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Preface to the Second Edition

The second edition is an extended reprint of the first edition. In many chapters, a
more detailed mathematical treatment of the various subjects is given. A section
dealing with magnetic impurities and the Kondo effect has been added.

The author is grateful to Silvia Haindl and to Vladimir Kresin for detailed
suggestions about expanding the book.

Tübingen Rudolf P. Huebener
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Preface

Only a few scientific–technical developments from the last century have affected
our lives in such a powerful way as the spectacular advances in our knowledge
of the electronic properties of solids. Many of the present achievements are inti-
mately connected with these advances. To name only a few: the transistor and its
extreme miniaturization in microelectronics, the electronic processing of data and
highly developed and powerful computers, the mobile telephone and satellite
communication, television and entertainment electronics, as well as numerous
instruments and systems of medical technology.

In the final analysis, the theater of all these events of dramatic progress is the
world of electrons in crystals, where the (quantized) vibrations of the crystal lattice
continuously demonstrate their influence. The revolutionary advances in knowledge
are due to many individual people. Frequently, a true paradigm change has been
necessary in order to arrange and order the new perceptions properly. Hence, it is
not surprising that, as a rule, the pioneers of these new ideas initially had to
overcome great difficulties and rejection, before the new concepts slowly gained
acceptance. Also, in certain cases, highly focused research in large industrial lab-
oratories turned out to be the key to success. This is impressively illustrated in
particular by the invention of the transistor in the American Bell Laboratories.

This book represents an updated and strongly extended edition of the book
published by the same author nearly 10 years ago with the title Electrons in Action.
In particular, the physical contents were pointed out more clearly by mathematically
formulating the fundamentals. The book is aiming at students of the natural sci-
ences, and in particular of physics and materials science, as well as at engineers, as
an introduction to solid-state physics. It may serve as a motivating prestage and
companion of the established and very detailed textbooks.
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In addition to the physical contents, the book treats the important role played by
many famous and often still very young scientists. The fundamental developments
are supplemented by describing their scientific and historic environment.

Marius Orlowski, Virginia Polytechnic Institute, provided important advice.

Tübingen Rudolf P. Huebener
May 2014
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a Distance between the neighboring atoms or building blocks of the
crystal lattice

e Electric elementary charge
f Spring constant
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p Hole concentration
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r Electron coordinate
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A Vector potential
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RH Hall constant
S Seebeck coefficient
S Spin angular momentum
Sm Mixing entropy
T Temperature
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U Total vibrational energy of a crystal
U Inner energy
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ρf Flux-flow resistivity
σ Electrical conductivity
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Chapter 1
Spectacular Advances

Abstract During the second half of the last century solid state physics and
materials science experienced a great advance and established itself as an important
and independent new field. In addition to X-ray diffraction, new analytical tools
such as neutron diffraction, electron microscopy, different versions of mechanical
scanning techniques, and scanning electron and laser microscopy became available.
Material fatigue, radiation damage, and the preparation of single crystals developed
into important subjects. The invention of the transistor represented perhaps the
ultimate highlight.

During the second half of the last century the physics of solids has experienced a
tremendous growth, for which many important basic steps had already been pre-
pared during the first half of the century. An early decisive impulse for these
developments came from the discovery of X-rays in 1895 in Würzburg, Germany,
by Wilhelm Conrad Röntgen. Soon afterwards, this discovery lead to the first
observation of X-ray diffraction in crystals by Max von Laue in 1912 in Munich.
William Henry Bragg, Professor in Leeds, England, together with his son William
Lawrence Bragg at the early age of only 22 years, then started the systematic
analysis of crystal structures by means of X-ray diffraction.

Today, research dealing with the physics of solids has an impressively wide
scope, if for no other reason than the fact that solids are always needed to fabricate
useful or nice things, in contrast to the totally different role of liquids and gases. The
exact knowledge of the physical properties of the materials that we use today
becomes more and more important the further we advance in the field of high
technology. The large effort of research and development within the area of solid
state physics becomes obvious if one looks at the program books for the relevant
annual meetings of, say, the German Physical Society (DPG) or the American
Physical Society (APS) which recently contained up to more than 2000 pages.
(Today, these programs of the meetings are distributed mostly electronically).

Often, the technological applications provide the key motivation for strong basic
research in solid state physics. We illustrate this by the following two examples. On
January 10, 1954, an English passenger airplane of the Comet type broke apart at
8200 m altitude in the Mediterranean near the isle of Elba without any prior
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warning and crashed into the sea. With only 3681 flight hours, the plane was
relatively new. The search for the cause of the accident turned out to be extremely
difficult, even though people worked feverishly to clarify the cause of the terrible
crash. Since the cause of the accident continued to remain unknown, it was finally
concluded that the crash must have been the result of an unfortunate combination of
several bad effects. Hence, on March 23, 1954, the grounding order for all airplanes
of the same type, immediately issued on the day of the accident, was lifted again.
Prior to this, a total of 62 modifications had been introduced in all Comet airplanes
in operation or under construction. In this way it was hoped to exclude any possible
cause of the accident (Fig. 1.1). Then a completely unexpected dramatic event
happened. On April 8, i.e., only 16 days following the resumption of the regular
flight operation, another Comet airplane with only 2704 h of flight operation cra-
shed into the Mediterranean near Naples. Again, at a high altitude of 10,000 m this
time, the plane suddenly apparently broke apart. Now the situation became extre-
mely serious. The causes had to be found at the highest level, and all available
means had to be utilized. After analysis of the many different possibilities, problems
related to what is now called material fatigue, in particular associated with the
wings, came to the center of attention. As a consequence, the complete fuselage of
an airplane was dumped into a huge tank filled with water in order to expose it to
changing, and in particular to cyclical, mechanical loads. In this way, it was found
that, after some time, fatigue effects appeared on the wings. However, the fatigue
problems on the fuselage itself were much more severe. Finally, the evidence
became clear that the mechanical load during testing caused cracks in the fuselage,
and that all the cracks originated at the rectangular corners of the cabin windows.
The causes of both plane crashes had been found. However, this event also put to an
abrupt end the British leading role in air traffic. (Today a large piece of a side of one

Fig. 1.1 Comet jet-aircraft beginning a test flight after the crash of a plane in the Mediterranean
near the isle of Elba (Photo ullstein bild)
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of the two crashed aircrafts, recovered from the Mediterranean, is on display in the
Science Museum in London.)

Because of these dramatic developments, intensive research activities were
begun at the same time at many places. Until then only little was known about the
phenomenon of material fatigue, its effect on the mechanical properties of materials,
and the mechanisms leading to the development of microcracks.

In this context of the material fatigue experienced sixty years ago with the Comet
passenger airplane, it is interesting to note that the recent development of the largest
passenger airplane, which has ever been constructed, the Airbus A 380, included an
extensive and careful mechanical material fatigue testing procedure by means of
hydraulic systems, as a critical step. Starting in 2005 the complete A 380 airplane,
consisting of the whole fuselage and the wings, has been exposed for 26 months to
mechanical loads varying with time and simulating a total number of 47,500 flight
cycles (take-off and landing). This testing load program corresponds to the 25 year
lifetime of the A 380 airplane.

As a second example, we recall the possible difficulties expected more than
60 years ago during the operation of the inner components of the first nuclear
reactors. At that time hardly anything was known about the behavior of, say, graphite
when it is utilized for slowing down the neutrons which are emitted during nuclear
fission within the reactor. Would it be possible that during their irradiation with the
highly energetic neutrons the carbon atoms of the graphite lattice could be ejected
out of their regular lattice sites, eventually leading to an energetically highly excited
material, releasing abruptly its stored excess energy in an explosion like dynamite?
Such problems concerned the scientists involved in the early reactor experiments.
The American scientist Eugene Paul Wigner, originally from Hungary (later a Nobel
laureate and famous for his theoretical work on mathematical group theory and
symmetry principles and their role in atomic, nuclear, and elementary particle
physics) was one of the first who theoretically analyzed the physical properties of
lattice defects and radiation damage in crystals. At that time, a young co-worker of
Wigner, Frederick Seitz, performed the first theoretical calculations on this subject
(Fig. 1.2). Both scientists introduced the concept of the “Wigner-Seitz cell” into
solid state physics. Following these initial steps, the field of structural lattice defects
in crystals has developed into an important subfield of solid state physics, being
investigated today in many laboratories. In 1940 Frederick Seitz also published the
first general textbook on solid state physics: “The Modern Theory of Solids”.

An enormously important development took place with respect to microelec-
tronics. Here the physics of solids has resulted in a total paradigm change in
electronic technology. It was Mervin Kelly, one of the top-level managers of the
famous American Bell Laboratories in Murray Hill in the Federal State of New
Jersey, who realized at the end of the Second World War that the old mechanical
relays and the evacuated amplifying tube made from glass had to be replaced by
something better. To Kelly a highly promising candidate appeared to be the crystal,
if it had suitable electric conduction properties. Therefore, at the Bell Laboratories a
special group of scientists was organized, which was supposed to explore the
electric conduction properties of solids. At the center of everyone’s attention then
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stood the semiconductor crystals of germanium and silicon. Already, relatively
soon afterwards, an extremely momentous event had been the invention of the
transistor by John Bardeen, Walter Brattain, and William Shockley. On December
23, 1947, they demonstrated the transistor for the first time to the directors of their
company. Subsequently, as a new electronic device, the transistor underwent
intensive further development and improvement. Without a doubt, this invention
represented the start of the modern age of digital electronics.

These big advances in the field of solid state physics, of course, were accom-
panied by similar advances in instrumental techniques and methods. Here we must
mention the exploration of the regime of very low temperatures. In 1908 the Dutch
scientist Heike Kamerlingh Onnes in Leiden achieved for the first time the lique-
faction of the noble gas helium. With this success the low-temperature range down
to 4 K (−269 °C) became accessible. In this context the most spectacular event was
the subsequent discovery of superconductivity by Kamerlingh Onnes in 1911. Until
the 1930s, the number of laboratories equipped to perform experiments with liquid
helium worldwide could be counted on the fingers of one hand. In contrast, today
about 1000 helium liquefiers are operating worldwide (Fig. 1.3). Today the largest
liquefaction facility is operated at the particle accelerator Large Hadron Collider
(LHC) in Geneva. There exist eight liquefiers each having a liquefaction rate of
3600 l/h, i.e., with a total rate of 28,800 l/h. Worldwide this corresponds to about
40 % of the inventory of large liquefaction facilities for helium.

Fig. 1.2 Eugene P. Wigner (left photo Deutsches Museum) and Frederick Seitz (right private
photo)
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Eventually, the available experimental regime was extended to lower and lower
temperatures. In particular, we mention a technique relying on the elementary
atomic magnets of a paramagnetic substance. This technique consists of the fol-
lowing sequence of steps. Initially, a paramagnetic salt pill is precooled to about
1 K, in order to reduce considerably its content of thermal energy. Subsequently,
the elementary magnets in the salt pill are all oriented in one direction by a strong
magnetic field, and simultaneously the heat of magnetization is removed, being
deposited in the environment. In the next step, the salt pill is thermally decoupled
from its environment. Then the magnetic field is turned off. Now the pill is ther-
mally isolated, and the directional disorder of the elementary magnets gradually
reappears. As a necessary consequence, the temperature of the salt pill drops at the
same time. In this way low temperatures of only a few thousandth Kelvin can be
reached. This method of “adiabatic demagnetization“ was proposed in 1926 by the
Dutch scientist Peter Debye and in 1927 by the American William Francis Giauque.
In 1933 the method was demonstrated experimentally for the first time. The
extended application of this principle to the elementary magnets of the atomic
nuclei had already been proposed in 1934 by the Dutch scientist Cornelis Jacobus
Gorter and in 1935 by Nicholas Kurti and Franz Eugen Simon from Oxford. The
cooling effect due to this nuclear demagnetization was experimentally realized for
the first time in 1956. Using this technique, extremely low temperatures down to
one millionth Kelvin or lower could be reached. However, at such low temperatures
it becomes more and more difficult to establish thermal equilibrium between the

Fig. 1.3 Modern plant for liquefying the noble gas helium. On the left we see the controls and the
cold box of the liquefier, on the right the storage vessel for liquid helium (Photo Linde AG)

1 Spectacular Advances 5



different components of the solid, namely the electrons and their elementary
magnets, the lattice vibrations, and the elementary magnets of the atomic nuclei.

Because of their Jewish origin, Nicholas Kurti and Franz Eugen Simon had to leave
Germany in 1933 when Hitler took over the government. Earlier, both had worked first in
Berlin and then at the Technical University in Breslau (today Wroclaw), and the English
scientist Frederick Alexander Lindemann (later Viscount Cherwell) had arranged for a
position for both of them at the Clarendon Laboratory in Oxford, England. As director of
the Clarendon Laboratory Lindemann has done exactly the same at the time also for the two
brothers Fritz and Heinz London, and for Kurt Mendelssohn. After they had left Germany,
during subsequent years, all these people distinguished themselves by outstanding contri-
butions to physics at low temperatures, and Oxford gained a top position in this field.

An apparatus often used today for reaching temperatures much below 1 K is the
mixing cryostat (Fig. 1.4). In this cryostat the two isotopes of the noble gas helium,
which differ only by the number of neutrons in their atomic nuclei (3He with a
single neutron and 4He with two neutrons), are pumped through several stages of
heat exchangers, such that within the mixing chamber located at the coldest end of
the instrument an almost pure liquid 3He phase is collected directly above a liquid
mixed phase of 3He and 4He. For this technique to operate, the starting temperature
must already have been lowered to 1 K by precooling. During operation, 3He atoms
from the upper concentrated phase are dissolved continuously in the lower, much
more diluted phase. In many ways this scheme resembles a regular evaporation

Fig. 1.4 Mixing cryostat for
cooling down to temperatures
well below 1 K. The coldest
end with the mixing chamber
is located at the bottom. On
the top one can see the flange
for mounting into the
cryogenic container, which
can also be evacuated
(Photo Oxford)
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process, in which the upper phase corresponds to the liquid and the lower phase to
the vapor. As the final result, a continuous cooling of liquid helium is achieved.

With this apparatus the attached sample to be studied can also be cooled con-
tinuously. The lowest temperatures which can be reached are a few thousandth
Kelvin. The principle of the mixing cryostat was proposed for the first time in 1951
by Heinz London. The first prototype was operated in 1965. Together with his
brother Fritz London, Heinz London also had proposed an early theory of
superconductivity.

In addition to the continuing improvements in experimental instruments and to
the refinements of measuring techniques, sample preparation and the development
of materials also saw much progress. Here an important step was the production of
single crystals with extremely high purity. It was such ultra-pure single crystals
which allowed the exact determination of many physical properties of materials and
the achievement of a theoretical understanding based on these data (Fig. 1.5). The
growing of large single crystals starts by dipping a little seed crystal under an inert
gas atmosphere into the melt of the same material and then pulling it out again at a
slow and well regulated speed. In this way, during solidification of the melt, the
exact atomic order of the seed crystal will be reproduced. Record sizes of such
cylindrical single crystals up to more than one meter in height and nearly half a
meter in diameter have been achieved. The concentration of atomic impurities in
such a crystal can be reduced further by means of the “zone melting process”.
During this process the total cross-section of a short length of the crystal is heated
up to the melting temperature by means of, say, eddy current heating, while this

Fig. 1.5 Silicon single
crystal (Photo Wacker
Chemie AG)
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heating zone is slowly moved from one end of the crystal to the other. In the
resulting temperature gradient the atomic impurities are carried along to one end of
the crystal. If necessary, this process can be repeated several times. The impurity
concentration of silicon single crystals, routinely achieved today in the semicon-
ductor industry, amounts to only about a single impurity atom within 1 billion
silicon atoms.

The spectacular advances in our physical understanding of the microscopic
properties of solids were closely coupled to the progress of the instruments and
methods available for the analysis of materials. In addition to the investigation of
the structure of crystals by means of X-ray diffraction already mentioned, starting in
the 1950s the diffraction of neutrons was also utilized more and more for clarifying
crystal structures. For this purpose, special nuclear reactors built only for research
purposes served as neutron sources. As an example we mention the egg-shaped
research reactor (“Atomei”) built in the 1960s at the Technical University of
Munich in Garching, Germany (Fig. 1.6). In some sense as a training ground, this
reactor then turned out to become the point of origin for the much larger research
reactor of the German-French Laue-Langevin Institute in Grenoble. In 2004 the
“Atomei” was replaced by the new Research Reactor FRM II (research neutron
source Heinz Maier-Leibnitz) in Garching. Similar construction projects for
research reactors existed also in other countries with a highly developed industry.

Fig. 1.6 Egg-shaped research reactor (“Atomei”) in Garching near Munich. In the building on the
left the new research reactor FRM II, completed in 2004, is located (Photo Albert Scharger/TU
Munich)
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In the same way as often happens with new ideas, the invention of the electron
microscope initially had to withstand great difficulties and rejection. It all began with
two Ph.D. students, namely Ernst Ruska and Bodo von Borries, who had joined the
group of Max Knoll at the Chair of High-Voltage Engineering and Electric Plants at
the Technical University of Berlin during December 1928 and April 1929,
respectively. Here, at first both worked on the improvement of the cathode ray
oscilloscope. Because of the experience gained, before long they developed the idea
that beams of fast electrons can be used for generating a magnified image in a new
type of microscope. On March 17, 1932 Ernst Ruska and Bodo von Borries sub-
mitted their first and basic patents on the future electron microscope. However, a few
large hurdles still remained to be overcome. “Why do we need electron microscopes,
since we have light microscopes?” was the question that people were asking.
However, soon both young scientists had a breakthrough. The Company Siemens
and Halske in Berlin agreed to pick up the idea and prepared employment contracts
for Bodo von Borries and Ernst Ruska. On December 7, 1937 the first electron
microscope built by Siemens was demonstrated to the Company directors (Fig. 1.7).

Fig. 1.7 Siemens electron
microscope, a precursor of the
Siemens Elmiskop 1,
marketed in the 1950s (Photo
TU Berlin)
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After only three years of development, in terms of its spatial resolution the
electron microscope had outpaced the light microscope. Starting in 1939, an initial
series of the Supermicroscope (“Übermikroskop”), as it was called at the time, was
offered for sale by Siemens.

Again, the underlying basic concept of this microscope is the
quantum-mechanical wave character of elementary particles, which had been pro-
posed for the first time by the French Louis de Broglie in his dissertation in 1924.
The direct experimental proof of the wave nature of electrons was provided sub-
sequently in 1927 by the two Americans Clinton Joseph Davisson and Lester
Germer of the Bell Telephone Laboratories who showed that electrons are diffracted
by the atomic lattice of crystals. During imaging based on the diffraction of waves,
the spatial resolution is always limited by the wavelength. The shorter the wave-
length, the correspondingly smaller are the structures that can be spatially resolved.
The wavelength of the beam electrons is inversely proportional to the square-root of
the accelerating voltage. At an electric voltage of 10,000 V we have a wave length
of λ = 1.2 × 10−2 nm (nm = nanometer = 10−9 m). On the other hand, the wave
length of visible light is much larger, λ = 400–800 nm, and the achieved spatial
resolution is correspondingly much weaker.

Already in the 1950s, electron microscopy had celebrated a big success, along
with many other successes, by imaging the structural defects in the crystal lattice, as
discussed above, and by clarifying the phenomenon of material fatigue. In the latter
case the “crystal dislocations” play a central role. They were observed directly for
the first time in 1956 at the Batelle Institute in Geneva in stainless steel and at the
Cavendish Laboratory in Cambridge in aluminum. Eventually, electron micro-
scopes were built for ever increasing accelerating voltages. Today we have
instruments with an accelerating voltage of 1 million volts (Fig. 1.8).

For the analysis of materials, beams of fast electrons have also been utilized in
another important instrument: the scanning electron microscope. For this,
pioneering research was done again in the 1930s by Max Knoll at the Technical
University in Berlin, mentioned before, and by Manfred von Ardenne in his
Laboratory in Berlin-Lichterfelde. An electron beam collimated down to an
extremely small diameter of only 1–10 nm is scanned over the surface of the object
to be investigated. Simultaneously, a suitable signal induced by the electron beam
in the sample is recorded as a function of the spatial beam coordinates on the
sample surface within the scanning window. Correct electronic signal processing
then yields a two-dimensional image of the object. To generate the response signal
one can use several effects. For example, the emission of secondary electrons due to
the beam irradiation is quite often used. However, the beam-induced local change
of a sample property such as the electric resistivity can also provide the signal for
the image. Today, the signal based on the change in electric resistivity is often
utilized for imaging structures in thin layers of semiconductors or superconductors.
In the case of superconductors, spatially resolved images relating to their super-
conductivity can be obtained if the sample is cooled to sufficiently low temperatures
during scanning with the electron beam.
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Recently, the scanning principle for imaging was extended also to light beams.
However, a necessary prerequisite for this was the availability of laser beams with
their extremely narrow collimation. Today, laser scanning microscopes are widely
used in many fields.

An important milestone during the advances of the methods for the analysis of
materials has been the construction of the first scanning tunneling microscope by
Gerd Binnig and Heinrich Rohrer of the IBM Research Laboratory in Rüschlikon
near Zürich, Swizerland. Their first patent application dealing with the scanning
tunneling microscope was submitted in January 1979. In their instrument the sur-
face to be investigated is mechanically scanned with a tiny metal tip. Using
piezoelectric actuators, the metal tip can be moved in three dimensions with
extremely high sensitivity. During the scanning process the sample surface is
approached by the tip as close as about 1 nm. Simultaneously, the quantum-
mechanical electric tunneling current is measured running between the tip and the
sample surface, if an electric voltage is applied, even though a metallic contact
between both does not exist. (The explanation of the effect of quantum mechanical
tunneling had been one of the early major successes of the new theory of quantum
mechanics.) Because of the strong exponential dependence of the tunneling current
on the distance between the tip and the sample surface, one can achieve that the
tunneling current is limited only by a few or even the last single atom sticking out
of the tip. In this way, today one routinely obtains atomic resolution in the lateral

Fig. 1.8 Modern electron
microscope with an
accelerating voltage of
1 million volts
(Photo A. Tonomura)
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direction with this technique (Fig. 1.9). Very recently, even subatomic structures of
silicon atoms due to the different electron orbitals, have been observed in the
images (Fig. 1.10).

Soon after the invention of the scanning tunneling microscope, the mechanical
scanning principle was extended to several other types of interaction between the
probing tip and the sample surface. In particular, we mention the atomic force and
the magnetic force microscopes. In the first case, the mechanical force between the
probing tip and the sample surface is utilized. The second case is based on a
magnetic tip probing the magnetic sample properties. In recent years special

Fig. 1.9 Scanning tunneling
microscope. The instrument is
mounted on a flange for
operation in ultra-high
vacuum (Photo OMICRON
Nano Technology)

Fig. 1.10 Image of the
individual atoms of a section
of 5 nm × 5 nm area on the
surface of a silicon crystal,
generated by means of atomic
force microscopy. On the
silicon atoms we can see a
subatomic structure resulting
from the electron orbitals
(Photo F.J. Giessibl)
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research effort has been concentrated on the extension of the techniques we have
discussed to very low temperatures and to the presence of high magnetic fields.
Today, ease of operation is emphasized by the construction of the instruments.

Finally, we point out that most of the techniques for material analysis discussed
above are restricted to the sample surface and its immediate neighborhood (Fig. 1.11).

In many cases the developments we have outlined were accompanied by the
award of the Nobel Prize for Physics and in some cases for Chemistry to the people
involved. In order to illustrate this, in the Appendix we have listed all Nobel
Laureates who have a close relationship with the physics of solids.

Fig. 1.11 The picture shows a ring of iron atoms placed on a copper surface. In this way an
artificial coral reef consisting of 48 iron atoms has been created on an atomic scale. The circular
lines appearing within the ring are due to the density of the electrons existing within the ring
(Photo Almaden Research Center, 2000)
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Chapter 2
Well Ordered Lattice Structures
in Crystals

Abstract The lattice structure of crystals is characterized by specific symmetry
properties. Translation symmetry yields the 14 Bravais lattices. Rotation, reflection
at a mirror plane, and inversion at a point result in the 32 crystallographic point
groups. The diffraction of X-rays by a crystal, initiated in 1912 by Max von Laue,
represented the first experimental proof of the regular lattice structure of a crystal.
The elements of diffraction theory, including the reciprocal lattice and Brillouin
zones, are explained. The chapter ends with a discussion of quasi-crystals and the
different types of bonding.

Crystals have always generated a particular fascination, because of the rich variety
of their colors and shapes. While the systematic exploration of nature became
increasingly important ever since the 17th century, at the same time the science of
rocks and minerals developed into an independent branch and a collecting point for
the many different individual observations. The amateur rock collectors and the
mineralogists hiking with their tools through the mountains and hills in the early
days must be looked upon as important forerunners of the modern scientific
exploration into the properties of solids. The basic geometric crystallographic
concepts for describing the large variety of observations also originated within this
field of mineralogy.

In terms of physics, the most important property of crystals is their perfect lattice
structure with the regular periodic repetition of exactly the same elementary
building blocks in all three spatial dimensions. The elementary building blocks can
be atoms or molecules, the latter consisting either of only a few or very many
individual atoms. For example, the elementary building blocks of protein crystals
contain up to 100,000 atoms. Because of their highly regular periodic lattice
structure, crystals always possess a number of prominent symmetry properties. Of
particular importance is the “translation symmetry” resulting from the regular
periodic lattice configuration of the building blocks in all three spatial dimensions.

In a crystal the location of the building blocks of the lattice is described
mathematically by the lattice vectors

© Springer International Publishing Switzerland 2016
R.P. Huebener, Conductors, Semiconductors, Superconductors,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-24010-7_2

15



r ¼ n1aþ n2bþ n3c ð2:1Þ

Here, n1, n2, and n3 are integers. a, b, and c are the three fundamental translation
vectors. Here and in the following we denote vectors by bold symbols. The integer
numbers n1, n2, n3 yield the lattice points of the crystal (In (2.1) we assume, that the
origin is located at a lattice point). The translation vectors a, b, c generate the
elementary cell (Fig. 2.1), which in turn builds up the crystal lattice by its spatially
periodic repetition. Because of this condition of translation symmetry, the possible
configurations of all three-dimensional crystal lattices are highly restricted. As was
shown already in 1850 by the Frenchman Auguste Bravais, there are only a total of
14 fundamental types of crystal lattices, which are now referred to as “Bravais
lattices” (Fig. 2.2). By selecting the lengths of the three vectors a, b, c of the
elementary cell (lattice constants) and the three angles between them, at first one
obtains seven fundamental types of crystal lattices. If additional lattice points exist
at special locations within the elementary cell (in the center of the elementary cell or
in the middle of the external surfaces), one obtains a total of 14 translation lattices.

In general, the crystal structure is more complex than that of one of the 14
Bravais lattices. However, the crystal lattice is exactly replicated by means of a
specific symmetry operation. In addition to translation, the following fundamental
symmetry operations are important: rotation, reflection at a mirror plane, and in-
version at a point. In the case of rotation one distinguishes how often the crystal
lattice is exactly reproduced during a complete rotation by 2π. Hence, there exist
single-, two-, three-, four-, and sixfold rotational axes, corresponding to a rotation
by 2π, 2π/2, 2π/3, 2π/4, and 2π/6, respectively. The combination of rotation,
reflection at a mirror plane, and inversion specifies one of the 32 crystallographic
point groups. By addition of the translation, one of the 230 space groups is
obtained, characterizing the crystal structure. Here, mathematical group theory has
provided an important input.

Johannes Kepler, who was born in 1571 in the Swabian Free City Weil der Stadt near
Stuttgart in Württemberg and who later studied at the University of Tübingen, is generally
known because of his three famous Kepler’s laws of astronomy. However, among many
things he also was concerned with the question, how can space be regularly and completely

Fig. 2.1 Elementary cell
defined by the translation
vectors a, b, and c
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filled with the same objects as building elements. So in the early 17th century, i.e., more
than 200 years before the considerations of Auguste Bravais, he speculated on the question
of why snowflakes always have six corners, but never five or seven. He showed how the
close packing of spheres generates a six-corner pattern. This work of Kepler clearly rep-
resents an early significant contribution to geometrical crystallography.

tetragonal

cubic

orthorhombic

monoclinic

triclinic

Fig. 2.2 The fourteen Bravais lattices representing all possibilities for the construction of a
three-dimensional crystal lattice
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Within the crystal lattice, there always exist specific planes along certain
directions, which are closely and perfect periodically packed with atoms or with the
elementary building blocks. On the outside of the crystal these planes then represent
the extremely smooth and flat surface planes. This fact, together with the existing
symmetry properties, is utilized extensively by the jewelry industry during the
polishing of precious stones. In snow crystals the large variety of shapes is par-
ticularly impressive. Thomas Mann has well described this magnificent appearance
of the snowflakes in his novel “The Magic Mountain” (“Der Zauberberg”, here in
an English translation):

Brilliant clips, medals of decoration, jewelry stars, such as the most accurate jeweler cannot
produce in a richer way and with more minute precision …, and among the myriads of
magic little stars in their hardly visible, secret little splendor, not meant for the human eye,
not a single one was equal to another.

The first rigorous experimental proof of the regular lattice structure of crystals
was given in 1912 at the University of Munich. Soon after his great discovery of
X-rays in Würzburg, Röntgen (Fig. 2.3) had left this location, since he had accepted
an offer from the University of Munich. In Munich his group, together with the
theoretical physicists at the Chair of Arnold Sommerfeld, concentrated on the
problem of clarifying the nature of X-rays. The major question was whether X-rays
are just electromagnetic waves such as visible light, but with a much shorter
wavelenth, or whether they are a new kind of particle radiation. Max von Laue
(Fig. 2.4), a young member at the Chair of Sommerfeld, was thinking about
diffraction experiments with X-rays. During the time when he was theoretically
analyzing the diffraction of X-rays on lattices of points or of bars, he learned from a
discussion with Paul Peter Ewald, a Ph.D. student of Sommerfeld, that crystals are

Fig. 2.3 Wilhelm Conrad
Röntgen (Photo Deutsches
Museum)
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likely to consist of a regular lattice arrangement of atoms. Von Laue noted
immediately that crystals would be well suited for the diffraction of X-rays, as long
as the distance between the atoms in the crystal and the wavelength of the X-rays
had a similar magnitude. An initial estimate was encouraging. For the first exper-
iments von Laue enlisted the help of Walter Friedrich, who had just been employed
by Sommerfeld, and of Paul Knipping, a Ph.D. student of Röntgen, and success did
not elude them. On June 8 and July 6, 1912 Sommerfeld was able to present the first
X-ray diffraction images of a crystal to the Bavarian Academy of Science. This
pioneering discovery meant the recognition of two important facts: X-rays are
electromagnetic waves, and crystals consist of a three-dimensional regular lattice of
atoms (or molecules).

For his discovery of X-rays, in 1901 Röntgen had received the first Nobel Prize
in Physics. His letter to the Royal Bavarian State Ministry for Church and School
Matters, in which Röntgen had asked for leave of absence in order to attend the
award ceremony in Stockholm, is a highly interesting contamporary document,
which we wish to quote at this point. On December 6, 1901 Röntgen wrote (here in
English translation):

According to a confidential information of the R. Swedish Academy of Science the most
respectful and devoted undersigned has been awarded the first Nobel Prize for the year
1901. The R. Swedish Academy is particularly keen that the Laureates personally receive
the prize in Stockholm on the day of the award (Dec. 10). Since these prizes are of an
exceptionally high value and are also highly honourable, the most respectful and devoted
undersigned feels that he must follow, though not lightheartedly, the desire of the R.
Swedish Academy and, therefore, he is asking for leave of absence for the coming week.
Dr. W. C. Röntgen.

Fig. 2.4 Left Max von Laue. Right Set-up of the Laue experiment. On the left we note the X-ray
tube and on the right the stage for mounting the crystal (Photos Deutsches Museum)
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2.1 Diffraction Theory

According to the theory of the diffraction of waves at a point lattice, during wave
irradiation, from each lattice point there originates a wave which spherically
propagates in all spatial directions (Fig. 2.5). We all know the similar wave prop-
agation which takes place on the surface of water after we have thrown a stone into
it. The spherical waves originating from the different lattice points of the crystal
superimpose and become enhanced or extinguished. This is referred to as inter-
ference. We consider the (elastic) reflection of a wave at a series of parallel lattice
planes (Fig. 2.6). We denote the distance between two neighboring lattice planes by
a, and the angle between the planes and the direction of the incoming or the
outgoing wave by θ. The difference of the distance covered by the wave upon the
reflection at the two neighboring planes amounts to 2a sin θ. In the case of

Fig. 2.5 a Propagation of a spherical wave originating from a point. The dark rings illustrate the
peaks of the wave which follow each other within the spatial distance of one wavelength. The
picture corresponds to a snapshot and shows the wave propagation within a plane as, for example,
on a water surface. b Interference between two waves such as shown in (a), originating from two
different centers. From (b) to (d) the distance between the two centers increases. In specific
directions the peaks and the valleys of the waves coincide, such that both waves annihilate each
other. The positions at which the annihilation takes place, appear closer and closer as the distance
between the two centers increases
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constructive interference, at which the amplitudes of both waves exactly add to each
other, this difference of the distance must be an integer multiple of the wavelength λ.
Hence, we obtain the famous Bragg reflection law

2a sin h ¼ nk ð2:2Þ

where n is an integer.
So far, we have restricted our discussion to a series of parallel lattice planes,

which all have the same normal vector. However, in the case of a three-dimensional
crystal we have to deal with two additional orientations of the lattice planes with the
corresponding two directions of the normal vectors. For this, it is convenient, to
start with a straight periodic arrangement of points forming a chain (Fig. 2.7). The
spherical waves originating from all points are amplified, reaching a maximum
intensity, if the propagation distance starting from two neighboring points differs
exactly by one wavelength or by a multiple of one wavelength. On the other hand,
if the difference amounts to half a wavelength or an uneven multiple of half a
wavelength, complete extinction occurs. In this way we find that propagation
directions for maximum or minimum intensity exist, and these are conically
arranged around the straight line of points. The smaller the distance between the
points, the larger is the opening angle of these cones. On the surface of an imagined
sphere, having its center at the common tip of this family of cones, the propagation
directions with maximum or minimum intensity form a series of circles. Next we
extend our one-dimensional arrangements of points to a two-dimensional planar
lattice. Now we must add a second family of cones which is arranged around the
second newly-added straight line of points. On the surface of the imagined sphere,
the propagation directions with maximum or minimum intensity yield a second
series of circles. As a result, in this case the directions with maximum intensity are
expected only for intersections between the corresponding circles originating from
the two families of cones. However, such intersections always occur. Finally,

Fig. 2.6 Reflection of a wave at two neighboring lattice planes placed at the distance a. The
difference of the distance covered by the wave upon the reflection at the two planes amounts to 2a
sin θ. θ is the angle between the lattice planes and the incoming and the outgoing wave,
respectively
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extending our discussion to a three-dimensional lattice of points, we have to deal
with three families of cones. Again, it is the intersections between all three families
of cones on the surface of the imagined sphere, which determine the propagation
directions with maximum diffraction intensity. However, now the three series of
circles on the imagined sphere do not in general have any common intersections
(Fig. 2.7). In this case common intersections, marking the directions of high
intensity of the diffracted waves, only exist as exceptions, i.e., only for specially
selected values of the wavelength or frequency of the X-rays. For these selected
wavelengths we have special distinct diffraction directions with high intensity,
generating a characteristic pattern of points on the photographic film used for X-ray
detection. This characteristic pattern is referred to as the “Laue diagram” (Fig. 2.8).
However, this procedure only works if a whole frequency band of X-rays is
available, from which the appropriate frequencies for the directions with high
intensity are then automatically selected by the diffraction process.

The Bragg diffraction law expressed in (2.2) is named after the two English
scientists William Henry Bragg and his son William Lawrence Bragg, whom we
have previously mentioned. Immediately following the publication of the first Laue

Fig. 2.7 Generation of the Laue diagram as the interference pattern due to the diffraction of
X-rays at a three-dimensional point lattice. a For a one-dimensional chain of points, the directions
of maximum or minimum intensity lie on cones arranged around the one-dimensional chain. On
the surface of an imagined sphere, having its center at the common tip of this family of cones, the
directions of maximum or minimum intensity yield a series of circles. b For a two-dimensional
planar lattice of points we must add a second family of cones which is arranged around the
direction of the second, newly-added straight line of points. Now a second series of circles appears
on the surface of the imagined sphere. The points of intersection of these circles then yield the
directions of maximum or minimum intensity. c Finally, for a three-dimensional point lattice we
deal correspondingly with three families of cones. However, in general the resulting three series of
circles on the surface of the imagined sphere no longer have common points of intersection, which
mark the directions of maximum or minimum intensity. Now such common points of intersection
only exist for special values of the wavelength or frequency of the X-rays
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diagrams they have theoretically analyzed the underlying interference phenomena.
The pattern of points on the Laue diagram is particularly useful for determining
crystal symmetries.

2.2 Reciprocal Lattice, Brillouin Zones

Mathematically, the diffraction of a wave at a spatially periodic crystal lattice
(periodic potential) can be treated conveniently by means of the concept of the
reciprocal lattice. This concept is based on the abstract mathematical wave vector
space or momentum space (Fourier space). It has been proposed by the American
Josiah Willard Gibbs. A wave propagating along x-direction can be written as a
complex function

F(x, t) = Foe
iðkx�xtÞ ð2:3Þ

Here t denotes the time and ω the angular frequency. The wave number k is
connected with the wavelength λ via the relation k = 2π/λ. In the three-dimensional
case the function (2.3) can be generalized, and we obtain

Fig. 2.8 Laue diagram of a
cubic K2SnCl6 crystal
obtained by X-ray diffraction
(Photo J. Ihringer)
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F(r; t) = Foe
iðkr�xtÞ ð2:4Þ

where r = x + y + z and k = kx + ky + kz. Now the wave number k of the
one-dimensional case is replaced by the wave vector k and its three components kx,
ky, kz.

The reciprocal lattice is defined as follows:

G ¼ h1Aþ h2Bþ h3C ð2:5Þ

where h1, h2, h3 are integers. The fundamental vectors A, B, C are connected with
the translation vectors a, b, c of the elementary cell (Fig. 2.2) and are defined as
follows:

A ¼ 2p
b� c
ab� c

; B ¼ 2p
c� a
ab� c

; C ¼ 2p
a� b
ab� c

ð2:6Þ

We see that the vectors A, B, C of the reciprocal lattice are oriented perpen-
dicularly to two fundamental axes of the crystal lattice, respectively. The conve-
nience of the introduction of the reciprocal lattice becomes obvious, if one wants to
express mathematically a function having exactly the periodicity of the crystal
lattice (for example, the scattering potential of the electrons). Such a function is
obtained in the form

U rð Þ ¼
X
G

uGeiGr ð2:7Þ

where the summation extends over all vectors G of the reciprocal lattice. This
function satisfies the periodicity condition

Uðrþ qÞ ¼ U rð Þ ð2:8Þ

Here ρ is a lattice vector in the form of (2.1). We note that for the lattice vectors
ρ the reciprocal-lattice vectors G satisfy the relation

eiGq ¼ 1 ð2:9Þ

We see this by writing

Gq ¼ h1Aþ h2Bþ h3Cð Þ n1aþ n2bþ n3cð Þ ¼ 2p h1n1 þ h2n2 þ h3n3ð Þ:

This integer multiple of 2π directly yields the periodicity (2.8):

Uðrþ qÞ ¼
X
G

uGeiGðrþ qÞ ¼
X
G

uGeiGr ¼ U rð Þ
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We turn now to the diffraction problem, scattering a wave from the incoming
wave vector k into the outgoing wave vector k′. The intensity of the scattered wave
is proportional to

intensity �
Z

dseir k�k0ð ÞUðrÞ ¼
X
G

uG

Z
dseir k�k0ð ÞeiGr

(dτ = volume element). The last integral vanishes due to cancellation by interference,
except for the case when the exponent itself vanishes, i.e., when k − k′ + G = 0. So
we find the important new form of the Bragg condition for the constructive inter-
ference between two waves which are scattered by the crystal from k to k′:

k0 � k ¼ G ð2:10Þ

From the simple form of (2.7) and (2.10) we see again the advantage gained by
the concept of the reciprocal lattice.

The abstract momentum space (k-space) with the reciprocal lattice is divided
into Brillouin zones. The boundaries of the Brillouin zones are found by erecting a
plane in perpendicular direction at exactly the middle of a connecting straight line
to a point of the reciprocal lattice. If one uses larger and larger reciprocal lattice
vectors in this construction, one obtains the first, second, third, etc. Brillouin zone.
In Fig. 2.9 we show as an example the first Brillouin zone in the two-dimensional
case of the two fundamental vectors A and B oriented perpendicular to each other.
As we will see in Chap. 4, in the case of the electronic band structure of materials
the Brillouin zones play an important role.

Following the initial success of X-ray diffraction experiments, the method was
quickly developed further along different directions. In the “rotating-crystal tech-
nique” a well-focused monochromatic X-ray beam is directed upon the crystal and,
simultaneously, the crystal is rotated around a fixed axis. The high intensity of the

Fig. 2.9 Construction of the
first Brillouin-zone in the
(two-dimensional) case of the
two fundamental vectors
A and B of the reciprocal
lattice oriented perpendicular
to each other
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diffracted radiation is observed only for distinct angle orientations of the crystal
relative to the incoming X-ray beam, for which the Bragg interference condition is
satisfied.

The two X-ray diffraction techniques that we have discussed so far require
sufficiently large single crystals. As proposed for the first time by Peter Debye and
Paul Scherrer, even crystal powder can be used. The powder may be compressed
into the form of a little cylinder. For this powder technique one again uses
monochromatic X-rays. Among the many randomly arranged little crystals in the
powder there always exist a sufficiently large number for which the Bragg
diffraction condition is well satisfied by their orientation. Here the sample rotation
of the rotating-crystal technique is done quasi-automatically. As an important result
we note that all three methods serve well for exactly determining the atomic or
molecular distances between nearest neighbors in the crystal lattice, if the wave
length of the X-rays is known.

During his experiments in Würzburg, Röntgen discovered the new radiation when he was
investigating the physical behavior of gas discharges within an evacuated cathode ray tube.
After only a few weeks of intensive experimentation he found that the new radiation always
appeared if the fast electrons were abruptly decelerated by a solid obstacle in the glass tube.
Here objects made from heavy elements such as tungsten or platinum were particularly
effective. The principle of the generation of “bremsstrahlung”, as it was subsequently
called, had been found, and it continues to be used today in the construction of X-ray
sources. Röntgen had received one of his first glass tubes, especially designed for the
generation of X-rays with fused cathode and anode, from the glassworks of the Company
“Greiner and Friedrichs” in the small town of Stützerbach near Ilmeau in Thuringia.
Eventually, the large companies of the electronics industry took up the manufacture of
X-ray equipment, and this field developed into an important business sector. Right up until
today, the degree of automatization and standard of operation of the equipment has con-
tinuously improved.

The generation of X-rays within large rings-shaped electron accelerators,
referred to as electron synchrotrons, is the latest development. An impressive
example is the large European Synchrotron Radiation Facility (ESRF) in Grenoble
with its ring diameter of 270 m (Fig. 2.10). Along the circular structure there is
room for about 60 different measuring stations (beam-ports). The accelerated
electrons move along a circular trajectory at a high energy of 6 GeV. This trajectory
results from the balance between a force directed towards the center of the ring and
the centrifugal force directed outwards. Because of this constant acceleration of the
electrons in order to keep their circular trajectory, “synchrotron radiation” is
emitted, the frequency of which depends upon the kinetic energy of the electrons.
By means of special deflection elements inserted into the ring, the so-called wig-
glers or undulators, individual beams with special properties can be supplied to the
different beam-ports. Today, large intensive radiation sources similar to that in
Grenoble are in operation worldwide at several locations. These radiation sources
mainly serve to generate electromagnetic radiation of high intensity in the far
ultraviolet and in the near X-ray spectral range.

Today, X-ray diffraction represents one of the most important tools for the
analysis of materials. As outstanding indications of the importance of X-rays in
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determining the structure of materials, in addition to the first experimental proof of
the lattice structure of crystals discussed before, we mention, for example, the X-ray
analysis of Max Perutz of the hemoglobin in red blood cells which provides human
oxygen transport, and the famous proposal for the structure of the DNA double
helix by Francis Harry Compton Crick and James D. Watson, which during winter
1952/1953 was confirmed for the first time by Rosalind Franklin with her X-ray
images. At this point we must also mention the work by Robert Huber, Johann
Deisenhofer, and Hartmut Michel, clarifying the three-dimensional structure of the
reaction center of photosynthesis by means of X-ray diffraction. The last three
examples emphasize the great importance of X-rays in analyzing the structure of
complex organic materials such as proteins and nucleic acids. Therefore, these
concepts dating back to Max von Laue, W. H. Bragg, and W. L. Bragg, have been
increasingly refined. In this way it has became possible that, from the patterns of
X-ray diffraction, both the periodic spatial lattice arrangement of the molecular
crystal and the inner atomic structural detail of the protein molecules, can be
reconstructed. However, in this case the relevant organic crystals must be prepared,
which can often prove difficult and can require special attention.

In addition to the diffraction of X-rays, we again mention the (elastic) scattering
of neutrons and its increasing importance for the analysis of the structure of crystals.

Fig. 2.10 Photograph of the large European synchrotron radiation source in Grenoble (bright ring
in the foreground). The round tower-like container next to the ring is the external envelope of the
German-French Research Reactor of the Laue-Langevin Institute (Studio de la Révirée, Grenoble)
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In recent years in several research centers, the facilities for neutron diffraction have
been strongly expanded.

Finally, we wish to discuss a phenomenon, the discoverer of which at first
experienced rejection and mockery, until, after the gradual acceptance of his ideas,
in 2011 he became honored by the award of the Nobel Prize in Chemistry: Daniel
Shechtman and his discovery of quasi-crystals. On April 8, 1982 at the Johns
Hopkins University in Baltimore, USA, with his electron microscope he obtained a
diffraction image of an alloy of aluminum and manganese showing a tenfold
symmetry. Hence, during a complete rotation an identical image was reproduced
ten times, i.e., after each additional 36°. The further research indicated, that the
crystal itself exhibited a fivefold symmetry, which should be impossible according
to the state of knowledge at the time. In such a crystal showing fivefold symmetry
the atoms are arranged regularly, but not exactly periodically any more. How could
Shechtman obtain the sharp diffraction pattern?

For his results Shechtman was strongly criticized from all directions. Even he
had to leave his research group in Baltimore, and went back to Israel. He could
publish his results only two and a half years later. However, subsequently, support
for Shechtman started gradually. Five weeks after his paper there appeared a
publication discussing this new type of crystals, and the name “quasi-crystals” was
proposed. Already in the middle 1970s the mathematician Roger Penrose had
demonstrated, that, by using only two building blocks, a slender and a compressed,
skewed rectangle, one can generate a pattern completely covering a plain surface,
but never exactly repeating itself. In the meantime, quasi-crystals have been found
in many materials systems and also in nature.

In its communication regarding Shechtman, the Nobel Committee emphasized
especially the “important lesson for science”:

Apparently, the achievement by Dan Shechtman not only consists of the discovery of the
quasi-crystals, but also of the fact, that he recognized the importance of this discovery and
resolutely conveyed it to a skeptical scientific community.

2.3 Types of Bonding

In the last part of this chapter we want to discuss the types of bonding between the
(atomic or molecular) constituents of a solid. In principle, in this case we always
deal with some kind of an attractive (electrostatic) interaction between electrons and
the positively charged atomic nuclei (gravity and nuclear forces do not play any role
in this discussion). There are special cases possible, resulting in the different types
of bonding. In the form of a solid (or of condensed matter) the total energy of all
constituents is always lower than in the case when it is completely disassembled
into its atoms or molecules without any mutual interactions any more. The corre-
sponding energy gain represents the binding energy.
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One distinguishes between the following main types of bonding: van-der-Waals
bond, ionic bond, covalent bond, metallic bond, and hydrogen bond.

Starting with the van-der-Waals bond, we consider atoms with completed
electron shells (for example noble gases), which are difficult to ionize. On time
average, at each atom we find a spherically symmetric charge distribution of the
negative electron shells around the positive atomic nucleus. Whereas in the sta-
tionary state the electric field in the external space vanishes, the motion of the outer
electrons (fluctuations) results in a temporally varying dipole moment (the
time-averaged value of which remains zero). Considering two atoms (1) and (2) at
distance R, the instantaneous dipole moment p1 of (1) generates the electric field

Ej j ¼ 2p1=R
3 ð2:11Þ

at the location of (2). The result is the induced dipole moment

p2 ¼ a Ej j ¼ 2ap1=R
3 ð2:12Þ

of (2). Here α denotes the polarizability. The attractive interaction between p1 and
p2 can be seen from the two cases shown in Fig. 2.11. In case 1, because of the
decrease of the electric field E with increasing distance of p1, there results a force
on (2) directed to the left. In case 2 we have an attraction again, since the distances
between the opposite charges (attracting each other) are smaller than those between
the same charges (repelling each other).

As we know from electrostatics, the potential energy U(R) between two dipoles
p1 and p2 at mutual distance R is

U Rð Þ ¼ p1p2
R3 � 3 p1Rð Þ p2Rð Þ

R5 : ð2:13Þ

Case 1 :

Case 2 :

Fig. 2.11 Attractive
interaction between the
dipoles p1 and p2 of the two
atoms (1) and (2) in the case
of the van-der-Waals bond.
Further details in the text
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In case 1 of Fig. 2.11 one obtains

U Rð Þ ¼ �2p1p2=R
3 ¼ �4ap21=R

6: ð2:14Þ

Here we note, that the temporal average p21 [ 0 even though p1 ¼ 0.
The weak van-der-Waals bond is undirected. It is found in noble gases and in

crystals of many organic molecules. The value of the bond energy is about
U ≈ 10−21 J ≈ 10−2 eV with R ≈ 0.4 nm.

At this point we include a remark about energy units:
We have: 1 eV (electron volt) = 1.6 · 10�19 J (Joule) and—with Boltzmann’s

constant kB—the thermal energy kB T ≈ 10�23 ðJ=KÞT. Hence, the value of U given
above is obtained in the case T = 100 K. Therefore, the melting temperature of these
materials is about 100 K.

From (2.13) and (2.14) one finds that the bond energy U(R) decreases rapidly
with increasing distance R, proportional to R�6. However, because of the over-
lapping of the electron shells, at sufficiently small distance one finds repulsion.
Assuming the empirical repulsion law proportional to R�12 one obtains

U Rð Þ ¼ 4e
r
R

� �12
� r

R

� �6� �
: ð2:15Þ

The model potential (2.15) fixed by means of the two parameters ε and σ is
referred to as the Lennard-Jones potential. It is shown in Fig. 2.12. This potential
and other similar model potentials having two or more parameters adjusted to the
experimental data serve for calculating physical quantities.

Turning now to a crystal consisting of N atoms, with (2.15) one finds the total
energy Utot by summation over all pairs:

1.122 

R

U

-

Fig. 2.12 Schematic of the
Lennard-Jones potential U(R)
according to (2.15)
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Utot ¼ 1
2
N4e

X
j

r
Rqij

 !12

�
X
j

r
Rqij

 !6
8<
:

9=
;: ð2:16Þ

The i-th atom is arbitrarily selected, and the sum
P

j �ð Þ runs over all j ≠ i. For
all possible values of i one obtains the factor N. Since in this way every atom is
counted twice, the factor ½ must be applied. (The numbers ρij = 1, 2, 3,…,

ffiffiffi
2

p
,
ffiffiffi
3

p
,

…, etc. are introduced in order to make the final result independent of the special
substance).

In the case of a cubic face-centered crystal one obtains

X
j

1
qij

 !12

¼ 12:131;
X
j

1
qij

 !6

¼ 14:454: ð2:17Þ

In the cubic face-centered lattice there are twelve nearest neighbors. This fact
together with (2.17) indicates to us the rapid convergence of the sums. From the
condition ∂Utot/∂R = 0 one obtains the equilibrium distance Ro = 1.09 σ, in good
agreement with the values of the noble gases. Furthermore, one finds
Utot(Ro) = −2.15 (4Nε) = −8.6Nε. Based only on the twelve nearest neighbors, we
expect Utot = −6Nε.

Next we turn to the ionic bond. The ionic crystals are composed of positive and
negative ions with completed electron shells. In the crystal lattice the charges of
opposite sign are alternately arranged next to each other, such that the attractive
Coulomb force between opposite charges predominates the repulsion between equal
charges. As an example we mention table salt (NaCl) with the positive Naþ - and
the negative Cl�-ions. In the case of the distance Ro ≈ 0.3 nm between the charges,
the electrostatic interaction energy amounts to e2/Ro ≈ 5 eV (e = elementary
charge). As we can see, the bond energy is distinctly higher than in the case of the
van-der-Waals bond.

The R�1-dependence of the bond energy results in a long range of the interaction
and, hence, in an interaction between charges of the opposite as well as of the same
sign. Again, in the limit of small distances one expects repulsion. The repulsion law
can be chosen in the form λe�rij=q, where rij is the distance between ions i and j, and
where ρ determines the drop of the potential.

Again, we find the total energy of a crystal consisting of N ions by selecting an
ion i and by summing over all j ≠ i:

Utot ¼ N
2

X
j

ke�rij=q � e2

rij

� �
: ð2:18Þ
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The first part in the bracket contains the repulsion and the second part the
Coulomb interaction between the ions. With R denoting the distance between
neighbors, and writing rij = Rρij, from (2.18) we obtain:

Utot ¼ N
2
zke�R=q � N

2
e2

R

X
j

�1ð Þ
qij

 !
: ð2:19Þ

In (2.19) in the contribution of the repulsion we have included only the number z
of the nearest neighbors. The sum in the bracket

X
j

�1ð Þ
qij

 !
¼ a ð2:20Þ

is referred to as the Madelung constant, which depends on the crystal structure.
Hence, we obtain:

Utot ¼ N
2

zke�R=q � a
e2

R

� �
: ð2:21Þ

In the case of table salt one finds α ≈ 1.7. In the calculation of α, sometimes the
convergence is slow, and summation tricks can be helpful.

Again, the equilibrium distance Ro is found from the condition @Utot=@R ¼ 0,
finally yielding the energy

Utot ¼ �Nae2

2Ro
1� q

Ro

� �
: ð2:22Þ

One finds ρ/Ro ≈ 0.1, which indicates the small range of the repulsive force. The
expression in front of the bracket is referred to as Madelung energy.

Erwin Rudolf Madelung has been the first publishing such calculations in 1918. From 1921
until his retirement in 1949 he was the Director of the Institute of Theoretical Physics at the
University of Frankfurt.

The covalent bond represents the main type of bond in chemistry and in par-
ticular in organic chemistry. A very strong covalent bond is found between two
carbon atoms in diamond with its bond energy of 7.3 eV. The pronounced direc-
tional dependence is characteristic, for example, in the case of the tetrahedral
diamond structure of carbon, silicon, and germanium.

The covalent bond between two atoms occurs by means of a common pair of
electrons having opposite spin. A simple example is the hydrogen molecule (H2).
The theoretical understanding had to wait for quantum mechanics created in the
1920s. In their famous paper from 1927, Walter Heinrich Heitler and Fritz London
have applied quantum mechanics in the case of the covalent bond of the hydrogen
molecule. Here the central point is the symmetry property of the wave function
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regarding the exchange of both particles and their exchange interaction, resulting
from the indistinguishability (identity) of both electrons. Their paper is fundamental
for the valence-structure theory of quantum chemistry. Subsequently, in particular
Linus Carl Pauling has strongly shaped the field of quantum chemistry.

The metallic bond can be understood in terms of a continuing development of
the covalent bond, where a “free bond electron” is distributed over many atoms.
The high electric conductivity of metals represents an important indication of the
relatively free motion of the conduction electrons (one to two electrons per atom)
within the lattice of the positive ions. In the quantum-mechanical theory the dif-
ferent contributions to the energy are taken into account:

X
i

p2i
2m

þ
X
i

X
j

e2

Ri � Rj

		 		þ X
i

X
j

e2

ri � rj
		 		þ X

ij

V Ri � rj
		 		
 �

: ð2:23Þ

From left to right the following contributions are listed in (2.23): (1) the kinetic
energy of all conduction electrons, (2) the electrostatic interaction between the ions,
(3) the electrostatic electron-electron interaction, and (4) the electron energy in the
potential V of the ions. Here the theory has to deal with a “many-body problem”,
where great advances have been achieved during the last decades.

The hydrogen bond plays a role in certain chemical environments of hydrogen
atoms, where the latter have transferred their electron to strongly electronegative
neighboring atoms, such as, for example, fluorine, oxygen, or nitrogen. In this way
an ionic-like bond appears. Because of the small diameter of a proton, this bond is
only possible between two neighbors. It appears between the H2O-molecules in the
case of ice crystals, as well as in a large number of organic compounds. The bond
between the two chains of the DNA double-helix represents a prominent example.

Regarding the increasing strength of the types of bonding we note the following
sequence:
van-der-Waals bond < hydrogen bond < metallic bond < ionic bond < covalent
bond.

2.3 Types of Bonding 33



Chapter 3
Permanent Movement in the Crystal
Lattice

Abstract The quantized energy of the vibrations of the atoms in the crystal lattice
contributes to the specific heat and the thermal conductivity. As noted first by
Albert Einstein, the energy spectrum of the phonons is given by Planck’s radiation
law, resulting in a distinct deviation from the classic law of Dulong and Petit.
Subsequently, the Einstein model, based on a single phonon frequency, was
extended by Peter Debye by including the complete phonon spectrum.

On close inspection, the structure of a crystal does not represent a mathematically
ideal point lattice. Instead, the atomic or molecular building blocks are permanently
in motion. In some sense the crystal behaves more like a humming swarm of bees,
where all bees still occupy spatially well ordered lattice sites. In a crystal each atom
or molecule oscillates around a temporally average value of its spatial coordinates.
In a popular model one imagines the crystal in the form of a three-dimensional
lattice of point-like masses, where two neighboring points are connected with each
other by little spiral springs. The total vibrational behavior of this three-dimensional
arrangement of point-like masses and spiral springs can be separated into the
complete set of elementary oscillations, referred to as “the normal modes’’, which
are very useful in describing the dynamic state of the crystal. Each individual
normal mode represents a “degree of freedom” of the crystal. At a temperature T,
each degree of freedom carries the energy kBT, where kB denotes Boltzmann’s
constant. A crystal consisting of N atoms has 3N vibrational degrees of freedom.
Hence, the total vibrational energy U of the crystal amounts to U = 3NkBT. This
relation is also referred to as the law of Dulong and Petit. The prefactor 3NkB
indicates the heat capacity arising from the lattice vibrations, which is independent
of temperature, according to this law. Already in 1819 the two Frenchmen Pierre
Louis Dulong and Alexis Thérèse Petit had noted, that the specific heat of solids is
nearly independent of temperature and connected with their molar mass.
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3.1 Quantum Theory: Max Planck and Albert Einstein

So far we have restricted the discussion to the classical limit, and we have ignored
quantum theory. Next we will address quantum theory. As was shown for the first
time by Max Planck, the energy of light and heat radiation is quantized, each energy
quantum having the energy E = hν, which is proportional to the frequency ν of the
radiation. Here we have introduced Planck’s constant h, which is a fundamental
constant in physics. In his theoretical considerations, achieving a first result during
December 1900, Planck just took the consequent conclusions from very precise
optical measurements published shortly before. As a final result of these efforts
Planck was able to formulate his famous radiation law. In this way he succeeded in
unifying the two theoretical laws which were already known but valid only in
certain limiting cases: namely Wien’s radiation law in the limit of small wave-
lengths and the Rayleigh-Jeans radiation law in the limit of large wavelengths
(Fig. 3.1).

The optical measurements had been carried out by a group of physicists (Ludwig Holborn,
Otto Lummer, Ernst Pringsheim, Heinrich Rubens, Wilhelm Wien, and others) at the
Physikalisch-Technische Reichsanstalt (German Bureau of Standards) in Berlin
Charlottenburg (Fig. 3.2). At that time, in the Reichsanstalt, which was founded in 1887
mainly at the initiative of Werner Siemens and Hermann von Helmholtz, a reliable standard
for the light intensity of the radiation emitted by hot and glowing pieces of metal was
intended to be developed in a basic research program. This subject had become important
because of the rapid spreading of the artificial lighting technology.
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Fig. 3.1 The radiation laws of the black body according to Planck, Wien, as well as Rayleigh and
Jeans. Spectral radiation intensity plotted versus the frequency
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It was Albert Einstein, who in 1905 for the first time strictly applied the concept of
the energy quantum to the propagation of electromagnetic waves and who intro-
duced the idea of light quanta or photons, as they are called also (Fig. 3.3). Based
on these concepts he could convincingly explain the photoelectric effect. Due to this
effect, during irradiation with light of a frequency above a certain limiting value,
electrons are emitted from the surface of metals. The energy of the emitted electrons
only depends on the light frequency, whereas the light intensity only affects the
number of the emitted electrons. In 1921 Einstein was awarded the Nobel Prize in
Physics for his theory of the photoelectric effect. Subsequently, Einstein’s
hypothesis of the light quanta has been confirmed impressively by many
experiments.

How strongly Einstein’s ideas have revolutionized the physical thinking at the
beginning of the last century, is well illustrated by the following quotation from the
document written by Max Planck on June 12, 1913, proposing Albert Einstein to
become an Ordinary Member of the Prussian Academy of Science:

… In summary one can say, that among the great problems, of which modern physics is so
rich, there is hardly one, about which Einstein had not expressed an opinion in an important
way. That in his speculations occasionally he may have gone too far, as for example in his
hypothesis of the light quanta, one must not blame on him too heavily; since without daring
to take a risk once in a while, a true advancement cannot be introduced also in the exact
sciences. …

This document carries the signatures of Planck, Nernst, Rubens, and Emil Warburg.

Fig. 3.2 Radiation test laboratory in the Physikalisch-Technische Reichsanstalt in Berlin around
1900 (Photo Physikalisch-Technische Bundesanstalt Braunschweig and Berlin)
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3.2 Specific Heat of the Crystal Lattice, Phonon Spectrum

Following these remarks on quantum theory, we return to the crystal lattice. The
energy quantization of the electromagnetic waves should apply similarly also to
vibrations in the crystal lattice. Again, it was Albert Einstein who took up this idea
for the first time in 1906. He proposed that the elements at each site of the crystal
lattice oscillate with a single frequency, the Einstein frequency mE = ωE/2π, and that
the vibrational energy is quantized again in units E = hmE = ħωE (with ħ = h/2π).
The quanta of the vibrational energy in crystals are referred to as phonons.
According to the Einstein model, the crystal energy U due to the lattice vibrations is
given by

U ¼ 3N nxh i�hx: ð3:1Þ

Here we assume, that the crystal consists of N atoms. Hence, there are 3N vibra-
tional degrees of freedom. hnxi is the probability, that a vibrational state with the
angular frequency ω and the quantized energie ħω is occupied. This probability is
given by the Bose-Einstein distribution

nxh i ¼ 1
e�hx=kBT � 1

ð3:2Þ

Fig. 3.3 Max Planck (left) and Albert Einstein (right) (Photos Deutsches Museum, München)
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to which we will return below again. The distribution (3.2) had been proposed by
Planck for the first time in his famous law of electromagnetic radiation.

In his model of the quantized energy of the lattice vibrations, in (3.1) and (3.2)
Einstein at first had assumed only a single frequency ω = ωE. Only a few years later,
this Einstein model has been extended by Peter Debye, who assumed a continuous
frequency spectrum of the vibrations, ranging between zero and a characteristic
maximum frequency, the Debye-frequency ωD. Now the vibrational energy of the
crystal is given as an integral over all phonon frequencies

U ¼
ZxD

0

dxD xð Þ nxh i �hx: ð3:3Þ

Here D(ω) is the number of vibrations per frequency interval, also referred to as
density of states. [In Chap. 6 we will return to the calculation of the density of states
D(ω)]. As an example, in Fig. 3.4 we show the spectral energy density of the
phonons of a germanium crystal.

In this way Debye was able for the first time to explain the temperature
dependence of the total energy of the lattice vibrations in crystals and in particular
the famous T3 behavior of the specific heat at low temperatures, in excellent
agreement with experiment. Again, Planck’s energy quantization, now applied to
the lattice vibrations, has played a central role, and the classical law of Dulong and
Petit has been eliminated.
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Fig. 3.4 Spectral energy
density of the phonons in a
germanium crystal at the
temperature of
10 K according to the Planck
radiation law, plotted versus
the phonon frequency ν
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The measurements of the specific heat of crystals, together with the Debye
model, had created a significant advance of the general acceptance of quantum
theory. For example, it was only after these measurements that the later Nobel
Laureate Walther Nernst became convinced that Planck’s quantum theory was more
than just an interpolation formula and that it represented new fundamental physics.
The fact, that Planck had based his revolutionary new idea on the physics of heat
radiation, had resulted from the relatively high level of experimental optics already
reached at that time.

In the years 1910–1916 in Berlin, in an extensive research program together with many
collaborators, Walther Nernst systematically investigated the specific heat of many solid
materials at low temperatures, confirming the quantum theory. In the meantime, Nernst had
recognized clearly the fundamental importance of quantum theory. Therefore, he also
organized the first large conference dealing with this subject, the famous First
Solvay-Conference on “The Theory of radiation and the quanta” held in Brussels from
October 30 until November 3, 1911. For this conference Nernst had been able to enlist the
financial support of the Belgian industrialist Ernest Solvay.

The important central idea during the development of quantum mechanics in the
1920s was the strict limitation of all statements about the atomic world to
observable facts. The fact that the elementary particles such as electrons, protons,
neutrons, etc., are exactly identical, must be centrally incorporated into the theory.
If the same two elementary particles are exchanged, the result must remain unaf-
fected. Hence, the theoretical qualities must have certain symmetry properties. This
requirement has severe consequences for the probability distribution of the different
states of the systems, and new concepts for quantum statistics are needed. The first
steps in this direction originated from the Indian physicist Satyendra Nath Bose. In
1924 he had derived Planck’s radiation law in a new way. Since he ran into
difficulties during the publication of his results, he approached Einstein asking him
for support. Einstein felt enthusiastic about Bose’s paper and arranged for its
publication in the Zeitschrift für Physik. Subsequently, starting from Bose’s results,
in some additional papers Einstein pointed out the formal similarity between
radiation and an ideal gas. Today, the resulting concept of quantum statistics is
referred to as Bose-Einstein statistics.

Bose-Einstein statistics apply to exactly identical elementary particles with zero
or integer angular momentum. Hence, these particles are also called bosons.
A single quantum state can be occupied by an arbitrarily large number of bosons.
Since phonons have zero angular momentum, they belong to this kind of particles.
Light quanta or photons are bosons also, since their angular momentum is equal to
one. However, electrons require a different kind of quantum statistics, as we will
discuss in Chap. 5.

The energy spectrum of phonons is described also by Planck’s radiation law,
similar to the photon spectrum of a heat radiator (Fig. 3.4). However, compared
with the spectrum of electromagnetic radiation, the phonon spectrum displays an
important difference, since its frequencies are restricted to the range below a
characteristic maximum frequency, the “Debye frequency’’ ωD. This maximum
frequency ωD simply results from the discrete lattice structure of the crystals. Below
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the nearest-neighbor distance of the crystal lattice, length scales for the lattice
vibrations are meaningless, resulting in the definition of a minimum value of the
wavelength and a corresponding maximum value of the vibration frequency. The
resulting maximum value ħωD of the phonon energy is referred to as the Debye
energy. Since, on the other hand, the electromagnetic waves propagate in a con-
tinuous medium without any lattice structure, in this case we are not confronted
with corresponding minimum or maximum values of the wavelength and the fre-
quency, respectively.

One finds the density of states D(ω) from the number of the elastic natural
frequencies fitting exactly into the volume of the crystal, say, into a cube with the
edge length L. Furthermore, in K-space the increment of the volume due to the
frequency increment dω must be considered. (Here and in the following, K denotes
the phonon wave vector). In this way one finds D(ω) * ω2. By insert-
ing hnxi from (3.2) into (3.3), finally we obtain the vibrational energy of the crystal.
The specific heat (at constant volume) of the lattice vibrations derived from this
energy is given by

CV ¼ @U
@T

� �
V ¼ 9NkB

T
h

� �3ZzD
0

dz
z4ez

ðez � 1Þ2 ð3:4Þ

Here, θ = ħωD/kB denotes the Debye-temperature. In this context, introducing the
quantity z = ħω/kBT is convenient (zD = ħωD/kBT = θ/T). At low temperatures
(T ≪ θ) the expression in (3.4) yields CV * T3, in good agreement with the
experimental data. On the other hand, at high temperatures (T ≫ θ) from (3.4) one
obtains the constant result CV = const, i.e., the classic law of Dulong and Petit.

The dependence of the phonon frequency ω on the wave vector K of the pho-
nons is obtained from a theoretical model, in which the crystal lattice is approxi-
mated by point-like masses connected with each other by elastic spiral springs. In
the simplest case of a linear chain with the lattice constant a and the same point-like
masses m, connected with each other by means of the same spring constant f, one
finds the dispersion relation

x ¼ 4f
m

� �1=2

sin
Ka
2

ð3:5Þ

In the case of a discrete lattice with the distance a between neighbors, the wave
vector K is confined to the range of the first Brillouin zone, i.e., in the case of the

one-dimensional chain to the range −
p
a
�K� p

a
. In the limit of small values of the

wave vector, one obtains from (3.5):

x ¼ a2f
m

� �1=2

K: ð3:6Þ
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The factor
a2f
m

� �1=2

represents the sound velocity. Equation (3.6) indicates the

acoustic limit, and (3.5) characterizes an acoustic mode.
In the simplest case we only have to deal with a single atom per elementary cell

of the crystal lattice. The vibration of the atom can occur within all three spatial
dimensions. Hence, the phonons propagating through the crystal are also charac-
terized by different spatial directions of the lattice vibrations. In the case of “lon-
gitudinal phonons’’ the atoms of the crystal lattice vibrate parallel to the
propagation direction of the wave. On the other hand, for the “transverse phonons’’
the vibration occurs along each of the two principal directions perpendicular to the
propagation direction, respectively. In this way the three “acoustic phonon modes”
must be distinguished: one longitudinal mode and two transverse modes. They are
referred to as acoustic modes, since in the limit of large wavelengths the corre-
sponding phonons propagate with the velocity of sound (Fig. 3.5). (Because of the
cubic face-centered symmetry in the case of the example of copper, the boundary of
the first Brillouin zone is located at K = 2π/a, in contrast to K = π/a in the case of the
linear chain or the simple cubic symmetry with the lattice constant a.)

If the crystal lattice contains more than a single atom per elementary cell, the
“optical modes” must be added. In the case of the optical modes, the atoms within
the elementary cell oscillate in opposite phase relative to each other. If the atoms
carry opposite electric charge, as in the case of the ionic crystals, due to these
oscillations electric dipole moments appear, which affect the optical properties.

K

Fig. 3.5 Phonon angular frequency ω = 2πν plotted as a function of the wave number K of the
phonons (“dispersion curves”) of a copper crystal. The wave vector is oriented along the direction
of the cube edges of the cubic unit cell of the crystal. L denotes the longitudinal and T the
transverse phonon branch. a = 0.361 nm is the distance between neighbors in the cubic crystal
lattice of copper (B.N. Brockhouse)
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In the case of p atoms per elementary cell, there are a total of 3p different phonon
modes: 3 acoustic modes and 3p − 3 optical modes.

Experimentally, the energy spectra of the phonons are determined mostly by means of
inelastic neutron scattering in crystals. The pioneering experiments were performed by
Bertram Neville Brockhouse from McMaster University in Canada. He carried out his first
measurements in 1955 with aluminum. One needs to measure the change in energy and
momentum of the neutrons as they emit or absorb a phonon within the crystal. The
impressive advances in the field of neutron spectroscopy, which to a large extent were due
to Heinz Maier-Leibnitz and his group first at the Technical University of Munich in
Garching and later at the Laue-Langevin Institute in Grenoble, have turned out to be
extremely fruitful.

Max von Laue and his colleagues in Munich, prior to their famous X-ray diffraction
experiment, were very concerned at the time by the following obvious question: Is
it not likely that the perturbation of perfect order in the crystal lattice due to the
permanent lattice vibrations really ruins the observation of X-ray diffraction?
However, the clear and positive experimental result gave a decisive answer to this
question. In 1913 Peter Debye wrote a series of papers theoretically treating the role
of the thermally excited vibrations of the crystal lattice as it affects the diffraction of
X-rays. During the 1920s this subject was taken up again by the Swedish theorist
Ivar Waller. Both scientists have shown that the thermal lattice vibrations only
effect a reduction of the maximum intensity of the diffracted beam, whereas the
linewidth of the diffracted beam remains the same. The reason for this is simply that
the thermal motion of the many atoms in the lattice is completely uncorrelated,
leading effectively to a cancellation between the oscillations of the different atoms.
This reduction of intensity of the diffracted beam is quantified in terms of the
“Debye-Waller factor”. This factor indicates, furthermore, that the intensity of the
diffracted beam strongly increases with decreasing temperature.

The Debye-Waller factor played a key role later during the discovery of the
Mössbauer effect. As a young Ph.D. student in Munich Rudolf L. Mössbauer has
been asked by Heinz Maier-Leibnitz, his thesis advisor, to study the resonance
absorption of γ-radiation in atomic nuclei. Mössbauer was supposed to find out if
the γ-radiation emitted by an atomic nucleus of the source is resonantly re-absorbed
by another atomic nucleus of the same element in the absorber. For the observation
of this effect it is necessary for there to be sufficient overlap between the spectral
energy widths of the γ-radiation for the emission and the absorption processes. Here
the main issue centered around the question of whether this required overlap dis-
appears, perhaps completely, because of the recoil during the emission and
absorption of the γ-quantum, thereby eliminating the possibility of resonance
absorption. It is interesting that initially in particular Heinz Maier-Leibnitz had the
idea of enhancing this energetic overlap by increasing the temperature and thereby
enlarging the thermal linewidth of the γ-radiation. However, this idea was soon
discarded, and Mössbauer instead cooled the source and the absorber with liquid
oxygen. This then turned out to be crucial, and Mössbauer could observe for the
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first time the recoil-free nuclear resonance fluorescence. He performed his first
experiments using the 129-keV-radiation of the iridium isotope 191Ir, with the
iridium atoms implanted within a crystal. Again, it was the elimination of the
influence of the phonons on the linewidth of the Mössbauer line, which had pro-
duced the effect he was looking for, exactly as prescribed by the Debye-Waller
factor. The question of the recoil now became irrelevant, since the iridium atoms
were solidly implanted within the host crystal. The extremely narrow energy width
of the Mössbauer line is finally limited only because of the “natural line width”,
resulting from the finite lifetime of the quantum mechanical state due to the
Heisenberg uncertainty relation. Because of this extremely narrow linewidth a large
number of highly sensitive measurements has become possible in many areas. An
early spectacular case is the detection of the energy change in the quanta of
γ-radiation after they have travelled upwards a certain distance in height in the
gravitational field of the Earth. In 1960 this was detected by the American physi-
cists Robert V. Pound and Glen A. Rebka. In their experiment the distance in height
travelled was 22.5 m.

3.3 Thermal Conductivity of the Crystal Lattice

In crystals phonons also contribute to the transport of heat energy. In electrical
insulators they represent the only mechanism determining the heat conductivity.
The phonon contribution κG to the heat conductivity of a crystal is closely con-
nected with the lattice component C of the specific heat. This is indicated by the
simple formula of the kinetic theory of κG:

jG ¼ 1
3
vC‘: ð3:7Þ

Here v is the velocity and ‘ the mean free path of the phonons. As a model, we can
think about phonons in terms of a gas experiencing many collisions between its
particles. Because of the many collisions, in general the heat transport provided by
the phonons is a diffusive process. With increasing temperature the number of
thermally excited phonons, and hence the collision probability among the phonons,
increases. As a result, with increasing temperature the heat conductivity decreases.
However, at very low temperatures we have an exception. In this case, the number
of phonons is very small, the collisions between them become unimportant, and it is
only the number of phonons which matters. Now the mean free path ‘ is limited by
the collisions with the surface of the crystal, and it becomes independent of the
temperature. In this regime we have C * T3 and because of (3.7) κG * T3.
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At higher temperatures, an exact theoretical treatment shows, that a novel pro-
cess must be taken into account, the “umklapp-process” (U-process). It effects, that
the directed momentum of the phonons is transferred to the crystal and is lost for the
heat transport. Denoting the wave vectors of the phonons participating in the
umklapp-process by Ki, we obtain

K1 þK2 ¼ K3 �G: ð3:8Þ

G is a vector in the reciprocal lattice. Processes with G = 0 are referred to as
N-processes. The concept of the umklapp-processes has been proposed for the first
time in 1929 by Rudolf E. Peierls, who was born in Berlin and later emigrated to
England. (In Chap. 2 in the case of (2.10) we have dealt already with a similar case,
in which during a Bragg reflection the momentum of the photon is transferred to the
crystal).

The umklapp-processes yield an important contribution only if K1 + K2 ≥
1
2 G. However, at low temperatures they are frozen out, since phonons satisfying this
condition are not thermally excited. On the other hand, at high temperatures (T > θ)
the U-processes are dominant. Their number increases proportional to the number
of phonons, which in turn is proportional to temperature. Hence, for the mean free
path ‘ of the phonons one finds ‘ * T�1. Because C = const in this case, from (3.7)
we obtain: κG * T�1: The overall result for the temperature dependence of the heat
conductivity of the lattice is a curve with a distinct maximum (Fig. 3.6). For
example, in sapphire (Al2O3) this maximum is located near 30 K.

Diamond is a material with an extremely high heat conductivity. Therefore, a
special effort has recently been concentrated on the development of thin diamond
layers, which are highly interesting technologically for cooling purposes because of
their large heat conductivity.
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Fig. 3.6 Temperature
dependence of the heat
conductivity of an electrical
insulator (schematically)
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3.4 Ballistic Phonons

As we have discussed before, the collision processes between phonons become
more and more rare at sufficiently low temperatures. In this regime phonons can
propagate freely over distances as large as, say, about mm to cm with sound
velocity. In this case we are dealing with ballistic phonons. The propagation of
ballistic phonons can be observed easily, if a heat pulse is applied locally to the
front surface of a well-cooled crystal. The generated phonon pulse can be detected
locally at the back of the crystal after the proper time of flight (Fig. 3.7). For
generation of the heat pulse, a pulsed laser beam or electron beam directed on the
crystal surface can be used. Due to the anisotropy of the elastic crystal properties,
the ballistic propagation of the phonon energy displays distinct maxima along
certain directions within the crystal. This effect is referred to as phonon focusing,
and can be easily demonstrated using the method we have just discussed. The only
requirement is that the beam is scanned laterally over the crystal surface, while the
detector is fixed locally at the back of the crystal. In Fig. 3.8 we show a typical
example.

phonon pulse

crystal crystal detector

electron or
laser beam

(a) (b)

Fig. 3.7 Ballistic propagation of phonons at low temperatures.aSchemeof an experiment tomeasure
the propagation time of the phonons. On the left hand side of the crystal the phonons are generated
by means of a heat pulse applied to the source S, and subsequently they are detected on the right hand
side of the crystal with the detector D. A thin metal layer deposited on the crystal surface can act as a
source by means of the application of an electric current pulse. A deposited thin layer, the electric
resistance ofwhich responds sensitively to pulsed temperature changes, can also serve as detector.bA
pulsed electron beam or laser beam, directed at the crystal surface at one side of the crystal, can also be
used for the generation of a phonon pulse. If furthermore the beam is scanned over the crystal surface,
while the detector remains locally fixed on the opposite side of the crystal, the ballistic propagation of
the phonons can be studied as a function of the propagation direction in the crystal
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If the crystal is cooled to lower and lower temperatures, eventually only the
“zero-point motion’’ of the building blocks of the crystal remains. The zero-point
motion follows from the quantum mechanical uncertainty relation, which requires
that a spatially fixed object always displays a finite uncertainty of its momentum.
The resulting zero-point energy of an oscillator at frequency ν amounts to ½ hν.

Fig. 3.8 Image of the intensity of the ballistic phonons in dependence on the propagation direction
in a silicon single crystal at a temperature of 2.0 K (“phonon imaging”). While the crystal surface on
one side is scanned with the electron beam, the intensity of the ballistic phonons is recorded on the
opposite side of the crystal with a locally fixed detector in dependence on the coordinate point of the
scanned crystal surface. Bright regions correspond to high intensity. The spatially diagonal line of
the cubic unit cell of the crystal is oriented perpendicular to the scanned surface of the crystal
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Chapter 4
Electric Conductor or Insulator?—Energy
Bands

Abstract Application of quantum mechanics to the electrons in the periodic
potential of the crystal lattice yields the energy bands separated from each other by
forbidden energy gaps. The approximations with bound electrons (F. Bloch) and
with nearly-free electrons (R. Peierls) are discussed. Depending on how the energy
states within the bands are occupied by electrons, we deal with electrical conduc-
tors, semiconductors, or insulators.

After the principles of the new quantum mechanics had been established during
1925 and 1926 mainly by Werner Heisenberg from Germany, Erwin Schrödinger
from Austria, and Paul Adrien Maurice Dirac from England, there developed a
strong interest in applying the theory to as many different cases as possible. Only by
applying the theory to a large number of examples could familiarity with the new
concepts be achieved. After simple cases such as the hydrogen atom or the
hydrogen molecule had been treated, more complex problems were tackled. At that
time important developments began in Leipzig.

In 1927, at the young age of only 26 years, Heisenberg had already accepted the
offer of a Chair of Theoretical Physics at the University of Leipzig. Here he quickly
attracted a group of extremely gifted and creative young scientists, who subse-
quently had a dominant impact on further developments in physics. At the begin-
ning of 1928 Heisenberg had already recognized that quantum mechanics would
play an important role for crystals. The Swiss scientist Felix Bloch, born in Zürich,
had just joined Heisenberg’s group as a Ph.D. student (Fig. 4.1). For his thesis
Heisenberg proposed two possible subjects: Bloch could take up the quantum
mechanical theory of ferromagnetism or the electron theory of metals. Since Bloch
knew that Heisenberg had already worked out the basic parts of the first subject, he
preferred the second one. Only in this way could he hope to come up with a
significant contribution of his own. Indeed, soon afterwards Heisenberg published
his famous theoretical paper which became the starting point of the modern theory
of ferromagnetism.

The quantum mechanical theory of electrons in crystals requires the solution of
the Schrödinger equation in the case of the spatially periodic crystal lattice. In this
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case, the energy spectrum of the electrons is determined by the periodic potential U
(r) of the crystal atoms. Then the Schrödinger equation is

� �h2

2m
Dw rð ÞþU rð Þw rð Þ ¼ ew rð Þ: ð4:1Þ

Here m denotes the mass and ψ(r) the wave function of the electrons. Δ is the

Laplace operator Dw = @2w
@x2 þ @2w

@y2 þ @2w
@z2 and ε the energy of the electrons. The

potential energy U(r) must satisfy the periodicity condition (2.8). In the theoretical
treatment we distinguish between two different important approximations: the
bound-state approximation (after Felix Bloch) and the free-electron approximation
(after Rudolf E. Peierls). In both cases we deal only with the electrons in the highest
available energy range, and not with the lower levels of the strongly bound states at
the individual atoms at the sites of the crystal lattice.

4.1 Approximation with Bound Electrons (Felix Bloch)

In his dissertation, the results of which he published in 1928, Felix Bloch formu-
lated the quantum mechanical foundation of the theory of electrons in crystal
lattices. Due to the periodic potential of the crystal lattice in all three dimensions,
the de Broglie waves of the electrons are spatially modulated following the rhythm
of the lattice structure. In the approximation with bound electrons one assumes, that
the electrons with the highest energy remain located most of the time at a certain

Fig. 4.1 Werner Heisenberg (left), (Photo Deutsches Museum) and Felix Bloch (right) (Photo
Nobel Museum)
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lattice site, and only occasionally move to a neighboring lattice site, because of the
small interaction between both locations. Their binding energy at a certain lattice
site is assumed to be much larger than their kinetic energy. In this case the solution
of the Schrödinger equation found by Bloch is based on the wave function uO rð Þ of
the quantum mechanical states of the electrons of the isolated individual atom or
molecule with their corresponding discrete energy levels. We denote the coordinate
of the electron by r and the coordinate of the atom or molecule (i.e., of the lattice
site) by ρ. The solution proposed by Bloch in form of the superposition of the
atomic wave functions φO(r − ρ) is then given by:

wk rð Þ ¼
X
q

eikquO r� qð Þ: ð4:2Þ

This ansatz leads directly to the extended periodicity condition

wk rþ qð Þ ¼ eikqwk rð Þ ð4:3Þ

with the phase factor eikq. The periodicity (4.3) can be seen by writing

wk rþ qoð Þ ¼
X
q

eikquO rþ qo � qð Þ

¼ eikqo
X
q

eik q�q0ð Þuo r� q� qo½ �ð Þ ¼ eikqowk rð Þ

The function wk rð Þ in (4.2) represents the famous Bloch ansatz for the quantum
mechanical wave function of the electrons, upon which all further theoretical
developments for crystals have since been built. The fact, that according to (4.3) a
phase factor eikq “…can always be separated from the eigenfunctions, and where
the rest only displays the periodicity of the lattice, can be vividly expressed such,
that we are dealing with planar de-Broglie waves, which are modulated by the
rhythm of the lattice structure” (the words of Felix Bloch in his paper About the
Quantum Mechanics of the Electrons in Crystal Lattices, published in 1928, here in
English translation). With the wave function (4.2) one finds the electron energy εk
in the following way. Applying the rules of quantum mechanics, we have

Z
dsw �

k rð Þekwk rð Þ ¼ ek

Z
dsw�

k rð Þwk rð Þ ð4:4Þ

and using (4.1) we find

ek ¼ 1
N

Z
dsw�

k rð Þ � �h2

2m
D + Ua r� qð ÞþU rð Þ � Ua r� qð Þ

� �
wk rð Þ ð4:5Þ
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Here dτ denotes the volume element. In (4.5) under the integral we have added
and subtracted again the atomic potential Ua(r) shown in Fig. 4.2, and we have used
the normalization of the wave function

Z
dsw�

k rð Þwk rð Þ ¼ N ð4:6Þ

where N is the number of the crystal atoms.
We start with the first two terms under the integral in (4.5). We assume that the

atomic functions φO(r) of neighboring atoms overlap only very little. For each

atomic function φO(r – ρ) in the Bloch sum the operator � �h2
2mDþUa r� qð Þ

h i
yields the eigenvalue εo, and we obtain

1
N

Z
ds eow

�
k rð Þwk rð Þ ¼ eo ð4:7Þ

The last two terms under the integral in (4.5) yield

1
N

Z
dsw�

k rð Þeikq U rð Þ � Ua r� qð Þ½ �uo r� qð Þ

¼ 1
N

X
q0

X
q
eik q�q0ð Þ

Z
dsu�

o r� q0ð Þ U rð Þ � Ua r� qð Þ½ �uO r� qð Þ
� �

In the double sum over q0 and q the two indices are treated independently of each
other, and we can use the following procedure. We keep one running index fixed and
replace the sum by the factor N. For this we use ρ = 0 (Since the summation index
runs over all lattice points, an arbitrarily taken fixed index yields the same contri-
bution as any other neighboring lattice point because of the translation symmetry).

Fig. 4.2 Comparison of the energy of an electron, Ua(r), in the case of an isolated individual atom
(solid line), and the case of the presence of atoms at the neighboring lattice sites, U(r) (dashed
curve)
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The factor N is cancelled, and we obtain for the last two terms (noting that we took
ρ = 0)

X
q0

e�ikq0
Z

dsu�
o r� q0ð Þ U rð Þ � Ua rð Þ½ �/O rð Þ ð4:8Þ

In the sum over q0 we start with q0 ¼ 0, and then we take the nearest neighbors of
q ¼ 0, i.e., q0 ¼ �a, then the next-nearest neighbors q0 ¼ �2a, etc., where a
denotes the lattice constant. However, often the next-nearest neighbors (and all
others further away) can be neglected because of the vanishing product
u�
o r� q0ð Þuo rð Þ indicating the overlap of the atomic functions.
The contribution q0 ¼ 0 yields εk = εo − α, with

�a ¼
Z

dsu�
o rð Þ U rð Þ � Ua rð Þ½ �uo rð Þ ð4:9Þ

Ua(r) is the potential energy in the unperturbed individual atom. As we see from
Fig. 4.2, due to the presence of the atoms at the neighboring lattice sites, we have
Ua rð Þ[U rð Þ, and therefore α > 0.

Turning to the contribution q0 ¼ �a, we assume simple cubic symmetry of the
lattice and combine the contributions of the nearest neighbors at the distances ±a in
x-, y-, and z-direction, respectively. In this way we find

ek ¼ eo � a� 2b cos kxa + cos kya + cos kza
� � ð4:10Þ

With

�b ¼
Z

dsu�
o r� að Þ U rð Þ � Ua rð Þ½ �uo rð Þ ð4:11Þ

The factor β contains the interaction between the nearest neighbors. In general, we
have again β > 0.

Because of the interaction between each atom or molecule and its neighbors
within the crystal lattice, the discrete energy levels split up and broaden into energy
bands. From (4.10) we see, that the lowest energy value is ε = εO – α − 6β. From the
highest energy value ε = εO − α + 6β we see, that the width Δε of the energy band
amounts to Δε = 12β. Since the overlap between u�

O r� að Þ and uO rð Þ increases
with decreasing lattice constant a, then also the quantity β and, hence, the band-
width Δε increases. In Fig. 4.3 we show this behavior schematically in the case of a
one-dimensional chain.

So far we have considered only the interaction of an atom or molecule at a
certain lattice site with its nearest neighbors. In order to achieve a higher accuracy
of the approximation, one can include also the interaction with the next-nearest
neighbors (and perhaps beyond those).
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At the end of our discussion of the bound-state approximation we note, that the
interaction with the atoms or molecules at the neighboring lattice sites results in a
broadening of the discrete energy values, associated with an isolated atom at a
lattice site, into energy bands, the bandwidth of which increases with decreasing
distance between the nearest neighbors.

4.2 Nearly-Free Electron Approximation (Rudolf Peierls)

In the other important limiting case, the approximation with free electrons, dis-
cussed for the first time by Rudolf E. Peierls also in Leipzig, nearly-free electrons
are assumed, and the perturbation by the periodic potential of the crystal lattice is
considered to be small. In this case the electrons can propagate freely through the
crystal in the form of matter waves. However, this free propagation is interrupted if
the matter waves undergo Bragg reflection at the crystal lattice.

Fig. 4.3 Electronic band
structure of a one-dimensional
straight chain of hydrogen
atoms with a distance between
neighbors of 0.3, 0.2, and
0.1 nm, respectively. The
electron energy ε is plotted as
a function of the wave vector
k. For a single isolated
hydrogen atom the electron
energy is −13.6 eV. The
broadening of this energy
level results in the energy
bands. The energy width of
these bands increases strongly
with decreasing distance
between neighboring atoms
(R. Hoffmann)

54 4 Electric Conductor or Insulator?—Energy Bands



If we completely ignore the potential energy U(r) in the Schrödinger equation
(4.1), we obtain as solution the wave function of free electrons:

w rð Þ ¼ eikr: ð4:12Þ

By inserting (4.12) into (4.1), in the case U = 0 one finds the electron energy

e ¼ �h2k2
�
2m ð4:13Þ

The wave function (4.12) represents a plane wave with the wave vector k.
However, a small periodic potential U(r) in (4.1) causes a strong effect, if the wave
vector k lies close to the boundary of a Brillouin zone. At the zone boundary, the
wave vector k exactly satisfies the Bragg condition (2.10), such that the wave
experiences Bragg reflection. As an example, schematically indicated in Fig. 4.4, we
take the point G1 of the reciprocal lattice and the zone boundary at G1/2. Due to the
Bragg reflection, the wave vector k = G1/2 changes from k to k′ = k − G1 = −G1/2.

In the presence of the periodic potential U(r), the solution of the Schrödinger
equation can be written as superposition of plane waves:

w rð Þ ¼
X
k

ckeikr: ð4:14Þ

If we express the small periodic potential U(r) of the crystal lattice in the form of
(2.7), then in the case k = G1/2 (after some calculations) one obtains the electron
energy

e = ek � uG1 ð4:15Þ

Between the energies ek þ uG1 and ek � uG1 there appears a forbidden energy
gap, in which the solution (4.14) of a propagating wave does not exist. The spectral
energy curve ε(k) always approaches the boundaries of the Brillouin zones with
zero slope. The magnitude of the energy gap increases with increasing coefficient
uG1 in (2.7), i.e., with increasing potential energy U(r) of the crystal lattice. In Fig.
4.5 we show the appearance of the forbidden energy gaps due to the Bragg
reflection at the periodic potential of the crystal and the comparison with the case of
the perfectly free electrons.

Fig. 4.4 Bragg reflection
from k = G1/2 to
k′ = k − G1 = −G1/2
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In 1931 Allan H. Wilson from England had joined Heisenberg’s group in
Leipzig, and finally it was he who provided the definite answer to the question, of
whether a crystal is an electrical conductor, a semiconductor, or an insulator
(Fig. 4.6). According to his proposal, which then turned out to be correct, the
energy bands of the electrons in a crystal are responsible for the differences in
the electrical conductivity. Here the decisive argument is based on the fact, that the
preferential motion of the electrons along a certain direction (of an applied electric
field) is only possible, if the electronic states of the energy spectrum relevant under
the non-equilibrium exist and can be occupied. If a band is only partly filled with
electrons we have metallic electrical conductivity. On the other hand, one obtains

Fig. 4.5 Energy bands in crystals. In the crystal lattice the continuous energy spectrum of free
electrons (a) is divided into different energy bands, which are separated from each other by
forbidden energy gaps (b). E energy; k wave vector; a distance between neighbors in the crystal
lattice

empty band

empty band

(a)

(b)

(c)

Fig. 4.6 Energy-band model of the electric conductivity of crystals. a A completely filled energy
band having a large energy distance (“energy gap”) to the next higher, but still completely empty
energy band, yields an electric insulator. b A completely filled energy band with only a small
energy distance to the next higher, but still nearly empty energy band, results in a semiconductor.
c A well, but not yet completely filled energy band yields the electric conductance of a metal
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an electrical insulator, if all energy bands are completely filled with electrons, and if
at the same time no empty band exists nearby along the energy axis. Any band
which is completely filled cannot contribute to the electrical conductivity, since the
distribution of the velocities of all electrons in the band cannot be changed.
However, in order to conduct an electrical current, the velocities of the electrons
must be redistributed in favor of the flow of current, which is impossible for a
completely filled band, since unoccupied energy values are not available. There
then remains as an interesting situation, the case where an empty band exists
energetically close on top of a filled band, such that electrons can be transferred
from the lower to the upper band by means of their thermal excitation energy.
Hence, the energy gap between both bands must be sufficiently small. In this case
we deal with a semiconductor, a subject we will discuss in Chap. 6. Typical values
of the energy gap are about 0.1–1 eV in the case of semiconductors and about
10 eV in the case of insulators.

For the theoretical physicists in Leipzig it has taken only three years to solve the
problem of the electrical conductivity of crystals in terms of the energy bands of the
electrons.
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Chapter 5
Metals Obey the Rules of Quantum
Statistics

Abstract The classical Drude-Lorentz model could explain some aspects of the
electronic properties of metals such as the Wiedemann-Franz law. However,
quantum statistics and the Fermi distribution of the electron energies turned into the
key for the electronic theory of metals, including the important concept of the Fermi
surface in momentum space. Over a wide temperature range the electronic transport
properties of metals are dominated by the interaction between electrons and pho-
nons (Bloch-Grüneisen law). Thermoelectricity (Peltier and Seebeck effect) is
discussed briefly.

5.1 Drude-Lorentz Model

Before the quantum mechanical foundations discussed in Chap. 4 were developed,
there already existed classical models for describing the behavior of electrons in
metals. Here the dominating model was due to Paul Drude and Hendrik Antoon
Lorentz. The electrons in a metal were assumed to represent an ideal gas which can
move freely within the crystal lattice. Further, only one kind of mobile carriers of
negative electric charge was assumed to exist. In some way, the presence of the
atoms of the crystal lattice was ignored. However, they should occasionally result in
collisions with the mobile electrons. In this way one could arrive at a finite value of
the “electron mean free path” and, hence, a finite electrical conductivity.

In an electric field E the electrons in a crystal experience the force

F = �h
dk
dt

¼ �eE: ð5:1Þ

Here k denotes the wave vector and e the charge of the electrons. The quantity ħk is
the mechanical momentum of the electrons. According to (5.1), after the time Δt the
wave vector increases by the amount Δk. In the absence of any scattering processes,
the increment Δk will grow further and further. However, since electrons always
experience scattering processes (due to phonons or defects in the crystal lattice),
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(5.1) is valid only during a limited time interval. This time interval is the average time
τ between two scattering events, and one finds

�hDk = Fs ¼ mDv: ð5:2Þ

Here m denotes the mass and Δv the drift velocity of the electrons. Together with
(5.1) one obtains for the electric current density j:

j ¼ nð�eÞDv ¼ ne2
s
m
E; ð5:3Þ

where n denotes the density of the electrons. With the electrical conductivity σ from
the relation j ¼ rE one finds:

r ¼ n e2 s=m: ð5:4Þ

As the result we obtain Ohm’s law, based on the average “relaxation time” τ,
assumed to be independent of the electric field E.

Since electrons also carry heat energy in addition to their electric charge, they
also contribute to the heat conductivity of metals. This contribution of the electrons
represents a second important mechanism of heat conduction, which must be taken
into account in metals, in addition to the heat transport by the phonons, which we
have discussed in Chap. 3. Often the contributions from both mechanisms are of
similar magnitude. Since the transport of heat energy and of electric charge is due to
the same electrons, one expects that the electronic part of the heat conductivity and
the electrical conductivity will be proportional to each other, in agreement with
experiment. This can be demonstrated using the following argument. In a tem-
perature gradient dT/dx an energy current of density w flows from the hot to the
cold side, given by

w ¼ 1=2ð Þnv e T x� vs½ �ð Þ�e T xþ vs½ �ð Þf g ð5:5aÞ

w ¼ n v2s
de
dT

� dT
dx

� �
ð5:5bÞ

Here, ε denotes the particle energy. In Fig. 5.1 we illustrate the argument leading to
(5.5a), (5.5b).

The mean free path ‘ ¼ v s of the electrons represents the relevant length scale,
at which the average motion of the electrons is affected along the temperature
gradient. Based on the average energy ½ kBT per degree of freedom of a free
particle, in the case of three degrees of freedom the energy ε is given by

e ¼ 1
2
mv2 =

3
2
kBT ð5:6Þ
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and using

de
dT

¼ CV =
3
2
kB ð5:7Þ

we obtain the energy current density

w ¼ �n
3
2
kB

� �2sT
m

dT
dx

¼ �je
dT
dx

: ð5:8Þ

In (5.8) we have introduced the heat conductivity κe of the electrons. Together with
(5.4) we find

L � je
rT

¼ 9
4

kB=eð Þ2 : ð5:9Þ

The ratio L is referred to as the Lorenz number, named after Ludwig Lorenz.
(A more accurate averaging yields the prefactor π2/3 instead of 9/4). The result in
(5.9) is the famous Wiedemann-Franz law. Often this law is very useful for esti-
mating the heat conductivity of the electrons in a metal, if the electrical conduc-
tivity, which can be measured relatively easily, is known.

The explanation of the experimentally observed Wiedemann-Franz law was one
of the successes of the Drude-Lorentz model. However, the model failed to predict
the electrical and the thermal conductivity of the electrons separately, i.e., not just
the ratio between both conductivities. But further and much more fundamental
difficulties appeared with respect to the specific heat of the electrons. Their con-
tribution to the specific heat was found to be much smaller than expected from
classical concepts. Again, the solution of this problem was provided by the new
quantum mechanics and in particular by the application of the “Pauli principle”.

Fig. 5.1 Illustration regarding the heat current density of (5.5a), (5.5b). The arrows near Thigh and
Tlow indicate the average electron energy
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5.2 Quantum Statistics, Fermi Distribution

Again, it is the exact identity of the electrons as elementary particles, which makes
them indistinguishable and which requires a new form of quantum statistics in order
to obtain the probability distribution of the states. We have noted this already for
the quantized lattice vibrations in terms of bosons. The quantum statistics deviate
strongly from the classical (Maxwell-Boltzmann) statistics, as we have discussed in
Chap. 3 in the case of the Bose-Einstein distribution (3.2) of particles having
vanishing or integer angular momentum (phonons and photons). However, now we
deal with the electrons as elementary particles, having a half-integer angular
momentum. In 1925 Wolfgang Pauli had formulated his famous exclusion princi-
ple, which states that each quantum mechanical state of a system can at most be
occupied by a single electron. Here the important point is that an electron carries a
half-integer angular momentum. In this way Pauli was able to explain the closure of
the electron shells of the atoms. In 1926 Enrico Fermi from Italy and Paul Adrien
Maurice Dirac showed independently from each other, that the application of the
Pauli principle also leads to a new form of quantum statistics which today are
referred to as Fermi-Dirac statistics. In general, Fermi-Dirac statistics are valid for
elementary particles with a half-integer angular momentum, as is the case for the
electrons. Such particles are referred to as fermions. Their angular momentum is
also called spin. Because of the quantization of the direction of the angular
momentum, the half-integer spin of the electrons can be oriented along only two
possible directions. According to the Pauli principle, each state can be occupied for
each of the two spin directions at most only by a single electron. Therefore, the
many electrons in a metal must distribute themselves over many states with dif-
ferent energies within an energy band. In this way the electrons in an energy band
must occupy sequentially the different “seats” with increasing energy. The last
electron then must take the highest energy level. This highest energy level of the
occupied states is referred to as the Fermi energy and the corresponding energy
distribution of the electrons as the Fermi distribution (or Fermi-Dirac distribution).
In the following we denote the Fermi energy by εF.

The Fermi-Dirac distribution function f(ε) is given by

f eð Þ ¼ 1
eðe�eFÞ=kBT + 1

: ð5:10Þ

ε is the particle energy and eF the Fermi energy (or the chemical potential). The
function f(ε) is shown in Fig. 5.2.

Mathematically the Fermi distribution f(ε) is a simple function of the electron
energy. Between zero energy and the Fermi energy this function has a value of one,
since in this energy interval the states can be occupied only by a single electron. At
the Fermi energy the function abruptly drops from one to zero, having approxi-
mately the shape of a rectangle. However, this rectangular shape is exactly valid
only at zero temperature. At a temperature T, different from zero, the drop of the
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Fermi function from one to zero is smeared out along the energy axis and happens
within an energy interval of about kBT at the Fermi energy (Fig. 5.2). This energy
width kBT has already appeared in our discussion of the thermal energy associated
with the individual degrees of freedom of the normal modes of the crystal lattice.

Now we return again to the specific heat of the electrons. Since the electrons in a
metal must obey a highly restrictive prescription in the form of the Fermi distri-
bution, nearly all electrons in the relevant energy band are energetically fixed and
cannot change their energetic state. If we arbitrarily pick out an electron, we see that
all energetically neighboring states are already occupied. Hence, this electron can
reach an unoccupied state only by means of a very large jump in energy, effecting a
physical change in this way. However, in general such a large energy jump is
impossible. Only for the few electrons near the Fermi energy is this possible, since
they are energetically sufficiently close to states which are still unoccupied and
which they can reach by thermal excitation. The fraction of the electrons in this
exceptional energy interval is approximately given by kBT/εF. It is also exactly this
fraction, which contributes to the specific heat of the electrons. We see that the
specific heat in a metal must be reduced by this factor kBT/εF compared with the
value expected from the classical theory and that, furthermore, it becomes pro-
portional to the absolute temperature. Both results agree well with experiment. In
this way it was quantum statistics which again removed the difficulties of the
classical theories with the specific heat, in this case for the electrons. Using the
relevant numbers for the monovalent metals, one finds for room temperature
approximately the value kBT/εF = 0.01. Compared with the Fermi energy, the
transition from the occupied to the unoccupied states happens within a relatively
narrow energy interval. Hence, the rectangular shape of the Fermi function men-
tioned above is still reasonably well preserved.

Exactly the same argument as we have used above for the specific heat of the
electrons also applies to the paramagnetism of the electrons in metals. This was

Fig. 5.2 Fermi distribution function: Because of the Pauli exclusion principle each quantum
mechanical state in a crystal can be occupied at most by only one electron. At the temperature of
zero Kelvin, for all energies up to the Fermi energy εF the Fermi distribution function has the value
of one, and at εF it drops abruptly from one to zero. At a finite temperature T, the drop of the Fermi
distribution function from one to zero is smeared out along the energy axis, and it occurs at the
Fermi energy within an energy width of about kBT
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pointed out for the first time by Wolfgang Pauli, who explained in this way the
relatively small value of the “paramagnetic susceptibility” in metals and its inde-
pendence of the temperature. We will return to this subject in Chap. 10.

5.3 Fermi Surface

At this stage we recall that the states of the electrons in a crystal represent planar
waves, as formulated for the first time by Felix Bloch and Rudolf E. Peierls in their
quantum mechanical theory. The planar waves are characterized by their wavelength
and their propagation direction. Both qualities are combined in the “wave vector”
k. Its direction indicates the propagation direction of the wave. Its absolute value k,
referred to as the wave number, is equal to the inverse of the wavelength λ except for
the factor 2π: k = 2π/λ. The state of the electrons in the crystal is not unequivocally
identified by the energy alone. For the same electron energy the wave vectors of the
matter waves can still point in all different directions in the crystal, in this way
defining different states in view of the Pauli principle. Hence, the Fermi distribution
of the electrons must apply to all directions of the wave vectors separately. With
increasing energy of the electrons, the magnitude of their wave vectors also
increases. Hence, the Fermi energy as the maximum energy of the occupied states
also corresponds to a maximum value of the wave vector. This maximum value is
referred to as the Fermi wave vector kF, and all states up to kF are occupied by
electrons. All states above kF remain unoccupied. From this discussion we see that
our treatment of the quantum mechanical electron states in a crystal must be
extended to a three-dimensional space of the wave vectors, the so-called k-space.
Since the wave vector is proportional to the particle momentum, this space is also
referred to as the momentum space. In this momentum space the Fermi wave vectors
kF with their magnitudes and their directions represent a surface, the “Fermi sur-
face”, for the particular material. The Fermi surface is one of the most important
concepts for the discussion of the electronic crystal properties (Fig. 5.3). The Fermi
energy εF and the Fermi wave vector kF are connected by the relation

eF ¼ �h2kF2=2 m ð5:11Þ

This relation is shown in Fig. 5.4. In the simplest case, if the influence of the crystal
lattice on the de Broglie waves associated with the electrons is negligible, the Fermi
surface has a spherical shape. We deal with this case to a good approximation in the
monovalent metals, as for example in the alkali metals. As we have discussed
already in Chap. 4, the perturbation arising from the crystal lattice becomes stronger
as the electron energy approaches the values which satisfy the condition of Bragg
reflection (at the boundary of a Brillouin zone). If the Fermi energy gets close to
these values, the Fermi surface deviates appreciably from the spherical shape and
displays a characteristic anisotropy in momentum space. We encounter such a case
in particular in the multivalent metals, as for example in aluminum.
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A distinct anisotropy of the Fermi surface was experimentally observed for the
first time by the Englishman Alfred Brian Pippard in measurements of the micro-
wave surface resistance of copper (Fig. 5.3). During the Second World War,
Pippard had participated in England in the development of radar technology, which

Fig. 5.3 Fermi surface of copper—The Fermi surface exists in momentum space, and it indicates
up to which value all wave vectors are used up in order to accommodate the available electrons. In
the simplest case the Fermi surface is a sphere, the radius of which is given by the Fermi wave
vector kF. The picture shows the Fermi surface of copper for which, historically, deviations from
the spherical shape were detected for the first time. The short “necks” visible in eight different
directions are a characteristic feature of the Fermi surface of copper

Fig. 5.4 The energy spectrum ε(k) of the electrons is occupied up to the Fermi energy eF and up
to the Fermi wave vector kF (It is assumed that kBT ≪ εF)
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turned out to become the key defense determining the outcome of the Battle of
Britain. (It is also said, that radar technology had won the Second World War). For
the young Pippard his experience with the new microwave technique had been the
reason for taking up a thesis subject dealing with microwaves. Pippard performed
his crucial measurements during the academic year 1955/1956 as a guest scientist at
the Institute for the Study of Metals in Chicago, since in this Institute single crystals
of copper with highly polished surfaces could be prepared better than anywhere
else. This first experimental observation of the anisotropy of the Fermi surface in a
metal by Pippard immediately triggered considerable research activities on the
subject of the Fermi surface in many laboratories, which subsequently lasted for
many years. Within this context experiments in high magnetic fields and, in par-
ticular, the “de Haas–van Alphen effect” quickly gained much importance. This will
be discussed in Chap. 7.

An extremely fruitful comment starting the application of the geometric concept
of the Fermi surface in momentum space originated from the Norwegian Lars
Onsager, during a visit to Cambridge, England in the early 1950s. The pioneering
research in the field of Fermi surfaces in metals by David Shoenberg and his
coworkers in the Royal Society Mond Laboratory greatly benefitted from Onsager’s
remark. Only this concept gradually made it possible to interpret correctly the many
experimental data for metals. As a main result, it had become clear that many
properties of metals are determined only by a small fraction of the electrons residing
in close proximity to the Fermi surface. Here the key role of two-dimensional
interfaces, this time in momentum space, is impressively demonstrated again, in
some way similar to the appearance of all life on the surface of the earth in biology.

5.4 Bloch-Grüneisen Law

In his dissertation Bloch had also developed a theory of the electrical resistance of
metals. As the key point he treated the collision processes of the electrons with the
vibrational quanta of the crystal lattice. Here he took into account that, during such
a collision process, the electrons can exchange energy with the crystal lattice in the
form of individual phonons. As a final result, Bloch found the famous
Bloch-Grüneisen law for the temperature dependence of the electrical resistance in
metals. In this law the “Debye temperature” θ plays a role. At the temperature θ the
thermal energy kBθ is equal to the Debye energy ħωD, which we have discussed
before as the maximum value in the energy spectrum of the phonons: kBθ = ħωD. At
temperatures above the Debye temperature θ (T ≫ θ) all phonon states up to the
Debye frequency ωD are occupied, and the number of phonons per state is pro-
portional to T (as we see from the distribution (3.2)). Therefore, in this temperature
range we expect for the electrical resistivity ρ that ρ * T. On the other hand, at
temperatures much smaller than the Debye temperature θ (T ≪ θ) the number of
occupied phonon states (which contribute to the scattering rate τ−1) increases
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proportional to T3, as we have seen in connection with (3.4). An additional factor
proportional to T2 results from the temperature dependent magnitude of the scat-
tering angle δ.

This is illustrated in Fig. 5.5. Denoting the drift velocity of the electrons by vD,
after scattering by the angle δ, the drift velocity in forward direction is
vD − ΔvD = vD cos δ. The lost relative drift velocity in forward direction is
ΔvD/vD = 1 – cos δ ≈ δ2, assuming the scattering angle being small. In the case
T ≪ θ the scattering angle δ shows the proportionality δ* phonon wave vector
K * T. The loss of drift velocity of the electrons along the preferential direction
increases proportional to δ2 and, hence, proportional to T2. Therefore, in this
temperature range we finally obtain ρ* T5. This overall behavior, ρ* T5 at T≪ θ
and ρ * T at T ≫ θ, represents the famous Bloch-Grüneisen law of the electric
resistance. This law has been well confirmed experimentally (Fig. 5.6).

The Bloch-Grüneisen law for the temperature dependence of the electrical
resistance only takes into account the collisions between the electrons and the

Fig. 5.5 Scattering by the
angle δ reduces the drift
velocity vD in forward
direction to vD cos δ

Fig. 5.6 Bloch-Grüneisen
law for the temperature
dependence of the electrical
resistance of different metals,
the Debye temperature (here
denoted by TD) of which is
indicated in Kelvin. The
temperature is given in units
of the Debye temperature TD

and the electric resistance in
units of its value R(TD) at the
Debye temperature. For the
different metals one obtains a
universal curve (W. Meissner)
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quantized vibrations of the crystal lattice. The variation in the resistance with
temperature expressed by this law is mainly due to the decreasing number of
phonons with decreasing temperature. However, in the crystal the electrons also
experience other collision processes limiting the electrical conductivity. In this
context structural lattice defects or chemical impurities, perturbing the perfectly
regular periodic lattice structure of the crystal, play a major role. Alloys also
represent an important example, where collision processes other than those with
phonons are important. These defects in the crystal lattice likewise contribute to the
electrical resistance. In general, the scattering rates τi

−1 of different mechanisms, for
example, the collisions of the electrons with the phonons and with the defects in the
crystal lattice, can simply be added, and we obtain for the total scattering rate τ−1:

1
s
¼

X
i

1
si

ð5:12Þ

This quality of the additivity of the different mechanisms contributing to the
resistance is referred to as Mathiessen’s law. Since the contribution of the phonons
strongly decreases with decreasing temperature, at sufficiently low temperatures
only the contribution of the lattice defects, the “residual resistance”, remains. This
contribution is nearly independent of temperature. The magnitude of this residual
resistance provides an easily accessible indication of the purity level of the metal. In
highly pure metals this residual resistance is a few hundred up to a few thousand
times smaller than the resistance at room temperature, the latter being dominated by
the contribution of the phonons.

5.5 Thermoelectricity

In our discussion of the electrical conductivity and of the thermal conductivity of
metals we had to deal only with a single external influence acting on the metal. In
the former case we are concerned with a gradient in the electrical potential due to an
electric field and in the latter case with a gradient in the temperature. However, it is
also possible that both external influences act simultaneously. In this case we deal
with the thermoelectric phenomena, which we will discuss next.

We start with the Peltier effect. It results from the fact that an electric current
always transports the heat energy of the moving charge carriers along with their
electric charge. If two electrical conductors from different materials are connected
in series, the heat current can pile up at the location of the joint, if the heat current
carried by the same electric current is different in the two materials. Depending
upon the direction of the current, a heating effect or a cooling effect appears at the
joint (Fig. 5.7a). This effect is named after the Frenchman Jean Charles Athanase
Peltier, who discovered it in 1834. The Peltier coefficient П is defined as follows:
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P � heat current density wx

electric current density jx
ð5:13Þ

At the location of the joint between conductors A and B, the delivered or absorbed
Peltier heat per unit time and cross-sectional area amounts to (PA þPBÞjx This leads
to heating or cooling at the joint, depending upon the current direction. However, in
metals, the Peltier effect is relatively small and, hence, it is not interesting for
applications in cryogenics. Again, the small value of the Peltier effect in metals
results from the severe restriction imposed by quantum statistics, which allows only
the small fraction kBT/εF of all electrons to participate in the transport phenomena, in
close similarity to what we have seen before, for the specific heat of the electrons.

Next we turn to the Seebeck effect as the second thermoelectric phenomenon
(Fig. 5.7b). It was observed for the first time by the German Thomas Johann
Seebeck in 1821. Seebeck was born in Reval (today Tallinn). After he had studied
medicine in Berlin and Göttingen, he practiced as a medical doctor in Göttingen.
However, subsequently he turned to physical research and worked as a private
scholar in Jena, Bayreuth, and Nuremberg. The Seebeck effect represents a special
case of the “thermal diffusion” of particles in a temperature gradient dT/dx. We are
well familiar with this phenomenon: the deposition of the relatively heavy dust
particles from the air on the bright wall paper of a cold wall immediately behind a
heating pipeline is caused by thermal diffusion. This same phenomenon is the
underlying principle of the Clusius separation column utilized for isotope separa-
tion. The German physico-chemist Klaus Clusius invented the separation column

Fig. 5.7 a Peltier effect: If the electric current I passes through the contact zone between two
different metals A and B, having a different value of the heat current carried by the same electric
current, heating or cooling of the contact zone results, depending upon the current direction.
b Seebeck effect: In the temperature gradient between the higher temperature T1 (upper side) and
the lower temperature T2 (lower side) in an electrical conductor the mobile electrons are
transported from the hot to the cold end of the conductor by means of thermal diffusion. Therefore,
at both ends of the conductor, electric charges of opposite sign, respectively, accumulate. The
direction of this thermal diffusion process is determined by the details of the Fermi surface and of
the collision processes of the electrons. The figure shows two different metals A and B, which are
soldered together at the end with the higher temperature. The difference in the thermal diffusion
between the two metals results in an electric voltage, the “thermoelectric voltage”, between the
lower ends of the two metals
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process in 1938. Subsequently this process has played a highly prominent role in
the American Manhattan Project during the Second World War for the enrichment
of the Uranium isotope 235U. At the time in Oak Ridge in the Federal State of
Tennessee, a huge plant had been constructed consisting of 2142 separation col-
umns, each of 16 m in height. Along the axis of each tube a thin nickel tube was
placed, which was heated and surrounded by a larger copper tube. The uranium was
fed into the plant in the form of gaseous UF6 (Fig. 5.8).

Thermal diffusion is caused by the thermal force −Str dT/dx acting on the
particles in a temperature gradient dT/dx. The quantity Str is the “transport entropy”
per particle. In the case of the Seebeck effect, thermal diffusion leads to the
accumulation of electric charges of opposite sign at the two ends of the conductor,
respectively. As a result, an electric field Ex is generated. Under equilibrium, the
thermal force is compensated by the electrostatic force −eEx (we use −e for the
charge), and we obtain the following equation for the forces:

�Str
dT
dx

¼ �eEx ¼ e
dU
dx

: ð5:14Þ

Here U denotes the electric potential. From (5.14) one obtains the Seebeck
coefficient (thermopower) S:

S � DU
DT

¼ � Str
e
: ð5:15Þ

The thermoelectric voltage is always measured between two materials relative to
each other (Fig. 5.7b). In the case of two electric conductors A and B, which are
soldered together at one end, the temperature difference ΔT between the two ends
yields the electric potential difference DU ¼ SA � SBð ÞDT: The thermoelectric
voltage ΔU is proportional to the temperature difference ΔT between both ends of
the electric conductors. Therefore, it is well suited for measurements of the tem-
perature, if the temperature of one end is exactly known. In the form of the
“thermoelements“ consisting of electrically conducting wires of two different
metals or alloys, the Seebeck effect is often used for thermometry.

From transport theory one can derive mathematical formulas for the thermo-
electric coefficients, which incorporate details of the scattering processes of the
electrons and of the geometry of the Fermi surface. Here we do not want to pursue
this any further. However, one should point out, that in metals the reduction factor
kBT/εF applies again because of the Fermi distribution, similar to the case of the
specific heat of the electrons.

At the end of this section on thermoelectricity we briefly address a subject
referred to as “phonon drag”. We explain this phenomenon in the case of the
Seebeck effect. In a temperature gradient, a phonon current transporting heat is
generated, in addition to the thermal diffusion of the electrons, as we have discussed
above in the context of the heat conductivity of metals. Due to the electron-phonon
interaction, this phonon current drags the electrons along, thereby causing the
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“phonon-drag component” of the Seebeck coefficient. The other component,
remaining if this phonon current would be absent, is referred to as the “electron
diffusion component”. The phonon-drag component of the Seebeck coefficient
varies with temperature similarly as the heat conductivity of the crystal lattice
shown in Fig. 3.6. With increasing temperature it passes through a distinct maxi-
mum, and it vanishes generally above room temperature (In the case of the

Fig. 5.8 Thermal diffusion: A small part of the thermal-diffusion plant constructed during the
Manhattan Project in Oak Ridge in the American Federal State of Tennessee. We can see the
separation columns for the enrichment of the uranium isotope 235U based on the principle invented
by Klaus Clusius (Photo AEC photo of Ed Westcott)
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electrical conductivity, the phonon-drag effect is negligible, since the
electron-phonon interaction enters twice: first, the electrical current sets up a
phonon current, which then acts back on the electrons. This represents an effect of
second order).

The Peltier coefficient П and the Seebeck coefficient S of a material are con-
nected with each other through the Thomson relation

P ¼ TS ð5:16Þ

This relation between both coefficients represents a prominent example of the
famous reciprocity scheme of Lars Onsager for transport coefficients.

The rapid development of the theory of metals, which we have briefly sum-
marized above, is also clearly apparent from the much more detailed treatments
published soon after the foundations of the new quantum mechanics were estab-
lished. Here we mention in particular the book “The Theory of the Properties of
Metals and Alloys” by Nevill Francis Mott and H. Jones, as well as the book “The
Theory of Metals” by Allan H. Wilson, both books dating from the year 1936. An
impressive milestone is a large review article “Electron Theory of Metals” (German
title: “Elektronentheorie der Metalle”) by Arnold Sommerfeld and Hans Bethe for
the German Handbook of Physics from 1933. By far the largest part of this review
article had been written by Bethe at the young age of only 27 years. Even today this
book-sized article continues to be relevant and highly useful. Already in 1931 the
French Léon Brillouin had summarized the status of the field in his book “Quantum
Statistics and its Application to the Electron Theory of Metals” (German title: “Die
Quantenstatistik und ihre Anwendung auf die Elektronentheorie der Metalle”).

The severe restriction imposed upon the electrons as fermions by quantum
statistics is the main idea in this chapter about the properties of metals. However, it
can also happen that two electrons combine forming a pair, but no longer having the
half-integer angular momentum of a fermion as a pair. Instead, for example, the pair
may have zero total angular momentum. A total spin with the value of zero results,
if the individual spins of both partners are oriented in opposite directions to each
other. In this case the Pauli Principle is no longer valid, and many electron pairs can
occupy the same quantum mechanical state. In Chap. 8 we will discuss exactly how
this happens in the phenomenon of supercondutivity.
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Chapter 6
Less Can Be More: Semiconductors

Abstract If the electronic band structure allows the thermal excitation of electrons
from the top of a completely filled valence band to the bottom of an empty con-
duction band, we deal with a semiconductor, such as germanium or silicon, or the
compound semiconductors consisting of elements of the third and the fifth column
of the Periodic Table (or of the second and the sixth column). The carefully con-
trolled doping with donors and acceptors yields materials, which are extremely
useful for many electronic applications. The metal-semiconductor contact and the
rectification effect of the p–n junction are discussed. After its invention in 1947, the
transistor underwent many evolutionary stages during its miniaturization. Our
discussion includes photovoltaics, the light-emitting diode (LED), and the semi-
conductor laser.

Michael Faraday from England had already found in 1833, that the electrical
resistance of silver-sulfide (Ag2S) decreases with increasing temperature, whereas
metals display the opposite temperature dependence. He observed a similar tem-
perature dependence as in silver-sulfide also in a number of other substances, for
which the electrical conductivity was always much smaller than for the typical
metals. About 40 years later the German Ferdinand Braun was interested in the
electrical conductance of galena (lead-sulfide) crystals and of other metal sulfides.
He discovered that the electrical resistance in these materials depends even on the
current direction. Such an effect had never been observed in metals. This effect was
particularly clear if the electric current was injected into or extracted out of the
substance on one side using a metallic needle. Braun had discovered the rectifying
effect of a contact. Many years later this arrangement played a famous role for some
time as a detector for radio waves. With his studies Braun widely opened the door for
the subsequent investigation and utilization of a new class of electrical conductors:
the “semiconductors”. However, his most important studies, which he had carried
out since 1895 as Professor of Physics at the University of Strassburg and for which
he received the Nobel Prize for Physics in 1909 together with Guglielmo Marconi,
were concerned with something else. In Strassburg, Braun developed the cathode ray
tube, which became famous later on as Braun’s tube. Among other things, it allows
one to record high frequency alternating currents with high time resolution, and it is
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the central component of almost all television receivers until recently. (Presently,
these apparatuses are replaced by flat screens). Hence, it is not at all surprising, that
under the direction of Ferdinand Braun the first lectures worldwide on
high-frequency physics were given at the University of Strassburg in 1899.

In Chap. 4 we noted that the electrical conductance behavior of crystals is
determined by the allowed energy bands and by the energy gaps between the bands
of the energy spectrum of the electrons (Fig. 4.6). A conduction band only partly
filled with electrons is the cause of the high electrical conductivity of metals,
whereas a completely filled band does not contribute to the electrical conductivity.
However, if an empty band is energetically located closely above a filled band,
there exists an interesting new possibility. It is exactly this case which we have in
semiconductors, and which already confronted Michael Faraday and Ferdinand
Braun. If the energetic distance between the, at first empty, conduction band and the
completely filled “valence band” located energetically underneath is sufficiently
small, the electrons can jump across the small energy gap between both bands
because of their thermal energy kBT. In this way the conduction band can be
populated with a relatively small number of electrons. These electrons in the
conduction band then cause the electrical conductivity of the semiconductor. The
number of electrons which can perform the energy jump from the valence band into
the conduction band increases strongly with increasing temperature. Hence, the
electrical conductivity of semiconductors also increases strongly with increasing
temperature. Here semiconductors show exactly the opposite behavior to metals. As
we have discussed in the Chap. 5, the electrical resistance of metals grows with
increasing temperature, whereas the electrical conductance, as the inverse of the
resistance, decreases. The electron concentration populating the conduction band in
semiconductors because of the supply of the thermal energy kBT is smaller by many
orders of magnitude compared with a typical metal. Therefore, the electrical con-
ductivity in semiconductors is also much smaller than in metals. In Fig. 6.1 we
show the position of the valence band and of the conduction band along the vertical
energy axis in the case of an intrinsic (undoped) semiconductor.

Fermi  Energy

conduction band

valence band

F

C

Fig. 6.1 Position of the
valence band and of the
conduction band along the
energy axis in the case of an
intrinsic (undoped)
semiconductor
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6.1 Intrinsic Semiconductors

The thermal excitation of electrons out of the valence band into the conduction band
not only populates the conduction band from the bottom upwards with electrons,
but in addition, because of the removal of electrons, the valence band becomes
depopulated from the top downwards. Since electrons are now missing from near
the upper edge of the valence band, one speaks about holes, (which are sometimes
also referred to as defect electrons). Because of the existence of these holes, the
electrons near the upper edge of the valence band can also participate in the
electrical conduction mechanism, since the unoccupied states in this energy regime
allow a change in the velocity distribution of the electrons required for the current
flow. Now it is much more appropriate to describe the motion of the charge carriers
near the upper edge of the valence band in terms of the dynamics of holes. A hole in
the energy band of the negatively charged electrons corresponds exactly to a par-
ticle with the opposite, i.e., positive charge. The motion of a negatively charged
electron, say, from left to right is completely equivalent to the motion of a posi-
tively charged hole from right to left. The useful and profound idea of the hole has
been proposed for the first time for the physics of crystals by Werner Heisenberg. In
a paper from 1931 dealing with the Pauli exclusion principle, Heisenberg first
discusses the use of the wave equation of the holes in the context of the closed
electron shells of an atom:

If N denotes the number of electrons within the closed shell, … it is shown that a
Schrödinger equation for n electrons can be replaced also by a highly similar, equivalent
Schrödinger equation for N—n holes (here in the English translation).

Heisenberg then discusses the use of the wave equation for the holes to explain
the “anomalous Hall effect” in crystals. We will come back to the Hall effect in
Chap. 7. From the Hall effect one can determine the sign of the moving charge
carriers transporting the electric current. Many times the Hall effect had indicated a
positive sign for the moving charge carriers, although it is the negatively charged
electrons which make up the electric current flow in a conductor. Therefore, this
lead to the notion of the anomalous Hall effect. In 1929, in Leipzig, Rudolf E.
Peierls had proposed for the first time the correct interpretation of the anomalous
Hall effect in terms of the appearance of holes in the occupation of the bands in the
energy spectrum of the electrons.

In the case of the electrons, which are thermally excited from the valence band
into the conduction band, we have ε − εF ≫ kBT, and the Fermi distribution (5.10)
can be replaced by the Boltzmann distribution

fðeÞ ¼ e� e�eFð Þ=kBT ð6:1Þ
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Using the energy scale shown in Fig. 6.1, one obtains for the electron concen-
tration in the conduction band per volume:

n ¼
Z1

eC

De eð Þf eð Þde: ð6:2Þ

Here

De eð Þ ¼
ffiffiffi
2

p

p2
me

�h2

� �3=2

e� eCð Þ1=2 ð6:3Þ

is the density of states of the electrons per volume; me is the electron mass. With
(6.3) one obtains from (6.2):

n ¼
ffiffiffi
2

p

p2
me

�h2

� �3=2

eeF=kBT
Z1

eC

e� eCð Þ1=2e�e=kBTde ð6:4Þ

¼ 2ð2pmekBT=h2Þ3=2e� eC�eFð Þ=kBT: ð6:5Þ

At this point, we want to indicate the derivation of the density of states De eð Þ
(6.3). We start with the number w(k) of the vibrations of the de-Broglie-waves of
the electrons per k-interval (density of states) in k-space and, in this context, use
periodic boundary conditions of the crystal (k = wave number of the electrons). We
consider a crystal of length L along one coordinate axis. The periodic boundary
condition requires, that the wave eikx has the same value at x = 0 and x = L, i.e.,
eikL ¼ 1 or kL = n2π, where n is an integer. The distance Δk between two sub-
sequent k-values amounts to Δk = 2π/L. In the one-dimensional case we obtain
w1(k) = 1/Δk = L/2π. In the case of the three-dimensional k-space we have
w3(k) = (L/2π)3. One finds the density of states per energy interval (by considering
a spherical shell of infinitesimal thickness ∂k in k-space)

D eð Þ ¼ w3 kð Þ @ðk� space� volumeÞ
@e

¼ w3 kð Þ4pk2 @k
@e

: ð6:6Þ

With the electron energy ε from (4.13), after a few steps one finally obtains

D eð Þ ¼
ffiffiffi
2

p

p2
me

�h2

� �3=2

V e1=2: ð6:7Þ

Comparing (6.7) with expression (6.3), we note, that the latter is given per crystal
volume, and that the conduction band is located above the energy εC.
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The electrons transferred into the conduction band are now missing in the valence
band, where they represent holes with the distribution function fh(ε) = 1 − f(ε).
Analog to (6.5), the hole concentration per volume in the valence band is:

p ¼ 2ð2pmhkBT=h2Þ3=2e�eF=kBT: ð6:8Þ

Here, mh is the mass of the holes. The product np is independent of the Fermi
energy eF:

np ¼ 4ð2pkBT=h2Þ3 memhð Þ3=2e�eC=kBT: ð6:9Þ

So far, we have considered only “intrinsic semiconductors”. Therefore, we have:

n ¼ p ¼ 2ð2pkBT=h2Þ3=2 memhð Þ3=4e�eC=2kBT: ð6:10Þ

From (6.5) and (6.8) one finds

m3=2
e e� eC�eFð Þ=kBT ¼ m3=2

h e�eF=kBT ð6:11Þ

and from (6.11)

eF ¼ eC
2

þ 3
4
kBT log mh=með Þ: ð6:12Þ

In the case mh = me we find εF = εC/2, and the Fermi energy is located exactly in the
middle of the energy gap.

The population of the conduction band with electrons by thermal activation and
the simultaneous generation of holes near the upper edge of the valence band is a
characteristic property of intrinsic semiconductors. Since the 1930s the study of
these materials has grown steadily, a strong driving force being the possible
technical applications. Initially the interest concentrated on copper-oxide and
selenium. As we have mentioned before in Chap. 1, after the Second World War,
germanium and silicon crystals became the center of attention, in particular due to
the research effort at the American Bell Laboratories. Both substances consist of
only a single element. Their crystalline structure is the same as that for diamond,
being much simpler than that for copper-oxide and selenium. As a new chemical
element, germanium had been discovered in 1886 by the German chemist Clemens
Winkler working at the Mining Academy in the Saxonian town of Freiberg.
Germanium and silicon are located in the fourth group of the Periodic Table with
carbon at the top and silicon directly below. Carbon and silicon are among the most
abundant elements on the earth. Directly below silicon in the Periodic Table one
finds germanium, which is much more rare and which until its discovery only
existed in the form of an unoccupied spot in the Periodic Table.

At room temperature the concentration of the thermally activated charge carriers
in the conduction band and in the valence band of germanium is about one billion
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times smaller than in a good electrical conductor such as, say, copper. However, not
far above room temperature so many additional charge carriers are thermally
activated in germanium, that its electronic properties change too much for many
electronic applications. Even hot summer temperatures can no longer be tolerated.
In silicon the energy gap between the valence band and the conduction band is
nearly twice as large as in germanium. Therefore, the corresponding concentration
of the thermally activated charge carriers in silicon is about ten thousand times
smaller than in germanium. Hence, silicon reacts much less sensitively to summer
temperatures. Because of this fact and in particular also because of the spontaneous
growth of a thin and stable layer of silicon-oxide, acting as an excellent electrical
insulator on its surface, silicon is far superior as semiconductor material for most
electronic applications compared with germanium and today dominates the semi-
conductor industry.

In Chap. 1 we mentioned the invention of the transistor by John Bardeen, Walter Brattain,
and William Shockley in the year 1947. At this time a completely new and unknown
territory had been entered, and many important new experiences had to be gained for the
first time. Also at the beginning, the extreme requirements regarding the purity of the
semiconductor materials were by no means clear. The recognition that chemical impurities
and grain boundaries in the crystals strongly affect the electrical properties was only
gradually accepted. It was Gordon Kidd Teal in the American Bell Laboratories who was
convinced very early on, that only a large effort in the preparation and purification of single
crystals could lead to success. However, at first nobody wanted to listen to him. Therefore,
only as an outsider and after many difficulties was he able to push forward his ideas for
growing ultra-pure single crystals. Today the fabrication of large, ultra-pure single crystals
of silicon as the raw material for the semiconductor industry is performed worldwide on a
large technical scale and represents an important business (for example, by the Wacker
Chemie AG in Burghauen, Bavaria; Fig. 1.5). In the early days Gordon Teal was soon hired
away from the Bell Laboratories, and since January 1953 he pursued his ideas in the
American company Texas Instruments. This Company then developed into the largest
semiconductor manufacturer of the world.

In addition to semiconductors such as germanium and silicon which consist only
of a single element from the fourth group of the Periodic Table, there also exist
other substances which are composed from several elements and which are highly
interesting for technical applications because of their semiconductor properties. The
pioneering ideas about these “compound semiconductors” were developed by the
German Heinrich Welker, in the early 1950s. At the time Welker worked at the
Siemens Research Laboratory in Erlangen. Later he became the director of this
Laboratory. Previously, Welker had been an assistant of Arnold Sommerfeld at the
University of Munich, where he had worked among other things on the theory of
superconductivity. In Erlangen he wanted to develop a better understanding of the
semiconductor physics of germanium, and within this context he considered the
following question. In the germanium atom there are four electrons in the outer
shell. Is it perhaps possible, that a compound of an atom with five electrons from
the fifth group of the Periodic Table and an atom with three electrons from the third
group will also show semiconductor properties very similar to those of germanium,

78 6 Less Can Be More: Semiconductors

http://dx.doi.org/10.1007/978-3-319-24010-7_1
http://dx.doi.org/10.1007/978-3-319-24010-7_1


since on the average we have again four electrons per atom as in germanium? On
the left side of germanium in the Periodic Table we find gallium and on the right
side, arsenic. The experiments then confirmed indeed, that the compound
gallium-arsenide (GaAs) is a semiconductor. Indium-antimonide (InSb) is similarly
another member of the group of the “III–V semiconductors”. The III–V semicon-
ductors displayed interesting electronic properties. The mobility of the electrons and
the holes was much larger than in germanium and silicon. Therefore, technical
applications became possible which required a faster response of the charge car-
riers. Furthermore, in the III–V semiconductors, the energy gap between the
valence band and the conduction band is relatively large. This is highly interesting
for applications in optoelectronics, as will be discussed further below. The principle
of the compound semiconductors has subsequently also been extended to com-
pounds of elements from the second and the sixth group of the Periodic Table. The
latter compounds are referred to as “II–VI semiconductors”.

6.2 Doped Semiconductors

So far we have restricted our discussion to semiconductors consisting of only a single
element or being a compound of exactly two elements. Other substances acting as
additives have been excluded. In this way we were dealing only with the case of
intrinsic semiconductors. However, the case where a semiconductor is doped with
foreign atoms is much more important. Next we turn to this case of the “extrinsic
semiconductors”. It was noted already in the early days that the electrical properties of
nominally the same semiconductor material fluctuated within wide limits, such that
an exact reproducibility was impossible. Because of the extremely low concentration
of mobile charge carriers in the intrinsic semiconductors compared with metals, the
electrical properties of the former are extremely sensitive against chemical impurities
or defects in the crystal lattice. As we have discussed before, silicon and germanium
belong to the fourth group of the Periodic Table and, hence, possess four electrons in
their outer atomic shell. However, if we incorporate atoms from the fifth group of the
Periodic Table, having five electrons in the outer shell, as, for example, phosphorus or
arsenic into the silicon or the germanium lattice, the fifth electron represents a surplus.
This excess electron can easily be transferred by means of thermal excitation from the
phosphorus or the arsenic atom into the conduction band of silicon or germanium.
The phosphorus or the arsenic atom then remains in the host lattice of silicon or
germanium as a singly and positively ionized atom. Because of the donation of their
excess electrons to the conduction band of the host lattice, these incorporated atoms
from the fifth group are denoted as “donors”. Doping of the semiconductor with these
donors allows the concentration of the charge carriers in the conduction band to be
changed by many orders of magnitude, compared with the intrinsic semiconductors
such as silicon and germanium (Fig. 6.2).

The basic idea underlying the concept of donors can be extended further.
Therefore, next we consider the doping of the host lattice of silicon or germanium
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with atoms from the third group of the Periodic Table, having only three electrons in
their outer shell, such as, for example, aluminum or gallium. Now the incorporated
atom possesses one electron less than the atoms of the host lattice. The missing
fourth electron can be captured by the incorporated atom by means of thermal
excitation from the valence band of silicon or germanium. At the same time a hole
appears near the upper edge of the valence band of the latter. The aluminum or
gallium atom then remains in the host lattice of silicon or germanium as a singly and
negatively ionized atom. Because of this acceptance of their missing fourth electrons
from the valence band of the host lattice, these incorporated atoms from the third
group are denoted as “acceptors”. As we have discussed above, the holes near the
upper edge of the valence band also participate in the electrical conduction mech-
anism in the same way as the electrons in the conduction band. Again, the doping of
the semiconductor with the acceptors allows one to change, in a controlled way, the
concentration of the mobile holes, acting as charge carriers in the valence band, by
many orders of magnitude compared with the intrinsic semiconductors (Fig. 6.2).

These concepts of the donors and acceptors were already developed in the early
1930s, and they are still valid today. Important early contributions came from
Rudolf E. Peierls and Allan H. Wilson, mentioned before in Chap. 4. At the time,
the German theoretical physicist Walter Schottky also helped to clarify the
underlying physics. It is possible to vary the concentration of the mobile charge
carriers over many orders of magnitude by means of doping, which makes the
semiconductors so interesting for electronic applications. In contrast to the intrinsic
semiconductors, the doped semiconductors are referred to as extrinsic semicon-
ductors. Furthermore, the extrinsic semiconductors are denoted according to their
kind of doping: Semiconductors doped with (negative) electrons from the donors
are referred to as n-doped, and those doped with (positive) holes from the acceptors
are referred to as p-doped.

Valence band 

conduction band 

n-doping p-doping

Fig. 6.2 Doped semiconductors. The conduction band is separated from the valence band by a
relatively large energy gap. With n-doping, electrons are thermally excited from the donors up to
the lower edge of the conduction band. With p-doping, the thermal excitation of the electrons
occurs from the upper edge of the valence band up to the energy levels of the acceptors, such that
holes remain in the valence band
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6.3 Excitons and Electron-Hole Droplets

The population of the conduction band at its lower edge with electrons and of the
valence band at its upper edge with holes cannot only be accomplished by means of
the thermal excitation of electrons. This can also be achieved under light irradiation
due to the absorption of light quanta. Because of the irradiation with light, the
electrical conductivity can be significantly increased, a phenomenon referred to as
photoconductivity. This effect is technically utilized in light meters in the form of
photo cells. This optical excitation is particularly interesting in intrinsic semicon-
ductors. If an electron is energetically raised from the valence band into the con-
duction band due to the absorption of a light quantum, an electron-hole pair is
generated. Both particles possess opposite electric charges and can form a bound
state, similar to the electron and proton of the hydrogen atom. In the bound state
both particles move around their common center of gravity. This bound configu-
ration of an electron-hole pair is denoted as an exciton. The excitons can move
around within the crystal and transport excitation energy in doing so. However,
they do not transport electric charge, since they are electrically neutral, their total
charge being zero. By recombination, both particles of the exciton can annihilate
each other. The energy which is set free during this process mostly appears again in
the form of an emitted light quantum.

The generation of excitons under light irradiation is strongly enhanced if the
crystal is cooled to low temperatures. Within the crystal the excitons behave like a
gas, which condenses and forms a liquid at sufficiently low temperature and suf-
ficiently high density. The electron-hole droplets or the electron-hole liquid have
been studied, in particular in germanium, at low temperatures where the traces of
the emitted light have been utilized in impressive experiments (Fig. 6.3).

(a) 

     light 

(b) 

electron 

hole

Fig. 6.3 Energetic excitation of an electron from the upper edge of the valence band into the
conduction band by means of the absorption of a photon. a An electron-hole pair generated in this
way can assume the bound state of an “exciton”. b In a semiconductor crystal, at low temperatures
and sufficiently high concentration, the excitons condense into droplets of the electron-hole liquid
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6.4 Metal-Semiconductor Contact, p–n Junction

The fact, that the concentration of mobile charge carriers in semiconductors is
smaller by many orders of magnitude compared with metals, leads to novel phe-
nomena and to the dependence of the electric current flow upon the current direction
already observed by Ferdinand Braun. At the location of the junction between a
metal wire and the semiconductor crystal there occurs a depletion of the mobile
electrons and holes, and an electrically insulating boundary layer is generated in the
semiconductor. The underlying theoretical model concepts were developed by
Walter Schottky, employed by the Siemens Company in Germany (Fig. 6.4).
Therefore, one also speaks of the Schottky diode and of the Schottky boundary layer.

In order to establish equilibrium between both sides of the contact, electrons
flow from the semiconductor (we assume an n-doped semiconductor) into the
metal. As a result, there develops a positive space charge, which extends in the
semiconductor over a finite distance. At the junction, this leads to an increase of
the potential, which must be overcome by the electrons during the flow of electric
current, and which depends on the voltage V applied to the contact. Hence, the
contact acts as a rectifier, where the current I is given by

I ¼ ISðeeV=kBT � 1Þ ð6:13Þ

Here IS is the saturation current.
The electric current can flow across this metal-semiconductor contact only when,

for an n-doped semiconductor, the free electrons, or for a p-doped semiconductor, the
free holes, are moving from the semiconductor into its depletion zone, thus filling up
the depletion zone. In the opposite current direction the electrically insulating
boundary layer remains unchanged, and the current flow is interrupted. In this way the

n-doped 
semiconductor metal

Fig. 6.4 Walter Schottky (Photo Deutsches Museum). Metal-semiconductor contact, also called
Schottky contact (right). At the junction between an n-doped semiconductor and a metal, within
the semiconductor a depletion zone of the mobile electrons is generated, in which the positively
ionized donors remain behind. At the adjoining metal surface, negative charges accumulate. In the
case of a p-doped semiconductor, negatively ionized acceptors remain behind in the depletion zone
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rectifying effect of the metal-semiconductor contact is accomplished. Schottky’s first
paper on this subject appeared in 1923. He published his complete theory about the
barrier layer and the point-contact rectifier during the years 1939–1942, partly in
collaboration with Eberhard Spenke, who was also working for the Siemens
Company. Because of the rectifying properties of themetal-semiconductor contactwe
have discussed, special procedures are necessary for supplying semiconductor circuits
with electric current. For this purpose ohmic contacts consisting of heavily doped
semiconductor regions, referred to as n+ or p+ regions, proved to be quite satisfactory.

In addition to the metal-semiconductor contact, the junction between an n-doped
and a p-doped semiconductor, the p–n junction, had also received much attention
(Fig. 6.5). On the n-doped side of the junction there exist many electrons in the
conduction band, whereas on the p-doped side many holes populate the valence
band. However, the large difference in concentration of the particular charge car-
riers, respectively, between both sides must be balanced, since at equilibrium the
strong concentration gradient of the electrons and of the holes down to the opposite
side of the junction cannot be maintained. Therefore, the electrons diffuse from the
n-doped into the p-doped region, and the holes diffuse in the opposite direction. As
a result, in the n-doped region, positively ionized donors and in the p-doped region
negatively ionized acceptors, remain in the form of space charges. In this way a
local electric field is generated, exercising a force on the charge carriers in the
opposite direction to the driving force of the two diffusion processes, respectively.
Eventually, because of the local electric field, the diffusion processes come to a
complete stop. However, at the location of the junction there remains now an
electrical potential gradient. Depending upon the direction of the electric current,
the potential gradient at the p–n junction increases or decreases because of the
current. Therefore, a rectification effect is achieved again, similar to the
metal-semiconductor contact.

n-semic. n-semic.p-semic. p-semic. 

(a) (b)

Fig. 6.5 p–n junction. a As long as there exists no connection between the n-doped and the
p-doped semiconductor, the energy diagram displays clearly different values of the Fermi energy
εF in the two semiconductors. b With an electric contact between the n-doped and the p-doped
semiconductor, the concentration gradient of the electrons and of the holes between both sides of
the junction is equalized by means of diffusion of both kinds of charge carriers to the opposite side,
respectively. During this process, positive or negative space-charge regions are generated on both
sides of the junction, resulting in a local electric field between both sides. The diffusion process
ends when the Fermi energy εF has reached the same value on both sides of the junction
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At the boundary of the p–n junction there develops a dynamic equilibrium
between two processes acting in opposite direction (The thickness of the boundary
layer is typically 1 µm, being much smaller than the diffusion length of the charge
carriers).

1. Diffusion of electrons (holes) into the p-region (n-region), where they disappear
because of recombination. This generates the recombination current

Ir ¼ Inr þ Ipr ð6:14Þ

2. Thermal excitation of electrons (holes) in the p-region (n-region), which fall
down into the n-region (p-region) on the other side of the junction and cause the
thermal generation current

Ig ¼ Ing þ Ipg ð6:15Þ

(We note that in our energy scheme the energy of the positive charges decreases
in upward direction). In thermodynamic equilibrium (zero applied voltage) we
have

Inro þ Ingo ¼ 0 ; Ipro þ Ipgo ¼ 0; Iro þ Igo ¼ 0 ð6:16Þ

Now we turn to the rectification effect of a p–n junction. We assume that nearly
all of the applied voltage V appears across the boundary layer, since the total carrier
concentration n + p is a minimum there, and the electric resistance is a maximum.
We start with the reverse voltage bias (Fig. 6.6a). Now the n-region (p-region) is on
the positive (negative) side, and in the p-region the potential is raised further. This
additional potential eV causes a reduction of the recombination current by the
Boltzmann factor:

Inr ¼ Inro exp �eV=kBTð Þ; Ipr ¼ Ipro exp �eV=kBTð Þ ð6:17Þ

(a) (b)

eV

eV

Fig. 6.6 Rectification effect of a p–n junction. a Reverse voltage bias. b Forward voltage bias
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The thermally excited generation current is not affected by the raising or lowering
of the band along the energy axis:

Ing ¼ Ingo; Ipg ¼ Ipgo ð6:18Þ

The total current in reverse direction is

I ¼ Inr þ Ing þ Ipr þ Ipg ð6:19Þ

With (6.16) and (6.18) we obtain

I ¼ Inro þ Ipro
� �

exp �eV=kBTð Þ � 1½ �; and ð6:20aÞ

I ¼ IS exp �eV=kBTð Þ � 1½ � ð6:20bÞ

where IS = Inro + Ipro is the saturation current.
In the case of a forward voltage bias (Fig. 6.6b) with the n-region (p-region)

being negative (positive), the potential in the p-region is lowered by the amount eV.
Now the recombination current is increased by the Boltzmann factor (with negative
energy in the exponent):

Inr ¼ Inro exp eV=kBTð Þ; Ipr ¼ Ipro exp eV=kBTð Þ ð6:21Þ

Again, the generation current remains unaffected. Analogous to the reverse bias, we
obtain

I ¼ IS exp eV=kBTð Þ � 1½ � ð6:22Þ

In Fig. 6.7 we show the typical rectifier characteristic expected from (6.20a),
(6.20b) and (6.22). We note that in forward direction I/IS increases with decreasing
temperature.

Fig. 6.7 Rectifier
characteristic of a p–n
junction: current I plotted
versus voltage V in reduced
units
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The American Russell Shoemaker Ohl working at the Bell Radio Laboratories in
Holmdel in the Federal State of New Jersey had already been concerned in the
1940s with p–n junctions in silicon. He was interested in the application of these
junctions as possible crystal detectors for radio- and microwaves. Incidentally, he
also discovered their interesting photovoltaic properties, as we will discuss below.
At the time in many companies within the electronics industry people started to
investigate the rectifying properties of p–n junctions. For example, soon after the
Second World War the Siemens Company started a laboratory for this purpose in
the small town of Pretzfeld near Erlangen in Frankonia. Under the management by
Eberhard Spenke rectifiers based on selenium were investigated at first and then
fabricated in a pilot plant. Eventually, the optimizing process resulted in a contact
between p-doped selenium and n-doped cadmium-selenide (CdSe). The
old-fashioned rectifiers, operating with mercury vapor and installed for the
high-current applications of power electronics, were now replaced by the selenium
rectifiers. Furthermore, there existed a multitude of technical applications of the
selenium rectifiers in the low-current technology in the field of radio and of elec-
tronic communication. During 1952 these developments in Pretzfeld, based on
selenium, were stopped, since germanium and silicon moved to the forefront.
Subsequently, rectifier development for power electronics concentrated on germa-
nium and silicon.

6.5 Transistor

P–n junctions are also the basis of the “bipolar transistor”. A transistor operates like
a valve, by which the electric current flow is electronically controlled from the
outside. Hence, it has three connections to the outside: input, control, and output.
Originally, in their invention John Bardeen and Walter Brattain had used an
arrangement, which later became known as point-contact transistor (Fig. 6.8a). Two
gold contacts were pressed upon an n-doped germanium crystal within a mutual
distance of only 50 µm. A third metal contact, the “base”, was attached to the back
of the germanium crystal. One gold contact acted as the “emitter” and served for
injecting holes into the germanium crystal. The other gold contact collected the
holes again and is referred to as the “collector”. The electric current flow between
the emitter and the collector can be modulated by changing the electric potential at
the emitter versus the potential at the base and at the collector. The first experiments
with this arrangement had already yielded a current amplification of about 40 and a
voltage amplification of about 100. This success clearly opened the way to replace
the evacuated glass tube by a solid-state device to be used for electronic amplifi-
cation (Fig. 6.9).

Soon after the first demonstration of the transistor principle based on the
point-contact transistor William Shockley proposed another version of the bipolar
transistor, which is based on two p–n junctions. One p–n junction operates as an
emitter, whereas the other p–n junction is electrically connected in the opposite
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Fig. 6.8 Transistor principle: a Point-contact transistor as it was used originally by Bardeen and
Brattain. Two gold contacts are pressed upon an n-doped germanium crystal within a distance from
each other of only about 50 µm. On the opposite side of the germanium crystal a third metal
contact, the “base”, is attached. One gold contact acts as emitter and injects holes into the
germanium crystal. The holes are collected again by the other gold contact, acting as the collector.
b Junction transistor according to Shockley. A p-doped semiconductor is placed between two
n-doped semiconductors in such a way, that two p–n junctions are formed mirror-symmetrically.
Whereas one n-doped semiconductor serves as the emitter, the other n-doped semiconductor acts
as the collector. The p-doped region in the center functions as the base

Fig. 6.9 The first point-contact transistor constructed by Bardeen and Brattain in December of
1947. The three-cornered part in the middle is made from plastic material and is covered by a gold
foil at its two edges. At the tip at the bottom the gold foil is cut by a razor blade, such that two
contacts are generated in close proximity. By means of a metal spring the contacts are pressed
against the semiconductor surface located underneath (Photo Lucent)
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direction and serves as the collector. This “junction transistor” of Shockley consists
of three regions: an n-doped or a p-doped central region, which is acting as the base
and which on both sides is joined to a region with the opposite doping, respectively.
In this way a p–n junction is formed on both sides of the central region (Fig. 6.8b).
The operating principle is similar to that of the bipolar point-contact transistor.

Again, “minority charge carriers”, having the opposite charge to that corre-
sponding to the doping of the particular region, are injected by the emitter into the
central region and are then taken up again by the collector. The current of these
minority charge carriers can be modulated again by means of changes in the electric
potential. In the junction transistor of Shockley all crucial semiconductor functions
are now transferred from the surface into the interior of the crystal. The highly
sensitive crystal surface no longer has the central role. Since in the transistor
operation the negative electrons as well as the positive holes are utilized, one refers
to bipolar transistors.

In addition to the two types of transistor from the early days which we have
briefly discussed, subsequently many more versions were proposed and studied
experimentally. In the meantime the transistor has gone through many stages of
evolution. During this development its rapidly progressing miniaturization has
always been a strong driving force. Furthermore, the transistor had to operate faster
and faster, allowing its use at higher and higher frequencies. As an electronic
device, the transistor has completely replaced the evacuated amplifier tube made
from glass. Compared with this forerunner of glass, the transfer of the electronic
functions into the crystal interior achieved by the transistor, yielded important
advantages: highly increased reliability and robustness, as well as the potential for
extreme miniaturization and, hence, for fabrication in large quantities and at a very
low price.

If we look at the commercial use of the invention of the transistor, we can observe a very
interesting process. Initially, the company, which owned the invention, pursued the fol-
lowing guiding principle: keep it secret and do not divulge any details. However, after some
time the management noticed that applications of the transistor did not appear, and that
scepticism still dominated. It became very clear, that the strategy of the company had to be
changed. Therefore, a complete turnaround was adopted, and the attitude now became quite
open. As a result, during September 1951 the Bell Laboratories organized a large sym-
posium in Murray Hill, in which the details of transistor technology were openly discussed.
The event was met with strong interest, and 301 professional people participated. The
participants came from universities, from other industrial laboratories, and from military
organizations. The Proceedings Volume with the Conference Reports contained 792 pages,
and 5500 copies were distributed. This great success and the rapidly increasing general
interest were the reason why, during April 1952, a second symposium on transistor tech-
nology was organized. This time representatives from a total of 40 companies participated:
26 companies from the USA, and 14 companies from foreign countries. Without doubt, it
was this policy of the Bell Laboratories of switching to an open attitude which began the
decisive change. Now ideas and proposals came from many sides, including from outsiders.
The first commercial application of the transistor was in hearing aids made by American
companies. Subsequently, the technical utilization of the transistor has grown rapidly.
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6.6 Photovoltaics, LED, Semiconductor Laser

The American Russel S. Ohl had discovered the photovoltaic effect of the p–n
junction rather by accident (Fig. 6.10). If the p–n junction is irradiated with light, an
electric voltage appears between both sides, or an electric current flows through a
wire connecting both sides around the outside. This is exactly the principle of the
solar cell. The absorption of a light quantum causes the generation of an
electron-hole pair at the p–n junction. Because of the electrical potential gradient at
the p–n junction, the electrons are accelerated towards the n-doped region and the
holes towards the p-doped region. As a result, an electric current, flowing through
the wire around the outside, is generated. For the large-scale technical utilization of
the solar energy the search for increasing efficiency of the solar cell today is still an
important subject of research and development. For transportation in space, the
silicon solar cell represents the major energy source today.

The process we have just discussed can also be inverted. Then we are dealing with
the light-emitting diode (in short LED), and an additional step in the development
leads us to the injection laser or the semiconductor laser. Now an electric current is
passed through the p–n junction in a forward direction. As a result, electrons are
injected into the p-doped region and holes into the n-doped region. Being minority
charge carriers, the electrons recombine with the holes in the p-doped region, and the
holes do the same with the electrons in the n-doped region. The energy, which is set
free during the recombination, is emitted in the form of a light quantum. In this way
the light emitting diode is accomplished. However, for the semiconductor laser
additional requirements must be fulfilled. As is well known, light emission always
occurs by means of a quantum mechanical process, in which an electron as an atomic
elementary particle drops from a higher to a lower energy level. However, for the
generation of laser light it is necessary that the upper energy level is occupied
by more electrons than the lower level. We must have “population inversion”.

I 

hν
(a) (b) 

p I 

hν

n 
p n 

Fig. 6.10 Photovoltaic effect at the p–n junction. a Solar cell The absorption of photons of
sufficiently high energy within the region of a p–n junction results in the generation of
electron-hole pairs. In the electric potential drop of the p–n junction, the electrons and the holes
lead to electric current flow through the conductor and around the outside. b Inversion of the solar
cell in the light emitting diode (LED). An electric current flowing in the forward direction injects
electrons into the p-doped semiconductor and holes into the n-doped semiconductor. By means of
the recombination of the electrons with the holes energy is released, which is emitted in the form of
photons
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As an additional requirement, a standing light wave must be built up in the active
region of the p–n junction in the form of resonance due to the proper geometric
dimensions. Finally, all possible competing processes, not resulting in the emission
of a light quantum and following a different course during the electron-hole
recombination, must be sufficiently suppressed.

The operation of the first semiconductor laser was in 1962. This new technology
in the field of optoelectronics benefitted greatly from compound semiconductors,
which Heinrich Welker had discovered about a dozen years earlier, and which are
most suitable for this application. In the III–V semiconductors, as for example
gallium-arsenide (GaAs), the energy gap between the conduction band and the
valence band is relatively large. Hence, the energy being set free during the
electron-hole recombination in the form of a light quantum is also correspondingly
large. The spectrum of the visible light extends from red on the end for the light
quanta with low energy, up to blue and violet on the other end for the light quanta
with high energy. Gallium-arsenide emits light in the invisible infrared. Red and
green light is generated by mixed crystals based on gallium-arsenide containing
further admixtures. Only recently, it created a small sensation when Shuji
Nakamura in Japan succeeded for the first time in building a semiconductor laser
based on gallium-nitride (GaN) emitting even blue light. Meanwhile semiconductor
lasers such as the GaAs laser have found wide application in many areas. Using the
infrared laser made from gallium-arsenide, we operate the remote control of our
television receiver. In many household items we find red and green little lights
fabricated from semiconductor crystals. Over the years, the yield of the emitted
light could be strongly improved by means of a modification of the semiconductor
material on both sides of the active p–n junction region, achieving an energetic
spatial confinement of the electrons and of the holes within a small, well defined
active volume. In this case one speaks of the double hetero junction (in short DH).

As early as in 1963 the German Herbert Kroemer had proposed this advanced
type of semiconductor laser. However, at that time it had not yet been recognized
that the optoelectronics eventually would gain that much in importance. Therefore,
Kroemer’s ideas were ignored for quite a while. The remarks Kroemer made in
December 2000 in Stockholm during his lecture celebrating his award of the Nobel
Prize are extremely noteworthy. In this lecture Kroemer said:

… It was really a classical case of judging a fundamentally new technology, not by what
new applications it might create, but merely by what it might do for already existing
applications. This is extraordinarily shortsighted, but the problem is pervasive, as old as
technology itself. The DH laser was simply another example in a long chain of similar
examples. Nor will it be the last. … Any detailed look at history provides staggering
evidence for what I have called … the Lemma of New Technology: The principal appli-
cations of any sufficiently new and innovative technology always have been—and will
continue to be—applications created by that technology.

Very recently, light bulbs are less and less used for general illumination purposes
and are replaced by “cold light sources”. In the case of these energy saving illu-
minants, the light emitting diodes (LED) play an important role (Fig. 6.10b).
Whereas their lifetime is relatively long, their production costs are still high.
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Compared with a traditional light bulb, the energy saving of the LEDs at best
amounts to 89 %. Presently, the optimum color composition of the light is a subject
of ongoing research.

6.7 Miniaturization, Planar Technology

During the past 60 years, semiconductor electronics has reached an impressively
high level and has become an important economic field. Initially, the methods for
the preparation of the semiconductor materials looked more like black art, con-
sisting of many special tricks and recipes. However, going through many evolu-
tionary stages, eventually they developed into the industrial processes used today in
semiconductor factories. This development was accompanied by the permanently
progressing miniaturization, which allowed the placement of an ever increasing
number of devices and electronic circuits within an area of about 1 cm2 on a
chip. An important advance has been the introduction of “planar technology”,
utilizing the silicon surface well protected by its highly stable oxide. A large single
crystal of silicon is cut into thin slices, the “wafers”. The thickness of the wafers is
only a few tenth of a mm. All further processing steps are concerned only with the
silicon surface. The doping with donors and acceptors is accomplished by means of
diffusion into the regions near the silicon surface, where the oxide had been etched
away previously. For this purpose the temperature of the diffusion ovens must be
exactly controlled within a fraction of one degree, in addition to the temporal profile
of the heat treatment. Only with such extreme care can the doping profiles near the
surface of the wafer be exactly reproduced. The many processing steps, which
today can amount up to more than four hundred, are controlled by computers.
Today, the diameter of the silicon wafers and, hence, the diameter of the silicon
single crystals used as the raw material has reached a value as large as 30 cm
(Fig. 6.11). From a single wafer with this diameter a total of about 700 chips each
with 1 cm2 area can be fabricated. At the end of the fabrication process, in some
cases a single wafer of this kind can reach a total value of up to 250,000 US$
(Fig. 6.12).

Due to the permanently progressing miniaturization, the number of transistors on
a single chip has increased rapidly. During the three decades from 1970 until 2000
this number increased from about one thousand at the beginning up to about 256
million at the end. The cost per bit of stored information dropped correspondingly.
This highly impressive development has been summarized in the famous law of the
American Gordon E. Moore, about which he had been contemplating already in
1965. According to this law, every 5–6 years the price per transistor on a chip drops
to about one tenth of its value at the beginning of this period. However, the
increasing complexity of the semiconductor circuits is accompanied by a corre-
sponding increase in the cost of the semiconductor factories. Sometimes, this fact is
also referred to as the Second Moore’s Law.
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Fig. 6.11 Processing of the silicon wafers with 30 cm diameter (Photo Wacker Chemie AG)

Fig. 6.12 Modern
microprocessor chip with the
dimensions
12.6 mm × 12.6 mm (Here the
microprocessor Power 3).
There are about 15 million
transistors on this chip (IBM)
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Today (2012), the individual “structure size” for the geometric dimensions of the
devices to be fabricated is reaching about 45 nm. Before long, it is expected to hit a
principal limit because of the atomic or molecular quantum conditions. In order to
extend the miniaturization any further, completely new concepts will then become
necessary.

During recent years, an unexpected and completely different development took
place, which started from the technical experience with silicon single crystals, and
which turned out to be highly interesting. It has nothing to do with the electronics of
doped semiconductors. Instead, it is concerned with the technical utilization of
single-crystalline silicon in the field referred to as micromechanics. By now, mi-
cromechanics has turned into an important new technical field experiencing rapid
development. Extremely miniaturized mechanical systems are fabricated by means
of different etching techniques and other methods of micro-fabrication. For
example, such systems are used for measuring pressure or mechanical acceleration.
Actual applications of these systems can be found, among other areas, in the
automobile industry. Here, a typical example is the controlled activation of the
airbag. Again, also in this case, the potential for fabrication of large quantities
together with a very low price represents an important requirement.

6.8 Thermoelectricity, Peltier Cooling

At the end of this chapter dealing with the properties of semiconductors we turn now
to thermoelectric phenomena, namely the Peltier and Seebeck effect. As we have
discussed in Chap. 5, both effects appear if a temperature gradient and an electric
potential gradient act simultaneously. In semiconductors both effects are much
stronger than in metals, typically by a factor of one hundred or more. This fact is due
to the particular form of the Fermi distribution of the electric charge carriers in
semiconductors. As we have pointed out above, in semiconductors the number of
mobile charge carriers is much smaller than in metals. Therefore, the Fermi energy εF
is also correspondingly smaller in semiconductors. As we have also discussed in
Chap. 5, the states are always occupied by electrons according to the Fermi function.
The energy width kBT, within which the Fermi function drops from the value of one
to zero, in semiconductors is much larger than εF. This is in contrast to metals, where
this energy width is much smaller than εF. Therefore, in semiconductors the Fermi
distribution (5.10) changes into the classical Boltzmann distribution (6.1). As a
consequence, the reduction factor kBT/εF, which is valid for metals and which selects
only a small fraction of all electrons to participate in many thermal and electrical
phenomena, disappears in semiconductors. This is the main reason for the relatively
high values of the Peltier and Seebeck effect in semicondutors.

In particular, the Peltier effect in semiconductors is very appropriate for technical
applications. We recall that the Peltier effect is due to the transport of the heat energy
of the charge carriers moving through the conductor during electric current flow.
At the junction between two different electrically conducting materials a pile-up of
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the heat current can develop. Depending upon the current direction, the junction
region can be heating up or cooling down. This effect is most pronounced, if an
n-doped and a p-doped semiconductor join together at the junction. In this case the
(negative) electrons of the n-doped side and the (positive) holes of the p-doped side
move in opposite directions. Hence, they move either from both sides towards the
junction, or away from the junction on both sides. In the second case a strong
effective cooling of the junction is expected. Therefore, the Peltier effect is useful in
cryogenics.

The Russian Abram Fedorovich Ioffe has been one of the first who recognized the
importance of semiconductors in cryogenics. Ioffe was born in the county town of Romny,
at the time belonging to the Russian Empire. During the years 1902–1906 he was proba-
tioner at first and assistant later of Wilhelm Röntgen at the University in Munich. In 1905
Ioffe finished his Ph.D. thesis, supervised by Röntgen, entitled “Elastic After-effect in
Crystalline Quartz”. During the Fall of 1906 Ioffe took the position as assistant at the
Polytechnic Institute in St. Petersburg. This Institute, named after Peter the Great, had been
founded in 1902. During his exceptional scientific career Ioffe was responsible for the
establishment of five different Research Institutes in the former Soviet Union. Here we want
to emphasize in particular the Semiconductor Institute in St. Petersburg, which became very
famous, and from which many important papers on the physics of semiconductors origi-
nated. Since 1950 Ioffe strongly increased his research effort in the field of thermoelectricity
in semiconductors, then still at the Physical-Technical Institute of Leningrad. A few years
later he wrote a book on semiconductor thermo-elements. At the time, his optimistic
forecast about the thermoelectric applications of semiconductors, in particular for cryo-
genics due to “Peltier cooling”, has triggered great new efforts in semiconductor research
worldwide in many laboratories of the electronics industry.

Today, Peltier cooling is carried out primarily based on the n-doped and the
p-doped semiconductor compound bismuth-telluride, Bi2Te3. The commercially
available “Peltier modules” consist of an arrangement of up to several hundred
n-doped and p-doped Peltier legs, thermally in parallel and electrically in series
connection. The individual Peltier legs are only a few mm long and have a
cross-section of about 1 mm2. With a single Peltier module, a cooling from room
temperature down to 50°–60° below room temperature can be achieved. Even lower
temperatures can be reached using a multi-stage Peltier cascade (Fig. 6.13). For
example, recently, cooling from room temperature down to 135 K was accom-
plished by means of a seven-stage Peltier cascade.

The operation of a stage for Peltier cooling, schematically shown on the left in
Fig. 6.13, is governed by the power-balance equation

Sj jT1j ¼ j
T0 � T1

L
þ 1

2
V2

qL
ð6:23Þ

which describes the heat current density flowing into or out of the cold end of the
Peltier element. On the left in (6.23) we have the density of the Peltier heat current,
noting (5.13) and (5.16). The first term on the right is the heat current density
caused by thermal conduction. The second term on the right represents the dissi-
pated electrical power per cross-sectional area, half of which is assumed to reach the
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cold side of the Peltier element. Equation (6.23) applies to each of the two legs of
the Peltier element. T0 and T1 are the temperature on the warm and the cold side,
respectively. (|S| = absolute value of the Seebeck coefficient, κ = heat conductivity,
ρ = electric resistivity, V = voltage, L = length of the Peltier legs. These quantities
are assumed to be the same in both legs. j = (1/ρ) (V/L) = electric current density).
In (6.23) any additional thermal load of the cold end is assumed to be zero. From (6.
23) one finds

T0 � T1ð Þ ¼ 1
j q

Sj jT1V � V2

2

� �
ð6:24Þ

The maximum of (T0 − T1) is obtained from the condition ∂(T0 − T1)/∂V = 0,
yielding V = |S|T1 and finally

T0 � T1ð Þmax¼
1
2
zT2

1 ð6:25Þ

Here

z ¼ S2

jq
ð6:26Þ

is the “figure of merit”, a most important quantity of thermoelectricity.
As we see from (6.24), it is essentially the combination of the linear current

dependence of the Peltier heat and the quadratic current dependence of the gen-
erated Joule heat, which limits the cooling effect achieved by the Peltier element,
and which leads to a maximum temperature drop. If the cold side experiences an
additional heat load (as, for example, from the higher stages of a Peltier cascade),
then the maximum temperature drop will be smaller than the value given in (6.25).
With increasing such heat load, the temperature drop (T0 − T1) decreases linearly,

cold side

heat removal 

p-cond. n-cond. 

+ - 

Fig. 6.13 Peltier cooling. Left Schematics of a Peltier cooling device consisting of an n-doped and
a p-doped semiconductor. The electric current flows from the left to the right side. Right
Commercially available four-stage Peltier cascade. In the individual stages the Peltier legs are
clearly visible. With the cascade shown, the temperature can be lowered from room temperature at
the warm end down by about 140 K lower than room temperature at the cold end. The lateral
dimensions are: lowest stage 24.0 mm × 20.6 mm; uppermost stage 4.5 mm × 2.4 mm. Total
height 13.6 mm (Photo KRYOTHERM)
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reaching zero when the heat load is equal to half of the electric power dissipated in
the Peltier stage.

Equation (6.25) can be rewritten in the form

T0 � T1ð Þmax¼
1
2z

2zT0 þ 1ð Þ1=2�1
h i2

ð6:27Þ

Using the typical values near room temperature (applicable to the Bi2Te3 system
mentioned above), Sn = −200 µV/K, Sp = 200 µV/K, ρ = 1 mΩ cm, and
κ = 15 × 10−3 W/cm K, one obtains z = 2.7 × 10−3 K−1. This value of z together
with (6.27) and T0 = 283 K yields (T0 − T1)max = 64 K.
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Chapter 7
Circling Electrons in High Magnetic Fields

Abstract In a magnetic field the motion of electric charges perpendicular to the
field direction is deflected into circular orbits because of the Lorentz force. This
deflection causes an increase in the electric resistance and the generation of the Hall
voltage transverse to the current flow in the conductor. The orbital motion corre-
sponds to a redistribution of the electrons in the conduction band onto Landau
cylinders in momentum space. At high magnetic fields this leads to a periodic
oscillation of the electronic crystal properties as a function of the magnetic field.
Experimental studies of these oscillations yield information about the extreme
cross-sections of the Fermi surface perpendicular to the magnetic field direction.
The de Haas–van Alphen effect is discussed. In the restricted geometry of a
two-dimensional electron gas, new quantum effects appear, such as the integer and
the fractional quantum Hall effect.

The brilliant American physicist Henry A. Rowland is perhaps best known for his
mechanical fabrication of optical diffraction gratings, which were unique during his
time and became famous as the “Rowland gratings”. In the year 1870 he had
completed his education as a civil engineer at the Rensselaer Polytechnic Institute
(RPI) in Troy in the Federal State of New York. After some time as an Assistant
Professor for science at the Wooster University in Ohio, he returned in 1872 to the
RPI with an appointment as Instructor of Physics. During the winter semester
1875/1876 he visited the Institute directed by Hermann von Helmholtz in Berlin.
Rowland was particularly interested in the theory of electricity and the field of
“electrodynamics”, founded by Michael Faraday and James Clerk Maxwell in
England. During his journey to Berlin, Rowland passed through Cambridge in
England where he visited Maxwell. As a guest of Helmholtz, in an astonishingly
short time Rowland was able to demonstrate experimentally that electrically
charged objects are accompanied by a magnetic field, if they move at a high
velocity. In his report to the Berlin Academy during March 1876, Helmholtz
himself declared: “Mr. Rowland has just performed a series of direct experiments in
the physics laboratory of this university, which present the positive proof, that the
motion of electrically charged objects [aside from conductors!] is also electro-
magnetically active.” Such fundamental experiments in the field of electrodynamics
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were then at the frontiers of physics. Following the Semester in Berlin, Rowland
went to the American Johns Hopkins University which had just been founded in
Baltimore in the Federal State of Maryland.

Having returned to the USA and continuing his previous research activities,
Rowland was interested to find out if an electric current in a metallic conductor is
deflected sideways by an external magnetic field, thereby causing an additional
electric voltage signal perpendicular to the direction of the electric current. After
Rowland himself could not detect any effect, he turned this, for the time quite
ambitious measurement task, over to his student Edwin Herbert Hall. In the year
1879 Hall observed the effect. Subsequently, this phenomenon is referred to as the
Hall effect.

7.1 Hall Effect

The Hall effect represents one of the simplest phenomena caused by moving electric
charge carriers, when an external magnetic field is also present. Electric charge
carriers moving in a magnetic field experience a force, which is oriented perpen-
dicular to both the direction of their motion and the direction of the magnetic field.
This force, named after the Dutch theoretical physicist Hendrik Antoon Lorentz, is

fL ¼ qv� B ð7:1Þ

It is proportional to the magnetic field B, and also proportional to the moving
electric charge q and to the component of the velocity v of the charge carriers
perpendicular to the magnetic field. Reversing the sign of each of these three factors
leads to a sign reversal of the Lorentz force. The Lorentz force vanishes, if the
charge carriers move parallel to the direction of the magnetic field such that the
velocity component perpendicular to the magnetic field remains zero. As a result of
the Lorentz force, the motion of the free charge carriers along a straight line is
deflected into a helical or circular trajectory (Fig. 7.1a). In the case of the electric
current density (5.3) j ¼ n �eð ÞDvx along x-direction in a conductor, and in the
presence of a magnetic field B along z-direction, the Lorentz force is oriented along
y-direction: fLy ¼ qDvx � B. Here we have inserted the drift velocity Δvx into
(7.1). Because of the force fLy, the positive and negative electric charges accu-
mulate at the opposite sides of the conductor, respectively, assuming that they move
in the same direction (Fig. 7.1b), and thereby they generate an electric field Ey

along y-direction. In the stationary state, the Lorentz force fLy is compensated by
the electrostatic force q Ey, and one finds

qDvx � B ¼ qEy: ð7:2Þ
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From this follows

Ey
�� �� ¼ Dvx � Bj j ¼ 1

�eð Þn jB � RH jB: ð7:3Þ

Ey denotes the electrical Hall field, characterizing the Hall effect. In (7.3) we
have used q = −e. The coefficient RH = 1

�eð Þn is the Hall constant (which is negative

in the case q = −e). We see, that the Hall constant yields information about the
concentration of the moving charge carriers, and that the sign of the electrical Hall
field indicates the sign of these charge carriers. However, early on occasionally one
had observed also a positive sign of the Hall constant, which remained unexplained
(anomalous Hall effect) until the concept of the (positive) holes in the electronic
band structure was established.

At this point it is important to note, that for the same direction of the electric
current, positive and negative electric charges move in opposite directions. Hence,
in the case of reversal of the sign of the moving charges, the sign of the Lorentz
force changes twice, such that in the end it remains the same. Therefore, the
simultaneously moving positive and negative electric charges are driven toward the
same side of the current-carrying conductor. As we have discussed in Chap. 6 in the
context of the hole concept, already early on the Hall effect indicated frequently,
that the moving charge carriers act like (positive) holes, which originate from the
region near the upper edge of an almost completely filled energy band. In addition
to the sign of the moving charges, from the Hall effect one can also determine the
concentration of the moving charge carriers in the electrically conducting material.

magnetic field(a) (b) (c)

Fig. 7.1 Lorentz force acting on electric charges moving in a magnetic field. The magnetic field is
directed perpendicular to the plane of the paper. a Because of the Lorentz force, the motion of
electric charges perpendicular to the direction of the magnetic field is deflected onto a circular
orbit. b Hall effect: During electric current flow in a conductor, the sideways deflection of the
current due to the Lorentz force causes the accumulation of charges with opposite sign,
respectively, on both sides of the conductor (assuming that the opposite charges move in the same
direction). This results in an electric voltage perpendicular to the main current direction and
perpendicular to the direction of the magnetic field. c Magneto-resistance: The deflection of the
electric charges into circular orbits because of the Lorentz force hinders the electric current flow
along its main direction and causes an increase in the electrical resistance. The crosses mark the
locations, where the electrons experience a collision process
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In principle, the behavior we have discussed so far is expected in the same way
for both metals and for semiconductors, as long as there exists only a single kind of
charge carrier. However, if the electric current is transported by two or more
different kinds of charge carriers, the situation can become complicated very
rapidly. For example, the Hall effect completely disappears, if simultaneously
positive and negative charge carriers are present with exactly equal concentration
and if they also contribute to the electric current with the same mobility. Since in
the magnetic field the positive and negative charge carriers are driven to the same
side of the current-carrying conductor, there the charges with the opposite sign
compensate each other exactly in this case, such that no Hall effect remains.

An impressive example of the Lorentz force can be observed in the phenomenon of the
northern lights. It is caused by the impact of electrically charged particles, particularly of
protons, originating from the sun. In the earth’s magnetic field the particles are deflected
to higher latitudes along circular trajectories, where they optically excite the gas mole-
cules at about 100 km altitude. Also in the large accelerators the electrically charged
particles are kept on their proper trajectories by means of magnetic coils and the Lorentz
force. Furthermore, this force and the effected deflection of the trajectory of electrically
charged particles represents the principle of the “magnetic bottle”, which is supposed to
keep hot plasma sufficiently far away from the reactor walls of the long-term-project
nuclear fusion reactors. Finally, it is also the same force which acts upon an electrical
conductor during electric current flow and which represents, for example, the principle of
the electric motor.

7.2 Magneto-Resistance

The deflection of the electric charge carriers onto helical or circular orbits in a
magnetic field by means of the Lorentz force also affects the electric resistivity
(Fig. 7.1c). This effect is referred to as the magneto-resistance. On general grounds
we expect an increase in resistance due to the magnetic field, since the electric
current flow is hindered, if the charges are forced to follow helical or circular orbits,
instead of moving only in a single direction. At not too high magnetic fields, the
resistance increases with magnetic field proportional to B2. (This B2 dependence is
expected, since the increase of resistance must be independent of the sign of the
magnetic field). The increase of the electrical resistance depends on whether, and in
which way, both electrons and holes contribute to the electric current. In single
crystals the resistance increase in a magnetic field can also depend strongly on the
crystallographic direction. In recent years magneto-resistance effects, in which the
angular momentum or spin of the electrons plays a central role, have received a large
amount of attention. We will return to these spectacular developments in Chap. 10
when we discuss the subject of the “giant magneto-resistance” and spintronics.
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7.3 Landau Theory, Landau Cylinders, de Haas–van
Alphen Effect

The exact quantum mechanical theory of electrons in the conduction band of a metal
in the presence of a strong magnetic field, is due to the Russian Lew Dawidowitsch
Landau. In the year 1930 at the age of only 22 years he published his famous paper on
the diamagnetism of metals. One year earlier, following his graduation in Leningrad,
Landau had begun a two-year visiting tour to European Research Institutes, which
brought him among other places to Zurich, Copenhagen, Cambridge, Berlin, and
Leipzig. In his paper Landau showed that the energy spectrum of the electrons is
strongly modified by the magnetic field. In Chaps. 4 and 5 we have discussed, how
the energy spectrum of the electrons in the conduction band of a metal is described in
terms of the wave vectors which characterize the electron matter waves during their
propagation along all three spatial directions. However, because of the magnetic field
and the Lorentz force, the electron motion perpendicular to the direction of the
magnetic field is forced into a circular orbit. Assuming that the magnetic field is
oriented along the direction of the z-coordinate, the circular orbit is located within the
plane of the x- and y-coordinate. Whereas in the absence of a magnetic field (B = 0)
the energy spectrum of the electrons is given by

e ¼ �h2

2me
k2x þ k2y þ k2z

� �
; B ¼ 0 ð7:4Þ

in the presence of a magnetic field B = Bz ≠ 0 oriented along z-direction it is

e ¼ �hxc ‘þ 1
2

� �
�h2

2mc
k2z; B ¼ Bz 6¼ 0: ð7:5Þ

Here, ‘ is an integer, and mc is the cyclotron mass of the electrons.

xc ¼ eB
mc

ð7:6Þ

is the cyclotron angular frequency of the electrons. We see, that during their circular
orbit in the x-y plane, the energy of the electrons is quantized in the unit of the
cyclotron energy ħωc. The wave vectors within the x-y plane are no longer relevant,
since the corresponding states form new combined states with orbital motion. Only
the electron motion along the z-direction remains unchanged in the form of the
corresponding matter wave defined by the wave vector kZ along the z-direction. In
this context we remember that the Lorentz force vanishes if the electrons move
parallel to the direction of the magnetic field.

In the absence of a magnetic field, the three-dimensional k-space of the wave
vectors is evenly filled with states to be occupied. On the other hand, in the case of an
existing magnetic field, because of the energy quantization (7.5) according to
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Landau, the allowed states are redistributed into a series of coaxial “Landau cylin-
ders”. Now the states which can be occupied are restricted to these cylinders. The
axis of the cylinders is oriented along the direction of the kZ wave vector, i.e., along
the same direction as that of the magnetic field. The energetic distance between two
subsequent Landau cylinders is ħωc, which increases proportional to B. Hence, at
high magnetic fields, their energetic distance is relatively large. At a magnetic field
B = 1T one obtains a typical value ħωc ≈ 10−4 eV. Figure 7.2 shows an example.

For the manifestation of the energy quantization according to Landau it is
necessary, that the circular orbits of the electrons in the magnetic field are not
disrupted by collision processes experienced by the electrons. The circular orbits
should be completely traversed without perturbation at least one time. Since the
number of the collisions, for example with phonons, strongly decreases with
decreasing temperature, in addition to high magnetic fields, temperatures as low as
possible are required for the experimental observation of the quantum structure
associated with the Landau cylinders. Furthermore, sufficiently low temperatures
also ensure, that the thermal energy kBT is distinctly smaller than the energetic
distance ħωc between two neighboring Landau cylinders, and that the quantum
structure is not smeared out because of the thermal energy kBT. Finally,
single-crystals with the highest possible purity should be used for the experiments.

Because of these reasons, for the distinct manifestation of the Landau cylinders,
the following conditions must be satisfied (where τ denotes the scattering time):

xc s[ 1 ð7:7Þ

and

kBT\�hxc: ð7:8Þ

Fig. 7.2 In highmagneticfields the energy quantization according toLandau leads to a redistribution
of the states, which can be occupied by the electrons in k-space, onto the walls of a family of coaxial
cylinders. The common axis of the cylinders is oriented along the direction of the magnetic field. The
distance between the cylinder walls in k-space increases proportionally with the magnetic field
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Already by 1930 Landau had recognized that, because of the energy quantization
of the conduction electrons in a magnetic field discussed by himself for the first
time, macroscopic material properties, such as for example diamagnetism, should
display an exactly periodic oscillation as a function of the magnetic field. However,
he felt that the necessary purity criteria could not be reached for the available
sample materials, and that, hence, the effect would remain unobservable. Since the
energy difference ħωc between two neighboring Landau cylinders increases pro-
portional to B, the number of the Landau cylinders to be occupied up to the Fermi
energy with increasing magnetic field becomes smaller and smaller. In the case of a
monotonically increasing magnetic field, the redistribution of the electrons onto the
Landau cylinders according to the energy spectrum (7.5) leads to a periodic
oscillation of the total energy of the electrons. At εF = ħωc ‘ the total energy of the
electrons passes through a minimum, and at eF ¼ �hxc ‘þ 1

2

� �
through a maximum.

As a consequence, this also results in oscillations of the other electronic sample
properties as a function of the magnetic field, such as, for example, diamagnetism.

Contrary to the apprehension by Landau, the oscillations of diamagnetism were
observed for the first time by the year 1930 in bismuth single crystals by the Dutch
Wander Johannes de Haas and Pieter M. van Alphen in Leiden. The effect is now
referred to as the de Haas-van Alphen effect. At the time Rudolf E. Peierls con-
tributed significantly to its further theoretical clarification. An important theoretical
advance originated from Lars Onsager during a visit to Cambridge, England, in the
Academic Year 1950/1951. Strongly emphasizing the geometrical interpretation of
the Fermi surface in the three-dimensional k-space of wave vectors, he showed that
only the extreme cross-sections of the Fermi surface taken perpendicular to the
direction of B contribute to this effect. The contributions of all other parts of the
Fermi surface are irrelevant, since they cancel each other. The period of the de
Haas–van Alphen oscillations is inversely proportional to the extreme cross-section
of the Fermi surface, i.e., inversely proportional to the largest and to the smallest
cross-section. (Here the extreme cross-sections are taken perpendicular to the
direction of the magnetic field.)

For a more detailed discussion we return to the cyclotron mass mc and the
cyclotron frequency ωc introduced in (7.5) and (7.6), respectively. Writing the
inverse cyclotron frequency in the form

2p=xc ¼
I

dk

j _kj ð7:9Þ

and using

_k
�� �� ¼ e

�h
v� B ð7:10Þ

based on the Lorentz force (7.1), writing q = e, and introducing the velocity
component v? perpendicular to the magnetic field, we obtain
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2p=xc ¼ �h
e B

I
dk

v?ðkÞ ¼
2pmc

e B
ð7:11Þ

and finally

mc ¼ �h
2p

I
dk

v?ðkÞ : ð7:12Þ

Here dk is a line element along the electron orbit in k-space. With
v? ¼ 1=�hð Þ ðde=dk?) we have mc ¼ �h2

2p

H
dk Dk?

De . Writing
H
dk Dk?

De ¼ 1
De

H
dkDk?

we note that the integral
H
on the rhs represents the difference ΔA of the areas A

enclosed by the electron orbits at the energies ε and ε + Δε in k-space, respectively.
Finally, we obtain

mc ¼ �h2

2p
dA
de

� �
; kk ¼ const ð7:13Þ

We see that the cyclotron mass mc contains the energy dependence of the area A
enclosed by the electron orbit in k-space.

The quantization of the orbits in k-space and of the magnetic flux are equivalent:
with Δε = ћ ωc = ћ e B/mc and ΔA = (dA/dε) Δε, inserting (7.13), we find

A‘ ¼ 2peB=�hð Þ ‘þ 1
2

� �
ð7:14Þ

The area A‘ in k-space is related to the area F‘ in regular space by

F‘ ¼ �h=eBð Þ2A‘ ð7:15Þ

(This can be seen from (7.10) by writing _k ¼ Dk=Dt and v? ¼ Dr=Dt). For the
magnetic flux U‘ passing through the area F‘ we find from (7.14) and (7.15)

U‘ = BF‘ ¼ h=eð Þ ‘þ 1
2

� �
ð7:16Þ

The quantity (h/e) = 1.034 × 10−15 Vs represents the magnetic flux quantum in a
non-superconductor. We will deal with it again in the following Section.

As a function of the magnetic field B the de Haas–van Alphen oscillations show
an exact periodicity when plotted versus B�1. From (7.14) we see that each Landau
level contributes the amount ΔA = (2πeB)/ћ to the total cross section of the Fermi
surface, and we have A = (2πeB/ћ) λ, where λ is an integer. Writing 1/Bo = (2πe/ћA),
we obtain the periodicity Bo/B = λ.

In the three-dimensional case only the extremal cross-sections of the Fermi sur-
face perpendicular to B, i.e., the maximal Amax and the minimal cross-sections Amin,
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are relevant (The contributions of all other cross-sections cancel each other). As
examples we mention the belly and the neck orbits on the Fermi surface of copper
shown in Fig. 5.3. So we find the periodicity in 1/B

1
Bo

¼ 2pe
�h

1
Amax

or
1
Bo

¼ 2pe
�h

1
Amin

ð7:17Þ

The de Haas–van Alphen effect is connected with the magnetization M. With the

free energy F = U − TS the magnetization is given by M ¼ � 1
V

@F
@B

� �
T;V

. In the

case T ≈ 0 we have

M ¼ � 1
V

@U
@B

� �
T;V

ð7:18Þ

(U = inner energy, S = entropy, V = volume). The periodic oscillation of the
energy of the electrons mentioned above leads to a corresponding oscillation of M
with the period 1/Bo when plotted versus 1/B.

Subsequently, it transpired that Ilya Mikhailovich Lifshitz in Moscow had
developed similar ideas independent of Onsager. In Cambridge, David Shoenberg,
we had mentioned in Chap. 5, and his collaborators have utilized these theoretical
ideas particularly successfully.

The de Haas–van Alphen effect then has become an important experimental tool, partic-
ularly in the 1950s and 1960s, for determining the shape of the Fermi surface in many
materials, as long as the materials could be prepared in the form of sufficiently pure single
crystals. Eventually, impressively fine details were discovered, and the experimental
techniques were continuously improved. Large deviations of the Fermi surface from a
simple spherical shape were observed. In some materials, as for example the multi-valency
metals, the Fermi surface often consists of half a dozen or more separate parts, which are
associated either with electrons or with holes. For such parts, notations such as monster,
cap, lense, butterfly, needle, or cigar were invented. The belly and the necks of the Fermi
surface of copper, discovered by Alfred Brian Pippard and shown in Fig. 5.3, represent only
the first and, still relatively simple, example.

As one would expect, similar oscillations as in the de Haas–van Alphen effect
also appear in other physical material properties, which are influenced by the
mobile electric charge carriers. The “Shubnikov–de Haas oscillations” of the
electric conductivity represent one example. Even in the chemical reaction rate on
the surface of metallic catalysts, during the variation of the magnetic field, oscil-
lations have been observed which have the same origin.

For our further discussion it is useful to look more closely at the density of states
which can be occupied by electrons as a function of the electron energy. We start
with the three-dimensional case. In this case, which is usually applicable, according
to (6.3) and (6.7), the density of the possible energy levels increases proportionally
with the square-root of the electron energy as long as no magnetic field is present.
However, if a magnetic field exists, the redistribution of the energy levels onto the
Landau cylinders in k-space causes the curve to be superimposed by many sharp
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peaks following each other within the energetic distance ħωc of the cyclotron
energy. On the other hand, in the two-dimensional case, in the absence of a
magnetic field, we find that the density of the energy levels, which can be occupied,
is independent of the energy, i.e., it is constant.

In Fig. 7.3 we present an overview of the energy dependence of the density of
states at zero magnetic field in the four cases of a different number of spatial
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Fig. 7.3 Dependence of the
density of states upon the
energy E at zero magnetic
field in the four cases of a
different number of spatial
dimensions from three (top) to
zero (bottom). B = 0
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dimensions, from three (top) to zero (bottom). In the one-dimensional case, the
density of states decreases from one energy level Ein to the next higher one with
(1/energy)1/2, whereas in the zero-dimensional case there only exist the discrete
energy levels Einm. In the two-dimensional case, the independence of the density of
states of the energy, at high magnetic fields, leads to novel physical properties such
as, for example, the quantum Hall effect. Next we wish to address these questions.

7.4 Integer Quantum Hall Effect

Based on the periodic boundary conditions, in Chap. 6 we have shown, that in the
one-dimensional case the density of states w(k) in k-space is w1(k) = L/2π, where L
denotes the physical dimension of the crystal. By extension to two dimensions, one
obtains w2(k) = (L/2π)2. In the two-dimensional case, in analogy to (6.6), the
density of states per energy interval (using (4.13) and ignoring the spin of the
electrons) is given by

D2 eð Þ ¼ w2 kð Þ @ðk� space areaÞ
@e

¼ w2 kð Þ2pk @k
@e

¼ L
2p

� �2

2pk
m

�h2k
ð7:19Þ

and D2(ε) per unit area is

D2ðeÞ=L2 ¼ m=2p�h2: ð7:20Þ

In (7.20) the density of states is independent of the energy. Using the energy
interval ħωc between two subsequent Landau levels (from (7.5) with kz = 0), we
find the number N of the states per area and per Landau level:

N ¼ ½D2ðeÞ=L2��hxc ¼ eB
h
: ð7:21Þ

As discussed above, in order to clearly observe the quantum structure according to
Landau the conditions (7.7) and (7.8) must be satisfied. This case is shown
schematically in Fig. 7.4.

Fig. 7.4 Density of states per
area D2(ε)/L

2, plotted versus
the normalized energy ε/ħ ωc
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We return to the Hall effect (7.3), and in the two-dimensional case we have:

Ey ¼ 1
�eð Þn2 j2B: ð7:22Þ

Here j2 = I/w denotes the current density in a two-dimensional conductor of width
w carrying the current I. The quantity n2 is the umber of electrons per area. If the
Fermi energy eF is located exactly between two Landau levels, all Landau levels
below (above) eF are occupied (unoccupied). In this case n2 in (7.22) amounts to:

n2 ¼ zN ¼ z
eB
h
; ð7:23Þ

where z is an integer number. For the Hall resistance Rxy one obtains:

Rxy ¼ Ey

j2
¼ 1

z
h
e2

: ð7:24Þ

The Hall resistance Rxy only depends upon the fundamental constants h and e, an
important and surprising result.

In order to discuss the quantum Hall effect, we consider a two-dimensional
crystal (two-dimensional electron gas) in a high magnetic field, the field being
oriented perpendicular to the plane in which the crystal is located. Now the Landau
cylinders are reduced to Landau circles obtained as a two-dimensional cut through
the coaxial cylinders perpendicular to the cylinder axis. The sequence of the Landau
circles, placed within each other around their common center, again corresponds
exactly to the quantized energy of the electrons in their circular orbits within the
plane of the crystal, representing multiples of the cyclotron energy ħωc. The con-
stant density of the energy levels of the two-dimensional crystal, which can be
occupied by electrons, according to (7.21) leads to the consequence that all energy
intervals (of magnitude ħωc) between the subsequent Landau circles contain exactly
the same number of energy levels to be occupied. Therefore, the energy levels
corresponding to the individual Landau circles are also occupied by exactly the
same number of electrons. The energy spectrum of the electrons displays a
sequence of sharp and exactly equal peaks, appearing periodically along the energy
axis with a distance given by the cyclotron energy ħωc (Fig. 7.4). If it is possible to
increase continuously the number of the mobile electrons in the two-dimensional
crystal, then the electrical properties should change in a step-wise manner each time
an additional Landau level just becomes filled up with electrons.

More than 30 years ago the German Klaus von Klitzing was interested in such
effects in the context of his research at the Physical Institute of the University of
Würzburg. In the Fall of 1979 he went to the German-French High-Magnetic-Field
Laboratory in Grenoble for a research visit, since in Grenoble magnetic coils were
available for stronger fields than in Würzburg. At the time, the previous thesis
advisor of Klaus von Klitzing, Gottfried Landwehr, was in charge of the Magnet
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Laboratory in Grenoble. During his experiments in Grenoble von Klitzing used a
field-effect transistor made from silicon, provided to him by the Siemens Company.
This device represents one of the many further developments following the early
transistor types. Near the semiconductor surface the mobile charge carriers are
confined to a narrow two-dimensional region. The semiconductor surface is covered
by a thin, electrically insulating layer of silicon oxide (SiO2), on the other side of
which a metal electrode is attached. Between the metal electrode and the silicon
crystal an electric voltage, referred to as the gate voltage, can be applied. This gate
voltage allows one to vary continuously the concentration of the mobile charge
carriers within their two-dimensional confined region near the silicon surface.
With this arrangement the experimental requirements for the observation of the step
structure discussed above appear to be well satisfied.

On the night of 4th of February 1980, von Klitzing discovered that, in a high
magnetic field and at the low temperature of 1.5 K, the Hall resistivity (measured
perpendicular to the electric current) of his field-effect transistor displayed partic-
ularly sharp and regular steps as a function of the gate voltage. On the other hand,
the electrical resistivity measured along the direction of the current showed strong
oscillations as a function of the gate voltage and dropped down to zero at each
horizontal step of the Hall resistivity. All steps and the oscillations disappeared, if
the magnetic field was turned off. On the same night, von Klitzing had already
recognized, that the steps represent something fundamental which depends only
upon two fundamental physical constants, and which is exactly quantized (Fig. 7.5).
With increasing gate voltage the Landau levels are filled sequentially with mobile
charge carriers. Simultaneously, the Hall resistance decreases. However, this
decrease is always interrupted and an exactly constant intermediate resistance value
appears, if a Landau level has just been filled up, and if the following level cannot
yet be reached. In this way the exactly quantized values of the Hall resistance (1/z)
(h/e2) appear, which von Klitzing observed on his measured curve (Fig. 7.6). Here z
is an integer number, such as 2, 3, 4, etc. The quantity h is Planck’s constant, and e
is the charge of an electron. For the unit of the quantized Hall resistance, von
Klitzing obtained the value h/e2 = 25813 Ω. He had succeeded in the pioneering
discovery of the quantum Hall effect.

From (7.23) for the number n2 of the electrons per area and per Landau level we
find an important connection with the number of magnetic flux quanta (h/e), if we
multiply the number n2 with the sample area F. One obtains

n2 F ¼ z
e B
h

F ¼ z
U
h=e

ð7:25Þ

where Φ denotes the magnetic flux (BF) passing through the sample. This means
that, at the exactly quantized resistance steps, each magnetic flux quantum in the
sample is connected with the same number z of electrons. Again, we will find a
similar important relation, between the number of electrons and the number of
magnetic flux quanta per unit area, in the case of the fractional quantum Hall effect,
which we will discuss in the following section.
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Fig. 7.5 Entry of Klaus von Klitzing in his work notebook on February 4, 1980, the day on which
he discovered the quantum Hall effect (K. von Klitzing)
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From the very first moment it was clear that the quantized value of the electrical
resistance in the quantum Hall effect provided an excellent opportunity for a new
quantum definition of the unit of the electrical resistance. Soon the German Bureau
of Standards (Physikalisch-Technische Bundesanstalt) in Braunschweig, as well as
the National Standards Bureaus in other countries had taken this opportunity. Since
January 1, 1990 the “von-Klitzing-constant” h/e2 has represented the legal defini-
tion of the unit of the electrical resistance based on the quantum Hall effect. Also,
the accuracy of the determination of the von-Klitzing-constant was improved fur-
ther, and the official value today is h/e2 = 25812.807 Ω. In Chap. 11 we will return
to the quantum Hall effect in connection with the discovery of the properties of
graphene.

However, von Klitzing was not the first to have observed step-like structures in the Hall
resistance and oscillations of the electrical resistance along the current direction as a
function of the gate voltage in a field-effect transistor. In Tokyo a few years earlier the
Japanese group of S. Kawaji had obtained similar, but not so clearly expressed curves as
von Klitzing. Furthermore, this group did not notice the fundamental importance of their
results in terms of a quantized electrical resistance value depending only on two funda-
mental physical constants.

Because of the quantum Hall effect, the two-dimensional electron gas on the
surface of a semiconductor has become very famous. Even more than 30 years after

birthday of the QHE:
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Fig. 7.6 Integer Quantum Hall effect: Electrical resistance and Hall resistance in a high magnetic
field and at a temperature of 1.5 K, plotted as a function of the gate voltage for the two-dimensional
electron gas of the field-effect transistor made from silicon shown on the left, in which early on
February 5, 1980 Klaus von Klitzing discovered the quantum Hall effect. The smooth resistance
curve without any steps was observed in the absence of a magnetic field (Klaus von Klitzing)
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the discovery of the effect the theoretical discussion is by no means closed. Based
on the idea of the filling of the Landau levels with increasing gate voltage, the
quantized values of the Hall resistance (1/z) (h/e2) can be quickly derived, but all
the details of the measured curves are still not yet completely theoretically
explained.

7.5 Fractional Quantum Hall Effect

Because of the permanent progress in the preparation of semiconductor materials,
the physics of the two-dimensional electron gas in high magnetic fields also received
a strongly increasing amount of attention. Here the search for the “Wigner crystal”
generated a lot of activity. In 1938 Eugene Paul Wigner had already predicted
theoretically, that at sufficiently low temperatures electrons would arrange them-
selves in a perfectly ordered crystal lattice, if they are confined to a two-dimensional
space, as for example on the surface of a semiconductor. The field-effect transistor
based on silicon still appeared insufficient in its quality for an experimental study of
this phenomenon of crystallization. However, the situation improved considerably,
when near the end of the 1970s modulation-doped single-crystalline layers of
semiconductors could be fabricated. Modulation doping of semiconductors is based
on the obvious idea to spatially separate the mobile electrons from the donor atoms
from which they originate. In this way one can achieve, in particular at low tem-
peratures, that the electrons propagate through the semiconductor at high speed and
without collisions with the ionized donors. Therefore, this type of “hetero-structure”
promised to yield particularly fast and low-noise transistors, such that many labo-
ratories worldwide then concentrated on this development. In this context, mainly
single-crystalline layers of the III–V semiconductor galliumarsenide (GaAs), in
combination with a galliumarsenide layer modified by an admixture of aluminum
(AlXGa1−XAs), were interesting. For example, silicon donor atoms (with four
electrons in the outer shell) are implanted precisely at the locations of the gallium
and aluminum atoms (with only three electrons in the outer shell, respectively)
within the AlXGa1−XAs layer. Then the excess electrons of the silicon donors are
transferred into the energetically lower conduction band of the adjoining GaAs layer,
where they can propagate relatively freely.

Based on these latter materials, in 1978/1979 for the first time the preparation of
a two-dimensional electron gas at the interface between GaAs and AlXGa1−XAs
was accomplished. The pioneering work for the preparation of single-crystalline
semiconductor layers with nearly atomic accuracy was performed by the German
Horst Ludwig Störmer together with his American colleagues Arthur C. Gossard
and Raymond Dingle at the Bell Laboratories, and also by Gerhard Abstreiter and
Klaus Ploog at the Max Planck Institute of Solid State Research in Stuttgart. Daniel
Tsui, born in China and also working at the Bell Laboratories at the time, soon
persuaded his colleague Horst Störmer to carry out electrical measurements on the
new and highly promising semiconductor layers at the highest possible magnetic
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fields and at the lowest possible temperatures. Both felt that the Francis Bitter
High-Magnetic-Field Laboratory at the famous MIT in the Federal State of
Massachusetts would be particularly suitable for such experiments. At this labo-
ratory, magnetic fields up to about one million times higher than the earth’s
magnetic field could be generated with electric coils. Here Tsui and Störmer per-
formed their experiments, in which they varied the magnetic field while the density
of the two-dimensional electron gas at the interface of their hetero-structure sample
was kept constant. After cooling down to about 2 K, as expected, they observed the
horizontal steps of the Hall resistance, already well known from the quantum Hall
effect. However, after they had cooled the sample further down to below 0.5 K, in
the highest range of the magnetic field they discovered something completely new:
now a step appeared at the Hall resistance 3(h/e2), i.e., at z = 1/3, if we express the
Hall resistance in the form (1/z) (h/e2) which we have used above. During the
following years additional plateaus of the Hall resistance were found, with other
fractional values of z, such as 1/3, 2/3, 2/5, 3/5, 3/7, 4/7, etc. (Fig. 7.7). In each case
the Hall resistances (1/z) (h/e2) with the fractional values of z appeared with exactly
the same precision as in the quantum Hall effect with the integer values of z. Similar
to the latter effect, Tsui and Störmer observed that the electrical resistance (mea-
sured along the direction of the current) also dropped down to values near zero each
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Fig. 7.7 Fractional quantum Hall effect in the two-dimensional electron gas of a modulation
doped GaAs/AlGaAs semiconductor hetero-structure at a temperature of about 0.1 K. The
electrical resistance R and the Hall Resistance RH are plotted as a function of the magnetic field.
The Hall resistance displays many plateaus for the indicated fractional values of z, if the quantized
Hall resistance is written in the form (1/z) (h/e2) (Horst L. Störmer)
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time a horizontal plateau of the Hall resistance was reached. The discovery of Tsui
and Störmer was subsequently referred to as the fractional quantum Hall effect. In
contrast to this, the effect discovered by Klaus von Klitzing is called integral or
integer quantum Hall effect.

As we have previously discussed, because of the Lorentz force the electrons are
moving along circular orbits, if their motion occurs perpendicular to the magnetic
field. During the experiments mentioned above, the magnetic field was always
oriented perpendicular to the plane of the two-dimensional electron gas, such that
the circular orbits were also located within this plane. The diameter of the circular
orbits is inversely proportional to the magnitude of the magnetic field. Hence, with
increasing magnetic field the circular orbits contract, and eventually they reach a
diameter which is smaller than the average distance between two neighboring
electrons. In this case, at low temperatures, all electrons occupy only the lowest
Landau level, and we are dealing with the “extreme quantum limit”. (In this case we
must remember, that the Landau level exists within k-space. In position space, all
individual electrons of the conduction band are spatially separated from each other,
and are degenerated with respect to their energy.) On the other hand, the quantum
mechanical wave function of the electrons must be single-valued at each coordinate
point in the semiconductor. This requires, that the magnetic flux penetrating the
two-dimensional electron gas is quantized in units of the magnetic flux quantum
(h/e). The observation of the fractional quantum Hall effect indicates that the
electrons prefer distinct distances from each other in their two-dimensional
arrangement. At these distinct distances the ratio z of the number of electrons per
unit area and the number of magnetic flux quanta per unit area take up exactly only
rational values such as the fraction of two integer numbers as indicated above.
Magnetic flux quanta and electrons are then intimately connected with each other.
Furthermore, the experimental observations suggest the existence of a gap in the
energy spectrum of the electron system, similar as in the integral quantum Hall
effect. However, in the present case the interaction between the electrons also
appears to play an important role. At high magnetic fields the electrons, together
with the magnetic flux quanta, seem to condense into a novel quantum liquid.

The American Robert Betts Laughlin, presently working at Stanford University
in California, has proposed an amazingly simple manybody wave function for
describing this new manybody groundstate, which can explain many aspects of the
experimental results. In particular, Laughlin could account for the exclusively odd
values of the numbers in the denominator of the rational values z for the ratio we
have discussed above in terms of the required anti-symmetry of the total wave
function. In the meantime, the experimental and theoretical treatment of the frac-
tional quantum Hall effect has lead to new concepts about novel particles composed
of magnetic flux quanta and electrons, which can appear as collective energetic
excitations of the two-dimensional electron gas.
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7.6 Generation of High Magnetic Fields

Before we conclude our discussion of the effects in high magnetic fields we wish to
look a bit closer at the magnetic coils which were used, and at the corresponding
technical developments. The fabrication of magnetic coils wound out of supercon-
ducting wires began in the early 1960s. At that time an important progressive step
took place in the production of the technically relevant superconductors. Since then
one can find superconducting magnets in many laboratories, and the experiments at
high magnetic fields have become much simpler than before. In order to reach the
temperature range in which superconductivity occurs, the magnetic coils are cooled
down to 4 K using liquid helium. The superconducting materials will be discussed in
more detail in Chap. 8. Today, superconducting magnets generating magnetic fields
up to about one million times higher than the earth’s magnetic field are standard
equipment for the relevant laboratories. By means of special construction measures,
in the “hybrid magnets” the magnetic field can be increased further up to about twice
this value. During recent years different centers have been established, mostly on a
national scale, in which experiments at very high magnetic fields can be carried out.
We have mentioned before the German-French High-Magnetic-Field Laboratory in
Grenoble and the American Francis Bitter Laboratory at the MIT in Cambridge. As a
continuation of the latter Laboratory, since a few years in the USA the National
High-Magnetic-Field Laboratory at the Florida State University in Tallahassee in the
Federal State of Florida has been operating. Further special facilities for high
magnetic fields exist in Nijmegen in Holland as well as in Sendai and Tsukuba in
Japan. In Hefei, China, a laboratory for static high magnetic fields is being built,
which is operating from around 2013.

Already in the 1920s and 1930s there were laboratories in which experiments
were performed in high magnetic fields. The Frenchman Aimé Cotton had con-
structed a giant electromagnet near Paris, and the American Francis Bitter had built
large electromagnets at the MIT in Cambridge. The Russian Pyotr Leonidovich
Kapitza developed pulsed electromagnets in Cambridge, England. In all cases, in
addition to the electric current, the consumption of cooling water was also enor-
mously high, since the magnet coils were not yet fabricated from superconductors
and generated a large amount of heat during their operation.

The Russian Pyotr Leonidovich Kapitza had studied at the Polytechnique Institute in St.
Petersburg, where he was tutored by Abram Fedorovich Ioffe. In the year 1921 at the age of
27, he went to Ernest Rutherford in Cambridge, England, in order to learn more about
current developments in physics. His career in Cambridge was highly successful, and in
1930 he became director of the newly established Mond Laboratory. At that time he was
interested in strong magnetic fields, in order to deflect the tracks of alpha particles.
Therefore, he built a special pulse generator, with which he could generate, in a pulsed coil,
the largest magnetic fields at that time. He was the first to employ this pulse technique to
obtain high magnetic fields. In the meantime this method has been developed to a high level
by different groups. Kapitza discovered, among other things, the linear increase of electrical
resistance at high magnetic fields, a law which is named after him. At an early stage he
turned to the subject of low temperature physics. When, during the Stalin era in 1934, he
returned once again to his native Russia to visit his mother in Moscow, the authorities
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prohibited his return to England. Instead, they built a new Institute for him in Moscow.
Later, his Institute for Physics Problems became highly famous. In 1937 Kapitza was able
to attract the theoretical physicist Lew Dawidowitsch Landau from Kharkov in the Ukraine
to his Institute in Moscow. During this time of political prosecutions in the then Soviet
Union Landau was also arrested in the following year. Because of his personal intervention
with Stalin, only after a whole year was Kapitza able to release Landau again from prison.
Subsequently, Landau became the dominant father figure of Russian theoretical physics.
The Russian experimental physicist Leo Vasilyevich Shubnikov, also from Kharkov and a
close friend of Landau, was not so lucky as Landau, following his arrest. After a
three-month detention, while awaiting trial, he received the death penalty and was shot on
November 10, 1937. In 1931 Shubnikov had initiated the establishment of the first
Low-Temperature Laboratory in the Soviet Union at the Ukrainian Physico-Technical
Institute in Kharkov. Then, also at this location, experiments could be performed in the
temperature range of liquid helium, similar to those in Leiden, Toronto, and Berlin.
Shubnikov has distinguished himself primarily because of his pioneering research in the
field of superconductivity. At an early stage, in his experiments he noted hints of a second
kind of superconductors. This subject will be treated in Chap. 8.

Today, pulsed high magnetic fields, such as were used for the first time by
Kapitza, are of extreme interest. Corresponding research facilities are operated in
Los Alamos, USA, in Toulouse, France, and in Tokyo, Japan. In the German
Research Center in Rossendorf near Dresden, since 2007 a new high-magnetic-field
facility is in operation, in which pulsed magnetic fields up to 90 Tesla can be
generated (One Tesla is about 2 × 104 times the earth’s magnetic field in central
Europe). For the required electric current source the worldwide largest condenser
bank was specially developed. In the case of the highest magnetic field, the pulse
duration amounts to 11 ms. In the case of somewhat lower magnetic fields the pulse
duration is longer. In Wuhan, China, a similarly powerful laboratory for pulsed
magnetic fields is expected to be completed by 2013.
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Chapter 8
The Winner: Superconductors

Abstract After Heike Kamerlingh Onnes succeeded in extending the range of
experiments to much lower temperatures by the liquefaction of the noble gas
helium, in 1911 he discovered superconductivity, where electric current flows
without detectable resistance. Superconductivity requires that distinct critical values
of the temperature and magnetic field are not exceeded. Eventually it was found that
a magnetic field is expelled from the interior of a superconductor, referred to as
Meissner effect and representing a fundamental property of superconductors. In the
mixed state, a type-II superconductor is intersected by the Abrikosov lattice of
magnetic flux quanta. Magnetic flux quantization and the Josephson effect are
discussed. The first microscopic theory, the BCS theory, explains superconductivity
in terms of a macroscopic quantum state formed by pairs of electrons (Cooper pairs)
attracted to each other because of their interaction with phonons. The motion of the
magnetic flux quanta, caused by the Lorentz force, represents the mechanism
limiting the current flowing without resistance.

Heike Kamerlingh Onnes (Fig. 8.1) had succeeded in liquefying the noble gas helium
in Leiden and in this way was able to reach the then low-temperature record of 4 K
(−269 °C). During cooling down to low temperatures, in the year 1911, he made a
surprising discovery: below a distinct temperature the electrical resistance of metals
can vanish completely and cannot be detected experimentally. For the first time the
phenomenon of “superconductivity”, as it was afterwards called, had been observed.

After Kamerlingh Onnes had extended his experiments to the newly accessible
range of distinctly lower temperatures than were possible before, he was also
interested among other things in the question of how the electrical resistance of
metals changes at these low temperatures. At the time there existed three different
predictions about the behavior of the electrical resistance at low temperatures with
decreasing temperature: (1) The resistance decreases down to the value zero, (2) it
remains constant, (3) it increases again. Mercury as a metal appeared to be highly
favorable for such measurements, since it can be prepared reasonably well with
high purity, because of its low melting point (at room temperature it is already a
liquid). The pioneering study had to be carried out with a material containing as few
perturbing impurities as possible. Therefore, for one of the initial measurements a
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thin glass capillary filled with mercury was used. On April 8, 1911 Heike
Kamerlingh Onnes, together with his assistants Cornelis Dorsman, Gerrit Jan Flim,
and the student Gilles Holst, during cooling of the capillary filled with mercury,
observed, how the electrical resistance of the sample decreased with decreasing
temperature. However, when the temperature finally reached 4 K, the curve showed
a sharp break, and the resistance dropped down abruptly to a small value which
remained undetectable (Fig. 8.2). At first, there were some irritations, since it was
presumed that the electric circuit of the measuring arrangement was defective, and
that a short-circuit possibly caused the abrupt drop of the electrical resistance.
However, after everything had been carefully checked, eventually it became clear,
that the measuring technique was in order, and that a new phenomenon had been
discovered. Later, the student Gilles Holst was employed by the N.V. Philips’
Gloeilampenfabrieken in Eindhoven, and eventually he became the first director of
Philips Research Laboratories.

Following this first observation in mercury, superconductivity was also found in
other metals such as, for example, in aluminum, lead, indium, tin, and zinc, as well
as eventually also in alloys and metallic compounds. A compilation from the year

Fig. 8.1 The Dutch physicist Heike Kamerlingh Onnes. In 1908 in Leiden for the first time he
liquefied the noble gas helium. Three years later he discovered superconductivity (Photo
Kamerlingh Onnes Laboratory, University of Leiden)
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1969 lists about 350 different superconducting material systems. Superconductivity
always appears only after cooling down below a characteristic temperature, the
“critical temperature” TC, having a specific value for each material. After the dis-
covery of the high-temperature superconductors, which will be discussed in the
following Chap. 9, the superconducting materials known up to then are referred to
as classical superconductors. Of these classical superconductors the metallic com-
pound Nb3Ge has the highest value of critical temperature with TC = 23.2 K.

Following his discovery that electric current can be transported through a
superconductor without electrical resistance, Kamerlingh Onnes soon considered
technical plans to utilize the phenomenon of superconductivity in cables for the
distribution and delivery of electrical power. However, to his great disappointment,
during his first experiments he found that the superconducting property is reduced
in a magnetic field, and that it completely disappears above a distinct value of the
magnetic field, the “critical magnetic field” HC. Here an external magnetic field acts
in exactly the same way as the “self-field”, which is generated by the transported
electric current in the superconductor itself. The critical magnetic field HC(T)
vanishes at the critical temperature TC and increases with decreasing temperature
below TC. It reaches its maximum value at a temperature of 0 K (Fig. 8.3). In many

Fig. 8.2 Discovery of
superconductivity. Electrical
resistance in ohms of a
mercury sample plotted as a
function of the temperature in
Kelvin (H. Kamerlingh
Onnes)
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classical superconductors this maximum value ranges between the 100-fold value
up to the 5000-fold value of the earth’s magnetic field.

Because of the self-field of the transported electric current, the maximum current
value, up to which superconductivity is maintained, is limited. This maximum
current in a superconductor is referred to as the critical current IC. In the simplest
case the critical current is reached when the magnetic self-field of the current is
equal to the critical field HC. This relationship is also called Silsbee’s rule, named
after Francis Briggs Silsbee. For many years, this severe restriction on the possi-
bility of transporting electric currents in superconductors has hindered the technical
application of superconductivity. This only changed in the 1960s, when new
superconducting materials were found with more favorable properties and relatively
high values of the critical magnetic field and the critical current. We will come back
to this subject at the end of this chapter.

8.1 Meissner Effect, Magnetic Penetration Depth,
London Theory

In the year 1933, Walther Meissner (Fig. 8.4) and his collaborator Robert
Ochsenfeld at the German Bureau of Standards (Physikalisch-Technische
Reichsanstalt) in Berlin-Charlottenburg made an important discovery, which turned
out to affect strongly subsequent development. If a superconductor is placed within
a magnetic field, during the transition to the superconducting state the magnetic
field is expelled from the superconductor and vanishes in its interior. Now this
phenomenon is referred to as the Meissner effect (Fig. 8.5). At that time after the
pioneering achievement by Kamerlingh Onnes in Leiden, Walther Meissner was
one of the first who could also liquefy the noble gas helium and who managed a
properly equipped low-temperature laboratory. After all, it had taken 15 years until

temperature 

Fig. 8.3 Temperature
dependence of the critical
magnetic field HC

(schematically)
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outside Leiden at another location, namely by John C. McLennan at the University
of Toronto, the liquefaction of helium had been achieved. Then the
Low-Temperature Laboratory of the German Bureau of Standards was the third
location worldwide.

Soon after the Meissner effect was discovered, 1934 Cornelis Jacobus Gorter and
Hendrik Brugt Gerhard Casimir in Holland derived from it an important conclusion.
The magnetic-field expulsion from the interior of the superconductor due to the
Meissner effect, indicates that the superconducting state represents a thermody-
namic equilibrium state, which, per definition, is independent of the path along
which this state has been reached by variation of the magnetic field and the tem-
perature. Ultimately it suffices if the temperature T is smaller than the critical
temperature TC and if the magnetic field is smaller than the critical field HC(T).

In Fig. 8.6 we have marked point c of the superconducting state (below the
critical temperature TC and the critical magnetic field HC). If we assume only
infinite electrical conductivity without the existence of the Meissner effect, along
the path a → b → c the state with B = 0 will be established. On the other hand, the
path a → d → c results in the state of point d with B ≠ 0. Independent of the
previous path, the state with B = 0 is always established only because of the
Meissner effect. (Here we have assumed perfect reversibility of the superconductor,

Fig. 8.4 Walther Meissner
(Photo
Physikalisch-Technische
Bundesanstalt, Braunschweig
and Berlin)
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and have ignored the trapping of magnetic flux due to pinning effects). We rec-
ognize that superconductors are more than perfect electrical conductors (with
infinite electrical conductivity). It is the Meissner effect, which uniquely charac-
terizes the superconducting state.

Furthermore, Gorter and Casimir have shown that the validity of the Meissner
effect yields the possibility of calculating exactly the energy difference between the
normal (nonsuperconducting) and the superconducting state. In their thermodynamic
treatment of the superconducting phase transition, following the discovery of the
Meissner effect, they consider the density of the Gibbs free energy in the normal (Gn)
and the superconducting (Gs) state. In the presence of the magnetic field H one finds:

Fig. 8.5 Meissner effect. a In the normal state above its critical temperature, the superconducting
sphere is completely penetrated by the external magnetic field. b Below its critical temperature the
superconductor completely expels the magnetic field from its interior as long as the critical
magnetic field is not exceeded. The field expulsion is accomplished by means of electric currents,
flowing without losses on the surface around the superconductor and thereby shielding the interior
of the superconductor against the magnetic field

Fig. 8.6 Independence of the superconducting state of the path along which this state has been
reached. Because of the Meissner effect, at point c the final state with B = 0 is reached along both
paths a → d → c and a → b → c
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Gs T;Hð Þ ¼ Gs T; 0ð Þ �
ZH

0

M Hð Þ dH: ð8:1Þ

M(H) is the magnetization. In the case of the Meissner effect (perfect diamag-
netism) we have

M Hð Þ ¼ � 1
4p

H: ð8:2Þ

The last part in (8.1) represents the work performed during the expulsion of the
magnetic field. With (8.2) we obtain

Gs T;Hð Þ ¼ Gs T; 0ð Þþ 1
8p

H2: ð8:3Þ

At H = HC(T) under equilibrium we have Gn(T, HC) = Gs(T, HC) and on the other
hand Gn(T, HC) = Gn(T, 0). Hence, in the case H = HC for the difference between
the energy density in the normal and the superconducting state we find

Gn T; 0ð Þ � Gs T; 0ð Þ ¼ 1
8p

H2
C Tð Þ: ð8:4Þ

In order to maintain the Meissner effect, electric currents must flow along the
surface of the superconductor, generating a magnetic field similar to that in an
electric coil. This generated magnetic field is directed opposite to the external
magnetic field and compensates the latter field exactly. These “shielding currents”
must flow along the surface without losses, i.e., without any electrical resistance,
since otherwise the superconducting state cannot last arbitrarily long in the presence
of the magnetic field (Fig. 8.7). The case of electric shielding currents experiencing
losses can be found in each nonsuperconducting electrical conductor such as, for
example, copper. If such a conductor is placed suddenly in a magnetic field, at the
beginning electric shielding currents flow again along its surface, which expel the
magnetic field from the interior of the conductor. However, because of the electric
losses appearing in this case, the shielding currents decrease as a function of time,
and gradually the magnetic field completely penetrates into the electrical conductor.
The time it takes for this decay process of the shielding currents depends on the
electrical conductivity of the conductor. It becomes longer and longer, as the
electrical conductivity increases.

From our discussion it is clearly apparent, that the Meissner effect is based on the
flow of superconducting shielding currents. Hence, superconductivity is the nec-
essary consequence of the existence of the Meissner effect. However, the inverse
conclusion, i.e., that in a material with vanishing electrical resistance the Meissner
effect must exist, is not possible. Therefore, the Meissner effect is more fundamental
for superconductivity than the disappearance of the electrical resistance. However,
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the notation “superconductivity” puts the latter quality more into focus. At the time,
Max von Laue looked at the discovery of the Meissner effect as a turning point in
the history of superconductivity.

The superconducting shielding currents near the surface cannot have an arbi-
trarily high or even infinite density of the electric current flow. Instead, they must
remain limited to a finite value of the current density. This has the consequence, that
the shielding currents always need a layer of a specific thickness near the surface,
and that the magnetic field penetrates a small but finite distance into the super-
conductor, in spite of the existence of the Meissner effect. The thickness of this
layer is referred to as the “magnetic penetration depth”. In the following we denote
this thickness with the symbol λm.

The magnetic field of the superconducting shielding current exactly compensates
the external magnetic field. The density js of the shielding current is approximately

js ¼ HC=km: ð8:5Þ

In 1935, a phenomenological theory of the finite magnetic penetration depth λm
was proposed by the brothers Fritz and Heinz London. For a short description of
their theory we start with the equation of the forces acting upon an electron, without
including a dissipative part:

m
@vs
@t

¼ �eð ÞE ð8:6Þ

Fig. 8.7 Experimental
demonstration of the Meissner
effect. A small rectangular
piece of a high-temperature
superconductor cooled down
to the temperature of liquid
nitrogen is suspended above a
ferromagnetic disk.
A repulsive force exists
between this ferromagnet and
the shielding currents induced
in the superconductor because
of the Meissner effect (Photo
Rainer Straub)

124 8 The Winner: Superconductors



With the superconducting current density

js ¼ �eð Þnsvs ð8:7Þ

we obtain

E ¼ m= e2ns
� �� � @js

@t
¼ lok

2
m
@js
@t

: ð8:8Þ

The quantity λm introduced in (8.5) is also referred to as London penetration depth
(and is often denoted by λL). The length λm is given by

k2m ¼ m= lonse
2� �
: ð8:9Þ

Here ns is the density and vs the velocity of the superconducting electrons. µo is the
permeability of vacuum. With Maxwell’s equation

curlE ¼ � @B
@t

ð8:10Þ

from (8.8) we obtain

lok
2
mcurl

@js
@t

� �
þ @B

@t
¼ 0: ð8:11Þ

It was the central idea of Fritz and Heinz London, to extend (8.11) by eliminating
the time-derivative and thereby to postulate a new equation

lok
2
mcurl js þB ¼ 0: ð8:12Þ

With Maxwell’s equation

curlH ¼ j ð8:13Þ

we obtain

DH ¼ 1

km
2 H ð8:14Þ

and from this the solution

H xð Þ ¼ H 0ð Þexpð�x=kmÞ: ð8:15Þ

This situation is shown in Fig. 8.8, where we have assumed the geometry of a
superconductor with its (positive) x-coordinate running from the surface at x = 0 to
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the left into the interior of the superconductor, which occupies the half-space x > 0.
The magnetic field H is assumed to be oriented perpendicular to the x-direction.

Equations (8.8) and (8.12) are referred to as first and second London equation,
respectively. In addition to Maxwell’s equations, they are valid in the case of
superconductors and characterize these in contrast to other materials. From (8.15)
we see, that the magnetic field is shielded exponentially from the interior of the
superconductor, and that the shielding occurs within a surface layer of thickness λm.
At T → TC we find ns → 0, and, hence, λm → ∞.

For many superconductors the magnetic penetration depth covers the range
λm = 40–60 nm. It strongly increases upon approaching the critical temperature TC.
The magnetic penetration depth represents an important length, which is specific for
each material. It plays an important role in many properties of superconductors. For
example, because of the finite magnetic penetration depth, an accumulation of small
superconducting grains, with the diameter of each grain being similar to the
magnetic penetration depth, altogether only displays a strongly reduced Meissner
effect, since the magnetically shielded volume fraction remaining in each grain is
correspondingly reduced to a relatively small value.

A superconducting circular current, similar to that flowing as a shielding current
and causing the Meissner effect, can also serve to find out in a simple experiment, if
the electrical resistance in a superconductor is exactly zero, or if a finite residual
resistance still remains. For this purpose the usual resistance measurement, based on
the electric voltage drop along a current-carrying conductor, is not sufficient, since
the electric voltage can be too small to be detected by this method. However,
instead of this conventional resistance measurement, one can also start a circular
electric current in a superconducting ring by magnetic induction. As in an electric
coil, the circular current then generates a magnetic field, that only remains to be
detected. Now the task consists in observation of how long the magnetic field of the
circular current can be detected. The longer the running time of the current, during
which no reduction of the magnetic field is observed, the closer the electrical

Fig. 8.8 Dependence of the
density of the
superconducting electrons, ns,
and of the magnetic field, H,
upon the distance from the
interface between a normal
(N) and a superconducting
(S) region
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resistance of the superconducting ring must approach zero. In 1961 the two
Americans D.J. Quinn and W.B. Ittner performed an advanced version of such an
experiment. By means of two sequentially deposited layers of lead they produced a
thin superconducting tube of lead, and they then investigated the temporal decay of
the magnetic flux trapped within the tube over a time of seven hours. From their
measurements at a temperature of 4 K, as the upper limit of the electrical resistivity
of superconducting lead, they obtained the value 3.6 × 10−23 Ω cm. This value is
about 17 powers of ten smaller than the resistivity of one of our best metallic
conductors, copper, at room temperature.

In addition to the magnetic penetration depth, a second characteristic length
plays a fundamental role in superconductors: the “coherence length” ξ. This length
indicates the smallest possible spatial distance, within which the property of
superconductivity can vary appreciably. In the year 1950, the Englishman Alfred
Brian Pippard was the first to point out this spatial rigidity of superconductivity.
Also in 1950, the two Russians Vitaly Lazarevich Ginzburg and Lew Dawidowitsch
Landau developed another theoretical approach dealing with the question of the
spatial coherence of superconductivity. The “Ginzburg-Landau theory” starts from
an ansatz for the thermodynamic energy, in combination with the general concept
of Landau of “higher-order phase transitions”, which are classified according to a
specific mathematical scheme. The superconducting property is expressed in terms
of a wave function ψ.

Initially, it was felt that between the two characteristic lengths λm and ξ the
coherence length ξ is always larger than the magnetic penetration depth λm. This
resulted from the following considerations. Because of the finite extension of the
coherence length ξ, a superconducting region cannot exist exactly up to the inter-
face, which separates it from a normal region. Instead, it loses its superconducting
property—and, hence, also its superconducting condensation energy—already at
the distance ξ from this interface. This results in the positive interface energy
α1 = (HC

2 /8π)ξ. However, from this we have to subtract the amount (HC
2 /8π)λm, since

within the magnetic penetration depth λm no gain and, hence, no loss of conden-
sation energy appears. Therefore, the wall energy α of an interface between a
normal and a superconducting region is given by

a ¼ ðH2
C=8pÞðn� kmÞ: ð8:16Þ

This role of the two lengths ξ and λm is shown in Fig. 8.8.
In its simplest form the Meissner effect is observed only if, in the nearest

environment of the superconductor, the magnetic field practically remains
unchanged during the field expulsion. We have such a case, if the shape of the
superconductor is thin and long, and if its longitudinal direction is oriented parallel
to the magnetic field. In the other case, if, for example, the superconductor is shaped
in the form of a thin plate which is placed perpendicularly within the magnetic field,
near the outer border of the plate, the magnetic field is strongly enhanced because of
the field expulsion, and it can quickly become larger than the critical magnetic field
HC(T). Now the complete expulsion of the magnetic field cannot be maintained,
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and magnetic flux will penetrate into the superconductor. As Landau proposed for
the first time in 1937, as a consequence, a new state is formed in which both normal
domains carrying the local magnetic field HC and superconducting domains with
zero local magnetic field, exist next to each other. This new state is referred to as the
“intermediate state”. Similar to all spatial systems of domains, the interface sepa-
rating a normal from a superconducting domain is associated with a specific wall
energy. As we see from (8.16), this wall energy is proportional to the length
difference ξ − λm. Since initially one had expected, that the wall energy is always
positive, and that the formation of a domain wall always consumes energy, one had
concluded that the coherence length ξ must be larger than the magnetic penetration
depth λm.

8.2 Type-II Superconductors

However, eventually this picture was shaken. Already in the 1930s the first per-
turbing signals came from the Low Temperature Laboratory of Leo Vasilyevich
Shubnikov in Kharkov in the Ukraine, where experiments on superconductivity had
been started at an early stage. Again and again experiments in particular with
superconducting alloys, yielded results which could be explained only with great
difficulties in terms of the existing ideas. In 1953 the decisive breakthrough was
achieved by the young theoretical physicist Alexei A. Abrikosov in Moscow. At the
University he was a roommate of Nikolay Zavaritzkii, who performed experiments
with superconducting thin films at the famous Kapitza Institute for Physics
Problems in order to check the predictions of the Ginzburg-Landau theory. Up to
this time one was only interested in the case where the length difference ξ − λm and,
hence, the wall energy, is positive. Now for the first time Abrikosov and Zavaritzkii
seriously discussed the possibility, that the length difference could also become
negative, if the coherence length ξ were smaller than the magnetic penetration depth
λm. Based on the Ginzburg-Landau theory, Abrikosov calculated the critical
magnetic field for the case, where the difference ξ − λm is negative, and he could
demonstrate, that only in this case could good agreement with Zavaritzkii’s
experimental data, obtained with particularly carefully prepared thin films, be
achieved. Hence, they were apparently dealing with a still unknown, new kind of
superconductor. Abrikosov and Zavaritzkii called them the “second group”.
Eventually, they were referred to as type-II superconductors (with ξ < λm), whereas
the superconductors with positive wall energy are now called type-I supercon-
ductors (with ξ > λm).

Subsequently, Abrikosov has theoretically analyzed the type-II superconductors
in more detail using the Ginzburg-Landau theory and found that, in a magnetic
field, they can assume a new state, in which the superconductor is intersected by a
regular lattice consisting of individual “magnetic flux quanta”. The famous
Abrikosov flux-line lattice had been discovered. The state of the superconductor
containing the flux-line lattice is referred to as the mixed state (Fig. 8.9). Associated
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with each magnetic flux line, a spatially confined, local magnetic field passes like a
thread through the superconductor. This spatially highly confined magnetic field is
generated, as in a magnetic coil, by superconducting circular currents flowing
around the thread of the local magnetic field. We will return to this magnetic flux
line further below. Abrikosov completed this work in the year 1953. However, the
proposed ideas were so novel that they were not accepted by Lew Dawidowitsch
Landau, who was Abrikosov’s thesis advisor. However, two years later, similar
issues appeared in the turbulent flow of superfluid helium at low temperatures. In
this case the circulation of the flow is also subject to quantum conditions similar to
those of the circular supercurrents associated with the magnetic flux quanta. Only
after the American Richard Phillips Feynman had theoretically discussed quantized
vortex lines in rotating superfluid helium in this context, was Landau satisfied. In
this way it happened that Abrikosov’s paper was published only in 1957.

In his lecture in Stockholm on December 8, 2003, on the occasion of receiving
the 2003 Nobel Prize in Physics, together with Vitaly L. Ginzburg and
Anthony J. Leggett, Abrikosov recalled these developments:

I made my derivation of the vortex lattice in 1953 but the publication was postponed since
Landau first disagreed with the whole idea. Only after R. Feynman published his paper on
vortices in superfluid helium, and Landau accepted the idea of vortices, did he agree with
my derivation, and I published my paper in 1957. Even then it did not attract attention, in
spite of an English translation, and only after the discovery in the beginning of the sixties of
superconducting alloys and compounds with high critical magnetic fields, did there appear
an interest in my work. Nevertheless, even after that the experimentalists did not believe in
the possibility of (the) existence of a vortex lattice incommensurable with the crystalline

Fig. 8.9 Superconducting mixed state characterized by a lattice of quantized magnetic flux lines,
proposed for the first time by Abrikosov. a Schematics. A total of nine magnetic flux lines are
shown. Each flux line (like a thread carrying a magnetic field) is surrounded by superconducting
circular currents. b Experimental demonstration, by means of the Bitter decoration technique, of
the Abrikosov lattice of magnetic flux lines in a plate of superconducting niobium with 0.5 mm
thickness. The many dark spots mark the locations at which the individual magnetic flux lines
reach the surface of the superconducting plate (U. Essmann)

8.2 Type-II Superconductors 129



lattice. Only after the vortex lattice was observed experimentally, first by neutron diffraction
and then by (Bitter) decoration, did they have no more doubts. Now there exist many
different ways to get images of the vortex lattice.

Being asked why Abrikosov did not push more strongly for his spectacular novel
results at the time, he gave the following answer:

The true reason why at the time I did not insist more strongly in my theory, arose from the
fact that then all this did not appear so important. Superconductivity was still being con-
sidered an exotic phenomenon far from any practical applications. Furthermore, I was
already occupied with the extension of quantum electrodynamics to high energies, which
appeared to me much more important.

Magnetic flux quanta only penetrate into the interior of a type-II superconductor,
when the “lower critical magnetic field” HC1 is reached. Below HC1 the Meissner
effect still exists, and the magnetic field vanishes within the interior of the super-
conductor. The mixed state is established above HC1 up to the “upper critical
magnetic field” HC2. A convincing first experimental confirmation of the existence
of the Abrikosov flux-line lattice in the mixed state has been given by Uwe
Essmann and Hermann Träuble from the Max Planck Institute for Metals Research
in Stuttgart in the year 1967. They succeeded in the imaging of the flux-line lattice
at the surface of the superconductor by sprinkling a powder of small ferromagnetic
particles onto the surface. Since the powder is attracted by the locations where the
flux lines reach the surface, the powder accumulates at these locations forming
small piles which decorate the individual flux lines (Fig. 8.9). This decoration
method was used for the first time in the year 1931 by the American Francis Bitter
for imaging the domain structure of ferromagnetic materials, and since that time it
has been referred to as the Bitter technique.

8.3 Magnetic Flux Quantum

Because of the prediction of type-II superconductors and of the magnetic flux-line
lattice by Abrikosov, the Ginzburg-Landau theory has achieved great success. By
describing the superconducting state of the electrons in terms of a macroscopic
quantum mechanical wave function, this theory provided a simple explanation of a
series of fundamental phenomena in the field of superconductivity. The magnetic
flux quantization is an important example. Within a superconductor magnetic flux
can exist only in integer multiples of a smallest unit h/2e = 2.068 × 10−15 Vs,
representing the magnetic flux quantum. The quantity h is Planck’s constant, and e
is the charge of an electron. This quantum condition immediately results from the
fact, that the macroscopic wave function describing the superconducting state must
reproduce itself exactly, if the spatial coordinate point of the wave function is
moved once around the enclosed magnetic flux region and is returned exactly to the
starting point. As the smallest unit of magnetic flux, the flux quantum is very tiny.
For example, in the magnetic field of the earth one square centimeter is intersected
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by about one million flux quanta. In beautiful experiments in the year 1961 the two
Germans Robert Doll and Martin Näbauer and independently also the Americans
Bascom Deaver and William Fairbank demonstrated the quantization of the mag-
netic flux in a superconductor. By placing a tiny superconducting tube of only about
10 µm in diameter in a small magnetic field oriented parallel to the axis of the tube,
Doll and Näbauer were able to show that the magnetic flux within the small hollow
cylinder was either zero or amounted to an integer multiple of the flux quantum
specified above (Fig. 8.10).

A more detailed explanation of the step structure shown in Fig. 8.10b is illus-
trated in Fig. 8.11. Here in part (a) the superconducting shielding current Is is
plotted versus the magnetic flux density Be. Be is oriented parallel to the axis of the
small superconducting cylinder. The magnetic flux πR2Be (R = cylinder radius)
passing through the cross-sectional area of the cylinder is indicated in units of the
magnetic flux quantum φo = h/2e. (The vector φo is oriented parallel to the flux
density B). Initially, the shielding current Is prevents the entry of magnetic flux into
the cylinder due to the Meissner effect. When the magnetic flux density has reached
the value Be = φo/(2πR

2), the shielding current compensates exactly half a flux
quantum φo/2 within the cylinder (point 1). If Be is increased further, the shielding
current Is reverses its sign (instead of increasing further), such that exactly one flux
quantum φo exists within the cylinder (half of which is generated by Is; point 2).
When Be continues to be increased, ∣Is∣ decreases again until (at point 3) the state
with Is = 0 is reached at Be = φo/(πR

2). During further increasing Be, this process
repeats itself. In this way, the steps of the number n of the magnetic flux quanta
within the cylinder are generated (Figs. 8.10b and 8.11b). In Fig. 8.11c the
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Fig. 8.10 Experimental proof of the magnetic flux quantization in a superconductor. a A tiny
superconducting tube with only about 10 µm diameter is cooled down in the presence of a small
magnetic field oriented parallel to the axis of the tube. Below the critical temperature TC the
magnetic field is turned off, and the magnetic flux trapped within the tube is measured. b The
frozen-in magnetic flux displays a quantized step structure as a function of the magnetic field B,
since only integer multiples of the magnetic flux quantum (h/2e) are allowed within the tube. The
figure shows the observation of 0, 1, and 2 magnetic flux quanta, respectively. Without magnetic
flux quantization, the data points would fall on the straight dashed line (R. Doll and M. Näbauer)
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superposition of the applied magnetic field (solid arrows) and of the magnetic field
generated by Is (dashed arrows) is shown schematically for the three points 1–3 of
Fig. 8.11a. The entry of the magnetic flux quanta φo into the cylinder effects, that
the shielding current Is and the kinetic energy associated with it remain limited.

Theoretically, the magnetic flux quantization is demonstrated as follows.
Representing the superconducting state by a macroscopic wave function (order
parameter)

w r; tð Þ ¼ w r; tð Þj jeiuðr;tÞ ð8:17Þ

with an amplitude ∣ψ(r, t)∣ and a phase φ(r, t), then the exact reproduction of the
state after a complete path around a fixed point in the superconductor requires that
the ring integral along this path is

I
grad u ds ¼ n 2p ð8:18Þ

where n is an integer. In a magnetic field, the generalized particle momentum is

m�vs ¼ �h grad u� e�A ð8:19Þ

Fig. 8.11 Experimental demonstration of the magnetic flux quantization during entry of magnetic
flux into a small superconducting cylinder. a Superconducting shielding current Is plotted versus
the magnetic flux density Be oriented parallel to the cylinder axis. b Number n of the magnetic flux
quanta within the cylinder plotted versus Be. c Superposition of the applied magnetic field (solid
arrows) and of the magnetic field generated by Is (dashed arrows) at the three points 1–3 from
a. Further details are given in the text
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which yields

I
ðm�vs þ e�AÞds ¼ n h ð8:20Þ

Here A is the vector potential and ds a line element. Assuming that the super-
conductor is sufficiently thick, we can find an integration path where vs = 0. Then
applying Stokes’ law, we have

I
Ads ¼

Z
curl A da ¼

Z
B da ð8:21Þ

(da is an area element), and with e* = 2e because of Cooper pairing, (8.20) yields
the magnetic flux quantization:

R
B da ¼ n h

2e ¼ n uo.

Now we will look more closely at a magnetic flux line in a type-II supercon-
ductor, discussed for the first time by Abrikosov (Fig. 8.12). In its center each flux
line has a normal core, the radius of which is approximately given by the coherence
length ξ. The local magnetic field associated with the flux line reaches a maximum
in the center of the line and decreases toward the outside. This decrease in the
magnetic field mostly takes place within a radius given by the magnetic penetration
depth λm. This spatial confinement of the local magnetic field is accomplished by
means of circulating superconducting currents flowing around the center of the flux
line within a radial distance, in the range between the coherence length ξ and the
magnetic penetration depth λm.

The expression (h/2e), indicated above for the magnetic flux quantum in
superconductors, is exactly half of the value (h/e) of the magnetic flux quantum,
which we have dealt with in Chap. 7 in the context of the fractional
quantum-Hall-effect. The reason for this half-value is the fact that superconductivity
is based on the Cooper pairs, which consist of two electrons. This subject will be
taken up next.

Fig. 8.12 Structure of a
single flux line. Local
magnetic field h, density of
the superconducting electrons
ns, and the circulating
superconducting current
density js as a function of the
distance r from the axis of the
flux line
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8.4 BCS Theory, Energy Gap

It has taken nearly 50 years since the discovery of superconductivity, until for the
first time a microscopic theory was proposed which could explain satisfactorily the
underlying mechanism. In the year 1957 the three Americans John Bardeen, Leon
Cooper, and Robert Schrieffer achieved the long-expected theoretical breakthrough.
Their theory, the “BCS theory”, quickly became very famous. The question why it
took so long to produce a theoretical explanation of superconductivity, can be
answered relatively simply. The energy difference of the electrons between their
normal and their superconducting state is extremely small and much smaller than
the Fermi energy. On the other hand, the uncertainty in the calculation of the
different individual contributions to the energy of the electrons in the crystal is
much larger than the energy gain during the transition into the superconducting
state. Hence, the theory had to find the exact point leading to superconductivity.
The BCS theory is based on the central idea that, at low temperatures, a specific
attractive force is acting between two electrons. Because of this attraction, two
electrons combine into pairs in a distinctive way and experience an energy
reduction in the form of binding energy. Such a formation of pairs accompanied by
a reduction in energy had been theoretically derived by Leon Cooper in 1956.
Therefore, the electron pairs are referred to as “Cooper pairs”. According to the
BCS theory, the attractive force leading to the formation of the Cooper pairs is due
to the distortions of the crystal lattice near the individual electrons, i.e., due to the
phonons. In this way, the otherwise expected repulsive force between two electrons
is overcompensated. Already by the early 1950s strong indications for the important
role of the crystal lattice in the mechanism of superconductivity were obtained,
based on experimental observations of the “isotope effect”. One generally speaks of
an isotope effect, when the result depends on the mass of the atomic nuclei at
constant electric charge of the nuclei, i.e., on the number of neutrons in the atomic
nuclei. By careful study of the different and specially prepared pure isotopes of
various superconducting materials such as, for example, lead, mercury, and tin, it
was found, that the critical temperature TC is inversely proportional to the
square-root of the mass of the lattice atoms:

TC � 1=Ma ð8:22Þ

with the exponent α = 0.5. Hence, the crystal lattice must play some role in
superconductivity.

During pair formation, two electrons with opposite spin always combine with
each other. Therefore, the total spin of an individual Cooper pair is zero, and the
Pauli principle does not apply in this case. Hence, all Cooper pairs can occupy the
same quantum state, which is described in terms of a macroscopic quantum
mechanical wave function. However, not all electrons participate in the formation
of Cooper pairs and in the macroscopic quantum state. Instead, only the electrons
from a distinct small energy interval near the Fermi surface are involved. We see
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again, how the concept of the Fermi surface plays a central role. Mathematically,
the subject of superconductivity confronts us with a “manybody problem”,
requiring special techniques for its theoretical treatment. The development of these
necessary new methods started about 60–70 years ago in conjunction with quantum
field theory. The first steps of this theory can be found in a paper published in the
year 1928 by the German Pascual Jordan and Eugene Paul Wigner from Hungary.

One main result of the BCS theory was the prediction that, in the supercon-
ducting state, a gap appears in the energy spectrum of the electrons at the Fermi
energy, in which no energy states exist which can be occupied by electrons. The
energy gap vanishes above the critical temperature TC. Below TC the energy gap
increases with decreasing temperature in a distinct way and reaches its maximum
value at a temperature of 0 K. In the year 1960, Ivar Giaever presented an
impressive proof of this energy gap by means of his famous tunneling experiment
(Fig. 8.13). For some time he had been fascinated by the quantum-mechanical
tunneling effect. Giaever was born in Norway and as a young mechanical engineer
was employed at General Electric in Schenectady in the American Federal State of
New York. At the Rensselaer Polytechnic Institute near the location of his
employment, he had heard in a lecture about the new BCS theory and its prediction
of a gap in the energy spectrum of the electrons. On his way home after the lecture
he had the idea that the energy gap must directly affect the electric current flow
between a superconducting and a normal electrode, if the two electrodes are sep-
arated from each other by a thin, electrically insulating barrier. Because of this
barrier, the electric current flow is possible only by means of the quantum
mechanical tunneling process. Hence, this arrangement is referred to as a tunnel
junction. During the propagation of particles, the tunneling effect is caused by the
fact, that the wave function of the particle can still seep through a high wall and can
reach an appreciable value at the other side. However, in our tunnel junction the
tunneling current cannot flow as long as no allowed energy states in the super-
conductor are available for the electrons coming from the other electrode, because

Fig. 8.13 Experimental proof of the energy gap in a superconductor by means of the tunneling
experiment of Giaever. a A superconducting electrode A and a normal electrode B are separated
from each other by a thin, electrically insulating barrier C, such that the electric current flow across
the barrier is only possible because of the quantum mechanical tunneling process. b Electric
current I plotted versus the voltage V in the case when both electrodes are metals in the normal
state. c Electric current I plotted versus the voltage V in the case when one metal electrode is
superconducting. The electric current can start to flow only when the electrical potential difference
between the two electrodes has reached the value of the energy gap
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of the energy gap. Only when the potential difference between both electrodes has
reached the value of the energy gap because of the applied electric voltage does the
electric current flow become possible. We have a similar result, if both electrodes
are superconducting. Hence, it should be possible to determine the superconducting
energy gap just by means of a simple measurement of the electric voltage and the
electric current in a tunnel junction. Giaever’s experiments have impressively
confirmed these expectations. After this pioneering step, tunneling experiments
with superconductors have become an important source of information about the
physics of superconductors. The BCS theory has been confirmed by many further
experiments and has quickly found wide acceptance. There exists a long list of
physicists, who had tried before without success to construct a microscopic theory
of the mechanism of superconductivity. Among others, this list includes the names
Felix Bloch, Niels Bohr, Léon Brillouin, Jakov I. Frenkel, Werner Heisenberg,
Ralph Kronig, Lew Dawidowitsch Landau, and Wolfgang Pauli.

The fact that it is the formation of Cooper pairs occupying a macroscopic
quantum state, which leads to superconductivity, is also visible in the magnitude of
the magnetic flux quantum discussed above. Since the Cooper pairs are composed
of two elementary charges, the magnetic flux quantum (h/2e) is only half as large as
would be the case if the underlying elementary particles carried only a single
elementary charge, leading to (h/e).

8.5 Josephson Effect

Soon after Giaever had published the result of his famous tunneling experiment, a
student in Cambridge, England was interested in the underlying tunneling process:
Brian David Josephson. He was tutored by Alfred Brian Pippard, and in 1961/1962
he attended lectures by the American Philip Warren Anderson about the new
developments in the theory of superconductivity. Josephson was highly impressed
by the concept of superconductivity in terms of a macroscopic quantum phe-
nomenon, which extended far beyond the range of validity in individual atoms or
molecules. When he theoretically analyzed the details of the electric current flow
through the barrier of a tunnel junction between two superconductors, as it had been
used by Giaever, he derived two equations for the electric current and for the
electric voltage, respectively, which are known since as the Josephson equations:

Is ¼ IC sin v ð8:23Þ
@v
@t

¼ 2e
�h
V ð8:24Þ

In (8.23) the current of Cooper pairs flowing without electrical resistance is
described. Equation (8.24) indicates that an electric voltage V across the tunnel
junction is always accompanied by an alternating supercurrent between both
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superconductors oscillating at a high frequency. The frequency of these Josephson
oscillations increases proportionally with the electric voltage. Equations (8.23) and
(8.24) are based on the concept that superconductivity represents a macroscopic
quantum phenomenon, described by the wave function (8.17) with an amplitude
∣ψ(r, t)∣ and a phase φ(r, t). The current-phase relation (8.23) indicates that the
supercurrent Is flowing across a weak contact is connected with the phase difference
χ = φ2 − φ1 between both sides of the junction. IC is the critical current of the
junction geometry.

The Josephson equations (8.23) and (8.24) can be derived in different ways. One
derivation given by Richard Feynman starts with the time-dependent Schrödinger
equation for the two wave functions ψ1 and ψ2 of the two superconductors, which
are still separated initially, and then a coupling between both is added. Denoting the
two sides of the Josephson junction by the indices 1 and 2, respectively, the
Schrödinger equations of the wave function for each side are

i �h
dw1

dt
¼ l1w1 þKw2 ð8:25Þ

and

i �h
dw2

dt
¼ l2w2 þKw1 ð8:26Þ

Here K is a coupling constant, and l1;2 the chemical potential (energy) on each side.
With the potential difference V between both sides we have

l1 ¼ e�V=2; l2 ¼ �e�V=2 ð8:27Þ

Connecting the wave function (8.17) with the density ns of the superconducting
electrons according to ∣ψ∣2 = ns, we write

w1 ¼ n1=2s1 � eiu1 ; w2 ¼ n1=2s2 � eiu2 ð8:28Þ

and by insertion into (8.25) we obtain

i �heiu1
1

2n1=2s1

_ns1 � �h n1=2s1 _u1e
iu1 ¼ e�V

2
n1=2s1 � eiu1 þKn1=2s2 � eiu2 ð8:29Þ

Insertion into (8.26) yields an analogous result. In (8.29) we divide by �heiu1=2n1=2s1
and find

i _ns1 � 2ns1 _u1 ¼
e�V
2�h

2ns1 þ K
�h
2ðns1ns2Þ1=2eiðu2�u1Þ ð8:30Þ
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Equalizing the real parts on both sides yields

�2ns1 _u1 ¼
e�V
�h

ns1 þ 2K
�h

ðns1ns2Þ1=2 cosðu2 � u1Þ

and

_u1 ¼ � e�V
2�h

� K
�h
ðns2=ns1Þ1=2cos u2 � u1ð Þ ð8:31Þ

Analogous one finds from (8.26)

_u2 ¼
e�V
2�h

� K
�h
ðns1=ns2Þ1=2cos u2 � u1Þð Þ ð8:32Þ

In the case ns1 = ns2 = ns we have

_u2 � _u1 ¼
e�V
�h

ð8:33Þ

Setting ðu2 � u1Þ ¼ v and noting the Cooper pairs, e* = 2e, finally we obtain (8.24).
This last result reminds us of the Einstein relation 2 eV = ΔE = ћω. In Sect. 8.7

we return to relation (8.24), when we discuss its application in the form of the
Josephson voltage standard.

Equalizing the imaginary parts in (8.30), we obtain

_ns1 ¼ 2K
�h

ðns1ns2Þ1=2sin v ð8:34Þ

and analogous from (8.26)

_ns2 ¼ � 2K
�h

ðns1ns2Þ1=2sin v ð8:35Þ

With _ns1 ¼ � _ns2 being proportional to the current Is, we recover the current-phase
relation (8.23).

Josephson made both predictions in the year 1962. At first, his theory was met
by scepticism and hardly any understanding, as often happens with completely new
ideas. As an example, Felix Bloch speaks of a conversation he had with the, also
highly renowned, American theoretical physicist Chen NingYang:

Yang told me that he could not understand it, and asked whether I could. In all honesty
I had to confess that I could not either, but we made a deal that whoever of us first
understood the effect would explain it to the other.

By 1963 Josephson’s theory had already been confirmed experimentally
(Fig. 8.14). The second Josephson equation also emphasizes again, that it is the
Cooper pairs with their two elementary charges, which lead to superconductivity.

138 8 The Winner: Superconductors



In this context of our discussion of the Josephson effect between two supercon-
ductors, only weakly coupled to each other, a brief note in the protocol of the board
meeting at the German Bureau of Standards (Physikalisch-Technische Reichsanstalt)
in Berlin-Charlottenburg in March 1926 is interesting historically. At that time,
Albert Einstein was a member of the board, and during the meeting he made the
following remark: “Of particular interest is the question, of whether the location of
the junction joining two superconductors also becomes superconducting”.

The remark by Einstein at the board meeting of the Reichsanstalt is connected with
the fact that, at the time, for explaining superconductivity he had proposed that it is
caused bymolecular conducting chains. In his commemorative address for Kamerlingh
Onnes in 1923, Einstein discussed the state of superconductivity as follows:

So it appears unavoidable that the superconducting currents are carried by closed molecular
chains (conducting chains), the electrons of which incessantly experience cyclical
exchanges. Therefore, Kamerlingh Onnes compares the closed currents in superconductors
with Ampère’s molecular currents. [ … ] It may appear unlikely, that different kinds of
atoms can combine to form conducting chains. Hence, the transition from one supercon-
ducting metal to another is perhaps never superconducting.

Motivated by these ideas of Einstein, in 1932 Walther Meissner together with
Ragnar Holm, working for the Siemens company in Berlin in its research labora-
tories, carried out experiments concerning the contact between two superconductors.

voltage  (volt)

Shapiro steps 

tunneling current 
between supercond. 

normal 
tunneling
current 

(a) (b) (c)

Josephson
pair current

Fig. 8.14 Josephson oscillation of the supercurrent between the superconducting electrodes of a
tunnel junction in the presence of an electric voltage across the junction. a In a Josephson junction,
the two superconducting electrodes A and B are only weakly coupled to each other, for example,
by means of a thin, electrically insulating barrier C, which allows electric current to flow only
because of the quantum mechanical tunneling process. b The frequency ν of the Josephson
oscillation of the supercurrent between the two electrodes increases proportionally with the electric
voltage V across the junction. At a voltage of 1 V the frequency is about 483,000 GHz. c Electric
current I plotted versus the voltage V of a Josephson junction. The solid and the dashed curve
show the tunneling current in the case of superconductivity and in the case of normal conductance,
respectively. At 0 V we see the Josephson pair current flowing without resistance up to its
maximum value I0. During irradiation of the junction with microwaves the current-voltage
characteristic displays the “Shapiro steps”, which are caused by the combined action of the
Josephson oscillation within the junction and the microwaves
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They performed the measurements on superconducting tin (Sn) and lead (Pb) and
investigated Sn-Sn, Pb-Pb, and Sn-Pb contacts. Meissner and Holm reported their
results in an article in Zeitschrift für Physik and concluded:

Between superconductors from the same or from different materials a superconducting
contact is possible without welding both materials together. During entry of supercon-
ductivity the resistance of the contact layer also vanishes.

Hence, the model of the molecular conducting channels, proposed by Einstein,
had been disproved.

In this case, motivated by the ideas of Einstein, for the first time the subject of
thin contacts or micro-bridges between two superconductors, which subsequently
would gain great significance, was brought up. However, it took another 30 years,
until Brian David Josephson in 1962 finally answered these questions.

8.6 Motion of the Magnetic Flux Quanta

Again and again, the scientists were concerned with the question whether, in a
superconducting ring, the supercurrents really flow forever, or whether they decay
perhaps extremely slowly. In the beginning of the 1960s, this question became very
urgent, when at the Bell Laboratories Bernd T. Matthias discovered the new
superconducting niobium alloys Nb3Sn and NbZr. The tests performed by Gene
Kunzler indicated promising high values of the critical electric current density and
of the critical magnetic field in these materials. The further experiments, performed
in particular by the Korean Young Kim, showed that there exists a “critical state”,
above which in a superconducting ring the current always decreases. The crucial
idea then came from Philip W. Anderson, when he recognized that this process does
not set in discontinuously, but is caused by the motion of the magnetic flux quanta.
The concepts of flux creep and flux flow were born.

This highly important consequence of the magnetic flux quanta (in addition to
their influence on the magnetic properties) is due to the following. If, under the
influence of a force, the flux quanta move within the superconductor, an electric
field and, hence, an electric voltage is generated. This “flux-flow voltage” is pro-
portional to the velocity and to the number of the moving flux lines. An electric
current of density j in the superconductor causes the Lorentz force fL = j × φo acting
on the flux quanta. It is oriented perpendicular to the direction of the electric current
and to the magnetic field of the flux lines. The Lorentz force can cause a motion of
the magnetic flux lines which, in turn, generates the electric field E

E ¼ �vu � B: ð8:36Þ

vφ is the velocity of the flux lines. This electric field is always oriented per-
pendicularly to the motional direction and to the magnetic field of the magnetic flux
lines. Hence, in the case of the Lorentz force the electric field and the electric
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current have the same direction, such that the flux-line motion in the supercon-
ductor causes electric losses. The process of the flux-line motion follows the (here
simplified) force equation

j� uo � gvu ¼ 0: ð8:37Þ

Here η vφ is the dissipative contribution and η a damping constant. In (8.37) the
forces are given per unit length of the flux lines. From (8.36) and (8.37) we obtain
the flux-flow resistivity

qf ¼ uoB=g: ð8:38Þ

It is exactly this mechanism, which always limits the electric current flow
without electrical resistance and without losses in a superconductor. Therefore, it is
of utmost interest, to prevent this process of flux-line motion as much as possible. In
this last discussion we have simplified the situation by neglecting in (8.37) the
effects of the pinning forces and a force component which causes the Hall-effect
during the motion of the flux lines.

The motion of a magnetic flux quantum in a superconductor resulting in the
flux-flow resistance and in the destruction of superconductivity is an example of a
general principle of nature, according to which the generation and the motion of a
local defect through an otherwise homogeneous system leads to major macroscopic
effects. In other words: here a little cause can achieve a major effect. In Chap. 12 we
will discuss a similar example, in which the generation and the motion of individual
dislocations through an otherwise homogeneous crystal, affects the mechanical
properties and results in the deformation of the crystal at unexpectedly small values
of the mechanical tension.

The motion of local vortices within a supra-fluid also plays a role in the dynamics of the
neutron stars or pulsars. These stars rotate having a rotational frequency above 1/sec.
However, one observes that for a long time this rotation becomes slower, until abruptly the
rotational speed jumps to a higher value. Today this behavior is explained by the motion
and abrupt jumps of local vortices.

Material scientists have been taking great pains to pin the magnetic flux lines at
specific locations by introducing “pinning centers” into the superconductor. In this
way, one hopes that the flux lines are not moving any longer under the influence of
the Lorentz force, or that this motion and the electric losses only start to appear at
electric currents as high as possible. In recent years great effort has been devoted to
this subject in material science and metallurgy. These developments were motivated
by the interest in the possibilities for the technical applications of superconduc-
tivity. Next we will turn to the technical applications and look at a few examples.
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8.7 Technical Applications

For the applications of superconductivity in electronics and microelectronics the
magnetic flux quantization and the Josephson effect are of central interest. Both
phenomena are intimately connected with the nature of superconductivity as a
macroscopic quantum phenomenon and with the description of the state of the
Cooper pairs in terms of a quantum mechanical wave function. Here the limitation
of the quantum-theoretical concepts to atomic and subatomic objects, is suspended.
Instead, these concepts are directly technically utilized in devices and instruments.

An electronic instrument used today in many different ways is the “SQUID”
(abbreviated from Superconducting Quantum Interference Device). It is based on
the magnetic flux quantization and the Josephson effect. A small closed super-
conducting loop is interrupted by two Josephson junctions connected in parallel. If
the loop is penetrated by magnetic flux, within the loop the magnetic flux can exist
only in units of integer multiples of a magnetic flux quantum. This quantum con-
dition is satisfied by means of the induction of a circulating superconducting
shielding current within the loop, in such a way that the generated additional
magnetic flux in the loop, in combination with the external magnetic flux, exactly
supplement each other to yield an integer multiple of a magnetic flux quantum
(similar as it is shown in Fig. 8.11c). As a result one observes an exactly periodic
modulation of the shielding current within the loop as a function of the external
magnetic field, where the length of the magnetic period corresponds exactly to one
magnetic flux quantum in the loop. It is important that the circulating shielding
current should always be added to an external electric current which is also flowing
through the device. As a consequence, the measured electrical resistance of the loop
configuration with the two parallel Josephson junctions also displays a periodic
modulation. Since even a small fraction of a single modulation period of the
magnetic field can be resolved during the measurement of the electrical resistance,
an extremely high sensitivity of the magnetic field measurement is achieved. Today,
the fabrication of SQUIDs is carried out usually by means of thin-film and inte-
grated circuit technology.

As sensors for detecting magnetic fields, SQUIDs have the highest sensitivity
which can be reached today. This fact results in many of the applications of
SQUIDs, for example, in the field of research or nondestructive material testing.
Interesting applications are also found in medical diagnostics for detecting the
magnetic fields generated by the electric currents from cardiac activity or in the
brain. In this way, the new fields of magneto-cardiography and
magneto-encephalography developed only because of extremely sensitive SQUIDs.
For example, today instruments with a total of up to 275 SQUID channels are
available for brain research, where the channels with the individual sensors are
arranged in a three-dimensional way around the head of the test person or of the
patient (Fig. 8.15). Very recently, highly miniaturized SQUIDs have been used also
in SQUID-scanning microscopes. At an extremely high magnetic-field sensitivity,
these instruments achieve a spatial resolution as high as only a few µm, such that
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individual magnetic flux quanta in a superconductor can be nicely imaged. (In
Fig. 9.8 of Chap. 9 we present an application of a SQUID-scanning microscope).

Presently, small spin systems in nano-particles are moving to the center of
attention. The newest development of this SQUID instrumentation concerns the
fabrication of ultra-small devices on sharp nano-scale tips (nano-SQUID-on-tip).
By depositing superconducting lead or niobium at the apex of hollow quartz tubes,
SQUID loops with an effective diameter of only 160 nm or even less than 100 nm
could be achieved. It is estimated that the signal of a single electron spin located
10 nm below a SQUID-on-tip loop can be resolved with a spatial resolution of
about 20 nm.

We discussed above, that an electric voltage drop at a Josephson junction is
always associated with a high-frequency oscillation of the supercurrent flowing
between the two electrodes of the junction, as predicted by the second Josephson
equation (8.24). Here an electric voltage of 10−3 V corresponds to an oscillation
frequency of 483.6 GHz (Gigahertz). Vice versa, distinctly sharp electric voltage
plateaus result at the current-carrying Josephson junction, if the junction is irradi-
ated with a high-frequency electromagnetic wave such as a microwave, for
example. Then the magnitude of the voltage plateau is unequivocally fixed by the
frequency of the irradiating electromagnetic wave because of the second Josephson
equation. This exact quantum condition between a frequency and an electric volt-
age, in combination with the fact that frequencies can be determined extremely
accurately, was the reason why, since January 1, 1990, the legal definition of the
electric voltage unit established by the National Bureaus of Standards is based on

Fig. 8.15 Magneto-encephalography. Left Whole system with the test person carrying the helmet
containing the SQUID magnetic-field sensors, within a magnetically shielded chamber. Right
View into the helmet having an arrangement of 151 SQUID sensors (Photos MEG International
Services Ltd.)
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the Josephson effect in the form of the “Josephson voltage standard”. Officially, a
voltage of 1 V corresponds to a frequency 483597.9 GHz.

In Chap. 7 we discussed another quantum definition of an electric unit, namely
the von-Klitzing effect for the definition of the unit of electrical resistance. Together
with the Josephson oscillation as the combining mechanism between an electric
voltage and a frequency, two sides of the famous quantum triangle consisting of
current, voltage, and resistance, for the definition of the electric units, are now
completed. The remaining third side, yielding the connection between an electric
current and a frequency, is presently the subject of ongoing research in different
laboratories. Here the goal is to define the electric current in terms of the frequency
of transfer of individual electrons. With the example of the Josephson voltage
standard we will conclude our discussion of the field of Josephson electronics and
Josephson technology, which today is already well developed for measuring
electronics.

For many years the relatively low values of the critical magnetic fields and of the
critical currents had prevented the technical high-current applications of super-
conductivity in energy technology and in electric machinery. This changed only in
the 1960s, when new superconducting materials with higher values of the critical
electric current density and of the upper critical magnetic field HC2 became known.
Then the compounds NbTi with TC = 9.6 K and Nb3Sn with TC = 18 K, technically
became highly relevant. Among the classical superconductors, thin layers of the
compound Nb3Ge showed the highest critical temperature with TC = 23.2 K. For
the fabrication of wires. special drawing procedures and different mechanical
processing stages with an optimized combination of heat treatment and cold-work
were developed. Particularly successful were the “multifilamentary wires”, where
many thin filaments of the superconducting material are imbedded within a copper
matrix. This technique ensures that, during the breakdown of superconductivity,
because of overloading a certain finite electrical conductivity still remains, and that
on the other hand there exists a sufficiently large number of pinning centers in order
to pin the magnetic flux quanta in the superconductor.

One of the main applications of technical superconductors can be found in
magnetic coils. Today, superconducting magnets are used in large numbers in
research laboratories (Fig. 8.16). Particularly large versions serve as beam-guiding
magnets of particle accelerators and are also important components of the associ-
ated particle-detector systems. Since a few years, the largest superconducting
accelerator plant worldwide, the Large Hadron Collider (LHC), is operating at the
European Nuclear Research Center (CERN) in Geneva. It is placed within a circular
tunnel of 27 km length and, at full operation, accelerates protons up to energies of
7000 GeV. For beam guidance, a total of more than 1600 superconducting magnets,
constructed from NbTi, are used. Most magnets weigh more than 27 tons. For this
more than 7000 km of NbTi wire were needed. In addition, more than 3500
superconducting correcting magnets are used. Only the correct adjustment of all
magnets allows the storage of highly accurate proton beams, as they are required by
the LHC. During operation, a total of 31,000 t material must be cooled down to
1.9 K. This requires 12 million liters of liquid nitrogen and 700,000 liters of liquid
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helium (In Chap. 1 we had mentioned the extremely large cryogenic facilities
installed at the LHC).

Another large-scale application of superconducting coils is found in the case of
the magnetically levitated train. In particular the Japanese JR-Maglev project
recently has seen promising advances. In 2015 during tests, a speed above 600 km/h
has been reached. Superconducting coils generating magnetic fields of about 5
Tesla are mounted within the train. Electrically well conducting loops are imbedded
along the gliding track, in which strong eddy currents are generated during train
motion. According to Lenz’ rule, the magnetic field of the eddy currents repels the
field of the coils above. In this way the levitating force is generated. Since this
repulsion becomes sufficiently strong only above a certain minimum speed, initially
the train has to move on wheels, which are retracted when this speed is reached.

Fig. 8.16 Superconducting magnetic coils. a Commercially available coil for research purposes.
The coil is wound from niobium-titanium (NbTi) wire and can generate a magnetic field of up to
9 Tesla, corresponding to about 1 million times the magnetic field of the earth (Oxford).
b Superconducting model coil with its test set-up for a toroidal magnetic field during lowering into
the cryo-container of an experimental plant at the German Research Center Karlsruhe. The
experimental plant serves to develop the technology of magnetic plasma confinement for the
nuclear fusion process. The outer dimensions of the oval model coil are 2.55 m × 3.60 m × 0.58 m.
During its operation an electric current of 80,000 Ampère is flowing through the coil. The total coil
set-up weighs 107 tons and must be cooled down to 4.5 K. The available inner diameter and height
of the cryo-container is 4.3 m and 6.6 m, respectively (Research Center Karlsruhe KIT)
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During the past 25 years superconducting magnets for medical nuclear spin
tomography have developed into the most important market of superconductor
technology. This started in the beginning of the 1980s when the health authorities
worldwide approved the use of nuclear spin tomography in medical diagnostics.
Presently, the annual turnover of industry in this field amounts to 2–3 billion €.

Since, in a superconducting coil, direct current can flow without any losses for a
practically arbitrarily long time, such coils offer an interesting possibility for the
storage of electrical energy, in particular for the handling of short interruptions of
the electric power supplied. Therefore, at present the development of supercon-
ducting magnetic energy-storage systems is pursued intensively. Nuclear fusion as a
long-term option for a source of energy must rely necessarily, for energetic reasons,
on superconducting coils to generate the magnetic fields needed for the confinement
of high-temperature plasma, in which the nuclear fusion process occurs. Hence, the
largest superconducting magnet systems are developed presently for application in
nuclear fusion reactors.

Once technical superconductors with their highly improved superconducting
material properties became available, then in the 1970s the investigation of the basic
principles of superconducting electric power cables, based on the classical super-
conductors and cooled with liquid helium, had already been started. In this context
several pilot projects were carried out worldwide. Today, about 95 % of the electric
power is transmitted using alternating current high-voltage open-air power lines.
Because of their relatively low construction and repair costs, they have distinct
advantages. The possible operation of superconducting electric power cables is
particularly useful at such locations, where open-air power lines are ruled out as, for
example, in regions with very high population density. Because of the discovery of
high-temperature superconductivity, which we will discuss in the following Chap. 9,
this high-current application of superconductivity has also received a strong impetus.
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Chapter 9
The Big Surprise: High-Temperature
Superconductivity

Abstract The discovery of high-temperature superconductors in 1986 started
worldwide tremendous research activities which quickly resulted in the preparation
of superconductors with a critical temperature above 130 K. These cuprate super-
conductors are highly anisotropic, with superconductivity residing in the
copper-oxide planes. Initially, the granular structure of the ceramic materials needed
to be optimized. Much progress was achieved by fabricating epitaxial films. The
symmetry of the wave function of the Cooper-pair condensate represents an
important issue. Today, the Josephson effect of a single grain boundary is used in
SQUIDs. The intrinsic Josephson effect in small multi-layer crystals is explored as a
source of terahertz radiation. Major events were the discovery of superconductivity
in MgB2 in 2001 and in iron-pnictides in 2008.

9.1 Cuprate Superconductors

In April 1986 the German Johannes Georg Bednorz together with the Swiss Karl
Alexander Müller submitted a paper for publication in the Zeitschrift für Physik
with the title “Possible High TC Superconductivity in the Ba-La-Cu-O System”.
Both worked at the IBM Research Laboratory in Rüschlikon near Zurich. In
compounds of barium, lanthanum, copper, and oxygen, with decreasing tempera-
ture, they had observed an abrupt drop in the electrical resistance by at least three
orders of magnitude, with the drop starting at about 35 K. The two scientists
presumed that they were dealing with a new kind of superconductivity. Because the
superconductivity appeared to set in at a temperature, which was up to 12 K higher
than the highest recorded value of the critical temperature of 23.2 K known at the
time (since 12 years) for the compound Nb3Ge, caution and scepticism was called
for. Therefore, the authors arranged with the editor of the Zeitschrift für Physik to
hold the paper until a clear proof of the superconductivity was provided by an
experimental demonstration of the Meissner effect. As we saw in Chap. 8,
the Meissner effect represents the characteristic fingerprint of superconductivity.
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The Meissner effect was then, indeed, confirmed also for the Ba-La-Cu-O system,
and Bednorz and Müller released their submitted paper for publication.

Initially, Bednorz and Müller mostly faced scepticism. However, this lasted only
a short time. Already by the end of 1986 their results had been confirmed at the
University of Tokyo and only a little later at the University of Houston in the
American Federal State of Texas. Then in 1987, Paul Ching-Wu Chu, Maw-Kuen
Wu, and their co-workers in Houston succeeded in another sensational advance. In a
modification of the original oxides, in which the larger lanthanum atom was replaced
by the smaller yttrium atom, they observed an enormous increase in the critical
temperature up to 92 K. Now the investigations into the “high-temperature super-
conductors” developed a breathtaking speed worldwide in many groups. The critical
temperature of 92 K for the, just-discovered, new material YBa2Cu3O7 (abbreviated
YBCO) is still distinctly higher than the boiling point of 77 K for liquid nitrogen.
Therefore, the relatively expensive liquid helium as a cooling medium can be
replaced by the much cheaper liquid nitrogen. In many places the increasingly hectic
rush was so great, that temporarily new results were reported in daily newspapers
such as, for example, in The New York Times, with an exact indication of the day
and the hour they had been achieved. Perhaps the first crucial point was the marathon
session at the Spring Conference of the American Physical Society of March 18,
1987 in the Hilton Hotel in New York City, which lasted far beyond midnight and
subsequently was accurately called the “Woodstock of Physics”.

The discovery of high-temperature superconductivity by Bednorz and Müller
resulted in an explosive growth worldwide of research and development in the field
of superconductivity. With respect to the international reaction, this discovery can
be compared with the discovery of X-rays in 1895 by Wilhelm Conrad Röntgen or
with the first observation of nuclear fission in 1938 by Otto Hahn and Fritz
Strassmann. It is estimated that, until the beginning of the year 2001 a total of about
100000 scientific papers on high-temperature superconductors had been published,
since their discovery (Fig. 9.1).

In particular the lecture given by Bednorz during the ceremony in which the
Nobel Prize was awarded to him together with K.A. Müller on December 8, 1987 in
Stockholm, gives a vivid and enlightening description of the path leading to their
discovery of high-temperature superconductivity. We will quote a few passages
from this lecture:

“….We started the search for high-TC superconductivity in late summer 1983 with the
La-Ni-O-System.”—Bednorz then talks about various steps, during which the nickel and
the lanthanum were replaced by other elements, but without success. Then he continues:
“The resistance behavior changed in a way we had already recorded in the previous case,
and at that point we started wondering whether the target at which we were aiming really
did exist. Would the path we decided to embark upon finally lead into a blind alley?”

“It was in 1985 that the project entered this critical phase, and it probably only survived
because the experimental situation, which had generally hampered our efforts, had been
improved. The period of sharing another group’s equipment for resistivity measurements
came to an end. … Thus the measuring time was transferred from late evening to normal
working hours. “ – After a brief summary of the further experiments Bednorz continues”…
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But again, we observed no indication of superconductivity. The time to study the literature
and reflect on the past had arrived.”

“It was in late 1985 that the turning point was reached. I became aware of an article by the
French scientists C. Michel, L. Er-Rakho, and B. Raveau, who had investigated a Ba-La-Cu
oxide with perovskite structure exhibiting metallic conductivity in the temperature range
between +300 and –100 °C…. In the Ba-La-Cu oxide with a perovskite-type structure
containing Cu in two different valencies, all our concept requirements seemed to be fulfilled.
I immediately decided to proceed to the ground-floor laboratory and start preparations for a
series of solid solutions. “–Then there occurred a few interruptions of the experiments, and

Fig. 9.1 Critical temperature TC plotted versus the year of discovery of different superconductors.
The steep branch of the curve on the right-hand side shows the different high-temperature
superconductors. The entries marked with an asterisk indicate where the critical temperature could
be increased further under high pressure (C.W. Chu)
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Bednorz continues in his lecture”… in mid-January 1986, I recalled that when reading about
the Ba-La-Cu oxide it had intuitively attracted my attention. I decided to restart my activities
by measuring the new compound. When performing the four-point resistivity measurement,
the temperature dependence did not seem to be anything special when compared with the
dozens of samples measured earlier. During cooling, however, a metallic-like decrease was
first observed, followed by an increase at low temperatures…. My inner tension, always
increasing as the temperature approached the 30K range, started to be releasedwhen a sudden
resistivity drop of 50 % occurred at 11 K. Was this the first indication of superconductivity?”

“Alex (Müller) and I were really excited, as repeated measurements showed perfect
reproducibility and an error could be excluded. Compositions, as well as the thermal
treatment, were varied and within two weeks we were able to shift the onset of the
resistivity drop to 35 K. This was an incredibly high value compared with the highest TC in
the Nb3Ge superconductor.”

The substances of the discovered new class of the “cuprate superconductors”
(Fig. 9.2) are oxides, which crystallographically have perovskite structure. The most

Fig. 9.2 Crystal structure of different cuprate superconductors. At the six corners of the bright
octahedrons or at the five corners of the bright pyramids there are oxygen atoms. The centers of the
octahedrons, or of the basic square areas of the pyramids, are occupied by copper atoms (IBM)
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prominent structural element are copper-oxide (CuO2) planes, in which copper and
oxygen atoms are arranged alternately, in this way forming a two-dimensional lattice.
The elementary building blocks, from which the cuprate superconductors are
assembled periodically in all three spatial directions, (the crystallographic unit cells),
contain a different number of copper-oxide planes, depending upon the particular
compound. Based upon the different possible chemical composition, one distin-
guishes between five main families of the cuprate superconductors, the parent com-
pounds of which, together with their critical temperature TC, are listed in Table 9.1.

The electrical and, in particular, the superconducting properties of these cuprates
are determined by the copper-oxide planes and depend sensitively on their doping
with electric charge carriers. In their undoped state the cuprates are electrical
insulators, in which the elementary magnets of the copper atoms in the CuO2 planes
are alternately oriented opposite to each other. Superconductivity is only observed
if the electron concentration in the CuO2 planes is reduced by means of introducing
positive holes into the electronic system (“hole doping”). This hole-doping can be
achieved, for example, by the extraction of oxygen. Since, on the other hand,
superconductivity only appears within a relatively narrow range of the doping
concentration, during material preparation the oxygen concentration must be
carefully controlled. The values of the critical temperature given in Table 9.1
correspond to the case of optimum doping with holes. The compound
HgBa2Ca2Cu3O8+x with TC = 133 K shows the highest critical temperature
observed up to now under normal pressure. Under high pressure the critical tem-
perature of this compound reaches the even higher value of TC = 164 K.

In addition to the cuprates, which become superconducting after hole doping, a
few compounds have been found, showing superconductivity only after doping
with additional electrons, i.e., with negative charges. However, in this case the
doping-concentration range required for superconductivity is narrower, and the
critical temperature is much lower, compared with the hole-doped compounds.

The layered crystal structure of cuprate superconductors with the dominating
role of the CuO2 planes (Fig. 9.3), results in an extremely strong dependence of all
electrical and thermal transport properties upon the direction within the crystal. For
example, in the normal state the electrical resistivity perpendicular to the CuO2

planes is up to several orders of magnitude larger than it is parallel to these planes.
In many respects, the materials show quasi two-dimensional behavior. In the nor-
mal state of the cuprates, the temperature dependence of the physical properties
such as electrial resistance, the Hall effect, as well as the Seebeck and Peltier effects,
strongly deviates from the behavior usually observed in metals.

Table 9.1 Critical
temperatures of different
high-temperature
superconductors

Compound TC (K)

La2−xSrxCuO4 38

YBa2Cu3O7−x 92

Bi2Sr2Ca2Cu3O10 110

Tl2Ba2Ca2Cu3O10+x 125

HgBa2Ca2Cu3O8+x 133
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In the high-temperature superconductors, the coherence length ξ, which charac-
terizes the spatial rigidity of the superconducting properties, is much smaller than in
the classical superconductors and has a similar magnitude to the dimensions of the
crystallographic unit cell. We are dealing with extreme type-II superconductivity.
Therefore, these materials are extremely sensitive against atomic defects and grain
boundaries, both of which act as pinning centers for magnetic flux quanta (Fig. 9.4).
The upper critical magnetic field HC2 is up to more than 100–200 times larger than
the highest values for the classical superconductors. One of the first questions which
had to be answered for the newly discovered materials, concerned the issue of
whether the formation of Cooper pairs is fundamental to superconductivity, similar
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Fig. 9.3 High-resolution electron-microscopic image of the cuprate superconductor
Bi2Sr2CaCu2O8+δ. The two arrow-heads at the upper left show two rows of bismuth atoms. At
the bottom, the direction of the crystallographic b- and c-axis is indicated. The c-axis is oriented
perpendicular to the CuO2 planes of the cuprate (O. Eibl)
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to the classical superconductors. For cuprate superconductors, this question of pair
formation had received a clear positive answer early on. Here definite indications for
the appearance of the double elementary charge of the Cooper pairs came from the
magnitude of the magnetic flux quantum and from the quantitative relation between
the electric voltage and the frequency of the Josephson effect.

9.2 Symmetry of the Wave Function

The spatial symmetry of the wave function, describing the superconducting ground
state of the Cooper pairs, represents another important issue with the
high-temperature superconductors. In Chap. 5 we noted, that the states of
the electrons in the form of waves propagating within the crystal are determined by

(a)

(b)

(c)

(d)

(e)
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Fig. 9.4 Granular structure of one of the first prepared thin layers of the cuprate superconductor
Y1Ba2Cu3O7. The layer is 30µmwide and runs horizontally. The arrow-heads on the right-hand side
mark the upper and the lower edge of the layer, respectively. Bright regions indicate the locations in
which electrical resistance appears within the layer during electric current flow. The dark regions are
superconducting. From a to e the electric current was increased successively from 0.7mA at (a) up to
8.7 mA at (e). The images show the pronounced spatial inhomogeneity of the layer, having large
spatial fluctuations of the local critical electric current density. The images were obtained using the
method of low-temperature scanning electron microscopy. The temperature was 53 K
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the wave vector k, and saw how these wave vectors build up the three-dimensional
k-space or momentum space. Since in the cuprates the superconductivity essentially
is concentrated in the CuO2 planes, we can now practically restrict ourselves to
two-dimensional momentum space within these planes. Then the question remains:
Does the wave function depend on the direction within this momentum space or
not? For the classical superconductors, in general there is no such dependence on
the direction, and one speaks of the “s-wave symmetry”. However, for the cuprate
superconductors the situation is different. For the hole-doped high-temperature
superconductors a strong directional dependence of the wave function was
observed, which is dominated by the atomic d-orbitals.

In order to illustrate this behavior, the wave function is plotted in
two-dimensional k-space of the CuO2 planes. Figure 9.5 shows such a polar plot
with the four lobes of the d-orbitals, which alternately have a positive and a neg-
ative sign and display nodes and antinodes depending on the polar angle. In the case
of dx2�y2 -symmetry, the nodes and antinodes are arranged along the indicated
crystallographic directions. For comparison, the isotropic wave function with
s-wave symmetry, which usually appears in the classical superconductors, is also
shown. In order to identify the directions of the nodes and antinodes within the
scheme of the CuO2 planes, in Fig. 9.6 we show the square CuO2 lattice.

If we start in momentum space with a specific direction of the wave vector and
perform, in the direction of the wave vector, a complete rotation around the center
of the system of coordinates, then for d-wave symmetry the wave function changes
its sign four times until we come back to the starting direction. During this rotation

Fig. 9.5 Illustration of the
wave function with s-wave
symmetry (left) and with
dx2�y2 -symmetry (right)
in k-space (kx-ky plane). The
latter symmetry dominates in
the CuO2 planes of the
cuprate superconductors

Fig. 9.6 Scheme of the
square CuO2 lattice. The unit
cell is marked by the solid
line. The lattice constant a is
indicated
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the wave function passes four times through the value zero. These directions with
zero value are called nodes, as is common with vibrating strings. At the nodes the
energy gap in the superconductor vanishes, and it increases again at both sides of
the nodes. For hole-doped high-temperature superconductors, the d-wave symmetry
of the wave function of the Cooper pairs, with its sign changes and its nodes, leads
to many important consequences in the physical properties of the superconducting
state of these materials. In this context, we will discuss below a beautiful experi-
ment for the detection of half-integer magnetic flux quanta. For electron-doped
high-temperature superconductors the question of the spatial symmetry of the wave
function of the Cooper pairs is not yet completely clarified, since experimental
observations do not yet allow an unequivocal conclusion.

Whereas the formation of Cooper pairs can be stated definitely as a fundamental
principle also for high-temperature superconductors, the underlying microscopic
pairing mechanism still remains unclear for the cuprates and remains a theoretical
and experimental challenge.

The layered structure of the cuprate superconductors with the CuO2 planes
arranged on top of each other, also affects the magnetic flux lines, which Abrikosov
had predicted first for the type-II superconductors, and which in the mixed state
intersect the superconductor like a forest of poles along the direction of the mag-
netic field. We only consider the case where the magnetic field is oriented per-
pendicular to the CuO2 planes. Since the superconducting property is highly
concentrated within these planes, the flux lines are also generated only along a short
distance on the planes and are interrupted between the planes. Now the continuous
magnetic flux line, according to the theory of Abrikosov, is separated into short
disks, which are located at the CuO2 planes, and which are stacked exactly on top of
each other. Often these disks are referred to as “pancakes”. Because of this sepa-
ration of the magnetic flux lines into many small individual disks, the magnetic
flux-line lattice now displays a large number of new properties, which are absent in
the original Abrikosov lattice. For example, individual disks can leave the
arrangement where they are stacked exactly on top of each other, and a process like
the melting and evaporation of the perfectly-stacked configuration of the disks
becomes possible.

In Chap. 8 we discussed that, because of the motion of the magnetic flux lines,
an electric voltage is generated in the superconductor, and noted that this leads to
electric losses, if the flux-line motion is caused by the Lorentz force produced by an
electric current. Because of the decomposition of the flux lines into the individual
disks (pancakes), in the high-temperature superconductors, this loss mechanism is
particularly important, since the motional freedom of the individual small disks is
much stronger than that of the complete and, more or less rigid, Abrikosov flux
lines. Therefore, the prevention of the motion of the disks by the introduction of
pinning centers into the superconductor represents a highly important task. In this
context we recall that the radius of the normal core in the center of each flux line is
given by the coherence length ξ, which is much smaller in the cuprates than in the
classical superconductors. Hence, the minimum size of the pinning centers only
needs to reach about an atomic length scale, in order to be effective. This explains
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why even only local deviations from stoichiometry, such as, for example, missing
oxygen atoms in the CuO2 planes and grain boundaries on an atomic scale, rep-
resent highly effective pinning centers in the high-temperature superconductors.

9.3 Grain Boundaries

Soon after the discovery of the cuprate high-temperature superconductors, a severe
problem with these materials became apparent. As ceramics, the materials were
prepared initially with a granular structure, where the individual grains were sep-
arated from each other by a dense network of grain boundaries. Since, in general,
within these grain boundaries the superconductivity is weakened or even inter-
rupted, during electrical current flow a finite electrical resistivity was observed, and
hence no pure superconductivity appeared. An early experiment demonstrating the
granular structure of the cuprate superconductor Y1Ba2Cu3O7 is shown in Fig. 9.4.
This problem defined two obvious goals for additional research and development.
On the one hand, methods had to be found for strongly reducing the number of
grain boundaries in the material. On the other hand, the physical properties of the
grain boundaries themselves had to be investigated exactly.

Regarding the first goal, impressive progress could be achieved relatively
quickly. Here above all it was thin-film technology which allowed the preparation of
thin, single-crystalline layers of the high-temperature superconductors deposited on
suitable substrates. These “epitaxial layers” contain hardly any grain boundaries and
remain clearly superconducting up to critical electric current densities of more than
one million A/cm2 at the temperature of 77 K, the boiling point of liquid nitrogen.

The pursuit of the second goal, namely the clarification of the physical properties
of the grain boundaries, resulted then in an unexpected but highly interesting
development. Here it were mainly scientists at the Thomas J. Watson Research
Center of IBM in Yorktown Heights in the American Federal State of New York,
which dominated this development. In order to study the physical behavior of a single
grain boundary, in his IBM laboratory Chang C. Tsuei selected a thin layer of the
high-temperature superconductor Y1Ba2Cu3O7 showing relatively large
single-crystalline areas separated from each other by very long individual grain
boundaries. Now only a narrow conducting bridge had to be fabricated out of the
YBCO layer in such a way, that the bridge was running nearly perpendicular across
the grain boundary. This allowed electrical measurements to be performed on a single
grain boundary. During the time when Tsuei prepared his experiments using a
spontaneously generated single grain boundary, his IBM colleague Praveen
Chaudhari proposed the idea of generating the grain boundary in a controlled way by
means of a specially prepared substrate for depositing the layer of the cuprate
superconductor. During the further developments, also the postdoc Jochen Mannhart
was heavily involved. With the method used by Tsuei for achieving the epitaxial
growth of the single-crystalline layer of the high-temperature superconductor, the
crystallographic orientation of the single-crystalline substrate is reproduced exactly
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by the superconducting layer deposited on top. If for the substrate one uses an
artificially prepared so-called bicrystal, in which two single-crystalline parts with
different crystallographic orientation are separated from each other by an atomically
sharp grain boundary, the grain boundary of the substrate is transferred exactly to the
superconducting layer on top. This bicrystal is fabricated by cutting up a
single-crystal into proper pieces and by fusing two pieces, with a different crystal
orientation, together again (Fig. 9.7). The bicrystal technique turned out to be highly
successful and subsequently permitted many experiments with well-defined grain
boundaries in superconducting thin layers. In particular, the Josephson effect at a
single grain boundary was observed. This technique then developed into an impor-
tant method for the preparation of Josephson junctions in thin layers of
high-temperature superconductors. Furthermore, this approach also served extremely
well for the fabrication of SQUIDs based on high-temperature superconductors.

The different signs of the dx2�y2—wave function appearing at different polar
angles, respectively, can lead to important consequences, if two crystals with dif-
ferent orientation are connected with each other by means of a well-defined grain
boundary (bicrystal technique, Fig. 9.7). The case, at which a positive lobe of the
wave function, at the opposite side of the junction runs into a negative lobe, is
referred to as π-junction. A closed ring, containing such a π-junction, violates the
uniqueness of the wave function (frustration), since, during a complete revolution, a
sign change of the wave function remains. In this case, the frustration is removed by
the spontaneous generation of a half-integer magnetic flux quantum.

Eventually, an extension of this principle was utilized by Chang Tsuei for
proving experimentally the d-wave symmetry of the Cooper pair wave function in
hole-doped high-temperature superconductors (Fig. 9.8). We discussed above that,
for d-wave symmetry, the wave function changes its sign four times during a
complete rotation of the direction of the wave vector. Therefore, each time after
only half a full rotation, the same sign of the wave function appears again.

Fig. 9.7 Bicrystal technique for the controlled preparation of a single grain boundary within a
superconducting cuprate layer. As the substrate one uses an artificially prepared bicrystal, in which
two differently oriented single-crystalline parts of the crystal are separated from each other by an
atomically sharp grain boundary. The grain boundary within the substrate is then exactly
transferred to the superconducting layer on top. On both sides of the grain boundary there now
exist single-crystalline superconducting layers with different crystallographic orientation
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Fig. 9.8 Tricrystal experiment of Tsuei and coworkers for proving the d-wave symmetry of the
quantum mechanical wave function of Cooper pairs in the cuprate superconductor Y1Ba2Cu3O7.
The substrate is an artificially prepared tricrystal, in which three differently oriented
single-crystalline parts of the crystal are separated from each other by atomically sharp grain
boundaries. This crystalline structure, including its grain boundaries, is exactly transferred to the
superconducting layer prepared on top. The grain boundaries are marked by straight white lines.
Within the three crystal parts, separated from each other by the grain boundaries, the differently
oriented d-wave symmetry pattern of the Cooper pair wave function is indicated by the diagrams
with the four lobes. At different locations, a total of four superconducting rings are fabricated from
the YBaCuO layer, whereas the remaining part of the layer is removed. The orientations of the
three crystal parts are chosen such that, in the presence of d-wave symmetry of the wave function,
within the ring around the common meeting point of the three crystal parts, an exactly half-integer
magnetic flux quantum is spontaneously generated, whereas nothing happens at the three other
rings. The image was obtained by means of a SQUID scanning microscope, and it clearly shows
the half-integer magnetic flux quantum for the ring in the middle around the common meeting
point of the three crystal parts. The other rings are only weakly visible (C.C. Tsuei)

By joining together three angular sections like the pieces of a round cake in each of
which the crystallographic orientation of the superconducting layer is different, it
can be achieved that at one of the three grain boundaries a sign change of the wave
function between the two sides takes place. If this is the case, after a complete
rotation of the direction around the common meeting point of the three angular
sections, the wave function no longer reproduces itself, but instead a sign change
remains due to the generation of a π-junction. As a necessary consequence, at the
common meeting point of the three grain boundaries, an exactly half-integer
magnetic flux quantum is spontaneously generated. Chang C. Tsuei, and collabo-
rators have succeeded in detecting this half-integer magnetic flux quantum by
means of a SQUID-scanning microscope. The fabrication of the three angular
sections of the superconducting layer, each with a different crystal orientation and
separated from each other by sharp grain boundaries, could be achieved using a
“tricrystal” as a substrate, where this tricrystal was composed of three corre-
spondingly oriented angular sections. In the case of the tricrystal, the cutting and
fusing process for producing the bicrystals had to be extended accordingly. This
tricrystal experiment and the detection of the spontaneously generated half-integer
magnetic flux quantum at the common meeting point of the three grain boundaries,
represents one of the most spectacular demonstrations proving the d-wave sym-
metry of the pair wave function in hole-doped high-temperature superconductors.
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9.4 Intrinsic Josephson Junction

The crystal structure of the cuprate superconductors suggests a Josephson contact,
in which the superconducting copper-oxide planes are separated from each other by
intermediate layers, which are only weakly electrically conducting. In a crystal of
these materials there are up to many thousand Josephson junctions of this type
stapled upon each other. In 1992, Reinhold Kleiner and Paul Müller, at the time
working at the Walther-Meissner Institute for Low Temperature Research of the
Bavarian Academy of Science in Garching near Munich, have succeeded in dis-
covering the “intrinsic Josephson effect” in small single crystals of the cuprate
superconductor Bi2Sr2CaCu2O8 (BSCCO).

During the initial experiments a small superconducting BSCCO-crystal was
clamped between two contact pins such that an electric current flow perpendicular
to the copper-oxide planes occurred. Above a critical value of the current, an
electric voltage appeared along the crystal which, according to the second
Josephson Eq. (8.24), was accompanied by high-frequency Josephson alternating
current. In particular, the emitted microwaves could be detected. Since the stapled
Josephson contacts oscillate synchronously, the emitted power of the electromag-
netic radiation increases quadratically with the number of contacts in the staple.
Presently, for the study and application of the intrinsic Josephson effect, small
“mesas” made of BSCCO are prepared on a suitable substrate and are covered by
metal layers for electrical contacting (Fig. 9.9). Currently, these developments are

Fig. 9.9 Intrinsic Josephson contact as a source of microwaves. Left Scheme of a staple of three
Josephson contacts of a superconducting Bi2Sr2CaCu2O8 (BSCCO) crystal. The copper-oxide
planes (shown in dark color) run along the base of the CuO-pyramids. Right Emitted microwave
spectrum of a BSCCO-crystal (R. Kleiner)
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highly active aiming at a radiation source of microwaves in the frequency range of
about 0.5–2 THz (THz = 1012 s−1), since up to now this frequency range is hardly
accessible (terahertz gap).

9.5 More New Superconductors: MgB2, Iron Pnictides

The surprises caused by the discovery of new superconducting materials with
relatively high values of the critical temperature were not yet over with the
appearance of the cuprate superconductors. In March 2001 the group of Jun
Akimitsu at the Aoyama-Gakuin University in Tokyo reported in the journal
“Nature”, that the compound MgB2, consisting only of two elements, is super-
conducting with the critical temperature TC = 39 K. Already by January 2001
Akimitsu had announced his discovery at a conference in Japan, and immediately
many groups started research activities to find out the physical properties of this
new superconductor. Similar to the cuprates, the crystal structure of the
magnesium-diboride (MgB2) shows a layered configuration. Planes of hexagonally
arranged magnesium atoms and planes of boron atoms ordered in a honeycomb
pattern, like graphite, are placed alternately on top of each other. As expected it was
again found, that the superconductivity is based on the formation of Cooper pairs.
Similar to the classical superconductors, the wave function of the pairs does not
show an appreciable dependence on the direction, apparently displaying s-wave
symmetry.

Early in 2008, the group of Hideo Hosono in Japan reported another surprise: In
the compound LaOFeAs of lanthanum (La), oxygen (O), iron (Fe), and arsenic
(As), they had discovered superconductivity, following its doping with fluorine (F).
In the case of the composition LaO1-xFxFeAs at x = 0.07 the critical temperature
TC = 26 K was found. This new class of superconductors containing iron and
arsenic belongs to the group of the iron pnictides.

In the family ReO1-xFxFeAs additional superconductors were found rather
quickly, after lanthanum was replaced by other elements of the rare earths (Re) such
as praseodymium (Pr), neodymium (Nd), or samarium (Sm). In this way, values of
the critical temperature up to the record value TC = 56 K of Sr0.5Sm0.5FeAsF could
be achieved. In spite of their pronounced layered structure, in their electronic
transport properties the iron-pnictides do not show appreciable anisotropy (like the
cuprates). The important structural elements are planar layers of iron atoms sur-
rounded by tetrahedrically coordinated As or Se anions playing the role of the CuO
planes in the cuprates (Fig. 9.10). The layers are arranged in a stacked sequence
separated by alkali, alkaline-earth, or rare-earth and oxygen blocking layers, in
which oxygen is replaced partly by fluorine acting as dopant.
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Similar to the case of the cuprates 22 years earlier, worldwide the research
dealing with the iron-pnictides grew explosively. Similar to the cuprates, in their
undoped state the iron-pnictides are ordered magnetically, but they are electrically
conducting contrary to the cuprates. They are an anti-ferromagnetic semi-metal. It
appears, that in this case superconductivity and magnetism are connected with each
other. An overview of the different iron-pnictides discovered up to 2015 is shown in
Fig. 9.11. The different families are distinguished by the notation 11, 111, 122,
1111, etc., respectively. By 2010 more than 50 iron-pnictide compounds had been
found. The pairing mechanism remains unclear. However, a large amount of evi-
dence points to magnetic spin fluctuations.

Fig. 9.10 Layer of FeAs (or similarly of FeSe) arranged between layers of lanthanum-oxide
perhaps doped with fluorine

Fig. 9.11 Critical temperature TC plotted versus the time of discovery of the different
iron-pnictide superconductors (Silvia Haindl)
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9.6 Technical Applications

Because of the relatively high values of their critical temperature, compared with
the classical superconductors (with the possibility of utilizing superconductivity
after cooling down to only 77 K with liquid nitrogen) high-temperature super-
conductors quickly became very useful for technical applications. Here the appli-
cations in the field of electronics and microelectronics, as well as the applications at
high electric currents and in power electronics appear equally interesting. The
following examples will serve as an illustration. Today, the principle of the bicrystal
substrates for the fabrication of Josephson grain-boundary junctions and SQUIDs
from thin layers of high-temperature superconductors has already found wide
applications in electronic measuring instruments. High-frequency filters fabricated
from thin layers of high-temperature superconductors appear very promising. Here
it is in particular the increased sharpness of the high-frequency channels, achieved
with the superconducting layers, which allows many more channels in the available
frequency bands to be accommodated than in the past. For example, more than a
few hundred base stations for mobile telephone communication, based on this
technology, are already operating in the USA.

Regarding the applications at high electric currents, the development of magnetic
coils fabricated from high-temperature superconductors is being intensively
investigated. Last but not least, superconducting systems for the limitation of
electric fault currents in energy technology are in a promising stage of development.
Such systems are meant to quickly interrupt the electric current under overload
conditions, if damages to the electric power lines are expected due to overload.

Presently (2013) an interesting new development based on wind energy emerges
in the case of generators made of high-temperature superconductors for electric
currents. Their intended operation would reduce the weight of the generators
located at the upper end of the mast to about half the value of the current tech-
nology, or at the same weight it would double the power.
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Chapter 10
Magnetism: Order Among the Elementary
Magnets

Abstract Electrons represent elementary magnets because of their spin magnetic
moment, leading to paramagnetism, and their orbital magnetic moment, causing
diamagnetism. In an external magnetic field the magnetization of a paramagnet is
described classically by the Langevin function, to be replaced by the Brillouin
function in the case of quantization effects. In a ferromagnet the elementary mag-
nets are spontaneously oriented along a distinct direction. The first quantum
mechanical explanation was proposed by Heisenberg, based on the exchange
interaction between the electrons of two atoms. The perfect order of the elementary
magnets can be perturbed due to the thermal excitation of spin waves, which also
contribute to the specific heat and affect the electronic transport properties. In
addition to ferromagnetic order, other forms of the spin magnetic order are possible,
such as antiferromagnetism. The recent advances in the fabrication of
well-controlled multilayer structures lead to important technical applications of
giant magneto-resistance and to the birth of the new field of spintronics.

In crystals, the role of the electrons as elementary magnets leads to important
consequences, which we will discuss in this chapter. This quality of the electrons to
act as elementary magnets, originates for two reasons: the angular momentum or
spin possessed by each electron, and the orbital momentum resulting from the
orbital motion of each electron. The first cause leads to the spin magnetic moment,
and the second cause to the orbital magnetic moment. The half-integer spin and the
associated magnetic moment as fundamental properties of the electrons were found
theoretically by the Englishman Paul Adrien Maurice Dirac in the year 1928, when
he applied the physics of the Special Theory of Relativity to the quantum
mechanical wave equation of the electron. Because of the quantization of the
direction of the angular momentum, in a given direction only the parallel or the
antiparallel orientation of the spins are allowed. With his concept of spin, Dirac had
found the explanation for many experimental observations, which had remained
unexplained till then, and which in the words of Wolfgang Pauli at that time had
indicated in the energy spectra (here in the English translation) “a peculiar ambi-
guity of the quantum theoretical qualities of the light-emitting electron, which
cannot be understood classically.”
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10.1 Diamagnetism

The diamagnetism is due to the orbital magnetic moment, and is a magnetic
property of all substances. However, it can be overlaid by other magnetic phe-
nomena. Diamagnetism appears in its pure form, if the spin magnetic moments of
all atomic electrons exactly compensate each other, such that only the orbital
magnetic moments remain. This complete compensation arises in the case of atoms
with closed inner electronic shells and of atoms with an even number of electrons.
In an external magnetic field, in diamagnetic materials, circulating currents are
induced within the atoms, which generate a magnetic field oriented oppositely to
the external magnetic field. Here the “Lenz rule” is obeyed. This rule requires, that
the induced electric currents always weaken the magnetic field which is acting as
their external cause. Therefore, diamagnetic susceptibility is negative. The orbital
part of the magnetism of the electrons in the conduction band of a metal yields a
diamagnetic contribution, which Lew Dawidowitsch Landau calculated for the first
time in the year 1930, using exact quantum mechanical theory. We have discussed
this theory of Landau in Chap. 7. We have already seen an example of perfect
diamagnetism in the context of the Meissner effect of superconductivity.

The diamagnetism is a result of the change of the orbital motion of the electrons
due to an external magnetic field and concerns only the magnetic moments caused
by the magnetic flux density B.

The magnetic properties of a material are quantified in terms of its magnetization
M, which is defined as the magnetic moment per volume. In the case of M we have
the relation

M ¼ vB; ð10:1Þ

where v denotes the magnetic susceptibility. In the case of diamagnetism we have
v\0. In a magnetic field, the electron orbits experience a precession motion with
the Larmor frequency

xL ¼ eB=2m: ð10:2Þ

Here m is the electron mass. The Larmor precession corresponds to a circular
current proportional to (−e) ωL. This leads to the magnetic moment μ in form of the
product μ = (circular current × ring area). As shown by Paul Langevin, one finds for
the (negative) susceptibility

�v� r2
� �

; ð10:3Þ

where hr2i denotes the average quadratic radial extension of the electron orbit
within the atom. The diamagnetic contribution of the ions to the susceptibility in
dielectric solids agrees well with the result (10.3).

164 10 Magnetism: Order Among the Elementary Magnets

http://dx.doi.org/10.1007/978-3-319-24010-7_7


10.2 Paramagnetism

If the electron shells are not closed, or for an odd number of electrons per atom,
there remain in the crystal spin magnetic moments, which are not completely
compensated. In this case we are dealing with paramagnetism. Initially, in para-
magnetic materials, the spin magnetic moments are completely disordered.
However, as soon as an external magnetic field exists, the spin moments turn into
the direction of this magnetic field. Here the electrons behave similarly to a com-
pass needle, which turns into the direction of the earth’s magnetic field. However,
the complete redirection of the spin magnetic moments is prevented because of the
thermal motion of the elementary magnets. This thermal motion of the elementary
magnets increases with increasing temperature. Hence, the degree of redirection of
the spin magnetic moments decreases correspondingly. This results in the famous
Curie law, indicating that the magnetic susceptibility, which is positive in this case,
is inversely proportional to the temperature. The Frenchman Pierre Curie was
married to Marie Curie, who had discovered the element radium. He published his
law in the year 1895. This was the first time that a law in the field of the magnetism
of materials had been formulated. Curie’s publication with more than one hundred
pages summarized the results of an extensive research program, in which many
substances had been investigated over a large range of magnetic field and tem-
perature. Curie’s name stands at the beginning of a series of French scientists, who
had made France, at an early stage, an important center of research in the field of
magnetism. Among others, this series of French scientists prominent in the field of
magnetism includes Paul Langevin, Pierre Weiss, Léon Brillouin, and Louis
Eugene Felix Néel.

Paul Langevin, a young co-worker of Pierre Curie, analyzed theoretically
paramagnetic behavior. We will briefly sketch his ideas. Starting from the potential
energy

U ¼ �l � B ¼ �l B cos h ð10:4Þ

of a magnetic moment μ in the magnetic field B, Langevin calculated the average
value hcos hi from the classical Boltzmann distribution in the following way. (θ is
the angle between the vectors μ and B). According to Boltzmann, the probability of
the direction of the magnetic moment μ with the corresponding energy U is pro-
portional to exp(−U/kBT). Therefore, (with the solid angle dΩ) we have

hcos hi ¼
R
expð� U

kBT
Þ cos h dXR

expð� U
kBT

Þ dX
ð10:5Þ

¼
R p
0 expðl B cos h=kBTÞ2p sin h cos h dhR

0 expðl B cos h=kBTÞ2p sin h dh ð10:6Þ
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and after a few steps

hcos hi ¼ coth x� 1
x
� L xð Þ; x ¼ l B=kBT : ð10:7Þ

L(x) is referred to as Langevin function. For the average magnetization hMi one
finds

Mh i = N l cos hh i = N l L(x), ð10:8Þ

where N denotes the number of the magnetic moments µ per volume. The function
L(x) is shown in Fig. 10.1.

In the case x ≪ 1 (high temperatures) we have L(x) ≈ x/3, and we obtain

hMi ¼ N l2B=3kBT ¼ C
T
B: ð10:9Þ

This is Curie’s law. C = N μ2/3 kB is the Curie-constant. On the other hand, in the
case x ≫ 1 (low temperatures) we obtain saturation of the magnetization.

From (10.7)–(10.9) we see, that the dependence of the magnetization on the
temperature and on the magnetic field is determined only by the ratio of the
magnetic field and the temperature. In the limit of small magnetic fields and high
temperatures, Langevin obtained again the Curie law, whereas in the opposite limit
he found that the magnetization approaches a constant value.

Langevin had obtained his result (10.8) still within the context of classical
physics. If the quantization of the spin direction, required by quantum mechanics, is
taken into account, the results are qualitatively similar to the classical case. We will
briefly indicate this. As shown by quantum theory, the magnetic moment of an
isolated atom is

l ¼ �g lBJ=�h ð10:10Þ

Here

lB ¼ e �h=2m ð10:11Þ

Fig. 10.1 Langevin function
L(x) according to the
definition in (10.7)
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is Bohr’s magneton. J is the total angular momentum, the sum of the vectors of the
angular momentum of the electron orbits (L) and of the spins (S):

J ¼ Lþ S: ð10:12Þ

In (10.10) g denotes the “Landé-g-factor”:

g ¼ 1þ J Jþ 1ð Þþ S Sþ 1ð Þ � L Lþ 1ð Þ
2J Jþ 1ð Þ : ð10:13Þ

In a magnetic field, the quantized energy levels of an elementary magnetic moment
are

U ¼ mJglBB; mJ ¼ J; J� 1; J� 2; . . . ;�J: ð10:14Þ

In the case of a single spin and L = 0 we obtain mJ = ±½ and g = 2:

U ¼ �lBB: ð10:15Þ

In thermal equilibrium, the magnetization of this two-level-system is

hMi ¼ N lBtanh x; x ¼ lBB=kBT: ð10:16Þ

In the limit x ≪ 1 (high temperatures) we find

hMi ¼ Nl2BB=kBT; ð10:17Þ

similar to Curie’s law.
In the general case with 2J + 1 energy levels according to (10.14), in thermal

equilibrium the magnetization is

Mh i ¼ NlBBJ xð Þ; x ¼ lBB=kBT: ð10:18Þ

The function BJ(x) is the Brillouin function (which here we will not discuss any
further). In the limit x ≪ 1 (high temperatures) we obtain again the form of Curie’s
law hMi * B/T.

In the year 1905, Langevin had already predicted the magneto-caloric effect in
paramagnetic substances. This effect is fundamental to the method of adiabatic
demagnetization we discussed in Chap. 1 as a technique for cooling to low tem-
peratures. Here the heat energy exchanged during the redirection of the magnetic
moments of the electrons parallel to the external magnetic field, plays a central role.

In the conduction band of a metal, the spin magnetic moment of the electrons
also generates a contribution to the paramagnetism. Classically, we would again
expect a behavior according to the Curie law, with the result that the paramagnetic
susceptibility is inversely proportional to the temperature. However, because of the
Pauli exclusion principle, the electrons in the conduction band must obey the rules
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of quantum statistics. As we have discussed before in Chap. 5, therefore, only the
fraction of electrons in the conduction band, given by the reduction factor kBT/εF,
can contribute to the paramagnetism. By multiplying the Curie law with the factor
kBT/εF, we obtain

hMi ¼ N l2BB=eF: ð10:19Þ

We see that the temperature in the expression of the paramagnetic susceptibility is
cancelled, and that the latter quantity is independent of the temperature, in good
agreement with experimental observations. This result is similar to the case of the
specific heat of the conduction electrons, which we discussed in Chap. 5. Wolfgang
Pauli was the first to propose this theory of the spin paramagnetism of electrons in
metals.

In a detailed analysis, one finds for the electrons in the conduction band of a
metal, that the negative contribution to the magnetic susceptibility which is due to
diamagnetism according to Landau, is three times smaller than the positive con-
tribution which is due to paramagnetism according to Pauli. Hence, in the final
result, paramagnetism prevails for the electrons of the conduction band in metals.

10.3 Ferromagnetism

In addition to the phenomena of diamagnetism and paramagnetism, both of which
are induced by an external magnetic field, there exists still another form of mag-
netism, in which the elementary magnets in the crystal orient themselves sponta-
neously along a distinct direction. In this case, the command by an external
magnetic field to order is no longer needed. Now we are dealing with ferromag-
netism and its various modifications. For example, one of these modifications is
antiferromagnetism. The ferromagnetism confronts us with the following central
question: Why is it that the magnetic moments of the electrons of neighboring
atoms within the crystal orient themselves spontaneously, i.e., without an external
magnetic field, exactly along the same direction and assume a perfectly ordered
state just on their own?

The complete theory of ferromagnetism had to wait for the development of
quantum mechanics. The crucial answer, which subsequently also became the
guiding principle for all further developments, was given by Werner Heisenberg in
the year 1928. Heisenberg’s answer was preceded by an intensive correspondence
with Wolfgang Pauli for almost 2 years. The basic idea of Heisenberg again
originated from the exact identity of the electrons as elementary particles and that
the resulting symmetry requirement should be satisfied by the quantum mechanical
wave function during the exchange of two electrons. Taking the crystal as an
extended molecule, at the time Heisenberg could utilize the concept of the exchange
energy, which had just been developed, for, say the two electrons of the helium
atom or of the hydrogen molecule (H2). He introduced the concept of the exchange
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interaction between two atoms 1 and 2 with the spins S1 and S2 and obtained the
exchange energy (Heisenberg model)

U ¼ �2 J S1 � S2 ð10:20Þ

with the exchange integral

J ¼
ZZ

dr1dr2w
�
a r1ð Þw�

b r2ð ÞV r1 � r2ð Þwa r2ð Þwb r1ð Þ: ð10:21Þ

In the case of ferromagnetism, we have J > 0, and the parallel spin orientation is
energetically favored. The exact theoretical calculation of the exchange integral
(10.21) requires a detailed discussion (which we do not undertake).

For the first time, in this context, Heisenberg treated the interaction between the
electrons in a crystal using quantum mechanics. It became clear that the parallel
orientation of the spin magnetic moments of the electrons from neighboring atoms
in the crystal, leading to the ferromagnetism, depends on the form of the electron
wave function and on the number of nearest neighbors in the crystal lattice. At that
time the mathematical formalism needed for answering many of the questions, was
still only in its first stage and had to be developed along with the quantum theory of
ferromagnetism. For this, Heisenberg had given the initial momentum.

A phenomenological understanding of ferromagnetism had already been reached
earlier. In the year 1907 the Frenchman Pierre Weiss had proposed the hypothesis
of the molecular field or the exchange field, which quickly became highly suc-
cessful. Without explaining its microscopic origin, he had postulated an average
effective magnetic field within the crystal, producing the exact order among the
elementary magnets. In this way, the idea of the quantum mechanical exchange
energy, appearing only about 20 years later, was substituted by the concept of the
effective “Weiss field”. It is exactly this effective magnetic field, which causes the
spatial order of the magnetic moments of the individual atoms or molecules. Based
on the material data, for some substances one can derive values of the Weiss field
which are distinctly higher than 103 T (about ten million times higher than the
earth’s magnetic field). Also in this way the large magnitude of the quantum
mechanical exchange energy of the magnetism, conceived later, can be illustrated.

During his PhD thesis Weiss concentrated on magnetism, and later always remained close
to this subject. As a child, together with his family, he had to leave his home land of Alsace,
after the province had been occupied by Prussia in 1870. In the year 1902 he had accepted
an offer from the ETH in Zurich. Only in 1919 after the First World War could he return to
Strassburg in his home country, when he became the director of the Physics Institute of the
University.

In the case of the Weiss field BW we assume BW = λM, where λ is a constant, which
depends on temperature. In a cooperative way, each individual magnetic moment
feels the average magnetization of all the others (molecular-field approximation).
However, the spontaneous alignment of the elementary magnets along the same
direction in a ferromagnet cannot be maintained up to arbitrarily high temperatures.
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Instead, it vanishes abruptly at the “Curie temperature” TCU. Above the temperature
TCU we only have paramagnetism.

In the paramagnetic state (above TCU), in the presence of an external magnetic
field Ba, we have

M ¼ vp Ba þ BWð Þ ¼ vpðBa þ kMÞ ð10:22Þ

with the paramagnetic susceptibility χp = C/T from (10.9). From (10.22) we obtain

M ð1� C
T
kÞ ¼ C

T
Ba ð10:23Þ

and

v ¼ M=Ba ¼ C= T�TCUð Þ; TCU � Ck; ðT ! TCU from aboveÞ ð10:24Þ

A more accurate treatment yields

v ¼ C= T�TCUð Þ1:33; ðT ! TCU from aboveÞ ð10:25Þ

with the “critical exponent” 1.33, in agreement with experiment. For the temper-
ature dependence of the magnetic susceptibility, instead of the Curie law, the
Curie-Weiss law is valid: the magnetic susceptibility is inversely proportional to the
temperature distance T − TCU from the Curie temperature.

Below the Curie temperature, the spontaneous magnetization is found again
using the molecular-field approximation BW = λ M. In the case of a two-level
system (S = ½), by insertion into (10.16), one obtains

M ¼ N lB tanhðlBkM=kBTÞ: ð10:26Þ

After introducing the quantities m ≡ M/(N μB) and t ≡ T/TCU = kBT/(N μB
2 λ) we

obtain

m ¼ tanh m=tð Þ: ð10:27Þ

[Here we have used the notation TCU = C λ, with C = N μB
2 /kB from (10.17)]. The

transcendental (10.27) can be solved graphically, as it is indicated schematically in
Fig. 10.2.

The graphical solution yields the temperature dependence of the magnetization
shown in Fig. 10.3. This is the behavior in the case of a phase transition of second
order, where the magnetization represents the order parameter. From Fig. 10.3 we
see, that below TCU the spontaneous magnetization steeply increases with
decreasing temperature, and at low temperatures it approaches a constant saturation
value. Iron (Fe), cobalt (Co), and nickel (Ni) are well known ferromagnetic ele-
ments. The values of the Curie temperature are for iron, 1043 K; for cobalt, 1390 K;
and for nickel, 630 K.
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Eventually, a difficulty in the understanding of the ferromagnetic order of ele-
mentary magnets became more and more apparent: at low temperatures the mag-
netization turned out to be much smaller than expected if all elementary magnets in
the whole crystal were oriented exactly along the same direction. Again, the
solution of this problem was provided mostly by Pierre Weiss. Due to energetic
reasons the crystal is divided into many individual regions, in each of which all
elementary magnets are still well ordered and point exactly in the same direction.
However, between the different regions, the magnetization of each shows a different
orientation, such that in their total sum they largely cancel each other. For the
individual regions Weiss introduced the notation “magnetic domains” (Fig. 10.4).
In beautiful experiments during the year 1931 the American Francis Bitter observed
the boundary regions between the domains by sprinkling a fine magnetic powder

Fig. 10.2 Schematical presentation of the graphical solution of the transcendental (10.27). At the
critical point t = 1, the intersection point is located at m = 0. In the case t → 0, the intersection
point approaches m = 1

Fig. 10.3 Magnetization of a ferromagnet, normalized by its saturation value, plotted versus the
reduced temperature T/TCU. The magnetization vanishes abruptly at the Curie temperature TCU
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onto the surface of a magnetized sample. Since the magnetic powder is attracted to
these boundary regions, the domain structure is marked in this way. Today this
method is referred to as the Bitter decoration technique. In a different way, about
10 years earlier, Heinrich Barkhausen had obtained impressive indications of the
existence of the magnetic domains in ferromagnetic substances. While increasing
the magnetic field he observed that the magnetization increased discontinuously,
showing distinct small jumps when one domain after another reorients its magne-
tization in the external magnetic field. He could detect these “Barkhausen jumps”
by means of the induced and amplified electric currents in a coil wound around the
sample.

Immediately after completion of his PhD thesis, Felix Bloch theoretically ana-
lyzed the physical property of the boundary wall separating two magnetic domains
with different directions of their magnetization. In this context he had to develop a
model describing the rotation of the direction of magnetization within the domain
wall from the direction in one domain to the direction in the other. Based on
Heisenberg’s concept of the exchange energy of two neighboring spin magnetic
moments, Bloch calculated the energy needed for rotating the two spin magnetic
moments slightly away from their exactly parallel orientation. This rotation is then
repeated stepwise from one magnetic spin pair to the next, such that, after a distinct
number of steps, a complete rotation of the magnetization from the original
direction to the direction in the neighboring domain is accomplished. The region
within the crystal, in which this complete rotation takes place, is referred to as the
Bloch wall. The Bloch wall is associated with a distinct wall energy. For example,
in iron, the thickness of the Bloch wall amounts to about 300 atomic distances in
the crystal lattice.

Fig. 10.4 Magnetic domains
according to Weiss in
non-magnetized iron,
schematically
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10.4 Spin Waves

In the state with the lowest energy, the “ground state”, of a ferromagnet, all spins
are oriented exactly parallel to each other. However, the ground state is adopted
only in the limit of vanishing temperature. At finite temperatures, deviations from
the exactly parallel spin orientation appear in the form of thermally excited “spin
waves” (Fig. 10.5). Spin waves are oscillations of the spin orientation, which
possess a quantized excitation energy ħ ω. The role of the spin waves is similar to
that of the phonons, which are the quantized lattice vibrations and cause the
deviations from the perfectly periodical spatial arrangement of the atomic or
molecular building blocks of the crystal. We have covered phonons in Chap. 3.
Spin waves are quantized energetic excitations in a magnetic single crystal. The
energy quanta of the spin waves are called magnons. In their form of energetic
excitations, magnons are indistinguishable elementary particles, which, similar to
the phonons, are ruled by Bose-Einstein statistics. Intuitively, magnons represent
more or less pronounced deviations of the spin magnetic moments from a fixed
single preferential direction. These deviations propagate like a wave through the
crystal. This concept of the spin waves in the theory of ferromagnetism also
originated from Felix Bloch and can be found in his Habilitation Thesis which he
published in 1932. Following his dissertation dealing with the quantum mechanics
of mobile electrons in the crystal lattice, Bloch had turned to the theory of ferro-
magnetism, after Werner Heisenberg, his professor, had formulated the fundamental
principles of this theory. We will briefly discuss the thermal excitation of spin
waves or magnons.

We consider a linear chain of N spins, all of which are oriented parallel to each
other. According to (10.20) the total energy is

U ¼ �2J
XN
p¼1

SpSpþ 1: ð10:28Þ

Fig. 10.5 Elementary magnets in a simple ferromagnet. a In the ground state all elementary
magnets are oriented in the same direction. b A possible excitation from the ground state: one spin
is flipped over. c Spin wave in a chain of spins in a perspective presentation
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From this we obtain the energy of the ground state

UO ¼ �2N J S2: ð10:29Þ

As a possible excitation, we look at the case, where a single spin is oriented
antiparallel to its neighbors (Fig. 10.5b). The energy increase ΔU amounts to

DU ¼ 2J 2S2 þ 2S2
� � ¼ 8J S2; ð10:30Þ

where in the bracket we have separately listed the interaction with the left and the right
neighbor. However, a much smaller excitation energy is needed, if the change in the
spin orientation occurs only gradually. Exactly this is accomplished by the excitation of
spin waves (Fig. 10.5c). In the case of the ferromagnetic magnons one obtains the
dispersion relation from the equation for the temporal change of the angular momenta
of the spins. In the limit of small excitation amplitudes, one finds the dispersion relation

�hx ¼ 4J S 1� cos kað Þ; ð10:31Þ

where a denotes the lattice constant of the chain and k the wave number. In the limit
of large wave lengths (ka ≪ 1), from (10.31) one obtains

�hx ¼ 2JSa2k2: ð10:32Þ

We note, that the dependence ω * k2 is different than in the case of phonons with
ω * K [see (3.5) and (3.6)]. These results can be easily extended to the
three-dimensional crystal lattice.

In the case of the thermally excited magnons the Bose-Einstein distribution (3.2)
is valid. The energy of the magnons is

U ¼
Z

dx D(xÞ nxh i�hx ð10:33Þ

analogous to (3.3), where the integral is taken over the first Brillouin zone. In the
limit of low temperatures (ka ≪ 1), for the density of states one finds D(ω) * ω1/2,
yielding U * T5/2. The resulting specific heat of the magnons is

CV ¼ @U
@T

� �
v
�T3=2: ð10:34Þ

Because of the thermal excitation of magnons, the magnetization is reduced by the
amount ΔM = M(0) − M(T). The final result is

DM=M 0ð Þ�T3=2: ð10:35Þ
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We see that the thermal excitation of spin waves or magnons affects the specific
heat and the saturation magnetization of a ferromagnet. In both cases the contri-
bution of the magnons leads to the famous T3/2 law derived by Felix Bloch for the
temperature dependence of the quantities.

Magnons contribute also to the heat conductivity in crystals, and they influence
the electrical transport properties such as the electrical conductivity and the ther-
moelectric phenomena. Similar to the case for phonons, the energy spectra of the
magnons can also be determined experimentally by means of inelastic neutron
scattering.

10.5 Antiferromagnetism

In addition to the parallel orientation of the spin magnetic moments of ferromag-
netism, there also exists the case where the spins of the neighboring atoms in the
crystal are oriented exactly antiparallel to each other. This case is referred to as
antiferromagnetism. For antiferromagnetism the “quantum mechanical exchange
integral” (10.21) is negative, whereas for ferromagnetism it is positive. Already in
the late 1920s, the Frenchman Louis Eugene Felix Néel had the idea that there must
also exist another kind of magnetic order in crystals, in which the spin magnetic
moments of neighboring atoms are oriented exactly antiparallel to each other. After
completing his studies in Paris, in the year 1928, Néel took the position of assistant
of Pierre Weiss in Strassburg. Néel devoted his whole carreer to magnetism, up to
1940 in Strassburg and subsequently in Grenoble. Later on, largely due to Néel, has
Grenoble developed into the important center of Materials Science and Solid State
Physics in France, for which it is today well known everywhere. In his early idea of
antiparallel spin orientation of neighboring atoms in the crystal, Néel had assumed
that two lattices were penetrating each other, each of these “sublattices” by itself
showing ferromagnetic order, but both being magnetized exactly in opposite
direction to each other. Hence, overall the crystal remains magnetically neutral.
Therefore, the experimental evidence for such a novel possibility of magnetic order
contemplated by Néel was difficult to obtain. In 1938 measurements with
manganese-oxide (MnO) yielded the first positive results. The final confirmation of
the hypothesis of the two sublattices penetrating each other, which are magnetized
in opposite directions to each other, was achieved in the year 1949 by means of
elastic neutron diffraction experiments. The antiferromagnetic order vanishes above
the “Néel temperature”. The notation antiferromagnetism was proposed in 1938 by
the American Francis Bitter in a theoretical paper. A famous example, much dis-
cussed in recent years, is the antiferromagnetic order of the spin magnetic moments
of copper atoms in the copper-oxide planes in the undoped state of materials
showing high-temperature superconductivity after doping.
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In an antiferromagnetic material, at finite temperatures, antiferromagnetic spin
waves are thermally excited. One refers to antiferromagnetic magnons.
Antiferromagnetic spin waves show the dispersion relation

�hx ¼ 4 Jj jS sinkaj j ð10:36Þ

similar to the case of phonons [see (3.5)]. In the limit ka ≪ 1 we have

�hx ¼ 4 Jj jS kaj j: ð10:37Þ

Antiferromagnetic spin waves contribute to the specific heat and to the heat con-
ductivity of the crystals, with a temperature dependence proportional to T3 at low
temperatures, similar to phonons. Again, their energy spectrum can be determined
experimentally by means of inelastic neutron scattering.

In addition to the two discussed magnetic ordering phenomena of ferromag-
netism and antiferromagnetism, there also exist other forms of ordered magnetic
structures. However, we will not discuss these in further detail.

In this chapter our whole discussion of magnetism has been limited to the
electrons acting as elementary magnets. However, there also exists nuclear mag-
netism associated with the atomic nuclei and their quality as elementary magnets.
Since the elementary magnets of atomic nuclei are about two thousand times
weaker than those of electrons, the effects of nuclear magnetism are restricted only
to very low temperatures. For example, in the paramagnetism of atomic nuclei, the
ratio between the magnetic field and the temperature must be two thousand times
larger compared with the paramagnetism of electrons, in order to achieve the same
degree of alignment of the nuclear spins. Therefore, we will refrain from any further
discussion of nuclear magnetism.

10.6 Technical Applications, Giant Magneto-Resistance,
Spintronics

For a long time ferromagnetic materials have been interesting for their technical
applications. In many offices and homes we find small sticking magnets. There are
of course more ambitious applications of permanent magnets in electric and in
transportation technology.

Often magnetic couplings provide distinct advantages. The magnetic “hardness”
of a material for a permanent magnet plays an important role in their applications.
One distinguishes between magnetic soft and magnetic hard materials. The mag-
netic hardness is quantified in terms of the “coercive field” HC. The latter indicates
the value HC of the magnetic field, at which the unmagnetized state of the material
is again reestablished, if this magnetic field is applied a second time in a direction
opposite to that of the original magnetization of the material. This is shown
schematically in Fig. 10.6, where the magnetic flux density B is plotted versus the
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applied magnetic field H in the case of a magnetic soft and of a magnetic hard
material. A soft material shows a small value of HC and little hysteresis, in contrast
to a magnetic hard material with a large value of HC and large hysteresis.

In this context we remember that, in all individual magnetic domains we have
discussed above, at first the magnetization must be rotated into the same direction
by means of a suitably applied magnetic field, in order to obtain a strong permanent
magnet. Alloys consisting of aluminum, nickel, and cobalt (AlNiCo) belong to the
oldest and mostly tried materials for permanent magnets. Record values of the
coercive field are achieved in alloys of samarium and cobalt (SmCo5). Sinter
materials such as, for example, barium- or strontium-ferrite, fabricated from a
magnetic powder of small single-domain particles, are economically highly
attractive. For the large-scale technical project of the magnetic suspension train
“Transrapid” the latter sinter materials are particularly suitable as levitation
magnets.

In recent years magnetism has increasingly entered the field of microelectronics,
where it has triggered very interesting developments. In this case, in addition to the
electric charge, the spin and the associated magnetic moment of the electron play a
significant role in magneto-electronic devices. The large advances in technology for
the preparation of thin layers and multi-layer packages have been an important
prerequisite for this development. Here nearly atomic accuracy in the fabrication of
the layers has been achieved. Today this field is referred to as magneto-electronics,
spin-electronics, or spintronics. While usually in electronic circuits the spins of the
electrons are arbitrarily oriented and do not influence the electric current flow, in
spintronics “spin-polarized” electric currents are used, where the spin of the mobile
electrons is oriented in a specific direction. In this case the spin serves to control the

Fig. 10.6 Magnetic flux density B plotted versus the applied magnetic field H in the case of a
magnetic soft (left) and a magnetic hard (right) material
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electric current flow. Important fields for the application of magneto-electronics
exist in magnetic technology for data handling in computers, for example, in the
reading heads for hard disks and in the magnetic elements for data storage. In
addition, we mention the magneto-sensorics in automotive technology, mechanical
engineering, and in medicine. At present a highly promising goal for the not too
distant future is a close combination of magneto-electronics with semiconductor
technology.

In the previous generation of magnetic sensors, for example, in the reading heads
for extracting data stored in hard disks, the electrical resistance change of a fer-
romagnetic layer due to an external magnetic field, is utilized. The magnetic data
storage is based on small magnetic domains, which represent the “0” or “1” of the
digital information by means of their different magnetization. In the reading head
the electrical resistance change serves to detect the local magnetic field at the
surface of the hard disk and thus the digital information. In the year 1988, this
technology experienced an important advance, when Peter Grünberg at the German
Research Center in Jülich and, nearly simultaneously, Albert Fert at the Université
Paris Sud discovered the “giant magneto-resistance”. Two years prior to this dis-
covery, Peter Grünberg had observed an unusual magnetic behavior in a multi-layer
package consisting of iron and chromium. Apparently, there is a coupling between
two ferromagnetic layers of iron, which are separated from each other by a thin,
nonmagnetic and metallic layer of chromium, such that the magnetization of
neighboring iron layers is oriented either parallel or antiparallel. Which of these two
kinds of couplings occurs, depends on the thickness of the nonmagnetic layer
in-between, and varies between antiparallel and parallel with increasing thickness of
the layer. Now, during electric current flow along the package of the layers, the
electrical resistance depends sensitively on whether two neighboring iron layers are
magnetized in the same or the opposite direction. (From a simple energy argument
we would expect, that two neighboring iron layers would be magnetized in
mutually opposite direction, because in this case the magnetic fields of the return
flux would cancel each other between both layers, and the magnetic field-energy
would be reduced correspondingly).

For our further discussion we assume a multi-layer package, consisting of
several ferromagnetic iron layers, where two neighboring iron layers are separated
from each other by a thin nonmagnetic chromium layer, respectively. In the absence
of a magnetic field, two neighboring iron layers are assumed to be magnetized in
opposite direction with respect to each other. In this case of “antiferromagnetic
coupling” between the layers the electric current flow along the package is hindered
because of a relatively large resistance. If an external magnetic field is applied
parallel to the multi-layer package, in all iron layers the magnetization orients itself
along the direction of the magnetic field, and the electrical resistance shows a strong
decrease with increasing magnetic field. This is the basic principle of giant
magneto-resistance (Fig. 10.7). Such a multi-layer arrangement can still be gener-
alized by dropping the requirement of the antiferromagnetic coupling between the
layers. For example, one can imagine magnetic multi-layer systems, in which the
magnetization in one ferromagnetic layer is fixed, whereas in the other layer the
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magnetization can be rotated back and forth. This can be accomplished by means of
a large difference in the coercive field of the two ferromagnetic layers. In this case a
relatively thick nonmagnetic layer in between is also possible. Such multi-layer
systems showing giant magneto-resistance even without antiferromagnetic coupling
between the layers are referred to as spin valves.

The giant magneto-resistance of the spin valves has technically been applied for
some time in the reading heads for extracting the data stored in computer hard
drives. Within 10 years of the discovery, this technical application has developed
into a billion-dollar business. Whereas in one of the two ferromagnetic layers the
direction of the magnetization is fixed, in the other layer the direction is freely
adjustable. As the reading head glides along the surface of the hard disk, because of
the small magnetic fields representing the stored digital information in the form of
“0” or “1”, the magnetization in this other ferromagnetic layer is rotated back and
forth. Simultaneously, the electric current flow changes correspondingly, in this
way yielding the output signal. Since still weaker magnetic fields can be detected by
these reading heads, compared with their predecessors, the density of the data
stored in the hard disk can be increased by about a factor of three.

Fig. 10.7 Giant magneto-resistance: Electrical resistance (in units of the resistance at zero
magnetic field) plotted as a function of the external magnetic field B for different iron-chromium
multi-layers at the temperature of 4.2 K. HS denotes the magnetic field, at which the
magnetizations of the iron layers become oriented in parallel. Identification of the multi-layer
structures: for example, (Fe 3.0 nm/Cr 1.2 nm)35 denotes a multi-layer package consisting of
35 double layers of one 3.0 nm layer of iron and one 1.2 nm layer of chromium (M.N. Baibich)
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The magnetic tunnel junction, consisting of three layers, represents another
magneto-electronic device. In this case, two ferromagnetic metal layers are sepa-
rated from each other by an electrically insulating metal-oxide layer with a thick-
ness of only 1 nm. Electric current flow across the junction is only possible because
of the quantum mechanical tunneling process. Similar to the spin valve discussed
above, the electric tunneling current can flow without additional resistance only if
both ferromagnetic layers are magnetized in the same direction. In the opposite
case, the tunneling current experiences a high resistance. Again, the direction of the
magnetization in one of the two ferromagnetic layers is fixed, whereas in the other
layer it can be pointed in the parallel (“0”) or in the antiparallel (“1”) direction, and
in this way it can be used for the storage of a unit of digital information. A program
for the mass production of these “MRAMs” (magnetic random-access memories)
for data storage, based on magnetic tunnel junctions, has been started jointly by the
Companies IBM and Infineon. The industrial fabrication of 256-kb MRAM chips
has been reported recently.

As the last example of magneto-electronic devices we discuss an interesting
proposal of a field-effect transistor operating with spin-polarized electric currents
(Fig. 10.8). In this case the electric current is carried by a two-dimensional electron
gas at the interface of a semiconductor heterostructure of indium-galliumarsenide
(InGaAs) and indium-aluminumarsenide (InAlAs). The two-dimensional electron
gas at a semiconductor interface had already appeared in Chap. 7 in our discussion
of the integral and the fractional quantum Hall effect. In the present case, the
two-dimensional electron gas represents a current channel with a very high mobility
of the electrons. Furthermore, the channel is assumed to be free of collision pro-
cesses, which can flip the spin of the moving electrons. At both ends of the channel,
ferromagnetic metal contacts inject spin-polarized electrons into the channel or
extract them again. At the top surface of the semiconductor heterostructure a metal
electrode is attached, with which an electric gate voltage can be applied perpen-
dicular to the current channel. The current flow into the magnetized metal contact

Fig. 10.8 Schematics of a spin-polarized field-effect transistor. The electric current passes through
the two-dimensional electron gas at the interface of a semiconductor heterostructure of InGaAs and
InAlAs. The current flow is controlled by the voltage Vg applied to the gate electrode
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acting as the collector depends sensitively upon the direction of the spin polar-
ization of the incoming electrons. The electric current can flow almost without any
hindrance only if the spins of the electrons are pointing in the same direction as the
magnetization in the collector. Otherwise, the current experiences a relatively high
resistance. However, in the electric field generated perpendicular to the current
channel by means of the gate voltage, the spins of the rapidly traversing electrons
are rotated. Hence, the electrical resistance of the transistor can be controlled and
modulated by means of the gate voltage. Here the rotation of the spin orientation in
the electric field directed perpendicular to the current channel, is caused by an effect
which is explained only by the theory of relativity and which we do not pursue any
further here.

The examples discussed clearly demonstrate the high potential of
magneto-electronics for technical development, which is by no means yet
exhausted. Today the most important memory systems for data storage are based on
magnetic devices. It is interesting to recall again the impressive development of
storage density on hard disks. In a little more than 40 years, from 1956 until 2000,
storage density increased by a factor of about ten million. In the year 2000 it was
about 2.6 Gb per cm2, and in the year 2011 it reached about 65 Gb per cm2

(Gb = 109 bits). Another important advantage of spintronics results from the fact
that the rotation process of the electron spin consumes only very little energy and
occurs extremely quickly.
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Chapter 11
Nanostructures: Superlattices, Quantum
Wires, and Quantum Dots

Abstract The advanced microfabrication techniques can produce objects which
are sufficiently small, that new quantum effects appear. After discussing superlat-
tices and Bloch oscillations, we turn to the Landauer transmission channels and the
quantized conductance of quantum wires. The fullerenes are carbon molecules
consisting of different distinct numbers of carbon atoms. Their outgrowth in form of
carbon nanotubes represents a promising structure for molecular electronics.
Conducting layers of graphene with a thickness of only a single carbon atom
display a fascinating electronic band structure, where the concentration of charge
carriers can be varied strongly by means of an attached gate electrode. Quantum
dots find increasing use in optoelectronics. Topological insulators show surprising
current-carrying edge or surface states.

In December of 1959 Richard P. Feynman, one of the most brilliant American
physicists of the last century, presented a visionary and highly acclaimed lecture
with the title “There is Plenty of Room at the Bottom”. At that time Feynman had
already foreseen something that would be confirmed impressively during the fol-
lowing decades because of the rapidly advancing miniaturization in the field of
microelectronics. He derived one of his leading ideas from the perception of
molecular biology at that time, that only about 50 atoms within the DNA double
helix are needed for one bit of biological information. The winter of 1952/1953,
when Rosalind Franklin of Kings College in London had, with her X-ray images,
confirmed for the first time the double helix structure of DNA, was still relatively
close. If, for comparison, we assume a geometric structure size of an electronic
device of 45 nm, the limit which can just be reached by 2012, we find for the total
number of crystal atoms within a little cube having sides of length 45 nm, the huge
number of one million atoms. Here we have taken an average distance of 0.5 nm
between the atoms in the crystal. From this comparison we can clearly see, how
much room there still is today “at the bottom”, compared with the molecular level
of biology.

It has been the drive for continuous miniaturization in the field of microelec-
tronics, which has provided the motivation for improvements in the methods of
fabricating microstructured solid objects. In this context, great advances were
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achieved in the technique for the preparation of thin layers and of multi-layer
packages of the relevant materials. Special tricks employed during the deposition on
the substrate and during the subsequent etching process, made it possible to fab-
ricate smaller and smaller objects from the thin layers. In the meantime lithography
methods have been extended to ultraviolet light and X-rays, in order to achieve
higher spatial resolution with much shorter wave lengths. Also, electron beams with
high energy are utilized for lithography, and, recently, high-energy ion beams of
helium and hydrogen ions have been tested for their suitability to achieve still
smaller structural sizes. In many cases these fabrication processes must be carried
out in ultra-high vacuum, and only ultra-pure materials can be used. The word
“ultra” now appears more and more often in this field. Together with the technology
for the fabrication of thin layers, the methods for controlling and analyzing the
structure and composition of the layers have been continuously improved, and
today reach nearly atomic accuracy, if needed. Layers and multi-layer packages of
different materials stacked on top of each other can be fabricated, having a
microscopically single-crystalline structure. Transmission electron microscopy and
scanning probe microscopy allow the analysis of the materials and in particular of
their surfaces with atomic spatial resolution. In the meantime, scanning probe
microscopy has been applied successfully also at low temperatures. Finally, the
techniques for micromanipulation have been developed further, such that it has
become possible to perform electric and mechanical measurements even on single
atoms and molecules.

During the continuously advancing miniaturization of fabricated objects, one
finally reaches spatial scales at which new quantum effects appear. These effects
always result because of the nature of the electrons acting as quantum mechanical
matter waves. In the following we will illustrate this effect with a few examples.

11.1 Superlattices, Bloch Oscillations

Aswe discussed inChap. 2, in a crystal the elementary cell repeats itself along all three
spatial directions and in this way generates the three-dimensional periodic structure.
This principle is also found in the case of the superlattices, inwhich the composition of
a material is periodically modulated along one spatial direction (Fig. 11.1). Such
multi-layer structures are fabricated by means of modern thin-film technology.

In the year 1970 Leo Esaki and Ray Tsu started to think about and to fabricate
“superlattices” out of semiconductors. At the time both worked at the American
Thomas J. Watson Research Center of IBM in Yorktown Heights in the Federal
State of New York. Already by the late 1950s Esaki had gained much attention
because of his research dealing with the electrical behavior of the “Esaki diode”.
Then he had studied the unusual features of the electrical resistance of p-n junctions
in semiconductors and had identified the quantum mechanical tunneling process as
the crucial underlying mechanism. The quantum mechanical tunneling process
allows a particle to pass through a relatively high energy barrier, which classically
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would be impossible. This process would also play a central role in the Esaki
superlattices made from semiconductors. Such a superlattice is fabricated by
alternately placing thin layers of two different metals or semiconductors on top of
each other during the deposition process. Here great attention must be paid to the
atomic accuracy of each layer and to the perfect periodicity of the spatial sequence
of the layers. For his experiments Esaki utilized superlattices fabricated from
the two semiconductors galliumarsenide and aluminum-galliumarsenide
(GaAs/AlGaAs), since this combination of materials yielded samples with the
highest quality. As we have discussed in Chap. 7, later on the same semiconductor
system GaAs/AlGaAs was used for the fabrication of the two-dimensional electron
gas, in which the fractional quantum Hall effect was discovered. In his superlattices,
Esaki has stacked up to 100 double layers of GaAs and AlGaAs on top of each
other. In such a superlattice the length of a spatial period is about 10 nm, and hence
this length is 20–40 times larger than the distance between the atoms in a typical
crystal lattice. Here the superlattice structure only exists along one direction,
namely perpendicular to the planes of the individual layers.

Whereas the quantum mechanical wave function of the electrons does not
change very much along the directions parallel to the planes of the layers in the
superlattice, along the perpendicular direction the periodicity of the superlattice has
a strong influence. Exactly in the same way as electrons, in the form of matter
waves, experience Bragg reflection at the crystal lattice, leading to the gaps in the
energy spectrum of the electrons, so Bragg reflection also occurs at the periodic
structure of the superlattice, and new energy gaps appear. In Chap. 4 we have
treated the appearance of Bragg reflection (Fig. 4.4), when the wave vector k of the
electrons reaches the boundary of a Brillouin zone and the forbidden gaps in the
energy spectrum (Figs. 4.3 and 4.5).

In the example shown in Fig. 2.9 Bragg reflection occurs at the values kx = π/a and
ky = π/b of the wave vector k, where a and b denote the lattice constants along the x-
and y-direction, respectively. In a superlattice, the (super-) lattice constant along the
direction of the modulation (perpendicular to the planes of the layers) is much larger
than the lattice constant of the underlying crystal. The wave number, at which the
Bragg reflection takes place, is inversely proportional to the distance between two
neighboring lattice points within the underlying spatially periodic lattice structure.

Fig. 11.1 In a superlattice, thin layers of two different metals or semiconductors are alternately
stacked on top of each other with high regularity
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Therefore, in superlattices Bragg reflection is expected already at correspondingly
much smaller values of the wave vector compared with the case of the crystal lattice.
As a result, along the directions perpendicular to the layers of the superlattice, there
exist energy bands which are much narrower than the usual energy bands, and which
are referred to as “minibands”. The existence of these minibands leads to important
changes in the electrical properties of the semiconductor superlattice. Ultimately, this
was the reason why Esaki studied his superlattices at the time. He was hoping that
new and particularly fast electric oscillators would be discovered.

If an electric voltage is applied to the superlattice parallel to the direction of the
modulation, in the relevant miniband the electrons are accelerated in the direction of
the current flow, and they experience a gain in their energy. However, because of
the very narrow energy width of the miniband, there is the possibility that the
electrons will reach the upper edge of the miniband without first losing some energy
in a collision process (Fig. 11.2). At the upper edge of the miniband the electrons
are reflected, since they cannot traverse the adjoining energy gap in order to reach
the next higher miniband. This is exactly the process of Bragg reflection experi-
enced by the electrons representing quantum mechanical matter waves.

We illustrate this with the example of a one-dimensional periodic chain of atoms
with the lattice constant a. The energy spectrum between the boundaries of the first
Brillouin zone, π/a and −π/a, is shown in Fig. 11.3. We start from (5.1) for the force
acting on the electrons and obtain

Dk
Dt

����
���� ¼ eE=�h: ð11:1Þ

Conduction Band 

Fig. 11.2 In an electric field, the energy bands are inclined in the field direction because of the
potential gradient, and during their motion the electrons are brought closer to the upper edge of the
conduction band. However, in a standard semiconductor (left side) the electrons already experience
a collision process, during which their energy is lowered because of the emission of a phonon, long
before they reach the upper edge of the band. On the other hand, in the narrow miniband of a
semiconductor superlattice (middle) the electrons reach the upper band edge long before a collision
process takes place. At the upper band edge they undergo a Bragg reflection, and this process
repeats itself as a “Bloch oscillation”, until it is interrupted by a collision process. The enlarged
section of a miniband (right side) shows how the electrons move by a distance Δz in the field
direction with each collision process, at which their energy is lowered by the emission of a phonon
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In the absence of any scattering processes, in an electric field, an electron (or
hole) gains momentum and energy until the value k = π/a is reached. By means of a
Bragg reflection, the electron is reflected from k = π/a to k = −π/a, and subsequently
its wave number increases again due to (11.1). This process repeats itself and results
in a periodic oscillation of the electrons, the “Bloch oscillation”. The time needed
for increasing the wave number by the amount Δk = 2π/a, we denote by τB. From
(11.1) we obtain

2pa ¼ eEsB=�h ð11:2Þ

and

xB � 2p=sB ¼ eEa=�h: ð11:3Þ

The angular frequency ωB is the Bloch frequency. For the Bloch oscillation to
occur, the average scattering time τ of the electrons must be sufficiently long and
must satisfy the condition

xBs � 1: ð11:4Þ

Furthermore, for the appearance of the oscillations very pure materials and low
temperatures are required. An additional important requirement is a large value of
the lattice constant a, resulting in a small energy width of the miniband and in a
correspondingly large value of ωB according to (11.3).
Above all, it is the relatively small energy width of the minibands, which plays a
crucial role in this behavior. Compared with a semiconductor superlattice, in a usual
semiconductor crystal, the width of the energy bands is much larger. Therefore, in
this case, during their energy gain in the electric field, the electrons already undergo
a collision process due to the lattice vibrations long before they have reached the
upper edge of the band. During such a collision process energy is always transferred
from the electrons to the crystal lattice, and, hence, the upper edge of the energy
band remains far away, and the Bloch oscillations cannot occur. However, for the
minibands of the superlattice this is totally different (Fig. 11.2).

Fig. 11.3 Energy spectrum
ε(k) in the first Brillouin zone
between k = π/a and k = −π/a
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If the electric voltage applied perpendicular to the layers of the superlattice is
increased more and more, eventually the electric potential difference between two
neighboring unit cells of the superlattice becomes sufficiently strong that the cells
are decoupled from each other. Whereas at relatively small electric fields the
quantum mechanical wave function of the electrons extends spatially coherently
over many cells of the superlattice, and the electronic structure of the minibands
still remains intact, at high electric fields the wave function becomes more and more
spatially localized at each individual cell, and decoupling between the cells occurs.
Instead of a miniband extending over the whole superlattice, now in each cell
individual discrete energy levels exist, which are adjusted to the electrical potential
gradient across the superlattice. This splitting of the continuous energy of the
miniband into the discrete energy levels is known as the “Wannier-Stark ladder”.
The name Wannier-Stark ladder originates from two distinguished physicists: in the
beginning of the last century the German Johannes Stark had discovered the
splitting of spectral lines due to an electric field, referred to since as the Stark effect,
while the American Gregory Hugh Wannier had contributed significantly to the
theoretical foundations of solid state physics.

During Bloch oscillation as well as during the splitting of a miniband into the
individual energy levels of the Wannier-Stark ladder, the mobile electrons become
localized within only a few, and eventually only within a single cell, of the
superlattice, because of the electric field. This effect increases with increasing
electric field, such that above a specific value of the electric field the flow of the
electric current decreases with increasing voltage. In this case we have negative
differential resistance. Instead of consuming energy, the superlattice can now return
energy into an oscillating electrical circuit, in this way acting as an active device
generating high-frequency electromagnetic waves.

The semiconductor superlattices studied by Esaki represent the case of the
“heterostructure superlattices” fabricated layer by layer from two different semi-
conductors. Esaki also had the idea that it should be possible to produce semi-
conductor superlattices simply and with a high degree of flexibility, only with a
single semiconductor, by means of an alternate spatially periodical n-doping and
p-doping of this semiconductor. At the beginning of the 1970s, the German
Gottfried H. Döhler, at first as a postdoctoral member of Esaki’s group, took up this
idea of the doping superlattice. Since the n- and the p-doped layers, respectively, are
separated from each other by a thin, electrically insulating semiconductor layer,
these superlattices are also referred to as “n-i-p-i crystals”. The first n-i-p-i struc-
tures were fabricated in 1980 by Klaus Ploog at the Max Planck Institute for Solid
State Research in Stuttgart. These experiments were performed with the semicon-
ductor galliumarsenide (GaAs). Silicon atoms were used for n-doping and beryl-
lium atoms for p-doping. Subsequent electrical and optical measurements with
these doping superlattices have well confirmed their expected physical properties.

The possibility of fabricating superlattices from semiconductors has introduced
an interesting additional option for the development of new materials in electronics
and optoelectronics. In superlattices, the electrical and the optical properties can be
varied artificially. In the meantime many experiments have been performed with
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semiconductor superlattices. However, at present, the technical applications are only
in their very early stages. Highly promising developments concentrate on the
“quantum cascade laser” operating in the infrared spectral range. Here transitions
between the discrete energy levels are utilized, for which the emitted frequency can be
tuned by the variation of the material composition and of the thickness of the layers.
Recently, interesting progress has been reported also for the generation ofmicrowaves
by means of the Bloch oscillations of the electrons in semicondutor superlattices.

11.2 Mesoscopic Regime, Ballistic Electron Transport,
Quantized Conductance Value

Eventually, the use of ultra-pure materials and the ability to fabricate objects with
smaller and smaller dimensions made it possible, that within the studied sections of
the electrically conducting materials, the electrons experience almost no collision
processes, or only very rarely. The probability becomes extremely small that, in
these experiments dealing with very small spatial dimensions, the measurements are
influenced by many structural defects or chemical impurities in the crystal.
Furthermore, at sufficiently low temperatures most of the lattice vibrations can be
frozen out. Under these conditions, the spatial dimensions belong to the “meso-
scopic regime”, located between the single atoms or molecules on the one hand and
the macroscopic world of events on the other hand. Within this mesoscopic length
scale all aspects of the electrons as matter waves are fully valid, and the observed
physical behavior of the electrons can best be understood in terms of a propagating
wave (Fig. 11.4). In Sect. 5.2 we discussed the Fermi distribution of the energy of
the electrons, resulting from the exact identity of electrons as elementary particles,
and we have pointed out that, as a result, most electronic material properties are
determined only by the electrons from the immediate proximity of the Fermi
energy. Therefore, the unperturbed, “ballistic motion” of the electrons within the
mesoscopic dimensions happens at the Fermi velocity. In the following we denote
the Fermi velocity by vF. Similarly to the Fermi wave number kF, the Fermi velocity
vF is also fixed by the Fermi energy εF.

The unperturbed, ballistic propagation of particles or energy quanta is in contrast
to the other limit, in which the propagation is always interrupted by collisions and
deflections (Fig. 11.5). A well known example of the latter case is the propagation
of light in dense fog, in which all contours disappear, and any orientation becomes
impossible. This case is referred to as diffusive propagation, by means of the
process of “diffusion”. On the other hand, in the absence of fog we have ballistic
and straight arrays of light, propagating with light velocity and clearly marking the
spatial environment.

The electron transport in the mesoscopic regime in the form of a ballistically
propagating wave is characterized by the fact that the internal material properties of
the object are no longer decisive, and that, instead, the shape of the external
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Fig. 11.4 Photograph,
produced by an
electron-transmission
microscope, of a ring
fabricated from a gold layer
of 38-nanometer thickness.
The inner diameter of the ring
is 784 nm. The width of the
conducting lines is 41 nm
(R.A. Webb)

diffusive 

quasi-ballistic

ballistic

Fig. 11.5 If the dimensions
of an electrical conductor
become smaller and smaller
(in the Figure from the top to
the bottom), the collision
processes within the interior
of the conductor become less
and less important, and the
shape of the external
boundary will eventually
become crucial. In this case
the electrons move
ballistically as matter waves
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boundary has a much stronger influence. Now the electrons experience collisions
and deflections predominantly only at the boundary of the object, for example at the
entry or the exit of a constriction. The behavior is much more similar to that in a
wave guide. Now the property of the electrons as a quantum mechanical matter wave
dominates. Therefore, in the case of such conductors one also speaks of quantum
wires. It was the American Rolf Landauer, who considered these questions for the
first time in the year 1957. Landauer, who originally came from Germany, worked at
the American Thomas J. Watson Research Center of IBM. At that time he proposed
his famous concept of the transmission channels in mesoscopic electrical conduc-
tors, which subsequently turned out to be extremely productive and successful. We
will briefly discuss his central idea. The quantum wire is assumed to be placed along
the x-direction. At both ends it is connected to electrodes with the energy ε + ½ eV
and ε −½ eV, respectively. Here V is the electrical potential difference between both
electrodes. If we treat both spins of the electrons separately, we find for the current
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Here, for the Fermi distribution function (5.10), we have used the abbreviation
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and we have taken into account the current flow in both directions (+x and −x). The
quantity Ttrm is a transmission coefficient describing the scattering processes of the
electrons, which establish the equilibrium with the local electrochemical potential
of the electrodes. We assume that no scattering processes occur within the quantum
wire. In the case of small voltage V and low temperatures we have
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δ(x) denotes the Dirac delta function. With vX dkX = (1/ħ)dε finally we obtain the
conductance G:

G =
1
V

=
2e2

h
Ttrm = 2GO Ttrm: ð11:8Þ

The quantity GO = e2/h is the quantized unit of the conductance.
Landauer had found, that the electrical conductance of a one-dimensional

channel connecting two charge reservoirs has to be measured in quantized units of
2e2/h. (The conductance is defined as the inverse of the electrical resistance.) In this
context we remember the unit h/e2 of the quantized Hall resistance, which we
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discussed in Chap. 7. The factor 2 of the quantized conductance, according to
Landauer, originates from the fact, that here we discuss the case without a magnetic
field and that, therefore, both spin orientations of the electrons contribute in the
same way to the result. On the other hand, the quantized Hall resistance only
appears in high magnetic fields, where both spin orientations clearly must be treated
separately.

The first experiments dealing with ballistic electron transport across a spatial
constriction in the mesoscopic regime were carried out in 1965 by the Russian Yurii
Vasil’evich Sharvin. He worked in the famous Institute for Physics Problems in
Moscow, which is also named the Kapitza Institute after its founder. In his
experiments Sharvin used “point contacts”, prepared by pressing the sharp tip of a
metal needle onto the surface of a metallic single crystal. During the electric current
flow, at low temperatures, he measured the electrical resistance of this arrangement.
However, in these experiments with metals, the role of the electrons as quantum
mechanical matter waves is not yet highly pronounced, since, because of the typ-
ically relatively large Fermi energy of the electrons in metals, the wave length is
only about 0.5 nm and, hence, it is much smaller than the opening of the point
contact. Then in 1988 important progress was reported, when almost simultane-
ously two groups discovered the quantization of the electrical conductance of
specially structured semiconductor heterostructures fabricated from galliumarsenide
(GaAs) and aluminum-galliumarsenide (AlxGa1−xAs). One group belonged to the
University of Delft and to the Philips Research Laboratories in Eindhoven and in
Redhill, the other group worked at the Cavendish Laboratory of the University of
Cambridge. The semiconductor heterostructure used by both groups was very
similar to that in which, a few years earlier, Tsui and Störmer had discovered the
fractional quantum Hall effect. In the two-dimensional electron gas of the semi-
conductor heterostructure the Fermi energy is much smaller than in metals, and
correspondingly the Fermi wave length of the electrons is about one hundred times
larger than in metals. This provides an excellent opportunity to observe new
quantum effects during the passage of electrons through a narrow opening.

The two groups used the following technique for the fabrication of the narrow
one-dimensional channel between two wide charge reservoirs within the
two-dimensional electron gas of the semiconductor heterostructure. They attached
two correctly structured metal electrodes, acting as gate electrodes, to the top
surface of the heterostructure. At the narrowest location the opening between the
two gate electrodes was only 250 or 500 nm wide. By applying a suitably selected
gate voltage, the sample regions directly below the gate electrodes can be emptied
completely of the charge carriers, such that only a conducting channel with an
opening width of 250 or 500 nm, respectively, remains between both gates. By
further increasing the gate voltage, the channel can be constricted even more, until
eventually the two wide charge reservoirs are completely separated from each other.
During their experiments both groups found that the conductance of their
one-dimensional channel shows a regular step structure as a function of the gate
voltage, and that the individual plateaus of the steps appeared at integer multiples of
the quantized unit 2e2/h of the conductance (Fig. 11.6). These measurements were
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carried out at low temperatures below 1 K. Apparently, the variation of the gate
voltage causes a continuous change in the channel width, such that the number of
the discrete and quantized conductance channels increases with increasing channel
width.

The experimental observation of the quantized conductance of a narrow meso-
scopic channel can be looked at as a special case of the concept of transmission
channels introduced by Landauer. In the meantime, many papers have appeared
dealing with details of this novel quantization phenomenon. However, here we
refrain from any further discussion.

As the ultimate reduction in the size of an electrical contact between two charge
reservoirs, in recent years even single atoms have been studied experimentally and
theoretically. These experiments started at the French Commissariat à l’Energie
Atomique in Saclay in the group of D. Esteve and Michel H. Devoret with the
collaboration of the German guest scientist Elke Scheer. For measurements with
individual atoms the technique of piezoelectric actuators, well-known from scan-
ning tunneling microscopy, was employed, in addition to a special technique: the
break junction method. The latter method allowed the mechanical control of the
contact with an exceptionally high sensitivity. A suspended microbridge of about
2 µm length, 200 nm thickness, and with a 100 nm × 100 nm constriction in the
middle, was mechanically stretched and eventually broken at the constriction. This
was achieved by mounting the microbridge onto an elastic substrate, which could
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Fig. 11.6 Electrical conductance of a narrow one-dimensional channel in a GaAs/AlxGa1−xAs—
heterostructure in the quantized unit (2e2/h) plotted as a function of the gate voltage at a
temperature of about 1 K. Inset on upper left Arrangement of the gate electrodes on the surface of
the heterostructure. Inset on lower right Cut through the heterostructure. (2DEG: two-dimensional
electron gas; UG: gate voltage) (B.J. van Wees)
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be bent mechanically in a highly controlled way. The authors studied atoms of
different metals, such as lead, aluminum, niobium, gold, and sodium. Mostly, the
experiments were carried out at temperatures much below 1 K. It was found that,
with increasing stretching of the microbridges, the electrical conductance of the
samples decreased in steps, until the contact was interrupted. The height of the
individual steps was about 2e2/h. The quantized unit of the conductance again
appeared. Landauer’s concept of the transmission channels therefore also appears to
be confirmed in this case. Furthermore, the experiments performed with the atoms
of the different metals suggest that the number of conductance channels is equal to
or at least closely related to the number of orbitals of the valence electrons of the
central atom. For a quantitative understanding of electrical conductance properties
of these contacts, a microscopic model must be developed, which takes into account
the orbital structure of the atom as well as the local atomic geometry of the
immediate environment. Electrical currents up to about 0.1 mA can pass through a
contact consisting only of a single atom. This corresponds to the giant local electric
current density of one hundred billion amperes per cm2.

11.3 Bottom Up, Fullerenes

For the nanostructures we have just discussed, the sample dimensions are reduced
more and more, until eventually one reaches the mesoscopic regime where novel
quantum effects in the electron motion can be observed. This method of operation is
generally known as the “top-down” procedure. However, for the development of
smaller and smaller devices aiming at “nanoelectronics” or eventually also at
molecular electronics, the inverse procedure referred to as “bottom-up” gains much
more importance. In this case, above all it is the methods of chemistry which are
crucial for further advances. From this field of the molecular electronics, which
presently shows a dramatic development, we wish to select a particular example:
the “carbon nanotubes”. However, first we must briefly illustrate the preceding
history, which has lead to this spectacular development.

The physics and chemistry of the new forms of carbon started in astrophysics
with the exploration of matter within interstellar space. During their experimental
attempts to produce interstellar carbon molecules in the laboratory by means of
laser evaporation of graphite, in 1985, Richard E. Smalley and Robert Floyd Curl at
the American Rice University in Houston, Texas, and also Harold Walter Kroto at
the University of Sussex in England, together with their co-workers, discovered the
two carbon molecules C60 and C70 by means of mass-spectrometric analyses. At
that time they had already presumed, that the C60 molecule possesses the structure
of a soccer ball (“bucky ball”), in which the 60 carbon atoms are located at the
corners of the five-cornered and of the six-cornered carbon rings, forming the
nearly-spherical surface of the molecule. Altogether, the C60 molecule consists of
12 five-cornered and of 20 six-cornered carbon rings (Fig. 11.7). The discoverers
called the molecule buckminster-fullerene after the American architect Buckminster
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Fuller, who was famous because of his buildings with a domed structure. Also the
C70 molecule is composed of 12 five-cornered carbon rings, but 25 six-cornered
carbon rings. It is stretched slightly and looks similar to an American foot ball. All
carbon molecules with an all-round completely closed structure are now denoted as
“fullerenes”. Incidentally, more than 200 years ago the Swiss mathematician
Leonhard Euler had already proved, that all fullerene structures must have exactly
12 five-cornered rings, in order to have an all-round completely closed shape.

Smalley and Kroto could only produce their fullerene molecules in such tiny
amounts, that many supplementary studies and in particular crystallographic
structure analyses were impossible. In the year 1990 this changed abruptly, when
Walter Krätschmer of the Max Planck Institute for Nuclear Physics in Heidelberg
and Donald R. Huffman of the American University of Arizona in Tucson suc-
ceeded for the first time in producing fullerene molecules in much larger amounts
than was possible before. Again, both scientists were interested in the preparation of
soot particles, because they were dealing with questions about interstellar matter. In
their preparation technique they used two rod-shaped graphite electrodes, between
which an electric arc is burning with a high current density. During this process the
electrode material evaporates. The whole preparation is carried out in an evapo-
ration system, its recipient being filled with a cooling gas (typically helium).
Because of the presence of the cooling gas, the carbon vapor condenses into a
smoke of particles, which are then collected. The soot particles and the fullerene
molecules are separated from each other by chemical methods. Since May 1990,
Krätschmer and also Huffman were able to produce about 100 mg fullerene per day.
Now the preparation of single crystals, of microcrystalline powder, and of thin
layers followed quickly, and research activities started to grow explosively in many
groups. In particular, the initial presumption of the soccer-ball structure of the
fullerene molecules was exactly confirmed experimentally. The production method
was improved by many groups, and it was scaled up for larger quantities. Now the
experiments were extended also to solids consisting of C60 molecules, and

Fig. 11.7 Perspective
representation of a
soccer-ball-shaped C60

molecule
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electronic properties, as well as the influence of doping with admixtures, were
investigated. Following the implantation of strong donors into the C60 solid
(n-doping), even superconductivity was found with maximum values of the critical
temperature up to Tc = 48 K. Here, the alkali metals potassium, rubidium, and
cesium, as well as the alkaline earth metals, were mainly used for electron doping.

The C60 and the C70 molecules stand out because of their particularly high
stability. Hence, during production their yield is also very high. However, the series
of the fullerene molecules still extends much further. For example, there are the
“magic” higher fullerenes C76, C78, C82, and C84. In the year 1991 Sumio Iijima
from Japan, made a discovery with important consequences for the technical
applications, when he observed in the electron microscope for the first time a new
fullerene type in the shape of thin tubes like a needle. With this discovery of carbon
nanotubes, a new phase in the fullerene research had begun. Iijima worked at the
Laboratory for fundamental research of the Japanese NEC Corporation in Tsukuba.
Since the discovery of carbon nanotubes, the number of publications and also the
number of issued patents, dealing with the nanotubes, has grown from year to year.
The number of walls of the tubes can vary. In his first publication Iijima had already
reported tubes with up to seven walls. The tube diameter also varies correspond-
ingly and falls into a range of about 4–30 nm. The typical tube length is about a few
µm. Recently, scientists at the American Rensselaer Polytechnic Institute in Troy in
the Federal State of New York and at the Chinese Tsinghua University in Beijing
have prepared bundles of single-wall nanotubes even up to a length of 20 cm using
a special technique (Fig. 11.8).

The electronic properties of the multi-wall nanotubes show relatively large
variations, which severely hamper their reproducibility. In contrast to this, the
single-wall nanotubes are very reproducible. Depending upon their diameter and
upon the degree of angular rotation in their structural detail along the axial direc-
tion, referred to as the helicity, in terms of their electrical conductivity they behave
like a one-dimensional metal or a semiconductor. Apparently, they are well suitable
for use as molecular wires. In addition to the fundamental physical properties of the
carbon nanotubes, their potential for application in molecular electronics has been

Fig. 11.8 Single-wall carbon
nanotube placed between two
platinum electrodes. The
width of the electrodes is
100 nm (C. Dekker)
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investigated by different groups. Here the manipulation of the nanotubes was
accomplished using the methods of atomic force microscopy which we have
mentioned in Chap. 1. Apparently, a sharp bend in the single-wall nanotubes acts
like a rectifying diode, similarly as a metal-semiconductor contact. Such a bend can
be generated by means of a pair of topological defects in the atomic structure of the
nanotube, or by a local mechanical deformation. The function of a field-effect
transistor has been demonstrated already by placing a single-wall nanotube on top
of a gate electrode, electrically insulated from the tube. Last but not least, the
carbon nanotubes can serve in an excellent way for realizing what are called
single-electron effects in electrical transport properties. Here we mean that the
physical properties of an object, such as the electrical resistance, for example, are
strongly affected by the presence or absence of only a single electron, because of
the extremely small dimensions of the object. Because of these developments, large
companies within the computer industry presently show a keen interest in the
physics and technology of carbon nanotubes. One can hear speculations already
that, in the medium-range future, carbon nanotubes may start to compete with the
comparatively expensive silicon as the substrate in the semiconductor technology.
Carbon nanotubes have an extremely high conductivity for electric currents, and
they allow densities of the electric current flow, at which copper wires would have
melted long before. Hence, compared to conducting lines made from copper, the
carbon nanotubes tolerate much higher electric power levels and operating fre-
quencies. An additional interesting aspect of nanotubes arises due to the possibility
that the tubes can be opened at both ends, and that molecules of other substances
can be packed into their interior. In this way the tubes can be utilized as carriers of
different materials.

11.4 Graphene

We imagine that the wall of the thinnest carbon nanotube is cut open along the axis,
spread out and extended in both directions within the plane. Then we deal with
graphene, i.e., with a material with a thickness of only a single carbon atom. The
carbon atoms are arranged as a network with a honeycomb structure. In the year
2004, Andre Geim and Konstantin Novoselov succeeded in preparing a graphene
sample by using a trick, and subsequently they discovered its fascinating physical
properties. By using Scotch tape, they achieved to strip off the top atomic layers of a
very pure graphite crystal and to transfer them onto a suitable substrate, such that
finally individual flakes of one-atomic layers became available. Following their
initial publications on this subject, an international competing research activity sat
in. Within five years, from 2005 until 2009, more than 5000 papers about graphene
were published.

Perhaps the most fascinating property of graphene is its electronic band struc-
ture. In the undoped state, it shows a linear increase of the energy E of the electrons
with their wave number k: E * k. Therefore, the charge carriers act like relativistic

11.3 Bottom Up, Fullerenes 197

http://dx.doi.org/10.1007/978-3-319-24010-7_1


particles without mass. Instead of the Schrödinger equation, they satisfy the Dirac
equation, and the Fermi velocity vF takes the role of the light velocity. This is in
contrast to the usual quadratic increase E * k2 in the case of a three-dimensional
crystal (see (4.13) and Fig. 4.5a). In graphene, as the thinnest existing material, the
concentration of the charge carriers can be varied strongly, by means of an attached
gate electrode and the electric field effect. In this way the concentration of the
electrons can be changed from that of a regular metal with about 1021 cm−3 to that
of a metal with a similar concentration of holes, passing through the (semicon-
ducting) state with only very few charge carriers (Fig. 11.9). In a magnetic field,
Geim and Novoselov have also clearly observed the half-integer
quantum-Hall-effect. The half-integer value arises from the fact that, because of
the energy spectrum, at exactly E = 0 there are two energy levels, one with electron
character and one with hole character. As an interesting exception, in graphene the
quantum-Hall-effect could be observed even at room temperature.

In addition to its spectacular electronic properties, graphene has also exceptional
mechanical properties. It is harder than diamond, and can become interesting for
applications as composite material.

Fig. 11.9 In graphene, the concentration of the charge carriers and the electrical conductivity can
be varied strongly, by means of an attached gate electrode and the electric field effect. The figure
shows the dependence of the conductivity upon the gate voltage and the linear dependence of the
Energy E of the electrons upon the wave vector k, E(k), for three values of the Fermi energy EF, in
the case of negative, vanishing, and positive gate voltage (A. Geim)
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Motivated by the characteristic electronic band structure of graphene with its
honeycomb-lattice-structure, very recently honeycomb-super-lattices were investi-
gated experimentally and theoretically. Experimentally, these two-dimensional
super-lattices consisting of HgTe nano-crystals were fabricated by Daniel
Vanmaekelbergh and coworkers at the University of Utrecht using colloid-chemical
methods.

In this case we deal with the most advanced stage of present research.
Experiments on Bloch-oscillations and negative differential resistance due to the
electronic mini-bands, as we have discussed in Sect. 11.1, still have to be carried out.

11.5 Quantum Dots

Carbon nanotubes have presented us with a highly promising molecular example as
the smallest possible version of a quantum wire. Now we will also drop the last
remaining dimension of the spatial extension of these one-dimensional quantum
wires. This means that we are dealing with the “quantum dots” as objects with
quasi-zero dimension. Again, it is the shape and dimension of the external
boundary, which determine the physical behavior of the electrons within the
quantum dots. On the other hand, the collision and deflection processes of the
electrons in the interior of these objects are moving far into the background. Similar
to the situation in an atom, now the quantum mechanical wave function of the
electrons is determined to a large extent by the spatial size of the quantum dot.
Hence, the quantum dots are also referred to as “artificial atoms”. Energy bands for
the electrons, such as those in an extended crystal, no longer exist. Instead of the
energy bands, the electrons can occupy only discrete energy levels, which can be
calculated from the geometric dimensions of the quantum dots using the quantum
mechanical Schrödinger equation (This is schematically indicated in Fig. 7.3 at the
bottom). In some sense, the Periodic Table of the Elements can be imitated by the
occupation of individual energy levels of the quantum dots with electrons. Here the
Pauli Principle must be obeyed by the electrons as Fermi particles. Hence, each
state can be occupied by only two electrons, the spins of which are oriented in
opposite directions. However, as an important difference between the quantum dots
and the individual atoms we must note that the former are micro-crystals, consisting
of about one thousand up to one million atoms, in which lattice vibrations (pho-
nons) and also lattice defects exist. The energy spectrum of the electrons in the
quantum dots can be found mainly from their optical properties, for example, from
the spectroscopy of the energy transitions. It is also not surprising that, for technical
applications of quantum dots, the optical properties are particularly interesting, as,
for example, in the quantum-dot laser.

Quantum dots have been studied experimentally for about the last 20 years. For
their fabrication three different general methods are employed. First we mention the
relatively traditional “top-down” technique, in which the quantum-dot structures are
defined and etched lithographically. However, the necessary processing steps are by
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no means simple. Furthermore, recently semiconductor nanoparticles, which were
fabricated by methods from colloid chemistry, gained special importance. Above
all, the II–VI compound semiconductors from the 2nd and the 6th group of the
Periodic Table as well as the III–V semiconductors from the 3rd and the 5th group
are interesting in the form of nanoparticles. The methods from colloid chemistry
yield particles with quasi-spherical shape, the sizes of which can be produced
reproducibly from only a few molecules up to highly extended dimensions. Here
particles with a diameter between about 1 and 6 nm are particularly interesting,
since their fabrication with other techniques is very difficult. This particle size falls
into the regime of strong quantization, in which the distance between the discrete
energy levels of the electrons in the quantum dots has the same order of magnitude
as the energetic band gap in an extended crystal. As a rule, at the end of particle
synthesis, a fractionating step for the separation of the particle sizes must be carried
out. Based on the colloid chemical methods, quantum dots can be fabricated in
amounts of grammes like the standard fine chemicals. Above all, it is the optical
properties of these quantum dots, which are interesting for their application, for
example, as markers in the fluorescence microscopy of biological samples. The
emitted light can be tuned throughout the whole visible spectral range up to the
near-infrared range only by the variation of the particle size. Here one utilizes the
fact that the distance between the discrete energy levels, relevant for optical tran-
sitions, increases with decreasing particle size. The light with the shortest wave
length originates from the smallest particles (Incidentally, a similar connection
exists between the resonance of the acoustic sound frequency and the spatial size of
a musical instrument: the higher the note, the smaller the instrument must be).

The third path for the generation of quantum dots becomes possible because of
the self-organized, spontaneous growth of well-ordered islands of uniform size in
the nanometer range during the deposition of a few atomic monolayers of a
semiconductor onto a substrate, under highly special conditions. These self-ordered
quantum dots are the first nanostructures in the range of 10 nm, which can be
produced reproducibly and also in large quantities using the standard methods of
semiconductor technology. If the islands with a diameter of only a few nanometers
are fabricated from a semiconductor with a small energy gap, and if they are then
completely imbedded in a material with a larger energy gap, one obtains electronic
quantum dots, which are well decoupled electronically from their environment. For
example, quantum dots from indium-galliumarsenide (InxGa1−xAs), imbedded into
an environment of gallium-arsenide (GaAs), were intensively investigated. Also
three-dimensional lattices of quantum dots can be fabricated by stacking several
such layers of quantum dots on top of each other. Again, it is the optical properties
and in particular the possibility for building a quantum-dot laser, which has stim-
ulated the strong interest in self-ordered quantum dots. Based on these concepts, the
first quantum-dot laser started to operate in 1994. Since then quantum-dot lasers
have been improved considerably in terms of their quantum efficiency.

Generally, the electronic properties of quantum dots are intermediate between
those of bulk semiconductors and of discrete molecules. The quantum-dot tech-
nology is particularly attractive because the active region can be modified to operate
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at different wavelengths by varying dot size and composition. This leads to the
universal use of quantum dots in optoelectronics. In particular, it allows the fab-
rication of quantum-dot lasers which operate at wavelengths previously not
accessible by using semiconductor laser technology. Possible applications of
quantum dots include transistors, solar cells, light-emitting diodes, and diode lasers.
A spectacular case is the use of quantum dots in flat-panel televisions by Sony in
2013, representing the first time they have been used in a mass-produced consumer
electronics product. Quantum-dot lasers are expected to play an increasing role in
optical data transmission systems.

11.6 Topological Insulators

The integer and the fractional quantum-Hall-effect, which we discussed in Chap. 7,
can each be understood in terms of new quantum states of the charge carriers in the
two-dimensional electron gas. These quantum states appear at the edge of the
two-dimensional electron gas (edge states) in the presence of a perpendicularly
oriented, high magnetic field. They are robust, i.e., insensitive against geometric
details and perturbations by impurities. This is the reason for the universality of the
numerical values (of the electrical resistivity), which depend only on fundamental
constants.

In recent years one recognized that similar quantum states with electric current
flow through edge channels are possible also in the absence of magnetic fields. In
electrical insulators with a suitable electronic band structure, edge states would be
generated, in which charge carriers with opposite spin at a given edge move in
opposite directions, different from the quantum-Hall-effect. This phenomenon is
referred to as quantum-spin-Hall-effect. Presently, its experimental demonstration
represents an important research subject. We will briefly sketch this development.

During the search for electrically insulating materials with an electronic band
structure which is suitable for this effect, one encountered successfully the com-
pound mercury-telluride (HgTe), a II–VI semiconductor. In this (or a similar)
insulator, by means of the spin-orbit coupling, the symmetry of both spin orien-
tations is broken. In the case of the heavy elements, the spin-orbit coupling is
particularly strong, and it plays the role of an external magnetic field. The
quantum-spin-Hall-effect appears at low temperatures (below 10 K) in thin layers
(quantum wells), which show a sufficiently high mobility of the charge carriers, and
which can be fabricated using the technique of molecular-beam epitaxy. In 2012,
the three pioneers in this field, Charles L. Kane, Shoucheng Zhang, and Laurens W.
Molenkamp received the highest award in the USA, for their research in the area of
the physics of condensed matter, “For the theoretical prediction and experimental
observation of the quantum-spin-Hall-effect, opening the field of topological
insulators”. Today, Kane and Zhang work as theoretical physicists at the University
of Pennsylvania in Philadelphia, Pennsylvania, and at the Stanford University in
California, respectively, and the experimental physicist Molenkamp is heading a
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group at the University of Würzburg, which concentrates on molecular-beam epi-
taxy of II–VI semiconductors. A topological insulator is a material, which in its
interior behaves like an electrical insulator, and which, at its surface (or at its edge),
can transport electric charges. The topological insulators represent an advancement
in the field of spintronics, which we discussed in Chap. 10 in the context with the
technical applications of magnetism.

So far we discussed only two-dimensional topological insulators with their
current-carrying edge states. In 2007 Charles Kane, mentioned above, together with
Liang Fu, predicted that also three-dimensional forms of topological insulators
would be possible, in which conducting quantum states appear at the crystal surface
(surface states). A first example is Bi1−x Sbx, a compound of bismuth (Bi) and
antimony (Sb), in which the spin-orbit coupling is particularly large. So far, the
experiments have confirmed this prediction. In Bi1−x Sbx the surface states are
similar to the two-dimensional states in graphene. As we discussed in Sect. 11.4, in
graphene near the Fermi energy, electrons and holes show a linear relation between
energy and wave number, which is described by the relativistic Dirac equation of
massless fermions. In two-dimensional k-space, the dispersion relation shows the
form of two cones stacked on top of each other, the cone ends of which coincide at
discrete points (Dirac points) at the Fermi energy (see Fig. 11.9). Whereas graphene
shows an even number of Dirac points (namely two), in the case of Bi1−x Sbx there
is an odd number. As a result, in graphene the surface states are not topologically
robust, and the energy gap easily opens up because of perturbations (impurities). On
the other hand, in Bi1−x Sbx the surface states are robust (topologically protected)
and insensitive against perturbations. Shortly after the discovery of
bismuth-antimony as a three-dimensional topological insulator, there were indica-
tions of topologically protected surface states also in antimony, bismuth-selenide,
bismuth-telluride, and antimony-telluride.

In 1996, Martin R. Zirnbauer and co-workers had developed a scheme for
classification of symmetries of universal properties, which is fundamental also in
the case of topological insulators. Today, Zirnbauer is director of the Institute of
Theoretical Physics at the University of Cologne. In 2012 he received the
Max-Planck-Medal of the German Physical Society for his work.

Topological quantum states of matter are very rare. It is noteworthy, that after
more than 80 years the electronic band theory of crystals still offers new surprises.

11.7 Aharonov-Bohm Effect

At the end of this chapter on quantum effects in mesoscopic structures, we wish to
return to the geometry of a ring in an external magnetic field. This geometry
occupied us in Chap. 8 in the context of magnetic flux quantization in supercon-
ductors. Nevertheless, in the superconductor we had to deal with the macroscopic
wave function of the Cooper pairs with their double elementary charge 2e.
However, now we are interested in the quantum effects of the ballistic electron
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motion within the ring geometry of a normal conductor with sufficiently small
dimensions, such that the collision processes of the electrons in the interior of the
object are negligible and only the external boundary is crucial. The external
magnetic field will be oriented perpendicular to the plane occupied by the ring. We
assume that the diameter of the ring is much larger than the width of the ring-shaped
conducting line. For the electron motion along the ring we must take into account
the interference during the propagation of the matter wave along the right-half and
along the left-half of the ring. It turns out that the propagation difference of the
wave between the right and the left path amounts to exactly one wavelength or to an
integer multiple thereof, if the magnetic field penetrating the ring area corresponds
to one magnetic flux quantum (h/e) or to an integer number of magnetic flux quanta.
Here it is assumed that both halves of the ring are exactly symmetrical. As a
consequence of this interference between the two propagation paths we expect a
periodic oscillation of the electrical resistance of the ring configuration during the
variation of the external magnetic field, with the periodicity (h/e) of the enclosed
magnetic flux quanta. We have been confronted with the magnetic flux quantum
(h/e) before in our discussion of the fractional quantum-Hall-effect. On the other
hand, if we compare the two complete trajectories around the whole ring clockwise
and anti-clockwise, respectively, leading back to the same starting point, then the
propagation difference between both waves after a complete revolution is exactly
one wavelength, if only half a flux quantum (h/2e) occupies the ring area.
Correspondingly, this results in a periodic oscillation of the electrical resistance of
the ring configuration during the variation of the magnetic field with periodicity
(h/2e) of the enclosed half magnetic flux quanta.

A fundamental difference between the two cases we just have discussed arises
due to the fact, that the (h/e) oscillations depend sensitively upon the details of the
sample. For example, the exact symmetry between the two halves of the ring
becomes extremely important. On the other hand, the (h/2e) oscillations arise only
from the comparison between the two complete trajectories around the whole ring
along opposite directions, respectively. These two cases are related to each other by
the process of time inversion. Hence, they are independent of the microscopic
details of the sample. This discussed interference behavior of electron matter waves
was predicted theoretically for the first time in 1959 by Yakir Aharonov and David
Bohm. Hence, this is referred to as the Aharonov-Bohm effect (Fig. 11.10). At the
time both scientists worked at the University of Bristol in England. In the early
1960s the effect was demonstrated in interference experiments performed with
electron beams by Gottfried Möllenstedt and co-workers at the University of
Tuebingen.

For the first time the Aharonov-Bohm effect of electrons in a solid has been
observed experimentally by Yurii Vasil’evich Sharvin and his son D. Yu. Sharvin
in the year 1981 in Moscow. They used a thin metal cylinder made from magne-
sium with a diameter of 1.5–2 µm and a length of 1 cm. The cylinder was deposited
as a thin layer onto a thread of quartz. The magnetic field was oriented parallel to
the cylinder axis. The temperature was 1 K. The cylinder can be looked at as an
object consisting of many rings stacked on top of each other. Therefore, the (sample
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specific) (h/e) oscillations average out, and only the (h/2e) oscillations of the
electrical resistance could be observed at the time. However, the (h/e) oscillations
were also detected experimentally in 1985 for the first time by the American
Richard A. Webb and his co-workers at the Thomas J. Watson Research Center of
IBM in the USA. They used metallic gold rings fabricated from a thin gold layer of
only 38 nm thickness (Fig. 11.4). The crucial preparation step in the fabrication of
the extremely small structures was the formation of a suitable mask consisting of a
protecting contamination layer by means of a computer-controlled high-resolution
scanning electron transmission microscope. At a temperature of 0.01 K a gold ring
with 784 nm inner diameter and 41 nm width of the conducting line displayed
distinct (h/e) oscillations of the electrical resistance during variation of the external
magnetic field.

Fig. 11.10 Aharonov-Bohm effect in ring geometry. The external magnetic field is oriented
perpendicular to the plane of the ring. a The interference between the trajectories through the right
and through the left-half of the ring leads to oscillations in the electrical resistance with periodicity
(h/e) of the magnetic flux enclosed by the ring. b For a complete revolution of two trajectories
around the ring in opposite directions, respectively, the interference results in oscillations of the
resistance with periodicity (h/2e)
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Chapter 12
Defects in the Crystal Lattice: Useful
or Harmful?

Abstract At thermodynamic equilibrium crystals display some disorder due to the
spontaneous generation of lattice defects, as we discuss in the case of lattice
vacancies. Other examples of defects are color centers in ionic crystals and radiation
damage in nuclear reactors. Understanding the role of dislocations in the
mechanical properties of materials represented a great advance. Today, nonde-
structive materials testing has developed into an important field. Magnetic impu-
rities and the Kondo effect are discussed.

During the course of many hundreds, if not thousands of years, people have gained
important and useful experience and have learned rules and recipes for the manu-
facture, in particular, of things made from metallic materials. At first, mechanical
properties and strength under mechanical loads, exclusively dominated people’s
interest in materials. For example, it had been discovered early on, how long one
should hammer a piece of metal in order for it to gain the optimum hardness for its
use as a tool, weapon, ornament, or coin. Only in the 19th century was the cold
straining and cold-work hardening systematically developed, and at the time it
reached an impressively high standard, for example, in the large rolling machines of
the steel industry. For a long time, this field of metallic materials was dominated by
pure empiricism. The microscopic structure of wrought iron was observed for the
first time only in 1863. At the time, these experimental studies were performed by
Henry Clifton Sorby, who was born in a suburb of Sheffield, one of the centers of
the English iron and steel industry. As an amateur geologist he was interested in the
structure of rocks. After he had polished and subsequently etched his samples of
wrought iron, in his light microscope he discovered characteristic structures at the
sample surface, which are referred to today as the texture of a metallic sample.
About 20 years later, Adolf Martens carried out pioneering research in this field,
and he gained high recognition as the founder of texture microscopy and of sci-
entific materials testing in Germany. A prominent milestone in Germany at the time
was the establishment of the Kaiser-Wilhelm-Institute for Metals Research in
Neubabelsberg near Berlin in the year 1920. During 1934 this Institute was moved
to Stuttgart. After the Second World War the latter Institute continued in Stuttgart
as the Max Planck Institute for Metals Research. Similar Institutes were established
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also in the other industrialized countries (In 2011 the Institute in Stuttgart was
renamed Max Planck Institute for Intelligent Systems).

After the many discoveries in the field of electricity and magnetism in the 19th
century, the electric and the magnetic material properties appeared as important new
subjects, which had to be investigated. As we have discussed in Chap. 1 in con-
junction with the crash of the two English Comet passenger airplanes, it is always
the spectacular events and catastrophes, which impressively demonstrate the need
for an almost complete understanding of material properties.

12.1 Disorder at Thermodynamic Equilibrium

Even in the purest crystal, from which all undesired impurities have been removed
very carefully, there are unavoidable lattice defects for important fundamental
reasons. This arises from the fact that the stable equilibrium state of a substance
always requires a distinct amount of disorder. It is the “thermodynamic potential”,
which rules the development of the state of equilibrium in a physical system. Only
in the presence of some disorder does the thermodynamic potential attain its
minimum value, which guarantees equilibrium. The only exception from this exists
at absolute zero temperature. The underlying ideas were developed by two physi-
cists in the 19th century: The German Hermann von Helmholtz and the American
Josiah Willard Gibbs. In this discussion of disorder, the concept of “entropy” plays
a central role. The amount of disorder necessary for establishing the equilibrium can
be achieved in crystals by means of the fact that, in the otherwise perfect single
crystal, individual lattice sites remain unoccupied by atoms, and a certain number of
lattice vacancies are generated in this way.

12.2 Vacancies in the Crystal Lattice

With the example of lattice vacancies in crystals, we will illustrate the thermody-
namic treatment. We start with the free enthalpy of a crystal:

G ¼ Uþ pV� TS ð12:1Þ

(U = inner energy; p = pressure; V = volume; T = temperature; S = entropy). From
(12.1) we see that an increase in entropy (due to disorder) reduces free enthalpy.
Because of the TS-contribution in (12.1), with increasing temperature, this reduc-
tion of free enthalpy becomes more and more important. This is exactly the reason,
why in thermodynamic equilibrium there appears disorder in a crystal.

We consider a crystal consisting of N identical atoms. The presence of n lattice
vacancies changes the free enthalpy G by the amount
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DG n; p;Tð Þ ¼ nUA þ npVA � nTSvibrA � T N þ nð Þ Sm: ð12:2Þ

In (12.2) the proportionality with n is valid only for values of n, which are small
compared with N, n ≪ N (In (12.2): UA = activation energy for the formation of a
vacancy; VA = activation volume for the formation of a vacancy; SvibrA = entropy
change of the lattice vibrations per vacancy; Sm = mixing entropy per particle). The
mixing entropy per particle is

Sm ¼ � kB
X
j

xj ln xj; ð12:3Þ

where xj denotes the atomic fraction of component j. In the case of vacancies, we
have

Sm ¼ � kB
n

nþN
ln

n
nþN

� kB
N

nþN
ln

N
nþN

ð12:4aÞ

� � kB
n
N
ln

n
N

þ kBln 1þ n
N

� �
ð12:4bÞ

� � kB
n
N
ln

n
N
� n
N

� �
; ð12:4cÞ

(again, within the approximation n ≪ N). In equilibrium we have

@DG
@n

� �
p;T

¼ UA þ pVA � TSvibrA þ kBT ln
n
N

¼ 0 ð12:5Þ

and

c p; Tð Þ � nðp;TÞ
N

¼ exp SAvibr=kB
� � � exp � UA þ pVAð Þ= kBT½ �: ð12:6Þ

From (12.6) we see that by plotting log c versus 1/T or versus p, one obtains
straight lines (Fig. 12.1). From the slope of the plot versus 1/T one obtains
UA + pVA (where, in general, the contribution p VA at p = 1 at is negligible). From
the slope of the plot versus p one obtains VA.

The equilibrium concentration of vacancies strongly increases with increasing
temperature. The spontaneous generation of lattice vacancies contributes also to the
volume expansion of the crystal, in addition to the usual thermal expansion.
Therefore, the volume expansion turns out to be somewhat larger than expected
only from the thermal expansion of the characteristic distance between neighbors in
the crystal lattice. The volume of the vacancies must be added also. This effect was
detected in a famous experiment by Ralph O. Simmons and Robert W. Balluffi.
They compared the measured relative length change ΔL/L of a crystal with the
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relative change Δa/a of the lattice constant, obtained from X-ray diffraction. In
Fig. 12.2 we show their results obtained with an aluminum sample.

Incidentally, the volume of a single vacancy is considerably smaller than the
volume corresponding to a single atom in the unperturbed crystal (the “atomic
volume”), since the neighboring atoms around the vacancy move a bit closer toward
each other, and the crystal lattice becomes distorted at this location. The formation
of the vacancies is accompanied by a distinct increase of the “inner energy” of the

Fig. 12.1 Plot of log c versus 1/T (left) and versus p (right), schematically after (12.6)

temperature (°C)

Δ
L

/L
 o

r 
 Δ

a/
a 

 in
  u

ni
ts

 1
0-3

 

Fig. 12.2 Influence of the vacancies, existing in equilibrium within the crystal lattice, upon the
temperature dependence of the crystal volume of aluminum. Because of the thermally generated
vacancies, the temperature dependence of the relative length change, ΔL/L, (upper curve) is
slightly larger than the temperature dependence of the relative change of the distance between
neighbors in the crystal lattice, Δa/a (lower curve). The difference between both curves increases
with increasing temperature (R.O. Simmons and R.W. Balluffi)
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crystal. This also leads to an additional contribution to the specific heat of the
crystal. In the noble metals, copper, silver, and gold, not far below their melting
temperature, we have about one single vacancy per one thousand lattice atoms. In
equilibrium at room temperature the vacancy concentration is smaller by many
powers of ten.

Furthermore, the vacancies generated in the state of equilibrium can move
through the crystal by means of diffusion. During an elementary diffusion jump
from one lattice site to the next, vacancies pass through an activated state, in which
they are located between two neighboring lattice sites. We denote the number of
vacancies in the activated state by n*. For the ratio n*/n one obtains an expression
analog to (12.6), in which the following quantities appear: the activation energy of
motion, UB, the activation volume of motion, VB, and the change of the entropy of

the lattice vibrations, SB
vibr:

n�=n ¼ exp SBvibr=kB
� � � exp � UB þ pVBð Þ=kBT½ �: ð12:7Þ

If the concentration of vacancies is sufficiently high, they can combine with
other vacancies forming double vacancies, similar to a molecule consisting of two
atoms. Still larger complexes of vacancies are also possible. In this way an
extensive reaction scheme of the vacancies and their larger “molecular compounds”
develops. Lattice vacancies and their motion through the crystal also represent an
important mechanism for atomic materials transport in crystals and for solid state
chemistry. In a crystal the process of hopping from site to site is only possible, if
unoccupied lattice sites are available. Therefore, chemical reactions and the diffu-
sion processes in a solid are closely related to the dynamics of vacancies. (This is
highly important, for example, for achieving the optimum oxygen concentration in
high-temperature superconductors). Before the concept of lattice vacancies had
been established, one assumed that there must exist some kind of “pores in the
lattice” or “loosened sites”, which allow the transport of matter. In the context of
this discussion it is important to note that we have only considered the case of
single crystals and that, hence, we have ignored grain boundaries between
single-crystalline grains with different crystallographic orientation. Very often such
grain boundaries do exist, and then they provide favored diffusion channels for the
transport of matter throughout the whole crystal.

Whereas in the case of the vacancies an atom is missing at its site in the crystal
lattice, there is also the possibility, that one atom too much is present, which must
then push itself between the other atoms and accommodate itself at an “interstitial
lattice site”. Again, around the interstitial atom the crystal lattice is distorted. In
general, the energy gain in the crystal due to the interstitial atom is much larger than
that for a vacancy, since the regular atoms in the lattice cannot be pushed away so
easily, in order to make room for the newcomer. For the first time, the Russian
Abram Fedorovich Ioffe proposed the idea of the interstitial lattice sites in the year
1916. During the irradiation of crystals with highly energetic particles, vacancies
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and interstitial lattice atoms are often generated together, if, for example, due to the
particles of the radiation one atom is shot away from its regular lattice site and then
must again find another place for itself within the crystal lattice. The pair of defects
consisting of a vacancy and an interstitial lattice atom in the crystal is referred to as
a Frenkel defect. This name originates from the Russian theoretical physicist Jakov
Iljitsch Frenkel, who as a collaborator of Ioffe belonged to Ioffe’s Institute in
Leningrad. In the year 1925 he developed a theory of the defect pair, which was
later named after him.

In the beginning of the studies of vacancies and interstitial lattice sites in a
crystal, both of which are also referred to as point defects, attention was concen-
trated on the “ionic crystals”. This type of crystal is composed of positively and
negatively charged ions. Since the ions have either given up an electron or have
taken up one, they possess the favored closed electron shells. Since the number of
ions with the opposite electric charge, respectively, is exactly equal, charge neu-
trality in the crystal is maintained. The binding in the ionic crystals arises from the
attractive force between ions with the opposite electric charge, as we discussed in
Sect. 2.3. Ionic crystals cannot conduct an electric current and are electrical insu-
lators. A typical example is common salt, NaCl, composed of positive sodium ions
and negative chlorine ions.

Already in the 1920s, the First Institute of Physics directed by Robert Wichard Pohl at the
University of Göttingen in Germany was a prominent location for the investigation of ionic
crystals. In addition to his scientific research, Pohl also became famous because of the
highly impressive and intuitive style of his main course in Experimental Physics, which
was known as “Pohl’s circus”. This has also become visible in the many editions of his
famous textbook on Experimental Physics consisting of three volumes. In Pohl’s Institute
many physical properties of the ionic crystals were studied. These crystals are transparent in
a large spectral range. However, their electrical and optical properties are extremely sen-
sitive against point defects and other perturbations in the crystal lattice. In particular, the
point defects became famous, since they act as “color centers” and display characteristic
optical properties. Actually, they were the first crystal defects, which were carefully studied
experimentally and theoretically. Eventually, different kinds of color centers were dis-
covered in ionic crystals, predominantly due to their optical spectral properties, and the-
oretical models were subsequently developed for the interpretation of the experimental
results. For example, for a specific center one could show that it must correspond to a
vacancy, where a negative chlorine ion (Cl−) was missing, and where an electron was
trapped. At the end of the 1930s it was mainly the Englishman Nevill Francis Mott, who
applied quantum mechanics to lattice defects in crystals, similarly to the way in which it
had been done before in the physics of atoms. Working in Bristol, Mott directed his
attention in particular to the results obtained by Pohl’s group in Göttingen. In the USA at
the time it was mainly Frederick Seitz, who took up theoretical studies in this field. The
point defects in ionic crystals then appeared to represent a relatively simple, but highly
promising, field of study, from which valuable knowledge also about the electrical prop-
erties of semiconductors and the mechanical properties of metals could be gained.

In Göttingen, Pohl had established, perhaps worldwide, the first significant school of solid
state physics. He came to Göttingen in the year 1918. Prior to that he had worked in Berlin,
among other things on questions dealing with the emission of electrons from metal surfaces
under light irradiation (the photo-electric effect), and at the end on problems of the radio
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technique.When hewas asked sometime later, why inGöttingen he shifted his interest mainly
to the interior of crystals, he gave the (not so serious) answer, that in the impoverished
Göttingen the financial means were not sufficient for experiments carried out in high vacuum.

12.3 Materials Science of Radiation Damage

During the Second World War, in the USA new developments started because of
the operation of the first nuclear reactor. On the afternoon of December 2, 1942 at
about 3:30 p.m. the first nuclear chain reaction was realized in the uranium/graphite
pile, which Fermi and his team had constructed below the west stand of the Stagg
Field Stadium at the University of Chicago. At the time this achievement was
immediately forwarded in the famous encoded announcement: “The Italian navi-
gator has just landed in the New World. …The natives were very friendly.” This
event represented the start of the technical use of nuclear reactors for the production
of energy. Hence, the field of defects and radiation damage in crystals and in
metallic materials gained an extreme practicality. At the time, the theoretical
physicist (also trained as a chemical engineer) Eugene Paul Wigner feared that the
energetic neutrons generated within the reactor would cause a dangerously high
concentration of lattice defects in the graphite used for slowing down the neutrons
(resulting in an explosive reaction). A similar fear was expressed by Leo Szilard
who, like Wigner, also originated from Hungary. The problems were then soon
referred to as the “Wigner disease” or the “Szilard complication” by participating
co-workers. At the time, the extreme practicality of the subject of radiation damage
in crystals and in metallic materials had caused Frederick Seitz to strongly intensify
his relevant theoretical calculations. Incidentally, it was Szilard, who only a few
years earlier, after the discovery of nuclear fission by Otto Hahn and Fritz
Strassmann in Berlin, had moved Albert Einstein to write his famous letter to the
American President Franklin Delano Roosevelt, in which Einstein warned against
the possibility of the Atomic Bomb.

In the years 1949–1951 Frederick Seitz established a center for basic research in
the field of defects and radiation damage in solids at the University of Illinois in
Urbana. Later on, from the gained knowledge one could estimate, for example, that
during an operation time of 10 years of a fast breeder reactor, in its inner com-
ponents each lattice atom is expelled on the average 340 times from its lattice site
into an interstitial position (and back again). An early estimate for the first wall of a
fusion reactor yielded a similar number, namely 170.

In the context of the doping of semiconductors we have become acquainted
already with artificially generated defects or with imperfections caused by chemical
admixtures in the crystal lattice. Another example are the pinning centers in
superconductors which, as local perturbations of the crystal lattice, hinder the
motion of the quantized magnetic flux lines, and hence, strongly reduce the heat
losses during electric current flow. In both cases the defects in the crystal exercise
highly useful functions. Next we will look more closely at the role of lattice defects
in the mechanical strength of materials.
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12.4 Mechanical Strength of Materials

In the year 1660, the Englishman Robert Hooke studied experimentally the elastic
strain of metals under mechanical load, and in doing so he discovered the famous
Hooke’s law named after him. Later on, for a few years he was Secretary of the
Royal Society in London. Hooke’s law says that the elastic strain increases exactly
linearly with increasing mechanical load. If the load is removed, the strain returns
back to zero. The strain is still reversible. In this context the concept of mechanical
stress was introduced. In the simplest case of a rod pulled in a longitudinal
direction, it is the pulling force per unit cross-section of the rod. From Hooke’s law
the stability of metal structures can be calculated. Hence, in 1779, the first bridge
worldwide made completely from iron was built near Birmingham in England.
Subsequently, it has carried the road traffic for 170 years.

In subsequent discussions and in the technical use of their elastic properties, for a
long time metals were treated as continuous matter, without paying attention to their
inner microscopic structure. However, the still relatively simple, elastic behavior
according to Hooke’s law is observed only if the strain of the material does not
become too large. Above a critical strain level, plastic deformation sets in, and
eventually the material tears apart. Now the changes in the material due to the
mechanical load are no longer reversible. At this point the microscopic structure
must be taken into account. The same applies also to the changes occurring in
metals during bending, rolling, or forging. However, until late into the 19th century,
nobody knew what actually happened during these processes.

After the crystal structures of the metals were clarified by means of the
diffraction of X-rays, the question had to be answered of how the crystal lattice is
deformed during mechanical working of the metals. At the time, the largest advance
in knowledge was hoped to be gained from samples consisting only of a single
crystallite, referred to as single crystals. At the beginning of the 1920s at the
Kaiser-Wilhelm-Institute for the Chemistry of Fibrous Materials in Berlin-Dahlem,
Hermann Francis Mark, Michael Polanyi, and E. Schmid performed controlled
mechanical tension tests with single crystals of zinc. Their experiments showed that
the deformation of the metals under tension occurs by shifting parts of the crystal
along distinct gliding planes, where the gliding plane and the gliding direction
depends upon the crystal structure. During this process the microscopic crystal
structure itself remains unchanged (Fig. 12.3). Experiments at the Cavendish
Laboratory in Cambridge, England yielded similar results. However, during this
research there appeared puzzling surprises. During their deformation, the metals
seemed to become mechanically stronger. Therefore, it was presumed that, during
the deformation defects are generated within the crystal lattice, which make further
deformation more difficult. Furthermore, the calculation of the mechanical tension,
at which parts of the crystal start shifting relative to each other, yielded values
which were up to thousand times larger than the experimental data. Apparently, the
metal crystals were much softer than expected theoretically. Something in the
concept was wrong, and a new mechanism had to be invented.
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The way out of this dilemma was provided by three scientific papers, all of
which were published independently of each other in 1934. The model required had
to present a strategy, in which in the final result, a more or less local defect, by its
motion through the crystal lattice, achieved a gliding motion of large parts of the
crystal relative to each other. In other words: a small cause must achieve a large
effect. One of the authors was Michael Polanyi, who had studied the plasticity of
metals for some time. The second paper was written by the Englishman, Sir
Geoffrey Taylor. During the First World War, he had investigated the susceptibility
of crankshafts to cracks for the Royal Air Force, and he had worked on theories
about crack formation and crack propagation. Subsequently, as Royal Society
Professor at the University of Cambridge, Taylor studied the plasticity of metal
single crystals and the processes during their deformation. Egon Orowan, origi-
nating from Hungary, was the third author. In the 1920s he had studied electrical
engineering at the Technical University in Berlin-Charlottenburg, and also devel-
oped an interest in physics. Orowan became acquainted with the problems of plastic
deformation through Richard Becker, at the time just recently appointed as
Professor of Theoretical Physics. Shortly before, Becker had proposed a theory on
this subject. One day, Orowan had to visit Becker in his office because of a required
signature. How this event abruptly changed the career of the young student, was
told by Orowan later as follows:

In the next minute my course of life was changed. This happened because of the excep-
tionally large office of the professor. Becker was a shy and hesitating person; however, on
my way out, before I had reached the door of his huge office, he had arrived at a decision.

Fig. 12.3 Deformation of a crystal due to slippage, schematically. Only the front plane of the
crystal lattice is shown, and additional lattice planes are further behind. The microscopic crystal
structure in the undeformed (top) and in the deformed state (bottom) remains the same
(U. Essmann)
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He called me back and asked if I would not be interested to experimentally check a little
theory of plasticity, which he had worked out three years ago. To engage oneself in
plasticity looked like a prosaic, if not downgrading proposal during the age of a De Broglie,
Heisenberg, and Schrödinger, however, it was still better than having to calculate my
sixtieth transformer, and therefore, I accepted.

12.5 Dislocations

In the quoted three papers the concept of a “dislocation”, which moves through the
crystal as a local perturbation of the crystal lattice, was proposed for the first time.
Here an additional plane of atoms is inserted into part of the crystal, which at its end
within the crystal forms the “dislocation line” (Fig. 12.4). In the region around this
dislocation line the crystal lattice is distorted. If the dislocation moves along its
gliding plane through the crystal, at the end of this motion two parts of the crystal
are displaced relative to each other by one atomic distance. During this process only
individual atoms on the dislocation line are always displaced by not more than a
single atomic distance (Fig. 12.5). In this way, during a deformation it is no longer
necessary, to displace all atoms on the gliding plane simultaneously. In agreement
with experiment, a relatively small shear stress is now sufficient to induce the
motion of the dislocation. At one time, Nevill Francis Mott has vividly illustrated
this process:

The analogy with a wrinkle in a carpet is very useful… We all know that there are two
methods for moving a carpet along the floor. Either we can grab one end and pull, or we can
form a wrinkle at one end and drive it carefully to the other end. With a large, heavy carpet
the second method needs less effort… Now we want to look at the situation in a crystal.
What I have called here a wrinkle, in the technical jargon is denoted as a ‘dislocation’…
We see that we arrive at the same result, if a dislocation is generated at one end of the
crystal and then moves through the crystal, as if one half is gliding over the other….

The dislocation line must be understood as the boundary line of a section of the
gliding plane, at which the adjoining parts of the crystal on both sides of the gliding
plane have been displaced by one atomic distance against the other. Therefore, a
dislocation line cannot terminate somewhere in the middle of the crystal, and,
instead, it must extend until it reaches the crystal surface, or at least it must form a
closed ring. All of our discussions up to this point refers to the relatively simple
case of the “edge dislocations”. However, there also exist other types of disloca-
tions, which need a more complicated description, and which will not be discussed
further here.

The concept of dislocation provided the key mechanism for clarifying our
understanding of the mechanical properties of crystals. At this point we recall our
discussion in Sect. 8.6 of the other example where the motion of another type of
defect, namely individual magnetic flux quanta, results in the key mechanism for
the destruction of superconductivity and the appearance of electrical resistance.
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The first direct experimental evidence for the crystal dislocations by means of
their observation in an electron microscope was accomplished in the year 1956 at
the Batelle Institute in Geneva and also at the Cavendish Laboratory in Cambridge.
At the time, it was a particular highlight, when even the motion of dislocations
could be followed in the electron microscope. The distortion of the crystal lattice
near the dislocation line results in mechanical stresses in this region of the material.
The stress field associated with each dislocation extends up to a relatively long
distance, and by means of the stress fields an interaction arises between the dis-
locations. As the deformation of the crystal progresses, the number of dislocations
increases. However, during this process, among the dislocations a mutual blocking
effect sets in, such that the force necessary for further deformation increases.
The crystal becomes mechanically stronger and harder, until it eventually breaks.
The same increase in mechanical strength is achieved during the cold-working of

Fig. 12.4 Model of an edge dislocation in a simple-cubic lattice. In the lower half one can see an
additional (vertical) plane of lattice atoms (W. Sigle)
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metals, i.e., by forging, rolling, or bending. Hence, it was found essentially, that the
same defect in the crystal lattice, which causes the highly useful ductility of metals,
also leads to the development of their hardness during cold-working (Fig. 12.6).

In metals, permanently changing mechanical loads are particularly harmful.
There is the possibility of metal fatigue, which eventually leads to “fatigue frac-
ture”. We all know the phenomenon, i.e., that a metal wire can break, if one bends it
back and forth often enough. Changing mechanical loads appear very frequently in
technical equipment. As long as the load stays precisely within the elastic regime of
the material, it is still harmless. However, the situation becomes critical if tiny

Fig. 12.5 Slippage along a gliding plane, caused by the motion of an edge dislocation,
schematically. Left hand The dislocation has been formed at the crystal edge on the left. Middle
The dislocation has reached the middle of the crystal. Right hand The dislocation has left the
crystal at the edge on the right, and has left behind a slippage step (U. Essmann)
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Fig. 12.6 Two-beam image showing several parallel edge dislocations in hexagonal BaTiO3

ceramics. The dislocations were imaged by diffraction contrast in a transmission electron
microscope. Bragg diffracting planes are bent due to the strain field of the dislocations yielding a
contrast along the dislocation line. Right: sketch of a dislocation penetrating the TEM foil (about
100 nm thick) from top to bottom (O. Eibl)
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plastic deformations start to develop, such that dislocations move back and forth
within the crystal lattice. Eventually, a collection of many dislocations can lead to
the seed of microcracks, representing the first stage of fatigue fracture. Here the
details are highly complex, and even today they are the subject of further research.
It appears that a similar scenario has led to the terrible accident of the Intercity
Express Train on June 3, 1998 near Eschede north of Hannover in Germany, with
many people killed or severely injured. At the time, the train ICE 884 “Wilhelm
Conrad Röntgen”, running between Munich and Hamburg-Altona, was involved.
A hidden crack at the inner side of a metal tire eventually resulted in fatigue fracture
of the tire. The tire was then caught in a switch, which considerably enhanced the
disaster. The involved tire had been in operation since 1994, and it had run 1.8
million kilometers until the day of the accident. However, during these four years it
was not exactly and carefully checked one single time.

12.6 Materials Testing

The accident we have just discussed raises the question of the early detection of
defects in materials or of perhaps already developed microcracks or damages due to
corrosion. The technical equipment required for this purpose has been available for
many years, and it is being continuously improved. In the meantime, “nondestructive
materials testing” has become an important and unavoidable technical subfield. In
addition to the inspection of the raw materials of the iron and steel industry,
important fields for the application of testing methods exist, for example, in armored
pre-stressed concrete, in certain parts of airplanes such as wheels, fuselage, and
wings, or in the under-water steel construction of derricks for oil. In the materials
testing of metals a highly prominent role is played by the eddy-current method. In
this method an electric high-frequency alternating current is locally induced in the
test sample by means of a high-frequency coil, and simultaneously the electrical
resistance behavior at this location of the test piece is determined. In this way, even
very small microcracks in the interior of the material can be detected. Because of his
pioneering research and development in this field over many years, which he had
started in the 1930s, the German Friedrich Förster gained worldwide fame.

During recent years, also the SQUID, based on the Josephson effect and on the
magnetic flux quantization in superconductors, has become increasingly important
for the nondestructive materials testing and in particular also for the detection of
microcracks and foreign inclusions. Having the highest sensitivity of all sensors of
magnetic fields, SQUIDs are used for the detection of local anomalies in the
magnetic or the electromagnetic stray field. Initially, the SQUIDs were fabricated
from classical superconductors, and usually they had to be cooled down to only a
few Kelvin using liquid helium. However, for a few years, SQUIDs made from
high-temperature superconductors have also been available, which need to be
cooled only to about 80 K, for example, with liquid nitrogen. Compared with the
traditional electric eddy-current method, discussed above, the SQUID sensors are
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much more sensitive, in particular for the detection of defects which are located
more deeply within the material. Recently, a routine evaluation at the wheel-testing
facility of the German Lufthansa Airline at the Airport of Frankfurt, yielded
promising results.

Using another example we wish to illustrate the importance of materials testing,
in particular for constructions made of steel: i.e., the shipwreck of the Titanic during
April 1912. Even today this marine catastrophe is a frequently-discussed dramatic
subject. In 2012, exactly 100 years after the accident, it received very much
attention. The physicist Uwe Essmann, working at the Max Planck Institute for
Metals Research in Stuttgart, has impressively summarized this case in an essay
entitled “Metals: From Stone Age Ornaments To Jet Turbine Engines”, where he
refers to an article in the International Herald Tribune from February 19, 1998. In
the following we quote his summary:

On her maiden voyage, on April 14, 1912 shortly before midnight, the Titanic collided with
an iceberg, and on April 15 at 2:20 a.m. she sank. In 1985 the wreck was discovered by the
oceanographer Robert Ballard off Newfoundland at a depth of 3650 meters. In 1910, the
hull had been assembled from steel sheets of about 2.5 cm thickness at a shipyard in
Belfast, using approximately three million forged-iron rivets. By means of special robots,
steel sheets from the hull and some rivets could be recovered, and it is expected that, during
expeditions to the wreck in the future, additional circumstantial evidence about the course
of the collision with the iceberg can be found. A group of ship-building engineers and
metallurgists associated with William Garzke, Chairman of the Commision on Damages of
the Society of Naval Architects and Marine Engineers, is interested in the metallurgical
questions arising in this case.

Following a maneuver with the rudder, the Titanic hit the iceberg at its starboard side. Up to
now it had been assumed that, because of this collision, a longitudinal rupture appeared
across several bulkheads, which eventually resulted in the shipwreck. However, in the year
1996 investigations of the wreck with a special sonar instrument could not confirm this
expectation. Instead, six lateral openings were found in the hull, which apparently were
caused by blows as the Titanic scratched along the iceberg.

With the engineers involved in this case this observation raised the suspicion that, at the
openings, the rivet seams between neighboring steel sheets had burst. Then at the
(American) National Institute of Standards and Technology in Gaithersburg, Maryland,
Tim Foecke started a metallurgical inspection of the salvaged rivets. By means of a dia-
mond saw, one rivet was parted along its length, and its inner texture was studied with a
metallurgical microscope. Forged iron does not consist of pure iron, but normally it con-
tains about 2 % of slag fibers, which result from slag inclusions during forging, and which
are well recognized within the texture. The slag fibers improve the fatigue and the corrosion
properties of the material. However, its volume fraction must not exceed 2 % by much,
since otherwise the mechanical strength of the rivets deteriorates. In the inspected rivet the
slag content was 9 %, which cannot be tolerated. If initially only a few weak rivets have
given in, a seam could rupture further like in textiles, leading to a fatal influx of water. If the
seams between the hull sheets would have been intact, perhaps only small leaks would have
appeared, which could have been handled by the bilge-pumps of the Titanic.”

In 2008, together with Jennifer Hooper McCarthy, Tim Foecke published the
book What really sank the Titanic—New Forensic Discoveries, in which they
reported on the materials research for nearly 10 years, dealing with the objects
recovered from the Titanic and particularly with the poor quality of the rivets.
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12.7 Magnetic Impurities, Kondo Effect

As we have discussed in Sect. 5.4, in the limit of low temperatures the (nearly
temperature independent) residual electric resistance of a metal is due electron
scattering by structural lattice defects and chemical impurities. However, already in
1930 Walther Meissner and B. Voigt noted that in certain metals at low tempera-
tures the electric resistivity displayed a minimum and then increased again by a few
per cent with decreasing temperature. Subsequently, this resistance minimum was
investigated more closely by G.J. van den Berg in Leiden and coworkers. The same
anomaly was observed in different metals containing a small amount of magnetic
impurities (Co in Cu, for example). Although the subject was studied by an
increasing number of people, it remained an unexplained mystery.

Then in 1964 the Japanese Jun Kondo entered the scene and proposed a theo-
retical explanation based on the scattering of electrons by magnetic impurities,
which is referred to since as the Kondo effect. When Kondo considered the scat-
tering from a magnetic ion that interacts with the spins of the conduction electrons,
he made a surprising discovery. He found that one contribution in his calculation
can be much larger than expected, and that the resistance of a metal can increase
logarithmically at low temperatures with decreasing temperature.

Qualitatively, these results can be understood as follows. We start with the sim-
plest model of a magnetic impurity introduced by Philip W. Anderson in 1961: There
exists only one electronic level with energy εo below the Fermi energy occupied by
an electron with its spin of ½ pointing up (Fig. 12.7a). Quantum-mechanically, the
electron can tunnel from the impurity and escape, provided its energy lies above the
Fermi energy εF of the surrounding Fermi sea of the conduction electrons. Otherwise
the electron remains trapped because all states are occupied.

However, quantum mechanics allows “exchange processes”, which can flip the
spin of the impurity from spin up to spin down, or reverse, while simultaneously
creating a spin excitation in the surrounding Fermi sea. In Fig. 12.7a we illustrate
the removal of an electron from the localized impurity state and its placement into
an unoccupied energy state at the surface of the Fermi sea. Classically, such a
process needs an energy input of about 1–10 eV in the case of magnetic impurities.
However, quantum mechanics allows such a process in form of the passage through
a virtual transient state during a very short time τ because of the Heisenberg
uncertainty principle. This time τ is given by

s ¼ h= eoj j ð12:8Þ

where h is Planck’s constant. Within this time τ another electron must tunnel from
the Fermi sea back to the impurity. However, the spin of this electron will point in
the opposite direction than before, and a spin-flip process had occurred.

Theoretically, in this case we deal again with a quantum mechanical exchange
interaction (In Sects. 10.3–10.5 we discussed the prominent role of such interaction
in the case of magnetism). If the concentration of the magnetic impurities in the
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crystal is sufficiently small, the individual magnetic defects can be treated inde-
pendently, and interference effects between them can be neglected.

This spin-exchange interaction qualitatively changes the energy spectrum of the
system. The presence of many magnetic impurities results in a sharp peak in the
density of states (“Kondo resonance”) at the Fermi energy (Fig. 12.7b). This peak
provides much additional phase space for the scattering of electrons and, hence,
strongly affects the electric resistance at low temperatures.

It turns out, that below the “Kondo temperature” the electric resistance increases
logarithmically with decreasing temperature. Typically, the Kondo temperature can
vary between 1 and 100 K. The strong energy dependence of the density of states
near the Fermi energy, seen in Fig. 12.7b, also leads to a large value of the
thermoelectric power (“giant thermo-power”) at low temperatures.

εo 

initial state final state

en
erg

yεF 

density of states

(a) (b)

Fig. 12.7 The Anderson model describes a magnetic impurity in terms of one electronic energy
level with energy εo below the Fermi energy occupied by an electron. Coulomb repulsion prohibits
the presence of a second electron at this energy. In a the potential well associated with the impurity
and the Fermi sea outside the potential barrier around it is schematically indicated. Part a illustrates
the quantum mechanical exchange process during which a spin-up electron escapes from the
impurity by tunneling and reaches an unoccupied energy level above the Fermi energy.
Simultaneously, an electron with the opposite spin from the Fermi sea tunnels back to the impurity
site. Energetically, this exchange process becomes possible because of the Heisenberg uncertainty
relation, allowing the passage through a virtual transient state during a very short time. b Shows
the appearance of a sharp peak in the density of states at the Fermi energy due to the presence of
many magnetic impurities. Г is the width of the energy level of the impurity, which is broadened
by the short lifetime due to the electron tunneling
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Nobel Prizes in Physics Closely Connected
with the Physics of Solids

1901 Wilhelm Conrad Röntgen, Munich, for the discovery of the remarkable rays
subsequently named after him

1909 Guglielmo Marconi, London, and Ferdinand Braun, Strassburg, for their
contributions to the development of wireless telegraphy

1913 Heike Kamerlingh Onnes, Leiden, for his investigations on the properties of
matter at low temperatures which lead, inter alia, to the production of liquid
helium

1914 Max von Laue, Frankfort/Main, for his discovery of the diffraction of
X-rays by crystals

1915 William Henry Bragg, London, and William Lawrence Bragg, Manchester,
for their analysis of crystal structure by means of X-rays

1918 Max Planck, Berlin, in recognition of the services he rendered to the
advancement of Physics by his discovery of energy quanta

1920 Charles Edouard Guillaume, Sèvres, in recognition of the service he has
rendered to precise measurements in Physics by his discovery of anomalies
in nickel steel alloys

1921 Albert Einstein, Berlin, for services to Theoretical Physics, and especially
for his discovery of the law of the photoelectric effect

1923 Robert Andrews Millikan, Pasadena, California, for his work on the
elementary charge of electricity and on the photo-electric effect

1924 Manne Siegbahn, Uppsala, for his discoveries and researches in the field of
X-ray spectroscopy

1926 Jean Baptiste Perrin, Paris, for his work on the discontinuous structure of
matter, and especially for his discovery of sedimentation equilibrium

1928 Owen Willans Richardson, London, for his work on the thermionic
phenomenon and especially for his discovery of the law named after him

1929 Louis Victor de Broglie, Paris, for his discovery of the wave nature of
electrons

1930 Venkata Raman, Calcutta, for his work on the scattering of light and for the
discovery of the effect named after him

1932 Werner Heisenberg, Leipzig, for the creation of quantum mechanics, the
application of which has, inter alia, led to the discovery of the allotropic
forms of hydrogen
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1933 Erwin Schrödinger, Berlin, and Paul Adrien Maurice Dirac, Cambridge, for
the discovery of new productive forms of atomic theory

1937 Clinton Joseph Davisson, New York, N.Y., and George Paget Thomson,
London, for their experimental discovery of the diffraction of electrons by
crystals

1945 Wolfgang Pauli, Zurich, for the discovery of the Exclusion Principle, also
called the Pauli Principle

1946 Percy Williams Bridgman, Harvard University, Massachusetts, for the
invention of an apparatus to produce extremely high pressures and for
discoveries he made in the field of high pressure physics

1952 Felix Bloch, Stanford University, California, and Edward Mills Purcell,
Harvard University, Massachusetts, for the development of new methods
for nuclear magnetic precision measurements and the discoveries in
connection therewith

1954 Max Born, Edinburgh, for his fundamental research in quantum mechanics,
especially for his statistical interpretation of the wave-function

1956 William Shockley, Pasadena, California, John Bardeen, Urbana, Illinois,
and Walter Houser Brattain, Murray Hill, New Jersey, for their investiga-
tions on semiconductors and their discovery of the transistor effect

1961 Rudolf Ludwig Mössbauer, Munich, for his researches concerning the
resonance absorption of gamma radiation and his discovery in this
connection of the effect which bears his name

1962 Lew Dawidowitsch Landau, Moscow, for his pioneering theories for
condensed matter, especially liquid helium

1965 Sin-itiro Tomonaga, Tokyo, Julian Seymour Schwinger, Cambridge,
Massachusetts, and Richard Phillips Feynman, Pasadena, California, for
their fundamental work in quantum electrodynamics, with deep-ploughing
consequences for the physics of elementary particles

1970 Louis Eugène Felix Néel, Grenoble, for fundamental work and discoveries
concerning antiferromagnetism and ferromagnetism which have led to
important applications in solid state physics

1972 John Bardeen, Urbana, Illinois, Leon Neil Cooper, Providence, Rhode
Island, and John Robert Schrieffer, Philadelphia, Pennsylvania, for their
theory of superconductivity, usually called the BCS-theory

1973 Leo Esaki, Yorktown Heights, New York, and Ivar Giaever, Schenectady,
New York, one half for their experimental discoveries regarding tunneling
phenomena in semiconductors and superconductors, respectively, and with
the other half to Brian David Josephson, Cambridge, U.K., for his
theoretical predictions of the properties of a supercurrent through a tunnel
barrier, in particular those phenomena which are generally known as the
Josephson effects

1977 Philip Warren Anderson, Murray Hill, New Jersey, Nevill Francis Mott,
Cambridge, U.K., and John Hasbrouck Van Vleck, Cambridge,
Massachusetts, for their fundamental theoretical investigations of the
electronic structure of magnetic and disordered systems
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1978 Pyotr Leonidovich Kapitza, Moscow, for his basic inventions and
discoveries in the area of low-temperature physics

1981 Kai Manne Siegbahn, Uppsala, for his contribution to the development of
high-resolution electron spectroscopy

1982 Kenneth Geddes Wilson, Cornell University, New York, for his theory of
critical phenomena in connection with phase transitions

1985 Klaus von Klitzing, Stuttgart, for the discovery of the quantized Hall effect
1986 Ernst Ruska, Berlin, for his fundamental work in electron optics and for the

design of the first electron microscope, and the other half jointly to Gerd
Binnig and Heinrich Rohrer, Zurich, for their design of the scanning
tunneling microscope

1987 Johannes Georg Bednorz and Karl Alexander Müller, Zurich, for their
important breakthrough in the discovery of superconductivity in ceramic
materials

1991 Pierre-Gilles de Gennes, Paris, for discovering that methods developed for
studying order phenomena in simple systems can be generalized to more
complex forms of matter, in particular to liquid crystals and polymers

1994 Bertram Neville Brockhouse, McMaster University, Hamilton, Ontario, for
the development of neutron spectroscopy, and to Clifford Glenwood Shull,
Massachusetts Institute of Technology, Cambridge, Massachusetts, for the
development of the neutron diffraction technique

1996 David Morris Lee, Cornell University, New York, Douglas Dean Osheroff,
Stanford University, California, and Robert Coleman Richardson, Cornell
University, New York, for their discovery of superfluidity in helium-3

1998 Robert Betts Laughlin, Stanford University, California, Horst Ludwig
Störmer, Columbia University, New York, and Daniel Chee Tsui, Princeton
University, New Jersey, for their discovery of a new form of quantum fluid
with fractionally charged excitations

2000 Zhores Ivanovich Alferov, St. Petersburg, Herbert Kroemer, Santa Barbara,
California, and Jack St. Clair Kilby, Dallas, Texas, for basic work on
information and communication technology, in particular for developing
semiconductor hetero-structures used in high-speed- and opto-electronics,
and for the invention of the integrated circuit

2003 Alexei Alexeyevich Abrikosov, Argonne, Illinois, Vitaly Lazarevich
Ginzburg, Moscow, and Anthony James Leggett, Urbana, Illinois, for their
pioneering contributions to the theory of superconductors and superfluids

2007 Albert Louis Francois Fert, Paris, and Peter Grünberg, Jülich, for the
discovery of giant magneto-resistance

2009 Willard S. Boyle, Charles Kuen Kao, and George Elwood Smith, Bell
Laboratories, Murray Hill, New Jersey, for the invention of an imaging
semiconductor circuit—the CCD sensor

2010 Andre Geim and Konstantin Novoselov, Manchester, U.K., for discovering
and isolating a single free-standing atomic layer of carbon (graphene) and
elucidating its remarkable electronic properties
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2012 Serge Haroche, Collège de France and Ecole Normale Supérieure, Paris,
France, and David J. Wineland, National Institute of Standards and
Technology and University of Colorado, Boulder, CO, USA, for
ground-breaking experimental methods that enable measuring and manip-
ulation of individual quantum systems

2014 Isamu Akasaki, Meijo University, Nagoya and Nagoya University, Japan,
Hiroshi Amano, Nagoya University, Japan, and Shuji Nakamura,
University of California, Santa Barbara, CA, USA, for the invention of
efficient blue light-emitting diodes which has enabled bright and
energy-saving white light sources
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Nobel Prizes in Chemistry Closely Connected
with the Physics of Solids

1920 Walther Nernst, Berlin, in recognition of his work in thermochemistry
1936 Peter Debye, Berlin-Dahlem, for his contributions to our knowledge of

molecular structure through his investigations on dipole moments and on
the diffraction of X-rays and electrons in gases

1949 William Francis Giauque, Berkeley, California, for his contributions in the
field of chemical thermodynamics, particularly concerning the behaviour of
substances at extremely low temperatures

1954 Linus Carl Pauling, Pasadena, California, for his research into the nature of
the chemical bond and its application to the elucidation of the structure of
complex substances

1966 Robert Sanderson Mulliken, Chicago, Illinois, for his fundamental work
concerning chemical bonds and the electronic structure of molecules by the
molecular orbital method

1968 Lars Onsager, New Haven, Connecticut, for the discovery of the reciprocity
relations bearing his name, which are fundamental for the thermodynamics
of irreversible processes

1977 Ilya Prigogine, Brussels, for his contribution to non-equilibrium thermo-
dynamics, particularly the theory of dissipative structures

1985 Herbert Aaron Hauptman, Buffalo, New York, and Jerome Karle,
Washington, DC, for their outstanding achievements in the development
of direct methods for the determination of crystal structures

1988 Johann Deisenhofer, Dallas, Texas, Robert Huber, Martinsried, and
Hartmut Michel, Frankfort/Main, for the determination of the
three-dimensional structure of a photosynthetic reaction centre

1991 Richard Robert Ernst, Zurich, for his contributions to the development of
the methodology of high resolution nuclear magnetic resonance
(NMR) spectroscopy

1996 Robert Floyd Curl, Jr., Rice University, Houston, Texas, Harold Walter
Kroto, University of Sussex, and Richard Errett Smalley, Rice University,
for their discovery of fullerenes
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1998 Walter Kohn, Santa Barbara, California, for his development of the
density-functional theory, and John Anthony Pople, Northwestern
University, Evanston, Illinois, for his development of computational
methods in quantum chemistry

2000 Alan Jay Heeger, Santa Barbara, California, Alan Graham MacDiarmid,
Philadelphia, Pennsylvania, and Hideki Shirakawa, Tsukuba, for the
discovery and development of conductive polymers

2007 Gerhard Ertl, Fritz-Haber Institut, Berlin, for his studies of chemical
processes at solid surfaces

2011 Daniel Shechtman, Technion, Haifa, for the discovery of quasi-crystals
2014 Eric Betzig, Howard Hughes Medical Institute, Ashburn, VA, USA,

Stefan W. Hell, Max Planck Institute for Biophysical Chemistry, Göttingen,
and German Cancer Research Center, Heidelberg, Germany, and
William E. Moerner, Stanford University, Stanford, CA, USA, for the
development of super-resolved fluorescence microscopy
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