.

The observations were repeated during other total Solar eclipses over the time.
All were in excellent agreement with Einstein’s predictions.

9.10.3 Gravitational Redshift

The light (or other form of electromagnetic radiation) originating from a source
placed in a stronger gravitational field is found to be of longer wavelength (shifted
towards red) when detected by an observer placed in a region of weaker gravita-
tional field (e.g. terrestrial conditions). This effect is called gravitational redshift
and it must not be confounded with the relativistic Doppler effect (explained within
the Minkowski flat space geometry), or with the cosmological redshift due to the
expansion of the Universe.

The gravitational redshift appears as a direct consequence of Einstein’s equiv-
alence principle, as a prediction which was confirmed by observation. Consider a
star of mass M, whose gravitational field is described by the Schwarzschild metric
(9.128). A clock at rest with respect to M (i.e. dr = 0, dθ = 0, dϕ = 0) determines
a proper duration
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Δτ =
∫

ds

c
=
∫ t2

t1

√
1 − rS

r
dt =

√
1 − rS

r
Δt.

At some other point of the same frame (dr′ = 0, dθ = 0, dϕ = 0) an identical clock,
during the same time interval Δt, will register the proper duration

Δτ ′ =
√
1 − rS

r′ Δt.

The last two relations give

Δτ√
1 − rS

r

= Δτ ′
√
1 − rS

r′

. (9.167)

Thus, proper time runs differently in stronger and weaker gravitational field: the
stronger the field, the slower the passage of proper time. This is called gravitational
time dilation.

Suppose that the first clock lies on the star of radius R (i.e. r = R in (9.167)), and
the second on the surface of the Earth, placed at the distance r′ � R. In this case we
may approximate

Δτ ′ 
 Δτ√
1 − rS

R

. (9.168)

Such identical clocks exist in the Universe as atoms of any element. They are called
atomic clocks. Let ν be the frequency of the radiation emitted by an atom situated on
the considered star. According to (9.168), the frequency determined from the Earth is

ν ′ = ν

√
1 − rS

R

 ν

(
1 − GM

c2R

)
< ν,

which means a redshift of the spectral line emitted by the atom. In terms of wave-
lengths, the relative shift is

Δλ

λ
= −Δν

ν
.

The redshift increases with the ratio M/R. In the case of the Sun, for example, the
relative redshift is 2 × 10−6.

This gravitational redshift predicted by Einstein in 1911 was confirmed by some
high-precisionobservations. Preliminary observationswere reported as early as 1925,
by the American astronomer Walter Adams (1876–1956). In 1959, Robert Pound
(1919–2010) and Glen Rebka (1931–2015) succeeded in testing Einstein’s predic-
tion by a very precise experiment at Harvard University, based on the then recently
discovered Mössbauer effect (the resonant and recoil-free emission and absorption
of gamma ray photons by atoms bound in a solid form, discovered in 1958 by Rudolf
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Mössbauer (1929–2011)). The distance between the emitter and the absorber was of
only 22.5 m. Pound and Rebka reported a relative variation in the frequency of the
photons emitted by a source of 57Fe in terrestrial gravitational field of

Δν

ν
= −(5.13 ± 0.51) × 10−15,

confirming Einstein’s prediction of −4.92 × 10−15 to 10% accuracy. In subsequent
refined versions of the experiment, by 1964, the accuracy was increased to 1%.

9.10.4 Gravitational Time Delay

Another effect of the gravitational time dilation was discovered in 1964 by the Amer-
ican physicist Irwin I. Shapiro (b. 1929). Shapiro’s idea was to determine the effect
of the Sun’s gravitational field on a radar signal traveling from Earth to the inner
planets, Venus or Mercury, and back. This effect was called by Shapiro “the fourth
test of general relativity”.

According to general relativity, as a result of such a travel the radar signals would
be delayed as compared to the time given by Newton’s theory.7 Thus, if we denote
by tr the round trip time of the radar signal predicted by general relativity, and by tn
the corresponding flat-space value, then the delay will be

Δtr = tr − tn.

The radar signal delay is maximum when the planet (e.g., Mercury) is in superior
conjunction with the Sun (it is located on the opposite side of the Sun with respect
to Earth) (see Fig. 9.7), since the radar signal has to travel in this case in the intense
gravitational field of the Sun. We shall make the following assumptions:

1) the Earth (E) and the reflecting planet (P) are considered pointlike, and move in
the same plane on circular orbits;

2) the positional change of the Earth and the planet during the emission and reception
of the radar signal is neglected;

3) the time delay due to the curvature of the trajectory is neglected;
4) the Sun’s gravitational field is described by the Schwarzschild metric, with rS =

2GM�
c2 , where M� is the Sun’s mass.

Under these assumptions, one may consider the Sun at the centre of a Cartesian
system of coordinates, with (−xe, d) the coordinates of the Earth, and (xp, d) the
coordinates of the planet (Fig. 9.8). Then d is the minimum distance from the Sun to
the radar signal trajectory, while rp and re are the distances from the planet and from

7The method used here was suggested by D. K. Ross and L. I. Schiff, Phys. Rev., 1215, 141, 1960.
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Fig. 9.7 Various positions of the Earth (E) and an inner planet (P), showing that the gravitational
time delay is maximal when the planet and the Earth are in superior conjunction, since the radar
signal has to travel in the intense gravitational field of the Sun.

Fig. 9.8 Travel of a radar signal from the Earth (E) to a planet (P) and return. The Sun (S) is at
the origin of the reference system.

Earth to the Sun, respectively. A radar signal travels from E to P and returns on the
same trajectory (the dashed line). Since

r2 = x2 + y2 + z2,

dl2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2 (9.169)

= dx2 + dy2 + dz2 = dxidxi = dxi dxk δik,
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the Schwarzschild metric in Cartesian coordinates can be calculated:

ds2 = c2
(
1 − rS

r

)
dt2 −

{
dr2

1 − rS
r

− dr2 + [dr2 + r2
(
dθ2 + sin2 θ dϕ2

)]}

= c2
(
1 − rS

r

)
dt2 −

{
rS

r

(
1 − rS

r

)−1
dr2 + dxi dxk δik

}
.

But

r dr = x dx + y dy + z dz,

dr2 = (x dx + y dy + z dz)2

r2
= xixk dxi dxk

r2
,

and the metric becomes

ds2 = c2
(
1 − rS

r

)
dt2 −

[
rS

r

(
1 − rS

r

)−1 xixk

r2
+ δik

]
dxidxk . (9.170)

The radar signal is characterized by ds = 0, with our geometric conditions dy =
dz = 0. The equation of the trajectory is then

c2
(
1 − rS

r

)
dt2 −

[
1 + rS

r

(
1 − rS

r

)−1 x2

r2

]
dx2 = 0, (9.171)

which yields

dt = 1

c

(
1 − rS

r

)−1/2
[
1 + rS

r

(
1 − rS

r

)−1 x2

r2

]1/2
dx. (9.172)

Expanding in series and keeping only the terms of the first order in rS/r, then inte-
grating between −xe and xp and multiplying by 2, we obtain the round trip time tr of
the radar signal, as predicted by general relativity:

tr = 2
∫ xp

−xe

dt = tn + 4GM�
c2

[
ln

xp + rp

re − xe
− 1

2

(
xp

rp
+ xe

re

)]
+ . . . (9.173)

Here

tn = 2(xe + xp)

c
(9.174)

is the transit time in flat space, according to the Newtonian theory. The transit time
delay is then the difference

Δtr = tr − tn = 4GM�
c2

[
ln

xp + rp

re − xe
− 1

2

(
xp

rp
+ xe

re

)]
. (9.175)
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Since the determinations are made from the Earth, we have to use instead of tr the
proper time on the Earth, given by

tE = 1

c

∫ SE(t)

SE(0)
dSE, (9.176)

where dSE is the Schwarzschild metric (9.128) for the terrestrial gravitational field,
while SE(0) and SE(t) are the positions of the Earth in the four-dimensional manifold
for the values t = 0 and t = t of the time coordinate. According to (9.176), the proper
time for the Earth is

tE =
(
1 − 2GME

c2re

)1/2

tr,

where ME is the Earth mass, and tr is given by (9.173). A series expansion in which
we keep only first order terms in GME

c2re
then yields

tE 

(
1 − GME

c2re

)
tr

=
(
1 − GME

c2re

){
2(xs + xp)

c
+ 4GMS

c2

[
ln

xp + rp

re − xe
− 1

2

(
xp

rp
+ xe

re

)]}
.

In this approximation, the transit time delay of the radar signal, determined from the
Earth and due to the Sun’s gravitational field, is

Δt = tE − tn

= 4GMS

c3

{
ln

xp + rp

re − xe
− 1

2

(
xp

rp
+ xe

re

)
− ME

MS

(xe + xp)

2re

}
. (9.177)

For Mercury in superior conjunction with the Sun, general relativity gives a delay
Δt = 1.6 × 10−4 s. The precision of the first experiment of Shapiro’s effect was not
very high, but in subsequent years the accuracy was increased from over 3% to less
than 1%. Later on, the experiment was repeated with transponders on space probes.
These receive the signal from Earth and after a precisely known delay send it with
increased intensity back to Earth. Thus with the Viking Mars probe of 1979 the
predictions of the general theory of relativity for this delay in the gravitational field
of the Sun could be confirmed to an accuracy of 0.1%. In 2003, with the space probe
Cassini, an accuracy of 0.0012% was achieved.

9.10.5 Gravitational Waves

One of the most elusive predictions of general relativity was the existence of gravi-
tational waves. Einstein predicted them in 1916 and refined his calculations in 1918.
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Their effect is a strain on space-time, which manifests itself through the periodic
increase and decrease of distances between free objects.

We shall sketch below the proof that a gravitational field propagates in vacuum
as gravitational waves. As Einstein’s equations are highly nonlinear, we shall adopt
the weak field approximation.

Since, by assumption, the field is weak, we may choose the metric tensor as

gμν = ημν + hμν, (9.178)

where ημν is the Minkowski metric tensor,

ημν =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠

and hμν is a small perturbation (|hμν | � 1), called normal metric perturbation. In
this approximation, we shall keep in all calculations only terms at most linear in hμν .
As a consequence, we can also write

gμν = ημν − hμν,

where hμν = ημρηνσhρσ . One can see that the indices can be raised and lowered
with the Minkowski metric tensor, since the corrections would be higher order in
the perturbation. This suggests that linearized general relativity can be viewed as
the field theory of a symmetric tensor field hμν on a flat (Minkowski) space-time
background.

Next, we use formula (9.76) for the curvature tensor

Rμνλρ = 1

2

(
∂2gμρ

∂xν∂xλ
+ ∂2gνλ

∂xμ∂xρ
− ∂2gμλ

∂xν∂xρ
− ∂2gνρ

∂xμ∂xλ

)

+ gσκ

(
Γ σ

μρΓ
κ
νλ − Γ σ

μλΓ
κ
νρ

)
. (9.179)

Introducing (9.178) into (9.179) and neglecting the second-order terms in hμν , we
are left with

Rμνλρ = 1

2

(
∂2hμρ

∂xν∂xλ
+ ∂2hνλ

∂xμ∂xρ
− ∂2hμλ

∂xν∂xρ
− ∂2hνρ

∂xμ∂xλ

)
. (9.180)

We are now able to calculate the components of the Ricci tensor (see (9.80)). Using
the Riemann tensor properties, we have



9.10 Tests of General Relativity 573

Rμν = gλρRλμρν 
 ηλρRλμρν

= 1

2
ηλρ

(
∂2hλν

∂xμ∂xρ
+ ∂2hμρ

∂xν∂xλ
− ∂2hλρ

∂xμ∂xν
− ∂2hμν

∂xρ∂xλ

)
(9.181)

= 1

2

(
− ηλρ ∂2hμν

∂xρ∂xλ
+ ∂2hλ

μ

∂xλ∂xν
+ ∂2hλ

ν

∂xμ∂xλ
− ∂2h

∂xμ∂xν

)
,

where h = ηλρhλρ.
It should be mentioned that the decomposition (9.178) does not uniquely define

the coordinate system, in the sense that in various coordinate systems the metric can
be written as the Minkowski metric plus a small perturbation, but the perturbation
would be different from system to system. Thismeans that there is a gauge freedom in
the choice of coordinates. Basically, a general coordinate transformation is specified
by

xμ → xμ + εξμ(x), (9.182)

where ξμ(x) denotes a general vector field and ε is an infinitesimal parameter. Under
such a transformation, the metric perturbation hμν will change to

h′
μν = hμν + 2ε∂(μξν), (9.183)

remaining small. The transformation (9.183) is called gauge transformation in the
linearized theory. It can be straightforwardly showed that such a transformation
leaves invariant the Riemann tensor, consequently the physical space-time. As we
are faced with this gauge freedom, we have to fix the coordinate system, partially or
completely. We shall start with a partial fixing, by imposing a coordinate condition
which selects the so-called harmonic coordinates, i.e. the systems of coordinates
which satisfy d’Alembert’s equation

�xμ = 0, (9.184)

where � represents the d’Alembertian operator in terms of covariant derivatives.
Writing the condition explicitly, one can easily show that it is equivalent to

Γ α
μνg

μν = 0 . (9.185)

Replacing the Christoffel symbols and the metric tensor with their expressions in
the weak field limit and keeping only terms linear in hμν , we find that the condition
(9.184) becomes a Lorenz-type condition,

∂h̄λ
μ

∂xλ
= 0, (9.186)
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where

h̄λ
μ = hλ

μ − 1

2
h δλ

μ, (9.187)

with h the trace of the tensor hμν , is the so-called trace-reversed metric perturbation.
(The name comes from the fact that h̄ = ημνhμν = −h.) With this gauge condition,
the number of degrees of freedom of the symmetric tensor field hμν is reduced from
ten to six. Using for the moment the gauge fixing (9.186), we find

∂hλ
μ

∂xλ
= 1

2

∂h

∂xμ
,

∂2hλ
μ

∂xλ∂xν
= 1

2

∂2h

∂xμ∂xν
,

2
∂2hλ

μ

∂xλ∂xν
= ∂2hλ

μ

∂xλ∂xν
+ ∂2hλ

ν

∂xλ∂xμ
,

and (9.181) reduces to

Rμν = −1

2
�hμν, where � = ηλρ ∂2

∂xλ∂xρ
. (9.188)

With this expression for the Ricci tensor, the Einstein equations (9.100) become:

�h̄μν = −2κTμν . (9.189)

In vacuum,
�h̄μν = 0. (9.190)

Consequently, the gravitational field propagates as gravitational waves.
A plane-wave solution is simply written as

h̄μν = A eμνeikαxα

,

whereA is the amplitude of thewave, eμν is the polarization tensor, and kα is thewave
vector. The wave equation (9.190) leads to the condition kαkα = 0, which means that
the wave vector is light-like, therefore the gravitational waves in vacuum propagate
with the speed of light. The gauge fixing condition (9.186) leads to the orthogonality
between the wave vector and the polarization tensor, eαβkα = 0.

Further gauge fixing conditions can be imposed, to fully specify the coordinate
system. One of the most transparent gauges is the so-called transverse traceless (TT)
gauge, which requires transversality of the waves by imposing e0β = 0, implying

eijkj = 0, (9.191)
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as well as traceless amplitudes,
ej

j = 0. (9.192)

In this gauge, h̄μν = hμν .With the extra conditions, the number of degrees of freedom
reduces to two, which is equal to the number of physical polarizations of the graviton.

We can understand the physical meaning of the TT gauge by examining the effect
of the passage of a wave on a particle at rest (in flat space, before being affected
by the wave). The geodesic equation in the TT gauge gives the acceleration of the
particle:

d2xi

ds2
= −Γ i

00 = −1

2
(2hi0,0 − h00,i) = 0.

This shows that the particle does not move, in other words the coordinate system
specified by the TT gauge is co-moving with a freely falling particle.

The polarizations of the gravitational waves are easily understood in the TT gauge.
Let us consider a wave moving in the z-direction, such that k0 = kz = ω and kx =
ky = 0. From the conditions (9.191) and (9.192) we find then that e0α = ezα = 0,
while exx = −eyy. These relations show that there are actually only two independent
components of the polarization tensor, which can be taken as exx, denoted by ⊕, and
exy, denoted by ⊗.

To understand how the gravitational waves distort the space-time, let us consider
the simplest case of a purely ⊕-polarized wave, for which exy = 0. The associated
metric is

ds2 = −dt2 + (1 + h+)dx2 + (1 − h+)dy2 + dz2, (9.193)

whereh+ = Aexx exp[−iω(t − z)]. Such ametric produces opposite effects onproper
distance on the two transverse axes, contracting one while expanding the other. A
purely⊗-polarizedwave (exx = 0) is obtained by a 45

◦
rotation of the⊕ polarization.

Due to the linearity of the wave equation and of the TT gauge conditions, a general
wave will be a linear superposition of these two polarization tensors. For example,
circular polarization can be described by

eR = 1√
2
(e+ + ie×), eL = 1√

2
(e+ − ie×), (9.194)

where e+ = exx and e× = exy are the two linear polarization tensors and eR and eL are
polarizations that rotate in the right-handed and left-handed directions respectively.

The detection of gravitational waves is a highly complex experimental undertak-
ing, due to the very weak signals which may reach the Earth even from very powerful
cosmic sources. The first indirect evidence for gravitational energy radiation, which
is understood as a wave phenomenon, came in 1974 from the so-called Hulse–Taylor
binary – a pair of stars, one of which is a pulsar (a radiating neutron star). They each
have masses around 1.4M� and the distance between them is around 2 × 106 km, of
the order of Sun’s diameter. They are expected to radiate 1022 times the gravitational
energy radiated by the Earth–Sun system. This causes the stars to gradually move
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closer together, in what is known as an inspiral, and this has an effect on the observed
pulsar’s signals.

Russell Hulse (b. 1950) and Joseph Taylor (b. 1941) were awarded the Nobel
Prize in 1993 for their measurements which led to the discovery of the first binary
pulsar, and allowed them to show that the gravitational radiation predicted by general
relativity matched the results of these observations with a precision within 0.2%.

The search for direct evidence involves mainly detectors based on laser inter-
ferometry, like LIGO on Earth ground (Laser Interferometer Gravitational Wave
Observatory) with two sites, in Livingston, Louisiana, and Hanford, Washington, or
the planned eLISA (Evolved Laser Interferometer Space Antenna) orbiting in space.

The principle of the laser interferometry in gravitational wave detection is concep-
tually rather simple: as we saw previously, if a ⊗ wave propagates in the z-direction,
the proper distance will dilate on one of the transverse directions and will increase
on the other. If on one of these directions we orient one arm of an interferometer, set
initially to show destructive interference, the effect of the gravitational wave propa-
gating in the armwill, for example, increase the travel time of one laser beam, leading
to an interference signal. The basic experimental set-up is illustrated in Fig. 9.9.

The technical complexity of the laser interferometers is however staggering, since
they have to detect amplitudes (or strains, as they are termed in the gravitational
literature) of about A ≈ 10−20 or less. The strongest source of gravitational waves

Fig. 9.9 Schematic representation of a laser-interferometer observatory: (a) the half-beams pro-
duced by the beam splitter S follow optical paths calibrated so that in the absence of gravitational
waves, the interference at the detector D is destructive and no signal is observed; (b) when a gravi-
tational wave arrives, it disturbs the space-time, changing (in our example, lengthening) the light’s
path along arm 2; when the beams recombine and arrive at the detector D, an interference signal is
registered.



9.10 Tests of General Relativity 577

is the coalescence of a black-hole/black-hole binary. A calculation which is beyond
the scope of this book shows that the amplitude of the gravitational waves emitted
by this system while the black holes circle each other is

A ∼ r2S
rR

, (9.195)

where rS is the Schwarzschild radius (the black holes are assumed to have the same
mass M), R is the orbital radius, and r is the distance between the pair of black holes
and Earth. Typically, black holes are about 10 times more massive than the Sun and
we can consider that the orbital radius is 10 times the Schwarzschild radius, while
the distance to the observation point on Earth is of the order of 300Mpc. This means
rS ∼ 3 km, R ∼ 30 km, and r ∼ 1022 km, leading to the order of magnitude for the
amplitude quoted above.

On 14 September 2015, the two detectors of LIGO registered simultaneously a
gravitational wave signal – the first direct detection ever achieved8 (see Fig. 9.10).
The source was a pair of black holes merging together. The event happened at a
distance of 410Mpc, which means that it was observed by LIGO 1.3 billion years
later. The masses of the two initial black holes were 36M� and 29M�, while the
mass of the final one was 62M�, meaning that an energy of 3M�c2 was radiated
in gravitational waves. The observed signal took less then one second: during the
first 0.2 s, the signal increased in frequency from 35 to 150Hz, which is consistent
with the theoretical prediction for the inspiral of two orbiting masses. The orbital
frequency is half of the gravitational wave frequency, i.e. maximum 75Hz in this
case. This is a very high orbital frequency, that can be achieved without merging
only if the orbiting masses are black holes. The signal peaks in amplitude during
the merger and then the waveform decays in a manner consistent with the damped
oscillations of a (final) black hole to a stationary Kerr configuration.

The LIGO interferometer is basically a Michelson interferometer, but with arms
4km long. It is the largest interferometer ever built and the most precise, capable
of measuring a change in the arm length 10,000 times smaller than a proton. The
mirrors placed near the beam splitter cause multiple reflections of the laser beam,
increasing the distance traveled in each arm to 1120km. This system ofmirrors forms
an optical resonator known as the Fabry–Pérot cavity. Another ingenious stratagem
for increasing the sensitivity is the power-boosting mirror, necessary for increasing
the power of the laser beams from 200W to 750kW. This one-way mirror is placed
before the beam splitter. The interferometer is aligned in such a way that almost all
the laser light reflected by the arms is directed to the recycling mirror, and through
it back to the source (instead of the detector), which greatly increases the power of
the beam and consequently the sensitivity of the instrument.

The gravitational wave interferometers are not directional, they survey the whole
sky. It is therefore of great importance to have simultaneous observations of gravi-

8The observation was reported in B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. Lett. 116, 061102 (2016).
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Fig. 9.10 Top: Estimated gravitational wave strain amplitude from the event observed by the LIGO
Collaboration on 14 September 2015 (Hansford site). The inset images show numerical relativity
models of the black hole horizons as the black holes coalesce. Bottom: The Keplerian effective
black hole separation in units of Schwarzschild radii and the effective relative velocity given by
the post-Newtonian parameter v/c = (GMπf /c3)1/3, where f is the gravitational-wave frequency
calculated with numerical relativity and M is the total mass. Source: B.P. Abbott et al. (LIGO
Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

tational waves at different locations, in order to confirm the signals and increase the
accuracy in determining their origin. At the moment, there are three more observa-
tories: GEO600 near Sarstedt in Germany is already operational, while VIRGO near
Pisa in Italy and KAGRA (Kamioka Gravitational Wave Detector) in the Kamioka
mines in Japan are under construction. The recent success of LIGO came together
with the approval of a third LIGO Observatory in India, which is expected to start
operation in 2023.

9.11 Solved Problems

Problem 1. Find the geodesic lines corresponding to the metric

ds2 = 1

t2
(
dt2 − dx2

)
. (9.196)
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Solution. Following the usual procedure, we apply the Euler–Lagrange equation for
the dynamical variable x:

∂f

∂x
− d

ds

(
∂f

∂ẋ

)
= 0, (9.197)

where

f = 1

t2
(
ṫ2 − ẋ2

)
, (9.198)

fulfilling the condition f = 1. Since f does not explicitly depend on x, the integration
gives

ẋ

t2
= A = const. (9.199)

Observing that

ds = 1

t

[
1 −

(
dx

dt

)2
]1/2

dt, (9.200)

we then have

ẋ = dx

dt

dt

ds
= dx

dt

t
[
1 − ( dx

dt

)2]1/2 .

Using (9.199) and separating variables, we can write also

dx

dt
= At√

1 + A2t2
,

and, by integrating the equation and a convenient arrangement of terms,

x2

a2
− t2

a2
= 1, a = 1

A
. (9.201)

Giving values to the constant A, we obtain the geodesics in the shape of equilateral
hyperbolas, tangent to the light cone.

Problem 2. At the point θ = θ0, ϕ = ϕ0 on the surface of the two-dimensional
sphere ds2 = dθ2 + sin2 θ dϕ2, we have A = uθ. Write the form of vector A as a
result of a parallel transport along the circle θ = θ0, as well as its magnitude after
transport.

Solution. By definition, a tensorQ (of any order and/or variance) suffers a parallel
transport if its absolute differential is zero

DQ = dQ + δQ = 0.



580 9 General Theory of Relativity

For an arbitrary contravariant vector Aμ, we have

DAμ = dAμ + Γ
μ
νλAν dxλ = 0,

or

uλ

(
∂Aμ

∂xλ
+ Γ

μ
νλAν

)
= 0, uλ = dxλ

ds
.

If a vector tangent to a curve is parallel transported, then the curve is called self-
parallel. For Aμ = uμ, it follows that

duμ

ds
+ Γ

μ
νλuνuλ = 0,

which are the differential equations of the geodesic lines. If the connection coeffi-
cients are the Christoffel symbols of the second kind, the manifold is Riemannian.
Therefore, the self-parallel curves of a Riemannian space are geodesics of that space.

Using this definition, we then have

∇ϕAi = Ai
,ϕ + Γ i

kϕAk = 0, i, k = 1, 2 . (9.202)

With x1 = θ, x2 = ϕ, and f = θ̇2 + ϕ̇2 sin2 θ, Euler–Lagrange equations give

Γ 1
22 ≡ Γ θ

ϕϕ = − sin θ cos θ,

Γ 2
12 ≡ Γ

ϕ
θϕ = cot θ,

and (9.202) yield

Aθ
,ϕ − sin θ cos θ Aϕ = 0,

Aϕ
,ϕ + cot θ Aθ = 0. (9.203)

Take now the partial derivative of (9.203)1 with respect to ϕ:

Aθ
,ϕϕ = sin θ cos θAϕ

,ϕ = − cos2 θ Aθ. (9.204)

The solution of this equation is

Aθ = C1 cos(ϕ cos θ) + C2 sin(ϕ cos θ),

allowing to determine Aϕ:

Aϕ = 1

sin θ
[−C1 sin(ϕ cos θ) + C2 cos(ϕ cos θ)] . (9.205)



9.11 Solved Problems 581

To fix the constants of integration C1 and C2, we use the boundary conditions: at
ϕ = 0, A = uθ, Aθ = 1, Aϕ = 0. Then C1 = 1, C2 = 0, and thus

Aθ = cos(ϕ cos θ),

Aϕ = − 1

sin θ
sin(ϕ cos θ),

which leads to

A = cos(ϕ cos θ)uθ − 1

sin θ
sin(ϕ cos θ)uϕ. (9.206)

After transport (ϕ = 2π),A becomes

Aϕ=2π = cos(2π cos θ)uθ − 1

sin θ
sin(2π cos θ)uϕ = uθ. (9.207)

But the magnitude of the vector remains the same:

(AμAμ)ϕ=2π = gμνAμAν = g11A1A1 + g22A2A2

= gθθAθAθ + gϕϕAϕAϕ = cos2(2π cos θ) (9.208)

+ sin2 θ

[
1

sin2 θ
sin2(2π cos θ)

]
= 1 = (AμAμ)0.

Problem 3. Show that the covariant four-divergence of Einstein’s tensor Gμν =
Rμν − 1

2R gμν is zero.
Solution. Using the second Bianchi identity (9.79):

∇σRρ
μνλ + ∇νRρ

μλσ + ∇λRρ
μσν = 0, (9.209)

and recalling the Riemann tensor properties, we interchange the indices ν and λ in
the first terms, then multiply by gμν . The result is

− gμνRρ
μλν ; σ + gμνRρ

μλσ ; ν + gμνRρ
μσν ; λ = 0.

Multiply now by δλ
ρ and use the fact that the covariant derivative of the metric tensor

is zero. We then have

− (gμνRμν);σ + (gμνRμσ);ν + (gμνRλ
μσν);λ = 0.

The last term is the covariant four-divergence of the mixed Ricci tensor. Indeed,

gμνRλ
μσν = gμνgλκRκμσν = gμνgλκRμκνσ

= gλκRν
κνσ = gλκRκσ = Rλ

σ.
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Thus, we have obtained that

− R;σ + Rν
σ;ν + Rλ

σ;λ = 0,

or

∇ν

(
Rν

σ − 1

2
R δν

σ

)
= ∇νGν

σ = 0. (9.210)

Problem 4. Determine the elementary space-like distance in a uniformly rotating
coordinate system.

Solution. Let us start by elucidating the notions of space-like and time-like inter-
vals in general relativity.

Consider two time-like separated close events, that happen at the same point of
space. Choosing x1, x2, x3 as space coordinates and x0 = ct as time coordinate, it
follows from the problem statement that dx1 = dx2 = dx3 = 0, and thus the metric
is

ds2 = c2dτ 2 = gμνdxμdxν = g00(dx0)2.

This means that the proper time separating the two events is

dτ = 1

c

√
g00 dx0. (9.211)

Recall that in special relativity the elementary space-like distance dl can be deter-
mined as the interval between two close events which take place at the samemoment,
by choosing dx0 = 0. In general relativity this procedure cannot be used, because at
different points the proper time τ is differently connected to x0.

Suppose that a light signal emitted at point B(xi + dxi), i = 1, 2, 3 is intercepted
at the neighbouring point A(xi), and then transmitted back on the same path. Since
the metric is isotropic, we have

gikdxidxk + 2gi0dxidx0 + g00(dx0)2 = 0.

The roots of this equation in (dx0) are

(dx0)1 = − 1

g00

[
gi0dxi +

√
(gi0gk0 − gikg00)dxidxk

]
,

(dx0)2 = − 1

g00

[
gi0dxi −

√
(gi0gk0 − gikg00)dxidxk

]
,

and correspond to the propagation of the light signal in the two directions, between
the points A and B of given coordinates. In Fig. 9.11 the solid lines are world lines
of the points A and B, while the dashed lines represent the world lines of the light
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Fig. 9.11 World lines of the
points A and B (solid lines)
and of the light signals
(dashed lines).

signals. The “time” difference between the emission and reception of the light signal
at the same point is

(dx0)2 − (dx0)1 = 2

g00

√
(gi0gk0 − gikg00)dxidxk .

The “true” elementary proper time is then

dτ = 1

c

√
g00
[(

dx0
)
2 − (dx0

)
1

] = 2

c
√

g00

√
(gi0gk0 − gikg00) dxi dxk,

while the elementary proper distance dl = c dτ/2 is

(dl)2 =
(

gi0gk0

g00
− gik

)
dxidxk = γikdxidxk, (9.212)

where
γik = gi0gk0

g00
− gik (9.213)

is the three-dimensional metric tensor.
Now we can give the solution to the problem. Let us perform the transition from

the inertial frame S′ to another frame S, uniformly rotating aroundOz ≡ Oz′ axis. The
geometry of the problem suggest the use of cylindrical coordinates. Let r′, ϕ′, z′, t,
and r, ϕ, z, t be the coordinates in the two frames. In S′ the metric is

ds2 = c2dt2 − dr′2 − r′2dϕ′2 − dz′2.

But r′ = r, z′ = z,ϕ′ = ϕ + ωt, so that

ds2 = gμνdxμdxν = (c2 − ω2t2)dt2 − 2ωr2 dϕ dt − dz2 − r2dϕ2 − dr2.
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Thus,

g00 = 1 − ω2r2

c2
,

g11 = g33 = −1,

g22 = −r2,

g20 = − ωr2

c
.

In the rotating frame, the space-like distance element is worked out by using (9.212)
and (9.213). Choosing x0 = ct, x1 = r, x2 = ϕ, x3 = z, we obtain

γ11 = g11 = −1,

γ33 = g33 = −1,

γ22 = (g20)
2

g00
− g22 = r2

(
1 − ω2r2

c2

)−1

.

The solution is then given by the expression

(dl)2 = γikdxidxk = dr2 + dz2 + r2dϕ2

1 − ω2r2
c2

. (9.214)

Observation:
In the inertial (fixed) frame, the ratio of a circle’s circumference (with its centre on

the axis of rotation) to its radius in the plane z = const. is 2π, while in the non-inertial
(rotating) frame we have

L =
∫ 2π

0

Rdϕ√
1 − ω2R2

c2

= 2πR√
1 − ω2R2

c2

, (9.215)

that is,
L

R
> 2π. (9.216)

Problem 5. Show that, irrespective of its mass, a body cannot orbit a Schwarzschild
black hole at a distance smaller than rstable

min = 3rS , on a stable orbit, or runstable
min =

3rS/2, on an unstable orbit.
Solution. The trajectory of a particle of mass m, moving in the spherically sym-

metric gravitational field described by the Schwarzschild metric can be found by
means of the relativistic Hamilton–Jacobi equation (7.102):

gμν ∂S

∂xμ

∂S

∂xν
− m2c2 = 0. (9.217)

http://dx.doi.org/10.1007/978-3-642-17381-3_7
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The components of the metric tensor are straightforwardly inferred from the form of
the Schwarzschild metric (9.128):

ds2 = gμνdxμdxν = c2
(
1 − rS

r

)
dt2 −

(
1 − rS

r

)−1
dr2 − r2dθ2 − r2 sin2 θ dϕ2,

(9.218)

where x0 = ct, x1 = r, x2 = θ, x3 = ϕ, and rS = 2GM/c2 is the Schwarzschild
radius of the central body ofmassM, which creates the gravitational field. As the field
has central symmetry, the motion takes place in a plane which contains the source
of the field (this is a general result, valid for any central field). We shall choose this
plane as defined by the condition θ = π/2. Then, the metric (9.218) becomes

ds2 = c2
(
1 − rS

r

)
dt2 −

(
1 − rS

r

)−1
dr2 − r2dϕ2,

from where

g00 = 1 − rS

r
, g11 ≡ grr = − 1

1 − rS
r

, g33 ≡ gϕϕ = −r2.

As gμλg
νλ = δν

μ, we have also

g00 =
(
1 − rS

r

)−1
, g11 ≡ grr = −

(
1 − rS

r

)
, g33 ≡ gϕϕ = − 1

r2
,

such that the Hamilton–Jacobi equation (9.217) becomes

(
1 − rS

r

)−1 1

c2

(
∂S

∂t

)2

−
(
1 − rS

r

)(∂S

∂r

)2

− 1

r2

(
∂S

∂ϕ

)2

− m2c2 = 0. (9.219)

Using the method of the separation of variables and taking into account that the
system is conservative (the Hamiltonian does not depend explicitly on time), while
the variable ϕ is cyclic, we shall seek the solution of (9.219) in the form

S ≡ S(t, r,ϕ) = −E0t + Sr(r) + Lϕ, (9.220)

where E0 is the total (conserved) energy of the particle of mass m, while L is the
angularmomentumof the particlewith respect to the centre of symmetry. The angular
momentum is also conserved in the case of a central force field. Introducing (9.220)
into (9.219) we find the following expression for the radial part Sr(r) of the action:

Sr(r) = 1

c

∫
dr

r

√
r2E2

0

(
1 − rS

r

)−2 − c2
(
m2c2r2 + L2

) (
1 − rS

r

)−1
. (9.221)
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In Hamilton–Jacobi formalism, the dependence r = r(t) is given by the equation

∂S

∂E0
= const., (9.222)

while the trajectory of the particle is determined by the equation

∂S

∂L
= const. (9.223)

Taking into account the relations (9.220) and (9.221), from (9.222) follows imme-
diately that

ct = E0

∫ (
1 − rS

r

)−1 [
(rE0)

2 − c2
(
1 − rS

r

) (
m2c2r2 + L2

)]− 1
2

rdr. (9.224)

With the notation

Ueff(r) ≡ c

r

√(
1 − rS

r

) (
m2c2r2 + L2

) = mc2

√
(
1 − rS

r

)(
1 + L2

m2c2r2

)
,

(9.225)

the dependence r = r(t) – given in integral form by the relation (9.224) – can be
written in differential form as follows:

dr

dt
= c

(
1 − rS

r

)
√

1 −
[

Ueff(r)

E0

]2
. (9.226)

This equation indicates that the function Ueff = Ueff(r) plays the role of an effective
potential energy, in the sense that, by analogy with the classical theory, the condition
E0 � Ueff(r) establishes the intervals of values of the radial coordinate r within
which the motion of the particle is allowed. In Fig. 9.12 we represented four curves
of variation of the reduced effective potential energy Ueff/mc2 as a function of the
ratio r/rS , corresponding to as many values of the angular momentum L.

The minima of the function Ueff(r) correspond to the stable orbits of the particle,
while themaxima correspond to unstable orbits. The values of the radii of the circular
orbits, as well as the corresponding values of the constant quantities E0 and L are
determined by the system of equation

{
Ueff(r) = E0,
dUeff

dr = 0,
(9.227)
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Fig. 9.12 Reduced effective potential energyUeff/mc2 for various values of the angularmomentum
L of the particle.

which leads to the following relations that have to be satisfied simultaneously:

E0 = cL

√
2

r

r − rS

rrS
(9.228)

and

r

rS
= L2

m2c2r2S

⎛

⎝1 ±
√

1 − 3m2c2r2S
L2

⎞

⎠ . (9.229)

The “+” sign in relation (9.229) corresponds to the stable orbits
(

d2Ueff
dr2 > 0

)
, while

the sign “−”, corresponds to the unstable ones
(

d2Ueff
dr2 < 0

)
. The closest stable orbit

from the centre of symmetry is characterized by the following parameters:

rstable
min = 3rS = 6GM

c2
, L

∣∣
r=rstable

min
= √

3mcrS = 2
√
3GmM

c
,

E0

∣∣
r=rstable

min
= 2

3

√
2mc2, (9.230)

and it corresponds to the point A on Fig. 9.13. The smallest value for the radius of
an unstable orbit is runstable

min = 3rS/2 and it is obtained in the limit L → ∞, E0 →
∞ (point B corresponding to the horizontal asymptote figured with dotted line in
Fig. 9.13).
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Fig. 9.13 Dependence of r/rS ≡ y on L/mcrS ≡ x. The upper branch gives the radius for stable,
and the lower for unstable orbits. The point B does not belong to the curve y− = y−(x), but to the
horizontal asymptote.

With the notations
L

mcrS
≡ x,

r

rS
≡ y, (9.231)

the relation (9.229) is written as

y± = x
(

x ±
√

x2 − 3
)

. (9.232)

The graphical representations of y± = y±(x), given by the relations

y+ = x
(

x +
√

x2 − 3
)

and y− = x
(

x −
√

x2 − 3
)

(9.233)

are shown in Fig. 9.13, in which the branch y+ = y+(x) corresponds to stable orbits,
while the branch y− = y−(x) corresponds to the unstable ones. Moreover,

lim
x→∞ y−(x) = lim

x→∞ x
(

x −
√

x2 − 3
)

= 3

2
, (9.234)

which justifies the value runstable
min = 3rS/2.

We note that the obvious difference compared to the classical case is that in a
Newtonian gravitational field there are stable circular orbits at any distance from the
centre of force, the radii of these orbits being given by the relation r = 1

GM

(
L
m

)2
.
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9.12 Proposed Problems

1. Show that the covariant derivative (corresponding to the Levi-Civita connection)
of the metric tensor gμν is zero.

2. Prove the following identities:

a. gμλ , ν = Γμν ,λ + Γλν , μ;
b. gμνg

μλ
,ρ = − gμλgμν , ρ;

c. gμλ
,ν = −Γ μ

ρνg
ρλ − Γ λ

ρνg
ρμ;

d. g,ν = ggλμgλμ , ν = − gλμg
λμ

,ν, g = det (gμν);
e. Γ μ

νμ = (ln |g|1/2)
,ν

.

3. Determine the connection coefficients associated to the metric

ds2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2.

4. Calculate the components of the Ricci tensor Rμν in a reference frame in which
g00 = 1 and gi0 = 0.

5. Show that the two-dimensional manifold with the metric

ds2 = dv2 − v2 du2

is flat. Also show that the component Pu of the four-momentum of a unit mass
particle is a constant, while the component Pv is not.

6. Prove Bianchi’s identity (9.78).
7. If A = det (Aμν), where Aμν is a second-order tensor, show that A is not a scalar.

In this case, the relation A;α = A,α is not true. How can the covariant derivative
A;α be expressed in terms of A,α and A?

8. Show that the line element

ds2 = R2 [dα2 + sin2 α
(
dθ2 + sin2 θ dϕ2)]

corresponds to a hypersphere of radius R in a four-dimensional Euclidean space,
that is to the locus of points situated at the distance R from some given point.

9. Starting from the standard expression of Fermat’s principle,

δ

∫
kidxi = 0,

where the integral is taken along a ray and ki, i = 1, 2, 3 are the components of
the wave vector, show that in a constant gravitational field Fermat’s principle is
written as

δ

∫
1

g00

(√
g00 dl − g0i dxi

) = 0,
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where dl is given by (9.212) and it represents the element of space-like length
along the ray.

10. Find the equations of motion of a particle of mass m, which is moving in the
axially symmetric gravitational field described by the Kerr metric, using the
method of separation of variables for the Hamilton–Jacobi equation

gμν ∂S

∂xμ

∂S

∂xν
− m2c2 = 0.

(Hint: One starts from the expression of the action as S = −E0t + Lϕ + Sr(r) +
Sθ(θ), where E0 is the total conserved energy of the particle, and L is the com-
ponent of the angular momentum of the particle along the symmetry axis of the
gravitational field.)



Appendix A
Vectors and Vector Analysis

A.1 Vector Algebra

A.1.1. Let ai , i = 1, 2, 3 be the components of a vector a in the orthonormal basis ui
of an Euclidean three-dimensional space. Using Einstein’s summation convention,
the analytical expression of a is

a = aiui . (A.1)

The analytical expression of the radius-vector is then

r = xiui . (A.2)

A.1.2. Let a and b be two arbitrary vectors. Skipping addition and subtraction,
one can define

1. The scalar product or dot product of the two vectors:

a · b = (aiui ) · (bkuk) = aibi = ab cos(̂a,b), (A.3)

since
ui · uk = δik . (A.4)

2. The vector product, or cross product of the two vectors:

a × b = −b × a = εi jka j bkui , |a × b| = ab sin(̂a,b), (A.5)

as well as

ui × u j = εi jkuk, us = 1

2
εsi jui × u j , (A.6)
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where

εi jk =
⎧
⎨

⎩

+1, if i, j, k are an even permutation of 1, 2, 3,
−1, if i, j, k are an odd permutation of 1, 2, 3,
0, if any two indices are equal,

(A.7)

is the Levi-Civita permutation symbol (see Sect.A.5).

One can easily verify the property

εi jkεlmn =
∣∣∣∣∣∣

δil δim δin
δ jl δ jm δ jn

δkl δkm δkn

∣∣∣∣∣∣
. (A.8)

For i = l, (A.8) becomes

εi jkεimn = δ jmδkn − δ jnδkm, (A.9)

while for i = l, j = m it becomes

εi jkεi jn = 2δkn. (A.10)

Obviously, εi jkεi jk = 3! = 6.
A.1.3. Let a,b, c be three arbitrary vectors. With these vectors one can define the

following two types of product:

1. The mixed product
a · (b × c) = εi jkai b j ck, (A.11)

in particular,
ui · (u j × uk) = εi jk . (A.12)

2. The double cross product

a × (b × c) = (a · c)b − (a · b)c. (A.13)

A.2 Orthogonal Coordinate Transformations

The transformation from a three-dimensional orthogonal Euclidean coordinate sys-
tem S(Oxyz) to another system S′(O ′x ′y′z′) can be accomplished by three main
procedures:

i) translation of axes;
ii) rotation of axes;
iii) mirror reflection.
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The first two types of transformations do not change the orientation of the axes
of S′ with respect to S (proper transformations), while under mirror reflection
(i.e. x ′ = −x, y′ = y, z′ = z) a right-handed coordinate system transforms into a
left-handed coordinate system (improper transformation). There are also possible
combinations of these transformations, with the observation that a succession of
two proper/improper transformations gives a proper transformation, while a proper
transformation followed by an improper transformation leads to an improper trans-
formation.

Suppose that S and S′ have the same origin, and let ui ,u′
i , i = 1, 2, 3 be the

orthonormal associated bases. Since

r = xiui = x ′
iu

′
i , (A.14)

we have

x ′
i = aik xk, aik = u′

i · uk,

xi = aki x
′
k, aki = u′

k · ui , i, k = 1, 2, 3, (A.15)

as well as

u′
i = aikuk,

ui = akiu′
k . (A.16)

The coefficients aik form the matrix of the orthogonal transformation (A.15)1, and
aki – the matrix of the inverse transformation (A.15)2.

The invariance of the distance between two points,

r2 = xi xi = x ′
k x

′
k,

yields the orthogonality condition

aikaim = δkm, i, k, m = 1, 2, 3. (A.17)

Using the rule of the product of determinants, we find

det(aik) = ±1. (A.18)

On the other hand,

det(aik) = εi jka1i a2 j a3k, i, j, k = 1, 2, 3, (A.19)

that is
εi jka1i a2 j a3k = ±1, (A.20)
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or
εi jkali amjank = ±εlmn = εlmn det(aik), l,m, n = 1, 2, 3. (A.21)

Here the sign “+” corresponds to the case when the frames have the same orientation,
and “−” to the case when the orientations are different.

Under a change of orthonormal basis, we have

p + q = piui + qiui

= piamiu′
m + qiamiu′

m = p′
mu

′
m + q ′

mu
′
m = p′ + q′,

p · q = piqi = (ami p
′
m)(asiq

′
s) = δms p

′
mq

′
s = p′

sq
′
s = p′ · q′,

p × q = εi jk p jqkui = εi jkamjaskali p
′
mq

′
su

′
l = (p′ × q′) det(aik),

p · (q × r) = εi jk piq jrk = εi jkali amjank p
′
lq

′
mr

′
n

= p′ · (q′ × r′) det(aik). (A.22)

Consequently, the addition (subtraction) and dot product of two vectors do not change
when changing the basis, while the cross product and the mixed product (of polar
vectors) change sign when the bases have different orientations.

We call scalars of the first kind or scalar invariants those quantities whose sign
does not depend on the basis orientation (e.g., temperature, mass, mechanical work,
electric charge, etc.), and scalars of the second kind or pseudoscalars those quantities
which change sign when the basis changes its orientation (e.g., magnetic flux, dΦ =
B · dS, the moment of a force F with respect to an axis Δ, MΔ = uΔ · (r × F), etc.).

We call polar vector or proper vector a vector which transforms to its negative
under the inversion of its coordinate axes (electric field intensity, velocity of a particle,
gradient of a scalar, etc.), and axial vector or pseudovector a vector which is invariant
under inversion of coordinate axes (magnetic induction, angular velocity, etc).

A.3 Elements of Vector Analysis

A.3.1 Scalar and Vector Fields

If to each point P of a domain D of the Euclidean space E3 one can associate a value
of a scalar ϕ(P), in D is defined a scalar field. If to each point P one can associate
a vector quantity A(P), in D is defined a vector field.

A scalar (or vector) field is called stationary if ϕ (or A) do not explicitly depend
on time. In the opposite case, the field is non-stationary.
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A.3.2 Frequently Occurring Integrals

In classical/phenomenological electrodynamics one encounters three types of inte-
grals:

1. Line integral ∫ P2

P1

a · ds

along a curve C , taken between the points P1 and P2, where a is a vector with
its origin on the curve, and ds is a vector element of C . This integral is called
circulation of the vector a along the curve C , between the points P1 and P2. If
the curve C is closed, the circulation is denoted by

∮

C
a · ds.

2. Double integral ∫∫
a · dS =

∫

S
a · dS =

∫

S
a · n dS,

where a is a vector with its origin on the surface S, dS is a vector surface element,
and n is the unit vector of the external normal to dS. This integral is called the
flux of the vector a through the surface S. If S is a closed surface, the integral is
denoted by ∮

S
a · dS.

3. Triple integral

∫∫∫
a dτ =

∫

V
a dτ =

∫

V
a dr =

∫

V
a dV,

where V is the volume of the three-dimensional domain D ⊂ E3, and a has its
origin at some point of D.

A.3.3 First-Order Vector Differential Operators

The nabla or del operator is defined as

∇ = ∂

∂x1
u1 + ∂

∂x2
u2 + ∂

∂x3
u3. (A.23)
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By applying it in different ways to scalars and vectors, we obtain the gradient, diver-
gence, and curl.

1. Gradient.1 Let ϕ(r) be a scalar field, with ϕ(r) a continuous function with
continuous derivative in D ⊂ E3. The vector field

A = gradϕ = ∇ϕ = ∂ϕ

∂xi
ui , i = 1, 2, 3 (A.24)

is the gradient of the scalar field ϕ(r). The vector field A defined by (A.24) is
called conservative.

Equipotential surfaces. Consider the fixed surface

ϕ(x, y, z) = C(= const.). (A.25)

Then dϕ = ∇ϕ · dr = 0 shows that at every point of the surface (A.25) the vector
∇ϕ is oriented along the normal to the surface. Giving values to C , one obtains
a family of surfaces called equipotential surfaces, or level surfaces.

Field lines. Let A(r) be a stationary vector field, and C – a curve given by its
parametric equations xi = xi (s), i = 1, 2, 3. If at every point the field A is tan-
gent to the curve C , then the curve is a line of the vector field A. The differential
equations of the field lines are obtained by projecting on axes the vector relation
A × dr = 0, where dr is a vector element of the field line.

Directional derivative. Let us project the vector ∇ϕ unto the direction defined by
the unit vector u. Since dr = u|dr| = u ds, where ds is a curve element in the
direction u, we have

(∇ϕ) · u = (∇ϕ)u = dϕ

ds
. (A.26)

If, in particular, u is the unit vector n of the external normal to the surface (A.25),
then

∇ϕn = dϕ

dn
≥ 0, (A.27)

meaning that the gradient is oriented along the normal to the equipotential sur-
faces, and points in the direction of the greatest rate of increase of the scalar
field.

1As a matter of fact, gradient, divergence, and curl are not bona fide first-order vector differential
operators, but the results of the nabla operator (Hamilton’s operator) action, in different ways,
upon scalar and/or vector fields. Note that the Laplacian � = ∇ · ∇ = ∇2 and the d’Alembertian

� = 1
v2

∂2

∂t2
− � are true differential operators, but of the second order.
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2. Divergence. Consider a continuously differentiable vector fieldA(r). The scalar-
valued function

divA = ∇ · A = ∂Ai

∂xi
= ∂i Ai = Ai,i , i = 1, 2, 3 (A.28)

is called the divergence of the vector field A(r). If the vector field A(r) satisfies
the condition

∇ · A = 0, (A.29)

then it is called source-free or solenoidal. The lines of such a field are closed
curves (e.g. the magnetostatic field).

3. Curl. The curl (or rotor) of a vector field A(r) is another vector field B(r)
defined as

B = ∇ × A = ui εi jk∂ j Ak . (A.30)

If the field A(r) has the property

∇ × A = 0, (A.31)

then it is called irrotational or curl-free (e.g. the velocity field of a fluid that moves
in laminar flow regime).

A.3.4 Fundamental Theorems

A.3.4.1 Divergence theorem

Consider a spatial domain D bounded by the surface S, and a vector field A(r) of
class C1 in D and C0 in D (the closure of the domain D, consisting of all the points
of D and its boundary surface S). It can be shown that

∮

S
A · n dS =

∫

V
∇ · A dτ , (A.32)

which is the mathematical expression of the divergence theorem. It is also called
the Green–Gauss–Ostrogradsky theorem, after Johann Carl Friedrich Gauss (1777–
1855), George Green (1793–1841), and Mikhail Ostrogradsky (1801–1862). Here n
is the unit vector of the external normal to S.

Let us now diminish the surface S, so that the volume V becomes smaller and
smaller. In the limit, we have

∇ · A = lim
Δτ→0

1

Δτ

∮

S
A · n dS. (A.33)
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This formula can be considered as the definition of the divergence at a point. It
is useful because it expresses divergence independently of any coordinate system
(intrinsic relation). If at some point we have ∇ · A > 0, we say that at that point
there is a source; if ∇ · A < 0, that point is a sink ; if ∇ · A = 0, the point is a node.

A.3.4.2 Stokes Theorem

Let C be any closed curve in the three-dimensional Euclidean space, and let S be
any surface bounded by C . If A is a vector field of class C1 in C ∪ S, then

∮

C
A · dl =

∫∫
(∇ × A) · dS =

∫

S
(∇ × A) · n dS. (A.34)

This is the Stokes theorem, named after George Stokes (1819–1903) (sometimes
called the Stokes–Ampère theorem). If n is the unit vector of the external normal to
S, then the circulation on C is given by the right-hand screw rule. In particular, if
A = ∇ϕ, we have ∮

C
A · dl =

∮

C
dϕ = 0. (A.35)

Contracting the surface S until it becomes an infinitesimal quantity, in the limit
we may write

(∇ × A)n = n · (∇ × A) = lim
ΔS→0

1

ΔS

∮

C
A · dl, (A.36)

which is the intrinsic definition of curlA.

A.3.5 Some Consequences of the Divergence Theorem
and Stokes Theorem

Let A(r) = ϕ(r) e, where ϕ(r) is a scalar field of class C1 in D ⊂ E3, and e is a
constant vector. Formula (A.32) then yields

∮

S
ϕ dS =

∫

V
∇ϕ dτ , (A.37)

while (A.34) leads to ∮

C
ϕ dl =

∫

S
(n × ∇ϕ) dS. (A.38)
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If in (A.32) we choose A = e × B, where B is a vector field of class C1 in D, the
result is ∮

S
n × B dS =

∫

V
∇ × B dτ . (A.39)

Consider, now, the vector field A of the form A = ψ∇ϕ, where ψ ∈ C1(D) and
ϕ ∈ C2(D). Formula (A.32) leads to

∫

V
(∇ψ · ∇ϕ + ψΔϕ) dτ =

∮

S
ψ

∂ϕ

∂n
dS . (A.40)

Interchanging ϕ and ψ in (A.40), then subtracting the result from (A.40), we obtain

∫

V
(ψΔϕ − ϕΔψ) dτ =

∮

S

(
ψ

∂ϕ

∂n
− ϕ

∂ψ

∂n

)
dS, (A.41)

where (ϕ,ψ) ∈ C2(D) ∪ C1(D).
Relations (A.40) and (A.41) are known as Green’s identities.

A.3.6 Useful Formulas

The nabla operator, ∇, is sometimes applied to products of (scalar or vector) func-
tions, or can be found in successive operations (∇ · ∇ϕ, etc.). Here are some useful
formulas, frequently encountered in electrodynamics:

∇(ϕψ) = ϕ∇ψ + ψ∇ϕ, (A.42)

∇ · (ϕA) = ϕ∇ · A + A · ∇ϕ, (A.43)

∇ × (ϕA) = ϕ∇ × A + (∇ϕ) × A, (A.44)

∇ · (A × B) = B · ∇ × A − A · ∇ × B, (A.45)

∇(A · B) = A × (∇ × B) + B × (∇ × A)

+ (A · ∇)B + (B · ∇)A, (A.46)

∇ × (A × B) = A∇ · B − B∇ · A
+ (B · ∇)A − (A · ∇)B, (A.47)

∇ · (∇ × A) = 0, (A.48)

∇ × (∇ϕ) = 0, (A.49)

∇ · ∇ϕ = ∇2ϕ = Δϕ; Δ = ∂2

∂xi∂xi
= ∂i∂i , (A.50)

∇ × (∇ × A) = ∇(∇ · A) − ΔA. (A.51)
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If r is the radius-vector of some point P ∈ E3 with respect to the origin of the
Cartesian coordinate system Oxyz, then

∇r = r
r

= ur , |∇r | = 1,

∇ · r = 3,

∇ × r = 0,

∇
(
1

r

)
= − r

r3
,

Δ

(
1

r

)

r 
=0

= 0, (A.52)

Δ

(
1

r

)
= −4πδ(r),

Δ

(
1

|r − r′|
)

= −4πδ(r − r′).

If A is a constant vector, then (A.45)–(A.47) and (A.52) yield

∇ · (A × r) = 0, (A.53)

∇(A · r) = A, (A.54)

∇ × (A × r) = 2A. (A.55)

Given the fields ϕ(r) and A(r), with r = |r|, one can show that

∇ϕ = ϕ′ur ,
∇ · A(r) = ur · A′, (A.56)

∇ × A(r) = ur × A′.

where

ϕ′ = dϕ

dr
, A′ = dA′

dr
, ur = r

r
.

A.4 Second-Order Cartesian Tensors

A system of three quantities Ai , i = 1, 2, 3 which transform according to (A.15)
upon a change of basis, that is

A′
i = aik Ak, i, k = 1, 2, 3, (A.57)
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where aik satisfy the orthogonality condition (A.17), form a first-order orthogonal
affine tensor, or an orthogonal affine vector.

A systemof 32 = 9 quantities Tik, i, k = 1, 2, 3which transform like the product
Ai Bk , that is according to the rule

T ′
ik = ai j akmTjm, i, j, k,m = 1, 2, 3 (A.58)

is a second-order orthogonal affine tensor. If in (A.58) we set i = k and use the
orthogonality condition (A.17), we have

T ′
i i = ai j aimTjm = δ jmTjm = Tmm . (A.59)

The sum Tii = T11 + T22 + T33 is called trace (Tr) or spur (Sp) of the tensor
Tik . The relation (A.59) shows that the trace is invariant under the coordinate change
(A.15).

A tensor Tik is called symmetric if Tik = Tki , and antisymmetric if Tik = −Tki .
In an n-dimensional Euclidean space, En , a symmetric tensor has (C2

n ) = n(n +
1)/2 distinct components, and an antisymmetric tensor hasC2

n = n(n − 1)/2 distinct
components. Therefore, in E3 a symmetric tensor has 6 independent components,
while an antisymmetric tensor has 3 distinct components.

An antisymmetric tensor is characterized by Tii = 0 (no summation), i.e. the
elements on the principal diagonal are zero.

A tensor with the property Tik = 0 (i 
= k) is called diagonal. Such a tensor is, for
example, the Kronecker symbol, also named the second-order symmetric unit tensor
δik, i, k = 1, 2, 3. Its components do not change upon a change of coordinates.
Indeed,

δ′
ik = ailakmδlm = ailakl = δik .

Given the antisymmetric tensor Aik , let us denote

A12 = A3,

A23 = A1,

A31 = A2,

or, in a condensed form,

Ai j = εi jk Ak,

Ai = 1

2
εi jk A jk, i, j, k = 1, 2, 3. (A.60)

The ordered system of objects (quantities, numbers, etc.) Ai form a pseudovector,
called the pseudovector associated with the antisymmetric tensor Aik . Such a situa-
tion is encountered in the case of the cross product of two polar vectors. Taking into
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account that any second-order tensor can be written as a sum of a symmetric and an
antisymmetric tensor,

Aik = 1

2
(Aik + Aki ) + 1

2
(Aik − Aki ) , (A.61)

we can write

ci = (a × b)i = εi jka j bk = 1

2
εi jkc jk , (A.62)

where
c jk = a jbk − akb j . (A.63)

Consequently, the vector associated with a second-order antisymmetric tensor is a
pseudovector. The antisymmetric tensor Aik and the pseudovector Ai = 1

2 εi jk A jk are
said to be dual to each other.

A.5 Cartesian Tensors of Higher Order

An order-p tensor or tensor of type p in E3 is a system of 3p components which,
under an orthogonal transformation of coordinates, transform according to

T ′
i1i2...i p = ai1 j1ai2 j2 . . . aip jp Tj1 j2... jp , i1, . . . , i p, j1, . . . , jp = 1, 2, 3. (A.64)

An order-p pseudotensor in E3 is a system of 3p components which, under an
orthogonal transformation of coordinates, transform according to

T ∗′
i1i2...i p = [det(aik)] ai1 j1ai2 j2 . . . aip jp T

∗
j1 j2... jp , i1, . . . , i p, j1, . . . , jp = 1, 2, 3.

(A.65)
Inotherwords, under a proper orthogonal transformation, characterizedbydet(aik) =
+1, pseudotensors transform like tensors, while under an improper orthogonal trans-
formation, for which det(aik) = −1, there appears a change of sign. Comparing
(A.65) and (A.21), we conclude that the Levi-Civita permutation symbol (A.7) is a
pseudotensor. It is called the third-order totally antisymmetric unit pseudotensor. It
will therefore transform according to the rule

ε′
i jk = [det(aik)] aila jmaknεlmn. (A.66)

In view of (A.21), we then have

ε′
i jk = [det(aik)]

2 εi jk = εi jk, (A.67)

which says that the components of εi jk do not depend on the choice of orthonormal
basis.
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B.1 n-Dimensional Spaces

An n-dimensional space Sn is a set of elements, called points, which are in biu-
nivocal and bicontinuous correspondence with n real variables x1, x2, . . . , xn . The
variables x1, x2, . . . , xn are called coordinates. To a set of values of the coordinates
corresponds a single point and vice-versa. The number of coordinates defines the
dimension of the space.

Let x ′1, . . . , x ′n be another set of coordinates in Sn and consider the transformation

x ′ν = h(xμ), μ, ν = 1, 2, . . . , n, (B.1)

where h is a function mapping Sn to itself. If the Jacobian of the transformation (B.3)
is different from zero,

J = ∂(x ′1, . . . , x ′n)
∂(x1, . . . , xn)


= 0, (B.2)

then the transformation (B.1) is (at least locally) reversible, or biunivocal, and we
also have

xμ = h−1(x ′ν), μ, ν = 1, 2, . . . , n, (B.3)

meaning that x ′1, . . . , x ′n are also a system of coordinates in Sn .
A transformation like (B.1) or (B.3) is called coordinate transformation. The

transformations (B.3) and (B.1) are inverse to each other. If the variables x ′μ are
linear with respect to xν , then the transformation (B.1) is called linear of affine. (An
affine transformation is any transformation that preserves collinearity and ratios of
distances.)

If in Sn one defines the notion of distance between two points (called a metric),
the space Sn is called metric space.
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Let f (x1, . . . , xn) be a function of coordinates.Under a coordinate transformation
(B.1), the functional form of f is changed:

f (xμ) = f (h−1(x ′μ)) = ( f ◦ h−1)(x ′μ) = f ′(x ′μ), (B.4)

with the notation f ′ = ( f ◦ h−1). A function which satisfies

f (x1, . . . , xn) = f ′(x ′1, . . . , x ′n), (B.5)

is an invariant.
Functions of coordinates describing physical quantities can have more compli-

cated transformation properties under coordinate transformations. If the coordinate
transformations form a continuous group, we say that those functions transform
under a representation of that group. In that case, the system is covariant under the
transformation of coordinates, i.e. the equations of motion characterizing the system
keep their form upon a coordinate transformation. In that case, invariants are formed
also from combinations of different representations of the group of transformations.
In Chap.7 there are many examples of Lorentz invariants formed by combinations
of vectors and tensors.

B.2 Contravariant and Covariant Vectors

Differentiating relation (B.1), we have

dx ′ν = ∂x ′ν

∂xμ
dxμ = xν

μ dx
μ, μ, ν = 1, 2, . . . , n, (B.6)

where we denoted

xν
μ = ∂x ′ν

∂xμ
, (B.7)

and used Einstein’s summation convention over repeated indices.
A system of n quantities (objects) A1, . . . , An which transform according to (B.6),

i.e.
A′ν = xν

μA
μ, (B.8)

form a first-order contravariant tensor, or a tensor of type (1, 0), or an n-dimensional
contravariant vector. The quantities Aμ, μ = 1, 2, . . . , n are the vector components
in xμ coordinates, while A′μ are the components of the same vector in x ′μ coordinates.
Observing that

dxμ = ∂xμ

∂x ′ν dx
′ν = xμ

νdx
′ν, (B.9)

http://dx.doi.org/10.1007/978-3-642-17381-3_7
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where

xμ
ν = ∂xμ

∂x ′ν , (B.10)

one can define the inverse (relative to (B.8)) transformation

Aμ = xμ
ν A′ν . (B.11)

Consider now the scalar function f (xμ), μ = 1, 2, . . . , n and take its partial deriv-
atives with respect to x ′μ:

∂ f

∂x ′μ = ∂ f

∂xν

∂xν

∂x ′μ = xν
μ

∂ f

∂xν
, μ, ν = 1, 2, . . . , n. (B.12)

A set of n quantities Bμ, μ = 1, 2, . . . , n which transform according to (B.12), that
is

B ′
μ = xν

μBν, (B.13)

define a first-order covariant tensor, or a tensor of type (0, 1), or an n-dimensional
covariant vector. The inverse transformation is

Bν = xμ
ν B

′
μ. (B.14)

In the Euclidean space with Cartesian orthogonal coordinates, xμ
ν = xν

μ, hence there
is no distinction between contravariant and covariant vectors.

It can be easily shown that the contracted product of a contravariant and a covariant
vector is an invariant. Indeed,

A′νB ′
ν = xν

μx
λ
ν A

μBλ = δλ
μA

μBλ = AμBμ = AμB
μ. (B.15)

Observation:
In tensor analysis, covariance and contravariance describe how the quantitative

description of certain geometrical or physical entities changes when passing from
one coordinate system to another. To be coordinate system invariant, vectors like
radius-vector, velocity, acceleration, their derivatives with respect to time, etc., must
contra-vary with the change of basis to compensate. That is, the components must
vary oppositely to the change of basis. For a dual vector (covector), like the gradient,
to be coordinate system invariant, its components must co-vary with the change of
basis, that is its components must vary by the same transformation as the basis. If,
for example, vectors have units of distance (radius vector), the covectors have units
of inverse of distance. This distinction becomes very important in general relativity.
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B.3 Second-Order Tensors

A set of n2 quantities T μν form a second-order contravariant tensor if, upon a
coordinate change (B.1), they transform as the product AμBν , that is according to

T ′μν = xμ
λx

ν
ρT

λρ,

T μν = xμ
λx

ν
ρT

′λρ. (B.16)

A set of n2 quantitiesUμν form a second-order covariant tensor if, upon a coordinate
change (B.1), they transform as the product AμBν , that is according to

U ′
μν = xλ

μx
ρ
νUλρ,

Uμν = xλ
μx

ρ
νU

′
λρ. (B.17)

A set of n2 quantities V μ
ν form a second-order mixed tensor if, upon a coordinate

change (B.1), they transform as the product AμBν , that is according to

V ′μ
ν = xμ

λx
ρ
νV

λ
ρ ,

V μ
ν = xμ

λx
ρ
νV

′λ
ρ . (B.18)

Such a tensor is the Kronecker symbol:

δ′μ
ν = xμ

λx
ρ
νδ

λ
ρ = xμ

λx
λ
ν = ∂x ′μ

∂xλ

∂xλ

∂x ′ν = ∂x ′μ

∂x ′ν = δμ
ν . (B.19)

A contravariant index of a tensor can be lowered using the metric tensor gμν , and
a covariant index can be raised using the inverse metric tensor gμν . One must take
care of the order of the indices. If the mixed tensor is symmetric, indices are written
on the same vertical line, one below the other.

One can show that the contracted product T μν AμBν μ, ν = 1, 2, . . . , n is an
invariant. Indeed,

T ′μν A′
μB

′
ν = xμ

λx
ν
ρx

σ
μx

κ
νT

λρAσBκ = δσ
λδκ

ρT
λρAσBκ = T λρAλBρ. (B.20)

The covariant second-order tensor Tμν is symmetric if Tμν = Tνμ, and antisym-
metric if Tμν = − Tνμ. These definitions are analogous for contravariant tensors. The
property of symmetry (antisymmetry) is invariant under coordinate transformations.

A second-order (contravariant or covariant) tensor can always be decomposed
into a sum of symmetric and antisymmetric parts,

Tμν = 1

2

(
Tμν + Tνμ

) + 1

2

(
Tμν − Tνμ

) = Sμν + Aμν, (B.21)

where Sμν = Sνμ and Aμν = −Aνμ.
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B.4 The Metric Tensor

Consider an m-dimensional Euclidean space Em and let y1, . . . , ym be the Cartesian
coordinates of a point P . The squared distance between P and an infinitely closed
point P ′ is

ds2 = dyJ dyJ , J = 1, 2, . . . ,m. (B.22)

Take now in Em an embedded submanifold Rn (n < m) and let x1, . . . , xn be the
coordinates of a point in Rn . Obviously,

yJ = yJ (x
1, . . . , xn), J = 1, 2, . . . ,m. (B.23)

The squared distance between two infinitely closed points in Rn is

ds2 = ∂yJ
∂xμ

∂yJ
∂xν

dxμdxν = gμνdx
μdxν, (B.24)

where we denoted

gμν(x
1, . . . , xn) = ∂yJ

∂xμ

∂yJ
∂xν

, J = 1, 2, . . . ,m; μ, ν = 1, 2, . . . , n. (B.25)

The bilinear form (B.24) is positive definite and, according to (B.20), it is invariant
under coordinate changes. Since dxμ and dxν are contravariant vectors, it results
that gμν is a second-order covariant symmetric tensor, called the metric tensor. (The
terms metric and line element are often used interchangeably.)

Since
dxμ = gμνdx

ν, (B.26)

we may write
ds2 = dxμdx

μ.

But in this case relation (B.26) is also true for the components of any vector Aμ:

Aμ = gμν A
ν, μ, ν = 1, 2, . . . , n. (B.27)

Relations (B.27) can be considered as a system of n algebraic equations with n
unknowns A1, . . . , An . Solving the system by Cramer’s rule, we obtain

Aν = gνλAλ, ν,λ = 1, 2, . . . , n, (B.28)

where

gνλ = Gνλ

g
(B.29)
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are the components of the contravariant metric tensor. Here Gνλ is the algebraic
complement of the element gνλ in the determinant

g = det(gνλ).

Since Gνλ = Gλν , we have gνλ = gλν . Relation (B.27) also shows that

Aμ = gμν A
ν = gμνg

νλAλ,

which yields
gμνg

νλ = δλ
μ. (B.30)

Using the metric tensor, one can lower or raise the indices of any tensor. In an Euclid-
ean space holds the relation gμν = δμν , so that Aμ = δμν Aν = Aμ. Consequently, on
such a manifold there is no distinction between contravariant and covariant indices.

B.5 Higher Order Tensors

In an analogous way can be defined tensors of any variance. For example, the system
of nα+β real quantities T

j1... jβ
k1...kα

form a tensor of order (α + β), or a type (α,β)

tensor, i.e. α-times covariant and β-times contravariant, if its components transform
according to

T
′ j1... jβ
k1...kα

= x p1
k1

. . . x pα

kα
x j1
i1

. . . x
jβ
iβ
T

i1...iβ
p1...pα . (B.31)

B.6 Tensor Operations

B.6.1 Addition

Two tensors can be added (subtracted) only if they have the same order and the same
variance. For example, the tensors Uμ

νλ and V μ
νλ can be added to give

T μ
νλ = Uμ

νλ + V μ
νλ . (B.32)

B.6.2 Multiplication

Let Ui1...iα
j1... jβ

and V
k1...kγ
m1...mδ be two tensors of arbitrary order and variance. Their product

is defined by
T

i1...iαk1...kγ

j1... jβm1...mδ
= Ui1...iα

j1... jβ
V

k1...kγ
m1...mδ , (B.33)
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being a tensor of order (α + β + γ + δ), (α + γ)-times contravariant and (β + δ)-
times covariant.

B.6.3 Contraction

Consider a mixed tensor (T ) of order p ≥ 2. The operation of contraction consists
in setting equal one contravariant index and one covariant index, and summing over
them.By one contraction, the order of the tensor reduces by two units. As an example,
consider the tensor T νλ

μ , and take ν = μ. The result is

T ′μλ
μ = xμ

ρ x
λ
κx

σ
μT

ρκ
σ = δσ

ρ x
λ
κT

ρκ
σ = xλ

κT
ρκ
ρ , (B.34)

which is the transformation of a contravariant vector.
In general, by setting equal the first γ covariance indices with the first γ con-

travariance indices of the tensor T i1...iα
j1... jβ

, one obtains the tensor U
iγ+1...iα
jγ+1... jβ

, of type
(α − γ,β − γ).

B.6.4 Raising and Lowering Indices

Consider the tensor T μ
νλρ and perform the product

gμσT
μ
νλρ = Tσνλρ, (B.35)

which is a covariant tensor. We call this operation index lowering (μ in our case). In
the same manner, an index can be raised:

gνσT μ
νλρ = T μσ

λρ . (B.36)

To lower (raise) n indices, this operation has to be accomplished n times.
The operations of lowering and raising indices do not modify the order of a tensor,

but only its variance.

B.6.5 Symmetric and Antisymmetric Tensors

Consider the tensor
T i1...iα
j1... jβ

(α,β ≥ 2) (B.37)
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on an n-dimensional Euclidean space. If its components do not change under a
permutation of a group of indices, either of contravariance or of covariance, we call
the tensor symmetric in that group of indices.

Let us consider, for the beginning, a totally symmetric tensor of type (α, 0). Due
to the symmetry, its number of free parameters is naturally lower than that of an
arbitrary type (α, 0) tensor. Namely, the number of distinct components is given by
the number of combinations with repetitions, into groups of α indices, formed with
1, 2, . . . , n. This number is given by

(
Cα
n

) = Cα
n+α−1 = n(n + 1) . . . (n + α − 1)

α! . (B.38)

An analogous formula is obtained for the number of free parameters of a totally
symmetric tensor of type (0,α).

If we consider the general tensor (B.37), symmetric in the first γ contravariance
indices i1, . . . iγ , then the number of its distinct components is

(
Cγ
n

)
nα+β−γ = Cγ

n+γ−1n
α+β−γ . (B.39)

As an example, let us take the second-order symmetric tensor Tμν . According to
(B.38), it has distinct n(n + 1)/2 components (6 components in three-dimensional
space, 10 in a four-dimensional space, etc).

If the tensor (B.37) changes its sign when permuting any two indices out of
a group of indices, either of contravariance or of covariance, the tensor is called
antisymmetric in that group of indices. Suppose that (T ) is antisymmetric in the first
γ covariance indices, and denote by [ j1 . . . jγ] the group of these indices. Then we
have

T i1...iα
[ j1... jγ] jγ+1... jβ

= (−1)I T i1...iα
( j ′1... j ′γ) jγ+1... jβ

, (B.40)

where
(
j ′1 . . . j ′γ

)
is an arbitrary permutation of indices j1 . . . jγ , and I the number of

inversions of indices needed in order to achieve the final ordering. In this category
falls, for example, the Levi-Civita permutation symbol εμνλρ.

The number of distinct components of the tensor (B.40) is Cγ
n nα+β−γ , i.e.

Cγ
n n

α+β−γ = n(n − 1)(n − 2) . . . (n − γ + 1)

γ! nα+β−γ . (B.41)

For example, the second-order antisymmetric tensor Aμν has n(n − 1)/2 distinct
components (3 in a three dimensional space, 6 in a four-dimensional space, etc.).
Since Aμν = −Aνμ, it results that Aμμ = 0 (no summation). In general, if a pair of
indices are equal in the group of antisymmetry indices, the corresponding tensor
component is zero.

A tensor with the property T μ
ν = 0 (μ 
= ν) is called diagonal. Such a tensor is

the Kronecker symbol δμ
ν .
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Observation:
The number of distinct components of a tensor diminishes if among components

there are supplementary relations. For example, if the symmetric tensor Tμν in Euclid-
ean three-dimensional space has zero trace, the number of distinct components is
6 − 1 = 5. In general, each independent relation between the components dimin-
ishes the number of independent components by one.

B.7 Tensor Variance: An Intuitive Image

As we have seen, the variance of tensors can be of two types, covariance and con-
travariance. Strictly speaking, one way of defining a co- or contravariant first-order
tensor is the one presented in Sect. B.2; in the following, we wish to provide a more
intuitive image about these concepts, and at the same time emphasize the necessity
of introducing them.

For an easier presentation, we shall refer in the following to a three-dimensional
space. Between the simplest, Cartesian type of coordinate system and the most gen-
eral coordinate system, there are two types of intermediate systems, namely:

1) orthogonal curvilinear coordinate systems (the coordinate axes are curvilinear,
but at each point the tangent vectors to the axes form an orthogonal trihedron –
see Fig.B.1c);

2) non-orthogonal rectilinear coordinate systems (the coordinate axes are straight
lines, but they form angles different from π/2 – see Fig.B.1d).

The orthogonal curvilinear coordinate systems are discussed in Appendix D,
where it is shown that the principal effect of the curving of axes is the appearance of
the Lamé coefficients. As we shall see, the non-orthogonality of the coordinate axes
brings about the necessity of introducing the variance of tensors.

To facilitate the graphical presentation, we shall use mainly two-dimensional
spaces (the generalization to three dimensions is trivial). Let us then consider on the
Euclidean plane a vector a, and express its components with respect to an orthogonal
and a non-orthogonal coordinate system (Fig.B.2).

In the first system (Fig.B.2a) we write

a1 = a · u1,

a2 = a · u2, (B.42)

and if we denote a1 = a1u1, a2 = a2u2, then we have

a = a1 + a2, (B.43)
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Fig. B.1 Four types of coordinate system: (a) Cartesian (orthogonal rectilinear), (b) general curvi-
linear, (c) orthogonal curvilinear, and (d) non-orthogonal rectilinear.

Fig. B.2 Two types of rectilinear/straight coordinate axes: (a) orthogonal and (b) non-orthogonal.

where u1 and u2 are the versors of the two axes, while a1 and a2 are the components
of the vector a in this basis (in other words, the orthogonal projections of the vector
a on the coordinate axes).
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In the second system (Fig.B.2b), we notice that there are two possibilities of
defining the components of the vector a:

1) by orthogonal projection on the axes, leading to the components denoted by a1
and a2;

2) by drawing parallels to the axes through the tip of the vector a, leading to the
components denoted by a′

1 and a
′
2.

Thus, in the first case we write

a1 = a · u1,

a2 = a · u2, (B.44)

but, with the notation a1 = a1u1 and a2 = a2u2, a relation like (B.43) is not valid
anymore, i.e.

a 
= a1 + a2. (B.45)

In the second case, denoting

a′
1 = a′

1u1,

a′
2 = a′

2u2, (B.46)

we find that a relation of the type (B.43) remains valid, i.e.

a = a′
1 + a′

2, (B.47)

but we cannot write anymore a relation of the type (B.42), since in this case

a′
1 
= a · u1,

a′
2 
= a · u2. (B.48)

In other words, the components a′
1 and a

′
2 are not the scalar products of the vector a

with the versors of the coordinate axes.
If we wish to have simultaneously valid relations of the type (B.44) and (B.45),

we have to introduce a new basis, called the dual basis.
Let u, v, and w be three linearly independent vectors in E3. By definition, they

form a basis. Then, any vector a in E3 can be written as

a = λu + μv + νw, (B.49)

where λ, μ, and ν are three scalars, which are called the components of the vector a
in the basis {u, v,w}.
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Let us introduce three more vectors, denoted by u∗, v∗, and w∗, satisfying the
following conditions:

⎧
⎨

⎩

u∗ · u = 1 ,
u∗ · v = 0 ,
u∗ · w = 0 ,

⎧
⎨

⎩

v∗ · u = 0 ,
v∗ · v = 1 ,
v∗ · w = 0 ,

⎧
⎨

⎩

w∗ · u = 0 ,
w∗ · v = 0 ,
w∗ · w = 1 .

(B.50)

For instance, the vectors u∗, v∗, and w∗ can be given by the relations

u∗ = v × w
(u, v,w)

,

v∗ = w × u
(u, v,w)

, (B.51)

w∗ = u × v
(u, v,w)

,

where (u, v,w) = u · (v × w) is the mixed product of the vectors.
From the definition, it follows that the vectors u∗, v∗, and w∗ are also linearly

independent, and thus they form a basis in E3. Such vectors are called dual to the
vectors u, v, and w, respectively, while their basis is called dual basis. Moreover,
one can easily check that the dual of a dual vector is the original vector, i.e.

(
u∗)∗ = u,

(
v∗)∗ = v, (B.52)

(
w∗)∗ = w.

Taking the scalar product of the vector (B.49) with the vectors u∗, v∗, and w∗ of
the dual basis and using (B.50), one can express the components of the vector in the
original basis as

λ = a · u∗,
μ = a · v∗, (B.53)

ν = a · w∗.

Returning to our problems, we notice that, using the vectors of the dual basis, we
can write

i) for the components a1 and a2 defined by (B.44):

a = a1 + a2,

where

a1 = a1u∗
1, with a1 = a · u1 = a · (

u∗
1

)∗
,

a2 = a2u∗
2, with a2 = a · u2 = a · (u∗

2

)∗
. (B.54)
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ii) for the components a′
1 and a

′
2 defined by (B.46):

a′
1 = a · u∗

1,

a′
2 = a · u∗

2, (B.55)

as well as
a = a′

1 + a′
2, with a′

1 = a′
1u1, a′

2 = a′
2u2.

The customary notations are different from the above, namely,

{
a′
1 = a1,

a′
2 = a2,

{
u∗
1 = u1,

u∗
2 = u2.

(B.56)

Thus, the vector a has two sets of components: one with lower indices,

a1 = a · u1,

a2 = a · u2, (B.57)

and another with upper indices,

a1 = a · u1,

a2 = a · u2. (B.58)

The components with lower indices are called covariant, while the ones with upper
indices – contravariant. The original basis is formed of covariant versors, while the
dual basis is formed with contravariant versors. Moreover, in Fig.B.2b one notices
that, if the angle between the axes becomes π/2 (the system becomes orthogonal),
then the two types of components coincide.

To conclude, in a non-orthogonal coordinate system, any vector has two sets of
components: covariant components, by means of which one writes the vector in the
dual, or contravariant, basis, and contravariant components, used to write the vector
in the original, or covariant, basis.

For example, in the case of a three-dimensional non-orthogonal frame, the radius
vector of a point can be written as follows:

1) in dual (contravariant) basis, using the covariant components x1, x2, and x3:

r = x1u1 + x2u2 + x3u3;

2) in the original (covariant) basis, using the contravariant components x1, x2,
and x3:

r = x1u1 + x2u2 + x3u3.
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Clearly,

dr = dx1u1 + dx2u2 + dx3u3,

dr = dx1u1 + dx2u2 + dx3u3,

therefore the metric of the space can be written in the following ways:

ds2 = |dr|2 = dr · dr

=
⎧
⎨

⎩

(
dx1u1 + dx2u2 + dx3u3

) · (
dx1u1 + dx2u2 + dx3u3

)
,(

dx1u1 + dx2u2 + dx3u3
) · (

dx1u1 + dx2u2 + dx3u3
)
,(

dx1u1 + dx2u2 + dx3u3
) · (

dx1u1 + dx2u2 + dx3u3
)
.

With the new notations, relations (B.50) can be written in a condensed manner as

ui · u j = δij , (B.59)

hence

ds2 = |dr|2 = dr · dr =
⎧
⎨

⎩

(
dxiui

) · (
dx ju j

) = (
ui · u j

)
dxidx j ,(

dxiui
) · (

dx ju j
) = (

ui · u j
)
dxidx j ,(

dxiui
) · (

dx ju j
) = (

ui · u j
)
dxidx j .

(B.60)

Usually, one denotes the scalar products of the contravariant and covariant versors
by

(
ui · u j

) = gi j ,(
ui · u j

) = gi j , (B.61)

leading to
ds2 = gi j dxidx j = gi j dx

idx j = dxidx
i . (B.62)

Thus, we have arrived at the fundamental metric tensor, with contravariant com-
ponents, gi j , or covariant components, gi j . Relations (B.61) provide an intuitive
interpretation of the elements of the metric tensor.

Finally, from the last equality in (B.62) it follows that

dxi = gi j dx
j , (B.63)

which shows that the lowering of indices by means of the metric tensor appears
naturally. The equality gi j dxidx j = dxidxi from (B.62) leads to

dxi = gi j dx j , (B.64)

i.e. the raising of indices.



Appendix C
Representations of Minkowski Space

C.1 Euclidean-Complex Representation

Let x1 = x, x2 = y, x3 = z, x4 = ict be the coordinates of an event in Minkowski
space. The metric then is

− ds2 = dxμdxμ = gμνdx
μdxν = dx21 + dx22 + dx23 + dx24

= dx2 + dy2 + dz2 − c2dt2, (C.1)

which means
gμν = δμν, (C.2)

corresponding to a pseudo-Euclidean space. Such a representation of Minkowski
space is called Euclidean-complex representation.

The coordinates xμ, μ = 1, 2, 3, 4 of an event form a four-vector. The space
components x1, x2, x3 are denoted by xi , i = 1, 2, 3, and the time component by x4.
Under a change of coordinates the components of the position (or radius) four-vector
transform according to (see (A.57)):

x ′
μ = aμνxν, μ, ν = 1, 2, 3, 4. (C.3)

If x ′
μ are the coordinates of the same event, but determined in the inertial frame S′,

moving along Ox ≡ O ′x ′ axis, with velocity V with respect to S, then aμν are the
elements of the Lorentz transformation matrix

A =

⎛

⎜⎜⎝

Γ 0 0 i Vc
0 1 0 0
0 0 1 0

−i Vc 0 0 Γ

⎞

⎟⎟⎠ , (C.4)
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while (C.3) represents, in condensed form, the Lorentz transformation

t ′ = Γ

(
t − V

c2
x

)
,

x ′ = Γ (x − V t) ,

y′ = y, (C.5)

z′ = z.

A system of 4 quantities Aμ, μ = 0, 1, 2, 3 which transform like the coordinates,
that is according to

A′
μ = aμν Aν, μ, ν = 1, 2, 3, 4, (C.6)

form a four-vector. In Euclidean-complex representation the space components of a
four-vector are real, and the time component is imaginary.

A second-order four-tensor transforms as the product AμBν , that is according to

T ′
μν = aμλaνρTλρ, λ, ρ,μ, ν = 1, 2, 3, 4. (C.7)

In the same way, one can define four-tensors of order three, four, etc.
In the theory of relativity, a special role is played by the totally antisymmetric

fourth-order unit pseudotensor εμνλρ. It is defined as being +1,−1, 0, as the indices
are even, odd, or repeated-index permutation of 1, 2, 3, 4. The quantities εμνλρ form a
pseudotensor (sometimes called axial tensor) because they exhibit a tensor behaviour
under rotations and Lorentz boosts, but are not invariant under parity inversions.

It can be shown that

εμνλρεσκξζ =

∣∣∣∣∣∣∣∣

δμσ δμκ δμγ δμζ

δνσ δνκ δνξ δνζ

δλσ δλκ δλξ δλζ

δρσ δρκ δρξ δρζ

∣∣∣∣∣∣∣∣
. (C.8)

It then results

εμνλρεμνσκ = 2! (δλσδρκ − δλκδρσ),

εμνλρεμνλσ = 3! δρσ = 6 δρσ, (C.9)

εμνλρεμνλρ = 4! = 24.

With the help of εμνλρ one can define the dual of an antisymmetric tensor. If
Aμν is an antisymmetric tensor, then Aμν and the pseudotensor Ãμν = 1

2 εμνλρAλρ

are called dual to each other. Similarly, the third-order antisymmetric pseudotensor
Aμνλ = εμνλρAρ and the four-vector Aρ are dual to each other.
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There are four possible types ofmanifolds that can be embedded in the four-space,
which means that there exist four types of integrals:

1) Line integral, when the integration is performed along a curve.
2) Integral over a two-dimensional surface. In E3, as surface element, one uses d S̃i .

This is the integration differential and it is the dual of the antisymmetric tensor
dSik (see (A.60)):

d S̃i = 1

2!εi jkdS jk .

From the geometric point of view, d S̃i is a vector orthogonal to the surface ele-
ment and having the same modulus as the elementary area.

In the four-dimensional space,

d S̃μν = 1

2
εμνλρdSλρ, μ, ν,λ, ρ = 0, 1, 2, 3, (C.10)

therefore the dual of the tensor dSμν is also a second-order tensor and, geometri-
cally, represents a surface element equal to dSμν and orthogonal to it.

3) Integral over a three-dimensional hypersurface. In three dimensions, the volume
element is constructed as the mixed product of three arc elements corresponding
to three coordinate directions which intersect at a point. In four-dimensions, as
hypersurface element one defines the antisymmetric tensor dSμνλ, together with
its dual d S̃μ:

d S̃μ = 1

3!εμνλρ dSνλρ,

dSμνλ = εμνλρ d S̃ρ. (C.11)

Geometrically, the four-vector d S̃μ is orthogonal to the hypersurface element, and
has the modulus equal to the “area” of this element. In particular, dS0 = dx dy dz
is the projection of the hypersurface element on the hyperplane x0 = const.

4) Integral over the four-dimensional hypervolume. The volume element in this
case is

dΩ = dx0 dx1 dx2 dx3 = dSμ dxμ, (no summation overμ), (C.12)

where the hypersurface element is orthogonal to the arc element dxμ.

Using these notions, one can generalize the divergence theorem and the Stokes the-
orem in Minkowski space. In view of (C.12), we have

∮
AμdSμ =

∫
∂Aμ

∂xμ
dΩ, (C.13)
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which generalizes in four dimensions the divergence theorem. Formally, the integral
extendedover a hypersurface canbe transformed into an integral over the four-domain
enclosed by the hypersurface by substituting

dSμ → dΩ
∂

∂xμ
, μ = 0, 1, 2, 3. (C.14)

In a similar way, an integral over a two-dimensional surface, of element dSμν =
dxμ dxν , can be transformed according to

∫
∂Aμ

∂xν
dSμν =

∫
∂Aμ

∂xν
dxμ dxν =

∮
Aμdxμ, (C.15)

meaning that the circulation along a closed curve in four-dimensional space can be
transformed into an integral over the two-dimensional surface bounded by the curve,
by substituting

dxμ → dSμν
∂

∂xν
. (C.16)

After some index manipulation in (C.15), one obtains

∮
Aμdxμ = 1

2

∫ (
∂Aν

∂xμ
− ∂Aμ

∂xν

)
dSμν . (C.17)

One can also establish a formula connecting an integral over a two-dimensional
surface, and the boundary three-dimensional surface. As an example, if Aμν is an
antisymmetric tensor, we may write

∫
∂Aμν

∂xν
dSμ = 1

2

∫ (
∂Aμν

∂xν
dSμ + ∂Aνμ

∂xμ
dSν

)

= 1

2

∫ (
∂Aμν

∂xν
dSμ − ∂Aμν

∂xμ
dSν

)
.

If one denotes

d S̃μν → 1

2

(
dSμ

∂

∂xν
− dSν

∂

∂xμ

)
, (C.18)

if follows that ∫
∂Aμν

∂xν
dSμ =

∫
Aμνd S̃μν . (C.19)
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C.2 Hyperbolic Representation

Anevent inMinkowski space canbe also definedby the choice x0 = ct, x1 = x, x2 =
y, x3 = z, in which case the metric

ds2 = dxμ dx
μ = gμνdx

μdxν = c2dt2 − dx2 − dy2 − dz2 (C.20)

gives

g00 = +1,

g11 = g22 = g33 = −1, (C.21)

gμν(μ 
= ν) = 0.

A system of coordinates in a pseudo-Euclidean (e.g. Minkowski) space in which
the line element has the form: ds2 = ∑

e2μdx
2
μ, where eμ = ±1, is a Galilean coor-

dinate system. We have, therefore, above a Galilean coordinate system, while this
representation of Minkowski space is called hyperbolic.

Relations (C.21) show that in such a representation onemakes distinction between
contravariance and covariance indices. For example, in case of a four vector,

Aμ = gμν A
ν ⇒

{
A0 = g00A0 = A0,

Ai = gi i Ai = − Ai (no summation) .
(C.22)

The square of a four-vector is

AμAμ = A0A0 + Ai Ai = A0A0 − Ai Ai = invariant. (C.23)

InMinkowski space, the components of a contravariant four-vector transform accord-
ing to (B.8), where the transformation matrix is

(xν
μ) ≡ Λν

μ =

⎛

⎜⎜⎝

Γ − V
c Γ 0 0

− V
c Γ Γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ . (C.24)

If, for example, the relative motion of frames S and S′ takes place along Ox ≡ O ′x ′-
axis, then the contravariant components of Aμ transform according to

A′0 = Γ

(
A0 − V

c
A1

)
,

A′1 = Γ

(
−V

c
A0 + A1

)
,

A′2 = A2, (C.25)

A′3 = A3,
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while the covariant components obey the rule

A′
0 = Γ

(
A0 + V

c
A1

)
,

A′
1 = Γ

(
V

c
A0 + A1

)
,

A′
2 = A2, (C.26)

A′
3 = A3.

In view of (C.21) and (B.30), we can write

gμν = gμν, μ, ν = 0, 1, 2, 3. (C.27)

In Galilean coordinates, both the contravariant and covariant components of a four-
vector are real.

Let us have a look over the relations written in the previous section in Euclidean
complex representation. At the beginning, we choose the contravariant Levi-Civita
permutation symbol as

ε0123 = + 1. (C.28)

It then follows that

εμνλρ = gμσgνκgλυgρζε
σκυζ = − εμνλρ, (C.29)

because irrespective of the order of the four different indices, the product of the four
metric tensor components is − 1. Then we have

εμνλρεσκυθ = −

∣∣∣∣∣∣∣∣

δμ
σ δμ

κ δμ
υ δ

μ
θ

δν
σ δν

κ δν
υ δν

θ

δλ
σ δλ

κ δλ
υ δλ

θ

δρ
σ δρ

κ δρ
υ δ

ρ
θ

∣∣∣∣∣∣∣∣
. (C.30)

Summation over two, three, and four pairs of indices gives

εμνλρεσκλρ = − 2! δμν
σκ = − 2

(
δμ
σδν

κ − δμ
κδν

σ

)
,

εμνλρεσνλρ = −3! δμ
σ = − 6 δμ

σ , (C.31)

εμνλρεμνλρ = − 4! = − 24.

If Aμν is an antisymmetric tensor, its dual is the pseudotensor Ãμν = 1
2 ε

μνλρAλρ.

The product Ãμν Aμν is a pseudoscalar. In the same way, we observe that the anti-
symmetric pseudotensor εμνλρAρ and the four-vector Aμ are dual to each other.

The symbol of partial derivative ∂
∂xμ is a covariant four-vector, while the symbol

∂
∂xμ

is a contravariant four-vector.
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Consider now, as we already did in the Euclidean representation of Minkowski
space, the four possible types of integrals and the relations between them:

1) Line integral, with the arc element dxμ.
2) Integral over a two-dimensional surface, with the surface element

d S̃μν = 1

2
εμνλρdSλρ (C.32)

which, geometrically, is an area element orthogonal (and quantitatively equal) to
dSμν .

3) Integral over a three-dimensional hypersurface, of surface element

d S̃μ = − 1

3!ε
μνλρdSνλρ,

dSμνλ = εμνλρdS
ρ, (C.33)

such as
d S̃0 = −dS123 = dS123, etc. (C.34)

The four-vector d S̃μ has itsmodulus equal to the area of the hypersurface element,
being orthogonal to it.

4) Integral over a four-dimensional domain, the elementary hypervolume being

dΩ = dx0dx1dx2dx3 = dxμdSμ (no summation), (C.35)

where the line element dxμ and the hypersurface element dSμ are orthogonal.

The divergence theorem in this representation is

∮
AμdSμ =

∫
∂Aμ

∂xμ
dΩ, (C.36)

while the Stokes theorem takes the form
∮

Aμdx
μ = 1

2

∫ (
∂Aν

∂xμ
− ∂Aμ

∂xν

)
dSμν . (C.37)

Finally, the generalization of (C.19) in the hyperbolic representation of Minkowski
space is

∫
Aμνd S̃μν = 1

2

∫ (
∂Aμν

∂xν
dSμ − ∂Aμν

∂xμ
dSν

)
=

∫
∂Aμν

∂xν
dSμ. (C.38)
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C.3 Representation in General Curvilinear Coordinates

One can represent the Minkowski space in the most general manner in a system
of general curvilinear coordinates. These considerations are especially useful in the
study of the gravitational field which, according to general relativity, manifests itself
through the curvature of space-time. However, locally, the space-time is flat (of
Minkowski type) and the coordinate systems are in their turn locally defined. In
general curvilinear coordinates, the metric tensor gμν depends on the coordinates.

Let us first express the law of transformation of the Levi-Civita symbol when one
passes from the Galilean coordinates xμ to an arbitrary set of general curvilinear
coordinates, x ′μ = x ′μ(xν), μ, ν = 0, 1, 2, 3. According to the rule of transforma-
tion, we have

ε′
μνλρ = ∂xσ

∂x ′μ
∂xκ

∂x ′ν
∂xξ

∂x ′λ
∂xυ

∂x ′ρ εσκξυ, (C.39)

where εσκξυ is defined in the Galilean coordinates xμ, and ε′
μνλρ in the curvilinear

coordinates x ′μ.
If Aν

μ, μ, ν = 0, 1, 2, 3 is an arbitrary second-order mixed tensor, it can be shown
that

Aσ
μA

κ
ν A

ξ
λA

υ
ρεσκξυ = A εμνλρ, (C.40)

where A = det(Aν
μ). Relation (C.40) is a generalization in four dimensions of (A.21).

Then we may write

ε′
μνλρ = det

(
∂xμ

∂x ′ν

)
εμνλρ = 1

J
εμνλρ,

where

J = ∂(x ′0, x ′1, x ′2, x ′3)
∂(x0, x1, x2, x3)

(C.41)

is the functional determinant of the transformation xμ → x ′μ. Using the transforma-
tion rule, we have also

g′
μν = ∂xλ

∂x ′μ
∂xρ

∂x ′ν ηλρ,

where ηλρ = diag(1,−1,−1,−1) is the Minkowski metric tensor. If we take the
determinant of the above relation, we find g = 1

J 2 det(ημν), where g = det(g′
μν).

Since det(ημν) = − 1, we have

J = 1√−g
. (C.42)

We then define the antisymmetric unit tensor in curvilinear coordinates by

δμνλρ = √−g εμνλρ. (C.43)
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The transformation rule of the contravariant components εμνλρ is found in a similar
way:

ε′μνλρ = ∂x ′μ

∂xσ

∂x ′ν

∂xκ

∂x ′λ

∂xξ

∂x ′ρ

∂xυ
εσκξυ = J εμνλρ,

that is

δμνλρ = 1√−g
εμνλρ, (C.44)

with ε′μνλρ = δμνλρ. In view of (C.43) and (C.44), relation (C.29) yields

δμνλρ = g δμνλρ. (C.45)

If g = −1, we find the Galilean formula (C.29).
Let us now write the transformation rule of the four-dimensional elementary vol-

ume. InGalilean coordinates, dΩ = dx0dx1dx2dx3 is an invariant. In the curvilinear
coordinates x ′μ the element of volume is dΩ ′ = JdΩ . Since the four-volume must
be an invariant, in the new coordinates x ′μ not dΩ ′, but

√−g dΩ ′ has to be used as
integration (hyper)volume element:

dΩ → 1

J
dΩ ′ = √−g dΩ ′. (C.46)

If, as a result of integration overΩ of the quantity
√−g ϕ, withϕ a scalar, one obtains

an invariant, then
√−g ϕ is called a scalar density. In the same way are defined the

notions of vector density
√−g Aμ and tensor density

√−g T μν , respectively.
The elementary three-dimensional surface is

√−g dSμ = − 1

3!εμνλρ

√−g dSνλρ = − 1

3!δμνλρ dS
νλρ. (C.47)

Similarly, the two-dimensional surface element is

√−g d S̃μν = 1

2!
√−gεμνλρ dS

λρ = 1

2!δμνλρ dS
λρ. (C.48)

C.4 Differential Operators in General Curvilinear
Coordinates

In special relativity the fundamental equations of conservation involve the vector
or tensor four-divergence operators, written in terms of the usual derivatives. On
curved space-times the usual partial derivatives with respect to coordinates have to
be replaced by covariant derivatives, as we have explained in Sect. 9.4. Here are the
most important differential operators, expressed in curvilinear coordinates.

http://dx.doi.org/10.1007/978-3-642-17381-3_9
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As an auxiliary step, let us calculate the derivative

∂

∂xν
(
√−g) = − 1

2
√−g

∂g

∂xν
=

√−g

2g

∂g

∂xν
. (C.49)

But

∂g

∂xν
= ∂

∂xν

∣∣∣∣∣∣∣

g00 · · · g03
...

. . .
...

g30 · · · g33

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂g00
∂xν · · · ∂g03

∂xν

...
. . .

...

g30 · · · g33

∣∣∣∣∣∣∣
+ . . . +

∣∣∣∣∣∣∣

g00 · · · g03
...

. . .
...

∂g30
∂xν · · · ∂g33

∂xν

∣∣∣∣∣∣∣

= ∂g0σ

∂xν
G0σ + . . . + ∂g3σ

∂xν
G3σ = ∂gρσ

∂xν
Gρσ, (C.50)

where Gρσ is the algebraic complement of the element gρσ in the determinant g. By
means of (B.30), we have also

∂

∂xν

(√−g
) =

√−g

2

Gρσ

g
gρσ,ν =

√−g

2
gρσgρσ,ν,

which gives
1

2
gρσgρσ,ν = 1√−g

∂

∂xν

(√−g
)
. (C.51)

On the other hand, if in

Γ
μ
νλ = 1

2
gμσ

(
∂gσλ

∂xν
+ ∂gνσ

∂xλ
− ∂gλν

∂xσ

)

we set μ = λ, one obtains

Γ λ
νλ = 1

2
gσλgσλ,ν + 1

2
gσλ

(
∂gνσ

∂xλ
− ∂gλν

∂xσ

)
. (C.52)

Since the metric tensor is symmetric, and the expression in parentheses is antisym-
metric in the same indices (σ, λ), the last term vanishes. Relations (C.51) and (C.52)
then yield

Γ λ
νλ = 1√−g

∂

∂xν

(√−g
)
. (C.53)

This formula is of help in defining operators such as divergence, gradient, curl, and
d’Alembertian in general curvilinear coordinates.
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C.4.1 Divergence

Consider the contravariant vector Aν , and take its covariant derivative

∇μA
ν ≡ Aν

;μ = Aν
,μ + Γ ν

μλA
λ. (C.54)

Setting now ν = μ and using (C.53), we find

Aμ
;μ = Aμ

,μ + Γ
μ
μλA

λ = Aμ
,μ + 1√−g

∂

∂xλ

(√−g
)
Aλ,

or, if one suitably changes the summation index in the last term,

Aμ
;μ = 1√−g

∂

∂xμ

(√−gAμ
)
. (C.55)

This is the covariant four-divergence of Aμ.
Let us now consider the contravariant tensor Aμλ, and take its covariant derivative:

Aμλ
;ν = Aμλ

,ν + Γ λ
σν A

μσ + Γ μ
σν A

σλ. (C.56)

Setting now λ = ν and using (C.53), we have

∇ν A
μν ≡ Aμν

;ν = Aμν
,ν + Γ ν

σν A
μσ + Γ μ

σν A
σν

= Aμν
,ν + 1√−g

∂

∂xν

(√−g
)
Aμν + Γ μ

σν A
σν .

In the second term on the r.h.s. we made a convenient change of summation indices.
Therefore

Aμν
;ν = 1√−g

∂

∂xν

(√−gAμν
) + Γ μ

σν A
σν, (C.57)

which is the covariant four-divergence of Aμν . If Aμν is antisymmetric, and recalling
that Γ μ

σν is symmetric in the lower indices, we are left with

Aμν
;ν = 1√−g

∂

∂xν

(√−gAμν
)
. (C.58)

C.4.2 Gradient

Consider the scalar function Φ. Its covariant derivative reduces, obviously, to the
usual derivative, which is a covariant vector:

Φ;ν = Φ,ν = Aν . (C.59)



628 Appendix C: Representations of Minkowski Space

The contravariant components of Aν are

Aμ = gμν Aν = gμν ∂Φ

∂xν
. (C.60)

Introducing (C.50) into (C.55), we obtain the d’Alembertian2 of Φ:

Aμ
;μ = �Φ = 1√−g

∂

∂xμ

(√−ggμν ∂Φ

∂xν

)
. (C.61)

This is themost straightforwardmethod towrite the d’Alembertian (or the Laplacian)
in any coordinate system (see Appendix D).

C.4.3 Curl

Consider the covariant four-vector Aν and form the covariant antisymmetric four-
tensor

Fμν = Aν;μ − Aμ;ν .

But
Aν;μ − Aμ;ν = (

Aν,μ − Γ λ
μν Aλ

) − (
Aμ,ν − Γ λ

νμAλ

) = Aν,μ − Aμ,ν .

Consequently,
Fμν = Aν;μ − Aμ;ν = Aν,μ − Aμ,ν . (C.62)

The quantities (C.62) represent a four-dimensional curl, generalizing the notion of
three-dimensional curl. One observes that the quantities (C.62) do not depend on the
metric.

2This is also known as the Laplace–Beltrami operator. Rigorously speaking, the Laplace–Beltrami
operator (C.61) is the generalization of the Laplacian to an elliptic operator defined on a Riemannian

manifold, the “usual” d’Alembertian � = 1
v2

∂2

∂t2
− Δ being the particular form of the Laplace–

Beltrami operator in Minkowski space.



Appendix D
Curvilinear Coordinates

D.1 Curvilinear Coordinates

Let r be the radius-vector of some point P and xi , i = 1, 2, 3 its Cartesian coordi-
nates. Suppose that there exist three real independent parameters x ′i , so that

xi = xi (x ′k) , i, k = 1, 2, 3 . (D.1)

To be (at least locally) reversible, i.e. to have

x ′i = x ′i (xk) , i, k = 1, 2, 3 , (D.2)

it is necessary that the determinant of the Jacobian matrix be nonvanishing,

J = det

[
∂(x1, x2, x3)

∂(x ′1, x ′2, x ′3)

]

= 0. (D.3)

If we fix the values of two parameters, say x ′2 and x ′3, we obtain the curve x ′1 =
variable. In the same way one can obtain the curves x ′2 = variable and x ′3 = variable.
Thus, through each point of space pass three coordinate curves. The parameters x ′i
are called curvilinear coordinates of the point P .

If at the point P (or any other point) the vectors

ei = ∂r
∂x ′i , i = 1, 2, 3, (D.4)

tangent to the three coordinate curves, form a right orthogonal trihedron, then
x ′1, x ′2, x ′3 form an orthogonal coordinate system.

© Springer-Verlag Berlin Heidelberg 2016
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D.1.1 Element of Arc Length

An elementary displacement of the point P is written as

dr = ∂r
∂x ′i dx

′i = ei dx ′i . (D.5)

Condition (D.3) shows that the three vectors e1, e2, e3 are linearly independent,
therefore they form a basis. Indeed,

(e1, e2, e3) =
(

∂r
∂x ′1 ,

∂r
∂x ′2 ,

∂r
∂x ′3

)
= J

and the determinant of this matrix is non-zero. The squared arc element (the metric)
is

ds2 = dr · dr = (
ei dx ′i) · (

ekdx ′k) = gik dx
′i dx ′k, (D.6)

where gik is the covariant metric tensor.
If we fix x ′2 and x ′3, we obtain the elementary arc length on the coordinate curve

x ′1 = variable: (d1s)
2 = g11

(
dx ′1)2, that is (d1s) = √

g11
(
dx ′1). In a similar way,

we find two more relations. Therefore

(d1s) = √
g11

(
dx ′1) ,

(d2s) = √
g22

(
dx ′2) , (D.7)

(d3s) = √
g33

(
dx ′3) .

The elementary arc length is then

ds = (√
g11 dx

′1) u1 + (√
g22 dx

′2)u2 + (√
g33 dx

′3)u3, (D.8)

where u1,u2,u3 are the unit vectors of the basis vectors e1, e2, e3.

D.1.2 Area Element

The area element constructed, for example, on the length elements d1s and d2s, is

dS3 = d1s × d2s = ∂r
∂x ′1 × ∂r

∂x ′2 dx
′1 dx ′2,

|dS3| = |e1 × e2| dx ′1 dx ′2. (D.9)

Thus, dS3 is orthogonal to the plane determined by e1 and e2 (but not necessarily
pointing in the e3 direction).
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D.1.3 Volume Element

This quantity is found by taking the mixed product:

dτ = (d1s, d2s, d3s) = (e1, e2, e3) dx ′1 dx ′2 dx ′3 = √
g dx ′1 dx ′2 dx ′3 . (D.10)

D.2 First-Order Differential Operators in Curvilinear
Coordinates

All formulas obtained in Appendix C for the operators divergence, gradient, and curl
are, obviously, valid also in three dimensions. Omitting the “prime” superscript for
coordinates, we re-write the specified formulas:

divA = 1√
g

∂

∂xi
(√

gAi
)
, i = 1, 2, 3 , (D.11)

(gradΦ)i = ∂Φ

∂xi
, (gradΦ)i = gik

∂Φ

∂xk
, (D.12)

ΔΦ = 1√
g

∂

∂xi

(√
ggik

∂Φ

∂xk

)
. (D.13)

To express the curl-operator, we consider the antisymmetric tensor (see (C.62)):

Fik = Ak,i − Ai,k (D.14)

and let Bi be its associated dual (see (C.43)):

Bi = 1

2
√

g εi jk F
jk . (D.15)

Therefore, the covariant and contravariant components of curlA are

(curlA)i = 1

2
√

g εi jk F
jk,

(curlA)i = 1

2

1√
g
εi jk Fjk . (D.16)
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D.2.1 Differential Operators in Terms of Orthogonal
Components

If the basis vectors e1, e2, e3 form an orthogonal trihedron, the curvilinear coor-
dinates are called orthogonal. In such a coordinate system the metric tensor gik is
diagonal:

gik =
{

gi i , i = k (no summation),
0 , i 
= k.

(D.17)

In curvilinear orthogonal coordinates one usually utilizes the orthogonal (or phys-
ical) components, instead of contravariant and covariant components of vectors and
tensors. To find the transformation relations between the contravariant (covariant)
components of a vector A and its orthogonal components, we represent the vector
in the basis {ek}k=1,2,3, then take the dot product by the unit vector of the coordinate
curve on which the projection is made. Denoting by A(i) the orthogonal components,
we then have

A(i) = A · ui = Akek · ui = Ak√gkk uk · ui = Ak√gkk δik

= √
gi i A

i = √
gi i g

i i Ai = 1

gi i

√
gi i Ai = 1√

gi i
Ai (no summation),

or

Ai = 1√
gi i

A(i),

Ai = √
gi i A(i) . (D.18)

Using (D.18), we are now able to write the differential operators (D.11)–(D.16) in
curvilinear orthogonal coordinates:

divA = 1√
g

[
∂

∂x1

(√
g

g11
A(1)

)
+ ∂

∂x2

(√
g

g22
A(2)

)
+ ∂

∂x3

(√
g

g33
A(3)

)]
,

or, since g = g11 g22 g33,

divA = 1√
g

[
∂

∂x1
(√

g22g33 A(1)
) + ∂

∂x2
(√

g33g11 A(2)
)

+ ∂

∂x3
(√

g11g22 A(3)
)]

. (D.19)



Appendix D: Curvilinear Coordinates 633

Also,

(gradΦ)i = ∂Φ

∂xi
= √

gi i (gradΦ)(i) ,

(gradΦ)i = gi i
∂Φ

∂xi
= 1√

gi i
(gradΦ)(i) ,

which are, in fact, one and the same relation,

(gradΦ)(i) = 1√
gi i

∂Φ

∂xi
. (D.20)

Similarly,

ΔΦ = 1√
g

[
∂

∂x1

(√
g22g33

g11

∂Φ

∂x1

)
+ ∂

∂x2

(√
g33g11

g22

∂Φ

∂x2

)

+ ∂

∂x3

(√
g11g22

g33

∂Φ

∂x3

)]
. (D.21)

Finally,

(curlA)(i) = 1√
gi i

(curlA)i = 1

2

1√
gi i

εi jk F
jk (no summation over i). (D.22)

We shall present the detailed calculation of one component, the other two being
obtained by cyclic permutations. For example,

(curlA)(1) = √
g22g33 F

23 = √
g22g33 g22g33F23 = 1√

g22g33

(
∂A3

∂x2
− ∂A2

∂x3

)

= 1√
g22g33

[
∂

∂x2
(√

g33 A(3)
) − ∂

∂x3
(√

g22 A(2)
)]

.

The orthogonal components of curlA therefore are

(curlA)(1) = 1√
g22g33

[
∂

∂x2
(√

g33 A(3)
) − ∂

∂x3
(√

g22 A(2)
)]

,

(curlA)(2) = 1√
g33g11

[
∂

∂x3
(√

g11 A(1)
) − ∂

∂x1
(√

g33 A(3)
)]

, (D.23)

(curlA)(3) = 1√
g11g22

[
∂

∂x1
(√

g22 A(2)
) − ∂

∂x2
(√

g11 A(1)
)]

.
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Observation:
Sometimes one uses the notation

√
g11 = h1,√
g22 = h2,√
g33 = h3.

The quantities hi , i = 1, 2, 3 are called Lamé’s coefficients.

D.2.2 Differential Operators in Spherical and Cylindrical
Coordinates

D.2.3 Spherical Coordinates

In spherical coordinates, the metric of the Euclidean three-dimensional space reads

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dϕ2. (D.24)

We choose x1 = r, x2 = θ, x3 = ϕ and obtain the components of the metric tensor:

g11 = 1

g11
= 1,

g22 = 1

g22
= r2, (D.25)

g33 = 1

g33
= r2 sin2 θ,

which allow us towrite the differential operators in spherical coordinates, as follows:

divA = 1

r2 sin θ

[
∂

∂r

(
r2 sin θAr

) + ∂

∂θ
(r sin θAθ)

+ ∂

∂ϕ

(
r Aϕ

)]
, (D.26)

gradΦ = ∂Φ

∂r
ur + 1

r

∂Φ

∂θ
uθ + 1

r sin θ

∂Φ

∂ϕ
uϕ , (D.27)

ΔΦ = 1

r2

{
∂

∂r

(
r2

∂Φ

∂r

)
+ 1

sin θ

[
∂

∂θ

(
sin θ

∂Φ

∂θ

)

+ 1

sin θ

∂2Φ

∂ϕ2

]}
, (D.28)
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curlA = 1

r sin θ

[
∂

∂θ

(
Aϕ sin θ

) − ∂Aθ

∂ϕ

]
ur + 1

r sin θ

[
∂Ar

∂ϕ

− ∂

∂r

(
r Aϕ sin θ

)]
uθ + 1

r

[
∂

∂r
(r Aθ) − ∂Ar

∂θ

]
uϕ , (D.29)

where ur ,uθ,uϕ are the unit vectors of the three reciprocally orthogonal directions
r, θ,ϕ.

D.2.4 Cylindrical Coordinates

In cylindrical coordinates, themetric of the Euclidean three-dimensional space reads:

ds2 = dρ2 + ρ2dϕ2 + dz2. (D.30)

Choosing x1 = ρ, x2 = ϕ, x2 = z, we have

g11 = 1

g11
= 1,

g22 = 1

g22
= ρ2, (D.31)

g33 = 1

g33
= 1.

In view of (D.31), the differential operators in cylindrical coordinates are

divA = 1

ρ

[
∂

∂ρ

(
ρ Aρ

) + ∂Aϕ

∂ϕ
+ ∂

∂z
(ρ Az)

]
, (D.32)

gradΦ = ∂Φ

∂ρ
uρ + 1

ρ

∂Φ

∂ϕ
uϕ + ∂Φ

∂z
k , (D.33)

ΔΦ = 1

ρ

[
∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+ 1

ρ

∂2Φ

∂ϕ2
+ ρ

∂2Φ

∂z2

]
, (D.34)

curlA =
(
1

ρ

∂Az

∂ϕ
− ∂Aϕ

∂z

)
uρ +

(
∂Aρ

∂z
− ∂Az

∂ρ

)
uϕ

+
(

∂Aϕ

∂ρ
+ 1

ρ
Aϕ − 1

ρ

∂Aρ

∂ϕ

)
k , (D.35)

where uρ,uϕ,k are the unit vectors of the three reciprocally orthogonal directions
ρ,ϕ, z.



Appendix E
Dirac’s δ-Function

E.1 Basic Facts

As we have seen in Sect. 1.2, the spatial density of an electric charge distribution
consisting of a single point charge is zero everywhere, except for the location of the
point charge, where it is infinite. This is an example of a distribution. A distribution
is a mathematical expression that is well defined only when integrated with suitable
test functions. While an analytic function g = g(x) is defined as a set of values of
g corresponding to a set of values of x , a distribution is a functional characterized
by the fact that to each function there corresponds a number. In the case of the delta
function, it is a mathematical meaningful object only under an integral, as we shall
soon see.

The Dirac δ function3 can be defined by means of several bona fide functions
tending to δ in the limit. Let, for example, δ(x,α) be a function depending on the
variable x and a parameter α > 0, which obeys the conditions

lim
α→0

δ(x,α) =
{

0, for x 
= 0,
∞, for x = 0,

lim
α→0

∫ +∞

−∞
δ(x,α) dx = 1. (E.1)

3The delta function appeared for the first time in 1822, in the work of Joseph Fourier (1768–1830)
on the Analytical theory of heat. However, Fourier did not identify it specifically as an independent
object. In 1930, Paul Dirac (1902–1984) introduced it as a convenient notation, in his book The
Principles of Quantum Mechanics. Its role in Dirac’s book was as a continuous analogue of the
Kronecker delta symbol, which gave it also the name of delta function.
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Let us denote

δ(x) = lim
α→0

δ(x,α),

∫ +∞

−∞
δ(x)dx = lim

α→0

∫ +∞

−∞
δ(x,α) dx = 1. (E.2)

Remark that (E.2)2 is only a notation, because the operations of “limit” and “inte-
gration” could be reversed only if δ(x,α) were uniformly convergent for x = 0 and
α → 0. The same meaning is understood when writing

∫ +∞

−∞
f (x)δ(x)dx = lim

α→0

∫ +∞

−∞
f (x)δ(x,α)dx, (E.3)

where f (x) is a smooth function with compact support. Such a function is called a
test function of the δ distribution.

Let [a, b] be a closed interval on the x-axis, and x0 a point on the axis. Then

δ(x − x0) =
{

0, x 
= x0 ,

∞, x = x0 ,
(E.4)

∫ b

a
δ(x − x0)dx =

{
1, x0 ∈ [a, b] ,

0, x0 /∈ [a, b] .
(E.5)

If we extend the domain of integration between −∞ and +∞, then

∫ +∞

−∞
δ(x − x0)dx = 1. (E.6)

By definition, ∫ +∞

−∞
f (x) δ(x − x0)dx = f (x0), (E.7)

where f (x) is non-zero only for x ∈ (a, b). For x0 = 0, we have

δ[ f ] ≡
∫ +∞

−∞
f (x) δ(x)dx = f (0). (E.8)

Relations (E.7) and (E.8) express the so-called sifting property of the δ function. In
the above relations, f (x) is a test function and the δ distribution evaluates it at the
point 0. The notation δ[ f ] emphasizes the fact that δ is a linear functional on the
space of test functions, and as such it is defined by (E.8).
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E.1.1 Representations of the Dirac Delta Function

1) Let δ(x,α) be given by

δ(x,α) = 1

π

α

α2 + x2
, α > 0. (E.9)

Indeed,

lim
α→0

δ(x,α) = lim
α→0

1

π

α

α2 + x2
=

{
0, x 
= 0 ,

∞ , x = 0 ,
∫ +∞

−∞
δ(x,α)dx = 1

π

∫ +∞

−∞
αdx

α2 + x2
= 1

π
arctan

x

α

∣∣∣
∞
∞

= 1.

2) As a second representation, consider

δ(x,α) =
{

1
α
, x ∈ [−α

2 ,+α
2

]
,

0, x /∈ [−α
2 ,+α

2

]
.

(E.10)

We have ∫ +∞

−∞
δ(x,α) f (x)dx = 1

α

∫ +α/2

−α/2
f (x)dx .

The mean value theorem gives

∫ + α
2

− α
2

f (x)dx = f (ξ)
∫ +α/2

−α/2
dx = α f (ξ),

where ξ ∈ [−α
2 ,+α

2

]
. Therefore

lim
α→0

∫ +∞

−∞
δ(x,α)dx =

∫ +∞

−∞
δ(x)dx,

because in the limit α → 0 the closed interval
[−α

2 , +α
2

]
reduces to a point, namely

the origin. This way, the definition (E.8) is verified.
3) Consider, as a third and last example,

δ(x,α) = 1

α
√

π
e− x2

α2 , (E.11)

which is a Gaussian-type distribution. Since

1

α
√

π

∫ +∞

−∞
e− x2

α2 dx = 1√
π

∫ +∞

−∞
e−t2dt = 1,



640 Appendix E: Dirac’s δ-Function

it follows that

lim
α→0

1

α
√

π
e− x2

α2 = δ(x).

E.2 Properties of the Dirac Delta Function

1◦ Linearity. Let f1(x) and f2(x) be two test function, and a, b two constants. Then

∫ +∞

−∞
δ(x)[a f1(x) + b f2(x)]dx = a

∫ +∞

−∞
δ(x) f1(x)dx + b

∫ +∞

−∞
δ(x) f2(x)dx . (E.12)

This expresses the fact that δ function is a linear functional on the space of test
functions.

2◦ Distributional derivative(s). If g(x) is a function with the property
limx→±∞ g(x) = 0, then

∫ +∞

−∞
f (x) g′(x)dx = [ f g]+∞−∞ −

∫ +∞

−∞
f ′(x) g(x)dx = −

∫ +∞

−∞
f ′(x) g(x)dx . (E.13)

This property of functions is extended to the δ distribution, in order to define the
distributional derivative δ′. Thus, the distributional derivative of the δ function is
another distribution, δ′, acting on smooth test functions with compact support by

δ′[ f ] =
∫ +∞

−∞
f (x) δ′(x)dx = −

∫ +∞

−∞
f ′(x) δ(x)dx = − f ′(0). (E.14)

In general, ∫ +∞

−∞
f (x) δ(n)(x)dx = (−1)n

[
f (n)(x)

]
x=0 . (E.15)

3◦ Composition with a function. Consider y = y[x(t)]. Then
∫ +∞

−∞
f (t) δ[x(t)]dt =

∫ +∞

−∞
f [t (x)] δ(x)

dt

dx
dx . (E.16)

This relation is considered as definition of the distribution δ[x(t)], where x(t) is
a function.

4◦ Symmetry. As an application, let us calculate

∫ +∞

−∞
f (x)δ(−x)dx = −

∫ −∞

+∞
f (−y) δ(y)dy

=
∫ +∞

−∞
f (−y) δ(y)dy = f (0) =

∫ +∞

−∞
f (x)δ(x)dx,
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where we have used (E.8) in writing the last equality. Since this relation holds
for any suitable test function f (x), it follows that

δ(−x) = δ(x), (E.17)

which means that the delta function is even.
5◦ Scaling. Let us make a change of variable y = ax , where the constant a is either

positive, or negative. If a > 0, we have

∫ +∞

−∞
f (x)δ(ax)dx =

∫ +∞

−∞
f
( y

a

)
δ(y)

dy

a
= 1

a
f (0) =

∫ +∞

−∞
f (x)

δ(x)

a
dx .

If a < 0, the use of property (E.17) yields δ(ax) = δ(−ax). The last relation
then gives

δ(ax) = 1

|a|δ(x). (E.18)

6◦ Three-dimensional version. In three dimensions, denoting r = (x, y, z), the delta
function is defined by

δ(r − r0) = δ(x − x0)δ(y − y0)δ(z − z0),

δ(r − r0) =
{

0, r 
= r0 ,

∞, r = r0 ,
(E.19)

∫

D
δ(r − r0)dr =

{
1, P0(x0, y0, z0) ∈ D ,

0, P0(x0, y0, z0) /∈ D ,
(E.20)

∫

D
f (r)δ(r − r0)dr =

{
f (r0), r0 ∈ D ,

0, r0 /∈ D ,
(E.21)

or, if the domain of integration is extended over the whole space,

∫ +∞

−∞
f (r) δ(r − r0)dr = f (r0) , (E.22)

where dr = dx dy dz.
7◦ Fourier expansion.Let f (r) ≡ f (x, y, z) be an arbitrary function of coordinates.

Its Fourier transform is

F(k) = 1

(2π)3/2

∫
f (r)e−ik·rdr , (E.23)

The inverse Fourier transform is

f (r) = 1

(2π)3/2

∫
F(k) eik·rdk , (E.24)
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with dk = dkx dky dkz . The last two relations then yield

f (r) = 1

(2π)3

∫
f (r′) eik·(r−r′)dr′ dk

=
∫

f (r′)
[

1

(2π)3

∫
eik·(r−r′) dk

]
dr′.

Using (E.22), one then obtains

δ(r − r′) = 1

(2π)3

∫
eik·(r−r′)dk, (E.25)

which is the Fourier expansion of the three-dimensional delta function.
8◦ Suppose that the continuously differentiable function ϕ(x) has n simple roots,

i.e.
ϕ(xi ) = 0, ϕ′(xi ) 
= 0, i = 1, 2, . . . , n.

Then we have

∫ +∞

−∞
f (x) δ[ϕ(x)]dx =

n∑

i=1

∫ ai

ai−1

f (x) δ[ϕ(x)]dx,

where
a0 < x1 < a1 < x2 < a2 < ... < an−1 < xn < an.

By means of (E.18), we can write

∫ ai

ai−1

f (x) δ [ϕ(x)] dx =
∫ xi+ε

xi−ε

f (x) δ
[
ϕ′(xi )(x − xi )

]
dx = f (xi )

|ϕ′(xi )| ,

that is

∫ +∞

−∞
f (x) δ [ϕ(x)] dx =

n∑

i=1

f (xi )

|ϕ′(xi )| =
∫ +∞

−∞
f (x)

n∑

i=1

δ(x − xi )

|ϕ′(xi )| dx,

which yields

δ [ϕ(x)] =
n∑

i=1

δ(x − xi )

|ϕ′(xi )| . (E.26)

In particular, if ϕ(x) = x2 − a2, we have

δ(x2 − a2) = 1

2|a|
[
δ(x + a) + δ(x − a)

]
. (E.27)
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In Eq. (1.6) we wrote
ρ(r) = q δ(r − r0).

We then can make the following interpretations:

a) δ(x) is the linear charge density of a charge distribution formed by a single point
charge of value +1 (Coulomb), situated at the origin of coordinates;

b) δ(x − x0) is the linear density of an electric charge of value +1, situated at the
point of coordinate x0;

c) δ(r − r0) is the volume charge density of a distribution formed by a single point
charge of value +1, situated at the point P0(r0).

http://dx.doi.org/10.1007/978-3-642-17381-3_1


Appendix F
Green’s Function

Numerous physical phenomena are described by equations of the type

L f (r) = u(r), (F.1)

where L is a linear differential operator, f (r) is an unknown function, and u(r) is a
given function. The function u(r) is viewed as a source for the field (output) f (r).
Let us write the source as a superposition of delta functions, i.e.

u(r) =
∫

δ(r − r′)u(r′)dr′. (F.2)

The inhomogeneous differential equation (F.1) can be then written as

L f (r) =
∫

LG(r − r′)u(r′)dr′,

with G(r − r′) being any solution of the equation

LG(r, r′) = δ(r − r′), (F.3)

and being called theGreen function of the differential operator L . Clearly, the Green
function is the impulse response of the inhomogeneous differential equation (F.1). By
the principle of superposition, if G(r, r′) is the solution of the differential equation
with δ-function type of source, and the source u(r) is a superposition (F.2) of δ
functions, then the solution of Eq. (F.1) is a superposition of Green’s functions, i.e.

f (r) =
∫

G(r, r′) u(r′)dr′. (F.4)

© Springer-Verlag Berlin Heidelberg 2016
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The electrodynamical phenomena encountered in the text are described by non-
homogeneous second-order partial differential equations of the form

L f (x) = − ρ(x), (F.5)

where the operator L stands for the Laplacian Δ, or the d’Alembertian �, etc., x is a
variable (or a group of variables x1, x2, . . .), while the scalar function ρ(x) is called
the source density. If f (x) is a vector function, then ρ(x) is also a vector function.
Such equations are, for example, Eq. (4.198) of the electrodynamic potentials in
variable regime, where the role of source density is played by the spatial density of
electric charge, or the conduction current density, respectively.

The solution of Eq. (F.5) can be formally written as

f (x) = − L−1 ρ(x). (F.6)

The inverse L−1 of the differential operator is another differential operator, with the
property that

L−1L ρ(x) = ρ(x).

Using the Dirac delta function, we may write

ρ(x) =
∫

D
ρ(x ′) δ(x − x ′)dx ′. (F.7)

Since the operator L acts on the variable x only, from (F.6) and (F.7) we find

f (x) = −
∫

D
ρ(x ′)

[
L−1δ(x − x ′)

]
dx ′. (F.8)

According to (F.4), one can introduce Green’s function by the operation

G(x, x ′) = −L−1δ(x − x ′) + G0(x, x
′), (F.9)

where G0(x, x ′) verifies the condition LG0(x, x ′) = 0, that is

LG(x, x ′) = − L
[
L−1δ(x − x ′)

] + LG0(x, x
′) = − δ(x − x ′) . (F.10)

In this case

f (x) =
∫

D
G(x, x ′)ρ(x ′)dx ′. (F.11)

Equation (F.10) gives a method of finding the Green’s functions: one usually Fourier
transforms the delta function according to (E.25), and (F.10) straightforwardly pro-
vides the Fourier transform of the Green function.

http://dx.doi.org/10.1007/978-3-642-17381-3_4
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Since the delta function is even, it then follows from (F.10) that the function
G(x, x ′) is symmetric:

G(x, x ′) = G(x ′, x).

From the physical point of view, this means that a source situated at the point P ′
produces at the point P the same effect as that produced at P ′ by a source situated
at the point P .

If we use as variables x, y, z, t , then Green’s function G(r, t; r′, t ′) verifies the
following equation (see (4.200)):

LG(r, t; r′, t ′) = − δ(x − x ′)δ(y − y′)δ(z − z′)δ(t − t ′), (F.12)

which means that the equation

L f (r, t) = − ρ(r, t) (F.13)

has the following solution

f (r, t) =
∫

G(r, t; r′, t ′)ρ(r′, t ′)dr′dt ′ , (F.14)

where dr′ = dx ′dy′dz′. The problem of finding the solution of (F.13) therefore
reduces to the determination ofGreen’s function for the studied case.We encountered
such a situation in Sects. 4.9.1 and 8.6.

http://dx.doi.org/10.1007/978-3-642-17381-3_4
http://dx.doi.org/10.1007/978-3-642-17381-3_4
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