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Preface

The velocity-dependent one-scale (VOS) model was born in the first year of my
Ph.D., in early 1995, building upon a previous model by Tom Kibble. In the
intervening years it became the canonical model for quantitative studies of the
evolution of defect networks, and underwent various important extensions. The
purpose of this book is to present a brief overview of the current state of the model.

A literature search will easily reveal several hundred papers (only a fraction of
which are my own) discussing many aspects of the VOS model, or directly using it
for various purposes. Reviewing, or even citing, all this literature would require a
much larger volume and I will not attempt to do so here. Instead, my goal is to
provide a unique entry point into the field, by discussing the basic results of the
model which the interested reader—perhaps a Masters or Ph.D. student—can learn
in a few weeks and use as a starting point for his or her further endeavors.

I thank my Ph.D. supervisor, Paul Shellard, for introducing me to a topic that I
still find exciting and challenging. I also thank the rest of my collaborators and my
students, for countless interesting discussions on the topic. A large fraction of the
numerical work necessary to calibrate this model would not have been possible
without the various generations of the COSMOS Shared Memory system at
DAMTP, University of Cambridge. At the time of writing, this equipment is
operated on behalf of the STFC DiRAC HPC Facility and funded by BIS National
E-infrastructure capital grant ST/J005673/1 and STFC grants ST/H008586/1,
ST/K00333X/1.

I am supported by an FCT Research Professorship (reference IF/00064/2012),
funded by FCT/MCTES (Portugal) and POPH/FSE (EC). This work is also an
outcome of project PTDC/FIS/111725/2009 (FCT, Portugal), and I also thank the
Galileo Galilei Institute for Theoretical Physics for the hospitality and the INFN for
partial support during its completion, and Springer’s editor (Angela Lahee) for her
flexibility with the agreed deadlines.

Porto, Portugal C.J.A.P. Martins
June 2016
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Chapter 1
Introduction to Defects

Abstract I provide an overview of the theoretical and observational motivations
underlying the development of analyticmodels for the evolution of topological defect
networks. This is briefly illustrated for the particular case of cosmic strings. I also
highlight links with the more challenging but potentially more interesting case of
cosmic superstrings.

1.1 Motivation

Topological defects (cosmic strings, monopoles, domain walls or others) necessarily
form at phase transitions in the early universe. This inevitability follows from the
KibbleMechanism. Put simply, it just stems from the fact that there is a cosmological
horizon (or in other words, that the speed of light is finite). The type of defects that
is formed, as well as their other specific characteristics, will depend on the details of
the phase transition, but in most cases the defects will be stable and long-lived. In that
case they may be present in the recent universe, as fossil relics of the higher-energy
physics. Understanding the evolution and consequences of these defect networks is
therefore an unavoidable part of any serious attempt to understand the universe as a
whole.

In the 1980 and 1990s, cosmic strings (and, to a lesser extent, other defects) were
mostly studied as a competitor to inflationary models in providing the seeds for the
formation of the cosmic structures we observe [1]. Cosmic microwave background
experiments have now shown that the defect contribution for structure formation
must be subdominant (current bounds are at the few percent level). Nevertheless,
the fact that they unavoidably form in theoretically preferred scenarios (including
models with extra dimensions such as brane inflation) means that they remain an
active topic of work. For example, one of the Planck 2013 cosmology papers is
dedicated to constraining them [2].

The observational evidence for the accelerating universe shows that our canonical
models of cosmology and particle physics are at least incomplete (and possibly
incorrect) and that there is new physics waiting to be discovered. After a quest of
several decades we now know, thanks to the LHC results, that fundamental scalar
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fields are among Nature’s building blocks. A pressing follow-up question is whether
this Higgs-Kibble field has a cosmological role or, more generally, if there are further
cosmological scalar fields. Cosmic defects are one of the possible manifestations of
such fields. Thus nowadays the search for cosmic defects is part of a wider search
for this new physics. Currently the cosmic microwave background provides the most
robust constraints, but in the coming years other probes (including ground and space-
based gravitational wave detectors, pulsar timing arrays and possibly high-resolution
spectroscopy) should provide much tighter constraints.

Quite apart from this specific motivation, the study of their formation and evo-
lution is interesting since it can span an extremely wide range of energy, length
and time scales, and yet they are always described by the same underlying physical
processes. When studying defect evolution in the early universe one is looking at
microscopically small defects, which can nevertheless play an important role on cos-
mological scales. Examples of other contexts where defects have been studied (and
seen) include superconductors, superfluids, liquid crystals, and even tafoni, which
can sometimes be seen on the seaside and have also been identified on Mars.

However, in order to make robust predictions of the behavior of these objects
that may be accurately compared with the ever-improving observational datasets,
one must have detailed models of their evolution. As they are highly non-linear
objects, there are two approaches to this: 3D field theory numerical simulations
(alternatively, for cosmic strings, 1D Goto-Nambu simulations are also used) or
analytic models. The velocity-dependent one-scale (VOS) model is one example of
the latter. I developed this for cosmic strings 20years ago (during my PhD) [3, 4] and
it has been successively extended for various other defects and contexts. It remains
today the only fully quantitative model of defect network evolution and it is the
canonical model in the field (and as such it has been used, for example, in the Planck
papers).

Broadly speaking, the ethos of analytic models of cosmic defect networks
is akin to starting from statistical physics and turning it into thermodynam-
ics. This approach was first sketched by Kibble [5], but only formulated in a
systematic an fully quantitative way with the emergence of the VOS model.
Specifically, one starts out from the knowledge of the microphysics of the
defects (given, for the case of strings, by the well-known Goto-Nambu action)
an uses this to obtain evolution equations for relevant macroscopic quantities,
suitably averaged over the network. The two main macroscopic quantities of
interest are a characteristic lengthscale (the inter-defect separation, the typical
curvature radius, or the network’s correlation length) and an averaged (root-
mean-square) velocity.

The price for doing this is that in the averaging one most introduce phenomeno-
logical parameters whose values cannot be calculated ab initio, but must be found by
comparing with numerical simulations—thus providing a calibration for the model.
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Since the number of free parameters is small, the model is predictive: once the phe-
nomenological parameters are fixed the model will predict what the outcome of
simulations with other initial conditions should be. The VOS model has been exten-
sively tested with the world’s highest-resolution field theory defect simulations of
cosmic strings an domain walls (and to a lesser extent, also of other defects) and thus
far a very good agreement has always been found.

The two macroscopic quantities mentioned above are the bare minimum required
in order to have a quantitative defect evolution model. Naturally, models with further
dynamical variables can be built, and this has also been done in order to describe
defects with additional degrees of freedom. This includes scenarios like defects with
charges and/or currents, models with additional spacetime dimensions, models with
a hierarchy of different tensions, or hybrid networks with defects of different types.
The model complexity will of course increase, but the same general principles and
formalism will still apply.

The ‘classic’ book on cosmic defects is Cosmic Strings and Other Topological
Defects [6], which was written before the VOS model was developed. This book
aims to complement it by providing a focused summary of the work done on the
VOS model so far, explaining its overall physical content and describing the various
scenarios for which it has been implemented and the predictions of the model in each
such scenario.

1.2 An Example: Cosmic Strings

Let us start with a very brief description of a cosmic string [7]. The simplest field the-
ory model that produces them has a single complex scalar fieldΦ. Let us assume that
theHamiltonian determining the field dynamics is invariant under an axial symmetry,
Φ → Φeiθ . For example, take the potential energy

∫
d3xV =

∫
d3x

λ

2

(|Φ|2 − η2
)2

(1.1)

where λ is a dimensionless coupling constant and η is an energy scale related to the
temperature of the symmetry breaking transition. This has a set of degenerate ground
states, the circle |Φ| = η, known as the vacuum manifold.

At high temperature the field fluctuations are large enough to make the central
peak around |Φ| = 0 irrelevant, and the effective potential is symmetric and has a
minimum there. As the temperature falls the energy will eventually be too low to
permit fluctuations over the peak, atwhich point the fieldwill settle towards one of the
ground states. This random choice of minimum breaks the original axial symmetry.
This is the case, for instance, in superfluid 4He.

When a large system goes through a phase transition like this, each part of it has to
make this random choice, which need not be the same everywhere. Theminimization
of gradient terms in the energy of the system tends to make it evolve towards increas-
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ingly more uniform configurations, but causality imposes that this evolution can only
happen at a limited rate. As a result one expects many domains, each with an uncor-
related choice of ground state. Where these domains meet there is some probability
of forming linear defects—cosmic strings—around which the phase angle varies by
2π (or possibly multiples thereof). This is the Kibble mechanism [8]. Notice that the
field vanishes at the string’s core, so there is trapped potential energy (as well as gra-
dient energy). These strings are known as global strings because the transformation
Φ → Φeiθ is independent of position.

The next step is to consider charged scalar fields interacting with an electromag-
netic field. The best known example of a symmetry–breaking transition of this kind
is the condensation of Cooper pairs in a superconductor, that has the effect of making
photons massive below the critical temperature (in this case the axial symmetry is of
the “local” of “gauge” type). The cosmic strings that result are magnetic flux tubes
that do not dissipate because the magnetic field is massive outside the string core.

This type of vortex was first discussed by Abrikosov [9] in the context of type II
superconductors. Nielsen and Olesen [10] generalized these ideas to the relativistic
quantum field theory models used in particle physics, in particular the Abelian Higgs
model which is a relativistic version of the Landau–Ginzburg model of supercon-
ductivity, governed by the action

S =
∫

d4x

[
|∂μΦ − iqAμΦ|2 − 1

4
FμνF

μν − λ

2
(|Φ|2 − η2)2

]
. (1.2)

Here Aμ is the gauge field and Φ is a complex scalar of charge q. The second term
is the usual Maxwell action for the electromagnetic field, Fμν = ∂μAν − ∂νAμ. The
energy per unit length of a straight, static string lying on the z-axis is

E =
∫

d2x

[
|∂xΦ − iqAxΦ|2 + |∂yΦ − iqAyΦ|2 + 1

2
B2 + λ

2
(|Φ|2 − η2)2

]
(1.3)

where B = ∂xAy − ∂yAx is the z-component of the magnetic field. Finite energy
configurations must have |Φ| = η (the vacuum manifold is still a circle) but the
phase of Φ is undetermined provided the gradient terms and the magnetic field go to
zero fast enough. This condition allows for finite energy solutionsAt = Ar = Az = 0,
Φ(r, θ) ∼ ηeinθ , Aθ (r, θ) ∼ n/(qr), as r → ∞, in which the total magnetic flux in
the plane perpendicular to the string is quantized,

∫
d2xB =

∮
A · dl = 2πn

q

n is thewinding number of the string. If the constantsλ and q are such that fluctuations
in the scalar field Φ and the gauge field Aμ have equal masses, it is possible to show
that the string saturates an inequality of the form

Energy per unit length ≥ constant x |magnetic flux|
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known as the Bogomolnyi bound [11]. In this case, parallel strings at close range
exert no force on each other and there are static multivortex solutions [12]. If the
mass of the scalar excitations is lower (higher) than that of the gauge excitations,
parallel strings will attract (repel).

More complicated particle physics models—in particular those describing the
early universe—involve gauge symmetries that generalize the electromagnetic inter-
action, mediated by photons, to more complicated interactions such as the elec-
troweak or Grand Unified interactions. The messenger fields that play the role of
the photons may be massless in the early universe and become massive following a
symmetry-breaking transition, and cosmic strings carry the magnetic flux of these
other massive gauge fields (not the electromagnetic field).

From a cosmological point of view, the gauge field has the important effect of
making the gradient terms decay exponentially fast away from the string so the energy
per unit length of these strings is finite. Abrikosov–Nielsen–Olesen strings have no
long-range interactions, so their evolution is dominated by their tension and is well
described in the thin string or Goto-Nambu approximation.

Field continuity implies that a string of this kind cannot come to an end: it must
form a closed loop or extend to infinity, and it cannot break into segments. For
this reason, strings, once formed, are hard to eliminate. In the absence of energy
loss mechanisms, the strings would eventually dominate the energy density of the
universe. On the other hand, the strings can decay into radiation, they may cross and
exchange partners, and they may also cross themselves, forming a closed loop which
may shrink and eventually disappear. The outcome of these competing mechanisms
is that the network is expected to reach a scale-invariant (or scaling) regime, where
the network’s characteristic length scale is proportional to the size of the horizon.

If a random tangle of strings was formed in the early universe, there would always
be some strings longer than the horizon, so a few would remain even today. Because
cosmological phase transitions typically happen in the very early universe, cosmic
strings contain a lot of trapped energy, and can therefore significantly perturb the
matter distribution. To first order there is a single parameter quantifying the effects
of strings, their energy per unit length. In the simple relativistic strings, the mass
per unit length and the string tension are equal, because of Lorentz invariance under
boosts along the direction of the string. Cosmic strings are exceedingly thin, but very
massive. Typically, for strings produced around the epoch of grand unification, the
mass per unit length would be of orderμ ∼ 1021kg m−1 and their thickness 10−24 m.
The gravitational effects of strings are effectively governed by the dimensionless
parameter Gμ, where G is Newton’s constant. For GUT-scale strings, this is 10−6,
while for electroweak-scale strings it is 10−34.
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1.3 Some Observational Consequences

The spacetime around a straight cosmic string is flat. A string lying along the z-
direction has an equation of state pz = −ρ, px = py = 0 and therefore there is
no source term in the relativistic version of the Poisson equation for the Newtonian
gravitational potential

∇2φ = 0 . (1.4)

Nevertheless, a moving string has dramatic effects on nearby matter or propagating
microwave background photons. The spacetime metric about such a straight static
string has the simple form [13]

ds2 = dt2 − dz2 − dr2 − r2dθ2 , (1.5)

which looks like Minkowski space in cylindrical coordinates, except for the fact that
the azimuthal coordinate θ has a restricted range 0 ≤ θ ≤ 2π(1 − 4Gμ). That is,
the spacetime is actually conical with a global deficit angle

α = 8πGμ , (1.6)

where an angular wedge of width α is removed and the remaining edges identified.
This deficit angle implies that the string acts as a cylindrical gravitational lens,

creating double images of sources behind the string (such as distant galaxies), with a
typical angular separation δθ of order α and no distortion [14]. A long string would
yield a distinctive lensing pattern. We should expect to see an approximately linear
array of lensed pairs, each separated in the transverse direction. In each lensing event
the two images would be identical and have essentially the same magnitude. This is
a very unusual signature, because most ordinary gravitational lenses produce an odd
number of images of substantially different magnitudes. A number of string lensing
event candidates have been discussed in the past, but no confirmed one is currently
known.

The above simple picture is complicated by the fact that cosmic strings are not
generally either straight or static. Whenever strings exchange partners kinks are cre-
ated that straighten out only very slowly, so we expect a lot of small-scale structure
on the strings. Viewed from a large scale, the effective tension and energy per unit
length will no longer be equal. Since the total length of a wiggly string between
two points is greater, it will have a larger effective energy per unit length, U, while
the effective tension T , the average longitudinal component of the tension force, is
reduced, so T < μ < U. This means that there is a non-zero gravitational acceler-
ation towards the string, proportional to U − T . Moreover, the strings acquire large
velocities, generally a significant fraction of the speed of light, which introduces
further corrections to the deficit angle.

Another effect is the formation of over-dense wakes behind a moving cosmic
string [15]. When a string passes between two objects, these are accelerated towards
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each other to a velocity
u⊥ = 4πGμv , (1.7)

where v is the string velocity. Matter therefore collides in a sheet-like structure, leav-
ing a wake behind the moving string. This was the basic mechanism underlying the
formation of large-scale structures in cosmic string models, but it fails to reproduce
the observed power spectrum of CMB anisotropies; cosmic strings, therefore, can
only play a subdominant role in structure formation. Cosmic strings create line-like
discontinuities in the cosmic microwave background signal [16, 17]. For the same
reason that wakes form behind a cosmic string, the CMB source on the surface of last
scattering is boosted towards the observer, so there is a relative CMB temperature
shift across a moving string (a red-shift of the radiation ahead of it, and a blue-shift
of that behind), given by

δT

T
∼ 8πGμv⊥ . (1.8)

where v⊥ is the component of the string velocity normal to the plane containing the
string and the line of sight. This is known as the Kaiser-Stebbins effect. This simple
picture is again complicated in an expanding universe with a wiggly string network
and relativistic matter and radiation components. The energy-momentum tensor of
the string acts as a source for the metric fluctuations, which create the temperature
anisotropies. The most recent comparisons [2] between full-sky maps of cosmic
string-induced anisotropies and Planck data yield a cosmological constraint on the
models with

Gμ < few × 10−7 , (1.9)

with only a weak dependence on the background cosmology—but a stronger depen-
dence on the modeling of the defects.

Accelerated cosmic strings are sources of gravitational radiation [18]. Con-
sequently, a network of long strings and closed loops produces a stochastic
gravitational wave background [19] over a wide range of frequencies and with
a spectrum which (at least to a first approximation) has equal power on all
logarithmic frequency bins. Another distinctive signal would come from the
cusps, the points at which the string instantaneously doubles back on itself,
approaching the speed of light. Such an event generates an intense pulse of
gravitational and other types of radiation, strongly beamed in the direction
of motion of the cusp [20]. If massive cosmic strings do indeed exist, both
these pulses and the stochastic background are likely to be among the most
prominent signals seen by the gravitational-wave detectors now in operation
or planned, in particular Advanced LIGO and eLISA.

A stringent, though indirect, limit on the string energy per unit length comes from
observations of the timing ofmillisecondpulsars.Gravitationalwaves between us and
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a pulsar would distort the intervening space-time, and so cause random fluctuations
in the pulsar timing. The fact that pulsar timing is extremely regular places an upper
limit on the energy density in gravitational waves, and hence on the string scale.
The upper limit [21] is nominally of order Gμ < few × 10−8, though there are still
considerable uncertainties because this depends on assumptions about the evolution
of small-scale structure.

1.4 Cosmic Superstrings

Superstring theory is to date the only candidatemodel for a consistent quantum theory
of gravity that includes all other known interactions. In string theory, the fundamen-
tal constituents of nature are not point-like particles but one-dimensional “strings”
whose vibrational modes produce all elementary particles and their interactions. Two
important features of the theory are supersymmetry (a symmetry between bosonic
and fermionic excitations that keeps quantum effects under control) and the presence
of extra dimensions above the four spacetime dimensions that we observe.

Before the discovery of D-branes, the “solitons” of superstring theory, the ques-
tion of whether fundamental superstrings could ever reach cosmological sizes was
analysed and the possibility discarded [22]. The discovery of branes and their
role in more exotic compactifications where the six compact dimensions have
strong gravitational potentials (and redshifts) have changed this picture. It is now
believed that networks of cosmic superstrings could be a natural outcome of brane-
antibrane annihilation, especially if the branes are responsible for a period of cosmic
inflation [23].

An important difference with previous scenarios is that these strings are located
in regions of the compactified dimensions with very strong gravitational redshift
effects (“warping”) that reduce the effective mass per unit length of the strings to a
level with deficit angles in the region of 10−12–10−7, compatible with current obser-
vations. Another important difference is a much lower probability that the strings
intercommute when they cross, estimated to be 10−3–10−1, depending on the type
of strings. The lower intercommutation rates lead to much denser networks. Esti-
mates of the corresponding enhancement in the emission of gravitational radiation
by cusps puts these strings in a potentially observable window by future gravitational
wave detectors [24]. The networks are hybrid, consisting of fundamental strings and
D-strings, the latter being either one-dimensional D-branes or perhaps the result of a
higher dimensional D-brane where all but one dimension are wrapped around some
“holes” (cycles) in the compactified space.

As in the case of hybrid field theory strings, whether or not superstring networks
eventually reach a scaling regime is an open question. In addition to the presence of
junctions and a non-trivial spectrum of string tensions, a third factor can affect to
the evolution of these networks: if the strings are actually higher-dimensional branes
partially wrapped around some extra dimensions, then energy and momentum can in
principle leak into or out of these extra dimensions [25]. Since the effective damping
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force affecting the ordinary and extra dimensions is different, one might expect that
this will be the case. Depending on its sign and magnitude, such an energy flow can
in principle prevent scaling, either by freezing the network (if too much energy leaks
out) or by making the strings dominate the universe’s energy density (if too much
energy leaks in, though this is less likely than the opposite case). In this sense, a
somewhat delicate balance may be needed to ensure scaling. At a phenomenological
level, furtherworkwill be required in order to understand the precise conditions under
which each of these scenarios occurs. At a more fundamental level, it is quite likely
thatwhichof the scenarios is realizedwill dependon theunderlying compactifications
and/or brane inflation models, and that may eventually be used as a discriminating
test between string theory realizations.

1.5 Future Directions

A deeper understanding of the evolution and consequences of string networks, espe-
cially superstrings, will require progress on both numerical simulations and analytic
modelling. At the time of writing there is still no numerical code that includes all the
relevant physics, even for the simplest (Goto-Nambu) strings. Nevertheless, domain
wall models are being successfully used as toy models.

Inclusion of gravitational backreaction is particularly subtle, and may require
completely new approaches. The expected improvements in the available hardware
and software will allow for simulations with much longer evolution timespan and
spatial resolution, which are needed in order to understand the non-linear interactions
between large and small scales all the way down to the level of the constituent quan-
tum fields. This in turn will be a valuable input for more detailed analytic modelling,
that must accurately describe the non-trivial small-scale properties of the string net-
works as well as the detailed features of the loop populations. Better modelling is
also needed to describemore general networks—three crucial mechanisms for which
at present there is only a fairly simplistic description are the presence of junctions, a
non-trivial spectrum of string tensions, and the flow of energy-momentum into extra
dimensions.

At amore fundamental level, a better understanding of the energy lossmechanisms
and their roles in the evolution of the networks is still missing and it will require new
developments in the theory of quantum fields out of equilibrium. Such theoretical
developments are also needed to understand defect formation in systems with gauge
fields, and could be tested experimentally in superconductors.

The early universe is a unique laboratory, where the fundamental building blocks
of nature can be probed under the most extreme conditions, that would otherwise be
beyond the reach of any human-made laboratory. Cosmic strings and other defects
are particularly interesting for this endeavor: they are effectively living fossils of
earlier cosmological phases, where physical conditions may have been completely
different. The serendipitous discovery of cosmic defects or other exotic phenomena
in forthcoming cosmological surveys will have profound implications for our under-
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standing of cosmological evolution and of the physical processes that drove it. The
search continues while, in themeantime, the absence of cosmic string signatures is an
increasingly powerful theoretical tool to discriminate between fundamental theories.
The possibility that something as fundamental as superstring theory may one day be
validated in the sky, using tools as mundane as spectroscopy or photometry, is an
opportunity than neither astrophysicists nor particle physicists can afford to miss.
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Chapter 2
Cosmic Strings

Abstract The velocity-dependent one-scale model of cosmic string network evolu-
tion is summarized. Treating the average string velocity as well as the characteristic
lengthscale as dynamical variables, one can obtain a fully quantitativemodel, describ-
ing the complete evolution of a string network, including the prediction of previously
unknown transient scaling regimes. We also discuss extensions to open, anisotropic
and contracting universes, and the effect of radiation backreaction. Finallywe discuss
the calibration of the model parameters by comparing it to both Abelian-Higgs and
Goto–Nambu simulations, in both a static and expanding backgrounds, and highlight
the non-trivial fractal properties of cosmic strings.

2.1 Cosmic String Dynamics

We start by summarizing the original derivation of the model discussed in [1, 2]. A
string sweeps out a two-dimensional surface (the worldsheet) which can be described
by spacetime coordinates xμ and worldsheet coordinates σ a, xμ = xμ(σ a); the line
element is then

ds2 = gμν x
μ
,a x

ν
,b dσ a dσ b = γab dσ a dσ b, (2.1)

where gμν and γab are respectively the 4D spacetime and 2D string worldsheet met-
rics. For the case of a gauge (global) string, one can then derive the Nambu (Kalb-
Ramond) action from the Abelian-Higgs (Goldstone) model on the assumption that
the scale of perturbations along the string is much larger than its width δ. (In the
global case, one also makes use of the equivalence between a real massless scalar
field and a two-index antisymmetric tensor field.) One finds

S =
{

μo
∫ √−γ dσ 2 Gauge

μo
∫ √−γ dσ 2 + 1

6

∫ √−gH2d4x + 2πη
∫
Bμνdσμν Global

(2.2)

where Bμν is the antisymmetric tensor field,Hμνλ is its field strength and dσμν is the
worldsheet area element. Hence the Nambu action is proportional to the area swept
out by the string. Varying this action one obtains the equations of motion
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xν
,a

;a + Γ ν
τλ γ ab xτ

,a x
λ
,b =

{
0 Gauge
2πη

μo
Hν

τλ εab xτ
,a xλ

,b Global
(2.3)

Since strings move through a background radiation fluid, their motion is retarded
by particle scattering.This effect can be described by a frictional force per unit
length [3]

Ff = − μ

�f

v√
1 − v2

, (2.4)

where v is the string velocity and �f will be called the ‘friction lengthscale’; its
explicit value depends on the type of symmetry involved. For a gauge string, the
main contribution comes from Aharonov–Bohm scattering [4], while in the global
case it comes from Everett scattering [5]. Then we have

�f =
{

μ

βT 3 Gauge
μ

βT 3 ln2(Tδ) Global
(2.5)

where T is the background temperature, δ is the string thickness and β is a numerical
factor related to the number of particle species interacting with the string.This force
can be included in the equations of motion (2.3) by adding the term

(
Uν − xν

,ax
σ,aUσ

) 1

�f
, (2.6)

(Uν being the four-velocity of the background fluid) on its right-hand side.
Now consider string motion in an FRW universe with the line element,

ds2 = a2(τ )
(
dτ 2 − dx2

) ; (2.7)

then Uν = (
a−1, 0

)
and choosing the gauge conditions σ 0 = τ (identifying con-

formal and worldsheet times) and ẋ · x′ = 0 (imposing that the string velocity be
orthogonal to the string direction) the string equations of motion can be expressed
as [3, 6]

ẍ +
(
2
ȧ

a
+ a

�f

) (
1 − ẋ2

)
ẋ = 1

ε

(
x′

ε

)′
, (2.8)

ε̇ +
(
2
ȧ

a
+ a

�f

)
ẋ2ε = 0, (2.9)

where the ‘coordinate energy per unit length’ ε is defined by

ε2 = x′2

1 − ẋ2
, (2.10)

and dots and primes respectively denote derivatives with respect to τ and σ .
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2.1.1 Lengthscale Evolution

We can average the string equations of motion to describe the large-scale evolution
of the string network. Define the total string energy and the average RMS string
velocity to be

E = μa(τ )

∫
εdσ, (2.11)

v2 ≡ 〈ẋ2〉 =
∫
ẋ2εdσ∫
εdσ

. (2.12)

Differentiating (2.11) and using (2.9) and (2.12), we see that the total string energy
density ρ ∝ E/a3 will obey (in terms of physical time t)

dρ

dt
+

[
2H

(
1 + v2

) + v2

�f

]
ρ = 0 . (2.13)

Equation (2.13) incorporates both long strings and small, short-lived loops which
usually have a low probability of interacting with other strings before their demise.
We shall study the evolution of the long-string network on the assumption that it
can be characterized by a single lengthscale L; this can be interpreted as the inter-
string distance or the ‘correlation length’. Strings larger than L will be called long
or ‘infinite’; otherwise they will be called loops. For Brownian long strings, we can
define the ‘correlation length’ L in terms of the network density ρ∞ as

ρ∞ ≡ μ

L2
. (2.14)

Following Kibble [7], the rate of loop production from long-string collisions can
be written as

(
dρ∞
dt

)
to loops

= ρ∞
v∞
L

∫
w

(
�

L

)
�

L

d�

L
≡ c̃v∞

ρ∞
L

, (2.15)

where the loop ‘chopping’ efficiency c̃ is assumed to be constant. Finally, by sub-
tracting the loop energy losses (2.15) from (2.13) and then using (2.14), we obtain
the overall evolution equation for the characteristic lengthscale L,

2
dL

dt
= 2HL(1 + v2∞) + Lv2∞

�f
+ c̃v∞ . (2.16)

Note that with the exception of the expansion term, all terms on the right-hand side
are velocity-dependent.
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2.1.2 Loop Evolution

Define n�(�, t)d� to be the number density of loops with length in the range (�, � +
d�) at time t; the corresponding loop energy density distribution is

ρ�(�, t)d� = μ�n�(�, t)d� . (2.17)

Note that the total loop energy density is

ρo ≡
∫

ρ�(�, t)d� ; (2.18)

the subscript ‘o’ referring to properties of the entire loop population, while ‘�’ refers
to the loops with length in the range (�, � + d�). From our assumptions on the loop
production rate (2.15) we get

dρ�

dt
+

[
2H

(
1 + v2�

) + v2�
�f

]
ρ� = gμ

v∞�

L5
w

(
�

L

)
, (2.19)

where g is a Lorentz factor accounting for the initial non-zero center-of-mass kinetic
energy of the loops (lost through velocity redshift). Note that this equation is ‘static’:
it does not include loop decay mechanisms.

The physical size of a loop is simply given by

� = a(τ )

∫
loop

εdσ ; (2.20)

its time derivative can be easily calculated using (2.9).However onemust still subtract
energy (hence length) losses due to radiative processes. For a gauge string, this can
be roughly estimated from the quadrupole formula

(
dE

dt

)
rad

∼ G

(
d3D

dt3

)2

∼ Gμ2v6, (2.21)

(D ∼ μ�3 being the loop’s quadrupole moment). Then we define

(
d�

dt

)
rad

≡ −Γ ′Gμv6, (2.22)

where according to numerical estimates Γ ′ ∼ 8 × 65. Then the evolution equation
for the physical loop size is

d�

dt
= (1 − 2v2�)H� − �v2�

�f
− Γ ′Gμv6� . (2.23)
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Now, we will assume that loop production is ‘monochromatic’, i.e. that loops
formed at a time tp have an initial length

�(tp) = α(tp) L(tp) . (2.24)

Notice that we are implicitly saying that the loop size at formation depends both
on the large-scale properties of the network (through the correlation length) and on
the small-scale structure it contains (through the parameter α). With this ansatz the
scale-invariant loop production function w becomes

w

(
�

L

)
= c̃

α
δ

(
�

L
− α

)
, (2.25)

and the rate of energy loss into loops becomes

(
dρ∞
dt

)
to loops

= gμc̃
v∞
L3

. (2.26)

Hence the energy density converted into loops from time t to t + dt is

dρo(t) = gμc̃
v∞
L3

dt ; (2.27)

this corresponds to a fraction

dρo(t)

ρ∞(t)
= gc̃

v∞
L

dt (2.28)

of the energy density in the form of long strings at time t. Then using Eq. (2.25), the
number of loops produced in a volume V is

dN(t) = g
c̃

α

v∞
L4

V (t)dt ; (2.29)

hence the ratio of the energy densities in ‘dynamic’ loops and long strings is

�(t)dyn ≡ ρo(t)dyn
ρ∞(t)

= gL2(t)
∫ t

tc

dN(t′)�(t, t′)
V

= gc̃L2(t)
∫ t

tc

a3(t′)
a3(t)

v∞(t′)
L4(t′)

�(t, t′)
α(t′) dt′,

(2.30)

where tc is the moment of the network formation and �(t, t′) is the length at time t
of loops produced at time t′.
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We can also find the ratio of the energy densities in ‘primordial’ loops and long
strings with a modification of our counting strategy: instead of integrating over time,
we integrate over the possible loop lengths in the initial distribution

�(t)pri ≡ ρo(t)pri
ρ∞(t)

= L2(t)
a3(tc)

a3(t)

∫ Lcut

Lc

n�(�
′, tc)�(�′, tc)d�′, (2.31)

where Lc is the value of the ‘correlation length’ at time tc, Lcut 
 Lc is a cutoff
length, �(�′, tc) is the length at time t of a (primordial) loop with length �′ at tc and
the loop number density n� has the well-knowVachaspati–Vilenkin form [8]. We can
therefore numerically (and, in some simple limit cases, analytically) determine the
loop density at all times.

2.1.3 Velocity Evolution

Wemust nowconsider the evolution of the average string velocity v. A non-relativistic
equation can be easily obtained: it is just Newton’s law,

μ
dv

dt
= μ

R
− μv

(
2H + 1

�f

)
. (2.32)

This merely states that curvature accelerates the strings while damping (both from
friction and expansion) slows them down. On dimensional grounds, the force per
unit length due to curvature should be μ over the curvature radius R. The form of the
damping force can be found similarly.

A relativistic generalization can be obtained more rigorously by differentiating
(2.12):

dv

dt
= (

1 − v2
) [

k

R
− v

(
2H + 1

�f

)]
. (2.33)

This is exact up to second-order terms. To obtain the damping term we have taken
〈ẋ4〉 = 〈ẋ2〉2. Writing ẋ2 = (1 + p · q)/2 (p and p being unit left- and right-movers
along the string) and defining ς ≡ −〈p · q〉 the difference between the two is

〈ẋ4〉 − 〈ẋ2〉2 = 1

4

[〈(p · q)2〉 − ς2] , (2.34)

and numerical simulations of string evolution indicate that ςrad ∼ 0.14 and ςmat ∼
0.26, so this difference should be small [9]. As for the curvature term, we have
introduced R via the definition of the curvature radius vector,

a(τ )

R
û = d2x

ds2
, (2.35)



2.1 Cosmic String Dynamics 17

where û is a unit vector and s is the physical length along the string (related to the
coordinate length σ by ds = |x′|dσ = (

1 − ẋ2
)1/2

εdσ ). The dimensionless parame-
ter k is defined by

〈(1 − ẋ2)(ẋ · û)〉 ≡ kv(1 − v2) (2.36)

and is related to the presence of small-scale structure on strings: on a perfectly smooth
string, û and ẋ will be parallel so k = 1 (up to a second-order term as above), but
this need not be so for a wiggly string. The following phenomenological function is
found to provide a good fit to simulations [10]

k(v) = 2
√
2

π
(1 − v2)(1 + 2

√
2v3)

1 − 8v6

1 + 8v6
. (2.37)

If one is only interested in the relativistic regime then

krel(v) = 2
√
2

π

1 − 8v6

1 + 8v6
, (2.38)

should be sufficiently accurate to provide reliable results. On the other hand, a reliable
approximation for small non-relativistic velocities is

knr(v) = 2
√
2

π
(1 − v2) . (2.39)

2.2 Scaling Results

In the early universe the friction lengthscale increases with time, so friction will only
be important at early times. Let Tc be the temperature of the string-forming phase
transition; the corresponding time of formation is

tc = 1

f

mPl

T 2
c

, (2.40)

where f = 4π
√

πN /45 and N is the number of effectively massless degrees of
freedom in the model (e.g., N = 106.75 for a minimal GUT model, but it can be
as high as 104 for particular extensions of it). Then in the case of a gauge symmetry
breaking the friction lengthscale can be written

�f =
⎧⎨
⎩

1
θ
t3/2

t1/2c
Radiation(

3
4

)3/2 1
θ

t2

(tcteq)
1/2 Matter

(2.41)

and for the case of a global symmetry
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�f =
⎧⎨
⎩

1
4θ

t3/2

t1/2c
ln

(
L
δ

) [
ln

(
6
λ

tc
t

)]2
Radiation

(
3
4

)3/2 1
4θ

t2

(tcteq)
1/2 ln

(
L
δ

) [
ln

(
8
λ

tct
1/3
eq

t4/3

)]2
Matter

(2.42)

The constant θ is a measure of the importance of the friction term in the evolution
equations; its value is

θ = β√
f

(
tc
tPl

)1/2

. (2.43)

The string energy per unit length can be written

μ =
{
T 2
c Gauge

T 2
c ln

(
L
δ

)
Global

(2.44)

Defining t∗ as the time at which the two damping terms in (2.8) and (6.4) have
equal magnitude we find

t∗
tc

=
{

θ2 Gauge

16θ2
(
ln L

δ

)−2
[
ln

(
6
λ

tc
t�

)]−4
Global

(2.45)

provided this is still in the radiation era; otherwise, in the matter era we obtain

t∗
tc

=

⎧⎪⎨
⎪⎩

(
4
3

)1/2
θ

(
teq
tc

)1/2
Gauge

4
(
4
3

)1/2
θ

(
teq
tc

)1/2 (
ln L

δ

)−1
[
ln

(
8
λ

(
teq
tc

)1/3 (
tc
t�

)4/3
)]−2

Global
(2.46)

String dynamics is friction-dominated from tc until t∗, after which motion becomes
relativistic or ‘free’. A simple heuristic argument due to Kibble [7] first suggested
that in the damped phase the correlation length will scale as L ∝ t5/4.

Analysis of the evolution equations (2.16), (2.33) reveals the existence of three
types of scaling regimes, which we now describe in detail. We should also note that
in scaling regimes the velocity and correlation length are generically related via

v ∝ �d

L
, (2.47)

where we have defined an overall damping length.

1

�d
= 2H + 1

�f
. (2.48)

http://dx.doi.org/10.1007/978-3-319-44553-3_6
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2.2.1 Scale-Invariant Solutions

Scale-invariant solutions of the form L ∝ t or L ∝ H−1, together with v∞ = const.,
only exist when the scale factor is a power law of the form

a(t) ∝ tλ, λ = const., 0 < λ < 1 . (2.49)

This condition implies that
L ∝ t ∝ H−1 ∝ dH , (2.50)

with the proportionality factors dependent on λ

(
L

t

)2

= k(k + c̃)

4λ(1 − λ)
, v2 = k(1 − λ)

λ(k + c̃)
, (2.51)

where k is the constant value of k(v) given by solving the second (implicit) equation
for the velocity. It is easy to verify numerically that this solution is well-behaved and
stable for all realistic parameter values.

2.2.2 Friction-Dominated Solutions

During friction-dominated epochs one has two different scaling solutions, which are
transient and no longer ‘scale-invariant’. In this case the network retains a memory
of its initial conditions, and in particular of the epoch of formation. This can be
expressed by the parameter θ in Eq. (2.43) which is the ratio of the damping terms
due to friction and Hubble damping, measured at the epoch of string formation.

The first solution is a conformal ‘stretching’ regime,

L

Lc
=

(
t

tc

)1/2

, v = t

θLc
, (2.52)

which will occur when the initial string density and velocity are sufficiently low—for
example, as a result of a slow first-order phase transition. In this case the network
starts out with a correlation length significantly larger than the damping length and
so is ‘frozen’, and is conformally stretched. However the damping length is growing
as �f ∝ t3/2, so it quickly catches up with it, ending this regime. Although this is not
cosmologically relevant except for extremely light strings, the analogous regime in
the matter-dominated case would be L ∝ t2/3, v ∝ t4/3.
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The attractor solution for a friction-dominated epoch, which follows the stretching
regime (if this exists) is the Kibble regime, which in the radiation era is

L

Lc
=

[
2knr(c̃ + knr)

3θ

]1/2 (
t

tc

)5/4

, v =
[

3knr
2θ(c̃ + knr)

]1/2 (
t

tc

)1/4

, (2.53)

where knr is the value of the momentum parameter in the nonrelativistic limit. In
this case the correlation length stays halfway between the damping length and the
horizon length. Again there is a matter era analogue, L ∝ t3/2, v ∝ t1/2, but this is
rarely relevant cosmologically.

2.2.3 A Cosmological Constant

We can also use the VOS model in a flat background to discuss the domination
at late times by a cosmological constant. In the extreme asymptotic case when
the universe is inflating we have a ∝ exp (Ht) with H = √

�/3. The network
will ‘freeze out’ and will simply be conformally stretched, that is,

L ∝ a, v∞ ∝ a−1, (2.54)

where, as soon as the strings become nonrelativistic knr = 2
√
2/π , their prod-

uct satisfies

Lv∞ = 2
√
2

π
H . (2.55)

2.3 Some Extensions

We now provide short discussions of some extensions of the VOS model. Some of
these, as in the case of open universes, mostly have an historic interest, while others
are highly relevant. In either case, the goal is to demonstrate the model’s versatility,
which will be further addressed in the following chapters.

2.3.1 Radiation Back-Reaction

Even though radiation backreaction is closely related to small-scale structure (which
the VOSmodel as described thus far does not explicitly model), its effect on the long-
string network can be included in the evolution equation for the correlation length
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[10]. For gravitational radiation the following term can be added to the right-hand
side of (2.16)

2

(
dL

dt

)
gr

≡ 8�grv
6
∞ = 8Γ̃ Gμv6∞ . (2.56)

Here, Γ̃ is a constant which is a long-string analogue of the Γ ≈ 65 found for the
radiative decay of strings. For global string radiation intoGoldstone bosons or axions,
the corresponding radiative decay term at a time t will be

2

(
dL

dt

)
ax

≡ 8�axv
6
∞ = 8Γ̃ v6∞

2π ln(t/δ)
, (2.57)

where the logarithmic term arises because of the long-range fields of the global
string and δ is the string width. For GUT-scale strings, the backreaction term for
local strings is Γ Gμ ∼ 10−4 whereas for global strings it is of order 10−1.

Remarkably, the inclusion of the back-reaction term does not affect the existence
of a scale-invariant attractor solution. However, it does influence the quantitative
values of the scaling parameters and the timescale necessary for this solution to be
reached: the inclusion of back-reaction canmake the approach to scalingmuch faster.

In this case one can distinguish two asymptotic scenarios. Firstly, if� is small (of
order unity at most) then the effect of back-reaction on the scaling solution is also
small. This will be the case, for example, for most local or global string networks in
a cosmological context. We can express this as

γ 2 ≈ γ 2
0 (1 + Δ) , v2 ≈ v20 (1 − Δ) , (2.58)

where γ0 and v0 are the “unperturbed” scaling values, given by Eq. (2.51), and the
back-reaction correction has the form

Δ = 8βv50� = 8β

[
k(1 − β)

β(k + c̃)

]5/2

� . (2.59)

Second, for larger values of � the back-reaction term will dominate the evolu-
tion equation for L, and the attractor scale-invariant solution has a different form
altogether. It is not possible to write this solution in closed form, even expressing k
implicitly as above. However, it is possible to write it as a series. The dominant term
and the first correction take the form

γ = k

2β

[
8β�

k(1 − β)

]1/7

(1 + Δ1 + . . .) , v =
[
k(1 − β)

8β�

]1/7

(1 − Δ1 + . . .) ,

(2.60)
with

Δ1 = 1

26/77
(k + c̃)

[
β

k(1 − β)

]5/7

�−2/7 . (2.61)
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There has been work on numerical simulations of global string networks [11]
which explores this strong backreaction regime. These authors report a surprisingly
low string density relative to the gauged case. For their expanding universe simula-
tions in the realistic case with periodic boundary conditions, they find the following
radiation and matter era densities respectively,

ζrad = 0.9 ± 0.1 , ζmat = 0.5 ± 0.1 . (2.62)

These results are perfectly consistent (within the estimated error bars) with our
extended VOS model if we adopt a back-reaction parameter

�ax-sim ≈ 3 . (2.63)

Indeed, this corresponds to the approximate average value for �ax that one would
estimate for simulations of this resolution. Present limitations on numerical dynamic
range give the upper bound ln(t/δ) < 4 (at the end of the simulation), implying
�ax-sim > 2 throughout.

2.3.2 Open Universes

In this section we discuss the behavior of our model in open universes, for which
one must also include an additional correction due to the curvature [12–14]. This is
essentially the curvature radius of the strings, which as previously said we assume
to coincide with L, divided by the radius of spatial curvature of the universe,

R = H−1

| 1 − Ω |1/2 . (2.64)

After a certain amount of algebra, one finds correction terms of the form

w = 1 − (1 − Ω)(HL)2 . (2.65)

Note that Ω denotes the total density of the universe. For a flat universe, Ω = 1, and
we have w = 1. The evolution equation for the correlation length L now takes the
form

2
dL

dt
= 2HL + L

�d

v2∞
w2

+ c̃v∞ , (2.66)

while the velocity equation becomes

dv∞
dt

=
(
1 − v2∞

w2

) (
w2 k

L
− v∞

�d

)
. (2.67)
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We can now re-examine the question of the existence of ‘scale invariant’ attractor
solutions. Scaling solutions of the form L ∝ t or L ∝ H−1 together with v∞ = const.
still only exist provided

a(t) ∝ tλ, λ = const., 0 < λ < 1, (2.68)

but now we also require
Ω = const. (2.69)

The simplest example of the second condition is of course a flat universe, but there
are examples of cosmological models which have attractors other than Ω = 1 [15].
In any case, note that there can be additional relations between the values of λ and
Ω for specific models. The scaling solution is now given in the implicit form

(
L

t

)2

= w2 k(k + c̃)

4λ(1 − λ)
, v2 = w2 k(1 − λ)

λ(k + c̃)
, (2.70)

where k is defined as before, and

w = 2(1 − λ)

(1 − Ω)λk(k + c̃)

[(
1 + (1 − Ω)λk(k + c̃)

(1 − λ)

)1/2

− 1

]
. (2.71)

If the two conditions above do not hold, then a scaling solution will not exist.
We should also mention another cosmologically important solution: in an open

universe with Ω → 0, a ∝ t, the asymptotic solution is

L =
[

knr c̃

2(1 − knr)

]1/2

t (ln t)1/2 , v∞ =
[
knr(1 − knr)

2c̃

]1/2

(ln t)−1/2 , (2.72)

with knr given by (2.39). Note that this is not a scale-invariant solution, sinceH−1 = t
and dH = t ln t. In other words, by looking at the network one would be able to
determine when the curvature-dominated period had started.

2.3.3 Anisotropic Models

Topological defects can be a relic left behind after inflation. The inflationary epoch
will dilute the defect density and push the network outside the horizon, freezing it
in co-moving coordinates in the process. However, once the inflationary epoch ends
the subsequent evolution of the defects is necessarily such as to make them come
back inside the horizon [13, 16]. A defect network produced during an anisotropic
phase in the very early universe could still be present today.
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Let us consider a cosmic string in a flat anisotropic universe of Bianchi type I,
with line element:

ds2 = dt2 − X2(t)x2 − Y 2(t)dy2 − Z2(t)dz2 . (2.73)

Here X(t), Y(t) and Z(t) are the cosmological expansion factors in the x, y and z
directions respectively, and t is physical time. We also define A ≡ Ẋ/X, B ≡ Ẏ/Y
and C ≡ Ż/Z where the dot represents a derivative with respect to physical time t.

In the limit where the curvature radius of a cosmic string is much larger than its
thickness, we can describe it as a one-dimensional object so that its world history
can be represented by a 2D world-sheet

xν = xν(ζ a) ; a = 0, 1 ; ν = 0, 1, 2, 3 (2.74)

obeying the usual Goto–Nambu action

S = −μ

∫ √−γ d2ζ , (2.75)

where μ is the string mass per unit length, γab is the two-dimensional world-sheet
metric and γ = det(γab). Let us also define

ẋ2 ≡ gαβ ẋ
α ẋβ = 1 − X2ẋ2 − Y 2ẏ2 − Z2ż2 (2.76)

x′2 ≡ gαβx
′αx′β = −X2x′2 − Y 2y′2 − Z2z′2 , (2.77)

so that γ = ẋ2x′2 (using ẋ · x′ ≡ gαβx′α ẋβ = 0 as a gauge condition).
If we choose ζ 0 = t and define ζ ≡ ζ 1 then the string equation of motion is given

by [9]

∂

∂t

(
ẋμx′2
√−γ

)
+ ∂

∂ζ

(
x′μẋ2√−γ

)
+ 1√−γ

Γ μ
νσ (x′2ẋν ẋσ + ẋ2x′νx′σ ) = 0 . (2.78)

From the time component we can obtain

ε̇ + ε

[
AX2

(
ẋ2 − x′2

ε2

)
+ BY 2

(
ẏ2 − y′2

ε2

)
+ CZ2

(
ż2 − z′2

ε2

)]
= 0 (2.79)

where we have made the further definition

ε ≡
√

−x′2/ẋ2 = x′2/
√−γ = √−γ /ẋ2 . (2.80)
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On the other hand, the x component gives

ẍ +
(

ε̇

ε
+ 2A

)
ẋ + 1

ε

(
x′

ε

)′
= 0 , (2.81)

and analogous equations apply for the y and z components. One can show that in the
limit of an isotropic universe these equations reduce to the usual form.

Further analysis shows that the existence of an anisotropic phase throughwhich the
network evolved will be imprinted on it much beyond the time when the background
becomes isotropic [13, 16]. In fact, it will be imprinted on the network as long as
it is frozen outside the horizon. Only when it falls inside the horizon it will start to
become relativistic and isotropic.We expect that the evolution towards the relativistic
regime will be somewhat slower than in the standard case, which could conceivably
have observational implications. Specifically, it is possible to see that a cosmic string
network can survive up to about 60 e-foldings of inflation (the exact number being
model-dependent), in the sense that any network produced in such a period will
still come back inside the horizon in time to have observable consequences by the
present day.

2.4 Calibrating the Model with Simulations

The model has been calibrated by detailed comparisons of its predictions to
Abelian-Higgs (field theory) [17, 18] and Goto–Nambu numerical simulations
[10, 19]. In the field theory case the best fit is provided by

c̃ = 0.57 ± 0.04 , (2.82)

which is is precisely the same value that was found in flat spacetime Goto–Nambu
string simulations. On the other hand, for radiation and matter era Goto–Nambu
simulations, one finds

c̃ = 0.23 ± 0.04 . (2.83)

This is to be expected given that Goto–Nambu network simulations can probe amuch
wider range of length scales below the correlation length, thus allowing small-scale
wiggles to build up on those scales. We emphasize that no currently available field
theory simulation has a spatial resolution or dynamic range sufficiently large to allow
for the build-up of small-scale structures on the strings.
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The value of c̃ = 0.57 can therefore be regarded as a bare loop chopping effi-
ciency, while c̃ = 0.23 can be interpreted as a renormalised one. This interpre-
tation is consistent with the fact that Goto- Nambu simulations in the expand-
ing case somewhat surprisingly possess much more small-scale structure than
corresponding flat spacetime strings (for example, as quantified by the fractal
properties of each network). The approximate factor of two difference between
the two loop production rates may be related to the well-known result that the
renormalised and bare string mass per unit length differ by about a factor of
two in radiation era Nambu simulations [19–21].

The most detailed numerical study of the properties of small-scale structures on
cosmic string networks has been carried out in [19]. A first striking feature is that in
the expanding universe cosmic string velocities are anti-correlated on scales between
the correlation length and the horizon. However, such a feature is not present in flat
spacetime. This anti-correlation is the result of a ‘memory’ of the network for recent
intercommutings, and its absence in the flat spacetime case highlights the fact that
the loop production mechanism is different in the expanding and non-expanding
cases. Indeed, such an effect was discussed in [22, 23]. If one defines a ‘velocity
coherence length’, thiswill be significantly smaller than ξ itself. The network’s fractal
dimension is unity on small scales and two on very large scales. The interesting
question, however, is what happens at intermediate scales. In particular, one should
expect (and indeed finds) a range of scales where strings should behave as self-
avoiding random walks, and these have a fractal dimension ds = 5/3 in three spatial
dimensions.

Radiation and matter era networks have similar fractal profiles (if one rescales
length scales by the respective correlation lengths). The flat spacetime ones, however,
are qualitatively different, which must reflect the differing efficiencies of loop pro-
duction in flat space and the expanding universe.While the integrated loop production
efficiency is much greater in flat spacetime c = 0.57, as opposed to the expanding
c = 0.23, it appears to be relatively less effective around the correlation scale with
energy trapped on fairly large scales. This intuitive picture is confirmed by noting
that the renormalised mass per unit length μ is smaller than in the expanding case
on small scales, but is larger on large scales.

Finally, we note that in all cases the fractal dimension of the network at the scale
of the correlation length is well below two: typical values are 1.2 in the expanding
case and 1.4 in the flat case. This is to be expected if one interprets ξ as a persistence
length. So the intuitive picture that a string network looks Brownian at the scale
of the correlation length is clearly incorrect. It’s not even true at the scale of the
horizon—here the network looks more like a self-avoiding random walk, which is
an obvious consequence of intercommutings. The Brownian picture is only valid on
significantly larger scales.
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The two distinguishing characteristics of string evolution inMinkowski spacetime
are the absence of velocity anti-correlations on scales around the correlation length,
and the apparent existence of a ‘preferred’ scale (around the correlation length ξ )
from which energy does not move to smaller scales. These can have a substantial
influence when calculating the network’s observational consequences.
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Chapter 3
Domain Walls

Abstract The VOS model for cosmic strings is now extended to the case of domain
wall networks, and calibrated against high-resolution field theory numerical sim-
ulations in two, three and four spatial dimensions. We briefly study domain wall
forming models where different tensions and various types of defect junctions can
exist, which illustrate some of the mechanisms that will determine the evolution of
defect networks with junctions. We find that the networks reach the attractor linear
scaling solutions in all such cases, and also provide state-of-the-art constraints on
these networks. We then study the evolution of various types of biased domain wall
networks, discussing possible mechanisms of decay of these networks. Finally, we
revisit the model and present an alternative formulation in terms of a physical (rather
than invariant) characteristic length scale, which we use to study the evolution of
domain wall and cosmic string networks in contracting universes.

3.1 The VOS Model for Domain Walls

The wall surfaceM2 can be parametrized by two parameters, σ1 and σ2. As a result,
the wall evolution is described by the vector xμ(σ1, σ2, τ ), where we identified σ0 =
τ . If the function is smooth, it is possible to parametrize the wall surface such that
two tangential vectors will be orthogonal

∂σ1x
μ∂σ2xμ ≡ xμ

,1xμ,2 = 0. (3.1)

We can also require that the velocity of the wall ∂τ xμ ≡ ẋμ is normal to the tangent
surface. To derive the wall equation of motion we start from the worldvolume (Dirac)
action, which is the extension of the Goto-Nambu one for cosmic strings and has the
form

S = −
∫

L d3σ = −σw

∫ √
γ d3σ, (3.2)
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where σw is a constant mass per unit area, γab = gμνxμ
,ax

ν
,b is the induced metric,

γ = 1
3!ε

abεcdγacγbd is its determinant, xμ
,a = ∂xμ

∂σ a , εab is the Levi-Civita symbol, and
L is the Lagrangian density. The energy of the wall in that case is

E = σwa(τ )

∫ √
γ γ 00d2σ = σwa

2(τ )

∫
εd2σ. (3.3)

In a flat FRW universe the equation of motion has the form

ȧ

a
δ0λ

√
γ γ abγab − ∂c

(√
γ γ abgμλx

μ
,aδ

c
b

) = 0. (3.4)

Let us redefine the coordinates σ1 and σ2 to s1 and s2 in such way that | ∂xi

∂sα
|2 = 1

(α = 1, 2). This means that derivatives will be changed in the following way

∂xi

∂σα

= |xi,α| ∂x
i

∂sα
, (3.5)

(no summationoverα). In these coordinates, it is possible to introduce anorthonormal
basis: ξ i

α = ∂xi

∂sα
, and ni = ẋi

|ẋi| . Consequently, the zeroth component of Eq. (3.4)
(λ = 0) can be written

ε̇ + 3
ȧ

a
εẋiẋi = 0. (3.6)

The spatial part (λ = i) of Eq. (3.4) contracted with the vector ni has the form

ẍini + 3
ȧ

a
ẋini

(
1 − ẋiẋi

) = (
1 − ẋiẋi

)
ki1ni +

(
1 − ẋiẋi

)
ki2ni, (3.7)

where kiα = ∂ξ i
α

∂sα
.

Now it is possible to obtain averaged equations [1, 2]. One introduces two macro-
scopic (averaged) quantities, the energy density and the root-mean-squared (RMS)
velocity

E

V
= ρ = σwa2

V

∫
εd2σ, υ2 =

∫
ẋ2εd2σ∫
εd2σ

, (3.8)

and can thus average Eqs. (3.6–3.7), obtaining

dρ

dt
= −Hρ

(
1 + 3υ2) ,

dυ

dt
= (

1 − υ2
) (

K1 + K2

L
− 3Hv

)
, (3.9)

where t is a physical time, and H = ȧ/a is the Hubble parameter, and we made the
assumption that curvature radii have the same averaged value and are equal to the
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correlation length:R1 = R2 = L. TheK1 andK2 parameters are curvature/momentum
parameters. The component K1 can be written as K1 = ui1ni, suitably averaged over
the network, with an analogous definition for K2.

An evolving wall network loses energy because of possible intersections and the
creation of sphere-like objects that eventually collapse. This energy loss mechanism
can be added to Eq. (3.9) by analogy towhatwas originally done byKibble for cosmic
strings [3]. Taking into account this energy loss term,we can rewrite Eq. (3.9) in terms
of the correlation length L = σw/ρ, as follows

dL

dt
= (1 + 3υ2)HL + cwυ,

dυ

dt
= (1 − υ2)

(
kw
L

− 3Hυ

)
, (3.10)

where we further defined kw = K1 + K2 as the momentum parameter.
The momentum parameter can be estimated in an analogous way to what was

done for cosmic strings in Ref. [4]. One finds that k(v) can be written similarly as

k(v) = k0
1 − (

qυ2
)β

1 + (
qυ2

)β
, (3.11)

where β, k0 and q are unknown parameters. The constant k0 characterizes the max-
imum value of the momentum parameter: it is positive, but cannot be bigger than
2. The parameter 1/q is an averaged maximal velocity for the wall network, which
can be shown to be v2w = 2/3, as expected, but this requires assumptions that need
not be satisfied. In that case the maximal averaged velocity of the network can be
smaller (but not larger). As a result we have 0 < 1/q ≤ vw. Other than these general
physical constraints, these parameters must be calibrated numerically.

Energy losses due to scalar radiation were considered in [5]. One finds that the
uniformly moving wall does not radiate: only perturbations on the wall surface pro-
duce scalar radiation. We have already estimated the level of perturbations through
the momentum parameter k(v). The maximal value k0 corresponds to the minimal
RMSvelocity and hence tominimal perturbations on thewall surface. Conversely the
case when the momentum parameter is zero corresponds to a maximal RMS velocity
and a maximally perturbed surface. We thus expect that the amount of radiation is
proportional to the surface perturbations, leading to

F(v) = cwv + d[k0 − k(v)]r, (3.12)

where d and r are constants. In the maximally perturbed (slow expansion) limit
v2 → 1/q this behaves as

F(v) = cw√
q

+ dkr0, (3.13)
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and we expect the scalar radiation term to be the dominant one. Conversely in the
uniform surface (fast expansion) limit we have

F(v) ∼ cwv + d(2k0)
rqβrv2βr, (3.14)

and in this case we expect the chopping term to be more important, and possibly
dominate. Putting together these extensions, the VOS model equations (Eq.3.10)
can finally be rewritten as

dL

dt
= (1 + 3υ2)HL + cwυ + d[k0 − k(v)]r,

dυ

dt
= (1 − υ2)

(
k(v)

L
− 3Hυ

)
, (3.15)

where k(v) is defined by Eq. (3.11).

3.2 Scaling Solutions

We now discuss all relevant scaling solutions for domain walls [6]. We start by
neglecting the effect of the wall density on the background (specifically, on the
Friedmann equations). As we shall shortly see this is not a good approximation,
since the wall network will generally end up dominating the energy density of the
universe. However it is this scenario that is effectively considered, for example, when
one performs numerical simulations of domain wall networks.

In this case the attractor solution to the evolution equations (3.15) also corresponds
to a linear scaling solution

L = εt, v = const. (3.16)

Assuming that the scale factor behaves as a ∝ tλ the detailed form of the above linear
scaling constants is

ε2 = kw(kw + cw)

3λ(1 − λ)
, v2 = 1 − λ

3λ

kw
kw + cw

. (3.17)

As in the case of cosmic strings [7], an energy loss mechanism (that is, a non-zero
cw) may not be needed in order to have linear scaling: by considering the cw → 0
limit one finds that for λ > 1/4 a linear scaling solution is always possible. Hence
in this case a linear scaling solution may exist in both matter and radiation eras (in
the case of cosmic strings this is only guaranteed to be the case in the matter era.)
On the other hand, if λ ≤ 1/4 then an energy loss mechanism is necessary to have
linear scaling.
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Note that the linear scaling solutions are physically very different for cosmic
strings and domain walls. In the case of cosmic strings, in the linear scal-
ing phase the string density is a constant fraction of the background density,
whereas in the case of domain walls we have ρw/ρb ∝ t so the wall density
grows relative to the background density, and will eventually become domi-
nant. This happens at a time t� ∼ (Gσ)−1. Since the domain wall mass per
unit area is related to the energy scale of the phase transition, σ ∼ η3, we can
also write out a given epoch as

t�
tPl

∼
(

η

mPl

)−3

; (3.18)

hence walls that would become dominant around today would have been
formed at a phase transition with an energy scale

η0 ∼ 100MeV; (3.19)

notice that this is two orders of magnitude larger than the standard Zel’dovich–
Kobzarev–Okun bound [8]. It will be seen from the discussion that follows
that networks that are much heavier would have become dominant well before
having reached the linear scaling regime, whereas networks that are much
lighter would not yet have reached the linear regime by today. Hence the range
of cosmological scenarios where the linear scaling solution is of interest is
quite limited.

3.2.1 The Effect of Friction

At early times, in addition to the damping caused by the Hubble expansion, there is a
further damping term coming from friction due to particle scattering off the domain
walls. This effect can be adequately described by a frictional force per unit area [9]

f = − σ

�f
γ v, (3.20)

where v is the string velocity, defining a friction length scale

�f = σ

NwT 4
∝ a4 (3.21)

where T is the temperature of the background and Nw is the number of light particles
changing their mass across the wall. Just like in the case of cosmic strings discussed
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in Chap.2 we can include this term in the evolution equations, which become

dL

dt
= HL + L

�d
v2 + cwv (3.22)

dv

dt
= (1 − v2)

(
kw
L

− v

�d

)
, (3.23)

where we have defined a damping length scale

1

�d
= 3H + 1

�f
. (3.24)

Note that since �f ∝ a4, the friction term will be dominant at early times, while the
Hubble term will dominate at late times, so the late-time linear scaling solution is
unchanged. The timescale when Hubble damping dominates over friction (which is
also the timescale for the walls to become relativistic) is again t� given in Eq. (3.18).
Thus we see that domain wall networks will dominate the energy density of the
universe evenwithout ever becoming relativistic or reaching the linear scaling regime.

There will be two possible scaling solutions (which are necessarily transient)
during the friction-dominated epoch. As in the case of strings [7], these solutions
will exist regardless of whether or not the walls interact with each other (that, is,
whether cw is non-zero or vanishes). The conformal stretching solution is

Ls ∝ a, vs ∝ �f

a
; (3.25)

for domainwalls this gives v ∝ a3, whereas for cosmic stringswewould have v ∝ a2.
We emphasize that although the network is being stretched as the scale factor, and
is non-relativistic, the velocities are increasing rather fast, due to the effect of the
domain wall curvature. This shows that even in the absence of other mechanisms this
regime would only be a transient. The only situation where such a stretching regime
could persist would be during an inflationary phase, but in that context the much
faster expansion is enough to counter the wall velocities and make them decrease.
Indeed, in the case of an exponential expansion the solution is

Linf ∝ a, vinf ∝ a−1. (3.26)

Following the conformal stretching regime, or right after the formation of the network
if it is formed with high enough density, there is a Kibble regime [3], which in
the context of the VOS model can be rigorously derived. The scaling solution has
precisely the same form for both types of defects

Lk ∝
(

�f

H

)1/2

, vk ∝ (
�f H

)1/2
, (3.27)

http://dx.doi.org/10.1007/978-3-319-44553-3_2
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although of course the friction lengthscale will not have the same form in the two
cases. Notice the differences relative to the stretching regime: here the correlation
lengths grow much faster, while the velocities grow relatively more slowly. In the
stretching regime the walls are typically quite far apart, so there is very little inter-
action between them—typically less than one per Hubble volume per Hubble time.
In the Kibble regime, on the other hand, the walls are so close together that there is a
very large number of interactions—in fact there aremore than in the case of the linear
scaling regime. This enhanced energy loss makes the correlation length grow quite
fast. The wall velocities are still non-relativistic and growing, but because regions
of the network with higher velocity than average have a larger interaction probabil-
ity than slower regions (thus leaving the network) the enhanced energy loss is also
responsible for making the velocities grow more slowly than in the stretching case.
Still the Kibble scaling is also a transient, which in the absence of other mechanisms
will necessarily end when the network becomes relativistic.

Even allowing for friction, linear scaling would be an attractor of the above equa-
tions if one neglected the effect of the wall density on the expansion of the universe.
However, we have seen that in every scaling regime considered the wall density
grows relative to the background, so that a wall density term ρw = σ/L must be
included in the Einstein equations. This changes the situation for it is easy to see that
the domain wall network will eventually dominate the energy density of the universe
(unless some mechanism like a subsequent phase transition were to make it decay
and disappear). Thus we again see that linear scaling is of little practical importance,
since it is never reached for any cosmologically realistic network.

Since a domain wall network will eventually dominate the energy density of
the universe it is important to study the dynamics of the universe in this regime.
The expectation [8] is that the domain wall network will again become frozen in
comoving coordinates with

L ∝ a, a ∝ t2. (3.28)

In this case the average distance between the walls also grows as t2 and rapidly
becomes greater than the horizon. This will happen at a time that is again given
by t� above. An inertial observer will see domain walls moving away towards the
horizon, and aswalls fade away the spacetime around the observerwill asymptotically
approach Minkowski space. Notice that this solution does not depend on cw—it is
valid whether or not the domain walls interact.

3.2.2 Calibrating the Model

One can easily confirm that the extended VOS model given by Eq. (3.15) possess
the same scaling behavior as the original one, given by Eq. (3.10). In the extended
model we have in principle 6 undefined parameters that should be determined from
numerical simulation data [10–12]. By using bootstrapping techniques one finds that
the chopping parameter is negligibly small in comparison with the contribution from
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scalar radiation and may be neglected as a first approximation (specifically, we find
cw = 0.00 ± 0.01), while the other five parameters have the following values [2]

d = 0.28 ± 0.01, r = 1.30 ± 0.02, β = 1.69 ± 0.08 (3.29)

k0 = 1.73 ± 0.01, q = 4.27 ± 0.10. (3.30)

This has been shown to provide an excellent agreement with the entire range of
numerical simulations with a fixed expansion rate λ.

As an additional test, one can carry out analogous field theory simulations of
the radiation-matter transition. In this case the scale factor has the following exact
analytic expression

a(τ )

aeq
=

(
τ

τ∗

)2

+ 2

(
τ

τ∗

)
, (3.31)

where τ∗ = τeq/(
√
2 − 1) and the parameters aeq and τeq are constants denoting the

scale factor and conformal time at the epoch of equal radiation and matter densities.
This is an important test of the model, and one finds that the analytic model provides
an excellent description of the radiation-matter transition. Fitting the phenomeno-
logical parameters to the simulations, it has been found that energy losses due to
creation of sphere-like objects are typically subdominant in comparison with scalar
radiation, except in the case of fast expansion rates. Overall, the extended analytic
model can describe both the fixed expansion rate cases and the transition from the
radiation to thematter-dominated era. The latter one is an important test of themodel,
since the network is not scaling during the transition (while the model parameters
were calibrated from fixed expansion rate data in the scaling regime).

3.3 Multi-field Models: Frustrated Expectations

Domain wall networks were suggested as a possible provider of the dark energy
inferred from astrophysical observations [13]. This possibility is now excluded, but
it provides a useful motivation for studying the conditions under which the network
reaches scaling or conversely freezes into what is colloquially called a ‘frustrated
network’ [14].

A domain wall network providing dark energy must be dominating the energy
density of the universe around the present day, so its energy density must be of the
order of the critical density, ρw = σ/L0 ∼ ρc ∼ 1/Gt20 , which provides us with a
unique relation between the energy scale of the defects and the present correlation
length, namely L0 ∼ η3/T 3

0Teq. The dark energy should be approximately homoge-
neous and isotropic on cosmological scales or otherwise that would result in strong
(unobserved) signatures on the cosmic microwave background. So the product

L0H0 ∼
( η

30MeV

)3
(3.32)
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must be much smaller than unity. Estimating that we need L0 < 1Mpc << H−1,
we find again η < 1MeV. Now, the averaged equation of state of a domain wall
network is given by

ww = 1

3
(3v2w − 2), (3.33)

where now vw is the averaged RMS velocity of the domain wall network. So in order
to accelerate the universe with an equation of state in agreement with observations
the wall velocities must necessarily be quite small, implying a friction-dominated
network, which in turn implies k < L0H0 << 10−4. Hence we see that the curvature
of the domainwallsmust unavoidably be very small. Note that for the case of ordinary
cosmic strings [3, 4] k is a parameter depending on the defect velocity, whose value
increases and closely approaches unity in the limit of small velocities. So the only
possibly realistic candidates are non-standard networks.

More robust constraints on domain walls can be obtained from the cosmic
microwave background, such as Planck data. Specifically, one can constrain
the allowed contribution of the domain walls to the CMB power spectrum [15].
Domain walls are tightly constrained by their temperature power spectrum
shape. High-resolution field theory simulations yield the energy-momentum
tensor of a network of domain walls in an expanding universe, covering the
radiation, matter and late-time Λ-domination eras. Thus the first precise quan-
titative constraint on the domain wall surface density, is a bound on the energy
scale

η < 0.93MeV, (3.34)

at the 95% CL for the standard Λ-cosmology. This limits the current fraction
of the universe’s energy density in domain walls to Ωw < 10−7.

3.3.1 Two-Field Models

We now discuss models described by two real scalar fields, which is the minimum
configuration required in order to form networks with junctions. We will discuss in
some detail the class of Bazeia–Brito–Losano models (henceforth referred to as the
BBL) [16]. The two-field model has the following Lagrangian

L = 1

2

2∑
i=1

(∂μφi∂
μφi) + V (φi), (3.35)
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where the φi are real scalar fields and the potential is

V (φi) = 1

2

2∑
i=1

(
r − φ2

i

r

)2

+ ε

4

(
φ4
1 + φ4

2 − 6φ2
1φ

2
2 + 9

)
. (3.36)

where r and ε are two real parameters. This potential has minima at the vertices of
a square in the plane (φ1, φ2), the orientation of which depends on the value of the
perturbation parameter ε which varies in the range−2 < εr2 < 1. There are a total
of six independent topological sectors connecting the different minima. In the range
−1/2 < εr2 < 1 the minima are

φ2
i = r2

1 − εr2
, i = 1, 2, (3.37)

while the range −2 < εr2 < −1/2 the minima are

φ2
i = r2

1 + εr2/2
, φ2

j 	=i = 0. (3.38)

This model allows for Y-type and X-type junctions depending on the value of ε,
which also controls the tension of the walls connecting each pair of vacua. There are
two classes of walls which we denote edges and diagonals. In the former the wall
joins two neighboring minima in field space, and there are four such walls. In the
latter the wall joins two opposite minima in field space, and there are two such walls.
In the limit of small ε the ratio of the diagonal and edge tensions is

σd

σe
= 2 + 3ε

1 + 21ε/8
. (3.39)

Depending on whether the diagonal walls have a tension smaller or larger than twice
that of the edge ones, the formation of a Y-type or X-type junction will be favored
on energetic grounds. In other words, in the case σd < 2σe (which corresponds to
ε > 0) we have only Y-type stable junctions, while for σd > 2σe (which occurs for
ε < 0) only X-type stable junctions will be formed.

There are two values of εr2 for which σd = 2σe: εr2 = 0 and εr2 = −1. Thus
for εr2 > 0 and εr2 < −1 Y-type junctions are favored while for −1 < εr2 < 0
X-type junctions are preferred. In passing, we note that the parameter ε determines
not only the ratio of the energies in the two sectors, but also influences, among
other things, how fast the unstable junctions will decay into the stable ones. These
expectations have been confirmed numerically. Note that the particular cases εr2 = 0
and εr2 = −1 do not represent marginal cases between the formation of the junctions
of the typeY andX. Instead, these choices decouple the twofields, and so no junctions
are formed anymore.
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For an interesting example of a marginal case where both types of junctions are
allowed, we can consider the model described by a complex scalar field Φ with
Lagrangian

L = ∂μΦ∂μΦ̄ − κ
∣∣ΦN − 1

∣∣2 ; (3.40)

where κ is a real parameter and N is integer. This model has vacua at

Φ = ei
n
N , n = 0, 1, . . . ,N − 1. (3.41)

We can alternatively define the field’s phase as φ, and it is then obvious that we will
have N minima, evenly spaced around φ. The case N = 2 produces standard domain
walls and N = 3 produces Y-type junctions, but the case N = 4 is slightly more
subtle. The potential (3.40) has supersymmetric properties, and hence the energy of
a specific solution depends only on the initial and final vacua. In other words, the
possible ways of connecting two opposite vacua (directly or through the intermediate
vacuum) will have the same energy. Hence this case is an example of the scenario
where σd = 2 σe. There is therefore no local energetic argument preferring one type
of junction to the other, and consequently Y-type and X-type junctions will always
co-exist.

3.3.2 Three-Field Models

This can easily be extended to the case of models with three scalar fields. We will
again consider the analogous BBL model [16], whose Lagrangian is

L = 1

2

3∑
i=1

(∂μφi∂
μφi) + V (φi), (3.42)

where the φi are real scalar fields and the potential has the form

V (φi) = 1

2

3∑
i=1

[(
r − φ2

i

r

)2

+ ε

(
φ4
i + 9

2

)]
− 3ε

(
φ2
1φ

2
2 + φ2

1φ
2
3 + φ2

2φ
2
3

) ;
(3.43)

and again r and ε are two real parameters. As in the two-field case, there are two
branches for the minima. In this case for −2/5 < εr2 < 1/2 the minima are of the
form

φ2
i = r2

1 − 2εr2
, i = 1, 2, (3.44)
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while for −1 < εr2 < −2/5 they are of the form

φ2
i = r2

1 + εr2
, φ2

j 	=i = 0. (3.45)

In the former case there are 8 minima, which are placed at the vertices of a cube
in the space (φ1, φ2, φ3). In the latter one, there are 6 minima, which are placed at
the vertices of an octahedron. The minima of the second case can alternatively be
thought of as being located at the centers of the faces of a cube.

In the first case (3.44), there are twenty-eight topological sectors and three kinds
of walls, which for obvious reasons we can refer to as edges, external diagonals and
internal diagonals. The number of different walls of each type is respectively twelve,
twelve and four. In the second case (3.45), there are fifteen topological sectors and
two kinds of walls, which we can refer to as edges and axes. The number of different
walls of each type is respectively twelve and three.

Again the choice of the parameter ε determines what type of junctions will
be present. For εr2 > −2/5, corresponding to the cubic solution of Eq. (3.44),
X-type junctions survive only if the junctions involving walls from the diagonal
sectors are energetically disfavored. This requires σid > 3σe (for the internal diag-
onals) and σed > 2σe (for the external ones). These conditions are only verified
for −2/5 < εr2 < 0, so in this range we do have stable X-type junctions. Con-
versely, for 0 < εr2 < 1/2 only the Y-type junctions survive, and these may involve
either of the diagonal sectors, so we effectively have two types of Y-junctions. For
εr2 < −2/5, corresponding to the octahedral solution of Eq. (3.45), both Y-type and
X-type junctions can survive. Note that in this octahedron branch X-type junctions,
as well as any Y-type junctions which involve the axes sector (as opposed to only the
edge sector), correspond to field space configurations where one of the three fields
vanishes. The case ε = 0 corresponds to the evolution of the three decoupled fields,
with no junctions being formed.

3.3.3 The Ideal Model

The availability of a large number of models (of which the two studied above are
but examples), all different but to some extent related, begs the question of which
features are fundamental and which are irrelevant details. More to the point, one
might ask what is the best possible model for domain walls, at least from the point
of view of its potential to produce frustrated networks.

In an ideal model, the probability that two domains in the same vacuum state
are close to each other should be as small as possible, since that will minimize the
probability of coarse-graining. This can be accomplished in models with a very large
number of different vacua (say, having the number of scalar fields involvedN → ∞).
On the other hand, all the possible domain walls should have equal tensions: if that
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were not the case we would be adding a different source of instability since the walls
with higher tension would tend to collapse.

The ideal model (as far as frustration is concerned) is therefore a model with a
very large number of vacua with all the domain walls connecting the various vacua
having the same tension. Due to energetic considerations, the stable junctions of
such a model must necessarily be of Y-type only. Geometrically speaking, the ideal
potential is therefore described by N real scalar fields and has mutually equidistant
minima. The number of vacua is N +1 for N real scalar fields, and the energetic cost
for a specific transition between any two of them is the same. An explicit realization
of such a model is given by the potential [14]

V = λ

N + 1

N+1∑
j=1

r2j
(
r2j − r20

)2
, r2j =

N∑
i=1

(φi − pij )
2, (3.46)

where pij are theN+1 coordinates of the vacua of the potential. The pij are chosen to
be the vertices of an (N + 1)-dimensional regular polygon, and the distance between
the vacua is given by r0. The model is therefore the sum of N +1 φ6 potentials. Each
of them has one minimum located at the center, and a continuum set of minima at
a distance r0 from the center. Note that N of these vacua are located exactly at the
centers of the other potentials. However, numerical simulations show that even in
these cases the networks do not frustrate but approach linear scaling [14].

3.4 Biased Walls

We now quantify whether (and, if so, how) the linear scaling solution breaks down
in several alternative scenarios, where the standard initial conditions are biased in
one of several ways; this analysis must necessarily rely both on analytic calculations
and on high-resolution field theory simulations.

A scalar field φ with Lagrangian density

L = 1

2
(∂μφ)(∂μφ) − V0

(
φ2

φ2
0

− 1

)2

, (3.47)

will have domain wall solutions, with the height of the potential barrier and surface
tension being respectively

V0 = λ

4
φ4
0 , σ ∼ √

λφ3
0 , (3.48)
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while the wall thickness is

δ ∼ φ0√
V0

∼ (
√

λφ0)
−1. (3.49)

By the standard variationalmethodsweobtain thefield equationofmotion (written
in terms of physical time t)

∂2φ

∂t2
+ 3H

∂φ

∂t
− ∇2φ = −∂V

∂φ
. (3.50)

where ∇ is the Laplacian in physical coordinates, H = a−1(da/dt) is the Hubble
parameter and a is the scale factor, which we assume to vary as a ∝ tλ; in particular,
in the radiation era λ = 1/2, while in the matter era λ = 2/3. This can then be
extended in three relevant ways.

An extension which preserves scaling occurs if domain walls are produced during
an anisotropic phase in the early universe and are subsequently pushed outside the
horizon (and freeze-out in comoving coordinates) due to inflation. In this case they
will retain the imprints of this anisotropy,whichwill only be erased once they re-enter
the horizon and become relativistic. Indications of this isotropization (and scaling)
were suggested in [17], though robust evidence for it was only presented in [18].

3.4.1 Biased Initial Conditions

The usual choice of initial conditions assumes φ to be a random variable uniformly
distributed between −φ0 and +φ0. Thus the fraction of the simulation box that is in
either minimum is initially 50%, and this fraction is maintained by the subsequent
evolution. One can, however, bias the initial conditions by changing the above frac-
tions; a previous inflationary phase could again be responsible for this, by creating
Hubble volumes with slightly different occupation fractions.

The phenomenological analysis of [19] suggests that for population fractions close
to 50% (i.e., a weak bias) a good fit is provided by

A

V
∝ η−1 exp (−η/ηc), (3.51)

while for a stronger bias
A

V
∝ exp (−η/ηc), (3.52)

is sufficient. In both cases ηc provides a characteristic timescale at which the
decay starts. Later on, analytic arguments by Hindmarsh suggested that one should
expect [20]
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A

V
∝ η−1 exp

[−κε2η2
]
, (3.53)

The subsequent analysis of [22] claims a qualitative agreement with this formula,
though no quantitative measure of it is provided.

Recently, larger simulations were carried out [18], with population fractions in
the negative and positive minima

f− = 1

1 + b
, f+ = b

1 + b
, (3.54)

or equivalently

ε = 1 − b

2(1 + b)
. (3.55)

These show that the phenomenological formulas of [19] provide very good fits. The
fitted values for ηc and the reduced chi-square of the best fit are respectively

1

ηc
= 0.328 ± 0.002, χ2

ν = 1.33 (3.56)

for the weak bias case b = 0.8 and

1

ηc
= 1.359 ± 0.002, χ2

ν = 1.18 (3.57)

for the strong bias case b = 0.6. If we fix the value of ε (corresponding to the value
of b being used) in Eq.3.53 for the analytic formula of Hindmarsh we find much
poorer fits: it is statistically clear that the square dependence on conformal time in
this fitting formula is incorrect.

3.4.2 Biased Potential

An asymmetry between the two minima of the potential can also be introduced
[21, 22]. In this case the volume pressure from the biasing provides an additional
mechanism which will affect the dynamics of these walls. A simple tilted potential is

V (φ) = V0

[(
φ2

φ2
0

− 1

)2

+ μ
φ

φ0

]
, (3.58)

and the asymmetry parameter (or energy difference between the two vacua) is

δV = 2μV0. (3.59)
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For a network with characteristic curvature radius R the surface pressure (from the
tension force) and the volume pressure (from the energy difference between the two
minima) are

pT = σ

R
, pV = δV . (3.60)

Depending on the relative importance of these two mechanisms, the walls may be
long-lived (as in the standard case) or disappear almost immediately.

At early times the surface tension tends to dominate (due to the small curvature
radii), and as long as this is the case we expect a linear scaling regime as in the
standard case. When the domains become large enough they will decay: we typically
expect this to happen when

R ∼ σ

δV
, (3.61)

and assuming that R ∼ η this corresponds to

η ∼ φ0

μ
√
V0

. (3.62)

Once the volume pressure becomes significant the walls are expected to move with
an acceleration

δV

σ
∼ λ1/2μφ0 (3.63)

and rapidly disappear. A sufficiently fast decay may allow these networks to avoid
the Zel’dovich bound [8].

Low-resolution simulationswere performed in [22], and assuming the fitting func-
tion

A

V
∝ η−1 exp

[−κ(μη)n
]
, (3.64)

they suggest that a good fit is provided by an exponent n = 2±1. Note that this n = 2
case again corresponds to the fitting formula (3.53). More recent high-resolution
simulations [18] confirm that the choice n = 2 provides good fits; specifically for
μ = 0.03

κ = (6.34 ± 0.01) × 10−3, χ2
ν = 1.05 (3.65)

while for μ = 0.1

κ = (6.36 ± 0.01) × 10−3; χ2
ν = 1.16 (3.66)

note that the value of κ is the same (within the uncertainty, which is listed at the
one-sigma level) in both cases.

Thus the above analysis leads us to conclude that the decay rate of networks with
biased initial conditions differs from that of networks with a biased potential, and in
particular only the latter is well described by Hindmarsh’s analytic fitting formula
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(3.53). The physical reason for this difference between the two scenarios is related
to the assumption of a Gaussian ansatz for the field probability distribution. For the
biased potential case this is a good approximation, but it is not so when we have
biased initial conditions.

3.5 Physical and Invariant Models

Thus far the characteristic length scale L was an invariant quantity—in other words,
a measure of the invariant string energy (and hence length). We now discuss how to
express the VOS model in terms of a physical length scale [23]. The invariant and
physical energies are related through the standard Lorentz factor, γ = (1− v2)−1/2,
as follows

Einv = γEph. (3.67)

Since for a defect with an n-dimensional worldsheet ρ ∝ L−(4−n), the characteristic
length scales are related via

Lph = γ
1

4−n Linv. (3.68)

This length scale is a measure of the total energy content of the network, or (in the
context of the VOS model assumption of a single independent characteristic scale)
the typical separation between defects. We may instead define a characteristic defect
size

Sinv = γ Sph; (3.69)

this would therefore be a characteristic length (or total length) for the strings, and a
characteristic area (or total area) for walls. This can then be equivalently expressed
in terms of a characteristic radius S ∝ Rn−1, leading to

Rinv = γ
1

n−1Rph. (3.70)

Let us consider the standard VOS model, whose evolution equations are

(4−n)
dLinv
dt

= (4−n)HLinv+v2
Linv
�d

+cv,
dv

dt
= (1−v2)

[
k

Rinv
− v

�d

]
. (3.71)

For clarity, we have now explicitly identified the invariant quantities. As previously
discussed, for a universe with a ∝ tλ (with 0 < λ < 1), these equations have the
attractor scaling solution

(
L

t

)2

≡ ε2 = k(k + c)

n(4 − n)λ(1 − λ)
(3.72)
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v2 = 4 − n

n

1 − λ

λ

k

k + c
. (3.73)

Note that in this attractor solution frictional damping due to particle scattering is neg-
ligible compared to that due to the Hubble expansion. We can now change variables
using

dγ

dt
= vγ 3 dv

dt
(3.74)

leading to
d(γ v)

dt
= kγ

R
− γ v

�d
(3.75)

(4 − n)
dLph
dt

= (4 − n)HLph + kv
Lph
Rinv

+ γ
1

4−n cv. (3.76)

Finally, noting that in the canonical model R is an invariant quantity which in a one-
scale model context is identified as Rinv ≡ Linv and transforming it to the physical
one, we finally obtain

d(γ v)

dt
= kγ 1+ 1

4−n

Lph
− γ v

�d
(3.77)

(4 − n)
dLph
dt

= (4 − n)HLph + v(k + c)γ
1

4−n . (3.78)

Note that the damping length scale does not appear in the evolution equation for the
physical length scale, but only in the one for the invariant length scale (as well as in
the one for the velocity). If we now look for attractor scaling solutions we get

ε2ph = γ
2

4−n ε2inv, (γ v)2ph = γ 2v2inv, (3.79)

which is trivially correct and consistent given the various definitions above.
We can also confirm how the model parameters c and k behave as one switches

between the physical and invariant approaches. Starting with the energy loss term
c, one notes that the probability dP that a defect segment will encounter another
segment in a time interval dt should be given approximately by

dP = −dρ

ρ
= (4 − n)

dLph
Lph

∼ cph
vdt

Lph
∼ cph

vdt

γ
1

4−n Linv
. (3.80)

From this we infer that
cph = γ

1
4−n cinv. (3.81)

For the specific case of strings, if cinv = c0γ −1/2 (with c0 being a constant), then it
follows that cph = γ 1/2cinv = c0 = const. Our analysis shows that analogous results
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hold regardless of the defect dimensionality. A similar argument can be made for the
curvature parameter, leading to

kph = γ
1

4−n kinv. (3.82)

One important point pertaining to the behavior of this parameter is that k → 0 as
v → 1. With these relations between the physical and invariant model parameters,
we can finally write

(4 − n)
dLph
dt

= (4 − n)HLph + (cph + kph)v (3.83)

dv

dt
= (1 − v2)

[
kph
Lph

− v

�d

]
, (3.84)

or equivalently
d(γ v)

dt
= γ kph

Lph
− γ v

�d
, (3.85)

which are the evolution equations for the VOS model based on physical rather than
invariant parameters.

3.5.1 Contracting Universes

As an application of the model, we now discuss the evolution of defect networks in
contracting universes, clarifying and extending the results of [24, 25].We temporarily
ignore the effects of friction due to particle scattering (in other words, assume �f →
∞). The consequences of relaxing this assumption will be discussed in the following
sub-section.

The key physical difference between this case and the standard one is that in a con-
tracting phase theHubble parameter becomes negative—in otherwords it becomes an
acceleration term (rather than a damping term). As a result the velocity will increase
and the network will become ultra-relativistic, with v → 1. This is true even though
in this limit we expect k(v) → 0. In this case one easily finds from Eq. (3.85) an
asymptotic behavior

γ v ∝ a−n. (3.86)

On the other hand, from Eq. (3.71) one finds for the invariant length scale

Linv ∝ a
4

4−n , (3.87)
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which can be re-expressed in terms of the corresponding physical scale

Lph = γ
1

4−n Linv ∝ a. (3.88)

This last relation agrees with the intuitive expectation that the defect network is being
conformally contracted as the universe collapses. Similarly for the characteristic
radius for extended defects we have

Rph ∝ a, Rinv = γ
1

n−1Rph ∝ a− 1
n−1 . (3.89)

We also note that in all cases the network’s energy density behaves as

ρ ∝ L−(4−n)
inv ∝ a−4; (3.90)

again this is to be expected: an ultra-relativistic network behaves as a radiation fluid.
An interesting consequence of this is that, even if the defect network eventually
dominates the energy density of the universe, the universe’s contraction rate will
still be radiation-like. In any case, as the temperature rises as approaches that of the
defect-forming phase transition we expect the defects to effectively dissolve into the
high-density background.

We can further quantify how this asymptotic scaling regime is approached. This
corresponds to studying the behavior of Eqs. (3.83) and (3.85) when the cph and kph
terms provide a small but not entirely negligible contribution. In the former case,
assuming for simplicity that in this regime the scale factor behaves as a ∝ (tc − t)λ,
where tc is the Big Crunch time and 0 < λ < 1, we find

Lph ∝ a

[
1 − cph

(1 − λ)(4 − n)
a

1
λ
−1

]
, (3.91)

and as expected the correction factor approaches unity as a → 0. Similarly for
Eq. (3.85) we find the approximate solution

γ ∝ a−n exp

[
− kph
1 − λ

a
1
λ
−1

]
≈ a−n

[
1 − kph

1 − λ
a

1
λ
−1

]
. (3.92)

Note that the form of the correction term is quite similar to that for the length scale
equation, the two differences being that the γ correction is independent of the defect
dimensionality (there’s no dependence on n) and that kph is expected to be negative
in this limit and to approach zero as v → 1 while cph is expected to be a positive
constant. Finally we can put the two together using Eq. (3.68), obtaining

Linv ∝ a
4

4−n

[
1 − cph − kph

(1 − λ)(4 − n)
a

1
λ
−1

]
, (3.93)

which matches the physical intuition that cph should be more important than kph in
determining this correction.
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3.5.2 Friction Domination

In the previous sub-section the effects of friction due to particle scattering were
neglected. This is a reasonable assumption for heavy defects (say, those formed
around the GUT scale), but for very light defects (say, those formed around the
electroweak scale) friction will dominate over Hubble damping for a considerable
period. In what follows we discuss how the above solutions change in this case. We
are comparing the Hubble and friction contributions to the damping length scale

1

�d
= nH + 1

�f
= nH + Θ

an+1
, (3.94)

where for convenience we wrote the friction length scale in terms of the scale factor
by introducing a constant parameter Θ which is related to the parameter θ defined in
Eq.2.43. Both of these parameters count the number of effective degrees of freedom
which interact with the defect.

The two terms have generically different dependencies on the scale factor: the
Hubble term behaves asH ∝ a−1/λ (for a scale factor a ∝ tλ) while the friction term
behaves as �−1

f ∝ a−(1+n). Therefore it follows that for a fast expansion or contraction
rate, λ(1 + n) > 1 the Hubble term decays more slowly (and eventually dominates)
in an expanding universe, and conversely it grows more slowly in a contracting
universe. In the opposite regime of slow expansion or contraction, corresponding to
λ(1 + n) < 1, it is the friction term that decays more slowly in the expanding case
(and grows more slowly in a contracting one). Interestingly, the transition between
these fast and slow regimes depends on the dimensionality of the defect: it occurs
at λ = 1/2 (that is, the radiation era) for monopoles, at λ = 1/3 for cosmic strings,
and at λ = 1/4 for domain walls.

It is interesting to study in full generality the behavior of the defect networks in
regimeswhere the friction term dominates, first by considering all possible expansion
rates (that is, whether λ is fast or slow) and second by considering both expanding
and contracting universes. The interesting result is that not only do the stretching and
Kibble regimes still exist, but they are the only possible ones. Neglecting the Hubble
damping term and keeping the friction one, the evolution equations are

(4 − n)
dLinv
dt

= (4 − n)HLinv + Θ
v2Linv
a1+n

+ cv (3.95)

dv

dt
= (1 − v2)

[
k

Linv
− Θ

v

a1+n

]
. (3.96)

The invariant index in the lengthscale L was kept for completeness, although in this
case the physical and invariant lengths are effectively the same: it is easy to show that
the only possible attractor solutions of this system have decreasing non-relativistic
speeds (v → 0), and therefore the Lorentz factor approaches unity. From this one

http://dx.doi.org/10.1007/978-3-319-44553-3_2
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can then find the two possible solutions. For low density, slow networks the energy
loss (chopping term) is negligible and the network is simply conformally stretched
(or contracted) as the universe evolves. This is therefore the stretching regime

L ∝ a, v ∝ �f

L
∝ an. (3.97)

Note that although the defect velocity is small, it is growing if the universe is expand-
ing, and decreasing if the universe is collapsing. This implies that this solution must
always be a transient one. If the chopping term cannot be neglected we have the
Kibble regime [3]

L ∝
√
a1+n+ 1

λ ∝
√

�f

|H| , v ∝ �f

L
∝

√
a1+n− 1

λ ∝ √
�f |H|. (3.98)

In this case the correlation length is the geometric mean between the damping length
and the horizon length. Note that for fast expansion rates λ(1 + n) > 1 the velocity
increases in the standard case of an expanding universe (in which case the solution
is a transient one, and is followed by linear scaling) but it would be an attractor
for a contracting universe. Conversely, for slow expansion rates λ(1 + n) < 1 the
velocity decreases in an expanding universe (in agreement with the fact that the
friction term does dominate asymptotically in this case) whereas it increases in a
collapsing universe, meaning this solution would be transient.
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Chapter 4
The Rest of the Zoo

Abstract We present an extension of the velocity-dependent one-scale model
suitable for describing the evolution of networks of local and global monopoles,
including the cases where these are attached to various numbers of strings. We
discuss the key dynamical features that need to be accounted for, in particular the fact
that the driving force is due to the other monopoles (rather than being due to local
curvature as in the case of extended objects) and new forms of energy loss terms
due to monopole-antimonopole capture and annihilation. We find that in many cases
the networks evolve towards the standard scaling solution but other scaling laws can
also exist, depending on the number of strings involved, the universe’s expansion rate
and the network’s energy loss mechanisms.We also study the particularly interesting
case of semilocal string networks.

4.1 Monopole Networks

The general physical properties of monopoles have been described in [1–3]. We
start by describing the extensions to the VOS model necessary to account for these
specific properties, and will also provide a preliminary calibration for the case of
global networks [4].

Consider a network of defects with n-dimensional worldsheets (n = 1 for
monopoles) evolving in (3 + 1) space-time dimensions. Temporarily assume them
to have velocity v, to be non-interacting and (for extended objects) planar. Then
the momentum per unit comoving defect volume—simply the momentum, for
monopoles—goes as

p ∝ a−1 =⇒ vγ ∝ a−n (4.1)

from which we get by differentiation

dv

dt
+ nH(1 − v2)v = 0. (4.2)
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On the other hand, under the above hypotheses the average number of defects in a
fixed comoving volume should be conserved, which implies

ρ ∝ γ a−(4−n) (4.3)

and again, differentiating and using the velocity equation, we get

dρ

dt
+ H[(4 − n) + nv2]ρ = 0. (4.4)

The hypotheses so far are unrealistic, but we can use this as a starting point to build
an accurate model. The validity of this process can be checked for the case of cosmic
strings and domain walls, where more rigorous derivations have been presented in
the previous two chapters.

Let us start by defining a characteristic length scale

L4−n = M

ρ
, (4.5)

whereM will have dimensions appropriate for the defect in question (i.e., monopole
mass, string mass per unit length, or wall mass per unit area), and can also be written
M ∼ ηn, with η being the symmetry breaking scale. Also, we interpret the velocity
as being the RMS velocity of the defect network, and allow for energy losses due
to interactions, which for extended defects can usually be modeled (on dimensional
grounds) by

dρ

dt
= −c

v

L
ρ; (4.6)

we will see below that this ρ dependence also applies to global monopoles while for
local monopoles the energy loss is proportional to ρ2. More importantly, defects will
be slowed down by friction due to particle scattering, which can be characterized by
a length scale

f = −M

�f
γ v (4.7)

where we are defining

�f ≡ M

θTn+1
∝ an+1 (4.8)

and θ is again a parameter counting the number of particle species (or degrees of
freedom) interacting with the defect. We can also define an overall damping length
which includes both the effect of Hubble damping and that friction due to particle
scattering

1

�d
= nH + 1

�f
. (4.9)
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As previously discussed the friction length scale will in most circumstances grow
faster than theHubble length, therefore frictionwill be dominant at early times, while
Hubble damping will dominate at sufficiently late times.

Putting together all of the above effects, we find the following evolution equation
for the characteristic length scale L and RMS velocity v

(4 − n)
dL

dt
= (4 − n)HL + v2

L

�d
+ cv (4.10)

dv

dt
= (1 − v2)

(
f − v

�d

)
(4.11)

where in the latter we have included the possibility of further driving forces affecting
the defect dynamics. Note that f has the units of acceleration: it is the force per unit
mass. For extended objects (walls and strings) we already know that this driving
force is the local curvature

f ∼ k

L
; (4.12)

we are implicitly assuming that our characteristic length scale is the same as the defect
curvature radius. For monopoles the situation is more complicated, since there are
forces due to other monopoles. The force between a pair of local monopoles has the
following form

flocal ∼ k

ηL2
. (4.13)

For global monopoles the force is independent of distance, but note that their mass
grows proportionally to the distance; therefore the acceleration is in fact inversely
proportional to distance,

fglobal ∼ k

L
. (4.14)

We see that they are in some sense like local strings: a monopole will be effec-
tively heavier when seen on larger scales, and its acceleration should therefore be
correspondingly smaller.

The next issue is the fact that there can be many monopoles in a Hubble volume,
so the various forces acting on a given one will partially cancel each other. A simple
way in which one can try to model this is as a 1/

√
N effect. In other words, the

acceleration f becomes f /
√
N , where the number of defects N in a Hubble volume

d3H is given by

Ng =
(
dH
L

)3

. (4.15)
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This accurately models global monopoles. For the local case, the existence of anti-
correlations in the positions of monopoles and anti-monopoles implies that the num-
ber of defects is approximately given by [5]

Nl ∼
(
dH
L

)2

. (4.16)

This is to be expected: since the nearest neighbor to a monopole is likely to be
an antimonopole (and vice-versa), typically the attractive forces between nearby
pairs will be larger than in the uncorrelated case. In other words, the cancellation
mechanism is less strong, which is equivalent to saying that the effective number of
neighbors is smaller.

Finally, there is the issue of energy losses due to monopole annihilations. The
generic form given by Eq. (4.6) is valid for the case of global monopoles (again,
these are in some sense like local strings). For a single monopole-antimonopole
pair ρ̇ ∝ −ρ/R. This is another way of saying that the timescale for energy losses
corresponds (in the fundamental units we are using) to the lengthscale R. On the
assumption that the two lengthscales are comparableR ∼ L and thismatchesEq. (4.6)
apart from the allowance for generic velocities. Note that here we are assuming that
the separation betweenmonopole-antimonopole pairs is comparable to the network’s
characteristic lengthscale. Although the two need not be the same, this is a valid
assumption in the context of the simple one-scale model we are considering.

In the local case the Coulomb forces between the monopoles and antimonopoles
lead to a different energy loss rate. A detailed study by Preskill which implicitly
allows for the effect of the anti-correlations [6], leads to the following evolution
equation for the monopole number density

dnM
dt

+ 3HnM = −Cηp−2 n
2
M

Tp
, (4.17)

where C is a dimensionless constant. On physical grounds we should expect that
p ≤ 3. In terms of the correlation length this has the form

3
dL

dt
= 3HL + A

L2Tp
. (4.18)

As for the specific values of p, one physically expects a short, transient high-
temperature regime where p = 2, and a longer low-temperature regime with
p = 9/10. This is important because if p < 1 annihilations are expected to become
unimportant, in which case we expect n ∝ T 3, which corresponds to L ∝ t1/2. On
the other hand, if p > 1 then annihilations are always relevant, and in that case one
expects n ∝ Tp+2, which corresponds to L ∝ t(p+2)/6. (Notice that this analysis is
for the radiation dominated epoch.) It is therefore important to see if we can recover
these results using the model in the local case.
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4.1.1 Evolution of Local Monopoles

We can now look for scaling solutions for the characteristic lengthscale and RMS
velocity of the monopoles. Starting with the case of local monopoles, the evolution
equations are

3
dL

dt
= 3HL + v2

L

�d
+ Cηp−2

L2Tp
(4.19)

dv

dt
= (1 − v2)

(
k

ηL2

L

dH
− v

�d

)
. (4.20)

We can start by finding solutions in Minkowski space-time, by settingH = 0. In this
case the asymptotic scaling solution has the form

L3 ∝ ηp−2

Tp
t (4.21)

and the monopoles will freeze, with the scaling law for the velocity depending on
the behavior of the friction length scale. If we have �f = const we find

v ∝ t−4/3, (4.22)

while for the arguably more realistic �f ∝ L the freezing happens more slowly,

v ∝ t−1. (4.23)

In the (unrealistic) frictionless limit �f → ∞ the correlation length still has the same
scaling, but velocities asymptote to the speed of light, v → 1.

For an expanding universe with a ∝ tλ, there are two possible scaling laws, which
depend on the values of p and on λ. For the case

p < 3 − 1

λ
(4.24)

we will have
L ∝ a; (4.25)

here energy losses due to annihilation are unimportant and the monopoles are con-
formally stretched. Note that in the radiation era we do recover L ∝ t1/2, and in that
case the threshold is indeed p < 1. This recovers and generalizes the Preskill results.
In the opposite case

p > 3 − 1

λ
(4.26)
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annihilations are dynamically important, and the scaling law is

L ∝ t(λp+1)/3; (4.27)

again we recover the expected Preskill result L ∝ t( p+2)/6 for the radiation era.
Note that for p > 3 − 1/λ we have (λp + 1)/3 > λ: as expected, in this regime
the evolution is faster than the above (conformal stretching) one. This difference
illustrates the effect of the annihilations.

Interestingly, in both regimes the scaling law for the velocities is the same, namely

v ∝ t−λ ∝ a−1 ∝ T . (4.28)

This is a nice and simple result, and it disproves the naive expectation that the
monopoles should move with thermal velocities (which would correspond to
v ∝ √

T ).

It is also worth pointing out that linear scaling (L ∝ t) will occur for the case
λp = 2,while forλp > 2 the correlation lengthwill grow superluminally. In the
latter case annihilations are so efficient that on average there will eventually
be less than one monopole per Hubble volume. Since we physically expect
p ≤ 3, then λp = 2 corresponds to λ ≥ 2/3. Hence linear scaling can occur
in the matter era but not in the radiation era. On the other hand, superluminal
scaling requires λ > 2/3 and so it can’t occur in either epoch—this is a simple
manifestation of the monopole problem in standard cosmology.

The above solutions hold for decelerating universes (with 0 < λ < 1) but
also for power-law inflating universes (that is, with λ ≥ 1). On the other hand,
in de Sitter space (with a ∝ eHt) we have

L ∝ a, p ≤ 3 (4.29)

L ∝ ap/3, p > 3, (4.30)

although we expect that the latter behavior for p is physically unrealistic. For
the velocity we still have

v ∝ a−1. (4.31)

Thus in an inflating universe the monopoles freeze and are conformally
stretched, being pushed outside the horizon. After the end of inflation there will
be much less than one monopole per horizon and their velocities will be infin-
itesimal, so they will keep being conformally stretched until they re-enter the
horizon. In order to solve the monopole problem one needs sufficient e-folds
of inflation to ensure that the monopoles have not yet re-entered.
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4.1.2 Evolution of Global Monopoles

A similar analysis can be done for the global case. We shall see that the different
force and energy loss terms will lead to very different scaling laws. This case is also
interesting because numerical simulations (albeit low-resolution ones) exist against
which we can compare our results. In this case the evolution equations will have the
general form

3
dL

dt
= 3HL + v2

L

�d
+ cv (4.32)

dv

dt
= (1 − v2)

[
k

L

(
L

dH

)3/2

− v

�d

]
. (4.33)

Again we can start with the Minkowski space-time case. In the unrealistic fric-
tionless limit �f → ∞ we now have asymptotically

L = 1

3
ct, v = 1 (4.34)

so global monopoles will become ultra-relativistic. The case of a constant friction
length scale is not relevant for global monopoles: due to the linear divergence of
their masses, a more realistic situation in Minkowski space time would be that of
the friction length scale being proportional to the correlation length itself, �f ∝ L.
In that case we find the following scaling law

L ≡ εt = 1

3
v0(v0 + c)t, v = kε3/2 = const. (4.35)

This behavior is to be contrasted with the case of local monopoles, whose veloci-
ties always approach zero (except in the unrealistic frictionless case). Note that in
principle any value of the velocity is a possible solution, including the limit v = 1.
An interesting question is whether the friction will make the monopole velocities
stabilize at some fixed value (and if so, how small this is) or if they will still become
arbitrarily close to the speed of light. Incidentally, notice that assuming �f ∝ tσ in
Minkowski space, requiring a linear scaling L ∝ t implies v = const and σ = 1. In
other words, no other non-trivial behavior of the friction length would lead to linear
scaling for the network.

Now let us consider a generic expansion law a ∝ tλ. Here, just as for local strings,
the only possible scaling law is linear scaling

L = εt, v = v0 = const., (4.36)

which is what is found in numerical simulations. Just as in the Minkowski case there
are two branches of the solution: the velocities may or may not be ultra-relativistic!
Firstly, the ultra-relativistic scaling regime is
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v0 = 1, ε = c

3 − 4λ
; (4.37)

note that this can only hold for λ < 3/4, but is in principle allowed both in the
radiation and in the matter eras. Secondly, the more standard (sub-luminal) scaling
regime will is

ε = cv0
3(1 − λ) − λv20

, λv0 = k(1 − λ)3/2ε1/2; (4.38)

These relations could be solved explicitly for ε and v0, but the corresponding expres-
sions would not be too illuminating. However, simplified and physically suggestive
solutions can be displayed for both limits of the expansion power λ. In the limit
λ → 0, we have

ε = 1

3
cv0. (4.39)

Not surprisingly, this is similar to the Minkowski space-time scaling. On the other
hand, in the limit λ → 1, we find

v0 = 1

3
ck2(1 − λ)2. (4.40)

Here the scaling velocity becomes arbitrarily small (v → 0) and L ∝ a ∝ t so
asymptotically this is a conformal stretching regime.

Unlike the ultra-relativistic branch, this non-luminal branch can exist for any λ

(that is, for any expansion law), though note that there is a constraint on the scaling
value of the velocity

v20 < 3(
1

λ
− 1); (4.41)

this is trivial for λ < 3/4 (in such cases any scaling value for the velocity is allowed
in principle), but restrictive for faster expansion rates. Note in particular that it agrees
with the above finding that v = 1 is only allowed for λ < 3/4.

In passing we also note that the linear scaling solution L ∝ t, v = const will
also hold if we consider a friction length �f ∝ L instead of the usual scaling with
temperature. Even in that case no other scaling solutions exist. The only change is that
in the scaling coefficients (ε and v0 above), we would need to interpret the parameter
λ as having a renormalized value, instead of the value given by the expansion rate.We
can also find scaling solutions in inflating universes. Here there is a unique solution,
both for power-law inflation and for the de Sitter case, namely

L ∝ a, v ∝ a−1; (4.42)

the solution is the same as in the local case, and the number of e-folds of inflation
required to keep the monopoles outside the horizon by the present day should be the
same in both cases.
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As was done for domain walls [7], it would be interesting to carry out high-
resolution numerical simulations of global monopoles with a range of different
expansion rates in order to check these solutions and provide a good calibration
for the model. For the moment we can use the results of Bennett and Rhie [8]
and of Yamaguchi [9] for the correlation length, and also the latter’s for the
velocities, in order to make some simple comparisons. We start by translating
these results into our scaling parameter ε in the radiation and matter eras,
finding

εr,BR ∼ 1.32, εm,BR ∼ 1.89 (4.43)

εr,Y ∼ 1.32, εm,Y ∼ 1.59. (4.44)

Notice the remarkable agreement in the radiation era; even in the matter era
the difference is small considering the relatively low resolution and dynamic
range of the simulations. Now, since Yamaguchi’s measurement is consistent
with v = 1, let us assume that this is the case and solve for the energy loss
parameter c. We then find

cr,BR ∼ 1.32, cm,BR ∼ 0.63 (4.45)

cr,Y ∼ 1.32, cm,Y ∼ 0.53; (4.46)

notice that there is a factor of twodifference between the values of the parameter
in the radiation and matter eras, while we would expect to find similar values
in both epochs if the model is broadly correct and the parameter c is a constant
(or nearly so). On the other hand, if we assume that we are in the sub-luminal
branch (using in both casesYamaguchi’s values for the velocities, sinceBennett
and Rhie don’t provide a measurement),

cr,BR ∼ 1.32, cm,BR ∼ 1.35 (4.47)

cr,Y ∼ 1.32, cm,Y ∼ 1.15; (4.48)

here we can claim a very good agreement, considering the resolution of the
simulations. Also in this branch we can compare the scaling values of the
velocities; according to the model we expect the ratio between the matter and
radiation era scaling values to be

vm
vr

=
(

εm

6εr

)
∼ 0.5, (4.49)

while Yamaguchi finds vm/vr ∼ 0.8; again given the error bars wewould argue
that the agreement is encouraging.
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4.2 Monopoles Attached to One String

It is becoming increasingly clear, particularly in the context of models with extra
dimensions such as brane inflation, that hybrid defect networks of monopoles con-
nected by strings are common. Here we extend our analysis to the case of monopoles
attached to one string (the so-called hybrid networks). They arise in the following
symmetry breaking scheme [10]

G → K × U(1) → K . (4.50)

The first phase transition will lead to the formation of monopoles, and the second
produces strings connectingmonopole-antimonopole pairs; the corresponding defect
masses will be

m ∼ 4π

e
ηm, μ ∼ 2πη2

s , (4.51)

while the characteristic monopole radius and string thickness are

δm ∼ (eηm)−1, δs ∼ (eηs)
−1, (4.52)

In the simplest models all the (Abelian) magnetic flux of the monopoles is confined
into the strings. In this case the monopoles are often dubbed ’beads’. However,
in general—and in most realistic—models stable monopoles have unconfined non-
Abelian magnetic charges. As in the case of isolated monopoles, the key difference
between the two cases is that unconfined magnetic fluxes lead to Coulomb-type
magnetic forces between the monopoles.

Up to the second transition the above formalism for plain monopoles applies,
but the hybrid network requires a separate treatment [11]. From the point of view
of analytic model-building, the hybrid case presents one crucial difference. In the
case of isolated monopoles their evolution can be divided into a pre-capture and
a post-capture period: captured monopoles effectively decouple from the rest of
the network, and most of the radiative losses occur in the captured phase, where
monopole-antimonopole pairs are bound and doomed to annihilation. This means
that the network’s energy losses could be described as losses to bound pairs and
we did not need to model radiative losses explicitly. In the present scenario the
monopoles are captured ab initio (as soon as the strings form) and therefore we will
need to rethink the loss terms—as well as to account for the force the strings exert
on the monopoles.

The lifetime of a monopole-antimonopole pair is to a large extent determined by
the time it takes to dissipate the energy stored in the string, εs ∼ μL for a string of
length L. This is because the energy in the string is typically larger than (or at most
comparable to) the energy of the monopole. Monopoles are pulled by the strings with
a force Fs ∼ μ ∼ η2

s , while the frictional force acting on them is Ffri ∼ θT 2v; the
corresponding friction lengthscale is �f ≡ M/(θT 2) ∼ ηm/(θT 2).
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If there are non-confined fluxes, accelerating monopoles can also lose energy by
radiating gauge quanta. The rate of energy loss is expected to be given by the classical
electromagnetism radiation formula

ε̇gauge ∼ − (ga)2

6π
∼ −

(gμ
m

)2 ∼ −
(

μ

ηm

)2

(4.53)

where g is the magnetic charge. This should be compared with the ratio of gravita-
tional radiation losses, ε̇grav ∼ −Gμ2; the ratio of the two is

ε̇grav

ε̇gauge
∼

(
ηm

mPl

)2

, (4.54)

so if there are unconfined fluxes the gauge radiation will be dominant (except in the
extreme case where the monopoles form at the Planck scale itself). The characteristic
timescales for this process to act on amonopole-antimonopole pair attached to a string
of length L can therefore be written

τrad ∼ L

Q
(4.55)

whereQgauge = (ηs/ηm)2 for gauge radiation andQgrav = (ηs/mPl)
2 for gravitational

radiation. These radiation losses should be included in themodel’s evolution equation
for the characteristic lengthscale L of the monopoles.

One can also have hybrid networks of global monopoles connected by global
strings [10]. Just as in the case of plain monopoles, the scale-dependent monopole
mass and the different behavior of the forces between monopoles (long-range rather
than Coulomb-type) change the detailed properties of these defects and warrant a
separate treatment. The tension of a global string is Fs ∼ 2πη2

s ln(L/δs) so now
there’s an additional logarithmic correction, while the long-range force between the
monopoles is

Fm ∼ 4πη2
m. (4.56)

If ηm >> ηs the monopoles initially evolve as if they were free, with L ∼ t. Note
that this scaling law implies that there are some monopole annihilations. The strings
become dynamically important when Fs ∼ Fm, that is

ln (tηs) ∼ η2
m

η2
s

, (4.57)

at which point they pull the monopole-antimonopole pairs together, and the network
is expected to disappear within a Hubble time. This leads to the expectation that the
network will typically annihilate shortly after the strings form.
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4.2.1 Local Case

In this case the VOS model evolution equations take the form

3
dL

dt
= 3HL + v2L

(
H + θT 2

ηm

)
+ Q (4.58)

where Q includes the energy loss terms from gauge radiation (if it exists), gravita-
tional radiation and loop production discussed earlier, possibly with some coefficient
of order unity, and

dv

dt
= (1 − v2)

[
km

ηmL2

L

dH
+ ks

η2
s

ηm
− v

(
H + θT 2

ηm

)]
. (4.59)

The velocity equation now has two accelerating terms, due to the strings and the
inter-monopole Coulomb forces, which we parametrize with coefficients ks and km
which are expected to be of order unity. An exception is the Abelian case, where
there are no Coulomb forces, so km = 0 in this case.

It’s important to realize that friction will play a crucial role in the radiation era,
where it is more important than the Hubble damping term (the opposite is true for
the matter era). Indeed in the radiation era we can write

1

�d
= H + θ

T 2

ηm
= 1

t

(
1

2
+ θ

mPl

ηm

)
≡ λ

t
(4.60)

where in the last step we have defined an effective coefficient that is usually much
larger than unity (except if there were no particles interacting with the string, θ = 0).
In other cosmological epochs (in particular the matter-dominated era) the friction
term is negligible, and we have λ = λ (where we are defining a ∝ tλ) as usual. It is
also illuminating to compare the various terms in the velocity equation. The ratio of
the monopole and string accelerating terms is

Fm

Fs
= km

ks

1

LdHη2
s

∼
(

δs

L

) (
δm

dH

)
(4.61)

which is always much less than unity (except if ks happened to be extremely small).
The Coulomb forces are always negligible relative to the string forces. This was
expected, since as we pointed out earlier the energy in the strings is typically larger
than that in the monopoles. A useful consequence is that we do not need to treat
the Abelian and non-Abelian cases separately. Now let us compare the damping and
string acceleration terms

Fd

Fs
= λ

ks

(
ηm

mPl

) (
T

ηs

)2

v ∼ θ

ks

(
T

ηs

)2

v (4.62)
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where in the last step we assumed that we are in the radiation era. Since the evolution
of themonopoles before string formation leads to a scaling law v ∝ a−1 formonopole
velocities [4], which are therefore extremely small when the strings form, the above
ratio is always less than unity.

This analysis therefore quantitatively confirms the naive expectation that as soon
as the strings are formed the string acceleration termwill dominate the dynamics and
drive the monopole velocity to unity. Recalling that the initial monopole velocity can
effectively be taken to be zero, we can write the following approximate solution for
the monopole velocity

ln
1 + v

1 − v
= 2fs(t − ts) (4.63)

and we can compare the epoch at which the monopoles become relativistic (tc) with
that of the string-forming phase-transition (ts), finding

tc
ts

∼ 1 + ηm

mPl
, (4.64)

so they become relativistic less than aHubble time after the epoch of string formation;
notice that this ratio depends only on the energy scale of the monopoles, and not on
that of strings.

We can now proceed to look for solutions for the characteristic monopole length-
scale L, assuming for simplicity that v = 1 throughout. There are two possibilities.
There is a standard linear scaling solution

L = Q

3(1 − λ) − λ

t (4.65)

in which the energy loss terms effectively dominate the dynamics. In this case the
monopole density decays slowly relative to the background density,

ρm

ρb
∝ t−1. (4.66)

This scaling law can in principle exist for any cosmological epoch provided λ < 3/4
(for example, in the matter era we have L = 3Qt). However, in the radiation epoch
we would need the unrealistic θmPl/ηm < 2, which effectively would mean that
friction is absent (θ = 0). The alternative scaling solution, for epochs when friction
dominates over Hubble damping (such as the radiation era) and also for any epoch
with λ ≥ 3/4 (even without friction) has L growing with a power α > 1 given by

α = λ + 1

3
λ = 1

3

(
4λ + θ

mPl

ηm

)
; (4.67)
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if there is no friction the scaling law can simply be written

L ∝ a4/3, (4.68)

from which one sees that although the Hubble term is dominant, the scaling is faster
than conformal stretching (L ∝ a) because the velocities are ultra-relativistic. The
important point here is that in this regime L grows faster than L ∝ t, and the number
of monopoles per Hubble volume correspondingly decreases.

At the phenomenological level of our one-scale model, this corresponds to the
annihilation and disappearance of the monopole network. We can easily estimate
the timescale for this annihilation: it will occur when the number of monopoles per
Hubble volume drops below unity (or equivalently L > dH ). Assuming a lengthscale
Ls = sts at the epoch of string formation (note that the evolution of the monopole
network before the stings form is such that s can be much smaller than unity), we find

ta
ts

∼ 1 + 3

θ

(
2

s
− 1

)
ηm

mPl
, (4.69)

which is comparable to the estimate we obtained using the velocity equation,
Eq. (4.64). This is a much faster timescale than the one associated with radiative
losses, which can therefore be consistently neglected in this case. There’s nothing
unphysical about this ’superluminal’ behavior, as explained in [12]. We do have a
physical constraint that the timescale for the monopole disappearance should not be
smaller than the (initial) length of the string segments, ta ≥ Ls, but this should always
be the case for the above solutions.

This analysis shows that themonopolesmust annihilate during the radiation epoch,
if one wants to solve the monopole problem by invoking nothing but a subsequent
string-forming phase transition. Any monopoles that survived into the matter era
would probably be around today. It also shows that monopoles can also be diluted
by a sufficiently fast expansion period. Inflation is of course a trivial example of this,
but even a slower expansion rate 3/4 < λ < 1 would be sufficient, provided it is
long enough to prevent the monopoles from coming back inside the horizon by the
present time.

4.2.2 Global Case

In the global case the evolution equations will be

3
dL

dt
= 3HL + v2

L

�d
+ cv (4.70)

dv

dt
= (1 − v2)

[
km
L

(
L

dH

)3/2

+ ks
L

η2
s

η2
m

ln
L

δs
− v

�d

]
, (4.71)
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and the scale dependence of the monopole mass and string tension imply that this
case differs in two ways from the local case. Firstly, the damping term at the string
formation epoch (assumed to be in the radiation epoch) can be written

1

�d
= H + θ

T 2

η2
mL

∼ 1

t

[
1

2
+ θ

(
ηs

ηm

)2
]

. (4.72)

The friction term is now subdominant relative to Hubble damping, and of course it
decreases faster than it. Friction can therefore be ignored in the analysis. Secondly,
the monopole acceleration due to the (global) strings now has an extra logarithmic
correction, but more importantly the logarithmically divergent monopole mass again
implies that this force is inversely proportional to L (as opposed to being constant in
the local case).

Starting again with the velocity equation, the ratio of the string and monopole
acceleration terms is now

Fs

Fm
∼ ks

km

η2
s

η2
m

d3/2H

L3/2
ln (Lηs), (4.73)

and in particular at the epoch of string formation we have

(
Fs

Fm

)
ts

∼ ks
km

η2
s

η2
m

ln
mPl

ηs
, (4.74)

so now Fs is initially sub-dominant, except if we happen to have ηs ∼ ηm. Moreover,
given that L ∝ t with a proportionality factor not much smaller than unity, while
monopoles evolve freely (before the effect of the strings is important), the ratio will
only grow logarithmically, and so the effect of the strings might not be felt for a very
long time. Specifically this should happen at an epoch

tr
ts

∼ ηs

mPl
exp

(
η2
m

η2
s

)
; (4.75)

naturally this is exactly the same as Eq. (4.57).
While strings are dynamically unimportant we have v = const. as for free global

monopoles, and even when they become important the velocity will only grow log-
arithmically towards unity. Hence, although the ultimate asymptotic result is the
same in both cases (v → 1), the timescale involved is much larger in the global
case. Moreover, recall that in the gauge case the monopole velocities before string
formation were necessarily non-relativistic and indeed extremely small, and it is the
strings that make them reach relativistic speeds. In the global case this is not so: the
monopoles will typically have significant velocities while they are free (although
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their magnitude depends on model parameters that need to be determined numeri-
cally), and therefore the impact of the forces due to the strings is vastly smaller in
the global case. All this is due to the fact that the force due to the strings is inversely
proportional to L instead of being constant. As for the evolution of L, at early times
(before strings become important) we have L ∝ t just like for free global monopoles.
Eventually the strings push the monopole velocities close(r) to unity, and in this limit
the L evolution equation looks just like that for the global case with the particular
choices λ = λ and Q = c. However, we must be careful about timescales, since
here the approach to v = 1 is only asymptotic.

Bearing this in mind, for λ < 3/4 we will still have linear scaling solution

L = c

3 − 4λ
t; (4.76)

notice that this is exactly the ultra-relativistic (v = 1) monopole scaling solution.
Therefore, if the network happened to be evolving in the other (subluminal) linear
scaling solution, the only role of the stringswould be to gradually switch the evolution
to the ultra-relativistic branch. This scaling law can in principle occur both in the
radiation and in the matter eras, and it follows that in this case the monopoles will
not disappear at all, but will continue to scale indefinitely (with a constant number
per Hubble volume). In this case an analysis in terms of the length of each string
segment would have to take into account an initial distribution of lengths. Moreover,
since the initial velocities need not be ultrarelativistic, the larger segments (which
will have smaller coherent velocities) should grow at early times, while the smaller
ones will shrink. The decay time will obviously depend on the initial size. We note
that such a behavior has been seen in numerical simulations of semilocal strings [13].

The alternative scaling solution, for any epoch with λ ≥ 3/4, is

L ∝ a4/3, (4.77)

and again corresponds to the annihilation and disappearance of the monopole net-
work, which would occur at

ta
tr

∼ 1

[(1 − λ)r]3/(4λ−3)
(4.78)

for an initial lengthscale Ls = rtr ; given that we now expect r to be not much smaller
than unity, this is likely to be very soon after the onset of this scaling regime—very
soon after the velocities become ultra-relativistic. Notice that in the local case the
monopoles becameultra-relativistic very soon after the strings formed (tc ∼ ts), but in
the present case tc >> ts except if the free monopoles were already ultra-relativistic.
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4.3 Monopoles Attached to More than One String

We now study defect networks where monopoles are attached to two or more strings.
Networks of the first type are commonly called cosmic necklaces, andwe refer to net-
works ofmonopoles attached to three ormore strings as cosmic lattices. The behavior
of necklaces and lattices is qualitatively similar, and will be for the most part treated
together, through we will point out the small existing differences. But their evolution
does differ in several key aspects from both that of individual monopoles and that
of monopoles attached to a single string: the main difference is that necklaces and
lattices form stable, long-lived networks which usually reach a scaling solution [14].

The defect networks of interest form via the symmetry breaking pattern G →
K×U(1) → K×ZN . IfG is a semi-simple group, the first phase transition produces
monopoles while in the second each monopole becomes attached to N strings. If K
is trivial all the (Abelian) magnetic flux of the monopoles is confined into the strings,
and there are no unconfined fluxes. However, unconfined non-Abelian magnetic
fluxes can exist in the generic case. The previously discussed hybrid case corresponds
toN = 1,whileN = 2 corresponds to cosmic necklaces andN ≥ 3 to cosmic lattices.
The corresponding defect masses, monopole radius and string thickness are still as
defined in the previous sections: m ∼ (4π/e)ηm and μ ∼ 2πη2

s , δm ∼ (eηm)−1 and
δs ∼ (eηs)−1. There are also scenarios where the intermediate phase transition is
absent, G → K ×ZN , in which case an analogous network still forms but the role of
the monopoles is now played by solitons that are usually called ’beads’. In this case
the two energy scales are obviously similar, that is ηs ∼ ηm.

Again, up to the second transition (if it exists) the models for plain monopoles
apply, but once the strings form a separate treatment is needed. If all the strings
attached to each monopole have the same tension (which we will assume to be the
case) then all the strings pull it with equal forces, and therefore there is no tendency
for a monopole to be captured by the nearest antimonopole, unless their separation is
of order δs. If there are N strings attached to each monopole, its proper acceleration
is given by the vector sum of the tension forces exerted by the strings. At a back-
of-the-envelope level, each force is of order f ∼ μ, and hence one expects that
a ∼ μ/m. Monopoles should therefore be accelerated to relativistic speeds provided
that the characteristic length of string segments, Ls, is such that μLs � m, that is
Ls/δs � ηm/ηs.

Aryal et al. [15] first studied the formation and statistical properties of these
networks, for N = 2 and N = 3, showing that for N ≥ 3 a single network is formed.
In all cases they find that the system is dominated by one infinite network comprising
more than 90% of the string length. Some finite networks and closed loops do exist,
in numbers rapidly decreasing with their size. Finally, most of the string segments
have a length comparable to the typical distance between monopoles (much larger
segments being exponentially suppressed). This justifies our assumption of an inter-
monopole separation, Lm, comparable to Ls.
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In this case the VOS model evolution equations for the monopoles are

3
dL

dt
= (3 + v2)HL + Q (4.79)

dv

dt
= (1 − v2)

(
ks

η2
s

ηm
− Hv

)
. (4.80)

We have neglected the term due to friction in both equations—it’s easy to show this
is subdominant at late times. The energy loss term Q in the lengthscale equation is
a renormalized quantity, accounting for the various losses present (including string
intercommutings, radiation and annihilations). There may be a velocity-dependence
of some of these contributions, but as we shall see monopoles will typically have
ultra-relativistic velocities v ∼ 1 and therefore this dependence can be neglected. The
velocity equation includes the force due to the strings (with the phenomenological
curvature parameter ks) but we have neglected that due tomonopoles, since if it exists
(which is only the case for unconfined fluxes) it’s always smaller than that due to the
strings. Indeed, using the above definitions of mass scales and thicknesses one finds
that the ratio of the two forces is

fm
fs

∼ km
ks

(
δs

L

)2

� 1; (4.81)

we expect the ki to be (dimensionless) coefficients of order unity, though note that
they should be different for necklaces and lattices.

From the velocity equation we confirm that the monopole velocities will be driven
towards unity, v → 1. As for the monopole length scale, assuming a generic expan-
sion rate a ∝ tλ, we find different regimes for slow and fast expansion rates

L = Q

3 − 4λ
t, λ < 3/4 (4.82)

L ∝ a4/3 ∝ t4λ/3, λ ≥ 3/4; (4.83)

the former explicitly requires a non-zero energy loss rate. We therefore have linear
scaling both in the radiation and matter eras. For monopoles L ∝ t corresponds to
the monopole density decreasing relative to that of the background. However, for
fast expansion rates the growth is superluminal, and the network will eventually
disappear.

Its easy to establish a link between this analysis and that ofVachaspati andVilenkin
[16]. Since ρm = mn = m/L3 and the monopole equation of state is 3p = v2mρ, we
get by substitution

3
dL

dt
= (3 + v2)HL + L

ηm
w. (4.84)
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Now, Vachaspati and Vilenkin are assuming energy losses through gauge radiation;
noting that

w ∼ (ga)2

6π
∼

(
μ

ηm

)2

∼ ε̇gauge (4.85)

Qgauge ∼ L
ε̇gauge

εgauge
∼ L

ηm
w (4.86)

we see that this evolution equation for L is exactly the same as Eq. (4.79), matching
the Q terms (which in our case can phenomenologically account for further energy
loss channels). We can also write the analogous equation for strings. In this case
ρs = μn2/3 = μ/L2 and the string equation of state is 3p = (2v2s − 1)ρ; again we
find

2
dL

dt
= 2HL(1 + v2s ) + wμ (4.87)

wμ ∼
(

ηs

ηm

)2

∼ Q. (4.88)

Note the interesting fact that the dimensionless parameter Q determines the energy
loss term for both the strings and the monopoles. The above is the usual evolution
equation for the cosmic string correlation length [17, 18], if one assumes a constant
string velocity—otherwise the energy loss term should depend linearly on velocity.
The scaling solution for the monopoles has already been discussed. For the case of
the strings the solution is also the expected linear scaling

L = Q

2 − 2λ(1 + v2s )
t, (4.89)

for constant velocities and provided λ(1 + v2s ) < 1. This solution is an attractor, as
in the case of normal strings: for very large lengthscales the string velocity would no
longer be a constant (the string velocity evolution equation would drive it to smaller
values), and a new equilibrium value with a smaller lengthscale would be reached.

We can also consider more generic scaling solutions of the above equations,
allowing for the possibility of zero energy losses (Q = 0). We will confirm that
scaling (L ∝ t) generically requires Q = 0. Starting again with the monopoles, for
Q = 0 we have the two branches of the solution discussed above. For Q = 0 the
solution is always

L ∝ a4/3 ∝ t4λ/3; (4.90)

note that for λ < 3/4 the lengthscale grows subluminally while for λ > 3/4 it
grows superluminally. In the absence of radiative energy losses, only a fast enough
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expansion can dilute the network.We can also compare the evolution of themonopole
and background densities

ρm

ρb
∼ ηm

m2
Pl

t2

L3
. (4.91)

For the linear scaling solution L ∝ t this has the form

ρm

ρb
∼ 1

Q3


(
ηm

mPl

)2 (
T

mPl

)2

∝ 1

t
. (4.92)

From this we see that if gauge radiation is present then the energy density of the
network is smaller than thebackgrounddensity.However, if the only radiative channel
available is gravitational radiation, in which case Q = Qgrav ∼ (ηs/mPl)

2, then the
network energy density is in fact the dominant one. For the non-scaling branch the
density is

ρm

ρb
∝ t2−4λ, (4.93)

and the behavior depends on the cosmological epoch. During the radiation era the
density is a constant fraction of that of the background.

4.4 Semilocal Strings

Semilocal strings were introduced as a minimal extension of the Abelian–Higgs
model with two complex scalar fields—instead of just one—that make an SU(2)
doublet [19, 20]. This leads to U(1) flux-tube solutions even though the vacuum
manifold is simply connected. The strings of this extended model have some simi-
larities with ordinary local U(1) strings, but they are not purely topological and will
therefore have different properties. Since they are not topological, they need not be
closed or infinite and can have ends. These ends are effectively global monopoles
with long-range interactions that can make the segments grow or shrink [21].

The symmetry breaking pattern that leads to the formation of strings in this model
is SU(2)global × U(1)local → U(1)global so this model can be thought of as a partic-
ular limit of the Glashow–Weinberg–Salam electroweak model in which the SU(2)
symmetry is global: the Weinberg angle is cos θW = 0 and there are no SU(2) gauge
fields. The vacuum manifold is the three sphere, so one would not expect strings to
form if the dynamics is dominated by the potential energy. On the other hand, the
magnetic field is massive and magnetic flux is conserved, which would suggest the
existence of magnetic flux tubes when the magnetic mass is large. This is the regime
in which strings form and are stable. The stability of the strings is not trivial, and it
will depend on the value of the parameter

β = m2
scalar

m2
gauge

; (4.94)
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for β < 1 the string is stable, for β > 1 it is unstable, and for β = 1 it is neutrally
stable. Only low values of β will be of interest for the purpose of numerical studies,
because otherwise the string network is either unstable or disappears very fast.

After a cosmological phase transition in such a model, it is expected that seg-
ments of semilocal strings will form. The network evolution depends on the inter-
play between string dynamics and monopole dynamics. When a string segment
ends, it must end in a cloud of gradient energy. Those string ends behave like
global monopoles providing an interaction between strings that is independent of
distance. Therefore, depending on the interplay between string dynamics and mono-
pole dynamics, the segments can contract and eventually disappear, or they can grow
to join a nearby segment and form a very long string, and also the two ends of a
segment can join to form a closed loop.

At least to a first approximation, we can envisage these networks as being made of
local strings attached to global monopoles, and, as such, the above analytic modeling
techniques should be applicable. This being said, it is also clear that these networks
possess additional dynamical properties, beyond those of standard hybrid networks.
Specifically, the evolution of the string networkwill depend both on the string tension
and on the dynamics of the gradient energy: the latter may be thought of as providing
a long-range interaction between the strings. (Note that the force between global
monopoles is independent of distance.)

4.4.1 The VOS Model for Semilocal Strings

Our analysis focuses on the behavior of the network as a whole, starting from
the premise that it can be treated as a network of local strings attached to global
monopoles. Our model for the evolution of these networks is based on explicitly
modeling the dynamics and interactions of the monopoles [22, 23]. This is justified
since, as has been shown in previous work [13], it is indeed the monopoles that
control the evolution of the network.

Recall that the idea is to obtain an evolution equation for the monopole density
(neglecting interactions) and then re-express it in terms of a characteristic lengthscale,
L (which in this case should be thought of as the average inter-monopole distance).
The effects of monopole forces and friction are then included in this equation (as
well as in the relevant velocity equation) by adding extra phenomenological terms.
The evolution equation for the characteristic monopole lengthscale then has the form

3
dL

dt
= 3HL + v2

L

�d
+ cv, (4.95)
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where c is a free parameter (to be calibrated by simulations) quantifying energy
loss, and where as usual we have defined a damping lengthscale,

1

ld
= H + 1

lf
. (4.96)

The evolution equation for the RMS velocity v of the monopoles is

dv

dt
= (1 − v2)

[
km
L

(
L

dH

)3/2

+ ks
L

η2
s

η2
m

− v

�d

]
, (4.97)

where thefirst term in square brackets is the force due to themonopoles and the second
describes the force due to the strings. Note that the fact that the string and monopole
symmetry breaking scales appear in Eq. (4.97) is a consequence of the fact that
these equations of motion are obtained by modeling semilocal strings as local strings
attached to global monopoles, and appropriately adapting the equations of motion
for both. Physically one knows that it is the monopoles that dominate the semilocal
string dynamics, and this can be modeled by assuming that ηs � ηm. Similarly,
the horizon size dH enters in the monopole force term due to a number counting
argument: this force depends on the number of monopoles (and antimonopoles)
inside the horizon [4].

In the semilocal case the ratio of the forces due to strings and monopoles is

fs
fm

= ks
km

(
ηs

ηm

)2 (
dH
L

)3/2

(4.98)

and since ηs � ηm the string force is always subdominant. This is in agreement
with theoretical expectations and numerical simulations. Note that this is a distin-
guishing characteristic of these networks: as we saw in previous sections, for local
strings attached to local monopoles the force due to the strings always dominates the
dynamics, while for global strings attached to global monopoles the string force is
subdominant at string formation but becomes dominant later in the network’s evo-
lution. One interesting consequence of the fact that the monopoles always dominate
the dynamics is that the only attractor solution of these evolution equations in an
expanding universe (with a ∝ tλ) is linear scaling. Indeed, one finds that the only
consistent asymptotic solution is

L = γ t, v = v0, (4.99)

as in the case of plain global monopoles.
There are two possible branches of the scaling solution. First, there is an ultra-

relativistic one with
γ = c

3 − 4λ
, v0 = 1, (4.100)
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which only exists for slow expansion rates (λ < 3/4) but is in principle allowed both
on the radiation and matter eras. Second, a normal solution exists for any expansion
rate, with scaling parameters

γ = cv0
3 − λ(3 + v20)

(4.101)

λv0 = km(1 − λ)3/2γ 1/2, (4.102)

and a constraint on the velocities

v20 < 3(
1

λ
− 1). (4.103)

This constraint is trivial for λ < 3/4 (that is, v0 → 1 is allowed), but restrictive for
faster expansion rates. On the other hand, velocities will generically be significant:
having v0 → 0 requires λ → 1.

For comparison we also consider the case of Minkowski space (corresponding
to λ = 0 and H = 0) but with a friction lengthscale proportional to the correlation
length (say, for simplicity, �f ∼ L). This should be an adequate description of some
of the numerical simulations of semilocal strings done so far [13]. In this case, linear
scaling is still the attractor solution but the scaling parameters now obey

3γ = v20 + cv0, v0 = kmγ 3/2. (4.104)

In the opposite limit of fast expansion rate (λ ≥ 1, or in other words inflation)
the linear scaling solution of Eq. (4.99) no longer exists. In this case the network is
conformally stretched and gradually frozen, and the characteristic lengthscale and
velocity evolve as

L ∝ a, v ∝ 1

HL
. (4.105)

These conformal stretching solutions are ubiquitous in the defects literature. Work
on modeling semilocal segment evolution has also been done [22], but an accurate
description will need better simulations.

4.4.2 Comparing to Simulations

One should proceed with caution if trying to extract quantitative information from
these scaling properties. Nevertheless, it is encouraging that the overall behavior
of recent high-resolution simulations is in agreement with our understanding of the
relevant underlying physical mechanisms [23]. Specifically, we note that
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• For a given cosmology (in numerical terms, damping term), the string correla-
tion length grows with β while the monopole separation gets smaller. This is
to be expected since for lower β we expect the system to behave more like an
Abelian–Higgs network, which has longer strings and fewer segments. Analogous
results have recently been found for cosmic strings [24].

• For a given β, the string correlation length is higher for higher damping terms,
and the monopole separation is smaller. This is also to be expected since a lower
damping term means that monopole velocities will be higher. Segments can there-
fore move faster to either grow and meet with other segments or collapse, giving
a longer typical string length and smaller number of monopoles. One naturally
expects that the additional length lost by segment collapse is more than compen-
sated by that gained by the extra growth. Note that increasing the string correlation
lengthLs corresponds to decreasing the string density, and therefore the total length
in string.

We should also point out that the scaling properties we have obtained for the
string segments and monopoles are somewhat less sensitive to the value of β than
one might have expected. It is possible that this is a feature of the PRS algorithm
[25], which is used for all field theory simulations of this type; this has also been
discussed in [24].

As pointed out in [23], a full direct calibration of the parameters of the VOSmodel
for the evolution of the overall network cannot be done until we can numerically
determine the velocities of the monopoles and segments—a task which is being
pursued at the time of writing. Still, we can provide a preliminary comparison with
themodel, and specificallywith the scaling solution described byEqs. (4.101–4.102).
We will neglect the β dependence, which as we saw is numerically found to be quite
small when allowing for statistical and systematic uncertainties.

With these assumptions our free parameters are the analytic model parameters, c

and km, as well as the monopole scaling velocities in the radiation and matter eras,
which we will denote vrad and vmat. Using our numerically determined values of the
monopole separations one finds

vrad ∼ 0.48km (4.106)

vmat ∼ 0.20km; (4.107)

we have deliberately not included error bars in these numbers since it is not possible
to quantify possible systematic uncertainties in the monopole separations. These
values are consistent with the results of earlier simulations [22], which for a faster
expansion rate (λ = 3/4) found

vfast ∼ 0.12km. (4.108)

As expected, faster expansion rates lead to smaller velocities. On the assumption that
the analytic model is correct, we therefore infer that the ratio of the scaling monopole
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velocities in the matter and radiation eras should be

vmat

vrad
∼ 0.4. (4.109)

If one assumes a curvature parameter km of order unity as in the case of
Goto–Nambu strings, our estimated velocities are comparable to (though possibly
somewhat lower than) the ones typically encountered in other field theory defect
simulations of domain walls and cosmic strings [7, 26]. Thus, even though this
comparison is somewhat simplistic, the results are at least encouraging. A full com-
parison (and thus a proper calibration of the analytic model) requires the numerical
implementation of a reliable method to measure defect velocities in our simulations,
which is not yet available.
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Chapter 5
Model Extensions

Abstract We extend the VOS model of string evolution to the case of models with
additional degrees of freedom on the string worldsheet, studying both the case of
superconducting strings and that of wiggly strings. In the former case we obtain the
microscopic string equations of motion in the Witten–Carter–Peter superconducting
model, finding that whether the standard scale-invariant evolution of the network is
preserved or destroyed due to the presence of the chargewill depend on the amount of
damping and energy losses experienced by the network. This suggests, among other
things, that results derived in Minkowski space (field theory) simulations may not
extend to the case of an expanding universe. We also model the evolution of realistic
wiggly cosmic strings. Here we discuss model solutions in the extreme limit where
the wiggles make up a high fraction of the total energy of the string network (the
tensionless limit) and also provide a brief discussion of the opposite (linear) limit
where wiggles are a small fraction of the total energy. We also use these results to
make extrapolations for the case of cosmic superstrings.

5.1 Superconducting Strings

Cosmic strings can have non-trivial internal structure, generally carrying additional
degrees of freedom on the string worldsheet. This is the generic situation in models
with extra dimensions, where there is a proliferation of scalar fields that can couple
to (and condense on) the strings. Cosmic strings with additional worldsheet degrees
of freedom (scalar charges, currents, fermionic zero-modes) have been described
in field theory and supergravity [1], but the cosmological evolution of such string
networks remains comparatively unexplored.

It is therefore desirable to understand how these additional degrees of freedom
can be described macroscopically, and how their presence affects the behavior and
cosmological consequences of the corresponding string networks. We start with
cosmic strings with a conserved charge living on the string worldsheet. We extend
the VOS model to describe this case analytically, and study the effect of the charge
on the evolution of the string network.

We consider the Witten–Carter–Peter (chiral) model [2, 3], which implicitly
makes use of the fact that in two dimensions a conserved current can be written
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as the derivative of a scalar field. The dynamics is described by the action

SW =
∫ √−γ

[
−μ0 + 1

2
γ abφ,aφ,b − qAμx

μ
,a

ε̃ab√−γ
φ,b

]
d2σ − 1

16π

∫
d4x

√−gFμνF
μν ,

(5.1)

where the four terms are respectively the usual Nambu–Goto term (μ0 being the
string tension and γ the pullback of the background metric g on the worldsheet),
the inertia of the charge carriers described by the scalar φ, the current coupling
to the electromagnetic potential Aμ, and the kinetic term for the electromagnetic
field. Worldsheet indices are denoted by a, b ∈ {0, 1} and we will take σ 0 to be the
timelike coordinate, while σ 1 ≡ σ will be spacelike; ε̃ab is the alternating tensor 2D
dimensions. This action applies to both the bosonic and the fermionic case.

We are interested in the chiral limit of this model, that is (with dot/prime denoting
differentiation with respect to the timelike/spacelike worldsheet coordinate σ 0/σ ):

φ′2 = ε2φ̇2 , (5.2)

where ε is the scalar

ε ≡ −x′2
√−γ

, (5.3)

giving the string energy per unit coordinate length. In an FRW background

ds2 = a2(dτ 2 − dx2) (5.4)

and choosing the standard gauge σ 0 = τ , ẋ · x′ = 0 in which the scalar ε becomes:

ε =
(

x′2

1 − ẋ2

)1/2

, (5.5)

and introducing the simplifying function Φ defined as

Φ(φ) = φ̇2

μ0a2(1 − ẋ2)
, (5.6)

the microscopic equations of motion take the form

[ε (1 + Φ)]˙+ ε


d
ẋ2 = Φ ′ − 2

ȧ

a
εΦ , (5.7)

ε (1 + Φ) ẍ + ε


d
(1 − ẋ2)ẋ =

[
(1 − Φ)

x′

ε

]′
+

(
Φ̇ + 2

ȧ

a
Φ

)
x′ + 2Φẋ′ , (5.8)

where the damping length is defined in the usual way.
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The curvature vector d2x/ds2, with ds = √
x′2dσ , satisfies:

d2x
ds2

= x′′

x′2 − (x′ · x′′)x′

x′4 . (5.9)

Thus, a curvature radius, R, can be defined locally via

ẋ
ε(1 − ẋ2)

·
(
x′

ε

)′
= −x′ · ẋ′

x′2 = x′′ · ẋ
x′2 = a

R
(ẋ · u) , (5.10)

where we have introduced a unit vector u in the direction of the curvature vector.
The worldsheet charge and current densities are given by

ρw = qεφ̇ , jw = q
φ′

ε
, (5.11)

while the total energy of a piece of string is given by

E = μ0a
∫

(1 + Φ) εdσ = Es + EΦ . (5.12)

We can immediately interpret this as being split in an obvious way into a string
component and a charge component. Defining a macroscopic charge as the average
of Φ over the string worldsheet, we then have:

Q = 〈Φ〉 ≡
∫

Φεdσ∫
εdσ

= EΦ

Es
. (5.13)

This interpretation will be relevant below.
Introducing the network string density ρs such that Es ∝ ρsa3 and defining the

correlation length ξ by

ρs = μ0

ξ 2
, (5.14)

the evolution equations have the form

Ės

Es
= ρ̇s

ρs
+ 3

ȧ

a
= −2

ξ̇

ξ
+ 3

ȧ

a
= ȧ

a
+

〈
ε̇

ε

〉
, (5.15)

v2 = 〈ẋ2〉 , vv̇ = 〈ẋ · ẍ〉 (5.16)

Q̇ = 〈Φ̇〉 , (5.17)

while the lengthscale L is defined by ρ = μ0/L2. An additional difficulty which is
absent in the case of Nambu–Goto strings is the appearance of a term proportional
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to (x′ · x′′). This factor is not expected to be zero even though (x′ ·u) is, see Eq. (5.9).
Finally, note that in the case of the VOS model for plain Nambu–Goto strings one
assumes that the network has a single characteristic length scale, so that R = L = ξ .
This is no longer true in the charged case, but we will still assume that R = ξ , while
L is now only a measure of the total energy in the network.

In our chiral case of a conserved microscopic charge we have

ρw = qεφ̇ = qφ′ = const. (5.18)

and therefore

Φ = ϕ2
0

a2x′2 , (5.19)

with ϕ0 being a constant. By simple differentiation one finds that Φ evolves as

Φ̇ + 2
ȧ

a
Φ = 2Φ

ẋ · x′′

x′2 (5.20)

Φ ′ + 2Φ
x′ · x′′

x′2 = 0 . (5.21)

The conserved charge assumption simplifies some of the above equations. In partic-
ular, one easily obtains

ẍ · x′ = x′ · x′′

ε2
, (5.22)

ε′ = 0 . (5.23)

An alternative way to see this is to use Eq. (5.8) together with Eqs. (5.20)–(5.21).
This leads to

2Φ

1 + Φ

ε′

ε
= 0 , (5.24)

thus if Φ 	= 0 we must have ε′ = 0.

5.1.1 Averaged Equations

We can now proceed and look at the averaged evolution equations in our conserved
microscopic charge case [4–6]. The total energyof the string is givenbyEq. (5.12) and
therefore we can define two characteristic lengths for the string: the usual correlation
length ξ associated with the string energy

Es = μa
∫

εdσ ∝ ρsa
3 , (5.25)
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through Eq. (5.14), and the lengthscale L associated with the total energy E ∝ ρa3,
see Eq. (5.12). Taking the time derivative of the previous equation, one easily finds
the evolution equation for ξ

2
ξ̇

ξ
= 2H

(
1 + v2

1 + Q

)
+ 2Q

1 + Q

kv

R
−

〈
Φ ′

ε(1 + Φ)

〉
, (5.26)

where k is the usual momentum parameter. Correspondingly, the evolution equation
for L is

2
L̇

L
= 2H

(
1 + v2 + Q

1 + Q

)
−

〈
Φ ′

ε(1 + Φ)

〉
. (5.27)

As defined above, the macroscopic charge Q is the averaged microscopic charge
〈Φ〉, which is also the ratio between the string energy Es and the ‘charge’ energy EΦ .
Differentiating (5.13), we find that its evolution equation is

Q̇

Q
= 2

(
kv

R
− H

)
(5.28)

Finally, the string velocity is defined by

v2 = 〈ẋ2〉 =
∫
ẋ2εdσ∫
εdσ

, (5.29)

and taking time derivatives on both sides, we arrive at the evolution equation

v̇ = 1 − v2

1 + Q

[
k

R
(1 − Q) − 2Hv + 1 + Q

v

〈
Φ ′

ε(1 + Φ)

〉]
. (5.30)

Equations (5.26)–(5.28) are not independent: there is a consistency relation

Es = E

1 + Q
−→ ξ = L

√
1 + Q (5.31)

Therefore, the equations are related by

2
L̇

L
= 2

ξ̇

ξ
− Q̇

1 + Q
, (5.32)

which is verified, so the three equations are consistent.
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In order to proceed we now need to deal with the (x′ ·x′′) term coming fromΦ ′.
Referring to Eq. (5.21), dimensional analysis suggests an ansatz of the form

〈
Φ ′

ε(1 + Φ)

〉
= −s

v

R

2Q

1 + Q
(5.33)

where s is (at least, to a first approximation) a constant. Using (5.33) and
noting our earlier identifications R = ξ = L

√
1 + Q, our evolution equations

become:

2
ξ̇

ξ
= 2H

(
1 + v2

1 + Q

)
+ 2Q

1 + Q

(k + s)v

ξ
(5.34)

2
L̇

L
= 2H

(
1 + v2 + Q

1 + Q

)
+ 2Q

(1 + Q)3/2

sv

L
(5.35)

Q̇

Q
= 2

(
kv

ξ
− H

)
(5.36)

v̇ = 1 − v2

1 + Q

[
k

ξ
(1 − Q(1 + 2s/k)) − 2Hv

]
. (5.37)

We will assume a flat universe with generic expansion rate a ∝ tλ, and look for
scaling solutions of the form

ξ = ξ0t
α , v = v0t

β , Q = Q0t
γ . (5.38)

Note that causality implies α ≤ 1 and the finite speed of light implies β ≤ 0.
Furthermore, an analysis of loop solutions shows that v → 1 is not a physically
allowed solution for these networks.

5.1.2 No Charge Losses

We assume that there are no macroscopic charge losses, and we will separately
consider the cases with and without energy losses due to loop production. Whether
or not we have loop production, the evolution equation for the macroscopic charge
Q is given by Eq. (5.36), and we can start by studying this. There is a trivial but
unphysical solution if k = 0, with ξ ∝ L ∝ a and v ∝ Q ∝ a−2, which can therefore
be ignored. In the realistic case k 	= 0 there can in principle be two kinds of solutions:
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• Decaying charge solutions, with γ = −2λ and β < α − 1; for these solutions not
only does the charge decay (as Q ∝ a−2) but velocity will necessarily decay as
well.

• standard solutions with β = α−1 and γ = −2λ+2kv0/ξ0; here we have used the
term ‘standard’ referring to the fact that linear scaling solution (with α = 1 and
β = 0) is of this form, although a priori there is no guarantee that this solution will
exist with a constant (non-zero) charge. Also note that in this branch of solutions
we may at least in principle have growing, constant, or decaying Q.

We can now study the entire system of equations in the cases with and without
energy losses [6]. In the latter case we obtain the following three scaling relations:

• For slow expansion rates, λ < 2/3,

α = 3

2
λ < 1 , ξ0 = kv0

λ
(5.39)

β = α − 1 < 0 (5.40)

γ = 0 , Q0 =
(
1 + 2s

k

)−1

(5.41)

ρs

ρcrit
∝ ρ

ρcrit
∝ t2−3λ ; (5.42)

herewe have a constant charge, which gradually slows the strings (making v → 0),
although the evolution is still faster than conformal stretching (α = λ). As a
consequence, both the energy density in the strings and the total energy density in
the network grow relative to that of the cosmological background.

• For λ = 2/3, corresponding to the matter-dominated era,

α = 1 , ξ0 = 3

2
kv0 (5.43)

β = 0 , v20 = 1

2

[
1 − Q0

(
1 + 2s

k

)]
(5.44)

γ = 0 (5.45)

ρs

ρcrit
= 1

1 + Q0

ρ

ρcrit
= 16π

3k2

[
1 − Q0

(
1 + 2s

k

)]−1

Gμ ; (5.46)

in this case the macroscopic charge is still a constant, but the additional dilution
caused by the faster expansion rate is enough to ensure that the energy density
of the network is a constant fraction of the background one. Hence we have a
generalized linear scaling solution, with ξ (and L) growing as fast as allowed by
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causality, in which the RMS velocity and themacroscopic charge are constant (and
larger charges leading to smaller velocities).

• For fast expansion rates, λ > 2/3,

α = 1 , ξ 2
0 = k2

4λ(1 − λ)
(5.47)

β = 0 , v20 = 1 − λ

λ
(5.48)

γ = 4 − 6λ < 0 (5.49)

ρs

ρcrit
= ρ

ρcrit
= 32π

3k2
1 − λ

λ
Gμ ; (5.50)

here the additional Hubble damping makes the macroscopic charge decay, and we
therefore end up with the solution for ordinary Nambu–Goto strings.

If we now assume that there are energy losses through loop production, this can
be described by a new term in the evolution equation for ξ̇ (and, consequently, one
for L̇), which has the usual form

2
ξ̇

ξ
= . . . + cv

ξ
. (5.51)

This introduces the parameter c quantifying the efficiency of producing loops. Using
Eq. (5.32) and assuming there is no charge loss, we also find

2
L̇

L
= . . . + cv

L

1√
1 + Q

. (5.52)

The analysis can now be repeated, and one finds generalized solutions including an
additional dependency on c:

• For slow expansion rates, λ < 2/(3 + c/k),

α = 1

2

(
3 + c

k

)
λ < 1 , ξ0 = kv0

λ
(5.53)

β = α − 1 < 0 (5.54)

γ = 0 , Q0 =
(
1 + 2s

k

)−1

(5.55)

ρs

ρcrit
∝ ρ

ρcrit
∝ t2−(3+c/k)λ ; (5.56)
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loop production is an additional energy loss mechanism, and therefore the corre-
lation length now grows faster than in the c = 0 case. Similarly, string velocities
decrease more slowly, and the network’s density grows more slowly relative to the
background one.

• For an intermediate expansion rate, λ = 2/(3 + c/k),

α = 1 , ξ0 = 1

2
v0 (3k + c) (5.57)

β = 0 , v20 = 1

2

[
1 − Q0

(
1 + 2s

k

)]
(5.58)

γ = 0 (5.59)

ρs

ρcrit
= 1

1 + Q0

ρ

ρcrit
= 16π

3k2

[
1 − Q0

(
1 + 2s

k

)]−1

Gμ ; (5.60)

now the expansion rate for which this solution occurs decreases, with the smaller
expansion rate being compensated, for the purposes of the dilution of the network’s
energy density, by the process of loop production. For c = 0 this solution exists
for the matter era, and c = k will make it occur in the radiation era. Interestingly,
the ratio of the string and background energies is exactly the same as before—it
does not depend on the value of c.

• For fast expansion rates, λ > 2/(3 + c/k),

α = 1 , ξ 2
0 = k(k + c)

4λ(1 − λ)
(5.61)

β = 0 , v20 = 1 − λ

λ

k

k + c
(5.62)

γ = 4

k + c

[
k − λ

2
(3k + c)

]
< 0 (5.63)

ρs

ρcrit
= ρ

ρcrit
= 32π

3k(k + c)

1 − λ

λ
Gμ ; (5.64)

this is exactly the VOS linear scaling solution for Nambu–Goto strings, with an
added prediction of a particular decay law for the charge (which depends on the
cosmological expansion rate).



88 5 Model Extensions

5.1.3 Macroscopic Charge Losses

We now relax the assumption of no charge losses. This section is somewhat more
phenomenological since it will rely on simplifying assumptions for how the charge
may be lost, but our goal is simply to develop an intuitive picture for the possible role
of charge loss mechanisms on the evolution of the network. We will again assume
an energy loss term of the form

Ės

Es
= −c

v

ξ
, 2

ξ̇

ξ
= . . . + c

v

ξ
(5.65)

but this time let us say that L gets a different (in general) loss term

Ė

E
= −fc

v

L
, 2

L̇

L
= . . . + fc

v

L
, (5.66)

where f is an arbitrary function, possibly of the velocity, charge and correlation
length. We are therefore assuming that any such charge losses are related to the
network’s intercommuting and loop production mechanisms. In other words, while
loops of ordinary string networks decay by emitting gravitationalwaves (and possibly
also by particle production), in our case the emission of charged particles provides
an additional decay channel that enhances the total energy losses, and this possible
enhancement is phenomenologically described by the parameter f .

In the previous section, we assumed there was no charge loss, implicitly using

f (v,Q, ξ) = 1√
1 + Q

. (5.67)

Instead, we will now leave f free and obtain the evolution equation for Q from the
above assumptions together with Eq. (5.32). The result is

Q̇ = 2Q

(
kv

ξ
− H

)
+ cv

ξ
(1 + Q)

(
1 − f

√
1 + Q

)
, (5.68)

or an analogous equation in terms of L. With (5.67) we trivially recover the results of
the previous sub-section. We can now look for scaling relations as before, checking
how the results depend on the choice of f . Note that in the standard VOS model case
(without a charge), we would not expect charge to be created. Therefore, Q̇ = 0
when Q = 0, implying

2
cv

ξ
(1 − f ) = 0 . (5.69)

It then follows that, if the function f is constant, it has to be equal to unity. Otherwise
it must be dependent on the charge (and possibly other quantities), and become unity
when the charge drops to zero,
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f = f (Q, v, ξ) −→ f (0, v, ξ) = 1 , (5.70)

as was the case for the function (5.67) we used in the case without charge loss.
Let us therefore consider the f = 1 case. The scaling laws now are

• For slow expansion rates, λ < (2k − Wc)/[3k + (1 − W )c],

α = 3

2

[
1 + (1 − W )c/3k

1 − Wc/2k

]
λ < 1 , ξ0 = v0

λ
(k − Wc/2) (5.71)

β = α − 1 < 0 (5.72)

γ = 0 , Q0 =
(
1 + 2s

k

)−1

(5.73)

ρs

ρcrit
∝ ρ

ρcrit
∝ t2(1−α) (5.74)

where for simplicity we have kept α in the last expression and introduced

W = (1 + Q−1
0 )

(√
1 + Q0 − 1

)
, (5.75)

which is always positive and behaves as W = 0.5(1 + Q0) in the limit Q0 → 0
and as W ∝ √

Q0 for Q0 → ∞. The scaling exponent for ξ now has an explicit
dependence on the charge. Increasing the scaling value of the charge pushes the
value of the maximal expansion rate where this regime holds to larger values,
whereas the scaling exponent α decreases. Similarly, string velocities decrease
faster, and the network’s density grows faster relative to the background one. In
principle, as one makes W progressively larger, the scaling exponent α becomes
closer to λ, which corresponds to the conformal stretching case. However, in
practice we do not expect this to occur, since it is clear from its definition that W
should be a small parameter in realistic (cosmological) defect networks.

• For an intermediate expansion rate, λ = (2k − Wc)/[3k + (1 − W )c],

α = 1 , ξ0 = 1

2
v0 [3k + (1 − W )c] (5.76)

β = 0 , v20 = 1

2 − Wc/k

[
1 − Q0

(
1 + 2s

k

)]
(5.77)

γ = 0 (5.78)

ρs

ρcrit
= 1

1 + Q0

ρ

ρcrit
= 16π

3k2

[
1 − Q0

(
1 + 2s

k

)]−1

Gμ . (5.79)
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As in the previous solution there is an explicit dependence on the amount of
charge, and the expansion rate for which this solution occurs increases with the
charge: a larger charge makes scaling harder, requiring more energy losses (from
the damping due to the Hubble expansion, or from losses due to loop production)
to counteract it. In fact the expansion rate for which this solution exists would
approach λ = 1 as the scaling value of the charge Q0 becomes arbitrarily large,
although as we already pointed out we do not expect this to occur in practice. The
ratio of the string and background energies is still exactly the same as before—it
does not depend on the value of c or W .

• For fast expansion rates, λ > (2k − W0c)/[3k + (1 − W0)c],

α = 1 , ξ 2
0 = k(k + c)

4λ(1 − λ)
(5.80)

β = 0 , v20 = 1 − λ

λ

k

k + c
(5.81)

γ = 4

k + c

[
k − W0c

2
− λ

2
[3k + (1 − W0)c]

]
< 0 (5.82)

ρs

ρcrit
= ρ

ρcrit
= 32π

3k(k + c)

1 − λ

λ
Gμ ; (5.83)

which is again the VOS linear scaling solution for Nambu–Goto strings, now with
a faster decay law for the charge (which is obvious since we have explicit charge
losses). For this solution we used the notation W0 to indicate the value of W in
the limit Q0 → 0, that is W = 1/2; the reason for this choice will become clear
below.

It is easy to check that if we set c = 0 and/or W = 0 we recover the results of
the previous section. However, note that the transition between the second and third
solutions will now depend on the amount of charge loss. The expansion rate of the
second solution coincides with the minimum expansion rate of the third solution for

W = W0 = 1

2
, (5.84)

which corresponds to the Q0 = 0 limit.
Finally, it is interesting to discuss what happens in the more general case where

f 	= 1. In the absence of compelling arguments suggesting a particular form for f
(other than the above case without charge losses) we will consider a linearized form

f (Q) = 1 + wQ , (5.85)

for w real with |w| < 1. The rationale for this is that in realistic networks in cos-
mological contexts the charges are likely to correspond to a small fraction of the
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overall energy density of the network. Repeating the analysis we find that the above
solutions still hold, provided that one extends the definition of the parameter W to

W = (1 + Q−1
0 )

[
(1 + wQ0)

√
1 + Q0 − 1

]
. (5.86)

In the limit Q0 → 0 this now behaves as

W =
(
1

2
+ w

)
(1 + Q0) ; (5.87)

we trivially recover the behavior in the w = 0 (constant) case, but we also see that
in this limit W will vanish if w = −1/2. This is interesting because that choice of w
corresponds to the linearized version of f = 1/

√
1 + Q, which as we argued is the

case of no charge losses. This shows that the above analysis is self-consistent.

5.2 Wiggly Strings

It is well known that cosmologically realistic string networks are not quite of Goto–
Nambu type. Numerical simulations of cosmic strings in expanding universes have
established beyond doubt the existence of a significant amount of short-wavelength
propagation modes (commonly called wiggles) on the strings, on scales that can
be several orders of magnitude smaller than the correlation length. This small-scale
structure can be optimally described through its fractal properties [7]. On large scales
we expect strings to beBrownian (with a fractal dimension dlarge ∼ 2),while on small
enough scales strings are smooth and locally straight (having dsmall ∼ 1). Between
these two scales, one finds an intermediate fractal region that extends over several
orders of magnitude. This fractal region evolves in time, spreading out between the
initial correlation length and the horizon size in such a way that any given physical
scale is always loosing power.

We stress that it is still not clear under which conditions small-scale structure
continues building up indefinitely or eventually reaches a scaling solution like the
large-scale properties of the network, although some progress has been made by a
number of authors [8, 9]. Due to the very limited number of degrees of freedom
available, the Goto–Nambu model cannot account for this phenomenology. More
general string models [10, 11] are extremely useful for this purpose, and the much
larger amount of algebra required is generously compensated by the resulting physi-
cal phenomenology. Here we summarize the mathematical formalism necessary for
a generalized VOS model that explicitly accounts for the build-up of small-scale
structures on the strings [4, 12].



92 5 Model Extensions

The motion of a cosmic string is in general obtainable from a variational principle
applied to the action

S = −
∫

L
√−γ d2σ ; (5.88)

where the worldsheet metric is given by γab = gμνxμ
,ax

ν
,b. Quite generically, string

models can be described by a Lagrangian density L depending only on the space-
time metric gμν , background fields such as a Maxwell-type gauge potential Aμ or
a Kalb–Ramond gauge field Bμν (but not their gradients) and any relevant internal
fields, contained in a function Λ (see below), that is

L = Λ + JμAμ + 1

2
WμνBμν + . . . . (5.89)

The Maxwell and Kalb–Ramond fields are ideal for describing superconducting and
global strings respectively, but for wiggly strings they can be set to zero—the effect of
small-scale structures can be encoded in the function Λ. The simplest Goto–Nambu
string model is obviously

LGN = −μ0 . (5.90)

Models having a variable Lagrangian density are usually called elastic string models
[10, 11]. The reason for this is that the energy density in the locally preferred string
rest frame, which will henceforth be denoted by U, and the local string tension,
denoted T , are constant for a Goto–Nambu string U = T = μ0 but they are variable
in general. In particular, one should expect that the string tension in an elastic model
will be reduced with respect to the Goto–Nambu case due to the mechanical effect
of the current.

Since elastic stringmodels necessarily possess conserved currents, it is convenient
to define a ‘stream function’ φ on the world-sheet that will be constant along the
current’s flow lines. The part of the Lagrangian density L containing the internal
fields can be defined as a function of the magnitude of the gradient of this stream
function, Λ = Λ(χ), such that χ = γ abφ,aφ,b; notice that in more general cases
with non-zero external fields these would be covariant derivatives. In our case, we
will require a single scalar field, and the associated current can be pictured as a
mass current. This means that we should think of wiggly strings as carrying a mass
current, which will renormalize the bare mass per unit length μ0. Indeed, the model
with Lagrangian density

L = −μ0

√
1 − χ , (5.91)

has the equation of state
UT = μ2

0 . (5.92)

and it has been shown that this equation of state arises in an exact way [13] in a
macroscopic (in the sense of smoothed) model of a wiggly string, that is a Goto–
Nambu string containing a spectrum of small oscillations that one cannot (or does not
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want to) describe in microscopic detail. Consistently with this physical picture, we
will make the simplifying assumption that the potential χ depends only on the world-
sheet time. We are therefore interpreting it as an effective or renormalized quantity,
defined on a scale that is smaller than the horizon (which is the scale beyond which
the network is Brownian) but still large enough (just) for the small-scale dependence
on the space-like world-sheet coordinate to be negligible. In this phenomenological
sense it can be pictured as a mesoscopic quantity.

The free string equations of motion can now be obtained in the usual (variational)
way. We retain the line element and gauge choice of previous chapters, and the
coordinate energy per unit length along the string is still given by

ε2 = x′2

1 − ẋ2
. (5.93)

The only difference (apart from the additional amount of algebra) is that there is now
a further equation for the scalar field φ. Indeed, rather than working with this directly
it turns out to be convenient to define the dimensionless parameter w by

Λ = −μ0w ; (5.94)

and then the local string tension and energy density are simply given by

T

μ0
= w ,

U

μ0
= 1

w
,

T

U
= w2 . (5.95)

Incidentally, notice that the equation of state for these networks has the form

3
p

ρ
=

(
1 + T

U

)
v2 − T

U
. (5.96)

Hence wiggly strings still behave as radiation (p/ρ ∼ 1/3) in the ultra-relativistic
limit. On the other hand, in the non-relativistic limit one has

(
p

ρ

)
nr

= −1

3

T

U
≥ −1

3
(5.97)

while in the tensionless limit (T/U → 0)

(
p

ρ

)
nt

= 1

3
v2 ; (5.98)

tensionless non-relativistic wiggly strings behave as matter (p/ρ ∼ 0). It may be of
interest to assess the possible role of such strings in the context of the dark matter
problem.
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Thus one finds the following microscopic string equations of motion

ẍ + ẋ(1 − ẋ2)
ȧ

a
(1 + w2) = w2

ε

(
x′

ε

)′
, (5.99)

( ε

w

)̇
+

( ε

w

) ȧ

a

[
2w2ẋ2 + (1 + ẋ2)(1 − w2)

] = 0 , (5.100)

ẇ

w
= (1 − w2)

(
ȧ

a
+ x′ · ẋ′

x′2

)
. (5.101)

Alternatively, one can substitute Eq. (5.101) into (5.100) to obtain

ε̇

ε
+ ȧ

a
ẋ2(1 + w2) = (1 − w2)

x′ · ẋ′

x′2 . (5.102)

Now, the total energy of a piece of string is

E = a
∫

εUdσ = μ0a
∫

ε

w
dσ ; (5.103)

this trivially corresponds to a total energy density ρ. Now, part of this is the bare
energy that can be ascribed to the string itself,

E0 = μ0a
∫

εdσ (5.104)

(whence one can define the bare string energy density ρ0) while the rest is in the
small-scale wiggles.

Ew = μ0a
∫

1 − w

w
εdσ . (5.105)

Each of these can be used to yield a characteristic length scale for the string network:
the total length could be the length that a Goto–Nambu string with the same total
energy would have, while the bare length measures the actual length. Thus we will
correspondingly define a characteristic lengthscale L associated with the total energy
E and a correlation length ξ associated with the bare string energy E0. From the point
of view of an analytic model, the key consequence of the existence of more than one
length scale is that we are no longer allowed to identify the three natural length scales
we considered in theGoto–Nambu case, namely a characteristic (energy) length scale
L, the string correlation length ξ and the string curvature radius R. In other words,
we can no longer have a one-scale model.

One also needs to rethink the way in which averages are defined. Specifically,
when one is defining average quantities over the string network (say, the average
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RMS velocity), should the average be over the total energy or just the energy in
string

〈ẋ2〉 =
∫
ẋ2Uεdσ∫
Uεdσ

, 〈ẋ2〉0 =
∫
ẋ2εdσ∫
εdσ

; (5.106)

in other words, should pieces of string that have larger mass currents be given more
weight in the average? Given the discussion so far, it should be intuitively clear
that the first definition is the natural one, but the opposite choice deserves further
discussion. These two averaging procedures can be applied to any other relevant
quantity. For a generic quantity Q, they are related via

〈Q〉 = 〈QU〉0
〈U〉0 . (5.107)

An averagedmodel forwiggly cosmic string evolution should contain three (rather
that two) evolution equations. Apart from evolution equations for a length scale and
velocity, there will be a third equation which describes the evolution of small-scale
structure. This is reminiscent of the three-scale model [8], but actually there are two
crucial differences. First, in the three scale model all three evolution equations do
in fact describe length scales, while in our case only one of them does so (although
a second equation can dependently be converted into one that does). Second, in the
three scale model there is no allowance for the evolution of the string velocities.
From a physical point of view, the natural way to include small-scale structure in this
type of analytic model is through an evolution equation for the renormalized string
mass per unit length μ, defined in the obvious way

μ = E

E0
. (5.108)

5.2.1 Averaged Evolution and Energy Transfers

The averaging procedure for the transonic elastic model is in principle identical
to the one followed for the Goto–Nambu case, although the added complexity will
manifest itself in several ways [12]. In accordance with the above discussion, we will
define averaged quantities attributing more weight to regions with more small-scale
structure. Hence we take the average of a generic quantity Q to be

〈Q〉 =
∫
Q ε

wdσ∫
ε
wdσ

. (5.109)

In particular, we will deal with the average RMS string velocity, v2 = 〈ẋ2〉 and also
with the renormalised string mass per unit length μ ≡ E/E0 = 〈w〉−1 = 〈w−1〉0.
Strictly speaking, μ is a scale-dependent quantity, μ = μ(
, t) as measured in
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Goto–Nambu simulations [7], but theμ thus defined is to be understood as a quantity
measured at a mesoscopic scale somewhat smaller than the horizon. Intuitively, an
obvious choice will therefore be the coherence length in the analytic model itself.

By differentiating the above microscopic equations, one finds the corresponding
averaged evolution equations. Specifically, the total length of a given piece of string—
or the corresponding density—evolves according to

Ė

E
= ρ̇

ρ
+ 3

ȧ

a
= Ė0

E0
+ μ̇

μ
= [〈w2〉 − v2 − 〈w2ẋ2〉] ȧ

a
. (5.110)

We similarly obtain, for the energy density in string

Ė0

E0
= ρ̇0

ρ0
+ 3

ȧ

a
= [

1 − μ〈w(1 + w2)ẋ2〉] ȧ
a

− aμ

R
〈w(1 − w2)(ẋ · û)〉 , (5.111)

where R is the string curvature radius. As one would expect the Hubble expansion
essentially acts on the string length, not the total length: stretching has the effect
of decreasing wiggliness, just as it decreases velocity. On the other hand, curvature
tends to accelerate the strings, thereby decreasing the string energy and hence tending
to increase wiggliness. The evolution equation for μ is not independent, and can
be obtained from the above. However, one must be careful about the choice of
lengthscale at which one is defining it. If this is a fixed scale, then all one has to do
is take the difference of the dynamical equations for E and E0. However, if we want
to define it at the scale of the correlation length we must allow for the fact that this
scale also evolves with time. Generically

μ̇

μ
= Ė

E
− Ė0

E0
+ 1

μ

∂μ

∂


̇ , (5.112)

where 
 is the mesoscopic lengthscale at which we define μ. The energy terms can
now be obtained from the above equations, while the scale drift term can be related
to the multifractal dimension [14], to yield, ignoring terms of second order in 
/R,

μ̇

μ
= aμ

R
〈w(1 − w2)(ẋ · û)〉 + ȧ

a

[〈w2〉 − 1 + 〈(μw − 1)(1 + w2)ẋ2〉] + [dm(
) − 1] 
̇



.

(5.113)

This also means that an opposite drift term must be included in the equation for the
density in string

Ė0

E0
= ρ̇0

ρ0
+ 3

ȧ

a
= [

1 − μ〈w(1 + w2)ẋ2〉] ȧ
a

− aμ

R
〈w(1 − w2)(ẋ · û)〉 − [dm(
) − 1] 
̇



,

(5.114)
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Notice that this makes physical sense: E is the total energy if the network, and thus
an invariant quantity, but the string energy E0 and μ do depend on the scale at which
we have decided to measure them. Finally the evolution equation for the string RMS
velocity is

˙(
v2

) = 2a

R
〈w2(1 − ẋ2)(ẋ · û)〉 − ȧ

a
〈(v2 + ẋ2)(1 + w2)(1 − ẋ2)〉 , (5.115)

and for analogous reasons there is also a scale drift term in this equation which has
the form

∂v2

∂


d


dt
= 1 − v2

1 + 〈
w2

〉 ∂
〈
w2

〉
∂


d


dt
. (5.116)

The physical interpretation of this term is not as simple as that for the renormal-
ized mass, but one immediate consequence of the presence of this drift term is that
strictly speaking this is no longer a purely ‘microscopic’ RMS velocity, but rather a
‘mesoscopic’ one.

The coefficient in the drift term is unity for a Brownian network (dm = 2) and
vanishes for straight segments (dm = 1): a straight line is a straight line regardless of
the scale at which one is looking at it. Naturally it also vanishes if we’re considering
a time-independent scale. The analogies between the evolution equations for μ and
v are manifest. Observe, however, an expected but crucial difference: the curvature
term in thewiggliness equation vanishes both in the tensionless and theGoto–Nambu
limits, while that in the velocity equation only vanishes in the tensionless limit.

Recall that v and μ are averaged quantities; they have been put inside average
signs, respectively in Eqs. (5.113) and (5.115) simply as a means to yield simpler
algebraic expressions; when expanding those expressions they can be freely taken
out of the averages since they have no spatial dependence. Moreover, note that in
order to obtain the terms involving the curvature radius R in the above equations one
needs to make use of the following identities

1

ε(1 − ẋ2)

(
x′

ε

)′
· ẋ = −x′ · ẋ′

x′2 = a

R
(ẋ · û) , (5.117)

where û is a unit vector defined as

a

R
û = d2x

ds2
(5.118)

ds = |x′|dσ =
√
1 − ẋ2εdσ . (5.119)

We also need to discuss what phenomenological terms should be added to the
above equations to account for energy losses into loops and for the energy transfer
between the bare string and the wiggles. Firstly we need the string correlation length,
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which clearly needs to be defined with respect to the bare (as opposed to the total)
string density

ρ0 ≡ μ0

ξ 2
. (5.120)

We assume that the correlation length thus defined is approximately equal to the
string curvature radius defined in Eq. (5.118) and appearing in Eqs. (5.114)–(5.113),
ξ ∼ R; such an assumption can be tested numerically, and although not exact it is
sufficiently accurate for our present purposes. The correlation length ξ still has a
physically clear meaning, while the other characteristic length scale L is now only a
proxy for the total energy in the network, ρ ≡ μ0/L2. In analogy with what was done
for the simple Goto–Nambu case, we define the fraction of the bare energy density
lost into loops per unit time as

(
1

ρ0

dρ0

dt

)
loops

= −cf0(μ)
v

ξ
. (5.121)

Numerical simulations suggest that small-scale structure enhances loop production,
andwe allow for this possible enhancement via an explicit dependence onμ, encoded
in a function f0(μ) which should approach unity in the Goto–Nambu limit.

Importantly, in the wiggly case we have an additional phenomenological term.
Whenever two strings inter-commute, kinks are produced (whether or not loop pro-
duction occurs). This leads to energy being transferred from the bare string to the
small-scale wiggles. We will model this as follows

(
1

ρ0

dρ0

dt

)
wiggles

= −cs(μ)
v

ξ
, (5.122)

in analogy with the above term for losses into loops. Beyond the fact that the phe-
nomenological parameter s vanishes in the Goto–Nambu limit, its precise behavior is
less obvious than the former one. Note that in particular it should include the effects
of kink decay on long strings (notably due to gravitational radiation), a process that
is not accounted for in numerical simulations of string networks. As for the fraction
of the total energy lost into loops, we need to take into account that the energy may
be come from the bare string or from the wiggles

(
1

ρ

dρ

dt

)
loops

=
(
1

ρ

dρ0

dt

)
loops

+
(
1

ρ

dρw

dt

)
loops

. (5.123)

The energy loss from the bare string has already been characterized by the parameter
f0 in Eq. (5.121); defining an analogous term for the losses from the wiggles

(
1

ρw

dρw

dt

)
loops

= −cf1(μ)
v

ξ
, (5.124)
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we end up with

(
1

ρ

dρ

dt

)
loops

= −c

[
f0
μ

+ f1

(
1 − 1

μ

)]
v

ξ
= −cf (μ)

v

ξ
, (5.125)

where we defined an overall loss parameter f . We might expect this term to have
a stronger dependence on μ than that of f0, to account for the fact that loops are
preferentially produced from regions of the long string network containing more
small-scale structure than average. There is clear evidence of this fact from numerical
simulations [7, 15, 16]. Somewhat similar parameters have been introduced before
[8]; these are usually constant and defined as the excess kinkiness of a loop compared
to a piece of long string of the same size. Here, we will explicitly include a μ

dependence. As a simple illustration, if we fix f0 = 1, specify that both energy loss
terms strictly match the Goto–Nambu case, and recall that

ξ 2 = μL2 , (5.126)

we immediately get
f (μ) = √

μ , (5.127)

f1(μ) = μ3/2 − 1

μ − 1
, (5.128)

but again we emphasize that the detailed form of these functions warrants further
discussion, and should be checked in high-resolution numerical simulations.

5.2.2 The Tensionless Limit

We now study the tensionless limit where most of the energy is in the small-scale
wiggles (w → 0, T/U → 0), which physically corresponds to the local string
tension being negligible when compared to the energy density, and hence to very
high wiggliness, μ � 1. This is in fact a very simple limit to study (for example
the scale drift term in the velocity equation is negligible), but it will provide insights
into the behavior of wiggles that will be very useful for future studies.

We start with the RMS velocity equation (Eq.5.115), which yields

v ∝ a−1 ; (5.129)

and using this result in the equation for the total energy (Eq.5.110) we have

E = const. , ρ ∝ a−3 . (5.130)
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What is happening is clear. The network is conformally stretched, and since the
stretching acts on the string length the wiggliness will in fact have to be decreasing.
Since the network is frozen it will eventually dominate the energy density of the
universe. Solving the Friedmann equation with the string density, we find

a ∝ t2/3 , (5.131)

so this string-dominated universe is like a matter-dominated universe. This physical
interpretation can be confirmed by looking at the remaining equations. On a fixed
scale we find

E0 ∝ a , ρ0 ∝ a−2 . (5.132)

It then follows that the network’s correlation length is proportional to the scale factor

ξ ∝ a , (5.133)

as indeed is the case for the total length in string


0 = E0

μ0
= E

U
∝ a , (5.134)

which confirms the conformal stretching. As for the renormalized mass per unit
length, since μE0 = E = const. we immediately have in this fixed scale case

μ ∝ a−1 ; (5.135)

recall the mesoscopic interpretation ofμ: since the network is frozen but stretched by
the expansion, the effective mass per unit length on a given scale is correspondingly
reduced.

In the general case where the scale where μ is defined is allowed to vary, we have

Ė0

E0
= − μ̇

μ
= ȧ

a
− [dm(
) − 1]


̇



. (5.136)

If we follow a scale that is proportional to the scale factor (
 ∝ a), we have

μ̇

μ
= [dm(
) − 2]

ȧ

a
, (5.137)

and for a Brownian network μ and E0 would both be constant. On the other hand
μ will decrease (increase) for a network with a smaller (larger) fractal dimension,
and E0 will have the opposite behavior. For a constant multifractal dimension we can
write

μ ∝ adm−2 , ρ0 ∝ a−(1+dm) , (5.138)
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ξ ∝ a(1+dm)/2 ; (5.139)

and therefore the characteristic lengthscale L behaves as

L ∝ a3/2 ∝ t , (5.140)

independently of the averaging scale and consistently with the behavior of E.
As an alternative, if we follow the horizon scale (
 ∝ dH ), for a ∝ t2/3 we have

dH(t) = 3t, and relating this to the scale factor we find (still with a constant fractal
dimension)

μ ∝ a(3dm−5)/2 , ξ ∝ a(1+3dm)/4 ; (5.141)

now μ will be a constant for a multifractal dimension dm = 5/3. Interestingly, this
is the fractal dimension of a self-avoiding random walk in three dimensions [14].
Conversely, if we follow the scale of the correlation length itself 
 ∝ ξ we find

μ ∝ a4/(3−dm)−3 , ξ ∝ a2/(3−dm) , (5.142)

and again a constant μ will correspond to a self-avoiding random walk, dm = 5/3.

5.2.3 The Linear Limit

We now study linear limit (w → 1,μ → 1) where the wiggliness is small and can be
treated as a linear order perturbation to the Goto–Nambu case. This limit may also be
reasonable as an approximation for comparisons with numerical simulations, which
typically start out with very little or no small-scale wiggles. At the microscopic level,
let’s define

w = 1 − y , (5.143)

where y � 1; macroscopically this corresponds to

μ ≈ 1 + 〈y〉 ≡ 1 + Y , (5.144)

where Y is similarly small and positive, and averaged quantities are now defined as

〈Q〉 =
∫
Q(1 + y)εdσ∫
(1 + y)εdσ

∼ (〈Q〉0 + 〈QY〉0)(1 − Y) , (5.145)

which we can equivalently write

〈Q〉 ∼ 〈Q〉0 − Y〈Q〉0 + 〈QY〉0 + O(Y 2) ∼ 〈Q〉0 + corr0(y,Q) . (5.146)
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As expected, to first approximation the two previously discussed averaging proce-
dures are now equivalent for quantities independent of w. This also implies that the
cross-terms now become trivial if we assume ẋ2 to be independent of w

〈wα1 ẋ2α2〉 ∼ 〈wα1〉〈ẋ2α2〉 ∼ (1 − α1Y)v2α2 , (5.147)

since the neglected terms are all higher-order.
Linearizing the averaged evolution equations (Eqs. (5.110)–(5.113)), one finds

Ė

E
= [

(1 − 2v2) − 2Y(1 − v2)
] ȧ
a

(5.148)

Ė0

E0
= [

(1 − 2v2) + 2Yv2
] ȧ
a

− 2
kaYv

R
− [dm(
) − 1]


̇



, (5.149)

˙(
v2

) = 2v(1−v2)

[
ka

R
(1 − 2Y) − 2v(1 − Y)

ȧ

a
− 1 + 2Y

2v
[dm(
) − 1]


̇




]
(5.150)

Ẏ = 2Y

(
kav

R
− ȧ

a

)
+ [dm(
) − 1]


̇



. (5.151)

Finally, switching from conformal to physical time and introducing the previously
discussed energy loss terms we end up with

2
dL

dt
= 2[1 + v2 + Y(1 − v2)]HL + cfv

(
1 − 1

2
Y

)
(5.152)

2
dξ

dt
= 2[1 + (1 − Y)v2]Hξ + [2kY + c(f0 + s)]v + ξ [dm(
) − 1]

1




d


dt
(5.153)

dv

dt
= (1 − v2)

[
k

ξ
(1 − 2Y) − 2Hv(1 − Y) − (dm(
) − 1)

1 + 2Y

2v


d


dt

]
, (5.154)

dY

dt
= [2kY + c(f0 + s − f )] v

ξ
− 2HY + [dm(
) − 1]

1




d


dt
. (5.155)

Recall that f0, f and s are in principle functions of Y , while k is a function of velocity.
We expect both (f0 + s − f ) and (dm − 1) to be linear in Y .
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A simple analysis of the scaling behavior of these evolution equations can now be
carried out. It makes sense to consider a situation in which 
 ∝ t an we assume dm ∼
1 + 2Y , which numerical simulations suggest may be a reasonable approximation
[7]. If γGN = L/t and vGN are the scaling parameters in the Goto–Nambu case (refer
to Chap.2 for their definitions), then to first order in Y the new (wiggly) scaling
parameters are obtained (for c 	= 0) by solving the algebraic system

γξ ∼ cfv

2
[
1 − λ

(
1 + v2 + (

1 − v2
)
Y
)] (5.156)

v2

v2GN

∼ 1 +
[
cλ (2 − A − 2B) − 2k (1 − 2λ)

2λ (k + c)

]
Y (5.157)

Y ∼ 2 (λ − 1) [(2A + 1) k + (A + 1) c]

[1 − 2A + 2D + (A − 2D) λ] k + [2D (1 − λ) − A (2 − λ)] c
. (5.158)

Note the explicit dependence on the expansion rate (a ∝ tλ). The A, B, and D
parameters come from writing

f0 + s − f ∼ AY (5.159)

f0 + s + f ∼ 2(1 + BY) (5.160)

f0 + s ∼ 1 + DY . (5.161)

In particular, we can use the physical requirement that Y be positive to impose
constraints on the linear term in the expansion of s (Y). If we assume Eqs. (5.127)
and (5.128) (meaning A ∼ −1/2 + D, B ∼ 1/4 + D/2, and DY ∼ s), then

Y ∼ 2 (λ − 1) [4kD + (1 + 2D) c]

[4 − (1 + 2D) λ] k + [2 − λ (1 + 2D)] c
(5.162)

and if k > 0 as expected, requiring Y to be positive is equivalent to imposing (recall
that D is also expected to be positive)

D >
(4 − λ) k + (2 − λ)c

2λ (k + c)
; (5.163)

note that the right-hand side is always positive. Additionally, demanding that Y < 1
implies

D <
4(k + c) − λ(k + 3c)

2λ(5k + 3c) − 4(2k + c)
, (5.164)

http://dx.doi.org/10.1007/978-3-319-44553-3_2
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and surprisingly these two conditions are incompatible in both the matter and the
radiation epoch. Indeed for the right-hand side of the previous equation to be positive
one requires a fast enough expansion rate, namely

λ >
4k + 2c

5k + 3c
, (5.165)

This shows that it is not necessarily trivial to find natural energy loss parameters
which enable non-trivial small-scale scaling, beyond the trivial Y = 0 solution. How-
ever one should interpret these results with some caution, as theymay simply indicate
that our assumptions regarding the energy loss terms, specifically Eqs. (5.127) and
(5.128), may not be valid. Support for this possibility is provided by the fact that
numerical simulations suggest small-scale scaling can happen in the linear limit [7].
Work is currently ongoing to explore the parameter space of the full model.

5.3 Towards Cosmic Superstrings

So farwe have been considering the simplest defectmodels, and inmost cases finding
that a scaling solution exists. One may ask whether this result still holds for more
complex models for example for the case of cosmic superstrings [17]. As we will
see, the answer seems to be yes: the scaling solution is indeed quite robust and it
persists in many cases, although there are certainly mechanisms that can suppress it.

We start by pointing out that explicit energy losses are not absolutely necessary
for scaling in a cosmological context: the expansion itself may provide sufficient
damping. For strings, scaling will occur for any expansion rate λ > 1/2, regardless
of energy losses [18] for domain walls, the analogous threshold is λ > 1/4. Among
other things this implies that for strings to scale in the matter era loop production not
needed for scaling, as is known since the first generation of numerical simulations
in the early 1990s [15, 16]. That said, note that the above paper also shows that in
some string-dominated universes the correlation length grows as L ∝ a ∝ t, so this
is formally a linear scaling solution, although its physical properties are somewhat
different from the standard ones.

The next question has to do with the role of additional degrees of freedom on the
string worldsheet. Perhaps the simplest such example is that of a charge, and we saw
in this chapter that this need not stop scaling. More specifically these solutions fall
into two regimes. If the expansion rate is large enough, the charge gets diluted and the
standard scaling is recovered. Conversely if the expansion rate is small, the charge
stays on the strings and there’s no linear scaling solution: instead the correlation
length grows more slowly and velocities decay. The transition between these two
regimes depends on the balance between network energy losses and the expansion
rate: with no energy losses, transition occurs for the matter era (λ = 2/3), but if
energy losses are present this threshold will be lower, and for large enough losses it
will be below radiation, meaning that the presence of a charge on the string need not
have dramatic consequences.
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Similarly, the presence of string junctions need not prevent scaling. This result
has in fact been known (even if only in a specific class of models) for a long time
[19]. It has also subsequently been obtained for other classes of models [20], and
it can occur for any number of coupled scalar fields (under the assumption that all
walls have the same tension). Finally, even the assumption of equal tensions can be
relaxed: a hierarchy of different tensions need not prevent scaling. Again this result
has been known for more than a decade, at least for one specific class of models [21].
The conditions under which it can be generalized are also under current study.

From the discussion above, it should be clear that the VOS approach to mod-
elling realistic cosmic superstring networks is to isolate the various different
physical processes that contribute to the dynamics of network, and try to under-
stand the role of each one of them by using suitably simplified (toy) models.
One can then put together this information into more accurate models and see
what these imply for superstrings. A number of these physical processes are
under control, in the sense that their role is well understood. Specifically, three
key examples are

• The dynamical role of monopoles and junctions, as discussed in previous
chapters.

• The role of extra dimensions (if applicable) and topology [22].
• The role of the intercommuting probabilities, first considered in [18] and
then quantified in [23].

Another set of relevant physical process have been identified whose under-
standing still requires more work (which is being done, by many people). I
will highlight three examples

• The role of additional degrees of freedom (such as charges and currents)
needs to be understood in more detail. In these models a second lengthscale
must necessarily be introduced, so these will no longer be ‘one-scale’ mod-
els. There are different ways to do this, which may be relevant in different
contexts.

• The behavior of networks with various tension hierarchies needs to be better
understood.Anaive approach is to treat the network as a sumof sub-networks
(one for each tension) and to add together ‘one-scale’ models for each of
these, in a minimally coupled way. However this approach (even if it is
done in a way that conserves energy, which is not always the case) has its
limitations, and may miss some of the relevant physics.

• More related to the networks’ observational consequences, there is the role of
the non-trivial velocity correlations [7]. These exist forGoto–Nambu strings,
and are expected to persist in superstring networks. Note that physically
the observable effect of the presence of the junctions should be non-trivial
velocity (anti)correlations on the network, and the natural way to model
them is to use fractal-like tools.
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Although a fully self-consistent analysis of the scaling properties of cosmic super-
string networks still remains to be carried out, partial results from various groups
(and our own ongoing work) do suggest that full scaling of all the components of
the network can certainly occur in significant regions of parameter space. However,
there are also regions of parameter space where only the lowest tension string scales
(and the heaviest ones decay), and others where no component scales and the network
may dominate the universe’s energy budget. Further work on these issues is ongoing.
Which regions of parameter space are natural (or indeed realistic) is a different issue,
which is beyond the scope of this analysis.

Analytic and numerical work in the past three decades has gradually established
the result that scaling attractor solutions are ubiquitous for cosmic defect networks.
At least at the qualitative level, the physical reasons behind this are clear: they stem
from the usual energy minimization mechanisms. Having said that, the solution is
certainly not universal: in some case thee are additional physical mechanisms that
naturally act to suppress it, while in others it can be suppressed at the cost of fine-
tuning or otherwise violent assumptions.
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Chapter 6
Defects in Condensed Matter

Abstract We discuss friction-dominated vortex-string evolution using the VOS
model. We explicitly demonstrate the relation between the high-energy physics
approach and the damped and non-relativistic limits which are relevant for con-
densed matter physics. We also reproduce experimental results in this context and
show that the vortex-string density is significantly reduced by loop production, an
effect not included in the usual ‘coarse-grained’ approach.

6.1 Motivation

The concept of symmetry breaking plays a crucial role in modern physics, and one
of its most interesting consequences is the formation of topological defects. These
defects have been observed and studied in a wide variety of condensed matter con-
texts, including metal crystallization [1], liquid crystals [2, 3], superfluid helium
[4, 5] and superconductors [6]. In models where they are allowed, defects will form
whenever the rate of the phase transition is fast relative to the scale of the system
size (in other words, a ‘quench’).

On the other hand, they are also believed to have formed in the early universe,
and they can play an extremely important part in its evolution [7]. In this context,
the conditions for their formation were first established by Kibble [8]—except for
some subtleties in the case of the breaking of a gauge symmetry [9], they are entirely
analogous.

The scaling evolution of vortex-string networks has been extensively studied
analytically in both condensed matter [10] as well as in cosmological settings, but
using rather different methods. This difference is perhaps understandable given the
extremity of these two physical regimes, but it may not be necessary. Condensed
matter descriptions tend to focus on a coarse-grained order parameter φ, providing
a low-level picture of defect motion by estimating energy dissipation rates. On the
other hand, high energy physicists take an ‘idealized’ one-dimensional view of string
dynamics by integrating out the radial degrees of freedom (in the Higgs φ and other
fields) to obtain a low-energy effective action—the Nambu action. The resulting rela-
tivistic equations ofmotion can then be averaged to describe the large-scale evolution
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107



108 6 Defects in Condensed Matter

of the string network. Naturally one should also account for energy loss mechanisms,
such as loop production—something that is not done in condensed-matter contexts.

One of the virtues of the VOS model is including the effects of frictional forces
[11, 12]. As such, it can be used to study string evolution at constant temperature,
which is relevant in condensed matter contexts. Although it should be seen as the
basis for further work, we show how the model is already predictive enough to be
testable in laboratory experiments, following the discussion in [13, 14].

The usual condensed matter approach to vortex dynamics is based on a ‘coarse-
grained’ complex scalar field φ. In quantum field theory, for example, one can con-
sider theAbelian–Higgsmodel,which is a relativistic generalization of theGinzburg–
Landau theory of superconductivity. It is also of interest to consider the global version
of this, that is the Goldstone model.

In high-energy physics it also proves to be convenient to adopt a one-dimensional
view of string dynamics. In this description a string sweeps out a 2D worldsheet
described by coordinates—one can be identified with the background time, t , while
the other is space-like and simply labels points along the string (we will call it σ ).

This 1D description is achieved by integrating over the radial modes of the vortex
solution on the assumption that the scale of perturbations along the string is much
larger than its width—thereby obtaining a low-energy effective action. For the case
of a gauge (global) string, one thereby obtains the Nambu (Kalb–Ramond) action
from the Abelian–Higgs (Goldstone) model, both discussed in Chap. 2. By varying
these actions it is then straightforward to obtain the string equations of motion.

Since stringsmove through a background fluid, their motion is retarded by particle
scattering. Vilenkin has shown [15] that this effect can be described by a frictional
force per unit length that can be written

Ff = − μ

Γ
γ v , (6.1)

where v is the string velocity, γ is the Lorentz factor and Γ is a constant damping
coefficient, that can be written as the square of a characteristic propagation speed
(which need not necessarily be the speed of light) times a ‘friction timescale’ τf ,
whose explicit value depends on the type of symmetry involved. For a gauge string,
the main contribution comes from Aharonov-Bohm scattering [16], while in the
global case it comes from Everett scattering [17]. For example, if the background
fluid is a perfect gas, we have

τf =
⎧⎨
⎩

2π�

β

(kBTc)2

(kBT )3
Gauge

2π�

β

(kBTc)2

(kBT )3
ln

(
R
δ

)
ln2(T δ) Global

(6.2)

where T is the background temperature and β is a numerical factor related to the
number of particle species interacting with the string.

http://dx.doi.org/10.1007/978-3-319-44553-3_2
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6.2 The VOS Model Revisited

For string motion in a flat background, the string equations of motion with the
frictional force (6.1) can then be written

1

c2
ẍ +

(
1 − ẋ2

c2

)
ẋ
Γ

= 1

ε

(
x′

ε

)′
, (6.3)

ε̇ + ẋ2

Γ
ε = 0 , (6.4)

where the dimensionless parameter ε (which can be interpreted as a ‘coordinate
energy per unit length’) is defined by

ε2 = x′2

1 − ẋ2/c2
, (6.5)

and dots and primes respectively denote time and space derivatives. This proves to be
particularly useful because dissipation is naturally incorporated in the decay of the
coordinate energy density ε, while preserving the gauge conditions. Note that while
this is a truly relativistic formalism, it is straightforward to obtain the non-relativistic
limit that will be adequate to condensed matter contexts where the dynamics is
friction-dominated. In this case, Eqs. (6.3)–(6.5) reduce to

ẋ
Γ

= − 1

x′4
[
x′ ∧ (

x′ ∧ x′′)] , (6.6)

andone can recognize the right-hand side as the friction force term (which is dominant
in this limit), e.g. on a superfluid vortex [18]

Moreover, it has been shown [19] that a global string will behave as a superfluid
vortex if it is introduced in a homogeneous background of the form

Hi jk
ext = √

ρhε
i jk ; (6.7)

physically, this corresponds to giving it angular momentum. The interaction between
this background and the string originates an additional force, known as the (relativis-
tic) Magnus force, and (6.3) becomes

1

c2
ẍ +

(
1 − ẋ2

c2

)
ẋ
Γ

= 1

ε

(
x′

ε

)′
+ Γ ′ẋ ∧ x′

ε
, (6.8)

where Γ ′ ∝ ρ
1/2
h ; note that (6.4) remains unchanged. Alternatively we can re-write

this equation as follows (temporarily setting c = 1)
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ẍ +
(
2
ȧ

a
+ a

�f

) (
1 − ẋ2

)
ẋ = 1

ε

(
x′

ε

)′
+ 1

ε

ρh

μ
ẋ ∧ m , (6.9)

where

m = 4πη√
ρh

x′ (6.10)

is the circulation vector; the energy Eq. (6.4) remains unchanged.
We can now proceed to average the string equations of motion to describe the

large-scale evolution of the string network, as was also done in Chap.2. Recall that
the total string energy and the average RMS string velocity are

E = μ

∫
εdσ , v2 ≡ 〈ẋ2〉 =

∫
ẋ2εdσ∫
εdσ

, (6.11)

where the total string energy density obeys

dρ

dt
+ v2

Γ
ρ = 0 . (6.12)

We study the evolution of the long-string network assuming that it can be char-
acterized by a single lengthscale L; for Brownian long strings, we can define the
‘correlation length’ L in terms of the network density as ρ∞ ≡ μ/L2 as usual. Fol-
lowing Kibble [20], the rate of loop production from long-string collisions can be
estimated to be

(
dρ∞
dt

)
to loops

= ρ∞
v∞
L

∫
w

(
�

L

)
�

L

d�

L
≡ c̃v∞

ρ∞
L

. (6.13)

where the loop ‘chopping’ efficiency c̃ is assumed to be constant. By subtracting
these loop energy losses (6.13) we obtain the overall evolution equation for the
characteristic lengthscale L ,

2
dL

dt
= v2∞

Γ
L + c̃v∞ . (6.14)

We can also study the evolution of the loop density and distribution, as already
discussed in Chap. 2.

As for the evolution of the average string velocity v, recall that a non-relativistic
equation is simply just Newton’s law,

μ

c2
dv

dt
= μ

R
− μ

v

Γ
. (6.15)

http://dx.doi.org/10.1007/978-3-319-44553-3_2
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This merely states that curvature accelerates the strings while friction slows them
down. On dimensional grounds, the force per unit length due to curvature should be
μ over the curvature radius R. The form of the damping force can be found similarly.

A relativistic generalization of the velocity evolution equation (6.15) can be
obtained more rigorously by differentiating (6.11):

1

c2
dv

dt
=

(
1 − v2

c2

) (
k

R
− v

Γ

)
. (6.16)

This is exact up to second-order terms. In the curvature term, we have introduced
R via the definition of the curvature radius vector,

û
R

= d2x
ds2

, (6.17)

where û is a unit vector and s is the physical length along the string (related to
the coordinate length σ by ds = |x′|dσ = (

1 − ẋ2/c2
)1/2

εdσ ). The dimensionless
parameter k is defined by

〈(1 − ẋ2

c2
)(ẋ · û)〉 ≡ kv

(
1 − v2

c2

)
. (6.18)

Note that in the case of long strings, our ‘one-scale’ assumption implies that the
curvature radius coincides with the correlation length, R ≡ L; on the other hand, for
a loop of size � we should have � ≈ 2πR. The parameter k is ‘phenomenological’,
and has been discussed in Chap. 2. Equations (6.14), (2.23) and (6.16) form the basis
of our generalized ‘one-scale’ model, which we will now proceed to apply.

6.2.1 The Condensed-Matter Context

As we already noted, in this case the dynamics is always dominated by friction.
This means that the ‘correlation length’ L should always be larger than the (con-
stant) friction length, so we can take k ∼ 1. Then the evolution equations can be
approximated by

2
dL

dt
= L

v2

Γ
+ c̃v , (6.19)

dv

dt
= c2

(
1

L
− v

Γ

)
; (6.20)

http://dx.doi.org/10.1007/978-3-319-44553-3_2
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the friction lengthscale and the string energy per unit length being respectively

�f =
{
s Gauge
s ln

(
L
δ

)
Global

(6.21)

and

μ =
{
T 2
c Gauge

T 2
c ln

(
L
δ

)
Global

(6.22)

where Tc is the temperature at which the strings form and s is a constant. We then
find the following late-time asymptotic behavior:

L =
√
1 + c̃ (Γ t)1/2 , (6.23)

v = Γ

L
. (6.24)

Note that in both cases the asymptotic behavior of the long-string density is

ρ∞ = (kBTc)2

(1 + c̃)�sc2t
; (6.25)

the extra logarithmic dependencies in the global case cancel out. It should be empha-
sized that in condensed-matter analyses one does not consider loop formation,
although there is experimental [2] and computational evidence for them. Our results
show that loop formation can play an important evolutionary role.

The asymptotic ratio of the loop production and friction terms is a constant, which
is precisely c̃—which in this way acquires a clearer physical meaning. As expected,
increasing c̃ (or including loop losses in the first place) leads to a lower network
scaling density and a smaller average velocity v; furthermore, the approach to the
scaling regime is also faster.

Notice that in the gauge case the temperature only enters the scaling solution
in the prefactor s. In the global case, the logarithmic dependence of the friction
lengthscale gives rise to an additional logarithmic dependence of the scaling solution
on temperature. One can define d via L/δ ≡ L/sd; in the Goldstone model we then
have

d−1(T ) =
√

λ

6

(
Tc
T

)3

ln2
(√

λ

6

T

Tc

)
. (6.26)

One expects an enhancement of loop production at the early stages, since the string
velocity is high; correspondingly, there is a fast growth of the correlation length.
Comparing with the gauge case one finds that the effect of the extra logarithmic
terms is significant for a comparatively large time.
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The t1/2 scaling law for the characteristic lengthscale is a well-known result
in the theory of phase ordering (that is, the growth of ‘order’—as mea-
sured by some correlation length—by domain coarsening when a system is
‘quenched’ from a homogeneous phase into a broken-symmetry phase) with a
non-conserved order parameter. In this context it is usually called the Lifshitz-
Allen-Cahn [21] growth law, and it is widely supported by simulations and
experiment [22] (see also Ref. [10] for a review). In the usual approach, one
sets up a continuum description in terms of a coarse-grained order parameter φ
and then assumes a scaling hypothesis, that is, that at late times there is a single
lengthscale such that the domain structure is time-independent (in a statistical
sense) when all lengths are rescaled by it. The growth law is usually derived by
studying the dynamics of the defects in φ (see, for example, Sect. 3 in Bray’s
review [10]). An alternative approach [23] proceeds instead by comparing the
global rate of energy change due to the energy dissipation to the local evolution
of the order parameter; with the scaling hypothesis, the time-dependence of
the lengthscale can be determined self-consistently.

In particular, the L ∝ t1/2 law has been experimentally confirmed for the
evolution of a string network in a nematic liquid crystal (roughly speaking,
a liquid made of rod-like molecules)—eg, see Ref. [2] where, as mentioned,
loop formation and decay have been seen.

The v ∝ L−1 ln L scaling law is also known in hydrodynamical contexts.
Furthermore, it has been shown that it holds for superfluid vortex-rings [19]
in the context of a modified Goldstone model. Hence the above result seems
to indicate that a global string network at constant temperature asymptotically
behaves as if it was made of loops of size L .

Finally, in the case of superfluid vortices, despite the additionalMagnus force term,
the evolution equations also have the form (6.19) and (6.20). In this case, however,
the physical meaning of the friction lengthscale is not clear. Furthermore, it is also
not clear how one can describe the effect of the Magnus force on the evolution of the
network. This is a topic which warrants further work.

6.2.2 The Relativistic Regime

As a matter of completeness as well as mathematical curiosity, we now consider the
evolution of a string network in flat space with a constant friction lengthscale when
the initial conditions are such that the correlation length is much smaller than the
friction lengthscale. Note that this is the opposite regime to the one usually observed
in condensed matter.

The evolution equations will now be



114 6 Defects in Condensed Matter

2
dL

dt
= v2

Γ
L + c̃v , (6.27)

dv

dt
= (

c2 − v2
) (

k(L)

L
− v

Γ

)
. (6.28)

In the regime where R � �f the v-equation is independent of L , so its particularly
easy to find the scaling regime

L

�f
=

(
Lo

�f
+ 2

√
2c̃

)
exp

[
c

4�f
(t − t0)

]
− 2

√
2c̃ , (6.29)

v

c
= 1√

2
. (6.30)

Hence L grows exponentially fast and quickly ‘catches up’ with �f ; in other
words, a network starting in the ‘free’ regime rapidly evolves to the usual friction-
dominated regime. Note that if loop production is allowed, this fast growth of the
correlation length will obviously mean that an extremely large number of loops is
produced. In this case, the energy density in loops actually exceeds the energy in long
strings. A word of caution is however needed here. In this case, loop reconnections
onto the long string network should play an important role. However, since we still
get an exponential growth if loop production is switched off (c̃ = 0)—although the
growth rate of L is obviously much larger for c̃ = 0—our results should at least be
qualitatively correct.

Thus the VOS model allows us to properly describe friction-dominated string
dynamics, hence providing the first complete and fully quantitative study of string
networks and their corresponding loop populations in condensed matter, as well
as cosmological contexts. The fact that these results can be obtained in a model
initially aimed at describing cosmic string evolution is, of course, a manifestation
of the universality of symmetry breaking and defect formation phenomena, but it
also lends weight to the validity of this approach because these cosmological models
have been extensively tested numerically.

6.3 Summary: VOS in a Nutshell

As previously discussed the microscopic string equations of motion are

ẍ + (
1 − ẋ2

) ẋ
�d

= 1

ε

(
x′

ε

)′
+ ζ ẋ ∧ x′

ε
(6.31)

ε̇ + ẋ2

�d
ε = 0 . (6.32)
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All terms can be rigorously derived from the Nambu action, except the last one in
(6.31) which comes from the Kalb–Ramond action and describes the Magnus force
arising when a global string moves through a relativistic superfluid background [19]
whose density is parametrized by ζ [13].

Now let us consider two limits of the equations of motion that are relevant in
condensed matter systems. Firstly, if the damping term dominates, we find after
some algebra (note that the Magnus force is not included, since it’s not dissipative)

ẋ
�d

= − 1

x′4
[
x′ ∧ (x′ ∧ x′′)

]
, (6.33)

where the right-hand side is the friction force term, e.g., on a superfluid vortex [18,
19]. Secondly, let us consider the non-relativistic limit but without damping. In this
case we find

ẋ = 1

ζx′2
x′ ∧ x′′

ε
, (6.34)

which is the equation describing the frictionless motion of a vortex filament in an
unbounded fluid [18]. By combining these two terms we can therefore reproduce the
equation of motion obtained by Schwarz [18], which used an effective and more phe-
nomenological 1D approach (based on a coarse-grained order parameter) to obtain
the terms one by one. Note however that the Schwarz equation has further (subdom-
inant) terms, coming from non-local and boundary contributions (which we have
neglected altogether).

The VOS model has already described in detail, in particular in Chap. 2 for the
case of cosmic strings. It includes a phenomenological term to account for the loss
of energy from long strings by the production of loops—the ‘loop chopping effi-
ciency’ parameter c̃. A further phenomenological term (characterized by a strength
Σ and a characteristic length scale Ld ) is also included to account for radiation
back-reaction effects. By suitably averaging Eqs. (6.31)–(6.32) one can obtain the
following evolution equations

2
dL

dt
= 2HL + c̃v + L

�d
v2 + 8Σv6 exp

(
− L

Ld

)
, (6.35)

dv

dt
= (

1 − v2
) (

k(v)

L
− v

�d

)
; (6.36)

here H is the Hubble parameter (relevant for cosmology) and k is the ‘momentum
parameter’, given by

k(v) = 2
√
2

π
(1 − v2)(1 + 2

√
2v3)

1 − 8v6

1 + 8v6
; (6.37)

its non-relativistic limit is knr(v) ∼ 2
√
2/π .

http://dx.doi.org/10.1007/978-3-319-44553-3_2
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We can now take the condensed matter (non-relativistic) limit of the VOS model.
All we need to do is set H = 0 and the damping length to a constant. One finds a
stable attractor solution

L =
√
1 + c̃ (�d t)

1/2 . v = �d

L
. (6.38)

Thus our Goto–Nambu based microscopic equations of motion and our averaged
version of them successfully reproduce known condensedmatter results, respectively
the Schwarz equation and the L ∝ t1/2 scaling law. Note that our solution demon-
strates the importance of loop production—although this is not usually included
in theoretical or numerical analyses in the condensed matter context, it has been
observed in experiments [2].

Wewill now further test our averaged model in the context of Abelian–Higgs field
theory simulations and cosmology [14, 24]. These are a relativistic analogue of the
Ginzburg–Landau theory of superconductivity. Before reviewing the comparisons
between these simulations and the VOS model, it is worthwhile noting a byproduct
of this work which relates to vortex tangles in condensed matter. In order to create
quiescent initial conditions for string evolution in these simulations, instead of the
relativistic equations, one starts solving the corresponding diffusive equations (refer
to [24] for details). This is essentially equivalent to the non-relativistic evolution
of magnetic flux-lines in a friction-dominated regime. Measurements of the string
correlation length for the evolving network revealed a clear L ∝ t1/2 scaling, as
illustrated in [14]. As well as confirming the VOS model prediction in this case
(6.38), this has already been observed experimentally [2].

The relativistic evolution of the field theory string networks also clearly
revealed the predicted scaling laws and, remarkably, the correlation length
and velocities for all the simulations had a good asymptotic fit from the VOS
model using the single parameter c̃ ≈ 0.57. This fit was universal regardless
of whether the simulations were in flat space or in an expanding universe, or
whether matter or radiation eras.

As for the massive radiation parameters, the simulations suggest Σ = 0.5
and Ld = 4π which only affect the initial conditions. However, for global
strings with massless radiation Ld → ∞ there is a degeneracy between c̃ and
Σ because they act in the samemanner asymptotically. However, assuming the
same loop chopping efficiency c̃ = 0.57 for local and global cases, requires a
much higher damping coefficient Σ = 1.1 for the latter as expected for mass-
less radiation [24]. (These results and fits are also in reasonable agreement with
other recent simulations of global strings in Ref. [25].) This excellent corre-
spondence for both local and global strings appears to establish the validity of
the two key (‘localization’ and ‘thermodynamic’) assumptions underlying the
VOS model.



6.3 Summary: VOS in a Nutshell 117

In the case of Goto–Nambu simulations [26–28], both friction and radiative
backreaction are negligible. In the radiation and matter epochs, the best fit
corresponds to a loop chopping efficiency parameter c̃ = 0.23. We find that
this value also approximately reproduces the earlier results of Bennett and
Bouchet [26] and Allen and Shellard [27]. Thus fixing this parameter via the
radiation era, our model correctly predicts the matter era scaling large-scale
properties without any further tamperingwith parameters.We estimate the loop
chopping efficiency to have the value c̃ren = 0.23 ± 0.04. We emphasize that
we expect this to be a ‘universal’ parameter, independent of the cosmological
scenario in which the string network is evolving. However, if one performs
analogous simulations in flat (Minkowski) spacetime, one does find a different
value, c̃bare = 0.57 ± 0.04, which coincides with the value we found above for
field theory simulations. This is because the amount of small scale structure
present in Goto and Nambu expanding runs is much larger than that in field
theory and/or Minkowski space runs, and this has an influence on the large-
scale features of the network described by the model. Hence the two values
can be regarded as the ‘renormalized’ and ‘bare’ chopping efficiencies. This
is discussed at greater length in [24]. The analysis in [14] shows that these
parameters can we also reproduce the transition between the radiation and
matter eras, and a more recent work shows that the same happens in the case
of the analogous models for domain walls [29].

Thuswe conclude that theVOSmodel successfully reproduces the large-scale fea-
tures of numerical simulations of bothGoto–Nambu and field theory string networks,
as well as of experiments in condensed matter physics. This quantitative correspon-
dence provides strong evidence in support of the main assumptions on which the
VOS model is based, notably string ‘locality’ and ‘thermodynamic’ averaging. Our
results confirm that the dominant mechanisms affecting string network evolution
are loop production and damping, whether from friction or radiation depending on
the context. In condensed matter systems one expects that the two are of compara-
ble magnitude, despite loop production being neglected in the usual treatments. For
global strings, loop production is dominant but radiative damping can significantly
affect the network density. The outstanding issue raised by comparisons of gauged
string networks in Nambu and field theory simulations remains the modelling of
small-scale features on which more work (some of it ongoing) is clearly needed.
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