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Preface

In these notes we review the material presented at the summer school on
“Mathematical Physics, Analysis and Stochastics” held at the University of
Heidelberg in July 2014. We consider the time evolution of quantum systems and in
particular the rigorous derivation of effective equations approximating the
many-body Schrödinger dynamics in certain physically interesting regimes.

We would like to thank Manfred Salmhofer and Christoph Kopper for orga-
nizing the summer school “Mathematical Physics, Analysis and Stochastics” and
for encouraging us to write up these notes. The work of Marcello Porta and of
Benjamin Schlein has been supported by the ERC grant MAQD-240518. Niels
Benedikter has been partially supported by the ERC grant CoMBoS-239694 and by
the ERC Advanced grant 321029.
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Chapter 1
Introduction

Systems of interest in physics and other natural sciences can be described at the
microscopic and the macroscopic level. Microscopically, a system is described in
terms of its elementary constituents and their fundamental interactions. While such a
description is very accurate, it is typically not well-suited for computations because
of the large number of degrees of freedom. Examples of microscopic theories include
Newton’s theory of classical mechanics, Schrödinger’s quantum mechanics, quan-
tum electrodynamics and Einstein’s general relativity.1 On the other hand, a macro-
scopic description of the system does not resolve the constituents and only takes
into account effective interactions. It focuses on macroscopically observable quan-
tities which arise from the collective behavior of the system and are of interest for
the observer. Such a description is less accurate but it is much more accessible to
computations. Examples of macroscopic theories are Boltzmann’s kinetic theory of
gases, the Navier-Stokes and the Euler equations of hydrodynamics, the Hartree
and Hartree-Fock theory, the BCS theory of superconductors and superfluids, the
Ginzburg-Landau theory, the Gross-Pitaevskii theory of Bose-Einstein condensation
and the Vlasov theory of plasma physics.

Because of the great importance of effective macroscopic theories for making
qualitative and quantitative predictions about the behavior of physically interesting
systems, a key goal of statistical mechanics is to understand their emergence from
microscopic theories in appropriate scaling regimes (also called limits, even though
we often think of the parameter as being large but finite). Here mathematical physics
can and should play a central role to put the effective theories, which are often

1Of course we do not claim that these theories are absolutely fundamental from the view of a
physicist. It would be more correct to consider them as different levels between fundamental and
effective, and which theory we call effective and which fundamental depends on the pair we are
looking at. For example, we could also consider Newtonian mechanics as a macroscopic theory
arising as an effective theory from quantum mechanics. On the next level we could view non-
relativistic quantum mechanics as an effective theory arising from the Standard Model.

© The Author(s) 2016
N. Benedikter et al., Effective Evolution Equations from Quantum Dynamics,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-24898-1_1
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2 1 Introduction

obtained merely by heuristic and phenomenological arguments, on solid grounds
and understand the range and the limits of their validity.

Let us present two examples of physical systems which can be described by effec-
tive equations that can be rigorously derived frommicroscopic theories in appropriate
limits.

Large atoms and molecules.We consider a quantum-mechanical systemof N elec-
trons and M nuclei of charges Z1, . . . , Z M > 0 located at positions R1, . . . , RM ∈
R
3. We assume the system to be neutral, i.e. N = ∑M

i=1 Zi . For simplicity we work
in the Born-Oppenheimer approximation, i.e. we keep the nuclei fixed (only the elec-
trons are dynamical particles in this approximation). At zero temperature the system
is in its ground state, with energy

E(N ) = min
ψ∈L2

a(R3N ):‖ψ‖=1
〈ψ, HN ψ〉 (1.1)

where HN denotes the Hamilton operator

HN =
N∑

j=1

[

−Δx j −
M∑

i=1

Zi

|x j − Ri |

]

+
N∑

i< j

1

|xi − x j | +
M∑

i< j

Zi Z j

|Ri − R j | . (1.2)

Notice that HN acts on the subspace L2
a(R3N ) of L2(R3N ) consisting of all func-

tions that are antisymmetric with respect to permutations of the N electrons. (Of
course E(N ) and HN also depend on M , on the charges Z1, . . . , Z M and on the
positions R1, . . . , RM ). Observe that the last term on the r.h.s. of (1.2) is just a
constant representing the interaction among the nuclei. Already for N � 20 it is
extremely difficult to compute the ground state energy E(N ) numerically since the
eigenvalue equation one has to solve is a partial differential equation in 3N coupled
variables.

Thomas and Fermi postulated already in the early stages of quantum mechanics
at the end of the 1920s that the ground state energy E(N ) can be approximated by

E(N ) � ETF(N ) = inf
ρ≥0,‖ρ‖1=N

ETF(ρ) (1.3)

with the Thomas-Fermi functional

ETF(ρ) = 3

5
cTF

∫

ρ5/3(x)dx −
M∑

i=1

Zi

∫
ρ(x)

|x − Ri |dx

+ 1

2

∫
ρ(x)ρ(y)

|x − y| dxdy +
M∑

i< j

Zi Z j

|Ri − R j | .

Notice that on the r.h.s. of (1.3) we are looking for a function ρ ∈ L1(R3); as a
consequence, in terms of numerical computations, the minimization problem (1.3)
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is much simpler than the original problem (1.1) despite the fact that the resulting
Euler-Lagrange equations are nonlinear.

In [1] Lieb and Simon proved that the approximation (1.3) becomes exact in the
limit of large N . More precisely, they showed that, while E(N ) and ETF(N ) are both
proportional to N 7/3,

|E(N ) − ETF(N )| ≤ C N 7/3−1/30

for an appropriate constant C > 0. This gives a mathematically rigorous derivation
of the Thomas-Fermi theory, and it tells us how big N should be in order for ETF(N )

to be a good approximation of the true quantum energy (later, better bounds have
been obtained [2–4]: one knows that the error with respect to Thomas-Fermi theory
is of the order N 2 in the limit of large N ).

Kinetic theory of dilute gases. Consider now a gas of N classical particles moving
according to Newton’s equations

ẋ j (t) = v j (t)

v̇ j (t) = −
N∑

i 	= j

∇V (xi (t) − x j (t)) (1.4)

for j = 1, . . . , N . Here V is a short range (compactly supported), regular potential.
Equation (1.4) is a system of 6N coupled ordinary differential equations. Given
appropriate initial data, it is known to have a unique solution for all t ∈ R. However,
since the number of particles N is typically extremely large, it is almost impossible
to deduce from (1.4) interesting qualitative or quantitative properties of the solution.

At the beginning of the twentieth century Boltzmann, based on clever heuristic
arguments, proposed to describe the dynamics of the gas by the nonlinear equation

∂t ft (x, v) + v · ∇x ft (x, v)

=
∫

dv′
∫

S2
dω B(v − v′;ω)

(
ft (x, vout) ft (x, v′

out) − ft (x, v) ft (x, v′)
)

(1.5)

for the phase-space density ft (x, v), which should measure the number of particles
at time t that are located close to x ∈ R

3 and have velocity close to v ∈ R
3. Here

vout = v + ω · (v′ − v)ω

v′
out = v′ − ω · (v′ − v)ω

are the velocity of two particles emerging from the collision of two particles with
velocities v, v′ and collision vector ω ∈ S2. Boltzmann’s equation is a partial dif-
ferential equation in only six variables, and is therefore much more accessible to
computations than (1.4).
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For several years after the work of Boltzmann, his equation was not accepted by
the physics community. In contrast to Newton’s equations, Boltzmann’s equation
(1.5) is not time-reversal invariant. It took a while to understand that this fact does
not contradict the validity of Boltzmann’s equation, but only restricts the set of initial
data for which (1.5) is a good approximation.

In [5] Grad realized that Boltzmann’s equation becomes correct in the low-density
limit, where the density of particles ρ is very small, N is very large, and Nρ2 is fixed
of order one (the low-density or Boltzmann-Grad limit). Finally Lanford proved
in [6] that indeed in this limit Boltzmann’s equation can be rigorously derived from
Newton’s equations, at least for sufficiently short times (recently [7, 8] have extended
the validity of (1.5) to a larger class of interaction potentials).

Plan of the notes. Notice that the first example we discussed above (the Thomas-
Fermi theory for large atoms and molecules) is based on many-body quantum
mechanics while the second one (kinetic theory of gases in the low density limit) is
based on classical Newtonian mechanics. Observe, moreover, that in the first exam-
ple we were interested in an equilibrium property of the system (its ground state
energy) while in the second case we considered a non-equilibrium problem (the time
evolution of the gas).

In these notes we will focus on the derivation of time-dependent effective the-
ories (non-equilibrium question) approximating many-body quantum dynamics. In
the rest of this chapter, we will briefly recall the main properties of many-body
quantum systems and their time evolution. In Chap. 2 we will then introduce the
mean-field regime for bosonic systems and we will explain how the many-body
dynamics can be approximated by the Hartree equation in this limit. In Chap. 3 we
will present a method, based on the use of coherent states and inspired by [9, 10],
to rigorously prove the convergence towards the Hartree dynamics. The fluctuations
around the Hartree equation will be considered in Chap. 4. In Chap.5 we will discuss
a more subtle regime, in which the many-body evolution can be approximated by the
nonlinear Gross-Pitaevskii equation. In Chap.6 we will discuss fermionic systems
(characterized by antisymmetric wave functions). The fermionic mean-field regime
is naturally linked with a semi-classical regime, and we will prove that the evolution
of approximate Slater determinants can be approximated by the nonlinear Hartree-
Fock equation. Finally, in Chap.7, we will consider the same fermionic mean-field
regime but this time we will focus on mixed quasi-free initial data approximating
thermal states at positive temperature. In Appendix A we explain how the Gross-
Pitaevskii correlation structure introduced in Chap.5 is crucial also for the ground
state energy.

Wave functions and observables. We will describe quantum systems of N
particles in three dimensions through a complex-valued wave function ψN ∈
L2(R3N , dx1, . . . , dxN ) = L2(R3N )with ‖ψN ‖2 = 1. The arguments (x1, . . . , xN )

∈ R
3N of the wave function ψN describe the position of the N particles. Since it

does not play an important role in our analysis, we always neglect the spin of the
particles. We identify L2(R3N ) with

⊗N
j=1 L2(R3) in the standard way through

http://dx.doi.org/10.1007/978-3-319-24898-1_2
http://dx.doi.org/10.1007/978-3-319-24898-1_3
http://dx.doi.org/10.1007/978-3-319-24898-1_4
http://dx.doi.org/10.1007/978-3-319-24898-1_5
http://dx.doi.org/10.1007/978-3-319-24898-1_6
http://dx.doi.org/10.1007/978-3-319-24898-1_7
http://dx.doi.org/10.1007/978-3-319-24898-1_5
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ϕ1 ⊗ · · · ⊗ ϕN (x1, . . . , xN ) = ϕ1(x1) · · · ϕN (xN ). We use ϕ⊗k = ϕ ⊗ · · · ⊗ ϕ to
denote the tensor product of k copies of ϕ.

Observables of the quantum system are associated with self-adjoint operators
on the Hilbert space L2(R3N , dx1, . . . , dxN ). If A is such an operator, the spectral
theorem allows us to write it as

A =
∫

λ d E A(λ),

where d E A(λ) is the spectral measure associated with A. Assuming for simplicity
that A has purely discrete spectrum, we find A = ∑

j λ j |ϕ j 〉〈ϕ j |, where λ j are the
eigenvalues and ϕ j the eigenvectors of A. The expectation of the observable A in
the state ψN is then given by the inner product

〈ψN , AψN 〉 =
∑

j

λ j |〈ϕ j ,ψ〉|2.

This expression for the expectation of A leads to the following interpretation: the
eigenvalues λ j are the possible outcomes of a measurement of A while |〈ϕ j ,ψ〉|2 is
the probability that ameasurement of A produces the outcomeλ j . The positions of the
N particles are associated with multiplication operators; hence |ψN (x1, . . . , xN )|2
is the probability density for finding particles close to (x1, . . . , xN ) ∈ R

3N . The
momenta of the particles are associated with differential operators p j = −i∇x j .
Hence, if ψ̂N denotes the Fourier transform of ψN , |ψ̂N (p1, . . . , pN )|2 is the proba-
bility density for finding particles with momenta close to (p1, . . . , pN ) ∈ R

3N . The
fact that ψN determines the probability distribution of all observables of the system
is an important feature of quantum mechanics (it leads for example to Heisenberg’s
uncertainty principle).

Statistics. In the following we will study systems of N indistinguishable parti-
cles. In this case, there are important restrictions on the behavior of the wave function
with respect to permutations. There are two classes of particles in nature. Bosons
are characterized by wave functions which are symmetric with respect to permu-
tations, i.e. ψN (xπ(1), . . . , xπ(N )) = ψN (x1, . . . , xN ) for all permutations π ∈ SN .
Fermions, on the other hand, are characterized by antisymmetric wave functions, i.e.
ψN (xπ(1), . . . , xπ(N )) = σπψN (x1, . . . , xN ), where σπ is the sign of the permutation
π ∈ SN . In these notes, we will consider both the time-evolution of bosonic and
fermionic systems; as wewill see, the different behavior with respect to permutations
has important consequences on the dynamics.

Dynamics. The time evolution of quantum systems is governed by the Schrödinger
equation

i∂tψN ,t = HN ψN ,t (1.6)

for the N -particle wave function ψN ,t (the subscript t indicates the time depen-
dence of ψN ,t ). On the r.h.s. of (1.6), HN is a self-adjoint operator on L2(R3N , dx1,
. . . , dxN ) known as the Hamilton operator (or Hamiltonian) of the system. In these
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notes, we will consider Hamilton operators with two-body interactions, having the
form

HN =
N∑

j=1

(−Δx j + Vext(x j )
) + λ

N∑

i< j

V (xi − x j ) (1.7)

for appropriate functions Vext (the external potential) and V (the interaction potential)
and for a coupling constant λ ∈ R (which we introduce here for later convenience).
The sum of the Laplace operators is the kinetic part of the Hamiltonian and generates
the evolution of free particles.

The Schrödinger equation (1.6) is linear and can always be solved by ψN ,t =
e−i HN tψN ,0, where e−i HN t denotes the unitary one-parameter group generated by
the self-adjoint operator HN . This implies that the well-posedness of the Schrödinger
equation is not an issue (although sometimes it can be difficult to prove the self-
adjointness of the Hamilton operator). Nevertheless, for N  1, it is essentially
impossible to extract useful qualitative and quantitative information from (1.6) that
goes beyond the existence and uniqueness of solutions. According to the philosophy
outlined above, we look for simpler effective equations which approximate (1.6) in
interesting regimes.
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Chapter 2
Mean-Field Regime for Bosonic Systems

One of the simplest non-trivial regimes in which it is possible to approximate the
many-body dynamics by an effective equation is the mean-field limit for bosonic
systems. In the mean-field regime, particles experience a large number of weak
collisions, whose cumulative effect can be approximated by an average mean-field
potential. To realize the mean-field regime, we consider a system of N bosons with
a Hamilton operator of the form (1.7), in the limit of large N and small coupling
constant λ, with Nλ of order one. This last condition guarantees that the total force
on each particle is of order one, and therefore comparable with the inertia. In other
words, we consider the dynamics generated by the mean-field Hamiltonian

HN =
N∑

j=1

(−Δx j + Vext(x j )
) + 1

N

N∑

i< j

V (xi − x j ) (2.1)

acting on the Hilbert space L2
s (R

3N ), the subspace of L2(R3N ) consisting of permu-
tation symmetric functions, in the limit of large N . (This is of course an idealization
since in physical systems N is finite, though its value ranges from the order 103 in
very dilute Bose-Einstein condensates to the order 1023 in chemical systems.)

Initial data. The choice of the initial data is dictated by physics. In typical exper-
iments a Bose gas is initially trapped by an external confining potential. To study the
dynamics of the gas out of equilibrium, we consider the reaction of the system to
a change of the external field. In other words, we are going to consider initial data
given by equilibrium states of a Hamiltonian of the form (2.1), with Vext modeling
the external traps. In particular, at zero temperature, we are interested in initial data
close to the ground state of (2.1). Under appropriate assumptions on the interaction
potential V it is known that the ground state ψ

gs
N of (2.1) can be approximated, in the

limit of large N , by a factorized wave function; i. e. ψgs
N � ϕ⊗N , for an appropriate

ϕ ∈ L2(R3) (ϕ is the minimizer of the Hartree energy functional). We are interested,
therefore, in the solution of the Schrödinger equation

© The Author(s) 2016
N. Benedikter et al., Effective Evolution Equations from Quantum Dynamics,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-24898-1_2
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8 2 Mean-Field Regime for Bosonic Systems

i∂tψN ,t = HN ψN ,t (2.2)

for approximately factorized initial dataψN ,0 � ϕ⊗N . Note that the external potential
in the operator HN appearing on the r.h.s. of (2.2) is typically different from the
external potential in the trapping Hamiltonian, whose ground state is approximated
by ϕ⊗N (otherwise, the dynamics would be trivial). For example the initial data
would be taken as an approximation to the ground state in a harmonic trap, and
the evolution of this initial data would be studied after switching off the trap, i.e.
Vext = 0.

Notice also that here we describe a high density situation: the decay of ϕ defines
the length (and volume) scale of order one (w.r.t. to N ); in the state ϕ⊗N this volume
is filled with N particles.

Hartree equation.Of course, since HN is an interactingHamiltonian, the dynamics
does not preserve the factorization of the many-body wave function. Still, since the
interaction is weak, we can expect factorization to be approximately (in a sense to
be specified later) preserved, in the limit of large N . In other words, we can expect
that for N � 1

ψN ,t (x1, . . . , xN ) �
N∏

j=1

ϕt (x j ) (2.3)

for an evolved one-particle wave function ϕt . Assuming (2.3), it is easy to derive a
self-consistent equation for the evolution of the one-particlewave functionϕt . In fact,
factorization of the N -particle wave function means, in probabilistic terms, that the
particles are distributed in space according to the density |ϕt |2, independently of each
other. The law of large numbers then suggests that the total potential experienced,
say, by the j th particle can be approximated by

1

N

∑

i �= j

V (xi − x j ) �
∫

V (x j − y)|ϕt (y)|2dy = (V ∗ |ϕt |2)(x j ).

Hence, ϕt must satisfy the Hartree equation

i∂tϕt = (−Δ + Vext)ϕt + (V ∗ |ϕt |2)ϕt (2.4)

where the many-body interaction has been replaced by the effective one-particle
potential V ∗ |ϕt |2, making (2.4) a nonlinear equation. Despite the nonlinearity,
the Hartree equation for many purposes is much easier to treat than the original
Schrödinger equation (2.2), because ϕt depends only on 3 rather than 3N spatial
coordinates. In particular, it is numerically more tractable.

Reduced densities. To explain in which sense we can expect (2.3) to hold true, we
introduce the notion of reduced density matrices (also known as reduced densities).
The one-particle reduced density associatedwith thewave functionψN ,t is defined by

γ
(1)
N ,t = N Tr2,3,...,N |ψN ,t 〉〈ψN ,t |,
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where |ψN ,t 〉〈ψN ,t | denotes the orthogonal projection onto ψN ,t and Tr2,...,N is the
partial trace over the last (N − 1) particles. In other words, the one-particle reduced
density γ

(1)
N ,t is defined as the non-negative trace-class operator on L2(R3) with

integral kernel

γ(1)
N ,t (x; y) = N

∫

dx2 . . . dxN ψN ,t (x, x2, . . . , xN )ψN ,t (y, x2, . . . , xN ).

Notice that we chose the normalization Tr γ(1)
N ,t = N .

Analogously, for k = 2, 3, . . . , N , we can define the k-particle reduced density
associated with ψN ,t by

γ
(k)
N ,t =

(
N

k

)

Trk+1,...,N |ψN ,t 〉〈ψN ,t |.

The integral kernel of the k-particle density matrix is given by

γ
(k)
N ,t (x1, . . . , xk; y1, . . . , yk)

=
(

N

k

)∫

dxk+1 . . . dxN ψN ,t (x1, . . . , xk, xk+1, . . . , xN )

× ψN ,t (y1, . . . , yk, xk+1, . . . , xN ).

(2.5)

The normalization is such that Tr γ(k)
N ,t = (N

k

)
.

Clearly, for k < N , the k-particle reduced density γ
(k)
N ,t does not contain the full

information about the system. Still, γ
(k)
N ,t is enough to compute the expectation of

any k-particle observable: Let J (1) be an operator on the one-particle space L2(R3),
and denote by J (1)

i = 1 ⊗ · · · ⊗ J (1) ⊗ · · · ⊗ 1 the operator on L2(R3N ) acting
like J (1) on the i th particle and trivially on the other (N − 1) particles. We write
dΓ (J (1)) = ∑N

i=1 J (1)
i . Then

〈ψN ,t , dΓ (J (1))ψN ,t 〉 =
N∑

i=1

〈ψN ,t , J (1)
i ψN ,t 〉

= NTrJ (1)
i |ψN ,t 〉〈ψN ,t | = Tr J (1) γ

(1)
N ,t .

Similarly, if J (k) is an operator on the k-particle space L2(R3k) and if we denote
by J (k)

i1,...,ik
the operator acting like J (k) on the k particles i1, . . . , ik , we have

〈ψN ,t ,
∑

{i1,...,ik }
J (k)

i1,...,ik
ψN ,t 〉 = Tr J (k) γ

(k)
N ,t
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where the sum on the l.h.s. runs over all sets of k different indices {i1, . . . , ik} chosen
among {1, . . . , N }.

Convergence of reduced densities. It turns out that reduced densities provide the
appropriate language to describe the convergence of the many-body quantum evolu-
tion towards the Hartree dynamics. Under appropriate assumptions on the external
potential Vext and, more importantly, on the interaction potential V , one can show
the convergence of the reduced densities associated with the solution ψN ,t of the
Schrödinger equation (2.2) towards orthogonal projections onto products of solu-
tions of the Hartree equation (2.4). More precisely, consider a sequence of wave
functions ψN ∈ L2

s (R
3N ) with reduced density γ

(1)
N satisfying

1

N
γ

(1)
N → |ϕ〉〈ϕ| (N → ∞) (2.6)

for aϕ ∈ L2(R3) (suchψN are said to exhibit complete Bose-Einstein condensation).
Let ψN ,t = e−i HN tψN be the solution of the Schrödinger equation (2.2) with initial
data ψN . Then we expect, and under appropriate assumptions on Vext and V we can
show that

1

N
γ

(1)
N ,t → |ϕt 〉〈ϕt | (N → ∞). (2.7)

Here ϕt denotes the solution of the Hartree equation (2.4) with initial data ϕ0 = ϕ.
The convergence in (2.7) can be understood in the trace-class topology. In fact, since
the limit is a rank-one projection, weak convergence implies convergence in the trace
norm.1 Moreover, notice that convergence of the one-particle reduceddensity towards
a rank-one orthogonal projection also implies convergence of higher order reduced
densities in the limit N → ∞ (the argument is outlined in [1], after Theorem 1),

1
(N

k

)γ
(k)
N ,t → |ϕt 〉〈ϕt |⊗k . (2.8)

The convergence here (and in (2.7)) is for fixed t and k. Equations (2.7) and (2.8)
explain in which sense one should understand the approximate factorization (2.3).
(For any one-particle operator A on L2(R3) we use the notation A⊗k = ⊗k

i=1 A for
its k-fold tensor product acting on L2(R3k).)

1First, by testing the difference N−1γ
(1)
N ,t − |ϕt 〉〈ϕt | against |ϕt 〉〈ϕt |, weak convergence implies

Hilbert-Schmidt convergence. Then, since |ϕt 〉〈ϕt | is a rank-one projection, the operator N−1γ
(1)
N ,t −|ϕt 〉〈ϕt | has exactly one negative eigenvalue. (If there were two linearly independent eigenvectors

ξ1, ξ2 with negative eigenvalue, one could find a linear combination ξ such that 〈ξ, γ(1)
N ,tξ〉 < 0.)

Since Tr γ(1)
N ,t − |ϕt 〉〈ϕt | = 0, its absolute value is equal to the sum of all positive eigenvalues, and

therefore the trace norm is twice the operator norm.
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Some results. The first rigorous results of the form (2.7) have been obtained for
smooth interactions by Hepp [2] and for singular potentials by Ginibre and Velo [3].
For bounded potential, a proof of the convergence (2.7), based on the analysis of the
so-called BBGKY hierarchy, has been given by Spohn [4] (see next paragraph). The
BBGKY technique has been later extended to potentials with Coulomb singularity
in [5, 6] and, for semi-relativistic bosons, in [7]. A new approach giving a precise
estimate on the rate of the convergence towards the Hartree dynamics has been
developed in [8] for potentials with Coulomb singularities (and further improved
in [9]); this approach, based on the ideas of [2, 3], will be presented in Chap.3.
Other bounds on the rate of convergence towards the Hartree evolution have been
established in [10] (based on ideas proposed in [11]) and recently in [12]. In [13, 14]
the convergence of the many-body evolution has been interpreted as a Egorov-type
theorem. In [15, 16] the authors study the propagation of the Wigner measure in the
bosonic mean-field limit. Next order corrections to the Hartree dynamics have been
considered in [17, 18], leading to a better approximation of themany-body evolution.
(A related problem is the study of the fluctuations around theHartree evolution,which
will be discussed in Chap.3.) Instead of a fixed interaction V , it is also interesting
to consider N -dependent potentials, scaling like VN (x) = N 3αV (Nαx) (in the
three dimensional case) and converging towards a delta-function in the limit of large
N . In this case (assuming α < 1; for α = 1, one recovers instead the Gross-
Pitaevskii regime, which will be discussed in Chap.5), the many-body evolution can
be approximated by a nonlinear Schrödinger equation with a local cubic nonlinearity.
Results in this direction have been obtained in [19–21] in the one-dimensional setting,
in [22] in the two-dimensional case and in [23] in three dimensions. It is also possible
to start from Hamiltonians with three-body interactions; in this case, the evolution
can be approximated by a quintic nonlinear Schrödinger equation; see [24, 25].

The BBGKY approach. The main idea of the BBGKY approach, which was first
applied to many-body quantum systems in the mean-field regime in [4], is to study
directly the evolution of the reduced densities defined in (2.5). To explain this idea
it is convenient to normalize the reduced densities associated with the solution ψN ,t

of the Schrödinger equation, defining, for k = 1, . . . , N ,

γ̃
(k)
N ,t = 1

(N
k

)γ
(k)
N ,t .

The new density matrices are normalized so that Tr γ̃(k)
N ,t = 1 for all N ∈ N and all

k = 1, . . . , N . From the Schrödinger equation for ψN ,t it is easy to derive evolution
equations for the family {̃γ(k)}N

k=1. It turns out that the evolution of the N reduced
densities is governed by a hierarchy2 of N coupled equations, known as the BBGKY
hierarchy (BBGKY stands for Bogoliubov-Born-Green-Kirkwood-Yvon):

2i.e. the equation for γ̃
(k)
N ,t depends on γ̃

(k+1)
N ,t .

http://dx.doi.org/10.1007/978-3-319-24898-1_3
http://dx.doi.org/10.1007/978-3-319-24898-1_3
http://dx.doi.org/10.1007/978-3-319-24898-1_5
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i∂t γ̃
(k)
N ,t =

k∑

j=1

[
−Δx j , γ̃

(k)
N ,t

]
+ 1

N

k∑

i< j

[
V (xi − x j ), γ̃

(k)
N ,t

]

+ N − k

N

k∑

j=1

Trk+1

[
V (x j − xk+1), γ̃

(k+1)
N ,t

]
(2.9)

where we use the convention that γ̃(N+1)
N ,t = 0 and where Trk+1 denotes the partial

trace over the degrees of freedom of the (k + 1)-st particle. Here we also introduced
the commutator, defined by [A, B] = AB − BA on a domain suited to the operators
A and B. Notice that the second term on the r.h.s. of (2.9) describes the interaction
among the first k particles in the system. The last term on the r.h.s. of (2.9), on the
other hand, corresponds to the interaction of these k particles with the other (N − k)

particles. At least formally, the BBGKY hierarchy (2.9) converges, in the limit of
large N , towards the infinite hierarchy

i∂t γ̃
(k)
∞,t =

k∑

j=1

[
−Δx j , γ̃

(k)
∞,t

]
+

k∑

j=1

Trk+1

[
V (x j − xk+1), γ̃

(k+1)
∞,t

]
. (2.10)

It is simple to check that this infinite hierarchy has a factorized solutions γ̃
(k)
∞,t =

|ϕt 〉〈ϕt |⊗k , given by products of the solution of the Hartree equation (2.4). This
observation suggests a general strategy to show the convergence (2.8) of the reduced
densities towards projections onto products of solutions of the Hartree equation. The
strategy consists of three steps:

• Compactness. First, one needs to prove the compactness of the sequence (in N ) of
familiesΓN ,t = {̃γ(k)

N ,t }N
k=1 with respect to an appropriateweak topology.Compact-

ness implies in particular the existence of at least one limit pointΓ∞,t = {̃γ(k)
∞,t }k≥1.

• Convergence. Secondly, one needs to characterize limit points of the sequence
ΓN ,t as solutions of the infinite hierarchy (2.10). In other words, one has to show
that any limit point Γ∞,t of the sequence ΓN ,t satisfies (2.10).

• Uniqueness. Finally, one has to prove the uniqueness of the solution of the infinite
hierarchy. This implies immediately that the sequence ΓN ,t converges, since every
compact sequence with at most one limit point converges. Moreover, since we
know that the factorized densities γ̃(k)

∞,t = |ϕt 〉〈ϕt |⊗k are a solution of (2.10),
uniqueness also implies that γ̃N ,t → |ϕt 〉〈ϕt |⊗k for all k ∈ N (the argument proves
convergence with respect to the weak topology with respect to which one showed
compactness in the first step; however, since the limit is a rank-one projection,
weak convergence immediately implies convergence in the trace norm).

The most difficult of the three steps is the proof of the uniqueness of the solution
of the infinite hierarchy. Let us illustrate how to prove uniqueness in the case of
a bounded interaction potential V ∈ L∞(R3). To this end, we rewrite the infinite
hierarchy (2.10) in integral form as
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γ̃
(k)
∞,t = U (k)(t )̃γ(k)

∞,0 + 1

i

∫ t

0
ds U (k)(t − s)B(k)γ̃(k+1)∞,s . (2.11)

Here we defined the action of the free evolution U (k)(t) on a k-particle density γ(k)

by

U (k)(t)γ(k) = e−i
∑k

j=1 Δx j t
γ(k)ei

∑k
j=1 Δx j t

and the action of the collision operator B(k) on a (k + 1)-particle density γ(k+1) by

B(k)γ(k+1) =
k∑

j=1

Trk+1

[
V (x j − xk+1), γ

(k+1)
]
. (2.12)

Notice that the collision operator maps (k + 1)-particle density matrices into k-
particle density matrices. It is important to observe how the free evolution and the
collision operator affect the trace norm. On the one hand, we clearly have

‖U (k)γ(k)‖tr = ‖γ(k)‖tr . (2.13)

On the other hand, for bounded interaction potentials, we find

‖B(k)γ(k+1)‖tr ≤
k∑

j=1

[
Tr

∣
∣
∣V (x j − xk+1)γ

(k+1)
∣
∣
∣ + Tr

∣
∣
∣γ(k+1)V (x j − xk+1)

∣
∣
∣
]

≤ 2k‖V ‖∞Tr|γ(k+1)|
= 2k‖V ‖∞‖γ(k+1)‖tr .

(2.14)
Here we used that Tr|AB| ≤ ‖A‖Tr|B| for any bounded operator A and any trace-
class operator B. (In the same way Tr|AB| ≤ ‖B‖Tr|A| if B is bounded and A trace
class.)

Iterating (2.11), we obtain the nth order Dyson series

γ̃
(k)
∞,t = U (k)(t )̃γ(k)

∞,0

+
n−1∑

m=1

1

im

∫ t

0
ds1 . . .

∫ sm−1

0
dsmU (k)(t − s1)B(k) · · ·

× U (k+m−1)(sm−1 − sm)B(k+m−1)U (k+m)(sm )̃γ(k+m)
∞,0

+ 1

in

∫ t

0
ds1 . . .

∫ sn−1

0
dsnU (k)(t − s1)B(k)U (k+1)(s1 − s2) · · ·

× U (k+n−1)(sn−1 − sn)B(k+n−1)γ̃(k+n)∞,sn
.

(2.15)
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Suppose now that the families Γ1,∞,t = {̃γ(k)
1,∞,t }k≥0 and Γ2,∞,t = {̃γ(k)

2,∞,t }k≥0
are two solutions of the infinite hierarchy, written in the integral form (2.11), with
the same initial data. Expanding both solutions as in (2.15), and taking the difference
(so that all fully expanded terms cancel), we find

Tr
∣
∣
∣̃γ

(k)
1,∞,t − γ̃

(k)
2,∞,t

∣
∣
∣

≤
∫ t

0
ds1 . . .

∫ sn−1

0
dsn ‖U (k)(t − s1)B(k) · · · B(k+n−1)γ̃

(k+n)
1,∞,sn

‖tr

+
∫ t

0
ds1 . . .

∫ sn−1

0
dsn ‖U (k)(t − s1)B(k) · · · B(k+n−1)γ̃

(k+n)
2,∞,sn

‖tr.

Applying iteratively the bounds (2.13) and (2.14), we conclude that

Tr
∣
∣
∣γ

(k)
1,∞,t − γ

(k)
2,∞,t

∣
∣
∣ ≤ 2

|t |n
n! k(k + 1) · · · (k + n − 1)(2‖V ‖∞)n ≤ 2k(4‖V ‖∞|t |)n,

where we used the normalization Tr γ(k+n)
1,∞,t = Tr γ(k+n)

2,∞,t = 1 and the bound

(
n + k − 1

k − 1

)

≤ 2k+n−1.

For |t | ≤ (8‖V ‖∞)−1, we obtain that for all n ∈ N

Tr
∣
∣
∣̃γ

(k)
1,∞,t − γ̃(k)

2,∞,t

∣
∣
∣ ≤ 2k−n .

Since the l.h.s. is independent of n, it must vanish. This proves that γ̃
(k)
1,∞,t =

γ̃
(k)
2,∞,t for all |t | ≤ (8‖V ‖∞)−1. Since this argument only uses the normalization

Tr γ̃(k+n)
1,∞,t = Tr γ̃(k+n)

2,∞,t = 1, which holds for all t ∈ R, it can be iterated to prove
uniqueness of the solution of the infinite hierarchy for all t ∈ R.

For a Coulomb potential V (x) = ±1/|x |, the proof we outlined above can be
modified by introducing a different norm for density matrices (this approach was
first used in [5]). For a k-particle density γ̃(k), acting on L2(R3k), we define the
Sobolev-type norm

‖̃γ(k)‖
H (k)
1

= Tr
∣
∣
∣S1 . . . Sk γ̃

(k)Sk . . . S1
∣
∣
∣ (2.16)

where S j = (1 − Δx j )
1/2. Since the Coulomb potential is bounded with respect to

the kinetic energy in the sense that as operators

± 1

|x | ≤ C(1 − Δ)
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one can show that the collision operator B(k) defined as in (2.12), but now with
V (x) = ±1/|x |, satisfies

‖B(k)γ̃(k+1)‖
H (k)
1

≤ Ck‖̃γ(k+1)‖
H (k+1)
1

.

This bound replaces (2.14). Using this new bound one can prove, similarly as
explained above for the case of bounded potentials, that any two solutions Γ1,∞,t =
{̃γ(k)

1,∞,t }k≥1 and Γ2,∞,t = {̃γ(k)
2,∞,t }k≥1 of the infinite hierarchy with the same initial

data satisfy

∥
∥
∥̃γ

(k)
1,∞,t − γ̃

(k)
2,∞,t

∥
∥
∥

H (k)
1

≤ Ck−n
[
‖̃γ(k+n)

1,∞,t ‖H (k+n)
1

+ ‖̃γ(k+n)
2,∞,t ‖H (k+n)

1

]
.

To conclude uniqueness, here we need to show a-priori estimates of the form

∥
∥
∥̃γ

(k)
∞,t

∥
∥
∥

H (k)
1

≤ Ck (2.17)

for all t ∈ R and k ∈ N, valid for any limit pointΓ∞,t = {̃γ(k)
∞,t }k≥1 of the sequence of

familiesΓN ,t = {̃γ(k)
N ,t }N

k=1 of densities associatedwith the solutionof theSchrödinger
equation. (This step was not needed in the case of bounded potentials because the
trace norm trivially remains uniformly bounded.) To obtain a-priori bounds of the
form (2.17), one can use energy conservation; for details, see [5].
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Chapter 3
Coherent States Approach

In this chapter,we illustrate themethoddeveloped in [1], based on the original ideas of
[2, 3], to prove the convergence of the many-body evolution in the mean-field regime
towards the Hartree dynamics. This method is based on representing the many-boson
system on Fock space, which gives us more freedom in the choice of initial data.
We will study a class of initial data with particularly convenient algebraic properties,
known as coherent states. With respect to the BBGKY approach that was presented
in the last chapter, the analysis of the evolution of coherent states allows us to obtain
precise bounds on the rate of convergence towards the Hartree dynamics. This is
an important point since real systems have a large but, of course, finite number of
particles. Bounds on the rate of convergence are therefore crucial to establishwhether
the Hartree equation is a good approximation to the dynamics of a given boson gas.

Fock space. The bosonic Fock space over L2(R3) is defined as the direct sum

F = C ⊕
⊕

n≥1

L2
s (R

3n),

where L2
s (R

3n) denotes the subspace of L2(R3n) consisting of all permutation sym-
metric functions. For Ψ,Φ ∈ F , we define the inner product

〈Ψ,Φ〉 =
∑

n≥0

〈ψ(n),ϕ(n)〉.

For Ψ ∈ F , we denote by ‖Ψ ‖ the corresponding norm. We consider Ψ ∈ F
normalized such that

‖Ψ ‖2 =
∑

n≥0

‖ψ(n)‖22 = 1.

The Fock space allows us to describe states of the system where the number of parti-
cles is not fixed. The vectorΨ = {ψ(n)}n≥0 ∈ F describes a state thatwith probability

© The Author(s) 2016
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‖ψ(n)‖22 has n particles. In particular, states with exactly N particles are embedded in
the Fock space; they are described by vectors {0, 0, . . . ,ψN , 0, . . . } ∈ F having only
one non-zero component. These vectors are eigenvectors of the number of particles
operator N defined by

(NΨ )(n) = nψ(n)

for any Ψ = {ψ(n)}n≥0 such that

∑

n≥0

n2‖ψ(n)‖22 < ∞ .

The vacuum vector Ω = {1, 0, . . . } ∈ F plays a special role; it is an eigenvector of
N with eigenvalue zero and describes a state with no particles at all.

Creation and annihilation operators. For any one-particle wave-function f ∈
L2(R3) we define the creation operator a∗( f ) and the annihilation operator a( f ) by
setting

(a∗( f )Ψ )(n)(x1, . . . , xn) = 1√
n

n∑

j=1

f (x j )ψ
(n−1)(x1, . . . , x j−1, x j+1, . . . , xn)

(a( f )Ψ )(n)(x1, . . . , xn) = √
n + 1

∫

dx f (x)ψ(n+1)(x, x1, . . . , xn).

The interpretation is straightforward: a∗( f ) creates a newparticlewithwave function
f , while a( f ) annihilates such a particle. Creation and annihilation operators are
closed densely defined operators on F with domain given by the domain of N 1/2;
moreover, a∗( f ) is the adjoint of a( f ) (as the notation suggests). Notice also that
a∗( f ) is linear in f , while a( f ) is anti-linear. Creation and annihilation operators
satisfy the canonical commutation relations

[a( f ), a∗(g)] = 〈 f, g〉, [a( f ), a(g)] = [a∗( f ), a∗(g)] = 0. (3.1)

Despite the bosonic creation and annihilation operators being unbounded, usually
domain questions are unproblematic since one can take the domain of a suffi-
ciently large power of the number operator to easily make sense of most expres-
sions and in particular of their commutators—see (3.7). It is also useful to introduce
operator-valued distributions a∗

x and ax which formally create and annihilate a par-
ticle at position x ∈ R

3. In terms of these distributions

a∗( f ) =
∫

f (x)a∗
x dx, a( f ) =

∫

f (x) ax dx

and
[ax , a∗

y ] = δ(x − y), [ax , ay] = [a∗
x , a∗

y ] = 0. (3.2)
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Notice that, if Ψ = {ψ(n)}n∈N,

(axΨ )(n)(x1, . . . , xn) = √
n + 1ψ(n+1)(x, x1, . . . , xn). (3.3)

Hence

〈Ψ,NΦ〉
=

∑

n≥0

n
∫

dx1 . . . dxnφ
(n)

(x1, . . . , xn)ϕ(n)(x1, . . . , xn)

=
∑

n≥1

∫

dxdx1 . . . dxn−1(axΨ )
(n−1)

(x1, . . . , xn−1)(axΦ)(n−1)(x1, . . . , xn−1)

=
∫

dx 〈axΨ, axΦ〉

and in this sense we can write

N =
∫

dx a∗
x ax . (3.4)

This expression forN suggests that, although creation and annihilation operators
are unbounded operators, they can be bounded with respect to the square root of the
number of particles operator. We have

± 〈Ψ, (a( f ) + a∗( f ))Ψ 〉
≤ 2|〈Ψ, a( f )Ψ 〉|
≤ 2

∑

n≥0

√
n + 1

∫

dxdx1 . . . dxnψ(n)(x1, . . . , xn) f (x) ψ(n+1)(x, x1, . . . , xn)

≤ 2
∑

n≥0

√
n + 1‖ f ‖‖ψ(n)‖‖ψ(n+1)‖

(3.5)
and therefore in the sense of forms

± (a( f ) + a∗( f )) ≤ 4‖ f ‖N 1/2. (3.6)

In norm, we have the bounds

‖a( f )Ψ ‖ ≤ ‖ f ‖‖N 1/2Ψ ‖ and

‖a∗( f )Ψ ‖ ≤ ‖ f ‖‖(N + 1)1/2Ψ ‖ (3.7)

for any f ∈ L2(R3). To prove the first bound in (3.7), we observe that by the
Cauchy-Schwarz inequality
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‖a( f )Ψ ‖ ≤
∫

dx | f (x)|‖axΨ ‖ ≤ ‖ f ‖
(∫

dx ‖axΨ ‖2
)1/2

= ‖ f ‖‖N 1/2Ψ ‖. (3.8)

The second estimate in (3.7) follows from

‖a∗( f )Ψ ‖2 = 〈Ψ, a( f )a∗( f )Ψ 〉 = 〈Ψ, a∗( f )a( f )Ψ 〉 + ‖ f ‖2‖Ψ ‖2
= ‖a( f )Ψ ‖2 + ‖ f ‖2‖Ψ ‖2

and (3.8).
Similarly to (3.4), we can express the second quantization of any one-particle

operator in terms of the operator-valued distributions a∗
x and ax : Let J (1) be an

operator on the one-particle space L2(R3). The second quantization of J (1) is the
operator dΓ (J (1)) on F defined by the requirement that

(dΓ (J (1))Ψ )(n) =
n∑

i=1

J (1)
i ψ(n)

where J (1)
i denotes the operator acting on L2(R3n) as J (1) on the i-th particle and

as the identity on the other (n − 1) particles. If the one-particle operator J (1) has the
integral kernel J (1)(x; y), we can write

〈Φ, dΓ (J (1))Ψ 〉

=
∑

n≥1

n∑

j=1

〈ϕ(n), J (1)
j ψ(n)〉

=
∑

n≥1

n
∫

dxdydx2 . . . dxnϕ(n)(x, x2, . . . , xn)J (1)(x; y)ψ(n)(y, x2, . . . , xn)

=
∑

n≥1

∫

dxdydx2 . . . dxn J (1)(x; y)(axΦ)(n−1)(x2, . . . , xn)

× (ayΨ )(n−1)(x2, . . . , xn)

=
∫

dxdy J (1)(x; y) 〈axΦ, ayΨ 〉.

Thus

dΓ (J (1)) =
∫

dxdy J (1)(x; y)a∗
x ay . (3.9)

Since the number of particles operator is the second quantization of the identity,
N = dΓ (1), the last expression is consistent with (3.4). Notice that if J (1) is
bounded, then its second quantization dΓ (J (1)) is (although generally unbounded)
bounded with respect to the number of particles operator, i.e.

|〈Ψ, dΓ (J (1))Ψ 〉| ≤ ‖J (1)‖〈Ψ,NΨ 〉 for all Ψ ∈ F . (3.10)
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and also
‖dΓ (J (1))Ψ ‖ ≤ ‖J (1)‖‖NΨ ‖ .

We can extend (3.9) to operators involving more particles. Let J (k) be an operator
on the k-particle Hilbert space L2

s (R
3k). We define the second quantization dΓ (J (k))

of J (k) by
(dΓ (J (k))Ψ )(n) =

∑

{i1,...,ik }
J (k)

i1,...,ik
ψ(n) (3.11)

where the sum runs over all sets {i1, . . . , ik} of k different indices in {1, . . . , n},
and where J (k)

i1,...,ik
denotes the operator on L2(R3n) acting as J (k) on the particles

i1, . . . , ik and as the identity on the other (n − k) particles. If J (k) has the integral
kernel J (k)(x1, . . . , xk; y1, . . . , yk), we find, similarly to (3.9),

dΓ (J (k))

=
∫

dx1 . . . dxkdy1 . . . dyk J (k)(x1, . . . , xk; y1, . . . , yk) a∗
x1 . . . a∗

xk
ayk . . . ay1 .

(3.12)
Similarly to (3.10), we find

|〈Ψ, dΓ (J (k))Ψ 〉| ≤ ‖J (k)‖ 〈Ψ,N (N − 1) . . . (N − k + 1)Ψ 〉.

Reduced densities. We define the one-particle reduced density associated with a
normalized Fock space vector Ψ ∈ F as the operator γ(1) : L2(R3) → L2(R3) such
that

Tr J (1)γ(1) = 〈Ψ, dΓ (J (1))Ψ 〉

for all one-particle observables J (1). From (3.9), we find that the integral kernel of
the one-particle reduced density γ(1) is given by

γ(1)(x; y) = 〈Ψ, a∗
yaxΨ 〉. (3.13)

Wedefine the k-particle reduced density associatedwith theFock space vectorΨ ∈ F
as the operator γ(k) on L2(R3k) such that

Tr J (k)γ(k) = 〈Ψ, dΓ (J (k))Ψ 〉

for every k-particle observable J (k). Using (3.12) we find that the integral kernel of
the k-particle reduced density γ(k) is

γ(k)(x1, . . . , xk; y1, . . . , yk) = 〈Ψ, a∗
y1 . . . a∗

yk
axk . . . ax1Ψ 〉.

Notice that γ(k) is normalized such that Tr γ(k) = 〈Ψ,N (N −1) . . . (N − k +1)Ψ 〉.
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Representation of the Hamiltonian in second quantization.Wedefine theHamilton
operator HN on the Fock space F by (HN Ψ )(n) = H(n)

N ψ(n) with

H(n)
N =

n∑

j=1

−Δx j + 1

N

n∑

i< j

V (xi − x j ). (3.14)

Since it does not play an important role in our analysis, we neglect here the external
potential (but we could also add it, requiring only straightforward changes). The
operatorHN leaves the number of particles invariant, i.e. it commutes with the num-
ber of particles operator N . When restricted to the N -particle subspace (consisting
of the vectors of the form {0, 0, . . . , 0,ψN , 0, . . . }),HN coincides precisely with the
Hamilton operator (2.1) defined in the previous chapter (of course up to the external
potential that we neglect here). Notice that the parameter N appearing in the Hamil-
tonian (3.14) is not yet related with the number of particles in the system which in
Fock space is arbitrary. Of course, later on we will restrict our attention to initial data
in F that has approximately N particles; this is important to make sure that we are
in the same mean-field regime discussed in Chap.2.

We can write the Hamiltonian HN in terms of the operator-valued distributions
ax and a∗

x . From (3.3) we find that

HN =
∫

dx ∇x a∗
x ∇x ax + 1

2N

∫

dxdyV (x − y)a∗
x a∗

yayax . (3.15)

The r.h.s. should be understood in the sense of forms, similarly to (3.4). The fact
that HN commutes with the number of particles operator N is evident from (3.15),
because, in every summand, the number of creation operators matches exactly the
number of annihilation operators. In particular, it follows that

e−iHN t {0, . . . , 0,ψN , 0, . . . } = {0, . . . , 0, e−iH(N )
N tψN , 0, . . . }.

On the r.h.s. we recover exactly the mean-field evolution discussed in the previous
chapter. So what have we gained by switching to the Fock space representation of the
bosonic system? The answer is that now we have more freedom in the choice of the
initial data; in particular, we can consider initial data having a number of particles
which is not fixed, i.e. is a superposition of different particle numbers. We will make
use of this freedom by considering a special class of initial data known as coherent
states.

Coherent states. For f ∈ L2(R3), we introduce the Weyl operator

W ( f ) = ea( f )−a∗( f ).

http://dx.doi.org/10.1007/978-3-319-24898-1_2
http://dx.doi.org/10.1007/978-3-319-24898-1_2
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The coherent state with wave function f ∈ R
3 is defined as1

W ( f )Ω = e−‖ f ‖2/2ea∗( f )Ω = e−‖ f ‖2/2
{

1, f,
f ⊗2

√
2! , . . . ,

f ⊗n

√
n! , . . . ,

}

. (3.16)

Since W ( f ) is unitary,

W ( f )∗ = W −1( f ) = W (− f ),

coherent states are always normalized, ‖W ( f )Ω‖ = 1 for all f ∈ L2(R3). Weyl
operators generate shifts of creation and annihilation operators, i.e.

W ( f )∗a(g)W ( f ) = a(g) + 〈g, f 〉,
W ( f )∗a∗(g)W ( f ) = a∗(g) + 〈 f, g〉. (3.17)

This implies that coherent states are eigenvectors of all annihilation operators, i.e.

a(g)W ( f )Ω = W ( f )W ∗( f )a(g)W ( f )Ω = W ( f ) (a(g) + 〈g, f 〉)Ω

= 〈 f, g〉W ( f )Ω.

From (3.16), we see that coherent states do not have a fixed number of particles.
Instead they are a linear combination of states with all possible numbers of particles.
The expectation of the number of particles operator in the state W ( f )Ω is

〈W ( f )Ω,NW ( f )Ω〉 =
∫

dx〈W ( f )Ω, a∗
x ax W ( f )Ω〉

=
∫

dx〈W ( f )Ω, (a∗
x + f (x))(ax + f (x))Ω〉 = ‖ f ‖2.

More precisely the number of particles in the coherent state W ( f )Ω is a Poisson
random variable with mean and variance ‖ f ‖2.

Dynamics of coherent states. We are interested in the evolution of coherent initial
states. For ϕ ∈ L2(R3) with ‖ϕ‖ = 1, we consider the coherent state W (

√
Nϕ)Ω .

The expectation of the number of particles operator is N ; for this reason we expect
to be in the mean-field regime, in which many-body interactions can be effec-
tively approximated by an average potential. This is made rigorous by the following
theorem.

1To evaluate W ( f )Ω we made use of the Baker-Campbell-Hausdorff formula for operators A, B
with the property that [[A, B], A] = [[A, B], B] = 0:

eA+B = e− 1
2 [A,B]eAeB .

Since a( f )Ω = 0 one then simply has to expand the exponential of a∗( f ).
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Theorem 3.1 Let V be a measurable function satisfying the operator inequality

V 2(x) ≤ C(1 − Δ) (3.18)

for some C > 0, and let ϕ ∈ H1(R3). Let {ξN }N∈N be a sequence of vectors in F
with ‖ξN ‖ = 1 and such that for some C > 0

〈ξN ,N ξN 〉 + 1

N
〈ξN ,N 2ξN 〉 ≤ C ∀ N ∈ N. (3.19)

Let γ(1)
N ,t be the one-particle reduced density associated with the evolved state ψN ,t =

e−iHN t W (
√

Nϕ)ξN . Then there exist constants D, K > 0 such that

Tr
∣
∣
∣γ

(1)
N ,t − N |ϕt 〉〈ϕt |

∣
∣
∣ ≤ DeK |t | (3.20)

for all t ∈ R and all N ∈ N. Here ϕt denotes the solution of the nonlinear Hartree
equation

i∂tϕt = −Δϕt + (V ∗ |ϕt |2)ϕt (3.21)

with initial data ϕ0 = ϕ.

Remark

• The trace-norm bound (3.20) is of order one; this is to be compared to Trγ(1)
N ,t =

TrN |ϕt 〉〈ϕt | = N . In this sense, (3.20) establishes a relative rate of convergence
of order 1/N.

• The assumption V 2(x) ≤ C(1 − Δ) holds for potentials with a Coulomb singu-
larity, since Hardy’s inequality implies that

∫

dx
|ϕ(x)|2

|x |2 ≤ ‖ϕ‖2H1 .

In fact, the result (3.20) can be easily extended to potentials V ∈ L2(R3) +
L∞(R3), although in general the time dependence on the r.h.s. of (3.20) may be
worse.

• The condition (3.19) guarantees that the initial deviations from the coherent state
W (

√
Nϕ)Ω , which are described by the vector ξN , are small compared to the

number of particles in the initial data W (
√

Nϕ)ξN , which has expectation N .
• It is possible to represent states of the form ϕ⊗N as the projection of a coherent
state on the N -particle subspace; that way also the evolution of initial data ϕ⊗N

can be studied through the coherent states method and some extra work [1, 4].

Sketch of the proof of Theorem 3.1. According to (3.13), the one-particle reduced
density associated with the Fock space vector ΨN ,t has the integral kernel
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γ
(1)
N ,t (x; y) = 〈ΨN ,t , a∗

yaxΨN ,t 〉. (3.22)

We define the fluctuation vector ξN ,t at time t by setting

ΨN ,t = e−iHN t W (
√

Nϕ)ξN = W (
√

Nϕt )ξN ,t (3.23)

where ϕt is the solution of the Hartree equation (3.21). Equivalently, we can write

ξN ,t = UN (t; 0)ξN

where we introduced the fluctuation dynamics

UN (t; s) = W (
√

Nϕt )
∗e−iHN (t−s)W (

√
Nϕs). (3.24)

Plugging the r.h.s. of (3.23) in (3.22), we obtain

γ
(1)
N ,t (x; y) = 〈W (

√
Nϕt )ξN ,t , a∗

yax W (
√

Nϕt )ξN ,t 〉
= 〈ξN ,t , (a

∗
y + √

Nϕt (y))(ax + √
Nϕt (x))ξN ,t 〉

= Nϕt (y)ϕt (x) + √
Nϕt (y)〈ξN ,t , axξN ,t 〉 + √

Nϕt (x)〈ξN ,t , a∗
yξN ,t 〉

+ 〈ξN ,t , a∗
yaxξN ,t 〉.

Integrating against a one-particle observable J (1) with kernel J (1)(x; y), we find

Tr J (1)
(
γ

(1)
N ,t − N |ϕt 〉〈ϕt |

)
= √

N
〈
ξN ,t ,

[
a(J (1)ϕt ) + a∗(J (1)ϕt )

]
ξN ,t

〉

+ 〈ξN ,t , dΓ (J (1))ξN ,t 〉.
(3.25)

According to (3.10) and (3.6), the expectation values of the operators a(J (1)ϕt ) +
a∗(J (1)ϕt ) and dΓ (J (1)) can both be bounded by the expectation of the number of
particles operator in the state ξN ,t = UN (t; 0)ξN i.e. by the number of fluctuations.
The next proposition is taken from [5, Proposition 3.1] but similar estimates have
already been proven in [1, 4]. The proposition extends also to higher moments of the
number of particles operator.

Proposition 3.2 Let V be a measurable function satisfying the operator inequality
(3.18) and let ϕ ∈ H1(R3). Then there exist constants D, K > 0 such that

〈UN (t; 0)ψ,NUN (t; 0)ψ〉 ≤ DeK |t | 〈ψ,

[

N + 1

N
N 2

]

ψ〉

for any ψ ∈ F . Here UN is defined as in (3.24).

While Proposition 3.2 immediately implies the desired bound for the second term
on the r.h.s. of (3.25), some more work is required to get rid of the additional

√
N

factor in the first term on the r.h.s. of (3.25). We will omitthe details which can be
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found in [1, 4], and just write the final estimate
∣
∣
∣Tr J (1)

(
γ(1)

N ,t − N |ϕt 〉〈ϕt |
)∣
∣
∣ ≤ D‖J (1)‖eK |t |.

Since the space of trace class operators L1(L2(R3)), equipped with the trace norm,
is the dual of the space of compact operators, equipped with the operator norm, the
last bound implies (3.20).
Sketch of the proof of Proposition 3.2. Let us briefly discuss the main ideas needed
to bound the growth of the number of fluctuations. We notice, first of all, that the
fluctuation dynamics UN (t; s) satisfies the Schrödinger type equation

i∂tUN (t; s) = LN (t)UN (t; s)

with the time-dependent generator

LN (t) =
[
i∂t W

∗(
√

Nϕt )
]

W (
√

Nϕt ) + W ∗(
√

Nϕt )HN W (
√

Nϕt ).

The time derivative is2

[
i∂t W

∗(
√

Nϕt )
]

W (
√

Nϕt ) = C1,N (t) − √
N

(
a∗(i∂tϕt ) + a(i∂tϕt )

)
.

Using (3.17) we find

W∗(
√

Nϕt )HN W (
√

Nϕt ) =
C2,N (t) + √

N
(

a∗(−Δϕt + (V ∗ |ϕt |2)ϕt ) + a(−Δϕt + (V ∗ |ϕt |2)ϕt )
)

+
∫

dx∇x a∗
x ∇x ax +

∫

dx(V ∗ |ϕt |2)(x)a∗
x ax

+
∫

dxdyV (x − y)ϕt (x)ϕt (y)a∗
x ay

+
∫

dxdyV (x − y)
(
ϕt (x)ϕt (y)a∗

x a∗
y + ϕt (x)ϕt (y)ax ay

)

+ 1√
N

∫

dxdyV (x − y)a∗
x

(
ϕt (y)a∗

y + ϕt (y)ay

)
ax

+ 1

2N

∫

dxdyV (x − y)a∗
x a∗

yayax

2Systematically, time derivatives of the form (∂t e−A(t))eA(t) (with A(t) a sufficiently regular family
of operators) can be calculated as follows. Start by writing

(∂t e
−A(t))eA(t) = lim

h→0

1

h

∫ 1

0
dλ

d

dλ

(
e−A(t+h)λeA(t)λ

)
= −

∫ 1

0
dλ e−A(t)λ Ȧ(t)eA(t)λ.

Now one uses the Baker-Campbell-Hausdorff formula e−A BeA = B − ∫ 1
0 dρ e−ρA[A, B]eρA for

operators A, B and iterates. In the application here, the iteration breaks off immediately because
the commutator is just a complex number.
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for appropriate constants3 C1,N (t) and C2,N (t). Since ϕt satisfies the Hartree equa-
tion, the contributions of order

√
N (which are linear in a∗

x and ax ) cancel exactly,
and therefore (up to a constant contribution, which can be absorbed in the phase) we
obtain

LN (t) =
∫

dx∇x a∗
x ∇x ax +

∫

dx(V ∗ |ϕt |2)(x)a∗
x ax

+
∫

dxdyV (x − y)ϕt (x)ϕt (y)a∗
x ay

+
∫

dxdyV (x − y)
(
ϕt (x)ϕt (y)a∗

x a∗
y + ϕt (x)ϕt (y)ax ay

)

+ 1√
N

∫

dxdyV (x − y)a∗
x

(
ϕt (y)a∗

y + ϕt (y)ay

)
ax

+ 1

2N

∫

dxdyV (x − y)a∗
x a∗

yayax .

(3.26)

We notice thatLN (t) contains terms (the third and fourth line) which do not commute
with the number of particles operator. This means that, as expected, the fluctuation
dynamics UN (t), in contrast with the original dynamics e−iHN t , does not preserve
the number of particles. Nevertheless we can control the growth of the expectation
of N . We compute

i∂t 〈UN (t; 0)ξN ,NUN (t; 0)ξN 〉
= 〈UN (t; 0)ξN , [N ,LN (t)]UN (t; 0)ξN 〉
= 2i Im

∫

dxdyV (x − y)ϕt (x)ϕt (y)〈UN (t; 0)ξN , [N , a∗
x a∗

y ]UN (t; 0)ξN 〉

+ 2i√
N
Im

∫

dxdyV (x − y)ϕt (x)〈UN (t; 0)ξN , [N , a∗
x a∗

yax ]UN (t; 0)ξN 〉.

Using the canonical commutation relations (3.2) we find

∂t 〈UN (t; 0)ξN ,NUN (t; 0)ξN 〉
= 4 Im

∫

dxdyV (x − y)ϕt (x)ϕt (y)〈UN (t; 0)ξN , a∗
x a∗

yUN (t; 0)ξN 〉

+ 2√
N
Im

∫

dxdyV (x − y)ϕt (y)〈UN (t; 0)ξN , a∗
x a∗

yaxUN (t; 0)ξN 〉
=: I + II.

(3.27)

3We speak of constants since these are not operators, but rather just complex numbers. Of course
they depend on time and on N .
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The first term can be bounded using (3.7):

|I| = 4

∣
∣
∣
∣

∫

dxϕt (x)〈axUN (t; 0)ξN , a∗(V (x − ·)ϕt )UN (t; 0)ξN 〉
∣
∣
∣
∣

≤ 4
∫

dx |ϕt (x)|‖axUN (t; 0)ξN ‖‖a∗(V (x − ·)ϕt )UN (t; 0)ξN ‖

≤ 4
∫

dx |ϕt (x)|‖axUN (t; 0)ξN ‖‖V (x − ·)ϕt‖2‖(N + 1)1/2UN (t; 0)ξN ‖
≤ 4 sup

x
‖V (x − ·)ϕt‖2‖(N + 1)1/2UN (t; 0)ξN ‖2.

From the assumption (4.4), we obtain

‖V (x − ·)ϕt‖2 =
∫

dyV 2(x − y)|ϕt (y)|2 ≤ C‖ϕt‖2H1 .

Furthermore, the Hartree energy

EH (ϕ) =
∫

|∇ϕ(x)|2dx + 1

2

∫

dxdyV (x − y)|ϕ(x)|2|ϕ(y)|2 (3.28)

is conserved along the Hartree evolution, i.e. for a solution of the Hartree equation
ϕt , EH (ϕt ) is independent of t . Together with the assumption (3.18), this implies
that there exists a universal constant C > 0 such that

‖ϕt‖H1 ≤ C‖ϕ0‖H1 .

Hence
sup

x
‖V (x − ·)ϕt‖ ≤ K

for a constant K > 0 depending only on the constantC0 in (3.18) and on the H1-norm
of the initial wave function ϕ0. We conclude that

|I| ≤ K 〈UN (t; 0)ξN , (N + 1)UN (t; 0)ξN 〉. (3.29)

To control the second term on the r.h.s. of (3.27), we proceed as follows:

|II| ≤ 2√
N

∫

dx‖a(V (x − ·)ϕt )axUN (t; 0)ξN ‖‖axUN (t; 0)ξN ‖

≤ 2√
N

sup
x

‖V (x − ·)ϕt‖2
∫

dx‖axN 1/2UN (t; 0)ξN ‖‖axUN (t; 0)ξN ‖

≤ K

N
〈UN (t; 0)ξN ,N 2UN (t; 0)ξN 〉 + K 〈UN (t; 0)ξN ,NUN (t; 0)ξN 〉.

http://dx.doi.org/10.1007/978-3-319-24898-1_4
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In the first term on the r.h.s. of the last equation, we are going to use the 1/N factor to
reduce the exponent of the number of particles operator. Since U∗

N (t; 0)NUN (t; 0)
measures the number of fluctuations, it is heuristically clear that it can be bounded by
the total number of particles N ; more precisely, one can prove the operator inequality
(see [5], proof of Proposition 3.1)

1

N
U∗

N (t; 0)N 2UN (t; 0) � U∗
N (t; 0)NUN (t; 0) + N 2

N
.

Applying this bound for ξN , we conclude that

1

N
〈UN (t; 0)ξN ,N 2UN (t; 0)ξN 〉 � 〈UN (t; 0)ξN ,NUN (t; 0)ξN 〉 + 1

N
〈ξN ,N 2ξN 〉

and therefore that (with K depending also on C from (3.19))

|II| ≤ K 〈UN (t; 0)ξN , (N + 1)UN (t; 0)ξN 〉 .

Inserting the last bound and (3.29) into (3.27), we find

∣
∣
∣
∣

d

dt
〈UN (t; 0)ξN ,NUN (t; 0)ξN 〉

∣
∣
∣
∣ ≤ K 〈UN (t; 0)ξN , (N + 1)UN (t; 0)ξN 〉.

Gronwall’s Lemma implies therefore

〈UN (t; 0)ξN ,NUN (t; 0)ξN 〉 ≤ CeK |t |.

This concludes the sketch of the proof of Proposition 3.2; more details can be found
in [1, 4].
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Chapter 4
Fluctuations Around Hartree Dynamics

The coherent state approach presented in the last chapter also allows us to describe
the fluctuations around the Hartree dynamics.

Fluctuations for coherent initial states. For simplicity, let us consider the evolution
of a coherent state initial data ΨN = W (

√
Nϕ)Ω ∈ F . (As in the last chapter, we

could also consider approximate coherent states ΨN = W (
√

Nϕ)ξN , with ξN now
satisfying 〈ξN , (N 3/2+N−1/2N 5/2+N−1N 3)ξN 〉 ≤ C .)According to the definition
of the fluctuation dynamics (3.24), we can write

e−iHN t W (
√

Nϕ)Ω = W (
√

Nϕt )UN (t; 0)Ω.

Recall the generatorLN (t)of thefluctuation dynamicsUN (t; s) as given by (3.26).
The last two terms on the r. h. s. of (3.26), the cubic and the quartic contribution to
LN (t), seem to vanish, in the limit of large N . Therefore we define a new time-
dependent generator

L∞(t) =
∫

dx∇x a∗
x ∇x ax +

∫

dx(V ∗ |ϕt |2)(x)a∗
x ax

+
∫

dxdyV (x − y)ϕt (x)ϕt (y)a∗
x ay

+
∫

dxdyV (x − y)
(
ϕt (x)ϕt (y)a∗

x a∗
y + ϕt (x)ϕt (y)ax ay

)

(4.1)

keeping only the quadratic part of LN (t). We denote by U∞(t; s) the evolution
generated by L∞(t), i.e.

i∂tU∞(t; s) = L∞(t)U∞(t; s), U∞(s; s) = 1. (4.2)
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For interaction potentials satisfying the condition (3.18) one can prove that

‖(UN (t; 0) − U∞(t; 0))ψ‖ ≤ C |t |√
N

[

‖N 3/2ψ‖ + 1√
N

‖N 2ψ‖
]

(4.3)

for some constant C > 0. The proof of (4.3) is based on the identity

UN (t; 0) − U∞(t; 0) =
∫ t

0
UN (t; s) (LN (s) − L∞(s))U∞(s; 0) ds

and on the control of the growth of moments of the number of particles operator with
respect to the limiting fluctuation dynamics U∞(s; 0). The bound (4.3) leads to the
following theorem.

Theorem 4.1 Let V be a measurable function satisfying the operator inequality

V 2(x) ≤ C(1 − Δ) (4.4)

for some C > 0, and let ϕ ∈ H1(R3). Then there exists a constant D > 0 such that

∥
∥
∥e−iHN t W (

√
Nϕ)Ω − W (

√
Nϕt )U∞(t; 0)Ω

∥
∥
∥ ≤ D|t |√

N
.

In other words, Theorem4.1 states that, if we approximate the many-body evo-
lution of the initial coherent state taking into account also the limiting fluctuation
dynamics U∞(t; 0) rather than only the Hartree dynamics of the coherent state,
we get convergence in norm as N → ∞ (with a rate proportional to N−1/2), while
approximation of the many-body evolution just by evolved coherent states only gives
convergence in the weaker sense of reduced densities.

Bogoliubov transformations. In contrast with UN (t; s) the limit fluctuation
dynamics U∞(t; s) is a simple evolution, because its generator is quadratic. In fact,
it acts as a Bogoliubov transformation, a general concept that we introduce now,
following [1]. For f, g ∈ L2(R3), we define

A( f, g) = a( f ) + a∗(g).

Then we have

A∗( f, g) = a∗( f ) + a(g) = A(g, f ) = A(J ( f, g)) (4.5)

where J : L2(R3)⊕ L2(R3) → L2(R3)⊕ L2(R3) is the anti-linear map defined by

J ( f, g) = (g, f ).

http://dx.doi.org/10.1007/978-3-319-24898-1_3
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The canonical commutation relations take the form

[
A( f1, g1), A∗( f2, g2)

] = 〈( f1, g1), S( f2, g2)〉 (4.6)

with the linear operator S : L2(R3) ⊕ L2(R3) → L2(R3) ⊕ L2(R3) defined by

S( f, g) = ( f,−g),

and where 〈·, ·〉 denotes the inner product in L2(R3)⊕ L2(R3). A Bogoliubov trans-
formation is a linear mapΘ : L2(R3)⊕ L2(R3) → L2(R3)⊕ L2(R3) that preserves
(4.5) and (4.6). In other words, it is a linear map satisfying the two conditions

ΘJ = JΘ and Θ∗SΘ = S.

It is easy to check that Θ is a Bogoliubov transformation if and only if it can be
written in the block form

Θ =
(

U V̄
V Ū

)

(4.7)

with two linear operators U, V : L2(R3) → L2(R3) satisfying U∗U − V ∗V = 1
and U∗V̄ = V ∗Ū (the operators Ū , V̄ are obtained taking the complex conjugate of
the kernels of U , V ).

A Bogoliubov transformation Θ : L2(R3) ⊕ L2(R3) → L2(R3) ⊕ L2(R3) is
called implementable if there exists a unitary map Ξ : F → F defined on the
bosonic Fock space F over L2(R3) such that

Ξ∗ A( f, g)Ξ = A(Θ( f, g))

for every f, g ∈ L2(R3). The Shale-Stinespring condition states that a Bogoliubov
transformation Θ is implementable if and only if the off-diagonal operator V :
L2(R3) → L2(R3) is Hilbert-Schmidt (i. e. if TrV ∗V < ∞).

The limit fluctuation dynamics U∞(t; s), defined in (4.2), acts for any t, s ∈ R as
a Bogoliubov transformation: It is simple to check that there exists a two-parameter
group of Bogoliubov transformations Θ(t; s) : L2(R3) ⊕ L2(R3) → L2(R3) ⊕
L2(R3) such that

U∗∞(t; s)A( f, g)U∞(t; s) = A(Θ(t; s)( f, g)). (4.8)

The time-dependent Bogoliubov transformationsΘ(t; s) are easily seen to satisfy
the equation

i∂tΘ(t; s) = D(t)Θ(t; s)
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with the generator

D(t) =
(−Δ + (V ∗ |ϕt |2) + A1 A2

A2 −Δ + (V ∗ |ϕt |2) + A1

)

.

Here we denoted by A1 and A2 the operators with integral kernels A1(x; y) =
V (x − y)ϕt (x)ϕt (y) and A2(x; y) = V (x − y)ϕt (x)ϕt (y). Identifying U∞(t; s)
with a Bogoliubov transformation means that the limit fluctuation dynamics can be
determined by solving a partial differential equation on L2(R3) ⊕ L2(R3); in this
sense we can think of U∞(t; s) as a simple effective dynamics (in contrast with
UN (t; s) which a true many-body evolution).

Probabilistic interpretation. The convergence of the reduced densities can be
interpreted, in the language of probability theory, as a law of large numbers. Let J (1)

be a one-particle observable, i. e. a self-adjoint operator over L2(R3). We denote by
J (1)

i the operator on L2(R3N ) acting as J (1) on the i-th particle and as the identity
on the other (N − 1) particles. W.r.t. a factorized N -particle wave function ϕ⊗N , the
observables J (1)

i define independent and identically distributed random variables,
and therefore, for every δ > 0,

Pϕ⊗N

(∣
∣
∣
∣
∣

1

N

N∑

i=1

J (1)
i − 〈ϕ, J (1)ϕ〉

∣
∣
∣
∣
∣
≥ δ

)

→ 0 (N → ∞).

W.r.t. the evolved wave function ψN ,t , solution of the mean-field Schrödinger
equation

i∂tψN ,t =
[ N∑

j=1

−Δ j + 1

N

N∑

i< j

V (xi − x j )
]
ψN ,t

with initial data ψN ,0 = ϕ⊗N , the N observables J (1)
1 , . . . , J (1)

N are no longer inde-
pendent.Nevertheless, it is easy to check that the convergence of the reduced densities
implies that

PψN ,t

(∣
∣
∣
∣
∣

1

N

N∑

i=1

J (1)
i − 〈ϕt , J (1)ϕt 〉

∣
∣
∣
∣
∣
≥ δ

)

→ 0 (N → ∞).

At time t = 0 we also have a central limit theorem stating that the fluctuations
of

∑N
i=1 J (1)

i , appropriately normalized, are Gaussian in the limit. Does the same
hold true for t �= 0? The answer, obtained in [2, 3], is positive; with respect to the
measure induced by ψN ,t , we have

1√
N

N∑

i=1

J (1)
i − 〈ϕt , J (1)ϕt 〉 → Gauss(0, σ 2

t ) (4.9)
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as N → ∞, in distribution. The variance of the limiting Gaussian variable is given
by

σ 2
t = ‖U (t; 0)J (1)ϕt + V (t; 0)J (1)ϕt‖2 − |〈ϕ, U (t; 0)J (1)ϕt + V (t; 0)J (1)ϕt 〉|2,

whereU (t; 0) and V (t; 0) are defined through the decomposition (4.7) of the Bogoli-
ubov transformation Θ(t; 0) from (4.8). Equation (4.9) shows that in the mean-field
limit the correlations among the particles are weak enough for the central limit the-
orem to hold true, but they are strong enough to change the variance of the limiting
Gaussian variable. (For a completely factorized wave function ϕ⊗N

t , the variance
would clearly be 〈ϕt , (J (1))2ϕt 〉 − 〈ϕt , J (1)ϕt 〉2.)

Fluctuations for data with fixed number of particles. For N -particle initial data, a
better approach to study fluctuations around the Hartree dynamics has been proposed
in [4], based on ideas developed in [5] to analyze the excitation spectrum of mean-
fieldHamiltonians. Fixϕ ∈ L2(R3). Thenwe canwrite any N -particlewave function
ψN ∈ L2

s (R
3N ) as1

ψN = ψ(0)ϕ⊗N + ψ(1) ⊗s ϕ⊗(N−1) + · · · + ψ(N−1) ⊗s ϕ + ψ(N )

where the n-particle bosonic wave function ψ(n) is assumed to be orthogonal to ϕ in
all its n entries. This defines a map

Uϕ : L2
s (R

3N ) → F+
ψN �→ {ψ(0), ψ(1), . . . , ψ(N ), 0, 0 . . . }

which is linear and isometric. Here F+ denotes the bosonic Fock space over the
orthogonal complement of span{ϕ}. We can think of UϕψN ∈ F+ as describing the
fluctuations around the condensate. We assume that the initial data ψN ∈ L2

s (R
3N )

exhibits complete condensation in ϕ ∈ L2(R3) in the sense that the fluctuations
φ(0) := UϕψN ∈ F+ can be bounded uniformly in N in the sense that for some
C > 0 we have

〈φ(0), dΓ (1 − Δ)φ(0)〉 ≤ C

independent of N . We let ψN evolve with the Hamiltonian

HN =
N∑

j=1

−Δx j + 1

N

N∑

i< j

V (xi − x j ) .

Weknow thatψN ,t = e−i HN tψN exhibits condensation in the one-particle stateϕt

evolved according to the Hartree dynamics. To study the evolution of the fluctuations
around the Hartree evolution we apply the map Uϕt : L2

s (R
3N ) → F+,t , defined

1The symbol ⊗s denotes the symmetrized tensor product, i. e. ϕ1 ⊗s · · · ⊗s ϕN =
(N !)−1 ∑

σ∈SN
ϕσ(1) ⊗ · · · ⊗ ϕσ(N ).
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analogously to Uϕ , on ψN ,t . (Notice that the image space of Uϕt depends on time
because of the requirement of orthogonality to ϕt .) We find that

‖Uϕt e
−i HN tψN − φ(t)‖ → 0 (N → ∞). (4.10)

Here φ(t) ∈ F+ is the solution of the evolution equation

i∂tφ(t) = L∞(t)φ(t) (4.11)

with initial data φ(0) and a quadratic time-dependent generator L∞(t) very similar
to (4.1) (although not exactly the same because of the requirement of orthogonality).
Equation (4.10) shows that, by taking into account the quadratic dynamics of the
fluctuations, we obtain a norm approximation for the full evolution ψN ,t . In other
words, writing φ(t) = {φ(1)(t), . . . , φ(N )(t), 0, 0, . . . }, we find

ψN ,t � φ(0)(t)ϕ⊗N
t + φ(1)(t) ⊗s ϕ

⊗(N−1)
t + · · · + φ(N )(t)

with an error whose norm tends to zero as N → ∞. (It is also possible to check that
the error is actually of order N−1/2.)
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Chapter 5
The Gross-Pitaevskii Regime

Another limit in which it is possible to approximate the many-body dynamics of
bosonic systems by an effective one-particle equation is the Gross-Pitaevskii regime,
which is relevant for the description of trapped Bose-Einstein condensates in typi-
cal experiments with dilute alkali gases. At the microscopic level, a trapped Bose-
Einstein condensate can be described as a gas of N bosons with Hamilton operator
of the form

H trap
N =

N∑

j=1

(−Δx j + Vext(x j )
) +

N∑

i< j

N 2V (N (xi − x j )). (5.1)

Here Vext is an external potential modeling the trap and the interaction is described
by a smooth repulsive potential V (we have to assume that V ≥ 0 pointwise) with
short range (for convenience we will assume that V has compact support, although
this is not really necessary).

Scattering length. In (5.1) the interaction potential scales with the number of
particles N so that its scattering length is of order N−1. Let us recall that the scattering
length of a potential V is defined through the solution of the zero-energy scattering
equation (

−Δ + 1

2
V

)

f = 0 (5.2)

with the boundary condition f (x) → 1 for |x | → ∞. Under the assumption of
compact support for V one can show that, for |x | sufficiently large,

f (x) = 1 − a0
|x |

for an appropriate constant a0 > 0, which is called the scattering length of V . It is a
simple exercise to show that equivalently the scattering length a0 can also be defined
through the integral
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8πa0 =
∫

V (x) f (x)dx (5.3)

where again f denotes the solution of (5.2). From the point of view of physics, the
scattering length a0 measures the effective range of the interaction potential; two
quantum mechanical particles interacting through the potential V , when they are
far apart, feel the other particle as a hard sphere with radius a0 (in particular, the
scattering length of a hard sphere potential coincides with the radius of the sphere).

Notice that if a0 denotes the scattering length of V , the scattering length of the
rescaled potential N 2V (N ·) is given by a = a0/N . This follows because by simple
scaling, from (5.2) we find

(

−Δ + N 2

2
V (N ·)

)

f (N ·) = 0

and

f (N x) = 1 − a0
N |x | = 1 − (a0/N )

|x | .

Ground state properties of trapped condensates. It was proven in [1] that the
ground state energy per particle for the Hamiltonian (5.1) converges, as N → ∞,
towards the minimum of the Gross-Pitaevskii energy functional

EGP(ϕ) =
∫ [

|∇ϕ|2 + Vext|ϕ|2 + 4πa0|ϕ|4
]

dx (5.4)

over all one-particle wave functions ϕ ∈ L2(R3) with ‖ϕ‖ = 1. From (5.4) we
conclude that in first approximation the ground state energy of the Bose gas depends
only on the scattering length of the interaction potential, not on its precise profile.

It was then shown in [2] that the ground state of H trap
N exhibits complete condensa-

tion in the minimizer of the Gross-Pitaevskii energy functional (5.4). More precisely,
the one-particle reduced density γ

(1)
N associated with the ground state of H trap

N was
proven to satisfy

1

N
γ

(1)
N → |ϕ〉〈ϕ| (N → ∞).

The interpretation of this result is straightforward: in the ground state of H trap
N all

particles, up to a fraction vanishing in the limit N → ∞, are condensated in the one-
particle state described by the uniqueminimizerϕ of the Gross-Pitaevskii functional.

Dynamics of initially trapped condensates. Since Gross-Pitaevskii theory has
proved so successful in the description of the ground state properties of the
Hamiltonian (5.1), can it also be used to predict the time-evolution of initially trapped
condensates? As in Chap.2 we want to study the reaction of the system to a change
of the external fields. At time t = 0, we assume the boson gas to be prepared in the

http://dx.doi.org/10.1007/978-3-319-24898-1_2
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ground state ψN of the trapping Hamiltonian (5.1). Then, the traps are switched off
and the condensate starts to evolve by the translation invariant Hamiltonian

HN =
N∑

j=1

−Δx j +
N∑

i< j

N 2V (N (xi − x j )). (5.5)

The next theorem, taken from [3–5], describes the resulting dynamics. (More
recently, a similar statement has been shown in [6].)

Theorem 5.1 Let V ≥ 0 be a spherically symmetric, short range, bounded potential
with scattering length a0. Consider a sequence ψN ∈ L2

s (R
3N ) satisfying

• Finite energy per particle: there exists C > 0 such that 〈ψN , HN ψN 〉 ≤ C N;
• Condensation: the one-particle reduced density γ

(1)
N associated with ψN is such

that
1

N
γ

(1)
N → |ϕ〉〈ϕ| (N → ∞)

for a ϕ ∈ L2(R3).

Let ψN ,t = e−i HN tψN and let γ
(1)
N ,t be the one-particle reduced density associated

with ψN ,t . Then, for every fixed t ∈ R,

1

N
γ

(1)
N ,t → |ϕt 〉〈ϕt | (5.6)

as N → ∞, where ϕt is the solution of the time-dependent Gross-Pitaevskii equation

i∂tϕt = −Δϕt + 8πa0|ϕt |2ϕt (5.7)

with the initial condition ϕ0 = ϕ.

Remark Convergence in (5.6) holds for example in the trace norm. Moreover (5.6)
also implies convergence of higher order reduced densities. If γ(k)

N ,t denotes the k-
particle reduced density associated with ψN ,t , it is shown in [4, 5] that

1
(N

k

)γ
(k)
N ,t → |ϕt 〉〈ϕt |⊗k

as N → ∞, for any fixed k ∈ N and t ∈ R.

Comparison with the mean-field regime. Let us discuss the relation between the
Gross-Pitaevskii limit, characterized by an interaction potentialwith scattering length
of the order N−1, and the mean-field regime discussed in Chap. 2. Writing the inter-
action potential in (5.5) as

http://dx.doi.org/10.1007/978-3-319-24898-1_2
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N 2V (N x) = 1

N
vN (x)

with vN (x) = N 3V (N x), one could think of the Gross-Pitaevskii limit as a mean-
field limit with a potential vN that converges towards a delta distribution in the limit
of large N . However, this interpretation of (5.5) is quite misleading. Formally we
have

vN (x) = N 3V (N x) → b0δ(x)

with b0 = ∫
V (x)dx . Hence, based on the mean-field interpretation of (5.5), we

should expect the many-body evolution to be approximated, in the limit of large N ,
by the nonlinear Schrödinger equation

i∂tϕt = −Δϕt + b0(δ ∗ |ϕt |2)ϕt = −Δϕt + b0|ϕt |2ϕt .

This equation has the same form as the Gross-Pitaevskii equation (5.7) but a
different constant in front of the nonlinearity. The reason why the mean-field inter-
pretation leads to a wrong coupling constant is that physically the two regimes are
very different. While the mean-field regime is characterized by a large number of
very weak collisions, in the Gross-Pitaevskii regime particles interact very rarely1

but when they do interact, the collisions are very strong. Because of these rare and
strong collisions, the solution of the Schrödinger equation ψN ,t generated by the
Hamiltonian (5.5) develops a singular correlation structure, varying on the length
scale N−1, which is then responsible for the emergence of the scattering length in
the Gross-Pitaevskii equation (5.7). Correlations among the particles therefore play a
crucial role in theGross-Pitaevskii regime, while they are negligible in themean-field
limit.

Correlation structure. Let us now try to explain how the correlation structure
affects the dynamics of the condensate. (Recently the correlation structure devel-
oped by the solution of the Schrödinger equation in the Gross-Pitaevskii limit has
been studied in [7].) Let us normalize the one- and two-particle reduced densities

associated with ψN ,t to γ̃
(1)
N ,t = N−1γ

(1)
N ,t and γ̃

(2)
N ,t = (N

2

)−1
γ

(2)
N ,t . They satisfy the

differential equation

i∂t γ̃
(1)
N ,t = [−Δ, γ̃

(1)
N ,t ] + (N − 1)Tr2

[
N 2V (N (x1 − x2)), γ̃

(2)
N ,t

]
(5.8)

which is the first of the N coupled equations forming the BBGKY hierarchy (similar
to (2.9) in the mean-field setting). By assumption, at time t = 0, ψN ,0 exhibits

1Particles interact only when they are at distances of the order N−1, which is much smaller than
the typical distance N−1/3 among the particles. In this sense, the Gross-Pitaevskii model describes
a dilute gas, in contrast to the mean-field scaling, which describes a high-density gas.

http://dx.doi.org/10.1007/978-3-319-24898-1_2
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condensation, meaning that γ̃
(1)
N ,t=0 → |ϕ〉〈ϕ| for a ϕ ∈ L2(R3). If condensation is

approximately preserved by the time-evolution, we should expect that also for t = 0

γ̃
(1)
N ,t � |ϕt 〉〈ϕt |. (5.9)

As for the two-particle reduced density, again we expect approximate factorization.
Here, however, we should also take into account correlations. Assuming that cor-
relations can be described by means of the solution of the zero-energy scattering
equation (5.2), we expect that the integral kernel of γ̃(2)

N ,t can be approximated by

γ̃(2)
N ,t (x1, x2; y1, y2) � f (N (x1 − x2)) f (N (y1 − y2))ϕt (x1)ϕt (x2)ϕt (y1)ϕt (y2).

(5.10)

Using this ansatz for γ̃
(2)
N ,t , we find that the integral kernel of the second term on

the r.h.s. of (5.8) can be approximated by

(N − 1)Tr2
[

N 2V (N (x1 − x2)), γ̃
(2)
N ,t

]
(x; y)

= (N − 1)
∫

dx2
(

N 2V (N (x − x2)) − N 2V (N (y − x2))
)

γ̃
(2)
N ,t (x, x2; y, x2)

�
∫

dx2
(

N 3V (N (x − x2)) − N 3V (N (y − x2))
)

ϕt (x)ϕt (y)|ϕt (x2)|2

× f (N (x − x2)) f (N (y − x2))

� 8πa0
(
|ϕt (x)|2 − |ϕt (y)|2

)
ϕt (x)ϕt (y)

(5.11)

where we used (5.3) and the fact that f (N x) → 1 weakly as N → ∞. Inserting also
(5.9) in the term on the l. h. s. as well as in the first term on the r.h.s. of (5.8), we see
that the Gross-Pitaevskii equation (5.7) arises exactly as the self-consistent equation
for ϕt . Notice that the presence of the solution of the zero-energy scattering equation
f (N ·) in the ansatz (5.10) for the two particle reduced density does not contradict
the fact that, as N → ∞, γ̃(2)

N ,t → |ϕt 〉〈ϕt |⊗2; the correlation structure in (5.10) is

non-trivial only for |x1 − x2| � N−1 or |y1 − y2| � N−1, and it disappears in the
limit N → ∞. Nevertheless it plays a crucial role in (5.11) because it is multiplied
with a very singular potential, varying on the same short scale.

Energy estimate. Since the presence of the solution f (N ·) of the zero energy
scattering equation in (5.10) plays such an important role, a rigorous derivation of
the Gross-Pitaevskii equation (5.7) requires a proof that the solution ψN ,t of the
many-body Schrödinger equation really develops a correlation structure and that, in
good approximation, this correlation structure can be described by f (N ·). To reach
this goal, it is useful to prove certain energy estimates, bounding appropriate Sobolev
norms of ψN ,t by moments of the Hamiltonian.
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To give an example of the analysis involved in this step, we prove a simple energy
estimate for the case of small interaction potentials. More precisely, we define the
following dimensionless quantity to measure the strength of the radial interaction V :

ρ = sup
r≥0

r2Ṽ (r) +
∫ ∞

0
dr r Ṽ (r)

where we introduced the short hand notation Ṽ (r) = V (x) if |x | = r . Smallness of ρ
also implies that the solution f of the zero-energy scattering equation (5.2) remains
close to 1 (recall the boundary condition f (x) → 1 as |x | → ∞). In fact, one can
show [4, Lemma D.1] that there exists a constant c > 0 with

1 − cρ ≤ f (x) ≤ 1, |∇ f (x)| ≤ c
ρ

|x | , |∇2 f (x)| ≤ c
ρ

|x |2 (5.12)

for all x ∈ R
3. Using (5.12), we can prove the following proposition, which is taken

from [4].

Proposition 5.2 Let V ≥ 0 be a spherically symmetric, short range, bounded poten-
tial with ρ > 0 small enough. Let f denote the solution of the zero-energy scattering
equation (5.2). Then

〈ψN , H2
N ψN 〉 ≥ N 2

2

∫

dx

∣
∣
∣
∣∇x1∇x2

ψN (x)

f (N (x1 − x2))

∣
∣
∣
∣

2

(5.13)

for every ψN ∈ L2
s (R

3N ). Here we used the convention x = (x1, . . . , xN ) ∈ R
3N .

Remark Let ψN ,t = e−i HN tψN be the solution of the Schrödinger equation with
initial dataψN . Assume additionally (with respect to the assumptions ofTheorem5.1)
that 〈ψN , H2

N ψN 〉 ≤ C N 2; this can be achieved with an approximation argument
that we skip. Then (5.13) implies that

N 2
∫

dx

∣
∣
∣
∣∇x1∇x2

ψN ,t (x)

f (N (x1 − x2))

∣
∣
∣
∣

2

≤ 2〈ψN ,t , H2
N ψN ,t 〉

= 2〈ψN , H2
N ψN 〉 ≤ 2C N 2

and therefore that
∫

dx

∣
∣
∣
∣∇x1∇x2

ψN ,t (x)

f (N (x1 − x2))

∣
∣
∣
∣

2

≤ C (5.14)

uniformly in N and in t . Note that in (5.14) it is very important that we divide
ψN ,t by f (N (x1 − x2)) before we take the two derivatives. Keeping in mind that
f (x) = 1 − a0/|x | for |x | large enough, it is easy to check that

∫

dx |∇2( f (N x))|2 � N
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and therefore we can expect that

∫

dx
∣
∣∇x1∇x2ψN ,t (x)

∣
∣2 � N .

Only if we first divide ψN ,t by f (N (x1 − x2)), removing in this way the singular
correlation structure in the x1− x2 variable, we obtain in (5.14) a bound of order one.
In other words, (5.14) implies that, when |x1−x2| � N−1, the evolvedwave function
ψN ,t can be approximated by f (N (x1−x2)) times a functionψN ,t (x)/ f (N (x1−x2))
which varies on a larger length-scale. In this sense, we can say that the estimate
(5.14) proves that ψN ,t has a short scale correlation structure, which can in good
approximation be described by the function f (N (x1 − x2)). For this reason the
bound (5.14) plays a crucial role in the proof of Theorem5.1 (for the case of weak
potential treated in [4]; for large potentials, a different energy estimate has been
proved and applied in [5]).

Proof of Proposition5.2 We write

HN =
N∑

j=1

h j with h j = −Δx j + 1

2

N∑

i = j

N 2V (N (xi − x j )).

Then, using the permutation symmetry of ψN , we find

〈ψN , H2
N ψN 〉 = N (N − 1)〈ψN , h1h2ψN 〉 + N 〈ψN , h2

1ψN 〉
≥ N (N − 1)〈ψN , h1h2ψN 〉.

The positivity of the potential and the fact that for all j ≥ 3

N 2V (N (x1 − x j ))(−Δx2) = ∇∗
x2 N 2V (N (x1 − x j ))∇x2

imply that

〈ψN , H2
N ψN 〉 ≥ N (N − 1)〈ψN ,

(

−Δx1 + N 2

2
V (N (x1 − x2))

)

×
(

−Δx2 + N 2

2
V (N (x1 − x2))

)

ψN 〉.
(5.15)

Next we define φN (x) = ψN (x)/ f (N (x1 − x2)) and write

−Δx1ψN

f (N (x1 − x2))
= −Δx1φN − 2N (∇ f )(N (x1 − x2))

f (N (x1 − x2))
· ∇x1φN

+ N 2(−Δ f )(N (x1 − x2))

f (N (x1 − x2))
.

(5.16)
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Hence

(

−Δx1 + N 2

2
V (N (x1 − x2))

)

ψN = f (N (x1 − x2))L1φN (5.17)

where we defined the operator

L1 = −Δx1φN − 2N (∇ f )(N (x1 − x2))

f (N (x1 − x2))
· ∇x1 .

The important observation is that the last term on the r.h.s. of (5.16) cancels exactly
with the potential, because f satisfies the zero-energy scattering equation. Analo-
gously, we find that

(

−Δx2 + N 2

2
V (N (x1 − x2))

)

ψN = f (N (x1 − x2))L2φN

with

L2 = −Δx2φN + 2N (∇ f )(N (x1 − x2))

f (N (x1 − x2))
· ∇x2 .

It is important to observe that L1, L2 are the Laplace operator w. r. t. the weight
f 2(N ·). In other words

∫

dx f 2N (x1 − x2)(L1χN )(x)ξN (x) =
∫

dx f 2N (x1 − x2)χN (x)(L1ξN )(x)

=
∫

dx f 2(N (x1 − x2))∇x1χN (x)∇x1ξN (x)

and analogously for L2.
From (5.15) we conclude that

〈ψN , H2
N ψN 〉 ≥ N (N − 1)

∫

dx f 2(N (x1 − x2))L1φN (x)L2φN (x)

= N (N − 1)
∫

dx f 2(N (x1 − x2))∇x1φN (x)∇x1 L2φN (x)

= N (N − 1)
∫

dx f 2(N (x1 − x2))
∣
∣∇x2∇x1φN (x)

∣
∣2

+N (N − 1)
∫

dx f 2(N (x1 − x2))∇x1φN (x)[∇x1, L2]φN (x)
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= N (N − 1)
∫

dx f 2(N (x1 − x2))
∣
∣∇x2∇x1φN (x)

∣
∣2

+ N (N − 1)
∫

dx f 2(N (x1 − x2))∇x1φN (x)

×∇ N (∇ f )(N (x1 − x2))

f (N (x1 − x2))
∇x2φN (x).

(5.18)

In the first term on the r.h.s. we bound f 2(N (x1 − x2)) ≥ (1 − Cρ)2 from below
(see (5.12)). As for the second term on the r.h.s. of (5.18), we notice that

∇ N (∇ f )(N (x1 − x2))

f (N (x1 − x2))
= N 2(∇2 f )(N (x1 − x2))

f (N (x1 − x2))
+ N 2(∇ f )2(N (x1 − x2))

f 2(N (x1 − x2))
.

The bounds (5.12) therefore imply that

∣
∣
∣
∣∇

N (∇ f )(N (x1 − x2))

f (N (x1 − x2))

∣
∣
∣
∣ ≤ Cρ

1

|x1 − x2|2

for small ρ > 0. Hence

∣
∣
∣
∣N (N − 1)

∫

dx f 2(N (x1 − x2))∇x1φN (x)∇ N (∇ f )(N (x1 − x2))

f (N (x1 − x2))
∇x2φN (x)

∣
∣
∣
∣

≤ CρN (N − 1)
∫

dx
1

|x1 − x2|2 |∇x1φN (x)||∇x2φN (x)|

≤ CρN (N − 1)
∫

dx |∇x2∇x1φN (x)|2

and thus

〈ψN , H2
N ψN 〉 ≥ (1 − Cρ)N (N − 1)

∫

dx
∣
∣∇x1∇x2φN (x)

∣
∣2 .

For ρ > 0 sufficiently small, we obtain the desired bound. �

Strategy of the proof of Theorem 5.1. As mentioned above the energy estimate
(5.13) and its corollary (5.14) play a crucial role in the proof of Theorem5.1 because
they can be used to identify the short-scale correlation structure characterizing the
solution ψN ,t of the many-body Schrödinger equation. Let {̃γ(k)

N ,t }N
k=1 be the family

of normalized reduced densities associated with ψN ,t , satisfying Tr γ̃(k)
N ,t = 1 for all

N , k ∈ N and t ∈ R. Denote by {̃γ(k)
∞,t }k≥1 a limit point of the sequence {̃γ(k)

N ,t }N
k=1

for N → ∞. The estimate (5.14) implies that, for large but fixed N ∈ N (along the
appropriate subsequence), we can approximate
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γ̃
(k)
N ,t (x1, . . . , xk; y1, . . . , yk) �

k∏

i< j

f (N (xi − x j ))̃γ
(k)
∞,t (x1, . . . , xk; y1, . . . , yk).

(5.19)

This allows us to derive, starting from theBBGKYhierarchy for the reduced densities
{̃γ(k)

N ,t }N
k=1, the infinite hierarchy

i∂t γ̃
(k)
∞,t =

k∑

j=1

[
−Δx j , γ̃

(k)
∞,t

]
+ 8πa0

k∑

j=1

Trk+1

[
δ(x j − xk+1), γ̃

(k)
∞,t

]
. (5.20)

for the limit point {̃γ(k)
∞,t }k≥1. The presence of the correlation structure in (5.19) is

the reason why the scattering length a0 arises in the infinite hierarchy (5.20). What is
still missing to show Theorem5.1 is a proof of the uniqueness of the solution of the
infinite hierarchy (5.20). Before proving uniqueness, it is important to understand in
which space of families of densities {̃γ(k)

∞,t }k≥1 uniqueness should be shown; proving
uniqueness in a smaller space is of course easier, but it also requires to show that
every limit point of the sequence {̃γ(k)

N ,t }N
k=1 is contained in that small space. It turns

out that a possible choice of the space of densities is the Sobolev-type space

H1 = {{γ(k)}k≥1 : ∃C > 0 ∀k ∈ N Tr (1 − Δx1) · · · (1 − Δxk )γ
(k) ≤ Ck}.

Hence, to conclude the proof of Theorem5.1, one has to prove that every limit point
of {γ(k)

N ,t }k≥1 is in the space H1, and further one has to show that, for any initial

condition γ̃
(k)
∞,0 = |ϕ〉〈ϕ|⊗k ∈ H1, there is at most one solution {̃γ(k)

∞,t }k≥1 of the
infinite hierarchy (5.20) which is inH1 for all t ∈ R.

The proof that every limit point {̃γ(k)
∞,t }k≥1 of the sequence {̃γ(k)

N ,t }N
k=1 satisfies the

a-priori bounds
Tr (1 − Δx1) · · · (1 − Δxk )̃γ

(k)
∞,t ≤ Ck (5.21)

for all k ≥ 1 is based on energy estimates similar to Proposition5.2, but involving
also higher moments of HN . A challenge is the fact that for finite N , the reduced
densities γ̃

(k)
N ,t cannot satisfy (5.21), at least not uniformly in N , because of the

presence of the correlation structure (taking derivatives of the correlation functions
f (N (xi − x j )) produces factors of N ). Only after taking the limit N → ∞, the
correlation structure disappears and one can expect (5.21) to hold true. To obtain
(5.21), one needs therefore to show estimates of the form

∫

dx Θ�(x)
∣
∣∇x1 . . . ∇xk ψN ,t (x)

∣
∣2 ≤ Ck (5.22)

where the cutoff Θ� satisfies Θ�(x) � 0 if there exists i ≤ k and j ≤ N with
|xi − x j | ≤ �, while Θ�(x) � 1 if |xi − x j | � � for all i ≤ k and j ∈ {1, . . . , N }
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with j = i . If � is sufficiently large (it turns out that one needs N�2 � 1), the cutoff
removes all singularities of ∇x1 · · · ∇xk ψN ,t due to the correlation structure (because
correlations are only important when particles are close to each other). At the same
time, if N�3 � 1, the effect of the cutoff turns out to be negligible in the limit of
large N ; hence (5.21) follows from (5.22), choosing N−1/2 � � � N−1/3.

The proof of the uniqueness of the infinite hierarchy (5.20) in the class H1,
given in [3], is based on an diagrammatic expansion in Feynman graphs. Since the
singularity of the interaction (the δ-function in (5.20)) cannot be controlled by the
kinetic energy (theH1-norm), one needs to make use of the dispersive properties of
the free evolution generated by the first term on the r.h.s. of (5.20). To perform the
analysis it is convenient to switch to Fourier space. Thanks to the decay inmomentum
characterizing every family of densities inH1 and to the decay of the propagators of
the free evolution, the contribution associated to every Feynman graph is convergent
in the ultraviolet regime. Further details can be found in [3].

A different and shorter approach to prove the uniqueness of the infinite hierarchy
(2.10)was later proposed in [8] based on certain space-time estimates for the densities
γ̃

(k)
∞,t . Recently [9], this approach was applied to deduce uniqueness in the spaceH1;

an important ingredient was the quantum de Finetti theorem.
Coherent states approach in the Gross-Pitaevskii regime [10]. Theorem5.1 proves

the convergence towards the Gross-Pitaevskii dynamics without control on the rate
of the convergence. Since in real systems the number of particles N is large but finite
(e. g. N � 1000 in very dilute samples of Bose-Einstein condensates), it is important
to know how large N must be in order for the Gross-Pitaevskii equation to become a
good approximation of the many-body quantum dynamics. Can the coherent states
approach presented in Chap.3 for the mean-field regime also be applied in the Gross-
Pitaevskii limit to obtain an explicit bound on the error?

Let us first try to proceed naively, following exactly the same strategy as in the
mean-field case.We switch to the bosonic Fock spaceF = ⊕

n≥0 L2
s (R

3n) on which
we define the Hamilton operator

HN =
∫

dx∇x a∗
x ∇x ax + 1

2

∫

dxdyN 2V (N (x − y))a∗
x a∗

yayax . (5.23)

We consider a coherent state initial data ΨN = W (
√

Nϕ)Ω with a ϕ ∈ L2(R3)

with ‖ϕ‖ = 1. The expected number of particles in the state ΨN is N . We let ΨN

evolve and try to approximate it with a new coherent state. To this end we define the
fluctuation vector ξN ,t ∈ F by

e−iHN t W (
√

Nϕ)Ω = W (
√

Nϕt )ξN ,t ,

which can be rewritten as
ξN ,t = UN (t; 0)Ω

http://dx.doi.org/10.1007/978-3-319-24898-1_2
http://dx.doi.org/10.1007/978-3-319-24898-1_3
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with the fluctuation dynamics

UN (t; s) = W (
√

Nϕt )
∗e−iHN t W (

√
Nϕs). (5.24)

Instead of choosingϕt to solve theGross-Pitaevskii equation (5.7), it is convenient
to consider the solution of the modified Gross-Pitaevskii equation2

i∂tϕt = −Δϕt + (N 3V (N ·) f (N ·) ∗ |ϕt |2)ϕt (5.25)

with the same initial data ϕ0 = ϕ. As N → ∞,

N 3V (N x) f (N x) → 8πa0δ(x)

and the solution of the modified equation (5.25) can be easily shown to converge
towards the solution of the Gross-Pitaevskii equation (5.7), with the rate N−1 (at
least for sufficiently regular initial data).

Similarly as in the mean-field case, to show that e−iHN t W (
√

Nϕ)Ω can be ap-
proximated by the evolved coherent state it is enough to prove that the fluctuation
vector ξN ,t stays close to the vacuum. More precisely, it is enough to control the
growth of the expectation of the number of particles operator

〈UN (t; 0)Ω,NUN (t; 0)Ω〉 (5.26)

with respect to the fluctuation dynamics UN (t; s). To this end, we compute the (time-
dependent) generator LN (t) of UN (t; s), defined by the equation

i∂tUN (t; s) = LN (t)UN (t; s), UN (s; s) = 1

and thus given by

LN (t) =
[
i∂t W

∗(
√

Nϕt )
]

W (
√

Nϕt ) + W ∗(
√

Nϕt )HN W (
√

Nϕt ).

On the one hand we have
[
i∂t W

∗(
√

Nϕt )
]

W (
√

Nϕt ) = C1(N , t) − √
N

[
a∗(i∂tϕt ) + a(i∂tϕt )

]
(5.27)

for an unimportant constant C1(N , t). On the other hand, using (3.17), we find

2Of course, this equation depends on N , and so do its solutions. So when we talk about convergence
of this equation to the Gross-Pitaevskii equation wemean convergence of its N -dependent solutions
to solutions of the Gross-Pitaevskii equation. Despite solutions being N -dependent we do not put
an extra N -index to keep the notation light.

http://dx.doi.org/10.1007/978-3-319-24898-1_3
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W ∗(
√

Nϕt )HN W (
√

Nϕt )

= C2(N , t) + √
N

[
a∗(−Δxϕt + (N 3V (N ·) ∗ |ϕt |2)ϕt )

+ a(−Δxϕt + (N 3V (N ·) ∗ |ϕt |2)ϕt )
]

+
∫

dx∇x a∗
x ∇x ax +

∫

dx(N 3V (N ·) ∗ |ϕt |2)(x)a∗
x ax

+
∫

dxdyN 3V (N (x − y))ϕt (x)ϕt (y)a∗
x ay

+ 1

2

∫

dxdy N 3V (N (x − y))
[
ϕt (x)ϕt (y)a∗

x a∗
y + ϕt (x)ϕt (y)ax ay

]

+ 1√
N

∫

dxdyN 3V (N (x − y))a∗
x (ϕt (y)a∗

y + ϕt (y)ay)ax

+ 1

2N

∫

dxdyN 3V (N (x − y))a∗
x a∗

yayax (5.28)

where C2(N , t) denotes another unimportant constant. Recall that in the mean-field
regime the linear terms (linear in creation and annihilation operators) arising from
the two contributions to the generator (3.26) canceled exactly due to the choice of
ϕt as a solution of the Hartree equation. Here in the Gross-Pitaevskii regime, the
cancellation is not complete; in fact the creation and annihilation operators on the
r.h.s. of (5.27) have the argument

i∂tϕt = −Δϕt + (N 3V (N ·) f (N ·) ∗ |ϕt |2)ϕt

while the argument of the creation and annihilation operators appearing in the linear
terms on the r.h.s. of (5.28) does not contain the solution f (N ·) of the zero-energy
scattering equation (5.2). It follows that

LN (t)

= C(N , t)

+ √
N

[
a∗((N 3V (N ·)ω(N ·) ∗ |ϕt |2)ϕt ) + a((N 3V (N ·)ω(N ·) ∗ |ϕt |2)ϕt )

]

+
∫

dx∇x a∗
x ∇x ax +

∫

dx(N 3V (N ·) ∗ |ϕt |2)(x)a∗
x ax

+
∫

dxdyN 3V (N (x − y))ϕt (x)ϕt (y)a∗
x ay

+ 1

2

∫

dxdy N 3V (N (x − y))
[
ϕt (x)ϕt (y)a∗

x a∗
y + ϕt (x)ϕt (y)ax ay

]

+ 1√
N

∫

dxdyN 3V (N (x − y))a∗
x (ϕt (y)ay + ϕt (y)a∗

y)ax

+ 1

2N

∫

dxdyN 3V (N (x − y))a∗
x a∗

yayax

(5.29)

http://dx.doi.org/10.1007/978-3-319-24898-1_3
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where we set ω = 1 − f (and where C(N , t) = C1(N , t) + C2(N , t) is another
unimportant constant). Hence, in the Gross-Pitaevskii regime, the generator of the
fluctuation dynamics (5.24) contains a contribution which is linear in creation and
annihilation operators and therefore does not commute with the number of particles
operator. This contribution is of order

√
N (at least formally), and for this reason,

it is impossible to bound the growth of the expectation of the number of particles
operator (5.26) uniformly in N (furthermore, without introducing f in (5.25), there
would be uncontrollable cubic and quartic terms, see (5.42) and (5.46)).

Modified fluctuation dynamics. The reasonwhy this naive approach does not work
is the fact that we are trying to approximate the many-body evolution of a coherent
state initial data by an evolved coherent state, completely neglecting the correlation
among the particles. (Recall that coherent states in each n-particle component are
completely factorized and thus do not have any correlations.) Since we know corre-
lations to be very important in the Gross-Pitaevskii regime, it should not surprise us
that fluctuations with respect to the evolved coherent state are too large.

To take into account the correlation structure developed by the time evolution we
define the kernel

kt (x; y) = −Nω(N (x − y))ϕt (x)ϕt (y) (5.30)

where, as before, ϕt denotes the solution of the modified Gross-Pitaevskii equation
(5.25) and ω = 1− f (where f is the solution of the zero-energy scattering equation
(5.2)). Recall that ω(x) � a0/|x | for |x | � 1, while in accordance with (5.12) it is
regular for |x | � 1; it is useful to think of the function Nω(N (x − y)) as a0/|x − y|
but regularized for |x − y| � 1/N . Using the kernel kt we define the unitary operator
Tt , acting on the Fock space F , by

Tt = exp

(
1

2

∫

dxdy
(

kt (x; y)a∗
x a∗

y − kt (x; y)ax ay

))

. (5.31)

Since the exponent is quadratic in creation and annihilation operators, Tt imple-
ments a Bogoliubov transformation. It is also possible to explicitly compute its action
on the creation and annihilation operators, yielding

T ∗
t a( f )Tt = a(coshkt f ) + a∗(sinhkt f )

T ∗
t a∗( f )Tt = a∗(coshkt f ) + a(sinhkt f )

(5.32)

for any f ∈ L2(R3). Here we use the notation coshkt and sinhkt for the linear
operators on L2(R3) given by

coshkt =
∑

n≥0

1

(2n)! (kt kt )
n, sinhkt =

∑

n≥0

1

(2n + 1)! (kt kt )
nkt ,
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where products of kt and kt have to be understood as products of operators (we
identify the function kt ∈ L2(R3 × R

3) with the operator having kt as its integral
kernel). We use the unitary operator Tt to approximate the correlation structure
developed by the many-body evolution. We consider the evolution of initial data
having the form

ΨN = W (
√

Nϕ)T0ξN (5.33)

for a ξN with only few particles (think of ξN = Ω for simplicity), and we try to
approximate its evolution with an evolved state of the same form. As discussed in
Appendix A, (5.33) is a natural class of initial data, approximating the ground state
of the Bose-Einstein condensate trapped in a volume of order one (the point here
is that the Bogoliubov transformation T0 generates the correct correlation structure,
which is crucial on the one hand to reach the ground state energy and, on the other
hand, to follow the many-body dynamics). States of the form (5.33) are also called
squeezed coherent states. The use of Fock space is crucial here to allow this choice
of initial data.

To approximate the evolution of (5.33), we define the new fluctuation vector ξN ,t

requiring that
e−iHN t W (

√
Nϕ)T0ξN = W (

√
Nϕt )TtξN ,t .

Equivalently ξN ,t = ŨN (t; 0)ξ with the modified fluctuation dynamics

ŨN (t; s) = T ∗
t W ∗(

√
Nϕt )e

−iHN (t−s)W (
√

Nϕs)Ts . (5.34)

Let us compute the kernel of the one-particle reduced density γ
(1)
N ,t associated with

ΨN ,t = e−iHN tΨN :

γ(1)
N ,t (x; y) = 〈ΨN ,t , a∗

yaxΨN ,t 〉
= 〈W (

√
Nϕt )TtξN ,t , a∗

yax W (
√

Nϕt )TtξN ,t 〉
= 〈ξN ,t , T ∗

t

(
a∗

y + √
Nϕt (y)

) (
ax + √

Nϕt (x)
)

TtξN ,t 〉
.

Hence, for any one-particle observable J on L2(R3), we find

Tr J
(
γ

(1)
N ,t − N |ϕt 〉〈ϕt |

)

= √
N 〈ξN ,t , T ∗

t

[
a∗(Jϕt ) + a(Jϕt )

]
TtξN ,t 〉 + 〈ξN ,t , T ∗

t dΓ (J )TtξN ,t 〉

and therefore

Tr
∣
∣
∣γ

(1)
N ,t − N |ϕt 〉〈ϕt |

∣
∣
∣ ≤ √

N 〈ξN ,t , T ∗
t N 1/2TtξN ,t 〉 + 〈ξN ,t , T ∗

t N TtξN ,t 〉.
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Using (5.32), we conclude that 3

T ∗
t N Tt ≤ C(N + 1) (5.35)

and therefore that

Tr
∣
∣
∣γ

(1)
N ,t − N |ϕt 〉〈ϕt |

∣
∣
∣ ≤ C

√
N 〈ξN ,t , (N + 1)ξN ,t 〉. (5.36)

This means that to get a bound on the rate of the convergence of the many-
body evolution towards the Gross-Pitaevskii dynamics (proportional to

√
N ), it is

enough to control the growth of the number of particles with respect to the modified
fluctuation dynamics, i.e. to control the expectation value

〈ŨN (t; 0)ξ,NŨN (t; 0)ξ〉 (5.37)

uniformly in N

Generator of modified fluctuation dynamics. To estimate the expectation (5.37)
we compute the generator of ŨN (t; s), defined by the equation

i∂t ŨN (t; s) = L̃N (t)ŨN (t; s) with ŨN (s; s) = 1

and therefore given by

L̃N (t) = (
i∂t T

∗
t

)
Tt + T ∗

t LN (t)Tt , (5.38)

whereLN (t) is the generator computed in (5.29). The first term on the r.h.s. of (5.38)
is an expression quadratic in creation and annihilation operators and can be bounded
as

± [(
i∂t T

∗
t

)
Tt ,N

] ≤ C(N + 1).

Hence, its contribution to the growth of the number of particles operator can be
controlled similarly as we bounded (3.29) in themean-field case. Let us now focus on
the second term on the r.h.s. of (5.38). As discussed between Eqs. (5.28) and (5.29),
the generator LN (t) contains a large term (proportional to

√
N ) linear in creation

and annihilation operators. After conjugation with Tt , this term is given by

√
N

∫

dxdyN 3V (N (x − y))ω(N (x − y))|ϕt (y)|2ϕt (x)T ∗
t a∗

x Tt + h.c. (5.39)

At the same time, the generator LN (t) (5.29) contains a term which is
cubic in creation and annihilation operators. After conjugating with Tt we find this

3It is interesting to note that, while the introduction of Tt changes the energy by a contribution of
order N (see Appendix A), Eq. (6.31) shows that the change in the number of particles is only of
order one.

http://dx.doi.org/10.1007/978-3-319-24898-1_3
http://dx.doi.org/10.1007/978-3-319-24898-1_6
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contribution to be, introducing the notation chx (z) = coshkt (z; x) and shx (z) =
sinh(z; x),

1√
N

∫

dxdyN 3V (N (x − y))ϕt (y)T ∗
t a∗

x ayax Tt + h.c.

= 1√
N

∫

dxdyN 3V (N (x − y))ϕt (y)T ∗
t a∗

x Tt (a(chy) + a∗(shy))

× (a(chx ) + a∗(shx )) + h.c.

= 1√
N

∫

dxdyN 3V (N (x − y))ϕt (y)T ∗
t a∗

x Tt a
∗(shy)(a(chx ) + a∗(shx ))

+ 1√
N

∫

dxdyN 3V (N (x − y))ϕt (y)T ∗
t a∗

x Tt a(chy)a(chx )

+ 1√
N

∫

dxdyN 3V (N (x − y))ϕt (y)T ∗
t a∗

x Tt a(chy)a
∗(shx )

+ h.c.
(5.40)

In the last summand, the operators a(chy) and a∗(shx ) are not in normal order
(a product of creation and annihilation operators is said to be normal ordered if
all creation operators are to the left of all annihilation operators). Putting them in
normal order produces a commutator termwhich is linear in creation and annihilation
operators. Since coshkt = 1 + O(kt )

2 and sinhkt = kt + O(k3t ), we find

〈chx , shy〉 =
∫

dz coshkt (z; x) sinhkt (z; y) �
∫

dzδ(x − z)kt (z; y) = kt (x; y)

(5.41)
up to terms which are regular in the variable x − y (more precisely, higher powers
of k0 have kernels that are regular on the diagonal and therefore their contribution to
(5.40) can be shown to be negligible; in contrast, kt (x; y) behaves like a0|x − y|−1

for |x − y| � 1/N ). With this approximation, we find from (5.40)

1√
N

∫

dxdyN 3V (N (x − y))ϕt (y)T ∗
t a∗

x ayax Tt + h.c.

� 1√
N

∫

dxdyN 3V (N (x − y))kt (x; y)ϕt (y)T ∗
t a∗

x Tt + E + h.c.

� −√
N

∫

dxdyN 3V (N (x − y))ω(N (x − y))|ϕt (y)|2ϕt (x)T ∗
t a∗

x Tt + E + h.c.

(5.42)

where E includes all terms proportional to T ∗
t a∗

x Tt multiplied with a normal
ordered quadratic expression in a and a∗. It is easy to check that all terms in E after
expanding T ∗

t a∗
x Tt can be written in normal order up to negligible errors, and the

normal ordered expression can be bounded using the number operatorN . In contrast,
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the main term on the r.h.s. of (5.42) can not be bounded; however it cancels exactly
the large linear contribution in (5.39).

There is another important cancellation produced by the conjugation with
the Bogoliubov transformation Tt . On the one hand, we have the two quadratic
contributions

∫

dx∇x (a
∗(chx ) + a(shx )∇x (a(chx ) + a∗(shx ))

=
∫

dxdy∇x a∗
x (∇x kt )(x; y)a∗

y + E1

= −N 3
∫

dxdy(Δω)(N (x − y))ϕt (x)ϕt (y)a∗
x a∗

y + E2

(5.43)

and
∫

dxdyN 3V (N (x − y))ϕt (x)ϕt (y)(a∗(chx ) + a(shx ))(a
∗(chy) + a(shy))

=
∫

dxdyN 3V (N (x − y))ϕt (x)ϕt (y)a∗
x a∗

y + E3
(5.44)

where E1, E2 and E3 denote error terms, which can be controlled by the expectation
of the number of particles operator N and of the kinetic energy operator

K =
∫

dx∇x a∗
x ∇x ax .

On the other hand, from the quartic term in (5.29) we find after conjugation with
Tt and normal ordering

1

2N

∫

dxdy N 3V (N (x − y))(a∗(chx ) + a(shx ))(a
∗(chy) + a(shy))

× (a(chy) + a∗(shy))(a(chx ) + a∗(shx ))

= 1

2N

∫

dxdyN 3V (N (x − y))a∗(chx )a
∗(chy)a(chy)a

∗(shx ) + E4

=
∫

dxdyN 3V (N (x − y))kt (x; y)a∗
x a∗

y + E5

= −
∫

dxdyN 3V (N (x − y))ω(N (x − y))ϕt (x)ϕt (y)a∗
x a∗

y + E5
(5.45)

where the error term E5 can be bounded by the expectation of N , of N 2/N and of
the quartic potential term

∫

dxdyN 2V (N (x − y))a∗
x a∗

yayax .
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Combining the first terms of the r.h.s. of (5.43), (5.44) and (5.45), we find

N 3
∫

dxdy

[(

−Δ + 1

2
V

)

(1 − ω)

]

(N (x − y))ϕt (x)ϕt (y)a∗
x a∗

y = 0 (5.46)

because we chose f = 1 − ω as the solution of the zero-energy scattering equation
(5.2).

Taking into account these two important cancellations, the generator of the modi-
fied fluctuation dynamics (5.34) can be controlled by the number of particles operator
N , by N 2/N and by the Hamiltonian (5.23), i.e.

± L̃N (t) ≤ Cec|t |
(

N + N 2

N
+ HN

)

(5.47)

for some C, c > 0 (independent of N and t). The time dependence on the r.h.s. of the
last equation arises through high Sobolev norms of the solution ϕt of the modified
Gross-Pitaevskii equation (5.25).

Growth of fluctuations in the Gross-Pitaevskii regime. The final step is to control
the growth of the number of particles operator. In a very similar way as used to prove
(5.47), we also obtain the two bounds

± [L̃N (t),N ] ≤ Cec|t |
(

N + N 2

N
+ LN (t)

)

,

±∂t L̃N (t) ≤ Cec|t |
(

N + N 2

N
+ LN (t)

)

.

(5.48)

Furthermore we have a simple bound where the number of fluctuations is just
bounded by the total number of particles, the ‘worst case’:

〈ŨN (t; 0)ξN ,
N 2

N
ŨN (t; 0)ξN 〉 ≤ 〈ŨN (t; 0)ξN ,NŨN (t; 0)ξN 〉 +

〈

ξN ,

(N 2

N
+ N + 1

)

ξN

〉

.

With these ingredients the next proposition can be proven by Gronwall’s Lemma.

Proposition 5.3 Let V ≥ 0, spherically symmetric and short range. Let ξN ∈ F ,
with

〈ξN ,N ξN 〉 + 1

N
〈ξN ,N 2ξN 〉 + 〈ξN ,HN ξN 〉 ≤ C

for some C > 0 (independent of N). Then there exists constants K , c > 0 (indepen-
dent of N and t) such that

〈Ũ(t; 0)ξN ,NŨ(t; 0)ξN 〉 ≤ K exp(exp(c|t |)) (5.49)

for all t ∈ R.
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The fast deterioration in time of the bound (5.49) is a consequence of the time-
dependence in (5.47) and (5.48), arising from bounds for high Sobolev norms of ϕt .
If one assumes that ‖ϕt‖H4 ≤ C uniformly in time, the bound (5.49) becomes a
simple exponential.

Quantitative convergence towards the Gross-Pitaevskii equation. From (5.36) and
Proposition 5.3 we obtain the following theorem, which has been proved in [10].

Theorem 5.4 Let V ≥ 0, spherically symmetric and short range. Let ϕ ∈ H4(R3)

and ξN ∈ F such that

〈ξN ,N ξN 〉 + 1

N
〈ξN ,N 2ξN 〉 + 〈ξN ,HN ξN 〉 ≤ C

for some constant C > 0 (independent of N). Consider the family of initial data

ΨN = W (
√

Nϕ)T0ξN

and denote by γ(1)
N ,t the one-particle reduced density associated with the evolution

ΨN ,t = e−i HN tΨN of ΨN . Then

Tr
∣
∣
∣γ

(1)
N ,t − N |ϕt 〉〈ϕt |

∣
∣
∣ ≤ C N 1/2 exp(exp(c|t |))

for all t ∈ R, where ϕt is a soluion of the Gross-Pitaevskii equation (5.25) with
initial data ϕ0 = ϕ.
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Chapter 6
Mean-Field Regime for Fermionic Systems

So far we have discussed the time evolution of systems of interacting bosons. In
this chapter, we will focus instead on fermionic systems. We will consider systems
of N fermions initially confined to a volume of order one by a suitable external
potential, e.g. an electromagnetic trap. We are interested in the evolution of such
systems resulting from a change of the external field, e.g. switching off the trap.

The Hamilton operator of the trapped N fermion gas has the form

H trap
N =

N∑

j=1

( − Δx j + Vext(x j )
) + λ

N∑

i< j

V (xi − x j ). (6.1)

It acts on L2
a(R3N ), the subspace of L2(R3N ) consisting of functions which are

antisymmetric w.r.t. permutation of the N particles. The interaction potential V
varies on the same length scale as the one characterizing the confining potential
Vext. For this reason, each particle interacts with all the remaining (N − 1) particles,
producing a potential energy of the order λN 2. The mean-field regime is defined by
choosing the coupling constant λ so that the potential energy is typically of the same
size as the kinetic energy. While the potential energy is independent of the statistics
of the particles, the antisymmetry of the wave function plays an important role for
the kinetic energy. In order to understand this point it is instructive to consider the
following simple example.

The free Fermi gas. Consider a gas of N non-interacting fermions in the three-
dimensional torus T3. The Hamiltonian of the system is

H trap
N =

N∑

j=1

−Δx j ,

acting on L2
a(T3N ). The eigenstates of H trap

N can be computed explicitly; they are
given by Slater determinants
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ψSlater(x1, . . . , xN ) = 1√
N ! det( fi (x j ))1≤i, j≤N

= 1√
N !

∑

π∈SN

σπ f1(xπ(1)) · · · fN (xπ(N )),

where
fi (x) = eipi ·x , pi ∈ 2πZ3.

For an arbitrary choice of N pairwise distinct momenta p1, . . . , pN ∈ 2πZ3, the
energyof the correspondingSlater determinant is givenby

∑N
i=1 p2i . Thus, the ground

state of H trap
N is obtained by choosing N pairwise distinct vectors {pi }N

i=1 in 2πZ3

minimizing
∑N

i=1 |pi |2. The condition that all momenta must be distinct follows
from the observation that the Slater determinant vanishes if two momenta coincide.
This is an expression of the Pauli exclusion principle, stating that there cannot be
two fermions in the same one-particle state. It follows that the ground state energy
of H trap

N is approximated by filling the Fermi ball {p ∈ 2πZ3 : |p| ≤ cN 1/3}, where
c = 2π/( 4π3 )1/3. We have (up to errors of lower order)

inf spec(H trap
N ) �

∑

|p|≤cN1/3

|p|2 � N 5/3
∫

|p|≤c
dp |p|2 for N � 1.

Hence the ground state energy, which is purely kinetic in this simple example, is of
the order N 5/3 and thus much larger than N .

Fermionic mean-field regime.The fact that the kinetic energy of a Fermi gas scales
as N 5/3 is a general property of N fermion systems trapped in a volume of order one.
This is made rigorous by the Lieb-Thirring kinetic energy inequality, which states
that for any ψ ∈ L2

a(R3N )

〈ψ,

N∑

i=1

−Δxi ψ〉 ≥ C
∫

ρ
5/3
ψ (x)dx, (6.2)

for a universal constant C . Here we defined the density ρψ associated with ψ through

ρψ(x) = N
∫

dx2 · · · dxN |ψ(x, x2, . . . , xN )|2. (6.3)

We conclude that, for well-behaved densities ρψ ,

〈ψN ,

N∑

i=1

−Δxi ψN 〉 ≥ C N 5/3. (6.4)
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Therefore, in order to have a nontrivial theory in the limit N → ∞, we are led to
choose the coupling constant λ in Eq. (6.1) as λ = N−1/3. In the same spirit, the
external potential should also be scaled with N : taking Vext(x) = N 2/3vext(x) we
make sure that all components of the Hamiltonian scale as N 5/3. This completes the
definition of the fermionic mean-field regime.

Hartree-Fock theory. In this regime, the ground state of the system is expected to be
well approximated by aSlater determinantψSlater(x1, . . . , xN ) = N !−1/2 det( fi (x j ))

with a suitable choice of the orthonormal system { f j }N
j=1 in L2(R3). The one-particle

reduced density associated with ψSlater is given by

ωN = NTr2,...,N |ψSlater〉〈ψSlater| =
N∑

j=1

| f j 〉〈 f j |. (6.5)

Notice that ωN is the orthogonal projection onto the subspace of L2(R3) spanned
by the orbitals { f j }N

j=1. Slater determinants are quasi-free states; that is, they are
completely characterized by their one-particle reduced density ωN in the sense that
all higher order densities can be computed through ωN using Wick’s rule (6.43). In
particular, the energy of a Slater determinant can be expressed in terms of only ωN ,
through the Hartree-Fock energy functional

EHF(ωN )

= 〈ψSlater, H trap
N ψSlater〉

= Tr(−Δ +Vext)ωN + 1

2N 1/3

∫
dxdyV (x − y)

[
ωN (x; x)ωN (y; y)−|ωN (x; y)|2].

(6.6)

Hence, we expect the one-particle reduced density of the ground state of (6.1) to be
well approximated, for λ = N−1/3 and N large, by the minimizer of (6.6) among all
orthogonal projections ωN on L2(R3) with TrωN = N .

Thomas-Fermi theory. The Hartree-Fock energy functional (6.6) still depends
on N . So what happens if we take the limit N → ∞ here? We obtain the next,
coarser, degree of approximation which is Thomas-Fermi theory. More precisely,
after dividing by N 5/3, the Hartree-Fock ground state energy is expected to be close
to the minimum of the Thomas-Fermi energy functional

ETF(ρ) = 3

5
cTF

∫
dx ρ(x)5/3 +

∫
dx vext(x)ρ(x) + 1

2

∫
dxdy V (x − y)ρ(x)ρ(y)

(6.7)
over all densities ρ ∈ L5/3(R3) with ρ ≥ 0 and ‖ρ‖1 = 1. The minimizer ρTF
satisfies the Thomas-Fermi equation

cTFρTF(x) = (μ − φTF(x))
3/2
+ (6.8)
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with the Thomas-Fermi potential φTF = vext + V ∗ ρTF generated by the trap and by
the self-consistent interaction produced by ρTF. In (6.8), μ is a Lagrange multiplier
known as the chemical potential; it has be chosen so that ‖ρTF‖1 = 1.

Notice that ρTF should be interpreted as the (normalized) configuration space
density of the fermions in the ground state.With it, we can approximate theminimizer
of the Hartree-Fock energy functional (6.6) by the Weyl quantization

ω̃N (x; y) = N

(2π)3

∫
dv M

(
x + y

2
, v

)
eiv·(x−y)N1/3

(6.9)

of the characteristic function M(x, v) = χ(|v| ≤ cρ1/3TF (x)) (the constant c > 0 is
chosen so that Tr ω̃N = N and is independent of N ).1 Physically (6.9) corresponds to
the idea that in analogy to the case of free fermions, the ground state of (6.6) (and of
the corresponding many-body Hamiltonian (6.1)) can be approximated by filling the
Fermi ball; here, however, this procedure is implemented locally, with the number
of particles in the local Fermi ball dictated by the Thomas-Fermi density ρTF.

Dynamics. We consider initial data close to the trapped ground state of (6.1) and
its evolution resulting from a change of the external potential. For simplicity we
assume that at time t = 0 the external traps are just switched off. The subsequent
evolution is governed by the Schrödinger equation

i∂τψN ,τ = HN ψN ,τ , ψN ,0 = ψN

with

HN =
N∑

i=1

−Δxi + 1

N 1/3

N∑

i< j

V (xi − x j ). (6.10)

We now identify the relevant time scale on which the system undergoes macroscopic
changes. From the discussion above, we expect the kinetic energy per particle to be
of order N 2/3; hence, the classical velocity of the particles is typically of order N 1/3.
Therefore the natural time scale of the evolution is of order N−1/3. After rescaling
time by introducing the variable t = N 1/3τ , the Schrödinger equation takes the form

i N 1/3∂tψN ,t =
( N∑

i=1

−Δxi + 1

N 1/3

N∑

i< j

V (xi − x j )
)
ψN ,t . (6.11)

Setting ε = N−1/3 and multiplying the l. h. s. and the r.h.s. of (6.11) by ε2, we find

iε∂tψN ,t =
( N∑

i=1

−ε2Δxi + 1

N

N∑

i< j

V (xi − x j )
)
ψN ,t . (6.12)

1However ω̃N is only approximately an projection.
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In (6.12) we recover the N−1 coupling constant characterizing the mean-field limit
of bosonic systems. Here, however, the mean-field limit is naturally linked with a
semi-classical limit where ε = N−1/3 plays the role of Planck’s constant. (Notice
that for systems of electrons and nuclei interacting through Coulomb potentials, the
scaling used here is analogous to the well-known semiclassical scaling used to study
Thomas-Fermi theory and time-independent Hartree-Fock theory [1–3].)

We are interested in the evolution (6.12) for initial data approximating Slater
determinants with reduced density ωN minimizing (6.6). We expect that ψN ,t stays
close to a Slater determinant whose one-particle reduced density evolves according
to the time-dependent Hartree-Fock equation

iε∂tωN ,t = [hHF(t),ωN ,t ] with hHF(t) = −ε2Δ + V ∗ ρt − Xt , (6.13)

and with initial data ωN ,0 = ωN . Here, [A, B] = AB − B A denotes the commutator
of the operators A and B. Moreover, ρt (x) = N−1ωN ,t (x; x) is the configuration
space density associated with ωN ,t ; the convolution V ∗ ρt , called the direct term,
acts as a multiplication operator on L2(R3) and Xt is the exchange term, an operator
with integral kernel given by Xt (x; y) = N−1V (x − y)ωN ,t (x; y).

Like the Hartree-Fock energy functional, also the time-dependent Hartree-Fock
equation (6.13) still depends on N . As N → ∞, it is expected to converge towards
the classical Vlasov equation. More precisely, let us define the Wigner transform
(which is the inverse of the Weyl quantization introduced in (6.9))

WN ,t (x, v) = ε3

(2π)3

∫
dη ωN ,t

(
x − εη

2
; x + εη

2

)
eiv·η (6.14)

of the reduced densityωN ,t . WN ,t is a normalized density on the classical phase space
R
3 × R

3, but in general not positive. As N → ∞, WN ,t is expected to converge
(in an appropriate sense) to a probability density W∞,t on the classical phase space
which satisfies the Vlasov equation

(∂t + 2v · ∇x )W∞,t (x, v) = (∇x V ∗ ρvlt )(x) · ∇vW∞,t (x, v),

where ρvl(x) = ∫
dv W∞,t (x, v) is the configuration space density associated to

W∞,t . On a heuristic level, this can be seen as follows: the Wigner transform of a
solution of the Hartree-Fock equation (or rather the Hartree equation, i.e. without
exchange term2) satisfies

iε∂τ WN ,τ (x, v) (2π)3

=
∫

dη e−iv·η (−ε2Δ1 + ε2Δ2

)
ωN ,τ

(
x + ε

η

2
; x − ε

η

2

)

+
∫

dη e−iv·η ((V ∗ ρτ )
(

x + ε
η

2

)
− (V ∗ ρτ )

(
x − ε

η

2

))

× ωN ,τ

(
x + ε

η

2
; x − ε

η

2

)
,

2See [4] for the proof that for bounded potentials the exchange term Xt can be neglected with a
very small error, see (6.46).
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whereinΔ1 andΔ2 denote the Laplacian acting on the first and the second argument,
respectively, of the integral kernel ωN ,τ (x1, x2). We approximate the difference in
the last integral by expanding in ε:

(V ∗ ρτ )
(

x + ε
η

2

)
− (V ∗ ρτ )

(
x − ε

η

2

)
= εη · ∇(V ∗ ρτ )(x) + O(ε2).

Using integration by parts to convert the factor of η into a gradient with respect to v,
we obtain for the last integral

εi∇(V ∗ ρτ )(x) · ∇vWN ,τ (x, v) + O(ε2).

Furthermore it is easy to see that

(Δ1 − Δ2)ωN ,τ

(
x + ε

η

2
; x − ε

η

2

)
= 2

ε
∇η∇xωN ,τ

(
x + ε

η

2
; x − ε

η

2

)
.

Again using integration by parts with respect to η and dividing the whole equation
by iε, we finally arrive at

∂τ WN ,τ (x, v)+2v ·∇x WN ,τ (x, v) = ∇x (V ∗ρτ )(x)·∇vWN ,τ (x, v)+O(ε). (6.15)

Noticing that the configuration space density ρW
τ of the Wigner function is ρW

τ (x) =∫
WN ,τ (x, v)dv = ωN ,τ (x; x) = ρτ (x), we have indeed obtained the Vlasov equa-

tion, up to negligible errors.
Rigorously, the convergence of the Hartree-Fock dynamics towards the Vlasov

evolution has been proved to hold in a weak topology for sufficiently regular initial
data WN ,0 and for a large class of potentials including the Coulomb potential in
[5]. More recently, bounds on the rate of the convergence from the Hartree equation
to the Vlasov equation for regular initial data and for regular potentials have been
established in [6]. In [7], these bounds have been improved and extended to a larger
class of initial data. In particular, in contrast with previous works, some of the es-
timates in [7] also apply to WN ,0(x, v) � χ(|v| ≤ cρ1/3(x)), which is the natural
approximation for equilibrium states in the case of zero temperature.

Semi-classical structure.To establish the convergence of themany-body evolution
to the time-dependent Hartree-Fock equation (6.13), it is very important to take into
account the structure of the initial Slater determinant. We are particularly interested
in Slater determinants whose reduced density ωN is chosen close to the minimizer of
theHartree-Fock energy (6.6). In this situationwe expect the integral kernelωN (x; y)

to decay to zero for |x − y| � ε. At the same time, we expect it to be regular and to
vary on scales of order one in the x + y direction.

To explain this point better, let us consider again the free Fermi gas on the torus.
In this case, the one-particle reduced density of the ground state is (as N → ∞)
given by
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ωN (x; y) =
∑

|p|≤cN1/3

eip·(x−y) � N
∫

|p|≤c
dp eip·(x−y)/ε = Nϕ

( x − y

ε

)
, (6.16)

for some function ϕ which can be explicitly calculated. As expected, ωN varies on
the short scale ε in the x − y variable. In this elementary case the (x + y)-dependence
is trivial because the system is translation invariant.

The formula (6.9) suggests that the approximation ω̃N of the minimizer of the
Hartree-Fock energy functional (6.6) for an interacting system in the mean-field
regime exhibits the same semi-classical structure; it varies on the scale ε in the
(x − y)—variable and on a scale of order one in its (x + y)—dependence.

A convenient way to quantify the separation of scales of ω̃N is given by estimates
on the commutators

[ω̃N , x] and [ω̃N , ε∇]. (6.17)

Recalling the Weyl quantization, the integral kernel of [ω̃N , x] is given by

[ω̃N , x](x; y) = −(x − y)ω̃N (x; y) = − iε

(2πε)3

∫
dv (∇v M)

(
x + y

2
, v

)
eiv· x−y

ε

(6.18)
while

[ω̃N , ε∇](x; y) = −ε
(∇x + ∇y

)
ω̃N (x; y)

= − ε

(2πε)3

∫
dv (∇x M)

(
x + y

2
, v

)
eiv· x−y

ε . (6.19)

Hence, taking M(x, v) = χ(|v| ≤ cρ1/3TF (x)), semi-classical analysis suggests that

Tr |[ω̃N , x]| � C Nε

∫
dxdv |(∇v M)(x, v)| ≤ C Nε

∫
dxρ

2/3
TF (x) ≤ C Nε

(6.20)
and

Tr |[ω̃N , ε∇]| � C Nε

∫
dx |∇ρTF(x)| < C Nε (6.21)

under reasonable assumptions on V and Vext (to guarantee that ρTF ∈ L2/3(R3)

and ∇ρTF ∈ L1(R3) with N -independent norms). Note however that making these
claims rigorous is far from trivial because there is no rigorous elementary way of
calculating the trace norm of an operator from its integral kernel.

In the following we will study the time evolution of approximate Slater determi-
nants with one-particle reduced density satisfying the commutator estimates (6.20)
and (6.21). This assumption is motivated by the arguments given above, since we are
interested in the evolution of initial data approximating the ground state of (6.1) in
the mean-field regime. These commutator estimates are crucial for our result.
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Rigorous results. The mathematical literature concerning the derivation of
effective evolution equations for interacting fermions is much smaller than for the
bosonic case. In the mean-field limit we are interested in, the first derivation of the
Vlasov equation from quantum many-body dynamics has been given in [8] for ana-
lytic interaction potentials. Shortly after, this result has been extended in [9] to twice
differentiable potentials. The first derivation of the Hartree-Fock equation has been
given much later in [10], for analytic interaction potentials and short times.

In the rest of this chapter we will present the results of [4], where the convergence
towards the Hartree-Fock equation has been established with control of the rate of
convergence for a much larger class of potentials and for all times (notice that the
results of [4] were also extended to the case of pseudo-relativistic particles in [11]).

Concerning other scaling limits, the Hartree-Fock equation has been derived in
[12] and (for a Coulomb potential) [13] starting from amany-bodyHamilton operator
of the form (6.1), but with λ = N−1 (in this case, there is no link to a semi-classical
limit). Recently, convergence in presence of a regularized Coulomb interaction with
a λ = N−2/3 coupling constant has been given in [14].

Fock space. In order to discuss the results of [4] we introduce the fermionic Fock
space over L2(R3), which is defined as the direct sum

F = C ⊕
⊕

n≥1

L2
a(R3n)

where L2
a(R3n) � L2(R3)∧n denotes the subspace of L2(R3n) consisting of all

functions antisymmetric with respect to permutations of the n particles.
As in the bosonic case, we let Ω = {1, 0, 0, . . . } denote the vacuum and define

the number of particles operator by (NΨ )(n) = nψ(n) for all Ψ = {ψ(n)}n∈N ∈ F .
Moreover, for all f ∈ L2(R3), we introduce the creation and annihilation operators
a∗( f ) and a( f ) by setting

(a∗( f )Ψ )(n)(x1, . . . , xn) =
n∑

j=1

(−1) j
√

n
f (x j )ψ

(n−1)(x1, . . . , x j−1, x j+1, . . . , xn),

(a( f )Ψ )(n)(x1, . . . , xn) = √
n + 1

∫
dx f (x)ψ(n+1)(x, x1, . . . , xn), (6.22)

for Ψ = {ψ(n)}n∈N ∈ F . It is easy to see that a∗( f ) is the adjoint of a( f ) and that
fermionic creation and annihilation operators satisfy the canonical anticommutation
relations

{a∗( f ), a∗(g)} = {a( f ), a(g)} = 0, {a∗( f ), a(g)} = 〈g, f 〉

for all f, g ∈ L2(R3). (The anticommutator is defined as {A, B} = AB + B A for any
two operators A and B.) An important consequence of the canonical anticommuta-
tion relations is that a( f ) and a∗( f ) are bounded operators (unlike in the bosonic
case), since
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‖a( f )Ψ ‖2 = 〈Ψ, a∗( f )a( f )Ψ 〉 = −〈Ψ, a( f )a∗( f )Ψ 〉 + ‖ f ‖22 ≤ ‖ f ‖22 ∀Ψ ∈ F .

(6.23)
It is simple to check that ‖a∗( f )‖ = ‖a( f )‖ = ‖ f ‖2.

As in the bosonic case, it is useful to introduce operator-valued distributions a∗
x

and ax , which allow us to write

a( f ) =
∫

dx f (x)ax , a∗( f ) =
∫

dx f (x)a∗
x . (6.24)

The second quantization of operators on the Fock space is defined exactly as for the
bosonic case; see Chap.3.

Fermionic Bogoliubov transformations. It turns out that N -particle Slater deter-
minants can be obtained in the Fock space F by applying appropriate Bogoliubov
transformations on the vacuum vector Ω . To explain this point in more detail, let us
define fermionic Bogoliubov transformations, similarly as we did in Chap.4 for the
bosonic case.

For f, g ∈ L2(R3), we define

A( f, g) = a( f ) + a∗(ḡ).

Observe that
A∗( f, g) = A(J ( f, g)) (6.25)

where the operator J is defined by J ( f, g) = (ḡ, f̄ ) (as in (4.5)). In terms of these
operators, the canonical anticommutation relations assume the form

{
A( f1, g1), A∗( f2, g2)

} = {a( f1), a∗( f2)} + {a∗(ḡ1), a(ḡ2)}
= 〈 f1, f2〉 + 〈ḡ2, ḡ1〉 = 〈 f1, f2〉 + 〈g1, g2〉 (6.26)

= 〈( f1, g1), ( f2, g2)〉L2⊕L2 .

A fermionic Bogoliubov transformation is a linear map ν : L2(R3) ⊕ L2(R3) →
L2(R3) ⊕ L2(R3) preserving (6.25) and (6.26) in the sense that these properties
continue to hold for the new field operators B( f, g) := A(ν( f, g)). It is easy to
see that ν is a fermionic Bogoliubov transformation if and only if ν is unitary and
J ν = νJ . Equivalently, a linear map ν : L2(R3) ⊕ L2(R3) → L2(R3) ⊕ L2(R3)

is a fermionic Bogoliubov transformation if and only if it has the form

ν =
(

u v

v u

)
(6.27)

where u, v : L2(R3) → L2(R3) are linear maps with

u∗u + v∗v = 1, u∗v + v∗u = 0. (6.28)

http://dx.doi.org/10.1007/978-3-319-24898-1_3
http://dx.doi.org/10.1007/978-3-319-24898-1_4
http://dx.doi.org/10.1007/978-3-319-24898-1_4
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As in the bosonic case, a fermionic Bogoliubov transformation ν is said to be imple-
mentable on F if there exists a unitary operator Rν : F → F such that

R∗
ν A( f, g)Rν = A(ν( f, g)) (6.29)

for all f, g ∈ L2(R3). By the Shale-Stinespring condition, the fermionic Bogoliubov
transformation ν is implementable if and only if v is a Hilbert-Schmidt operator (see
e.g. [15, Theorem 9.5] or [16]).

It is useful to see how the unitary Rν transforms the fermionic operators and the
corresponding operator-valued distributions. We have:

R∗
νa( f )Rν = R∗

ν A( f, 0)Rν = a(u f ) + a∗(v f ) (6.30)

for all f ∈ L2(R3). Setting a( f ) = ∫
dx ax f (x), Eq. (6.30) is equivalent to

R∗
νax Rν = a(ux ) + a∗(vx ), (6.31)

Here we introduced the notations ux (y) := u(y; x) and vx (y) = v(y; x), where
u(x; y) and v(x; y) are the integral kernels of the operators u and v.

Quasi-free states. For any implementable Bogoliubov transformation ν : L2(R3)

⊕ L2(R3) → L2(R3) ⊕ L2(R3), the Fock space vector RνΩ describes a quasi-
free state; all correlation functions of RνΩ can be computed through one-particle
correlations by means of Wick’s rule. In this sense a quasi-free state Ψ ∈ F is
completely determined by its one-particle reduced density γ

(1)
N , with the kernel

γ
(1)
N (x; y) = 〈Ψ, a∗

yaxΨ 〉

and by its pairing density α
(1)
N , defined by

α
(1)
N (x, y) = 〈Ψ, ayaxΨ 〉.

Let ωN denote an orthogonal projection on L2(R3) with TrωN = N . Then we
find an orthonormal system { f j }N

j=1 in L2(R3) such that ωN = ∑N
j=1 | f j 〉〈 f j |. We

define uN = 1 − ωN and vN = ∑N
j=1 | f̄ j 〉〈 f j |. Observe that u∗

N uN + v∗
N vN = 1

and u∗
N vN = v∗

N uN = 0. Hence (6.28) is satisfied and

νN =
(

uN vN

vN uN

)

defines an implementable (since Tr v∗
N vN = TrωN = N < ∞) Bogoliubov transfor-

mation. This implies that RνN Ω is a quasi-free state. Its one-particle reduced density
has the integral kernel
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γ
(1)
N (x; y) = 〈RνN Ω, a∗

yax RνN Ω〉
= 〈Ω, [a∗(uN ,y) + a(v̄N ,y)][a(uN ,x ) + a∗(v̄N ,x )]Ω〉
= 〈Ω, {a(v̄N ,y), a∗(v̄N ,x )}Ω〉 = (v∗

N vN )(x; y)

= ωN (x; y).

The pairing density of RνN Ω is given by

α
(1)
N (x, y) = 〈RνN Ω, ayax RνN Ω〉

= 〈Ω, [a(uN ,y) + a∗(vN ,y)][a(uN ,x ) + a∗(vN ,x )]Ω〉
= 〈Ω, {a(uN ,y), a∗(vN ,x )}Ω〉
= (vN uN )(x; y) = 0.

Having the sameone-particle reduced density and pairing density as the N -particle
Slater determinantψSlater(x1, . . . , xN ) = N !−1/2 det( fi (x j )), we conclude that up to
a trivial phase RνN Ω = {0, 0, . . . ,ψSlater, 0, 0 . . . } (since Slater determinants are
quasi-free, too).

Alternatively the unitary operator RνN can be introduced as a particle-hole trans-
formation on F . As above, let ωN = ∑N

j=1 | f j 〉〈 f j | for an orthonormal system

{ f j }N
j=1. Moreover, let us complete { f j } j∈N to an orthonormal basis of L2(R3).

Then, Eq. (6.30) implies that

RνN a( fi )R∗
νN

= R∗
ν∗

N
a( fi )Rν∗

N
= R∗

νN
a( fi )RνN =

{
a( fi ) if i > N
a∗( fi ) if i ≤ N

. (6.32)

Being unitary, RνN defines new fermionic creation and annihilation operators
b∗( f ) = RνN a∗( f )R∗

νN
and b( f ) = RνN a( f )R∗

νN
, whose vacuum is the Slater

determinant RνN Ω . Instead of creating particles, b∗( f ) creates excitations (particles
or holes) w.r.t. the Slater determinant.

Dynamics of quasi-free states. As in the bosonic case, we define the Fock space
Hamilton operator

HN = ε2
∫

dx ∇x a∗
x ∇x ax + 1

2N

∫
dxdy V (x − y)a∗

x a∗
yayax . (6.33)

Notice that on the N -particle sector of F ,HN coincides with the Hamilton operator
appearing on the r.h.s. of the Schrödinger equation (6.12). In fact, for initial data
RνN Ω , here in the fermionic setting the second quantized language is mostly a
matter of convenience and we could in principal use first quantized language; this
is in contrast to the bosonic models where the (squeezed) coherent initial data lies
outside the N -particle subspace.

The next theoremdescribes the time-evolution generated by (6.33) on approximate
Slater determinants.
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Theorem 6.1 Let V ∈ L1(R3) such that

∫
dp |V̂ (p)|(1 + |p|2) < ∞. (6.34)

Let ωN be a sequence of orthogonal projections on L2(R3) with Tr ωN = N and

Tr |[x,ωN ]| ≤ K Nε, Tr |[ε∇,ωN ]| ≤ K Nε, (6.35)

for some constant K > 0. Let νN be the fermionic Bogoliubov transformation asso-
ciated with the projection ωN (as constructed in the last paragraph).

Let ξN be a sequence in F with 〈ξN ,N ξN 〉 ≤ C and denote by γ(1)
N ,t the one-

particle reduced density associated with the Fock space vector

ΨN ,t = e−iHN t/ε RνN ξN .

Then there exist constants C, c > 0 such that

‖γ(1)
N ,t − ωN ,t‖2HS ≤ C exp(c exp c|t |) (6.36)

for all t ∈ R. Here ωN ,t is the solution of the time-dependent Hartree-Fock equation

iε∂tωN ,t = [−ε2Δ + V ∗ ρt − Xt ,ωt ] (6.37)

with initial data ωN ,0 = ωN (recall that ρt (x) = N−1ωN (x; x) and Xt (x; y) =
N−1V (x − y)ωN (x; y)). Under the additional assumptions that 〈ξN ,N 2ξN 〉 ≤ C
and dΓ (ωN )ξN = 0 (i.e. the orbitals of ωN are orthogonal to ξN ), we also have the
trace-norm bound

Tr |γ(1)
N ,t − ωN ,t | ≤ C N 1/6 exp(c exp c|t |). (6.38)

Remark

• The r.h.s. of (6.36) and (6.38) should be compared with the size of ‖γ(1)
N ,t‖HS �

N 1/2 and of Tr γ(1)
N ,t = N . In this sense, (6.36) and (6.38) prove that the Hartree-

Fock equation gives a good approximation to the many-body evolution in the
fermionic mean-field regime.

• The vector ξN describes initial deviations from the Slater determinant. Taking
ξN = Ω , the initial data is exactly the N -particle Slater determinant with reduced
density ωN . As long as 〈ξN ,N ξN 〉 ≤ C uniformly in N , the initial data RνN ξN

is still close to a Slater determinant, at least in the sense of reduced densities
(choosing t = 0 in (6.36) we observe that ‖γ(1)

N ,0 − ωN ‖HS ≤ C).
• It is simple to extend (6.36) to ξN ∈ F with 〈ξN ,N ξN 〉 ≤ Nα for any α < 1
(if α = 1, the deviations from the Slater determinant are as big as the Slater
determinant). Under this assumption, (6.36) is replaced by the weaker bound
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‖γ(1)
N ,t − ωN ,t‖HS ≤ C Nα/2 exp(c exp(c|t |)). (6.39)

• It is possible to extend (6.39) to arbitrary N -particle initial data ψN with reduced
density close to the one of a Slater determinant in the trace norm topology. Let ωN

be a sequence of orthogonal projections on L2(R3) with TrωN = N , satisfying
(6.35). LetψN be a sequence of normalized functions in L2

a(R3N )with one-particle

reduced density γ(1)
N satisfying

Tr |γ(1)
N − ωN | ≤ C Nα (6.40)

for some α < 1. Set ξN = R∗
νN

{0, 0, . . . ,ψN , 0, . . . } and observe that, using
(6.31),

〈ξN ,N ξN 〉 = 〈ψN , (N − 2dΓ (ωN ) + N )ψN 〉. (6.41)

Here, we identified ψN with the Fock space vector {0, 0, . . . ,ψN , 0, . . . } and we
used the identity

RνN N R∗
νN

= R∗
νN
N RνN = N − 2dΓ (ωN ) + N (6.42)

which follows from (6.32), applied to N = ∑∞
j=1 a∗( f j )a( f j ). From (6.41) we

find

〈ξN ,N ξN 〉 = 2〈ψN , dΓ (1 − ωN )ψN 〉
= 2Tr γ(1)

N (1 − ωN ) = 2Tr (γ(1)
N − ωN )(1 − ωN )

≤ 2Tr |γ(1)
N − ωN |

where we used that ωN is an orthogonal projection. Hence (6.40) implies that
〈ξN ,N ξN 〉 ≤ C Nα for some α < 1, and (6.39) holds.

• Theorem 6.1 can be extended to prove the convergence of the higher order corre-
lation functions γ

(k)
N ,t to ω

(k)
N ,t , defined by the integral kernel

ω
(k)
N ,t (x1, . . . , xk; y1, . . . , yk) =

∑

π∈Sk

σπ

k∏

j=1

ωN ,t (x j ; yπ( j)). (6.43)

(This is just the k-particle reduced density as it looks like for a quasifree state due to
theWick theorem.) More details about this point can be found in [4, Theorem 2.2].

• It is well-known that the exchange term is subleading with respect to the direct
one. In particular, for the class of potentials we consider in Theorem 6.1, dropping
the exchange term does not change the estimates (6.36), (6.38). In fact, recalling
that Xt has the integral kernel Xt (x; y) = N−1V (x − y)ωN ,t (x; y), we write
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Xt = 1

N

∫
dp V̂ (p)eip·xωN ,t e

−i p·x (6.44)

and we find

Tr|[Xt ,ωN ,t ]| ≤ 1

N

∫
dp |V̂ (p)|Tr |[eip·xωN ,t e

−i p·x ,ωN ,t ]|

≤ C

N

∫
dp |V̂ (p)|Tr |[eip·x ,ωN ,t ]| (6.45)

≤ C

N

∫
dp |V̂ (p)||p|Tr |[x,ωN ,t ]|

where in the last stepwe used that Tr |[eip·x ,ωN ,t ]| ≤ |p|Tr |[x,ωN ,t ]|. Aswe shall
see later, the bounds (6.35) can be propagated along the flow of the Hartree-Fock
equation; the result is Tr |[x,ωN ,t ]| ≤ K Nε exp(c|t |), and hence

Tr|[Xt ,ωN ,t ]| ≤ C̃ε exp(c|t |)
∫

dp |V̂ (p)||p|. (6.46)

Roughly speaking, (6.46) implies that the contribution of the exchange term to the
solution of the Hartree-Fock equation (6.37) is of order one (over times of order
one), and hence comparable with (or of smaller order than) the r.h.s. of (6.36) and
(6.38). The situation is expected to change in the presence of unbounded potentials,
e.g. for a Coulomb potential; in this case, the analogy with the study of the ground
state energy of large atoms [2, 3] suggests that neglecting the exchange term will
deteriorate the error estimates.

Sketch of the proof of Theorem 6.1. The proof follows a strategy conceptually
similar to the coherent state technique discussed in the bosonic case in Chap. 3. For
simplicity, we shall only discuss the proof of convergence in Hilbert-Schmidt norm,
that is of the inequality (6.36). Let ΨN ,t = e−iHN t/ε RνN ξN be the evolution in Fock

space of the initial state RνN ξN . The kernel of the one-particle reduced density γ
(1)
N ,t is

γ
(1)
N ,t (x; y) = 〈e−iHN t/ε RνN ξN , a∗

yax e−iHN t/ε RνN ξN 〉. (6.47)

The idea is to compare the quantum evolution e−iHN t/ε RνN Ω with the Hartree-
Fock evolution, described in Fock space by RνN ,t ξN . This is done by introducing
the fluctuation dynamics UN (t; s) := R∗

νN ,t
e−iHN (t−s)/ε RνN ,s . Using the shorthand

notation ut,x (y) = uN ,t (y; x) and vt,x (y) = vN ,t (y; x), we can rewrite the kernel
of γ

(1)
N ,t (x; y) as

http://dx.doi.org/10.1007/978-3-319-24898-1_3
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γ
(1)
N ,t (x; y) = 〈UN (t; 0)ξN , R∗

νN ,t
a∗

y RνN ,t R∗
νN ,t

ax RνN ,tUN (t; 0)ξN 〉
= 〈UN (t; 0)ξN , [a∗(ut,y) + a(vt,y)][a(ut,x ) + a∗(vt,x )]UN (t; 0)ξN 〉
= ωN ,t (x; y)

+ 〈UN (t; 0)ξN , [a∗(ut,y)a(ut,x ) + a∗(ut,y)a
∗(vt,x )

+ a(vt,y)a(ut,x ) − a∗(vt,x )a(vt,y)]UN (t; 0)ξN 〉 .

(6.48)

Here we used the transformation property (6.31) and the fact that the anticommutator
is {a∗(vt,x ), a(vt,y)} = ωN ,t (x; y). For any Hilbert-Schmidt operator O on L2(R3)

we find

Tr O(γ(1)
N ,t − ωN ,t )

= 〈UN (t; 0)ξN ,
[
dΓ (uN ,t OuN ,t ) − dΓ (vN ,t OvN ,t )

]UN (t; 0)ξN 〉
+
[ ∫

dxdy O(x; y)〈UN (t; 0)ξN , a(vt,y)a(ut,x )UN (t; 0)ξN 〉 + c.c.
]
. (6.49)

Consider the first two terms in (6.49). Since for any bounded self-adjoint operator A
on L2(R3) we have the bound ±dΓ (A) ≤ ‖A‖N , where ‖A‖ is the operator norm
of A, we find, using that ‖uN ,t‖ ≤ 1 and ‖vN ,t‖ ≤ 1,

∣∣∣〈UN (t; 0)ξN ,
[
dΓ (uN ,t OuN ,t ) − dΓ (vN ,t OvN ,t )

]UN (t; 0)ξN 〉
∣∣∣

≤ 2‖O‖〈UN (t; 0)ξN ,N UN (t; 0)ξN 〉. (6.50)

Consider now the second line of (6.49). In order to estimate it, we shall use the follow-
ing bound. Let A be aHilbert-Schmidt operator on L2(R3), with kernel A(x; y). Then

∥∥∥
∫

dxdy A(x; y)ax ay(N + 1)−1/2Ψ

∥∥∥

≤
∫

dy
∥∥∥a(A(·; y))ay(N + 1)−1/2Ψ

∥∥∥

≤
∫

dy ‖A(·; y)‖2
∥∥ay(N + 1)−1/2Ψ

∥∥ (6.51)

≤ ‖A‖HS
[∫

dy
∥∥ay(N + 1)−1/2Ψ

∥∥2
]1/2

= ‖A‖HS
∥∥N 1/2(N + 1)−1/2Ψ

∥∥ ≤ ‖A‖HS‖Ψ ‖,

where in the second line we used the boundedness of the fermionic creation/annihila-
tion operators, Eq. (6.23). Similarly we find
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∥∥∥(N + 1)−1/2
∫

dxdy A(x; y)a∗
ya∗

x Ψ

∥∥∥ =
∥∥∥
∫

dxdy A(x; y)a∗
ya∗

x (N + 3)−1/2Ψ

∥∥∥

≤ ‖A‖HS‖Ψ ‖. (6.52)

The estimates (6.51), (6.52) can be used to bound the second line of (6.49). We get

∣∣∣
∫

dxdy O(x; y)〈UN (t; 0)ξN ,a(vt,y)a(ut,x )UN (t; 0)ξN 〉 + c.c.
∣∣∣

≤ C‖uN ,t OvN ,t‖HS
∥∥(N + 1)1/2UN (t; 0)ξN

∥∥.
(6.53)

Since ‖uN ,t OvN ,t‖HS ≤ ‖O‖HS and ‖O‖ ≤ ‖O‖HS, (6.50) and (6.53) imply

∣∣∣Tr O(γ
(1)
N ,t − ωN ,t )

∣∣∣ ≤ C‖O‖HS〈UN (t; 0)ξN , (N + 1)UN (t; 0)ξN 〉. (6.54)

In particular, choosing O = γ
(1)
N ,t − ωN ,t , we obtain

‖γ(1)
N ,t − ωN ,t‖HS ≤ C〈UN (t; 0)ξN , (N + 1)UN (t; 0)ξN 〉. (6.55)

Hence, to conclude the proof, we need to control the growth of the expectation of
the number of particles operator with respect to the fluctuation dynamics UN (t; 0).
This is the content of the next proposition.

Proposition 6.2 Under the same assumptions as in Theorem 6.1, there exist con-
stants C, c > 0 such that

〈UN (t; 0)ξN , (N + 1)UN (t; 0)ξN 〉 ≤ C exp(c exp c|t |)〈ξN , (N + 1)ξN 〉. (6.56)

Controlling the growth of the fluctuations. Here we present the main steps in the
proof of the key bound Eq. (6.56). It is based on a Gronwall-type argument. Using
the identity (6.42) we write

〈UN (t; 0)ξN ,NUN (t; 0)ξN 〉
= 〈e−iHN t/ε RνN ξN , RνN ,tN R∗

νN ,t
e−iHN t/ε RνN ξN 〉

= 〈e−iHN t/ε RνN ξN , [N + N − 2dΓ (ωN ,t )]e−iHN t/ε RνN ξN 〉. (6.57)

The expectation of (N + N ) is independent of time; these terms disappear when we
take the derivative. Hence
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iε
d

dt
〈UN (t; 0)ξN ,NUN (t; 0)ξN 〉

= −2
〈
e−iHN t/ε RνN ξN ,

(
dΓ (iε∂tωN ,t ) − [HN , dΓ (ωN ,t )]

)
e−iHN t/ε RνN ξN

〉

= −2
〈UN (t; 0)ξN , R∗

νN ,t

(
dΓ (iε∂tωN ,t ) − [HN , dΓ (ωN ,t )]

)
RνN ,tUN (t; 0)ξN

〉

= −2
〈UN (t; 0)ξN , R∗

νN ,t
(dΓ (ρt ∗ V − Xt ) − [VN , dΓ (ωN ,t )])RνN ,tUN (t; 0)ξN

〉

(6.58)

where

VN = 1

2N

∫
dxdy V (x − y)a∗

x a∗
yayax

is the many-body interaction. In the last step we used that the contribution of the
kinetic energy cancels, as follows from the identity dΓ ([A, B]) = [dΓ (A), dΓ (B)].
Applying the Bogoliubov transformation RνN ,t and reorganizing all terms in normal
order we end up with

iε
d

dt

〈
UN (t; 0)ξN ,NUN (t; 0)ξN

〉

= 4i

N
Im

∫
dxdy V (x − y)

×
{〈
UN (t; 0)ξN , a∗(ut,x )a(vt,y)a(ut,y)a(ut,x )UN (t; 0)ξN

〉

+
〈
UN (t; 0)ξN , a(vt,x )a(vt,y)a(ut,y)a(ut,x )UN (t; 0)ξN

〉

+
〈
UN (t; 0)ξN , a∗(ut,y)a

∗(vt,y)a
∗(vt,x )a(vt,x )UN (t; 0)ξN

〉}
, (6.59)

where all quadratic summandswere cancelled by imposing theHartree-Fock equation
for ωN ,t in (6.58).

Now, let us consider for example the second term on the r.h.s. of (6.59). Expanding
the potential in Fourier space, we write

1

N

∫
dxdy V (x − y)

〈
UN (t; 0)ξN , a(vt,x )a(vt,y)a(ut,y)a(ut,x )UN (t; 0)ξN 〉

= 1

N

∫
dp V̂ (p)

∫
dr1dr2dr3dr4(vt e

−i p·x ut )(r1; r2)(vt e
ip·x ut )(r3; r4)

×
〈
UN (t; 0)ξN , ar1ar2ar3ar4UN (t; 0)ξN

〉
.

Inserting 1 = (N +5)1/2(N +5)−1/2 and applying the Cauchy-Schwarz inequality,
we get
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∣∣∣
1

N

∫
dxdy V (x − y)

〈
UN (t; 0)ξN , a(vt,x )a(vt,y)a(ut,y)a(ut,x )UN (t; 0)ξN 〉

∣∣∣

≤ 1

N

∫
dp |V̂ (p)|∥∥(N + 5)1/2UN (t; 0)ξN

∥∥

×
∥∥∥(N + 5)−1/2

∫
dr1dr2(vN ,t e

−i p·x uN ,t )(r1; r2)ar1ar2

×
∫

dr3dr4(vN ,t e
ip·x uN ,t )(r3; r4)ar3ar4UN (t; 0)ξN

∥∥∥

= 1

N

∫
dp |V̂ (p)|∥∥(N + 5)1/2UN (t; 0)ξN

∥∥

×
∥∥∥
∫

dr1dr2(vN ,t [e−i p·x , uN ,t ])(r1; r2)ar1ar2

×
∫

dr3dr4(vN ,t [eip·x , uN ,t ])(r3; r4)ar3ar4(N + 1)−1/2UN (t; 0)ξN

∥∥∥

where in the last step we used that Na( f ) = a( f )(N − 1) and the orthogonality
vN ,t uN ,t = 0. Applying the estimate (6.51) twice and using that ‖vN ,t‖ ≤ 1 we get:

∣∣∣
1

N

∫
dxdy V (x − y)

〈
UN (t; 0)ξN , a(vt,x )a(vt,y)a(ut,y)a(ut,x )UN (t; 0)ξN 〉

∣∣∣

≤ 1

N

∫
dp |V̂ (p)|‖[eip·x ,ωN ,t ]‖2HS

〈
UN (t; 0)ξN ,NUN (t; 0)ξN

〉
.

(6.60)

Using the naive bound ‖[eip·x ,ωN ,t ]‖2HS ≤ 2‖[eip·x ,ωN ,t ]‖tr ≤ 4N would not
be enough here because of the factor ε on the l. h. s. of (6.59). Instead, we have
to propagate the semi-classical estimates (6.35) along the solution of the Hartree-
Fock equation. This is the content of Proposition 6.3 below, which tells us that
‖[eip·x ,ωN ,t ]‖tr ≤ C Nε(1+|p|) exp(c|t |) for all times t ∈ R. Inserting this estimate
in (6.60), we conclude that

∣∣∣
1

N

∫
dxdy V (x − y)

〈
UN (t; 0)ξN , a(vt,x )a(vt,y)a(ut,y)a(ut,x )UN (t; 0)ξN 〉

∣∣∣

≤ Cε exp(c|t |)〈UN (t; 0)ξN ,NUN (t; 0)ξN

〉
.

The other terms in (6.59) can be bounded in a similar way. The only difference is
that instead of (6.51) one has to use the estimate

∥∥∥
∫

dr1dr2 A(r1; r2)a
�
r1ar2Ψ

∥∥∥ ≤ ‖A‖tr‖Ψ ‖ ∀Ψ ∈ F (6.61)
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valid for any trace-class operator A on L2(R3)with kernel A(r1; r2). The details can
be found in [4]. We conclude that

∣∣∣
d

dt

〈
UN (t; 0)Ω, (N + 1)UN (t; 0)Ω

〉∣∣∣ ≤ Cec|t |〈UN (t; 0)Ω, (N + 1)UN (t; 0)Ω
〉
.

(6.62)
Gronwall’s lemma implies the desired estimate (6.56).

Propagation of the semi-classical structure. An important ingredient that we used
above to control the growth of the expectation of the number of particles with respect
to the fluctuation dynamics is the propagation of the semi-classical commutator
bounds along the solution of the Hartree-Fock equation.

Proposition 6.3 Let V satisfy (6.34). LetωN be a sequence of orthogonal projections
with Tr ωN = N, such that

Tr |[x,ωN ]| ≤ K Nε and Tr |[ε∇,ωN ]| ≤ K Nε (6.63)

for some constant K > 0. Let ωN ,t be the solution of the Hartree-Fock equation
(6.37) with initial data ωN ,0 = ωN . Then there exist constants C, c > 0 such that

Tr |[x,ωN ,t ]| ≤ C Nε exp(c|t |) and Tr |[ε∇,ωN ,t ]| ≤ C Nε exp(c|t |)

for all t ∈ R.

Sketch of the proof of Proposition 6.3. Let hHF(t) = −ε2Δ + V ∗ ρt − Xt be the
Hartree-Fock Hamiltonian. We compute

iε
d

dt
[x,ωN ,t ] = [x, [hHF(t),ωN ,t ]] = [ωN ,t , [hHF(t), x]] + [hHF(t), [x,ωN ,t ]].

The last term can be eliminated by conjugating [x,ωN ,t ] with the two-parameter
group of unitary transformations W (t; s) defined by

iε
d

dt
W (t; s) = hHF(t)W (t; s) with W (s; s) = 1 for all s ∈ R.

We have

iε
d

dt
W ∗(t; 0)[x,ωN ,t ]W (t; 0)

= W ∗(t; 0)[ωN ,t , [hHF(t), x]]W (t; 0)
= W ∗(t; 0)

(
[ωN ,t ,−2ε2∇] − [ωN ,t , [Xt , x]]

)
W (t; 0)
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where we used the identities [−ε2Δ, x] = −2ε2∇ and [ρt ∗ V, x] = 0. Therefore
we get the Duhamel-type formula

W ∗(t; 0)[x,ωN ,t ]W (t; 0)
= [x,ωN ,0] − 1

iε

∫ t

0
ds W ∗(s; 0)

(
[ωN ,s, 2ε

2∇] + [ωN ,s, [Xs, x]]
)

W (s; 0).

This implies that

‖[x,ωN ,t ]‖tr ≤ ‖[x,ωN ,0]‖tr + 1

ε

∫ t

0
ds

(
‖[ωN ,s, 2ε

2∇]‖tr + ‖[ωN ,s, [Xs, x]]‖tr
)
.

(6.64)
To control the second term we use (6.44). Since ‖ωN ,s‖ ≤ 1 we find

‖[ωN ,s, [Xs, x]]‖tr ≤ 1
N

∫
dq |V̂ (q)| ‖[ωN ,s, [eip·xωN ,se−i p·x , x]]‖tr

≤ 1
N

∫
dq |V̂ (q)| ‖[ωN ,s, eip·x [ωN ,s, x]e−i p·x ]‖tr

≤ 2
N

∫
dq |V̂ (q)| ‖[ωN ,s, x]‖tr

≤ C
N ‖[ωN ,s, x]‖tr.

(6.65)

Inserting (6.65) in (6.64) we get

‖[x,ωN ,t ]‖tr ≤ ‖[x,ωN ,0]‖tr + C
∫ t

0
ds

(
‖[ωN ,s, ε∇]‖tr + N−2/3‖[ωN ,s, x]‖tr

)
.

(6.66)
To control [ωN ,s, ε∇] we start by writing

iε
d

dt
[ε∇,ωN ,t ] = [ε∇, [hHF(t),ωN ,t ]]

= [ωN ,t , [hHF(t), ε∇]] + [hHF(t), [ε∇,ωN ,t ]]
= [hHF(t), [ε∇,ωN ,t ]] + [ωN ,t , [ρt ∗ V, ε∇]] − [ωN ,t , [Xt , ε∇]].

As before, the first term can be eliminated by conjugation with the unitary operator
W (t; 0). We find

‖[ε∇,ωN ,t ]‖tr
≤ ‖[ε∇,ωN ,0]‖tr + 1

ε

∫ t

0
ds

(
‖[ωN ,s, [ρs ∗ V, ε∇]]‖tr + ‖[ωN ,s, [Xs, ε∇]]‖tr

)
.

(6.67)
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The first term in the integral can be controlled by

‖[ωN ,s, [V ∗ ρs, ε∇]]‖tr = ε‖[ωN ,s,∇V ∗ ρs]‖tr
≤ ε

∫
dq |V̂ (q)| |q| |ρ̂s(q)| ‖[ωN ,s, eiq·x ]‖tr

≤ ε
∫

dq |V̂ (q)| |q|2 |ρ̂s(q)| ‖[ωN ,s, x]‖tr
≤ Cε‖[ωN ,s, x]‖tr

(6.68)

where we used the bound ‖ρ̂s‖∞ ≤ ‖ρs‖1 = 1 and the assumption on the interaction
potential. Finally, consider the second term in the integral on the r.h.s. of (6.67).
Again using (6.44), we write

‖[ωN ,s, [Xs, ε∇]]‖tr ≤ 1
N

∫
dq |V̂ (q)| ‖[ωN ,s, [eiq·xωN ,se−iq·x , ε∇]]‖tr

≤ 2
N

∫
dq |V̂ (q)| ‖[eiq·xωN ,se−iq·x , ε∇]‖tr

≤ 2
N

∫
dq |V̂ (q)| ‖[ωN ,s, ε∇]‖tr

(6.69)

where we used the identity

[eiq·xωN ,se−iq·x , ε∇] = eiq·x [ωN ,s, ε(∇ + iq)]e−iq·x = eiq·x [ωN ,s, ε∇]e−iq·x .

Inserting the estimates (6.68) and (6.69) into (6.67), we get

‖[ε∇,ωN ,t ]‖tr ≤ ‖[ε∇,ωN ,0]‖tr
+ C

∫ t

0
ds

(
‖[ωN ,s, x]‖tr + N−2/3‖[ωN ,s, ε∇]‖tr

)
.

Combining this inequality with (6.66), using the assumptions on the initial data and
applying Gronwall’s lemma, we obtain (6.63).
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Chapter 7
Dynamics of Fermionic Quasi-Free
Mixed States

In Chap.6 we discussed the evolution of initial data approximating Slater determi-
nants. Slater determinants are relevant at zero temperature because they provide (or
at least they are expected to provide) a good approximation to the fermionic ground
state of Hamilton operators like (6.1) in the mean-field limit. At positive tempera-
ture, equilibrium states are mixed; in the mean-field regime, they are expected to be
approximately quasi-free mixed states, like the Gibbs state of a non-interacting gas.

Mixed states. We introduce the short-hand notation h = L2(R3). We shall denote
by F(h) the fermionic Fock space built over h, that is F(h) = ⊕

n≥0 h
∧n . A general

fermionic state is represented by a density matrix on F(h). A density matrix is a
non-negative trace class operator ρ : F(h) → F(h) with Tr ρ = 1. Notice that the
state described by the densitymatrix ρ is pure if and only if ρ is a rank-one orthogonal
projection onto a ψ ∈ F(h), i. e. ρ = |ψ〉〈ψ|. Otherwise the state is called a mixed
state. In general,

ρ =
∑

n

λn|ψn〉〈ψn| (7.1)

where λn ≥ 0, {ψn} is an orthonormal family in F(h), and
∑

n λn = 1. Physically,
ρ describes an incoherent mixture of pure states and λn is the probability that the
system is in the state ψn . The expectation of an arbitrary operator A on F(h) in the
mixed state with density matrix ρ is given by

Tr Aρ =
∑

n

λn〈ψn, Aψn〉.

Purification. Given the density matrix (7.1) we define the operator κ̃ : F(h) →
F(h) by

κ̃ =
∑

n

εn|ψn〉〈φn|
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N. Benedikter et al., Effective Evolution Equations from Quantum Dynamics,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-24898-1_7

79

http://dx.doi.org/10.1007/978-3-319-24898-1_6
http://dx.doi.org/10.1007/978-3-319-24898-1_6


80 7 Dynamics of Fermionic Quasi-Free Mixed States

where εn ∈ C is a sequence satisfying |εn|2 = λn and {φn} is an orthonormal family
in F(h). Clearly,

κ̃κ̃∗ = ρ.

Of course such a decomposition of ρ is far from being unique and later we shall
choose a convenient one. Since ρ is trace class it follows that κ̃ ∈ L2(F(h)), the set
of Hilbert-Schmidt operators on F(h).

Next, we observe that L2(F(h)) 	 F(h) ⊗ F(h). This isomorphism is induced
by the map |ψ〉〈φ| → ψ ⊗ φ, extended by linearity to the whole space L2(F(h)).
The mixed state with density matrix (7.1) can thus be described on F(h) ⊗F(h) by
the vector

κ =
∑

n

εnψn ⊗ φn .

The expectation of the operator A on F(h) in the state κ ∈ F(h) ⊗F(h) is given by

Tr Aρ = Tr Aκ̃κ̃∗ = 〈κ, (A ⊗ 1)κ〉F(h)⊗F(h). (7.2)

The doubled Fock space F(h) ⊗F(h) is isomorphic to F(h⊕ h) (see [1] or any
book on mathematical quantum field theory). The unitary map U that implements
this isomorphism is known as the exponential law and is defined by the relations

U (ΩF(h) ⊗ ΩF(h)) = ΩF(h⊕h)

and

U [a( f ) ⊗ 1]U∗ = a( f ⊕ 0) =: al( f )

U
[
(−1)N ⊗ a( f )

]
U∗ = a(0 ⊕ f ) =: ar ( f ) (7.3)

for all f ∈ h, where aσ( f ), σ = l, r , are called the left and right representations of
a( f ), respectively. By hermitian conjugation, we also find

U
[
a∗( f ) ⊗ 1

]
U∗ = a∗( f ⊕ 0) =: a∗

l ( f )

U
[
(−1)N ⊗ a∗( f )

]
U∗ = a∗(0 ⊕ f ) =: a∗

r ( f ) (7.4)

where a∗
σ( f ), σ = l, r , are the left and right representations of a∗( f ). Notice that

the presence of the operator (−1)N on the second line of (7.3) and (7.4) guarantees
that creation operators on the space F(h⊕ h) satisfy the canonical anticommutation
relations (and in particular that a�

l ( f ) anticommutes with a�
r (g), for all f, g ∈ h).

It is convenient to introduce the left and right representations of the operator-
valued distributions ax , a∗

x by the relations
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al( f ) =
∫

dx ax,l f (x), ar ( f ) =
∫

dx ax,r f (x),

a∗
l ( f ) =

∫

dx a∗
x,l f (x), a∗

r ( f ) =
∫

dx a∗
x,r f (x), (7.5)

for all f ∈ h. We also define the left and right representations of the second quanti-
zation of operators on h by

U [dΓ (O) ⊗ 1]U∗ = dΓ (O ⊕ 0) =: dΓl(O),

U [1 ⊗ dΓ (O)]U∗ = dΓ (0 ⊕ O) =: dΓr (O).

The left and right representations of dΓ (O) can be written in terms of the operator-
valued distributions as

dΓl(O) =
∫

dxdy O(x; y)a∗
x,lay,l , dΓr (O) =

∫

dxdy O(x; y)a∗
x,r ay,r .

(7.6)

According to (7.2), the expectation of the observable A in themixed state described
by the vector ψ = Uκ ∈ F(h ⊕ h) is given by

〈κ, (A ⊗ 1)κ〉F(h)⊗F(h) = 〈Uκ, U (A ⊗ 1)U∗Uκ〉F(h⊕h)

= 〈ψ, U (A ⊗ 1)U∗ψ〉F(h⊕h).

In particular, the expectation TrdΓ (O)ρ of the second quantization dΓ (O) of a
one-particle operator O on h is given by

〈ψ, U (dΓ (O) ⊗ 1)U∗ψ〉 = 〈ψ, dΓl(O)ψ〉
=

∫

dxdy O(x; y)〈ψ, a∗
x,lay,lψ〉 = Tr Oγ

(1)
ψ ,

where we defined the one-particle reduced density γ
(1)
ψ associated withψ ∈ F(h⊕h)

as the non-negative trace class operator on h having the integral kernel

γ
(1)
ψ (x; y) = 〈ψ, a∗

y,lax,lψ〉. (7.7)

We also define the pairing density αψ associated with ψ ∈ F(h ⊕ h) as the Hilbert-
Schmidt operator on h with the kernel

αψ(x; y) = 〈ψ, ay,lax,lψ〉. (7.8)

The above construction allows us to represent mixed states as vectors in the
“larger” Fock spaceF(h⊕h). This idea iswell-known in quantum statisticalmechan-
ics and takes the name of purification.
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Time evolution of mixed states. The time evolution of the density matrix ρ is
given by

ρt = e−iHN t/ερeiHN t/ε,

where HN is the second quantized Hamiltonian given by (6.33). Accordingly, we
define the time evolution of κ ∈ F(h) ⊗F(h) by κt = [

e−iHN t/ε ⊗ eiHN t/ε
]
κ. Let

ψt = Uκt denote the vector in F(h ⊕ h) describing the mixed state with density
matrix ρt . Then

ψt = Uκt = Ue−i(HN ⊗1−1⊗HN )t/εκ = e−iLN t/εψ

where the Liouvillian LN is defined by

LN = U
(HN ⊗ 1 − 1 ⊗ HN

)
U∗.

A more explicit expression follows from (7.3) and (7.5):

LN = ε2
∫

dx ∇x a∗
x,l∇x ax,l + 1

2N

∫

dxdy V (x − y)a∗
x,la

∗
y,lay,lax,l

− ε2
∫

dx ∇x a∗
x,r∇x ax,r − 1

2N

∫

dxdy V (x − y)a∗
x,r a∗

y,r ay,r ax,r . (7.9)

Hence, the expectation of an arbitrary operator A onF(h) in the evolved mixed state
is given by

Tr Aρt = 〈ψt , U (A ⊗ 1)U∗ψt 〉 = 〈ψ, eiLN t/εU (A ⊗ 1)U∗e−iLN t/εψ〉.

Araki-Wyss representation. In Chap.6, where we proved that the time-evolution
of Slater determinants can be approximated by the Hartree-Fock equation, a crucial
ingredient of our analysis was the observation that Slater determinants can be written
in the Fock space F(h) in the form RνN Ω , where νN is an appropriate Bogoliubov
transformation. In this chapter, we are interested in the evolution of quasi-free mixed
states, which, after purification, can be described by vectors in the Hilbert space
F(h ⊕ h).

Let ν : (h⊕ h) ⊕ (h⊕ h) → (h⊕ h) ⊕ (h⊕ h) be an implementable Bogoliubov
transformation on the doubled one-particle space. Then there exists a unitary map
Rν : F(h⊕h) → F(h⊕h) implementing ν. It is easy to see that vectors of the form
RνΩF(h⊕h) ∈ F(h⊕h) are quasi free in the sense that higher order correlations can
be computed through Wick’s rule.

In the following wewill be interested in quasi-free states inF(h⊕h)with average
number of particles equal to N and with vanishing pairing density. Let ωN be a non-
negative trace class operator on hwith 0 ≤ ωN ≤ 1 and TrωN = N . Then we define
νN : (h ⊕ h) ⊕ (h ⊕ h) → (h ⊕ h) ⊕ (h ⊕ h) by

http://dx.doi.org/10.1007/978-3-319-24898-1_6
http://dx.doi.org/10.1007/978-3-319-24898-1_6
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νN =
(

UN V N

VN U N

)

, (7.10)

where

UN =
(

uN 0
0 uN

)

, VN =
(

0 vN

−vN 0

)

, (7.11)

and uN = √
1 − ωN , vN = √

ωN . The operatorsUN , VN : h⊕h → h⊕h satisfy the
relations (6.28); hence νN defines a Bogoliubov transformation. Since Tr V ∗

N VN =
2TrωN = 2N < ∞, the Bogoliubov transformation νN is implementable. Hence
RνN Ω ∈ F(h⊕h) describes a quasi-free mixed states (here and in the following, we
denote simply byΩ the vacuum inF(h⊕h)).We claim now that RνN Ω is exactly the
quasi-free mixed state with reduced density ωN and with vanishing pairing density.
In fact, for any f ∈ h, we find

R∗
νN

al( f )RνN = al(uN f ) − a∗
r (vN f ),

R∗
νN

ar ( f )RνN = ar (uN f ) + a∗
l (vN f ). (7.12)

Equivalently,

R∗
νN

ax,l RνN = al(uN ,x ) − a∗
r (vN ,x ),

R∗
νN

ax,r RνN = ar (uN ,x ) + a∗
l (vN ,x ), (7.13)

with the usual notation uN ,x (y) = uN (y; x), vN ,x (y) = vN (y; x). Using (7.13) and
the unitarity of RνN we find, from (7.7),

γ
(1)
RνN Ω(x; y) = 〈RνN Ω, a∗

y,lax,l RνN Ω〉
= 〈Ω, R∗

νN
a∗

y,l RνN R∗
νN

ax,l RνN Ω〉
= 〈Ω, (a∗

l (uy) − ar (vy))(al(ux ) − a∗
r (vx ))Ω〉 (7.14)

= 〈Ω, ar (vy)a
∗
r (vx )Ω〉

= (v∗
N vN )(x; y) = ωN (x; y)

where we used the canonical anticommutation relations and the fact that al and ar

annihilate the vacuum. Also, from (7.8),

αRνN Ω(x; y) = 〈RνN Ω, ay,lax,l RνN Ω〉
= 〈Ω, (al(uy) − a∗

r (vy)(al(ux ) − a∗
r (vx ))Ω〉 (7.15)

= 〈Ω, al(uy)a
∗
r (vx )Ω〉 = 0

where we used that {al(uy), a∗
r (vx )} = 0.

http://dx.doi.org/10.1007/978-3-319-24898-1_6
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This representation of quasi-freemixed states is a special example of awell known
construction in quantum statistical mechanics, known as the Araki-Wyss representa-
tion [2].

Dynamics of quasi-free mixed states. We consider the time evolution of initial
quasi-free mixed states satisfying certain semi-classical estimates (motivated by the
idea that, physically,we are interested in the evolution of equilibrium states at positive
temperature). For such initial data, we show that the evolution remains close to a
mixed quasi-free state with reduced density evolving according to the Hartree-Fock
equation (6.6). The next theorem is taken from [3].

Theorem 7.1 Let V ∈ L1(R3) and assume that

∫

dp (1 + |p|2)|V̂ (p)| < ∞. (7.16)

Let ωN be a sequence of operators on h = L2(R3) with 0 ≤ ωN ≤ 1, Tr ωN = N
and such that Tr (1 − Δ)ωN < ∞ and

‖[vN , x]‖HS ≤ C N 1/2ε, ‖[vN , ε∇]‖HS ≤ C N 1/2ε,

‖[uN , x]‖HS ≤ C N 1/2ε, ‖[uN , ε∇]‖HS ≤ C N 1/2ε, (7.17)

with vN = √
ωN , uN = √

1 − ωN , for a suitable constant C > 0. Let νN denote the
Bogoliubov transformations (7.10), such that RνN ΩF(h⊕h) is the quasi-free state on
F(h⊕ h) with one-particle reduced density ωN and with vanishing pairing density.

Let γ
(1)
N ,t be the one-particle reduced density associated with the evolved state

ψN ,t = e−iLN t/ε RνN ΩF(h⊕h) (7.18)

where the Liouvillian LN has been defined in (7.9). Let ωN ,t be the solution of the
time-dependent Hartree-Fock equation

iε∂tωN ,t = [−ε2Δ + V ∗ ρt − Xt ,ωN ,t ] (7.19)

with the initial data ωN ,0 = ωN . Then there exist constants C, c > 0 such that

‖γ(1)
N ,t − ωN ,t‖2HS ≤ C exp(c exp(c|t |)) and

Tr
∣
∣γ(1)

N ,t − ωN ,t
∣
∣ ≤ C N 1/2 exp(c exp(c|t |)). (7.20)

Remark

• Similarly to Theorem 6.1, the convergence towards the Hartree-Fock dynamics
can be extended to more general initial data than those appearing in (7.18). Let
N = dΓl(1) + dΓr (1) be the total number of particles operator in the doubled
Fock space and let ξN be a sequence inF(h⊕h)with 〈ξN ,N 10ξN 〉 ≤ C and such

http://dx.doi.org/10.1007/978-3-319-24898-1_6
http://dx.doi.org/10.1007/978-3-319-24898-1_6
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that ξN = χ(N ≤ K N )ξN (for a sufficiently large constant K > 0 independent
of N ). In [3] it is shown that the one-particle reduced density of e−iLN t/ε RνN ξN

can be approximated by the solution of the Hartree-Fock equation.
• The semi-classical commutator estimates (7.17) play the same role as (6.35) in
the analysis of the evolution of Slater determinants. There is however an impor-
tant difference. Equation (7.17) gives bounds for the Hilbert-Schmidt norm of the
commutators, while (6.35) was expressed in terms of their trace norm. In fact, for
Slater determinants we do not expect (7.17) to be correct. In this case the decay
of the kernel ωN (x; y) for |x − y| � ε is quite weak (because ωN is a projection
and the decay of ωN is dictated by the regularity of the Fourier transform in the
(x − y)-direction) and does not suffice, in general, to prove (7.17). On the other
hand, in Theorem 7.1, ωN does not need to be a projection, and one can expect
faster decay of the kernel ωN (x; y) in the (x − y)-direction. This is the reason
why the assumption (7.17) is appropriate for the study of the dynamics at positive
temperature.

For instance, a reasonable approximation for the one-particle reduced density of a
thermal state of the Hamiltonian (6.1) describing trapped interacting fermions is
given, in the mean-field limit, by the Weyl quantization

ω̃N (x; y) = 1

(2πε)3

∫

dv M

(
x + y

2
, v

)

eiv· (x−y)
ε (7.21)

where M(x, v) denotes the phase-space density,

M(x, v) = gT,μ

(
v2 − cρ2/3TF (x)

)
, (7.22)

corresponding to the Fermi-Dirac distribution

gT,μ(E) = 1

1 + e(E−μ)/T
, (7.23)

depending on the temperature T > 0 and on the chemical potential μ ≥ 0.
In (7.22), ρTF is the minimizer of the Thomas-Fermi functional (6.7) and the
normalization constant c > 0 has to be chosen so that

∫

M(x, v)dxdv = 1 .

For the reduced density ω̃N , we find

[ω̃N , x](x; y) = iε

(2πε)3

∫

dv (∇v M)

(
x + y

2
, v

)

eiv· x−y
ε

http://dx.doi.org/10.1007/978-3-319-24898-1_6
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86 7 Dynamics of Fermionic Quasi-Free Mixed States

and

[ω̃N , ε∇](x; y) = − ε

(2πε)3

∫

dv (∇x M)

(
x + y

2
, v

)

eiv· x−y
ε .

Hence,

‖[ω̃N , x]‖2HS ≤ ε2N
∫

dxdv|(∇v M)(x, v)|2 ≤ C Nε2,

‖[ω̃N , x]‖2HS ≤ ε2N
∫

dxdv|(∇x M)(x, v)|2 ≤ C Nε2,

using the regularity of the Fermi-Dirac distribution (7.23) (and assuming some
regularity of the Thomas-Fermi density ρTF). Thismotivates the assumption (7.17)
for initial data describing thermal states at positive temperature (the condition
(7.17) is actually expressed in terms of vN = √

ωN and uN = √
1 − ωN but the

same argument is expected to hold also in this case).
• The proof of Theorem 7.1 follows a strategy conceptually similar to the one of
Theorem 6.1. As for pure states, the rate of the convergence towards the Hartree-
Fock evolution can be estimated by controlling the growth of the expectation of the
number of particles operatorN = dΓl(1)+dΓr (1) with respect to the fluctuation
dynamics, which is now defined by

UN (t; s) = R∗
νN ,t

e−iLN t/ε RνN ,s . (7.24)

It turns out, however, that new ideas are needed here to control the growth of

〈UN (t; 0)Ω,NUN (t; 0)Ω〉F(h⊕h).

The main difference with respect to Chap.6 is that now uN = √
1 − ωN and

vN = √
ωN are not orthogonal. To circumvent this problem, one has to use certain

cancellations between different terms in the generator of the fluctuation dynamics.
Moreover, it is important to introduce an auxiliary dynamics ŨN (t; s) which, on
the one hand, can be proven to stay close to the original fluctuation dynamics, and,
on the other hand, only changes the expectation of the number of particles in a
controllable way. The details of the proof can be found in [3].
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Appendix A
The Role of Correlations
in the Gross-Pitaevskii Energy

In this appendix we consider bosonic systems in the Gross-Pitaevskii regime, as in
Chap.5.We show that the energy of Fock space states of the form W (

√
Nϕ)T0ξN , for

ξN ∈ F with a finite number of particles and finite energy (ξN describes excitations
of the condensate), is to leading order given by the Gross-Pitaevskii functional (5.4)
evaluated on the one-particle wave function ϕ ∈ L2(R3). This is an instructive
calculation since it shows that the Bogoliubov transformation T0 converts part of
the many-body kinetic energy into a contribution to the quartic term in the Gross-
Pitaevskii functional. Without the Bogoliubov transformation T0 the approximate
coherent state W (

√
Nϕ)ξN would have a higher energy, given by a functional similar

to (5.4) butwith coupling constant b0 = ∫
V (x)dx , which is always larger than 4πa0.

Hence, introducing theBogoliubov transformation T0 lowers the energy by a quantity
of order N (while the change of the number of particles is only of order one; see
(5.35)). This observation supports the claim that states of the form W (

√
Nϕ)T0ξN

provide a good approximation for themany-bodyground state and that T0 implements
the correct correlation structure.

Energy of Bogoliubov states. Consider the Hamilton operator describing a Bose
gas in the Gross-Pitaevskii regime, trapped by a confining potential Vext,

Htrap
N =

∫

dx a∗
x (−Δx + Vext(x)) ax + 1

2

∫

dxdy N 2V (N (x − y))a∗
x a∗

yayax .

Let ξN ∈ F be such that

〈

ξN ,

(

N + 1

N
N 2 + Htrap

N

)

ξN

〉

≤ C (A.1)

uniformly in N . As in (5.31), we define the Bogoliubov transformation

T0 = exp

(
1

2

∫

dxdy(k0(x; y)a∗
x a∗

y − k0(x; y)ax ay)

)
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with the kernel k0(x; y) = −Nω(N (x − y))ϕ(x)ϕ(y). We claim that for sufficiently
regular ϕ ∈ L2(R3) with ‖ϕ‖2 = 1

〈
W (

√
Nϕ)T0ξN ,Htrap

N W (
√

Nϕ)T0ξN

〉

= N
∫

dx
(
|∇ϕ(x)|2 + Vext(x)|ϕ(x)|2 + 4πa0|ϕ(x)|4

)
+ O(

√
N )

= NEGP(ϕ) + O(
√

N ).

(A.2)

Taking ϕ to be the normalized minimizer of EGP, we conclude from [1] that
W (

√
Nϕ)T0ξN has, in leading order, the same energy as the ground state of the

restriction of Htrap
N to the N -particle sector.

States of a similar form (using quadratic exponentials to describe correlated par-
ticle pairs) were also used to obtain second-order upper bounds for the ground state
energy of a Bose-Einstein condensate in the translation-invariant setting [2]. That
upper bound was later refined to its supposedly optimal value [3] (as predicted by the
Lee-Huang-Yang formula), using a more complicated trial state where pairs receive
a correction of a third particle with small momentum.

Sketch of the proof of (A.2). Let us consider the case ξN = Ω . We compute

〈
W (

√
Nϕ)T0Ω,Htrap

N W (
√

Nϕ)T0Ω
〉
. (A.3)

conjugating the Hamiltonian first with the Weyl operator (producing a shift of the
creation and annihilation operators) and then with the Bogoliubov transformation
(which acts on the annihilation and creation operators as given by (5.32)). At the cost
of commutators appearing, all terms can be brought into normal order. At the end, all
terms with creation and annihilation operators written in normal order vanish when
we consider the vacuum expectation. Hence, we find the following contributions to
(A.3). From the kinetic energy we have

∫

dx
〈
Ω, T ∗

0 W (
√

Nϕ)∗∇x a∗
x ∇x ax W (

√
Nϕ)T0Ω

〉

= N
∫

dx |∇ϕ(x)|2 +
∫

dx ‖∇x shx‖2.
(A.4)

From the external potential we obtain

∫

dxVext(x)
〈
Ω, T ∗

0 W (
√

Nϕ)∗a∗
x ax W (

√
Nϕ)T0Ω

〉

= N
∫

dx |ϕ(x)|2Vext(x) +
∫

dxVext(x)‖shx‖22.
(A.5)

http://dx.doi.org/10.1007/978-3-319-24898-1_5
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Finally, from the interaction, we get

∫

dxdyN 2V (N (x − y))
〈
Ω, T ∗

0 W (
√

Nϕ)∗a∗
x a∗

yayax W (
√

Nϕ)T0Ω
〉

= 1

2

∫

dxdyN 2V (N (x − y))|〈chy, shx 〉|2

+ 1

2

∫

dxdyN 3V (N (x − y))
(〈shx , chy〉ϕ(x)ϕ(y) + c. c.

)

+ N

2

∫

dxdyN 3V (N (x − y))|ϕ(x)|2|ϕ(y)|2.

(A.6)

To evaluate the terms on the r.h.s. of (A.4), (A.5) and (A.6) it is useful (like in
Chap.5) to think of shx (y) 
 k0(y; x) and chx (y) 
 δ(x − y); more precisely
recall that, in contrast to the regular kernels of higher powers of k0, k0(x; y) itself
is singular as (|x − y| + 1/N )−1 for N → ∞. We then find (in the last step using
Hardy’s inequality)

‖shx‖22 

∫

dy |k0(y; x)|2 = |ϕ(x)|2
∫

dy |ϕ(y)|2 |Nω(N (x − y))|2

≤ C |ϕ(x)|2
∫

dy
|ϕ(y)|2
|x − y|2 ≤ |ϕ(x)|2‖∇ϕ‖22.

This implies that ∫

dx Vext(x)‖shx‖22 ≤ C, (A.7)

i.e. the contribution is of order one (for sufficiently regular ϕ ∈ L2(R3)). Hence, this
term can be neglected.

As for the second term on the r.h.s. of (A.4), we notice that

∫

dx‖∇x shx‖2

=
∫

dx〈shx , (−Δx )shx 〉


 −
∫

dxdyNω(N (x − y))ϕ(x)ϕ(y)Δx [Nω (N (x − y)) ϕ(x)ϕ(y)]

=
∫

dxdyN 4ω(N (x − y))|ϕ(x)|2|ϕ(y)|2(−Δω)(N (x − y)) + O(
√

N )

because contributions arising when one or two derivatives act on ϕ are of smaller
order. Thekeyobservationnow is the fact that 1−ω satisfies the zero-energy scattering
equation (5.2), which implies that

(−Δω)(N (x − y)) = 1

2
V (N (x − y))(1 − ω(N (x − y)))

http://dx.doi.org/10.1007/978-3-319-24898-1_5
http://dx.doi.org/10.1007/978-3-319-24898-1_5
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and thus that
∫

dx ‖∇x shx‖2

= 1

2

∫

dxdyN 4V (N (x − y))ω(N (x − y))(1 − ω(N (x − y))) |ϕ(x)|2|ϕ(y)|2

+ O(
√

N ).

(A.8)

Thus, from (A.4), (A.5) and (A.6), we conclude (using again the approximations
chy(z) 
 δ(z − y) and shx (z) 
 k0(z; x)) that

〈
W (

√
Nϕ)T0Ω,Htrap

N W (
√

Nϕ)T0Ω
〉

= N
∫

dx |∇ϕ(x)|2 + N
∫

dx Vext(x)|ϕ(x)|2

+ N

2

∫

dxdy N 3V (N (x − y))ω (N (x − y)) (1 − ω (N (x − y)))

× |ϕ(x)|2|ϕ(y)|2

+ N

2

∫

dxdy N 3V (N (x − y))ω(N (x − y))2|ϕ(x)|2|ϕ(y)|2

− N
∫

dxdy N 3V (N (x − y))ω(N (x − y))|ϕ(x)|2|ϕ(y)|2

+ N

2

∫

dxdy N 3V (N (x − y))|ϕ(x)|2|ϕ(y)|2 + O(
√

N )).

Combining all terms proportional to the interaction potential, we find

〈
W (

√
Nϕ)T0Ω,Htrap

N W (
√

Nϕ)T0Ω
〉

= N

[∫

dx
(
|∇ϕ(x)|2 + Vext(x)|ϕ(x)|2

)

+1

2

∫

dxdyN 3V (N (x − y)) f (N (x − y))|ϕ(x)|2|ϕ(y)|2
]

+ O(
√

N ).

Since
∫

dx V (x) f (x) = 8πa0, we obtain in the limit N → ∞ (using again some
regularity of ϕ)

〈
W (

√
Nϕ)T0Ω,Htrap

N W (
√

Nϕ)T0Ω
〉

= N

[∫

dx
(
|∇ϕ(x)|2 + Vext(x) + 4πa0|ϕ(x)|4

)]

+ O(
√

N ),

which proves (A.2). This computation can be easily extended (estimating all normally
ordered terms emerging from (A.3) by (A.1)) to arbitrary ξN satisfying (A.1).
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