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Supervisor’s Foreword

Heat conduction is a traditional subject that can be traced back to 1822, the year
Fourier’s conduction law was established. Through nearly two centuries the
application of the theory of heat conduction has been immensely developed in the
fields of energy, electronics, material processing, environment protection, as well as
human health. The heat conduction research based on Fourier’s conduction law
usually focuses on how to transfer heat efficiently for heating or cooling objects.
However, in the past three decades, with the development of short pulse laser and
fabrication of nanomaterials, the validation of Fourier’s law has been challenged. It
was pointed out in the mid-twentieth century that Fourier’s law implies an infinite
heat propagation speed, a physically unacceptable notion. In studies on ultrafast
laser heating on materials from the 1980s, it is observed that the temperature
response on laser heating exhibits the behavior of lagging, relaxation, or delay,
which indicates the failure of Fourier’s conduction law. On the other hand, in
low-dimensional materials such as carbon nanotube and graphene, as well as
nanosized semiconductors, the heat conduction shows a size-dependent behavior.
The limited size of materials can either provide ultrahigh heat conductivity, which
sheds light on the heat management of large-scale Integrated circuits, or
much-suppressed heat conductivity, which can enhance the figure of merit of ther-
moelectric devices. These applications provide potential solutions to the emergent
needs raised by modern engineering. However, the scientific understanding and
modeling of heat conduction in these extreme conductions are far from satisfactory.

In the present work by Dr. Dong, non-Fourier heat conduction is investigated
through various perspectives. The basic idea originates from the thermomass the-
ory, which was established by our research group since 2005. In the thermomass
theory, based on the mass–energy equivalence of Einstein, thermal energy is
regarded as a weighable fluid flowing through the porous mediums, which is dif-
ferent from the caloric theory of the eighteenth century. As a result, a general heat
conduction law was presented to describe the relationship between the heat flux and
the temperature gradient by use of principle of fluid dynamics, which degenerates to
Fourier’s conduction law or other non-Fourier heat conduction models under
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different simplifications. Dr. Dong’s work first studies the microscopic foundation
of thermomass theory in the dielectric medium, where the main heat carriers are
phonons. Based on the phonon Boltzmann theory, he revealed the connection
between the phonon quasi-momentum and the real momentum of phonon gas. In
this way, the momentum balance equation of phonon gas can be formulated, which
then leads to the general heat conduction law beyond Fourier’s conduction law. The
general heat conduction law is similar to the phonon hydrodynamics model pro-
posed in the 1960s, with a new term corresponding to the convection effect of
phonon gas. The author proves that this difference comes from the higher order
expansion of the phonon distribution function. This derivation bridges the micro-
scopic and macroscopic theories. It not only provides a microscopic explanation for
the thermomass theory, but also clarifies the hierarchy for many non-Fourier
models.

Second, the thermomass theory enables one to analysis the irreversible ther-
modynamics from a perspective of fluid mechanics. By distinction of the reversible
and irreversible effects in the general heat conduction law, this work claims that
irreversibility in non-Fourier heat conduction is induced only by the friction force
rather than the driving force. Thus the traditional expression of entropy production
has to be modified. Like the analysis of the extended irreversible thermodynamics,
the proposed general entropy production avoids the negativity paradox in
non-Fourier heat conduction processes. The modification of entropy production
naturally causes the revision of the entropy and temperature in thermodynamics.
Using the approach of compressible fluid dynamics, the author announces the static
temperature and total temperature in non-Fourier heat conduction, which are the
static and total pressures of the phonon gas. The distinction between these two
temperatures is comprehensively investigated through the thermodynamic laws, as
well as the phonon Boltzmann equation. The by-product of the above analysis is
that the generalized forces and fluxes in the entropy production should be the real
forces and fluxes of the thermomass flow. With this discovery, the long-existing
problem in the derivation of Onsager reciprocal relation, namely the generalized
fluxes cannot be expressed by the time derivatives of state variables, is solved. The
author shows that the time derivative term in Onsager’s derivation should be the
inertia force of heat conduction. Thus the state variables are formulated as the
“displacement of heat,” which is the average displacement of transported quantities
during fluctuation. The author further provides a macroscopic derivation of the
Onsager reciprocal relation based on the principles of Galilean invariance and the
third law of Newtonian dynamics.

Lastly, the thermomass theory is used in up-to-date applications, i.e., the
nanoscale non-Fourier heat conduction. The size dependence of the effective
thermal conductivity in nanosystems is induced by the boundary scattering of heat
carriers. In this work, the boundary effect is modeled by the additional boundary
friction term raised by the phonon gas viscosity, in analogy to the Brinkman
extension for the porous flow. On the other hand, the confined structure also causes
the rarefaction effect which reduces the effective viscosity of phonon gas. By
accounting for both the viscosity and rarefaction effects the author builds prediction
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models for the effective thermal conductivity of nanosystems, which agree well
with the experiments. Moreover, a ballistic-diffusive model is proposed for the
cross-plane thermal conductivity of nanofilms. The author shows that the different
heat conduction directions will cause size-dependent heterogeneity of thermal
conductivity, which is led by the different geometry confinement mechanisms.

This work manifests the excellent analysis skill, physical insights, and broad
knowledge of the author, from the condensed physics to thermodynamics, from
fundamental theory to cutting edge applications. It received unanimous high praise
from the thesis reviewers. As the supervisor of Dr. Dong, I am glad to recommend
this thesis to readers, particularly those specialized or interested in the heat con-
duction theory, nanotechnology, and thermodynamics.

Beijing, China Prof. Zengyuan Guo
August 2015
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Abstract

Heat conduction cannot be characterized by Fourier’s law in extreme conditions
such as ultrafast transient heating or nanoscale heat conduction, which is called
non-Fourier heat conduction. Based on Einstein’s mass–energy equivalence, Guo
et al. proposed that thermal energy has its equivalent mass, namely thermomass.
Heat conduction is actually the motion of thermomass, which obeys Newton’s law
of motion. Therefore, the non-Fourier heat conduction can be analyzed from a
dynamical viewpoint, which establishes the general heat conduction law with a
clear macroscopic physical picture.

Phonons are the main thermal energy carriers in dielectric solids. This work
obtains the microscopic foundation of general heat conduction law through the
phonon Boltzmann equation. The transient and spatial inertial terms of thermomass
come from the first and second orders of expansion of the phonon distribution
function, respectively. Neglecting all the high order expansions of the phonon
distribution is equivalent to neglecting the inertia terms of thermomass, and reduces
the general heat conduction law to Fourier’s law. The inertial effect of thermomass
cannot be neglected in ultrasmall time or spatial scales, causing non-Fourier heat
conduction.

The entropy production in irreversible thermodynamics is the product of gen-
eralized forces and fluxes. The classical expression of entropy production is non-
positive definite in non-Fourier heat conduction, which violates the second law
of thermodynamics. This work defines the real forces and fluxes in heat conduction
based on the thermomass theory, instead of the phenomenological generalized
forces and fluxes. The forces in entropy production should be the friction forces
rather than the driving forces. Therefore, the general expression of entropy pro-
duction is obtained and is compatible with the non-Fourier heat conduction.

The definition of temperature needs to be modified in non-Fourier heat con-
duction. This work derives the expressions of static and stagnant temperatures
based on the Bernoulli equation of thermomass flow. The static temperature is the
true state variable and is consistent with the nonequilibrium temperature in
extended irreversible thermodynamics. The internal energy and entropy should be
expressed with the static temperature.
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The linear regression of fluctuation is assumed in the proof of the Onsager
reciprocal relation. It requires that the generalized fluxes are the time derivative of
state variables, which is hardly satisfied by usually defined fluxes. This work proves
that the linear regression of fluctuation is the balance of inertia and friction forces
of the thermomass, which is a non-Fourier heat conduction process. The corre-
sponding state variable of heat flux is the average displacement of thermomass
during fluctuation.

The boundaries impose additional resistances on heat conduction in nanosys-
tems, causing the size effect of the effective thermal conductivity. This work adds a
viscous term of thermomass in the general heat conduction law to describe the
boundary resistance. The in-plane effective thermal conductivities of nanofilms and
nanowires are predicted by considering both the nonuniform heat flux profile in the
cross section due to phonon gas viscosity and the rarefaction of phonon gas. For
cross-plane effective thermal conductivity of nanofilms, a ballistic-diffusive model
is built based on the Boltzmann equation regarding the nonequilibrium distribution
in near boundary region. These models agree well with the experimental and
numerical simulation results.
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Chapter 1
Introduction

Abstract The traditional Fourier’s law of heat conduction is not applicable in
ultrafast and ultrasmall conditions. Non-Fourier models thus have been developed
to predict these anomalous heat conductions. This chapter reviews the present
non-Fourier heat conduction theories. For ultrafast heat conduction, modification
models such as the Cattaneo–Vernotte model, dual phase lag model, and hyperbolic
two-step model are developed. The common feature of these models is adding the
relaxation terms in the traditional Fourier’s law. For the steady non-Fourier heat
conduction in nanosystems, the size effect of the thermal conductivity has been
modeled from the phonon-boundary scattering perspective. On the other hand, the
combination of non-Fourier conduction models with irreversible thermodynamics
will give the negative entropy production, which violates the second law. The
extended irreversible thermodynamics modifies the entropy production by
extending the category of state variables to mend this paradox. At the end of this
chapter, the approach and main aim of this work are presented.

1.1 Transient Non-Fourier Heat Conduction

In 1822 Fourier [1] proposed the well-known heat conduction law, namely that the
heat flux passing through a material is proportional to the local gradient of
temperature

q ¼ �jrT ð1:1Þ

The parameter, κ, is the thermal conductivity. For heat conduction processes
without internal heat source or sink, the conservation of internal energy gives

@qCVT
@t

þr � q ¼ 0; ð1:2Þ
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where ρ is the density of material, CV is the volumetric specific heat, t is the time.
A combination of Eqs. 1.1 and 1.2 yields the temperature evolution relation

@T
@t

¼ ar2T; ð1:3Þ

where α = κ/ρCV is the thermal diffusivity. Equation 1.3 indicates a parabolic
evolution of temperature. It implies that a sudden temperature disturbance is felt
simultaneously by the whole part of medium, in other words, the unphysical infinite
propagation speed of thermal disturbance. Nevertheless, Fourier’s law can be
regarded as a good approximation of the real physics in most traditional engineering
cases.

Researchers began to pay attention to this paradox from around 1950. Cattaneo,
Morse, and Vernotte [2–4] elucidated that for heat conduction in gases, under the
imposed sudden temperature disturbance, a certain amount of time is needed to
accelerate the carriers of thermal energy. Therefore, a time delay should exist
between the heat flux and the temperature gradient. They proposed the modification
of the Fourier’s law, i.e., CV model

s
@

@t
qþ q ¼ �jrT; ð1:4Þ

where τ is the relaxation time. With Eq. 1.2, the CV model gives the hyperbolic
temperature evolution equation

s
@2T
@t2

þ @T
@t

¼ ar2T ; ð1:5Þ

which predicts that the heat propagates as an attenuating wave with a speed of
(α/τ)0.5.

Although the CV model avoids the paradox of infinite propagation speed, it still
has many limitations. For example, the overlap of heat waves predicted by the CV
model could lead to the local temperature lower than 0 K [5–7], which is
unphysical. On the other hand, many experiments [8–13] indicate that the tem-
perature profile strongly deviates from the CV model in the case of considerable
thermal disturbance. Therefore, researchers developed a series of transient
non-Fourier heat conduction models beyond the CV models and made comparison
with experiments.

In analogy to the relaxational relation between strain and stress in viscoelastic
materials, Joseph and Preziosi [14] proposed the Jefferey’s type model for heat
conduction

s
@

@t
qþ q ¼ �jrT � j1

@

@t
rTð Þ ð1:6Þ
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The second term on the right-hand side of Eq. 1.6 suggests that additional mode of
heat waves could exist and propagate with a different speed from the primary heat
wave. κ1 is defined as the thermal conductivity corresponding to the “fast mode” of
heat wave. The heat waves predicted by the CV model have steep wave fronts, i.e.,
the discontinuity of temperature profile across the wave front. The heat waves
predicted by Eq. 1.6 would have smoother wave fronts with the thickness pro-
portional to (κ1x/κ1)

0.5, with x the location of wave front. This behavior is similar to
the thickness of shock wave induced by viscosity in gas dynamics.

Guyer and Krumhansl [15, 16] proposed the phonon hydrodynamic model based
on the linear solution of phonon Boltzmann equation (BTE)

sR
@q
@t

þ q ¼ �jrT þ sRsNv2s
5

r2qþ 2rr � q� �
; ð1:7Þ

where τR and τN are the characteristic relaxation time of the resistive phonon
scattering (R-process) and the normal phonon scattering (N-process), respectively.
vs is the average group velocity of phonons. Due to the second term on its
right-hand side, Eq. 1.7 is also able to smooth the heat wave front in a similar
manner to Eq. 1.6.

Since the 1980s, the time-domain thermoreflectance (TDTR) based on the
femtosecond (fs) laser is widely used to measure the thermophysical properties.
Eesley, Fujimoto, and Brorson et al. [17–25] studied the electron–phonon inter-
action during ultrafast heating, as well as the individual contribution of electron and
phonon to the thermal transport in thin metal film. Due to the ultrashort interaction
time between laser and metal, the thermal transport cannot be described by the
Fourier’s law. Qiu and Tien [26–28] analyzed the energy transport in multilayer
metal films heated by the fs laser. They proposed that the thermal transport in
electron system does not obey the Fourier’s law. Instead, the response delays of
phonon and electron to laser heating pulses should be considered separately, which
leads to the hyperbolic two-step model for ultrafast laser heating on metals.

Özişik and Tzou [29–31] claimed that the interaction of microscopic particles
causes macroscopic response delay. If the disturbance is temperature gradient, then
the heat flux response will be delayed. If the disturbance is heat flux, then the
temperature evolution will be delayed. In this way the relaxation of both heat flux
and temperature gradient should be taken into account, which leads to the dual
phase lagging (DPL) model

q t þ sq
� � ¼ �jrT t þ sTð Þ; ð1:8Þ

where τq and τT are the characteristic relaxation times of heat flux and temperature
gradient. The DPL model can evolve to several relaxational heat conduction models
with τq and τT given specific physical expressions. For example, the DPL model
reduces to CV model when τT = 0. It converts to the hyperbolic or parabolic
two-step models for ultrafast laser–metal interaction when τq and τT are expressed
by the phonon–electron coupling functions. If τq = τR and τT = 9τN/5, the DPL
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model turns to the phonon hydrodynamic model, Eq. 1.7. There are also many
works discussing the solutions of DPL model and its microscopic interpretation
[32–36].

Chen [37] established the Ballistic-Diffusive model to describe the transient heat
conduction based on the BTE. The heat carriers’ (e.g., phonons) distribution
function in an internal part of the material can be separated into two parts: the
ballistic part originating from the boundary and the diffusive part originating from
the interior. The ballistic part attenuates exponentially with the distance from the
boundary. The diffusive part is approximately governed by the CV model. The
ballistic part couples with the diffusive part via the energy conservation equation,
which means that the attenuated energy of ballistic carriers is transported to the
diffusive ones

CV s
@2T
@t2

þ @T
@t

� �
¼ r jrTð Þ � r � qb; ð1:9Þ

where the ballistic heat flux, qb, is determined by the boundary temperature. This
model is used to predict the one-dimensional transient heat conduction and agrees
well with the numerical solution based on BTE, which prevails over the prediction
based on Fourier’s law and CV model.

It should be noted that the above non-Fourier heat conduction models are
derived in the static solid system. Christov and Jordan [38] indicated that heat wave
predicted by the CV model would violate the Galilean invariance in the moving
medium. To remove the paradox, they proposed to modify the partial differential
operator in the CV model with the objective differential operator D/Dt

D
Dt

q ¼ @

@t
qþ u � rð Þq; ð1:10Þ

where u is the moving velocity of heat conduction medium. For the transient heat
conduction in gas medium, the flow of gas elements should also be considered.
Müller and Ruggeri [39] derived the transient heat conduction model in case of the
heat conduction and fluid flow coupling based on the 13-momentum model. In their
model the time derivative of heat flux is expressed as

D
Dt

q ¼ @

@t
qi þ qk

@ui
@xk

� 2qkWik; ð1:11Þ

where u is the moving velocity of fluid element and W is the angular velocity
matrix. Compared with Eqs. 1.10 and 1.11 can be regarded as more a general model
which considers not only the translational acceleration but also the Coriolis
acceleration.

The experimental measurements of transient non-Fourier conduction in dielectric
solids are feasible in low temperature. In such condition the phonon relaxation time
is long, which enables the heat wave pulses to stand out of the diffusive processes.
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Therefore, one obtains a large signal-to-noise ratio. In 1966, Ackeman et al. [8]
reported the second sound (temperature wave) detected in the solid helium at 0.54–
0.71 K. They estimated that the propagation speed of heat wave is around 160 m/s.
Rogers [9] measured the heat waves in NaF, LiF, and NaI. He claimed the prop-
agation of temperature waves obeys the phonon hydrodynamics model. The effect
of τN on the heat wave propagation was adopted to estimate the mean free path
(MFP) of normal scatterings. The heat waves are also measured in dielectric solids
such as Bi and LiF [10–13]. Although the wave-like temperature signals were
observed in these works, there are considerable discrepancies between theoretical
models and experimental data.

The experimental data for heat waves is inevitably limited by factors such as the
purity of samples, contact resistances, and oscillations. The molecular dynamic
(MD) simulation can serve as a theoretical tool for investigating transient
non-Fourier heat conduction in solids. Tsai and MacDonald [40] used MD simu-
lation to study heat pulses propagation in α-Fe crystals. They indicated that the
energy migration in lattices has the feature of wave. The dispersion induces lower
propagation speed than the theoretical predictions. The temperature pulses stimulate
the translational and longitudinal elastic waves, each accompanied with the second
sound wave transmitting at lower speed. Volz et al. [41] studied the transient heat
conduction in solid argon with the Lennard-Jones potential. They found that the CV
model can accurately predict the heat flux attenuation in the case of small distur-
bance. With larger disturbance, the prediction by CV model deviates significantly
from MD simulation. Thus the CV model with single relaxation time is not suitable
to describe the transient heat conduction with larger temperature fluctuation. Shiomi
and Maruyama [42] simulated the heat wave propagation in single wall carbon
nanotubes (CNTs). The results show that the transient heat transport does not obey
Fourier’s law. A considerable amount of heat transports as waves. The temperature
evolution profile has large differences with the CV model, while is close to the DPL
model with two relaxation times. Based on the dispersion curves, they pointed out
that the temperature waves are contributed mainly by the optical phonons, since the
transport of acoustic phonons is mostly ballistic in this condition.

1.2 Steady Non-Fourier Heat Conduction in Nanosystems

A number of novel nanomaterials are synthesized in recent years, including
low-dimensional materials (CNT, graphene) [43–49], nano-semiconductors (silicon
nanofilms and nanowires) [50–56], nano-superlattices (GaAs/AlAs, Si/Ge) [57–64],
and nano-polymers (Polyethylene nanowires) [65–67]. These nanosized or nanos-
tructured materials exhibit unique chemical, optical, electrical, and thermal prop-
erties compared with normal bulk materials and are expected to bring revolutionary
breakthroughs in fields such as microelectronics and renewable energy [68–72]. For
example, the size of microelectronics is rapidly reducing. Thedensity of large
electronic elements causes huge heat flux rate, which becomes the bottleneck in
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further improvement of integrated circuits (ICs). Low-dimensional materials such
as CNT and graphene have much larger heat conductivities compared with tradi-
tional materials. They are expected to be made into high performance cooling
devices. On the other hand, the significant reduction of thermal conductivities of
nano-sized semiconductors raises their thermoelectric figure of merit, which has
great potential for harvesting low-temperature waste heat as well as solid-state
thermal solar cells.

The non-Fourier heat conduction in nanomaterials is mainly caused by the
nontrivial transport behavior of phonons. They are the quantization of lattice
vibration, which carries thermal energy. The scattering of phonons induces heat
conduction in solids. The thermal conductivity of dielectric solids was proposed by
Debye et al. [73, 74] in analogy with the heat conduction in ideal gas

j ¼ 1
3
qCVvskR; ð1:12Þ

where λR = vsτR is the MFP of R processes, namely the distance between successive
collisions. The phonon MFPs of ordinary materials at room temperature are among
1–100 nm. Therefore, when the characteristic sizes of materials shrink and are
comparable with the phonon MFPs, the boundary scattering of phonons will sig-
nificantly reduce the effective MFPs, which results in reduction of effective thermal
conductivity of nanomaterial according to Eq. 1.12. Low-dimensional materials
such as CNT and graphene have phonon MFPs as long as several micrometers at
room temperature. Thus their apparent thermal conductivities increase with char-
acteristic lengths in a bigger size range [43–49].

In analogy to the radiative heat transport equation, Majumdar [75] established
the equation of phonon radiative transfer (EPRT) to characterize phonon transport
in thin films. If the thickness of a film is much larger than the phonon MFPs, the
EPRT reduces to the ordinary Fourier’s law. When the thickness is much lower than
MFPs, the EPRT gives the Stefan-Boltzmann law for radiative heat transfer of black
body. In the intermediate range, the effective thermal conductivity is predicted as

jeff
j0

¼ 1

1þ b kR
l

; ð1:13Þ

where l is the film thickness, β = 3/8 for the in-plane thermal conductivity of a film,
while β = 4/8 for the cross plane thermal conductivity [76, 77]. Equation 1.13 is
also named as the gray model, since it assumes the same MFP for all phonons
regardless of mode and frequency.

Chen [59] solved radiative BTE to characterize the reduction of effective thermal
conductivity in the cross plane direction of GaAs/AlAs, Si/Ge, and Bi2Te3/Sb2Te3
superlattices. His main assumptions include: (1) The thickness of each layer of
superlattices is much larger than the phonon wavelength, so as to solve the BTE
with the phonon spectrum obtained for bulk material. (2) A single MFP is used to
approximate the scattering of phonons in bulk material (i.e., a single relaxation

6 1 Introduction



time). The interfacial thermal resistance is determined by the reflection and trans-
mission rates. Therefore, it is proposed that the MFP extracted from Eq. 1.12 is
unable to predict the size effects. The reason is that the long wave length phonons
contribute more to heat conduction while the optical phonons contribute more to the
specific heat. Re-examining the issue with the assumed sinusoidal phonon disper-
sion relation leads to the modification of phonon MFPs. For the single crystal Si,
the MFP based on Eq. 1.12 is 40.9 nm, while the modified one is 260 nm. Through
the numerical solution of BTE, it is found that the temperature drop mainly happens
at the interface in nanostructured superlattices due to the compatibility between the
thickness of superlattice layers and phonon MFPs. Yang and Chen [60], Dames and
Chen [61] further studied heat conduction in Si/Ge superlattice nanowires and
two-dimensional Si/Ge nanocomposites. The effective thermal conductivities of
these systems reduce with the characteristic size of each component, and are sig-
nificantly affected by the reflection and transmission rates of interfaces.

Asheghi et al. [50] measured the in-plane thermal conductivity of single crystal
Si thin films with thicknesses of 1.60, 0.83, and 0.42 μm, which were deposited on
the SiO2 substrate. They found that at room temperature the effective thermal
conductivity is close to the bulk value for 1.60 μm sample, while it reduces slightly
for 0.83 and 0.42 μm films. At low temperature (30 K), two orders of magnitude
reduction from the bulk value was observed in these samples. They elucidated that
if the thickness of Si nanofilms is lower than 50 nm, the effective thermal con-
ductivity could reduce by 70 % from the bulk value at room temperature. Ju and
Goodson [51] prepared single crystal Si thin films with thicknesses between 74 and
240 nm through repeatedly oxidizing Si films and then removing the oxidized
layers. The in-plane thermal conductivities of these thin films were measured.
Based on the measurement they proposed that the LA branch of phonons contribute
mainly to the heat conduction. The relaxation time satisfies τ−1 ∝ ω1.7, with ω the
phonon frequency. They estimated that the phonon MFP is 300 nm based on the
phonon BTE, which is close to Chen et al.’s theoretical result. Liu and Asheghi
[52], Ju [53] measured the thermal conductivities of thinner single crystal Si films.
The trends is consistent to [51]. The experimental results for Si nanofilms are shown
in Fig. 1.1a.

In 2003, Li et al. [54] measured the effective thermal conductivity of suspended
single crystal Si nanowire produced by the vapor-liquid-solid (VLS) method
(Fig. 1.1b). The results show that the effective thermal conductivities of nanowires
are apparently lower than the bulk value and decrease with the reduction in
diameters. The size effect also causes the shift of peaks of the thermal conductivity
versus temperature curves for nanowires. The bulk material has the peak at around
25 K. The peaks for nanowires with diameters of 37, 56, and 115 nm are at 210,
160, 130 K, respectively. Such shift indicates that the phonon-boundary scattering
strongly affects the thermal conductivity for thin nanowires. In the range of 20–
60 K, the temperature dependence relations of thermal conductivity for 56 and
115 nm nanowires are approximately proportional to T3. Li elucidated that in this
condition the boundary scattering dominates, causing effective thermal conductiv-
ities proportional to the specific heat. However, for 37 and 22 nm nanowires, the
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temperature dependences of thermal conductivity are close to ∝T2 and ∝T,
respectively. This effect was attributed to the reduction of phonon effective group
velocity due to the change of phonon dispersion relation. Mingo [78] considered the
complete dispersion relation of phonons and adopted Matheissen rule to average the
relaxation times of the boundary scattering, Umklapp scattering, and impurity
scattering. He obtained the theoretical prediction very close to Li et al.’s results.
Nevertheless, it is notable that Mingo used nanowires of 38.5, 72.8, and 132.5 nm
in the theoretical model to compare with the 37, 56, and 115 nm nanowires in the
experimental results. Some arbitrariness thus exists in the assumed boundary slip
parameter. On the other hand, the experimental results for 22 nm nanowire are
poorly explained.
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Fig. 1.1 Experimental results
of nanofilms and nanowires.
a In-plane effective thermal
conductivity of single crystal
Si nanofilms at 300 K, (filled
circle) [50], (open square)
[51], (filled triangle) [52],
(open circle) [53]. b Effective
thermal conductivity of single
crystal Si nanowires with
diameter of 115 nm (filled
square), 56 nm (filled down
triangle), 37 nm (filled
triangle), 22 nm (filled circle)
[54]
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In 2008, Hochbaum et al. [55] reported the aqueous electroless etching
(EE) synthesis of Si nanowires with boundary roughness between 1 and 5 nm. The
nanowires obtained through the EE method have a similar temperature dependence
trend of thermal conductivity to those synthesized by VLS method. However, the
absolute value further decreases by five to eightfolds. This reduction is attributed to
the secondary scattering of phonons induced by the rough boundary. The ultralow
lattice thermal conductivity increases the thermoelectric figure of merit (ZT) of Si
nanowires. The thermal conductivity of the boron doped Si nanowire of diameter
52 nm can reduce to 2 W/(m K) at room temperature, giving ZT as high as 0.6.
Such low thermal conductivity cannot be explained by Mingo’s theory. Even
adding the boundary back scattering in his model is not enough to reproduce the
experimental results. Si nanowires with high ZT have attractive potential and
stimulate much of the following research. Hippalgaonkar et al. [79] made the rough
nanowire with a rectangle cross section by the electron beam lithography
(EBL) method. The characteristic size is around 80 nm. The effective thermal
conductivity is lower than that of nanowires made by VLS method but it is still
higher than those made by EE method. Moore et al. [80] carried out Monte Carlo
(MC) simulation of sawtooth nanowires. The cross section is 22 nm × 22 nm
square. The results show that the thermal conductivities of these nanowires strongly
decrease from the bulk value, however, they are still considerably higher than the
experimental results by Hochbaum et al., Carrete et al. [81], He and Galli [82],
Sullivan and coworkers [83] studied nanowires with rough and oxidized boundary
by MD simulation. Results show that the rough boundary can induce huge
reduction of thermal conductivity, but not as large as Hochbaum’s experiments.
Thus the relation between boundary roughness and ultralow thermal conductivity is
still unclear.

The above-mentioned steady non-Fourier heat conduction is caused by the size
effect of nanomaterials. Wang et al. [84, 85] observed that in low temperature metal
thin films, the large heat flux will cause deviation of Fourier’s law. The mechanism
of this effect is different from the size effect in dielectric nanosystems, and can be
attributed to the inertia of thermomass.

The Fourier’s law is a parabolic equation. It is valid when the energy carriers
transport diffusively. In fast transient heating and nanosystems, the energy carriers
(e.g., phonons) cannot fully relax to the near equilibrium state due to the limitation
of time and spatial scales. Therefore, the transport is partial ballistic and leads to the
failure of Fourier’s law. In recent years, new measurement methods such as TDTR
[86, 87], thermal grating [88] and frequency domain thermoreflectance [89] have
been used to study the phonon spectrum and MFPs in dielectric materials. In these
experiments the transient and steady non-Fourier heat conduction will coexist and
the analysis is complex. The present theory relies mainly on the numerical solution
of the microscopic BTE and Green’s function to explain the experimental results.
The solution process requires much assumption on parameters and induces arbi-
traries. Thus, a more general heat conduction model with explicit macroscopic
physical meaning which is suitable for non-Fourier heat conduction is highly
desired.
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1.3 Non-Fourier Heat Conduction and Irreversible
Thermodynamics

1.3.1 Classical Irreversible Thermodynamics

The classical thermodynamic theory was established in the nineteenth century,
which is based on the equilibrium system. Neither the time needed for the change of
system status nor the mass and energy transfer in nonuniform systems is consid-
ered. In 1931, Onsager [90] derived the reciprocal relation for irreversible processes
based on the hypothesis of microscopic reversibility and the linear regression of
fluctuation. The phenomenological coefficients of linear coupling among various
irreversible processes are in symmetry according to the reciprocal relations. In this
way, the thermodynamic theory is extended to nonequilibrium systems. The
Onsager’s derivation and assumption for irreversible processes was further devel-
oped by a series of works [90–104] that evolve into the foundation of modern
nonequilibrium thermodynamics (also called thermodynamics of irreversible pro-
cesses, TIP).

The entropy production rate, σs, is the key variable in nonequilibrium thermo-
dynamics. It can be written as the bilinear product of generalized forces (thermo-
dynamic forces), X, and generalized fluxes (thermodynamic fluxes), J

rs ¼
X
a

JaXa ð1:14Þ

Equation 1.14 can be expressed for usual irreversible transport processes as

rs ¼ q � r 1
T

� �
� 1
T
Pv : ruf �

XN
k¼1

Jk � r lk
T

� �
þ 1
T
i � rue; ð1:15Þ

where Pv is the stress tensor, uf is the fluid velocity, Jk is the mass component
diffusion flux, μk is the chemical potential, i is the electric flux density, and φe is the
electric potential. The terms on the right-hand side of Eq. 1.15 denote the entropy
production caused by the heat conduction, momentum diffusion, mass component
diffusion, and electrical conduction, respectively. Assume a linear relation between
generalized forces and fluxes, with the scaling factors and the phenomenological
parameters one obtains the linear transport laws for each irreversible process

q ¼ �jrT ð1:16aÞ

Jk ¼ �
XN
j¼1

qDkjrcj ð1:16bÞ
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i ¼ � 1
re
rue ð1:16cÞ

Pv ¼ �2gruf ; ð1:16dÞ

where κ is the thermal conductivity, η is the viscosity, D is the diffusivity, ck = ρk/ρ
is the mass concentration ratio, and re is the electric resistivity. The four equations
in Eqs. 1.16a–1.16d correspond to the Fourier’s heat conduction law, Fick’s law,
Ohm’s law, and Newton’s viscosity law. When multi-transport processes coexist in
the system, these irreversible processes can couple with each other, generating
effects such as thermoelectric, thermophoresis, electrophoresis. In this case, the
linear transport laws should be expressed more generally as

q ¼ Lqqr 1=Tð Þ �
XN
k¼1

Lqkr lk=Tð Þ � Lqer ue=Tð Þ ð1:17aÞ

Jk ¼ Lkqr 1=Tð Þ �
XN
j¼1

Lkjr lj
�
T

� �� Lker ue=Tð Þ ð1:17bÞ

i ¼ Leqr 1=Tð Þ �
XN
k¼1

Lekr lk=Tð Þ � Leer ue=Tð Þ ð1:17cÞ

Equations 1.17a–1.17c can be simply written as J = LX, where L is a symmetry
matrix according to Onsager reciprocal relation. Such reciprocity gives the con-
straint of phenomenological coefficients such as the second Thomson relation from
the thermodynamic perspective. Having shown its value in many fields, the clas-
sical nonequilibrium thermodynamics still has some defects. For example, the
decomposition of entropy production into generalized forces and fluxes is to some
extent arbitrary, which could break the Onsager reciprocal relation [96]. Its
derivation is mostly based on the linear transport laws. Thus in the case of nonlinear
transport, e.g., non-Fourier heat conduction, its applicability is questionable.
Therefore, more general thermodynamic theory is needed for the nonlinear irre-
versible processes.

1.3.2 Extended Irreversible Thermodynamics (EIT)

The classical nonequilibrium thermodynamic theory is challenged in the case of
non-Fourier heat conduction. For example, one considers the pure heat conduction
in rigid solids. Inserting the CV model, Eq. 1.4, into the entropy production,
Eq. 1.15, yields
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rs ¼ jrT � rT
T2 þ s

T2

@q
@t

� rT ð1:18Þ

Equation 1.18 is no longer quadratic. It cannot keep semi-positive definite. The
negative entropy production implies that the wave-like heat conduction may violate
the second law of thermodynamics, which is a paradox. The theory of extended
irreversible thermodynamics (EIT) [105–120] proposes to introduce more state
variables to eliminate this paradox. When the Fourier’s law holds, the temperature
gradient in the system is correlated to the heat flux, which means that they depend
on each other. EIT raises the heat flux as independent state variables in addition to
the internal energy (temperature). The local entropy density, s, is thus modified as
s = s(e, q), where e is the density of internal energy. Combined with the CV model
one obtains the derivative of extend entropy

dsEIT ¼ T�1de� s
qjT2 q � dq ð1:19Þ

Making integral gives

sEIT e; qð Þ ¼ seq eð Þ � 1
2

s
jT2 q � q ð1:20Þ

The corresponding extended entropy production is

rsEIT ¼ 1
jT2 q � q ð1:21Þ

In contrast to Eqs. 1.18 and 1.21 recovers the quadratic form and keeps semi-positive
definite during heat wave propagation [109]. Figure 1.2 shows the time evolution of
entropy in an isolated one-dimensional system with heat wave propagation. It can be
seen that the classical entropy evolution is non-monotonic while the extended
entropy keeps monotonic. Thus the second law of thermodynamics is recovered by
the EIT.

Since the entropy and entropy production are modified in EIT, the thermody-
namic temperature should also be modified. The EIT derives the nonequilibrium
temperature, θ, based on the relation in classical thermodynamics T−1 = ds/de [107,
110, 111]

h ¼ Teq 1� s
.
qjCVT

2
eqq � qþ o q2

� �� �
; ð1:22Þ

where Teq is the temperature in equilibrium system. Equation 1.22 indicates that the
nonequilibrium temperature will be lower than the equilibrium one when heat flux
passes through the system.

EIT theory has been applied in the field of non-Fourier heat conduction,
non-Fick diffusion as well as non-Newtonian momentum transport. A series of
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nonlinear constitutive equations for nonlinear transports are derived based on EIT.
For example, adding a transient relaxation term in the nonequilibrium temperature,
θ, gives the dynamic nonequilibrium temperature [112–114], based on which the
nonlinear heat conduction model with nonlocal terms can be derived. Such model
can be used to describe the heat wave dispersion and thermal chocking. By further
upgrading the gradient of heat flux, ∇q, as the independent system variable, EIT can
give the phonon hydrodynamics model, Eq. 1.7, which characterizes the size effect
of thermal conductivity in nanosystems [115–119].

EIT removes the paradox of negative entropy production in non-Fourier heat
conduction. However, its derivation, to some extent, is from an ad hoc perspective.
The decomposition of generalized forces and fluxes still lacks explicit physical
definition. The nonequilibrium temperature is mathematically based on the exten-
ded entropy, and needs more discussion on its physical meaning. Therefore,
nonequilibrium thermodynamics dealing with non-Fourier heat conduction is to be
further developed from more ab initio perspectives.

1.4 Conclusion

The word thermodynamics originates from the Greek words θέρμη therme, meaning
“heat,” and δύναμις dynamis, meaning “power” [121]. The classical thermody-
namics is not the “dynamics of heat,” but instead a subject on the heat engine. It is
only applicable in equilibrium systems and does not consider the time needed for
state evolution. The nonequilibrium thermodynamics and the heat transfer theory
have the concept of time and rate, but still lack true dynamic variables such as force
and momentum. In recent years, Guo et al. [122] proposed that the heat has a dual

Extended Entropy
Classical Entropy

E
nt

ro
py

Time

Fig. 1.2 Entropy evolution in
an isolated 1D system with
heat wave propagation [109].
At t = 0 the distribution of
temperature is sinusoidal, then
the evolution satisfies CV
model. Solid line EIT entropy;
Dash line classical entropy
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nature of energy and mass. According to Einstein’s mass energy equivalence, the
thermal energy stored in the system has its equivalent mass, i.e., thermomass.
Though tiny, the balance and motion of thermomass represents the heat transfer and
can be analyzed by the dynamic framework. Based on this elucidation, Guo et al.
developed the thermomass theory [25, 84, 85, 122–126] dealing with the
non-Fourier heat conduction and the entransy theory [127–131] dealing with the
optimization of heat transfer system. In this work, the non-Fourier heat conduction
is investigated from the dynamic point of view based on thermomass. The fol-
lowing issues are addressed:

1. The present general heat conduction law derived from thermomass theory is
macroscopic and phenomenological. It has a similar form to the phonon
hydrodynamic model based on the phonon BTE. This work explores the
microscopic foundation of the thermomass theory based on BTE, and compares
it with the phonon hydrodynamics. It bridges the macroscopic and microscopic
theories for non-Fourier heat conduction.

2. The irreversible thermodynamics is discussed from the dynamical viewpoint.
The novel physical interpretation of thermodynamic quantities such as entropy
and temperature is compared with EIT. The defects in the proof of Onsager
reciprocal relation also are investigated with the present theory framework.

3. The non-Fourier heat conduction in nanosystems is analyzed with the dynamical
theory. The novel models for the size-dependent thermal conductivity of
nanosystems are developed and compared with the experiments.
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Chapter 2
Dynamical Governing Equations
of Non-Fourier Heat Conduction

Abstract Thermal energy has its corresponding equivalent mass according to
Einstein’s mass–energy equivalence, which is termed as thermomass. The ther-
momass theory established the continuous governing equation for the non-Fourier
heat conduction. The mass balance equation of thermomass gives the energy
conservation equation while the momentum balance equation of thermomass gives
the general heat conduction law. The microscopic foundation of the general heat
conduction law based on the thermomass theory is investigated. The derivation
based on the phonon Boltzmann equation shows that the second order expansion of
phonon distribution function leads to the spatial inertia (or convective) term in the
general heat conduction law, which makes the difference from the previous phonon
hydrodynamic model. Limiting to the first order expansion will give the
Cattaneo-Vernotte model, while the zeroth order expansion gives the classical
Fourier’s law. Comparison with other derivations of phonon Boltzmann equation
such as the Chapman–Enskog expansion and eigenvalue analysis is presented.

2.1 Mass–Energy Duality of Heat

In history, the nature of heat is regarded as either a fluid (caloric theory) or a type of
motion (dynamic theory, kinetic theory, or mechanical theory). The caloric theory
regards heat as a weightless, self-repulsive fluid. In the eighteenth and the first half
of nineteenth centuries, the caloric theory was the mainstream theory. It gave
explanations to the temperature change and phase change, and even contributed to
the establishment of the Fourier’s heat conduction law and the Carnot’s rule for
thermal engines. However, in the nineteenth century, a series of experiments
showed the conversion between heat and work, such as Rumford’s report of boring
a cannon and Joule’s measurement of the mechanical equivalent of heat. After the
mid-nineteenth century, the caloric theory was generally superseded by the
mechanical theory along with the acceptance of energy conservation law and
kinetic theory of gas. The modern thermodynamic and heat transport theory is

© Springer-Verlag Berlin Heidelberg 2016
Y. Dong, Dynamical Analysis of Non-Fourier Heat Conduction
and Its Application in Nanosystems, Springer Theses,
DOI 10.1007/978-3-662-48485-2_2

21



based on the understanding that heat originates from the individually random, or
disordered, motion of particles in a body.

In the twentieth century, Einstein’s relativity theory introduced the well-known
mass–energy equivalence relation, E = mc2, where c is the speed of light. Therefore,
all forms of energy correspond to a certain amount of mass. Consider a system
consisting n free particles, each having a mass m and a velocity vi; the rest mass of
this system based on the relativity theory is

m0;sys ¼
Xn
i¼1

Ei

c2
�
Xn
i¼1

m0;ic2 þ 1=2ð Þm0;iv2i
c2

þ o v2i
�
c2

� �
with

X
i
m0;ivi ¼ 0;

ð2:1Þ

where m0 is the rest mass of each particle. Equation 2.1 denotes that the rest mass of
the system contains the total kinetic energy of individual particles, divided by c2.
Heating the system increases the energy of the disordered motion of particles while
the system’s net momentum preserves zero. The increased rest mass due to heating
has the same nature as ordinary mass, like inertia. Thus, greater force is needed to
propel a heated body with the same acceleration than when it is cool [1–4].
According to the general relativity, the inertia mass equals the gravitational mass.
Thus “a piece of iron weighs more when red-hot than when cool” [5, 6]. The mass
increase induced by heat, “thermomass,” is very small in ordinary conditions. For
example, the thermomass of Si at room temperature is 10−12 of the total mass. Such
small amount of mass is negligible when dealing with dynamic problems such as
movement and balance of the body. However, heat conduction is the movement of
thermomass itself relative to the molecular or the lattice; so its mass, or inertia,
should be accounted to describe the transport and motion of heat.

Moller [1] and Rindler et al. [4] analyzed the continuum mechanics in the
relativity framework. The momentum flux for the relativity system with heat flux
inside is expressed as

g ¼ hvþ v �Pþ J
c2

; ð2:2Þ

where h is the relative energy density, v is the velocity of the body, Π is the relative
stress tensor, and J is the energy flux density induced by heat conduction

J ¼ c q0 � v
q0 � v
c2

c
cþ 1

� �
; ð2:3Þ

where γ is the Lorentz factor, γ = (1 − v2/c2)−1/2. q0 is the heat flux density in the rest
reference framework. In low speed systems where v is much less than c, the
difference between J and q is the small amount of the order of (v/c)2. In this case
Eq. 2.2 can be converted into

22 2 Dynamical Governing Equations …



g0 ¼ q0 þ q0E
� �

v0 þ v0 �P0

c2
þ q0

c2
; ð2:4Þ

where the superscript 0 means the value in low speed system, ρ0 is the density of
rest mass of the molecular contained in the system, ρE

0 is the density of the
equivalent mass of the energy (e.g., elastic energy, chemical energy, thermal
energy, and nuclear bonding energy) stored in the system, divided by c2.
Equation 2.4 shows that the momentum flux density of low speed system contains
the momentum density of the rest mass (the first term on the right-hand side) plus
the energy flux density divided by c2 (the second and third terms on the right-hand
side, which correspond to the work done by the stress and the heat flux, respec-
tively). Note that the rest mass of the system contains the part contributed by the
energy, ρE

0v0. In normal conditions, the contribution by the heat flux is far more
less than the first term. Nevertheless, consider a body at rest with heat conduction
inside, i.e., v0 = 0, the heat flux term is the only nonzero one in Eq. 2.4.

Based on Eq. 2.4, in low speed conditions, the balance equation of mass and
momentum can be expressed as

d
dt0

q0 þ q0E
� �þr � g0 ¼ 0 ð2:5Þ

d
dt0

g0 þr �P0 þ q0 � rv0

c2
¼ 0 ð2:6Þ

Using the mass conservation relation

d
dt0

q0 þr � q0v0
� � ¼ 0 ð2:7Þ

Equation 2.5 turns to

d
dt0

q0E þr � q0Ev
0 þ v0 �P0

c2
þ q0

c2

� �
¼ 0 ð2:8Þ

If the velocity of the body is zero, then Eq. 2.8 reduces to the energy balance
equation (cf. Eq. 1.2). If the velocity is nonzero, then Eq. 2.8 is actually the energy
balance equation in convective conditions. Equation 2.6 is equivalent to the
Navier–Stokes equation without the body forces if the third term is neglected. On
the other hand, for a rest body with heat conduction, v0 = 0, q0 ≠ 0, the nonzero
terms in Eq. 2.6 indicates that the heat flux is also driven by a stress tensor, as the
momentum flux of rest mass. Note that Eq. 2.6 is built in the low speed system, thus
the motion of q0 obeys Newton’s law of motion. In this way, for the heat flux in a
rest body one has
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d
dt0

q0

c2
¼ �r �P0 ð2:9Þ

In ordinary conditions, the stress tensor, Π 0, acting on the heat flux is very small.
However, the quantity of thermomass is also very small, so the thermomass can be
driven by the stress tensor with a recognizable acceleration.

Based on the above discussion, the thermomass, although derived from the
relativity theory, obeys Newton’s law of motion as long as it is discussed in low
speed systems. Therefore, the dynamical governing equation of the motion of
thermomass can be established to analyze the heat conduction processes from the
ab initio viewpoint.

2.2 Governing Equations of Phonon Gas Dynamics

Phonons are the main heat carriers of dielectric solids, which come from the
quantization of the lattice vibration. The heat conduction in dielectric solids is thus
determined by the transport of phonons. In the thermal equilibrium system, the
distribution function of phonons, f, satisfies the Bose–Einstein distribution, namely
obeys the Planck’s law [7, 8]

f0 ¼ exp �hx=kBTð Þ � 1½ ��1; ð2:10Þ

where ħ is the reduced Planck constant (Dirac constant), ω is the phonon frequency,
and kB is the Boltzmann constant. The collective behavior of phonons is like a gas,
namely phonon gas. The energy carried by the phonon gas in a unit volume is

e ¼ qCVT ¼ 2pð Þ�3
X
n

Z
�hxnf n k; x; tð Þ½ �d3k

¼
X
n

Z
k

�hxnf n k; x; tð Þ
; ð2:11Þ

where i is the number of phonon branches, k is the wave vector. Inserting Eq. 2.11
into Eq. 2.1 gives

m0;sys ¼
P
i
m0;ic2 þ

P
n

R
k �hx

nf ndk

c2
þ o

X
n

Z
k
�hxnf ndk

,
c2

 !
ð2:12Þ

Thus the density of the equivalent mass of phonon gas can be defined as

qh ¼
qCVT
c2

ð2:13Þ

24 2 Dynamical Governing Equations …



The motion of phonon gas is regarded as a weighable fluid flowing diffusively
through a porous medium (the framework of lattice). The drift velocity is the mass
flux q/c2 dividide by the density ρh

uh ¼ q
qCVT

ð2:14Þ

With the definition of mass and velocity, one can establish the mass and
momentum balance equations of the phonon gas

@qh
@t

þr � qhuhð Þ ¼ 0 ð2:15Þ

qh
@uh
@t

þ qhuh � rð Þuh þrph ¼ f h; ð2:16Þ

where ph is the phonon gas pressure, fh is the friction force impeding the phonon
gas. Inserting Eqs. 2.13 and 2.14 into Eq. 2.15 yields the energy balance equation
for solids, Eq. 1.2. The momentum balance equation of phonon gas describes the
heat transport in dielectric solids. Guo et al. derived the expression for the phonon
gas pressure [9–13]

ph ¼ cGqhCVT ¼ cGq CVTð Þ2
c2

; ð2:17Þ

where γG is the Grüneisen parameter. In bulk materials, the friction force acting on
the phonon gas is proportional to its drift velocity, which is similar to the case of
porous flow

f h ¼ �vqhuh ð2:18Þ

Equation 2.16 reduces to the Fourier’s heat conduction law when the inertia effect is
negligible. The friction factor in Eq. 2.18 can thereby be determined as

v ¼ 2cGqC
2
VT
�
j ð2:19Þ

Substitution of Eqs. 2.18 and 2.19 into the momentum balance relation, Eq. 2.16,
gives the general heat conduction law [9–13]

sTM
@q
@t

þ 2 l � rð Þq� bjrT þ jrT þ q ¼ 0; ð2:20Þ
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where

sTM ¼ j

2cGqC
2
VT

ð2:21aÞ

l ¼ qj

2cGCV qCVTð Þ2 ¼ uhsTM ð2:21bÞ

b ¼ q2

2cGq2C
3
VT3

¼ Ma2h ð2:21cÞ

τTM is the characteristic lagging time between the temperature gradient and the heat
flux, which relates to the wave-like heat transport predicted by the relaxational
models. The characteristic length l measures the spatial inertia of thermomass,
which predicts the size effect in nanowires and nanotubes [14–16]. vs = (2γGCVT)

1/2

is the propagation speed of disturbance in phonon gas. The Mach number of
phonon gas, Mah = uh/vs, represents the compressibility of phonon gas, which
predicts the heat flow chocking in CNTs [17]. The first term in Eq. 2.20 is the
transient inertia. The second and third terms are the spatial inertia. The forth term is
the driving force and the last term is the friction force. If all the inertia terms are
neglected, one recovers the Fourier’s heat conduction law, which is in analogy with
the Darcy’s law in porous flow. If only the spatial inertia term is negligible, one
retrieves the Cattaneo-Vernotte (CV) model from Eq. 2.20.

Define the objective derivative as

D=Dt ¼ @=@t þ 2 uh � rð Þ ð2:22Þ

Thus Eq. 2.20 can be rewritten as

sTM
Dq
Dt

þ q ¼ �j 1� bð ÞrT ð2:23Þ

The main differences between the general heat conduction law based on the ther-
momass theory and CV model are: (1) The objective derivative D/Dt replaces the
partial derivative, ∂/∂t; (2) The driving term contains additional parameter 1-b. The
first difference arises from accounting for the convective effective of phonon gas,
namely the spatial inertia. Christov and Jordan [18] indicated that in a moving
medium, the objective derivative should be selected as D/Dt = ∂/∂t + v · ∇, in order
to avoid the paradox of breaking Galileo invariance during heat wave propagation.
Note that v is the moving speed of the medium where heat conduction occurs, rather
than the drift velocity of phonon gas. Usually the drift velocity of phonon gas is far
less than the speed of conduction medium. However, in ultrasmall medium, l,
namely the product of drift velocity and relaxation time, could be comparable with
the characteristic size of system. In this case the convection effect of phonon gas
needs to be considered. Müller and Ruggeri [19] proposed that the objective
derivative in the case of heat conduction in gases should have the form Dqi/
Dt = ∂qi/∂t + qk(∂ui/∂xk) − 2qkWik, where W is the angular velocity matrix.
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The second term, qk(∂ui/∂xk), arises from the requirement of “objectivity”, like the
Jaumann derivative in the theory of non-Newtonian fluid. The third term can be
written as −2c2(ρhuh)kWik. It is actually the Coriolis effect induced by the rotation of
conduction medium. The second difference relates to the definition of temperature
during non-Fourier heat conduction, which will be discussed in detail in Chap. 4.

The derivation of Eq. 2.20 assumes the linear relation between friction and drift
velocity. In the porous flow, when the flow region is near boundary, the Darcy’s
law needs to be modified into Darcy–Brinkman law. Thus the friction contains both
the linear term of velocity and the second spatial derivative of velocity, i.e.,

f h ¼ �vqhuh þ lhr2uh ð2:24Þ

where μh is the viscosity of phonon gas. Substitution of Eq. 2.24 into the
momentum balance equation of phonon gas, Eq. 2.16, one has

sTM
@q
@t

þ 2lrq� bjrT þ jrT þ q� l2Br2q ¼ 0; ð2:25Þ

where

lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lh=vqh

p
ð2:26Þ

The Brinkman term, μh∇
2uh, indicates a boundary layer where the boundary friction

is important. The characteristic thickness of the boundary layer for the phonon gas
is lB. At room temperature, lB usually has the value 10 * 100 nm. Therefore, the
Brinkman effect only needs to be considered in nanosystems.

Equation 2.25 has a form similar to the phonon hydrodynamic model, Eq. 1.7.
The latter is obtained through the solution of the linear phonon Boltzmann equation.
In the following section the phonon Boltzmann derivation of Eq. 2.25 is discussed.

2.3 Microscopic Foundation

2.3.1 Phonon Boltzmann Derivation

As long as the system size is much larger than the phonon wavelength (typically
less than a few nanometers for dielectric materials at room temperature), the
aggregate behavior of phonons can be characterized by the Boltzmann equation.
The state distribution function, f, is desired to be solved from the Boltzmann
equation so as to give the governing equations of macroscopic quantities such as
temperature and heat flux. Many assumptions are made in solving the phonon
Boltzmann equation, which thereby influence the results of solution. The derivation
here will be combined with the recognition that the phonon gas is a weighable fluid,
and compared with other solution methods of the phonon Boltzmann equation.
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The phonon Boltzmann equation generally has the form [20, 21]

Df k; x; tð Þ ¼ Cf k; x; tð Þ ð2:27Þ

where D and C are the drift and collision operator, respectively. The macroscopic
variables, such as the internal energy density e and the heat flux density q, can be
obtained by the integral of microscopic distribution function

e ¼
X
n

Z
k

�hxnf n ð2:28Þ

qi ¼
X
n

Z
k

�hxn @x
n

@ki
f n ð2:29Þ

Guyer and Krumhansl [20, 21] obtained the eigenvalue solution of Eq. 2.27
which leads to the phonon hydrodynamics model, Eq. 1.7. Sussmann and Thellung
[22] also obtained the governing equation similar to Eq. 1.7 by assuming that the
Umklapp scattering rate is rare in pure crystals at low temperature. The Umklapp
scattering and other phonon quasi-momentum (ħk) breaking scattering processes are
called the resistive (R) processes. In contrast, the normal (N) scattering processes
conserve the phonon quasi-momentum. The R processes incline to relax f to the
equilibrium Planck distribution, i.e., f0 in Eq. 2.10. The N processes incline to relax
f to the displaced Planck distribution

fD ¼ 1
exp �hx� �hk � uDð Þ=kBT½ � � 1

; ð2:30Þ

where uD has the dimension of velocity. It is also called the drift velocity of phonon
gas. The drift operator in Eq. 2.27 can be written as D = ∂/∂t + vk · ∇, where vk is
the group velocity of phonons

vk ¼ @x
@k

ð2:31Þ

In this way, the phonon Boltzmann equation can be approximated by a relaxation
form

@

@t
þ vnk � r

� �
f n ¼ f n0 � f n

sR
þ f nD � f n

sN
ð2:32Þ

In pure crystals at low temperature, the N processes overwhelm R processes. In this
case τN ≪ τR, the phonon distribution function is close to fD. Approximating f with
fD can reveal the structure of the solution. In more general cases, the phonon
distribution can be expressed as f = fD + fN, which is further deliberated in
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Sect. 2.3.2. The actual relaxation time depends on the phonon frequency, branches,
and temperature. For simplicity, the constant values of τR and τN are used for the
present discussion.

Substitution of f = fD into Eq. 2.32 leads to

@

@t
þ vnk � r

� �
f nD ¼ f n0 � f nD

sR
ð2:33Þ

Integral of Eq. 2.33 in the k space with multiplying ħki or ħωvki will give the
macroscopic governing equations which predicts the drifting or driftless second
sound, respectively [23, 24]. The difference between the two types of second sound
can be shown as

v0II
vII

¼
P
all e

0 v1


 

e� �

e v1


 

0� �

P3
e¼0

0 v1j jeh i e v1j j0h i
; ð2:34Þ

where < α|v|β > is the matrix element expressed by the eigenvalue, vII and v′II are
the velocities of drifting and driftless second sound, respectively. Therefore, the
integral path of the driftless second sound, namely multiplying with ħωvki covers
more eigenvalues than that of the drift second sound. Hardy [23] indicated that “…
such a possibility suggests that the different types of second sound should be
thought of not as distinct ‘modes’ of heat propagation, but rather as simply different
approximation schemes which lead to the same phenomena.”

The second integral method is favorable according to the thermomass theory. In
the gas transport theory, multiplying the Boltzmann equation with the molecular
momentum, mv, and integrating in the velocity space will lead to the momentum
balance equation of fluid. According to the mass energy equivalence, ħω is the
phonon energy and ħω/c2 is the equivalent mass of phonons. ħωvki/c2 is the phonon
momentum accompanied by the heat transport. It is an actual momentum rather than
the quasi-momentum of phonons, ħk. Similar to the transport theory of gases,
multiplying Eq. 2.33 with ħω/c2 and ħωvki/c

2 and making integral, respectively,
will give the mass and momentum balance equation of phonon gas. The distinction
from the ordinary gas flow is that the phonon gas is also impeded by the R
processes, which is reflected by the additional sink term of momentum, namely the
collision operator on the right-hand side of Eq. 2.33. It is equivalent to the gas flow
in a pipe filled with porous medium rather than empty.

Multiplying Eq. 2.33 with ħω/c2 or ħωvki/c2 and then integrating in the k space
yields

@
R
k f

n
D�hx

n

@t
þ
Z
k

vnk � rf nD�hx
n ¼

R
k f n0 � f nD
� �

�hxn

sR
ð2:35Þ
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@
R
k f

n
D�hx

nvnki
@t

þ
Z
k

vnk � rf nD�hx
nvnki ¼

R
k f n0 � f nD
� �

�hxnvnki
sR

ð2:36Þ

In order to integrate Eqs. 2.35 and 2.36, the feature of fD needs to be discussed.
The derivative of fD with respect to the drift velocity is

@fD
@uDj

¼ �hkj
kBT

exp �hx� �hk � uDð Þ=kBT½ �
exp �hx� �hk � uDð Þ=kBT½ � � 1f g2 ; ð2:37Þ

while the derivative of f0 with respect to frequency is

@f0
@x

¼ �h
kBT

exp �hx=kBTð Þ
exp �hx=kBTð Þ � 1½ �2 ð2:38Þ

Therefore, when uD is not large one can approximate that

@fD
@uDj

� kj
@f0
@x

ð2:39Þ

In the same manner, the second order derivative of fD with respect to uD is

@2fD
@u2Dj

¼ �hkj
kBT

@

@uDj

exp �hx� �hk � uDð Þ=kBT½ �
exp �hx� �hk � uDð Þ=kBT½ � � 1f g2

¼ �hkj
kBT

� �2

X
1

X� 1ð Þ2 �
2X

X� 1ð Þ3
" #

� k2j
@2f0
@x2

; ð2:40Þ

where

X ¼ exp �hx� �hk � uDð Þ=kBT½ � ð2:41Þ

With the above results one can make a second order Taylor expansion of fD
around f0

fD ¼ f0 þ @fD
@uD






DuD¼0

DuD þ 1
2
@2fD
@u2D






DuD¼0

DuDð Þ2þo DuDð Þ2
 �

¼ f0 þ @f0
@x

k � uDð Þ þ 1
2
@2f0
@x2 k � uDð Þ2þo DuDð Þ2

 �
¼ f0 þ fþ þ fþþ þ o DuDð Þ2

 �
ð2:42Þ
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Note that f0 and f++ are both even functions in the k space, while f+ is an odd
function. Substitution of Eq. 2.42 into Eqs. 2.35 and 2.36 gives

@
R
k f n0 þ f nþþ
� �

�hxn

@t
þrj

Z
k

f nþ�hx
nvnkj ¼ �

R
k f

n
þþ�hx

n

sR
ð2:43Þ

@
R
k f

n
þ�hx

nvnki
@t

þrj

Z
k

f n0 þ f nþþ
� �

�hxnvnkiv
n
kj ¼ �

R
k f

n
þ�hx

nvnki
sR

ð2:44Þ

The second term on the left-hand side of Eq. 2.43 can be detailed as

Z
k

f nþ�hx
nvnkj ¼

4
3
uDj

Z
k

f n0 �hx
n ¼ 4

3
uDje ¼ qj ð2:45Þ

The second order term, f++, should be much smaller than f0, so its contribution to
the internal energy is temporally neglected here. Further discussion is made in
Sect. 4.4.

Note that uD has a dimension of velocity, which relates to the drift velocity of
thermomass as

uD ¼ 3
4
uh ð2:46Þ

This velocity is called the average drift velocity of phonon gas [25]. However,
without defining the mass of phonon gas, the physics of this velocity is ambiguous.
Similarly, the velocity

u0D ¼ 3q
qCVT

¼ 3uh ð2:47Þ

is defined as the “fluid velocity” of phonon gas by Guyer and Krumahansl [20, 21].
It is also proportional to the drift velocity of thermomass. The difference between
u’D and uh comes from the average of the homogeneous vector space.

Since the energy conservation is ensured during phonon scatterings, ħω is the
eigenvector of the zero space of the scattering operator, as well as the integral
invariance of the Boltzmann equation. Therefore, Eq. 2.43 transforms to

@e
@t

þrjqj ¼ 0 ð2:48Þ

which yields the traditional energy conservation equation. Integral of the second
term on the left-hand side of Eq. 2.44 can be divided into an equilibrium and a
nonequilibrium part
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Z
k

f n0 þ f nþþ
� �

�hxnvnkiv
n
kj ¼ dij

Z
k

f n0 �hx
nvnkiv

n
kj þ

Z
k

f nþþ�hx
nvnkiv

n
kj ð2:49Þ

Integration by parts of the second term on the right-hand side of Eq. 2.49 gives

Z
k

f nþþ�hx
nvnkiv

n
kj ¼

5
3
uDiuDje ð2:50Þ

Inserting Eqs. 2.45, 2.49 and 2.50 into Eq. 2.44 leads to

@qi
@t

þ 15
16

rj
qiqj
e

þ 1
3
rj

Z
k

f n0 �hx
n vnk
� �2¼ � qi

sR
ð2:51Þ

where the cubic symmetry is assumed to obtain the third term on the left-hand side
of Eq. 2.51.

Equation 2.51 is actually the momentum balance equation of phonon gas.
Compared with Eq. 2.20, which can be reformed as

@qi
@t

þrj
qiqj
e

þriph ¼ �v
qi
e

ð2:52Þ

one observes that the homogeneous phonon gas pressure and be expressed by the
integration of the microscopic phonon properties

ph ¼ 1
3

Z
kf

n
0
�hxn

c2
vnk
� �2¼ ZZZ

�p=a
f n0 x; t; kð Þ �hx

n

c2
vnkx
� �2

dkxdkydkz ð2:53Þ

It is notable that the gas pressure in the kinetic theory is expressed by

px ¼
ZZZ

�1
f x; t; vð Þmv2xdvxdvydvz; ð2:54Þ

where p is the thermodynamic pressure, f is the local distribution function, m is the
molecular mass, and v is the velocity of each molecule. The integral structure of
Eq. 2.54 is similar to that of Eq. 2.53. Thus the temperature gradient driving the
heat flux has the similar physical meaning to the pressure gradient driving the gas
flow.

The thermomass pressure is macroscopically derived from the Debye state
equation of dielectric solids. According to the concept of thermomass, the phonons
have the real momentum, ħωvki/c2. In equilibrium state, the phonons are confined in
the medium. Assume that the phonons are reflected at the boundary, i.e., the wave
vector is reversed, the pressure of phonons can be calculated in analogy with the
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ideal gas model. The impulse on the boundary is obtained through the momentum
change of phonons. The characteristic velocity of phonons is defined as

v2g ¼
P

n
1
3

R
k f

n
0

�hxn

c2 vnk
� �2P

n

R
k f

n
0

�hxn

c2
ð2:55Þ

The denominator of Eq. 2.55 is the density of the equivalent mass of phonon gas,
ρh. The relation between the phonon gas pressure and phonon gas density is

ph ¼
v2g
c2

qCVT ¼ v2gqh ð2:56Þ

Comparison with phonon gas pressure given by the thermomass theory yields

vg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cGCVT

p ð2:57Þ

Thus vg is not a constant but depends on the temperature. Also, vg is different from
the propagation speed of disturbance of phonon gas, vs, which has the form

vs ¼
ffiffiffiffiffiffiffiffi
dph
dqh

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cGCVT

p
ð2:58Þ

Equation 2.58 is in analogy with the relation between the density, pressure, and
sound speed of ideal gas. The difference between vs and vg arises from the com-
pression ratio of phonon gas (thermomass fluid). The propagation of small distur-
bance in ideal gas is well approximated by the adiabatic thermodynamic process.
The compression ratio for the sound speed is determined by the density-pressure
relation in an adiabatic process. The density and pressure of phonon gas satisfy

phq
�2
h ¼ const ð2:59Þ

Thus the defaulted compression ratio of phonon gas is 2. Since the thermomass
density directly depends on the pressure, there is no difference between the
isothermal and adiabatic processes. In a non-dispersive medium, assuming that
there is only one longitudinal phonon branch (L) and two translational branches (T),
with the sound speed vL and vT, respectively, one has [23, 24]

v2g ¼
1
3
v�1
L þ 2v�1

T

v�3
L þ 2v�3

T
ð2:60Þ

Thus vg is a weighted average of the sound speed of each phonon branch. If there is
no coupling among phonon branches, the disturbance in each branch will propagate
separately, causing a rapid dispersion of temperature wave. In this case there is no
steady “temperature wave,” in other words, the heat wave will not form in such
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medium. On the other hand, if the phonon can change branches frequently by
scattering, namely the phonon in the L branch can transform into phonons in T
branches and vice versa, a steady wave propagating with an average sound speed
could form in medium. The former situation is close to the case in pure crystals at
low temperature. The dispersion of temperature wave is also observable in MD
simulations. At higher temperatures, the scattering among high frequency phonons
rapidly redistributes the energy and momentum of phonon branches. In this case,
the collective behavior of phonons is more likely a gas, which is describable by a
continuous model. Equation 2.60 is actually the speed of the driftless second sound
proposed by Hardy [23, 24], v’II. For the drift second sound, the speed is

vII ¼
1
3
v�3
L þ 2v�3

T

v�5
L þ 2v�5

T
ð2:61Þ

The difference between vII and v’II originates from the multipliers used in inte-
gration, which are ħk and ħωvki/c

2, respectively. It induces different weight for the
sound speeds of phonon branches. Enz [26] pointed out that distinction of the
driftless second sound from the drift one is decided by the fact of whether the core
variable during second sound propagation is the quasi-momentum or energy flux
(heat flux). It can be inferred that the drift second sound is more likely to happen in
the pure crystal at low temperature. However, the dispersion is strong for heat
waves. It can only maintain a stable wave within a short propagation distance. For
medium at higher temperatures, the driftless second sound is possible. In this case,
dissipation during heat wave propagation is strong. The heat wave is easily merged
in the noise caused by R scatterings. If a medium can satisfy the conditions of large
MFP for R processes and small N processes, the differences among sound speeds of
different phonon branches are small or the propagation is dominated by one phonon
branch while other branches contribute little to the heat transfer, the heat wave is
more likely to be observable. It is expected that low-dimensional material (such as
CNT and graphene) could be good candidates for measuring the heat wave.

Equation 2.51 indicates that the phonon gas pressure plays the role of driving
force of heat conduction. For a specific material, the phonon gas pressure can be
obtained either from the macroscopic approach, i.e., Eq. 2.17, or the microscopic
expression, Eq. 2.53. The phonon gas pressure is difficult to be directly measured.
The characteristic relaxation time is the general variable detected in experiments
and simulations. Based on Eq. 2.51 one can derive the relation between the
relaxation time and the phonon gas pressure

sR ¼ j
c2dph=dT

ð2:62Þ

For the silicon at 300 K, with the properties chosen as κ = 149 W m−1 K−1,
Cv = 704.6 J kg−1 K−1, ρ = 2330 kg m−3, γ = 1.5, the first algorithm gives a
relaxation time of 1.4 × 10−10s, while the second algorithm yields 0.5 × 10−10s.
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The experiments indicate that the relaxation time is 1.5 × 10−10s [27]. Thus the
results obtained through various methods are of the same magnitude.

The three terms on the left-hand side of Eq. 2.51 come from f+, f++ and f0
respectively. If one only retains the third term, then Eq. 2.51 reduces to the
Fourier’s heat conduction law. If the terms from f0 and f+ are reserved, Eq. 2.51
transforms into the CV model describing the transient heat wave propagation. If all
the three terms are fully considered, namely taking the second order expansion of
the displaced Planck distribution, one obtains a governing equation similar to the
momentum balance equation of phonon gas (Eq. 2.20). In ordinary cases, f++ is
much smaller than f0 and is thereby negligible. In extreme conditions such as high
heat flux density, the contribution of f++ should be considered.

The second term on the left-hand side of Eq. 2.51 (convection term) has a
coefficient 15/16. The corresponding term in the momentum balance equation of
phonon gas should be unity (cf. Eq. 2.52). This distinction can be analyzed from the
phonon energy variation caused by the Doppler Effect. Note that the coefficient 4/3
in Eq. 2.45 comes from the integration by parts

Z
k

f nþ�hx
nvkj ¼ uDj

Z
k

f n0 �hx
n þ

Z
k

�h k � uDð Þ @x
n

@kj
f n0

¼ uDj

Z
k

f n0 �hx
n þ 1

3
uDj

Z
k

�hxnf n0

¼ uDj

Z
k

f n0 �hx
n þ BuDj

Z
k

�hxnf n0

ð2:63Þ

This integration assumes the cubic symmetry and agrees with Sussmann’s results
[20]. Equation 2.63 contains two parts. One is a uniform drift of the equilibrium
part f0 with a velocity uDj. The second part is induced by the derivative of the
phonon energy, ħω, with respect to the wave vector k, which is measured by the
coefficient B. The coefficient 15/16 in Eq. 2.51 is (1 + 2B)/(1 + B)2, which is always
less than unity. Therefore, this additional coefficient rises from the Doppler Effect
during the drift motion of phonon gas. From this perspective, the phonon gas is
slightly different from the real gas. The phonon energy varies due to dispersion
causing the “eclipse” of the convection term. In a non-dispersive medium, the
frequency is independent of k. In this case B = 0, and Eq. 2.51 will have exactly the
same form as Eq. 2.52.

2.3.2 Chapman–Enskog Expansion

In Sect. 2.3.1 it is assumed that the phonon distribution function is approximated by
fD, which is reasonable only in pure crystals at low temperature. In other cases the
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Umklapp scattering, impurity scattering, and other momentum breaking processes
will continuously draw f away from fD, which relaxes back to fD with a relaxation
time τN.

The second derivative of heat flux is proportional to τN in Eq. 1.7 with a scale
coefficient τRτNvs

2/5. When τR is much larger than τN, Eq. 2.32 can be written as

f nD � f n ¼ sN @=@t þ vk � rð Þf n ð2:64Þ

This form is close to Sussmann’s assumption [22]. Since fD can be regarded to
represent the uniform drift motion of phonon gas, the second derivative term caused
by τN thereby comes from the nonuniform motion of phonon gas. In this manner,
the τN term in the Boltzmann equation gives the additional friction force induced by
the local gradient of drift velocity. If one introduces a heterogeneous term into the
thermomass pressure (Eq. 2.17) or the phonon gas pressure (Eq. 2.53) in analogy
with the shear stress elements, the second derivative of heat flux then emerges as
the viscous dissipation term containing the Laplacian of velocity in Navier–Stokes
equations.

For more general cases, Banach and Jiaung et al. [28, 29] solved the phonon
Boltzmann equation with the Chapman–Enskog expansion. The common points of
these methods are: (1) The phonon distribution function is expressed by an
expansion around fD

f ¼ fD þ Knf1 þ Kn2f2 þ � � � ð2:65Þ

where Kn is the Knudsen number, which is the ratio of the average mean free path
of particles over the characteristic size of flow region. (2) The first order Chapman–
Enskog expansion f1 is proportional to τN. (3) The first order Chapman–Enskog
expansion will lead the second order derivative of heat flux in the governing
equation. This is similar to the basic assumption in the derivation of Navier–Stokes
equations.

Sussmann and Thellung [22] assumed that the phonon distribution function has
the form

f ¼ fD � sN @=@t þ vk � rð ÞfD ð2:66Þ

It also satisfies the three essential features of Chapman–Enskog expansion.
Without the Chapman–Enskog expansion, Banach et al. [28] obtained the

governing equation of heat conduction in three-dimensional space as

@qi
@t

þ 1
3
rj

Z
k

f n0 �hx vnk
� �2þrjM

ij ¼ � qi
sR

ð2:67Þ
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where the zeroth order approximation of Mij satisfies

M
ij

0 ¼
3

2eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2 � 3 qj j2

.
vnk
� �2r qiqj � 1

3
dij

� �
ð2� 68Þ

The drift velocity of phonon gas, uh, is usually small. Therefore, (q/vs)
2 is

negligible compared with 4e2. Compared with Eq. 2.49, Eq. 2.67 can transform to

@qi
@t

þ 3
4
rj

qiqj
e

þ 1
3
rj

Z
k

f s0�hx vnk
� �2¼ � qi

sR
ð2:69Þ

Equation 2.69 has the same structure as Eq. 2.51, with the only difference in the
coefficient of the convection term. This distinction is caused by overestimation of
the Doppler effect during integration.

Therefore, one can conclude that the second order derivative term rises from the
Chapman–Enskog expansion around fD. The magnitude of Chapman–Enskog
expansion is proportional to Kn. So this effect should be considered in the condition
of large Kn, for e.g., the heat conduction in nanosystems.

2.3.3 Eigenvalue Analysis

The eigenvalue analysis has been used to solve the phonon Boltzmann equation by
Guyer and Krumhansl [20] and Hardy [23]. The phonon distribution function is
converted into symmetry form

f � k; x; tð Þ ¼ f k; x; tð Þ2 sin h
1
2
xk

� �
; ð2:70Þ

where

xk ¼ �hx
kBT

ð2:71Þ

With this the phonon Boltzmann equation (Eq. 2.27) turns to

Df � ¼ R� þ N�ð Þf � ð2:72Þ
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It is assumed that the zero subspace of N* has four and only four eigenvectors

g0j i ¼ lxk 2 sinh
1
2
xk

� ��1

g1xj i ¼ kxqx 2kBT sinh
1
2
xk

� ��1

g1y


 � ¼ kyqy 2kBT sinh

1
2
xk

� ��1

g1z


 � ¼ kzqz 2kBT sinh

1
2
xk

� ��1

ð2:73Þ

These four eigenvectors correspond to the internal energy and the heat flux in three
directions in a Cartesian coordinate system. |η0〉 is the eigenvector of the zero
subspace of both N* and R*. |η1x〉, |η1y〉and |η1z〉 are only the eigenvectors of the
zero subspace of N* but do not belong to the zero subspace of R*, because R* is the
momentum breaking operator that does not conserve the quasi-momentum.
Assuming that all other eigenvectors have nonzero eigenvalues, f* can be written as
the linear combination of the eigenvectors of N*, which give the solution of the
phonon Boltzmann equation

@q
@t

þ 1
3

vsð Þ2rE ¼ � q
sR

þ sN vsð Þ2
5

r2 þ frr�� �
q; ð2:74Þ

where ζ = 2 in [20] while ζ = 1/3 in [23]. The second order derivative comes from
the eigenvectors with nonzero eigenvalues. For β = 1, 2, 3, the expansions of the
phonon distribution function around fD is

X3
a¼0

X
r� 4

X
l� 4

b Dþ Rj jrh i l Dþ Rj jah i
Nl

fa; ð2:75Þ

where 〈α|D + R|β〉 is the matrix element of the eigenvalues of D + R, Nμ denotes
the μth eigenvalue of the normal process collision matrix, and R is the resistive
collision operator. Since the drift operator D contains the first order derivative of
space, Eq. 2.75 introduces the second order derivative term in the governing
equation. If the eigenvectors |σ〉 and |μ〉 have zero eigenvalues, the second order
derivative will vanish simultaneously. Therefore, Eq. 2.75 indicates that existence
of the second order derivative in the governing equation requires that all the
eigenvectors except |η0〉, |η1x〉, |η1y〉and |η1z〉 should have nonzero eigenvalues
with respect to D + R.

The phonon distribution function is approximated by fD in Sect. 2.3.1. Based on
Krumhansl’s transformation [30], the first order expansion of fD, namely f0 + f+, is one
of the eigenvectors of the zero subspace of N. In this sense, if |η1x〉, |η1y〉and |η1z〉
are strictly proportional to the heat flux, they will have small but nonzero eigenvalues.
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If their eigenvalue is strictly zero, they should contain the higher order term of heat
flux. If the higher order terms of heat flux are considered in |η1x〉, |η1y〉and |η1z〉, it
will introduce the convection term in the governing equation of phonon gas dynamics.
This is the reason for the distinction between Eqs. 2.51 and 2.74.

2.4 Conclusion

Based on Einstein’s mass energy equivalence, the thermal energy stored in the
medium contributes to its rest mass, namely the thermomass. The thermomass is a real
mass. It has the inertia and gravity effects. The thermomassmoves relatively to the rest
lattices in heat conduction. The mass flow rate of thermomass corresponds to the heat
flux. Based on the generalizedmass flux andmomentum flux, it can be derived that the
motion of thermomass satisfies Newton’s law of motion as long as the conduction
medium and the thermomass move much slower than the speed of light.

Phonons are the main heat carriers in dielectric solids. The aggregate of phonons
in pure dielectric crystals can be regarded as a phonon gas. The dynamic variables
such as the equation of state, density, drift velocity, and momentum of phonon gas
can be derived from the thermomass theory. The balance equations of the mass and
momentum of phonon gas lead to the energy conservation relation and the general
heat conduction law. In bulk materials, the friction force on the phonon gas obeys
the Darcy’s law, i.e., proportional to the drift velocity of phonon gas. The viscosity
of phonon gas causes the boundary to additionally impede the phonon gas in
nanosystems. In this case the friction force on the phonon gas contains not only the
Darcy term proportional to the drift velocity but also the Brinkman term propor-
tional to the second order derivative of the drift velocity.

The dynamic governing equations of phonon gas can be microscopically derived
based on the phonon Boltzmann equation. When the relaxation time of R processes
is much larger than that of N processes, the phonon distribution function can be
approximated by the displaced Planck distribution, fD. When only the zeroth order
of fD is considered, the Boltzmann equation will give the traditional Fourier’s law.
Considering the first order expansion of fD will give the CV model. If the second
order of expansion is reserved, one obtains the momentum balance equation phonon
gas containing the convection term, which agrees with the macroscopic derivation
based on the thermomass theory (Eq. 2.20). If the relaxation time of R processes is
not big enough, then the Chapman–Enskog expansion can be implemented around
fD. In this case the second order derivative of heat flux will be introduced into the
heat conduction equation. The eigenvalue analysis also obtains the second order
derivative of heat flux. However, it assumes there are only four eigenvectors in the
zero subspace of N operator, which resultantly eliminates the convection term in the
heat conduction equation.
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Chapter 3
General Entropy Production Based
on Dynamical Analysis

Abstract The classical expression for entropy production is a bilinear product of
generalized forces and fluxes. The combination of the Cattaneo-Vernotte model
with the classical entropy expression gives a non-quadratic form, which needs to be
mended to avoid the paradox of negative entropy production. Based on the ther-
momass theory, it is shown that the entropy production corresponds to the dissi-
pation of the mechanical energy of thermomass flow. Therefore, the generalized
forces in the entropy production should be the friction force rather than the driving
force. The friction force is proportional to the heat flux. The general entropy pro-
duction is thus derived as a quadratic form of heat flux, avoiding the paradox of the
negative entropy production. The generalized forces and fluxes in other irreversible
transport processes are investigated following the similar framework. The friction
forces, driving forces and drift velocities are clarified for these transports and the
general entropy production for various transport processes are derived.

3.1 Extended Entropy Production

The entropy production is the key quantity in the irreversible thermodynamics. It is
the cornerstone for the derivation of Onsager reciprocal relation and the minimum
entropy production principle. In Sect. 1.3 it has been pointed out that the traditional
expression in irreversible thermodynamics will face the negative entropy produc-
tion paradox in case of the transient non-Fourier heat conduction. The extended
irreversible thermodynamics (EIT) introduces new state variables to modify the
entropy production expression. The modified (extended) entropy production keeps
semi-positive definite in non-Fourier heat conductions, which avoids the paradox of
breaking second law of thermodynamics.

Consider a non-deformable solid (constant volume system). If q is upgraded to
an independent state variable, the entropy density, s, in unit volume is [1–16]
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ds ¼ @s
@e

� �
deþ @s

@q

� �
� dq ð3:1Þ

where e is the density of internal energy. EIT assumes that Eq. 3.1 can be linearized
as

ds ¼ h�1de� T�1q�1a10q � dq ð3:2Þ

where θ is the non-equilibrium temperature

h�1 e; qð Þ ¼ @s
@e

� �
q

ð3:3Þ

Remind that the internal energy, entropy and temperature have the relation in
traditional thermodynamics

T�1 ¼ @s
@e

ð3:4Þ

The derivative of entropy in Eq. 3.2 with respect to internal energy is no longer the
inverse of T. Instead it’s the inverse of θ. Here the temperature and entropy are both
extended in non-equilibrium systems. They are not only the function of the internal
energy density, e, but also the function of the heat flux, q. The second term on the
right hand side of Eq. 3.2 has a minus sign. If the coefficient α10 is positive, Eq. 3.2
indicates that the heat flux in system would reduce the entropy.

The time derivative of Eq. 3.2 is

ds
dt

¼ �h�1r � q� T�1a10q � dqdt ð3:5Þ

If the entropy flux Js is defined in a traditional form

Js ¼ h�1q ð3:6Þ

Substituting it into Eq. 3.5 yields the local entropy production rate

rs ¼ q � rh�1 � T�1a10 _q
� � ð3:7Þ

In the classical irreversible thermodynamics, the entropy production is generally
the bilinear product of the generalized forces and fluxes. The heat flux in Eq. 3.7
can be regarded as the generalized flux with other terms the generalized force.
Assume that the generalized force is linear to the flux, one has
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q ¼ K rh�1 � T�1a10 _q
� � ð3:8Þ

In steady state, Eq. 3.8 should recover the Fourier’s heat conduction law. Thus
the coefficient of Eq. 3.8 can be determined as K = κθ2. On the other hand, if Eq. 3.8
recovers the Cattaneo-Vernotte (CV) model in the fast transient heat conduction,
one has

a10 ¼ s
jT

ð3:9Þ

Substitution of Eq. 3.9 into Eq. 3.7 gives

rs ¼ q � rT
T2 � s

jT2

@q
@t

� �
¼ q2

jT2 ð3:10Þ

Note that the second equation in Eq. 3.10 also adopts the CV model. Inserting
Eq. 3.9 into Eq. 3.5 further leads to the extended entropy which is compatible with
the CV model

ds ¼ T�1de� s
jT2 q � dqþ o q2

� � ð3:11Þ

s ¼ qCV ln T � 1
2

s
jT2 q � q ð3:12Þ

Here the terms on the higher order of q2 are neglected. Thus the non-equilibrium
temperature θ is close to the equilibrium one, T.

The entropy production derived in EIT (Eq. 3.10) is proportional to the square of
heat flux. It keeps semi-positive definite in non-Fourier heat conduction. In the
condition of Fourier heat conduction, q = −κ∇T. Then Eq. 3.10 is equivalent to the
classical expression in irreversible thermodynamics. However, the generalized force
in Eq. 3.7 is derived based on the presupposition of CV model. The generality of
the extended expression for entropy production is uncertain when other types of
non-Fourier heat conduction laws are used. Therefore, it is desired to explore the
physics of entropy production in irreversible processes from the first principle and
thereby develop the general expression of entropy production.

3.2 Heat Conduction

According to the thermomass theory, the picture of heat conduction is a porous
flow. The potential and kinetic energies, ep and ek, are

3.1 Extended Entropy Production 45



ep ¼ ph ¼ cGq
c2

CVTð Þ2 ð3:13Þ

ek ¼ 1
2
qhu

2
h ¼

1
2

q2

qCVTc2
ð3:14Þ

In an equilibrium system, the thermomass does not move. The kinetic energy is
zero. The potential energy relates to the internal energy as

de ¼ 1
n
dep ¼ qCVdT ð3:15Þ

where the dimensionless coefficient ξ is

n ¼ 2cGCVT
c2

¼ v2s
c2

ð3:16Þ

It is the square of the ratio of the sound speed over the light speed.
As the heat conduction occurs, the thermomass flow possesses a kinetic energy.

The total mechanical energy, eh, is the sum of the potential and kinetic energies

eh ¼ ep þ ek ð3:17Þ

Since the drift velocity of thermomass, uh, is usually small, the potential energy is
much larger than the kinetic energy. In extreme cases, such as the heat wave
propagation and the ultra-high heat flux, the kinetic energy of thermomass could be
non-negligible. In these cases the Fourier’s law fails. The heat flux, q, becomes
independent of the temperature profile in the system.

Note that the entropy production is the measurement of the irreversibility during
transport processes. From a mechanical perspective, the irreversibility of fluid flow
comes from the dissipation of mechanical energy causfed by the friction. Since the
friction on the thermomass flow is proportional to its drift velocity (the present
discussion is limited in the bulk material), the local dissipation rate of mechanical
energy of thermomass is the product of friction and drift velocity

deh
dt

þr � Jh ¼ f h � uh ¼ � 2cGCVq2

jc2
ð3:18Þ

where Jh is the flux of mechanical energy passing through a cross section.
Equation 3.18 represents the dissipation rate of mechanical energy of thermomass
in a unit volume. The entropy production rate is

rs ¼ � f h � uh
Tn

¼ � 1
T
f h � uh

�
2cGCVT

c2

� �
¼ 1

jT2 q � q ð3:19Þ
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The coefficient ξ is the ratio of thermomass mechanical energy over the internal
energy. It should enter into the denominator because the entropy measures the
disability of the conversion from the internal energy to other forms of energies. The
macroscopic friction force on the heat conduction, Fh, is

Fh ¼ � qCVq
j

¼ f h

�
2cGCVT

c2

� �
¼ f h=n ð3:20Þ

The entropy production can be written as

rs ¼ � 1
T
Fh � uh ¼ 1

jT2 q � q ð3:21Þ

Equation 3.21 has the same form as the EIT expression, Eq. 3.10. In the
non-Fourier heat conduction, it keeps semi-positive definite. The benefit of the
present dynamic analysis is that the only assumption in derivation is the linearity
between the friction force and drift velocity (thereby heat flux). It doesn’t specify
which type of heat conduction model is used.

The generalized force proposed by EIT is [3]

X ¼ rh�1 � s

jh2
@q
@t

ð3:22Þ

Substitution of the relaxation time of thermomass, τTM, in Eq. 3.22 gives

�X ¼ rT
T2 þ 1

2cGqC2T3

@q
@t

¼ c2

2cGqC2T3 rph þ @ qhuhð Þ
@t

� �
¼ 1

qCVT2n
f h

ð3:23Þ

Therefore it can be seen that the generalized force in EIT corresponds to the friction
force in the thermomass theory. In particular, the first term in Eq. 3.22 is the
temperature gradient, which relates to the driving force in thermomass theory. The
second term in Eq. 3.22 is equivalent to the inertia force of thermomass. If the time
partial derivative in Eq. 3.22 is replaced by the material derivative D/Dt, then the
CV model will have th same form as the momentum balance equation of ther-
momass (Eq. 2.10)

sTM
Dq
Dt

þ jrT þ q ¼ 0 ð3:24Þ

In the classical irreversible thermodynamics, the generalized forces are defined
as the driving forces, since they usually have the form of the gradient of thermo-
dynamic potentials. They are the cause of the generalized fluxes. From the ther-
momass perspective, the generalized forces in the entropy production should be the
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friction forces, with a true unit of volume force, N/m3. Thus the inapplicability of
the classical expression of entropy production rises from the misuse of the gener-
alized forces. It is the friction force rather than the driving force that causes dis-
sipation and irreversibility. Based on the thermomass theory, as long as the friction
force is in the opposite direction of the driving force, the entropy production is
positive definite. EIT obtains the expression of the general entropy production,
wherein the definition of the generalized forces and fluxes are still ambiguous. The
thermomass theory explicitly defines the forces and fluxes in the heat conduction
process. The friction force on thermomass is a real force with the unit of N/m3. As
the entropy production is modified, the expression of entropy could be influenced as
well, which will be discussed in detail in Sect. 4.3.

3.3 Mass Diffusion

Without the chemical reaction, the mass conservation equation in the mass diffusion
process is [17]

q
@ck
@t

¼ �r � Jk ð3:25Þ

Here the substance is assumed to be in a closed tank with no barycentric motion.
The Fick’s law indicates that the mass diffusion flux of a component, Jk, is pro-
portional to the mass ratio, ck (cf. Eq. 1.16b). In the binary solutions or dilute
systems, Dkj can be lumped into Dk for simplicity [18]. In the classical theory, the
entropy production in a N component dilute solution due to mass diffusion is

rs ¼ �
XN
k¼1

Jk � r lk
T

	 

ð3:26Þ

The chemical potential, μk, can be written as the function of mass ratio [19]

lk ¼
RT
Mk

ln akck þ const ð3:27Þ

where R is the ideal gas constant, M is the relative molecular mass, αk is the activity
coefficient. For the ideal solution such as isomer/isotopic mixtures and mass diluted
systems, αk will be close to unity. In this case the entropy production can be written
as

rs ¼ �
X
k

Jk � R
Mkck

rck ð3:28Þ

This expression is positive definite as long as the Fick’s law holds.
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Without the barycentric motion, the flux of the component diffusion can be
reformed with the term of a diffusion velocity

Jk ¼ qkuk ð3:29Þ

Inserting Eq. 3.29 into Eq. 3.28 yields

rs ¼ �
X
k

qkuk �
R

Mkck
rck ¼ �

X
k

uk � R
Mk

rqk ð3:30Þ

In a isothermal system, it can be further evolved as

rs ¼ �
X
k

1
T
uk � r qkRT

Mk
¼ � 1

T

X
k

uk � rpk ð3:31Þ

where pk is the partial pressure of the ideal gas or vapor pressure of the component
in solution. In this manner, the classical entropy production for mass diffusion can
be defined as the product of the driving forces (gradient of pk) and the diffusive
velocities of components, divided by T. The driving forces are identical to external
forces acting on the system. A similar expression of the driving force is adopted by
Gallavotti [20] in deriving the microscopic entropy production of a deterministic
dynamical system.

The friction force in the mass diffusion process can be determined in a similar
way to the heat conduction problem. When the Fick’s law holds, the friction force
should be balanced with the driving force, namely

f k ¼ rpk ¼ qRT
Mk

rck ð3:32Þ

Hence the friction force is

f k ¼ �qk
RT

DkMk
uk ¼ � pk

Dk
uk ð3:33Þ

Note that the friction force in the thermomass theory can be written as

f h ¼ � 2cGq
2C3

VT
2

jc2
uh ¼ �2ph

qCV

j
uh ð3:34Þ

Equation 3.33 has a similar form to Eq. 3.34. The diffusivity, Dk, has a unit of m
2/s,

which is the same as the thermal diffusivity.
Combined with the mass conservation equation, Eq. 3.25, the Fick’s law gives

the diffusive type equation of the mass concentration, which is in analogy to Eq. 1.3
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@ck
@t

¼ �Dkr2ck ð3:35Þ

which indicates an infinitive propagation speed of the disturbance of the mass
concentration. To remove the paradox, a relaxation model can be introduced as the
CV model

sk
@Jk
@t

þ Jk ¼ �qDkrck ð3:36Þ

where τk is the relaxation time. Inserting Eq. 3.36 into the traditional entropy
production, Eq. 3.28, also induces the negative entropy production. Therefore, the
classical expression should be modified to avoid this paradox. In heat conduction
process, the negative entropy production is caused by inappropriately defining the
generalized force as the driving force. If the generalized force in the mass diffusion
process is replaced by the friction force, one obtains the general entropy production.
For the ideal mixture solution, the general entropy production is

rs ¼ � 1
T

XN
k¼1

uk � f k ¼
1
T

XN
k¼1

pk
Dk

uk � uk ð3:37Þ

This expression has a quadratic form which ensures the semi-positive definite.
In more general cases, the cross effect of various diffusion flux should be con-

sidered. The driving force in Eq. 3.31 cannot be expressed by the partial pressure or
vapor pressure of a single component, while the friction in Eq. 3.33 will contain the
contribution of multiple diffusion flux. Therefore, Eq. 3.37 can be generalized as

rs ¼ � 1
T

XN
k¼1

uk � f k ¼
1
T

XN
k¼1

uk �
XN
j¼1

Kkjuj

 !
ð3:38Þ

The coefficient matrix Λ should be symmetry according to the Onsager reciprocal
relation.

3.4 Electrical Conduction

For electrical conduction, the entropy production in the classical irreversible ther-
modynamics is expressed as the production of the electrical driving force (gradient
of the electrical potential, φe) and the resultant flux (electric current, i)

rs ¼ 1
T
i � rue ð3:39Þ
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The electrical current can be rewritten as a velocity form

i ¼ qeue ð3:40Þ

where ρe is the density of charge and ue is the drift velocity of charge carriers. In
ordinary cases the electrical conduction obeys the Ohm’s law. It is actually the case
of the balance between driving and friction force. Therefore one has

f e ¼ �qe �rueð Þ ¼ �ireqe ¼ �q2ereue ð3:41Þ

The friction force on the charges, fe, is proportional to the drift velocity, ue, with a
volumetric force unit, N/m3. In this sense, the general entropy production for
electrical conduction is given by

rs ¼ � 1
T
f e � ue ¼

1
T
q2ereue � ue ¼

1
T
rei2 ð3:42Þ

It is compatible with the Joule’s first law. Hence the entropy production is the
dissipation rate of electrical energy into the heat energy, divided by T. When the
Ohm’s law holds, Eq. 3.42 is equivalent to the traditional entropy production,
Eq. 3.39. In fact, the Ohm’s law actually omits the time needed for the acceleration
of charge. The mass of charge is generally small, so the relaxation behavior in the
electrical conduction is not easily observed. However, the Ohm’s law can be
deviated in extreme conditions. Havemann et al. [21] elucidated that the Ohm’s law
should be modified with nonlinear correction terms at very low temperature based
on a derivation from the Boltzmann equation. A more obvious example is the
ballistic transport inside the cathode ray tube where the inertia of electrons over-
whelms friction effects, and the current direction could be opposite to the electrical
field. If the electrical current and field in this case are inserted into Eq. 3.39, the
entropy production is negative. If the general expression of entropy production,
Eq. 3.42, is adopted, one has the right results that the real entropy is zero, because
there is no dissipation in this process. In the analysis of thermoelectric effect based
on EIT theory, the perspective is similar that the current, i, is regarded as an
independent state variable of the system and written into the Gibbs equation.

3.5 Momentum Transport

The classical entropy production for the momentum transport process is

rs ¼ � 1
T
Pv:ruf ð3:43Þ

This equation only persist semi-positive definite when the Newton’s law of vis-
cosity holds. However, in many fluids, such as the colloids, polymer melts and
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solutions, the momentum transports don’t obey the Newton’s viscosity law. These
fluids are called the non-Newtonian fluid, wherein the momentum transport is called
the non-Newtonian flow [22–26]. The simplest non-Newtonian constitutive equa-
tion is the Maxwell model

s
DPv

Dt
þ Pv ¼ 2gruf ð3:44Þ

where τ is the relaxation time, D is the objective derivative, η is the viscosity
coefficient. In the non-Newtonian flow, the classical expression for entropy pro-
duction, Eq. 3.43, cannot maintain positive definite. In analogy to the analysis on
other transport processes, Pv can be regarded as a momentum flux and proportional
to a certain friction force. In the Newton’s law of viscosity, the velocity gradient,
∇uf, drives the momentum transport. It should correspond to the driving force. Thus
the entropy production can be reformed as

rs ¼ 1
T

1
2g

Pv:Pv ð3:45Þ

This expression agrees with the EIT theory.
The drift velocity of the momentum transport is a bit more complex compared

with other transport processes. Consider the momentum transport in a constant
volume system, such as the steady two dimensional plate Couette flow. In this
simplest flow pattern, the momentum flux, as well as the shear stress, is constant
across each plane parallel to the velocity direction In this case the drift velocity can
be defined as

um ¼ Pv � uf
qu2f

ð3:46Þ

where um is the momentum transport velocity. The numerator in Eq. 3.46 represents
the flux of shear work, which is in the same unit of heat flux. The denominator is
the local density of kinetic energy, which is in the same unit of thermal energy.
Therefore, Eq. 3.46 has the similar definition to the drift velocity of thermomass, uh.
um can be regarded as the drift velocity of the mechanical energy of a fluid.

In the simple plate Couette flow, the normal stress is uniform in the whole
region. Thus the Newton’s viscosity law can be written as

Pv
xy ¼ �2g

@

@y
ufx ð3:47Þ

Here Pv
xy can be understood as not only the shear stress in the xy plane, but also the

momentum flux density across the horizontal plane. In the picture of shear stress
Eq. 3.47 is the constitutive equation of the stress and strain. In the picture of
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momentum flux, Eq. 3.47 turns to the linear phenomenological law for momentum
transport. Multiplied with the fluid velocity ufx, Eq. 3.47 becomes

Pv
xyufx ¼ �2

g
q
@

@y
qu2fx ð3:48Þ

This equation corresponds to the linear phenomenological law for the transport of
kinetic energy. The driving force in Eq. 3.48 is the gradient of the density of the
kinetic energy, which is in analogy to the temperature gradient (the gradient of
internal energy density) in the Fourier’s heat conduction law. Kay and Nedderman
[27] analyzed the physics of Navier-Stokes equations and indicated that the Pv·uf
represents the power rate of the shear work, namely the rate of diffusive transport of
the mechanical energy through the shear stress.

In a transient Couette flow between plates, the conservation of momentum gives

@qufx
@t

¼ � @

@y
Pv
xy ð3:49Þ

Combination of Eqs. 3.49 to 3.47 leads to

@qufx
@t

¼ 2g
@2

@y2
ufx ð3:50Þ

which is a diffusive type equation. The disturbance of the velocity propagates with
an infinite speed based on Eq. 3.50. Actually, the momentum diffusion in a fluid
also depends on the thermal motion of molecular. Thus the propagation speed of
velocity disturbance should be in the same magnitude of the speed of thermal
disturbance. Usually only the compression-expansion wave is discussed in fluids.
The shear wave is rarely noticed. The reason could be that the fluid element cannot
sustain the translational shear stress. Its deformation causes the strong dispersion of
wave, making it difficult to observe the shear wave in fluids. Nevertheless, in
ultrafast shearing or X-ray/neutron scattering processes, the impact time is so short
that the fluid element doesn’t have enough time to dissipate the deformation work
through the thermal motion. Therefore, the fluid will partly exhibit the solid-like
feature, namely, becomes elastic to some extent. For this reason, the constitutive
equations with the relaxation term, such as Eq. 3.44, are called the viscoelastic
constitutive equations. Similarly, the CV model for heat conduction is also called
the viscoelastic heat conduction model in some literature.

Combining Eq. 3.49 with the Maxwell model, Eq. 3.44, gives

s
@2qufx
@t2

þ @qufx
@t

¼ 2g
@2

@y2
ufx ð3:51Þ
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Note that the objective derivative D=Dt can be simplified as the partial differential
derivative in the case of simple Couette flow. Equation 3.51 is a hyperbolic type
equation. It predicts the finite propagation speed of velocity disturbance as

vsf ¼
ffiffiffiffiffi
2g
qs

s
ð3:52Þ

The shear modulus can be defined as

Gf ¼ 2g
s

ð3:53Þ

Thus Eq. 3.52 turns to

vsf ¼
ffiffiffiffiffi
Gf

q

s
ð3:54Þ

This is actually the same form as the shear wave speed in solids. In the expression
of Gf, the dynamic viscosity η represents the degree of thermal motion of fluid
molecular, while the relaxation time τ characterizes the inertia of fluid molecular,
i.e. the ability of resisting deformation. The relaxation time is generally larger for
fluids with larger viscosity. The shear wave speeds of fluids at room temperature are
in the range of several hundred m/s, which is close to the thermal motion speed of
gases at the same temperature. The relaxation time of some fluids can be extracted
from experiments, as shown in Table 3.1 [3]. ν is the dynamic viscosity, 2 η/ρ, vL is
the speed of the longitudinal wave in the fluid. For non-polar molecules such as the
carbon tetrachloride and benzene, the shear wave speeds can be obtained from
Table 3.1, which are 481 and 665 m/s, respectively. The shear wave speeds are
about half of their longitudinal wave speed. This relation is similar to case in solids.
The molecular listed in Table 3.1 are all small molecular, with the relaxation times
in the magnitude of 10−12s. Therefore, the non-Newtonian behavior of these fluids
is only detectable in ultrafast shear and measurement. For fluids of large molecular,
such as the polymer melts, the relaxation time can be as large as 0.01 s. The
non-Newtonian behavior can be measured in ordinary conditions. However, the

Table 3.1 Properties of some liquids [3]

1012τ (s) 104η (Ns/m2) 107 ν (m2/s) vL (m/s)

Carbon tetrachloride 2.46 4.85 6.11 926

Chloroform 2.08 2.90 3.91 995

Carbon disulfide 1.38 1.82 3.3 1149

Benzene 1.67 3.26 7.40 1298

Toluene 1.60 2.95 6.8 1275

Acetone 2.19 1.60 4.1 1174
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flow of large molecular fluid may include the change of geometry conformation and
the energy conversion. Thus their behavior cannot be simply described by the
Maxwell model.

Comparing Eq. 3.44 with the general heat conduction law, Eq. 2.20, one con-
cludes that the relaxation term in Eq. 3.44 corresponds to the inertia term in the
momentum (or kinetic energy) transport. The momentum flux, Pv, corresponds to
the friction force. In analogy to the thermomass theory, the friction force during the
momentum transport can be defined as

fm ¼ �Pv � quf
g

¼ � qufð Þ2
g

um ¼ � qu2f
g=q

um ð3:55Þ

This expression is similar to Eqs. 3.32 and 3.33. The dynamic viscosity η/ρ has a
unit of m2/s. ρuf

2 correspond to pk and ph, with a unit of the energy density.
However, this expression is developed for the simplest case of flow pattern. For
more general cases, the momentum transport will induce the variation of the
static/normal pressure and gravitational potential, which means the kinetic energy
of fluid can convert into the potential of gravitational energy. In these cases the drift
velocity cannot be expressed simply as Eq. 3.46.

In an extreme case that the friction force in the translational momentum transport
is zero, the mechanical energy doesn’t dissipate. Thus Eq. 3.44 transforms as

s
DPv

Dt
¼ 2gruf ð3:56Þ

Combining it with the momentum balance equation, Eq. 3.49 gives

@2ufx
@t2

¼ 2g
sq

@2ufx
@y2

¼ v2sf
@2ufx
@y2

ð3:57Þ

It is a non-damping wave equation. Substitution of Eq. 3.54 into Eq. 3.57 makes it
the same form as the wave propagation equation in solid. Therefore, the constitutive
equation, Eq. 3.56, indicates the material is elastic and satisfies the Hooke’s law.
Then the Newton’s viscosity law is the pure diffusive transport of momentum while
the Hooke’s law is the pure ballistic transport.

3.6 Conclusion

The entropy production in the classical irreversible thermodynamics is the bilinear
product of generalized forces and fluxes. It is only applicable in the condition of
linear transports. When the linear transport laws are invalid, such as the non-Fourier
heat conduction, the classical energy production could be negative, which violates
the second law of thermodynamics. EIT defines the additional independent state
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variables, such as the heat flux. In this way the expression of classical energy
production is modified to be compatible with the non-Fourier heat conduction.

The dynamical analysis based on the thermomass theory indicates that the
Fourier’s law of heat conduction is the balance between the friction and driving
forces. In non-Fourier heat conduction, the driving force is unbalanced with the
friction force. The entropy measures the irreversibility. It should be proportional to
the product of the friction force and the thermomass drift velocity, which leads to
the general expression of entropy production. The general entropy production is the
quadratic function of heat flux. It is suitable for both the ordinary Fourier heat
conduction and the non-Fourier heat conduction in extreme conditions.

The driving forces, friction forces and the drift velocity can be also defined in
other transport processes, such as the mass diffusion, electrical conduction and the
momentum transport. The general entropy production should be expressed as the
minus friction force multiplied by the drift velocity, then divided by T. The friction
force is always opposite to the drift velocity, which ensures the semi-positive
definite of entropy production. When the linear transport laws are applicable, the
driving force balances the friction force, and the general entropy production is
equivalent to the classical one. When the inertia forces are non-negligible, the
friction force and driving force are unbalanced. In this case only the general entropy
production can evaluate the irreversibility of transport processes correctly.

The combined expression for the general entropy production for the above
mentioned transport processes can be written as

rs ¼ 1
jT2 q � qþ

1
2gT

Pv : Pv þ 1
T

XN
k¼1

uk �
XN
j¼1

Kkjuj

 !
þ 1
T
rei � i ð3:58Þ

In Table 3.2 the comparison of the classical and general entropy productions is
presented.

Table 3.2 Classical and general entropy productions in transports

Irreversible
processes

Vectorial Tensorial

Heat
conduction

Mass diffusion Electrical
conduction

Viscous
flow

Classical
rs ¼ J � X

σs q � r 1
T

� �
�PN

k¼1
Jk � r lk

T

� � � 1
T i � rue � 1

T P
v:rv

J q Jk i Pv

X r 1
T

� � �r lk
T

� � � 1
T rue � 1

T rv

General
rs ¼ u�f

T

σs 1
jT2 q � q

1
T

PN
k¼1

uk �
PN
j¼1

Kkjuj

 !
1
T q

2
ereue � ue 1

T
1
2gP

v:Pv

u uh ¼ q
qCVT

uk ¼ Jk=qk ue ¼ i=qe um ¼ Pv�uf
qu2f

f � qCVð Þ2T
j uh �PN

j¼1
Kkjuj

�q2ereue � qu2f
g=qum
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Chapter 4
Nonequilibrium Temperature
in Non-Fourier Heat Conduction

Abstract The definition of temperature is the foundation of thermodynamics. In
extended irreversible thermodynamics (EIT) which goes beyond the classical one to
be compatible with the non-Fourier heat conduction, the nonequilibrium tempera-
ture is defined. Based on the thermomass theory, it is shown that the static and
stagnant pressures of the thermomass flow correspond to the static and stagnant
temperatures, respectively. The stagnant temperature is higher than the static one
due to the kinetic energy of thermomass. The static temperature is the real state
variable, which is identical to the nonequilibrium temperature. It should be the
criterion of thermodynamic equilibrium. The local entropy and internal energy
densities should be represented by the static temperature. In this manner, the
classical relation between entropy, internal energy, and temperature still holds. The
derivation based on the phonon Boltzmann equation shows that the integral of the
second-order expansion of the distribution function in the energy balance equation
corresponds to the kinetic energy of thermomass, which leads to the difference
between the static and stagnant temperatures.

Temperature is the basic quantity in physics. There are various ways to define
temperature [1]. It can be based on the zeroth and second laws of classical ther-
modynamics, or the entropy and entropy flux of the thermodynamic equation of
state, or the kinetic theory and the fluctuation theory in statistical physics. In
equilibrium thermodynamics, the microscopic definition of temperature requires the
principals of equipartition of energy and ergodicity. The macroscopic definitions
are well consisted with the microscopic ones. In classical irreversible thermody-
namics, the local equilibrium hypothesis is adopted which assumes the local
microscopic distribution can be approximated by the equilibrium one. Therefore,
the temperature can be still defined as in the equilibrium systems. However, when
the degree of nonequilibrium becomes larger, the temperature could be different
through different definitions. For example, the inverse of temperature equals the
derivative of the entropy with respect to the internal energy in equilibrium ther-
modynamics. The expressions of entropy and entropy production are modified by
the extended irreversible thermodynamics (EIT) to avoid the paradox of negative
entropy production in non-Fourier heat conduction. In this condition the derivative
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of entropy with respect to internal energy gives a temperature different from that in
the equilibrium condition. The changed expression of temperature due to the
modification of entropy is called the nonequilibrium temperature in EIT. Such
difference is attributed to the effect of local nonequilibrium. In this chapter, the
definition of temperature in non-Fourier heat conduction will be investigated from
the thermomass perspective. Comparison with the nonequilibrium temperature
defined by EIT will also be discussed.

4.1 Nonequilibrium Temperature in EIT

In EIT, the entropy is modified through introducing new state variables. In the heat
conduction in nondeformable solids, the extended entropy is derived as [1–3]

s ¼ seq � 1
2

s
jT2 q � q ¼ qCV ln T � 1

2
s

jT2 q � q ð4:1Þ

where τ is the relaxation time based on the Cattaneo-Vernotte (CV) model. In
equilibrium thermodynamics, the temperature relates to the entropy and internal
energy as

T�1 ¼ @s
@e

ð4:2Þ

Incorporating Eq. 4.2 with Eq. 4.1 gives

h�1 ¼ 1
Teq

þ s
jqCVT3

eq
q � q ð4:3Þ

where the first term of the right-hand side is the temperature in equilibrium situa-
tion, the second term is the modification term in case of the irreversible transport.
Since the coefficient of the q2 term is positive, the nonequilibrium temperature
should be lower than the equilibrium one with the presence of heat flux. Assume τ is
a constant, Eq. 4.3 can be transformed as

h ¼ 1

T�1
eq þ s

.
qjCVT3

eq q � q
¼ Teq 1� s

qjCVT2
eq
q � qþ o q2

� � !
ð4:4Þ

The physical meaning of the nonequilibrium temperature has been investigated by
EIT. From the perspective of the zeroth law it is regarded as the criterion of
thermodynamic balance between systems. Consider a two-body system shown in
Fig. 4.1 [1, 2]. The body A is at thermodynamic equilibrium with a temperature Teq.
The two ends of body B are at temperatures of Teq + ΔT and Teq − ΔT, respectively.
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The center of B is also at an equilibrium temperature, Teq. However, the temper-
ature gradient in body B induces a heat flux, q, making the nonequilibrium tem-
perature lower than the equilibrium one. If the centers of A and B are connected by
a thermal conductive medium, there would be a small heat flux, δq, passing through
this medium. This gedanken experiment shows that heat transport can happen
between two systems with the same Teq but different θ. Therefore, the nonequi-
librium temperature is the criterion of thermodynamic equilibrium.

In ordinary cases the difference between the equilibrium and nonequilibrium
temperatures is quite small. For instances, for the CO2 gas at room temperature and
0.1 atm, with a heat flux 109 W/m2, the nonequilibrium temperature is 9.6 × 10−2 K
lower than the equilibrium one [2]. For the single crystal silicon at room temper-
ature, with a heat flux 1010 W/m2, the nonequilibrium temperature is 0.2 K lower
than the equilibrium one.

The nonequilibrium temperature in irreversible thermodynamics is also inves-
tigated by other researchers. Cimmelli et al. [4–6] proposed the dynamic
nonequilibrium temperature, β, through introducing an additional relaxation term in
the nonequilibrium temperature of EIT. This dynamic nonequilibrium temperature
can be used to analyze the second sound propagation in solids. Baranyai [7] studied
the operational temperature in the nonequilibrium molecular dynamics simulations.
It was found that the operational temperature depends on the direction of pertur-
bation on the system and deviates from the traditional temperature defined in
equilibrium systems. Nevertheless, this difference is attributed to the algorithm of
molecular dynamics simulations. Hatano and Jou [8] studied the temperature of the
one-dimensional simple harmonic oscillator through a statistical perspective. They
found that the temperature is different through different definitions and measure-
ment methods. The configurational temperature and kinetic temperature are defined.
The former represents the potential energy of system while the latter relates to the
average kinetic energy of molecular, which is close to the classical definition of
temperature in the kinetic theory. Furthermore, they elucidated that at higher
dimensional systems the nonequilibrium temperature could be anisotropic.

A B

qTeq

Teq+ΔT

qδ

Teq T–Δ

Fig. 4.1 Gedanken
experiment to distinguish
equilibrium and
nonequilibrium temperatures
[1]
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In the classical nonequilibrium thermodynamics, the temperature is only
well-defined as long as the local equilibrium hypothesis holds. If one does not
assume the local nonequilibrium, the temperature is hard to define. In EIT’s
derivation, the equilibrium temperature is still used in the expression of nonequi-
librium temperature. It is not clear enough that how to use the equilibrium tem-
perature in the nonequilibrium conditions. The derivation of Eq. 4.1 is based on the
transient non-Fourier heat conduction model, the CV model. However, the
expression of θ does not contain the time derivative term. It should be applicable for
both transient and steady conditions. One would desire to clarify that the definition
of nonequilibrium temperature is independent of transport models, only relates to
the nonequilibrium state of systems.

4.2 Zeroth Law

The zeroth law of thermodynamics indicates that if two bodies, A and B, are in
thermodynamic equilibrium, and B and C are also in thermodynamic equilibrium,
then A and C must be in equilibrium as well. Hence the systems in thermodynamic
equilibrium construct a set with the same temperature. The zeroth law allows the
temperature to be a measurable quantity. Based on the Fourier’s law, the heat
conduction only happens between systems with different temperatures with the heat
flux proportional to the temperature gradient. Therefore, in the same conduction
medium, the heat flux increases with the temperature difference.

In the thermomass theory the heat transport is regarded as the flow of a
weighable, compressible fluid. The driving force on this flow is the gradient of the
hydrostatic pressure. Consider two tanks filled with fluid and connected with a tube,
the mechanical equilibrium is achieved when the hydrostatic pressure is the same at
both ends of the tube. In this case the fluid will not flow from one tank to another.
For the thermomass fluid, the criterion of mechanical equilibrium is also the
hydrostatic pressure. The hydrostatic pressure of thermomass is expressed by Eq. 2.
17, which contains not only the temperature but also the material properties such as
density, specific heat and Grüneisen constant. However, Eq. 2.17 is actually the
apparent pressure in the porous medium. For porous flow the mechanical equilib-
rium is determined by the intrinsic pressure which should remove the effect of
porosity. The intrinsic pressure of thermomass should be independent of the
material properties and only a function of temperature. For simplicity the variation
of material properties is not considered here. Hence the apparent pressure, Eq. 2.17
can be used to investigate the balance and flow of thermomass.

For a compressible gas flow, one can define the static pressure and the stagnant
pressure. The static pressure is the real pressure which does not depend on the speed
of gas and the choice of reference framework. It is solely determined by the ther-
modynamic state of gases. The stagnant pressure (total pressure) is generally larger
than the static pressure, with the difference called the dynamic pressure. The
dynamic pressure is proportional to the kinetic energy of gas. The relation between
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the static pressure, ph, and the stagnant pressure of phonon gas ph,t can be estab-
lished through the Bernoulli equation

c
ph
qh

þ 1
2
u2h ¼ c

ph;t
qh

ð4:5Þ

where γ is the adiabatic index. In materials with uniform physical properties, the
pressure and density of phonon gas satisfy ph(ρh)

−2 = const, hence γ = 2 (cf. Eq. 2.59).
In analogy to the static pressure, the stagnant phonon gas pressure can be defined as

ph;t ¼ cGq CVTtð Þ2
c2

ð4:6Þ

where Tt is the stagnant temperature, or total temperature, of phonon gas. The
relation between the static temperature, T, and the stagnant temperature, Tt, of
phonon gas can be extracted from Eqs. 4.5 and 4.6

T ¼ Tt � 1
4

q2

cGCV qCVTð Þ2 ¼ Tt � 1
2

sTM
jqCVT

q2 ð4:7Þ

This relation can be also written as

Tt
T
¼ 1þ c� 1

2
Ma2h ð4:8Þ

where Mah is the Mach number of phonon gas. Equation 4.8 agrees well with the
relation between the static temperature and stagnant temperature in compressible
gas dynamics [9].

Equations 4.5 and 4.7 show that the static pressure of phonon gas is lower than
the stagnant pressure during heat conduction. Since the phonon pressure directly
relates to the temperature, the static temperature of phonon gas is lower than the
stagnant temperature. The static pressure is the real pressure in gas dynamics. The
gradient of static pressure drives the motion of gas. Therefore, the heat conduction
happens as long as there is a difference of static temperature between two bodies. In
other words, the static temperature is the criterion of thermodynamic equilibrium.
Compared with EIT, the static temperature corresponds to the nonequilibrium
temperature, θ, while the stagnant temperature corresponds to the equilibrium
temperature, Teq. Teq is supposed to carry the entire energy of the medium, which is
similar to the stagnant temperature in gas dynamics. When the heat flux is stag-
nated, the nonequilibrium temperature equals the equilibrium one, meanwhile the
static temperature equals the stagnant one.

From Eq. 4.5 one can see that the difference between the static and stagnant
temperature originates from the kinetic energy of phonon gas. With the same
stagnant temperature, a larger kinetic energy of phonon gas, i.e., the heat flux

4.2 Zeroth Law 63

http://dx.doi.org/10.1007/978-3-662-48485-2_2


density, corresponds to the lower static temperature. In the nonviscous gas flow, the
stagnation of velocity is reversible. Consider a reversible stagnation of a steady
phonon gas flow, it can be extracted from Eq. 2.20 that

qhuh � ruh ¼ �rph

r 1
2

q
qCVT

� �2
" #

¼ �2cGCVrT
ð4:9Þ

By integration one has

rTt ¼ r cGCVT þ 1
4

q
qCVT

� �2
" #

¼ 0 ð4:10Þ

Equation 4.10 indicates that the stagnant temperature keeps constant during the
reversible process. It is in essence the conservation of kinetic and potential energy
of phonon gas. The potential and kinetic energies can convert to each other in
reversible processes, changing the static temperature of phonon gas. It is worth
noticing that there is a slight difference between Eqs. 4.7 and 4.4. The coefficient of
the q2 term is 1/2 in the former while is unity in the latter. This difference will be
addressed in the following sections.

For one-dimensional steady heat conduction, the heat flux is constant in the
whole system. Thus the momentum balance equation of thermomass is simplified as

q ¼ �j 1� bð ÞrT

¼ �jr T þ 1
2

sTM
jqCVT

q2
� �

þ o q2
� �

¼ �jrTt þ o q2
� � ð4:11Þ

which indicates that the heat flux in the system can reduce the effective thermal
conductivity. The reason for this behavior is that the friction on the phonon gas will
decrease its pressure, which means the temperature is also decreased. The pressure
loss will decrease the density since the phonon gas is a compressible fluid. The
mass flux of phonon gas is constant. Therefore, the velocity of phonon gas increases
along the heat conduction direction. The increased velocity corresponds to the
decreased static pressure which drives the motion of phonon gas. Because of the
loss of the effective driving force, the effective thermal conductivity decreases. This
behavior is in analogy to the compressible gas flow in micro-channels, where the
pressure loss due to viscous friction also causes the acceleration of gases.

Cimmelli et al. [4–6] proposed the dynamical nonequilibrium temperature to
describe the non-Fourier heat conduction with both the transient nonlinear and the
spatial nonlocal effects. The nonequilibrium temperature, θ, in EIT is only a
function of heat flux and independent of the time evolution rate. The dynamical
nonequilibrium temperature, β, connects to θ with a relaxation term
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s
@

@t
bþ b ¼ h ð4:12Þ

This equation is similar to the CV model. At steady states, β is identical to θ. In
nonsteady cases, β deviates from θ, and relaxes back to θ with a time constant, τ. In
this way, β considers additionally the relaxational effect in transient cases. Cimmelli
et al. [4–6] defined the heat flux through the Fourier’s law with β

�jrb ¼ q ð4:13Þ

The time derivative of Eq. 4.13 gives the CV model.
Based on the dynamical nonequilibrium temperature one can get the more

general heat conduction models. Cimmelli et al. [4–6] introduced the gradient of β,
β,i = ∇iβ, as the new independent state variables. Assume that the entropy does not
depend on the gradient of internal energy, the extended entropy of a nonequilibrium
system is obtained through the derivation based on the extended Liu procedure

s e; b; b;k
� � ¼ s0 e;bð Þ � 1

2
sb e; bð Þb;ib;i ð4:14Þ

According to Eq. 4.13, β,i is proportional to the heat flux. Then the modification
term in Eq. 4.14 is proportional to q2, which is similar to the extended entropy in
EIT. Here sβ is a variable coefficient. The entropy of system should be max at
thermodynamic equilibrium and any nonequilibrium flux should decrease the sys-
tem entropy. Therefore sβ is positive. The derivative of entropy with respect to β,i is

k bð Þ
i ¼ @s

@b;i
¼ �sb e; bð Þb;i ð4:15Þ

Assume that the time derivative of β has the form

_b ¼ f e; b; e;k; b;k
� � ð4:16Þ

Its derivative with respect to β,i is

@f
@b;k

¼ 1

3k bð Þ
i

1

h2
qi

@h
@b;k

ð4:17Þ

Integration of Eq. 4.17 gives

f e; b; b;k
� � ¼ f0 e; bð Þ þ 1

2
f1 e; bð Þb;ib;i ð4:18Þ
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where f1 is the derivative of sβ with respect to the internal energy, e

f1 ¼ j
sb e; bð Þ

@sb
@e

ð4:19Þ

In case of the small heat flux, Eq. 4.18 should be able to recover Eq. 4.12, so

f0 e; bð Þ ¼ � 1
s

b� hð Þ ð4:20Þ

Making a time derivative of Eq. 4.18 then inserting Eq. 4.13 yields

s _qi þ qi ¼ �jh;i � sf1
j

qkqk;i ð4:21Þ

Therefore, one gets a general heat conduction model with the nonlocal effect.
Compared with the model based on thermomass theory, Eqs. 2.20, 4.21 also
contains a spatial convection term.

Compare Eq. 4.14 with Eq. 4.1 one can extract that

sb ¼ sj
T2 ð4:22Þ

Inserting it in Eq. 4.19 leads to

f1 ¼ 2j
qCVT

ð4:23Þ

Substitution of Eqs. 4.20 and 4.23 into Eq. 4.18 gives

_b¼� 1
s

b� hð Þþ q2

jqCVT
ð4:24Þ

The second term of the right-hand side of Eq. 4.24 is called the nonlocal term.
Actually it is still “local” in the term of heat flux. Nevertheless, the heat flux in
Eq. 4.24 is defined through the spatial gradient of β, so Eq. 4.24 is regarded as
nonlocal with a dependence of both the time derivative of β and the gradient of β.
The gradient of Eq. 4.24 is

s
Dq
Dt

þ q¼� j 1� sq2

jqCVT2

� �
rh ð4:25Þ

If θ is equivalent to T, Eq. 4.25 has the same form as the general heat conduction
law, Eq. 2.20. The spatial convection term is included in the material derivative,
D/Dt, which predicts the different propagation speed of heat wave in different
directions. The nonlinear coefficient on the right hand of Eq. 4.25, (1 − τq2/κρCVT

2),
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comes from the q2 term in Eq. 4.24, which predicts the decrease of effective thermal
conductivity in the presence of large heat flux in the system. In steady conditions,
β is equivalent to the stagnant temperature of phonon gas, Tt. Then Eq. 4.13 is the
same as Eq. 4.11. Thus in steady states the Fourier’s law can still hold with
the representation of the stagnant temperature. The reason for such behavior is that
the Fourier’s law can be regarded as not only a transport model but also a dissipation
model. The role of friction is to dissipate the total pressure of phonon gas, i.e., the
total mechanical energy. Integration of Eq. 4.11 with respect to x gives

ql
j
¼ Tt x ¼ 0ð Þ � Tt x ¼ lð Þ ð4:26Þ

Remind that q is proportional to the friction on phonon gas, the left-hand side of
Eq. 4.26 represents the negative work done by the friction during the motion of
phonon gas from x = 0 to x = l. The right-hand side is the dissipation of the
mechanical energy of phonon gas. Therefore, the Fourier’s law not only indicates
the linear relation between the heat flux and temperature gradient, but also repre-
sents that the mechanical energy dissipation rate equals the negative power of
friction force. The second picture implies that the temperature in the Fourier’s law
should be the stagnant temperature since it measures the total mechanical energy of
phonon gas.

4.3 Second Law

In Sect. 3.2 the general entropy production is derived as

rs ¼ q2

jT2 ð3:19Þ

Thus the expression of entropy should be modified as well. One has

rs ¼ ds
dt

þr � Js ð4:27Þ

The entropy flux is

Js ¼ q
T

ð4:28Þ

From Eqs. 3.19, 4.27 and 4.28 one obtains

ds
dt

¼ �r � Js þ rs ¼ �r � q
T

� �
þ rsTM ¼ q

jT2 � qþ jrTð Þ � r � q
T

ð4:29Þ
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Note that the entropy flux still uses the expression in classical nonequilibrium
thermodynamics. Müller [10] pointed out that the entropy flux of the multipolar
material needs to be modified as

Js ¼ q
T
þK ð4:30Þ

where K is the modification factor relating to the polarity of material. Nevertheless,
for most uniform materials, the classical expression, Eq. 4.28, is applicable. Sellitto
et al. [11] proposed that in the case of heat conduction with largely variable cross
section, for example, the heat dissipation from a point heat source in graphene
flacks, the temperature at the intermediate part could be higher than that at the heat
source. Thus they modified the heat flux as

Js ¼ q
T
þ k2

jT2 rqT � q ð4:31Þ

where λ is the average MFP of phonons. The modified entropy flux ensures the
compatibility of this abnormal temperature distribution with the second law of
thermodynamics. The discussion here does not consider the multipolar material and
the heat conduction in nanosytems with large variation of cross section, thus the
traditional entropy flux is still applicable.

In the case of small disturbance, the relaxation time of thermomass, τTM, can be
assumed to be constant. Then the general heat conduction law, Eq. 2.20, can be
written in a similar form to the CV model

qþ jrT ¼ �sTM
@q
@t

ð4:32Þ

The energy conservation relation is

@qCVT
@t

þr � q ¼ 0 ð4:33Þ

Inserting Eqs. 4.32 and 4.33 into Eq. 4.29, and integrating in the time domain gives
the general expression of entropy from the thermomass perspective

s ¼ qCV ln T � 1
2
sTM
jT2 q

2 ¼ seq � 1
2
sTM
jT2 q

2 ð4:34Þ

This expression is in consistent with the EIT expression, Eq. 4.1.
Consider the heat wave propagation in one dimensional isolated system

described by Eq. 4.32, the local mechanical energy of thermomass fluid is

eh ¼ ep þ ek ¼ cGqC
2
VT

2

c2
þ 1
2

q2

qCVTc2
ð4:35Þ
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The total mechanical energy of the system is

Eh ¼
Z
V

ehdx ¼
Z
V

cGqC
2
VT

2

c2
þ 1
2

q2

qCVTc2

� �
dx

¼ cGqC
2
V

c2

Z
V

T2 þ 1
2

q2

cGq2C
3
VT

� �
dx

ð4:36Þ

The isolated system has no mass and energy exchange with other systems at the
boundary, then the boundary heat flux is zero. One has

Z
V

Tr � qdx ¼ �
Z
V

rT � qdx ð4:37Þ

Inserting Eq. 4.37 into Eq. 4.36 gives the time evolution of the mechanical energy
of thermomass

dEh

dt
¼ cGqC

2
V

c2

Z
V

2T
@T
@t

þ 2
sTM
jqCV

@q
@t

� �
dx

¼ 2cGCV

jc2

Z
V

�q2
� �

dx
ð4:38Þ

Integrating Eq. 4.34 in the space domain yields the total entropy of the system

S ¼
Z
V

sdx ¼
Z
V

qCV ln T � 1
2
sTM
jT2 q

2
� �

dx ð4:39Þ

With the zero heat flux boundary, one hasZ
V

r � q
T

dx ¼
Z
V

rT � q
T2 dx ð4:40Þ

Then the time evolution of the general entropy of the system is

dS
dt

¼
Z
V

qCV

T
@T
@t

� sTMq
jT2

@q
@t

� �
dx

¼
Z
V

q2

jT2

� �
dx

ð4:41Þ
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Equations 4.38 and 4.41 show that the mechanical energy of thermomass keeps
decreasing in this isolated system with internal heat wave propagation. Meanwhile
the entropy keeps growing. The rate of mechanical energy dissipation and the
entropy production are both proportional to q2. Thus the heat flux in systems
increases the rate of dissipation. With a zero heat flux, the rates of mechanical
energy dissipation and entropy production both vanish.

Consider a system consisting of two small pieces of material with identical
properties. The small size allows one to assume the constant temperature in each
piece. At the initial state both pieces are at the temperature, T0. Then a heat flux, q,
is imposed between them, from A to B. In the reversible condition, the system will
experience a temperature fluctuation. There is one moment when the heat flux in
system is zero, and the temperatures of two pieces are T0 + ΔT and T0 − ΔT,
respectively. In this case the entropy of the system is

S ¼ qVCV ln T0 þ DTð Þ þ qVCV ln T0 � DTð Þ ð4:42Þ

The entropy at the initial state based on the classical expression is

S0;eq ¼ 2VqCV ln T0 ð4:43Þ

Apparently, the entropy in Eq. 4.43 is larger than that in Eq. 4.42. The distinction is
expressed as

S0;eq � S ¼ 2VqCV ln T0 � qCV ln T2
0 � DT2� � ¼ VqCV

DT2

T2
0

ð4:44Þ

If the heat conduction is reversible, the mechanical energy of thermomass is con-
stant. The temperature fluctuation, ΔT, is obtained through Eq. 4.35

2 cGq CVT0ð Þ2þ 1
2

q2

qCVT

� 	
¼ cGqC

2
V T0 þ DTð Þ2þ T0 � DTð Þ2
h i

ð4:45Þ

Inserting Eq. 4.45 into Eq. 4.44 gives

q s0;eq � s
� � ¼ 1

2
qCV

DT2

T2
0

¼ 1
2
qCV

q2

2cGq2C
3
VT

3
¼ 1

2
sTM
jT2 q

2 ð4:46Þ

which is identical to Eq. 4.34. Compared with the derivation based on Eq. 4.29, the
expression of entropy production is not used. Instead the derivation is based on the
conservation of thermomass mechanical energy. A reversible stagnation process is
assumed from the initial state to the zero heat flux state, which converts completely
the kinetic energy of themomass to the potential energy. From Eq. 4.43 one also
concludes that the entropy can be determined solely by the temperature only in the
case of zero heat flux.
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The heat flux can be fully determined by the local temperature gradient when the
Fourier’s law is applicable. Therefore, if the local temperature gradient is suddenly
removed, the heat flux should be zero simultaneously. In non-Fourier heat con-
duction, the heat flux is decoupled with the temperature gradient. When the tem-
perature gradient is suddenly removed, the heat flux can still exist and attenuate due
to friction. In EIT, the remaining heat flux without the temperature gradient is called
the “uncompensated heat” [2]. Consider a heat conduction process, the temperature
gradient is removed at t = 0, then the heat flux will relax to zero under the effect of
friction force, accompanied with the entropy increase. Therefore, the entropy at
t = 0 should be less than that at the final equilibrium state. For another example,
consider a small piece of material which is in a system with steady heat conduction.
The heat flux passing through this piece is q0. At t = 0 this piece is suddenly
isolated, which is equivalent to removing the temperature gradient and keeping it
adiabatic. The heat flux in this piece will experience a free attenuation process

s
@q
@t

þ q ¼ 0 ð4:47Þ

This process is in essence the balance between the inertia force and the friction
force. The evolution of heat flux is

q tð Þ ¼ q0 exp � t
s

� �
ð4:48Þ

After a long enough time the heat flux will be zero with the system entropy reaching
its maximum. Integrating the entropy production gives the entropy at the initial state

seq � st¼0 ¼
Z1
0

rsdt ¼
Z1
0

q20 exp �2t=sð Þ
jT2 dt ¼ sq20

2jT2 ð4:49Þ

The system temperature does not change in this process. The entropy increases due
to the dissipation of the uncompensated heat. Equation 4.49 shows that the system
entropy is different with the same temperature but the different heat fluxes.

Regard the difference between the static temperature and the stagnant temper-
ature, the energy conservation relation, Eq. 4.33, should be rewritten as

qCV
@Tt
@t

¼ �r � q ð4:50Þ

The stagnant temperature, Tt, measures the total energy of the local element.
q measures the flux of total energy passing through each cross section. Inserting
Eq. 4.50 into Eq. 4.29 and integrating gives
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s ¼ qCV ln Tt � 1
2
sTM
jT2 q

2 þ o q2
� � ð4:51Þ

Compared with Eq. 4.34, the first term on the right-hand side of Eq. 4.51 is the
stagnant temperature, Tt, rather than the static temperature, T. In the same manner, it
is inferred that in EIT’s derivation, the temperature in Eq. 4.1 should be replaced by
Teq. The first term on the right-hand side of Eq. 4.1 is called the equilibrium
entropy. The equilibrium temperature also appears in the expression of nonequi-
librium temperature, Eq. 4.3. If the equilibrium entropy is required to be related to
the equilibrium temperature, then Eq. 4.1 is consistent with Eq. 4.51. The second
term on the right-hand sider of Eq. 4.51 is proportional to the kinetic energy of
thermomass fluid

1
2
sTM
jT2 q

2 ¼ 1
2
qhu

2
h



nT ð4:52Þ

It indicates that the kinetic energy of phonon gas stores additional available energy
which implies a decrease of entropy. The kinetic energy of phonon gas is the local
state variable. It is only determined by the magnitude of heat flux, and does not
depend on the constitutive equation of heat conduction. In steady state heat con-
duction, the kinetic energy of phonon gas still exists. So the expression of entropy
should be modified as well.

The internal energy is proportion to the temperature in classical thermodynamics

e ¼ qCVT ð4:53Þ

When the system is moving, the directional velocity will add on the velocity of the
thermal motion of molecular. In the gas dynamics, the local internal energy is a
function of static temperature and doesn’t relate to the kinetic energy of the
directional motion. Therefore, the local internal energy of medium during heat
conduction should exclude the kinetic energy induced by the directional motion of
phonon gas, which leads to an internal energy lower than the total energy

e ¼ qCV Tt � 1
2

sTM
jqCVT

q2þo q2
� �� �

\et ¼ qCVTt ð4:54Þ

Note that the general entropy production derived based on thermomass theory,
Eq. 4.51 can be further transformed as

s ¼ qCV ln Tt � 1
2
sTM
jT2 q

2

¼ qCV ln Tt 1� 1
2

sTM
qCVjT2 q

2 þ o q2
� �� �� 	

¼ ln e
ð4:55Þ
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From Eq. 4.55 it is inferred that because the entropy is expressed by Tt rather than
T, the local entropy in Eqs. 4.43 and 4.49 cannot be simply represented by tem-
perature. In presence of heat fluxes, Tt > T, the entropy based on the classical
expression is larger than the real entropy in the system. If the static temperature T is
used in the expression, then the local entropy can still be expressed by a function of
temperature. The relation between temperature, entropy, and internal energy is

T�1 ¼ ds=de ¼ ds=qCVdT ð4:56Þ

which is identical to the classical expression. If the internal energy is measured by
the stagnant temperature, one has

h ¼ det=ds

¼ T 1� 1
2

sTM
jqCVT2 q

2
� �

¼ Tt 1� sTM
jqCVT2 q

2
� �

þ o q2
� � ð4:57Þ

which agrees with the EIT’s derivation, Eq. 4.3. The relation between the static
temperature, T, and the stagnant temperature, Tt, is similar to that between the
nonequilibrium temperature, θ, and the equilibrium temperature, Teq. However, the
coefficient is different between Eqs. 4.7 and 4.3. The entropy is identical in terms of
the static temperature and the nonequilibrium temperature. The difference comes
from the expression of internal energy. In EIT theory, the internal energy is defined
with the equilibrium temperature, Teq, which includes the thermal motion energy
and the kinetic energy of the directional motion of phonon gas. Based on the
thermomass analysis, the internal energy should be defined by the static energy, T,
which excludes the contribution of the kinetic energy of directional motion. Regard
that the internal energy should be independent of reference framework, it is rea-
sonable to exclude the kinetic energy of phonon gas. Therefore, the difference of
coefficients in the expression of temperature comes from the different definition of
internal energy. The expression based on the thermomass analysis, Eq. 4.7, is more
accurate.

4.4 Phonon Boltzmann Derivation

In Chap. 2 the general heat conduction law based on thermomass theory is derived
from the phonon Boltzmann equation. The driving force comes from the zeroth
order expansion around fD of the distribution function. The transient inertia is from
the first order expansion, while the spatial inertia rises from the second-order
expansion (see Sect. 2.3.1). Multiplying the phonon Boltzmann equation with ħ/c2

and integrating gives
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@
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k f n0 þ f nþþ
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�hxn

@t
þrj

Z
k

f nþ�hx
nvnkj ¼ 0 ð2:43Þ

In the derivation of Chap. 2 the contribution of f++ is neglected. Thus the first term
on the left-hand side of Eq. 2.43 equals the time derivative of internal energy. In
fact, the temperature in equilibrium system can be integrated from the equilibrium
Planck distribution of phonon gas, i.e., f0. Therefore, the integration of f0 in Eq. 2.43
can be defined as a temperature. However, with the presence of f++, this temperature
only presents part of the energy in the control volume. f++ is induced by the drift
motion of phonon gas. The magnitude of f++ increases with the drift velocity of
phonon gas. Combined with the discussion in above sections, one can infer that f0
corresponds to the static temperature while f0 + f++ corresponds to the stagnant
temperature, Tt Z

k

f n0 �hx
n ¼ qCVT\qCVTt ¼ et ð4:58Þ

Hence the difference between the static and stagnant temperatures is

T ¼ Tt � 1
qCV

Z
k

f nþþ�hx
n ð4:59Þ

Since f++ contains the term proportional to the square of the drift velocity of the
phonon gas, the second term on the right-hand side of Eq. 4.59 is proportional to q2.
Integration of this term gives

Z
k

f nþþ�hx
n ¼

Z
k

�hxn 1
2
@2f n0
@x2 k � uDð Þ2 ¼

Z
k

3u2D
v2s

�hxnf n0 ð4:60Þ

Guyer and Krumhansl [12] derived the average group velocity of phonon gas as

1
v2s

¼ sqCV

3j
ð4:61Þ

Inserting Eqs. 4.60 and 4.61 into Eq. 4.59 gives

T ¼ Tt � 9
16

s
j

q2

qCVT
þ o q2
� � ð4:62Þ

The coefficient 9/16 in Eq. 4.62 is slightly larger than the coefficient, 1/2, in Eq. 4.7.
According to the discussion of Eq. 2.63, this distinction comes from the Doppler
eEffect of the phonon gas drift.
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The derivation based on the phonon Boltzmann equation shows that the energy
conservation equation describes the balance of the total energy. The total energy
consists of an equilibrium part which is from f0 and a nonequilibrium part which is
from f++. The first part is the real internal energy while the second corresponds to
the kinetic energy of thermomass. This agrees with the conclusion of Eq. 4.7.

This phonon Boltzmann derivation can be regarded as the microscopic expla-
nation of the temperature definition during the heat conduction in dielectric solids.
For the heat conduction in gases, the equivalent mass of heat, thermon, is attached
in each molecular. For metals, the heat conduction is mainly contributed by elec-
trons. For semiconductors, the phonons and electrons are both important in heat
conduction. From a more general perspective, the non-Fourier heat conduction can
be the start point to analyze the nonequilibrium temperature microscopically. If a
statistical analysis can give the non-Fourier heat conduction model, it should
indicate the difference of the state distribution function from the equilibrium one. It
is expected that this distinction induces not only the modification term in the
non-Fourier heat conduction model, but also leads to the general form of
nonequilibrium temperature, internal energy and entropy.

4.5 Conclusion

The thermodynamic equilibrium refers either the local equilibrium or the global
one. The local equilibrium corresponds to the local equilibrium temperature, while
the global equilibrium corresponds to the global temperature. The temperature in
classical thermodynamics can be only defined in the equilibrium systems. This
system is at a global equilibrium. The heat conduction requires the temperature
gradient which apparently breaks the global equilibrium. However, the local
equilibrium is necessary to define the temperature. Thus the degree of the deviation
from equilibrium should be limited. The temperature in the Fourier’s law and the
internal energy density should be the local equilibrium temperature. When the
system is far from equilibrium, the temperature cannot be well-defined.

EIT derives the nonequilibrium temperature. The derivation has some imper-
fections. First, the nonequilibrium temperature is derived mathematically from the
expression of extended entropy with the physical meaning incompletely discussed.
Second, the equilibrium temperature and nonequilibrium temperature are both used
in the expression of internal energy and entropy, while their distinction is
ambiguous. Third, the derivation of nonequilibrium temperature depends on the CV
model which is lack of generality.

Based on the thermomass theory, the driving force on the thermomass flow
should be the gradient of the local static pressure. The static pressure is always
lower than the total pressure or the stagnant pressure in condition of heat con-
duction. The distinction is the dynamic pressure. The function of thermomass
temperature and pressure gives the static temperature and stagnant temperature of
thermomass. The static temperature, T, has the consistent definition to the
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nonequilibrium temperature, θ. The stagnant temperature, Tt, is defined as the
equilibrium temperature, Teq, in EIT. The static temperature is the real state variable
of the system. It is independent of the moving speed, neither of the heat conduction
processes. In the general heat conduction law, the gradient of static temperature is
the real driving force. The stagnant temperature consists of the contribution from
the static temperature and the kinetic energy of thermomass, which represents the
total mechanical energy of thermomass. In one-dimensional steady flow, the
Fourier’s law defined with the stagnant temperature could have wider application
region, which agrees with the derivation based on the dynamical nonequilibrium
temperature. The modification term of the stagnant temperature is proportional to
the square of heat flux, and the inverse of static temperature. Thus the effective
thermal conductivity decreases with the increase of heat flux. This behavior can be
understood from the dissipative feature of the Fourier’s law.

In extreme heat conductions, such as the fast transient laser heating and the
ultrahigh heat flux density, the inertia force of thermomass is nonnegligible, causing
the inapplicability of the Fourier’s law. In this condition the classical entropy
production should be modified to the general one. Such modification will influence
the expression of entropy, which further changes the definition of temperature based
on the second law. If the stagnant temperature is adopted in the expression of
entropy, the result is higher than the real one. The reason is that the kinetic energy
of thermomass preserves the available energy, which decreases the real entropy of
the system. If the static temperature is adopted, the relation of entropy, internal
energy, and temperature keeps the same as 1/T = ∂s/∂e even in the condition of
non-Fourier heat conduction.

From a microscopic perspective, the derivation based on the phonon Boltzmann
equation indicates that the higher order expansion of the phonon state distribution
function not only induces the spatial convection term, but also influences the
expression of local internal energy. Thus the local energy can be divided into an
equilibrium part and a nonequilibrium part. The former corresponds to the local
static temperature while the latter is proportional to the kinetic energy of phonon gas,
which also induces the distinction between the stagnant and static temperatures.
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Chapter 5
Dynamical Analysis of Onsager Reciprocal
Relations (ORR)

Abstract The original derivation of the Onsager reciprocal relations requires that
the generalized flux in the expression of energy production should be the time
derivative of system state variable. However, it was found that the commonly
selected fluxes can hardly meet this requirement. In this chapter, the unambiguous
definition of the generalized forces and fluxes in the entropy production is presented
from the thermomass viewpoint. The linear regression of fluctuation is actually a
balance between the inertia force and the friction force. Therefore, the time
derivative of state variables is the inertia force rather than the driving force. The
state variables are thereby defined as the average displacement of transported
quantities during fluctuation. They have the length unit, which is in agreement with
the displacement of heat proposed by Onsager. For the coupled transport processes,
the reciprocal relations are manifested to be the symmetry of the coefficient matrix
between the friction forces and the drift velocities. They can be macroscopically
derived through the principles of Galilean invariance and the third law of
Newtonian dynamics.

5.1 Basic Assumptions of ORR

In 1931, Onsager [1, 2] derived the reciprocal relations of irreversible processes
based on microscopic irreversibility, which became the cornerstone of irreversible
thermodynamics. After that, many theoretical and experimental works have proved
the reciprocal relations from different perspectives, making it the well-accepted
theorem in irreversible thermodynamics. The reciprocal relations indicate that if the
generalized forces and fluxes in irreversible processes satisfy the linear relation

Ji ¼
X
j

LijXj ð5:1Þ
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then the matrix of the phenomenological coefficient is of symmetry

Lij ¼ Lji ð5:2Þ

The derivation of Onsager Reciprocal Relations (ORR) is inspired by thermo-
electric coupling. The anisotropy of thermal conductivity and the three component
chemical reactions serve as additional examples. Although the ORR characterizes
the linear phenomenological coefficients for irreversible transport processes, its
derivation is made in a thermodynamic equilibrium system [1, 2]. The basic
assumptions in deriving ORR are (1) microscopic irreversibility and (2) linear
regression of fluctuation.

The physical picture described by microscopic irreversibility is that the macro-
scopic variables such as temperature and heat flux are the functions of microscopic
velocities of molecular motion. Quantities such as temperature are the even func-
tions of molecular velocities, which are denoted by α. Quantities like heat flux are
the odd functions of molecular velocities, which are denoted by β. Since the
molecular motion obeys the dynamic rules, one can assume that at one moment all
the molecular velocities are reversed, the α variables will be unchanged while the β
variables will change signs (e.g., the heat flux will be reversed). In an equilibrium
thermodynamic system, assume that the state of system is Γ1 and turns to Γ2 after a
period of Δt. Microscopic reversibility requires that at the state of Γ2, if all the
molecular velocities are reversed at one moment, the system should recover the
state of Γ1 after a period of Δt

HDt C1ð Þ ¼ C2

H�Dt C2ð Þ ¼ C1
ð5:3Þ

where H is the Hamiltonian operator. Equation 5.3 assumes the motion of
molecular in the system satisfy the Hamilton dynamics. For two observables, α1 and
α2, in the system, the microscopic reversibility is expressed as

a1 C1ð Þa2 C2ð Þh i ¼ a2 C1ð Þa1 C2ð Þh i ð5:4Þ

The bracket . . .h i denotes the ensemble average. Although microscopic irrevers-
ibility arises from the principle of the molecular motion, the fluctuation that ran-
domly happens in the system does not necessarily obey the reversible dynamics.
Thus the ensemble average is needed to denote that it is the rule applicable for a
large number of events. Microscopic reversibility is a theorem based on the kinetic
theory of molecular dynamics. According to the second law of thermodynamics, the
macroscopic transports are almost irreversible. Therefore, why the ORR derived
from microscopic reversibility is applicable for the macroscopic irreversible
transport is still a controversial issue.
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The second assumption in the derivation of ORR, the linear regression of fluc-
tuation, is written as

@a
@t

¼ �La ð5:5Þ

where L is the phenomenological coefficient of the linear transport law. One can
immediately infer from Eq. 5.5 that the fluctuation α experiences an exponential
decay with time. Onsager [1] pointed out that this assumption is in conflict with
microscopic irreversibility. With microscopic irreversibility the state variable α is
unchanged when all molecular velocities are reversed. Nonetheless, the direction of
time evolution will be reversed. One has

@a0

@t
¼ La0 ð5:6Þ

which indicates that α increases with time. In real cases the fluctuation cannot keep
growing. Therefore, the evolution of α is discontinuous at t = 0. The fluctuation
emerges at t = 0, with an infinite change rate from t < 0 to t > 0, which does not
obey the dynamic process in the system. The sketch of the evolution of α is shown
in Fig. 5.1. Note that the term “linear” means that the regression of fluctuation
satisfies the linear transport law, namely the decay rate is proportional to α rather
than a constant.

It is manifested in Sect. 3.1 that the entropy can be expressed as the production
of generalized forces and fluxes. The decomposition of entropy into generalized
forces and fluxes in the classical irreversible thermodynamics is to some extent
arbitrary. From an intuitive viewpoint the generalized forces are generally selected
as the gradient of intensive state variables. The generalized fluxes are defined as the
flux of quantities transported. For heat conduction, there is no definition of velocity
or force in the classical irreversible thermodynamics. Thus the choice of generalized
forces and fluxes are variable. For example, the generalized force and flux in heat
conduction can be expressed as [3, 4]

t

O

αFig. 5.1 Evolution of a state
variable with linear regression
of fluctuation
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X ¼ r 1
T

� �
; J ¼ q ð5:7aÞ

X ¼ �r ln T; J ¼ q
T

ð5:7bÞ

X ¼ �rT ; J ¼ q
T2 ð5:7cÞ

The three formulas in Eqs. 5.7a–5.7c are called the entropy picture, energy picture,
and the Fourier picture, respectively. The phenomenological coefficients in these
three pictures are thereby different. To impose more restriction on the generalized
forces and fluxes, Onsager set the requirement that

Ji ¼ @ai=@t ð5:8aÞ

Xi ¼ @DS=@ai ð5:8bÞ

Thus the generalized flux is expressed by the time derivative of the state variable, α.
The generalized force is the derivative of entropy change with respect to α. The
entropy change, ΔS, is defined in the equilibrium system, which is the deviation
from the equilibrium maximum induced by the fluctuation of α. Hence the time
derivative of entropy is expressed as

@DS=@t ¼
X
i

XiJi ¼
X
i

X
j

LijXiXj ð5:9Þ

The ∂ΔS/∂t given by Eq. 5.9 is similar to the entropy production during irreversible
processes. Nevertheless, ∂ΔS/∂t is defined for the fluctuation in equilibrium sys-
tems, while the entropy production, Eq. 3.58, is defined in nonequilibrium systems.
Combining Eqs. 5.8a, 5.8b with Eq. 5.9 leads to the proof of ORR for an equi-
librium system with fluctuations.

However, for real transport processes, it is found that the ordinary generalized
fluxes, such as the heat flux and the momentum flux, can be hardly expressed by the
time derivative of state variables. For example, in the heat conduction, the time
derivative of the local internal energy (or the fluctuation of temperature) gives the
spatial divergence of heat flux, ∇·q. Coleman and Truesdell [5] pointed out that if
the generalized flux is not required to be expressed by the time derivative of state
variables, one can define

J 0i ¼
X
j

LijXj þ
X
j

WijXj ð5:10Þ
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where W is a skew-symmetric matrix

Wij ¼ �Wji i 6¼ jð Þ; Wii ¼ 0 ð5:11Þ

Hence the time derivative of entropy does not change

@DS=@t ¼
X
i

XiJ
0
i ¼

X
ij

Xi Lij þWij
� �

Xj ¼
X
i

XiJi ð5:12Þ

However, in this case the phenomenological matrix of the coefficient between the
generalized forces and fluxes is L + W, which is apparently nonsymmetric. The
reverse transformation of Eq. 5.10 can also convert a nonsymmetric coefficient
matrix, L, to a symmetric matrix. Therefore, one can conclude that the reciprocal
relation is only applicable for specified generalized fluxes. The ORR can be broken
when the generalized fluxes are not expressed by the time derivative of the state
variables [5].

Groot et al. [6] proposed a potential explanation to solve this dilemma. For
one-dimensional heat conduction, the time derivative of entropy can be expressed
by

dS
dt

¼
Z
V

qr 1
T

� �
dV ð5:13Þ

The boundaries are adiabatic, q|Γ = 0. Assume that the physical properties are
constant. Integration by part of Eq. 5.13 gives

dS
dt

¼ �
Z
V

r � q
T

dV ¼ q
Z
V

1
T
@CVT
@t

dV ð5:14Þ

The conservation of internal energy of the system requires

Z
V

@CVT
@t

dV ¼ 0 ð5:15Þ

In case of small temperature differences, Eq. 5.14 transforms to

dS
dt

¼ � q
T2
0

Z
V

T � T0ð Þ @CVT
@t

dV ; ð5:16Þ

where T0 is the average temperature. Hence the generalized fluxes and forces can be
defined as
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J ¼ @CVT
@t

X ¼ � q
T2
0

T � T0ð Þ
ð5:17Þ

The corresponding phenomenological relation is

@CVT
@t

¼ � q
T2
0

Z
V

K T � T0ð ÞdV ; ð5:18Þ

where K is the phenomenological coefficient. This derivation is supposed to express
the heat flux as the time derivative of state variables. However, Eq. 5.18 is obtained
in the adiabatic system. The true heat conduction does not specify the boundary
condition and mostly happens in open systems with continuous energy exchange
with the environment. Equation 5.18 can be regarded as the attenuation from
nonequilibrium to equilibrium in an isolated system with uniform initial tempera-
ture profile, which obeys the Fourier’s law. The physical picture in the proof of
ORR is the attenuation of fluctuation in equilibrium systems, which is a micro-
scopic process and does not obey Fourier’s law. In Eq. 5.14 the generalized force is
ρ/T. It does not have any direction. The transformation through the constraint of
internal energy conservation converts the generalized force into Eq. 5.17. However,
the direction of T − T0 is still limited in the thermodynamic phase space. It is not a
direction in the Cartesian coordinates.

In the initial derivation of Onsager, the generalized forces for heat conduction
and electrical conduction are expressed as −∇T/T and −∇φe, respectively. The latter
is close to the real driving force in the electrical conduction. The temperature
gradient is difficult to relate to the real force because −∇T/T does not have a unit of
force. The essential reason is that there is no mass defined in the heat conduction. If
there is some force on the heat, the acceleration would be infinite. Therefore, the
generalized force or thermodynamic force is defined in classical irreversible ther-
modynamics. The irreversible transport cannot be analyzed with the real
(Newtonian) force and fluxes.

5.2 Generalized Forces and Fluxes Based on Thermomass
Theory

The real forces in heat conduction can be defined through the thermomass theory,
namely the driving and friction forces. The driving force is the pressure gradient of
thermomass, ∇ph. The friction force is proportional to the thermomass drift
velocity, uh. They are the force acting on the unit volume, with the unit of N/m3.
The driving force is
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�rph ¼ � 2cGCVT
c2

� �
erT=T ¼ �nerT=T ; ð5:19Þ

where e is the local internal energy density. In Eq. 3.16 it is shown that the
coefficient ξ is the square of the ratio of the sound speed over the light speed. If the
heat flux is regarded as the generalized flux, the friction force of thermomass, fh,
needs to divide ξ to obtain the macroscopic thermomass friction, Fh, which still has
the unit of volumetric force.

In Sect. 3.2 it is indicated from an energy conversion perspective that ξ is the
ratio of thermomass energy over the internal energy, or the ratio of the dissipation
rate of thermomass energy over the entropy production rate. From a transport
perspective, ξ is the ratio of the real momentum of thermomass over the
quasi-momentum, which represents the ratio of the force on the thermomass motion
over the force on the conversion from thermal energy to other types of energies. For
example, in the thermoelectric effect, the phonon gas and the electron gas exchange
both momentum and energy, with conversion between thermal energy and electrical
energy. The energy transports from phonons to electrons when the thermal energy
converts to electrical energy. In this process there is also momentum balance
between the electrons and phonons. The quasi-momentum is conserved in the
process of electron–phonon interaction. If one counts the real momentum, it is
non-conservative. The missing part is compensated by the real momentum of lat-
tices. The conversion between the thermal and electrical energies will induce the
increase in the real momentum of phonons, which is proportional to the increase in
the quasi-momentum, with the coefficient, ξ.

The conservation of the quasi-momentum between the phonons and electrons is
[7]

�hDke ¼ ��hDkph þ �hG; ð5:20Þ

where ke is the wave vector of electrons, kph is the wave vector of phonons, and G is
the reciprocal lattice vector. The variables in Eq. 5.20 are in the microscopic scope.
Integration in the wave vector space of Eq. 5.20 gives

Z
k

�hDke ¼ �
Z
k

�hDkph þ �hG
� �

Dqhuh
n

þ Dnmeue ¼ pLoss

ð5:21Þ

The quasi-momentum and real momentum of phonons satisfy

Z
k

�hkph ¼ 1
v2s

Z
k

�hx
@x
@kph

¼ q
v2s

¼ qhuh
n

ð5:22Þ
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For electrons they satisfy

Z
k

�hke ¼ nmeve; ð5:23Þ

where n is the charge density, me is the effective mass of charges, and ve is the drift
velocity of electron gas. Equation 5.22 manifests that the quasi-momentum of
phonon gas equals the real momentum divided by ξ. Equation 5.23 is the
momentum of electron gas, which corresponds to the current density. The integral
of G gives pLoss, which is the loss of quasi-momentum. The lost quasi-momentum is
absorbed by the lattice, representing the friction of the lattice on the transport of
phonon gas. From Eq. 5.21 it is inferred that the friction force on phonon gas and
the heat-current interaction force are both 1/ξ times larger than the loss of ther-
momass momentum.

Consider a tank filled with ideal gas. The pressure is

p ¼ 1
3
qv2rms; ð5:24Þ

where vrms is the mean square velocity of gas molecular. If the rest mass of
molecular is converted into the equivalent energy (electromagnetic irradiation), the
pressure on the wall of the tank is

pR ¼ 1
3
qc2; ð5:25Þ

where ρc2 is the total energy of the electromagnetic irradiation. Equation 5.25 is
called the pressure of the “electromagnetic cloud” or the “photon gas.” It can be
inferred that the pressure change induced by the mass-energy conversion is

pR
p

¼ c2

v2rms
ð5:26Þ

This ratio is in analogy with 1/ξ. This derivation manifests that the ξ originates from
the mass-energy duality of thermal energy. When the thermal energy exchanges
with other forms of energies, the quantity of thermomass varies. Thus the induced
force needs to divide ξ to get the macroscopic force. In this section the coupling of
heat conduction and other transports is investigated. For convenience, the macro-
scopic driving force of thermomass is defined as

FDh ¼ � erT
T

¼ �r qCVTð Þ ð5:27Þ

and the macroscopic friction force is Fh = −eq/κT (cf. Eq. 3.20).
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In Sect. 3.2 it is shown that the entropy production should be the product of Fh

and uh, divided by T. It gives the entropy production with a quadratic form of heat
flux, which keeps semi-positive definite in non-Fourier heat conduction. The
entropy production for other transport processes is also expressed by the product of
the real friction force and the corresponding drift velocity, divided by T. Hence the
entropy product is written as

rs ¼ � 1
T

X
i

ui � Fi ð5:28Þ

The generalized flux in classical irreversible thermodynamics can be defined as

Ji ¼ qiui ð5:29Þ

For heat conduction, electrical conduction, and mass component diffusion, ρi rep-
resents the internal energy density, e, with the unit J/m3, the charge density ρe, with
the unit C/m3, the component density ρk, with the unit kg/m3. The unit of the drift
velocity is m/s.

The generalized forces and fluxes satisfy the linear phenomenological law in
classical irreversible thermodynamics. By defining the real forces and velocities in
transport processes, this linear relation can be rewritten as

ui ¼ �
X
j

Kij�Fj ð5:30Þ

This indicates the linear relation between the friction forces and the drift velocities.
Λ is the matrix of friction coefficients. The minus in Eq. 5.30 shows that the friction
forces are in the opposite directions of the drift velocities. Compared with Eq. 5.1,
Λ has the form

Kij ¼ Lij
Tqiqj

ð5:31Þ

Thus the symmetry of Λ is the same as L. The unit of Λij is m
3·s/kg. Note that the

L is especially defined based on generalized fluxes in Eq. 5.29 and their corre-
sponding generalized forces. If one adopts other types of decomposition of gen-
eralized forces and fluxes, for instance, putting the coefficient T−1 in generalized
fluxes, the unit of L and its relation to Λ will be changed. However, the unit of Λ
keeps the same since the definition of forces is unambiguous.

The proof of ORR requires that the generalized fluxes are the time derivative of
state variables. In the following the expression of state variables, α, are explored.
From Eqs. 5.28 to 5.30, one infers that the generalized fluxes are related to the drift
velocities and the drift velocities are linear to the friction forces. Therefore, the time
derivative of α can be expressed as the linear combination of friction forces

5.2 Generalized Forces and Fluxes Based on Thermomass Theory 87

http://dx.doi.org/10.1007/978-3-662-48485-2_3


@ai
@t

¼ �
X
j

Kij�Fj ð5:32Þ

Onsager [8] required that α has the following features: it is a macroscopic obser-
vable defined in a subsystem containing a large amount of molecular; it is the
algebra summation of microscopic molecular variables, hence its fluctuation obeys
the Gaussian distribution; it is the even function of molecular velocities. When the
molecular velocities are suddenly reversed, it keeps unchanged. Therefore, Eq. 5.32
actually represents the linear regression of fluctuations. Since Fj is the friction force
on the flow of linear transports, this equation indicates that α is attenuated by the
friction force. Recall that Fj is the function of the generalized fluxes, which gives

@ai
@t

¼ ui ¼ Ji
qi

ð5:33Þ

On the other hand, consider a situation where the driving forces in the steady
linear transports, for instance the temperature gradient, are removed suddenly, the
fluxes in system would experience a decay process. In terms of the drift velocities,
this process is described as

Riqi
@ui
@t

¼ Fi ¼ �
X
j

K�1� �
ijuj; ð5:34Þ

where Riρi depicts the ability of resistance against the forced acceleration, i.e.,
inertia

Ri ¼ 1
�
v2s ; ðheat conductionÞ ð5:35aÞ

Ri ¼ me=e; ðelectrical conductionÞ ð5:35bÞ

Ri ¼ 1; ðmass component conductionÞ; ð5:35cÞ

where ε is the charge of carriers. The characteristic relaxation time of ui can be
extracted from Eq. 5.34

sij ¼ KijRjqj ð5:36Þ

This relaxation behavior can be understood as when i = j, the transport flux decays
under the effect of the friction proportional to its drift velocity; when i ≠ j, the
transport flux induces other types of fluxes. These fluxes are also impeded by
frictions, which cause additional friction force on the ith transport flux. The latter
friction can be regarded as the friction induced by the relative motion of the ith and
jth transport fluxes. In the classical Fourier’s law, the heat flux is determined by the
temperature gradient. So the heat flux is zero when the temperature gradient is
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suddenly removed. The thermal energy has inertia according to the thermomass
theory. Therefore, with the temperature gradient suddenly removed, the heat flux
will experience a free decay process. Onsager [1] pointed out for Eq. 5.5 that the
linear transport law is only an approximation of heat conduction which neglects the
time needed for the acceleration of heat flux. Hence, the picture of Eq. 5.34 is the
free decay of transport flux due to friction without the driving forces. The friction
forces are linear to the drift velocities in this procedure. The thermomass theory
claims that the relation between the friction forces and velocities does not depend
on the driving force or the inertia force. In other words, such relation in the free
decay of heat flux is the same as that in the steady conduction. This picture is
identical to Onsager’s assumption of the linear regression of fluctuation, Eq. 5.5.

Note that the linear regression of fluctuation is assumed in the case of small
fluctuations. The remaining kinetic energy only attenuates without inducing other
effects. With large fluctuations, the evolution may contain the oscillation, i.e., the
remaining kinetic energy is not completely dissipated by the friction but partly
converted into potential energy. Marconi et al. [9] derived through the Lagrange
variational principle that the white noise satisfies the Gaussian distribution in case
of small fluctuations, with Eq. 5.5 as the most probable path from the initial α0 to αt
after a time period of t. For large fluctuations the decay of fluctuation can be
described by a hydrodynamic equation

@a
@t

¼ �Laþ A; ð5:37Þ

where A is the orthogonal to the thermodynamic forces. Due to the orthogonality,
A does not contribute to the entropy production. The time reversibility is broken by
A. Gabrielli et al. [10] derives the ORR based on the deterministic equation in the
Hamiltonian system. The time evolution equation of fluctuation contains a term in
addition to the attenuation caused by friction. This additional term does not obey
the microscopic reversibility assumed by Onsager. From the thermomass viewpoint,
the driving force and inertia force have no contribution to the entropy production.
They can be regarded as orthogonal to the friction force. The partial differential
operator, ∂/∂t, can be substituted by the material differential, D/Dt, to include the
spatial inertia effect. Then A in Eq. 5.37 plays a similar role to the driving force,
∇T. In far from equilibrium or steady nonequilibrium systems, the instantaneous or
the steady driving force can break the time symmetry. This effect is equivalent to
shifting the thermodynamic equilibrium so that the spontaneous fluctuation couples
with the force field existing in the system. However, as long as the coupling is
unrelated to friction, it will not contribute to the entropy production.

Comparison of Eq. 5.32 with Eq. 5.34 can extract the expression of αi

ai ¼ �
X
i

sijuj ð5:38Þ
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Thus the state variables can be defined by the product of drift velocities and the
relaxation times. The time derivative of αi is the drift velocity ui. In Onsager’s
derivation, the time derivative of state variables gives the generalized fluxes. For the
usually chosen generalized fluxes, e.g., heat flux, electrical flux, and mass com-
ponent flux, the relation between αi defined in Eq. 5.38 and Ji is

@qiai
@t

¼ Ji; ð5:39Þ

where ρiαi also satisfies the requirement of Onsager on state variables [8].
Nevertheless, the αis in Eq. 5.38 have the same unit, i.e., meter. If ρiαis are chosen
as the state variables, they will have different units. Since the ensemble average of
the fluctuation of state variables satisfies [1]

a2i
� � ¼ a2j

D E
ð5:40Þ

Using αis with the same unit is more reasonable and convenient.
In heat conduction αi can be understood as the displacement of heat. In

Onsager’s derivation [1], αi is also defined as the displacement of the weight center
of heat. Because there is no concept of mass in heat conduction, the following
research inclined to define αi as the local temperature fluctuation. Astumian [11, 12]
defined the average distance travelled by a particle during a period of fluctuation as
the state variable in studying the ORR in the Brownian molecular sieve. The local
internal energy is the even function of molecular velocities. The random motion of
molecular will cause the random displacement of the energy, which can be regarded
as the displacement of heat, αi. Similarly, the charge displacement and mass
component displacement can be defined in the electrical conduction and mass
diffusion processes. Such displacement causes the nonuniform distribution of
physical quantities.

In Eqs. 5.16–5.18, the generalized fluxes are expressed by the time derivative of
CVT in one-dimensional adiabatic system [6]. The corresponding state variable can
be compared with αi defined in Eq. 5.38. Consider the heat conduction in
one-dimensional uniform system with length 2l. Assume that at the initial moment
the temperature distribution satisfies

T xð Þ ¼ T0 þ a1 cos
px
l

	 

ð5:41Þ

If the heat conduction obeys the Fourier’s heat conduction law and the two ends of
the system are adiabatic, then the heat flux at this moment is

q xð Þ ¼ �jT xð Þ ¼ ja1
p
l
sin

px
l

	 

ð5:42Þ
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The rate of temperature evolution is

@qCVT
@t

¼ �rq xð Þ ¼ �ja1
p
l

	 
2
cos

px
l

	 

ð5:43Þ

Since

a1 ¼ T xð Þ � T0
cos px

l

� � ð5:44Þ

Equation 5.43 can be written as

@qCVT
@t

¼ �j
p
l

	 
2
T � T0ð Þ ð5:45Þ

Then the temperature evolution is

T x; tð Þ � T0
T x; 0ð Þ � T0

¼ exp � j
qCV

p2

l2
t

� �
ð5:46Þ

The temperature difference, T − T0, can be regarded as the temperature disturbance
in the system, thus the characteristic relaxation time is

s� ¼ qCV

j
l2

p2
ð5:47Þ

On the other hand, the thermomass drift velocity at the initial moment is

uh x; 0ð Þ ¼ ja1
p
l
sin

px
l

	 
 1
qCVT0

¼ j
p
l
tan

px
l

	 
 T x; 0ð Þ � T0
qCVT0

ð5:48Þ

In analogy to Eq. 5.38, the displacement of heat, α*, is defined based on Eqs. 5.47
and 5.48

a� x; 0ð Þ ¼ � l
p
T x; 0ð Þ � T0

T0
tan

px
l

	 


¼ � l
p
a1
T0

sin
px
l

	 

¼ l

p

� �2rT x; 0ð Þ
T0

ð5:49Þ

This depends on the temperature profile in the system. Therefore, the temperature
distribution seems to be the state variable corresponding to the heat flux. However,
the derivation of α* is based on the Fourier heat conduction law, which is a different
physical picture from Eq. 5.34.
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Comparison of Eq. 5.45 with Eq. 5.17 shows that the generalized forces and
fluxes defined by Groot et al. [6] satisfy

J ¼ j
T2
0

q2
p
l

	 
2
X ð5:50Þ

For more general cases, the temperature distribution can be written in Fourier series

T x; 0ð Þ ¼ T0 þ
X
n

an cos
npx
l

	 

þ
X
n

bn sin
npx
l

	 

ð5:51Þ

Thus Eq. 5.45 can be reformed as

@qCVT
@t

¼ �j
X
n

an
np
l

	 
2
cos

npx
l

	 

þ
X
n

bn
np
l

	 
2
sin

npx
l

	 
" #

@T
@t

¼ � 1
s�

X
n

n2an cos
npx
l

	 

þ
X
n

n2bn sin
npx
l

	 
" # ; ð5:52Þ

where τ* is defined as Eq. 5.47. In this condition, the temperature evolution cannot
be expressed by a single relaxation time. With the increase of the characteristic
wave vector (proportional to n/l), the corresponding relaxation time decreases
(inversely proportional to n2). Each component relaxes individually with the cor-
responding relaxation time. Therefore, Eq. 5.49 can be reformed as

a� x; 0ð Þ ¼ �
X
n

l
np

an
T0

sin
npx
l

	 

�
X
n

l
np

bn
T0

cos
npx
l

	 

ð5:53Þ

This is determined by the initial temperature profile, with an, bn obtained from the
Fourier transformation. Meanwhile Eq. 5.50 turns to

J ¼ j
T2
0

q2
k2X; ð5:54Þ

where k is the average characteristic wave vector of the initial temperature profile.
The relation between forces and fluxes, i.e., Eqs. 5.50 and 5.54, are linear.
However, the proportional coefficient depends not only on the physical properties
(e.g., thermal conductivity), but also on k. In other words, the phenomenological
coefficient based on Groot et al.’s [6] derivation depends on the boundary condi-
tion, which cannot be regarded as a physical property of medium.

From the thermomass viewpoint, the attenuation of fluctuation is the balance
between the inertia and friction force. This process does not obey the Fourier’s heat
conduction law. The temperature profile depicted in Eq. 5.41 is macroscopic. It is
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much larger than the microscopic fluctuation and is not suited for the fluctuation–
dissipation theory. Consider an equilibrium system with the fluctuational flux, δq.
The displacement of heat, α, can be derived from Eqs. 5.34 to 5.38

a ¼ �Kqq
dq
v2s

ð5:55Þ

Inserting the propagation speed in the thermomass, Eq. 2.21, one has

a ¼ �sTMKqq
qCV

j
dq; ð5:56Þ

where the fiction coefficient Λqq can be obtained from Eq. 3.20

Kqq ¼ � uh
Fh

¼ j

qCVð Þ2T ð5:57Þ

Substitution of Eq. 5.57 into Eq. 5.56 gives

a ¼ �sTM
dq

qCVT
¼ �sTMduh ¼ � j

qCV

1
2cGCVT

duh ð5:58Þ

Compared with Eq. 5.49, it can be seen that the difference comes from the relax-
ation time. τ* is inversely proportional to the thermal diffusivity, κ/ρCV, in Eq. 5.47.
In contrast, τTM is proportional to the thermal diffusivity in Eq. 5.56. The former
indicates that the nonuniform distribution of temperature relaxes to the uniform one
in a faster speed with a larger thermal diffusivity. The latter implies that the
attenuation of fluctuational heat flux will be slower with a larger thermal diffusivity.
The former is macroscopic heat conduction while the latter is microscopic fluctu-
ation. In general, τ* is much larger than τTM. For the silicon at room temperature, if
the characteristic wavelength of temperature profile reduces to the magnitude of
100 nm, the two relaxation times will be of the same order, 10−10 s. However, in
such small scale the transport would be ballistic-diffusive and the heat conduction
could deviate from Fourier’s law.

From the above analysis one infers that the displacement of heat is generally
small. It corresponds to the amplitude of the spontaneous fluctuation of heat in
equilibrium systems. Therefore, it cannot be expressed by macroscopic variables,
e.g., Eq. 5.49.

The generalized flux based on the definition of Eq. 5.58 is

J ¼ @ea
@t

¼ eduh; ð5:59Þ
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while the generalized force is

F ¼ � K�1� �
qqduh ¼ � qCVð Þ2T

j
duh ð5:60Þ

The generalized force and flux satisfy

J ¼ � j
qCV

F ð5:61Þ

The corresponding phenomenological coefficient is the negative thermal diffusivity.
It is the physical property of materials and does not depend on the initial temper-
ature profile. In ORR, the coefficient matrix is positive definite. Here the coefficient
is negative. The reason is that the generalized force in ORR is the driving force
while in Eq. 5.61 it is the friction force. The friction force is in the opposite
direction of driving force, thereby the coefficient turns to negative.

Based on the definition by Eqs. 5.33 and 5.34, the entropy change due to
fluctuation is

DS ¼ � 1
2

X
i;j

Riqiuiuj
T

ð5:62Þ

Equation 4.34 shows that the expression of entropy should be modified in the
presence of heat flux in nonequilibrium transport. The distinction is

DS ¼ S� S0 ¼ � 1
2
sTMq2

jT2 ð5:63Þ

Inserting Eqs. 5.34 and 5.57 into Eq. 5.62 gives

DS ¼ � 1
2
sTMu2h
KqqT

¼ � 1
2
sTMu2h
T

qCVð Þ2T
j

¼ � 1
2
sTMq2

jT2 ð5:64Þ

which is identical to Eq. 5.63. As Eq. 5.64 describes the heat flux fluctuation in
equilibrium systems, the balance between the inertia force and friction force is

sTM
@q
@t

þ q ¼ 0 ð5:65Þ

Therefore, the entropy production is

rs ¼ @DS
@t

¼ � sTMq
jT2

@q
@t

¼ sTMq2

jT2 ð5:66Þ
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which is in consistent with the analysis based on thermomass theory, Eq. 4.34.
Furthermore, the entropy production of coupledmultiple transports can be obtained as

rs ¼ @DS
@t

¼ � 1
T

X
i;j

uj K
�1� �

ij

@sijui
@t

¼ 1
T

X
i;j

K�1� �
ijuiuj ð5:67Þ

Thus the entropy production is the quadratic form of drift velocities of transports.
As long as Λ is positive definite, the entropy production keeps nonnegative for all
kinds of transports.

5.3 Macroscopic Proof of ORR

From Eq. 5.30 it can be seen that the reciprocal relations are in essence the sym-
metry of the coefficient matrix, Λ, which relates the friction forces and drift
velocities. This coefficient matrix does not depend on the initial state or the evo-
lution rate of transport processes. The off-diagonal terms in Λ represent the cross
effect of various transport processes. According to Eq. 5.21 the interaction between
the phonon gas and electron gas satisfies the momentum conservation. At the same
time, the phonon gas and electron gas are both impeded by other scatterings in
materials, which absorb their momentum. Thus it is inferred that the cross effect
among various transport processes is the momentum exchange process induced by
mutual friction. For example, the temperature gradient drives heat flux. If the
motion of thermomass transfers some momentum to the charge carriers, the heat
flux then drives the motion of charges, which thereafter induces electrical current.
The overall effect of this process is the temperature gradient drives both heat flux
and electrical current. The behavior is described as: one generalized force causes
multiple generalized fluxes; one generalized flux is the result of multiple general-
ized forces. Nevertheless, by defining the generalized forces as the friction forces in
transport processes, this behavior can be re-narrated as: one flow is impeded by
multiple frictions; these frictions can serve as the driving force of other transports.
Therefore, the friction on the ith transport flux can be written as

�Fi¼ K�1� �
ii ui � u0ð Þ þ

X
j 6¼i

K�1� �
ij ui � uj
� �

; ð5:68Þ

where u0 is the moving speed of the medium, and ui and uj are the drift velocity of
the corresponding transport fluxes. The first term on the right-hand side of Eq. 5.68
is the interaction between the transport flux and the medium. Such interaction rises
from the reduction of phonon gas momentum due to R scatterings. The second term
on the right-hand side of Eq. 5.68 is the interaction between the ith transport flux
and other fluxes, which is proportional to the relative velocity, ui − uj. The action
equals the reaction principle, i.e., the force on ith fluid acted by jth fluid equals the
inverse force on jth fluid acted by ith fluid; one obtains
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K�1� �
ij ui � uj
� � ¼ � K�1� �

ji uj � ui
� � ð5:69Þ

which immediately gives the reciprocal relation

K�1� �
ij¼ K�1� �

ji ð5:70Þ

Equation 5.68 also satisfies the Galilean invariance principle, i.e., the friction force
is the function of relative velocities among various fluxes. Hence, the friction force
is invariable in all the inertia references. The drift velocities discussed here are all
much less than the light speed, so the Galilean invariance is applicable. Therefore,
the derivation of ORR is based on two principles, namely the Galilean invariance
and the third law of Newtonian dynamics—action equals reaction, and one
assumption that the interactions between the fluxes are proportional to their relative
velocities. Compared with Onsager’s original derivation, only the macroscopic
principles are used in this proof without any assumption of the microscopic fluc-
tuations. In fact, it is a controversial issue whether the microscopic fluctuation
satisfies the linear regression or the microscopic irreversibility. Consider that
reciprocal relations are mostly proved in macroscopic irreversible transport pro-
cesses, a macroscopic derivation of ORR can avoid the controversy in the micro-
scopic scope.

In physics, the third law of Newtonian dynamics is another face of the momentum
conservation. Actually, the momentum conservation can be related to the micro-
scopic irreversibility. Onsager [1] presented the microscopic reversibility as

a1 tð Þa2 t þ Dtð Þh i ¼ a2 tð Þa1 t þ Dtð Þh i; ð5:71Þ

where the time evolution of state variables, α1 nad α2 (e.g. displacement of heat), in
a period of Δt can be written in a first order expansion form

a2 t þ Dtð Þ ¼ a2 tð Þ þ @a2
@t

Dt ð5:72Þ

Inserting it into Eq. 5.71 gives

a1 tð Þa2 t þ Dtð Þh i ¼ a1 tð Þ @a2
@t

tð Þ
� �

Dt ¼ �L21 a21
� �

Dt ð5:73Þ

This transformation uses the linear regression of fluctuation, namely

@a2
@t

¼ �L21a1 � L22a2 ð5:74Þ
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Similarly,

a2 tð Þa1 t þ Dtð Þh i ¼ a1 tð Þ @a2
@t

tð Þ
� �

Dt ¼ �L12 a22
� �

Dt ð5:75Þ

Based on Eqs. 5.40, 5.71, and 5.75 it can be derived that

L12 ¼ L21 ð5:76Þ

Thus it is the proof based on the microscopic reversibility. Note that Eq. 5.71 can be
reformed as

a1 tð Þ a2 tð Þ þ Da2 Dtð Þ½ �h i ¼ a2 tð Þ a1 tð Þ þ Da1 Dtð Þ½ �h i ð5:77Þ

According to the principle of action equals reaction, the increase of α2 during
Δt should equal the decrease of α1 during the same period. Hence

a1 tð ÞDa2 Dtð Þh i ¼ � a1 tð ÞDa1 Dtð Þh i ð5:78Þ

Thereafter, the derivation goes as

a1 tð Þ a2 tð ÞþDa2 Dtð Þ½ �h i
¼ a1 tð Þa2 tð Þ � a1 tð ÞDa1 Dtð Þh i
¼ a1 tð Þa2 tð Þ � a2 tð ÞDa2 Dtð Þh i
¼ a2 tð Þ a1 tð ÞþDa1 Dtð Þ½ �h i

ð5:79Þ

Note that here the relation used is

a1 tð ÞDa1 Dtð Þh i ¼ a2 tð ÞDa2 Dtð Þh i; ð5:80Þ

which is equivalent to Eq. 5.40. Equation 5.79 manifests that the microscopic
reversibility actually can be also derived from the momentum conservation prin-
ciple. Because Onsager elucidates α as observables with enough number of
molecular, it is inferred that the microscopic reversibility is not completely
“microscopic” but has some macroscopic features.

Here the interaction between two fluxes is assumed to be proportional to the
relative velocity, which is the simplest linear assumption. In more general cases, the
interaction between two fluxes can be expanded into the polynomial of the relative
velocities. The action equals reaction principle is interpreted as

X1
n¼1

K�1� � nð Þ
ij ui � uj
� �n ¼ �

X1
n¼1

K�1� � nð Þ
ji uj � ui
� �n ð5:81Þ
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Since

ui � uj; ui � uj
� �2

; . . .; ui � uj
� �n ð5:82Þ

are linear independent, the coefficients of different orders in Eq. 5.81 should equal
respectively, i.e.,

K�1� � nð Þ
ij ¼ K�1� � nð Þ

ij ð5:83Þ

This relation can be used to analyze the higher order cross effects beyond the linear
transports, such as the molecular sieve and Brownian motor. Note that Eqs. 5.68
and 5.81 do not require Fi, ui, uj are in the same direction, thus the forces can
couple with fluxes in different directions, which could be the case of the asymmetry
thermal conductivity or the molecular sieves.

The irreversible transport processes discussed here are mainly heat conduction,
electrical conduction, and the mass component diffusion. The couplings among
these three processes are the most observable and applicable. Other transport
processes, such as the momentum transport and the chemical reaction, are different
from those discussed above. According to the Curie’s principle, the momentum
transport and the chemical reaction do not couple with the vectorial transport
processes since they are of different orders. For tensorial transport such as the
momentum diffusion, its drift velocity is hard to define. In momentum transport the
dissipation comes from viscosity. The viscous stress is proportional to the velocity
gradient in the fluid. Therefore, the friction in the simple shear flow is

�F yð Þ ¼ K�1� �
y;yþDy uf yð Þ � uf yþ Dyð Þð Þ

þ K�1� �
y;y�Dy uf yð Þ � uf y� Dyð Þð Þ ð5:84Þ

If Λ−1 represents the viscosity coefficient, Eq. 5.84 is Newton’s viscous law. For
ordinary uniform fluid, the viscosity is constant. One does not need the reciprocal
relation. However, for the asymmetry fluids such as the polymer solution or liquid
crystal, the viscosity is not constant but could be a matrix. In this case the reci-
procity analysis can be useful.

5.4 Conclusion

The traditional derivation of ORR has some limitations. First, the generalized flux
cannot be expressed by the time derivative of state variables, which induces the
potential breakdown of ORR. Second, the definitions of generalized forces and
fluxes are to some extent arbitrary. Third, the microscopic reversibility and the
linear regression of fluctuation are the assumptions for microscopic fluctuations.
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The ORR describes the macroscopic transport coefficients. The consistency
between the microscopic and macroscopic processes is controversial.

The thermomass theory reveals that the ORR can be understood as the symmetry
of the coefficient matrix between the friction forces and transport fluxes. Then the
generalized forces are the friction forces, which are real Newtonian forces. The
generalized fluxes can be decomposed into the density and the drift velocity. It has
shown that the linear regression of fluctuation is the balance between the inertia
force and friction force in equilibrium systems. The time derivative of the gen-
eralized fluxes represents the inertia forces. The state variables of systems can be
defined as the length quantity such as the “displacement of heat.” These quantities
are the characteristic displacement or the length of random walk of heat (thermo-
mass) during fluctuation. Thus the dilemma that the generalized fluxes cannot be
expressed as the time derivative of state variables is solved.

The Fourier heat conduction is the balance between the driving force and friction
force of thermomass. The balance between the inertia force and the friction is a
non-Fourier heat conduction process. Connection of the linear regression of the
microscopic fluctuation to the macroscopic transport coefficients implies that the
friction-velocity relation is unchanged in Fourier and non-Fourier heat conduction
processes, which agrees with the thermomass theory. Therefore, the state variables
corresponding to the heat flux can only be found through the non-Fourier heat
conduction processes.

Based on the picture of thermomass theory, the ORR can be macroscopically
derived. The Galilean invariance and the third law of Newtonian dynamics—action
equals reaction are the basic principles used in the proof. The friction between
various fluxes is assumed to be proportional to their relative velocity. This proof
does not require any assumption on the microscopic features of fluctuations.

In Onsager’s proof in 1931 [1, 2], it was at the stage of equilibrium thermo-
dynamics. The irreversible transports that actually happen in nonequilibrium sys-
tems were investigated with the assumptions in equilibrium systems, e.g.,
microscopic reversibility and linear regression of fluctuation. It could be contro-
versial whether the rule in equilibrium system can be used to characterize the
nonequilibrium one. In contrast, the proof based on the dynamic analysis starts from
the nonequilibrium system, which avoids this controversy.
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Chapter 6
Dynamical Analysis of Heat Conduction
in Nanosystems and Its Application

Abstract The heat conduction in nanosystems deviates from the Fourier’s law.
The effective thermal conductivity depends on the system size, which is understood
as a result of the phonon-boundary scattering. It is proposed in this chapter that the
phonon gas (the form of thermomass in dielectric materials) exhibits the viscosity
and rarefication effects in nanosystems. The viscosity effect induces the nonuniform
heat flux profile at each cross section, which reflects the extra boundary resistance
on heat conduction. On the other hand, in nanosystems, the boundary scattering
shortens the MFPs of normal processes, which reduces the effective viscosity of
phonon gas. With the modification of effective MFPs, the prediction models for the
in-plane heat conduction in Si nanofilms and nanowires are developed. The
numerical prediction agrees well with the experiments. For the cross-plane heat
conduction, the phonon distribution function transits from the ballistic one at the
boundary to the diffusive one away from the boundary. A ballistic–diffusive model
is thereby established based on the phonon Boltzmann equation. This model agrees
well with the molecular dynamics simulations for the cross-plane thermal con-
ductivity (CPTC) of Si nanofilms.

The heat conduction in nanosystems is different from that in bulk materials. Such
unique behavior has been studied by many researchers in the past decade. It is
commonly agreed that the heat conduction in nanosystems does not obey the
Fourier’s law. Nevertheless, the effective thermal conductivity defined based on the
Fourier’s law is still used to describe the experimental data, which is

jeff ¼ Ql
A Th � Tcð Þ ; ð6:1Þ

where Q is the total heat flux passing through the cross section, Th − Tc is the
temperature difference across the system, l is the distance between the hot side and
the cold side, and A is the area of the cross section. The experiments show that the
low-dimensional materials such as the graphene, and CNT have much higher
thermal conductivity than bulk materials, which increases with the system length.
On the other hand, the semiconductor nanosystems such as the silicon nanowires
and nanofilms exhibit much lower thermal conductivity compared with the bulk
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counterparts, which decreases with the characteristic size of the system. The size
dependence of the effective thermal conductivity is called the size effect of
nanosystems. In this chapter, the motion of phonon gas in nanosystems will be
analyzed with the thermomass theory. Thereafter the models predicting the effective
thermal conductivity of nanosystems will be developed.

6.1 Existing Models for Heat Conduction in Nanosystems

The thermal resistance is induced by the phonon scattering in dielectric materials.
According to Debye’s expression, Eq. 1.12, the thermal conductivity of material is
proportional to the MFP of R processes, λR. The R processes include the phonon–
phonon Umklapp scattering and impurity scattering, which are independent of the
material size. In the uniform homogeneous medium, the average MFP of phonon
scattering can be regarded as a constant. In this case the heat conduction obeys the
Fourier’s law as long as the evolution rate is not very high. In nanosystems, the
phonon-boundary scattering becomes important. The boundary scattering termi-
nates the free travel of phonons, and shorten their MFPs. In a result, the effective
thermal conductivity decreases. In regions far from the boundary, the MFPs of
phonons are unaffected by the boundary. The boundary effect is limited in a region
with the thickness proportional to the phonon MFPs. If the boundary affected region
is much smaller than the characteristic size of the heat conduction, the boundary
effect can be neglected. So the heat conduction process is independent of the system
size in bulk materials. The boundary effect is nonnegligible if the boundary affected
region is comparable with the system size, which induces the size effect of heat
conduction in nanosystems.

To model such size effect, the boundary effect should be assessed properly.
When the characteristic size of heat conducting system, l, is very small, the effective
phonon MFPs, λR, is close to l. Thus the effective thermal conductivity is

jeff
j0

¼ l
kR;0

; ð6:2Þ

where the subscript 0 denotes the bulk value. Equation 6.2 is applicable for l≪ λR, 0.
In real experiments, l is in the same magnitude of λR, 0. For example, it is recognized
that the single-crystal Si has the MFP of 40–260 nm. The nanofilms and nanowires
prepared in the experiments have the thickness larger than 20 nm. Apparent decrease
of thermal conductivity can be observed when the system thickness reduces to
100 nm. To model this situation, the Matthiessen law is adopted to characterize the
effect of boundary scattering on the phonon MFPs
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1
keff

¼ 1
kR;0

þ b
1
l
; ð6:3Þ

where β is the correction factor. The effective thermal conductivity of system is

jeff
j0

¼ keff
kR;0

¼ 1

1þ b kR;0
l

¼ 1
1þ bKnR

: ð6:4Þ

Equation 6.4 is the gray model proposed by Majumdar [1]. KnR = λR, 0/l is the
Knudsen number based on λR, 0. The coefficient β depends on the geometry of heat
conducting nanosystems. For the in-plane heat conductivity of nanofilms, β = 3/8.
For the cross-plane heat conductivity of nanofilms, β = 4/3. For the longitudinal
heat conductivity of nanowires, β can be selected as 4/3 [2]. Equation 6.4 indicates
that the Knudsen number is large in nanosystems, which reduces the κeff from the
bulk value. When the system thickness increases, KnR reduces, then the effective
thermal conductivity approaches the bulk value.

The gray model gives qualitatively the dependence of the effective thermal
conductivity on the system size. However, it has evident deviation from the
experimental value quantitatively. It is claimed that the average MFP used in the
gray model is based on the group velocity and specific heat of bulk material. In real
cases, phonons of different frequencies contribute differently to the heat conduction.
The low-frequency phonons have bigger group velocity and lower specific heat.
Thus, they contribute mainly to the heat conduction. The high-frequency phonons
contributes mainly to the specific heat, while have less contribution to the heat
conduction. In this sense, the dispersion relation of phonons should be considered.
Chen et al., [3–5] proposed that the phonon MFPs of single-crystal Si at room
temperature should be 210–260 nm. If the dispersion relation is fully considered,
more sophisticated prediction model can be obtained by integrating in the frequency
domain. For instance, McGaughey et al., [2] proposed that the effective thermal
conductivity can be expressed as:

jeff ¼ 3
8p2

ZxD

0

Z2p
0

Zp
0

kB
v2g;i
v3s

sx2 sin hdhdudx; ð6:5Þ

where ωD is the Debye frequency. For simplicity it can be assumed that the phonon
dispersion relation is linear, and only one phonon branch is considered. vg, i is the
effective group velocity obtained in different geometries. McGaughey et al., [2] thus
developed a prediction model for the in-plane and cross-plane effective thermal
conductivity of nanofilms and the longitudinal conductivity of nanowires. This
model matches well with experiments for nanofilms, while still overestimates the
experiments for nanowires. The above-mentioned models evolve beyond the gray
approximation by Majumdar. Nevertheless, the Matthiessen law is adopted by all of
the models to account the MFP decrease due to the boundary effect. Therefore, they
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have no essential difference with the gray model. On the other hand, the detailed
consideration of phonon dispersion relation requires more fitting parameters, which
increases the arbitrary of the results.

Based on the EIT theory, Alvarez and Jou [6] elucidated that the Fourier heat
conduction law can be written into the Fourier series. In nanosystems, the phonon
wave package is assumed to form a series of standing waves with the wavelength
the fraction of characteristic size of systems. If all the phonons have the same
relaxation time regardless of their frequencies, the effective thermal conductivity of
nanofilms is expressed as:

jeff
j0

¼ 1

2p2 KnR
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2 KnR

� �2q
� 1

� �
: ð6:6Þ

For other geometries, Alvarez et al. [7] proposed that the effective characteristic size
can be expressed by the average of the 3 dimensional sizes

1
l2eff

¼ 1
l2x
þ 1
l2y
þ 1
l2z
: ð6:7Þ

For nanowires, KnR in Eq. 6.6 is

KnnwR ¼ 2
ffiffiffi
2

p kR;0
D

; ð6:8Þ

where D is the diameter of the nanowire. For the silicon nanofilm at room tem-
perature, if κ0 is chosen as 120 W/(m K), λR, 0 is 40 nm, this model agrees well with
the experimental results.

The above models have these common assumptions: (1) The boundary effect of
nanosystems is accounted by the reduced MFPs of phonons due to boundary
scattering. (2) Only the effect of R process on heat conduction is considered. The
role of N process is not considered.

Guyer and Krumhansl [8, 9] derived the linear solution of the phonon Boltzmann
equation and got the more general heat conduction model beyond the Fourier’s law
(GK model, cf. Eq. 1.7). For the steady heat conduction in the constant
cross-section systems, the GK model is simplified as:

1
3

vsð Þ2re ¼ � q
sR

þ sN vsð Þ2
5

r2q: ð6:9Þ

In phonon systems the Fourier’s law can be written as:

1
3
sR vsð Þ2re ¼ jrT ð6:10Þ
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With this Eq. 6.9 can be transformed as:

jrT ¼ �qþ k2Br2q; ð6:11Þ

where

kB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sRsNv2s

5

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kR;0kN;0

5

r
: ð6:12Þ

Compared with the Fourier’s law, Eq. 6.11 has an additional term which is the
second-order spatial derivative of heat flux. Remind that the heat flux is similar to a
fluid flow flux, ∇2q is in analogy with the viscous dissipation term in Navier–Stokes
equation [9].

In the steady heat conduction through a constant cross-section medium, if one
assumes that the heat flux vanishes at the boundary, then ∇2q in Eq. 6.11 induces
the nonuniform heat flux distribution in the cross section, which is in analogy to the
velocity profile in the Poiseuille flow. This behavior is called the phonon hydro-
dynamics. Guyer and Krumhansl [9] analyzed the effect of ∇2q on the heat con-
duction. They indicated that the Poiseuille flow would only happen in condition of
λN, 0 ≪ l and λN, 0λR, 0 ≫ l, which induces the reduction of effective thermal
conductivity. This condition is supposed to be satisfied by a solid helium sample
with a characteristic radius 1 cm and at an extremely low temperature (0.62–
0.76 K). The nanoscale material was not available in 1960s, so the Poiseuille flow
of phonons can only be observed at extremely low temperature in order to have
large MFP. In recent years, the nano-sized material is abundantly synthesized and
the effect of ∇2q can be observed even at room temperature.

Alvarez et al., [7, 10–13] investigated the size effect of the thermal conductivity
in nanosystems based on Eq. 6.11. The λB in Eq. 6.11 is assumed as the bulk MFP
of phonons, λR, 0. The relative importance of ∇2q can be measured by KnR. ∇

2q can
be neglected when KnR is small, and Eq. 6.11 reduces to the traditional Fourier’s
law. When KnR ≫ 1, the magnitude of the ∇2q term will be much larger than q. At
this time, the heat flux profile approaches to the parabolic sharp of the Poiseuille
flow. Consider the in-plane heat conductions in nanofilms and nanowires are shown
in Fig. 6.1a, b. If one assumes the nonslip boundary condition

q y ¼ � l
2

� �
¼ 0 ð6:13Þ

The spatial distribution of heat flux can be obtained. For nanofilms and nano-
wires, when KnR ≫ 1, the total heat fluxes passing through each cross section are
[7, 10–13]

Qnf ¼ � bl3j0
12k2R;0

rT ð6:14aÞ
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Qnw ¼ � pl4j0
128k2R;0

rT; ð6:14bÞ

where b is the width of the nanofilm and assumed to be much larger than l to ensure
the quasi-2D heat conduction, the superscripts, nf and nw, are the abbreviation of
nanofilms and nanowires. Thus the corresponding effective thermal conductivities
are

jnfeff ¼
l2j0
12k2R;0

¼ j0
12Kn2R

; ð6:15aÞ
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Fig. 6.1 Heat conduction in
nanosystems. a In-plane
nanofilm; b nanowire;
c cross-plane nanofilm
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jnweff ¼
l2j0
32k2R;0

¼ j0
32Kn2R

: ð6:15bÞ

Note that the KnR in Eq. 6.15a, 6.15b is defined based on the thickness of
nanofilm and the diameter of nanowire. According to Eq. 6.15a, 6.15b, the effective
thermal conductivity of nanosystems should be inversely proportional to the square
of KnR due to the nonuniform distribution of heat flux profile. However, the
experiments indicated that the effective thermal conductivity is approximately linear
to the characteristic size rather than the square of size. It is thereby further eluci-
dated that the boundary velocity slip would happen in case of large KnR. In analogy
to the velocity slip at boundary for rarefied gases, the boundary heat flux can be
written as [7, 10–13] :

q y ¼ � l
2

� �
¼ �CkR;0

@q
@y

; ð6:16Þ

where C is the dimensionless slip coefficient. Then the effective thermal conduc-
tivities turn to

jnfeff ¼
j0

12Kn2R
1þ 6CKnRð Þ; ð6:17aÞ

jnweff ¼
j0

32Kn2R
1þ 8CKnRð Þ: ð6:17bÞ

In case of KnR ≫ 1, Eq. 6.17a, 6.17b predicts the linear size dependence of the
effective thermal conductivity, which agrees with the trend observed in experi-
ments. Ma [14] also studied the effective thermal conductivity of nanosystems
based on Eq. 6.11. He proposed a slip boundary condition as:

q y ¼ � l
2

� �
¼ q0

keff
kR;0

; ð6:18Þ

where q0 is the heat flux based on the Fourier’s law

q0 ¼ �j0rT ð6:19Þ

λeff is the effective MFP based on the Matthiessen’s law

keff
kR;0

¼ 1

1þ KnR 3� jð Þ�1 ; ð6:20Þ

where j = 1 for nanofilms, j = 2 for nanowires. Assume that λR, 0 = 210 nm, Ma’s
model obtains better prediction than the McGaughey’s model [2]. However, Ma’s
model still has considerable discrepancy with the experiments for nanowires.
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Compared with Eq. 6.17a, 6.17b, Ma’s model excludes the slip parameter C. Thus
this model cannot take into account the potential variation of boundary conditions,
such as the roughness and reflectance.

The feature of the phonon hydrodynamics model is that the boundary effect is
described by a viscous term as in fluid dynamics rather than the Matthiessen’s law.
This model can better characterize the geometry dependence of the effective thermal
conductivity, namely, the difference between nanofilms and nanowires.
Nevertheless, there are still some ambiguities in the present phonon hydrodynamics
models. For example, the derivation of Eq. 6.11 contains the effect of N processes.
λB is the product of λR and λN. The present phonon hydrodynamic models simply
appoint λB to λR as the characteristic MFP. On the other hand, KnR is large in
nanosystems. The rarefication effect on the effective MFP should be properly
considered. These issues will be addressed in the following sections.

6.2 Phonon Gas Dynamics Based on Thermomass Theory

6.2.1 Viscosity of Phonon Gas

The fluid flow in porous medium is described by the Darcy’s law

�rp ¼ l
K
uf ; ð6:21Þ

where K is the permeability with a unit of m2. Based on the Darcy’s law, the
velocity profile in each cross section is uniform. The Darcy’s law is applicable in
case of small flow velocity, large scale flow, and thereby the boundary effect is
negligible. When the investigated flow region is close to the boundary of porous
medium, the boundary effect should be considered. Beavers and Joseph [15] studied
the boundary condition at the interface of porous material and free flow. They
indicated that the flow has a slip boundary condition at the interface. The boundary
slip velocity attenuates from the boundary with a characteristic length of K1/2 to the
uniform velocity in the porous medium. Similarly, if the porous flow satisfies the
nonslip boundary condition at the fixed walls, the Darcy’s law should also be
modified. Brinkman [16], [17] proposed that a second-order spatial derivative term
can be added into the Darcy’s law, making it in the same order as the governing
equations for free flow, i.e.,

�rp ¼ l
K
uf � lr2uf : ð6:22Þ

Equation 6.22 is called the Brinkman extension to the Darcy’s law. The flow
satisfying Eq. 6.22 is called the Darcy–Brinkman flow.
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In Sect. 2.2, it is pointed out that the friction force on the phonon gas should
contain the second-order spatial derivative term of the drift velocity when the
boundary effect is important

f h ¼ �vqhuh þ lhr2uh ð2:24Þ

Remind that fh = ∇ph in steady flow (conduction). Comparing Eq. 2.24 with Eq.
6.22, one gets the permeability of the heat conductive medium

Kh ¼ lh
vq

h

: ð6:23Þ

Based on Eq. 2.24, the governing equation in the steady, constant cross-section
heat conduction can be written as:

�jrT ¼ q� Khr2q ¼ q� l2Br2q: ð6:24Þ

It is a simplified form of the general heat conduction law, Eq. 2.25, by reserving
only the driving force and friction force. Note that lB in Eq. 6.24 is extracted from
the macroscopic derivation. Its square equals the permeability of the phonon gas
flow in the material. The permeability is a macroscopic quantity proportional to the
viscosity of phonon gas.

If Eq. 6.24 is regarded to be equivalent to Eq. 6.11, then λB = lB. These two
quantities can be understood as the macroscopic and microscopic descriptions of
the same physical behavior. In fluid dynamics, the viscous term in Navier–Stokes
equation can be derived from the first-order Chapman–Enskog expansion of the
state distribution function of fluid molecular. Thus the distribution function, f, can
be expressed as:

f ¼ f0 þ Knf1; ð6:25Þ

where Knf1 is the first-order expansion term, Kn is the Knudsen number, repre-
senting the ratio of the MFP of fluid molecular over the characteristic size of
system. Similarly, it is shown in Sect. 2.3 that the ∇2q term in Eq. 6.11 can be
derived from the first-order Chapman–Enskog expansion of the state distribution
function of phonons. In fluid dynamics, if the system size is large enough and
thereby Kn≪ 1, Knf1 can be neglected compared with f0. In this case, the derivation
based on the Boltzmann equation gives the Euler equation, which is the dynamic
equation without the viscous dissipation. The large system condition can be also
understood as the interested flow region is far away from the boundary. For
instance, the Euler equation is suitable to describe gas flow far from the aircrafts in
aerodynamics.

The λB in Eq. 6.11 is the function of both λR and λN. Hence it represents the
average effect of the N and R scatterings of phonons. Equation 6.9 can be trans-
formed as

6.2 Phonon Gas Dynamics Based on Thermomass Theory 109

http://dx.doi.org/10.1007/978-3-662-48485-2_2
http://dx.doi.org/10.1007/978-3-662-48485-2_2
http://dx.doi.org/10.1007/978-3-662-48485-2_2
http://dx.doi.org/10.1007/978-3-662-48485-2_2
http://dx.doi.org/10.1007/978-3-662-48485-2_2


1
3
vsre ¼ � q

kR
þ kN

5
r2q: ð6:26Þ

Based on Eq. 1.12, λR is proportional to the thermal conductivity

j ¼ qCVvs
3

kR: ð1:12Þ

Inserting it into Eq. 6.26 gives

�rT ¼ q
j
� 3kN
5vsqCV

r2q: ð6:27Þ

Remind that

�rph ¼ �2cGqC
2
VT

c2
rT : ð6:28Þ

Compare the derivation based on thermomass theory and phonon Boltzmann
equation, τTM can be regard to be equivalent to τR, which means

2cGCVT ¼ 1
3
v2s : ð6:29Þ

In this case, Eq. 6.28 turns to

�rph ¼ � 1
3
qCVv2s
c2

rT : ð6:30Þ

Thus in the steady, constant cross-section conduction, the governing equations
of thermomass motion are written as:

�rph ¼ lh
Kh

uh � lhr2uh

�rT ¼ 3c2

qCVv2s

lh
Kh

q
qCVT

� lhr2 q
qCVT

� � : ð6:31Þ

Compare it with Eq. 6.27, one gets

j ¼ Kh

lh

q2C2
VTv

2
s

3c2
; ð6:32aÞ

lh ¼
qCVvsT
5c2

kN ; ð6:32bÞ
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where

Kh ¼ k2B ¼ kRkN
5

: ð6:33Þ

Based on Eqs. 6.32a, 6.32b, and 6.33 one can also recover Eq. 1.12.
Equation 6.32a, 6.32b shows that the phonon viscosity coefficient, μh, is propor-
tional to λN, and does not depend on λR. Therefore, Eq. 6.27 can be reformed as:

�rT ¼ q
j
� 3c2

qCVvs
� �2

T
lhr2q ¼ q

j
� 1
q2C2

VnT
lhr2q: ð6:34Þ

Compared with Eqs. 6.26, 6.34 uses the macroscopic variables such as κ and μh,
instead of the microscopic variables relating to the phonon scattering like λN and λR.
In terms of the phonon gas dynamics, the permeability Kh is more essential than the
thermal conductivity, κ. Nonetheless, κ is adopted here for the convenience to
compare the current model to the Fourier’s law and experimental results.

Analysis based on Eqs. 6.11 and 6.24 indicates that the relative magnitude of λN,
λR and l affects the feature of heat conduction. If

Kh ¼ k2B ¼ kRkN
5

� l2 ð6:35Þ

which means that the system size is far larger than the phonon MFPs, the second
term on the right-hand side of Eq. 6.24 is much less than the first term, leading to
the recovery of the Fourier’s law. In contrast, when the system size is comparable to
the phonon MFPs, both terms on the right-hand side of Eq. 6.24 contribute to the
heat conduction. The solution of Eq. 6.24 gives the flux profile on each cross
section. Then the effective thermal conductivity is obtained.

The N processes are regarded to conserve the phonon quasi-momentum over
scattering. Hence the changes related to N processes are momentum conservative.
Similarly, the momentum transport induced by the viscous effect in fluid dynamics
is also momentum conservative. Generally the nonslip boundary condition will
absorb the momentum at the boundary. Therefore in the typical Poiseuille flow the
momentum loss happens at the boundary. In heat conduction, if λR is much larger
than λN, namely, the frequency of R processes is rare, the momentum conservative
N processes are prominent. The collective behavior of phonon gas is thus close to a
flow of continuous fluid in a channel.

The R processes break the phonon quasi-momentum. It can be regarded as the
collision of phonon on some obstacle and lose its momentum. Thus the R process
dominated heat conduction is in analogy to the porous flow. The momentum loss
happens inside the flow region. When the system size is large, the boundary effect is
negligible. The momentum loss induced by the porous medium is prominent. In this
case, the flow is diffusive. Correspondingly, the traditional Fourier’s law considers
only the effect of R processes. So it is called the diffusive heat conduction.
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In the fully developed laminar flow, the boundary effect (friction) spreads among
the whole flow region. The thickness of boundary layer equals the size of flow
region. In porous medium, the viscous effect is prominent near the boundary,
leading to the nonuniform velocity distribution on the cross section. Away from the
boundary, the boundary effect attenuates with a characteristic length, lB, and the
velocity profile tends to be uniform. With a long enough distance, the boundary
effect can be neglected. It indicates that the thickness of boundary layer is pro-
portional to lB in the porous flow. When the distance between the interested region
and the boundary is comparable with or less than lB, the boundary effect should be
accounted. If the size of whole flow region is comparable with lB, the velocity
profile of flow should be characterized by the Darcy–Brinkman model.

A dimensionless number, Br, can be defined for the Darcy–Brinkman flow

Br ¼ lB=l ð6:36Þ

For the fully developed flow, the heat flux profile in nanofilms (Fig. 6.1a) derived
from Eq. 6.24 is

q yð Þ ¼ �j0rT 1� cosh y=lBð Þ
cosh l=2lBð Þ

� �
: ð6:37Þ

The corresponding effective thermal conductivity is

jnfeff ¼

R
l
qdy

�rTl
¼ j0 1� 2Br � tanhð1=2BrÞ½ �: ð6:38Þ

For the circular cross section, i.e., nanowires (Fig. 6.1b), it is obtained from
Eq. 6.24 that

q yð Þ ¼ �j0rT 1� J0 iy=lBð Þ
J0 il=2lBð Þ

� �
; ð6:39Þ

where J is the cylindrical Bessel function

Jn xð Þ¼ x
2

	 
nX1
t¼0

�1ð Þt x=2ð Þ2t
t! tþnð Þ! : ð6:40Þ

The effective thermal conductivity is

jnweff ¼ j0 1� 4Brð Þ � J1 i=2Brð Þ
iJ0 i=2Brð Þ

� �
¼ j0 1�

P1
t¼0

4Brð Þ�2t

t! tþ1ð Þ!

P1
t¼0

4Brð Þ�2t

t!t!

2
6664

3
7775: ð6:41Þ
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For a 2D rectangle channel, the heat flux profiles at different Br are shown in
Fig. 6.2. Comparison is made to the Navier–Stokes model, which only consider the
phonon viscous term (second term on the right-hand side of Eq. 6.24) and neglect
the porous friction term (first term on the right-hand side of Eq. 6.24). It can be seen
from Fig. 6.2 that the average heat flux predicted by the Navier–Stokes model is
much larger than q0 for small Br. Based on the Darcy–Brinkman model, there is a
boundary layer near the boundary, while the heat flux is uniform in the central
region, equals q0. For large Br, the profiles based on the Navier–Stokes model get
close to those based on the Darcy–Brinkman model. The difference of effective
thermal conductivity is 9.1 % for Br = 1 and 0.6 % for Br = 4.

6.2.2 Rarefication Effect of Phonon Gas

Macroscopically, lB represents the characteristic attenuation length of the boundary
effect in porous flow. If lB is much larger than the MFP of molecular, the parameters
in Eq. 6.22 do not depend on the system size. Thus the solution of Eq. 6.22 is also
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Fig. 6.2 Heat flux profiles at different Br in two-dimensional rectangle channels. q0 = −κ0∇T is
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from size-dependent thermal conductivity of Si nanosystems based on phonon gas dynamics, Vol
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size independent. For the phonon gas flow in nanosystems, the phonon MFPs could
be comparable with the system size. The phonon-boundary collision will reduce the
effective MFP. Thus, the parameters in Eq. 6.24 still depend on the system size. It is
well known that the rarefication effect rises for the gas flow in micro-channels. The
molecular-boundary collision reduces the effective viscosity, which is proportional
to the gas MFP. Thus to assess the conductivity of the micro-channel, one should
consider not only the nonuniform velocity profile of gas flow induced by the
viscosity, but also the effective viscosity variation due to the rarefication effect,
which is size dependent. Similarly, the viscosity of phonon gas, μh, is proportional
to λN. Therefore, the rarefication effect of phonon gas should be considered in
condition that λN is comparable with the system size. Meanwhile, the effective value
of λR will also reduce when it is comparable with the system size. Such reduction
leads to the decrease of the first term on the right-hand side of Eq. 6.26, thereafter
the effective κ in Eq. 6.24 also decreases. Remind that the κ discussed here is not
the out coming effective thermal conductivity of the system. Instead it is merely a
coefficient proportional to λR. Therefore, the λN and λR on the right-hand side of
Eq. 6.26 reflect separately the two effects in phonon gas flow. In nanosystems, these
two effects should be considered individually. In terms of the porous flow, the
reduction of λN means the decrease of the effective viscosity, while the reduction of
λRλN is equivalent to the decrease of the permeability.

If the boundary is assumed to be pure diffusive, namely, the emitted phonons are
only determined by the boundary temperature and have no memory of the absorbed
phonons. In this case, the boundary scattering can be regarded to terminate the
phonon MFPs. Thus the MFPs of phonons can be localized. In bulk materials, the
phonon MFP is λ0 (denoting λR, 0 or λN, 0), then the probability of traveling a
distance of x between successive collision for a phonon is

P x; xþ Dxð Þ ¼ exp � x
k0

� �
D

x
k0

: ð6:42Þ

In one-dimensional condition, the integral of P is

Zx
0

Pdx ¼
Z x

0
exp � x

k0

� �
d
x
k0

¼ 1� exp � x
k0

� �
: ð6:43Þ

It means the total possibility of scattering until the phonon travels to x. When
x → ∞ the integral is unity. If the boundary is located at r away from the inves-
tigated point, the effective MFP of phonons can be expressed as:

keff
k0

¼
Z r

0
Pdx ¼ 1� exp � r

k0

� �
: ð6:44Þ

When r≫ λ0, λeff→ λ0. Itmeans that if theboundary is far away, the local effectiveMFP
recovers the bulk value. Equation 6.44 is equivalent to the case that the investigated
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point locates at the center of a sphere with its radium r. For practical nanowires and
nanofilms, the effective MFPs need to be integrated over the sphere angle.

For the 2D rectangle cross section (nanofilm) shown in Fig. 6.1a, Stops et al.,
[18] obtained the local effective MFP as:

keff yð Þ
k0

¼ 1þ 1
2

a� 1ð Þe�a þ b� 1ð Þe�b � a2Ei að Þ � b2Ei bð Þ� �
; ð6:45Þ

where

a ¼ l=2� y
k0

b ¼ l=2þ y
k0

Ei xð Þ ¼
Z1
1

t�1e�txdt

: ð6:46Þ

For the circular cross section (nanowire) shown in Fig. 6.1b, the local effective MFP
is

keff yð Þ
k0

¼ 1
p

Zp
0

Zp
2

0

1� exp �
y cos hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=4� y2 sin2 h

q
k0 sinu

0
@

1
A

2
4

3
5 sinududh:

ð6:47Þ

The local effective MFP profiles at different Kn are shown in Fig. 6.3. It can be
seen that the effective MFP is lower at the near boundary region, which is caused by
the higher phonon-boundary scattering rate. In case of small Kn, the reduction of
effective MFP only happens in near boundary region, with a characteristic thickness
λ0. The confinements on phonon MFPs by nanowires and nanofilms are close to
each other in this condition. For large Kn, the reduction of MFP happens all over
the flow region. Meanwhile, the confinement by nanowires is apparently stronger
than that by nanofilms. When Kn≫ 1, the effective MFPs in the whole cross section
of nanofilms approach to l.

With the effective MFPs, the heat flux profile can be calculated from Eq. 6.26
and the effective thermal conductivity is obtained. For convenience, Eq. 6.26 is
rewritten as:

� kR;eff rð Þ
kR;0

j0rT ¼ q rð Þ � kR;eff rð ÞkN;eff rð Þ
5

r2q rð Þ: ð6:48Þ
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The boundary condition needs to be specified to solve Eq. 6.48. In literature, the
proposed boundary conditions include the Maxwell slip boundary (cf. Eq. 6.16)
[7, 10–13] and modified MFP-based boundary (cf. Eq. 6.20) [14], etc. In these
models, the constant MFP is used without considering the effective MFP reduction
due to boundary scattering. In terms of the rarefied gas dynamics, these models only
consider the boundary slip and neglect the change of viscosity. Equation 6.48
models the reduction of effective MFPs, which is equivalent to describing the
rarefication effect by the reduction of viscosity. Thus, these two opinions can be
regarded as modeling the same behavior from different perspectives. On the other
hand, the numerical studies can fit the experiments with pure diffusive boundary.
Thus the nonslip boundary condition can be used to solve Eq. 6.48 as long as the
reduction of effective MFP is accounted.

6.3 In-Plane Thermal Conductivity of Si Nanosystems

Equation 6.48 is capable to describe the heating conduction with the temperature
drop perpendicular to the characteristic size, namely, in-plane heat conduction (This
term is also used for the longitudinal conduction in nanowires, which also satisfies
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the above criterion). There are plenty of experimental results for the single-crystal
Si nanofilms [19–22] and nanowires [23]. Thus the effectiveness of Eq. 6.48 is
evaluated with the experiments of Si nanosystems [19–23] as well as some
numerical simulation results [24, 25]. The commonly adopted physical properties of
single-crystal Si at room temperature are: κ0 = 148 W/(m K), ρ = 2330 kg/m3,
CV = 707 J/(kg K), vs = 6400 m/s. Based on these properties, λR, 0 = 42 nm
according to Eq. 1.12. The value of λN, 0 is not exactly reported in literature. The
calculation based on the first principle indicated that λN, 0 is larger than λR, 0 at room
temperature [26]. Here the numerical calculation shows that Eq. 6.48 gives good
prediction for both nanofilms and nanowires with λN, 0 = 360 nm, as shown in Fig.
6.4. For comparison, the predictions based on the gray model [1] and McGaughey’s
model [2] are also presented in Fig. 6.4. The MFP used in the gray model is λR, 0 =
42 nm. It shows that the gray model and McGaughey’s model both overestimate the
effective thermal conductivity of nanowires. The prediction based on Eq. 6.48 is
good for both nanofilms and nanowires. If ∇2q in Eq. 6.48 is neglected, the pre-
diction will be close to that based on the gray model. Thus the main distinction of
the present model with other models is considering the viscous effect of phonons.
Without the viscous effect, one can hardly obtain good prediction for both nano-
films and nanowires (Fig. 6.5).

Besides the prediction at room temperature, the predictions at other temperatures
for nanofilms and nanowires are also made. The bulk MFP of R processes, λR, 0, is
achieved from [7, 10–13]. The optimal value of λN, 0 is obtained by fitting exper-
iments. The values of κ0, λR, 0, λN, 0 are listed in Table 6.1.

The value of λN, 0 is mainly based on the experiments of nanowires with a
diameter 115 nm. For other sized nanowires, the boundary slip coefficient F is
introduced as [27]. The values of F are 1.35, 1.18, and 1.0 for diameters of 56, 37,
and 22 nm. F is 1.2 and 1.3 for nanofilms with thicknesses 100 and 20 nm. The
thickness used in numerical modeling is Fl.

The accuracy is not high due to the fitting of λN, 0. Nevertheless, only one modifi-
cation coefficientF is used for the nanosystemswith a size (thus for a specified sample
only oneF is needed). Themodification coefficientF is also adopted byMingo [27] to
predict the experiments. F is 1.15, 1.3, and 1.05 for nanowires with diameters 115, 56,
and 37 nm,which are close to the present values.Mingo [27] proposed that ifF is close
to unity, it means that the boundary of nanowires is diffusive, which agrees with the
nonslip boundary condition used in the present model.

The trends of temperature dependence of phonon MFPs are shown in Table 6.1.
The λR, 0 continuously decrease when the temperature rises. This behavior is
induced by the increased rate of phonon Umklapp scattering at higher temperatures
due to the increased population of high-frequency (energy) phonons. The MFPs of
N processes first decrease and then increase with temperature. The explanation
could be: The total number of phonons is rare at low temperature. The frequency of
N processes is low. As the temperature rises, the number of phonons increases.
These phonons are mainly low energy. Then at this temperature range the
N processes is prominent, with a short MFP. When the temperature further
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increases, the energy of phonons becomes large. Then the R processes grow, and
the N processes reduce due to competition, leading to a larger λN, 0.
It is found that the ratio of λR, 0 over λN, 0 approximately satisfies
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Fig. 6.4 Effective in-plane thermal conductivities of single-crystal Si nanosystems at room
temperature. Solid line present model (Eq. 6.48); Dash line Gray model [1]; Dash and circle
McGaughey model [2]. a Nanofilm. Symbols are experimental results from [19–22]. b Nanowire.
Square is experimental results from [23]. Triangle is numerical results from [24, 25]
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¼ 0:0018
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ð6:49Þ
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Fig. 6.5 Temperature-dependent effective in-plane thermal conductivities of single-crystal Si
nanosystems. a Lines from top to bottom: predictions for nanofilms with thicknesses 100 and
20 nm. Dots Experimental results from [21]. b Lines from top to bottom predictions for nanowires
with diameters 115, 56, 37 and 22 nm. Dots Experimental results from [23]
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which is shown in Fig. 6.6. Here TD = 645 K is the Debye temperature of Si. Li [23]
pointed out that the effective thermal conductivities of nanowires with diameters
115 and 56 nm at the temperature range 30–100 K are approximately proportional
to T3. This behavior is explained as: due to the size limit, the MFPs of phonons are
nearly constant as the diameter of wires at this temperature range. Therefore, the
effective thermal conductivity changes due to the specific heat, which has a T3

dependence at low temperature. However, for smaller nanowires, with diameters 37
and 22 nm, the temperature dependences seem to be T2 and T, which cannot be
explained with the above model. The values of λR, 0 in Table 6.1 have a T−3

dependence. Thus the T3 dependence for 115 and 56 nm nanowires can be also
explained by the variation of λR, 0 with temperature. For thinner nanowires, their
characteristic sizes are close to λN, 0 (≈ 20 nm) at 30–100 K. Hence the viscosity
effect is important and induces the different temperature dependence.

The parameters in Eq. 6.48 change in space. Thus, Eq. 6.48 needs to be inte-
grated numerically, which is inconvenient to use. Once the parameters in Eq. 6.48
are average values which is constant in each cross section, the analytical solution
can be obtained. In rarefied gas dynamics, Veijola and Turowski [28] investigated
the relation between the boundary stress and velocity gradient for Couette flow
based on Boltzmann equation. The effective viscosity at large Kn is

leff
l0

¼ 1
1þ 2Knþ 0:2Kn0:788 exp �Kn=10ð Þ : ð6:50Þ

Table 6.1 Temperature-dependent properties of single-crystal Si [7, 10–13]

T(K) 30 40 50 60 80 100 150 200 250 300

κ0(W m−1 K−1) 4810 3530 2680 2110 1340 884 409 264 191 148

λR, 0(nm) 16,354 11,571 6681 3837 1432 557 180 93 58 42

λN, 0(nm) 50 10 7.5 7 16.5 45 75 135 260 360

100 20050
0.01
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/ λ
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Fig. 6.6 Ratio of MFPs of R
over N processes. Circle
Table 6.1; Dash line Eq. 6.49
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The effective viscosity is expressed by the ratio of the average shear stress over
the velocity gradient at the boundary

leff ¼ � Pxy
 �
@u=@yh i : ð6:51Þ

The effective viscosity can be also obtained by the modification of MFP, i.e.,
Eq. 6.45. Guo et al., [29] pointed out that the local viscosity based on Eq. 6.45 can
be inserted into the Navier–Stokes equation and predict well the velocity profile of
rarefied gases. The total volume flux is also well predicted. Based on the relation
between the flux and the viscosity in the steady planer Poiseuille flow

leff Knð Þ ¼ � 1
12

l3W
Q Knð Þ

@p
@x

ð6:52Þ

one can obtain the average viscosity. In Eq. 6.52 l is the planer distance, W is the
width and Q is the volume flux. The dependences of the effective viscosity and Kn
calculated based on Eqs. 6.50 and 6.52 are shown in Fig. 6.7. It shows that at high
Kn the effective viscosities are linear to Kn−1. In other words, the effective viscosity
is proportional to the characteristic size at large Kn.

For phonon gas, the effective viscosity of nanosystems can be extracted from
experiments based on Eqs. 6.38 and 6.41

lh;eff ¼
2cGq

2C3
VT

2

c2
l2B
j0

ð6:53Þ
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The size-dependent effective viscosity of Si at room temperature is shown in
Fig. 6.8. Linear size dependence of viscosity is observed from Fig. 6.8, i.e.,

lh;eff ¼ el; ð6:54Þ

where ε = 3.83 × 10−7 Pa s m−1. As a result

lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jc2eL
2cGq2C

3
VT

2

s
¼

ffiffiffiffiffiffiffiffi
kEL

p
; ð6:55Þ

where λE = 7.53 nm is the characteristic length. Substitution of Eq. 6.55 into
Eqs. 6.38 and 6.41 gives the analytical expression of the effective thermal con-
ductivity for nanofilms and nanowires

jnfeff ¼ j0 1� 2

ffiffiffiffiffi
kE
L

r
� tan h 1

2

ffiffiffiffiffi
L
kE

r� �" #
; ð6:56Þ

jnweff ¼ j0 1�
P1
t¼0

L=16kEð Þt
t! tþ1ð Þ!

P1
t¼0

L=16kEð Þt
t!t!

2
664

3
775: ð6:57Þ
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Fig. 6.8 Effective phonon gas viscosity extracted from experiments. Circle dots Nanofilms;
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The prediction of Eqs. 6.56 and 6.57 agrees well with experiments, as shown in
Fig. 6.9.

Equations 6.56 and 6.57 describe the phonon gas flow with the averaged
parameters. The size-dependent effective viscosity reflects the rarefication effect.
The form is analytical and convenient to use with reasonable accuracy.

The present models using phonon, phonon gas and MFPs belong to the per-
spective of particle motion, which is a discrete picture. In contrast, Eqs. 6.56 and
6.57 characterize the nanosystem heat conduction from the continuous perspective,
namely, the viscosity of phonon gas. The relation between the macroscopic picture
and microscopic picture can be discussed in analogy to the rarefied gas dynamics.
According to Eq. 6.32b, the viscosity of phonon gas is proportional to λN.
Figure 6.3 indicates that λN, eff consistently approaches to l when the system size is
small. On the other hand, for Si at room temperature, λN, 0 ≫ λR, 0 ≈ l. Therefore,
the viscosity reduction has significant impact on the thermal conductivity. At lower
temperatures, λR, 0 is also large than the system size. The change of system per-
meability should also be accounted. In this case, the linear relation between the
viscosity and system size could possibly be broken.
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Fig. 6.9 Prediction of Eq. 6.56 (Dash line) and Eq. 6.57 (Solid line) versus experiments of
nanofilms (Circle dots) and nanowires (Triangles). Reprinted from size-dependent thermal
conductivity of Si nanosystems based on phonon gas dynamics, Vol 56, Dong Y, Cao BY,
Guo ZY, 256–262. Copyright (2014), with permission from Elsevier
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6.4 Cross-Plane Thermal Conductivity of Nanofilms

The cross-plane heat conduction in nanofilms refers to the condition that the
temperature gradient is perpendicular to the face of films. There are some experi-
ments measuring the cross-plane conductivity of superlattices, amorphous silicon
nanofilms, and polycrystalline metals. Nevertheless, no experiments have been
done for the cross-plane thermal conductivity (CPTC) of single-crystalline Si films.
The small thickness of nanofilms causes the film resistance much less than the
interfacial resistance, which impedes the current measurement method to obtain
exactly the CPTC of Si nanofilms. The CPTC has been numerically calculated
through the MD and MC methods. The numerical results show that the CPTCs of
nanofilms are much less than the bulk value and decrease with the shrink of film
thickness. For small film thickness, the effective CPTC is approximately linear to
the film thickness, which indicates a constant thermal conductance in the cross-
plane direction. Besides, in MC simulations, the significant jump of temperature is
observed between the boundary and inner region. The CPTC of thin films has
important application in the thermal management of IC chips and high-efficient
thermal electrical materials based on nanotechnology.

Here the investigation of CPTC starts from the phonon Boltzmann equation

@

@t
þ vnk � r

� �
f n ¼ f n0 � f n

sR
þ f nD � f n

sN
ð2:32Þ

The phonon hydrodynamics model and the general heat conduction law based on
thermomass theory have been derived based on this equation. However, the pre-
vious derivation has the following assumptions: (1) The temperature gradient is
constant in the x direction, i.e., the system length is infinite. (2) The boundary
condition of phonon distribution function is not specified, i.e., the distribution
functions of inlet and outlet phonons do not vary significantly. These assumptions
are equivalent to the full-developed condition in fluid dynamics. Therefore, the
previous derivations are not applicable for the CPTC of nanofilms.

The phonon distribution function of phonons, f, could experience large variation
during the cross-plane heat conduction. In near boundary regions, the phonons
emitted from boundary are prominent. In this case, f is mainly determined by the
boundary coefficients. The near boundary f could have big difference from the f far
away from the boundary, thus the near boundary f can be defined as ballistic dis-
tribution, fB, which is determined by the boundary emission. Leaving the boundary,
the phonons will be continuously scattered in the medium, and f approaches to the
bulk one. In the region far from the boundary, f should be fully relaxed to the bulk
distribution. From Sect. 2.3, it shows that the distribution in bulk materials can be
approximated by the displaced Planck distribution, fD. (cf. Eq. 2.30). fD represents
the collective motion of phonon gas. On the other hand, at the boundary one has
f = fB. Then Eq. 2.32 can be analyzed based on this boundary condition to obtain the
model for CPTC of nanofilms.
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In steady condition, Eq. 2.32 turns to

vnk � rf n ¼ f n0 � f n

sR
þ f nD � f n

sN
: ð6:58Þ

Integration of Eq. 6.58 by multiplying the phonon momentum gives

�
Z
k
�hxn vnk

� �2�rf n ¼
Z
k

f n

sR
þ f n

sN
� f nD
sN

� �
�hxnvnk : ð6:59Þ

The left-hand side of Eq. 6.59 corresponds to the temperature gradient. The
right-hand side is proportional to the heat flux. The heat flux has the form

q ¼
X
n

Z
k

�hxnvnk f
n ð6:60Þ

Then Eq. 6.59 can be transformed as:

� 1
3
qCVv

2
srT ¼ q

1
sR

þ 1
sN

� �
�
Z
k

f nD
sN

� �
�hxnvnk ð6:61Þ

In Sect. 2.3, it is assumed that f ≈ fD. Inserting it into Eq. 6.61 gives the Fourier’s
heat conduction law. Nevertheless, it is not the case in the cross-plane heat con-
duction of nanofilms. Instead, the boundary condition is f = fB, i.e.,

q x ¼ 0ð Þ ¼
X
n

Z
k

�hxnvnk f
n
B ¼ qB x ¼ 0ð Þ: ð6:62Þ

In the 1D geometry, the heat flux is the same at each cross section. Then in the
whole system one has

q xð Þ ¼ qB xð Þ þ qD xð Þ ¼ q0: ð6:63Þ

Thus the phonon distribution function can be written as:

f n xð Þ ¼ f nB xð Þ þ f nD xð Þ ð6:64Þ

Its integral with the phonon gas momentum is q0 in each cross section.
Equation 6.64 indicates that the phonon distribution function can be divided into
two parts. One originates from the boundary emitted phonons, fB. Another is the
scattered distribution inside the medium, fD. The phonon distribution function is
close to fB at the boundary. Then it gradually relaxes to fD at a long enough distance
from the boundary. The heat flux consists separate contributions from fB and fD. At
the boundary the heat flux is fully contributed by fB, while it is fully contributed by
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fD far from the boundary. The sketch of this mechanism is shown in Fig. 6.10.
Inserting Eq. 6.64 into Eq. 6.61 gives

� 1
3
qCVv

2
srT ¼ q0

1
sR

þ 1
sN

� �
�
Z
k

f n � f nB
sN

� �
�hxnvnk

¼ q0
sR

þ
Z Z

k

f nB
sN

� �
�hxnvnk

¼ q0
sR

þ qB
sN

ð6:65Þ

It shows that in regions far from the boundary, qB = 0, and Eq. 6.65 reduces to
the Fourier’s law. At the boundary, q0 = qB, then the heat conduction satisfies

� 1
3
qCVv

2
srT ¼ qB

1
sR

þ 1
sN

� �

� j0
kR;0

rT ¼ qB
1

vssR
þ 1
vssN

� � : ð6:66Þ

Equation 6.66 indicates that the ratio of qB over the temperature gradient is the
effective thermal conductivity, i.e.,

�jB;effrT ¼ qB

jB;eff ¼ 1
kR;0

1
kR

þ 1
kN

� ��1

j0
: ð6:67Þ
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Fig. 6.10 Ballistic-diffusive transport in cross-plane heat conduction in nanofilms. Reprinted from
Ballistic–diffusive phonon transport and size-induced anisotropy of thermal conductivity of silicon
nanofilms, Vol 66, Dong Y, Cao BY, Guo ZY, 1–6. Copyright (2015), with permission from
Elsevier
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In near boundary regions, the total heat flux q0 is consisted of qB and qD. In this
case the local temperature gradient drives qB and qD simultaneously. The effective
thermal conductivity should be evaluated separately upon the contributions of qB
and qD. Then Eq. 6.65 turns to

� j0
kR;0

rT ¼ qB
1
kR

þ 1
kN

� �
þ qD

kR
: ð6:68Þ

Once the spatial distribution of qB and qD is obtained, the effective thermal
conductivity can be derived based on the relation between the total heat flux and
temperature drop.

According to Eq. 6.58, the N processes tend to relax f to fD, with a relaxation
time τN. Therefore, when f does not equal fD, it will relax to f0 due to the R
scattering and meanwhile to fD due to the N scattering. At the boundary, f has the
largest deviation to fD. Far away from the boundary f can be regarded to be close to
fD. Hence τN is the characteristic relaxation time from fB to fD, while λN is the
characteristic relaxation length from qB to qD. In nanofilms, the boundary condition
is that qD = 0 at x = ±0.5 l. qB attenuates exponentially from the boundary with a
characteristic length, λN. Based on these conditions, the distributions of qB and qD
in the film are

qB xð Þ ¼ q0
exp � x

kN

	 

þ exp x

kN

	 

exp � l

2kN

	 

þ exp l

2kN

	 
 ¼ q0
cos h x

kN

	 

cos h l

2kN

	 
 ; ð6:69Þ

qD xð Þ ¼ q0 � qB xð Þ ¼ q0 1�
cosh x

kN

	 

cos h l

2kN

	 

2
4

3
5: ð6:70Þ

The heat flux profile under unit temperature drop across the film can be solved
from Eqs. 6.68 to 6.70, which then gives the effective thermal conductivity. To
calculate the CPTC of the single-crystal Si nanofilms, the properties are chosen the
same as the in-plane geometry in the previous section, κ0 = 148 W/(m K), λR,
0 = 42 nm, λN, 0 = 360 nm. Note that the local MFPs should be the effective MFPs,
λeff, rather than the bulk value, λ0. The relation between λeff and λ0 has been derived
in Eq. 6.45. The calculation results are shown in Fig. 6.11. The results based the
gray model [1] and McGaughey model [2] are also presented for comparison. The
evolution trends of different models are similar. The present model has a good
agreement with the MD results [30, 31].
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A ballistic–diffusive model was also proposed by Chen [32]. Chen’s model
focuses on the heat wave propagation problem. Only R processes are considered in
Chen’s Boltzmann equation. Therefore, although the present model has a similar
physical picture with Chen’s work, the quantitative prediction is completely
different.

With the modeling of the CPTC of nanofilms, one can further analyze the
relation between the in-plane conductivity, κx, eff, and the cross-plane conductivity,
κy, eff. The heterogeneity factor of the film’s thermal conductivity is defined as:

Anf ¼ jy;eff
jx;eff

ð6:71Þ

The size dependence of Anf of Si single-crystal film is shown in Fig. 6.12. The
cross-plane conductivity is continuously larger than the in-plane conductivity. The
heterogeneity is significant for thin films and gradually vanishes with the increase
of film thickness.

Figure 6.12 indicates that the maximum heterogeneity factor is 1.8 when the film
thickness approaches to zero. This limit can be derived theoretically. The effective
MFPs are calculated through Eq. 6.45. When the film thickness approaches to zero,
the effective MFPs, λR, eff and λN, eff, all approach to the film thickness, l. For the
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Fig. 6.11 Cross-plane thermal conductivity at room temperature. Solid line present model; Dash
line gray model [1]; Dash and circle McGaughey model [2]; Square Dots MD results [30, 31].
Reprinted from ballistic–diffusive phonon transport and size-induced anisotropy of thermal
conductivity of silicon nanofilms, Vol 66, Dong Y, Cao BY, Guo ZY, 1–6. Copyright (2015), with
permission from Elsevier
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cross-plane conduction, the heat flux in the whole system is approximately qB.
From Eq. 6.68, one has

lim
l!0

jy;eff ¼ l
2
j0
kR;0

: ð6:72Þ

For the in-plane heat conduction, Eq. 6.48 yields the thin film limit as

l
kR;0

j0rT ¼ �q rð Þ þ l2

5
r2q rð Þ: ð6:73Þ

The solution of Eq. 6.73 is

lim
l!0

jx;eff ¼ j0l
kR;0

1� 2ffiffiffi
5

p tan h

ffiffiffi
5

p

2

 !" #
: ð6:74Þ

From Eqs. 6.72 and 6.74, one can obtain

lim
l!0

Anf ¼ 1

2 1� 2ffiffi
5

p tan h
ffiffi
5

p
2

	 
h i � 1:8: ð6:75Þ

It is also shown by Eqs. 6.72 and 6.74 that the in-plane and cross-plane thermal
conductivities are both linear to the film thickness in the thin film limit, which
agrees with the experiment and numerical observations.
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The heterogeneous thermal conductivity also exists in traditional materials.
However, such heterogeneity is normally caused by the heterogeneous crystallinity
or nonuniform material composite. In contrast, the heterogeneity shown in Fig. 6.12
is induced by the ballistic phonon transport in nanofilms. This mechanism is dif-
ferent from traditional heterogeneities, which can be called the size effect-induced
heterogeneous thermal conductivity.

6.5 Conclusion

In bulk material, the derivation of the general heat conduction law based on the
thermomass theory assumes a linear dependence of the friction force on the drift
velocity. In nanosystems, the boundary scattering of phonons plays an important
role, causing a different behavior from bulk materials. Therefore, the general heat
conduction law should be further modified/extended to describe the size effect of
the effective thermal conductivity of nanosystems. The phonon gas viscosity is
defined in analogy to the Darcy–Brinkman flow in porous medium. The phonon gas
viscosity is proportional to the MFPs of N processes. In the balance equation of
phonon gas momentum, the friction comes from both the flow region and the
boundary. The viscosity allows the boundary to impede the flow additionally. The
heat flux is nonuniform at the cross section due to the viscosity. The near boundary
region has smaller heat fluxes. The boundary effect attenuates with a characteristic
length, lB. Therefore, the nonnegligible boundary friction in small-sized materials
reduces the effective thermal conductivity.

In nanosystems, the system size is comparable with phonon MFPs. The
boundary scattering reduces the effective phonon MFPs. The reduction of MFPs of
N processes induces the viscosity decrease. This behavior is like the rarefication
effect happening in micro-channel gas flow. The reduction of MFPs of R processes
affects the permeability of phonon gas flow. The modification algorithm is proposed
to assess the effective MFPs, which allows considering the viscosity and rarefica-
tion effects simultaneously. Thereby the prediction models for the in-plane thermal
conductivity of nanofilms and nanowires are established. The size-dependent
effective thermal conductivity predicted by the present model agrees well with
experiments for both nanofilms and nanowires.

In the cross-plane heat conduction, the near boundary phonon distribution
function is mainly determined by the wall properties. It is a ballistic distribution,
fB. fB gradually relaxes to the diffusive distribution, fB, due to scattering. Therefore,
the boundary condition for the one-dimensional heat conduction is proposed, i.e.,
f = fB at the boundary. Inserting this condition into the phonon Boltzmann equation
gives the ballistic-diffusive model for the cross-plane heat conduction. The material
properties and MFP modification algorithm are selected the same as the in-plane
problem. The prediction for the room temperature Si nanofilm agrees well with the
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MD results. The in-plane thermal conductivity is different from the cross-plane
thermal conductivity. The difference is induced by the size effect of nanosystems.
When the system size grows to the bulk limit, the thermal conductivity of film tends
to be homogeneous.
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Chapter 7
Conclusion

The salient content of this work can be concluded as the following:

1. The microscopic foundation of the general heat conduction law based on
thermomass theory is investigated. Based on the thermomass theory, the phonon
gas in dielectric materials has its equivalent mass. The momentum balance
equation of phonon gas gives the general heat conduction law. Based on the
phonon Boltzmann equation, the momentum balance equation of phonon gas
based on the thermomass theory is derived microscopically. The transient inertia
of phonon gas arises from the first order expansion of the phonon state distri-
bution function, while the spatial inertia comes from the second order expan-
sion. If only the zeroth order of the distribution function is considered, the
inertia effect of phonon gas motion is thereby neglected. In this case the general
heat conduction law reduces to the traditional Fourier’s law.

2. The general expression of entropy production is established based on the
dynamical analysis of non-Fourier heat conduction. The entropy production in
the classical irreversible thermodynamics is not applicable for the non-Fourier
heat conduction. Based on the thermomass theory, the generalized force in heat
conduction should be the friction force rather than the driving force. The gen-
eralized flux is proportional to the drift velocity of thermomass. Therefore, the
entropy production is proportional to the dissipation of thermomass energy,
which is the product of the friction force and the drift velocity. The modified
general entropy production is applicable for both the Fourier heat conduction
and the non-Fourier heat conduction.

3. The nonequilibrium and equilibrium temperatures in the non-Fourier heat
conduction are actually the static and stagnant pressures of the phonon gas in
dielectric solids. The phonon gas motion in heat conduction has its kinetic
energy, which makes a difference between its static pressure and stagnant
pressure. The static pressure of phonon gas corresponds to the static tempera-
ture. It is the real thermodynamic state variable. The stagnant pressure of
phonon gas represents the sum of the potential and kinetic energies of phonon
gas. In the irreversible transport, the temperature cannot be defined based on the
total energy of particles. Instead, the contribution from the kinetic energy of
phonon gas should be excluded. The static temperature of phonon gas is the
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criterion of thermodynamic equilibrium. Defined based on the static tempera-
ture, the relation between the internal energy, entropy, and temperature is
identical to the traditional form.

4. The Onsager reciprocal relation is derived based on the dynamical analysis. The
traditional proof of Onsager reciprocal relation requires that the generalized flux
can be expressed by the time derivative of state variables. However, the state
variables corresponding to the heat flux are ill defined. Based on the thermomass
theory, the linear regression of fluctuation assumed by Onsager is the balance of
thermomass inertia and friction forces. The time derivative of heat flux corre-
sponds to the inertia of thermomass. Therefore, the average displacement in the
microscopic fluctuation of thermomass is the eligible state variable satisfying
Onsager’s requirement. From a dynamical viewpoint, the Onsager reciprocal
relation is essentially the symmetry of the parameter matrix among interaction
forces and transport fluxes. A macroscopic derivation of Onsager reciprocal
relation is thereby developed based on the Galilean invariance and Newton’s
third law of dynamics (momentum conservation principle).

5. The general heat conduction law is further extended to describe the size effect of
the thermal conductivity of nanosystems. The boundary resistance is significant
in nanosystems. The viscosity of phonon gas is proposed in analogy to the
porous flow. The phonon gas flow in nanosystems is impeded not only by the
scattering inside the medium but also by boundary scattering, which is modeled
by a viscous effect of the phonon gas. The boundary resistance becomes larger
in smaller systems, leading to the decrease of effective thermal conductivity in
nanosystems. The viscous and rarefication effects of phonon gas flow in
nanosystems are analyzed to establish the prediction models for the in-plane
heat conduction in nanofilms and nanowires. The prediction agrees well with
experiments. For cross-plane heat conduction, the phonons in the near boundary
region are highly nonequilibrium. The ballistic-diffusive model for the
cross-plane heat conduction in nanofilms is established based on the phonon
Boltzmann equation. This model yields good agreement with the MD results.
The in-plane and cross-plane thermal conductivities are different due to the
heterogeneous phonon-boundary scattering. It is predicted that the ratio of the
in-plane thermal conductivity over the cross-plane thermal conductivity is 1.8 in
the thin film limit. Such heterogeneity gradually vanishes with increase of film
thickness.
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