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Preface

This work was originally conceived of as a consideration of difference equations,
with the view of investigating the topics which are well-known in theoretical
physics in connection with differential equations, among them methods for the
solution of first and second order equations, asymptotic solutions, Green’s function,
generating functions, integral transforms, Sturm−Liouvile theory, and the classical
functions of mathematical physics. The two subjects, difference equations and
differential equations, are generally treated separately, with only a brief reference to
the similarity of the respective analyses. However, as the investigation of difference
equations proceeded, not only did the similarity become more and more evident but
it seemed to provide a good way to make difference equations more understandable
to those of us for whom differential equations are familiar tools of the trade. In
presenting a given topic, the attempt has therefore been made, whenever possible,
to follow the analysis for differential equations by the analogous analysis for dif-
ference equations.

It is obvious to anyone familiar with this subject that many topics have not been
considered here. It was not our intention to write an encyclopedia and hence choices
had to be made. Among the topics omitted are nonlinear differential and difference
equations, partial differential and difference equations in two or more variables, and
chaos theory.
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Introduction

The history of difference equations, if one includes recursion relations, spans the
history of mathematics.1 It starts with the beginnings of mathematics in
Mesapotamia of the second millennium BCE. There, recursion relations were used
to calculate approximations to the square root of 2, although only one step of the
recursion was considered, [17]. Recursion relations that may be regarded as a
precursor of difference equations in that they go beyond the first step were pre-
sented in some detail by the very prolific mathematician and engineer, Heron of
Alexandria (c. 10—90 CE). In Metrica, the book in which he describes how to
calculate surfaces and volumes of diverse objects, Heron shows how to obtain a
second approximation to the square root of a number that is not a perfect square,
[21]. A further example in which recursion is presented explicitly is found in the
book written in 1202 by Fibonacci (c. 1170—1250), Liber Abaci (Book of
Calculation), concerning the growth of an idealized rabbit population, leading to the
sequence which bears his name. At the present time, recursion relations introduce
one of the most significant concepts in physics today: chaos [14].

In Chap. 1 we present formulas for the operators E and Δ frequently used in the
analysis of difference equations. In Chap. 2 we consider the solution of homogeneous
and inhomogeneous nth order differential and difference equations. Section 2.1
presents the method of variation of constants, also known as variation of parameters,
which may be used to obtain the solution to an nth order inhomogeneous equation
when n linearly independent solutions to the homogeneous equation are known. This
is applied to both differential and difference equations (see subsections 2.1.1 and 2.1.2,
respectively).We also formulate thematrix equivalent of all the equations, resulting in
first-order differential and difference matrix equations. In Sect.2.2 we present the
method of reduction of order. This transforms an nth order linear equation (homo-
geneous or inhomogeneous) into an equation of order n – 1 when one solution of the
homogeneous equation is known. This is carried through for both differential and
difference equations.We present these twomethods—reduction of order and variation

1A succinct history is given in the book review by Kelley [28].
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of parameters—separately, since that is how they are generally found in the literature.
However, as has been shown in a succinct article by Phil Locke [31], each of these
procedures can be viewed as a particular limiting case in the solution of an nth order
linear inhomogeneous equation when m linearly independent solutions, 1�m� n,
of the nth order homogeneous equation are known:m ¼ 1 corresponds to reduction of
order,m ¼ n corresponds to variation of parameters. Related treatmentsmay be found
in [18, Chapter IX, Sect. 3, pp. 319−322] and in [20, Chapter IV, Sect. 3, pp. 49−54].
In Chap. 3 we consider in more detail first-order differential and difference equations.
In Chap. 4 we consider second-order equations, comparing the results obtained by the
methods of reduction of order and variation of constants. In Chap. 5 we consider
self-adjoint differential and difference equations. Chapter 6 deals with Green’s
function, for differential equations in Sect. 6.1 and for difference equations in
Sect. 6.2. In Chap. 7 we consider generating functions, z-transforms, Laplace trans-
forms, and the solution of linear differential and difference equations. Section 7.1 deals
with Laplace transforms and the solution of linear differential equations with constant
coefficients. Section 7.2 deals with generating functions and the solution of linear
difference equations with constant coefficients. Section 7.3 deals with Laplace
transforms and the solution of linear differential equations with polynomial coeffi-
cients. In Sect.7.4 we present an alternative method for the solution of homogeneous
linear differential equations with linear coefficients. In Sect. 7.5 we consider gener-
ating functions and the solution of linear difference equations with polynomial
coefficients. Section 7.6 gives an extensive treatment of the solution of homogeneous
linear difference equation with linear coefficients. Subsection 7.6.1 considers the
solution of second order homogeneous differential equations with linear coefficients
through transformation of dependent and independent variables. Subsection 7.6.2
considers the solution of second order homogeneous difference equations with linear
coefficients through transformation of dependent and independent variables.
Chapter 8 presents a dictionary of difference equations with polynomial coefficients.
In Appendix A we derive an expression for the higher-order difference of the product
of two functions. Appendix B deals with notation used in this work. Appendix C
presents derivations of useful formulas dealing with the Wronskian determinant.
Appendix D presents derivations of useful formulas dealing with the Casoratian
determinant. In Appendix E we give a proof of Cramer’s rule, which we employ
throughout this work for the solution of matrix equations. Appendix F deals with
Green’s function and the superposition principle. InAppendixGwe derive the inverse
of a few generating functions and Laplace transforms that are of particular use in the
solution of second order linear differential and difference equations with linear
coefficients. In Appendix H we give a few of the transformations of the hypergeo-
metric function 2F1(a, b; c; z)which have been useful in the analysis presented in this
work. In Appendix I we list the confluent hypergeometric functions which result from
different choices of integration path for the integrals given in Eqs. (7.200−7.203). In
Appendix J we consider the second solution to the difference equation for the con-
fluent hypergeometric function in which the usual first parameter is a non-positive
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integer and the second parameter is a positive integer, i.e., a degenerate case for which
the usual second solution is no longer independent of the first. We derive a
closed-form polynomial solution for which details are given in [37]. We show that a
solution in the form of an infinite series may be obtained from the known expressions
for the confluent hypergeometric function, as given in [36, Sect. 13.2(i), Eq. 13.2.9].
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Chapter 1
Operators

In the expression for a differential equation the derivative operator D ≡ d/dx and
powers of this operator, Dk, (k = 1, 2, . . .), operate on a function y(x). The rules for
Dk operating on the product or the ratio of two functions are dealt with in elementary
calculus. In this chapter we consider the corresponding operator, �, for difference
equations and derive expressions for �k operating on the product or the ratio of
two functions and compare them to the corresponding expressions for the derivative
operator.

There are two operators which are frequently used in the analysis of difference
equations: E and�. Although we will not rely exclusively on them in our work, they
often prove useful. They are defined by

Eyn = yn+1 (1.1)

�yn = yn+1 − yn (1.2)

from which it follows that

�yn = (E − 1)yn (1.3)

or

� = E − 1, E = 1 + � (1.4)

These operators may be applied successively:

E2yn = E(Eyn) = yn+2 (1.5)

or, more generally,

Ek yn = yn+k (1.6)

© Springer International Publishing Switzerland 2016
L.C. Maximon, Differential and Difference Equations,
DOI 10.1007/978-3-319-29736-1_1
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2 1 Operators

Similarly,

�2yn = �(�yn) = yn+2 − 2yn+1 + yn (1.7)

and, more generally,

�k yn = (E − 1)k yn

=
k∑

j=0

(−1)k− j

(
k

j

)
E j yn

= (−1)k
k∑

j=0

(−1) j

(
k

j

)
yn+ j (1.8)

Just as the above equation expresses �k yn in terms of a sum over yn+ j , it will also
be useful in the analysis that follows to express yn+ j as a sum over �k yn . From (1.6)
and (1.4) we have

yn+k = Ek yn

= (1 + �)k yn

=
k∑

j=0

(
k

j

)
� j yn (1.9)

In analogywithmany expressions for the differential operator, similar expressions
exist for the difference operator:

d(u(x)v(x))

dx
= u(x)v′(x) + u′(x)v(x)

�(unvn) = un+1�vn + vn�un

= un�vn + vn+1�un (1.10)

Similarly,

d

dx

(
u(x)

v(x)

)
= v(x)u′(x) − u(x)v′(x)

v(x)2

�

(
un

vn

)
= vn�un − un�vn

vnvn+1
(1.11)



1 Operators 3

It may be noted in (1.10) that the difference operator lacks the evident symmetry
of the differential operator. This has the consequence that the higher-order difference
of the product of two functions is more complicated than the equivalent expression
for the differential operator. For the differential operator we have

dk(u(x)v(x))

dxk
=

k∑

j=0

(
k

j

)
u(k− j)(x)v( j)(x) (1.12)

The equivalent expression for the difference operator is given below; details of
the derivation are given in Appendix A.

�k(unvn) = k!
k∑

n=0

k∑

m=0

�nun�
mvn

(k − n)!(k − m)!(n + m − k)!

in which it is understood that terms vanish when k > n + m. Alternatively, we may
write

�k(unvn) = k!
k∑

n=0

k∑

m=0

�k−nun�
k−mvn

n!m!(k − n − m)!

in which terms vanish when k < n + m.
Throughout this work we will frequently write sums and products. In this con-

nection we adopt the convention that

n−1∏

k=0

≡ 1 for n = 0 (1.13)

and

n−1∑

k=0

≡ 0 for n = 0. (1.14)



Chapter 2
Solution of Homogeneous
and Inhomogeneous Linear Equations

Although we are concerned primarily with equations (differential and difference) of
first and second order, the analysis of these equations applies equally to equations of
higher order. Themethods for dealingwith these equations is in fact best elucidated by
considering the nth order equations and then giving the results for the first and second
order equations as specific examples. We first present the analysis for differential
equations and then follow with the analysis for difference equations.

The idea essential to most of the methods for solving an inhomogeneous equation
of nth order is that if one knows a number, m, (1 ≤ m ≤ n) of linearly independent
solutions of the homogeneous equation, then one can derive a linear equation of order
n − m. For the case in which one knows one solution of the homogeneous equation
(m = 1), the method is referred to as “reduction of order”. This is particularly
useful if one starts with a second order homogeneous or inhomogeneous equation,
resulting in a first order equation which can then be solved directly in closed form.
For the case in which one knows all n linearly independent solutions of the nth order
homogeneous equation, the method (discussed earlier by Lagrange) is referred to as
“variation of parameters” or “variation of constants”—a characterization that will
become clear shortly. One then obtains the solution to the inhomogeneous equation
in terms of the n linearly independent solutions of the homogeneous equation. The
case of an intermediate m, 1 < m < n, has been treated succinctly in a short article
by Locke [31], linking the particular cases m = 1 (reduction of order) and m = n
(variation of parameters). An alternative approach is given in [18]. An analysis for
arbitrary m, 1 ≤ m ≤ n, in which the nth order equation is transformed into a first
order matrix equation, is given in [20].

The nth order linear homogeneous differential equation has the form

Ly(x) ≡ an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a0(x)y(x)

=
n∑

i=0

ai (x)y(i)(x) = 0 (2.1)

© Springer International Publishing Switzerland 2016
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6 2 Solution of Homogeneous and Inhomogeneous Linear Equations

and the corresponding inhomogeneous equation is

n∑

i=0

ai (x)y(i)(x) = f (x) (2.2)

where

y(i)(x) ≡ di y(x)

dxi
. (2.3)

The corresponding N th order linear homogeneous and inhomogeneous difference
equations are

Ly(n) ≡ pN (n)y(n + N ) + pN−1(n)y(n + N − 1) + · · · + p0(n)y(n)

=
N∑

i=0

pi (n)y(n + i) = 0 (2.4)

and
N∑

i=0

pi (n)y(n + i) = qn (2.5)

respectively. Here the coefficients pi (n) are often also functions of independent
parameters. We note that these two N th order difference equations can be written
in a form similar to that for the differential equations using the difference operator
�y(n) = y(n + 1) − y(n). From (1.9) we have

N∑

i=0

pi (n)y(n + i) =
N∑

i=0

pi (n)

i∑

j=0

(
i

j

)
� j y(n)

=
N∑

j=0

� j y(n)

N∑

i= j

(
i

j

)
pi (n). (2.6)

We can then write the homogeneous and inhomogeneous difference equations in
the form

N∑

j=0

r j (n)� j y(n) = 0 (2.7)

and
N∑

j=0

r j (n)� j y(n) = qn (2.8)

http://dx.doi.org/10.1007/978-3-319-29736-1_1
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respectively, where

r j (n) =
N∑

i= j

(
i

j

)
pi (n). (2.9)

2.1 Variation of Constants

We start with an analysis of the method of variation of constants since it provides
the clearest understanding of the essential aspects of the method.

2.1.1 Inhomogeneous Differential Equations

As given above, the nth order homogeneous differential equation is

n∑

j=0

a j (x)y( j)(x) = 0 (2.10)

and the corresponding inhomogeneous equation is

n∑

j=0

a j (x)y( j)(x) = f (x). (2.11)

We assume that the solution to the inhomogeneous equation, y(x), and its n − 1
derivatives, can be given in terms of the n linearly independent solutions of the
homogeneous equation, uk(x), (k = 1, 2, . . . , n) by

y( j)(x) =
n∑

k=1

ck(x)u( j)
k (x) j = 0, 1, . . . , n − 1. (2.12)

We then have n linear equations for the n functions ck(x). They do not define the
functions ck(x), but merely relate them to the derivatives y( j)(x), which is possible
given the linear independence of the functions uk(x). We note that if the ck(x) are
constants, then y(x) as defined by this equation is a solution of the homogeneous
equation. By allowing the ck(x) to vary (i.e., to be functions of x), we can determine
them so that y(x) is a solution of the inhomogeneous equation, whence the name
variation of constants, or variation of parameters. An equation for the ck is obtained
by substituting (2.12) into (2.2); still required is y(n)(x). Differentiating (2.12) for
j = n − 1 we have
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y(n)(x) =
n∑

k=1

ck(x)u(n)
k (x) +

n∑

k=1

c′
k(x)u(n−1)

k (x). (2.13)

Substituting (2.12) and (2.13) in (2.2) then gives

f (x) =
n−1∑

j=0

a j (x)

n∑

k=1

ck(x)u( j)
k (x) + an(x)

[
n∑

k=1

ck(x)u(n)
k (x) +

n∑

k=1

c′
k(x)u(n−1)

k (x)

]

=
n∑

j=0

a j (x)

n∑

k=1

ck(x)u( j)
k (x) + an(x)

n∑

k=1

c′
k(x)u(n−1)

k (x). (2.14)

Interchanging the order of summation in the first term here we have

n∑

j=0

a j (x)

n∑

k=1

ck(x)u( j)
k (x) =

n∑

k=1

ck(x)

n∑

j=0

a j (x)u( j)
k (x) = 0 (2.15)

since the uk(x) are solutions of the homogeneous equation (2.1). We now have one
equation for the first derivative of the n functions ck(x):

n∑

k=1

c′
k(x)u(n−1)

k (x) = f (x)

an(x)
≡ gn(x). (2.16)

The remaining n − 1 equations defining the functions c′
k follow from (2.12): Differ-

entiation of (2.12) gives

y( j+1)(x) =
n∑

k=1

ck(x)u( j+1)
k (x) +

n∑

k=1

c′
k(x)u( j)

k (x). (2.17)

Here, from (2.12), for j = 0, 1, . . . , n − 2, the first sum on the right hand side is
y( j+1)(x), from which

n∑

k=1

c′
k(x)u( j)

k (x) = 0, j = 0, 1, . . . , n − 2. (2.18)

Equations (2.16) and (2.18) now give n equations for the n functions c′
k(x) which

can then be integrated to give ck(x).
All of the results just given can be obtained more succinctly by formulating the

matrix equivalent of these equations, giving a first order matrix differential equation.
To that end, we define the Wronskian matrix, W(x),
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W(x) =

⎛

⎜⎜⎜⎝

u1(x) u2(x) · · · un(x)

u(1)
1 (x) u(1)

2 (x) · · · u(1)
n (x)

...
...

...
...

u(n−1)
1 (x) u(n−1)

2 (x) · · · u(n−1)
n (x)

⎞

⎟⎟⎟⎠ (2.19)

and the column vectors c(x), g(x)

c(x) =

⎛

⎜⎜⎜⎝

c1(x)

c2(x)
...

cn(x)

⎞

⎟⎟⎟⎠ (2.20)

g(x) =

⎛

⎜⎜⎜⎝

0
0
...

gn(x)

⎞

⎟⎟⎟⎠ (2.21)

and

y(x) =

⎛

⎜⎜⎜⎝

y1(x)

y2(x)
...

yn(x)

⎞

⎟⎟⎟⎠ (2.22)

in which the components y j (x) are given in terms of the derivatives of the solution
to the inhomogeneous equation (2.11) by

y1(x) = y(x), y2(x) = y(1)(x), . . . , yn(x) = y(n−1)(x) (2.23)

from which
y′

j (x) = y j+1(x), j = 1, 2, . . . , n − 1 (2.24)

The inhomogeneous equation (2.11) may then be written in the form

an(x)y′
n(x) +

n−1∑

j=0

a j (x)y j+1(x) = f (x) (2.25)

or

y′
n(x) = −

n−1∑

j=0

b j y j+1(x) + gn(x) (2.26)

where
b j = b j (x) = a j (x)/an(x), gn(x) = f (x)/an(x). (2.27)
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Taken together, Eqs. (2.24) and (2.26) then give y′
j (x) in terms of y j (x) for j =

1, 2, . . . n and can be written in matrix form:

y′ = By + g (2.28)

where

B(x) =

⎛

⎜⎜⎜⎝

0 1 · · · 0
...

...
...

...

0 0 · · · 1
−b0 −b1 · · · −bn−1

⎞

⎟⎟⎟⎠ (2.29)

Equation (2.12), defining the n − 1 derivatives of y(x), then takes the simple form

y = Wc (2.30)

when written in terms of the Wronskian matrix W(x). Substituting this in the matrix
form of the inhomogeneous equation, (2.28), then gives

(Wc)′ = W′c + Wc′ = BWc + g (2.31)

From the homogeneous equation satisfied by uk(x):

u(n)
k = −

n−1∑

j=0

b j u
( j)
k , k = 1, 2, . . . , n (2.32)

we have
B(x)W(x) = W′(x), (2.33)

which, when substituted in (2.31), gives

Wc′ = g, (2.34)

which is equivalent to Eqs. (2.16) and (2.18). Integration of this equation gives

c(x) =
∫ x

W−1(x ′)g(x ′)dx ′, (2.35)

and from (2.30),

y(x) = W(x)

∫ x

W−1(x ′)g(x ′)dx ′ (2.36)

If we have an initial value problem in which y(x) and its n derivatives are specified
at a point x = x0, then integration of equation (2.34) gives
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c(x) = c(x0) +
∫ x

x0

W−1(x ′)g(x ′)dx ′ (2.37)

Multiplying both sides of this equation by W(x) and using c(x0) = W−1(x0)y(x0)
from (2.30) we have the solution to the inhomogeneous equation (2.11) in matrix
form:

y(x) = W(x)

(
W−1(x0)y(x0) +

∫ x

x0

W−1(x ′)g(x ′)dx ′
)

. (2.38)

We note that the three essential equations in this analysis are (2.28), y′ = By +g,
which defines the inhomogeneous equation and is equivalent to Eq. (2.2); (2.30),
y = Wc, which relates the functions ck(x) to the derivatives of y(x) and is equivalent
to Eq. (2.12); and (2.33),BW = W′, which gives the homogeneous equation satisfied
by its solutions uk(x) and is equivalent to Eq. (2.32). With only minor notational
modifications, these three equations form the basis of the analysis for difference
equations (note Eqs. (2.64), (2.66) and (2.69)).

An alternate but completely equivalent approach to the solution of the nth order
linear inhomogeneous equation, (2.28),

y′ = By + g, (2.39)

is provided by consideration of theWronskian (in the case of the differential equation)
and the Casoratian (in the case of the difference equation). We start from Eq. (2.34),

Wc′ = g, (2.40)

The solution to this set of equations is given by Cramer’s rule (see Appendix E),
by which the column vector g(x), (2.21), replaces the j th column in the Wronskian
matrix W(x), (2.19). The elements c′

j (x) are then given by

c′
j (x) = 1

W (x)

∣∣∣∣∣∣∣∣∣∣∣∣

u1 · · · u j−1 0 u j+1 · · · un

u(1)
1 · · · u(1)

j−1 0 u(1)
j+1 · · · u(1)

n
...

...
...

...
...

...
...

u(n−2)
1 · · · u(n−2)

j−1 0 u(n−2)
j+1 · · · u(n−2)

n

u(n−1)
1 · · · u(n−1)

j−1 gn u(n−1)
j+1 · · · u(n−1)

n

∣∣∣∣∣∣∣∣∣∣∣∣

(2.41)

where uk = uk(x), (k = 1, 2, . . . , n), are the n linearly independent solutions of
(2.1) and W is the determinant of the Wronskian matrix (2.19). (See Appendix B
for j = 1 and j = n.) Expanding the determinant (2.41) in the elements of the j th
column, c′

j (x) can be expressed in terms of an (n − 1) × (n − 1) determinant:
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c′
j (x) = (−1)n+ j gn(x)

W (x)

∣∣∣∣∣∣∣∣∣

u1 · · · u j−1 u j+1 · · · un

u(1)
1 · · · u(1)

j−1 u(1)
j+1 · · · u(1)

n
...

...
...

...
...

...

u(n−2)
1 · · · u(n−2)

j−1 u(n−2)
j+1 · · · u(n−2)

n

∣∣∣∣∣∣∣∣∣

(2.42)

(See Appendix B for j = 1 and j = n.)
The matrix solution to the inhomogeneous equation may then be written if one

constructs a column vector c′(x) whose elements are the c′
j (x) for j = 1, 2, . . . , n.

Equation (2.30), y(x) = W(x)c(x), then gives

y(x) = W(x)

∫ x

x0

c′(x ′)dx ′ (2.43)

The first element in the column vector y(x) gives the function y(x):

y(x) =
n∑

j=1

u j (x)

∫ x

x0

c′
j (x ′)dx ′ (2.44)

with c′
j (x) given in (2.42). This provides a particular solution, to which an arbitrary

solution to the homogeneous equation may be added to satisfy boundary conditions.

2.1.2 Inhomogeneous Difference Equations

We now look at the equivalent analysis for the N th order inhomogeneous difference
equation

pN (n)y(N +n)+ pN−1(n)y(N +n −1)+· · ·+ p0(n)y(n) =
N∑

j=0

p j (n)y(n + j) = qN (n)

(2.45)
The N th order homogeneous equation is

N∑

j=0

p j (n)y(n + j) = 0, (2.46)

for which the N linearly independent solutions are denoted by uk(n), (k =
1, 2, . . . , N ), that is,

N∑

j=0

p j (n)uk(n + j) = 0, k = 1, 2, . . . , N (2.47)
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As with the differential equation, we assume that the solution to the inhomogeneous
equation, y(n), and the succeeding N − 1 terms y(n + 1), y(n + 2), . . . , y(n +
N − 1) can be given in terms of the N linearly independent solutions uk(n) of the
homogeneous equation by

y(n + j) =
N∑

k=1

ck(n)uk(n + j) j = 0, 1, . . . , N − 1 (2.48)

We thus have N linear equations determining the N functions, ck(n),which is possible
given the linear independence of the functions uk(n). We note that if the ck are
constants, then y(n) as defined by this equation is a solution of the homogeneous
equation. By allowing the ck to vary (i.e., to be functions of n), we can determine
them so that y(n) is a solution of the inhomogeneous equation. From (2.48) we can
thus write

y(n + j + 1) =
N∑

k=1

ck(n)uk(n + j + 1) for j = 0, 1, . . . , N − 2 (2.49)

as well as

y(n + j + 1) =
N∑

k=1

ck(n + 1)uk(n + j + 1) for j = 0, 1, . . . , N − 2 (2.50)

from which we have the N − 1 equations

N∑

k=1

�ck(n)uk(n + j + 1) = 0, j = 0, 1, . . . , N − 2 (2.51)

From (2.48) for j = N − 1 we have

y(n + N − 1) =
N∑

k=1

ck(n)uk(n + N − 1) (2.52)

from which

y(n + N ) =
N∑

k=1

ck(n + 1)uk(n + N )

=
N∑

k=1

ck(n)uk(n + N ) +
N∑

k=1

�ck(n)uk(n + N ) (2.53)
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Substituting (2.48) and (2.53) in (2.45) we then have

N∑

j=0

p j (n)

N∑

k=1

ck(n)uk(n + j) + pN (n)

N∑

k=1

�ck(n)uk(n + N ) = qN (n) (2.54)

Inverting the order of summation in the first term here, we see that this term vanishes
since the uk(n) satisfy the homogeneous equation (2.46). We thus have

N∑

k=1

�ck(n)uk(n + N ) = qN (n)

pN (n)
≡ hN (n) (2.55)

Equation (2.55) together with (2.51) for j = 0, 1, . . . , N − 2 then give N equations
for the N differences �ck(n) which can then be summed to give the functions ck(n).

We can now formulate the entire analysis for difference equations in terms of
matrices, in a manner quite similar to that for differential equations, giving a first
order matrix difference equation. To that end we define the Casoratian matrix:

K(n) =

⎛

⎜⎜⎜⎝

u1(n) u2(n) · · · uN (n)

u1(n + 1) u2(n + 1) · · · uN (n + 1)
...

...
...

...

u1(n + N − 1) u2(n + N − 1) · · · uN (n + N − 1)

⎞

⎟⎟⎟⎠ (2.56)

and the column vectors c(n), h(n)

c(n) =

⎛

⎜⎜⎜⎝

c1(n)

c2(n)
...

cN (n)

⎞

⎟⎟⎟⎠ (2.57)

h(n) =

⎛

⎜⎜⎜⎝

0
0
...

hN (n)

⎞

⎟⎟⎟⎠ (2.58)

and

y(n) =

⎛

⎜⎜⎜⎝

y1(n)

y2(n)
...

yN (n)

⎞

⎟⎟⎟⎠ (2.59)

in which the components y j (n) are given in terms of the solution of the inhomoge-
neous equation (2.45) for successive indices by

y j (n) = y( j + n − 1), j = 1, 2, . . . , N (2.60)
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We can then write the inhomogeneous equation (2.45) in the form

y(N + n) + bN−1y(N + n − 1) + · · · + b0y(n) = hN (n) (2.61)

or

y(N + n) = −
N−1∑

j=0

b j y j+1(n) + hN (n) (2.62)

where
b j = b j (n) = p j (n)/pN (n), hN (n) = qN (n)/pN (n) (2.63)

Thismay then bewritten inmatrix form (cf. Eq. (2.28) for differential equations) as

y(n + 1) = B(n)y(n) + h(n) (2.64)

where

B(n) =

⎛

⎜⎜⎜⎝

0 1 · · · 0
...

...
...

...

0 0 · · · 1
−b0 −b1 · · · −bN−1

⎞

⎟⎟⎟⎠ (2.65)

Equation (2.48) giving the N terms y(n + j) for j = 0, 1, . . . , N − 1 then takes
the simple matrix form (cf. Eq. (2.30) for differential equations)

y(n) = K(n)c(n) (2.66)

Substituting (2.66) in (2.64) we then have

y(n + 1) = B(n)K(n)c(n) + h(n) (2.67)

Here

B(n)K(n) =

⎛

⎜⎜⎜⎝

0 1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · 1
−b0 −b1 · · · −bn−1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

u1(n) u2(n) · · · uN (n)

u1(n + 1) u2(n + 1) · · · uN (n + 1)
.
.
.

.

.

.
.
.
.

.

.

.

u1(n + N − 1) u2(n + N − 1) · · · uN (n + N − 1)

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎝

u1(n + 1) u2(n + 1) · · · uN (n + 1)
u1(n + 2) u2(n + 2) · · · uN (n + 2)
.
.
.

.

.

.
.
.
.

.

.

.

u1(n + N ) u2(n + N ) · · · uN (n + N )

⎞

⎟⎟⎟⎠ (2.68)
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Thus
B(n)K(n) = K(n + 1) (2.69)

(cf. Eq. (2.33) for differential equations.) The last line in K(n + 1) follows from the
homogeneous equation (2.47) satisfied by the functions uk(n):

uk(N +n) = −b0(n)uk(n)−b1(n)uk(n +1)−· · ·−bN (n)uk(n + N −1) (2.70)

We note that Eqs. (2.64), (2.66) and (2.69) for difference equations correspond
respectively to Eqs. (2.28), (2.30) and (2.33) for differential equations. Substituting
(2.69) in (2.64) then gives

y(n + 1) = K(n + 1)c(n) + h(n) (2.71)

However, from (2.66) we can also write

y(n + 1) = K(n + 1)c(n + 1) (2.72)

so that from the last two equations we have

K(n + 1)�c(n) = h(n), (2.73)

from which
�c(n) = K−1(n + 1) h(n) (2.74)

and

c(n + 1) = c(0) +
n∑

j=0

K−1( j + 1) h( j) (2.75)

(cf. (2.37) for differential equations.) Here, the term c(0) adds an arbitrary solu-
tion of the homogeneous equation and is determined by the initial conditions.
Equation (2.73) is the matrix form of Eq. (2.55) together with (2.51) for j =
0, 1, . . . , N −2. Equations (2.73), (2.74) and (2.75) given above for difference equa-
tions correspond to Eqs. (2.34) and (2.37) for differential equations. Writing (2.75)
with n + 1 replaced by n we have

c(n) = c(0) +
n∑

j=1

K−1( j) h( j − 1) (2.76)

Multiplying both sides of this equation by K(n) and using (2.66) (from which
c(0) = K−1(0)y(0)) we have the solution to the inhomogeneous equation (2.64)
in matrix form:

y(n) = K(n)

⎛

⎝K−1(0)y(0) +
n∑

j=1

K−1( j) h( j − 1)

⎞

⎠ (2.77)
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Similar to the case for differential equations, we note that the three essential
equations in the analysis for difference equations are (2.64), y(n +1) = B(n)y(n)+
h(n), which defines the inhomogeneous equation and is equivalent to Eq. (2.45);
(2.66), y(n) = K(n)c(n), which relates the N functions ck(n) to N successive
terms y(n + j) for j = 0, 1, . . . , N − 1 and is equivalent to Eq. (2.48); and (2.69),
B(n)K(n) = K(n + 1), which gives the homogeneous equation satisfied by its
solutions uk(n) and is equivalent to Eq. (2.47).

An alternate but completely equivalent approach to the solution of the N th order
linear inhomogeneous equation, (2.64),

y(n + 1) = B(n)y(n) + h(n) (2.78)

is provided by consideration of the Casoratian in the case of the difference equation.
We start from Eq. (2.73),

K(n + 1)�c(n) = h(n), (2.79)

Replacing n + 1 by n we have

K(n)�c(n − 1) = h(n − 1), (2.80)

The solution to this matrix equation is given by Cramer’s rule, from which the
elements �c j (n − 1) of the column vector �c(n − 1) for j = 1, 2, . . . , N are
given by

�c j (n − 1) = 1

K (n)

∣∣∣∣∣∣∣∣∣∣∣∣

u1(n) · · · u j−1(n) 0 u j+1(n) · · · uN (n)

u1(n + 1) · · · u j−1(n + 1) 0 u j+1(n + 1) ·, uN (n + 1)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

u1(n + N − 2) · · · u j−1(n + N − 2) 0 u j+1(n + N − 2) · · · uN (n + N − 2)
u1(n + N − 1) · · · u j−1(n + N − 1) hN (n − 1) u j+1(n + N − 1) · · · uN (n + N − 1),

∣∣∣∣∣∣∣∣∣∣∣∣
(2.81)

where u j = u j (n), j = 1, 2, . . . , N , are the N linearly independent solutions of
(2.4) and K (n) is the determinant of the Casoratian matrix (2.56). Expanding the
determinant (2.81) in the elements of the j th column, the elements �c j (n − 1) can
be expressed in terms of an (N − 1) × (N − 1) determinant:

�c j (n−1) = (−1)N+ j hN (n − 1)

K (n)

∣∣∣∣∣∣∣∣∣∣

u1(n) · · · u j−1(n) u j+1(n) · · · uN (n)

u1(n + 1) · · · u j−1(n + 1) u j+1(n + 1) · · · uN (n + 1)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

u1(n + N − 2) · · · u j−1(n + N − 2) u j+1(n + N − 2) · · · uN (n + N − 2)

∣∣∣∣∣∣∣∣∣∣

(2.82)

It is clear that the determinant as written in (2.82) is valid for j = 2, 3, . . . , N − 1.
For j = 1 and j = N (as well as for all 1 ≤ j ≤ N ) one must simply omit the
j th column. The matrix solution to the inhomogeneous equation may then be written



18 2 Solution of Homogeneous and Inhomogeneous Linear Equations

from the column vector�c(n−1)whose elements are the�c j (n−1) given in (2.82)
for j = 1, 2, . . . , N . Equation (2.66), y(n) = K(n)c(n), then gives y(n), with

y(n) = K(n)

(
K−1(0)y(0) +

n∑

n′=1

�c(n′ − 1)

)
(2.83)

The first term in parentheses gives a solution of the homogeneous equation. Therefore
a particular matrix solution of the inhomogeneous equation is given by

y(n) = K(n)

n∑

n′=1

�c(n′ − 1) (2.84)

The first element of this matrix equation gives the function y(n):

y(n) =
N∑

j=1

u j (n)

n∑

n′=1

�c j (n
′ − 1) (2.85)

with �c j (n′ − 1) given by (2.82). This provides a particular solution to which an
arbitrary solution to the homogeneous equation may be added to satisfy boundary
conditions.

2.2 Reduction of the Order When One Solution
to the Homogeneous Equation Is Known

The present method reduces the order of an nth order linear operator, giving an
operator of order n − 1 when one solution to the homogeneous equation is known.
Thus, annth order homogeneous equation Ly = 0 is transformed into a homogeneous
equationL w = 0 of order n−1 inw; an nth order inhomogeneous equation Ly = f
is transformed into an inhomogeneous equation L w = f of order n − 1 in w. (In
particular, for a second order equation we obtain a first order equation, which is
then soluble in closed form.) The details in the analysis of differential and difference
equations are quite similar, and the approach is the same as that given earlier in
connection with the method of variation of constants (cf. (2.12)): By writing the
dependent variable (y(x) or y(n)) as the product of two functions,

y(x) = c(x)u(x) (2.86)

or
y(n) = c(n)u(n), (2.87)
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one of which satisfies the homogeneous equation (Lu(x) = 0 or Lu(n) = 0,
respectively), one can write the original equation in a form such that only deriv-
atives (or differences) of the unknown function (c(x) or c(n)) appear. Then, defining

w(x) = c′(x) (2.88)

and
w(n) = �c(n) = c(n + 1) − c(n), (2.89)

the order of the equation for w(x) or w(n) is less by one than that of the original
equation.

We start by considering the nth order differential operator given in (2.1), viz.,

Ly(x) ≡ an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a0(x)y(x) =
n∑

j=0

a j (x)y( j)(x)

(2.90)
Writing

y(x) = c(x)u(x) (2.91)

where u(x) is assumed to be a known solution of

Lu(x) =
n∑

j=0

a j (x)u( j)(x) = 0, (2.92)

we have

y(k)(x) = dk(c(x)u(x))

dxk

=
k∑

j=0

(
k

j

)
c( j)(x)u(k− j)(x)

(2.93)

and from (2.1),

Ly(x) =
n∑

k=0

ak(x)y(k)(x)

=
n∑

k=0

ak(x)

k∑

j=0

(
k

j

)
c( j)(x)u(k− j)(x)

=
n∑

j=0

c( j)(x)

n∑

k= j

(
k

j

)
ak(x)u(k− j)(x)

=
n∑

j=1

c( j)(x)

n∑

k= j

(
k

j

)
ak(x)u(k− j)(x) + c(x)

n∑

k=0

ak(x)u(k)(x)

(2.94)
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The last sum here is zero from (2.92). Then, defining

w(x) ≡ c(1)(x), (2.95)

we obtain a differential operator of order n − 1 in w(x):

n∑

j=1

c( j)(x)

n∑

k= j

(
k

j

)
ak(x)u(k− j)(x) =

n∑

j=1

w( j−1)(x)

n∑

k= j

(
k

j

)
ak(x)u(k− j)(x)

=
n−1∑

j=0

w( j)(x)

n∑

k= j+1

(
k

j + 1

)
ak(x)u(k− j−1)(x)

=
n−1∑

j=0

w( j)(x)

n−1∑

k= j

(
k + 1

j + 1

)
ak+1(x)u(k− j)(x)

= L w (2.96)

We next look at the analogous procedure for an N th order linear homogeneous
difference operator, given in (2.4), viz.,

Ly(n) ≡ pN (n)y(n + N ) + pN−1(n)y(n + N − 1) + · · · + p0(n)y(n) (2.97)

Again, we write the solution of this equation as the product of two functions:

y(n) = c(n)u(n) (2.98)

where we assume u(n) to be a known solution of the homogeneous equation

Lu(n) = pN (n)u(n + N ) + pN−1(n)u(n + N − 1) + · · · + p0(n)u(n)

=
N∑

k=0

pk(n)u(n + k)

= 0 (2.99)

The operator (2.97) is then

Ly(n) = pN (n)c(n + N )u(n + N ) + pN−1(n)c(n + N − 1)u(n + N − 1)

+ · · · + p0(n)c(n)u(n)

(2.100)
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Applying (1.9) to the function c(n + k), this operator can be written in the form

N∑

k=0

pk(n)u(n + k)

k∑

j=0

(
k

j

)
� j c(n)

=
N∑

k=1

pk(n)u(n + k)

k∑

j=1

(
k

j

)
� j c(n) + c(n)

N∑

k=0

pk(n)u(n + k) (2.101)

As with the differential equation, the last sum in the above equation is zero in view
of (2.99), giving

Ly(n) =
N∑

k=1

pk(n)u(n + k)

k∑

j=1

(
k

j

)
� j c(n) (2.102)

Then, in analogy with (2.95), we define

w(n) = �c(n), (2.103)

giving

N∑

k=1

pk(n)u(n + k)

k∑

j=1

(
k

j

)
� j−1w(n) =

N∑

j=1

� j−1w(n)

N∑

k= j

(
k

j

)
pk(n)u(n + k)

=
N−1∑

j=0

� j w(n)

N∑

k= j+1

(
k

j + 1

)
pk(n)u(n + k)

=
N−1∑

j=0

� j w(n)

N−1∑

k= j

(
k + 1

j + 1

)
pk+1(n)u(n + k + 1)

= L w(n) (2.104)

which is a difference operator of order N − 1 in w(n).

2.2.1 Solution of Nth Order Inhomogeneous Equations
When m Linearly Independent Solutions
of the Homogeneous Equation are Known,
Where 1 < m < N

The two methods—reduction of order and variation of parameters—have been pre-
sented separately, since that is how they are generally found in the literature.However,
as has been shown in a succinct article by Phil Locke [31], each of these procedures

http://dx.doi.org/10.1007/978-3-319-29736-1_1
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can be viewed as particular limiting cases in the solution of an nth order linear non-
homogeneous equation when m ≤ n linearly independent solutions of the nth order
homogeneous equation are known: m = 1 corresponds to reduction of order, m = n
corresponds to variation of parameters. Related treatments may be found in [18,
Chap. IX, Sect. 3, pp. 319–322] and in [20, Chap. IV, Sect. 3, pp. 49–54].



Chapter 3
First Order Homogeneous
and Inhomogeneous Linear Equations

The solution of first order inhomogeneous linear equations provides the simplest
example of themethod of variation of constants given previously inChap.2, Sect. 2.1.
We start by considering the first order differential equation. With n = 1, the homo-
geneous and inhomogeneous equations are given by (2.10) and (2.11) respectively:

a1(x)u′(x) + a0(x)u(x) = 0 (3.1)

and

a1(x)y′(x) + a0(x)y(x) = f (x) (3.2)

For the first order equation, the solution to the homogeneous equation follows directly
by integration:

u′(x)

u(x)
= −a0(x)

a1(x)
(3.3)

giving

u(x) = A exp

(
−

∫ x a0(x ′)
a1(x ′)

dx ′
)

(3.4)

Here the lower limit of the integration may be chosen arbitrarily, it merely introduces
a constant factor to the solution u(x). The method of variation of constants then
gives the solution to the inhomogeneous equation. From (2.12) with n = 1 we have
(omitting the subscripts on c(x) and u(x))

y(x) = c(x)u(x) (3.5)

© Springer International Publishing Switzerland 2016
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and from (2.16)

c′(x)u(x) = f (x)

a1(x)
(3.6)

from which

c(x) =
∫ x f (x ′)

a1(x ′)u(x ′)
dx ′ (3.7)

A particular solution to the inhomogeneous equation is then

y(x) = u(x)

∫ x f (x ′)
a1(x ′)u(x ′)

dx ′ (3.8)

A solution determined by its value at a given point x = x0 may be obtained by adding
to (3.8) a solution of the homogeneous equation. This may be written succinctly by
choosing the lower limit x0 on the integrals in (3.4) and (3.8), and setting A = 1 in
(3.4) so that u(x0) = 1. We then have

y(x) = u(x)

[
y(x0) +

∫ x

x0

f (x ′)
a1(x ′)u(x ′)

dx ′
]

(3.9)

The solutions to the first order homogeneous and inhomogeneous difference equa-
tions followanalogously.Referring to (2.46)with N = 1, thefirst order homogeneous
equation is

p1(n)u(n + 1) + p0(n)u(n) = 0 (3.10)

Writing this in the form

u(n + 1) = − p0(n)

p1(n)
u(n) (3.11)

the solution follows by iteration, giving

u(n) = A(−1)n
n−1∏

k

p0(k)

p1(k)
(3.12)

Here A may be an arbitrary constant or a periodic function of period one. The lower
limit of the product may be chosen arbitrarily, merely introducing a constant factor
to the solution u(n).

The solution to the inhomogeneous equation

p1(n)y(n + 1) + p0(n)y(n) = q1(n) (3.13)

http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
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is again given by the method of variation of constants. From (2.48) we have, with
N = 1 (omitting subscripts on c(n) and u(n)),

y(n) = c(n)u(n) (3.14)

and from (2.55)

�c(n)u(n + 1) = q1(n)

p1(n)
(3.15)

from which

c(n + 1) − c(n) = q1(n)

p1(n)u(n + 1)
(3.16)

Summation then gives

c(n) =
n−1∑

k

q1(k)

p1(k)u(k + 1)
(3.17)

or, alternatively,

c(n) =
n−1∑

k

q1(k)

p0(k)u(k)
(3.18)

A particular solution to the homogeneous equation is then

y(n) = u(n)

n−1∑

k

q1(k)

p1(k)u(k + 1)
(3.19)

A solution determined by its value at a given point n = n0 may be obtained by adding
to (3.19) a solution of the homogeneous equation. This may be written succinctly by
choosing the lower limit n0 on the summation (3.19) and the product in (3.12), and
setting A = (−1)−n0 in (3.12) so that

u(n) = (−1)n−n0

n−1∏

k=n0

p0(k)

p1(k)
(3.20)

and hence

u(n0) = 1 (3.21)

http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
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We then have

y(n) = u(n)

[
y(n0) +

n−1∑

k=n0

q1(k)

p1(k)u(k + 1)

]
(3.22)

We note that the solutions to the first order homogeneous differential and differ-
ence equations are given respectively by theWronskian andCasoratian determinants,
given in Appendices C and D. From (C.2) with n = 1, the Wronskian satisfies the
first order Eq. (3.1), and from (C.1) and (C.3)

W (x) = u1(x) = e
−
∫ x a0(x ′)

a1(x ′) dx ′
, (3.23)

given in (3.4).
From (D.2) with N = 1, the Casoratian satisfies the first order Eq. (3.10), and

from (D.1) and (D.3)

C(n) = u1(n) = (−1)n
n−1∏

k

p0(k)

p1(k)
, (3.24)

given in (3.12).



Chapter 4
Second Order Homogeneous
and Inhomogeneous Equations

Second order equations provide an interesting example for comparing the methods
of variation of constants and reduction of order. As noted in Chap.2, Sect. 2, if one
solution of the homogeneous equation is known then the method of reduction of
order transforms a second order equation into a first order equation, which can then
be solved in closed form. If the original second order equation is homogeneous then
the transformed first order equation is also homogeneous, and its solution provides a
second, linearly independent solution to the second order equation. We first consider
the second order homogeneous differential equation

Ly(x) = a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0, (4.1)

and assume that one solution, u1(x), to the homogeneous equation is known:

Lu1(x) = 0. (4.2)

Then from (2.91), by writing

y(x) = c(x)u1(x), (4.3)

the second degree operator Ly(x) is transformed into a first degree operator L w:

Ly = L w (4.4)

where

w(x) = c′(x) (4.5)

Wedenote byw0(x) the solutionofL w = 0,which thendetermines a second solution
to the homogeneous equation Ly = 0. From (2.96) the function w0(x) satisfies the

© Springer International Publishing Switzerland 2016
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first order homogeneous equation

L (w0) = w′
0(x)a2(x)u1(x) + w0(x)

(
a1(x)u1(x) + 2a2(x)u1

′(x)
) = 0. (4.6)

Writing this in the form

w′
0(x)

w0(x)
= −a1(x)

a2(x)
− 2

u1
′(x)

u1(x)
(4.7)

and integrating, we have

w0(x) = C
exp

(
−

∫ x a1(x ′)
a2(x ′)

dx ′
)

u2
1(x)

(4.8)

which determines a second, linearly independent, solution to the second order homo-
geneous equation:

u2(x) = u1(x)

∫ x

w0(x ′) dx ′. (4.9)

That u1(x) and c(x)u1(x) are linearly independent follows from the Wronskian
determinant

W (x) =
∣∣∣∣
u1(x) c(x)u1(x)

u1
′(x) (c(x)u1(x))′

∣∣∣∣ = c′(x)u2
1(x) = w0(x)u2

1(x)

= C exp

(
−

∫ x a1(x ′)
a2(x ′)

dx ′
)

> 0

(4.10)

The most general solution to the homogeneous equation Ly = 0 is then, from
(4.2) and (4.9),

y(x) = Au1(x) + Bu1(x)

∫ x

w0(x ′) dx ′ (4.11)

A solution satisfying given initial conditions y(x0) and y′(x0) then determines the
constants A and B when the lower limit of the integral is chosen to be x0:

Au1(x0) + Bu1(x0)
∫ x

x0

w0(x ′) dx ′ = y(x0)

Au1
′(x0) + Bu1(x0)w0(x0) = y′(x0)

(4.12)
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Solving for A and B we have

y0(x) = y(x0)
u1(x)

u1(x0)

[
1 +

(
y′(x0)

y(x0)
− u1

′(x0)

u1(x0)

)
1

w0(x0)

∫ x

x0

w0(x ′) dx ′
]

(4.13)

It is also useful to write this in terms of the Wronskian rather than w0(x), since the
Wronskian can be expressed solely in terms of the coefficients a1(x) and a2(x) of
the differential equation rather than the solution u1(x) (note (4.10)). We then have

y0(x) = y(x0)
u1(x)

u1(x0)

[
1 +

(
y′(x0)

y(x0)
− u1

′(x0)

u1(x0)

)
u2
1(x0)

W (x0)

∫ x

x0

W (x ′)
u2
1(x ′)

dx ′
]

.

(4.14)

Next we consider the second order inhomogeneous equation

Ly(x) = a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = f (x) (4.15)

and again assume that one solution, u1(x), to the homogeneous equation is known:

Lu1(x) = 0. (4.16)

Then, writing

y(x) = c(x)u1(x), (4.17)

the second degree equation Ly(x) = f (x) is transformed into the first degree equa-
tion

L (w) = w′(x)a2(x)u1(x) + w(x)
(
a1(x)u1(x) + 2a2(x)u1

′(x)
) = f (x) (4.18)

where

w(x) = c′(x) (4.19)

Writing (4.18) in the form

(
w(x)

w0(x)

)′
= f (x)

a2(x)u1(x)w0(x)
(4.20)

where w0(x) is given by (4.8), a particular solution to the inhomogeneous equation
is then, from (4.17), (4.19) and (4.20),
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yp(x) = u1(x)

∫ x

w(x ′) dx ′ = u1(x)

∫ x

dx ′ w0(x ′)
∫ x ′

f (x ′′)
a2(x ′′)u1(x ′′)w0(x ′′)

dx ′′

(4.21)

Wenote that if the lower limit of all the integrals in this expression for the particular
solution are chosen to be x0 then yp(x0) = yp

′(x0) = 0. Writing yp in terms of the
Wronskian, we have

yp(x) = u1(x)

∫ x

x0

dx ′ W (x ′)
u2
1(x ′)

∫ x ′

x0

f (x ′′)u1(x ′′)
a2(x ′′)W (x ′′)

dx ′′ (4.22)

A particular solution satisfying the initial conditions y(x0) and y′(x0) is obtained
from (4.14) by adding y0(x) to yp(x), giving a solution to the inhomogeneous equa-
tion Ly = f satisfying these initial conditions:

y(x) = u1(x)

∫ x

x0

dx ′ W (x ′)
u2
1(x ′)

∫ x ′

x0

f (x ′′)u1(x ′′)
a2(x ′′)W (x ′′)

dx ′′

+ y(x0)
u1(x)

u1(x0)

[
1 +

(
y′(x0)

y(x0)
− u1

′(x0)

u1(x0)

)
u2
1(x0)

W (x0)

∫ x

x0

W (x ′)
u2
1(x ′)

dx ′
]

. (4.23)

Turning now to the solution of the inhomogeneous equation given by themethodof
variation of constants, from (2.42) and (2.44), assuming that two linearly independent
solutions of the homogeneous equation, u1(x) and u2(x), are known, we have

y(x) = u2(x)

∫ x

x0

f (x ′)u1(x ′)
a2(x ′)W (x ′)

dx ′ − u1(x)

∫ x

x0

f (x ′)u2(x ′)
a2(x ′)W (x ′)

dx ′ (4.24)

Here, for comparison with the solution given by reduction of order, we have chosen
the lower limit of the integrals to be x0. We note that the particular solutions given in
both (4.22) and (4.24) satisfy y(x0) = y′(x0) = 0 and are therefore identical. This
can be seen from (4.22) on integrating by parts. From (4.9) and (4.10), a second
linearly independent solution to the homogeneous equation is

u2(x) = u1(x)

∫ x

x0

w0(x ′) dx ′ = u1(x)

∫ x

x0

W (x ′)
u2
1(x ′)

dx ′ (4.25)

Writing (4.22) in the form

yp(x) = u1(x)

∫ x

x0

d

(∫ x ′

x0

W (x ′′)
u2
1(x ′′)

dx ′′
) ∫ x ′

x0

f (x ′′)u1(x ′′)
a2(x ′′)W (x ′′)

dx ′′ (4.26)

http://dx.doi.org/10.1007/978-3-319-29736-1_2
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and integrating by parts we have

yp(x) =
(

u1(x)

∫ x

x0

W (x ′)
u2
1(x ′)

dx ′
)∫ x

x0

f (x ′′)u1(x ′′)
a2(x ′′)W (x ′′)

dx ′′

−u1(x)

∫ x

x0

dx ′ f (x ′)u1(x ′)
a2(x ′)W (x ′)

∫ x ′

x0

W (x ′′)
u2
1(x ′′)

dx ′′

= u2(x)

∫ x

x0

f (x ′)u1(x ′)
a2(x ′)W (x ′)

dx ′ − u1(x)

∫ x

x0

f (x ′)u2(x ′)
a2(x ′)W (x ′)

dx ′ (4.27)

from (4.25).
We note that, for a second order equation, although the methods of reduction of

order and variation of constants give mathematically equivalent results, the resulting
solutions are not in the same form: The solution using variation of constants is linear
in the two functions u1(x) and u2(x), whereas the solution given by reduction of order
is a non-linear function of u1(x). The analysis of inhomogeneous equations for which
the solutions of the homogeneous equation are the special functions of mathematical
physicsmay therefore be facilitated by choosing themethod of variation of constants.
This will be illustrated later with a specific example.

We next consider the method of reduction of order as given in (2.97)–(2.104) and
apply it to the second order difference operator

Ly(n) = p2(n)y(n + 2) + p1(n)y(n + 1) + p0(n)y(n) (4.28)

We assume that one solution, u1(n), to the homogeneous equation is known:

Lu1(n) = 0 (4.29)

Then from (2.98), by writing

y(n) = c(n)u1(n) (4.30)

the second degree operator Ly is transformed into a first degree operatorL w where

w(n) = �c(n) = c(n + 1) − c(n) (4.31)

Wedenote byw0(n) the solutionofL w = 0,which thendetermines a second solution
to the homogeneous equation Ly = 0:

u2(n) = c(n)u1(n) = u1(n)

n−1∑

k

w(k) (4.32)
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From (2.104) with N = 2, the function w0(n) satisfies the first order homogeneous
equation the first order equation for w(n)

p2(n)u1(n + 2)�w(n) + (p1(n)u1(n + 1) + 2p2(n)u1(n + 2)) w(n) = 0
(4.33)

which may be written in the form

p2(n)u1(n + 2)w(n + 1) + (
p1(n)u1(n + 1) + p2(n)u1(n + 2)

)
w(n) = 0.

(4.34)

From (2.99) this equation may be written more simply as

p2(n)u1(n + 2)w(n + 1) = p0(n)u1(n)w(n). (4.35)

Its solution follows by iteration, giving

w(n) = w(n0)
u1(n0)u1(n0 + 1)

u1(n)u1(n + 1)

n−1∏

k=n0

p0(k)

p2(k)
(4.36)

Here,

w(n0)u1(n0)u1(n0 + 1) = [c(n0 + 1) − c(n0)]u1(n0)u1(n0 + 1)

= u1(n0)c(n0 + 1)u1(n0 + 1) − u1(n0 + 1)c(n0)u1(n0)

= u1(n0)u2(n0 + 1) − u1(n0 + 1)u2(n0)

= C(n0) (4.37)

where C(n) is the Casoratian determinant (see Appendix D). Thus,

w(n) = C(n0)

u1(n)u1(n + 1)

n−1∏

k=n0

p0(k)

p2(k)
(4.38)

from which, using (4.37),

C(n) = C(n0)

n−1∏

k=n0

p0(k)

p2(k)
, (4.39)

which is the equivalent of the equation for the Wronskian

W (x) = W (x0) exp

(
−

∫ x

x0

a1(x ′)
a2(x ′)

dx ′
)

(4.40)

for differential equations.
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The function c(n) then follows directly from (2.103) and (4.38) by summation,
giving

c(n) = c(n0) + C(n0)

n−1∑

j=n0

1

u1( j)u1( j + 1)

j−1∏

k=n0

p0(k)

p2(k)
(4.41)

A second, linearly independent solution of the homogeneous equation is then

u2(n) = c(n)u1(n) = c(n0)u1(n) + u1(n)C(n0)

n−1∑

j=n0

1

u1( j)u1( j + 1)

j−1∏

k=n0

p0(k)

p2(k)

(4.42)

The first term on the right hand side here is simply a multiple of the first solution.
For N = 2, the two linearly independent solutions of the second order homogeneous
difference equation can thus be taken to be

u1(n)

and

u2(n) = u1(n)C(n0)

n−1∑

j=n0

1

u1( j)u1( j + 1)

j−1∏

k=n0

p0(k)

p2(k)
(4.43)

An alternate but completely equivalent approach to obtaining a second, linearly
independent solution to a second order homogeneous equation when one solution is
known is provided by consideration of the Wronskian (in the case of the differential
equation) and the Casoratian (in the case of the difference equation).

For the second order homogeneous differential equation we have n = 2, so that
from (C.1)

W (x) = u1(x)u′
2(x) − u′

1(x)u2(x) (4.44)

which can be written as
(

u2(x)

u1(x)

)′
= W (x)

u2
1(x)

(4.45)

and integration gives

u2(x) = u1(x)

∫ x W (x ′)
u2
1(x ′)

dx ′, (4.46)

which is the solution given in (4.9).
For the second order homogeneous difference equation we have N = 2, so that

from (D.1)

http://dx.doi.org/10.1007/978-3-319-29736-1_2
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C(n) = u1(n)u2(n + 1) − u1(n + 1)u2(n) (4.47)

which can be written as

u2(n + 1)

u1(n + 1)
− u2(n)

u1(n)
= 1

u1(n)u1(n + 1)
C(n) (4.48)

By summation we then have

u2(n)

u1(n)
= u2(0)

u1(0)
+

n−1∑

k=0

1

u1(k)u1(k + 1)
C(k) (4.49)

Substituting (D.3) in (4.49) we have

u2(n) = u2(0)

u1(0)
u1(n) + u1(n)C(0)

n−1∑

k=0

1

u1(k)u1(k + 1)

k−1∏

j=0

p0( j)

p2( j)
(4.50)

which is identical to the result obtained earlier in (4.42) noting that u2(0)/u1(0) =
c(0).



Chapter 5
Self-adjoint Linear Equations

As with most of the topics considered in this work, the concepts of adjoint and
self-adjoint linear operators and equations, both differential and difference, apply
to operators and equations of all orders. However, given the fundamental place of
second order equations, both differential and difference, for problems in classical
and quantum physics, we restrict ourselves here to equations of second order, noting
that most of the classical functions of mathematical physics satisfy second order
differential equations in the continuous variable and second order difference equa-
tions in the discrete variable. Self-adjoint operators, also called Hermitian operators,
together with imposed boundary conditions, are of great importance in both classical
and quantum physics within the framework of Sturm–Liouville theory, (note [3]),
in that their eigenvalues are real, and their eigenfunctions are orthogonal and form a
complete set. For analyses of higher order equations, see [38] and [20] for differential
equations and [2] for difference equations.

The linear second order differential operator has the general form

Ly(x) ≡ a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) (5.1)

and the adjoint operator L is defined by

L y(x) = (a2(x)y(x)) ′′ − (a1(x)y(x)) ′ + a0(x)y(x) (5.2)

Carrying out the differentiations in L and taking the adjoint again, we find the original
operator L: The adjoint of the adjoint operator is the original operator.

If a2
′(x) = a1(x) then L = L and can be written in the form

L = L = (
a2(x)y′(x)

) ′ + a0(x)y(x) (5.3)

The operator L is then said to be self-adjoint. We can, however, always trans-
form a non-self-adjoint operator into the self-adjoint form: If a2

′(x) �= a1(x), then

© Springer International Publishing Switzerland 2016
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36 5 Self-adjoint Linear Equations

multiplying Ly(x) by a function h(x), the resulting operator:

h(x)a2(x)y′′(x) + h(x)a1(x)y′(x) + h(x)a0(x)y(x) (5.4)

is then self-adjoint if we determine h(x) by requiring that (a2(x)h(x)) ′ = a1(x)h(x).
Solving for h(x), we have

h(x) = 1

a2(x)
exp

⎡

⎣
x∫

x0

a1(x ′)
a2(x ′)

dx ′
⎤

⎦ (5.5)

The linear second order difference operator can be written in the general form

Ly(n) = p2(n)y(n + 1) + p1(n)y(n) + p0(n)y(n − 1) (5.6)

and the adjoint operator is defined by

L y(n) = p0(n + 1)y(n + 1) + p1(n)y(n) + p2(n − 1)y(n − 1) (5.7)

As with the differential operator, we note that the adjoint of the adjoint operator is
the original operator.

If p2(n) = p0(n + 1) then L = L and can be written in the form

L = L = �
(

p2(n − 1)�y(n − 1)
) + (p0(n) + p1(n) + p2(n))y(n) (5.8)

The operator L is then said to be self-adjoint. We can, however, always transform
a non-self-adjoint operator into the self-adjoint form: If p2(n) �= p0(n + 1), then
multiplying Ly(n) by a function h(n), the resulting operator:

h(n)p2(n)y(n + 1) + h(n)p1(n)y(n) + h(n)p0(n)y(n − 1) (5.9)

is then self-adjoint if we determine h(n) by requiring that p2(n)h(n) = p0(n +
1)h(n + 1), that is,

h(n + 1) = p2(n)

p0(n + 1)
h(n) (5.10)

Solving for h(n), we have

h(n) =
n−1∏

j=n0

p2( j)

p0( j + 1)
h(n0 + 1) (5.11)

We assume here that p2(n) > 0 and p0(n) > 0 over the interval considered for n.
The constant h(n0 + 1) is arbitrary and may be dropped.
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The second order linear self-adjoint differential equation has the form

[P(x)z′(x)]′ + Q(x)z(x) = 0 (5.12)

The corresponding second order linear difference equation is

�(pn−1�yn−1) + qn yn = 0, (5.13)

which may be derived from the self-adjoint differential equation as follows:
If the range of x is c ≤ x ≤ d then we may picture this interval as a grid divided

into N steps (N large), the individual steps being of length ε, where ε = (c − d)/N .
(If the range of x is infinite, for example x ≥ 0, then we can define ε = 1/N ). A
given point x on the grid is then associated with the integer n: x = c + nε. We can
then write, for large N ,

ε2[P(x)z′(x)]′ = ε2P ′(x)z′(x) + ε2P(x)z′′(x)

= [
P(x) + εP(x)′ + 1

2 ε2P ′′(x)
][(

z(x) + εz(x)′ + 1
2 ε2z′′(x)

) − z(x)
]

− P(x)[z(x) − (
z(x) + εz(x)′ + 1

2 ε2z′′(x)
)] + O(ε3)

= P(x + ε)
[
z(x + ε) − z(x)

] − P(x)
[
z(x) − z(x + ε)

] + O(ε3)

(5.14)
Writing

x = c + nε

yn ≡ z(c + nε)

pn−1 ≡ P(c + nε)

qn ≡ ε2Q(c + nε)

(5.15)

we then have

ε2[P(x)z′(x)]′ = pn(yn+1 − yn) − pn−1(yn − yn−1) + O(ε3)

= pn�yn − pn−1�yn−1 + O(ε3)

= �(pn−1�yn−1) + O(ε3) (5.16)

and

ε2
[[P(x)z′(x)]′ + Q(x)z(x)

] = �(pn−1�yn−1) + qn yn + O(ε3). (5.17)

Thus from (5.12),
�(pn−1�yn−1) + qn yn + O(ε3) = 0 (5.18)

Here the first two terms are O(ε2). Thus if we neglect terms of relative order ε,
we obtain the second order linear difference equation

�(pn−1�yn−1) + qn yn = 0 (5.19)



Chapter 6
Green’s Function

6.1 Differential Equations

In Chap.2, Sect. 2.1.1, we considered one method, variation of parameters (or vari-
ation of constants), for solving the linear inhomogeneous differential equation

Ly = f (6.1)

where L is the differential operator

L ≡ an
dn

dxn
+ an−1

dn−1

dxn−1
+ · · · + a0 (6.2)

and y and f are functions of x : y = y(x), f = f (x), the solution being considered in
some interval, finite or infinite. In themethodconsideredhere, rather thandetermining
the solution to (6.1) with the inhomogeneous term f (x), which is defined at each
point of the interval, we consider this equation when the inhomogeneous term is the
Dirac delta function1 δ(x − ξ), which is zero except at the point x = ξ within the
interval. Its solution is called the Green’s function2 G(x, ξ):

LG(x, ξ) = δ(x − ξ) (6.3)

Further, since L is a linear operator (seeAppendixF),we canweight the delta function
with the factor f (ξ) and integrate the contributions from all points of the interval to
obtain the solution for the inhomogeneous term f (x)3:

1See [36, Sect. 1.17(i)].
2Named for the British mathematician George Green.
3Note that L is a function of x and hence can be taken outside of the integral over ξ.
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40 6 Green’s function

L
∫

G(x, ξ) f (ξ) dξ =
∫

δ(x − ξ) f (ξ) dξ = f (x) (6.4)

Then from (6.1) we have

Ly(x) − L
∫

G(x, ξ) f (ξ) dξ (6.5)

from which

y(x) =
∫

G(x, ξ) f (ξ) dξ (6.6)

We can also look at this result as defining the inverse of L , which expresses the
solution to the differential equation (6.1) by writing

y = L−1 f (6.7)

where L−1 is the inverse of L , which is an integral operator in which the kernel is
the Green’s function, G(x, ξ).

An important aspect of the Green’s function is that it allows us to derive a solution
y(x) satisfying specific initial or boundary conditions by imposing those conditions
on the Green’s function G(x, ξ); a brief discussion of these conditions follows.

The general solution to the nth order inhomogeneous equation consists of the
sum of a particular solution, yp(x), and the n linearly independent solutions of the
homogeneous equation Ly(x) = 0:

y(x) = yp(x) +
n∑

k=1

ckuk(x) (6.8)

where

Luk(x) = 0 (6.9)

A solution satisfying specific initial or boundary conditions then involves the n
constants c1, c2 . . . cn , which can be determined to satisfy the initial or boundary
conditions. In an initial value problem, the unique solution of Ly = f is determined
by the value of the function y(x) and its first n − 1 derivatives at the point x = a:

y(a) = γ1, y(1)(a) = γ2, . . . y(n−1)(a) = γn (6.10)

These n initial conditions then determine the n constants c1, c2 . . . cn: From (6.8) we
have n equations

y( j)(a) = y( j)
p (a) +

n∑

k=1

cku( j)
k (a) = γ j+1, j = 0, 1, . . . n − 1 (6.11)
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which determine the n constants ck . By contrast, for a boundary value problem the
n conditions are imposed at the two points a and b which define the boundary of the
interval under consideration, a ≤ x ≤ b. Again, for the nth order equation there are
n equations connecting the values of y(x) and its first n − 1 derivatives at x = a and
x = b:

B1y = α11y(a) + · · · + α1n y(n−1)(a) + β11y(b) + · · · β1n y(n−1)(b) = γ1

...

Bn y = αn1y(a) + · · · + αnn y(n−1)(a) + βn1y(b) + · · ·βnn y(n−1)(b) = γn

(6.12)

It should be noted that this set of boundary conditions includes the initial value con-
ditions given above: If we let α11 = α22 = · · · = αnn = 1, α jk = 0 if j �= k, and
all β jk = 0, then we have the conditions given above for the initial value problem.
There is, however, an important difference between the solution that is determined
by the initial value conditions and the solution determined by the boundary value
conditions. While the initial value conditions, imposed at one point, define a unique
solution to the inhomogeneous equation, in the case of the boundary value condi-
tions, imposed at two points, the inhomogeneous equation may have either a unique
solution, many solutions, or no solution. An analysis of these possibilities with an
example for a second order equation is presented in Appendix F.

The case of homogeneous boundary conditions: Bk y = γk = 0, (k = 1, 2, . . . n)

is of particular importance in the analysis: From (6.6) we have

Bk y =
∫ b

a
Bk G(x, ξ) f (ξ)dξ, (6.13)

Thus if the Green’s function is chosen to satisfy the homogeneous boundary condi-
tions, then the solution y(x) will also satisfy these homogeneous boundary condi-
tions. The case of inhomogeneous boundary conditions (γk �= 0)may then be treated
using the superposition principle, discussed in AppendixF, by adding to the solution
of the inhomogeneous equation ( f (x) �= 0) with homogeneous boundary conditions
(γk = 0) a solution to the homogeneous equation ( f (x) = 0) with inhomogeneous
boundary conditions (γk �= 0).

We turn now to the derivation of explicit expressions for the Green’s function. We
first present the details for the second order differential equation. This is followed
by the analysis for the nth order equation, which is then fairly straightforward. As
generally presented, the Green’s function G(x, ξ) for the second order equation is
constructed to have the following properties:

(1)

G(x, s) =
{

G1(x, ξ) a ≤ x < ξ
G2(x, ξ) ξ < x ≤ b

(6.14)

where LG1(x, ξ) = 0, LG2(x, ξ) = 0.
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(2) G1(x, ξ) and G2(x, ξ) satisfy the homogeneous boundary conditions B1G1 =
B2G2 = 0.

(3) G(x, ξ) is continuous at x = ξ; that is,

lim
ε→0

[G2(ξ + ε, ξ) − G1(ξ − ε, ξ)] = 0 (6.15)

(4) The derivative G ′(x, ξ) has a discontinuity of magnitude 1/a2(ξ) at x = ξ; that
is,

lim
ε→0

[
G ′

2(ξ + ε, ξ) − G ′
1(ξ − ε, ξ)

] = 1

a2(ξ)
(6.16)

Here, however, we choose to view the Green’s function in the light of our previous
analysis of the method of variation of constants (see Chap.2, Sect. 2.1.1). We there-
fore return to the inhomogeneous equation (6.3), LG(x, ξ) = δ(x − ξ), with n = 2.
Assuming that the coefficients a0(x), a1(x) and a2(x) in the second order equation
are continuous functions of x and that a2(x) �= 0 in a ≤ x ≤ b, we can write, from
(6.6) and (6.3),

∫ ξ+ε

ξ−ε

[
d2G

dx2
+ a1(x)

a2(x)

dG

dx
+ a0(x)

a2(x)

]
dx =

∫ ξ+ε

ξ−ε

δ(x − ξ)

a2(x)
dx (6.17)

Integrating both sides of this equation then gives

dG

dx

∣∣∣∣
ξ+ε

ξ−ε

+ a1(ξ)

a2(ξ)
G

∣∣∣∣
ξ+ε

ξ−ε

+ 2ε
a0(ξ)

a2(ξ)
= 1

a2(ξ)
(6.18)

Assuming that G(x, ξ) is continuous at x = ξ and taking the limit ε → 0, we obtain
the essential property of the Green’s function, namely,

lim
ε→0

[
G ′(ξ + ε, ξ) − G ′(ξ − ε, ξ)

] = 1

a2(ξ)
(6.19)

Applying the method of variation of constants, we assume that we know two
linearly independent solutions of the homogeneous equation, u1(x) and u2(x):

Lu1(x) = 0 Lu2(x) = 0 (6.20)

Following the analysis presented in Chap.2, Sect. 2.1.1, noting (2.12), we write
G(x, ξ) and G ′(x, ξ) in terms of the two solutions of the homogeneous equation:

G(x, ξ) = c1(x, ξ)u1(x) + c2(x, ξ)u2(x)

G ′(x, ξ) = c1(x, ξ)u′
1(x) + c2(x, ξ)u′

2(x)
(6.21)

http://dx.doi.org/10.1007/978-3-319-29736-1_2
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where the parameters c1(x, ξ) and c2(x, ξ) now depend not only on x , as in Chap.2,
Sect. 2.1.1, but on the variable ξ as well. Differentiating the first equation in (6.21)
we can also write

G ′(x, ξ) = c1(x, ξ)u′
1(x) + c2(x, ξ)u′

2(x) + c′
1(x, ξ)u1(x) + c′

2(x, ξ)u2(x)

(6.22)

so that from (6.21) and (6.22)

c′
1(x, ξ)u1(x) + c′

2(x, ξ)u2(x) = 0 (6.23)

Differentiation of the second equation in (6.21) gives

G ′(x, ξ) = c1(x, ξ)u′′
1(x) + c2(x, ξ)u′′

2(x) + c′
1(x, ξ)u′

1(x) + c′
2(x, ξ)u′

2(x)

(6.24)

Finally, substituting (6.21) and (6.24) in (6.3), using (6.20), we have

c′
1(x, ξ)u′

1(x) + c′
2(x, ξ)u′

2(x) = δ(x − ξ)

a2(x)
(6.25)

From (6.23) and (6.25) we now have two equations for the first derivatives of the
two parameters, c1(x, ξ) and c2(x, ξ), from which

c′
1(x, ξ) = −u2(x)δ(x − ξ)

a2(x)W (x)

c′
2(x, ξ) = u1(x)δ(x − ξ)

a2(x)W (x)

(6.26)

where W (x) is the Wronskian determinant:

W (x) = u1(x)u′
2(x) − u2(x)u′

1(x) (6.27)

The integration of c′
1(x, ξ) and c′

2(x, ξ) introduces constants of integration which are
constant with respect to x but may be functions of ξ:

ck(x, ξ) =
∫ x

c′
k(x

′
, ξ)dx ′ + μk(ξ) k = 1, 2 (6.28)

Further, we are free to choose the limit on these integrals; the particular choice will
be one which simplifies satisfying the boundary conditions. To this end, reasonable
choices are

∫ x

a
c′

k(x
′
, ξ)dx ′ and

∫ b

x
c′

k(x
′
, ξ)dx ′ (6.29)

http://dx.doi.org/10.1007/978-3-319-29736-1_2
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For example, for the initial value problemwith homogeneous initial value conditions
(y(a) = y′(a) = 0), we can set μ1(ξ) = μ2(ξ) = 0 and, from (6.26),

c1(x, ξ) = −
∫ x

a

u2(x ′)δ(x ′ − ξ)

a2(x ′)W (x ′)
dx ′ =

⎧
⎨

⎩
− u2(ξ)

a2(ξ)W (ξ)
a < ξ < x

0 a ≤ x < ξ
(6.30)

c2(x, ξ) =
∫ x

a

u1(x ′)δ(x ′ − ξ)

a2(x ′)W (x ′)
dx ′ =

⎧
⎨

⎩

u1(ξ)

a2(ξ)W (ξ)
a < ξ < x

0 a ≤ x < ξ
(6.31)

from which, from (6.21),

G(x, ξ) =
⎧
⎨

⎩

u2(x)u1(ξ) − u1(x)u2(ξ)

a2(ξ)W (ξ)
a < ξ < x

0 a ≤ x < ξ
(6.32)

and, from (6.6), the solution to Ly = f with homogeneous initial conditions imposed
at x = a is

y(x) =
∫ x

a
G(x, ξ) f (ξ)dξ

= u2(x)

∫ x

a

u1(ξ)

a2(ξ)W (ξ)
f (ξ)dξ − u1(x)

∫ x

a

u2(ξ)

a2(ξ)W (ξ)
f (ξ)dξ (6.33)

Note that it follows directly that y(a) = 0 and y′(a) = 0. If now we choose u1(x)

and u2(x) to be linearly independent solutions of the homogeneous equation Ly = 0
satisfying the initial conditions u1(a) = 1, u′

1(a) = 0 and u2(a) = 0, u′
2(a) = 1,

then v(x) ≡ γ1u1(x) + γ2u2(x) is a solution of Lv = 0 with the initial condi-
tions v(a) = γ1, v′(a) = γ2. The solution to Ly = f with initial conditions y(a) =
γ1, y′(a) = γ2 is therefore

y(x) = u2(x)

∫ x

a

u1(ξ)

a2(ξ)W (ξ)
f (ξ)dξ − u1(x)

∫ x

a

u2(ξ)

a2(ξ)W (ξ)
f (ξ)dξ

+ γ1u1(x) + γ2u2(x) (6.34)

We next consider conditions imposed at the other end of the interval, at x = b,
which we will call terminal conditions, namely, y(b) = 0, y′(b) = 0. We then
choose, for the parameters c1(x, ξ) and c2(x, ξ),

c1(x, ξ) =
∫ b

x

u2(x ′)δ(x ′ − ξ)

a2(x ′)W (x ′)
dx ′ =

⎧
⎨

⎩

0 ξ < x ≤ b
u2(ξ)

a2(ξ)W (ξ)
x < ξ < b

(6.35)
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c2(x, ξ) = −
∫ b

x

u1(x ′)δ(x ′ − ξ)

a2(x ′)W (x ′)
dx ′ =

⎧
⎨

⎩

0 ξ < x ≤ b

− u1(ξ)

a2(ξ)W (ξ)
x < ξ < b

(6.36)

from which

G(x, ξ) =
⎧
⎨

⎩

0 ξ < x ≤ b
u1(x)u2(ξ) − u2(x)u1(ξ)

a2(ξ)W (ξ)
x < ξ < b

(6.37)

and, from (6.6), the solution to Ly = f with homogeneous terminal conditions
imposed at x = b is

y(x) =
∫ b

x
G(x, ξ) f (ξ)dξ

= u1(x)

∫ b

x

u2(ξ)

a2(ξ)W (ξ)
f (ξ)dξ − u2(x)

∫ b

x

u1(ξ)

a2(ξ)W (ξ)
f (ξ)dξ (6.38)

If now we choose u1(x) and u2(x) to be linearly independent solutions of the
homogeneous equation Ly = 0 satisfying the terminal conditions u1(b) = 1,
u′
1(b) = 0 and u2(b) = 0, u′

2(b) = 1, then v(x) ≡ γ1u1(x) + γ2u2(x) is a solu-
tion of Lv = 0 with the terminal conditions v(b) = γ1, v′(b) = γ2. The solution
to Ly = f with terminal conditions y(b) = γ1, y′(b) = γ2 is therefore

y(x) = u1(x)

∫ b

x

u2(ξ)

a2(ξ)W (ξ)
f (ξ)dξ

− u2(x)

∫ b

x

u1(ξ)

a2(ξ)W (ξ)
f (ξ)dξ + γ1u1(x) + γ2u2(x) (6.39)

We next consider the boundary value problem in which each condition relates to
only one end point:

B1y = α11y(a) + α12y′(a) = γ1

B2y = β21y(b) + β22y′(b) = γ2
(6.40)

As before, u1(x) and u2(x) are linearly independent solutions of Lu = 0.
Again, we first consider the solution to the inhomogeneous equation Ly = f with

the homogeneous boundary conditions:

B1y = α11y(a) + α12y′(a) = 0

B2y = β21y(b) + β22y′(b) = 0
(6.41)



46 6 Green’s function

In this case we choose

c1(x, ξ) =
∫ b

x

u2(x ′)δ(x ′ − ξ)

a2(x ′)W (x ′)
dx ′ =

⎧
⎨

⎩

0 a < ξ < x ≤ b
u2(ξ)

a2(ξ)W (ξ)
a ≤ x < ξ < b

(6.42)

and

c2(x, ξ) =
∫ x

a

u1(x ′)δ(x ′ − ξ)

a2(x ′)W (x ′)
dx ′ =

⎧
⎨

⎩

u1(ξ)

a2(ξ)W (ξ)
a < ξ < x ≤ b

0 a ≤ x < ξ < b
(6.43)

from which

G(x, ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

u2(x)u1(ξ)

a2(ξ)W (ξ)
a < ξ < x ≤ b

u1(x)u2(ξ)

a2(ξ)W (ξ)
a ≤ x < ξ < b

(6.44)

and

y(x) =
∫ b

a
G(x, ξ) f (ξ)dξ

= u2(x)

∫ x

a

u1(ξ)

a2(ξ)W (ξ)
f (ξ)dξ + u1(x)

∫ b

x

u2(ξ)

a2(ξ)W (ξ)
f (ξ)dξ (6.45)

Therefore, if we choose u1(x) and u2(x) so that they satisfy the homogeneous bound-
ary conditions

B1u1 = α11u1(a) + α12u′
1(a) = 0

B2u2 = β21u2(b) + β22u′
2(b) = 0

(6.46)

(e.g., by setting u1(a) = α12, u′(a) = −α11, u2(b) = β22, u′
2(b) = −β21), then

G(x, ξ) as given in (6.44) will also satisfy the homogeneous boundary conditions
(6.41) and hence y(x) as given by (6.45) will also satisfy the homogeneous boundary
conditions (6.41).

If now y(x) is to satisfy the inhomogeneous boundary conditions (6.40), then we
may add to y(x) as given in (6.45) a solution to the homogeneous equation Ly = 0
satisfying the inhomogeneous boundary conditions (6.40), giving

y(x) = u2(x)

∫ x

a

u1(ξ)

a2(ξ)W (ξ)
f (ξ)dξ + u1(x)

∫ b

x

u2(ξ)

a2(ξ)W (ξ)
f (ξ)dξ

+ μ1u1(x) + μ2u2(x) (6.47)
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Imposing the inhomogeneous boundary conditions given in (6.40) and using (6.46),
we have

B1y = μ2B1u2 = γ1

B2y = μ1B2u1 = γ2
(6.48)

from which

y(x) = u2(x)

∫ x

a

u1(ξ)

a2(ξ)W (ξ)
f (ξ)dξ + u1(x)

∫ b

x

u2(ξ)

a2(ξ)W (ξ)
f (ξ)dξ

+ γ2

B2u1
u1(x) + γ1

B1u2
u2(x) (6.49)

We have derived three Green’s functions, given in (6.32), (6.37) and (6.44), each
satisfying a particular condition—initial, terminal, and boundary. It is important to
note that each of these Green’s functions is a solution of the inhomogeneous equation
LG(x, ξ) = δ(x − ξ); they therefore differ only by a solution of the homogeneous
equation Lu = 0.We can therefore use any one of these Green’s functions in solving
an initial, terminal or boundary value problem by adding an arbitrary solution to
the homogeneous equation and then imposing the desired boundary conditions on
the sum. For example, we could have dealt with the boundary value problem by
adding to the Green’s function for the initial value problem an arbitrary solution to
the homogeneous equation and then imposing the boundary value conditions (6.41)
on the sum:

G(x, ξ) = μ1(ξ)u1(x) + μ2(ξ)u2(x) +
⎧
⎨

⎩

u2(x)u1(ξ) − u1(x)u2(ξ)

a2(ξ)W (ξ)
a < ξ < x ≤ b

0 a ≤ x < ξ < b
(6.50)

Imposing the boundary conditions (6.41) we have

B1G = μ1(ξ)B1u1 + μ2(ξ)B1u2 = 0

B2G = μ1(ξ)B2u1 + μ2(ξ)B2u2 + u1(ξ)B2u2 − u2(ξ)B2u1

a2(ξ)W (ξ)
= 0

(6.51)

Again,we assume that u1(x) and u2(x) satisfy the homogeneous boundary conditions
(6.41)

B1u1 = B2u2 = 0 (6.52)

from which (see AppendixF) B1u2 �= 0, B2u1 �= 0 and hence

μ2(ξ) = 0

μ1(ξ) = u2(ξ)

a2(ξ)W (ξ)

(6.53)
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from which we obtain the Green’s function given in (6.44):

G(x, ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

u2(x)u1(ξ)

a2(ξ)W (ξ)
a < ξ < x ≤ b

u1(x)u2(ξ)

a2(ξ)W (ξ)
a ≤ x < ξ < b

(6.54)

The observation that we can use any one of these Green’s functions in solving
an initial, terminal or boundary value problem by adding an arbitrary solution to the
homogeneous equation and then imposing the desired boundary conditions on the
sum is useful in considering the nth order equation, as will be seen. There we will
choose the same limits on each of the integrals for the parameters ck(x, ξ).

Finally, we consider the solution of Ly = f with the general boundary conditions
involving the function and its first derivative at both end points of the interval, as
given in (6.12). For the second order equation these boundary conditions are

B1y = α11y(a) + α12y′(a) + β11y(b) + β12y′(b) = γ1

B2y = α21y(a) + α22y′(a) + β21y(b) + β22y′(b) = γ2
(6.55)

Again, we start by considering the solution to Ly = f with homogeneous boundary
conditions, (6.55) with γ1 = γ2 = 0). We note that in the initial, terminal and bound-
ary value problems considered thus far, the respective Green’s functions, (6.32),
(6.37), and (6.44), each satisfied the homogeneous boundary conditions without the
need to add the terms μ1(ξ)u1(x) + μ2(ξ)u2(x) coming from the constants of inte-
gration. As a result, in the terms added to satisfy the inhomogeneous equation, the
factors μ1 and μ2 were independent of ξ. Now, however, in the case of the gen-
eral boundary conditions, in order to have the Green’s function G(x, ξ) satisfy the
homogeneous boundary condition we have to write it in the form

G(x, ξ) = G0(x, ξ) + μ1(ξ)u1(x) + μ2(ξ)u2(x) (6.56)

where G0(x, ξ) can be chosen to be any one of the Green’s functions given in (6.32),
(6.37), and (6.44), all of which have the essential properties of being continuous
at x = ξ and having a discontinuous first derivative of magnitude 1/a2(ξ) at x =
ξ. Here, as before, u1(x) and u2(x) are any two linearly independent solutions of
Lu = 0. We now impose the homogeneous boundary conditions on G(x, ξ) and
obtain the two equations which determine μ1 and μ2:

B1G = B1G0 + μ1B1u1 + μ2B1u2 = 0

B2G = B2G0 + μ1B2u1 + μ2B2u2 = 0
(6.57)

from which

μ1 = μ1(ξ) = − 1

�

∣∣∣∣
B1G0 B1u2

B2G0 B2u2

∣∣∣∣ (6.58)
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and

μ2 = μ2(ξ) = − 1

�

∣∣∣∣
B1u1 B1G0

B2u1 B2G0

∣∣∣∣ (6.59)

where

� =
∣∣∣∣

B1u1 B1u2

B2u1 B2u2

∣∣∣∣ (6.60)

Recall from AppendixF that the condition � �= 0 is necessary and sufficient in
order that Ly = f with boundary conditions B1y = B2y = 0 have a unique solution.
Substituting (6.58) and (6.59) in (6.56) then gives the Green’s function which is
a solution of LG = δ(x − ξ) and satisfies the homogeneous boundary conditions
B1G = B2G = 0, in terms of which y(x) = ∫ b

a G(x, ξ) f (ξ)dξ is a solution of Ly =
f and satisfies the homogeneous boundary conditions. The solution to Ly = f with
homogeneous boundary conditions is therefore

y(x) =
∫ b

a
G(x, ξ) f (ξ)dξ

=
∫ b

a

[
G0(x, ξ) − u1(x)

�

∣∣∣∣
B1G0 B1u2

B2G0 B2u2

∣∣∣∣ − u2(x)

�

∣∣∣∣
B1u1 B1G0

B2u1 B2G0

∣∣∣∣

]
f (ξ)dξ

(6.61)

In order to have a solution to Ly = f which satisfies the inhomogeneous boundary
conditions (6.55), we may add a solution to the homogeneous equation Lu = 0
satisfying the inhomogeneous boundary conditions, viz., v(x) = Au1(x) + Bu2(x)

such that B1v = γ1 and B2v = γ2. These two conditions give two equations which
determine the constants A and B, namely,

AB1u1 + B B1u2 = γ1

AB2u1 + B B2u2 = γ2
(6.62)

from which

A = 1

�

∣∣∣∣
γ1 B1u2

γ2 B2u2

∣∣∣∣

B = 1

�

∣∣∣∣
B1u1 γ1
B2u1 γ2

∣∣∣∣
(6.63)

Adding v(x) = Au1(x) + Bu2(x) to y(x) as given in (6.61), the solution to Ly = f
with the inhomogeneous boundary conditions (6.55) is then
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y(x) =
∫ b

a

[
G0(x, ξ) − u1(x)

�

∣∣∣∣
B1G0 B1u2

B2G0 B2u2

∣∣∣∣ − u2(x)

�

∣∣∣∣
B1u1 B1G0

B2u1 B2G0

∣∣∣∣

]
f (ξ)dξ

+ u1(x)

�

∣∣∣∣
γ1 B1u2

γ2 B2u2

∣∣∣∣ + u2(x)

�

∣∣∣∣
B1u1 γ1
B2u1 γ2

∣∣∣∣ (6.64)

It is worth summarizing with regard to this last expression: Here y(x) satisfies
the inhomogeneous differential equation Ly = f and the inhomogeneous boundary
conditions B1y = γ1, B2y = γ2. The only assumptions made with regard to the
variables appearing in this expression are LG0 = δ(x − ξ) and Lu1 = Lu2 = 0. The
extension of this result to the nth order equation is straightforward: We now assume
that y(x) satisfies the nth order differential equation Ly = f with L as given by (6.2),
and the nth order general boundary conditions Bk y = γk , (k = 1, 2, . . . n), given
in (6.12). Again, we first consider the solution of Ly = f with the homogeneous
boundary conditions Bk y = 0 and write the solution y(x) = ∫ b

a G(x, ξ) f (ξ)dξ in
terms of the Green’s function

G(x, ξ) = G0(x, ξ) +
n∑

k=1

μk(ξ)uk(x) (6.65)

where LG0(x, ξ) = δ(x − ξ) and the n functions uk(x) are linearly independent
solutions of Lu = 0. Solving LG0(x, ξ) = δ(x − ξ) by the method of variation of
constants as presented inChap.2, Sect. 2.1.1,we have, from (2.44)with y(x) replaced
by G0(x, ξ),

G0(x, ξ) =
n∑

j=1

c j (x, ξ)u j (x), (6.66)

where c j (x, ξ) = ∫ x c′
j (x ′, ξ)dx ′ in which c′

j (x ′, ξ) is given by (2.42) with gn =
δ(x − ξ)/an(x). As noted before, the choice of the lower limit in this integral is
arbitrary. For simplicity, we choose it to be x = a for each of the n integrals, j =
1, 2, . . . n. Integration then gives

c j (x, ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n+ j

an(ξ)W (ξ)

∣∣∣∣∣∣∣∣∣∣∣

u1(ξ) · · · u j−1(ξ) u j+1(ξ) · · · un(ξ)

u(1)
1 (ξ) · · · u(1)

j−1(ξ) u(1)
j+1(ξ) · · · u(1)

n (ξ)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

u(n−2)
1 (ξ) · · · u(n−2)

j−1 (ξ) u(n−2)
j+1 (ξ) · · · u(n−2)

n (ξ)

∣∣∣∣∣∣∣∣∣∣∣

a < ξ < x ≤ b

0 a ≤ x < ξ < b
(6.67)

(See AppendixB for j = 1 and j = n.) The Green’s function G0(x, ξ) is then given
by substituting c j (x, ξ) as given in (6.67) in (6.66). We note that for n = 2, (6.67)
and (6.66) reduce directly to (6.30), (6.31) and (6.32). Imposing the homogeneous

http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
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boundary conditions, (6.12) with γk = 0), on G(x, ξ) as given in (6.65), we obtain
n equations which determine the n coefficients μk(ξ), (k = 1, 2, . . . n):

Bk G = Bk G0 +
n∑

j=1

μ j (ξ)Bku j = 0 (6.68)

from which, from Cramer’s rule,

μ j (ξ) = − 1

�

∣∣∣∣∣∣∣∣∣

B1u1 · · · B1u j−1 B1G0 B1u j+1 · · · B1un

B2u1 · · · B2u j−1 B2G0 B2u j+1 · · · B2un
...

...
...

...
...

...
...

Bnu1 · · · Bnu j−1 BnG0 Bnu j+1 · · · Bnun

∣∣∣∣∣∣∣∣∣

(6.69)

(See AppendixB for j = 1 and j = n.)
Here

� =

∣∣∣∣∣∣∣∣∣

B1u1 B1u2 · · · B1un

B2u1 B2u2 · · · B2un
...

...
...

...

Bnu1 Bnu2 · · · Bnun

∣∣∣∣∣∣∣∣∣

(6.70)

(Note (6.60) for n = 2 and the discussion in AppendixF.) The solution to Ly = f
with homogeneous boundary conditions Bk y = 0 is then y(x) = ∫ b

a G(x, ξ) f (ξ)dξ
with G(x, ξ) given by (6.65)–(6.67) and μk(ξ) given by (6.69) and (6.70).

In order to have a solution to Ly = f with the inhomogeneous boundary condi-
tions Bk y = γk , we add a solution u(x) which satisfies the homogeneous equation
Lu = 0 and the inhomogeneous boundary conditions. This solution can be written
in terms of the n linearly independent solutions of Lu = 0:

u(x) =
n∑

j=1

η j u j (x) (6.71)

Imposing the boundary conditions we have n equations which determine the n con-
stants η j :

n∑

j=1

η j Bku j = γk, k = 1, 2, . . . , n (6.72)

from which

η j = 1

�

∣∣∣∣∣∣∣∣∣

B1u1 · · · B1u j−1 γ1 B1u j+1 · · · B1un

B2u1 · · · B2u j−1 γ2 B2u j+1 · · · B2un
...

...
...

...
...

...
...

Bnu1 · · · Bnu j−1 γn Bnu j+1 · · · Bnun

∣∣∣∣∣∣∣∣∣

(6.73)

(See AppendixB for j = 1 and j = n.)
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The solution to the nth order equation Ly = f , (6.2), with general boundary
conditions Bk y = γk , (6.12), is then

y(x) =
∫ b

a
G(x, ξ) f (ξ)dξ +

n∑

j=1

η j u j (x)

=
∫ b

a

[
G0(x, ξ) +

n∑

k=1

μk(ξ)uk(x)

]
f (ξ)dξ +

n∑

j=1

η j u j (x) (6.74)

with G0(x, ξ) given in (6.66) and (6.67), μk(ξ) in (6.69), and η j in (6.73).
Alternative analyses relevant to the nth order equation are given in [6, 7, 33, 38].

6.2 Difference Equations

In considering the Green’s function for difference equations we follow closely the
analysis just presented for differential equations. We start with the N th order inho-
mogeneous difference equation, (2.45),

Ly(n) = pN (n)y(N + n) + pN−1(n)y(N + n − 1) + · · · + p0(n)y(n)

=
N∑

j=0

p j (n)y(n + j) = qN (n) (6.75)

The N th order homogeneous equation is

Ly(n) = 0, (6.76)

for which the N linearly independent solutions are denoted by uk(n), (k = 1,
2, . . . , N ), that is,

Luk(n) =
N∑

j=0

p j (n)uk(n + j) = 0, k = 1, 2, . . . , N (6.77)

Following the analysis presented for differential equations, we seek a solution to
Ly(n) = q(n) of the form

y(n) =
∑

m

G(n, m)q(m) (6.78)

subject to certain initial, terminal, or boundary conditions.

http://dx.doi.org/10.1007/978-3-319-29736-1_2
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As with the analysis of the differential equation, we first consider the second order
difference equation in some detail and then generalize to the N th order equation.

At this point a comment on the range of values for n and for m is in order. These
ranges depend on whether the conditions are placed at the beginning of the interval,
as in an initial value problem, at the end of the interval, or at both ends of the interval,
as in a standard boundary value problem. We note that for the differential equation,
both the function y(x) and its derivative, y′(x), were taken at the end points of the
interval, at x = a and x = b. For the difference equation the function is y(n), but
corresponding to the derivative we have y(n + 1). Therefore, although we refer to
n = n1 and n = n2 as the end points of the interval, y(n), and hence also G(n, m),
are defined for n1 ≤ n ≤ n2 + 1.

In an initial value problem conditions are imposed on y(n) at the beginning of
the interval, on y(n1) and y(n1 + 1), the range of values of n is n1 ≤ n < ∞, and
the range of values of m is n1 ≤ m ≤ n − 1 (note (6.91) and (6.92)), the sum in
(6.78) being zero for n = n1. However, y(n) and G(n, m) are defined for all values
of n ≥ n1.

In a terminal value problem conditions are imposed at the end of the interval,
on y(n2) and y(n2 + 1) and n takes on the values n2 + 1, n2, . . . (i.e., − ∞ < n ≤
n2 + 1) and the range of values of m is n ≤ m ≤ n2 − 1 (note (6.102) and (6.103)),
the sum in (6.78) being zero for n = n2 and n = n2 + 1. The functions y(n) and
G(n, m) are defined for all values of n such that −∞ < n ≤ n2 + 1.

For a boundary value problem the conditions are imposed at both ends of the
interval, on y(n1) and y(n1 + 1) andon y(n2) and y(n2 + 1) and the rangeof values of
both n and m is n1 ≤ n, m ≤ n2 − 1 (note (6.108)). The functions y(n) and G(n, m)

are defined for all values of n such that n1 ≤ n ≤ n2 + 1.
We therefore assume a solution to Ly = q of the form (cf. (6.4))4

y(n) =
n2−1∑

m=n1

G(n, m)q(m) (6.79)

We then have (cf. (6.5))

Ly =
n2−1∑

m=n1

LG(n, m)q(m) = q(n) (6.80)

fromwhich (noting that both n andm cover the range of values n1 ≤ n, m ≤ n2 − 1),
(cf. (6.6))

LG(n, m) = δ(n, m) (6.81)

4To illustrate the similarity of the analyses, we give in italics the equation number in the corre-
sponding derivation for differential equations.
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where

δ(n, m) =
{
1 n = m
0 n �= m

(6.82)

As in the case of the differential equation, we solve the inhomogeneous differ-
ence equation (6.81) by the method of variation of constants, presented in Chap.2,
Sect. 2.1.2, (cf. Eqs. (2.48) and (2.66) with N = 2). We then have (cf. (6.20))

G(n, m) =
2∑

k=1

ck(n.m)uk(n) (6.83)

The coefficients ck(n, m) canbeobtainedby summing thedifferences�ck(n′ − 1, m)

given in (2.82), in which hN (n − 1) = δ(n − 1, m)/pN (n − 1) (note Eq. (2.55)). To
this end, reasonable choices are (cf. (6.27) and (6.28))

ck(n, m) = ck(n1, m) +
n∑

n′=n1+1

�ck(n
′ − 1, m) (6.84)

and

ck(n, m) = ck(n2, m) −
n2∑

n′=n+1

�ck(n
′ − 1, m) (6.85)

Either of these expressions for ck(n, m)may be substituted in (6.83). The appropriate
choice permits one to satisfy the boundary conditions for G(n, m) without adding
the solution to the homogeneous equation introduced in substituting the summation
constants ck(n1, m) and ck(n2, m) in (6.83). The coefficients ck(n, m) are then given
solely by the sums in (6.84) to (6.85). From (2.82) we then have (cf. (6.25))

�c1(n
′ − 1, m) = − δ(n′ − 1, m)

p2(n′ − 1)K (n′)
u2(n

′)

�c2(n
′ − 1, m) = δ(n′ − 1, m)

p2(n′ − 1)K (n′)
u1(n

′)
(6.86)

where from (2.56) (cf. (6.26))

K (n) =
∣∣∣∣

u1(n) u2(n)

u1(n + 1) u2(n + 1)

∣∣∣∣ (6.87)

Following the analysis presented in Eqs. (6.30)–(6.34) for differential equations,
we first consider the initial value problem with homogeneous initial value condi-
tions y(n1) = y(n1 + 1) = 0. Then from (6.84) and (6.86) we choose (cf. (6.29) and
(6.30))

http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
http://dx.doi.org/10.1007/978-3-319-29736-1_2
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c1(n, m) = −
n∑

n′=n1+1

δ(n′ − 1, m)

p2(n′ − 1)K (n′)u2(n
′) =

⎧
⎨

⎩
− u2(m + 1)

p2(m)K (m + 1)
n1 ≤ m < n

0 n1 ≤ n ≤ m
(6.88)

c2(n, m) =
n∑

n′=n1+1

δ(n′ − 1, m)

p2(n′ − 1)K (n′)
u1(n

′) =
⎧
⎨

⎩

u1(m + 1)

p2(m)K (m + 1)
n1 ≤ m < n

0 n1 ≤ n ≤ m
(6.89)

Note that we have chosen the interval of summation for both c1(n, m) and c2(n, m)

to be n1 + 1 ≤ n′ ≤ n. This corresponds to (6.30) and (6.31), in which the interval
of integration for both c1(x, ξ) and c2(x, ξ)was chosen to be a < ξ < x . This choice
is the more reasonable one for an initial value problem.

It is worth noting that c1(n, m) and c2(n, m) appear to be functions only of m.
Their n dependence specifies only the two regions of definition. This corresponds to
the expressions for c1(x, ξ) and c2(x, ξ), which appear to be functions only of ξ.

Then from (6.83) we have (cf. (6.31))

G(n, m) =
⎧
⎨

⎩

u2(n)u1(m + 1) − u1(n)u2(m + 1)

p2(m)K (m + 1)
n1 ≤ m < n

0 n1 ≤ n ≤ m
(6.90)

It follows directly that G(n1, m) = G(n1 + 1, m) = 0 and hence from (6.79) the
solution to Ly = q(n)with the homogeneous initial conditions y(n1) = y(n1 + 1) =
0 is (cf. (6.32))

y(n) =
n−1∑

m=n1

G(n, m)q(m)

= u2(n)

n−1∑

m=n1

u1(m + 1)

p2(m)K (m + 1)
q(m) − u1(n)

n−1∑

m=n1

u2(m + 1)

p2(m)K (m + 1)
q(m)

(6.91)

(Note (1.14) for n = n1.)
If now we choose u1(n) and u2(n) to be linearly independent solutions of the

homogeneous equation Ly = 0 satisfying the initial conditionsu1(n1) = 1, u1(n1 +
1) = 0 and u2(n1) = 0, u2(n1 + 1) = 1, then v(n) ≡ γ1u1(n) + γ2u2(n) is a solu-
tion of Lv = 0 with the initial conditions v(n1) = γ1, v(n1 + 1) = γ2. The solu-
tion to Ly = q with initial conditions y(n1) = γ1, y(n1 + 1) = γ2 is therefore (cf.
(6.33))

http://dx.doi.org/10.1007/978-3-319-29736-1_1
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y(n) = u2(n)

n−1∑

m=n1

u1(m + 1)

p2(m)K (m + 1)
q(m) − u1(n)

n−1∑

m=n1

u2(m + 1)

p2(m)K (m + 1)
q(m)

+ γ1u1(n) + γ2u2(n) (6.92)

(Note (6.34) for differential equations.)
It is interesting to compare the Green’s function for differential equations given in

(6.32) with that for difference equations given in (6.90). We note that from Eq. (6.90)
(cf. (6.14))

G(m, m) = G(m + 1, m) = 0, (6.93)

which corresponds to the condition of continuity in (6.15), namely limε→0

(G(ξ + ε) − G(ξ − ε)) = 0. Further, fromEq. (6.90) (and (6.87))wehave (cf. (6.15))

G(m + 2, m) = 1

p2(m)
, (6.94)

which corresponds to the discontinuity of G ′(x, ξ) at x = ξ, given in (6.16). From
(6.90) and (2.47) it then follows that

LG(n, m) = p2(n)G(n + 2, m) + p1(n)G(n + 1, m) + p0(n)G(n, m) = δ(n, m)

(6.95)

which corresponds to LG(x, ξ) = δ(x − ξ), from which (cf. 6.5)

n=m+1∑

n=m−1

LG(n, m) = 1 (6.96)

which corresponds to
∫ x=ξ+ε

x=ξ−ε

LG(x, ξ) dx = 1 (6.97)

We next consider the case inwhich the boundary values are placed at the end of the
interval, with homogeneous boundary conditions y(n2) = y(n2 + 1) = 0. Again, we
choose from (6.84) and (6.85) the expressions for ck(n, m) that permit the boundary
conditions forG(n, m) to be satisfiedwithout adding the solution to the homogeneous
equation introduced in substituting the summation constants ck(n1, m) and ck(n2, m)

in (6.83). The coefficients ck(n, m) are then given solely by the sums in (6.84) and
(6.85). Then from (6.85) and (6.86) (corresponding to (6.35) and (6.36) for the
differential equation),

http://dx.doi.org/10.1007/978-3-319-29736-1_2
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c1(n, m) =
n2∑

n′=n+1

δ(n′ − 1, m)

p2(n′ − 1)K (n′)
u2(n

′) =
{ u2(m+1)

p2(m)K (m+1) n ≤ m ≤ n2 − 1
0 m < n ≤ n2 − 1

(6.98)

c2(n, m) = −
n2∑

n′=n+1

δ(n′ − 1, m)

p2(n′ − 1)K (n′)
u1(n

′) =
{− u1(m+1)

p2(m)K (m+1) n ≤ m ≤ n2 − 1
0 m < n ≤ n2 − 1

(6.99)

and from (6.83) (cf. (6.36))

G(n, m) =
⎧
⎨

⎩

u1(n)u2(m + 1) − u2(n)u1(m + 1)

p2(m)K (m + 1)
n ≤ m ≤ n2 − 1

0 m < n ≤ n2 − 1
(6.100)

Note that this equation only defines G(n, m) for n ≤ n2 − 1. From (6.81) and (6.100)
it follows, with a bit of algebra, that

G(n2, m) = G(n2 + 1, m) = 0 for all m ≤ n2 − 1 (6.101)

The solution to Ly = q(n) with the homogeneous terminal conditions y(n2) =
y(n2 + 1) = 0 is then (cf. (6.37))

y(n) =
n2−1∑

m=n

G(n, m)q(m)

= u1(n)

n2−1∑

m=n

u2(m + 1)

p2(m)K (m + 1)
q(m) − u2(n)

n2−1∑

m=n

u1(m + 1)

p2(m)K (m + 1)
q(m)

(6.102)

(Note (1.14) for n = n2 and n = n2 + 1.)
If now we choose u1(n) and u2(n) to be linearly independent solutions of

the homogeneous equation Ly = 0 satisfying the terminal conditions u1(n2) = 1,
u1(n2 + 1) = 0 and u2(n2) = 0, u2(n2 + 1) = 1, then v(n) ≡ γ1u1(n) + γ2u2(n)

is a solution of Lv = 0 with the boundary conditions v(n2) = γ1, v(n2 + 1) = γ2.
The solution to Ly = q with boundary conditions y(n2) = γ1, y(n2 + 1) = γ2 is
therefore (cf. (6.38))

y(n) = u1(n)

n2−1∑

m=n

u2(m + 1)

p2(m)K (m + 1)
q(m) − u2(n)

n2−1∑

m=n

u1(m + 1)

p2(m)K (m + 1)
q(m)

+ γ1u1(n) + γ2u2(n) (6.103)

We next consider the boundary value problem with conditions imposed at both
ends of the interval, but in which each condition relates to only one end point: (cf.
(6.39))

http://dx.doi.org/10.1007/978-3-319-29736-1_1
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B1y = α11y(n1) + α12y(n1 + 1) = γ1

B2y = β21y(n2) + β22y(n2 + 1) = γ2
(6.104)

Again, we first consider the solution to the inhomogeneous equation Ly = q with
the homogeneous boundary conditions: (cf. (6.40))

B1y = α11y(n1) + α12y(n1 + 1) = 0

B2y = β21y(n2) + β22y(n2 + 1) = 0
(6.105)

Then, corresponding to (6.42) and (6.43) for differential equations, we choose the
summation interval n + 1 ≤ n′ ≤ n2 for c1(n, m) and n1 + 1 ≤ n′ ≤ n for c2(n, m).
Again, we choose from (6.84) and (6.85) the expressions for ck(n, m) that permit the
boundary conditions for G(n, m) to be satisfied without adding the solution to the
homogeneous equation introduced in substituting the summation constants ck(n1, m)

and ck(n2, m) in (6.83). The coefficients ck(n, m) are then given solely by the sums in
(6.84) and (6.85). From (6.85) and (6.86) (corresponding to (6.35) for the differential
equation), we then have (cf. (6.41))

c1(n, m) =
n2∑

n′=n+1

δ(n′ − 1, m)

p2(n′ − 1)K (n′)
u2(n

′) =
{ u2(m+1)

p2(m)K (m+1) n1 ≤ n ≤ m
0 m < n ≤ n2 − 1

(6.106)

and from (6.84) and (6.86) (corresponding to (6.31) for the differential equation),
we have (cf. (6.42))

c2(n, m) =
n∑

n′=n1+1

δ(n′ − 1, m)

p2(n′ − 1)K (n′)
u1(n

′) =
{

0 n1 ≤ n ≤ m
u1(m+1)

p2(m)K (m+1) m < n ≤ n2 − 1

(6.107)
We then have (cf. (6.43))

G(n, m) =

⎧
⎪⎪⎨

⎪⎪⎩

u1(n)u2(m + 1)

p2(m)K (m + 1)
n1 ≤ n ≤ m ≤ n2 − 1

u2(n)u1(m + 1)

p2(m)K (m + 1)
n1 ≤ m < n ≤ n2 − 1

(6.108)

and (cf. (6.44))

y(n) =
n2−1∑

m=n1

G(n, m)q(m)

= u2(n)

n−1∑

m=n1

u1(m + 1)

p2(m)K (m + 1)
q(m) + u1(n)

n2−1∑

m=n

u2(m + 1)

p2(m)K (m + 1)
q(m)

(6.109)
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If we choose u1(n) and u2(n) so that they satisfy the homogeneous boundary
conditions (cf. (6.45))

B1u1 = α11u1(n1) + α12u1(n1 + 1) = 0

B2u2 = β21u2(n2) + β22u2(n2 + 1) = 0
(6.110)

(e.g., by setting u1(n1) = α12, u(n1 + 1) = −α11, u2(n2) = β22, u2(n2 + 1) =
−β21) then G(n, m) as given in (6.108) and y(n) as given by (6.109) will also
satisfy the homogeneous boundary conditions (6.105).

If now y(n) is to satisfy the inhomogeneous boundary conditions (6.104), then we
may add to y(n) as given in (6.109) a solution to the homogeneous equation Ly = 0
satisfying the inhomogeneous boundary conditions (6.104), giving (cf. (6.46))

y(n) = u2(n)

n−1∑

m=n1

u1(m + 1)

p2(m)K (m + 1)
q(m) + u1(n)

n2−1∑

m=n

u2(m + 1)

p2(m)K (m + 1)
q(m)

+ μ1u1(n) + μ2u2(n) (6.111)

Imposing the inhomogeneous boundary conditions given in (6.104) and using
(6.110), we have (cf. (6.47))

B1y = μ2B1u2 = γ1

B2y = μ1B2u1 = γ2
(6.112)

from which (cf. (6.48))

y(n) = u2(n)

n−1∑

m=n1

u1(m + 1)

p2(m)K (m + 1)
q(m) + u1(n)

n2−1∑

m=n

u2(m + 1)

p2(m)K (m + 1)
q(m)

+ γ2

B2u1
u1(x) + γ1

B1u2
u2(x) (6.113)

Wehave derived threeGreen’s functions, given in (6.90), (6.100) and (6.108), each
satisfying a particular condition—initial, terminal, and boundary. It is important to
note that each of these Green’s functions is a solution of the inhomogeneous equation
LG(n, m) = δ(n, m); they therefore only differ by a solution of the homogeneous
equation Lu = 0.We can therefore use any one of these Green’s functions in solving
an initial, terminal or boundary value problem by adding an arbitrary solution to
the homogeneous equation and then imposing the desired boundary conditions on
the sum. For example, we could have dealt with the boundary value problem by
adding to the Green’s function for the initial value problem an arbitrary solution to
the homogeneous equation and then imposing the boundary value conditions (6.41)
on the sum: (cf. (6.49))
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G(n, m) = μ1(m)u1(n) + μ2(m)u2(n) +
{ u2(n)u1(m+1)−u1(n)u2(m+1)

p2(m)K (m+1) n1 ≤ m < n
0 n1 ≤ n ≤ m

(6.114)

Imposing the boundary conditions (6.105) we have (cf. (6.50))

B1G = μ1(m)B1u1 + μ2(m)B1u2 = 0

B2G = μ1(m)B2u1 + μ2(m)B2u2 + u1(m + 1)B2u2 − u2(m + 1)B2u1

p2(m)K (m + 1)
= 0

(6.115)

Again,we assume that u1(n) and u2(n) satisfy the homogeneous boundary conditions
(6.110) (cf. (6.51))

B1u1 = B2u2 = 0 (6.116)

from which (see AppendixF) B1u2 �= 0, B2u1 �= 0 and hence (cf. (6.52))

μ2(m) = 0

μ1(m) = u2(m + 1)

p2(m)K (m + 1)

(6.117)

from which we obtain the Green’s function given in (6.108): (cf. (6.53))

G(n, m) =

⎧
⎪⎪⎨

⎪⎪⎩

u1(n)u2(m + 1)

p2(m)K (m + 1)
n1 ≤ n ≤ m

u2(n)u1(m + 1)

p2(m)K (m + 1)
n1 ≤ m < n

(6.118)

The observation that we can use any one of these Green’s functions in solving
an initial, terminal or boundary value problem by adding an arbitrary solution to the
homogeneous equation and then imposing the desired boundary conditions on the
sum is useful in considering the N th order equation in that we can then choose the
same limits on each of the sums for the parameters ck(n, m), just as, when considering
the nth order differential equation, the limits on each of the integrals of c′

j (x ′, ξ)were
taken to be the same.

Finally, we consider the solution of Ly = q with general boundary conditions
involving the function at both ends of the interval, corresponding to (6.55) for differ-
ential equations. For the second order equation, these boundary conditions are (cf.
(6.54))

B1y = α11y(n1) + α12y(n1 + 1) + β11y(n2) + β12y(n2 + 1) = γ1

B2y = α21y(n1) + α22y(n1 + 1) + β21y(n2) + β22y(n2 + 1) = γ2
(6.119)
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Again, we start by considering the solution to Ly = q with homogeneous boundary
conditions, ((6.119) with γ1 = γ2 = 0). Following the analysis given in Eqs. (6.55)–
(6.64) for differential equations, we obtain the Green’s function G(n, m) which
satisfies the homogeneous boundary conditions by writing it in the form (cf. (6.55))

G(n, m) = G0(n, m) + μ1(m)u1(n) + μ2(m)u2(n) (6.120)

where, as we have discussed, G0(n, m) can be chosen to be any one of the Green’s
functions given in (6.90), (6.100) and (6.108). Imposing the general boundary con-
ditions given in (6.119) (with γ1 = γ2 = 0) again leads to the two equations given in
(6.57) for differential equations, from which the expressions for μ1 and μ2 given in
(6.58)–(6.60) follow (with ξ replaced bym). The solution to Ly = q with the general
homogeneous boundary conditions is therefore (cf. (6.60))

y(n) =
n2−1∑

m=n1

G(n, m)q(m)

=
n2−1∑

m=n1

[
G0(n, m) − u1(n)

�

∣∣∣∣
B1G0 B1u2

B2G0 B2u2

∣∣∣∣ − u2(n)

�

∣∣∣∣
B1u1 B1G0

B2u1 B2G0

∣∣∣∣

]
q(m)

(6.121)

The extension of these results to the N th order difference equation follows in
analogy with those for the nth order differential equation given in Eqs. (6.65)–(6.74).
Now, in analogy with the analysis on p. 50, we consider the solution of Ly = q with
L as given in (6.75) and the N th order general boundary conditions Bk y = γk , where

Bk y =
N∑

j=1

[
αk j y(n1 + j − 1) + βk j y(n2 + j − 1)

]
, k = 1, 2, . . . , N (6.122)

Again, we first consider the solution of Ly = q with homogeneous boundary condi-
tions, (Bk y = 0), and write the solution

y(n) =
n2−1∑

m=n1

G(n, m)q(m) (6.123)

in terms of the Green’s function

G(n, m) = G0(n, m) +
N∑

k=1

μk(m)uk(n) (6.124)
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where

LG0(n, m) = δ(n − 1, m) (6.125)

and the N functions uk(n) are linearly independent solutions of Lu = 0. Solving
LG0(n, m) = δ(n − 1, m) by the method of variation of constants as presented in
Chap.2, Sect. 2.1.1, we have, from (2.85) with y(n) replaced by G0(n, m),

G0(n, m) =
N∑

j=1

c j (n, m)u j (n), (6.126)

where

c j (n, m) =
n∑

n′=n1+1

�c j (n
′ − 1, m) (6.127)

in which �c j (n′ − 1, m) is given by (2.82) with hN (n − 1) = δ(n − 1, m)/pN (n −
1). Summation then gives

c j (n, m) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)N+ j

pN (m)K (m + 1)

∣∣∣∣∣∣∣∣∣∣

u1(m + 1) · · · u j−1(m + 1) u j+1(m + 1) · · · uN (m + 1)
u1(m + 2) · · · u j−1(m + 2) u j+1(m + 2) · · · uN (m + 2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u1(m + N − 1) · · · u j−1(m + N − 1) u j+1(m + N − 1) · · · uN (m + N − 1)

∣∣∣∣∣∣∣∣∣∣

n1 ≤ m < n

0 n1 ≤ n ≤ m

(6.128)

(See AppendixB for j = 1 and j = N .) The Green’s function G0(n, m) is then given
by substituting c j (n, m) as given in (6.128) in (6.126). We note that for N = 2,
(6.128) and (6.126) reduce directly to (6.88), (6.89) and (6.90).

The remaining analysis needed to express the solution to the difference equation
Ly = q in terms of the Green’s function with general inhomogeneous boundary
conditions is that given for differential equations in Eqs. (6.68)–(6.74); one has only
to replace x and ξ by n andm, respectively, and apply the general boundary conditions
Bk y = γk given in (6.122). The solution to the N th order difference equation Ly = q,
(6.75), is then

y(n) =
n2−1∑

m=n1

G(n, m)q(m) +
N∑

j=1

η j u j (n)

=
n2−1∑

m=n1

[
G0(n, m) +

N∑

j=1

μ j (m)u j (n)

]
q(m) +

N∑

j=1

η j u j (n) (6.129)

http://dx.doi.org/10.1007/978-3-319-29736-1_2
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Chapter 7
Generating Functions, Z-Transforms,
Laplace Transforms and the Solution
of Linear Differential and Difference
Equations

Laplace transforms provide one of the means for solving homogeneous and inho-
mogeneous differential equations. Generating functions provide the corresponding
transform for difference equations. The Laplace transform, L, of a function y(x) is
defined by

Ly =
∫ ∞

0
e−sx y(x) dx = F(s) (7.1)

The generating function, G(ω), of a function y(n) is defined by

Gy =
∞∑

n=0

y(n)ωn = G(ω) (7.2)

A z-transform, also called a Laurent transform, is a generating function in which the
variable ω is replaced by z = 1/ω:

Zy =
∞∑

n=0

y(n)

zn
= Z(z) (7.3)

The underlying similarity of these transforms may be seen from their definition
and is made clear if, in the integrand of the Laplace transform, we consider a function
Y (x) defined as a sum of delta functions:

Y (x) =
∞∑

n=0

δ(x − n)y(x) (7.4)

and let e−s = ω. Then

LY =
∫ ∞

0
e−sx Y (x) dx =

∞∑

n=0

∫ ∞

0
ωxδ(x − n)y(x) dx =

∞∑

n=0

ωn y(n) (7.5)

which is the generating function for the function y(n).

© Springer International Publishing Switzerland 2016
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Both Laplace transforms and generating functions are generally applied to linear
equations with constant coefficients since the resulting transform, F(s) or G(ω),
is then an algebraic function of the transform variable, s or ω, and the transform
can therefore be inverted easily to give the solution to the differential or difference
equation, Ly = f (x) or Ly = q(n). This case is presented in the next two sections.
In the sections that follow we consider the case in which the coefficients in the dif-
ferential or difference equation are polynomials (in x for differential equations, in
n for difference equations). As we shall see, the transform, F(s) or G(ω), is then
no longer a simple algebraic expression, but now satisfies a differential equation
whose order is equal to the highest degree of any of the polynomial coefficients. It
is clear that this is not a reasonable method for the solution of the differential or
difference equation unless the coefficients are either linear or quadratic functions of
the independent variable, x or n. We therefore examine in some detail the case in
which the coefficients are linear functions (of x for differential equations, of n for
difference equations), with particular reference to some of the classical orthogonal
polynomials. Nonetheless, obtaining the solution, y(x) or y(n), by inversion of the
transform: y(x) = L−1F(s) or y(n) = G−1G(w) is, in general, somewhat difficult.
We therefore present the approach generally taken, which consists in assuming that
the solution to the differential or difference equation is given by an integral over
the Laplace transform or generating function (the inverse Laplace or Mellin trans-
form) and then using the equation, Ly = f (x) or Ly = q(n), to derive the necessary
conditions that the Laplace transform or generating function must satisfy. (See, e.g.,
[25, Chap. 5, Sect. 47] and [27, A, Sect. 5, 19] in the case of differential equations
and [26, Chap. XI, Sect. 174], or [35, Chap.11] in the case of difference equations).
Finally, for the case of a second order homogeneous equation we present an alternate
approach in which the dependent and independent variables of the differential or
difference equation are transformed so that the resulting equation is recognized to
have a form whose solution is well-known. We apply this approach to the second
order homogeneous differential equation with coefficients linear in the independent
variable (for which details are given in [13, Sect. 6.2, pp. 249–252]) as well as to the
corresponding difference equation.

7.1 Laplace Transforms and the Solution of Linear
Differential Equations with Constant Coefficients

We first consider the case of a linear inhomogeneous differential equation with con-
stant coefficients:

Ly = aN y(N )(x) + aN−1y(N−1)(x) + · · · + a0y(x) = f (x) (7.6)
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The solution to this equation will be obtained from its Laplace transform, defined by

F(s) = Ly(x) =
∫ ∞

0
e−sx y(x) dx, (7.7)

from which y(x) is given by the inverse Laplace transform:

y(x) = L−1F(s) (7.8)

Using the differential equation Ly = f (x), we first obtain the Laplace transform of
Ly and then express the Laplace transform of y(x) in terms of Laplace transform
of Ly.

To obtain the Laplace transform of Ly we define

Fk(s) =
∫ ∞

0
e−sx y(k)(x) dx k = 0, 1, . . . N (F0(s) = F(s)) (7.9)

from which, by integration by parts,

Fk(s) = s Fk−1(s) − y(k−1)(0) k = 1, 2, . . . N (7.10)

This first order equation can be solved by iteration, giving

Fk(s) = sk F(s) −
k−1∑

j=0

s j y(k−1− j)(0) k = 0, 1 . . . N (7.11)

from which

∫ ∞

0
e−sx Ly dx = F(s)

N∑

k=0

aksk −
N∑

k=0

ak

k−1∑

j=0

s j y(k−1− j)(0)

= F(s)
N∑

k=0

aksk −
N−1∑

j=0

s j
N−1∑

k= j

ak+1y(k− j)(0) = f (s) (7.12)

where

f (s) =
∫ ∞

0
e−sx f (x) dx (7.13)

Thus

F(s) =
∑N−1

j=0 s j
∑N−1

k= j ak+1y(k− j)(0)
∑N

k=0 aksk
+ f (s)

∑N
k=0 aksk

= QN−1(s)

PN (s)
+ f (s)

PN (s)
(7.14)
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where QN−1(s) and PN (s) are polynomials of order N − 1 and N respectively.
Our goal is to obtain the solution y(x) to the equation Ly = f (x): This is given

by the inverse Laplace transform

y(x) = L−1F(s) = L−1

{
QN−1(s)

PN (s)

}
+ L−1

{
f (s)

PN (s)

}
(7.15)

The solution to the homogeneous equation Ly = 0 is given by the first term on the
right hand side of (7.15), in which the argument is the ratio of two polynomials in
s, which can, in principal, be written as a sum of partial fractions, for the which the
inverse Laplace transform is

L−1

{
1

(s − a)m+1

}
= xmeax

m! (7.16)

Writing QN−1/PN as a sum of partial fractions, however, requires that we determine
the zeros of PN (s) = ∑N

k=0 aksk . This is straightforward for an equation of second
degree (N = 2), possible with a bit more difficulty for an equation of third or fourth
degree, but may not be possible analytically for N ≥ 5.

The steps given thus far give the solution of the homogeneous equation Ly =
0 ( f (s) = 0). For the inhomogeneous equation Ly = f (x), if f (x) is either a poly-
nomial in x , exponential in form (eαx · sinαx, cosαx) or a sum of products of poly-
nomials and exponential functions, then the Laplace transform, f (s), is a sum of
terms of the form (s − a)−m−1 (note Eq. (7.16)), and the second term in Eq. (7.14)
can also be written as a sum of partial fractions, for which the inverse Laplace
transform is again given by (7.16). In the case of a more general function f (x),
the inverse Laplace transform of f (s)/PN is given by the convolution theorem for
Laplace transforms.

Given two functions, f1(x) and f2(x), with corresponding Laplace transforms
F1(s) and F2(s),

L f1 = F1(s) L f2 = F2(s) (7.17)

then
L f1L f2 = L( f1 ∗ f2) (7.18)

where

f1 ∗ f2 =
∫ x

0
f1(t) f2(x − t) dt =

∫ x

0
f1(x − t) f2(t) dt (7.19)

is the convolution of f1 and f2.
We illustrate this explicitly by deriving the solution to the second degree linear

inhomogeneous equation as given in (7.6) with N = 2 and f (x) arbitrary. Setting

f1(x) = f (x) F1(s) = f (s)
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f2(x) = L−1

{
1

P2(s)

}
F2(s) = 1

P2(s)
(7.20)

we use the convolution theorem to obtain the inverse Laplace transform of the second
term in (7.14):

L−1

{
f (s)

P2(s)

}
= L−1 {L f1L f2} = f1 ∗ f2 (7.21)

Here
P2(s) = a2s2 = a1s + a0 = a2(s − α1)(s − α2) (7.22)

where

α1 = −a1 + �

2a2
, α2 = −a1 − �

2a2
, � =

√
a2
1 − 4a0a2 (7.23)

from which
1

P2(s)
= 1

a2(α1 − α2)

[
1

s − α1
− 1

s − α2

]
(7.24)

and, from (7.16),

f2(x) = L−1

{
1

P2(s)

}
= (eα1x − eα2x )

a2(α1 − α2)
= 2

�
e− a1

2a2 sinh

(
�x

2a2

)
(7.25)

Thus, from (7.21) we have

L−1

{
f (s)

P2(s)

}
= 2

�

∫ x

0
f (x − t)e− a1 t

2a2 sinh

(
�t

2a2

)
dt (7.26)

Here, in the limit α1 → α2 (� → 0), we have

L−1

{
f (s)

P2(s)

}
= 1

a2

∫ x

0
t f (x − t) dt = 1

a2

∫ x

0
(x − t) f (t) dt (7.27)

It may be noted that we can also write (7.26) in the form

L−1

{
f (s)

P2(s)

}
= 1

�

[
eα1x

∫ x

0
f (t)e−α1t − eα2x

∫ x

0
f (t)e−α2t

]
, (7.28)

which expresses L−1
{

f (s)
P2(s)

}
in terms of the finite Laplace transform of f (x).

Finally, we evaluate the inverse Laplace transform of the first term in (7.14): From
(7.16) with N = 2, we have

L−1

{
Q1(s)

P2(s)

}
= a1y(0) + a2y(1)(0)

a2(α1 − α2)

[
eα1x − eα2x

] + y(0)

(α1 − α2)

[
α1eα1x − α2eα2x

]

(7.29)
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Writing this expression so that the limit α1 → α2 (� → 0) is evident, we have

L−1
{

Q1(s)

P2(s)

}
= y(0)e

− a1x
2a2

[
a1
�

sinh

(
�x

2a2

)
+ cosh

(
�x

2a2

)]
+ y(1)(0)e

− a1x
2a2

[
2a2
�

sinh

(
�x

2a2

)]

(7.30)

Thus, in summary, the solution to the second order inhomogeneous equation with
constant coefficients,

a2y′′(x) + a1y′(x) + a0y(x) = f (x), (7.31)

is

y(x) = y(0)e
− a1x

2a2

[
a1
�

sinh

(
�x

2a2

)
+ cosh

(
�x

2a2

)]
+ y(1)(0)e

− a1x
2a2

[
2a2
�

sinh

(
�x

2a2

)]

+ 2

�

∫ x

0
f (x − t)e

− a1t
2a2 sinh

(
�t

2a2

)
dt (7.32)

Wenote that the use of the Laplace transform for the solution of a linear homogeneous
or inhomogeneous differential equation, Ly = f (x), involves three essential points:

(1) If the coefficients in the differential equation are constants, then the transform
of Ly is a rational function of the transform variable, which can then be written
as a sum of partial fractions.

(2) The inverse transform of a partial fraction, 1/(s − a)m+1, can be expressed ana-
lytically and has a simple closed form, xmeax/m!.

(3) The transform of the solution y(x) has, from the inhomogeneous term f (x),
a term of the form f (s)/PN (s), where PN (s) is a polynomial in the transform
variable s. The inverse transform of f (s)/PN (s) can be expressed as an integral
over f (x) using the convolution theorem.

It will be seen in the following application of the generating function that these
three points are equally essential for the solution of a linear difference equation,
homogeneous or inhomogeneous.

7.2 Generating Functions and the Solution of Linear
Difference Equations with Constant Coefficients

We consider now a linear inhomogeneous difference equation with constant coeffi-
cients:

Ly = pN y(n + N ) + pN−1 y(n + N − 1) + · · · + p0 y(n) = q(n) (7.33)
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As with the differential equation, the solution to this equation will be obtained
from its generating function, defined by

G(ω) = Gy(n) =
∞∑

n=0

y(n)ωn (7.34)

from which y(n) is given by the inverse of G:

y(n) = G−1G(ω) (7.35)

Using the difference equation Ly = q(n), we first obtain the generating function
of Ly and then express the generating function of y(n) in terms of the generating
function of Ly.

To obtain the generating function of Ly we define

Gk(ω) =
∞∑

n=0

y(n + k)ωn k = 0, 1, . . . N (G0(ω) = G(ω)) (7.36)

from which

Gk−1(ω) =
∞∑

n=0

y(n + k − 1)ωn

= ω

∞∑

n=0

y(n + k − 1)ωn−1

=
∞∑

n=0

y(n + k)ωn + y(k − 1)

= ωGk(ω) + y(k − 1), k = 1, 2, . . . N (7.37)

Thus

Gk(ω) = Gk−1(ω) − y(k − 1)

ω
, k = 1, 2, . . . N (7.38)

This first order equation can be solved by iteration, or directly from the definition of
Gk(ω):

Gk(ω) =
∞∑

n=0

y(n + k)ωn = 1

ωk

∞∑

n=0

y(n + k)ωn+k = 1

ωk

⎡

⎣
∞∑

n=0

y(n)ωn −
k−1∑

n=0

y(n)ωn

⎤

⎦

= 1

ωk

⎡

⎣G(ω) −
k−1∑

n=0

y(n)ωn

⎤

⎦ (7.39)
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We then have the generating function of Ly:

G{Ly} =
∞∑

n=0

Ly ωn =
∞∑

n=0

N∑

k=0

pk y(n + k)ωn

=
N∑

k=0

pk Gk(ω) =
∞∑

n=0

q(n)ωn = Q(ω) (7.40)

Substituting (7.39) in this equation we have

N∑

k=0

pk

ωk

[
G(ω) −

k−1∑

n=0

y(n)ωn

]
= Q(ω) (7.41)

from which

G(ω) = Q(ω)
∑N

k=0
pk

ωk

+
∑N

k=0
pk

ωk

∑k−1
n=0 y(n)ωn

∑N
k=0

pk

ωk

(7.42)

We nowwrite G(ω) so that it has a form similar to that given in (7.14) for the Laplace
transform F(s). To that end we write each of the sums in (7.42) as rational functions
of the transform variable ω. For the sum in the denominator we have

N∑

k=0

pk

ωk
= 1

ωN

N∑

k=0

pkω
N−k = 1

ωN

N∑

k=0

pN−kω
k (7.43)

For the first term in (7.42) we then have, from (7.43),

Q(ω)
∑N

k=0
pk

ωk

= ωN Q(ω)
∑N

k=0 pN−kωk
= 1

p0

[
Q(ω) −

∑N−1
k=0 pN−kω

k

∑N
k=0 pN−kωk

Q(ω)

]

= 1

p0
Q(ω) + TN−1(ω)

SN (ω)
Q(ω) (7.44)

where TN−1(ω) and SN (ω) are polynomials in the transform variable ω, of order
N − 1 and N respectively:

TN−1(ω) = − 1

p0

N−1∑

k=0

pN−kω
k (7.45)

and

SN (ω) =
N∑

k=0

pN−kω
k (7.46)
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For the double sum in the numerator of the second term in (7.42) we have

N∑

k=0

pk

ωk

k−1∑

n=0

y(n)ωn =
N∑

k=1

pk

k−1∑

n=0

y(n)ωn−k =
N−1∑

k=0

pk+1

k∑

n=0

y(n)ωn−k−1 (7.47)

Inverting the order of summation gives

N∑

k=0

pk

ωk

k−1∑

n=0

y(n)ωn =
N−1∑

n=0

N−1∑

k=n

pk−1y(n)ωn−k−1 (7.48)

and making the substitution of summation variable j = k − n + 1 we have

N∑

k=0

pk

ωk

k−1∑

n=0

y(n)ωn =
N−1∑

n=0

N−n∑

j=1

pn+ j y(n)ω− j (7.49)

Again inverting the order of summation gives

N∑

k=0

pk

ωk

k−1∑

n=0

y(n)ωn = 1

ωN

N∑

j=1

ωN− j
N− j∑

n=0

pn+ j y(n) (7.50)

and making the substitution of summation variable k = N − j gives, finally,

N∑

k=0

pk

ωk

k−1∑

n=0

y(n)ωn = 1

ωN

N−1∑

k=0

ωk
k∑

n=0

pN−k−n y(n) (7.51)

Substituting (7.43) and (7.51) in the second term on the right hand side of (7.42),
we see that this term is indeed a rational function of the transform variable in which
the numerator is a polynomial of order N − 1 and the denominator is a polynomial
of order N :

∑N
k=0

pk

ωk

∑k−1
n=0 y(n)ωn

∑N
k=0

pk

ωk

=
∑N−1

k=0 ωk
∑k

n=0 pN−k−n y(n)
∑N

k=0 pN−kωk
= RN−1(ω)

SN (ω)
(7.52)

where

RN−1(ω) =
N−1∑

k=0

ωk
k∑

n=0

pN−k−n y(n) (7.53)

and SN (ω) is defined in (7.46).
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Thus, substituting (7.44) and (7.52) in (7.42), we have

G(ω) = RN−1(ω)

SN (ω)
+ TN−1(ω)

SN (ω)
Q(ω) + 1

p0
Q(ω) (7.54)

The solution, y(n), to the equation Ly = q(n) is given by the inverse of G. From
(7.54) and (7.44) we have

y(n) = G−1G(ω) = G−1

{
RN−1(ω)

SN (ω)

}
+ G−1

{
TN−1(ω)

SN (ω)
Q(ω)

}
+ 1

p0
G−1Q(ω)

(7.55)
The solution to the homogeneous equation Ly = 0 is given by the first term on

the right hand side of (7.55), in which the argument is the ratio of two polynomials
in ω and can be written as a sum of partial fractions, for which the inverse transform
is (see Appendix G)

G−1

{
1

(ω − a)m+1

}
= (−1)m+1

an+m+1

(
n + m

m

)
(7.56)

For the inhomogeneous equation Ly = q(n), if q(n) is either a polynomial in n,
exponential in form (an) or a sum of products of polynomials and exponentials,
then the generating function Q(ω) can be written as a sum of terms of the form
(ω − a)−m−1 and the term TN−1(ω)

SN (ω)
Q(ω) can also be written as a sum of partial frac-

tions, for which the inverse transform is again given by (7.56). The inverse transform
of the term 1

p0
Q(ω) in (7.55) is straightforward: 1

p0
G−1Q(ω) = 1

p0
q(n). In the case

of a more general function q(n), the inverse transform G−1G(ω) is given by the
convolution theorem for generating functions (see Appendix G).

Given two functions y1(n) and y2(n), with corresponding generating functions
G1(ω) and G2(ω),

Gy1 = G1(ω) Gy2 = G2(ω) (7.57)

then
Gy1Gy2 = G(y1 ∗ y2) (7.58)

where

y1 ∗ y2 =
n∑

k=0

y1(k)y2(n − k) =
n∑

k=0

y1(n − k)y2(k) (7.59)

is the convolution of y1 and y2.
We illustrate this explicitly by deriving the solution to the second degree linear

inhomogeneous difference equation as given in (7.33) with N = 2 and q(n) arbitrary.
Referring to (7.55), we set
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y1(n) = q(n) G1(ω) = Q(ω)

y2(n) = G−1

{
T1(ω)

S2(ω)

}
G2(ω) = T1(ω)

S2(ω)
= − p2 + p1ω

p0[p2 + p1ω + p0ω2] (7.60)

and use the convolution theorem to obtain the second term on the right hand side of
(7.55):

G−1

{
T1(ω)

S2(ω)
Q(ω)

}
= G−1 {Gy1Gy2} = y1 ∗ y2 (7.61)

Here
p2 + p1ω + p0ω

2 = p0(w − β1)(w − β2) (7.62)

where

β1 = −p1 + �

2p0
, β1 = −p1 − �

2p0
, � =

√
p2
1 − 4p0 p2 (7.63)

from which

T1(ω)

S2(ω)
= − 1

p20(β1 − β2)

[
p2 + β1 p1
ω − β1

− p2 + β2 p1
ω − β2

]

R1(ω)

S2(ω)
= 1

p0(β1 − β2)

{
[(p2 + β1 p1)y(0) + β1 p0y(1)]

ω − β1
− [(p2 + β2 p1)y(0) + β2 p0y(1)]

ω − β2

}

(7.64)

From (7.56) we now have

y2(n) = G−1

{
T1(ω)

S2(ω)

}
= 1

p2
0(β1 − β2)

[
p2 + β1 p1

βn+1
1

− p2 + β2 p1

βn+1
2

]
(7.65)

and from (7.61) to (7.59) we have

G−1
{

T1(ω)

S2(ω)
Q(ω)

}
= y1 ∗ y2 = 1

p20(β1 − β2)

⎧
⎨

⎩
p2 + β1 p1

βn+1
1

n∑

k=0

q(k)βk
1 − p2 + β2 p1

βn+1
2

n∑

k=0

q(k)βk
2

⎫
⎬

⎭

(7.66)

We note that, similar to the analysis for the differential equation, the inverse transform
is expressed in terms of the finite generating function of q(n).

Finally, we evaluate the inverse transform of the first term on the right hand side
of (7.55). From (7.64) to (7.56) we have

G−1
{

R1(ω)

S2(ω)

}
= − 1

p0(β1 − β2)

{
[(p2 + β1 p1)y(0) + β1 p0y(1)]

βn+1
1

− [(p2 + β2 p1)y(0) + β2 p0 y(1)]

βn+1
2

}

(7.67)
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In summary, the solution to the second order inhomogeneous difference equation
with constant coefficients,

p2y(n + 2) + p1y(n + 1) + p0y(n) = q(n), (7.68)

is

y(n) = − 1

p0(β1 − β2)

{
[(p2 + β1 p1)y(0) + β1 p0y(1)]

βn+1
1

− [(p2 + β2 p1)y(0) + β2 p0y(1)]

βn+1
2

}

+ 1

p20(β1 − β2)

⎧
⎨

⎩
p2 + β1 p1

βn+1
1

n∑

k=0

q(k)βk
1 − p2 + β2 p1

βn+1
2

n∑

k=0

q(k)βk
2

⎫
⎬

⎭ + 1

p0
q(n) (7.69)

7.3 Laplace Transforms and the Solution of Linear
Differential Equations with Polynomial Coefficients

We now consider the extension of the analysis given thus far to the case of differ-
ential and difference equations in which the coefficients are polynomials, in x for
differential equations, in n for difference equations. We begin with the differential
equation

Ly = aN (x)y(N )(x) + aN−1(x)y(N−1)(x) + · · · + a0(x)y(x) = f (x), (7.70)

in which ak(x), k = 0, 1, . . . N , is a polynomial of degree Mk :

ak(x) =
Mk∑

m=0

akm xm (7.71)

and the akm are constants, but

akm �= 0 for m = Mk (7.72)

Thus

Ly =
N∑

k=0

ak(x)y(k)(x) =
N∑

k=0

Mk∑

m=0

akm xm y(k)(x) (7.73)

As in (7.9), we define

Fk(s) =
∫ ∞

0
e−sx y(k)(x) dx, k = 0, 1, . . . N , (F0(s) = F(s)) (7.74)
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from which, from (7.9)–(7.11),

Fk(s) = sk F(s) −
k−1∑

j=0

s j y(k−1− j)(0), k = 0, 1 . . . N (7.75)

We then have

∫ ∞

0
e−sx ak(x)y(k)(x) dx =

Mk∑

m=0

akm

∫ ∞

0
e−sx xm y(k) dx

=
Mk∑

m=0

akm(−1)m dm

dsm

∫ ∞

0
e−sx y(k)(x) dx

=
Mk∑

m=0

(−1)makm
dm

dsm
Fk(s)

=
Mk∑

m=0

(−1)makm
dm

dsm

⎡

⎣sk F(s) −
k−1∑

j=0

s j y(k−1− j)(0)

⎤

⎦

(7.76)

The Laplace transform of the differential equation (7.70) is then

L(Ly) =
∫ ∞

0
e−sx Ly dx

=
N∑

k=0

Mk∑

m=0

(−1)makm
dm

dsm

⎡

⎣sk F(s) −
k−1∑

j=0

s j y(k−1− j)(0)

⎤

⎦ = f (s) (7.77)

where

f (s) =
∫ ∞

0
e−sx f (x) dx (7.78)

In the summation over m in (7.77) we consider the term m = Mk :

N∑

k=0

(−1)Mk ak Mk

d Mk

dsMk

⎡

⎣sk F(s) −
k−1∑

j=0

s j y(k−1− j)(0)

⎤

⎦ (7.79)

The highest derivative of F(s) in this expression is

N∑

k=0

(−1)Mk ak Mk sk F (Mk )(s) (7.80)
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Equation (7.77) is thus a differential equation for the Laplace transform, F(s),
whose order is equal to the highest degree of the polynomial coefficients ak(x):
max(Mk), k = 0, 1, . . . , N . In this differential equation, the derivatives of F(s)
have coefficients which are polynomials in the transform variable, s; the degree of
the coefficient of highest degree is equal to N , the order of the original differential
equation in x , (7.70). It is clear that this is not a reasonable method for the solution
of the differential equation Ly = f (x) given in (7.70) unless the coefficients ak(x)

are either linear or quadratic functions of x .
For the linear differential equationwith linear coefficientswemaywriteEqs. (7.70)

and (7.71) in the form

Ly =
N∑

k=0

pk(x)y(k)(x) = f (x) (7.81)

in which
pk(x) = ck + dk x (7.82)

We then have

L(Ly) =
N∑

k=0

∫ ∞

0
e−sx pk(x)y(k)(x) dx

=
N∑

k=0

ck

∫ ∞

0
e−sx y(k)(x) dx +

N∑

k=0

dk

∫ ∞

0
e−sx xy(k)(x) dx

=
N∑

k=0

ck Fk(s) −
N∑

k=0

dk Fk
′(s) (7.83)

where, from (7.9) to (7.11),

Fk(s) = sk F(s) −
k−1∑

j=0

s j y(k−1− j)(0), k = 0, 1 . . . N , (F0 = F(s)) (7.84)

Then, with

f0(s) =
N∑

k=0

cksk

f1(s) =
N∑

k=0

dksk

(7.85)
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we canwrite the Laplace transformof the nth order inhomogeneous differential equa-
tion, L(Ly) = f (s), as a first-order differential equation for the Laplace transform,
F(s), of its solution:

f0F(s) − ( f1(s)F(s)) ′ = g(s) + f (s) (7.86)

where

g(s) =
N∑

k=1

(
ckgk(s) − dkgk

′(s)
)

(7.87)

in which

gk(s) =
k−1∑

j=0

s j yk−1− j (0) (7.88)

(Note (1.14)) which may be written as

(
f1(s)e

− ∫ f0(s)
f1(s) ds F(s)

)
′ = −e− ∫ f0(s)

f1(s) ds
(g(s) + f (s)) (7.89)

from which

F(s) = − f −1
1 (s)e

∫ f0(s)
f1(s) ds

∫
e− ∫ f0(s)

f1(s) ds
(g(s) + f (s)) ds. (7.90)

However, even in the case of a second-order homogeneous differential equation
with linear coefficients, obtaining the solution explicitly by inverting the Laplace
transform is not without difficulty. Thus, from (7.90), with N = 2 and f (s) = 0 we
have

F(s) = f −1
1 (s)e

∫ f0(s)
f1(s) ds

∫
(a + bs)e− ∫ f0(s)

f1(s) ds ds (7.91)

in which

a = −c1y(0) − c2y′(0) + d2y(0)

b = −c2y(0) (7.92)

If for now we assume that d2 �= 0 and d2
1 − 4d0d2 �= 0 so that the roots of f1(s) = 0

are distinct, then from (7.85), (with N = 2),

f1(s) = d2(s − α1)(s − α2) (7.93)

http://dx.doi.org/10.1007/978-3-319-29736-1_1
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in which

α1 = −d1 + �

2d2
, α2 = −d1 − �

2d2
(7.94)

and

d2(α1 − α2) =
√

d2
1 − 4d0d2 ≡ � (7.95)

from which
f0(s)

f1(s)
= c2

d2
+ γ1

(s − α1)
+ γ2

(s − α2)
(7.96)

where

γ1 = f0(α1)

�

γ2 = − f0(α2)

�
(7.97)

and
e− ∫ f0(s)

f1(s) ds = e− c2
d2

s
(s − α1)

−γ1(s − α2)
−γ2 (7.98)

(We note the relation of the exponents γ1 and γ2 to the exponents β1 and β2 for the
second order difference equation given in (7.161).)

We may then substitute this in (7.91) and obtain an integral for the Laplace trans-
form F(s). The solution y(x) to the differential equation is then given by the inverse
Laplace transform:

y(x) = L−1F(s) = 1

2πi

∫ γ+i∞

γ−i∞
esx F(s) ds (7.99)

In principle this analysis gives the solution y(x) with specified initial values, y(0)
and y′(0). It is clear, however, that obtaining an explicit solution in terms of the
classical functions of mathematical physics following this approach is not a simple
matter. We therefore present, in the following section, an alternate approach which
is often taken. This consists in writing the solution to the differential equation as an
integral similar to the inverse Laplace transform given above in (7.99) except that
the limits of integration as well as the transform in the integrand are determined by
using the equation Ly = f (x) to derive the necessary conditions that the transform
must satisfy. (See, e.g., [25, Chap. 5, Sect. 47] and [27, A, Sects. 5, 19]). We consider
in detail the second order homogeneous equation with linear coefficients with the
view of comparing the solution with that of the corresponding difference equation.
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7.4 Alternative Method for the Solution of Homogeneous
Linear Differential Equations with Linear Coefficients

We consider here the homogenous differential equation

N∑

k=0

pk(x)y(k)(x) = 0 (7.100)

in which the coefficients pk(x) are linear functions of x :

pk(x) = ck + dk x (7.101)

In this alternative method, a solution of (7.100) is sought in the form of a Laplace
transform:

y(x) =
∫

e−sx v(s) ds (7.102)

in which, as mentioned, both v(s) and the integration path are to be determined after
using the equation Ly = f (x) to derive the necessary conditions that the transform
must satisfy. (The relation to the analysis just given using the Laplace transform and
its inverse is seen if we write s = −t and v(s) = v(−t) = u(t).)

Then

y(k)(x) = (−1)k
∫

e−sx skv(s) ds

xy(k)(x) = (−1)k
∫

skv(s) d(−e−sx )

= −(−1)ke−sx skv(s)
∣∣∣ + (−1)k

∫
e−sx (skv(s))′ds (7.103)

Defining

g0(s) = f0(−s) =
N∑

k=0

(−1)kcksk

g1(s) = f1(−s) =
N∑

k=0

(−1)kdksk

(7.104)

(Here cN and dN are arbitrary except that they can not both be zero.)
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We then have

Ly =
N∑

k=0

pk(x)y(k)(x)

= −e−sxg1(s)v(s)
∣∣∣ +

∫
e−sx [(g0(s) + g1

′(s))v(s) + g1(s)v
′(s)] ds (7.105)

Now in order to satisfy (7.100) we choose v(s) to satisfy the first order differential
equation

(g0(s) + g1
′(s))v(s) + g1(s)v

′(s) = 0 (7.106)

and choose the integration path such that

e−sxg1(s)v(s)
∣∣∣ = 0 (7.107)

For an open path of integration, e−sxg1(s)v(s) must have the same value at the two
end points. For a closed path, e−sxg1(s)v(s) must return to its initial value.

From (7.106) we have
(v(s)g1(s))′

v(s)g1(s)
= −g0(s)

g1(s)
(7.108)

from which, on integrating,

v(s) = A

g1(s)
exp

(
−
∫

g0(s)

g1(s)
ds

)
(7.109)

The integration in (7.109) is straightforward in that g0(s)/g1(s) is the ratio of two
polynomials and can be expressed as the sum of partial fractions and a polynomial
in s.

If we now consider the second order homogeneous differential equation, then
from (7.104) to (7.85)

g0(s)

g1(s)
= c2

d2
− γ1

(s + α1)
− γ2

(s + α2)
(7.110)

where from (7.93)
g1(s) = d2(s + α1)(s + α2). (7.111)

Then from (7.109)

v(s) = Ae− c2
d2

s
(s + α1)

γ1−1(s + α2)
γ2−1 (7.112)
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Substituting v(s) in (7.102), we have

y(x) = A
∫

e−(x+ c2
d2

)s
(s + α2)

γ1−1(s + α2)
γ2−1 ds (7.113)

in which the integration path must be chosen such that

e−sxg1(s)v(s)
∣∣∣ = 0, (7.114)

the particular choice depending on the values of γ1 and γ2. With the change of
integration variable s = (α1 − α2)σ − α1, we have

y(x) = Aeα1(x+ c2
d2

)

∫
e−(α1−α2)(x+ c2

d2
)σ

σγ1−1(1 − σ)γ2−1 dσ (7.115)

Here, and throughout the rest of this section, the factor A is taken to be a generic
factor that includes all factors which are independent of x .

The significant point to note, on substituting v(s) as given above in (7.109) in
(7.102), is that y(x) is then expressed as an integral in which the integrand has the
factor e−sx , which is characteristic of the confluent hypergeometric function.

If	γ1 > 0 and	γ2 > 0 then we can choose σ = 0 and σ = 1 as end points of the
integration and (7.114) is satisfied. We then have a solution (see [13, Sect. 6.5(1)])

y1(x) = Aeα1(x+ c2
d2

)

∫ 1

0
e−(α1−α2)(x+ c2

d2
)σ

σγ1−1(1 − σ)γ2−1 dσ

= A
�(γ1)�(γ2)

�(γ1 + γ2)
eα1(x+ c2

d2
)
1F1

(
γ1; γ1 + γ2;−(α1 − α2)

(
x + c2

d2

))

= A
�(γ1)�(γ2)

�(γ1 + γ2)
eα2(x+ c2

d2
)
1F1

(
γ2; γ1 + γ2; (α1 − α2)

(
x + c2

d2

))
(7.116)

A second linearly independent solution of the Eq. (7.100) with N = 2, provided that
γ1 + γ2 is not an integer, is (see [13, Sect. 6.3(3)])

y2(x) = A
(

x + c2
d2

)1−γ1−γ2
e
α1(x+ c2

d2
)
1F1

(
1 − γ2; 2 − γ1 − γ2; −(α1 − α2)

(
x + c2

d2

))

= A
(

x + c2
d2

)1−γ1−γ2
e
α2(x+ c2

d2
)
1F1

(
1 − γ1; 2 − γ1 − γ2; (α1 − α2)

(
x + c2

d2

))

(7.117)

The general solution of (7.100) with N = 2 is then

y(x) = Ay1(x) + By2(x) (7.118)

The case in which γ1 + γ2 is an integer is treated in detail in [13, Sect. 6.7.1].
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If only one of the constants	γ1 and	γ2 is positive, then the integral (7.113) may
be evaluated using a closed contour as given in [13, Sect. 6.11.1(2) and (3)].

If 	γ1 > 0, then we may write

y1(x) = Aeα1(x+ c2
d2

)

∫ (1+)

0
e−(α1−α2)(x+ c2

d2
)σ

σγ1−1(σ − 1)γ2−1 dσ

= A
2πi �(γ1)

�(γ1 + γ2)�(1 − γ2)
eα1(x+ c2

d2
)
1F1

(
γ1; γ1 + γ2;−(α1 − α2)

(
x + c2

d2

))

= A
2πi �(γ1)

�(γ1 + γ2)�(1 − γ2)
eα2(x+ c2

d2
)
1F1

(
γ2; γ1 + γ2; (α1 − α2)

(
x + c2

d2

))

(7.119)

If 	γ2 > 0, then we may write

y1(x) = Aeα1(x+ c2
d2

)

∫ (0+)

1
e−(α1−α2)(x+ c2

d2
)σ

(−σ)γ1−1(1 − σ)γ2−1 dσ

= A
2πi �(γ2)

�(γ1 + γ2)�(1 − γ1)
eα1(x+ c2

d2
)
1F1

(
γ1; γ1 + γ2;−(α1 − α2)

(
x + c2

d2

))

= A
2πi �(γ2)

�(γ1 + γ2)�(1 − γ1)
eα2(x+ c2

d2
)
1F1

(
γ2; γ1 + γ2; (α1 − α2)

(
x + c2

d2

))

(7.120)

If both 	γ1 < 0 and 	γ2 < 0 then the integral may be evaluated using the closed
loop contour given in [13, Sect. 6.11.1(1)] and we may then write

y1(x) = Ae
α1(x+ c2

d2
)
∫ (1+,0+,1−,0−)

e
−(α1−α2)(x+ c2

d2
)σ

σγ1−1(1 − σ)γ2−1 dσ

= A
(2πi)2eiπ(γ1+γ2)

�(1 − γ1)�(1 − γ2)�(γ1 + γ2)
e
α1(x+ c2

d2
)
1F1

(
γ1; γ1 + γ2; −(α1 − α2)

(
x + c2

d2

))

= A
(2πi)2eiπ(γ1+γ2)

�(1 − γ1)�(1 − γ2)�(γ1 + γ2)
e
α2(x+ c2

d2
)
1F1

(
γ2; γ1 + γ2; (α1 − α2)

(
x + c2

d2

))

(7.121)

In all these cases the term in (7.114) is zero, and the solution y1(x) is given by
the confluent hypergeometric functions given above.

As will be seen in the next section, this provides both a similarity and a distinc-
tion when comparing the second order differential equation with the second order
difference equation with linear coefficients. In the case of the second order homoge-
neous difference equation with linear coefficients, given below in (7.143), when any
of the parameters dk is zero, or when the roots of the equation d2t2 + d1t + d0 = 0
are equal, v(t) as given in (7.152) again has an exponential factor, and the integral
for y(n), Eq. (7.137), can be expressed in terms of the confluent hypergeometric
function. However, when the roots of this equation are distinct, and none of the para-
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meters dk is zero, then the solution of the difference equation leads to the well-known
classical functions of mathematical physics such as the Legendre and Gegenbauer
functions, and is expressed in terms of the hypergeometric function 2F1.

7.5 Generating Functions and the Solution of Linear
Difference Equations with Polynomial Coefficients

In this section we extend the analysis given thus far for difference equations with
constant coefficients to the case of difference equations in which the coefficients are
polynomials in n.1 We begin with the difference equation

Ly = aN (n)y(n + N ) + aN−1(n)y(n + N − 1) + · · · + a0(n)y(n) = q(n), (7.122)

in which ak(n), k = 0, 1, . . . , N , is a polynomial of degree Mk :

ak(n) =
Mk∑

m=0

akmnm (7.123)

and the akm are constants, but

akm �= 0 for m = Mk (7.124)

Thus

Ly =
N∑

k=0

ak(n)y(n + k) =
N∑

k=0

Mk∑

m=0

akmnm y(n + k) (7.125)

From (7.39)

Gk(ω) =
∞∑

n=0

y(n + k)ωn

= 1

ωk

[
G(ω) −

k−1∑

n=0

y(n)ωn

]
(7.126)

1SeeWeixlbaumer [42] for amathematical analysis about the state of the art concerning the search for
solutions of linear difference equations. Algorithms are presented for finding polynomial, rational,
hypergeometric and d’Alembertian solutions.
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Thus

G(Ly) =
∞∑

n=0

Ly ωn =
∞∑

n=0

N∑

k=0

ak(n)y(n + k)ωn

=
∞∑

n=0

N∑

k=0

Mk∑

m=0

akmnm y(n + k)ωn

=
∞∑

n=0

N∑

k=0

Mk∑

m=0

akm

(
ω

∂

∂ω

)m

y(n + k)ωn

=
N∑

k=0

Mk∑

m=0

akm

(
ω

∂

∂ω

)m ∞∑

n=0

y(n + k)ωn

=
N∑

k=0

Mk∑

m=0

akm

(
ω

∂

∂ω

)m

Gk(ω)

=
N∑

k=0

Mk∑

m=0

akm

(
ω

∂

∂ω

)m
(

1

ωk

[
G(ω) −

k−1∑

n=0

y(n)ωn

])

(7.127)

In (7.127) the term m = Mk is

N∑

k=0

ak Mk

(
ω

∂

∂ω

)Mk
(

1

ωk

[
G(ω) −

k−1∑

n=0

y(n)ωn

])
(7.128)

The highest derivative of G(ω) is thus

N∑

k=0

ak Mk ω
Mk−k G(Mk )(ω) (7.129)

Thus, similar to the case of the differential equation with polynomial coefficients,
we now obtain a differential equation for the generating function, G(ω), whose order
is equal to the highest degree of the polynomial coefficients ak(n): max(Mk), k =
0, 1, . . . N . Again it is clear that this is also not a reasonable method for the solution
of difference equations unless the coefficients are either linear or quadratic functions
of n. We therefore examine in some detail the case in which the coefficients are
linear functions of n. This involves obtaining the solution, y(n), by inversion of the
generating function: y(n) = G−1G(ω), for which see Appendix G.
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7.6 Solution of Homogeneous Linear Difference Equations
with Linear Coefficients

We now consider the homogeneous difference equation

N∑

k=0

pk(n)y(n + k) = 0 (7.130)

in which the coefficients pk(n) are linear functions of n:

pk(n) = ak + bkn (7.131)

Although our primary consideration is for the case in which n is an integer, we note
that the analysis is essentially unchanged if we replace n by a non-integer variable
x . We then have the difference equation

N∑

k=0

pk(x)y(x + k) = 0 (7.132)

in which
pk(x) = ak + bk x (7.133)

(Purists characterize Eq. (7.130) as a recursion relation, and Eq. (7.132) as a differ-
ence equation).

We note that if y(x) is a solution of the homogeneous equation (7.132), then a
more general solution is given by f (x)y(x), where f (x) is a function satisfying

f (x + 1) = f (x), (7.134)

for example

f (x) = A + B sin(2π(x + β)) + C cos(2π(x + γ)) (7.135)

or
f (x) = A + Be2πx i (7.136)

We seek a solution of Eq. (7.132) having the form of a Mellin transform:

y(x) =
∫

t x−1v(t) dt (7.137)
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(Note that if we let t = e−s we have the usual form of the Laplace transform:

y(x) =
∫

e−sx V (s) ds (7.138)

in which V (s) = −v(t).) In (7.137), both v(t) and the integration path are to be
determined. From (7.137) we have

y(x + k) =
∫

t x+k−1v(t) dt (7.139)

Substituting this in (7.132) we have

N∑

k=0

pk(x)

∫
t x+k−1v(t) dt = 0 (7.140)

This expression suggests that rather than defining pk(x) as in (7.133), we write

pk(x) = ck + dk(x + k), (7.141)

which constitutes a simple change of parameters:

dk = bk, ck + kdk = ak . (7.142)

Equation (7.132) then has the form

N∑

k=0

[ck + dk(x + k)]y(x + k) = 0 (7.143)

Writing the coefficients in the form pk(x) = ck + dk(x + k), we may write the dif-
ference equation in the form

N+i∑

k=i

[ck + dk(x + k)]y(x + k) = 0, i = 0,±1,±2, . . . (7.144)

and note that ck and dk remain independent of i . (This will be applied when we
consider the second order difference equation (N = 2), and choose i = −1.) Had we
taken the coefficients to have the form given in (7.133), viz., pk(x) = ak + bk x , and
written the summation as in (7.144), then ak would depend on i : ak → ak − ibk .
More significantly, as will be seen when we consider the second order difference
equation, the parameters ck and dk are intrinsic to the functional behavior of the
solution, specifically in the form ck/dk, (k = 0, 1, 2) and d0d2/d2

1 . From (7.140)
and (7.141) we now have
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N∑

k=0

[ck

∫
t x+k−1v(t) dt + dk

∫
(x + k)t x+k−1v(t) dt] = 0 (7.145)

Here in the last term in square brackets, we have, integrating by parts,

∫
(x + k)t x+k−1v(t) dt =

∫
v(t) d(t x+k) = t x+kv(t)

∣∣∣ −
∫

t x+k−1tv′(t) dt (7.146)

Defining

f0(t) =
N∑

k=0

cktk

f1(t) =
N∑

k=0

dktk (7.147)

we have, from (7.140),

N∑

k=0

pk(x)

∫
t x+k−1v(t) dt = f1(t)t

x v(t)
∣∣∣ +

∫
t x−1[ f0(t)v(t) − f1(t)tv

′(t)] dt = 0

(7.148)
Now, in order to satisfy (7.140) we choose v(t) to satisfy the first order differential
equation

f0(t)v(t) − f1(t)tv
′(t) = 0 (7.149)

and choose an integration path such that

f1(t)t
x v(t)

∣∣∣ = 0 (7.150)

For an open path of integration, f1(t)t x v(t) must have the same value at the two end
points. For a closed path, f1(t)t x v(t) must return to its initial value. From (7.147)
and (7.149) we have

v′(t)
v(t)

= f0(t)

t f1(t)
=

∑N
k=0 cktk

t
∑N

k=0 dktk
(7.151)

from which, on integrating,

v(t) = A exp

(∫
f0(t)

t f1(t)

)
dt (7.152)

(Here, and throughout the rest of this section, the factor A is taken to be a generic
factor that includes all factors which are independent of x .) In the integrand on the
right hand side of (7.152) we have an N th order polynomial in the numerator and a
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polynomial of order N + 1 in the denominator (assuming that dN �= 0). This fraction
can then be expressed as a sum of partial fractions and integrated. Analysis with
arbitrary N may be found in [35, Chap.11, Sects. 2 and 6, pp. 323–324, 343–345].

In order to present explicit solutions to the difference equation (7.132), we restrict
ourselves at this point to second order homogeneous difference equations (N = 2):

(c2 + d2(x + 2))y(x + 2) + (c1 + d1(x + 1))y(x + 1) + (c0 + d0x)y(x) = 0
(7.153)

Here, and in all following considerations of the second order homogeneous difference
equation, we can and will (provided d2 �= 0) assume that d2 > 0. We assume further
that d1 < 0. For the case that d1 > 0, we can write y(x) = eiπx z(x). The difference
equation for z(x) is then

(c2 + d2(x + 2))z(x + 2) + (c1
′ + d1

′(x + 1))z(x + 1) + (c0 + d0x)z(x) = 0
(7.154)

so that z(x) obeys a difference equation similar to that for y(x), but in which the
parameter d1′ < 0.

Referring to the second order homogeneous differential equation with linear
coefficients, (c2 + d2x)y′′(x) + (c1 + d1x)y′(x) + (c0 + d0x)y(x) = 0, discussed
in Sect. 7.4, it was seen that the solution can always be expressed in terms of
the confluent hypergeometric function, taking on a particular form of that func-
tion, namely the Bessel function, for particular values of d0, d1 and d2. A some-
what similar but not identical situation pertains to the second order homogeneous
difference equation in that the functional form of the solution depends on the
values of the parameters d0, d1 and d2. However, for the difference equation the
resulting solution is, depending on the values of these parameters, either a con-
fluent hypergeometric function, 1F1, or a hypergeometric function 2F1. To clas-
sify the various choices of the parameters d0, d1 and d2, we define the sym-
bol (δ0, δ1, δ2) in which δi = 0 if di = 0 and δi = 1 if di �= 0, (i = 0, 1, 2). We
then consider the nine possibilities: (1, 1, 1) with d2

1 − 4d0d2 �= 0, (1, 1, 1) with
d2
1 − 4d0d2 = 0, (1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1), (1, 0, 0), (0, 0, 0).
In the last case, (0, 0, 0), we have a difference equation with constant coefficients,
given here since it includes the Tchebicheff polynomials, Tn(x) and Un(x). We will
derive explicit solutions to the equation defined by each of these sets of parameters.
As we will show, however, some of these equations have solutions which are related
simply by a multiplicative function. Thus, (0, 1, 1) and (1, 1, 0) are so related, as are
(0, 0, 1) and (1, 0, 0). For the parameters given by (1, 1, 0), (1, 0, 0) and (0, 1, 0), as
well as for (1, 1, 1) with d2

1 − 4d0d2 = �2 = 0, the solution is expressed in terms of
the confluent hypergeometric function 1F1 or a particular form of that function—the
Bessel function or the parabolic cylinder function. For the two remaining sets of
parameters, (1, 1, 1) with � �= 0 and (1, 0, 1), the solutions are expressed in terms
of the hypergeometric function 2F1. These include the Legendre polynomials Pn(x)

and Qn(x), the Legendre functions Pμ
ν (z) and Qμ

ν (z), the Gegenbauer polynomials
Cν

n (x), the Gegenbauer functionsCν
α(x) and Dν

α(x), the associated Legendre polyno-
mials P−α

n (z), the hypergeometric polynomials 2F1(−n, b; c; x) and the hypergeo-
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metric function 2F1(a, b; c; x) in which the recursion is in either a or b. These results
may be expressed succinctly by the statement that if d0d2� �= 0 then the solution
is expressed by the hypergeometric function 2F1; if d0d2� = 0 then the solution is
expressed in terms of the confluent hypergeometric function 1F1.

We first consider the cases (1, 1, 1) and (1, 0, 1) (i.e., d0 �= 0, d2 �= 0), and d2
1 −

4d0d2 �= 0, in which case the roots of f1(t) = 0 are distinct. We can then write

f1(t) = d2(α1 − t)(α2 − t) (7.155)

in which

α1 = −d1 + �

2d2
, α2 = −d1 − �

2d2
,

1

α1
= −d1 − �

2d0
,

1

α2
= −d1 + �

2d0

�2 = d2
1 − 4d0d2, α1 − α2 = �

d2
, α1α2 = d0

d2
(7.156)

Further, since we can consider d2 > 0 and d1 ≤ 0, we note that

0 <
α2

α1
< 1 for �2 > 0 and d0 > 0

−1 <
α2

α1
< 0 for �2 > 0 and d0 < 0

α2

α1
= e−2iφ for 4d0d2 > d2

1 (7.157)

where

tan φ =
∣∣∣∣
�

d1

∣∣∣∣ (7.158)

Then from (7.147), (7.149), (7.155) and (7.156) with N = 2,

v′(t)
v(t)

= f0(t)

t f1(t)
= f0(t)

d2t (α1 − t)(α2 − t)
= β0

t
+ β1

α1 − t
+ β2

α2 − t

= β0

t
+ β1

α1 − t
− β2

t − α2
(7.159)

where
f0(t) = c0 + c1t + c2t2 (7.160)

and
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β0 = f0(0)

d2α1α2
= c0

d0

β1 = f0(α1)

d2α1(α2 − α1)
= − f0(α1)

α1�

β2 = f0(α2)

d2α2(α1 − α2)
= f0(α2)

α2�

(7.161)

We note the relation of the exponents β1 and β2 to the exponents γ1 and γ2 derived
for the corresponding second order differential equation, given in (7.97):

β1 = − γ1

α1
, β2 = − γ2

α2
(7.162)

As is seen in Chap.8, section “Difference Equations with Linear Coefficients”,
the classical functions which are solutions of second order homogeneous difference
equations with linear coefficients are characterized by the particular combination of
coefficients c0

d0
− 2

c1
d1

+ c2
d2

(7.163)

Indeed, difference equations for which c0
d0

− 2 c1
d1

+ c2
d2

= 0 (and hence, from (7.164),

β1 = β2 = 1
2 (

c0
d0

− c2
d2

)) have solutions which can be expressed in terms of the Legen-

dre functions Pμ
ν (z) and Qμ

ν (z); (this includes the Gegenbauer functions C (ν)
α (z) and

D(ν)
α (z), which can be expressed in terms of the Legendre functions Pμ

ν (z) and Qμ
ν (z),

for which see Eqs. (8.45)–(8.48). We therefore express β1 and β2 as given above in
(7.161) in terms of this expression. From (7.147), (7.155) and (7.156) we have2

β1 = d1
2�

[
c0
d0

− 2c1
d1

+ c2
d2

]
+ 1

2

(
c0
d0

− c2
d2

)

β2 = − d1
2�

[
c0
d0

− 2c1
d1

+ c2
d2

]
+ 1

2

(
c0
d0

− c2
d2

)

β0 = c0
d0

(7.164)

so that from (7.152) and (7.159) we have

v(t) = Atβ0(α1 − t)−β1(α2 − t)−β2 (7.165)

and, from (7.137),

y(x) = A
∫

tβ0+x−1(α1 − t)−β1(α2 − t)−β2 dt (7.166)

2For d1 = 0 we have β1 = − c1
�

+ 1
2

(
c0
d0

− c2
d2

)
, β2 = c1

�
+ 1

2

(
c0
d0

− c2
d2

)
.

http://dx.doi.org/10.1007/978-3-319-29736-1_8
http://dx.doi.org/10.1007/978-3-319-29736-1_8
http://dx.doi.org/10.1007/978-3-319-29736-1_8
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The integration path must now be chosen to satisfy the condition given in (7.150),
namely

f1(t)t
x v(t)

∣∣∣ = 0, (7.167)

the particular choice depending on the values of β0 + x, β1 and β2. This condition
is satisfied if we assume for the moment that β0 + x > 0, β1 < 1, β2 < 1, in which
case each of the following three open integration paths gives a solution y(x): Noting

from (7.157) that
∣∣∣α2
α1

∣∣∣ ≤ 1, we consider the following two solutions to the difference

equation (7.153): (We show later that these two solutions are linearly independent.)

y1(x) = A
∫ α1

α2

tβ0+x−1(α1 − t)−β1(t − α2)
−β2 dt

y2(x) = A
∫ α2

0
tβ0+x−1(α1 − t)−β1(α2 − t)−β2 dt (7.168)

In each of these integrals, a simple transformation of integration variable will express
the integral in the form commonly used for the hypergeometric function, viz.,

2F1(a, b; c; z) = �(c)

�(b)�(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−a dt (7.169)

In the integral for y1(x), the transformation of integration variable t =
α1 − (α1 − α2)s gives

y1(x) = α
β0+x−1
1 (α1 − α2)

1−β1−β2 A
∫ 1

0

s−β1 (1 − s)−β2

(1 − zs)1−β0−x
ds, z = 1 − α2

α1

= α
β0+x−1
1 (α1 − α2)

1−β1−β2 A
�(1 − β1)�(1 − β2)

�(2 − β1 − β2)
2F1

(
1 − β0 − x, 1 − β1; 2 − β1 − β2; 1 − α2

α1

)

(7.170)

In the integral for y2(x), the transformation of integration variable t = α2s gives

y2(x) = α
β0+x−β2
2 α

−β1
1 A

∫ 1

0

sβ0+x−1(1 − s)−β2

(1 − zs)β1
ds, z = α2

α1

= α
β0+x−β2
2 α

−β1
1 A

�(β0 + x)�(1 − β2)

�(β0 + x + 1 − β2)
2F1

(
β1,β0 + x;β0 + x + 1 − β2; α2

α1

)

(7.171)

A judicious choice for A in y1(x) and y2(x) permits us to define these two solutions so
that there are now no restrictions on β1 and β2, and that the only remaining restriction
is β0 + x �= 0,−1,−2, . . . in y2(x). We can therefore define

y1(x) = α
β0+x
1

1

�(2 − β1 − β2)
2F1

(
1 − β0 − x, 1 − β1; 2 − β1 − β2; 1 − α2

α1

)

(7.172)
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and

y2(x) = α
β0+x
2

�(β0 + x)

�(β0 + x + 1 − β2)
2F1

(
β1,β0 + x;β0 + x + 1 − β2; α2

α1

)

(7.173)
In the definition just given for y1(x) the argument of the hypergeometric function

is <1 for 0 < α2/α1 < 1. A further consideration of y1(x) depending on the values
of the parameters β0 + x,β1,β2 and α2/α1 will be given shortly.

We now show that y1(x) and y2(x) are linearly independent solutions of the dif-
ference equation (7.153); that is, that there is no factor A, independent of x , such
that y1(x) = Ay2(x). To this end we examine the asymptotic approximations for
y1(x) and y2(x) and find that their respective asymptotic approximations are mani-
festly not linearly related. The asymptotic approximations are most easily obtained
by transforming the hypergeometric functions in y1(x) and y2(x) so that the large
parameter x appears only in the third place in the hypergeometric function, in which
case the hypergeometric function goes to unity as x → ∞ (see [40, Sect. 5.5]). The
asymptotic approximation for y2(x) is obtained straightforwardly. Making the trans-
formation, (H.2),

2F1

(
β1,β0 + x;β0 + x + 1 − β2; α2

α1

)
=
(
1 − α2

α1

)−β1
2F1

(
β1, 1 − β2;β0 + x + 1 − β2; α2

α2−α1

)

(7.174)

we note that for x � 1, (see [40, Sect. 5.5]),

2F1

(
β1, 1 − β2;β0 + x + 1 − β2; α2

α2−α1

)
= 1 + O

(
1
x

)
(7.175)

from which

y2(x) = α
β0+x
2

�(β0 + x)

�(β0 + x + 1 − β2)

(
1 − α2

α1

)−β1 (
1 + O

(
1
x

))
(7.176)

For y1(x) we first make the transformation

2F1

(
1 − β0 − x, 1 − β1; 2 − β1 − β2; 1 − α2

α1

)

=
(

α2
α1

)β0+x−β2

2F1

(
β0 + x + 1 − β1 − β2, 1 − β2; 2 − β1 − β2; 1 − α2

α1

)

=
(

α2
α1

)β0+x−β2

2F1

(
1 − β2,β0 + x + 1 − β1 − β2; 2 − β1 − β2; 1 − α2

α1

)

(7.177)
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and then follow with the transformation (see [13, Sect. 2.9, (26), p. 106] and [40,
Sect. 4, (26)])

2F1

(
1 − β2,β0 + x + 1 − β1 − β2; 2 − β1 − β2; 1 − α2

α1

)

= eiπ(1−β2)
�(2 − β1 − β2)�(β0 + x)

�(1 − β1)�(β0 + x + 1 − β2)

(
1 − α2

α1

)β2−1

× 2F1

(
1 − β2,β1;β0 + x + 1 − β2; α2

α2−α1

)

+ �(2 − β1 − β2)�(β0 + x)

�(1 − β2)�(β0 + x + 1 − β1)

(
1 − α2

α1

)β1−1 (
α2
α1

)−β0−x+β2

× 2F1

(
β2, 1 − β1;β0 + x + 1 − β1; α1

α1−α2

)
(7.178)

from which

y1(x) = α
β0+x
2 eiπ(1−β2)

(
1 − α2

α1

)β2−1 (
α1
α2

)β2 �(β0 + x)

�(1 − β1)�(β0 + x + 1 − β2)

× 2F1

(
1 − β2,β1;β0 + x + 1 − β2; α2

α2−α1

)

+ α
β0+x
1

(
1 − α2

α1

)β1−1 �(β0 + x)

�(1 − β2)�(β0 + x + 1 − β1)

× 2F1

(
β2, 1 − β1;β0 + x + 1 − β1; α1

α1−α2

)
(7.179)

From (7.173) and (7.174) we note that the first term in (7.179) is a multiple of y2(x).
For x � 1 we have

2F1

(
1 − β2,β1;β0 + x + 1 − β2; α2

α2−α1

)
= 1 + O

(
1
x

)

2F1

(
β2, 1 − β1;β0 + x + 1 − β1; α1

α1−α2

)
= 1 + O

(
1
x

)
(7.180)

from which, for x � 1, neglecting terms of relative order 1/x ,

y1(x) = α
β0+x
2 eiπ(1−β2)

(
1 − α2

α1

)β2−1 (
α1
α2

)β2 �(β0 + x)

�(1 − β1)�(β0 + x + 1 − β2)

+ α
β0+x
1

(
1 − α2

α1

)β1−1 �(β0 + x)

�(1 − β2)�(β0 + x + 1 − β1)
(7.181)

From (7.157) we note that provided d2
1 > 4d0d2, we have |α2| < |α1|, so that for

x � 1 we may neglect the term in y1(x) with the factor α
β0+x
2 , which is equal to

y2(x) apart from a factor independent of x . We then have, expanding the gamma
functions for x � 1 and neglecting terms of relative order 1/x ,
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y2(x) = α
β0+x
2

(
1 − α2

α1

)−β1

(x + β0)
β2−1

y1(x) = α
β0+x
1

(
1 − α2

α1

)β1−1

�(1 − β2)
(x + β0)

β1−1 (7.182)

The asymptotic approximation given here3 for y1(x) is identical to that given in [39,
Eq. (2.6), p. 372]. For 4d2

1 > d0d2, for which |α2| < |α1|, the solutions y1(x) and
y2(x) are thus clearly linearly independent. For 4d2

1 < d0d2, α2 = α∗
1 from (7.156),

so that |α2| = |α1|. The asymptotic approximation for y1(x) in this case is given in
[39, Eqs. (2.14) and (2.9), pp. 372, 373], where a uniform asymptotic expansion of
the hypergeometric function is derived. However, the dominant behavior for x � 1
is still in the factor α

β0+x
1 , so that y1(x) and y2(x) are again linearly independent.

We now return to a consideration of y1(x) as given in (7.172). If either β0 + x =
1, 2, . . . orβ1 = 1, 2, . . . then y1(x) is a polynomial, and the hypergeometric function
in this expression is finite. With the transformation given in (7.177) it follows that
y1(x) is also a polynomial ifβ2 = 1, 2, . . . If none of these three conditions is satisfied
and if in addition α2/α1 < 0, then the transformation given in (7.179) expresses
y1(x) in terms of hypergeometric functions with an argument z such that 0 < z < 1.
However, as noted, the term in (7.179) with factor α

β0+x
2 is a multiple of y2(x). The

second term in (7.179), with factorαβ0+x
1 , is therefore also a solution of the difference

equation. Therefore, for α2/α1 < 0 we can define the solution y1(x) by this second
term. Throughout, in making the following definitions we are free to omit any factors
which do not depend on x . In summary, then, we define

y1(x) = α
β0+x
1

1

�(2 − β1 − β2)
2F1

(
1 − β0 − x, 1 − β1; 2 − β1 − β2; 1 − α2

α1

)

(7.183)
if either β0 + x = 1, 2, . . ., or β1 = 1, 2, . . . (in which case y1(x) is a polynomial),
or if 0 < α2/α1 < 1 (i.e., 0 < 4d0d2 < d2

1 ).
From (7.177) we define

y1(x) = α
β0+x
2

1

�(2 − β1 − β2)
2F1

(
1 − β2,β0 + x + 1 − β1 − β2; 2 − β1 − β2; 1 − α2

α1

)

(7.184)
if β2 = 1, 2, . . . (in which case y1(x) is again a polynomial).

Finally, if −1 < α2/α1 < 0, i.e., d0 < 0, (see (7.157)), from (7.179), omitting
factors which are independent of x , we define

y1(x) = α
β0+x
1

�(β0 + x)

�(β0 + x + 1 − β1)
2F1

(
β2, 1 − β1;β0 + x + 1 − β1; α1

α1−α2

)

(7.185)

3As noted in Appendix A of [22], Eqs. (13)–(15) in [13] are incorrect.
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This last expression for y1(x) is appropriate for the consideration of the other set
of parameters for which the solution to the difference equation is a hypergeometric
function, namely when d1 = 0, denoted earlier by (1, 0, 1). In that case, from (7.156)
we have α2 = −α1, and from (7.164),

β1 = −c1
�

+ 1

2

(
c0
d0

− c2
d2

)
, β2 = c1

�
+ 1

2

(
c0
d0

− c2
d2

)
(7.186)

y1(x) = α
β0+x
1

�(β0 + x)

�(β0 + x + 1 − β1)
2F1

(
β2, 1 − β1;β0 + x + 1 − β1; 1

2

)
(7.187)

For y2(x), from (7.173) and making the transformation given in (7.174) with α2 =
−α1 and β1, and β2 given in (7.186), we have, again neglecting factors independent
of x,

y2(x) = eiπ(β0+x)α
β0+x
1

�(β0 + x)

�(β0 + x + 1 − β2)
2F1

(
β1, 1 − β2;β0 + x + 1 − β2; 1

2

)

(7.188)
We now consider those sets of parameters for which the solution to the difference

equation is expressed in terms of the confluent hypergeometric function or one of
its particular forms, namely, the Bessel function or the parabolic cylinder function.
We first consider the case denoted earlier by (1, 1, 1) (i.e., d0d1d2 �= 0) but with
d2
1 − 4d0d2 = 0. We now have, from (7.155) and (7.156),

α1 = α2 ≡ α = − d1
2d2

> 0,
1

α
= − d1

2d0
, d2α

2 = d0 (7.189)

and
f1(t) = d2(α − t)2 (7.190)

In place of (7.159) we can write

v′(t)
v(t)

= f0(t)

t f1(t)
= f0(t)

td2(α − t)2
= β0

t
+ β1

α − t
+ β2

(α − t)2
(7.191)

in which, from (7.160), f0(t) = c0 + c1t + c2t2. Equating leading terms in (7.191),
we then have: As t → 0,

β0 = c0
d2α2

= c0
d0

; (7.192)

as t → ∞,

β0 − β1 = c2
d2

, so that β1 = c0
d0

− c2
d2

; (7.193)
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and as t → α,

β2 = f0(α)

αd2
= α

(
c0
d0

− 2
c1
d1

+ c2
d2

)
(7.194)

Integrating (7.191) gives

v(t) = Atβ0(α − t)−β1e
β2
α−t (7.195)

from which

y(x) =
∫

t x−1v(t) dt = A
∫

tβ0+x−1(α − t)−β1e
β2
α−t dt (7.196)

in which we must choose an integration path such that

f1(t)t
x v(t)

∣∣∣ = 0 (7.197)

In order to express the solution y(x) as a commonly used integral representation
for the confluent hypergeometric function, we consider different transformations of
the integration variable in (7.196), one leading to functions of the form 1F1(a; c; z),
the others to functions of the form U (a; c; z). Then, depending on the particular
choice of integration path, different expressions are obtained for the confluent hyper-
geometric function. Which of these expressions provides a useful expression for the
solution y(x) depends, as will be seen, on the values of the parameters β0,β1,β2 and
the variable z. To that end we first simplify the integral for y(x), (7.196), substituting
αt for t in the integrand and neglecting factors independent of x , giving

y(x) = αβ0+x
∫

tβ0+x−1(1 − t)−β1e
z

1−t dt (7.198)

where

z = β2

α
(7.199)

The transformation of integration variable t = s−1
s in (7.198) leads to functions

of the form 1F1(a; c; z), giving4

y(x) = αβ0+x e±iπ(β0+x−1)
∫

sβ1−β0−x−1(1 − s)β0+x−1ezs ds (7.200)

4The alternate transformation, t = s
s−1 , leads to functions which follow from those obtained from

t = s−1
s using Kummer’s transformation [36, Sect. 13.2(vii), Eq. 13.2.39].
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Alternatively, it will be useful to write this integral in the form

y(x) = αβ0+x
∫

s−(2−β1)(1 − 1
s )

β0+x−1ezs ds (7.201)

The particular form of the function 1F1(a; c; z) defined by these integrals depends
on the choice of integration path, and will be considered shortly (see, e.g., [36,
Sects. 13.4 (i) and (ii)]).

The transformations of integration variable leading to confluent hypergeometric
functions of the form U (a; c; z) are t = s+1

s and t = s
s+1 . Writing t = s+1

s we have

y(x) = αβ0+x eiπ(β1−1)
∫

sβ1−β0−x−1(1 + s)β0+x−1e−zs ds (7.202)

Writing t = s
s+1 we have

y(x) = αβ0+x ez
∫

sβ0+x−1(1 + s)β1−β0−x−1ezs ds (7.203)

Again, the particular form of the function U (a; c; z) defined by these integrals
depends on the choice of integration path (see [36, Sects. 13.4 (i) and (ii)]).

In these integrals, the relation of the parameters β0 + x − 1 = c0
d0

+ x − 1 and
β0 − β1 + x + 1 = c2

d2
+ x + 1 to the coefficients of the difference equation (7.153)

is seen most clearly if we define

y(x + 1) = αx w(x) (7.204)

The difference equation for w(x) is then,5 from (7.153) and (7.189),

(γ2 + x + 1) w(x + 1) − 2 (γ1 + x) w(x) + (γ0 + x − 1) w(x − 1) = 0 (7.205)

in which we define
γi = ci

di
, i = 0, 1, 2 (7.206)

It is important to note that if we assume to have two independent initial conditions, for
example w(0) andw(1), then the recursion defined by (7.205) fails if γ2 + x + 1 = 0
in that w(x + 1) is then not determined.

From (7.198)–(7.203) we derive, in Appendix I, solutions to (7.205) correspond-
ing to particular choices of integration paths. The solutions w(x), divested of factors
independent of x , are given in Eqs. (I.12)–(I.29).

5We note that, in terms of the difference operator � defined in Chap.1, the difference equation
for w(x) can be written in the form (γ2 + x + 1)�2w(x − 1) + (2 − β1)�w(x − 1) + zw(x) = 0,
corresponding to the confluent hypergeometric function F5t given in Appendix I.

http://dx.doi.org/10.1007/978-3-319-29736-1_1
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In order to obtain a solution to the difference equation that satisfies arbitrary initial
conditions y(x0) and y(x0 + 1), we require two linearly independent solutions of the
difference equation, y1(x) and y2(x). We therefore wish to chose, from among the
solutions given in Appendix I, pairs of solutions which are linearly independent. The
particular pair of solutions chosen will depend on the value of the parameters γ2 +
x + 1 and γ0 + x − 1 in (7.205) as well as on β1 = γ0 − γ2 and z = γ0 − 2γ1 + γ2.
The condition that the two solutions be linearly independent is that their Casoratian,
C(x), be non-zero: C(x) = y1(x) y2(x + 1) − y1(x + 1) y2(x) �= 0. Noting that the
Wronskians of the various solutions that we are considering are relatively well-
known, (see, e.g., [36, Sect. 13.2(vi)]), we determine the Casoratian by expressing it
in terms of the Wronskian by the use of raising and lowering operators; these relate
the differential properties of the variable z in the solution to the discrete properties
of the parameter x .

We note that all of the confluent hypergeometric functions listed in Appendix I
are of the form F(a + x; c; z) or F(a − x; c; z), where F is either 1F1 or U . We
then make use of the raising operators

d

dz

(
za+x

1F1(a + x; c; z)
) = (a + x)za+x−1

1F1(a + x + 1; c; z)

d

dz

(
za+xU (a + x; c; z)

) = (a + x)(a + x − c + 1)za+x−1U (a + x + 1; c; z)

(7.207)

and the lowering operators

d

dz

(
e−z zc−a+x

1F1(a − x; c; z)
) = (c − a + x)e−z zc−a+x−1

1F1(a − x − 1; c; z)

d

dz

(
e−z zc−a+xU (a − x; c; z)

) = −e−z zc−a+x−1U (a − x − 1; c; z) (7.208)

The linearly independent pairs of solutions of the difference equation (7.205)
and their corresponding region of validity are given below in Table7.1, followed by
a detailed derivation of the Casoratian for one of the pairs; the derivation for the
remaining pairs is quite similar. The functions U1–U4t and F1–F5t are defined in
Appendix I, Eqs. (I.22)–(I.29) and (I.12)–(I.21). It is to be observed that within each
pair of linearly independent solutions, the variable and parameters are the same in
the functions U and 1F1. We note also that if one of the parameters γ2 + x + 2 and
γ0 + x is an integer while the other is not, then the second parameter in the confluent
hypergeometric function, β1 or 2 − β1, is not an integer. The gamma functions which
multiply the functionsU and 1F1 enable one to use the raising and lowering operators
to express the Casoratian in terms of the Wronskian. We assume throughout that
γ2 + x + 1 �= 0,−1,−2 . . . for any value of x in the range under consideration.
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Table 7.1 Pairs of linearly independent solutions of the difference equation for w(x)

γ2 + x + 1 �= 1, 2, 3, . . .

γ0 + x = 1, 2, 3, . . .

z > 0 (U2, F3)

z < 0 (U3, F3t), (U3t, F5t)

γ2 + x + 1 �= 1, 2, 3, . . .

γ0 + x = 0,−1,−2, . . .

z > 0 (U2, F2), (U2t, F5)

z < 0 (U4t, F5t)

γ2 + x + 1 �= 1, 2, 3, . . .

γ0 + x �= 0,±1,±2, . . .

z > 0, β1 �= 0,−1,−2, . . . , (U2, F3), (U2, F2)

z > 0, β1 �= 2, 3, 4, . . . , (U2t, F5)

z < 0, β1 �= 0,−1,−2, . . . , (U3, F3t)

z < 0, β1 �= 2, 3, 4, . . . , (U4t, F5t), (U3t, F5t)

γ2 + x + 1 = 1, 2, 3, . . .

γ0 + x �= 1, 2, 3, . . .

z > 0 (U2t, F5)

z < 0 (U4t, F5t)

γ2 + x + 1 = 1, 2, 3, . . .

γ0 + x = 1, 2, 3, . . .

z > 0, see Appendix J

z < 0, β1 �= 0,−1,−2, . . . , (U3, F3t)

z < 0, β1 �= 2, 3, 4, . . . , (U3t, F5t)

We give here the derivation of the Casoratian of the functions U3 and F3t , valid
assuming γ0 + x �= 0,−1,−2, . . . and γ2 + x + 1 �= 0,−1,−2, . . . and
z < 0. From (I.26) and (I.17), for conciseness of expression, we write the functions
U3 and F3t in the form

U3 = �(γ0 + x)U (x,−z)

F3t = �(γ0 + x)

�(γ2 + x + 1)
F(x,−z) (7.209)

The Casoratian of U3 and F3t is then

C(U3, F3t) = �(γ0 + x)U (x,−z)
�(γ0 + x + 1)

�(γ2 + x + 2)
F(x + 1,−z)

− �(γ0 + x + 1)U (x + 1,−z)
�(γ0 + x)

�(γ2 + x + 1)
F(x,−z)

= �(γ0 + x)�(γ0 + x + 1)

�(γ2 + x + 1)
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×
[

U (x,−z)

(γ2 + x + 1)
F(x + 1,−z) − U (x + 1,−z)F(x,−z)

]

(7.210)

Here, using the raising operators,

U (x + 1) = z d
dz

(
zγ0+xU (x,−z)

)

(γ2 + x + 1)(γ0 + x)zγ0+x

F(x + 1) = z d
dz

(
zγ0+x F(x,−z)

)

(γ0 + x)zγ0+x
(7.211)

from which

C(U3, F3t) = �2(γ0 + x)

�(γ2 + x + 2)
z

×
[

U (x,−z)
d

dz
F(x,−z) − F(x,−z)

d

dz
U (x,−z)

]

= �2(γ0 + x)

�(γ2 + x + 2)
z

× W(U (x,−z), F(x,−z))

= − �(γ0 + x)

�(γ2 + x + 2)
(−z)1−β1e−z (7.212)

where W(U (x,−z), F(x,−z)) is the Wronskian, given in [36, Sect. 13.2(vi),
Eq. 13.2.34] and, from (7.194), (7.199) and (7.206),

z = γ0 − 2γ1 + γ2 (7.213)

The case inwhich z = 0,which is not included inTable7.1, is considered here. The
difference equation (7.205) then has, neglecting factors independent of x throughout,
one solutionw(x) = 1 given by F5 or F5t, and a second linearly independent solution
w(x) = �(γ0 + x)/�(γ2 + x + 1), given by F3 or F3t if γ0 + x �= 0,−1,−2 . . . or
by F4 or F4t if γ0 + x �= 1, 2, 3 . . . For integer values of x the second solution can
be written in the form w(n) = (γ0)n/(γ2 + 1)n . For the case in which γ0 = γ2 + 1,
the second solution may be written as a linear combination of the two solutions:

w(n) = (γ2 + 1)

(γ0 − γ2 − 1)

[
(γ0)n

(γ2 + 1)n
− γ0

γ2 + 1

]
, (7.214)

from which w(0) = −1, w(1) = 0, and

w(n) = γ0

n−1∑

k=1

1

γ0 + k
, n ≥ 2 (7.215)



7.6 Solution of Homogeneous Linear Difference Equations … 101

7.6.1 Solution of Second Order Homogeneous Differential
Equations with Linear Coefficients Through
Transformation of Dependent and Independent
Variables

Finally, we present an approach in which the dependent and independent variables of
the differential equation are transformed so that the resulting equation is recognized
to have a form whose solution is well-known. We carry through this approach for
the second order homogeneous differential equation with coefficients linear in the
independent variable. Explicit solutions are given in [13, Sect. 6.2, pp. 249–252], the
transformed equation having solutions which are either a confluent hypergeometric
function or a Bessel function (whichmay be expressed in terms of confluent hyperge-
ometric functions), the specific form of the solution depending on the coefficients. A
summary of transformations leading to the solution is given in [27, C. 2., Eq. (2.145),
p. 434]. Here we present the derivation of the explicit solutions with a slight change
of notation to facilitate comparison with the analysis given in the next section, where
we apply this approach to the corresponding difference equation.

The specific function which is the solution to the second-order differential equa-
tion

(c2 + d2x)y
′′
(x) + (c1 + d1x)y′(x) + (c0 + d0x)y(x) = 0 (7.216)

depends on the value of the parameters d0, d1, and d2, for which we use the classifica-
tion discussed previously in Sect. 7.6 of this chapter in connection with the difference
equation

(c2 + d2(x + 1))y(x + 1) + (c1 + d1x)y(x) + (c0 + d0(x − 1))y(x − 1) = 0.
(7.217)

There we defined the symbol (δ0, δ1, δ2) in which δi = 0 if di = 0 and δi = 1 if
di �= 0, (i = 0, 1, 2). We again consider the nine possibilities: (1, 1, 1) with d2

1 −
4d0d2 �= 0, (1, 1, 1)withd2

1 − 4d0d2 = 0, (1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1),
(1, 0, 0), (0, 0, 0).

We start by making the change of dependent variable:

y(x) = ehx w(x), (7.218)

the differential equation for w(x) then being

(c2 + d2x)w
′′
(x) + [2(c2 + d2x)h + (c1 + d1x)]w′(x)

+ [(c2 + d2x)h2 + (c1 + d1x)h + (c0 + d0x)]w(x) = 0.
(7.219)

The significant parameters in this equation are evident in the last termof this equation,
specifically,
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d2h2 + d1h + d0 ≡ λ(h), � ≡ (d2
1 − 4d0d2)

1
2

c2h2 + c1h + c0 ≡ κ(h), γ ≡ (c21 − 4c0c2)
1
2 (7.220)

We consider first the case (0, 0, 0) (d2 = d1 = d0 = 0), for which the differential
equation (7.219) then has constant coefficients:

c2w
′′
(x) + κ′(h)w′(x) + κ(h)w(x) = 0. (7.221)

Choosing h to be a solution of κ(h) = 0, (h = h± = −c1±γ
2c2

), then gives the solution
w(x) = constant, from which we have the two linearly independent solutions to
(7.216):

y1(x) = eh+x

y2(x) = eh−x (7.222)

if γ �= 0. If γ = 0 then h+ = h− = − c1
2c2

and w
′′
(x) = 0, the second solution being

w(x) = x , from which
y2(x) = xeh+x (7.223)

Next, considering (1, 0, 0), (d0 �= 0), the differential equation (7.219) is then

c2w
′′
(x) + κ′(h)w′(x) + (κ(h) + d0x)w(x) = 0. (7.224)

Choosing h = − c1
2c2

so that κ′(h) = 0, we then have κ(h) = − γ2

4c2
. The differential

equation for w(x) is then

w
′′
(x) =

(
γ2

4c22
− d0

c2
x

)
w(x), (7.225)

which is essentially the differential equation for the Airy function (see [36, Chap.9]).
If we now make the change of independent variable

z = −(c2d2
0 )

− 1
3 (κ(h) + d0x), (7.226)

writing w(x) = f (z), we have
f

′′
(z) = z f (z) (7.227)

for which the two linearly independent solutions are f (z) = Ai(z) and f (z) =
Bi(z), from which the solutions to equation (7.216) are

y1(x) = e− c1x
2c2 Ai(z)

y2(x) = e− c1x
2c2 Bi(z) (7.228)
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If the argument of these Airy functions is positive, they can be expressed in terms
of the modified Bessel functions K 1

3
and I 1

3
. If the argument is negative they can be

expressed in terms of the Bessel functions J 1
3
and J− 1

3
, all of which can be expressed

in terms of confluent hypergeometric functions, [36, Chap.9].
Next we consider the remaining seven cases, for which either d2 �= 0 or d1 �= 0.

We can then choose h to be a solution of the equation λ(h) = 0. The differential
equation for w(x), Eq. (7.219), is then

(c2 + d2x)w
′′
(x) + (κ′(h) + λ′(h)x)w′(x) + κ(h)w(x) = 0 (7.229)

If, in addition, d2 �= 0 then λ′(h) = � and Eq. (7.229) is

(c2 + d2x)w
′′
(x) + (κ′(h) + �x)w′(x) + κ(h)w(x) = 0, (7.230)

which is essentially the differential equation for the confluent hypergeometric equa-
tion 1F1(a; c; x) provided � �= 0, since the factor of w(x) is independent of x , [36,
Chap. 13]. The two conditions, d2 �= 0 and � �= 0, are fulfilled for (1, 1, 1) with
� �= 0, (1, 0, 1) and (0, 1, 1), and for these three cases a linear transformation of
the independent variable allows one to express the solution in terms of the confluent
hypergeometric function: Defining

z = − �

d2
2

(c2 + d2x), (7.231)

writing w(x) = f (z), we have

z f
′′
(z) + (c − z) f ′(z) − a f (z) = 0 (7.232)

so that
f (z) = 1F1(a; c; z) (7.233)

and hence
y(x) = ehx

1F1(a; c; z) (7.234)

in which

h = −d1 + �

2d2

a = κ(h)

�

c = c1d2 − c2d1
d2
2

z = − �

d2
2

(c2 + d2x) (7.235)
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We next consider (1, 1, 0) and (0, 1, 0), for which d2 = 0, d1 �= 0. Then from
λ(h) = 0 we have h = − d0

d1
and the differential equation (7.219) for w(x) is

c2w
′′
(x) + (κ′(h) + d1x)w′(x) + κ(h)w(x) = 0. (7.236)

If we now make the change of independent variable

z = − 1

2c2d1

(
κ′(h) + d1x

)2
, (7.237)

writing w(x) = f (z), it is seen that f (z) satisfies the differential equation for the
confluent hypergeometric function:

z f
′′
(z) + ( 12 − z) f ′(z) − κ(h)

2d1
f (z) = 0. (7.238)

Thus, f (z) = 1F1(a; 1
2 ; z), from which

y(x) = ehx
1F1(a; 1

2 ; z) (7.239)

in which

h = −d0
d1

a = κ(h)

2d1

z = − 1

2c2d1
(κ′(h) + d1x)2 (7.240)

Finally, we consider (1, 1, 1) with � = 0 and (0, 0, 1), for which d2 �= 0 and
� = 0. Then, from λ(h) = 0, h = − d1

2d2
. Equation (7.219) for w(x) is then

(c2 + d2x)w
′′
(x) + κ′(h)w′(x) + κ(h)w(x) = 0. (7.241)

With the change of independent variable

z = 2

d2
κ

1
2 (c2 + d2x)

1
2 , (7.242)

writing w(x) = f (z), the differential equation for f (z) is

z f
′′
(z) + (2μ − 1) f ′(z) + z f (z) = 0 (7.243)
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in which μ = c1d2−c2d1
d2
2

. Then, making the transformation of dependent variable

g(z) = z1−μ f (z), we find that g(z) obeys the differential equation for the Bessel
function:

z2g
′′
(z) + zg′(z) + (z2 − (1 − μ)2)g(z) = 0, (7.244)

the solutions being g(z) = J1−μ(z) and g(z) = Y1−μ(z). Finally then, for the two
cases (1, 1, 1) with � = 0 and (0, 0, 1),

y(x) = ehx z1−μ J1−μ(z) (7.245)

in which

h = − d1
2d2

μ = c1d2 − c2d1
d2
2

z = 2

d2
κ

1
2 (h)(c2 + d2x)

1
2 (7.246)

We note that once one hasmade the change of dependent variable given in (7.218),
defining the equation (7.219), all of the changes of independent variable introduced to
produce differential equations in a well-recognized form, given in (7.226), (7.231),
(7.237), and (7.242), define the new independent variable z to be a coefficient of
either w(x), w′(x), or w

′′
(x) raised to the power 1

2 , 1 or 2.

7.6.2 Solution of Second Order Homogeneous Difference
Equations with Linear Coefficients Through
Transformation of Dependent and Independent
Variables

In this section we analyze the difference equations denoted earlier by (1, 1, 0),
(0, 1, 1), (1, 0, 0), (0, 0, 1) and (0, 1, 0). However, rather than deriving the solu-
tion in the form of an integral, we present an approach in which the dependent
and independent variables of the difference equation are transformed so that the
resulting equation is recognized to have a form whose solution is a well-known spe-
cial function of mathematical physics. This approach resembles that given in [13,
Sect. 6.2, pp. 249–252], for differential equations of second order, where it is shown
that the transformed equation has solutions which are either a confluent hypergeo-
metric function or a Bessel function (which may be expressed in terms of confluent
hypergeometric functions), the specific form of the solution depending on the coef-
ficients.
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Referring as before to the difference equation (Eq. (7.153))

(c2 + d2(x + 1))y(x + 1) + (c1 + d1x)y(x) + (c0 + d0(x − 1))y(x − 1) = 0,
(7.247)

we first consider the cases (1, 1, 0) (for which d0 �= 0, d1 �= 0, d2 = 0), and (0, 1, 1)
(for which d0 = 0, d1 �= 0, d2 �= 0). As noted earlier, the solution to the equations
defined by (1, 1, 0) and (0, 1, 1) are related simply by a multiplicative factor. Thus,
if we start with (1, 1, 0), namely

c2y(x + 1) + (c1 + d1x)y(x) + (c0 + d0(x − 1))y(x − 1) = 0 (7.248)

then, writing this as

c2y(x + 1) + (c1 + d1x)y(x) + d0

(
c0
d0

+ x − 1

)
y(x − 1) = 0 (7.249)

and defining

y(x) = �

(
c0
d0

+ x

)
w(x) (7.250)

we obtain the difference equation for w(x)

c2

(
c0
d0

+ x

)
w(x + 1) + (c1 + d1x)w(x) + d0w(x − 1) = 0 (7.251)

which is denoted by (0, 1, 1). In similar fashion, if we start with a difference equation
denoted by (0, 1, 1), namely

(c2 + d2(x + 1))y(x + 1) + (c1 + d1x)y(x) + c0y(x − 1) = 0 (7.252)

then, writing this as

d2

(
c2
d2

+ x + 1

)
y(x + 1) + (c1 + d1x)y(x) + c0y(x − 1) = 0 (7.253)

and defining

y(x) = w(x)

�
(

c2
d2

+ x + 1
) (7.254)

we obtain the difference equation for w(x)

d2w(x + 1) + (c1 + d1x)w(x) + c0

(
c2
d2

+ x

)
w(x − 1) = 0 (7.255)

which is denoted by (1, 1, 0).
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We consider first the difference equation denoted by (1, 1, 0), i.e.,

c2y(x + 1) + (c1 + d1x)y(x) + (c0 + d0(x − 1))y(x − 1) = 0 (7.256)

and note from (8.29) that both the confluent hypergeometric functions M(a; c; z) =
�(c−a)

�(c) 1F1(a; c; z) and U (a; c; z) obey a difference equation denoted by (1, 1, 0),
namely,

zF(a; c + 1; z) + (1 − z − c)F(a; c; z) + (−a + c − 1)F(a; c − 1; z) = 0.
(7.257)

In order to show that the difference equation (7.256) has solutions of the form of
M(a; c; z) = �(c−a)

�(c) 1F1(a; c; z) and U (a; c; z), we define F(a; c; z) = eiπc F(a; c; z)

and replace c by c + x , giving

zF(a; c + x + 1; z) + (z − 1 + c + x)F(a; c + x; z) + (−a + c + x − 1)F(a; c + x − 1; z) = 0
(7.258)

We then define
y(x) = λx w(x) (7.259)

giving the difference equation for w(x):

λ2c2
d0

w(x + 1) + λ

d0
w(x) +

(
c0
d0

+ x − 1)

)
w(x − 1) = 0 (7.260)

To equate the difference equations (7.260) and (7.258) for w(x) and F(a; c + x; z)
we define

λ = d0
d1

c − a = c0
d0

z = λ2c2
d0

c + z − 1 = λc1
d0

(7.261)

from which z = c2d0
d2
1

, c = c1
d1

+ 1 − c2d0
d2
1

, a = c1
d1

+ 1 − c2d0
d2
1

− c0
d0
.

We then have,6 provided a �= 0,−1,−2, . . . , two linearly independent solutions
of (7.256),

6If a = 0,−1,−2 . . ., then from [36, Sect. 13.2(i), Eq.13.2.4], �(c−a+x)
�(c+x) 1F1(a; c + x; z) =

(−1)aU (a; c + x; z); hence y1(x) = (−1)a y2(x).

http://dx.doi.org/10.1007/978-3-319-29736-1_8
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y1(x) = λx eiπx �(c − a + x)

�(c + x)
1F1(a; c + x; z)

y2(x) = λx eiπxU (a; c + x; z) (7.262)

The Casoratian of y1(x) and y2(x) may be derived as shown earlier, using the
raising operators to relate the Casoratian to the Wronskian. From [36, Sect. 13.3(ii),
Eqs. 13.3.20 and 13.3.27], we have

d

dz

(
e−z

1F1(a; c + x; z)
) = − (c − a + x)

(c + x)
e−z

1F1(a; c + x + 1; z)

d

dz

(
e−zU (a; c + x; z)

) = −e−zU (a; c + x + 1; z) (7.263)

from which

C(y1(x), y2(x)) = y1(x)y2(x + 1) − y1(x + 1)y2(x)

= λ2x+1e2iπx �(c − a + x)

�(c + x)

×
(
1F1(a; c + x; z)ez d

dz

(
e−zU (a; c + x; z)

)

−U (a; c + x; z)ez d

dz

(
e−z

1F1(a; c + x; z)
))

= λ2x+1e2iπx �(c − a + x)

�(c + x)

×
(
1F1(a; c + x; z)

d

dz
U (a; c + x; z) − d

dz
1F1(a; c + x; z)U (a; c + x; z)

)

= λ2x+1e2iπx �(c − a + x)

�(c + x)
W (1F1(a; c + x; z), U (a; c + x; z))

= −λ2x+1e2iπx �(c − a + x)

�(a)
z−c−x ez (7.264)

from [36, Sect. 13.2(vi), Eq. 13.2.34].
We next consider the cases (1, 0, 0) (for which d0 �= 0, d1 = 0, d2 = 0), and

(0, 0, 1) (for which d0 = 0, d1 = 0, d2 �= 0). As noted earlier, the solution to the
equations defined by (1, 0, 0) and (0, 0, 1) are related simply by a multiplicative
factor. Thus, if we start with (1, 0, 0), namely

c2y(x + 1) + c1y(x) + (c0 + d0(x − 1))y(x − 1) = 0 (7.265)

then, writing this as

c2y(x + 1) + c1y(x) + d0

(
c0
d0

+ x − 1

)
y(x − 1) = 0 (7.266)

and defining
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y(x) = �

(
c0
d0

+ x

)
w(x) (7.267)

we obtain the difference equation for w(x)

c2

(
c0
d0

+ x

)
w(x + 1) + c1w(x) + d0w(x − 1) = 0 (7.268)

which is denoted by (0, 0, 1). In similar fashion, if we start with a difference equation
denoted by (0, 0, 1), namely

(c2 + d2(x + 1))y(x + 1) + c1y(x) + c0y(x − 1) = 0 (7.269)

then writing this as

d2

(
c2
d2

+ x + 1

)
+ c1y(x) + c0y(x − 1) = 0 (7.270)

and defining

y(x) = w(x)

�( c2
d2

+ x + 1)
(7.271)

we obtain the difference equation for w(x)

d2w(x + 1) + c1w(x) + c0

(
c2
d2

+ x

)
w(x − 1) = 0 (7.272)

which is denoted by (1, 0, 0).
We consider next the difference equation denoted by (1, 0, 0), i.e.,

c2y(x + 1) + c1y(x) + (c0 + d0(x − 1))y(x − 1) = 0 (7.273)

and note from (8.36) and (8.38) that both of the parabolic cylinder functions
W (a, z) = eiπa�(a + 1

2 )U (a, z) and V (a, z) obey a difference equation denoted
by (1, 0, 0), namely

F(a + 1, z) − zF(a, z) − (a − 1
2 )F(a − 1, z) = 0. (7.274)

In order to show that the difference equation (7.273) has solutions of the form
W (a, z) = eiπa�(a + 1

2 )U (a, z) and V (a, z), we replace a by a + x and define

y(x) = λx w(x) (7.275)

giving the difference equation for w(x):

http://dx.doi.org/10.1007/978-3-319-29736-1_8
http://dx.doi.org/10.1007/978-3-319-29736-1_8
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w(x + 1) + c1
c2λ

w(x) + d0
c2λ2

(
c0
d0

+ x − 1

)
w(x − 1) = 0 (7.276)

To equate the difference equations (7.276) and (7.274) for w(x) and F(a + x, z) we
define7

λ2 = −d0
c2

a = −
(

c0
c2

+ 1

2

)

z = − c1
c2λ

(7.277)

We then have, provided a + x �= − 1
2 ,− 3

2 ,− 5
2 , . . . , two linearly independent solu-

tions of (7.273),

y1(x) = λx eiπx�(a + x + 1
2 )U (a + x, z)

y2(x) = λx V (a + x, z) (7.278)

The Casoratian of y1(x) and y2(x) may be derived as shown earlier using the
raising operators to relate the Casoratian to the Wronskian. From [36, Sect. 12.8(ii),
Eqs. 12.8.9 and 12.8.11] we have

d

dz

(
e

1
4 z2U (a + x, z)

)
= −(a + x + 1

2 )e
1
4 z2U (a + x + 1, z)

d

dz

(
e

1
4 z2 V (a + x, z)

)
= e

1
4 z2 V (a + x + 1, z) (7.279)

from which

C(y1(x), y2(x)) = y1(x)y2(x + 1) − y1(x + 1)y2(x)

= λ2x+1eiπx�(a + x + 1
2 )e− 1

4 z2

×
(

U (a + x)
d

dz

(
e

1
4 z2 V (a + x, z)

)
− V (a + x, z)

d

dz

(
e

1
4 z2U (a + x, z)

))

= λ2x+1eiπx�(a + x + 1
2 )

×
(

U (a + x)
d

dz
V (a + x, z) − V (a + x, z)

d

dz
U (a + x, z)

)

= λ2x+1eiπx�(a + x + 1
2 )W(U (a + x), V (a + x))

= λ2x+1eiπx�(a + x + 1
2 )

√
2

π
(7.280)

from [36, Sect. 12.8(ii), Eq. 12.2.10].

7If d0
c2

< 0 we can choose λ = −sgn
(

c1
c2

)√
− d0

c2
so that z > 0.
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We consider finally the difference equation denoted by (0, 1, 0), i.e.,

c2y(x + 1) + (c1+d1x)y(x) + c0y(x − 1) = 0 (7.281)

Here, there are two cases to consider: (a) c0 and c2 have the same sign (hence
c0c2 > 0), and (b) c0 and c2 have the opposite sign (hence c0c2 < 0). If c0c2 > 0,
then writing y(x) = λx w(x), the difference equation for w(x) is

c2λ
2w(x + 1) + λ(c1 + d1x)w(x) + c0w(x − 1) = 0. (7.282)

Choosing λ = −sgn(d1)
√

c0
c2
. We then have

w(x + 1) − |d1|√
c0c2

(
c1
d1

+ x

)
w(x) + w(x − 1) = 0. (7.283)

Then from (8.32) we have the four linearly independent solutions Jν(z), Yν(z),
H (1)

ν (z), H (2)
ν (z), in which

z = 2
√

c1c2
|d1| ν = c1

d1
+ x (7.284)

As before, the Casoratians can be obtained using the raising operators. However, in
this case they are, apart from a sign, equal to the Wronskian, and are given in [36,
Sect. 10.5, Eqs. 10.5.2–10.5.5]:

C (Jν(z), Yν(z)) = − 2

πz

C
(
Jν(z), H (1)

ν (z)
) = − 2i

πz

C
(
Jν(z), H (2)

ν (z)
) = 2i

πz

C
(
H (1)

ν (z), H (2)
ν (z)

) = 4i

πz
(7.285)

http://dx.doi.org/10.1007/978-3-319-29736-1_8


Chapter 8
Dictionary of Difference Equations
with Polynomial Coefficients

In this chapter we list the difference equations for some of the classical functions
and polynomials of mathematical physics. These difference equations have coeffi-
cients which are polynomials in the argument of the difference equation, their degree
ranging from zero (i.e., constant coefficients) for the Tchebichef polynomials Tn(x)

and Un(x) to three for the Jacobi polynomials P (α,β)
n (x) and Q(α,β)

n (x). We list only
those difference equations in which only one parameter varies (note, for example,
Eq. (8.16), in which only ν varies, or Eq. (8.17), in which only μ varies). A full
investigation of the relations between contiguous functions, which involve two of
the parameters (given, e.g., in [13, 36]) leads to the subject of partial difference
equations, which we leave to future work. We note, however, that for a function with
two parameters (e.g., Pμ

ν (x)), one can obtain a three-term equation connecting the
function at any three distinct points in the two-dimensional grid (a + n, b + m):
AF(a + n1, b + m1) + B F(a + n2, b + m2) + C F(a + n3, b + m3) = 0 directly
from the four contiguous relations for the nine contiguous values of the function, for
which n, m = 0,±1:

AF(a, b) + B F(a + 1, b) + C F(a, b + 1) = 0

AF(a, b) + B F(a − 1, b) + C F(a, b + 1) = 0

AF(a, b) + B F(a + 1, b) + C F(a, b − 1) = 0

AF(a, b) + B F(a − 1, b) + C F(a, b − 1) = 0,

(8.1)

Here, (n1, m1), (n2, m2) and (n3, m3) are distinct pairs of integers, ni , mi = 0,±1,
±2, . . ., and A, B and C are functions of a and b. In particular, the two relations
involving only one parameter,

AF(a, b) + B F(a, b + 1) + C F(a, b − 1) = 0 (8.2)

© Springer International Publishing Switzerland 2016
L.C. Maximon, Differential and Difference Equations,
DOI 10.1007/978-3-319-29736-1_8
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and

AF(a, b) + B F(a + 1, b) + C F(a − 1, b) = 0 (8.3)

can be derived directly from the contiguous relations given above.

Difference Equations with Constant Coefficients

The Tchebichef polynomials

Tn(cos θ) = cos nθ

Un(cos θ) = sin(n + 1)θ

sin θ

(8.4)

obey the same difference equation:

Tn+1(x) − 2xTn(x) + Tn−1(x) = 0 (8.5)

Un+1(x) − 2xUn(x) + Un−1(x) = 0 (8.6)

Difference Equations with Linear Coefficients

The parameters ci and di , (i = 0, 1, 2), in this section refer to Eq. (7.153). See also
the discussion surrounding (7.163).

(i) Orthogonal polynomials
(i1) Legendre polynomials

(n + 1)Pn+1(z) − 2z(n + 1
2 )Pn(z) + n Pn−1(z) = 0

c2 = 0, c1 = −z, c0 = 1

d2 = 1, d1 = −2z, d0 = 1, d2
1 − 4d0d2 = 4(z2 − 1)

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= 0

(8.7)

(i2) Gegenbauer polynomials, Cν
n (z). The Gegenbauer polynomials, also called

ultraspherical polynomials, canbe expressed in termsofLegendre functions:Cν
n (z) =

2−ν+ 1
2 π

1
2

�(n+2ν)

�(ν)n! (z2 − 1)
1
4 − 1

2 ν P
1
2 −ν

n+ν− 1
2
(z) as well as in terms of Jacobi polynomials:

Cν
n (z) = �(ν+ 1

2 )

�(n+ν+ 1
2 )

�(n+2ν)

�(2ν)
P

(ν− 1
2 , ν− 1

2 )
n (z).

(n + 1)Cν
n+1(z) − 2z(n + ν)Cν

n (z) + (n − 1 + 2ν)Cν
n−1(z) = 0

c2 = 0, c1 = −2νz, c0 = 2ν

d2 = 1, d1 = −2z, d0 = 1, d2
1 − 4d0d2 = 4(z2 − 1)

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= 0

(8.8)

http://dx.doi.org/10.1007/978-3-319-29736-1_7
http://dx.doi.org/10.1007/978-3-319-29736-1_7
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(i3) Laguerre polynomials

(n + 1)Lα
n+1(x) − (2n + α + 1 − x)Lα

n (x) + (n + α)Lα
n−1(x) = 0

c2 = 0, c1 = −(α + 1 − x), c0 = α + 1

d2 = 1, d1 = −2, d0 = 1, d2
1 − 4d0d2 = 0

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= x

(8.9)

(i4) Laguerre polynomials

x Lα+1
n (x) − (α + x)Lα

n (x) + (α + n)Lα−1
n (x) = 0

c2 = x, c1 = −x, c0 = n + 1

d2 = 0, d1 = −1, d0 = 1, d2
1 − 4d0d2 = 1

(8.10)

(i5) Hermite polynomials

Hn+1(x) − 2x Hn(x) + 2nHn−1(x) = 0

c2 = 1, c1 = −2x, c0 = 2 (8.11)

d2 = 0, d1 = 0, d0 = 2, d2
1 − 4d0d2 = 0

(i6) Hypergeometric polynomial Fn(z) ≡ 2F1(−n, b; c; z)

(n + c)Fn+1(z) − [c + 2n − (b + n)z]Fn(z) + (1 − z)nFn−1(z) = 0

c2 = c − 1, c1 = bz − c, c0 = 1 − z

d2 = 1, d1 = z − 2, d0 = 1 − z, d2
1 − 4d0d2 = z2

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= z(c − 2b)

z − 2

(8.12)

(i7) Associated Legendre polynomial P−α
n (z) = (

z−1
z+1

) 1
2 α

2F1(−n, n + 1; 1 +
α; 1−z

2 )/�(1 + α).

The polynomial P−α
n (z) defined here can be expressed in terms of the Jacobi

polynomial P (α,β)
n (z) with β = −α: P (α,−α)

n (z) = �(1+n+α)

n!
(

z+1
z−1

) 1
2 α

P−α
n (z).

(α + n + 1)P−α
n+1(z) − 2z(n + 1

2 )P−α
n (z) + (n − α)P−α

n−1(z) = 0

c2 = α, c1 = −z, c0 = 1 − α

d2 = 1, d1 = −2z, d0 = 1, d2
1 − 4d0d2 = 4(z2 − 1)

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= 0

(8.13)
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(i8) Jacobi polynomial P (α,β)
n (x). A second solution of the differential equation

obeyed by the function P (α,β)
n (x) is Q(α,β)

n (x), which is not a polynomial but satisfies
the same recurrence relations as P (α,β)

n (x) and is a second, linearly independent,
solution of the difference equation satisfied by P (α,β)

n (x):

(n + α + β + 1)(1 − x)P (α+1,β)
n (x) − (2α + (2n + α + β + 1)(1 − x))P (α,β)

n (x)

+ 2(n + α)P (α−1,β)
n (x) = 0

c2 = (n + β)(1 − x), c1 = −(2n + β + 1)(1 − x), c0 = 2(n + 1)

d2 = (1 − x), d1 = −(3 − x), d0 = 2, d2
1 − 4d0d2 = (1 + x)2

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= (2n + β + 1)(1 + x)

3 − x
(8.14)

(i9) Jacobi polynomial P (α,β)
n (x). A second solution of the differential equation

obeyed by the function P (α,β)
n (x) is Q(α,β)

n (x), which is not a polynomial but satisfies
the same recurrence relations as P (α,β)

n (x) and is a second, linearly independent,
solution of the difference equation satisfied by P (α,β)

n (x):

(n + α + β + 1)(1 + x)P (α,β+1)
n (x) − (2β + (2n + α + β + 1)(1 + x))P (α,β)

n (x)

+ 2(n + β)P (α,β−1)
n (x) = 0

c2 = (n + α)(1 + x), c1 = −(2n + α + 1)(1 + x), c0 = 2(n + 1)

d2 = (1 + x), d1 = −(3 + x), d0 = 2, d2
1 − 4d0d2 = (1 − x)2

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= (2n + α + 1)(1 − x)

3 + x
(8.15)

(ii) Classical functions
(ii1) Legendre functions, Pμ

ν (z). A second, linearly independent, solution of the
differential equation obeyed by the function Pμ

ν (z) is Qμ
ν (z), which satisfies the same

recurrence relations as Pμ
ν (z):

(ν − μ + 1)Pμ
ν+1(z) − 2z(ν + 1

2 )Pμ
ν (z) + (ν + μ)Pμ

ν−1(z) = 0

c2 = −μ, c1 = −z, c0 = μ + 1

d2 = 1, d1 = −2z, d0 = 1, d2
1 − 4d0d2 = 4(z2 − 1)

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= 0

(8.16)

(ii2) Legendre functions Pμ
ν (z) = Pμ

ν (z)/�(μ − ν). The function Qμ
ν (z) =

Qμ
ν (z)/�(μ − ν) satisfies the same recurrence relations as Pμ

ν (z):
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(μ − ν)Pμ+1
ν (z) + 2μz(z2 − 1)−

1
2Pμ

ν (z) + (μ + ν)Pμ−1
ν (z)

c2 = −(ν + 1), c1 = 0, c0 = ν + 1

d2 = 1, d1 = 2z(z2 − 1)−
1
2 , d0 = 1, d2

1 − 4d0d2 = 4

z2 − 1(
c0
d0

− 2
c1
d1

+ c2
d2

)
= 0

(8.17)

(ii3) Gegenbauer (ultraspherical) functions, Cν
α(z). A second, linearly indepen-

dent, solution of the differential equation obeyed by the function Cν
α(z) is Dν

α(z),
which satisfies the same recurrence relation in α as Cν

α(z):

(α + 1)Cν
α+1(z) − 2z(ν + α)Cν

α(z) + (2ν + α − 1)Cν
α−1(z) = 0

c2 = 0, c1 = −2zν, c0 = 2ν

d2 = 1, d1 = −2z, d0 = 1, d2
1 − 4d0d2 = 4(z2 − 1)

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= 0

(8.18)

(ii4) Gegenbauer (ultraspherical) function, Cν
α(z) = �(ν)

�(ν+ 1
2+ 1

2α)
Cν

α(z)

(ν + 1
2 + 1

2α)(z2 − 1)Cν+1
α (z) + [(2ν + α − 1

2 ) − (ν + α)z2]Cν
α(z)

− (ν − 1 + 1
2α)Cν−1

α (z) = 0

c2 = (− 1
2 + 1

2α)(z2 − 1), c1 = α − 1
2 − αz2, c0 = − 1

2α

d2 = z2 − 1, d1 = 2 − z2, d0 = −1 d2
1 − 4d0d2 = z4

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= z2

(
α + 1

2

)

2 − z2

(8.19)

(ii5) Gegenbauer (ultraspherical) function, Cν
α(z) = �(ν)

�(ν+ 1
2α)

Cν
α(z)

(ν + 1
2α)(z2 − 1)Cν+1

α (z) + [(2ν + α − 1
2 ) − (ν + α)z2]Cν

α(z)

− (ν − 1
2 + 1

2α)Cν−1
α (z) = 0

c2 = (−1 + 1
2α)(z2 − 1), c1 = α − 1

2 − αz2, c0 = − 1
2 − 1

2α

d2 = z2 − 1, d1 = 2 − z2, d0 = −1 d2
1 − 4d0d2 = z4

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= z2

(
α + 1

2

)

2 − z2

(8.20)
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(ii6) Gegenbauer (ultraspherical) function, Dν
α(z) = 2−2ν (1−z2)ν

�(ν)�(ν+ 1
2+ 1

2α)
Dν

α(z)

(ν + 1
2 + 1

2α)z2Dν+1
α (z) + [(ν + α) − (2ν + α − 1

2 )z
2]Dν

α(z)

− (ν − 1 + 1
2α)(1 − z2)Dν−1

α (z) = 0

c2 = (− 1
2 + 1

2α)z2, c1 = α − (α − 1
2 )z

2, c0 = 1
2α(z2 − 1)

d2 = z2, d1 = 1 − 2z2, d0 = (z2 − 1) d2
1 − 4d0d2 = 1 (8.21)

(
c0
d0

− 2
c1
d1

+ c2
d2

)
=

(
α + 1

2

)

2z2 − 1

(ii7) Gegenbauer (ultraspherical) function, Dν
α(z) = 2−2ν (1−z2)ν

�(ν)�(ν+ 1
2α)

Dν
α(z)

(ν + 1
2α)z2Dν+1

α (z) + [(ν + α) − (2ν + α − 1
2 )z

2]Dν
α(z)

− (ν − 1
2 + 1

2α)(1 − z2)Dν−1
α (z) = 0

c2 = (−1 + 1
2α)z2, c1 = α − (α − 1

2 )z
2, c0 = ( 12 + 1

2α)(z2 − 1)

d2 = z2, d1 = 1 − 2z2, d0 = (z2 − 1) d2
1 − 4d0d2 = 1

(
c0
d0

− 2
c1
d1

+ c2
d2

)
=

(
α + 1

2

)

2z2 − 1

(8.22)

(ii8) Hypergeometric function 2F1(a, b; c; z)

a(1 − z)2F1(a + 1, b; c; z) + [c − 2a + (a − b)z]2F1(a, b; c; z)

+ (a − c)2F1(a − 1, b; c; z) = 0

c2 = z − 1, c1 = c − bz, c0 = 1 − c

d2 = 1 − z, d1 = z − 2, d0 = 1, d2
1 − 4d0d2 = z2 (8.23)

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= z(c − 2b)

2 − z

(ii9) Hypergeometric function 2F1(a, b; c; z)

b(1 − z)2F1(a, b + 1; c; z) + [c − 2b + (b − a)z]2F1(a, b; c; z)

+ (b − c)2F1(a, b − 1; c; z) = 0

c2 = z − 1, c1 = c − az, c0 = 1 − c

d2 = 1 − z, d1 = z − 2, d0 = 1, d2
1 − 4d0d2 = z2

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= z(c − 2a)

2 − z

(8.24)



8 Dictionary of Difference Equations … 119

(ii10) Hypergeometric function1 2F1(a, b; c; z) = �(c−b)

�(c) 2F1(a, b; c; z)

(c − a)z 2F1(a, b; c + 1; z) + (c − 1 − (2c − a − b − 1)z) 2F1(a, b; c; z)

− (c − b − 1)(1 − z) 2F1(a, b; c − 1; z) = 0

c2 = −(a + 1)z, c1 = (a + b + 1)z − 1, c0 = b(1 − z) (8.25)

d2 = z, d1 = 1 − 2z, d0 = −(1 − z), d2
1 − 4d0d2 = 1

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= 1 − a − b

1 − 2z

(ii11) Confluent hypergeometric function F(a; c; z) = 1F1(a; c; z) or
�(a + 1 − c)U (a; c; z)

a F(a + 1; c; z) − (2a − c + z) F(a; c; z) + (a − c) F(a − 1; c; z) = 0

c2 = −1, c1 = c − z, c0 = 1 − c

d2 = 1, d1 = −2, d0 = 1, d2
1 − 4d0d2 = 0

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= −z

(8.26)

(ii12) Confluent hypergeometric function F(a; c; z) = �(c−a)

�(1−a) 1F1(a; c; z),
�(a)

�(a+1−c) 1F1(a; c; z), or �(a)U (a; c; z)

(a + 1 − c) F(a + 1; c; z) − (2a − c + z) F(a; c; z) + (a − 1) F(a − 1; c; z) = 0

c2 = −c, c1 = c − z, c0 = 0

d2 = 1, d1 = −2, d0 = 1, d2
1 − 4d0d2 = 0 (8.27)

(
c0
d0

− 2
c1
d1

+ c2
d2

)
= −z

(ii13) Confluent hypergeometric function F(a; c; z) = 1F1(a; c; z)/�(c) or
U (a; c; z)/�(c − a)

z(c − a)F(a; c + 1; z) + (1 − z − c)F(a; c; z) + F(a; c − 1; z) = 0

c2 = −z(a + 1), c1 = 1 − z, c0 = 1

d2 = z, d1 = −1, d0 = 0, d2
1 − 4d0d2 = 1

(8.28)

1In Eqs. (8.25)–(8.31) in which functions have a coefficient of the form �(b), one may replace �(b)

by eiπb/�(1 − b) without modifying the associated difference equation.
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(ii14) Confluent hypergeometric function F(a; c; z) = �(c−a)

�(c) 1F1(a; c; z) or
U (a; c; z)

zF(a; c + 1; z) + (1 − z − c)F(a; c; z) + (c − 1 − a)F(a; c − 1; z) = 0

c2 = z, c1 = 1 − z, c0 = −a

d2 = 0, d1 = −1, d0 = 1, d2
1 − 4d0d2 = 1

(8.29)

(ii15) Confluent hypergeometric function U (a; c; z)

zaU (a + 1; c + 1; z) + (z − c + 1)U (a; c; z) − U (a − 1; c − 1; z) = 0

c2 = 0, c1 = z + 1, c0 = −1

d2 = z, d1 = −1, d0 = 0, d2
1 − 4d0d2 = 1

(8.30)

(ii16) Confluent hypergeometric function F(a; c; z) = �(a)U (a; c; z)

zF(a + 1; c + 1; z) + (z − c + 1)F(a; c; z) − (a − 1)F(a − 1; c − 1; z) = 0

c2 = z, c1 = z + 1, c0 = 0 (8.31)

d2 = 0, d1 = −1, d0 = −1, d2
1 − 4d0d2 = 1

(ii17) Bessel functions Jν(z), Yν(z), H (1)
ν (z), H (2)

ν (z)

Jν+1(z) − 2ν

z
Jν(z) + Jν−1(z) = 0

Yν+1(z) − 2ν

z
Yν(z) + Yν−1(z) = 0

H (1)
ν+1(z) − 2ν

z
H (1)

ν (z) + H (1)
ν−1(z) = 0

H (2)
ν+1(z) − 2ν

z
H (2)

ν (z) + H (2)
ν−1(z) = 0

c2 = 1, c1 = 0, c0 = 1

d2 = 0, d1 = −2

z
, d0 = 0, d2

1 − 4d0d2 = 4

z2

(8.32)

(ii18) Bessel functions Iν(z), K ν(z) = eνπi Kν(z)

Iν+1(z) + 2ν

z
Iν(z) − Iν−1(z) = 0

K ν+1(z) + 2ν

z
K ν(z) − K ν−1(z) = 0

c2 = 1, c1 = 0, c0 = −1

d2 = 0, d1 = 2

z
, d0 = 0, d2

1 − 4d0d2 = 4

z2

(8.33)
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(ii19) Bessel function Kν(z)

Kν+1(z) − 2ν

z
Kν(z) − Kν−1(z) = 0

c2 = 1, c1 = 0, c0 = −1

d2 = 0, d1 = −2

z
, d0 = 0, d2

1 − 4d0d2 = 4

z2

(8.34)

(ii20) Parabolic cylinder function Dν(z)

Dν+1(z) − zDν(z) + νDν−1(z) = 0

c2 = 1, c1 = −z, c0 = 1

d2 = 0, d1 = 0, d0 = 1, d2
1 − 4d0d2 = 0

(8.35)

(ii21) Parabolic cylinder function V (a, z)

V (a + 1) − zV (a, z) − (a − 1
2 )V (a − 1, z) = 0

c2 = 1, c1 = −z, c0 = − 1
2

d2 = 0, d1 = 0, d0 = −1, d2
1 − 4d0d2 = 0

(8.36)

(ii22) Parabolic cylinder function U (a, z)

(a + 1
2 )U (a + 1) + zU (a, z) − U (a − 1, z) = 0

c2 = − 1
2 , c1 = z, c0 = −1

d2 = 1, d1 = 0, d0 = 0, d2
1 − 4d0d2 = 0

(8.37)

(ii23) Parabolic cylinder function W (a, z) = eiπa�(a + 1
2 )U (a, z)

W (a + 1) − zW (a, z) − (a − 1
2 )W (a − 1, z) = 0

c2 = 1, c1 = −z, c0 = − 1
2

d2 = 0, d1 = 0, d0 = −1, d2
1 − 4d0d2 = 0

(8.38)

Difference Equations with Quadratic Coefficients

(iii1) Legendre functions, Pμ
ν (z).

A second solution of the differential equation obeyed by the function Pμ
ν (z) is Qμ

ν (z),
which satisfies the same recurrence relations as Pμ

ν (z) and is a second, linearly
independent, solution of the difference equation satisfied by Pμ

ν (z):

Pμ+1
ν (z) + 2μz(z2 − 1)−

1
2 Pμ

ν (z) + (μ + ν)(μ − ν − 1)Pμ−1
ν (z) = 0 (8.39)
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(iii2) Gegenbauer (ultraspherical) function, Cν
α(z)

ν(ν − 1)(z2 − 1)Cν+1
α (z) + (ν − 1)[(2ν + α − 1

2 ) − (ν + α)z2]Cν
α(z)

− (ν − 1
2 + 1

2α)(ν − 1 + 1
2α)Cν−1

α (z) = 0 (8.40)

(iii3) Hypergeometric function 2F1(a, b; c; z)

(c − a)(c − b)z 2F1(a, b; c + 1; z) + c(c − 1 − (2c − a − b − 1)z) 2F1(a, b; c + 1; z)

− c(c − 1)(1 − z) 2F1(a, b; c − 1; z) = 0 (8.41)

(iii4) Confluent hypergeometric function 1F1(a; c; z)

(c−a)z1F1(a; c+1; z)−c(c−1+z)1F1(a; c; z)+c(c−1)1F1(a; c−1; z) (8.42)

(iii5) Confluent hypergeometric function U (a; c; z)

a(a − c + 1)U (a + 1; c; z) − (2a − c + z)U (a; c; z) + U (a − 1; c; z) (8.43)

Difference Equations with Cubic Coefficients

(iv1) Jacobi polynomial P (α,β)
n (x).

A second, linearly independent, solution of the differential equation obeyed by the
function P (α,β)

n (x) is Q(α,β)
n (x), which is known as the Jacobi function of the second

kind. This function is not a polynomial but satisfies the same recurrence relations as
P (α,β)

n (x):

2(n + 1)(n + α + β + 1)(2n + α + β)P (α,β)

n+1 (x)

− (2n + α + β + 1)[(2n + α + β)(2n + α + β + 2)x + α2 − β2]P (α,β)
n (x)

+ 2(n + α)(n + β)(2n + α + β + 2)P (α,β)

n−1 (x) = 0 (8.44)

Expression of Gegenbauer Functions Cν
α(z) and Dν

α(z) in terms of Legendre functions
Pμ

ν (z) and Qμ
ν (z).

For Cν
α(z) we have, from [13, Sect. 3.15.1, (14), p. 175], (with n replaced by an

arbitrary, possibly complex α),

Cν
α(z) = 2ν− 1

2
�(2ν + α)�(ν + 1

2 )

�(2ν)�(α + 1)
(z2 − 1)

1
2 − 1

2 ν P
1
2 −ν

ν+α− 1
2
(z)

= π
1
2 2−ν+ 1

2
�(2ν + α)

�(ν)�(α + 1)
(z2 − 1)

1
2 − 1

2 ν P
1
2 −ν

ν+α− 1
2
(z) (8.45)
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Next, from [13, Sect. 3.15.2, (32), p. 179], we have

Dν
α(z) = 2−1−α �(ν)�(2ν + α)

�(ν + α + 1)
2F1

(
ν + 1

2α, 1
2 + ν + 1

2α; ν + α + 1; z2
)

(8.46)
and from [13, Sect. 3.2, (41), pp. 134–135],

e−iμπ Qμ
λ(w) = 2−1−λπ

1
2
�(1 + λ + μ)

�(λ + 3
2 )

w−1−λ−μ(w2 − 1)
1
2 μ

× 2F1

(
1
2 + 1

2λ + 1
2μ, 1 + 1

2λ + 1
2μ; λ + 3

2 ;
1

w2

)
(8.47)

Setting λ = ν + α − 1
2 , μ = ν − 1

2 and w = z−1, we have

Dν
α(z) = 2ν− 1

2 π− 1
2 �(ν)z−ν−α− 1

2 (1 − z2)−
1
2 ν+ 1

4 e−i(ν− 1
2 )π Q

ν− 1
2

ν+α− 1
2

(
1

z

)
(8.48)



Appendix A
Difference Operator

For the higher-order difference of the product of two functions we may write

�k(unvn) = (E − 1)k(unvn)

=
k∑

j=0

(−1)k− j

(
k

j

)
E j (unvn) (A.1)

Here

E j (unvn) = E j un E j vn

= (1 + �) j un(1 + �) j vn (A.2)

Thus

�k(unvn) = (−1)k
k∑

j=0

(−1) j

(
k

j

) j∑

n=0

(
j

n

)
�nun

j∑

m=0

(
j

m

)
�mvn (A.3)

We now wish to sum first over j . Interchanging j and n we have

k∑

j=0

j∑

n=0

=
k∑

n=0

k∑

j=n

(A.4)

from which

�k(unvn) = (−1)k
k∑

n=0

k∑

j=n

(−1) j

(
k

j

)(
j

n

)
�nun

j∑

m=0

(
j

m

)
�mvn (A.5)
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We next interchange the summations over j and m, giving

k∑

j=n

j∑

m=0

=
n∑

m=0

k∑

j=n

+
k∑

m=n+1

k∑

j=m

(A.6)

We have here, for the sums over j ,

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

m

)
0 ≤ m ≤ n ≤ k (A.7)

and
k∑

j=m

(−1) j

(
k

j

)(
j

n

)(
j

m

)
0 ≤ n < m ≤ k (A.8)

Thus

�k(unvn) = (−1)k
k∑

n=0

n∑

m=0

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

m

)
�nun�

mvn

+ (−1)k
k∑

n=0

k∑

m=n+1

k∑

j=m

(−1) j

(
k

j

)(
j

n

)(
j

m

)
�nun�

mvn

= (−1)k
k∑

n=0

n∑

m=0

�nun�
mvn

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

m

)

+ (−1)k
k∑

n=0

k∑

m=n

�nun�
mvn

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

m

)

− (−1)k
k∑

n=0

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

n

)
�nun�

nvn (A.9)

Here
k∑

n=0

k∑

m=n

=
k∑

m=0

m∑

n=0

(A.10)

Thus

�k(unvn) = (−1)k
k∑

n=0

n∑

m=0

�nun�
mvn

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

m

)
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+ (−1)k
k∑

m=0

m∑

n=0

�nun�
mvn

k∑

j=m

(−1) j

(
k

j

)(
j

n

)(
j

m

)

− (−1)k
k∑

n=0

�nun�
nvn

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

n

)
(A.11)

Thus we need

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

m

)
for 0 ≤ m ≤ n ≤ j ≤ k

k∑

j=m

(−1) j

(
k

j

)(
j

n

)(
j

m

)
for 0 ≤ n ≤ m ≤ j ≤ k

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

n

)
for 0 ≤ n ≤ j ≤ k

(A.12)

Here

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

m

)
= k!

n!m!
k∑

j=n

(−1) j j !
(k − j)!( j − n)!( j − m)! (A.13)

In the first sum in (A.12), for which 0 ≤ m ≤ n ≤ j , we set j ′ = j − n, from which

k∑

j=n

(−1) j j !
(k − j)!( j − n)!( j − m)! =

k−n∑

j ′=0

(−1) j ′+n ( j ′ + n)!
(k − n − j ′)!( j ′ + n − m)! j ′!

= (−1)n n!
(n − m)!(k − n)!

k−n∑

j ′=0

(−k + n) j ′(n + 1) j ′
j ′!(n + 1 − m) j ′

(A.14)

where we have used
1

(N − j)! = (−1) j (−N ) j

N ! (A.15)

and

(N + j)! = �(N + 1 + j) = (N + 1) j N ! (A.16)
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We thus have, for 0 ≤ m ≤ n ≤ k,

k∑

j=n

(−1) j
(

k

j

)(
j

n

)(
j

m

)
= (−1)n k!

m!(n − m)!(k − n)! 2F1(−k + n, n + 1; n + 1 − m; 1)

(A.17)
The well-known expression for the hypergeometric function with unit argument,

F(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
(A.18)

is generally given with the condition Re(c − a − b) > 0. For the hypergeometric
function directly above we have c − a − b = k − n − m which might be a negative
integer or zero, inwhich case the expression in (A.18) is ill-defined.However, analytic
continuation of the integer values of the parameters to the complex plane make each
gamma function well-behaved. Thus, since the hypergeometric polynomial is well-
defined, a limit to integer arguments should exist. We thus let m be given a small
imaginary component. Then, with p = k − n,

�((k − n) − m) = (p − 1 − m)(p − 2 − m) · · · (p − p − m)�(−m) (A.19)

is well-defined, and so is

F(−k + n, n + 1; n + 1 − m; 1) = �(n − m + 1)

�(k − m + 1)
(−m)(−m + 1) · · · (−m + p − 1)

= �(n − m + 1)

�(k − m + 1)
(−m)p

= (n − m)!
(k − m)! (−m)k−n (A.20)

Using (A.15) we then have, for 0 ≤ m ≤ n ≤ k,

F(−k + n, n + 1; n + 1 − m; 1) = (−1)k−n(n − m)!m!
(k − m)!(m + n − k)! (A.21)

and from (A.17) and (A.21)

k∑

j=n

(−1) j

(
k

j

)(
j

n

)(
j

m

)
= (−1)kk!

(k − n)!(k − m)!(n + m − k)! (A.22)

Noting that the right-hand side of this equation is symmetric in n and m, it follows
that the remaining sums in (A.11) give identical expressions. We thus have
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�k(unvn) = k!
k∑

n=0

n∑

m=0

�nun�
mvn

(k − n)!(k − m)!(n + m − k)!

+ k!
k∑

m=0

m∑

n=0

�nun�
mvn

(k − n)!(k − m)!(n + m − k)!

− k!
k∑

n=0

�nun�
nvn

(k − n)!(k − n)!(2n − k)! (A.23)

These three sums cover the entire region 0 ≤ m ≤ k, 0 ≤ n ≤ k, so that we may
finally write

�k(unvn) = k!
k∑

n=0

k∑

m=0

�nun�
mvn

(k − n)!(k − m)!(n + m − k)! (A.24)

in which it is understood that terms vanish when k > n + m. Alternatively, we may
write

�k(unvn) = k!
k∑

n=0

k∑

m=0

�k−nun�
k−mvn

n!m!(k − n − m)! (A.25)

in which terms vanish when k < n + m.



Appendix B
Notation

Throughout this work we encounter matrices of the form

∣∣∣∣∣∣∣∣∣∣∣∣

u1 · · · u j−1 0 u j+1 · · · un

u(1)
1 · · · u(1)

j−1 0 u(1)
j+1 · · · u(1)

n
...

...
...

...
...

...
...

u(n−2)
1 · · · u(n−2)

j−1 0 u(n−2)
j+1 · · · u(n−2)

n

u(n−1)
1 · · · u(n−1)

j−1 gn u(n−1)
j+1 · · · u(n−1)

n

∣∣∣∣∣∣∣∣∣∣∣∣

(B.1)

in which the j th column is distinguished, either by having elements which differ
from those in the other columns or by being omitted. As written in the above matrix,
the meaning is clear for j = 2, 3, . . . n − 1, but not for j = 1 or j = n. To clarify
the intent, which is that the j th column is replaced by something else (or omitted),
we give the above matrix for j = 1:

∣∣∣∣∣∣∣∣∣∣∣

0 u2 · · · un

0 u(1)
2 · · · u(1)

n
...

...
...

0 u(n−2)
2 · · · u(n−2)

n

gn u(n−1)
2 · · · u(n−1)

n

∣∣∣∣∣∣∣∣∣∣∣

(B.2)

and for j = n: ∣∣∣∣∣∣∣∣∣∣∣

u1 · · · un−1 0
u(1)
1 · · · u(1)

n−1 0
...

...
...

u(n−2)
1 · · · u(n−2)

n−1 0
u(n−1)
1 · · · u(n−1)

n−1 gn

∣∣∣∣∣∣∣∣∣∣∣

(B.3)
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For an example in which the j th column is to be omitted, we have the (n − 1) ×
(n − 1) determinant

∣∣∣∣∣∣∣∣∣

u1 · · · u j−1 u j+1 · · · un

u(1)
1 · · · u(1)

j−1 u(1)
j+1 · · · u(1)

n
...

...
...

...
...

...

u(n−2)
1 · · · u(n−2)

j−1 u(n−2)
j+1 · · · u(n−2)

n

∣∣∣∣∣∣∣∣∣

(B.4)

For j = 1 this is ∣∣∣∣∣∣∣∣∣

u2 · · · un

u(1)
2 · · · u(1)

n
...

...
...

u(n−2)
2 · · · u(n−2)

n

∣∣∣∣∣∣∣∣∣

(B.5)

and for j = n we have ∣∣∣∣∣∣∣∣∣

u1 · · · un−1

u(1)
1 · · · u(1)

n−1
...

...
...

u(n−2)
1 · · · u(n−2)

n−1

∣∣∣∣∣∣∣∣∣

(B.6)



Appendix C
Wronskian Determinant

The Wronskian determinant for the nth order homogeneous linear differential equa-
tion given in (2.1) is defined by the determinant

W(x) =

∣∣∣∣∣∣∣∣∣

u1(x) u2(x) . . . un(x)

u(1)
1 (x) u(1)

2 (x) . . . u(1)
n (x)

...
...

. . .
...

u(n−1)
1 (x) u(n−1)

2 (x) . . . u(n−1)
n (x)

∣∣∣∣∣∣∣∣∣

(C.1)

where uk(x), k = 1, 2, . . . n, are the n linearly independent solutions of (2.1).
The Wronskian determinant obeys the simple first order equation

W′(x) = −an−1(x)

an(x)
W(x) (C.2)

from which, on integrating, we have

W(x) = W(x0) exp

(
−

∫ x

x0

an−1(x ′)
an(x ′)

dx ′
)

, (C.3)

known as Abel’s theorem.
A variety of derivations of the first order equation for the Wronskian, Eq. (C.2),

as well as its integral form, Eq. (C.3), known as Abel’s identity, can be found in the
literature.1 We have chosen one that provides aswell a derivation of the first derivative
of a determinant of any order.2 It starts with Leibnitz’s formula for the expansion of
an n × n determinant, expressed as the sum of n! products of its elements. For the
determinant

1See, e.g., Hartman [20].
2A derivation of the expression for the nth derivative of a j × j determinant has been given by
Christiano and Hall, [9].
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A(x) =

∣∣∣∣∣∣∣∣∣

a11(x) a12(x) . . . a1n(x)

a21(x) a22(x) . . . a2n(x)
...

...
. . .

...

an1(x) an2(x) . . . ann(x)

∣∣∣∣∣∣∣∣∣

(C.4)

the Leibnitz formula is

A =
∑

σ∈Sn

sgn(σ)

n∏

i=1

aiσ(i) (C.5)

Here Sn is the set of all permutations of the integers {1, 2, . . . n}, the sum
∑

σ∈Sn

is over all permutations σ, and sgn(σ) is +1 for even permutations σ, −1 for
odd permutations. In aiσ(i), the subscript σ(i) is the element in position i in the
permutation σ.

Taking the first derivative of A, we have

d

dx
A =

∑

σ∈Sn

sgn(σ)

n∑

k=1

a′
kσ(k)

n∏

i=1
i �=k

aiσ(i)

=
n∑

k=1

∑

σ∈Sn

sgn(σ)

n∏

i=1
i �=k

a′
kσ(k)aiσ(i) (C.6)

The derivative d
dx A is thus the sum of n determinants, each obtained by replacing

one row in A with the derivative of the elements of that row, leaving all other rows
unchanged:

d

dx
A(x) =

n∑

k=1

∣∣∣∣∣∣∣∣∣∣∣∣

a11(x) a12(x) . . . a1n(x)
...

...
. . .

...

a′
k1(x) a′

k2(x) . . . a′
kn(x)

...
...

. . .
...

an1(x) an2(x) . . . ann(x)

∣∣∣∣∣∣∣∣∣∣∣∣

(C.7)

Applying Eq. (C.7) for the derivative of a determinant to the Wronskian, Eq. (C.1),
we see that the terms in (C.7) for k = 1, 2, . . . , n − 1 vanish since in each of these
terms the rows k and k + 1 are identical.3 We are thus left with the term for which
k = n, giving

3We use here the property of determinants that if two or more rows (or columns) are identical, then
the value of the determinant is zero.
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W′(x) =

∣∣∣∣∣∣∣∣∣∣∣

u1(x) u2(x) . . . un(x)

u(1)
1 (x) u(1)

2 (x) . . . u(1)
n (x)

...
...

. . .
...

u(n−2)
1 (x) u(n−2)

2 (x) . . . u(n−2)
n (x)

u(n)
1 (x) u(n)

2 (x) . . . u(n)
n (x)

∣∣∣∣∣∣∣∣∣∣∣

(C.8)

From the differential equation, Eq. (2.1), obeyed by each of the functions ui (x),∑n
i=0 ai (x)u(i)

k (x) = 0, k = 1, 2, . . . , n, we can express each of the terms in the
last row of (C.8) by

u(n)
k (x) = − 1

an(x)

n−1∑

i=0

ai (x)u(i)
k (x). (C.9)

Next, multiplying each of the rows corresponding to i = 0, 1, . . . , n − 2 in (C.9) by
ai (x) and adding them to the last row in (C.8) then cancels all but the term in (C.9)
for which i = n − 1. The terms in the last row are then −(ai (x)/an(x))u(n−1)

k (x),
thus giving the first order differential equation for the Wronskian, Eq. (C.2).4

4Here we have used two other properties of determinants: (1), if one adds to any one row (or column)
a linear combination of all other rows (or columns), then the value of a determinant is unchanged,
and (2), multiplication of each element in any row (or column) by the same constant multiplies the
determinant by that constant.
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Appendix D
Casoratian Determinant

The Casoratian determinant for the N th order homogeneous linear difference equa-
tion given in (2.4), analogous to the Wronskian for differential equations, is defined
by the determinant

C(n) =

∣∣∣∣∣∣∣∣∣

u1(n) u2(n) . . . uN (n)

u1(n + 1) u2(n + 1) . . . uN (n + 1)
...

...
. . .

...

u1(n + N − 1) u2(n + N − 1) . . . uN (n + N − 1)

∣∣∣∣∣∣∣∣∣

(D.1)

where uk(n), k = 1, 2, . . . N , are the N linearly independent solutions of (2.4).
The Casoratian obeys the simple first order equation

C(n + 1) = (−1)N p0(n)

pN (n)
C(n) (D.2)

and by iteration we obtain Abel’s theorem

C(n) = (−1)N (n−n0)C(n0)

n−1∏

j=n0

p0( j)

pN ( j)
(D.3)

From (D.1) we have

C(n + 1) =

∣∣∣∣∣∣∣∣∣∣∣

u1(n + 1) u2(n + 1) . . . uN (n + 1)
u1(n + 2) u2(n + 2) . . . uN (n + 2)

...
...

. . .
...

u1(n + N − 1) u2(n + N − 1) . . . uN (n + N − 1)
u1(n + N ) u2(n + N ) . . . uN (n + N )

∣∣∣∣∣∣∣∣∣∣∣

(D.4)
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From the differential equation, Eq. (2.4), obeyed by each of the functions uk(n),∑N
i=0 pi (n)uk(n + i) = 0, k = 1, 2, . . . , N , we can express each of the terms in the

last row of (D.4) by

uk(n + N ) = − 1

pN (n)

N−1∑

i=0

pi (n)uk(n + i). (D.5)

Next, multiplying each of the rows corresponding to i = 1, 2, . . . , N − 1 in (D.5)
by pi (n) and adding them to the last row in (D.4) then cancels in (D.5) all but the
term for which i = 0. The terms in the last row are then −(p0(n)/pN (n))uk(n). We
now successively interchange the last row with the row above it, moving it finally
to the position of first row. This involves N − 1 interchanges, each of which intro-
duces a factor of −1.5 The determinant (D.4) is then (−1)N p0(n)/pN (n) times the
determinant (D.1), thus giving the first order difference equation for the Casoratian,
Eq. (D.2).

5In addition to the properties of determinants cited in the footnotes in the appendix on theWronskian,
we have used the property that if two adjacent rows (or columns) are interchanged, the determinant
is multiplied by −1.
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Appendix E
Cramer’s Rule

Cramer’s rule is an explicit formula for the solution of a system of n linear equations
for n unknowns:

a11x1 + a12x2 + a13x3 + · · · + a1n xn = b1
a21x1 + a22x2 + a23x3 + · · · + a2n xn = b2

...
...

an1x1 + an2x2 + an3x3 + · · · + ann xn = bn

(E.1)

Expressed as a matrix equation, we have

Ax = b (E.2)

where

A =

⎡

⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥⎥⎥⎦ (E.3)

x = (x1, x2, . . . , xn)
T (E.4)

and
b = (b1, b2, . . . , bn)

T (E.5)

Cramer’s rule expresses the solution, x = (x1, x2, . . . , xn)
T, in terms of the deter-

minants of the square coefficient matrixA and of thematricesAi formed by replacing
the i th column of A by the column vector b; it is valid and gives a unique solution
provided det(A) �= 0:
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xi = det(Ai )

det(A)
i = 1, 2, . . . , n (E.6)

A simple proof of Cramer’s rule follows from two properties of determinants:
(1) that multiplication of each element in any row (or column) by the same constant
multiplies the determinant by that constant, and (2) that adding a constant times
any row (or column) to a given row (or column) leaves the value of the determinant
unchanged. We illustrate this here for the case of a 3 by 3 matrix and derive the
expression for the first unknown, x1: Here |A| is the determinant of a 3 by 3 matrix:

|A| =
∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
(E.7)

From the first property we have

x1 |A| =
∣∣∣∣∣∣

a11x1 a12 a13

a21x1 a22 a23

a31x1 a32 a33

∣∣∣∣∣∣
(E.8)

and from the second property

x1 |A| =
∣∣∣∣∣∣

a11x1 + a12x2 + a13x3 a12 a13

a21x1 + a22x2 + a23x3 a22 a23

a31x1 + a32x2 + a33x3 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣∣∣

b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣
= |A1| (E.9)



Appendix F
Green’s Function and the Superposition
Principle

In Chap.6 on Green’s function we considered a differential operator L and boundary
conditions Bk , operating on a function y(x). Both the differential operator and the
boundary conditions are linear operators, fromwhichwe have the superposition prin-
ciple, which simplifies greatly the solution of the differential equation, particularly
in the case of general boundary conditions. Although this principle applies equally
to the case of an nth order differential equation, we illustrate it here for a second
order differential equation.

We consider a function y1(x) satisfying the inhomogeneous equation Ly1(x) =
f1(x) and boundary conditions B1y1 = γ11 and B2y1 = γ12, and a second function
y2(x) satisfying the inhomogeneous equation Ly2(x) = f2(x) and boundary con-
ditions B1y2 = γ21 and B2y2 = γ22, with the same differential operator L . For the
second order equation in which the function y(x) is considered over the interval
a ≤ x ≤ b the general boundary conditions B1 and B2 are of the form

B1y = α11y(a) + α12y′(a) + β11y(b) + β12y′(b) = γ1

B2y = α21y(a) + α22y′(a) + β21y(b) + β22y′(b) = γ2
(F.1)

in which α jk and β jk are given constants. Since the differential operator and the
boundary conditions are linear, we can write L(c1y1 + c2y2) = c1 f1 + c2 f2 and
B1(c1y1 + c2y2) = c1γ11 + c2γ12 and B2(c1y1 + c2y2) = c1γ21 + c2γ22, where c1
and c2 are constants. This leads directly to the question of the uniqueness of the solu-
tion of the inhomogeneous equation: If we consider two solutions, y1 and y2, of the
equation Ly = f with identical boundary conditions: B1y1 = γ1, B2y1 = γ2, and
B1y2 = γ1, B2y2 = γ2, then with c1 = −1 and c2 = 1 we obtain the homogeneous
equation L(y2 − y1) = 0 and homogeneous boundary conditions B1(y2 − y1) = 0
and B2(y2 − y1) = 0. Written more simply, with Y = y2 − y1 we have LY = 0 and
B1Y = 0, B2Y = 0.Thus if LY = 0has only the trivial solutionY ≡ 0 then y1 ≡ y2,
that is, there is at most one unique solution to the equation Ly = f with the boundary
conditions B1y = γ1 and B2y = γ2. We derive this solution in Chap.6 on Green’s
function. On the other hand, if Y (x) has a non-trivial solution then there is either no
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142 Appendix F: Green’s Function and the Superposition Principle

solution to the inhomogeneous equation Ly = f or there are many solutions. We
will look into this situation after considering the condition which determines whether
there is only the trivial solution Y ≡ 0:

Any solution of the equation LY = 0 may be written as a sum of two linearly
independent solutions of this equation:

Y = c1u1 + c2u2

Applying the boundary conditions B1Y = B2Y = 0, we have

c1B1u1 + c2B1u2 = 0

c1B2u1 + c2B2u2 = 0

Therefore, if the determinant

� =
∣∣∣∣

B1u1 B1u2

B2u1 B2u2

∣∣∣∣ �= 0 (F.2)

then c1 = c2 = 0 and there is only the trivial solution Y ≡ 0. The condition � �= 0
is illustrated if we choose u1(x) and u2(x) to be linearly independent solutions of
LY = 0 such that B1u1 = B2u2 = 0. This can be done if we write u1 and u2 in terms
of two arbitrary linearly independent solutions v1 and v2 of LY = 0: Defining u1 and
u2 in terms of v1 and v2 by

u1 = (B1v2)v1 − (B1v1)v2
u2 = (B2v2)v1 − (B2v1)v2

(F.3)

we then have B1u1 = B2u2 = 0 and B1u2 = −B2u1, from which� = (B1u2)
2 ≥ 0.

As an example which shows when there is one solution (� �= 0) and when there
is either no solution or many solutions (� = 0), we consider the equation y′′(x) +
λ2y(x) = c (where c is a constant), with the boundary conditions B1y = y(0) = 0
and B2y = y(π) = 0. Referring to (F.1), this impliesα11 = 1, α12 = β11 = β12 = 0
and β21 = 1, α21 = α22 = β22 = 0. If we choose, as solutions of the homogeneous
equation y′′(x) + λ2y(x) = 0, the two linearly independent functions

u1(x) = sin λx

u2(x) = cosλπ sin λx − sin λπ cosλx
(F.4)

we then have B1u1 = u1(0) = 0, B2u2 = u2(π) = 0 and B2u1 = sin λπ, B1u2 =
− sin λπ, fromwhich, from (F.2),� = sin2 λπ. Thus if λ �= 1, 2, 3, . . . , then� > 0
and there is only the trivial solution to y′′(x) + λ2y(x) = 0with boundary conditions
y(0) = y(π) = 0. The inhomogeneous equation y′′(x) + λ2y(x) = c then has the
unique solution
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y(x) = c

λ2

[
(1 − cosλx) − (1 − cosλπ)

sin λπ
sin λx

]
(F.5)

On the other hand, if λ = 1, 2, 3, . . . then � = 0 and the homogeneous equation
y′′(x) + λ2y(x) = 0 with homogeneous boundary conditions y(0) = y(π) = 0 has
the non-trivial solution y(x) = A sin λx ; (λ is an eigenvalue of this equation and
A sin λx is the corresponding eigenfunction). The inhomogeneous equation then has
the general solution

y(x) = c

λ2
[(1 − cosλx) + A sin λx] (F.6)

where A is an arbitrary constant. Then if λ = 1, 3, 5, . . . , the boundary condition
y(π) = 0 can not be satisfied, and there is no solution to the inhomogeneous equa-
tion. However, if λ = 2, 4, 6, . . . , the general solution just given to the inhomoge-
neous equation satisfies the boundary conditions with arbitrary A: we have many
solutions.

For the nth order equation, the extension of (F.2) giving the necessary and suf-
ficient condition in order that Ly = f with boundary conditions Bk y = 0 (k =
1, 2, . . . n) have a unique non-trivial solution is � �= 0 where

� =

∣∣∣∣∣∣∣∣∣

B1u1 B1u2 · · · B1un

B2u1 B2u2 · · · B2un
...

...
...

...

Bnu1 Bnu2 · · · Bnun

∣∣∣∣∣∣∣∣∣

(F.7)

(See [33]).



Appendix G
Inverse Laplace Transforms and Inverse
Generating Functions

As discussed in Chap. 7 on generating functions, z-transforms and Laplace trans-
forms, the solution of linear differential and difference equations generally requires
the inverse of the derived generating function or Laplace transform. In this appendix
we derive the inverse of a few generating functions and Laplace transforms that are
of particular use in the solution of second order linear differential and difference
equations with linear coefficients.

(1) G(ω) = ∑∞
n=0 y(n)ωn = (a − ω)−α, in which we assume that α is not a neg-

ative integer or zero.
Writing

(a − ω)−α = a−α
(
1 − ω

a

)−α = a−α
∞∑

n=0

(α)n

n!
(ω

a

)n
(G.1)

we obtain the inverse of the generating function G(w) = (a − ω)−α, namely

y(n) = G−1G(ω) = a−α (α)n

ann! (G.2)

For the particular case in which α is a positive integer: α = m + 1, where m =
0, 1, 2, . . . , we have

1

(a − ω)m+1
=

∞∑

n=0

(n+m
m

)

an+m+1
ωn (G.3)

and hence

y(n) = G−1
{ 1

(a − ω)m+1

}
= 1

an+m+1

(
n + m

m

)
(G.4)

as given previously in Eq. (7.56).
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We consider next the generating function
(2) G(ω) = (a − ω)−α(b − ω)−β , in which we assume that neither α nor β is a

negative integer.
We assume further that neither α nor β is zero, and that a �= b, since any of these

choices returns us to the simpler generating function just considered. We now have

G(ω) = (a − ω)−α(b − ω)−β = a−αb−β
∞∑

l=0

(α)l

l!
(ω

a

)l ∞∑

m=0

(β)m

m!
(ω

b

)m
(G.5)

We then let n = l + m, from which

(a − ω)−α(b − ω)−β = a−αb−β
∞∑

n=0

ωn

bn

n∑

l=0

(α)l(β)n−l bl

l!(n − l)!al
(G.6)

or, alternatively,

(a − ω)−α(b − ω)−β = a−αb−β
∞∑

n=0

ωn

an

n∑

m=0

(β)m(α)n−m am

m!(n − m)!bm
(G.7)

Here, in (G.6) and (G.7), we write

1

(n − l)! = (−1)l(−n)l

n!
(β)n−l = (−1)l (β)n

(1 − β − n)l

(G.8)

and
1

(n − m)! = (−1)m(−n)m

n!
(α)n−m = (−1)m (α)n

(1 − α − n)m

(G.9)

respectively.
From (G.6) we then have

(a − ω)−α(b − ω)−β = a−αb−β
∞∑

n=0

(β)nωn

bnn!
n∑

l=0

(−n)l (α)l

l!(1 − β − n)l

(
b

a

)l

= a−αb−β
∞∑

n=0

(β)n

bnn! 2F1
(
−n,α; 1 − β − n; b

a

)
ωn (G.10)
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and from (G.7),

(a − ω)−α(b − ω)−β = a−αb−β
∞∑

n=0

(α)nωn

ann!
n∑

m=0

(−n)m(β)m

m!(1 − α − n)m

(a

b

)m

= a−αb−β
∞∑

n=0

(α)n

ann! 2F1
(−n, β; 1 − α − n; a

b

)
ωn (G.11)

The corresponding inverses of the generating function are

y(n) = G−1G(ω) = a−αb−β (β)n

bnn! 2F1
(−n,α; 1 − β − n; b

a

)
(G.12)

from (G.10), and

y(n) = G−1G(ω) = a−αb−β (α)n

ann! 2F1
(−n,β; 1 − α − n; a

b

)
(G.13)

from (G.11).
Here (G.12) is valid if either β �= integer or β = 2, 3, . . . , (i.e., a positive integer

>1), and α is arbitrary; (G.13) is valid if either α �= integer or α = 2, 3, . . . , (i.e., a
positive integer >1), and β is arbitrary. Thus for the following choices for α and β,
we may choose either (G.12) or (G.13), or both, as solutions.

α �= integer, β �= integer : (G.12) or (G.13).

α �= integer, β arbitary : (G.13).

β �= integer, α arbitary : (G.12).

α, β = 2, 3, . . . (i.e., both positive integers >1) : (G.12) or (G.13).

α = 1, β = 2, 3, . . . (i.e., a positive integer >1) : (G.12).

β = 1, α = 2, 3, . . . (i.e., a positive integer >1) : (G.13).
(G.14)

We consider next the Laplace transform
(3) F(s) = (s − α)−β .

From [13, Sect. 1.1 (5)],

∫ ∞

0
e−sx xβ−1 dx = �(β)s−β 	β > 0, (G.15)

so that
1

�(β)

∫ ∞

0
e−sx eαx xβ−1 dx = (s − α)−β (G.16)
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We thus have the inverse transform of F(s) = (s − α)−β , namely

L−1F(s) = 1

2πi

∫ γ+i∞

γ−i∞
esx

(s − α)β
ds = xβ−1

�(β)
eαx (G.17)

Next we consider the Laplace transform
(4) F(s) = (s − α1)

−β1(s − α2)
−β2 .

The inverse Laplace transform is

L−1F(s) = 1

2πi

∫ γ+i∞

γ−i∞
esx

(s − α1)β1(s − α2)β2
ds

= 1

2πi
eα1x

∫ γ+i∞

γ−i∞
esx s−β1(s − (α2 − α1)

−β2 ds

= 1

2πi
(α2 − α1)

−β1−β2+1eα1x
∫ γ+i∞

γ−i∞
e(α2−α1)xσσ−β1(σ − 1)−β2 dσ

= 1

2πi
(α2 − α1)

−β1−β2+1eα1x
∫ γ+i∞

γ−i∞
e(α2−α1)xσσ−β1−β2(1 − σ−1)−β2 dσ

(G.18)

From [13, Sect. 6.10 (6)],

∫ ∞

0
e−sx xc−1

1F1(a; c; x) dx = �(c)s−c(1 − s−1)−a 	 c > 0, 	 s > 1,

(G.19)
from which we have the inverse transform

1

2πi
�(c)

∫ γ+i∞

γ−i∞
esx s−c(1 − s−1)−a ds = xc−1

1F1(a; c; x) (G.20)

Thus,

L−1F(s) = 1

2πi

∫ γ+i∞

γ−i∞
esx

(s − α1)β1(s − α2)β2
ds

= xβ1+β2−1

�(β1 + β2)
eα1x

1F1(β2;β1 + β2; (α2 − α1)x)

= xβ1+β2−1

�(β1 + β2)
eα2x

1F1(β1;β1 + β2; (α1 − α2)x) (G.21)



Appendix H
Hypergeometric Function

In this appendix we give a few of the transformations of the hypergeometric function
2F1(a, b; c; z) which have been useful in the analysis presented in this work.

2F1(a, b; c; z) = 2F1(b, a; c; z) (H.1)

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c; z

z−1

)

= (1 − z)−b
2F1

(
c − a, b; c; z

z−1

)
(H.2)

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z) (H.3)

For (H.1) see [13, Sect. 2.1.2, p. 57]; for (H.2) and (H.3) see [13, Sect. 2.1.4, (22)
and (23), p. 64].

2F1(a, b; c; z) = eiπa �(c)�(b − c + 1)

�(a + b − c + 1)�(c − a)
z−a

2F1

(
a, a − c + 1; a + b − c + 1; 1 − 1

z

)

+ �(c)�(b − c + 1)

�(a)�(b − a + 1)
za−c(1 − z)c−a−b

2F1

(
1 − a, c − a; b − a + 1; 1

z

)

= eiπb �(c)�(a − c + 1)

�(a + b − c + 1)�(c − b)
z−b

2F1

(
b, b − c + 1; a + b − c + 1; 1 − 1

z

)

+ �(c)�(a − c + 1)

�(b)�(a − b + 1)
zb−c(1 − z)c−a−b

2F1

(
1 − b, c − b; a − b + 1; 1

z

)

(H.4)

For (H.4) see [40, Sect. 4, (26), p. 447] or [13, Sect. 2.9, (26), p. 106].
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Appendix I
Confluent Hypergeometric Functions

In this appendix we list the confluent hypergeometric functions which result from
different choices of integration path for the integrals given earlier in Eqs. (7.200)–
(7.203). Here, from (7.192)–(7.194), (7.199), and (7.206),

γi = ci

di
, β0 = γ0, β1 = γ0 − γ2, z = γ0 − 2γ1 + γ2

From (7.200), we have the integral

∫
sβ1−β0−x−1(1 − s)β0+x−1ezs ds =

∫
s−γ2−x−1(1 − s)γ0+x−1ezs ds

leading to the confluent hypergeometric function 1F1:

∫ 1

0
s−γ2−x−1(1 − s)γ0+x−1ezs ds = �(−γ2 − x)�(γ0 + x)

�(β1)
1F1(−γ2 − x; β1; z)

= �(−γ2 − x)�(γ0 + x)

�(β1)
ez

1F1(γ0 + x; β1;−z) (I.1)

∫ (1+)

0
s−γ2−x−1(1 − s)β0+x−1ezs ds = 2πi e(γ0+x−1)πi �(−γ2 − x)

�(1 − γ0 − x)�(β1)
1F1(−γ2 − x; β1; z)

= 2πi e(γ0+x−1)πi �(−γ2 − x)

�(1 − γ0 − x)�(β1)
ez

1F1(γ0 + x; β1; −z)

(I.2)

∫ (0+)

1
s−γ2−x−1(1 − s)γ0+x−1ezs ds = 2πi e(−γ2−x)πi �(γ0 + x)

�(γ2 + x + 1)�(β1)
1F1(−γ2 − x;β1; z)

= 2πi e(β1−β0−x)πi �(γ0 + x)

�(γ2 + x + 1)�(β1)
ez

1F1(γ0 + x; β1;−z)

(I.3)
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∫ (0+,1+,0−,1−)

α
s−(γ2+x+1)(1 − s)(γ0+x−1)ezs ds = 4π2 eβ1πi

1F1(−γ2 − x;β1; z)

�(γ2 + x + 1)�(1 − γ0 − x)�(β1)

= 4π2 eβ1πi ez
1F1(γ0 + x;β1;−z)

�(γ2 + x + 1)�(1 − γ0 − x)�(β1)
(I.4)

From (7.201), we have

∫ (0+,1+)

−∞
s−(2−β1)(1 − 1

s )β0+x−1ezs ds = 2πi z1−β1
1

�(2 − β1)
1F1(1 − γ0 − x; 2 − β1; z)

= 2πi z1−β1
1

�(2 − β1)
ez

1F1(γ2 + x + 1; 2 − β1;−z) (I.5)

Here, in each of the last five equations, the second confluent hypergeometric function
is obtained using the Kummer transformation ([36, Sect. 13.2(vii), Eq. 13.2.39]):

1F1(a; c; z) = ez
1F1(c − a; c;−z) (I.6)

From (7.202), we have, for the integral
∫

sβ1−β0−x−1(1 + s)β0+x−1e−zs ds leading
to confluent hypergeometric functions of the form U (a; c; z),

∫ ∞

0
sβ1−β0−x−1(1 + s)β0+x−1e−zs ds = �(−γ2 − x)U (−γ2 − x;β1; z)

= �(−γ2 − x)z1−β1U (1 − γ0 − x; 2 − β1; z)
(I.7)

∫ (0+)

∞
sβ1−β0−x−1(1 + s)β0+x−1e−zs ds = 2πi

e(−γ2−x)πi

�(γ2 + x + 1)
U (−γ2 − x;β1; z)

= 2πi
e(−γ2−x)πi

�(γ2 + x + 1)
z1−β1U (1 − γ0 − x; 2 − β1; z) (I.8)

and from (7.203), we have, for the integral
∫

sβ0+x−1(1 + s)β1−β0−x−1ezs ds,

∫ ∞
0

sβ0+x−1(1 + s)β1−β0−x−1ezs ds = �(γ0 + x)U (γ0 + x; β1;−z)

= �(γ0 + x)(−z)1−β1U (γ2 + x + 1; 2 − β1; −z)
(I.9)

∫ (0+)

∞
sβ0+x−1(1 + s)β1−β0−x−1ezs ds = 2πi

e(γ0+x)πi

�(1 − γ0 − x)
U (γ0 + x;β1; −z)

= 2πi
e(γ0+x)πi

�(1 − γ0 − x)
(−z)1−β1U (γ2 + x + 1; 2 − β1; −z)

(I.10)
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Here, in each of the last four equations, the second confluent hypergeometric function
is obtained using the Kummer transformation ([36, Sect. 13.2(vii), Eq. 13.2.40]):

U (a; c; z) = z1−cU (a − c + 1; 2 − c; z) (I.11)

In order to obtain a solution to the difference equation that satisfies arbitrary
initial conditions y(x0) and y(x0 + 1), we require two linearly independent solu-
tions of the difference equation, y1(x) and y2(x). We therefore wish to chose, from
among the solutions listed above, pairs of solutions which are linearly independent.
The particular pair of solutions chosen will depend on the value of the parame-
ters γ2 + x + 1 and γ0 + x − 1. It is important to note, however, that the recursion
defined by (7.205) fails if γ2 + x + 1 = 0 if we assume to have two independent
initial conditions, for example w(0) and w(1). The condition that the two solu-
tions to (7.205) be linearly independent is that their Casoratian, C(x), be non-zero:
C(x) = y1(x) y2(x + 1) − y1(x + 1) y2(x) �= 0. Noting that the Wronskian of the
various solutions that we are considering is relatively well-known, (see, e.g., [36,
Sect. 13.2(vi)]), we determine the Casoratian by expressing it in terms of the Wron-
skian by the use of raising and lowering operators; these relate the differential prop-
erties of the variable z in the solution to the discrete property of the parameter x .

From (I.1)–(I.10) we define the ten functions F1 − F5t of the form 1F1(a; c; z)
and the eight functions U1 − U4t of the form U (a; c; z), from which we obtain
linearly independent pairs of solutions of the difference equation (7.153) in which
d2
1 − 4d0d2 = 0, each pair being valid for given values of the variable z and the para-
meters γ0 + x and γ2 + x + 1, presented in detail in Table7.1. As noted previously,
in defining F1 − F5t andU1 − U4t we have neglected factors independent of x but
retain the gamma functions �(β1) and �(2 − β1) in the denominators; the functions
of the form 1F1(a; c; z)/�(c) then remain well-defined when the parameter c is zero
or a negative integer. We then have, from (I.1)–(I.10),

F1 = �(−γ2 − x)�(γ0 + x)

�(β1)
eiπx

1F1(−γ2 − x;β1; z) (I.12)

F1t = �(−γ2 − x)�(γ0 + x)

�(β1)
eiπx

1F1(γ0 + x;β1;−z) (I.13)

F2 = �(−γ2 − x)

�(1 − γ0 − x)�(β1)
1F1(−γ2 − x;β1; z) (I.14)

F2t = �(−γ2 − x)

�(1 − γ0 − x)�(β1)
1F1(γ0 + x;β1;−z) (I.15)

F3 = �(γ0 + x)

�(γ2 + x + 1)�(β1)
1F1(−γ2 − x;β1; z) (I.16)

F3t = �(γ0 + x)

�(γ2 + x + 1)�(β1)
1F1(γ0 + x;β1;−z) (I.17)

F4 = eiπx

�(γ2 + x + 1)�(1 − γ0 − x)

1F1(−γ2 − x;β1; z)

�(β1)
(I.18)
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F4t = eiπx

�(γ2 + x + 1)�(1 − γ0 − x)

1F1(γ0 + x;β1;−z)

�(β1)
(I.19)

F5 = 1F1(1 − γ0 − x; 2 − β1; z)

�(2 − β1)
(I.20)

F5t = 1F1(γ2 + x + 1; 2 − β1;−z)

�(2 − β1)
(I.21)

U1 = �(−γ2 − x)U (−γ2 − x;β1; z) (I.22)

U1t = �(−γ2 − x)U (1 − γ0 − x; 2 − β1; z) (I.23)

U2 = eiπx

�(γ2 + x + 1)
U (−γ2 − x;β1; z) (I.24)

U2t = eiπx

�(γ2 + x + 1)
U (1 − γ0 − x; 2 − β1; z) (I.25)

U3 = �(γ0 + x)U (γ0 + x;β1;−z) (I.26)

U3t = �(γ0 + x)U (γ2 + x + 1; 2 − β1;−z) (I.27)

U4 = eiπx

�(1 − γ0 − x)
U (γ0 + x;β1;−z) (I.28)

U4t = eiπx

�(1 − γ0 − x)
U (γ2 + x + 1; 2 − β1;−z) (I.29)



Appendix J
Solutions of the Second Kind

In this appendix we present two linearly independent solutions of the difference
equation given in (7.205), namely

(γ2 + x + 1) w(x + 1) − 2 (γ1 + x) w(x) + (γ0 + x − 1) w(x − 1) = 0, (J.1)

for the case in which γ2 + x + 1 and γ0 + x are positive integers, from which β1 ≡
γ0 − γ2 is an integer. Referring to Table7.1, we consider first the case in which
β1 �= 0,−1,−2, . . . (and hence β1 = 1, 2, 3, . . .). Then, for z ≡ γ0 − 2γ1 + γ2 < 0,
two linearly independent solutions are

U3 = �(γ0 + x)U (γ0 + x;β1;−z) (J.2)

and

F3t = �(γ0 + x)

�(γ2 + x + 1)�(β1)
1F1(γ0 + x;β1;−z) (J.3)

Now from [36, Sect. 13.2(i), Eq. 13.2.9], with β1 = n + 1, a = γ0 + x , and a − n =
γ2 + x + 1

U3 = �(γ0 + x)U (γ0 + x;β1;−z)

= (−1)n+1�(γ0 + x)

n!�(γ2 + x + 1)

∞∑

k=0

(γ0 + x)k(−z)k

(n + 1)kk!
{
ln(−z) + �(γ0 + x + k) − �(1 + k) − �(n + 1 + k)

}

+
n∑

k=1

(k − 1)!(1 + k − γ0 − x)n−k

(n − k)! (−z)−k

= (−1)n+1F3t ln(−z)

+ (−1)n+1�(γ0 + x)

n!�(γ2 + x + 1)

∞∑

k=0

(γ0 + x)k(−z)k

(n + 1)kk!
{
�(γ0 + x + k) − �(1 + k) − �(n + 1 + k)

}

+
n∑

k=1

(k − 1)!(1 + k − γ0 − x)n−k

(n − k)! (−z)−k (J.4)
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Here, since both U3 and F3t are solutions of the difference equation for w(x), the
remaining terms on the right hand side of the above equation also satisfy this equation,
and give a linearly independent solution to that equation.

Furthermore, these terms give a valid solution for both z < 0 and z > 0. Thus,
for β1 ≡ γ0 − γ2 = 1 + n = 1, 2, 3, . . . , two linearly independent solutions, valid
for all z, are F3t and

(−1)n+1�(γ0 + x)

n!�(γ2 + x + 1)

∞∑

k=0

(γ0 + x)k(−z)k

(n + 1)kk!
{
�(γ0 + x + k) − �(1 + k) − �(n + 1 + k)

}

+
n∑

k=1

(k − 1)!(1 + k − γ0 − x)n−k

(n − k)! (−z)−k (J.5)

The case in which β1 �= 2, 3, 4, . . . , (and hence β1 = 1, 0,−1,−2, . . .), may be
treated in similar fashion. For z < 0, two linearly independent solutions are

U3t = �(γ0 + x)U (γ2 + x + 1; 2 − β1;−z) (J.6)

and

F5t = 1F1(γ2 + x + 1; 2 − β1;−z)

�(2 − β1)
(J.7)

Again from [36, Sect. 13.2(i), Eq. 13.2.9], now with 2 − β1 = n + 1, a = γ2 + x +
1, and a − n = γ0 + x ,

U3t = �(γ0 + x)U (γ2 + x + 1; 2 − β1;−z)

= (−1)n+1

n!
∞∑

k=0

(γ2 + x + 1)k(−z)k

(n + 1)kk!
{
ln(−z) + �(γ2 + x + 1 + k) − �(1 + k) − �(n + 1 + k)

}

+ �(γ0 + x)

�(γ2 + x + 1)

n∑

k=1

(k − 1)!(k − γ2 − x)n−k

(n − k)! (−z)−k

= (−1)n+1F5t ln(−z)

+ (−1)n+1

n!
∞∑

k=0

(γ2 + x + 1)k(−z)k

(n + 1)kk!
{
�(γ2 + x + 1 + k) − �(1 + k) − �(n + 1 + k)

}

+ �(γ0 + x)

�(γ2 + x + 1)

n∑

k=1

(k − 1)!(k − γ2 − x)n−k

(n − k)! (−z)−k (J.8)

Here, since both U3t and F5t are solutions of the difference equation for w(x), the
remaining terms on the right hand side of the above equation also satisfy this equation,
and give a linearly independent solution to that equation. Furthermore, these terms
give a valid solution for both z < 0 and z > 0. Thus, for β1 ≡ γ0 − γ2 = 1 − n =
1, 0,−1,−2, . . . , two linearly independent solutions, valid for all z, are F5t and
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(−1)n+1

n!
∞∑

k=0

(γ2 + x + 1)k(−z)k

(n + 1)kk!
{
�(γ2 + x + 1 + k) − �(1 + k) − �(n + 1 + k)

}

+ �(γ0 + x)

�(γ2 + x + 1)

n∑

k=1

(k − 1)!(k − γ2 − x)n−k

(n − k)! (−z)−k (J.9)

An alternative approach which derives a second solution in the form of a polyno-
mial in x is given in [37]. For β1 �= 0,−1,−2, . . . ,wewrite β1 = n + 1 = 1, 2, . . . ;
γ2 + x = N = 0, 1, 2, . . . and choose F3 as the first solution to the difference equa-
tion, writing

F3 = �(γ0 + x)

�(γ2 + x + 1)�(β1)
1F1(−γ2 − x;β1; z)

= (N + n)!
n!N ! 1F1(−N ; n + 1; z) (J.10)

We note that the function given here is the associated Laguerre polynomial (see [36,
Sect. 13.6(v), Eq. 13.6.19 and Sect. 18.5(iii), Eq. 18.5.12]):

(N + n)!
n!N ! 1F1(−N ; n + 1; z) = L(n)

N (z). (J.11)

As shown in [34, Sect. 11, Eq. (4), p. 97], given a polynomial solution yn(z) to a
differential equation of the hypergeometric type,6 a solution of the second kind may
be obtained as an extended Cauchy-integral:

Qn(z) = 1

ρ(z)

∫ ∞

0

yn(s)ρ(s)

s − z
ds, (J.12)

where, for the confluent hypergeometric function 1F1(−N ; n + 1; z), satisfying
the differential equation zy′′(z) + (n + 1 − z)y′(z) + N y(z) = 0 considered here,
ρ(z) = zne−z is a solution of (zρ(z))′ = (n + 1 − z)ρ(z). This approach is devel-
oped in detail in [37], leading to a second linearly independent polynomial solution
in closed form which satisfies both the differential equation and the difference equa-
tion (7.205) in each of the parameters. From [37, Eq. (2.12)], we then have two lin-
early independent polynomial solutions of the difference equation (7.205), in which
γ2 + x = N ; n + 1 = β1 = γ0 − γ2 �= 0,−1,−2, . . . and z = γ0 − 2γ1 + γ2:

(N + n)!
n!N ! 1F1(−N ; n + 1; z) (J.13)

and

6I.e., σ(z)y′′(z) + τ (z)y′(z) + λy(z) = 0. See [34, Sects. 2, 3, pp. 6–14].

http://dx.doi.org/10.1007/978-3-319-29736-1_7
http://dx.doi.org/10.1007/978-3-319-29736-1_7
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(N + n)!
n!N !

N∑

k=0

n+k−1∑

m=0

(−N )k(n + k − 1 − m)!
(n + 1)k k! xm . (J.14)

For the case in which β1 �= 2, 3, . . . we write 2 − β1 = n + 1 = 1, 2, . . . ; γ0 +
x − 1 = N = 0, 1, 2, . . . and choose F5 as the first solution to the difference equa-
tion:

F5 = 1F1(1 − γ0 − x; 2 − β1; z)

�(2 − β1)

= 1F1(−N ; n + 1; z)

n! (J.15)

The second, linearly independent solution of (7.205), is then

1

n!
N∑

k=0

n+k−1∑

m=0

(−N )k(n + k − 1 − m)!
(n + 1)k k! xm . (J.16)

Our second polynomial solution enables us to define a linearly independent asso-
ciated Laguerre function of the second kind which satisfies the difference equations
for the confluent hypergeometric function in each of its two parameters in terms of
appropriately normalized polynomials. (See [37]).

http://dx.doi.org/10.1007/978-3-319-29736-1_7
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