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Preface

This book is intended to be advanced undergraduate–graduate friendly. With a less
strict yet formal language, it intends to clarify and structure in a very logical manner
concepts that can be confusing in Quantum Field Theory. It does not replace a
formal book on the subject. Its main goal is to be a helpful complementary tool for
beginners and not-so-beginners in this field. The reader is expected to be at least
familiar with basic notions of Quantum Field Theory as well as basics of Special
Relativity. However, most of the times being familiar with Special Relativity
doesn’t mean being familiar with tensor algebra or tensor calculus in general. Many
physics books assume that the reader is already familiar with tensors, so they begin
directly with advanced topics. On the other hand, many mathematical books are
somewhat too formal for a young physicist. Thus, I have introduced at the begin-
ning, a nicely self-contained, student friendly chapter, which introduces the tensor
formalism in general, as well as the concept of a manifold. This is done by
assuming only that the the reader is familiar with the notions of vectors and vector
spaces. Key aspects of Special Relativity are also covered.

The kinematics needed for the most common relativistic processes is given. It is
a logical schematic list of all the relevant and most important formulae needed for
calculating relativistic collisions and decays. It includes one-to-two and
one-to-three body decays, and also the two-to-two scattering process both in the
center of mass and laboratory frames. It also includes simplified general formulae of
one, two, and three-body Lorentz invariant phase space. As a bonus, the three and
four-body kinematics in terms of angular observables is also presented.

Noether’s theorem is mostly treated in the literature in a somewhat heuristic
manner by introducing many ad hoc concepts without too many technical details.
I try to fix this problem by stating the most general (Lorentz invariant) form of the
theorem and by applying it to a few simple, yet relevant, examples in Quantum
Field Theory.

I also try to introduce a simple and robust treatment for dimensional regulari-
zation and consistently explain the renormalization procedure step-by-step in a
transparent manner at all orders, using the QED Lagrangian, which is in my opinion
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the most suitable from an academical point of view. I dedicate thus, one chapter in
explaining the Dyson summation algorithm and try to clarify all possible confusions
that may arise. Various renormalization schemes are also presented.

Infrared divergences, as well as the ultraviolet ones are also extensively treated.
I explicitly calculate a few infrared divergent Green functions and show an explicit
example of cancellation of infrared divergences (step by step) using dimensional
regularization. Other interesting topics are also discussed.

Possible issues and confusion for tadpole renormalization are commented and
some illustrative simple examples are given in Chaps. 7 and 9, where we also treat
the renormalization of the W sector of the Standard Model. With the tools given
here one should find it straightforward to calculate and renormalize any N-point
Green function at one-loop level. A very short example of a two-loop calculation is
also given.

Valencia Victor Ilisie
July 2015
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Chapter 1
Vectors, Tensors, Manifolds and Special
Relativity

Abstract Assuming that the reader is familiar with the notion of vectors, within a
few pages, with a few examples, the reader will get to be familiar with the generic
picture of tensors. With the specific notions given in this chapter, the reader will
be able to understand more advanced tensor courses with no further effort. The
transition between tensor algebra and tensor calculus is done naturally with a very
familiar example. The notion of manifold and a few basic key aspects on Special
Relativity are also presented.

1.1 Tensor Algebra

Beforewe get to define the notion of a tensor, whichwill arise naturally, it is important
to start from the very beginning and remember a fewbasic notions about vector spaces
and linear maps (applications) defined over vector spaces. We shall assume that the
reader is at least familiar with vectors and vector spaces, so we shall try not to get
into unnecessary details. Let’s, thus, start by considering a vector space Vn of finite
dimension n defined over the set of real numbers1 R. Given an arbitrary basis {ei }n

i=1
we can write a vector v ∈ Vn as

v = vi ei . (1.1)

One is probably used to see a vector written in the following form

v =
∑n

i=1
vi ei . (1.2)

Here we will suppress the bold vector symbol and adopt the standard Einstein sum-
mation convention for repeated indices, so what we get is the compact form (1.1).
Let’s consider an invertible change of basis given by the matrix A (det(A) �= 0). We
can relate the new basis with the original one by

1In general it could be defined over C, but here, we are not interested in this case. Once the reader is
familiarized with the notions presented here, it is easy to further study the generalization to complex
spaces.

© Springer International Publishing Switzerland 2016
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2 1 Vectors, Tensors, Manifolds and Special Relativity

e′
j = Ai

j ei , (1.3)

where the upper index of A stands for the row and the lower one for the column
(remember that, if not stated otherwise, summation is always performedover repeated
indices). Equivalently one can write the inverse relation

e j = (A−1)i
j e′

i . (1.4)

Because v is an invariant quantity, it is straightforward to obtain the transformation
law for the vector components

v = v j e j = v j (A−1)i
j e′

i = v′i e′
i . (1.5)

Thus, under an invertible change of basis (1.3) the vector components transform as

v′i = (A−1)i
j v

j , (1.6)

or equivalently vi = Ai
j v

′ j .

1.1.1 Dual Space

The dual space of Vn , denoted as V ∗
n is defined as the space of all the linear maps

(applications) from Vn to R:

β : Vn → R

β : v �→ β(v), (1.7)

with the following property

β(λ1u1 + λ2u2) = λ1β(u1) + λ2β(u2), (1.8)

∀ u1, u2 ∈ Vn and ∀ λ1,λ2 ∈ R. The space V ∗
n is also a vector space of dimension

n and its elements are usually called covectors. Using an arbitrary basis {ωi }n
i=1 an

element β ∈ V ∗
n can be written as

β = βi ω
i . (1.9)

Therefore, given an element v ∈ Vn the linear map β(v) ∈ R can be explicitly writ-
ten as

β(v) = βi ω
i (v j e j ) = βi v

j ωi (e j ). (1.10)
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In general, the quantity ωi (e j ) depends on the chosen bases {ωi } and {ei }. However,
there is one basis of V ∗

n called dual basis of Vn , that has the following simple property

ωi (e j ) = δi
j , (1.11)

where δi
j is the Kronecker-delta defined the usual way (δi

j = 0 if i �= j and δi
j = 1

if i = j). We shall work from now on using the dual basis and instead of writing its
elements {ω j } we shall write them {e j }. Thus using this new notation (1.11) turns
into

ei (e j ) = δi
j , (1.12)

and so β(v) takes the simple form

β(v) = βi ei (v j e j ) = βi v
j ei (e j ) = βi v

j δi
j = βi v

i . (1.13)

Let’s now deduce how the elements {ei } must transform under a change of the basis
{e j } → {e′

j } in order to maintain the duality condition:

ei (e j ) = δi
j = e′i (e′

j ). (1.14)

Let’s suppose that the transformation {ei } → {e′i } is given by an invertible matrix
B (det(B) �= 0):

e′i = Bi
l el . (1.15)

Inserting (1.3) and (1.15) into (1.14) we easily get

e′i (e′
j ) = Bi

l el(Ak
j ek) = Bi

l Ak
j el(ek) = Bi

l Ak
j δ

l
k = δi

j . (1.16)

Therefore, we obtain the following relation between the matrices A and B

Bi
k Ak

j = δi
j ⇒ B A = I ⇒ A = B−1. (1.17)

where I is the n × n identity matrix. In conclusion, the components of the covector
and the basis of V ∗

n obey the following transformation rules

β′
i = A j

i β j , e′i = (A−1)i
j e j . (1.18)
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1.1.2 Covariant and Contravariant Laws of Transformation

Summing up, given v ∈ Vn a vector (v = vi ei ) and β ∈ V ∗
n a covector (β = βi ei ),

we have the following law of transformation for {ei } and {βi }

e′
i = A j

i e j , β′
i = A j

i β j . (1.19)

We shall call this, the covariant law of transformation. For {ei } and {vi } we have
found

e′i = (A−1)i
j e j , v′i = (A−1)i

j v
j . (1.20)

We shall call this, the contravariant law of transformation. This is the reasonwhywe
use upper and lower indices, to be able to make the difference between covariant and
contravariant quantities. However, we have to be careful because not every element
with an upper or a lower index is a covariant or contravariant quantity. We shall
see an explicit example within a few sections.

1.1.3 Theorem

For a finite dimensional vector space Vn , the dual space of its dual space V ∗
n , (called

double dual space, denoted as V ∗∗
n ) is isomorphic to Vn .

This is just general algebra and we shall not be concerned about giving the proof
here. The important thing that we need to learn from this theorem is that there is a
one-to-one correspondence between Vn and V ∗∗

n , thus, in what we are concerned,
we learn nothing new from V ∗∗

n . As a consequence, we can safely identify the vector
space Vn with its double dual V ∗∗

n . Because of this, Vn can be viewed as the space
of all linear maps from V ∗

n to R, v : V ∗
n → R. Therefore, if one identifies Vn with

the dual space of V ∗
n then one can make the following definition

e j (e
i ) ≡ ei (e j ) = δi

j . (1.21)

Given this definition one can also make another one that will turn out to be useful

v(β) ≡ β(v) = βi v
i . (1.22)

After this short reminder, we are now in position to define a more general element
of algebra that generalizes vectors, covectors and linear maps. We are talking of
course, about tensors. First we will need to introduce the tensor product.
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1.1.4 Tensor Product

Given two vector spaces Vn and Vm of finite dimensions n and m, the tensor product
is a map of the form:

⊗ : Vn × Vm → Vn ⊗ Vm

⊗ : (u, w) �→ u ⊗ w, (1.23)

with the following properties:

1. (v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w,

2. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

3. λ(v ⊗ w) = (λv) ⊗ w = v ⊗ (λw),

4. v ⊗ w �= w ⊗ v, (1.24)

∀v, v1, v2,∈ Vn , ∀w,w1, w2,∈ Vm and ∀λ ∈ R. Note that the commutative property
doesn’t hold for the tensor product by definition.

The product Vn ⊗ Vm is a vector space of dimension n · m and its elements are
called tensors. If v = vi ei ∈ Vn and w = w j e j ∈ Vm then q ≡ v ⊗ w can be
written as:

q = v ⊗ w = vi w j ei ⊗ e j ≡ qi j ei ⊗ e j . (1.25)

The tensor product can be defined over any finite sequence of vector spaces, dual
spaces or both. We can define for example2:

⊗ : Vn × · · · × V ∗
n × · · · × Vn × · · · × V ∗

n

→ Vn ⊗ · · · ⊗ V ∗
n ⊗ · · · ⊗ Vn ⊗ · · · ⊗ V ∗

n , (1.26)

etc.

1.1.5 What Do Tensors Do?

Tensors are multilinear maps that act on vector spaces and their duals.
For example

Vn ⊗ Vn : V ∗
n × V ∗

n → R

u ⊗ v : (α,β) �→ u ⊗ w (α,β). (1.27)

2We shall only be concerned with identical copies of vector spaces and their duals, therefore all
spaces considered from now on will be of dimension n.
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The quantity u ⊗ w (α,β) can be expressed using dual bases as

u ⊗ w (α,β) = u(α) v(β)

= ui ei (α j e j ) vk ek (βl el)

= ui α j ei (e
j ) vk βl ek(e

l)

= ui α j δ
j
i vk βl δ

l
k

= ui αi v
k βk (1.28)

However, not all tensors defined over V ∗
n × V ∗

n are of the form u ⊗ v. The general
way of defining a tensor will be given in the following sections.

1.1.6 Rank Two Contravariant Tensor

A rank two contravariant tensor, or a (2, 0) tensor is a linear map of the form:

t : V ∗
n × V ∗

n → R

t : (α,β) �→ t (α,β), (1.29)

with the following properties:

1. t (λ1α1 + λ2α2, β) = λ1 t (α1, β) + λ2 t (α2, β)

2. t (α, λ1β1 + λ2β2) = λ1 t (α, β1) + λ2 t (α, β2), (1.30)

∀ α,β,α1,α2,β1,β2,∈ V ∗
n and ∀ λ1,λ2 ∈ R. It is straightforward to deduce that

the following property also holds

t (λ1α, λ2β) = λ1λ2 t (α,β), (1.31)

∀ α,β ∈ V ∗
n and ∀ λ1,λ2 ∈ R. Given α,β ∈ V ∗

n we can write t (α,β) as

t (α,β) = t (αi e
i ,β j e

j ) = αi β j t (ei , e j ) ≡ αi β j t i j , (1.32)

where we have defined t (ei , e j ) ≡ t i j as the tensor components related to the given
basis. Thus, we can express t using a basis and the tensor product as follows

t = t i j ei ⊗ e j , (1.33)
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so that,

t (α,β) = t i j ei ⊗ e j (αk ek,βl el)

= t i j αk βl ei ⊗ e j (e
k, el)

= t i j αk βl ei (e
k)e j (e

l)

= t i j αk βl δk
i δl

j

= t i j αi β j (1.34)

Whenever t can be separated as t i j = vi w j with u, w ∈ Vn (meaning that
t = v ⊗ w, as in the previous section) it is said that t is a separable tensor.

1.1.7 Rank Two Covariant Tensor

A rank two covariant tensor, or a (0, 2) tensor, is a linear map of the form:

t : Vn × Vn → R

t : (u, v) �→ t (u, v), (1.35)

with the same properties 1, 2 as in the previous case. Thus, we can express t using a
basis as follows

t = ti j ei ⊗ e j . (1.36)

Therefore, given u, v ∈ Vn

t (u, v) = ti j ei ⊗ e j (uk ek, v
l el)

= ti j uk vl ei ⊗ e j (ek, el)

= ti j uk vl ei (ek)e j (el)

= ti j uk vl δi
k δ

j
l

= ti j ui v j (1.37)

1.1.8 (1, 1) Mixed Tensor

We have to be somewhat careful when we defining mixed tensors. For example, we
can define a (1,1) mixed tensor in two different ways. The first one
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t : V ∗
n × Vn → R

t : (α, v) �→ t (α, v), (1.38)

with t first acting on V ∗
n and afterwards on Vn . It must be written as

t = t i
j ei ⊗ e j . (1.39)

The other way of defining a (1,1) tensor is

t : Vn × V ∗
n → R

t : (v,α) �→ t (v,α). (1.40)

In this case t must be written as

t = t j
i ei ⊗ e j . (1.41)

In order to avoid this confusion one usually leaves blank spaces in between the tensor
indices, as it is done here, to indicate the order in which the application acts. Let’s
take one last example. Consider the map

t : Vn × V ∗
n × V ∗

n × Vn → R. (1.42)

Obviously t must be written as

t = t jk
i l ei ⊗ e j ⊗ ek ⊗ el . (1.43)

It must be noted that if, for practical calculations, this order does not count, one
usually forgets about the blank spaces. This is pretty usual in many calculations in
physics, for example you will probably find the previous tensor components written
as t jk

il .

1.1.9 Tensor Transformation Under a Change of Basis

Let’s consider a (2, 0) tensor. Under a change of basis of the form (1.3) we have the
following

t = tkl ek ⊗ el = tkl e′
i ⊗ e′

j (A−1)i
k (A−1)

j
l = t ′i j e′

i ⊗ e′
j . (1.44)

Thus, the law of transformation of a rank two contravariant tensor is:

t ′i j = tkl (A−1)i
k (A−1)

j
l (1.45)
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Obviously, for a rank two covariant tensor the law of transformation is:

t ′i j = tkl Ak
i Al

j (1.46)

and for a (1, 1) mixed tensor we have:

t′ij = tkl (A
−1)ik Al

j

t′ i
j = t k

l (A−1)ik Al
j (1.47)

The generalization to (r, s) tensors (r -times contravariant and s-times covariant) is
straightforward. A (0,0) tensor is called a scalar (remains invariant under a change
of basis). A vector is a (1, 0) tensor and a covector is (0, 1) tensor.

1.1.10 Intrinsic Definition of a Tensor

The transformation laws (1.45), (1.46), (1.47) reflect the intrinsic definition of ten-
sors. In order to demonstrate that some quantity is a tensor it is sufficient to show
that it obeys the tensor laws of transformation.

1.1.11 Tensor Product Revised

The tensor product is a way of constructing tensors from other higher rank tensors,
not only from vectors or covectors as we have done previously. It is obvious that, if
t is a (r, s) tensor and b is a (m, n) tensor then t ⊗ b is a (r + m, s + n) tensor. For
example, if t = t i

j ei ⊗ e j is a (1, 1) tensor and b = bk
l ek ⊗ el is also a (1, 1) tensor

then, q = t ⊗ b is a (2, 2) tensor and it is explicitly given by

q = t ⊗ b = qi k
j l ei ⊗ e j ⊗ ek ⊗ el = t i

j bk
l ei ⊗ e j ⊗ ek ⊗ el . (1.48)

1.1.12 Kronecker Delta

It is easy to prove that the Kronecker delta is a rank two mixed tensor. It is also
symmetric δ

j
i = δi

j . Being a mixed tensor, in principle we should be careful with the
index order and leave blank spaces. However, we shall continue using the simplified
notation δ

j
i ≡ δ

j
i ≡ δ

j
i because, for practically most of our calculations, this order

does not really count.
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1.1.13 Tensor Contraction

Given a rank (r, s) tensor, we can construct a rank (r − 1, s − 1) rank tensor by con-
tracting (summing over) any upper (contravariant) index with any lower (covariant)
index. For example, given a rank (2, 2) tensor with components T lk

i j , the quantities

T ′ k
j ≡ T ik

i j are the components of a rank (1, 1) tensor.
Similarly, one can construct tensors by contracting any upper index of a tensorwith

any lower index of another tensor. Given a rank (1, 2) tensor with components T i
jl

and a rank (3, 0) tensor with components K kmn , the quantities Pi mn
j ≡ T i

jl K lmn

are the components of a (3, 1) tensor.

1.1.14 Metric Tensor

Given a vector space Vn , we define a metric tensor (rank two covariant) as:

g : Vn × Vn → R

g : (u, v) �→ g(u, v) (1.49)

with the following properties:

1.symmetric gi j = g j i

2.non-singular det(g) �= 0 (1.50)

Of course, we can define the inverse metric tensor (rank two contravariant)

g−1 : V ∗
n × V ∗

n → R

g−1 : (m, n) �→ g−1(m, n) (1.51)

with the same two properties as the metric tensor. Thus, g g−1 = I , which can be
written using the Kronecker delta as

gi j g
jk = δk

i . (1.52)

Again, I stands for n × n the identity matrix.

1.1.15 Lowering and Raising Indices

There is a natural way of going from a vector space to its dual by using the metric
tensor. Given a vector v = v j e j we can define the covector v∗ = v j e j with
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v j = gi jv
i , and given a covector β = βi ei we can define a vector β∗ = βi ei with

βi = gi jβ j . This can be generalized for any (r, s) type tensor, and we can use the
metric tensor to lower or raise as many tensor indices as we want, for example

R k
i j = Rmnk gmi gnj . (1.53)

1.1.16 Scalar Product

Given a metric tensor we can define two important invariant quantities (scalars).
First, given two vectors u, v we define their scalar product as:

(u · v) = (v · u) ≡ vi ui = gi j ui v j = gi j ui v j = δi
j ui v

j . (1.54)

Second, when u = v can define the squared modulus of the vector v ∈ Vn as

v2 ≡ vi vi = gi j v
i v j = gi j vi v j = δi

j vi v
j . (1.55)

1.1.17 Euclidean Metric

Even though we do not write it down explicitly when working in the usual Euclidean
3D space R3, we use the Euclidean metric given by

g = g−1 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (1.56)

(for the canonical basis and Cartesian coordinates). The short-hand notation for this
is gi j = gi j = diag{1, 1, 1}.

Invariant Euclidean Length: given two points in space A and B with coordinates
given by x and y in a certain reference frame O, we define w ≡ x − y. The squared
distance between these to points in 3D Euclidean space is defined as

w2 ≡ |w|2 = (w1)2 + (w2)2 + (w3)2 = gi j w
i w j . (1.57)

We can observe that the length we have just defined is basis independent (obviously
this has to hold because the distance between two objects doesn’t depend on the
reference system, at least from a classical point of view).
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As we have already mentioned before, not everything that has an index is a
tensor. For example, theposition vectors x and y that we are so used to call vectors
must strictly be called coordinates, because they do not behave as vectors. If we
make a translation from O to another reference frame O ′ so that:

x ′i = xi + ai , y′i = yi + ai , (1.58)

it is clear that

|x ′|2 ≡ (x ′1)2 + (x ′2)2 + (x ′3)2 �= |x|2 ≡ (x1)2 + (x2)2 + (x3)2, (1.59)

and same for |y ′|2. A properly defined vector is w; under the transformation (1.58),
w′i = wi so |w ′|2 = |w|2. This simple example (that can be easily generalized to
any n-dimensional Euclidean space with any metric) will turn out to be very useful
for the transition from tensor algebra to tensor calculus.

1.1.18 Vn, En and R
n

In the previous example we have mentioned points in space, without giving any
proper explanation. We shall not give it yet. Within a few sections we shall see
that these points are related to the concept of mani f old. Let us define En as the
n-dimensional Euclidean space (or manifold) as the abstract set formed by the points
in space A, B…, with coordinates given by sub-sets of Rn . Even if there is a global
one-to-one relation between the coordinates and the points (between En andRn), we
must not identify the points of the space (nor the space) with the coordinates.
Therefore, we will say that

w ∈ Vn ; x, y ∈ R
n ; A, B ∈ En . (1.60)

We shall see in a few sections why it is so important (crucial) to define these three
different spaces.

1.2 Tensor Calculus

1.2.1 Tensor Fields

Whenever a vector is defined for every point in space A ∈ En , thus when it is a
continuous function of some parameters xi ∈ R

n , it is called a vector field. How does
it transform? (Obviously now the transformation matrix depends on the parameters
xi ). In order to find the natural answer to this question let us take the following
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example. Consider again two points A, B ∈ En with coordinates xi , yi in some
reference frame and x ′i , y′i in another one (related to the original one by a translation
for example) (with xi , xi , x ′i , x ′i ∈ R

n). Now let’s define Δxi ≡ xi − yi and
Δx ′i ≡ x ′i − y′i . We have seen that the following interval is invariant:

Δs2 = gi j Δxi Δx j = Δs′2 = g′
i j Δx ′i Δx ′ j . (1.61)

Taking xi and yi to be infinitesimally close (thus x ′i and y′i ) our scalar interval
becomes differential

ds2 = gi j dxi dx j = ds′2 = g′
i j dx ′i dx ′ j . (1.62)

From the previous expression it is natural to identify dxi with the components of a
vector field. So, under a change of coordinates xi → x ′i , the transformation law for
the components of the vector field is given by the chain rule

dx ′i = ∂x ′i

∂x j
dx j , (1.63)

whichwe identify as our contravariant law of transformation. This can be generalized
to any tensor. If a tensor is a continuous function of some parameters xi ∈ R

n , then it
is called a tensor field. Taking the usual two examples, (2, 0) and (0, 2) tensor fields
can be written in the following form3:

t = t i j (x) ei (x) ⊗ e j (x),

l = li j (x) ei (x) ⊗ e j (x). (1.64)

Note that, necessarily the bases also depend on the same parameters xi : for a point A
with coordinates xi

A in a reference frame, and x ′i
A in another, a tensor field evaluated

in A denoted as tA, must have a unique value which is independent of the reference
frame. For example for a (2,0) tensor field we have

tA = t i j (xA) ei (xA) ⊗ e j (xA) = t ′i j (x ′
A) e′

i (x ′
A) ⊗ e′

j (x ′
A). (1.65)

A very familiar example where the components ei of the basis depend on the coor-
dinates x j are vectors expressed in curvilinear coordinates. The basis is given by

e1(x) ≡ ûφ , e2(x) ≡ ûθ , e3(x) ≡ ûr . (1.66)

with x j = (r, θ,φ).
In conclusion, taking quick look at (1.62) and (1.63), we identify the contravari-

ant law of transformation with

3Here we will use the short-hand notation f (xi ) ≡ f (x).
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e′i(x′) =
∂x′i

∂xl
el(x)

t′ij(x′) =
∂x′i

∂xl

∂x′j

∂xk
tlk(x)

... (1.67)

Thus, the covariant law of transformation will be given by

e′
i (x ′) = ∂xl

∂x ′i el(x)

t ′i j (x ′) = ∂xl

∂x ′i
∂xk

∂x ′ j
tlk(x)

. . . (1.68)

The law of transformation for mixed tensor fields is obviously given by

t ′ij (x) = ∂x ′i

∂xl

∂xk

∂x ′ j
t l

k(x)

t ′ i
j (x) = ∂x ′i

∂xl

∂xk

∂x ′ j
t l
k (x)

. . . (1.69)

The generalization to (r, s) tensor fields is straightforward. A (0, 0) field is called a
scalar field and it obeys:

φ(x) = φ′(x ′) . (1.70)

The expressions (1.67–1.70) represent the intrinsic definition of tensor fields and this
is what you would normally find in many physics books. However, I believe that, in
order to obtain a complete vision and a deeper understanding of tensors, one has to
go through all the previous steps.

1.2.2 Tensor Density

Using the the intrinsic definition of tensor fields it is straightforward to introduce
another object which is called tensor density. We say that t i1...ir

j1... js
(x) are the

components of a (r, s) tensor density of weight W if under a change of coordinates
xi → x ′i they obey the following transformation law
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t ′i1...ir j1... js (x ′) =
[
det

(
∂xi

∂x ′ j

)]W
∂x ′i1

∂xl1
. . .

∂x ′ir

∂xlr

× ∂xm1

∂x ′ j1
. . .

∂xms

∂x ′ js
t l1...lr

m1...ms
(x) (1.71)

where det(∂xi/∂x ′ j
) is the determinant of the Jacobian matrix of the given transfor-

mation. Same definition is valid for any (r, s) type tensor i.e., t i1...il il+1...ir
j1... jk jk+1... js

(x),
etc. One can prove that the totally antisymmetric Levi-Civita symbol

εi1...ik ...im ...in = (−1)p εi1...im ...ik ...in , (1.72)

where p stands for the parity of the permutation (p = 1 for an odd and p = 2 for an
even permutation) is a tensor density of weight W = −1.

We will now move on to the next section and generalize everything to non-
Euclidean spaces and introduce properly the concept of manifold.

1.3 Manifolds

We have defined the Euclidean space (manifold) En as the set of points that have
global a one-to-one correspondence with R

n . What is, however, the generic defin-
ition of a manifold and what happens if the manifold is not Euclidean? Hobson’s
wonderfully intuitive definition4 is:
In general, a manifold is any set that can be continuously parametrized. The number
of independent parameters required to specify any point in the set uniquely is the
dimension of the manifold. [. . .] In its most primitive form a general manifold is
simply an amorphous collection of points. Most manifolds used in physics, however,
are “differential manifolds”, which are continuous and differentiable in the following
way. A manifold is continuous if, in the neighborhood of any point P, there are
other points whose coordinates differ infinitesimally from those of P. A manifold is
differentiable if it is possible to define a scalar field at each point of the manifold
that can be differentiated anywhere. [. . .] An N-dimensional manifold M of points
is one for which N independent real coordinates {xi }N

i=1 are required to specify any
point completely.

For a generic manifold, one can only find small (local) mappings between the
manifold andRn . A very familiar example is a surface; in order do describe a surface
one needs two parameters, therefore we say that a surface is a two-dimensional
manifold. Let’s now imagine that our surface is flat. If this is the case we can find
a global one-to-one mapping between the surface and R

2. However, if we consider
a sphere, in general one can never find a global mapping between this surface and

4M.P.Hobson,G.P. Efstathiou andA.N.Lanseby,GeneralRelativity,An Introduction for Physicists..
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R
2 that is able to cover the whole sphere. We can only locally describe parts of the

surface using local charts (regions) of R2. This example can easily be generalized
to any manifold.
An N-dimensional differential manifold M is a set of elements (points) P, together
with a collection of subsets {Oα} of M that satisfy the following three conditions:

1. ∀ P ∈ M there is at least a subset Oα, so that P ∈ Oα. Equivalently:

M =
⋃

α

Oα

2. For each Oα there is a diffeomorphism (differential with its inverse also differen-
tial) Ψα:

Ψα : Oα → Ψα(Oα) ≡ Uα ⊆ R
n

M

OαΨα

p

Ψα(p)

Rn

Uα = Ψα(Oα)

3. If Oα ∩ Oβ �= {Ø} then Ψα(Oα ∩ Oβ) and Ψβ(Oα ∩ Oβ) are open sets of Rn and
the application:

Ψβ ◦ Ψ −1
α : Ψα(Oα ∩ Oβ) → Ψβ(Oα ∩ Oβ)

is a diffeomorphism. Here we have defined the composed operator Ψβ ◦ Ψ −1
α (X) ≡

Ψβ(Ψ −1
α (X)). This application is called a change of coordinates.

M

Oβ

Ψβ

Rn

Uβ

OαOα

Oβ
Ψα

Rn

Uα

Ψβ ◦ Ψ−1
α

The sets (Ψα, Oα) are called charts. The set formed of all charts is called an atlas.
Thus, for a given manifoldM of dimension n, if we can find an atlas that contains

only one chart, then we shall say that themanifold is flat or that it has trivial topology.
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Going back to the surface example, a surface has two types of curvatures, an intrinsic
(Gauss curvature) and an extrinsic one. A surface that has no intrinsic curvature can
be unfolded into a flat surface (for example a cylinder). On the other hand, a sphere is
impossible to unfold into a flat surface (therefore we say it has an intrinsic curvature,
or its topology is non trivial).

1.3.1 Embedding

Following these definitions, a curve is a one-dimensionalmanifold, a surface is a two-
dimensional one and a solid volume is a three-dimensional one. All these examples
are very familiar. Let’s take for example the curve.We need one parameter to describe
it, say t . We can describe this curve in R3 as:

r(t) ≡ (x(t), y(t), z(t)). (1.73)

If we have a surface, as we have mentioned before, we need two parameters to
describe it, say u and v. In R3 we can describe a surface as:

s(u, v) ≡ (x(u, v), y(u, v), z(u, v)), (1.74)

for example,we candescribe regions of the given surface as s(u, v) ≡ (u, v, f (u, v)).
In the previous examples we have described (and visualised) these objects in

R
3 space. The technical word for describing (or visualising) these objects in R

3 is
embedding. We say that we canmake and embedding of curves, surfaces or volumes
inR3. However, not all one, two and three-dimensional manifolds are curves surfaces
or solid volumes aswe know them.There are for example, two dimensionalmanifolds
that can not be embedded in R

3 but in a higher dimensional space Rn with n > 3.
Thus, these objects are not usual surfaces.

What happens if the manifold we are trying to describe has more than three
dimensions? In General Relativity our manifold is formed by space-time points that
we call events, it is four-dimensional and in general its topology is not trivial. As we
have no information about the existence of any higher dimensional space inwhich our
space-time can be embedded, our only solution is to abandon the embedding concept
and describe our manifold intrinsically. In order to understand this we shall discuss
the classical example. Let’s imagine a civilization that lives in a two dimensional
world which is a surface. The habitants of this surface can only measure the intrinsic
curvature. Information about the extrinsic curvature is only accessible to an observer
that lives in all tree dimensions. Similarly, we are the civilization that is living in
four-dimensional space-time (which is our hyper-surface) and we have no access
to a higher dimensional space (we don’t even know if it exists). We can only make
intrinsic measurements of the curvature of our manifold, which is related to the
gravitational force.
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1.3.2 Tangent Space TP(M)

Consider the velocity vector of a moving body. This vector is tangent to the curve
that describes the trajectory of the moving body for every regular point of the curve.
A vector field defined over a surface is tangent to the surface for every regular point
of the surface. This vector field belongs to the tangent plane of the surface. What
happens for a general n-dimensional manifold? By analogy, we say that vector fields
belong to the tangent space of the manifold M. The tangent space is defined for
every regular point of the manifold, P ∈ M and we will denote it by TP (M). We
shall call the union of all these spaces T (M), thus:

v = vi (x) ei (x) ∈ T (M) ; vP = vi (xP ) ei (xP ) ∈ TP (M). (1.75)

Thus, as usual we shall call v a vector field and vP simply, a vector. Now we can
clearly see why we have insisted in making the difference between Vn, En and R

n .
After extending our analysis to generic manifolds we can see it clearly:

P ∈ M, xi ∈ R
n and v ∈ T (M) . (1.76)

These three spaces are, no doubt, different.
As we have already seen, under a change of coordinates xi → x ′i , the bases of

the vector fields obey the covariant law:

e′
i (x ′) = ∂xl

∂x ′i el(x). (1.77)

In differential geometry it is usual to define this basis as the one formed by partial
derivatives that obey this exact transformation (1.77). Using this basis, a vector (field)
can be written as

vP = vi (x)
∂

∂xi

∣∣∣∣
P

∈ TP (M) ; v = vi (x)
∂

∂xi
∈ T (M) . (1.78)

Thus we can interpret a vector v as map of the form:

v : F(M) → R

v : f �→ v( f ), (1.79)

with F(M) being the space of the all differentiable applications

f : M → R, (1.80)
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and with v satisfying the following two conditions:

1. v(a f + bg) = a v( f ) + b v(g)

2. v( f ◦ g) = v( f )g + f v(g), (1.81)

∀ a, b ∈ R, ∀ f, g ∈ F(M). The composed function operator ◦ is defined as
( f ◦ g)(X) ≡ f (g(X)). Therefore, given a function f ∈ F(M) and a regular point
P ∈ M we have

vP ( f ) = vi (x)
∂ f

∂xi

∣∣∣∣
P

∈ R. (1.82)

1.3.3 Cotangent Space T∗
P(M)

The cotangent space is obviously defined as the dual space of the tangent space.
Using the same logic as before, we get to the conclusion that a suitable basis for
the dual space is formed by the functions dxi . Therefore, a covector (field) can be
written the following way:

βP = βi (x) dxi
∣∣∣

P
∈ T ∗

P (M) ; β = βi (x) dxi ∈ T ∗(M) , (1.83)

where T ∗(M) is defined as the union of all T ∗
P (M). Using this formalism, given

v ∈ TP (M) and β ∈ T ∗
P (M), β(v)P ∈ R is defined as:

β(v)P = β j dx j
(
vi ∂

∂xi

)∣∣∣∣
P

= vi β j dx j
( ∂

∂xi

)∣∣∣∣
P

= vi β j δ
j
i

∣∣∣
P

= vi (xP )βi (xP )

≡ v(β)P (1.84)

A natural question that might arise is why dx j (∂/∂xi )|P = δ
j
i ? We shall answer

this question in a few lines. In differential geometry it is usual to define the following
operation. Given f ∈ F(M), we define the differential of f evaluated in P ∈ M as:

d f : TP (M) → R

d f : vP �→ d fP (v) ≡ vP ( f ). (1.85)
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Thus, d fP (v) can be written as

d fP (v) = d f
(
vi ∂

∂xi

)∣∣∣∣
P

= vi d f
( ∂

∂xi

)∣∣∣∣
P

≡ vi
( ∂ f

∂xi

)∣∣∣∣
P

. (1.86)

Therefore

d fP

( ∂

∂x j

)
= d f

( ∂

∂x j

)∣∣∣∣
P

=
( ∂ f

∂x j

)∣∣∣∣
P

. (1.87)

Taking d fP = dxi |P , then (1.87) transforms into

dxi
( ∂

∂x j

)∣∣∣∣
P

=
( ∂xi

∂x j

)∣∣∣∣
P

= δi
j , (1.88)

which is exactly the answer we were looking for. As we have seen previously, if v is
a vector and β a covector v(β) = β(v) = vi βi with e j (ei ) ≡ ei (e j ) = δi

j , therefore
it is legitimate to also make the following definition:

∂

∂x j
(dxi )

∣∣∣∣
P

≡ dxi
( ∂

∂x j

)∣∣∣∣
P

= δi
j . (1.89)

Thus, with this choice of bases we canwrite any tensor field overM. A few examples
are:

l = li1...im (x) dxi1 ⊗ · · · ⊗ dxim , (1.90)

t = t i1...in (x)
∂

∂xi1
⊗ · · · ⊗ ∂

∂xin
, (1.91)

q = q j1... jm
i1...in k1...ko

(x)dxi1 ⊗ · · · ⊗ dxin ⊗ ∂

∂x j1
⊗ · · ·

· · · ⊗ ∂

∂x jm
⊗ dxk1 ⊗ · · · ⊗ dxko , (1.92)

etc.

1.3.4 Covariant Derivative

From now on we shall start using the simplified notation: ∂i ≡ ∂

∂xi
and ∂′

i ≡ ∂

∂x ′i .
Consider the partial derivative of a scalar field ∂ jφ(x). Under a change of coordinates
xi → x ′i :
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∂′
i φ

′(x ′) = ∂x j

∂x ′i ∂ j φ(x) . (1.93)

We can observe that ∂ j φ(x) are the components of a rank one covariant tensor field.
Let’s consider now the derivative of (the components of) a vector field ∂iv

j . Under
a change of basis xi → x ′i , we obtain the following:

∂′
i v

′ j = ∂xk

∂x ′i
∂x ′ j

∂xl
∂k vl + ∂xk

∂x ′i
∂2x ′ j

∂xk∂xl
vl . (1.94)

Because of the second term on the RHS of (1.94), ∂k vl does not behave as a tensor.
Can we fix it up? Can we add something else to the ordinary derivative ∂i in order
to obtain a tensor quantity? Let’s define

∇i v
j ≡ ∂i v

j + Γ
j

li vl , (1.95)

and try to find the transformation law that the coefficients Γ
j

li must obey in order to
make ∇i v

j behave like a (1, 1) tensor:

∇′
i v

′ j = ∂xk

∂x ′i
∂x ′ j

∂xl
∇k vl = ∂xk

∂x ′i
∂x ′ j

∂xl
(∂k vl + Γ l

mk vm) = ∂′
i v

′ j + Γ ′ j
ni v

′n

= ∂xk

∂x ′i
∂x ′ j

∂xl
∂k vl + ∂xk

∂x ′i
∂2x ′ j

∂xk∂xl
vl + ∂x ′n

∂xm
Γ ′ j

ni v
m . (1.96)

Therefore, (after changing one mute index) we find

∂xk

∂x ′i
∂x ′ j

∂xl
Γ l

mk vm = ∂xk

∂x ′i
∂2x ′ j

∂xk∂xm
vm + ∂x ′n

∂xm
Γ ′ j

ni v
m . (1.97)

This equality must hold for all vm , so

∂xk

∂x ′i
∂x ′ j

∂xl
Γ l

mk = ∂xk

∂x ′i
∂2x ′ j

∂xk∂xm
+ ∂x ′n

∂xm
Γ ′ j

ni . (1.98)

Using the fact that:
∂xm

∂x ′ p

∂x ′n

∂xm
= ∂x ′n

∂x ′ p
= δn

p, (1.99)

we find the following transformation rules for Γ ′ j
pi

Γ ′ j
pi = ∂xm

∂x ′ p

∂xk

∂x ′i
∂x ′ j

∂xl
Γ l

mk − ∂xm

∂x ′ p

∂xk

∂x ′i
∂2x ′ j

∂xk∂xm
. (1.100)
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The symbols Γ i
jk are called the coefficients of the affine connection and (1.95) is

called the covariant derivative of the vector field v. If instead of vector fields we
are dealing with covectors, then the covariant derivative takes the following form.

∇i β j ≡ ∂i β j − Γ l
j i βl . (1.101)

We can extend this to any tensor field. For example, the covariant derivative for a
(2, 2) mixed tensor is given by:

∇i T jk
lm = ∂i T jk

lm + Γ
j

si T sk
lm + Γ k

si T js
lm − Γ s

li T jk
sm − Γ s

mi T jk
ls .

(1.102)

Taking a quick look at (1.100) we can observe that the quantity T i
jk defined as

T i
jk ≡ Γ i

jk − Γ i
k j , (1.103)

is a (1, 2) anti-symmetric (in the covariant indices) tensor. This tensor is called
torsion tensor. In General Relativity manifolds are torsion-free.5 Considering the
torsion-free case, the coefficients of the affine connection are symmetric (in the lower
indices); they are usually called Christoffel symbols. It is easy to demonstrate6 that
they can be expressed in terms of the metric tensor and its first derivatives as:

Γ i
jk = 1

2
gim (∂ j gmk + ∂k gmj − ∂m g jk ) . (1.104)

The Christoffel symbols are related to the curvature of the manifold. The curvature
can be written is terms of the Γ i

jk and its first derivatives. If the manifold is flat, then
we can find a global system of coordinates in which all the Christoffel symbols are
zero. However, there are system of coordinates for flat manifolds that have non-zero
Γ i

jk (i.e., a plane surface expressed in polar coordinates). Curvature of manifolds is
a more advanced topic, and its beyond the goal of these notes. The reader is highly
encouraged to consult the Further Reading section at the end of the chapter, which
are great in treating advanced topics on manifolds, Special and General Relativity.

1.4 Comments on Special Relativity

Before we get to discuss a few Special Relativity topics we need to introduce the
Minkowski space. The Minkowski space M4 is a four dimensional flat manifold.

5However, there are extensions of the theory which also include torsion.
6See Further Reading.
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Its tangent space M4 is a four dimensional vector space together with a metric tensor
gμν = diag {1,−1,−1,−1}. Our coordinates in R4 are the space-time coordinates7

xμ ≡ (x0, x1, x2, x3) ≡ (t, xi ) ≡ (t, x). (1.105)

Here we use Greek letters μ, ν = 0, .., 3 for space-time coordinates and Roman
letters i, j = 1, .., 3 only for the spatial coordinates. Some authors define xμ as

xμ ≡ gμν xν = (x0, x1, x2, x3) = (t, xi ) ≡ (t,−xi ) = (t,−x), (1.106)

but we have to be really careful about that. As we already know xμ are coordinates
not vector components, thus xμ are not covector components either. A well defined
vector is dxμ

dxμ ≡ (dx0, dx1, dx2, dx3) ≡ (dt, dxi ) ≡ (dt, dx). (1.107)

Therefore dxμ is a properly defined covector

dxμ ≡ gμν dxν = (dx0,−dx1,−dx2,−dx3) ≡ (dt,−dxi ) ≡ (dt,−dx).

(1.108)

After all this being said, the consequences of the postulates of the Special Theory
of Relativity can be easily translated mathematically into the following sentence.

The Quantity

ds2 = gμν dxμ dxν = dt2 − dx2 = dt2 − (dx1)2 − (dx2)2 − (dx3)2 (1.109)

must be invariant for any inertial observer. This means

ds2 = gμν dxμ dxν = ds′2 = gαβ dx ′α dx ′β . (1.110)

Note that on the RHS of the previous equation we haven’t written g′
αβ , but gαβ (the

metric tensor in Special Relativity does not transform); therefore not all transforma-
tions are allowed. The allowed transformations are the ones that maintain invariant

7The temporal coordinate should really be ct where c is the speed of light in the vacuum, but, as it
is usual in Quantum Field Theory, we shall work using natural coordinates c = 1 = �.
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the metric tensor. These transformations are the ones that belong to the Poincaré
Group, which can be a Lorentz Transformation Λ

μ
ν plus a space-time translation aμ

(where aμ are constants)

xμ → x ′μ = Λμ
ν xν + aμ. (1.111)

The interesting thing about Lorentz transformation is that they don’t depend on xμ:

∂μΛα
β = 0. (1.112)

This property allows the partial derivatives to behave as covariant derivatives, there-
fore we don’t have to worry about the Christoffel symbols. However this is only true
inCartesian coordinates. If we wanted to work in curvilinear coordinates for exam-
ple, the property (1.112) wouldn’t hold any more. We could generalize everything to
general coordinates however, it would be useless in the case of pure Special Relativ-
ity. We do this generalization naturally in General Relativity where gμν is a proper
behaved tensor field gμν = gμν(x). Returning to our case, taking a quick look at
(1.111) and (1.112) we find that the Lorentz transformation is also the contravariant
law of transformation for tensors

∂x ′μ

∂xν
= Λμ

ν . (1.113)

This allows us to write the equations of motion in a simple, Lorentz-invariant manner
(in Cartesian coordinates):

dpμ

dτ
= f μ, (1.114)

where we have defined the momentum four-vector as

pμ = muμ = m
dxμ

ds
= m

dxμ

dτ
= (mγ, mγv), (1.115)

and where dτ = ds/c, the proper time interval (but remember we have set c=1).
Any other inertial observer (related to the original one by a Lorentz transformation,
or a space-time translation) will describe the equations of motion in the same way

d p′μ

dτ
= f ′μ. (1.116)
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1.4.1 Lorentz Transformations

Let us quickly review the most important properties of the Lorentz transformations.
From (1.110) we obtain

gμν dxμ dxν = gαβ dx ′α dx ′β

= gαβ Λα
μ Λβ

ν dxμ dxν , (1.117)

for arbitrary dxμ, dxν , therefore

gμν = gαβ Λα
μ Λβ

ν . (1.118)

From the previous equation we straightforwardly obtain

(Λ−1)
ν
σ gμν = gαβ Λα

μ Λβ
ν (Λ−1)

ν
σ

= gαβ Λα
μ δβ

σ

= gασ Λα
μ. (1.119)

Contracting with the metric tensor gμρ both sides of the equation, we get to

(Λ−1)
ρ
σ = gμρ gασ Λα

μ. (1.120)

This justifies why in QFT literature many authors use the following notation:

Λμ
ν ≡ Λμ

ν , Λ μ
ν ≡ (Λ−1)μν . (1.121)

With this notation, due to property (1.120) one can relate a Lorentz transformation
with its inverse by e f f ectively raising and lowering indices as if Λ

μ
ν was a tensor.

We will use this notation from now on.
The relation (1.118) can further give as information on the Lorentz transforma-

tions. Using the matrix notation, it reads

ΛT g Λ = g. (1.122)

Taking the matrix determinant on both sides of the previous equation we obtain

[ det(Λ) ]2 = 1. (1.123)

Taking into consideration the sign of Λ0
0 and the value ±1 of the determinant one

can define four sets of Lorentz transformations. A proper orthochronous Lorentz
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transformation (which canbe a rotation or a boost)8 satisfies det(Λ) = 1 andΛ0
0 ≥ 1.

An infinitesimal proper orthochronous Lorentz transformation can be written as a
continuous transformation from unity

Λμ
ν = δμ

ν + Δωμ
ν + O(Δω2), (1.124)

where δ
μ
ν is the Kroneker delta. This expression will turn out to be very useful in

the next chapter when we shall introduce the Lagrangian density formalism and
Noether’s theorem. Looking at (1.118) one can deduce Δω

μ
ν = −Δων

μ as follows:

gμν ≈ gαβ (δα
μ + Δωα

μ) (δβ
ν + Δωβ

ν)

≈ gμν + gαβ δα
μ Δωβ

ν + gαβ δβ
ν Δωα

μ. (1.125)

Thus gβμ Δω
β
ν = −gαν Δωα

μ. Defining

Δωμν ≡ gμα Δωα
ν, (1.126)

we finally obtain Δωμν = −Δωνμ, or equivalently Δω
μ
ν = −Δων

μ, which is the
relation we wanted to prove.

Under a proper orthochronous Lorentz transformation the Levi-Civita tensor9

density (1.72) in four dimensions εμναβ behaves like a tensor (due to the fact
that det(Λ) = 1). Other interesting Lorentz transformations (that are not proper
orthochronous) can be parity

Λμ
ν(P) = diag{1, −1, −1 ,−1}, (1.127)

or time reversal

Λμ
ν(T ) = diag{−1, 1, 1 , 1}. (1.128)

Obviously under these two transformations the Levi-Civita tensor density changes
sign.

It is worth mentioning that any arbitrary Lorentz boost (in any arbitrary direction)
can be decomposed into rotations and a boost along one axis. Also, any arbitrary
Lorentz transformation can be decomposed in terms of boosts, rotations, parity and
time reversal.

8More on boosts and relativistic kinematics will be seen in Chap.3.
9More on the Levi-Civita tensor density in four dimensions will be discussed in Chap. 5.
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Chapter 2
Lagrangians, Hamiltonians and Noether’s
Theorem

Abstract This chapter is intended to remind the basic notions of the Lagrangian
and Hamiltonian formalisms as well as Noether’s theorem. We shall first start with
a discrete system with N degrees of freedom, state and prove Noether’s theorem.
Afterwards we shall generalize all the previously introduced notions to continuous
systems and prove the generic formulation of Noether’s Theorem. Finally we will
reproduce a few well known results in Quantum Field Theory.

2.1 Lagragian Formalism

As it is irrelevant for this first part (the discrete case), we shall drop the super-index
notation for coordinates or vectors that we have introduced in the previous chapter.

The action associated to a discrete system with N degrees of freedom (i =
1, . . . , N ) reads:

S(qi ) =
∫ t2

t1
dt L(qi , q̇i , t), (2.1)

where L = L(qi , q̇i , t) is the Lagrangian of the system and where {qi }N
i=1 are the

generalized coordinates and q̇i ≡ dqi/dt the generalized velocities. In order to
obtain the Euler-Lagrange equations of motion we consider small variations of the
generalized coordinates qi keeping the extremes fixed:

q ′
i = qi + δqi , δqi (t1) = δqi (t2) = 0 . (2.2)

The first order Taylor expansion of L then gives

L(qi + δqi , q̇i + δq̇i , t) = L(qi , q̇i , t) + ∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

≡ L(qi , q̇i , t) + δL , (2.3)

© Springer International Publishing Switzerland 2016
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30 2 Lagrangians, Hamiltonians and Noether’s Theorem

where summation over repeated indices is also understood. It is straightforward to
demonstrate that the variation and the differentiation operators commute:

δqi (t) = q ′
i (t) − qi (t) ⇒ d

dt
(δqi ) = q̇i

′(t) − q̇i (t) = δq̇i (t). (2.4)

Thus, we obtain the following expression for δL:

δL = ∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

= ∂L

∂qi
δqi + ∂L

∂q̇i

d

dt
(δqi )

=
(

∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqi + d

dt

(
∂L

∂q̇i
δqi

)
. (2.5)

In order to obtain the equations ofmotionwe apply the Stationary Action Principle:
For the physical paths, the action must be a maximum, a minimum or an inflexion
point. This translates mathematically into:

δS = δ

∫ t2

t1
dt L =

∫ t2

t1
dt δL = 0 . (2.6)

Expanding δL we get:

δS =
∫ t2

t1
dt

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqi +

∫ t2

t1
dt

d

dt

(
∂L

∂q̇i
δqi

)
= 0. (2.7)

Because δqi (t1) = δqi (t2) = 0 the second integral vanishes:

∫ t2

t1
dt

d

dt

(
∂L

∂q̇i
δqi

)
=

∫ t2

t1
d

(
∂L

∂q̇i
δqi

)
=

[
∂L

∂q̇i
δqi

]t2

t1

= 0. (2.8)

Therefore, we are left with

δS =
∫ t2

t1
dt

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqi = 0, (2.9)

for arbitrary δqi . Thus the following equations must hold

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 , (2.10)

∀qi . These equations are called the Euler-Lagrange equations of motion.
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From (2.8) we can also deduce an important aspect of Lagrangians, that they are
not uniquely defined:

L(qi , q̇i , t) and L̃(qi , q̇i , t) = L(qi , q̇i , t) + d F(qi , t)

dt
(2.11)

generate the same equations of motion. We have an alternative way to directly check
that adding a function of the form d F(qi , t)/dt to the Lagrangian, doesn’t alter the
equations of motion. Applying (2.10) to d F(qi , t)/dt we obtain:

∂

∂qi

(
d F(qi , t)

dt

)
− d

dt

(
∂

∂q̇i

(
d F(qi , t)

dt

))
= 0. (2.12)

Next we will present one of the most important theorems of analytical mechanics,
a powerful tool that allows us to relate the symmetries of a system with conserved
quantities.

2.2 Noether’s Theorem

There is a conserved quantity associated with every symmetry of the Lagrangian of
a system.

Let’s consider a transformation of the type

qi → q ′
i = qi + δqi , (2.13)

so that the variation of the Lagrangian can be written as the exact differential of some
function F :

L(q ′
i , q̇i

′, t) = L(qi , q̇i , t) + d F(qi , q̇i , t)

dt
⇒ δL = d F(qi , q̇i , t)

dt
. (2.14)

Note that here we allow F to also depend on q̇i (that was not the case for (2.11)). On
the other hand, we know that we can write δL as:

δL =
(

∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqi + d

dt

(
∂L

∂q̇i
δqi

)
= d

dt

(
∂L

∂q̇i
δqi

)
. (2.15)

To get to the last equality we used the equations of motion. Let’s now write δqi as
an infinitesimal variation of the form

q ′
i = qi + δqi = qi + ε fi , (2.16)
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with |ε| � 1 a constant, and f a smooth, well behaved function. Obviously, in the
limit ε → 0 we obtain

lim
ε→0

q ′
i = qi ⇒ lim

ε→0
δL = 0. (2.17)

Thus, necessarily F must be of the form F = εF̃ , and

d

dt

(
∂L

∂q̇i
(ε fi )

)
= ε

d F̃(qi , q̇i , t)

dt
. (2.18)

Integrating in t we obtain

∂L

∂q̇i
fi = F̃(qi , q̇i , t) + C, (2.19)

with C an integration constant. We therefore conclude, that the conserved quantity
associated to our infinitesimal symmetry is:

C = ∂L

∂q̇i
fi − F̃(qi , q̇i , t) . (2.20)

2.3 Examples

Next, we are going to apply this simple formula to a few interesting cases and
reproduce some typical results such as energy and momentum conservation, angular
momentum conservation, etc.

2.3.1 Time Translations

Let’s consider an infinitesimal time shift: t → t +ε. The first order Taylor expansion
of qi and q̇i is given by:

δqi = qi (t + ε) − qi (t) = εq̇i (t) + O(ε2),

δq̇i = q̇i (t + ε) − q̇i (t) = εq̈i (t) + O(ε2) = d

dt
(δqi ). (2.21)

If the Lagrangian does not exhibit an explicit time dependence (∂L/∂t = 0) then

δL = ε
∂L

∂qi
q̇i + ε

∂L

∂q̇i
q̈i = ε

d L

dt
⇒ F̃ = L . (2.22)
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Thus, the conserved quantity is given by the following

∂L

∂q̇i
q̇i − L = E , (2.23)

where E is the associated energy of the system.

2.3.2 Spatial Translations

Let’s consider a Lagrangian of the form L = T − V , where T is the kinetic energy
of the system and V a central potential. In this case the canonical momentum pi

defined as

pi ≡ ∂L

∂q̇i
, (2.24)

obeys pi = ∂T/∂q̇i . Due to the fact that the potential is central and T �= T (qi ) the
Lagrangian obeys

L(rα + εn, vα) = L(rα, vα), (2.25)

with rα the coordinates of the particle α and n an arbitrary spatial direction with
|n| = 1. We conclude that δL = 0. Under this spatial translation the coordinates of
the particle α transform the following way:

rα → r ′
α = rα + εn , (2.26)

that is

rα j → r ′
α j = rα j + εn j , (2.27)

with j = 1, 2, 3. Therefore f j = n j . The conserved quantity is straightforwardly
obtained

C =
∑

α

∂L

∂q̇α j
n j =

∑

α

pα j n j =
∑

α

pα n = Pn , (2.28)

for an arbitrary n. Thus, the constant associated to this transformations is the total
momentum P of the system.
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2.3.3 Rotations

Again, let’s consider a Lagrangian with the same properties as in the previous exam-
ple. Under an infinitesimal rotation we have

r ′
α = rα − εn × rα, r ′

α j = rα j + εε jkm nm rαk, (2.29)

and just as previously δL = 0. It is straightforward to observe that f j = ε jkm nm rαk

(where ε jkm is the totally antisymmetric three-dimensional Levi-Civita tensor den-
sity). The conserved quantity is therefore (remember that summation over all repeated
indices is understood):

C = ∂L

∂q̇α j
ε jkm nm rαk = pα j ε jkm nm rαk = (pα × rα)n = −Ln . (2.30)

Again, this holds for an arbitrary n, thus, the conserved quantity is the total angular
momentum L of the system.

2.3.4 Galileo Transformations

For this last example we shall consider the same type of Lagrangian as in the previous
cases. A Galileo transformation reads

rα → r ′
α = rα + vt, (2.31)

with v a constant velocity vector, therefore:

ṙα → ṙ ′
α = ṙα + v. (2.32)

Under these transformations δL = δT . Let’s calculate T ′ explicitly:

T ′ = 1

2
mα(ṙα + v)2 = T + mαṙαv +

∑

α

1

2
mαv2

= T + 1

2
Mv2 + d

dt
(mαrαv) = T + 1

2
Mv2 + d

dt
(MRv). (2.33)

Considering an infinitesimal transformation v = εn with |ε| � 1 and ignoring terms
of O(ε2) we have

δL = δT = ε
d

dt
(MRn). (2.34)
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The conserved quantity is then given by:

C =
∑

α

pα j n j t − MRn = (Pt − MR)n , (2.35)

for an arbitrary n. The conserved quantity associated to this transformation is then
Pt − MR.

2.4 Hamiltonian Formalism

We define the Hamiltonian functional of a physical system as

H(qi , pi , t) ≡ pi q̇i − L , (2.36)

where pi is called the canonical conjugated momentum

pi ≡ ∂L

∂q̇i
, (2.37)

as it was already introduced in (2.24). If the Euler-Lagrange equations (2.10) are
satisfied then:

ṗi = ∂L

∂qi
. (2.38)

The Hamiltonian equations of motion are obtained just as before by applying the
principle of the stationary action:

δS =
∫ t2

t1
dt δL

=
∫ t2

t1
dt δ(pi q̇i − H)

=
∫ t2

t1
dt

(
δ pi q̇i + pi δq̇i − ∂H

∂qi
δqi − ∂H

∂ pi
δ pi

)

=
∫ t2

t1
dt

(
δ pi q̇i + d

dt
(pi δqi ) − ṗi δqi − ∂H

∂qi
δqi − ∂H

∂ pi
δ pi

)

=
∫ t2

t1
dt

(
δ pi

[
q̇i − ∂H

∂ pi

]
+ δqi

[
− ṗi − ∂H

∂qi

] )
+

∫ t2

t1
d(pi δqi )
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=
∫ t2

t1
dt

(
δ pi

[
q̇i − ∂H

∂ pi

]
+ δqi

[
− ṗi − ∂H

∂qi

] )
= 0. (2.39)

Thismust hold for arbitrary δ pi y δqi , therefore, theHamiltonian equations ofmotion
are simply given by:

q̇i = ∂H

∂ pi
, ṗi = −∂H

∂qi
. (2.40)

If the Hamiltonian exhibits an explicit time dependence, it can be easily related to
the time dependence of the Lagrangian

d H

dt
= d

dt
(pi q̇i − L)

= ∂H

∂ pi
ṗi + ∂H

∂qi
q̇i + ∂H

∂t

= q̇i ṗi − ṗi q̇i + ∂H

∂t

= ṗi q̇i + pi q̈i − ∂L

∂qi
q̇i − ∂L

∂q̇i
q̈i − ∂L

∂t
. (2.41)

Therefore we get to the following simple relation in partial derivatives:

∂H

∂t
= −∂L

∂t
. (2.42)

2.5 Continuous Systems

Until now we have considered discrete systems characterized by N (finite) degrees
of freedom. Let’s consider now that the system depends on an infinite number of
degrees of freedom N → ∞. It no longer makes any sense to talk about discrete
coordinates qi . Instead we have to replace them by a continuous field that is defined
for every point in space and that can also vary with time

qi (t) → φ(x, t) ≡ φ(xμ) ≡ φ(x). (2.43)

Because now we also have spatial dependence besides time dependence, the follow-
ing replacement is also justified:
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q̇i (t) →
(
∂tφ(x), ∂kφ(x)

)
≡ ∂μφ(x). (2.44)

Notice that we have introduced the compact relativistic notation (from Chap. 1) and
we have supposed that the partial derivatives of the fields are a Lorentz (or Poincaré)
covariant quantity (of the form ∂μφ(x)),1 with

∂μ ≡ ∂

∂xμ
= ( ∂t , ∇) ≡ (∂t , ∂k ) . (2.45)

It will also be useful to define the following contravariant quantity

∂μ ≡ gμν ∂ν = ( ∂t , −∇ ) ≡ ( ∂t , −∂k ) . (2.46)

Also, we are only interested in Lagrangians that are invariant under space-time
translations besides Lorentz transformations (Poincaré group), therefore they cannot
depend explicitly on xμ. The most generic Lagrangian that exhibits all the properties
we have just described can be written as:

L =
∫

V
d3xL

(
φi (x), ∂μφi (x)

)
. (2.47)

where L is called a Lagrangian density (which we will shortly end up calling
Lagrangian). Because a system can depend in general onmore then one field, we have
written our Lagrangian density as a functional of M (with M finite) fields {φi }M

i=1.
Thus, the action can simply be written as an integral of the Lagrangian density

S =
∫ t2

t1
dt L

=
∫ t2

t1
dt

∫

V
d3xL

(
φi (x), ∂μφi (x)

)

=
∫ x2

x1
d4xL

(
φi (x), ∂μφi (x)

)
. (2.48)

Just as in the discrete case, in order to obtain the Euler-Lagrange equations of
motion we will consider small variations of the fields, keeping the extremes fixed

φ′(x) = φi (x) + δφi (x) ; δφi (x1) = δφi (x2) = 0 . (2.49)

1This is not the most general case, of course, but as we are interested in applying field theory to
Special Relativity we shall only restrict our study to this case.

http://dx.doi.org/10.1007/978-3-319-22966-9_1
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Under these variations, we define

δL
(
φi (x), ∂μφi (x)

)
≡ L

(
φi (x) + δφi (x), ∂μφi (x) + δ[∂μφi (x)]

)

− L
(
φi (x), ∂μφi (x)

)
, (2.50)

thus, we obtain the following

δL = ∂L
∂φi (x)

δφi (x) + ∂L
∂[∂μφi (x)]δ [∂μφi (x)]

= ∂L
∂φi (x)

δφi (x) + ∂L
∂[∂μφi (x)]∂μ [δφi (x)]

=
(

∂L
∂φi (x)

− ∂μ
∂L

∂[∂μφi (x)]
)

δφi (x) + ∂μ

(
∂L

∂[∂μφi (x)]δφi (x)

)
, (2.51)

where summation over all repeated indices is understood. Similar to (2.4), the
variation and derivation operators commute. Applying the principle of the Sta-
tionary Action we obtain the Euler-Lagrange equations for continuous systems as
follows:

δS =
∫ x2

x1

(
∂L

∂φi (x)
− ∂μ

∂L
∂[∂μφi (x)]

)
δφi (x) +

∫ x2

x1
∂μ

(
∂L

∂[∂μφi (x)]δφi (x)

)

=
∫ x2

x1

(
∂L

∂φi (x)
− ∂μ

∂L
∂[∂μφi (x)]

)
δφi (x) = 0, (2.52)

for arbitrary δφi (x), therefore, the equations we are looking for take the form

∂L
∂φi (x)

− ∂μ
∂L

∂[∂μφi (x)] = 0 , (2.53)

∀ φi , i = 1, . . . , M . Let’s now take another look at (2.52). Because δφi (x1) =
δφi (x2) = 0, we have found that

∫ x2

x1
∂μ

(
∂L

∂[∂μφi (x)]δφi (x)

)
= 0. (2.54)

Thus, if we consider an arbitrary functional of the form bμ
(
φi (x)

)
, then

δ

∫ x2

x1
∂μbμ

(
φi (x)

)
=

∫ x2

x1
∂μ

(
∂bμ

∂φi (x)
δ [φi (x)]

)
= 0. (2.55)
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We conclude that a Lagrangian density is not uniquely defined. Similar to the discrete

case, one can always add a functional of the form ∂μbμ
(
φi (x)

)
without altering the

equations of motion. Therefore

L
(
φi (x), ∂μφi (x)

)
and L

(
φi (x), ∂μφi (x)

)
+ ∂μbμ

(
φi (x)

)
, (2.56)

render the same equations of motion.

2.6 Hamiltonian Formalism

We define the Hamiltonian density as

H (πi (x), φi (x), ∇φi (x)) ≡ φ̇i (x)πi (x) − L, (2.57)

where φ̇i (x) ≡ ∂tφi (x) and πi (x) is the canonical momentum associated to the field
φi (x):

πi (x) ≡ ∂L
∂φ̇i (x)

. (2.58)

The action can be written in terms of the Hamiltonian density as

S =
∫ x2

x1
d4xL =

∫ x2

x1
d4x

(
φ̇i (x)πi (x) − H

)
. (2.59)

When applying the principle of the stationary action we obtain

δS =
∫ x2

x1
d4x

[
δπi

{
φ̇i − ∂H

∂πi

}
− δφi

{
π̇i + ∂H

∂φi
− ∂k

∂H
∂(∂kφi )

}]
= 0,

(2.60)

for arbitrary δπi and δφi . Thus the equations of motion simply read

φ̇(x) = ∂H
∂π(x)

, π̇(x) = − ∂H
∂φ(x)

+ ∂k
∂H

∂(∂kφ(x))
. (2.61)

where ∂k are the spatial derivatives (k = 1, 2, 3).
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2.7 Noether’s Theorem (The General Formulation)

Until now we have only introduced a global variation of a field, which is defined as
the variation of the shape of the field without changing the space-time coordinates
xμ:

δφi (x) ≡ φ′
i (x) − φi (x) . (2.62)

Besides this, we can define another type of variation which is closely related, a local
variation. It is defined as the difference between the fields evaluated in the same
space-time point but in two different coordinates systems:

δφi (x) ≡ φ′
i (x ′) − φi (x) . (2.63)

Let’s now consider a continuous space-time transformation of the type

xμ → x ′μ = xμ + �xμ , (2.64)

which can be a proper orthochronous Lorentz transformation or a space-time trans-
lation.2 At first order in �x , δφi (x) reads:

δφi (x) = φ′
i (x ′) − φi (x)

= φ′
i (x + �x) − φi (x)

≈ φ′
i (x) +

(
∂μφ′

i (x)
)
�xμ − φi (x)

≈ φ′
i (x) +

(
∂μφi (x)

)
�xμ − φi (x)

= δφi (x) +
(
∂μφi (x)

)
�xμ. (2.65)

We therefore, have found the following relation between δφ(x) and δ̄φ(x) for an
infinitesimal transformation of the type (2.64):

δφi (x) = δφi (x) +
(
∂μφi (x)

)
�xμ . (2.66)

We can draw the following conclusion. Ifφ′
i (x ′) = φi (x) (which is in general the case

for a scalar field; it is also the case for spinor fields under space-time translations)
then

δφi (x) = −
(
∂μφi (x)

)
�xμ. (2.67)

2See Chap.1 for details.

http://dx.doi.org/10.1007/978-3-319-22966-9_1
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thus, in this case, an equivalent way of making a transformation of the type (2.64),
which acts on the coordinates, is by making an opposite transformation on the field:

φi (x) → φ′
i (x) = φi (x − �x). (2.68)

Let us now deduce how the Lagrangian transforms under these type of variations.
In order to keep the notation short, we shall introduce the following short-hand
notations:

L(x) ≡ L
(
φi (x), ∂μφi (x)

)
, L′(x) ≡ L

(
φ′

i (x), ∂μφ′
i (x)

)
,

L′(x ′) ≡ L
(
φ′

i (x ′), ∂′
μφ′

i (x ′)
)
, bμ(x) ≡ bμ

(
φ(x)

)
, (2.69)

where ∂′
μ ≡ ∂

∂x ′μ . Keeping only terms up to O(�x) we can calculate δL(x) under

(2.64):

δL(x) = L′(x ′) − L(x)

= L
(
φi (x) + δφi (x), ∂μφi (x) + δ [∂μφi (x)]

)
− L(x)

≈ L(x) + ∂L(x)

∂φi (x)
δφi (x) + ∂L(x)

∂[∂μφi (x)]δ [∂μφi (x)] − L(x)

≈ δL(x) +
(
∂μL(x)

)
�xμ, (2.70)

where we have introduced the following notation

∂μL(x) ≡ ∂L(x)

∂φi (x)
∂μφi (x) + ∂L(x)

∂[∂νφi (x)]∂μ∂νφi (x). (2.71)

Also we have used the following approximation:

δ [∂μφi (x)] ≈ ∂μ [δφi (x)] −
(
∂νφi (x)

) ∂�xν

∂xμ
= ∂μ [δφi (x)]. (2.72)

For the last equality we have used that for a Lorentz (Poincaré) transformation
∂μ�xν = 0 (as it was already mentioned in Chap.1). Thus, the new variation
operator δ̄ also commutes with the derivation operator when restricting ourselves
to Lorentz (Poincaré) continuous transformations. We have therefore obtained an
expression similar to (2.66) for δ̄L:

δL(x) = δL(x) +
(
∂μL(x)

)
�xμ . (2.73)

http://dx.doi.org/10.1007/978-3-319-22966-9_1
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Let’s now consider the transformation of the action. A transformation that leaves
the equations ofmotion invariant is a symmetry of the system.Under such a symmetry
the action S will mostly transform as S → S′ with S′ given by

S′ =
∫

�′
d4x ′L′(x ′)

=
∫

�

d4xL(x) +
∫

�

d4x ∂μ bμ(x)

= S +
∫

�

d4x ∂μ bμ(x), (2.74)

so that δS′ = δS (thus generating the same equations of motion). Introducing the
Jacobian matrix we have

∫

�

∣∣∣
∂x ′

∂x

∣∣∣d4xL′(x ′) =
∫

�

d4xL(x) +
∫

�

d4x ∂μ bμ(x). (2.75)

This must hold for all space-time volumes �, therefore:

∣∣∣
∂x ′

∂x

∣∣∣L′(x ′) = L(x) + ∂μ bμ(x). (2.76)

The determinant of the Jacobianmatrix is equal to 1 for a proper orthocronousLorentz
transformation or a space-time translation, thus

δL(x) − ∂μ bμ(x) = 0 . (2.77)

Introducing (2.73) in (2.77) we obtain:

δL(x) + ∂μ

[
L(x)�xμ − bμ(x)

]
= 0 . (2.78)

Inserting the explicit form of δL from (2.51) in the last expression, we obtain

(
∂L(x)

∂φi (x)
− ∂μ

∂L(x)

∂[∂μφi (x)]
)

δφi (x)+

+ ∂μ

(
∂L(x)

∂[∂μφi (x)]δφi (x)

)
+ ∂μ

[
L(x)�xμ − ∂μbμ(x)

]
= 0. (2.79)

Using the Euler-Lagrange equations of motion we finally get to the conservation law
we were looking for

∂μ jμ(x) = 0, jμ(x) = ∂L(x)

∂[∂μφi (x)]δφi (x) + L(x)�xμ − bμ(x) , (2.80)
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with jμ(x) the conserved Noether current. Note that our result is completely general,
in the sense that it holds for continuous space-time transformations of the type (2.64)
and also for transformations that only imply a field variation without modifying the
space-time configuration. In this last case we would simply set �xμ = 0 in (2.80).
As it is usual, we can also define a conserved charge Q associated to the conserved
current jμ as:

Q =
∫

d3x j0,
dQ
dt

=
∫

d3x ∂0 j0 = −
∫

d3x ∇ j = 0 . (2.81)

Next, we shall take a few illustrative examples.

2.8 Examples

2.8.1 Space-time Translations

Consider the following infinitesimal space-time translation:

xμ → x ′μ = xμ − εμ, (2.82)

with εμ real constants. For scalar or spinor fields we have φi (x) = φ′
i (x ′) thus

δφi (x) = 0. Under this type of transformation our Lagrangians remain unchanged
so L′(x ′) = L(x), therefore, by taking a look at (2.77) we conclude that ∂μbμ = 0.
We can thus, eliminate the bμ term from (2.80) and the conserved current is simply
given by:

jμ = ∂L
∂(∂μφi )

∂νφi ε
ν − Lεμ =

(
∂L

∂(∂μφi )
∂νφi − Lgμν

)
εν . (2.83)

The conservation law ∂μ jμ = 0 holds for any arbitrary constants εν , therefore we
actually have four conserved currents:

∂μ T μν = 0, T μν = ∂L
∂(∂μφi )

∂νφi − Lgμν , (2.84)

with T μν the four-momentum tensor. The conserved Noether charges are then given
by

Pν ≡
∫

d3x T 0ν

=
∫

d3x

(
∂L
∂φ̇i

∂νφi − g0νL
)
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=
∫

d3x (πi ∂
νφi − g0νL)

=
∫

d3x (πi φ̇i − g00L, −πi ∇φi )

=
∫

d3x (H, P )

= ( H, P), (2.85)

wherewe have used (2.46). Aswe can see, the conserved charges are theHamiltonian
and three-momentum operators.

2.8.2 Phase Redefinition

Consider a Lagrangian that depends on the fieldsφ1 andφ2 withφ1 = φ andφ2 = φ†.
If we perform an infinitesimal global phase redefinition of the field

φ(x) → φ′(x) = e−iθ φ(x), (2.86)

with θ � 1 (andwhere globalmeans that the phase does not depend on the space-time
coordinates θ �= θ(x)), then we find:

δφ(x) = −iθφ(x), δφ†(x) = iθφ†(x). (2.87)

As this transformation doesn’t involve the space-time coordinates we can already set
�xμ = 0 in (2.80). Therefore δL = δ̄L = ∂μbμ. Again, if we only consider the free
Dirac or Klein-Gordon Lagrangians then δL = 0 = ∂μbμ, so we can also eliminate
bμ from (2.80). The conserved current is then given by

jμ = ∂L
∂(∂μφ)

δφ + ∂L
∂(∂μφ†)

δφ† = ∂L
∂(∂μφ)

(−iφ)θ + ∂L
∂(∂μφ†)

iφ†θ, (2.88)

for an arbitrary θ. Thus, redefining the current without the θ multiplying term we
find

∂μ jμ = 0, jμ(x) = −i
∂L

∂(∂μφ)
φ + i

∂L
∂(∂μφ†)

φ†. (2.89)

In particular, for the free Dirac Lagrangian LD = ψ̄(x)(iγμ∂μ − m)ψ(x) we obtain
the well known result:

∂μ

(
ψ̄γμψ

)
= 0 . (2.90)
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2.8.3 Lorentz Transformations

Consider the following infinitesimal proper orthochronous3 Lorentz transformation:

xμ → x ′μ = xμ + �ωμ
ν xν , (2.91)

with �ω
μ
ν = −�ων

μ real constants. Defining �ωμν ≡ gμα �ωα
ν , it is easy to show

that the field transformation reads

φ′
i (x ′) = φi (x) + 1

2
�

μν
(i) �ωμν φi (x), (2.92)

with�
μν
(i) = − i

2
σμν = 1

4
[γμ, γν] for spinorial4 fields and,�μν

(i) = 0 for scalar fields

(no summation over the “i” index must be understood in (2.92) nor in the following
expression). Using (2.66) we easily find:

δφi (x) = 1

2
�

αβ
(i) �ωαβ φi (x) − ∂αφi (x) �ωαβ xβ

= 1

2
�

αβ
(i) �ωαβ φi (x) − 1

2

(
∂αφi (x) xβ − ∂βφi (x) xα

)
�ωαβ

= 1

2

[
�

αβ
(i) + (

xα∂β − xβ ∂α
)]

φi (x)�ωαβ . (2.93)

On the other hand, our Lagrangians are all Lorentz invariant, thus δ̄L = 0 and so
again, we can eliminate bμ in (2.80) just as in the previous examples. We obtain that
the expression for our conserved current reads:

jμ = ∂L
∂[∂μφi ]

(
�

αβ
(i) + xα∂β − xβ ∂α

)
φi

1

2
�ωαβ + L�ω

μ
β xβ

= ∂L
∂[∂μφi ]

(
�

αβ
(i) + xα∂β − xβ ∂α

)
φi

1

2
�ωαβ +

+ 1

2
L(gμα xβ − gμβ xα )�ωαβ, (2.94)

for arbitrary �ωαβ . Thus, we obtain

∂μJ μ,αβ = 0, J μ,αβ = xα T μβ − xβ T μα + ∂L
∂[∂μφi ] �

αβ
(i) φi , (2.95)

3See Chap.1 for more details.
4See Chap.5 for details on spinor algebra and for the proof of this statement.

http://dx.doi.org/10.1007/978-3-319-22966-9_1
http://dx.doi.org/10.1007/978-3-319-22966-9_5
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which is the conservation law of the angular momentum pseudo5 tensorJ μ,αβ (obvi-
ously, for the previous expression, summation over all repeated indices must be
understood).

Further Reading

A. Pich, Class Notes on Quantum Field Theory. http://eeemaster.uv.es/course/view.php?id=6
W. Greiner, J. Reinhardt, D.A. Bromley (Foreword), Field Quantization
E.L. Hill, Hamilton’s principle and the conservation theorems of mathematical physics. Rev. Mod.
Phys. 23, 253

J.A. de Azcárraga, J.M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications
in Physics. Cambridge Monographs in Mathematical Physics

J.A. Oller, Mecnica Terica, http://www.um.es/oller/docencia/versionmteor.pdf
M. Kaksu, Quantum Field Theory: A Modern Introduction
M. Srednicki, Quantum Field Theory
D.E. Soper, Classical Field Theory
D.V. Galtsov, Iu.V. Grats, Ch. Zhukovski, Campos Clásicos
S. Noguera, Class Notes

5I am calling it pseudo tensor because it is obviously not invariant under translations!.
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Chapter 3
Relativistic Kinematics and Phase Space

Abstract Here we present a list of the most important formulae needed for cal-
culating relativistic collisions and decays. It includes one-to-two and one-to-three
body decays, and the two-to-two scattering process both in the center of mass and
laboratory frames. It also includes simplified general formulae of one, two and three-
body Lorentz invariant phase space. No explicit calculation is performed, however
the reader is highly encouraged to reproduce the results presented here.

3.1 Conventions and Notations

For all the calculations in this bookwewill adopt themostly minusMinkowski metric
g = diag {1,−1,−1,−1}. If a particle has a relativistic three-momentum p = γmv,
then we define the contravariant four-momentum vector as:

pμ = ( E, p) = (γm, γmv). (3.1)

Thus p2 ≡ pμ pμ = m2; here we have taken c = 1 as usual. We will also be needing
the Kallen lambda function defined as

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2xz. (3.2)

Another important issue is to fix the signs for the Lorentz boosts. Here we will
use the passive transformation approach described as follows. Consider two inertial
reference frames O and O′ with all axes parallel and with O′ moving in the positive
direction of the ẑ axis with constant velocity v = vẑ (v > 0) relative to O (as shown
in Fig. 3.1). Thus, an observer from the reference frame O′ sees that O moves with
velocity −v relative to his reference frame (do not mistake v of the reference frame
with the velocity of the particle from (3.1)). Mathematically this translates into:

x ′μ = Λμ
ν xν (3.3)

© Springer International Publishing Switzerland 2016
V. Ilisie, Concepts in Quantum Field Theory,
UNITEXT for Physics, DOI 10.1007/978-3-319-22966-9_3
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Fig. 3.1 Two inertial
reference frames O and O′
with parallel axes and
relative constant velocity

O O′

ẑ

�v = vẑ

with Λ
μ
ν given by

Λμ
ν =

⎛

⎜⎜⎝

γ 0 0 −γv

0 1 0 0
0 0 1 0

−γv 0 0 γ

⎞

⎟⎟⎠ . (3.4)

Therefore, a moving object that has four momentum pμ relative to the reference
frame O will be described as having four momentum p′μ = Λ

μ
ν pν by an observer

in O′. This will turn out to be useful, for example, when calculating the relation
between the center of mass collision angle and the one in the laboratory reference
frame for the process a + b → 1 + 2. It will also be needed in Chap.4, where
we will describe the three and four-body kinematics and phase-space in terms of
angular observables. The inverse transformation is obtained simply by making the
substitution −γv → +γv in (3.4).

3.2 Process: a → 1 + 2

In the center of mass (CM) reference frame we have the following configuration:

a
1 2−�p p�

pμ
a = ( ma, 0 ), pμ

1 = ( E1, −p ), pμ
2 = ( E2, p ). (3.5)

where E1, E2 and |p| are given by

E1 = 1

2ma
(m2

a + m2
1 − m2

2),

E2 = 1

2ma
(m2

a + m2
2 − m2

1),

|p| = 1

2ma
λ1/2(m2

a, m2
1, m2

2). (3.6)

The threshold value of s (minimum value of s for the on-shell production of particles
1 and 2) is: sth = (m1 + m2)

2, thus s � sth .

http://dx.doi.org/10.1007/978-3-319-22966-9_4
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3.3 Process: a → 1 + 2 + 3

In the CM frame we have the following configuration:

2
a

3

�p2

�p1

�p3

1

θ13
θ12

pμ
a = (ma, 0), pμ

i = ( Ei , pi ),
∑

i

pi = 0, ma =
∑

i

Ei . (3.7)

Because p1 + p2 + p3 = 0 the process takes place in the same plane. Using the
angles shown in the previous figure:

|p1| + |p2| cos θ12 + |p3| cos θ13 = 0,

|p2| sin θ12 + |p3| sin θ13 = 0. (3.8)

The standard approach for the definitionof theLorentz invariant kinematical variables
is given by:

t1 ≡ s23 ≡ (pa − p1)
2 = (p2 + p3)

2,

t2 ≡ s13 ≡ (pa − p2)
2 = (p1 + p3)

2,

t3 ≡ s12 ≡ (pa − p3)
2 = (p1 + p2)

2. (3.9)

The ti invariants satisfy the following relation:

∑

i

ti = m2
a +

∑

i

m2
i . (3.10)

It is easy to show that they also satisfy:

ti = (pa − pi )
2 = p2a + p2i − 2pa · pi = m2

a + m2
i − 2ma Ei . (3.11)

Therefore we can express Ei and |pi| in terms of Lorentz invariant quantities as

Ei = 1

2ma
(m2

a + m2
i − ti ).

|pi| = 1

2ma
λ1/2(m2

a, m2
i , ti ). (3.12)
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The threshold values for s and si j are denoted as sth and sth
i j and:

s ≡ p2a = m2
a � sth = (m1 + m2 + m3)

2,

si j = tk � sth
i j = (mi + m j )

2 = t th
k , (i �= j �= k). (3.13)

From (3.12) and (3.13) is easy to deduce that the maximum value of the energy of
the particle i in the CM frame is

Emax
i = 1

2ma
(m2

a + m2
i − (m j + mk)

2), (i �= j �= k). (3.14)

3.4 Process: 1 + 2 → 3 + 4

In the CM reference frame we have the following configuration:

3

4

21

p

′

− ′

−
θ

�

p�

p�

p�

pμ
1 = ( E1, p), pμ

2 = ( E2, −p), (3.15)

pμ
3 = ( E3, p ′ ), pμ

4 = ( E4, −p ′ ). (3.16)

We can define the following Lorentz invariant quantities:

s ≡ (p1 + p2)
2 = (p3 + p4)

2,

t ≡ (p1 − p3)
2 = (p2 − p4)

2,

u ≡ (p1 − p4)
2 = (p2 − p3)

2. (3.17)

One can easily check that:

s + t + u =
∑

i

m2
i . (3.18)
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The CM energies and momenta in terms of s and mi are given by:

E1 = 1

2
√

s
(s + m2

1 − m2
2), E3 = 1

2
√

s
(s + m2

3 − m2
4),

E2 = 1

2
√

s
(s + m2

2 − m2
1), E4 = 1

2
√

s
(s + m2

4 − m2
3),

|p| = 1

2
√

s
λ1/2(s, m2

1, m2
2), |p′| = 1

2
√

s
λ1/2(s, m2

3, m2
4). (3.19)

The CM collision angle, shown in the previous figure, in terms of Lorentz invariant
quantities is given by

cos θ = s(t − u) + (m2
1 − m2

2)(m
2
3 − m2

4)

λ1/2(s, m2
1, m2

2)λ
1/2(s, m2

3, m2
4)

. (3.20)

In the laboratory (L) reference frame we consider that the particle 2 is at rest, thus
we have the following configuration:

3

4

1 2
p L
1

θL

�

p L
3�

p L
4�

pμ
1,L = ( E L

1 , pL
1 ), pμ

2,L = (m2, 0),

pμ
3,L = ( E L

3 , pL
3 ), pμ

4,L = ( E L
4 , pL

4 ). (3.21)

The energies and momenta in the L reference frame are given by:

E L
1 = 1

2m2
(s − m2

1 − m2
2), |pL

1 | = 1

2m2
λ1/2(s, m2

2, m2
1),

E L
4 = 1

2m2
(m2

2 + m2
4 − t), |pL

4 | = 1

2m2
λ1/2(t, m2

2, m2
4),

E L
3 = 1

2m2
(m2

2 + m2
3 − u), |pL

3 | = 1

2m2
λ1/2(u, m2

2, m2
3). (3.22)
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The expression for θL scattering angle can be easily related to the CM one with the
following expression

tan θL = m2 |p ′| sin θ

|p| E3 + |p ′| E2 cos θ
, (3.23)

where all the quantities from the RHS of the equation are expressed in the CM
reference frame.

Next we present simple expressions for the Lorentz invariant phase space for one,
two and three final state particles in terms of the previously discussed kinematical
variables.

3.5 Lorentz Invariant Phase Space

The standard definition for theLorentz invariant phase space for N final state particles
is given by

d QN ≡ Sn
1

(2π)3N−4

N∏

l=1

d3 pl

2El
δ(4)(Pi − P f ), (3.24)

where Sn = 1/n! is the corresponding symmetry factor (with n the number of final
state identical particles) andwherePi , P f are the initial and final state total momenta
of the system.

3.5.1 One Particle Phase Space (i.e., 1 + 2 → a)

We have the following simple expression:

d Q1 = 2π
d3 pa

2Ea
δ(4)(Pi − P f ). (3.25)

We can easily integrate the previous expression and obtain

∫
d Q1 = 2π δ(s − ma). (3.26)
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3.5.2 Two Particle Phase Space (i.e., 1(+2) → 3 + 4)

We have the following expression:

d Q2 = Sn
1

(2π)2

d3 p3
2E3

d3 p4
2E4

δ(4)(Pi − P f ). (3.27)

If we choose to work in the CM reference frame we simply obtain:

d Q2 = Sn
1

(2π)2

|p ′|
4
√

s
d�, (3.28)

where |p ′| is the final state CM momentum as in (3.19). The differential solid angle
is given by d� = d cos θdφ. If the scattering matrix does not depend on the phase
space then we can perform the angular integration:

∫
d� =

∫ 1

−1
d cos θ

∫ 2π

0
dφ = 4π. (3.29)

Sometimes is much simpler to express the scattering matrix as a function of s, t and
the corresponding masses, and d cos θ in terms those same variables. Taking a quick
look at (3.18), we find that for a collision at fixed s (which is the most typical case
for colliders, thus ds = 0) we have

dt = −du. (3.30)

Therefore, using (3.20) we can express d cos θ as:

d cos θ = 2s dt

λ1/2(s, m2
1, m2

2)λ
1/2(s, m2

3, m2
4)

. (3.31)

The integration limits are easy to obtain using the same expression (3.20):

(cos θ)max = s (2 tmax + s − ∑
m2

i ) + (m2
1 − m2

2)(m
2
3 − m2

4)

λ1/2(s, m2
1, m2

2)λ
1/2(s, m2

3, m2
4)

= 1, (3.32)

(cos θ)min = s (2 tmin + s − ∑
m2

i ) + (m2
1 − m2

2)(m
2
3 − m2

4)

λ1/2(s, m2
1, m2

2)λ
1/2(s, m2

3, m2
4)

= −1. (3.33)

Thus, we simply get:

tmax = 1

2

∑
m2

i − s

2
− 1

2s
(m2

1 − m2
2)(m

2
3 − m2

4)

+ 1

2s
λ1/2(s, m2

1, m2
2)λ

1/2(s, m2
3, m2

4), (3.34)
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tmin = 1

2

∑
m2

i − s

2
− 1

2s
(m2

1 − m2
2)(m

2
3 − m2

4)

− 1

2s
λ1/2(s, m2

1, m2
2)λ

1/2(s, m2
3, m2

4). (3.35)

If m1 = m2 or m3 = m4 these expressions get a lot simpler. If we are dealing with
a decay 1 → 3 + 4, then we must set m2 = 0 and s = m2

1.

3.5.3 Three Particle Phase Space (i.e., a(+b) → 1 + 2 + 3)

The Lorentz invariant phase space corresponding to three final state particles is given
by:

d Q3 = Sn
1

(2π)5

d3 p1
2E1

d3 p2
2E2

d3 p3
2E3

δ(4)(Pi − P f ). (3.36)

In the CM reference frame we obtain the simple and compact expression

d Q3 = Sn
1

128π3 s
ds23 ds13. (3.37)

The integration limits are given by:

smin
13 = (m1 + m3)

2, smax
13 = (

√
s − m2)

2, (3.38)

and

smin
23 = 1

4s13

{(
s − m2

1 − m2
2 + m2

3

)2

− [
λ1/2(s, s13, m2

2) + λ1/2(s13, m2
1, m2

3)
]2}

, (3.39)

smax
23 = 1

4s13

{(
s − m2

1 − m2
2 + m2

3

)2

− [
λ1/2(s, s13, m2

2) − λ1/2(s13, m2
1, m2

3)
]2}

, (3.40)

and where we have defined s ≡ (p1 + p2 + p3)2 = (pa + pb)
2 as the CM invariant

energy (fixed for colliders). If it’s a decay i.e., a → 1 + 2 + 3 then we must simply
set s = m2

a .
Finally, we will we will provide the decay rate and cross section formulae corre-

sponding to our conventions. If M is the transition matrix for a given process, the
decay rate is given by
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Γ (a → 1 + 2 + · · · + N ) = 1

2ma

1

(2 ja + 1)

∑

λa ,λ1,...,λN

×
∫

d QN

∣∣∣M(a → 1 + 2 + · · · + N )

∣∣∣
2

(3.41)

where ja andλa are the spin and polarization of the initial state particle, andλi are the
polarizations of the final state particles. In the previous expression we have averaged
over initial state polarizations and summed over the final state polarizations. If we
are interested in a polarized initial state we must drop the summation over λa and
the 1/(2 ja + 1) average factor. If we are interested in polarized final states, then the
summation over λ1,λ2, etc, must be dropped. Same consideration is valid for the
cross section defined next

σ(a + b → 1 + · · · + N ) = 1

2λ1/2(s, m2
a, m2

b)

× 1

(2 ja + 1)(2 jb + 1)

∑

λa ,λb,λ1,...,λN

×
∫

d QN

∣∣∣M(a + b → 1 + · · · + N )

∣∣∣
2

(3.42)

Further Reading

A. Pich, Class Notes on Quantum Field Theory. http://eeemaster.uv.es/course/view.php?id=6
G. Kallen, Elementary Particle Physics (Addison-Wesley Publishing Company, Reading, 1964)
Particle Data Group
V. Barone, E. Predazzi, High-Energy Particle Diffraction

http://eeemaster.uv.es/course/view.php?id=6


Chapter 4
Angular Distributions

Abstract In the previous chapter we presented the standard approach in defining
kinematical variables and the phase-space. There is however, an alternative way of
defining these variables and it is in terms of invariant masses and angles of pairs of
particles in their center of mass reference system. This approach is very common for
studying very rare decays (such as B → K ∗��). Here we present the kinematics and
phase space for one-to-three and one-to-four body decays.

4.1 Three Body Angular Distributions

Imagine a process like

A(k) → b(p) + c(p1) + d(p2) , (4.1)

where k, p, p1 and p2 are the momenta of the particles. We can choose one pair of
particles (in this case we will choose c and d) and separate our decay (4.1) into two
sequential decays. The first decay will be given by

A

p q

b cd

where q = p1 + p2. Thus A(k) decays into a real (on-shell) particle b(p) and into
a vir tual set of particles cd(q), which is characterised by the invariant mass (q2) of
the system of the two real (on-shell) particles c(p1) and d(p2). In the CM reference
frame of A we have the following distribution of momenta

pμ
∣∣∣

A
= (p0, 0, 0, −|q|), qμ

∣∣∣
A

= (q0, 0, 0, |q|), (4.2)

where we have supposed that b moves along the negative ẑ axis and where p0, q0

and |q| are given by (see Chap.3 for details)

© Springer International Publishing Switzerland 2016
V. Ilisie, Concepts in Quantum Field Theory,
UNITEXT for Physics, DOI 10.1007/978-3-319-22966-9_4
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p0 = 1

2m A

(
m2

A + m2
b − q2

)
, (4.3)

q0 = 1

2m A

(
m2

A − m2
b + q2

)
, (4.4)

|q| = 1

2m A
λ1/2

(
m2

A, m2
b, q2

)
. (4.5)

It is straightforward to obtain the p · q invariant product

p · q = 1

2

(
m2

A − m2
b − q2

)
. (4.6)

Going to the CM reference frame of the cd system we have the following configu-
ration

x̂

c

d

p1

p2

θ ẑ−ẑ

cd

In this reference frame p and q are given by

pμ
∣∣∣
cd

= (p′0, 0, 0, −|p′|), qμ
∣∣∣
cd

= (

√
q2, 0, 0, 0). (4.7)

Using the previously calculated p ·q product and the expression p2 = m2
b = (p′0)2−

|p′|2, we obtain

p′0 = 1

2
√

q2

(
m2

A − m2
b − q2

)
, (4.8)

|p′| = 1

2
√

q2
λ1/2

(
m2

A, m2
b, q2

)
. (4.9)

The four momenta p1 and p2 are given by

pμ
2

∣∣∣
cd

= (p02, |p2| sin θ, 0, |p2| cos θ), (4.10)

pμ
1

∣∣∣
cd

= (p01, −|p2| sin θ, 0, −|p2| cos θ), (4.11)
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where

p02 = 1

2
√

q2

(
q2 + m2

d − m2
c

)
, (4.12)

p01 = 1

2
√

q2

(
q2 − m2

d + m2
c

)
, (4.13)

|p2| = 1

2
√

q2
λ1/2

(
q2, m2

c, m2
d

)
. (4.14)

It is straightforward to obtain the following invariant products:

p1 · q =
1
2
(q2 +m2

c −m2
d)

p2 · q =
1
2
(q2 −m2

c +m2
d)

p1 · p2 =
1
2
(q2 −m2

c −m2
d)

p · p1 = p · q − p · p2
(4.15)

For the product p · p2 we simply have p · p2 = p′0 p02+|p′| |p2| cos θwhich explicitly
reads

p · p2 = 1

4q2

(
m2

A − m2
b − q2

) (
q2 + m2

d − m2
c

)

+ 1

4q2 λ1/2
(

m2
A, m2

b, q2
)

λ1/2
(

q2, m2
d , m2

c

)
cos θ (4.16)

When calculating the squared transition matrix for a given process, with the use
of the invariant products given in the boxes one can express everything in terms of
the masses mi , the invariant squared mass of the cd system q2, and cos θ. The only
thing left is to properly define the corresponding phase space in terms of the same
variables. The following formula will turn out to be extremely useful

∫
d4k δ(k2 − m2) =

∫
d3k

2k0
, (4.17)

where k0 > 0. The generic expression for the three-body phase space is given by
(see Chap.3)

http://dx.doi.org/10.1007/978-3-319-22966-9_3
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d Q3 = Sn
1

(2π)5

d3 p

2p0
d3 p1
2p01

d3 p2
2p02

δ(4)(k − p − p1 − p2)

= Sn
1

(2π)5

∫
d4q δ(4)(q − p1 − p2)

d3 p

2p0
d3 p1
2p01

d3 p2
2p02

δ(4)(k − p − q)

≡ Sn

2π
× A × B, (4.18)

where we have defined A and B the following way

A = 1

(2π)2

∫
d4q

d3 p

2p0
δ(4)(k − p − q), (4.19)

B = 1

(2π)2

d3 p1
2p01

d3 p2
2p02

δ(4)(q − p1 − p2). (4.20)

We will now manipulate these expressions to obtain the appropriate results in terms
of the desired variables. For the first term we have

A = 1

(2π)2

∫
dm2

12

∫
d4q

d3 p

2p0
δ(4)(k − p − q) δ(q2 − m2

12)

= 1

(2π)2

∫
dm2

12
d3q

2q0

d3 p

2p0
δ(4)(k − p − q)

= 1

(2π)2

∫
dq2 d3q

2q0

d3 p

2p0
δ(4)(k − p − q)

= 1

8πm2
A

λ1/2
(

m2
A, m2

b, q2
)

dq2, (4.21)

where, in order to get to the last line, we have used the expression (3.28) and we have
integrated over the solid angle (without loss of generality). In order to simplify the
notation we have also dropped the integral symbol in the last line. All we have left is
to compute B. Again, using (3.28) and integrating over φ (without loss of generality)
we obtain

B = 1

16πq2 λ1/2
(

q2, m2
c, m2

d

)
d cos θ. (4.22)

Finally, the expression of the differential three body phase space that wewere looking
for has the form

d Q3 = Sn
1

256π3 m2
A q2

λ1/2
(

m2
A, m2

b, q2
)

λ1/2
(

q2, m2
c, m2

d

)
dq2 d cos θ .

(4.23)

http://dx.doi.org/10.1007/978-3-319-22966-9_3
http://dx.doi.org/10.1007/978-3-319-22966-9_3
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Fig. 4.1 Higgs-like scalar
particle φ decaying into a
pair of W gauge bosons

k

W

W

p

q

φ

It is worth making the following comment. If the process we are studying is
similar to the one shown in Fig. 4.1, then q2 is the momentum of the virtual W
boson. If however, mφ > 2mW then instead of a real (on-shell) and a virtual (off-
shell) W bosonwe have two on-shell particles, thus q2 = m2

W . Therefore, the squared
transition matrix will contain a squared propagator of the type

1
(
q2 − m2

W

)2 + m2
W Γ 2

W

(4.24)

which is regulated by a Breit-Wigner term, as a first order approximation (for more
details see Chaps. 7 and 12). Working in the narrow width approximation we have

lim
ΓW →0

1
(
q2 − m2

W

)2 + m2
W Γ 2

W

= π

mW ΓW
δ
(

q2 − m2
W

)
. (4.25)

The resulting Dirac delta function can be simply reabsorbed into the definition of
the phase space and we can perform the integration over q2. Thus, our previous
expression of d Q3 would turn into

d Q3 = 1

256π3 m2
φ m2

W

λ1/2
(

m2
φ, m2

W , m2
W

)
λ1/2

(
m2

W , m2
c, m2

d

)
d cos θ.

(4.26)

4.2 Four Body Angular Distributions

Imagine that in the previous process b is not a real particle, but represents a virtual
set of two particles (c̃d̃) i.e., the process is given by

A(k) → c̃( p̃1) + d̃( p̃2) + c(p1) + d(p2) . (4.27)

http://dx.doi.org/10.1007/978-3-319-22966-9_7
http://dx.doi.org/10.1007/978-3-319-22966-9_12


62 4 Angular Distributions

We can now choose two pairs of particles (one given by c and d and another by c̃
and d̃) and separate our decay (4.27) into sequential decays, similar to the previous
case. The first decay will be given by

A

p q

c̃d̃ cd

where q = p1 + p2 and p = p̃1 + p̃2. Thus A(k) decays into two vir tual sets of
particles cd(q) and c̃d̃(p) which are characterised by their invariant squared masses
q2 and p2. Just as in the previous case the four momenta p and q in the CM reference
frame of A are given by

pμ
∣∣∣

A
= (p0, 0, 0, −|q|), qμ

∣∣∣
A

= (q0, 0, 0, |q|), (4.28)

where, again, we have supposed the b moves along the negative ẑ axis and where,
this time

p0 = 1

2m A

(
m2

A + p2 − q2
)

, (4.29)

q0 = 1

2m A

(
m2

A − p2 + q2
)

, (4.30)

|q| = 1

2m A
λ1/2

(
m2

A, p2, q2
)

. (4.31)

Thus, the invariant product p · q is simply

p · q = 1

2

(
m2

A − p2 − q2
)

. (4.32)

The complete distribution of angles and momenta is schematically shown in Fig. 4.2.
Thus, in the CM reference frame of the cd system, we have the following expressions
for the four-momenta

pμ
∣∣∣
cd

= (p′0, 0, 0, −|p′|), qμ
∣∣∣
cd

= (

√
q2, 0, 0, 0). (4.33)

with

p′0 = 1

2
√

q2

(
m2

A − p2 − q2
)

, (4.34)

|p′| = 1

2
√

q2
λ1/2

(
m2

A, p2, q2
)

. (4.35)
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c̃

c

θdθd̃

χd̃

d

A

z

x

p̃2

p̃1

p q

p2

p1

(c̃d̃) Center of Mass

(cd) Center of Mass

Fig. 4.2 Four body decay angular distribution

The four-momenta p1 and p2 simply read

pμ
2

∣∣∣
cd

= (p02, |p2| sin θd cosχ, |p2| sin θd sinχ, |p2| cos θd), (4.36)

pμ
1

∣∣∣
cd

= (p01, −|p2| sin θd cosχ, −|p2| sin θd sinχ, −|p2| cos θd), (4.37)

with p02, p01, and |p2| given by the same expressions (4.12)–(4.14) from the previous
section. One obviously obtains the same results for the scalar products (4.15) and

p · p2 = 1

4q2

(
m2

A − p2 − q2
) (

q2 + m2
d − m2

c

)

+ 1

4q2 λ1/2
(

m2
A, p2, q2

)
λ1/2

(
q2, m2

d , m2
c

)
cos θd (4.38)

Boosting1 pμ
2 into the CM reference frame of A we obtain

pμ
2

∣∣∣
A

= (γ p02 + γ v |p2| cos θd , |p2| sin θd cosχ,

|p2| sin θd sinχ, γ v p02 + γ |p2| cos θd), (4.39)

with

v = |q|
q0 , γ = q0

√
q2

. (4.40)

1See Chap.3 for the explicit expression for Lorentz boosts.

http://dx.doi.org/10.1007/978-3-319-22966-9_3
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A similar expression can be found for pμ
1 , however it won’t be needed.

We now move on and analyse the kinematics in the CM reference frame of the
c̃d̃ system. We have

pμ
∣∣∣
c̃d̃

= (

√
p2, 0, 0, 0), qμ

∣∣∣
c̃d̃

= (q ′0, 0, 0, |q′|), (4.41)

with

q ′0 = 1

2
√

p2

(
m2

A − p2 − q2
)

, (4.42)

|q′|2 = 1

2
√

p2
λ1/2

(
m2

A, p2, q2
)

. (4.43)

For p̃1 and p̃2 we simply have the following expressions

p̃μ
2

∣∣∣
c̃d̃

= ( p̃02, |p̃2| sin θd̃ , 0, |p̃2| cos θd̃), (4.44)

p̃μ
1

∣∣∣
c̃d̃

= ( p̃01, −|p̃2| sin θd̃ , 0, −|p̃2| cos θd̃). (4.45)

The components of the four-momenta are again straightforward to obtain

p̃02 = 1

2
√

p2

(
p2 + m2

d̃
− m2

c̃

)
, (4.46)

p̃01 = 1

2
√

p2

(
p2 − m2

d̃
+ m2

c̃

)
, (4.47)

|p̃2| = 1

2
√

p2
λ1/2

(
p2, m2

c̃, m2
d̃

)
. (4.48)

We can now calculate, as in the cd system, similar invariant scalar products

p̃1 · p = 1

2
(p2 + m2

c̃ − m2
d̃
)

p̃2 · p = 1

2
(p2 − m2

c̃ + m2
d̃
)

p̃1 · p̃2 = 1

2
(p2 − m2

c̃ − m2
d̃
)

q · p̃1 = p · q − q · p̃2 (4.49)
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with

q · p̃2 = 1

4p2
(m2

A − p2 − q2)(p2 + m2
d̃

− m2
c̃)

− 1

4p2
λ1/2(m2

A, p2, q2)λ1/2(p2, m2
d̃
, m2

c̃) cos θd̃ (4.50)

Using momentum conservation we can also calculate products of the type pi · p̃ j .
We find

p1 · p̃2 = q · p̃2 − p2 · p̃2
p2 · p̃1 = p · p2 − p2 · p̃2
p1 · p̃1 = p · p1 − q · p̃2 + p2 · p̃2 (4.51)

The remaining product we need to calculate is p2 · p̃2. Boosting p̃μ
2 into the CM

frame of A we obtain

p̃μ
2

∣∣∣
A

= (γ̃ p̃02 − γ̃ ṽ |p̃2| cos θd̃ , |p̃2| sin θd̃ , 0, −γ̃ ṽ p̃02 + γ̃ |p̃2| cos θd̃),

(4.52)

with

γ̃ = p0√
p2

, ṽ = |q|
p0

. (4.53)

Using the expressions (4.39) and (4.52) we can now evaluate the p2 · p̃2 invariant
product in the CM reference system of A

p2 · p̃2 = (γ p02 + γ v |p2| cos θd)(γ̃ p̃02 − γ̃ ṽ |p̃2| cos θd̃)

− |p2| |p̃2| sin θd̃ sin θd cosχ

+ (γ v p02 + γ |p2| cos θd)(γ̃ ṽ p̃02 − γ̃ |p̃2| cos θd̃) (4.54)

One can now express all the terms from the squared transition matrix (by using
the expressions in the boxes) in terms of the squared invariant masses, p2, q2, the
masses mi and the three angles θd , θd̃ and χ. Furthermore, one can use the helicity
amplitudes approach in order to logically and systematically group all the terms
from the transition matrix and obtain the so called angular coefficients.2

2For more details check Furhter Reading.
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Last wewill calculate the needed phase space. According to the definition given in
the previous chapter, the generic expression for the four-body phase space is given by

d Q4 = Sn
1

(2π)8

d3 p1
2p01

d3 p2
2p02

d3 p̃1
2 p̃01

d3 p̃2
2 p̃02

δ(4)(k − p1 − p2 − p̃1 − p̃2)

= Sn
1

(2π)8

∫
d4 p

∫
d4q δ(4)(q − p1 − p2) δ(4)(p − p̃1 − p̃2)

× d3 p1
2p01

d3 p2
2p02

d3 p̃1
2 p̃01

d3 p̃2
2 p̃02

δ(4)(k − p − q)

≡ Sn

(2π)2
× A × B × C, (4.55)

where we have defined A, B and C the following way

A = 1

(2π)2

∫
d4 p

∫
d4q δ(4)(k − p − q), (4.56)

B = 1

(2π)2

d3 p1
2p01

d3 p2
2p02

δ(4)(q − p1 − p2), (4.57)

C = 1

(2π)2

d3 p̃1
2 p̃01

d3 p̃2
2 p̃02

δ(4)(p − p̃1 − p̃2). (4.58)

Using the same techniques as in the previous section we can manipulate A

A = 1

(2π)2

∫
dm2

12

∫
dm̃2

12

∫
d4 p

∫
d4q δ(4)(k − p − q)

× δ(q2 − m2
12) δ(p2 − m̃2

12)

= 1

(2π)2

∫
dm2

12

∫
dm̃2

12

∫
d3 p

2p0

∫
d3q

2q0 δ(4)(k − p − q)

= 1

(2π)2

∫
dq2

∫
dp2

∫
d3 p

2p0

∫
d3q

2q0 δ(4)(k − p − q)

= 1

8πm2
A

λ1/2(m2
A, q2, p2) dq2 dp2. (4.59)

Again,wehave used (3.28), integrated over the solid angle (without loss of generality)
and dropped the integral symbols to simplify notation. For B we can still integrate
over the azimuthal angle without loosing generality, and we obtain

B = 1

16πq2 λ1/2
(

q2, m2
d , m2

c

)
d cos θd . (4.60)

http://dx.doi.org/10.1007/978-3-319-22966-9_3
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Finally, for C we must keep both angles

C = 1

32π2 p2
λ1/2

(
p2, m2

d̃
, m2

c̃

)
d cos θd̃ dχ. (4.61)

Thus, our final expression of the four-body phase space in terms of angular variables
is given by

d Q4 = Sn
1

(128π3)2 m2
A p2 q2

λ1/2(q2, m2
d , m2

c) λ1/2(p2, m2
d̃
, m2

c̃)

× dq2 dp2 d cos θd d cos θd̃ dχ (4.62)

If we are facing with a similar case as in the previous section, p2 or q2 or both are
the momenta of some virtual particles that can reach the on-shell region, and we are
working in the narrow width approximation, we can simply reabsorb the Dirac delta
function(s) into d Q4 and integrate (just as in the previous section) with no further
complication.
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Chapter 5
Dirac Algebra

Abstract In this chapter we present the basics of Dirac spinor algebra needed for
calculations involving fermions. We introduce the commuting and anti-commuting
relations among the various Dirac matrices and we present the basics of calculating
spinor traces. The tools given here can be used to further calculate lengthy and more
complicated traces involving Dirac matrices. The transformation of spinors under
Lorentz transformations is also presented consistently together with the bilinear
covariants. Finally a short comparison between QED and QCD is given for a simple
process.

5.1 Dirac Matrices

We shall start this chapter by introducing the well known Dirac equation. It reads

(
i /∂ − m

)
ψ(x) = 0 , (5.1)

where we have used the Feynman slashed notation /∂ ≡ γμ∂μ. The γμ Dirac matrices
obey the Clifford algebra

1

2
{γμ, γν} ≡ 1

2

(
γμγν + γνγμ

) = gμν I4, γμ† = γ0γμγ0. (5.2)

Thus, it is straightforward to deduce

(
γ0)2 = −(

γi )2 = I4, γ0† = γ0, γi† = −γi , (5.3)

where I4 is the identity matrix in 4 dimensions (that we shall not write down explic-
itly unless necessary). Using the previously introduced γμ matrices one can further
construct two others. The first one

γ5 ≡ i γ0γ1γ2γ3 = − i

4
εμναβ γμγνγαγβ, (5.4)

© Springer International Publishing Switzerland 2016
V. Ilisie, Concepts in Quantum Field Theory,
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with ε0123 = −ε0123 = 1, and the second one

σμν ≡ i

2
[γμ, γν] ≡ i

2

(
γμγν − γνγμ

)
. (5.5)

It is easy to check that

γ5 σμν = i

2
εμναβ σαβ,

(
γ5

)2 = I4. (5.6)

In the previous expression we have defined σαβ ≡ gρα gδβ σρδ . Using the Clifford
algebra one can easily prove

γ†
5 = γ5, σμν† = γ0 σμν γ0. (5.7)

and

{γ5, γμ } = 0, [γ5,σμν] = 0. (5.8)

Thus, using the Clifford algebra and the previously introduced σμν matrix, one can
write γμγν as

γμγν = 2gμν − γνγμ = gμν − i σμν . (5.9)

With all the previously introduced concepts one can calculate any tensor contraction
i.e.,

γμ γμ = 4 I4 , γμ γν γμ = −2γν , γμ
/p γμ = −2/p, (5.10)

etc., or products of the type

/p/q = p · q − i σμν pμqν, (5.11)

or tensor identities like

γμ γν γρ + γρ γν γμ = 2
(
gμν γρ − gμρ γν + gνρ γμ

)
. (5.12)

The following results involving the Levi-Civita tensor density1 will also turn out to
be useful:

εαβμν εαβσρ = 2
(
δμ
ρ δν

σ − δμ
σ δν

ρ

)
, (5.13)

εαβρμ εαβρν = −6 δμ
ν , (5.14)

εαβμν εαβμν = −24. (5.15)

1See Chap.1 for the definition of tensor density.

http://dx.doi.org/10.1007/978-3-319-22966-9_1
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Some authors use g
μ
ν instead of the usual Kronecker delta tensor δμ

ν . This should only
be interpreted as a mnemotechnical rule for raising (or lowering) tensor indices i.e.,
g

μ
ν → gμν . Thus, it is used to remind that when raising an index of the Kronecker
delta tensor it trans f orms into the metric tensor i.e., gμα δν

α = gμν .

5.2 Dirac Traces

When computing transition matrix elements involving fermions, one usually needs
to calculate traces of products of Dirac matrices. One could find useful the following
generic trace properties

Tr{A} = Tr{AT } , Tr{A + B} = Tr{A} + Tr{B}, (5.16)

where T stands for transposed, and

Tr{A1 . . . AN } = Tr{AN A1 . . . AN−1}
= Tr{AN−1 AN A1 . . . AN−2}, (5.17)

etc., which is called the cyclic property. Returning to the Dirac matrices, using the
previous results one can calculate any trace of Dirac matrices. Some interesting
simple results are presented next.

Tr{γ5} = Tr{γμ} = Tr{σμν} = 0. (5.18)

For an odd number of Dirac matrices one finds (k ∈ N)

Tr{γμ1 . . . γμ2k+1} = 0, (5.19)

therefore, the following equality also holds

Tr{γ5 γμ1 . . . γμ2k+1} = 0. (5.20)

Other interesting results are

Tr{γμ γν} = 4 gμν , (5.21)

Tr{γμ γμ} = 16 , (5.22)

Tr{γ5 γμ γν} = 0, (5.23)

Tr{γμ γν γρ γσ} = 4
(
gμν gσρ − gμρ gνσ + gμσ gνρ

)
, (5.24)

Tr{γ5 γμ γν γρ γσ} = −4 i εμνρσ. (5.25)
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With the tools given here, one can calculate more lengthy and complicated traces
involving Dirac matrices with no further complication.

5.3 Spinors and Lorentz Transformations

In this sectionwe shall study the transformation of a spinor fieldψ(x) under a Lorentz
transformation

xμ → x ′μ = �μ
ν xν . (5.26)

Under the previous transformation a spinor field should transform as

ψ(x) → ψ′(x ′) = ψ′(� x) ≡ S(�)ψ(x) , (5.27)

where we have supposed there exists a linear operator of the form S(�) that imple-
ments the Lorentz transformation � on the spinor field ψ(x). Let’s further analyse
the properties that this operator should have:

ψ′(x ′) = S(�)ψ(x) = S(�)ψ(�−1 x) = S(�) S(�−1)ψ′(x ′). (5.28)

Therefore we have found that S(�−1) = S−1(�). Let’s move on and see what are
the implications of this operator on the Dirac matrices. One of the basic principles
of Relativity (Special or General) is that all equations of motion must have the same
f orm in all reference frames. Thus the Dirac equation

(
i γμ ∂μ − m

)
ψ(x) = 0 , (5.29)

in terms of the primed variables must be written as

(
i γν ∂′

ν − m
)
ψ′(x ′) = 0. (5.30)

where ∂′
ν ≡ ∂/∂x ′ν . We find the following

0 =
(

i γμ ∂μ − m
)
ψ(x)

=
(

i γμ ∂μ − m
)

S−1(�)ψ′(x ′)

=
(

i S(�) γμ S−1(�) ∂μ − m
)

ψ′(x ′)

=
(

i S(�) γμ S−1(�)�ν
μ ∂′

ν − m
)

ψ′(x ′)

=
(

i γν ∂′
ν − m

)
ψ′(x ′). (5.31)
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Thus, under a Lorentz transformation (5.26) the Dirac gamma matrices are related
through

γν = S(�)
(
�ν

μ γμ
)

S−1(�) . (5.32)

Let’s now try to find and explicit expression for S(�) for a proper orthochronous
Lorentz transformation (1.124)

�μ
ν = δμ

ν + �ωμ
ν + O(�ω2). (5.33)

We write down the ansatz

S(�) = I4 + bμν �ωμν + O(�ω2) , (5.34)

S−1(�) = I4 − bμν �ωμν + O(�ω2). (5.35)

(with �ωμν ≡ gαν �ω
μ
α) where bμν must be 4 × 4 antisymmetric matrices (in the

μ, ν indices due to the fact that �ωμν is also antisymmetric). Thus, the relation
(5.32) takes the form

γν =
(

I4 + bσρ �ωσρ
) (

γν + �ων
μ γμ

) (
I4 − bαβ �ωαβ

)
+ · · · (5.36)

Keeping only terms up to O(�ω) we obtain

�ων
μ γμ = γν bαβ �ωαβ − bσρ �ωσρ γν

= �ωαβ [γν, bαβ]. (5.37)

On the other hand we can write �ων
μ γμ as

�ων
μ γμ = 1

2
�ωαβ

(
γβ δν

α − γα δν
β

)
. (5.38)

Comparing the last two equations (for arbitrary �ωαβ) we find

1

2

(
γβ δν

α − γα δν
β

) = [γν, bαβ]. (5.39)

It is easy to check that this relation is satisfied for

bαβ = − i

4
σαβ . (5.40)

http://dx.doi.org/10.1007/978-3-319-22966-9_1
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Thus, the operator that implements an infinitesimal proper orthochronus Lorentz
transformation on the spinor field is given by

S(�) = I4 − i

4
σμν �ωμν + . . . , (5.41)

with its inverse given by

S−1(�) = I4 + i

4
σμν �ωμν + · · · = γ0 S† γ0 . (5.42)

For a parity transformation (1.127) we simply find

S
(
�(P)

)
= S−1

(
�(P)

)
= S†

(
�(P)

)
= γ0. (5.43)

Definingψ(x) ≡ ψ†(x) γ0, we obtain that under a Lorentz transformation this spinor
transforms as

ψ ′(x ′) = ψ(x) S−1(�). (5.44)

Restricting our transformations to proper orthochronous Lorentz boosts and parity
we can construct the following bilinear covariants

ψ ′(x ′)ψ′(x ′) = ψ(x)ψ(x) → scalar, (5.45)

ψ ′(x ′) γ5 ψ′(x ′) = det(�)ψ(x) γ5 ψ(x) → scalar density, (5.46)

ψ ′(x ′) γμ ψ′(x ′) = �μ
ν ψ(x) γν ψ(x) → vector, (5.47)

ψ ′(x ′) γ5 γμ ψ′(x ′) = det(�)�μ
ν ψ(x) γ5 γν ψ(x) → vector density, (5.48)

ψ ′(x ′)σμν ψ′(x ′) = �μ
α �ν

β ψ(x)σαβ ψ(x) → tensor. (5.49)

5.4 Quantum Electrodynamics

We are now ready to move on and apply all the spinor techniques learned in the
previous sections to the calculation of scattering processes.Wewill turn our attention
to the QED Lagrangian

LQE D = −1

4
Fμν Fμν − 1

2ξ

(
∂μ Aμ

)2 + i ψ γμ ∂μ ψ

− m ψ ψ − e Q Aμ ψ γμ ψ (5.50)

http://dx.doi.org/10.1007/978-3-319-22966-9_1
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As it is already well known, the QED interaction Lagrangian is obtained by
imposing local gauge invariance on the Dirac field. Using QED as an inspirational
toy-model is how the Standard Model was finally born. If one extends the local
gauge invariance principle from the U (1) group (that corresponds to QED) to the
SU (3)C ⊗ SU (2)L ⊗ U (1)Y group and introduces the adequate fermion families,
one obtains the the Standard Model Lagrangian.2

Returning to our simple QED Lagrangian, after quantization3 (canonical, path
integral, etc.) one can define the Feynman rules of the model. In our case they are
given by

Vertex: −i e Q γμ

Fermion propagator:
i

/p − m
= i

/p + m

p2 − m2

Photon propagator: i
−gμν + (1 − ξ)

qμqν

q2

q2

for the vertex and propagators, and

Fermion out:
p

ur (p)

Antifermion out:
p

vr (p)

Fermion in:
p

ur (p)

Antifermion in:
p

vr (p)

Photon out:
p

ε∗r
μ (p)

Photon in:
p

εr
μ(p)

for the external fields (the index r stands for the corresponding polarization). The
Dirac spinors introduced previously satisfy the equations

2For a nice review of how this is done readA. Pich,The Standard Model of Electroweak Interactions,
http://arxiv.org/pdf/1201.0537v1.pdf andA. Pich,Quantum Chromodynamics, http://arxiv.org/pdf/
hep-ph/9505231.pdf.
3For more details one should consult the last four references at the end of this chapter.

http://arxiv.org/pdf/1201.0537v1.pdf
http://arxiv.org/pdf/hep-ph/9505231.pdf.
http://arxiv.org/pdf/hep-ph/9505231.pdf.
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(
/p − m

)
ur (p) = 0, ur (p)

(
/p − m

) = 0, (5.51)
(
/p + m

)
vr (p) = 0, vr (p)

(
/p + m

) = 0. (5.52)

Summing over the polarization of the spinors one finds the following relations

2∑

r=1

ur (p) ur (p) = (
/p + m

)
,

2∑

r=1

vr (p) vr (p) = (
/p − m

)
. (5.53)

These two results will turn out to be useful for calculating squared matrix elements
for unpolarized fermions, as we shall shortly see with an example.

5.4.1 Unpolarized Transition Matrices

In this subsection we will use the previously Feynman rules to present the basics
of the scattering matrix calculations involving spinors and photons. Consider the
following process

e+(p1) e−(p2) → γ(k1) γ(k2). (5.54)

The corresponding Feynman diagrams are shown in Fig 5.1. The total squared tran-
sition matrix will be given by

∣∣M∣∣2 = ∣∣M1
∣∣2 + ∣∣M2

∣∣2 + 2Re M†
1M2. (5.55)

Fig. 5.1 Feynman diagrams
for electron-positron
annihilation to a pair of
photons −iM1 =

p2

p1 k1

k2

p2 − k2

−iM2 =

p2

p1 k1

k2

p2 − k1
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Here we shall only focus our attention on diagram (1). The rest of the calculation
is left for the reader as an exercise. The transition matrix for the first diagram is
given by

M1 = e2 Q2 εr∗
μ (k1) εs∗

ν (k2)
1

(p2 − k2)2 − m2 vr1(p1)

× γμ (/p2 − /k2 + m) γν ur2(p2). (5.56)

In the following we will explicitly calculate the hermitian conjugate of the spinor
part of this transition matrix:

(
vr1 γμ (/p2 − /k2 + m) γν ur2

)† =

=
(

v†r1 γ0 γμ (/p2 − /k2 + m) γν ur2

)†

= u†
r2 γν† (/p

†
2 − /k†2 + m) γμ† γ0† vr1

= u†
r2 γ0 γν γ0 (γ0

/p2 γ0 − γ0 /k2 γ0 + m) γ0 γμ γ0 γ0 vr1

= ur2 γν (/p2 − /k2 + m) γμ vr1 . (5.57)

Thus, the hermitian conjugate of M1 is simply given by

M†
1 = e2 Q2 εr

μ′(k1) εs
ν ′(k2)

1

(p2 − k2)2 − m2 ur2(p2)

× γν ′
(/p2 − /k2 + m) γμ′

vr1(p1). (5.58)

The squared transition matrix for the first diagram then reads

∣∣M1
∣∣2 = e4 Q4 εr∗

μ (k1) εr
μ′(k1) εs∗

ν (k2) εs
ν ′(k2)

1

[(p2 − k2)2 − m2]2

× ur2 γν ′
(/p2 − /k2 + m) γμ′

vr1 vr1 γμ (/p2 − /k2 + m) γν ur2 .

(5.59)

Introducing explicitly the matrix indices (the upper index for the rows and the lower
for the columns and again, with summation over repeated indices understood) for
the spinors and the dirac matrices we find
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(
ur2

)
i

(
γν ′)i

j

(
/p2 − /k2 + m

) j
k

(
γμ′)k

l

(
vr1

)l (
vr1

)
m

× (
γμ

)m
n

(
/p2 − /k2 + m

)n
o

(
γν

)o
p

(
ur2

)p =

= (
γν ′)i

j

(
/p2 − /k2 + m

) j
k

(
γμ′)k

l

(
vr1

)l (
vr1

)
m

× (
γμ

)m
n

(
/p2 − /k2 + m

)n
o

(
γν

)o
p

(
ur2

)p (
ur2

)
i =

= Tr
{
γν ′

(/p2 − /k2 + m) γμ′
vr1 vr1 γμ (/p2 − /k2 + m) γν ur2 ur2

}
. (5.60)

Summing over the polarizations of the fermions and of the photons we obtain

∑

r,s,r1,r2

∣∣M1
∣∣2 = e4 Q4 (−gμμ′) (−gνν ′)

1

[(p2 − k2)2 − m2]2

× Tr
{
γν ′

(/p2 − /k2 + m) γμ′
(/p1 − m)

× γμ (/p2 − /k2 + m) γν (/p2 + m)
}

(5.61)

The corresponding formulae needed for calculating cross sections and decay rates
are given in Chap.3.

Note that, when summing over the polarizations of the photon we have made the
usual substitution

∑

r

εr∗
μ (p) εr

ν(p) → −gμν . (5.62)

This can safely be done in QED due to the fact that it is an abelian gauge theory.
The photon always couples to a conserved current and the non-physical polariza-
tions do not contribute to the physical observables. For QCD, which is non-abelian,
the previous substitution must be done with care. We shall discuss this in the next
subsection.

5.4.2 Non Abelian Gauge Theories

Consider the following QCD process

q̄(p1) q(p2) → g(p3) g(p4). (5.63)

where qq̄ stands for a quark-antiquark pair and g stands for gluon. For this process
one has the same two diagrams from the previous section (with gluons substituting
the photons and quarks substituting the electrons) plus a third one, that involves a
triple gluon vertex (which is absent in QED). The complete set is shown in Fig. 5.2,

http://dx.doi.org/10.1007/978-3-319-22966-9_3
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−iM1 =

p2, β

p1, α p3, ρ, c

p4, σ, d

p2 − p4

δ

δ′

−iM2 =

p2, β

p1, α p3, ρ, c

p4, σ, d

p2 − p3

δ

δ′

−iM3 =

p2, β

p1, α p3, ρ, c

p4, σ, d

p1 + p2

μ, a ν, b

Fig. 5.2 Feynman diagrams for qq̄ annihilation to a pair of gluons

where we have also included the corresponding colour labels and Lorentz indices.
Due to the presence of the third diagram, if one makes the same substitution (5.62)
for the gluon polarizations, one will obtain the wrong result. It is so, because one
includes into the squared transition matrix non-physical polarization of the gluons
(they are not coupled any more to conserved currents for this third diagram, thus the
non-physical polarization do not vanish). There are two solutions. One can explicitly
introduce the expressions for the gluon polarizations and only sum over the two
physical ones (which can result rather tedious) or make the substitution (5.62) and
introduce the Fadeev-Popov ghosts (at tree level). This is the approach that we shall
present next.

Therefore, in order to get rid of the contributions of the non-physical polariza-
tions of the gluons we will sum the ghost-antighost (cc̄) contributions from Fig. 5.3
(diagram (A) or diagram (B), as they both lead to the same result).
Thus, the (correct result for the) total cross section will be given by

σ(qq̄ → gg) = σ̄(qq̄ → gg) + σ(qq̄ → cc̄) . (5.64)

The explicit expressions for the cross sections read

σ̄(qq̄ → gg) = 1

2λ1/2(s, m2
q , m2

q)

∑ ∫
d Q2

∣∣∣M(qq̄ → gg)

∣∣∣
2
, (5.65)

σ̄(qq̄ → cc̄) = 1

2λ1/2(s, m2
q , m2

q)

∑ ∫
d Q2

∣∣∣MA(qq̄ → cc̄)
∣∣∣
2
, (5.66)
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−iMA =

p2, β

p1, α p3, c

p4, d

p1 + p2

μ, a ν, b

−iMB =

p2, β

p1, α p3, c

p4, d

p1 + p2

μ, a ν, b

Fig. 5.3 Feynman diagrams for qq̄ annihilation to ghost-antighost

where we have introduced the spin and colour (Nc = 3) averaged sum

∑
≡ 1

N 2
c

1

(2 jq + 1)2
∑

pol.

∑

col.

, (5.67)

and where

∣∣M(qq̄ → gg)
∣∣2 = ∣∣M1

∣∣2 + ∣∣M2
∣∣2 + ∣∣M3

∣∣2 + 2ReM†
1M2

+ 2ReM†
2M3 + 2ReM†

1M3. (5.68)

When calculating these cross sections one must remember that d Q2 includes an
identical particles 1/2 symmetry factor for the cross section with gluons in the final
state, whereas this factor does not exist for the cross section with ghosts in the final
state (a ghost and an anti-ghost are not identical particles).

It is left as an exercise for the reader to explicitly check the following results
(the needed Feynman rules in the Feynman gauge ξ = 1 are given in Fig. 5.4; the
fermion-fermion-gluon vertex is proportional to the matrix elements (λa)αβ , where
λa are the Gell-Mann matrices, thus for the external fields the same Feynman rules
from QED are valid except, fermions must also have a colour label α, β, etc. and
gluon polarization vectors must have a, b, etc. labels).4 For initial state massless
quarks we have (summation over repeated colour indices must not be understood
except if the symbol

∑
is explicitly introduced)

4For a complete set of Feynman rules for QCD (and the SM in general) see J. C. Romao and
J. P. Silva, A resource for signs and Feynman diagrams of the Standard Model, Int. J. Mod. Phys.
A 27 (2012) 1230025, http://arxiv.org/pdf/1209.6213.pdf

http://arxiv.org/pdf/1209.6213.pdf
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c

b

k

μ, a

− gs fabc kμ ,

α

β

μ, a

−i gs

(λa

2

)
αβ

γμ ,

p, μ, a

q, ν, b

k, ρ, c

− gs fabc
(
gμν(p − q)ρ + gνρ(q − k)μ + gμρ(k − p)ν

)
,

μ, a ν, b

i
−gμν

k2
δab ,

α β
i

/k + m

k2 − m2
δαβ .

Fig. 5.4 Feynman rules needed for the qq̄ → gg process

−i M1(α,β, c, d) = −i ερ∗
c,r3(p3) εσ∗

d,r4(p4) v̄α
r1(p1)γρ

× /p2 − /p4
(p2 − p4)2

γσ uβ
r2(p2) g2s

∑

δ,δ′
τ c
αδ τd

δ′β δδδ′ , (5.69)

−i M2(α,β, c, d) = −i ερ∗
c,r3(p3) εσ∗

d,r4(p4) v̄α
r1(p1)γρ

× /p2 − /p3
(p2 − p3)2

γσ uβ
r2(p2) g2s

∑

δ,δ′
τd
αδ τ c

δ′β δδδ′, (5.70)
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−i M3(α,β, c, d) = ερ∗
c,r3(p3) εσ∗

d,r4(p4) v̄α
r1(p1)γμuβ

r2(p2)(−g2s )

×
(
gνρ(k + p3)σ + gρσ(−p3 + p4)ν + gσν(−p4 − k)ρ

)

× −gμν

(p1 + p2)2
∑

a,b

τa
αβ f bcd δab , (5.71)

−i MA(α,β, c, d) = v̄α
r1(p1)γμ uβ

r2(p2) (−g2s )
−gμν

(p1 + p2)2

× p3,ν
∑

a,b

τa
αβ f bcd δab , (5.72)

where we have introduced the short-hand notation τa
αβ = (λa/2)αβ . For the squared

transition matrix, when summing over the colours i.e.,

∑

α,β,c,d

∣∣M(α,β, c, d)
∣∣2 , (5.73)

the following properties for the Gell-Mannmatrices λa and the totally antisymmetric
structure functions f abc (given by the commutation relation [τa, τb] = i f abcτ c) will
turn out to be very useful

∑

α,β,c,d

∑

δ,δ′
τ c
αδ τd

δβ τd
βδ′ τ c

δ′α = 1

16

∑

c,d

Tr{λcλdλdλc} = 16

3
, (5.74)

∑

α,β,c,d

∑

δ,δ′
τd
αδ τ c

δβ τd
βδ′ τ c

δ′α = 1

16

∑

c,d

Tr{λdλcλdλc} = −2

3
, (5.75)

∑

α,β,c,d

∑

a,b

τa
βα τb

αβ f bcd f acd = 1

4

∑

c,d

∑

a,b

Tr{λaλb} f bcd f acd = 12 , (5.76)

∑

α,β,c,d

∑

δ,b

τd
δα τb

αβ τ c
βδ i f bcd = 1

8

∑

c,d

∑

b

i f bcd Tr{λbλdλc} = −6. (5.77)

We shall only perform the explicit calculation for the first squared amplitude:

−i M1(α,β, c, d) = −i ερ∗
c,r3(p3) εσ∗

d,r4(p4) v̄α
r1(p1)γρ

× /p2 − /p4
(p2 − p4)2

γσ uβ
r2(p2) g2s

∑

δ

τ c
αδ τd

δβ, (5.78)

i M†
1(α,β, c, d) = i ερ′

c,r3(p3) εσ′
d,r4(p4) ūβ

r2(p2)γσ′

× /p2 − /p4
(p2 − p4)2

γρ′ vα
r1(p1) g2s

∑

δ′
τ c
δ′α τd

βδ′ . (5.79)
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Summing over the gluon and fermion polarizations

∑

ri

∣∣M1(α,β, c, d)
∣∣2 = (−gρρ′

)(−gσσ′
)
g4s
t2

∑

δ,δ′
τ c
αδ τd

δβ τd
βδ′ τ c

δ′α

× Tr{γσ′( /p2 − /p4)γρ′ /p1γρ( /p2 − /p4)γσ /p2}. (5.80)

Finally, summing over the colours, using (5.74–5.77), introducing the spin and colour
average factors from (5.67), one obtains the following results

∑∣∣M1
∣∣2 = g4s

32 u

27 t
, (5.81)

∑∣∣M2
∣∣2 = g4s

32 t

27 u
, (5.82)

∑∣∣M3
∣∣2 = −4 g4s

4 t2 + 3 u t + 4 u2

3 s2
, (5.83)

∑∣∣MA
∣∣2 = −g4s

2 t u

3 s2
, (5.84)

and for the crossed terms

∑
2ReM†

1M2 = g4s

(
8 s

27

)
s + t + u

t u
= 0 , (5.85)

∑
2ReM†

2M3 = g4s
4 (s + t − u)

3 s
, (5.86)

∑
2ReM†

1M3 = g4s
4 (s − t + u)

3 s
. (5.87)

The final result for the total differential cross section is given by5

dσ(qq̄ → gg)

dt
= α2

s π

2 s2

[
32

27

(
t2 + u2

t u

)
− 8

3

(
t2 + u2

s2

) ]
, (5.88)

where we have introduced αs = g2s /4π, the strong coupling constant.

Further Reading

A. Pich, Quantum Chromodynamics, http://arxiv.org/pdf/hep-ph/9505231.pdf
G. Dissertori, I.G. Knowles, M. Schmelling, Quantum Chromodynamics
A. Pich, The Standard Model of Electroweak Interactions, http://arxiv.org/pdf/1201.0537v1.pdf

5The result from Peskin and Schroeder for this cross section seems not to be correct, however our
result agrees (except a 1/2 factor which they did not include) with R.K. Ellis, W.J. Stirling, B.R.
Webber, QCD and Collider Physics.
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R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics
T.P. Cheng, L.F. Li, Gauge Theory of Elementary Particle Physics, (Oxford, 1984)
L.H. Ryder, Quantum Field Theory, (Cambridge University Press, 1985)
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M.E. Peskin, D.V. Schroeder, An Introduction To Quantum Field Theory (Addison-Wesley Publish-

ing Company, San Francisco, 1995)
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Chapter 6
Dimensional Regularization. Ultraviolet
and Infrared Divergences

Abstract The cornerstone of Quantum Field Theory is renormalization. We shall
speak more about in the next chapters. Before, it is necessary to discuss the method.
The best and most simple is, of course, dimensional regularization (doesn’t break the
symmetries, doesn’t violate the Ward Identities, preserves Lorentz invariance, etc.).
When explained consistently, it becomes very simple and clear. Here, we shortly
discuss ultraviolet (UV) and infrared (IR) divergenceswith a few examples.However,
in Chap.8, we shall extensively treat one-loop two and three-point functions and
analyse many more examples of IR and UV divergences.

6.1 Master Integral

When calculating higher order quantum corrections (loop diagrams) one will find
that, normally, the loop integrals are divergent. In order to make sense out of this
divergent integrals and be able to properly define finite observables one has to reg-
ularize the divergent integrals (make them finite) and renormalize. In this chapter
we shall treat the regularization procedure. In the next chapter we shall talk about
renormalization.

In order to regularize the loop integrals, one can use different approaches i.e.,
cut-off, Wilson regularization, dimensional regularization, etc. This last approach is
the one we shall treat in this chapter. It is the most adequate due to the fact that it
preserves all the symmetries of the theory. It consists in considering that the space-
time dimension is not 4 but D = 4 + 2ε and work in the limit ε → 0. With this
consideration all loop-integrals are finite. The general D-dimensional integral that
we will always relate to (as we shall shortly see in the next sections) is

J (D,α,β, a2) ≡
∫

d Dk

(2π)D

(k2)α

(k2 − a2)β
, (6.1)

where D is the number of space-time dimensions, as we already mentioned. We can
easily demonstrate (see Appendix A) that it can be written in terms of the Euler
Gamma function as

© Springer International Publishing Switzerland 2016
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J (D,α,β, a2) = i

(4π)D/2 (a2)D/2(−a2)α−β Γ (β − α − D/2)Γ (α + D/2)

Γ (β)Γ (D/2)
.

(6.2)

For z a complex number with Re(z) > 0 we have the following property of Γ (z)

Γ (z + 1) = zΓ (z). (6.3)

For n = 0, 1, 2, 3, . . . , it takes the form of the usual factorial function

Γ (n + 1) = n!. (6.4)

The function Γ (z) has simple poles at z = 0,−1,−2, . . . In the region −1 < ε < 0
with ε ∈ R and |ε| � 1, we have the following Laurent expansion up to O(ε)

Γ (−ε) = −1

ε
− γE + O(ε), (6.5)

where γE = 0.57721 . . . is the Euler-Mascheroni constant. Taking D = 4+ 2ε with
−1 < ε < 0, |ε| � 1 (UV-divergent integrals in D = 4 dimensions are convergent
in D < 4 dimensions) and power-expanding in ε, it is straightforward to find the
expression for the UV divergent function J (D, 0, 2, a2):

J (D, 0, 2, a2) = −i

(4π)2

(
1

ε
+ γE − ln(4π) + ln(a2) + O(ε)

)
. (6.6)

It will be useful to define the following quantity:

1

ε̂
≡ 1

ε
+ γE − ln(4π) . (6.7)

Because a in (6.6) has energy dimensions within the logarithm, we multiply and
divide the RHS of (6.6) by μ2ε, with μ a parameter with energy dimensions (called
the renormalization scale), and use the expansion

μ−2ε = 1 − 2 ε ln(μ) + O(ε2), (6.8)

to finally obtain the following simple expression for J (D, 0, 2, a2)

J (D, 0, 2, a2) = −i

(4π)2
μ2ε

[
1

ε̂
+ ln

( a2

μ2

)]
+ O(ε) . (6.9)
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We can easily relate all the UV divergent integrals to this one by using the recursion
properties of the Gamma function so practically one does not have to integrate
ever again over the four-momentum (except for some special cases where IR
divergences are also present). Some useful results are presented next.

6.2 Useful Results

Using theGamma function recursion properties we can find very useful the following
relations

J(D, 0, 1, a2) =
a2

D/2− 1
J(D, 0, 2, a2)

J(D, 1, 1, a2) =
a4

D/2− 1
J(D, 0, 2, a2)

J(D, 1, 2, a2) =
a2 D

D − 2
J(D, 0, 2, a2)

J(D, 2, 2, a2) =
a4(D + 2)

D − 2
J(D, 0, 2, a2)

J(D, 1, 3, a2) =
D

4
J(D, 0, 2, a2)

(6.10)

As we shall see, all these results will be very useful in Chap.8. One can construct
similar recursion relations for any values of α and β of our function J (D,α,β, a2)

with no additional complications.
It is worth mentioning that the previous relations are general, meaning that they

are valid for any dimension D (D < 4 or D > 4). This can turn out to be useful
also when treating IR divergences (IR divergent integrals in D = 4 dimensions are
convergent in D > 4 dimensions).

An example of integral that is finite in D = 4 dimensions is the following:

J (4, 0, 3, a2) = −i

32π2

1

a2 . (6.11)

When IR divergences are present we have to be a little bit more careful (with this
integral) as we shall shortly see with an explicit example. Some other useful generic
results in D dimensions for the Dirac gamma matrices are the following:

gμνgμν = DID,

γμγνγμ = (2 − D)γν,

γμγνγσγμ = 4gνσ ID + (D − 4)γνγσ,

γμγνγσγργμ = −2γργσγν − (D − 4)γνγσγρ, (6.12)

http://dx.doi.org/10.1007/978-3-319-22966-9_8
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where ID is the identity matrix in D dimensions. The standard convention is to take
its trace equal to four:

T r{ID} = 4. (6.13)

Many more relations of this type involving gamma matrices are present all over the
literature. Some other interesting results that involve the function J (D,α,β, a2) are
the following:

∫
d Dk

(2π)D

(k2)αkμ

(k2 − a2)β
= 0,

∫
d Dk

(2π)D

(k2)αkμkν

(k2 − a2)β
= gμν

D
J (D,α + 1,β, a2)

(6.14)

(6.15)

Using the last result we can straightforwardly deduce another relation:

∫
d Dk

(2π)D

(k · p)2

(k2 − a2)β
=

∫
d Dk

(2π)D

kμkν pμ pν

(k2 − a2)β

=
∫

d Dk

(2π)D

pμ pν

(k2 − a2)β

gμνk2

D

= 1

D

∫
d Dk

(2π)D

k2 p2

(k2 − a2)β

= p2

D
J (D, 1,β, a2). (6.16)

Thus, we have found the following equality in D dimensions

∫
d Dk

(2π)D

(k · p)2

(k2 − a2)β
=

∫
d Dk

(2π)D

(p2/D)k2

(k2 − a2)β
. (6.17)

The reader is highly encouraged to find the generalization of this result for (k · p)α

with α an arbitrary positive integer.

6.3 Example: Cancellation of UV Divergences

The following is a simple but very useful example of how the divergent parts of an
integral cancel and lead to a finite final result. Consider

Gμν =
∫

d Dk

(2π)D

4kμkν − gμνk2

[k2 − a2]3 . (6.18)
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The calculation is straightforward. Using (6.10) we obtain

Gμν = gμν
( 4

D
− 1

)
J (D, 1, 3, a2)

= gμν
( 4

D
− 1

) D

4
J (D, 0, 2, a2)

= gμν
(

− ε

2

)
J (D, 0, 2, a2) + O(ε2)

= gμν i

32π2 + O(ε). (6.19)

Taking D → 4 we obtain:

Gμν ≡
∫

d Dk

(2π)D

4kμkν − gμνk2

[k2 − a2]3 = gμν i

32π2 . (6.20)

It is a common mistake to think that because the final result is finite in 4 dimensions
we could have made directly the substitution kμkν → gμνk2/4 instead of kμkν →
gμνk2/D. Wrong! This integral consists in the sum of two parts that diverge in 4
dimensions. Only after these two parts are summed, the final result turns out to be
finite. Thus, the substitution kμkν → gμνk2/D is only valid if it gives rise to a finite
result. In our case both parts are finite for D < 4 (and not D = 4) dimensions and
therefore, we must maintain D = 4 + 2ε until the sum of both parts is performed.

6.4 Feynman Parametrization

Usually we don’t find simple propagators as in (6.1), therefore we have to perform
some manipulations over the denominators. The standard procedure is using the
Feynman parametrization:

1

Aα Bβ
= Γ (α + β)

Γ (α)Γ (β)

∫ 1

0
dx

xα−1(1 − x)β−1

[Ax + B(1 − x)]α+β
, (6.21)

1

Aα BβCγ
= Γ (α + β + γ)

Γ (α)Γ (β)Γ (γ)

∫ 1

0
dx

∫ 1

0
dy x

× (xy)α−1[x(1 − y)]β−1(1 − x)γ−1

[Axy + Bx(1 − y) + C(1 − x)]α+β+γ
. (6.22)
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For α = β = γ = 1 we simply get:

1

AB
=

∫ 1

0
dx

1

[Ax + B(1 − x)]2 , (6.23)

1

ABC
=

∫ 1

0
dx

∫ 1

0
dy

2x

[Axy + Bx(1 − y) + C(1 − x)]3 . (6.24)

An useful alternative for (6.24) is the following:

1

ABC
= 2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

δ(1 − x − y − z)

[Ax + By + Cz]3

=
∫ 1

0
dy

∫ 1−y

0
dz

2

[A(1 − y − z) + By + Cz]3 . (6.25)

For a generic n-point function one can use the generalized Feynman parametrization
given by:

1

Aα1
1 Aα2

2 . . . Aαn
n

= Γ (α)

Γ (α1)Γ (α2) . . . Γ (αn)

∫ 1

0
dx1

∫ 1

0
dx2 . . .

∫ 1

0
dxn

× xα1−1
1 xα2−1

2 . . . xαn−1
n(

x1A1 + x2A2 + · · · + xn An

)α

× δ(1 − x1 − x2 − · · · − xn), (6.26)

where we have defined α ≡ α1 +α2 + · · ·+αn . Integrating over the δ-function, we
find

1
Aα1

1 Aα2
2 .... Aαn

n
=

Γ (α)
Γ (α1)Γ (α2) ... Γ (αn)

×
∫ 1

0
dx1

∫ 1−x1

0
dx2 ...

∫ 1−x1−x2−...−xn−2

0
dxn−1

× xα1−1
1 xα2−1

2 ... x
αn−1−1
n−1 (1− x1 − ... − xn−1)αn−1

(
x1A1 + x2A2 + ... + xn−1An−1 + (1− x1 − ... − xn−1)An

)α

(6.27)

Next we shall see a few rather simple examples of how these parametrizations can
be used. However in Chap.8, we shall use these parametrizations to calculate more
complicated UV and IR divergent integrals.

It is worth mentioning that one can consider the analytical prolongation to the
complex plane and use this last parametrization (6.27) for non-integer powers

http://dx.doi.org/10.1007/978-3-319-22966-9_8
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of propagators. They appear when one wants integrate over the four-momentum,
logarithmic functions that depend on the four-momentum. At the end of Chap. 8 we
shall also take a simple two-loop example to see how this can be done.

6.5 Example: UV Pole

Let’s consider the following integral:

I μ ≡
∫

d Dk

(2π)D

kμ

((p + k)2 − m2)k2
. (6.28)

Using the parametrization in (6.23) with A = (p + k)2 − m2 and B = k2 we obtain

1

((p + k)2 − m2)k2
=

∫ 1

0
dx

1

[((p + k)2 − m2)x + k2(1 − x)]2

=
∫ 1

0
dx

1

[(k + px)2 − a2]2 , (6.29)

where we have defined a2 ≡ −p2x(1 − x) + m2x . Therefore I μ takes the form

I μ =
∫ 1

0
dx

∫
d Dk

(2π)D

kμ

[(k + px)2 − a2]2

=
∫ 1

0
dx

∫
d Dk

(2π)D

kμ − xpμ

[k2 − a2]2

= −pμ
∫ 1

0
xdx J (D, 0, 2, a2)

= pμ i

(4π)2
μ2ε

∫ 1

0
xdx

[1
ε̂

+ ln
( a2

μ2

)]

= pμ i

(4π)2
μ2ε

[ 1

2ε̂
+

∫ 1

0
xdx ln

(−p2x(1 − x) + m2x

μ2

)]
(6.30)

(to get to the second line we shifted the integration variable k → k − x p).

6.6 Example: IR Poles

Consider the following integral

I =
∫

d Dk

(2π)D

1

k2(k + p2)2(k − p3)2
, (6.31)

http://dx.doi.org/10.1007/978-3-319-22966-9_8
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with p22 = p23 = 0. Thus our denominator in the limit of small k behaves like

1

k2(k2 + 2p2 · k)(k2 − 2p3 · k)

k2�−−→ 1

k2(2p2 · k)(2p3 · k)
. (6.32)

We can observe two types of infrared divergences present in the denominator of
(6.32):

1. k → 0, which is called soft divergence,

2. p3 · k or p2 · k → 0, which is called collinear divergence. (6.33)

The integral that we are treating here will turn out to be only IR divergent, without
UV divergences (a case where we find both types of divergences will be treated in
Chap.8). In order to treat these IR divergences, we shall consider the space-time
dimensions to be D = 4 + 2ε′ with ε′ ∈ R, ε′ > 0 and ε′ � 1 (the IR divergent
integrals in 4 dimensions are convergent in D > 4 dimensions, as we have already
mentioned). Using the Feynman parametrization (6.24) with A = k2 + 2p2 · k,
B = k2 − 2p3 · k and C = k2, we find

I =
∫ 1

0
dx

∫ 1

0
dy

∫
d Dk

(2π)D

2x

[(k + p2xy − p3x(1 − y))2 − a2]3

=
∫ 1

0
dx

∫ 1

0
dy

∫
d Dk

(2π)D

2x

[k2 − a2]3

= 2
∫ 1

0
dx

∫ 1

0
dyx J (D, 0, 3, a2), (6.34)

where a2 = −2(p2 · p3)x2y(1− y). Taking D → 4 as in (6.11) would give rise to an
infinity when integrating over the Feynman parameters, as we will see in a moment.
Let’s write J (D, 0, 3, a2) in the form of (6.2):

I = −i

(4π)D/2Γ (3 − D/2)
∫ 1

0
dx

∫ 1

0
dyx(a2)D/2−3

= −i

(4π)D/2Γ (3 − D/2)(−2p2 · p3)
D/2−3

∫ 1

0
dxx D−5

×
∫ 1

0
dy yD/2−3(1 − y)D/2−3. (6.35)

Using the Euler Beta function (A.17) we obtain the following result for our integral:

http://dx.doi.org/10.1007/978-3-319-22966-9_8
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I = −i

(4π)D/2Γ (3 − D/2)(−2p2 · p3)
D/2−3Γ (D − 4)

Γ (D − 3)

Γ (D/2 − 2)Γ (D/2 − 2)

Γ (D − 4)

= −i

(4π)D/2

Γ (3 − D/2)

Γ (D − 3)
(−2p2 · p3)

D/2−3Γ (D/2 − 2)Γ (D/2 − 2)

= −i

(4π)2
(−2p2 · p3)

−1(4π)−ε′(−2p2 · p3)
ε′ Γ (1 − ε′)

Γ (1 + 2ε′)
Γ (ε′)Γ (ε′)

= i

(4π)2

1

2p2 · p3

(−2p2 · p3
4π

)ε′ Γ (1 − ε′)
Γ (1 + 2ε′)

Γ 2(ε′). (6.36)

Of course, one could further expand using:

Γ (ε′) = 1

ε′ − γE + 1

12
(π2 + 6γ2

E )ε′ + O(ε′2), (6.37)

Γ (1 ∓ ε′) = 1 ± γEε′ + 1

12
(π2 + 6γ2

E )ε′2 + O(ε′3), (6.38)

(−1)ε
′ = e±iπε′ = 1 ± iπε′ − π2ε′2

2
. (6.39)

Thus, we observe that our result (6.36) is proportional to IR poles of the form 1/ε′
and 1/ε′2. This is why taking the limit D → 4 as in (6.11), in (6.34) would have
been wrong.

One could argue that in the first example we also have a propagator of the type
∼1/k2, which goes to infinity as k goes to zero. Therefore one should find IR diver-
gences in this case also. It turns out, however, that it is not the case. It is clear that
when integrating over x , the expression (6.30) does not diverge. This expression is
divergent ifm2 = p2 = 0, however this specific case will be treated in Chap. 8. Thus,
any potential IR divergence must be treated carefully. As we can see, after doing the
calculation, the IR divergence might actually not be there.

Further Reading

A. Pich, The Standard Model of Electroweak Interactions. http://arxiv.org/pdf/1201.0537v1.pdf
A. Pich, Class Notes on Quantum Field Theory. http://eeemaster.uv.es/course/view.php?id=6
M. Kaku, Quantum Field Theory: A Modern Introduction
M. Srednicki, Quantum Field Theory
M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Publish-
ing Company, San Francisco, 1995)

K. Kannike, Notes on Feynman Parametrisation and the Dirac Delta Function. http://www.physic.
ut.ee/~kkannike/english/science/physics/notes/feynman_param.pdf

S. Pokorsky, Gauge Field Theories
L.H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1985)
T.P. Cheng, L.F. Li,Gauge Theory of Elementary Particle Physics (OxfordUniversity Press, Oxford,
1984)

F. Mandl, G.P. Shaw, Quantum Field Theory
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Chapter 7
QED Renormalization

Abstract This chapter is intended to present the standard renormalization algorithm
to all orders in perturbation theory in a simple transparent manner. The calculations
are made as explicit as possible, in order to clarify many of the confusions that may
arise when treating this topic. We will restrict our attention to the most academic
example,which is (inmy opinion) theQEDLagrangian.We shall use the dimensional
regularization approach in D = 4+ 2ε dimensions (ε < 0) in order to regularise the
UV divergences (as it is nicely explained in the previous chapter). Afterwards we
shall take an explicit one-loop example and introduce the two usual renormalization
schemes, the M S and the on-shell scheme. A few clarifying notions on tadpoles are
also given at the end of the chapter.

7.1 QED Lagrangian

The QED Lagrangian written in terms of the bare (non physical) fields, masses,
coupling constant and gauge parameter reads

LQE D = −1

4
F (0)

μν Fμν
(0) − 1

2ξ(0)

(
∂μ Aμ

(0)

)2 + iψ
(0)

γμ∂μψ(0)

− m0ψ
(0)

ψ(0) − e0Q A(0)
μ ψ

(0)
γμψ(0) (7.1)

When including loop corrections the bare parameters will be replaced systematically
by physical parameters of the renormalized theory as we shall see in this section. We
start by analysing the perturbative corrections to all orders to propagators, vertex,
and fields.

7.2 Fermionic Propagator, Mass and Field Renormalization

The relevant diagrams for renormalization are the one particle irreducible diagrams.
A one particle irreducible diagram (1PI) is one that, by cutting an internal line is no
longer connected. The 1PI fermionic self-energy diagrams that are needed for the

© Springer International Publishing Switzerland 2016
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fermionic propagator correction are schematically shown below:

i Σ(/p, ζ0) =

Σ = +++ ...

p

where we have introduced the short-hand notation ζ0 ≡ (m0, α0, ξ0) for the bare
parameters. For the renormalized physical parameters we shall use ζ ≡ (m, α, ξ).
The fully dressed propagator is given by the Dyson summation:

i S(/p, ζ0) =

= + ...+ ΣS + Σ Σ

Explicitly the previous sum reads:

i S(/p, ζ0) = i S(0)(/p, ζ0) + i S(0)(/p, ζ0)
(
i Σ(/p, ζ0)

)
i S(0)(/p, ζ0) + · · · ,

(7.2)

where i S(0)(/p, ζ0) = i

/p − m0
is the fermionic tree-level propagator. We obtain

S(/p, ζ0) = 1

/p − m0
− Σ(/p, ζ0)

(/p − m0)2
+ · · · = 1

/p − m0 + Σ(/p, ζ0)
. (7.3)

We will now define the Z2 renormalization constant that relates the bare (non-
renormalized,UV-divergent) propagator S(/p, ζ0)with the renormalizedone SR(/p, ζ)

that contains only the regular (renormalized, UV finite) parts of the self-energy
(denoted as Σ R) and that depends on the physical (renormalized) parameters m and
α and ξ:

S(/p, ζ0) = 1

/p − m0 + Σ(/p, ζ0)
≡ Z2 SR(/p, ζ) = Z2

/p − m + Σ R(/p, ζ)
. (7.4)

For the mass renormalization the standard procedure is to define the following renor-
malization constants:

m ≡ m0 + δm ≡ Z2 Z−1
4 m0. (7.5)

Using (7.4) we are now able to relate the renormalized fermionic fields ψ(x) with
the bare ones ψ(0)(x) with the help of the time-ordered product:

T
(
ψ(0)(x),ψ (0)(y)

)
∼ i

/p − m0 + · · · = i Z2

/p − m + · · · ∼ Z2 T
(
ψ(x),ψ(y)

)
.

(7.6)
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We obtain thus, the following relations:

ψ(0)(x) = Z1/2
2 ψ(x), ψ (0)(x) = Z1/2

2 ψ(x). (7.7)

Next we move on to the analysis of the bosonic propagator and field renormal-
ization.

7.3 Bosonic Propagator and Field Renormalization

The 1PI diagrams that contribute to the photon self energy are given by:

i Πμν(q2, ζ0) =

Πμν = + + ...+

q

Due to gauge invariance qμΠμν = qν Πμν = 0, therefore these 1PI diagrams must
necessarily have the form

Πμν(q2) = (−gμνq2 + qμqν) Π(q2), (7.8)

with Π(q2) a Lorentz scalar. The Dyson summation for the photon propagator is
then given by:

i Dμν(q2, ζ0) =

= + + ...+Πμν Πμν ΠμνDμν

The explicit expression for the previous sum is:

i Dμν(q2, ζ0) = i Dμν
(0)(q

2, ζ0) + i Dμλ
(0)(q

2, ζ0)
(

iΠλρ(q
2, ζ0)

)
i Dρν

(0)(q
2, ζ0) + · · · ,

(7.9)

where i Dμν
(0)(q

2, ζ0) = i
−gμν + (1 − ξ0)qμqν/q2

q2 is the tree-level photon propaga-

tor. The second term of this sum gives:

Dμλ
(0)(q

2, ζ0)Πλρ(q
2, ζ0) Dρν

(0)(q
2, ζ0) = 1

q2

(
− gμν + qμqν

q2

)
Π(q2, ζ0).

(7.10)
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Therefore the complete Dyson summation is finally given by:

Dμν(q2, ζ0) = 1

q2

{(
−gμν + qμqν

q2

) (
1 − Π(q2, ζ0) + · · ·

)
− ξ0

qμqν

q2

}

= 1

q2

{(
−gμν + qμqν

q2

)
1

1 + Π(q2, ζ0)
− ξ0

qμqν

q2

}
. (7.11)

Now, as we did before, we relate Dμν(q2, ζ0) with the renormalized propagator
Dμν

R (q2, ζ) by defining another renormalization constant Z3 as

Dμν(q2, ζ0) ≡ Z3Dμν
R (q2, ζ) = Z3

q2

{(
−gμν + qμqν

q2

)
1

1 + ΠR(q2, ζ)
− ξ

qμqν

q2

}
,

(7.12)

where ΠR is the regular part of the self-energy function from (7.8). Thus we get to
the following relations:

ξ0 = Z3 ξ,
1

1 + Π(q2, ζ0)
= Z3

1 + ΠR(q2, ζ)
. (7.13)

Again, using the time-ordered product we obtain the expression for the renormalized
photon field

Aμ
0 (x) = Z1/2

3 Aμ(x). (7.14)

The only thing we have left to complete the renormalization procedure is to analyse
the vertex correction and the coupling constant renormalization.

7.4 Vertex Correction

The vertex correction to all orders in perturbation theory is schematically given by:

−i e0 Q Λμ(pi, ζ0) =

= +Λμ
p1

p2

p3

+ + ...

The complete vertex comes from summing the tree level one and the previous cor-
rections:
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−i e0 Q Γ μ(pi, ζ0) =

= + ΛμΓμ

Simplifying the −i e0 Q common factor, this sum simply reads:

Γ μ(pi , ζ0) = γμ + Λμ(pi , ζ0). (7.15)

The Z1 constant that renormalizes the vertex is defined as follows:

Γ μ(pi , ζ0) = 1

Z1
Γ

μ
R (pi , ζ) = 1

Z1

(
γμ + Λ

μ
R(pi , ζ)

)
. (7.16)

where ΓR and ΛR are (using the same notation as previously) regular (UV-finite)
quantities. With the previous definition we can relate the bare coupling e0 with the
renormalized one:

e0 Γ μ(pi , ζ0) = e0
Z1

Γ
μ
R (pi , ζ) ≡ e′ Γ μ

R (pi , ζ). (7.17)

We could be tempted to think that e′ is the renormalized coupling constant but that’s
not really true. We must carefully look at the vertex diagram and realize that we
have three external fields that also need renormalization. We have a bosonic field,
therefore we must multiply e′ by Z1/2

3 and we have two fermion fields, therefore we
need to also multiply by a Z2 term. The renormalized coupling is then given by:

e ≡ e0
Z1

Z2 Z1/2
3 = e′ Z2 Z1/2

3 . (7.18)

We can demonstrate that the gauge invariance of the Lagrangian implies Z1 = Z2.
Thus, we finally obtain the simple relations between e and α (where α = e2/4π)
and the correspondent bare quantities

e = e0 Z1/2
3 ⇒ α = Z3α0. (7.19)

7.5 Renormalization to All Orders

To sum up, we have found the following relations between the bare and renormalized
quantities

ψ(0) = Z1/2
2 ψ, Aμ

0 = Z1/2
3 Aμ, e0 = Z−1/2

3 e,

ξ0 = Z3ξ, m0 = m − δm = Z4Z−1
2 m. (7.20)
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Now we can re-write the original Lagrangian in terms of the renormalized physical
quantities using the Zi renormalization constants that we have defined in the previous
sections:

LQE D = −1

4
F (0)

μν Fμν
(0) − 1

2ξ(0)

(
∂μ Aμ

(0)

)2 + iψ
(0)

γμ∂μψ(0)

− m0ψ
(0)

ψ(0) − e0Q A(0)
μ ψ

(0)
γμψ(0)

= −Z3
1

4
Fμν Fμν − 1

2ξ
(∂μ Aμ)2 + Z2 iψγμ∂μψ

− Z4mψψ − Z1eQ Aμψγμψ

= −1

4
Fμν Fμν − 1

2ξ
(∂μ Aμ)2 + iψγμ∂μψ

− mψψ − eQ Aμψγμψ

− δ3
1

4
Fμν Fμν + ψ(iδ2 /∂ − δ4m)ψ − δ1 eQ Aμψγμψ (7.21)

To get to the last equality we separated the Zi terms into their tree-level value 1, and
the loop contributions δi :

Zi = 1 + δi . (7.22)

The terms of the Lagrangian that are proportional to δi are called counterterms and
they guarantee that our theory has no more ultraviolet divergences at any order in
perturbation theory. One should note that the renormalization process doesn’t consist
in just adding counterterms to the Lagrangian in order to subtract infinities but in a
systematic order by order process which is permitted by our reinterpretation of the
bare and physical quantities of the Lagrangian. After including the quantum correc-
tions and renormalizing something else happened. The renormalized quantities are
now renormalization scale (μ) dependent. Thus, one needs to solve the renormaliza-
tion group equations (see Appendix B) in order to obtain their evolution (running)
with the scale.

Our Feynman rules of the theory can now be written in terms of the renormalized
quantities both in the multiplicative or the counterterm approach. For the multiplica-
tive approach, taking a quick look at the Lagrangian one finds the following Feynman
rules
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−Z1 i e Q γμ

i

Z2 /p − Z4 m

i

Z3

−gμν + (1 − Z3 ξ)
qμqν

q2

q2

Therefore, when summing the higher order vertex corrections or performing the
Dyson resummation for the propagators (in terms of the previously introduced Feyn-
man rules) one will directly obtain the renormalized quantities.

If one chooses the counterterm approach, the complete set of Feynman rules are
given by the old ones (this time in terms of renormalized quantities)

−i e Q γμ

i

/p − m

i
−gμν + (1 − ξ)

qμqν

q2

q2

plus three extra ones that account for the counterterms ∼ δi :

−i e Q γμ δ1

i(δ2 /p − δ4m)

i δ3 (−gμνq2 + qμqν)

Thus, when calculating higher order quantum corrections, the inclusion of the coun-
terterms will guarantee the finiteness of our result. Considering for simplicity just
one-loop graphs, diagrammatically this translates into:
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+ = i ΠR(q2, ζ)

+ = i ΣR(/p, ζ)

+ = −i e Q Λ
μ
R(pi , ζ)

In the following, we shall study the divergent parts of the one-loop diagrams
and explicitly introduce the counterterms of the theory using the two most common
renormalization schemes, the M S and the on-shell (OS) scheme.

7.6 One-Loop Renormalization Example

At one-loop level the fermion self-energy is given by:

i Σ(/p, ζ0) =

At this order we keep corrections of O(α) and drop all the higher order terms,
therefore we can introduce the simplified notation:

Σ(/p, ζ0) ≈ Σ(/p, ζ) ≡ Σ(/p). (7.23)

Same consideration is valid for the bosonic self-energy and the vertex correction,
therefore we shall drop the ζ0, ζ notation in this section. Returning to the fermionic
self-energy, it is useful to make the following split

Σ(/p) = Σ1(p2) + (/p − m0)Σ2(p2) ≈ Σ1(p2) + (/p − m)Σ2(p2), (7.24)

where the last approximation is valid only at the one-loop level. The functionsΣ1(p2)
and Σ2(p2) are two Lorentz scalars given by

Σ1(p2) = m α
μ2ε

4π

(
3

ε̂
+ · · ·

)
≡ Σε

1 + Σ R
1 (p2), (7.25)

Σ2(p2) = ξ α
μ2ε

4π

(
−1

ε̂
+ · · ·

)
≡ Σε

2 + Σ R
2 (p2), (7.26)
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where 1/ε̂ ≡ 1/ε + γE − ln(4π) as defined in the previous chapter. The functions
Σε

i (i = 1, 2) are the parts of the self energy that contain the UV-divergent term
1/ε̂ and a constant that is determined by the renormalization scheme; Σ R

i are the
regular parts of the self-energies as usual. Performing the Dyson summation for the
fermionic propagator, this time including only one-loop 1PI diagrams

i S(/p) =

+= + + ...S

we obtain:

S(/p) = 1

/p − m0 + Σ(/p)
≡ Z2 SR(/p) = Z2

/p − m + Σ R(/p)
. (7.27)

We can now in calculate Z2 up to order α in perturbation theory. Recalling that
m = m0 + δm, is the finite renormalized mass, then:

Z2 = /p − m + Σ R

/p − m0 + Σ
= (/p − m)

(
1 + Σ R

2

) + Σ R
1

/p − m + δm + Σ

≈ (/p − m)
(
1 + Σ R

2

) + Σ R
1

/p − m

(
1 − δm + Σ

/p − m

)

=
(
1 + Σ R

2 + Σ R
1

/p − m

) (
1 − δm + Σ1

/p − m
− Σ2

)

≈ 1 + Σ R
2 + Σ R

1 − δm − Σ1

/p − m
− Σ2

= 1 − Σε
2 − Σε

1 + δm

/p − m
. (7.28)

The renormalization constants are momentum independent, thus:

δm = −Σε
1, Z2 = 1 − Σε

2. (7.29)

Previously we have introduced the Z4 constant as

m = m0 + δm = m0 − Σε
1 ≡ Z2Z−1

4 m0, (7.30)

therefore

Z4 ≈ 1 − Σε
2 + Σε

1

m0
≈ 1 − Σε

2 + Σε
1

m
, (7.31)
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where the last approximation is only valid at the one-loop order. We shall now move
on to the analysis of the one-loop photon self energy:

i Πμν(q2) =

As we have already mentioned, the expression of Πμν(q2) can be factorized in the
gauge invariant form:

Πμν(q2) = (−gμνq2 + qμqν)Π(q2). (7.32)

The function Π(q2) is given by

Π(q2) = −α
4

3

μ2ε

4π

[1
ε̂

+ · · ·
]

≡ Πε + ΠR(q2). (7.33)

We have decomposed as usual Π(q2) into an UV divergent (Πε) and a regular (ΠR)
part. Performing the Dyson summation

i Dμν(q2) =

= + + ...Dμν +

we get:

ξ0 = Z3 ξ,
1

1 + Π(q2)
= Z3

1 + ΠR(q2)
. (7.34)

Up to order α, the Z3 renormalization constant is given by

Z3 = 1 + ΠR

1 + Π
≈ (1 + ΠR)(1 − ΠR − Πε) ≈ 1 − Πε. (7.35)

Finally, the one-loop vertex correction is simply given by:

−i e0 Q Λμ(pi) =
p1

p2

p3

The vertex function Λμ(pi ) explicitly reads

Λμ(pi ) = α
μ2ε

4π

{
γμ

[
−ξ

1

ε̂
+ · · ·

]
+ · · ·

}
. (7.36)
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We can decompose as usual Λμ into its finite (ΛR) and UV-divergent (Λε) parts:

Λμ(pi ) = Λμ
ε + Λ

μ
R(pi ), with Λμ

ε = γμ Λε. (7.37)

Summing the one loop correction to the tree-level vertex one obtains

−i e0 Q Γ μ(pi) =

= +Γμ

Simplifying the −i e0 Q common factor we have

Γ μ(pi ) = γμ + Λμ(pi ). (7.38)

Introducing the Z1 renormalization constant

Γ μ = γμ(1 + Λε) + Λ
μ
R = 1

Z1
Γ

μ
R = 1

Z1
(γμ + Λ

μ
R), (7.39)

up to order α we obtain

Z1

(
γμ(1 + Λε) + Λ

μ
R

)
≈ Z1γμ(1 + Λε) + Λ

μ
R = γμ + Λ

μ
R . (7.40)

Thus

Z1 = 1 − Λε. (7.41)

In conclusion, the one-loop level QED renormalization constants are given by:

Z1 = 1 − Λε ⇒ δ1 = −Λε

Z3 = 1 − Πε ⇒ δ3 = −Πε

Z2 = 1 − Σε
2 ⇒ δ2 = −Σε

2

Z4 = 1 − Σε
2 + Σε

1/m ⇒ δ4 = −Σε
2 + Σε

1/m (7.42)

with Z1 = Z2 therefore, Σε
2 = Λε, as it can be explicitly checked.

It is worth making the following comment. As the photon always couples to
conserved currents, the qμqν part of the propagator will always vanish when calcu-
lating physical observables. Thus, one can simplify the renormalization procedure
by choosing for example the Feynman gauge (ξ = 1) for the tree-level photon
propagator and, when summing higher order corrections, simply ignore the qμqν
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terms. However, in this chapter I preferred giving the full formal renormalization
prescription.

7.6.1 M S Renormalization Scheme

The split we have just made between the UV divergent and the regular parts of the
previous functions is somewhat ambiguous. A given choice of this separation defines
a renormalization scheme. For the M S scheme, the Zi renormalization constants only
absorb the 1/ε̂ terms (plus no other constant) thus, they are simply given by:

Z2 = Z1 = 1 + α

4π
μ2ε ξ

1

ε̂
, (7.43)

Z3 = 1 + α

3π
μ2ε 1

ε̂
, (7.44)

Z4 = 1 + α

4π
μ2ε (3 + ξ)

1

ε̂
. (7.45)

Next we present the on-shell (OS) renormalization scheme.

7.6.2 On-Shell Renormalization Scheme

For this renormalization scheme the expressions of the counterterms are not as
straightforward to obtain as previously. In the OS scheme the renormalization coun-
terterms must guarantee that the the poles of the renormalized propagators coincide
with the physical masses (m for the fermion and 0 for the photon in our case). The
standard procedure is shown next.

Let’s take a look at the fermionic propagator (7.27) and make a Taylor expansion
around the pole (/p = m)

1

/p − m0 + Σ(/p)
≈ 1

/p − m0 + Σ(m) + (/p − m)Σ ′(m)

≈ Z2

/p − m + Σ R(m) + (/p − m)Σ ′ R(m)
, (7.46)

where Σ ′(m) is the short-hand notation for

Σ ′(m) = d

d /p
Σ(/p)

∣∣∣∣
/p=m

(7.47)
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(when differentiating with respect to /p one must take into account that p2 = /p2,
thus dp2/d /p = 2/p). Imposing that Σ R(m) = 0 and Σ ′ R

(m) = 0 (the pole of the
renormalized propagator is given by the physical mass with same residue 1 as the
tree-level propagator) we have

1

/p − m + δm + Σ(m) + (/p − m)Σ ′(m)
≈ Z2

/p − m
. (7.48)

Choosing the mass counterterm to be

δm = −Σ(m), (7.49)

we obtain the Z2 renormalization constant at one-loop level

Z2 = 1 − Σ ′(m) = Z1. (7.50)

Thus, after having defined the previous renormalization constants, looking again at
(7.27) we find that for the on-shell scheme, at the one-loop level, the regular part of
the self-energy is given by

Σ R(/p) = Σ(/p) − Σ(m) − (/p − m) Σ ′(m). (7.51)

Looking at (7.34), for q2 = 0 we have the following relation

1

1 + Π(0)
= Z3

1 + ΠR(0)
. (7.52)

Imposing the on-shell condition ΠR(0) = 0 we obtain the Z3 renormalization con-
stant:

Z3 = 1 − Π(0). (7.53)

As in the previous case, looking again at (7.34), for arbitrary q2, the regular part of
the bosonic self-energy reads:

ΠR(q2) = Π(q2) − Π(0). (7.54)

Any other condition imposed on the vertex would be redundant. As we have already
mentioned many times, gauge invariance fixes Z1 = Z2, and therefore the value of
the regular part of vertex function is also fixed by the previous on-shell conditions.

So farwehave supposed that the fermionof the theory is a stable particle i.e., it does
not decay into lighter particles. If the fermion can however, decay (a muon for exam-
ple), we must slightly modify the previous on-shell conditions for the fermion mass
and wave function renormalization (besides of course, including and renormalizing
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the new terms of the Lagrangian). If p2 ≥ ( ∑
i mi

)2, where mi are the masses of
the particles in which the fermion can decay, then Σ(/p) develops an imaginary part
that is UV-finite (thus, it needs no renormalization). Separating the self energy into
the real and imaginary parts, (7.27) takes the form:

1

/p − m0 + ReΣ(/p) + i ImΣ(/p)
= Z2

/p − m + ReΣ R(/p) + i ImΣ(/p)
. (7.55)

At one-loop order:

/p − m0 + ReΣ(/p) + i ImΣ(/p) = Z−1
2

(
/p − m + ReΣ R(/p) + i ImΣ(/p)

)

≈ (1 − δ2)(/p − m) + ReΣ R(/p) + i ImΣ(/p).

(7.56)

Thus, at this order in perturbation theory

1

/p − m0 + ReΣ(/p)
≈ Z2

/p − m + ReΣ R(/p)
. (7.57)

Using the same procedure as previously (making a Taylor expansion around the pole,
this time only for the real part of the self-energy) we obtain

δm = −ReΣ(m), Z2 = 1 − ReΣ ′(m) = Z1. (7.58)

and

Σ R(/p) = ReΣ(/p) − ReΣ(m) − (/p − m) ReΣ ′(m) + i ImΣ(/p). (7.59)

The imaginary part of the self-energy shifts the pole of the propagator from the real
to the imaginary axis. When reaching the on-shell region (p2 = m2), this imaginary
part takes the well known Breit-Wigner form

i ImΣ(m) = i m Γ, (7.60)

whereΓ is the total decay rate of the fermion (seeChap. 12 for details and demonstra-
tion). This has a physical consequence. It is obviously the reasonwhy, experimentally,
a resonance doesn’t peak as a delta function, but has a finite width.

As the Imaginary part of the self-energy does not affect the UV-divergent poles,
the M S-scheme must not be modified for unstable particles.

http://dx.doi.org/10.1007/978-3-319-22966-9_12
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7.7 Renormalization and Tadpoles

Depending on the quantization procedure one might have to deal with tadpoles. This
topology is shown in Fig.7.1. The contribution of this diagram modifies the vacuum
expectation value (vev) of the field as we shall see in a moment. If one uses the
canonical quantization procedure with normal ordered products of fields one will
never find this topology as it involves the contraction of two fields in the same space-
time point. If one uses the path integral quantization, one finds the same topologies
for the connected diagrams as in the previous case plus tadpoles. Thus, when dealing
with propagator corrections one will find topologies like

which are not proper 1PI diagrams. Do not confuse tadpole topologies with the
seagull topologies that are shown below

The seagull topologies (which are oftenly also called tadpoles by many authors) are
proper 1PI diagrams and must be included into the renormalization algorithm.

Returning to tadpoles, in order to get rid of these contributions one usually rede-
fines the field’s vev and generates a counter-term in the Lagrangian that cancels
the tadpoles to all orders in perturbation theory. We can explicitly see this with the
following example. Consider the φ3 Lagrangian

L(x) = 1

2
∂μφ(x)∂μφ(x) − 1

2
m2φ2(x) − λ

3!φ
3(x). (7.61)

Including one-loop order corrections one finds that the vev of φ is given by

〈0|φ(x)|0〉 = t

m2 . (7.62)

Fig. 7.1 Tadpole topology

i t =
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with t shown in Fig. 7.1. Defining a new field φ′(x) = φ(x)− t/m2, one immediately
finds

〈0|φ(x)′|0〉 = 〈0|φ(x)|0〉 − t

m2 〈0|0〉 = 0. (7.63)

Rewriting the Lagrangian (only the parts that correspond to the free field, obviously
the interaction term must not be modified as it was already used to calculate t) in
terms of the field φ′(x) one generates a counterterm of the type Lct (x) = −φ′(x) t
which cancels the tadpole contributions.1 Diagrammatically

+ ct = 0

for the vev and

+

ct

= 0

for the propagator correction. So, in this simple φ3 model one does not even need
to bother in calculating tadpoles. They simply cancel when the counterterms are
added. Thus, one can consider as usual, just 1PI diagrams when renormalizing the
Lagrangian. Defining the Zi renormalization constants as

m2
0 = Zm m2 φ0 = Z1/2

φ φ, λ0 = Zλ λ, (7.64)

and dropping the primed notation one finally finds the following Lagrangian in terms
of the renormalized quantities

L = Zφ
1

2
∂μφ ∂μφ − Zm Zφ

1

2
m2 φ2 − Zλ Z3/2

φ

λ

3! φ3 − t φ. (7.65)

This is however, a toy model. Things are not that simple in the electroweak sector
of the Standard Model. The Higgs field will generate tadpoles. After performing a
similar redefinition one will generate a similar counterterm. However, there will be
terms in the Lagrangian that will generate diagrams of the type

ct
hh

tadpole

1One also generates a constant term −t2/2m2 that can be safely dropped as it will play no role in
the interactions.
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which must be included in the renormalization process (they also play an important
role in the Ward identities). It is also worth mentioning that tadpoles also play an
important role is one wishes to define gauge independent mass counterterms,2 which
is not mandatory (mass counterterms are not observables) but it is a nice feature that
one can exploit. More on tadpoles and theWard identities in the StandardModel will
be treated in Chap.9.

Finally, tadpoles for vector fields (massive or massless) in the Standard Model
always vanish, as they would simply break Lorentz invariance (which is one of the
fundamental symmetries of the theory).

Further Reading

M. Kaku, Quantum Field Theory: A Modern Introduction (Oxford University Press, New York,
1993)

A. Pich, Class Notes on Quantum Field Theory. http://eeemaster.uv.es/course/view.php?id=6
M. Srednicki, Quantum Field Theory (Cambridge University Press, New York)
L.H. Ryder, Quantum Field Theory (Cambridge University Press, New York, 1985)
T.P. Cheng, L.F. Li, Gauge Theory of Elementary Particle Physics (Oxford University Press, New
York, 1984)

F. Mandl, G.P. Shaw, Quantum Field Theory (Chichester, New York, 1984)

2The full details at one and two-loop level are very nicely given in S. Actis, A. Ferroglia, M. Passera
and G. Passarino, Two-Loop Renormalization in the Standard Model. Part I: Prolegomena, Nucl.
Phys. B 777 (2007) 1, http://arxiv.org/pdf/hep-ph/0612122.pdf

http://dx.doi.org/10.1007/978-3-319-22966-9_9
http://eeemaster.uv.es/course/view.php?id=6
http://arxiv.org/pdf/hep-ph/0612122.pdf


Chapter 8
One-Loop Two and Three-Point Functions

Abstract In this chapter we present a few relevant calculations of one-loop, one
and two-point (scalar, vector and tensor) functions. IR and UV divergences are
extensively treated. One example of IR-pole cancellation is presented. The two and
three-body phase space integrals in D dimensions, needed for the calculation of IR
divergent cross sections are also given. Last, the usage of the generic parametriza-
tion (6.27) for non-integer powers of propagators (which appear when one needs to
integrate over the four-momentum, logarithmic functions that depend on the four-
momentum) is shown with a simple two-loop example. With the tools given here,
the reader should find straightforward to construct any higher order scalar or tensor
integral for any N-point function at one-loop level.

8.1 Two-Point Function

We shall begin this chapter by studying the two-point function. The reader is highly
encouraged to perform all the calculations step-by-step and reproduce the results
obtained here.

The distribution of momenta is shown in Fig. 8.1. The exterior legs are not neces-
sarily on-shell (meaning that we shall not use the equality p2i = m2

i ). All the masses
are considered to be different. The denominator of this two-point function is

1

[(k + p1)2 − m2](k2 − M2)
. (8.1)

The Feynman parametrization that we will use in this case is (6.23). Taking A =
[(k + p1)2 − m2] and B = (k2 − M2) we obtain:

1

[(k + p1)2 − m2](k2 − M2)
=

∫ 1

0
dx

1

D2 . (8.2)
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p1, m1

k + p1, m

k, M

p1, m1

Fig. 8.1 Distribution of masses and momenta for the two-point function

where D has the following expression:

D = (k + p1x)2 − a2, a2 ≡ p21x(x − 1) + m2x + M2(1 − x). (8.3)

The first integral that we shall deal with is the scalar integral:

I1 ≡
∫

d Dk

(2π)D

1

[(k + p1)2 − m2](k2 − M2)
. (8.4)

Using the previous results for dimensional regularization from Chap.6 we find

I1 =
∫ 1

0
dx

∫
d Dk

(2π)D

1

[(k + p1x)2 − a2]2

=
∫ 1

0
dx

∫
d Dk

(2π)D

1

[k2 − a2]2

=
∫ 1

0
dx J (D, 0, 2, a2)

= −i

(4π)2
μ2ε

[
1

ε̂
+

∫ 1

0
dx ln

( a2

μ2

)]
, (8.5)

where, to get to the second line we shifted the integration variable k → k − x p1.
The second integral that we shall calculate is the vector integral:

I μ
2 ≡

∫
d Dk

(2π)D

kμ

[(k + p1)2 − m2](k2 − M2)
. (8.6)

http://dx.doi.org/10.1007/978-3-319-22966-9_6
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This is exactly the one we have studied in Chap. 6:

I μ
2 =

∫ 1

0
dx

∫
d Dk

(2π)D

kμ

[(k + p1x)2 − a2]2

= pμ
1

i

(4π)2
μ2ε

[
1

2ε̂
+

∫ 1

0
dx x ln

( a2

μ2

)]
. (8.7)

The third integral we analyse is another scalar integral:

I3 ≡
∫

d Dk

(2π)D

k2

[(k + p1)2 − m2](k2 − M2)
. (8.8)

The calculation is a little more complicated but equally straightforward:

I3 =
∫ 1

0
dx

∫
d Dk

(2π)D

k2

[(k + p1x)2 − a2]2

=
∫ 1

0
dx

∫
d Dk

(2π)D

(k − xp1)2

[k2 − a2]2

=
∫ 1

0
dx

[
J (D, 1, 2, a2) + p21x2 J (D, 0, 2, a2)

]

=
∫ 1

0
dx

( a2 D

D − 2
+ p21x2

)
J (D, 0, 2, a2)

=
∫ 1

0
dx

(
a2(2 − ε) + p21x2

)
J (D, 0, 2, a2)

= −i

(4π)2
μ2ε

[
1

ε̂
(m2 + M2) − 1

2

(
m2 + M2 − 1

3
p21

)

+
∫ 1

0
dx(p21x2 + 2a2) ln

( a2

μ2

)]
. (8.9)

As usual we have ignored terms of O(ε). The next interesting case is the following
tensor integral

I μν
4 ≡

∫
d Dk

(2π)D

kμkν

[(k + p1)2 − m2](k2 − M2)
. (8.10)

http://dx.doi.org/10.1007/978-3-319-22966-9_6
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We find the following expression for I μν
4 :

I μν
4 =

∫ 1

0
dx

∫
d Dk

(2π)D

kμkν

[(k + p1x)2 − a2]2

=
∫ 1

0
dx

∫
d Dk

(2π)D

(kμ − xpμ
1 )(kν − xpν

1 )

[k2 − a2]2

=
∫ 1

0
dx

(gμν

D

a2D

D − 2
+ pμ

1 pν
1 x2

)
J (D, 0, 2, a2)

= −i

(4π)2
μ2ε

[(gμν

4
(m2 + M2 − 1

3
p21) + 1

3
pμ
1 pν

1

)1
ε̂

− gμν

4

(
m2 + M2 − 1

3
p21

)

+
∫ 1

0
dx

(gμν

2
a2 + pμ

1 pν
1 x2

)
ln

( a2

μ2

)]
. (8.11)

The next integral we study is again a scalar type integral:

I5 ≡
∫

d Dk

(2π)D

(k2)2

[(k + p1)2 − m2](k2 − M2)
. (8.12)

We obtain:

I5 =
∫ 1

0
dx

∫
d Dk

(2π)D

(k2)2

[(k + p1x)2 − a2]2

=
∫ 1

0
dx

∫
d Dk

(2π)D

2x2 p21k2 + 4

D
x2 p21k2 + (k2)2 + x4(p21)

2

[k2 − a2]2

=
∫ 1

0
dx

[(
2x2 p21 + 4

D
x2 p21

) a2D

D − 2
+ a4(D + 2)

D − 2
+ x4(p21)

2
]

J (D, 0, 2, a2)

= −i

(4π)2
μ2ε

[
1

ε̂

(
m2(p21 + M2) + m4 + M4

)

+ 2

3

( (p21)
2

5
− m2(p21 + M2) − m4 − M4

)

+
∫ 1

0
dx

(
3a4 + 6a2x2 p21 + x4(p21)

2
)
ln

( a2

μ2

)]
. (8.13)

The last integral that we are going to analyse is

I μ
6 ≡

∫
d Dk

(2π)D

kμk2

[(k + p1)2 − m2](k2 − M2)
. (8.14)
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Fig. 8.2 One-loop fermionic
two-point function in QED

i Σ(/p) =

p

k

p + k

We obtain the following:

I μ
6 =

∫ 1

0
dx

∫
d Dk

(2π)D

kμk2

[(k + p1x)2 − a2]2

= −pμ
1

∫ 1

0
dx

[
x
(
1 + 2

D

) a2D

D − 2
+ x3 p21

]
J (D, 0, 2, a2)

= pμ
1

i

(4π)2
μ2ε

∫ 1

0
dx

[
1

ε̂

(
3a2x + x3 p21

)
− 2a2x +

(
3a2x + x3 p21

)
ln

( a2

μ2

)]

= pμ
1

i

(4π)2
μ2ε

[
1

ε̂

(
m2 + M2

2

)
+ 1

3

( p21
2

− 2m2 − M2
)

+
∫ 1

0
dx

(
3a2x + x3 p21

)
ln

( a2

μ2

)]
. (8.15)

In the same fashion, one should find straightforward to calculate any one-loop
integral for any arbitrary tensor function in the numerator. Next we will analyse a
two-point function that presents both IR and UV poles.

8.2 IR Divergences and the Two-Point Function

Besides the ultraviolet divergences we have seen until now, which are treated consis-
tently within the renormalization procedure there are also other types of divergences
called infrared, as we have seen in Chap.6. Consider the one-loop fermionic QED
two-point function for massless on-shell fermions in the Feynman gauge ξ = 1
(Fig. 8.2). It reads1:

iΣ(/p) = −e2
∫

d Dk

(2π)D

γμ(/p + /k)γμ

k2(k + p)2
, (8.16)

1The QED Feynman rules are given in Chap.5.

http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_5
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with p2 → 0 and where we have taken Q2 = 1 for the electric charge. Taking a
quick look at the denominator we find that for small k

1

k2(k2 + 2p · k)

k2�−−→ 1

k2(2p · k)
. (8.17)

We know that denominator diverges in two cases:

1. k → 0, soft divergence,

2. p · k → 0, collinear divergence. (8.18)

It is worth mentioning that a typical way of regulating these divergences is by giv-
ing small masses mγ, me both to the photon and the electron and taking the limit
mγ, me → 0 at the end. However, the most elegant way is still, Dimensional Regu-
larization (doesn’t break the symmetries of our theory). As seen in Chap.6, we must
take D = 4+ 2ε′, with ε′ > 0 for the IR divergent parts and D = 4+ 2ε, with ε < 0
for the UV divergent parts. In D dimensions the two-point function (8.16) reads:

iΣ(/p) = −e2
∫

d Dk

(2π)D

(2 − D)(/p + /k)

k2(k + p)2

= −e2
∫ 1

0
dx

∫
d Dk

(2π)D

(2 − D)(/p + /k)

[(k + xp)2 − a2]2

= −e2(2 − D)/p
∫ 1

0
dx(1 − x)J (D, 0, 2, a2). (8.19)

where we have defined a2 ≡ −p2x(1 − x). Now, instead of writing J (D, 0, 2, a2)

as (6.9), let’s write it in the form of (6.2):

iΣ(/p) = −i

(4π)D/2 /pe2(2 − D)Γ (2 − D/2)
∫ 1

0
dx(1 − x)(a2)D/2−2

= −i

(4π)D/2 /pe2(2 − D)Γ (2 − D/2)(−p2)D/2−2

×
∫ 1

0
dx(1 − x)D/2−1x D/2−2. (8.20)

Using the Euler Beta function (A.17) we find the following:

iΣ(/p) = −i

(4π)D/2 /pe2(2 − D)
Γ (2 − D/2)Γ (D/2)Γ (D/2 − 1)

Γ (D − 1)
(−p2)D/2−2.

(8.21)

We have an UV pole at D = 4 coming from Γ (2− D/2) and we have an indetermi-
nation of the type 00 for (−p2)D/2−2 when p2 → 0 and D → 4, which will appear

http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_6
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in our equations in the form of IR and UV poles. In order to regularize this, we must
use the following integral:

∫ ∞

−y

dx

x
xε = (−y)ε

(
− 1

ε

)
. (8.22)

Therefore, (−p2)D/2−2 can be written in the following form

(−p2)D/2−2 = (2 − D/2)
∫ ∞

−p2

dq2

q2 (q2)D/2−2

= (2 − D/2)(μ2)D/2−2
∫ ∞

−p2

dq2

q2

(q2

μ2

)D/2−2

= (2 − D/2)(μ2)D/2−2
[ ∫ μ2

−p2

dq2

q2

(q2

μ2

)D/2−2

+
∫ ∞

μ2

dq2

q2

(q2

μ2

)D/2−2]
. (8.23)

In order to make these integrations we need the following intermediate results

∫ μ

0
dx

1

x

( x

μ

)ε = 1

ε
for Re(ε) > 0 and μ > 0

∫ ∞

μ
dx

1

x

( x

μ

)ε = −1

ε
for Re(ε) < 0 and μ > 0 (8.24)

Therefore, we can safely take p2 → 0 in (8.23) and we obtain

(−p2)D/2−2 = (2 − D/2)(μ2)D/2−2
[ 1
ε′ − 1

ε

]
. (8.25)

Taking D adequately in each case we find

iΣ(/p) = −i

(4π)2
/pe2

[
−

(μ2

4π

)ε′( 1

ε′ + γE

)
+

(μ2

4π

)ε(1
ε

+ γE

)]
, (8.26)

where we have summed and subtracted γE and we have ignored all terms of O(ε)
and O(ε′). Introducing our standard notation for the UV pole (6.7) and making a
similar definition for the IR pole

1

ε̂′ ≡ 1

ε′ + γE − ln(4π) , (8.27)

http://dx.doi.org/10.1007/978-3-319-22966-9_6
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we finally obtain

iΣ(/p) = −i /p
α

4π

[
− μ2ε′

( 1

ε̂′
)

+ μ2ε
(1

ε̂

)]
. (8.28)

The usual renormalization approach is to also absorb the IR pole into the renor-
malization constant. Therefore we have Z1 = Z2 = 1 + δ1 = 1 + δ2 (remember
Z1 = Z2, see Chap.7) with

δ1 = δ2 = α

4π

[
− μ2ε′

( 1

ε̂′
)

+ μ2ε
(1

ε̂

)]
, (8.29)

for the M S-scheme. Note that the renormalized self-energy ΣR(/p) = 0 in this case.
One should also realize that Z1 and Z2 do not contribute to the renormalization of
any physical quantity like the electric charge or the mass and therefore, the running
(with the renormalization scale) of the these physical quantities is not affected by the
IR pole we have included in δ1,2 (as it must, the running of physical quantities only
depends on the UV-poles and never on the IR-poles). This last result, (8.29) will turn
out to be extremely useful within a few sections, where we will analyse an example
of IR-pole cancellation.

Next, we shall move on and analyse the three-point functions. The IR divergences
that will appear will be much easier to localize and to treat.

8.3 Three-Point Function

Momentum conservation in this case reads

p1 = p2 + p3, (8.30)

and as usual, the exterior legs are not necessarily on-shell. The arrows in Fig. 8.3
indicate the distribution ofmomenta, and all themasses are considered to be different.
The denominator of this three-point function is:

1

(k2 − M2)[(k + p2)2 − m2][(k − p3)2 − m2] . (8.31)

The Feynman parametrization that we shall use in this case is (6.25). Taking A =
(k2 − M2), B = [(k + p2)2 − m2] and C = [(k − p3)2 − m2] we obtain:

1

(k2 − M2)[(k + p2)2 − m2][(k − p3)2 − m2] =
∫ 1

0
dy

∫ 1−y

0
dz

2

D3 . (8.32)

http://dx.doi.org/10.1007/978-3-319-22966-9_7
http://dx.doi.org/10.1007/978-3-319-22966-9_6
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p1, m1

p2, m2

p3, m3

k, M

k + p2, m

k − −p3, m

Fig. 8.3 Distribution of masses and momenta of the three-point function

with D given by:

D = (k + p2y − p3z)2 − b2, (8.33)

b2 = m2y + m2z + M2(1 − y − z) + p23z(z − 1)

+ p22 y(y − 1) − 2yz(p2 · p3). (8.34)

The first integral that we shall deal with is the scalar integral:

C1 ≡
∫

d Dk

(2π)D

1

(k2 − M2)[(k + p2)2 − m2][(k − p3)2 − m2] . (8.35)

Introducing the Feynman parametrization and manipulating the expression:

C1 =
∫ 1

0
dy

∫ 1−y

0
dz

∫
d Dk

(2π)D

2

[(k + p2y − p3z)2 − b2]3

=
∫ 1

0
dy

∫ 1−y

0
dz

∫
d Dk

(2π)D

2

[k2 − b2]3

= 2
∫ 1

0
dy

∫ 1−y

0
dz J (D, 0, 3, b2)

= −i

(4π)2

∫ 1

0
dy

∫ 1−y

0
dz

1

b2
. (8.36)

The second integral we wish to calculate is the vector integral:

Cμ
2 ≡

∫
d Dk

(2π)D

kμ

(k2 − M2)[(k + p2)2 − m2][(k − p3)2 − m2] . (8.37)
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Introducing the Feynman parametrization we obtain:

Cμ
2 =

∫ 1

0
dy

∫ 1−y

0
dz

∫
d Dk

(2π)D

2kμ

[(k + p2y − p3z)2 − b2]3

= 2
∫ 1

0
dy

∫ 1−y

0
dz(−pμ

2 y + pμ
3 z)J (D, 0, 3, b2)

= −i

(4π)2

∫ 1

0
dy

∫ 1−y

0
dz

−pμ
2 y + pμ

3 z

b2
. (8.38)

The next integral we are going to calculate is:

C3 ≡
∫

d Dk

(2π)D

k2

(k2 − M2)[(k + p2)2 − m2][(k − p3)2 − m2] . (8.39)

Manipulating the expression we get:

C3 =
∫ 1

0
dy

∫ 1−y

0
dz

∫
d Dk

(2π)D

2k2

[(k + p2y − p3z)2 − b2]3

= 2
∫ 1

0
dy

∫ 1−y

0
dz

[(
1 + ε

2

)
J (D, 0, 2, b2) + (

p2y − p3z
)2

J (D, 0, 3, b2)

]

= −i

(4π)2
μ2ε

∫ 1

0
dy

∫ 1−y

0
dz

[
2

ε̂
+ 2 ln

( b2

μ2

)
+ 1 + 1

b2
(

p2y − p3z
)2

]

= −i

(4π)2
μ2ε

{
1

ε̂
+ 1

2
+

∫ 1

0
dy

∫ 1−y

0
dz

[(
p2y − p3z

)2

b2
+ 2 ln

( b2

μ2

)]}
.

(8.40)

The last integral that we will analyse in this section is tensor integral Cμν
4 :

Cμν
4 ≡

∫
d Dk

(2π)D

kμkν

(k2 − M2)[(k + p2)2 − m2][(k − p3)2 − m2] . (8.41)

We obtain the following result:

Cμν
4 =

∫ 1

0
dy

∫ 1−y

0
dz

∫
d Dk

(2π)D

2kμkν

[(k + p2y − p3z)2 − b2]3

= 2
∫ 1

0
dy

∫ 1−y

0
dz

[
gμν

4
J (D, 0, 2, b2)

+ (
ypμ

2 − zpμ
3

)(
ypν

2 − zpν
3

)
J (D, 0, 3, b2)

]
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= −i

(4π)2
μ2ε

{
gμν 1

4ε̂
+

∫ 1

0
dy

∫ 1−y

0
dz

×
[
1

b2
(
ypμ

2 − zpμ
3

)(
ypν

2 − zpν
3

) + 1

2
gμν ln

( b2

μ2

)]}
. (8.42)

For a generic N-point function one can use the Feynman parametrization (6.27)
introduced previously in Chap.6.

We will now move on to the analysis of the IR divergences of the three-point
functions we have studied in this section.

8.4 IR Divergences and the Three-Point Function

Consider the following configuration for the previously introduced three point func-
tions

p22 = m2
2 = m2, p23 = m2

3 = m2, M2 = 0. (8.43)

with m2
i �= 0 or m2

i = 0. In this case the denominator we have is:

1

k2(k2 + 2p2 · k)(k2 − 2p3 · k)

k2�−−→ 1

k2(2p2 · k)(2p3 · k)
, (8.44)

with the two usual infrared divergences:

1. k → 0, soft divergence,

2. p3 · k or p2 · k → 0, collinear divergence. (8.45)

Here we shall only consider the most simple case for massless on-shell particles
m2

i = 0. The case with m2
i �= 0 is left for the reader as an exercise. For these

calculations we shall switch to Feynman parametrisation (6.24). Choosing A =
k2 + 2p2 · k, B = k2 − 2p3 · k and C = k2 as in (6.34), we obtain:

1

ABC
=

∫ 1

0
dx

∫ 1

0
dy

2x

D3 , (8.46)

with the denominator D given by

D =
(

k + p2xy − p3x(1 − y)
)2 − b2, (8.47)

b2 = −2(p2 · p3)x2y(1 − y). (8.48)

As we have seen in Chap.6, we can not take D → 4 in J (D, 0, 3, b2) when IR
divergences are present. The expression we will be needing is:

http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_6
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J (D, 0, 3, b2) = −i

(4π)D/2

1

2
Γ (3 − D/2)(b2)D/2−3 , (8.49)

which we have already introduced in (6.35).
The three point functions treated in this section will carry an IR sub-index. The

first scalar three-point function that we have is (6.31). For completeness we shall
present parts of this the calculation again:

C1,IR = 2
∫ 1

0
dx

∫ 1

0
dyx J (D, 0, 3, b2)

= −i

(4π)D/2Γ (3 − D/2)
∫ 1

0
dx

∫ 1

0
dyx(b2)D/2−3

= −i

(4π)D/2Γ (3 − D/2)(−2p2 · p3)
D/2−3

∫ 1

0
dxx D−5

×
∫ 1

0
dyyD/2−3(1 − y)D/2−3

= −i

(4π)D/2

Γ (3 − D/2)

Γ (D − 3)
(−2p2 · p3)

D/2−3Γ (D/2 − 2)Γ (D/2 − 2).

(8.50)

Taking D adequately we get the following result:

C1,IR =
∫

d Dk

(2π)D

1

k2(k + p2)2(k − p3)2

= i

(4π)2

1

2p2 · p3

(−2p2 · p3
4π

)ε′ Γ (1 − ε′)
Γ (1 + 2ε′)

Γ 2(ε′) (8.51)

Let’s now continue and analyse the second integral Cμ
2,IR:

Cμ
2,IR = 2

∫ 1

0
dx

∫ 1

0
dyx

(
− pμ

2 xy + pμ
3 x(1 − y)

)
J (D, 0, 3, b2)

= −i

(4π)D/2

Γ (3 − D/2)Γ (D − 3)

Γ (D − 2)
(−2p2 · p3)

D/2−3

×
∫ 1

0
dy

(
− pμ

2 y + pμ
3 (1 − y)

)(
y(1 − y)

)D/2−3

= −i

(4π)D/2

Γ (3 − D/2)Γ (D − 3)

Γ (D − 2)
(−2p2 · p3)

D/2−3

× (pμ
3 − pμ

2 )
Γ (D/2 − 1)Γ (D/2 − 2)

Γ (D − 3)
. (8.52)

http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_6
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We obtain the following simple result:

Cμ
2,IR =

∫
d Dk

(2π)D

kμ

k2(k + p2)2(k − p3)2

= (pμ
3 − pμ

2 )
i

(4π)2

1

2p2 · p3

×
(−2p2 · p3

4π

)ε′ Γ (1 − ε′)Γ (1 + ε′)
Γ (2 + 2ε′)

Γ (ε′) (8.53)

Continuing with the third integral we get:

C3,IR =
∫ 1

0
dx

∫ 1

0
dy

∫
d Dk

(2π)D

2xk2

[(k + p2xy − p3x(1 − y))2 − b2]3

=
∫ 1

0
dx

∫ 1

0
dy

( x

2
D J (D, 0, 2, b2) − 4(p2 · p3)x3y(1 − y)J (D, 0, 3, b2)

)

≡ B(
J (D, 0, 2, b2)

) + C(
J (D, 0, 3, b2)

)
. (8.54)

The B function is, of course, UV divergent:

B =
∫ 1

0
dx

∫ 1

0
dy

x

2
D J (D, 0, 2, b2)

= −i

(4π)2
μ2ε

[1
ε̂

+ 1

2
+ 2

∫ 1

0
dx

∫ 1

0
dyx ln

( b2

μ2

)]

= −i

(4π)2
μ2ε

[1
ε̂

+ 1

2
+ ln

(−2p2 · p3
μ2

)
+ 2

∫ 1

0
dx

∫ 1

0
dyx ln[x2y(1 − y)]

]

= −i

(4π)2
μ2ε

[1
ε̂

− 5

2
+ ln

(2p2 · p3
μ2

)
± iπ

]
, (8.55)

where we have taken

ln(−1) = ln e±iπ = ±iπ. (8.56)

The second integral, as we shall see is in fact, finite:

C = −4(p2 · p3)
∫ 1

0
dx

∫ 1

0
dyx3y(1 − y)J (D, 0, 3, b2)

= 2(p2 · p3)
i

(4π)D/2Γ (3 − D/2)
∫ 1

0
dx

∫ 1

0
dy x3y(1 − y)(b2)D/2−3. (8.57)
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We have no poles at D → 4 thus, we obtain the simple result

C = −i

(4π)2

1

2
+ O(ε′). (8.58)

Therefore, our scalar integral is finally given by

C3,IR =
∫

d Dk

(2π)D

k2

k2(k + p2)2(k − p3)2

= −i

(4π)2
μ2ε

[1
ε̂

− 2 + ln
(2p2 · p3

μ2

)
± iπ

]
(8.59)

The last integral we are going to analyse is Cμν
4,IR:

Cμν
4,IR =

∫ 1

0
dx

∫ 1

0
dy

∫
d Dk

(2π)D

2x

[k2 − b2]3
×

[
kμ − pμ

2 xy + pμ
3 x(1 − y)

][
kν − pν

2 xy + pν
3 x(1 − y)

]

=
∫ 1

0
dx

∫ 1

0
dy

[
gμν x

2
J (D, 0, 2, b2) + 2x3

(
pμ
2 y − pμ

3 (1 − y)
)

×
(

pν
2 y − pν

3 (1 − y)
)

J (D, 0, 3, b2)

]

≡ Eμν
(
J (D, 0, 2, b2)

) + Fμν
(
J (D, 0, 3, b2)

)
. (8.60)

The UV-divergent tensor function Eμν gives:

Eμν =
∫ 1

0
dx

∫ 1

0
dygμν x

2
J (D, 0, 2, b2)

= gμν −i

(4π)2
μ2ε

∫ 1

0
dx

∫ 1

0
dy

x

2

[1
ε̂

+ ln
( b2

μ2

)]

= gμν −i

(4π)2
μ2ε 1

4

[1
ε̂

+ ln
(2p2 · p3

μ2

)
− 3 ± iπ

]
. (8.61)

The remaining structure is IR divergent:

Fμν =
∫ 1

0
dx

∫ 1

0
dy2x3

(
pμ
2 y − pμ

3 (1 − y)
)

×
(

pν
2 y − pν

3 (1 − y)
)

J (D, 0, 3, b2)

= −i

(4π)D/2

Γ (3 − D/2)Γ (D − 2)

Γ (D − 1)

∫ 1

0
dy

(
pμ
2 y − pμ

3 (1 − y)
)

×
(

pν
2 y − pν

3 (1 − y)
)(

− 2p2 · p3y(1 − y)
)D/2−3
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= −i

(4π)D/2

Γ (3 − D/2)Γ (D − 2)

Γ (D − 1)
(−2p2 · p3)

D/2−3

×
[
(pμ

2 pν
2 + pμ

3 pν
3 )

Γ (D/2)Γ (D/2 − 2)

Γ (D − 2)

− (pμ
2 pν

3 + pν
2 pμ

3 )
Γ (D/2 − 1)Γ (D/2 − 1)

Γ (D − 2)

]
. (8.62)

Therefore, the final expression for Cμν
4,IR that we find is:

Cμν
4,IR =

∫
d Dk

(2π)D

kμkν

k2(k + p2)2(k − p3)2

= gμν −i

(4π)2
μ2ε 1

4

[1
ε̂

+ ln
(2p2 · p3

μ2

)
− 3 ± iπ

]

+ i

(4π)2

1

2p2 · p3

(−2p2 · p3
4π

)ε′ Γ (1 − ε′)
Γ (3 + 2ε′)

×
[
(pμ

2 pν
2 + pμ

3 pν
3 )Γ (2 + ε′)Γ (ε′)

− (pμ
2 pν

3 + pν
2 pμ

3 )Γ 2(1 + ε′)
]

(8.63)

In the followingwe shall introduce the twoand three-bodyphase space expressions
in D = 4+2ε′ dimensions, needed for the calculation of IR-divergent cross sections.
Afterwards, we will calculate an IR divergent process for which we will make use
of all the IR-divergent integrals introduced in this section and also the IR-divergent
two-point function presented previously.

8.5 Two and Three-Body Phase Space in D Dimensions

For D = 4 + 2ε′ with ε′ > 0 we have the following two-body phase space:

∫
d Q2 = 1

4π

p̂√
s

( p̂2

π

)ε′ 1

Γ (1 + ε′)

∫ 1

0
dv[v(1 − v)]ε′ (8.64)

where p̂ ≡ |p| = γm|v| is the center of mass momentum (of the final state particles)
given by

p̂ = 1

2
√

s
λ1/2(s, m2

a, m2
b), (8.65)
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and where λ(x, y, z) is the usual Kallen function λ(x, y, x) ≡ x2 + y2 + z2 −2xy −
2yz − 2xz. The variable v is defined as

v = 1 + cos θ

2
, (8.66)

with θ the CM scattering angle. If we are dealing with final state identical particles,
we need to also multiply by the 1/2 symmetry factor. If the squared transition matrix
does not depend on the angle θ, we can integrate over v and obtain the simple result

∫
d Q2 = 1

4π

p̂√
s

( p̂2

π

)ε′ Γ (1 + ε′)
Γ (2 + 2ε′)

. (8.67)

The three-body phase space is given by:

∫
dQ3 =

Q2

2(4π)3
( 4π

Q2

)−2ε′ 1
Γ (2 + 2ε′)

∫ 1

0
dx1

∫ 1

1−x1

dx2

× [
(1 − x1)(1 − x2)(1 − x3)

]ε′

(8.68)

where Qμ = pμ
1 + pμ

2 + pμ
3 (with pμ

i the final state particle momenta) and where
we have introduced the xi kinematical variables:

x1 ≡ 2(p1 · Q)

Q2 , x2 ≡ 2(p2 · Q)

Q2 , x3 ≡ 2(p3 · Q)

Q2 . (8.69)

It is easy to check that x1 + x2 + x3 = 2. If we have n final state identical particles

(n = 2, 3) we must also multiply by the
1

n! symmetry factor.

When averaging over the spins of the initial state particles, it is conventional to
consider for massless on-shell photons or gluons D − 2 = 2(1 + ε′) polarizations.
Fermions are considered to have two spin-polarization states as usual.

8.6 Cancellation of IR Divergences

Consider the following collision f f̄ → γ∗ → e+e−γ, with f f̄ any fermion-
antifermion pair. The corresponding cross-section for this process can be written as

σ ∼ Fμν
∫

d Q3 Lμν, (8.70)
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with Fμν the initial state fermionic tensor and with Lμν the final state leptonic tensor.
Due toQED gauge invariance we canwrite the previous expression (8.70) in the form

σ ∼ Fαβ gαβ

∫
d Q3 Lμν gμν, (8.71)

therefore, the calculation of this cross section can be broken into two disjoint pieces.
As we are only interested in the final state (it is where the IR divergences will appear)
we will just focus on the sub-process γ∗ → e+e−γ. Thus, for practical purposes we
can consider that the virtual photon γ∗ is described by some polarization vectors ε

μ
s

and, we can perform the usual substitution
∑

s ε
μ
s εν∗

s → −gμν when calculating the
squared transition matrix.2 For this analysis we shall consider massless electrons. At
leading order there are two diagrams that contribute to our sub-process:

−i M =

e+

e−

γ∗ γ

+

e+

e−

γ

γ∗

(1) (2)

where the squared transitionmatrix |M|2 = |M1+M2|2 is ofO(e4).When calculat-
ing the cross section corresponding to this process one finds that it has IR divergences.
This is mainly due to the fact that, we can have soft or collinear emitted photons that
are experimentally indistinguishable from just a electron. Schematically:

or
soft collinear

∼

Roughly speaking, in the soft or collinear limit the three-body final state turns into
a two-body final state. Thus, in order to be able to remove the IR divergences we
must also analyse the 2 → 2 scattering process given by f f̄ → γ∗ → e+ e− (with
f f̄ the same fermion-antifermion pair as in the previous case). The cross section
for this process can be separated exactly as in (8.71) (obviously with d Q2 instead
of d Q3) therefore we can, again, focus only on the sub-process γ∗ → e+ e−. The
transition amplitude for this sub-process including one-loop corrections (seeChap. 7)
it is given by:

+ +−i M′ = δ1

(1) (2)

2As the photon is not a real (on-shell) particle we shall not average over its polarizations when
calculating the cross section.

http://dx.doi.org/10.1007/978-3-319-22966-9_7
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The matrix element can, thus, be written as M′ = M′
1 + M′

2 + δ1M′
1 with the

amplitude M′
1 of O(e) and with the amplitudes M′

2 and δ1M′
1 of O(e3). As we

already know δ1 is an IR divergent quantity and, as we can suspect, it will also be the
case for the amplitude M′

2. It turns out that summing to the cross section of the first
process σ(γ∗ → e+e−γ), the part of σ(γ∗ → e+e−) that contributes to the same
order in perturbation theory, that is O(e4), the IR poles cancel. We can therefore
define a proper infrared safe (IRS) observable given by3

σIRS(γ∗ → e+e−γ) = σ(γ∗ → e+e−γ) + σ̄(γ∗ → e+e−)

= 1

2s

( ∫
d Q3

∑

ri

|M|2 +
∫

d Q2

∑

ri

∣∣M̄′∣∣2
)

(8.72)

where
∑

ri
stands for the sum over the initial and final state particle polarizations and

where
∣∣M̄′∣∣2 is defined as the part of the squared amplitude

∣∣M′∣∣2, that contributes
to the cross section at O(e4). Its explicit expression is given by

∣∣M̄′∣∣2 ≡ 2Re[M′†
1M′

2] + 2δ1|M′
1|2 , (8.73)

Let’s thus, start by calculating the first process:

e+

e−

γ∗(p1) γ
+

e+

e−

γ

γ∗(p1)

p2

p2 + p4

p3

p2

p3 + p4

p3

p4 p4

The squared matrix element is given by |M|2 = |M1 +M2|2 = |M1|2 +|M2|2 +
2Re[M†

1M2]. In D dimensions we obtain the following results:

∑

ri

|M1|2 = e4

4(p2 · p4)2
Tr{γν( /p2 + /p4)γ

μ
/p3γμ( /p2 + /p4)γν /p2}

= 2e4

(p2 · p4)
(D − 2)2(p3 · p4) (8.74)

3Read Chap.3 for Relativistic kinematics, phase space and cross section formulae, and Chap.5 for
more details on calculations of QED processes and the corresponding Feynman rules.

http://dx.doi.org/10.1007/978-3-319-22966-9_3
http://dx.doi.org/10.1007/978-3-319-22966-9_5
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∑

ri

|M2|2 = e4

4(p3 · p4)2
Tr{γμ( /p3 + /p4)γ

ν
/p3γν( /p3 + /p4)γμ /p2}

= 2e4

(p3 · p4)
(D − 2)2(p2 · p4) (8.75)

The crossed term reads:

∑

ri

2Re[M†
1M2] = − e4

4(p2 · p4)(p3 · p4)

× Tr{γν( /p2 + /p4)γ
μ

/p3γν( /p3 + /p4)γμ /p2}

= 4e4

(p3 · p4)(p2 · p4)
(D − 2)

×
[
(D − 4)(p2 · p4)(p3 · p4)

+ 2(p2 · p3)
2 + 2(p2 · p4)(p2 · p3)

+ 2(p3 · p4)(p2 · p3)
]

(8.76)

The minus sign (from the RHS of the first line of the previous expression) is due to
the fermionic propagator of the first diagram (which goes in the opposite direction
of the momentum, and therefore it has the form −i( /p2 + /p4)/(2p2 · p4) and not
i( /p2 + /p4)/(2p2 · p4)). Introducing the xi kinematical variables from the previous
section

x1 ≡ 2(p2 · Q)

Q2 , x2 ≡ 2(p3 · Q)

Q2 , x3 ≡ 2(p4 · Q)

Q2 , (8.77)

with Q ≡ p1 = p2 + p3 + p4 (and where, remember, x1 + x2 + x3 = 2) we obtain
the following results:

(p2 · p4) = 1

2
x1Q2 − (p2 · p3), (8.78)

(p3 · p4) = 1

2
x2Q2 − (p2 · p3), (8.79)

(p2 · p3) = 1

2
Q2(x1 + x2 − 1). (8.80)

Performing these substitutions, taking D = 4 + 2ε′ (with ε′ > 0) and keeping the
terms up to O(ε′2) we obtain the following simple formula for the squared transition
matrix

∑

ri

|M|2 = 8e4(ε′ + 1)
x21 + x22 + ε′(x1 + x2 − 2)2

(1 − x1)(1 − x2)
. (8.81)
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Introducing the three-body phase space in D dimensions (8.68) we have:

∫
d Q3

∑

ri

|M|2 = 4e4Q2(ε′ + 1)

(4π)3

( 4π

Q2

)−2ε′ 1

Γ (2 + 2ε′)

∫ 1

0
dx1

∫ 1

1−x1
dx2

× 1

[(1 − x1)(1 − x2)(x1 + x2 − 1)]−ε′

× x21 + x22 + ε′(x1 + x2 − 2)2

(1 − x1)(1 − x2)

≡ 4e4Q2(ε′ + 1)

(4π)3

( 4π

Q2

)−2ε′ 1

Γ (2 + 2ε′)
K (ε′) (8.82)

The remaining task is to calculate the integral K (ε′). Performing a change of variables
x1 = x and x2 = 1 − vx we obtain:

K (ε′) =
∫ 1

0
dx

∫ 1

0
dv

x

[v(1 − v)x2(1 − x)]−ε′

× v2x2 − 2vx + x2 + 1 + ε′(x(1 − v) − 1)2

vx(1 − x)

=
∫ 1

0
dx

∫ 1

0
dv

x

[v(1 − v)x2(1 − x)]−ε′

×
[
(1 + ε′)

(1 − x

vx
+ vx

1 − x

)
+ 2(1 − v)

v(1 − x)
+ 2ε′

]

=
∫ 1

0
dx

∫ 1

0
dv

[
vε′(1 − v)ε

′
x2ε

′+1(1 − x)ε
′
]
×

×
[(

x−1(1 − x)v−1 + vx(1 − x)−1
)
(1 + ε′)

+ 2v−1(1 − v)(1 − x)−1 + 2ε′
]

= 2(1 + ε′)Γ (ε′)Γ (ε′ + 1)Γ (ε′ + 2)

Γ (3ε′ + 3)
+ 2Γ 2(ε′)Γ (ε′ + 2)

Γ (3ε′ + 2)
+ 2ε′Γ 3(1 + ε′)

Γ (3ε′ + 3)

= 2

ε′2
− 3

ε′ + 19

2
− π2. (8.83)

Thus, we have found the following result for the cross section of first process:

2s σ(γ∗ → e+e−γ) =
∫

d Q3

∑

ri

|M|2

= α2Q2

π

( 4π

Q2

)−2ε′ (ε′ + 1)

Γ (2 + 2ε′)

×
( 2

ε′2 − 3

ε′ + 19

2
− π2

)
(8.84)
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We now move on, and calculate the remaining cross section σ̄(γ∗ → e+e−). The
first amplitude that contributes to this process is given by M′

1:

−i M′
1 =

e+(p2)

e−(p3)

γ∗(p1)

M′
1 = −eεr1

μ (p1)ur3(p3)γ
μvr2(p2). (8.85)

where we have taken the charge of the electron Q = −1 (do not confuse it with the
four-momentum Qμ). The second amplitude of the process, M′

2 is given by:

−i M′
2 =

e+(p2)

e−(p3)

p3 − k

−k − p2

k

γ∗(p1)

M′
2 = i e3εr1

μ (p1)ur3(p3)Γ
μvr2(p2), (8.86)

where Γ μ reads

Γ μ =
∫

d Dk

(2π)D

γρ(/k − /p3)γμ(/k + /p2)γρ

k2(k + p2)2(k − p3)2
. (8.87)

Working in D dimensions, and using the Dirac equations of motion for massless
fermions /p2vr2(p2) = 0 and ur3(p3) /p3 = 0 in order to eliminate some of the terms,
we find

Γ μ =
∫

d Dk

(2π)D

(4 − 2D)kμ/k + (D − 2)γμk2 + 2/kγμ
/p3 − 2 /p2γμ/k + 2 /p2γμ

/p3
k2(k + p2)2(k − p3)2

= (4 − 2D)γνCμν
4,IR + (D − 2)γμC3,IR

+ 2(γνγ
μ

/p3 − /p2γ
μγν)C

ν
2,IR + 2 /p2γ

μ
/p3C1,IR

= Aγμ + B /p2γ
μ

/p3. (8.88)
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The coefficients A and B are given by

A = −i

(4π)2
μ2ε

[1
ε̂

+ ln
(2p2 · p3

μ2

)
± iπ

]
,

B = i

(4π)2

1

2p2 · p3

(−2p2 · p3
4π

)ε′[
2

Γ (1 − ε′)
Γ (1 + 2ε′)

Γ 2(ε′)

− 4
Γ (1 − ε′)Γ (1 + ε′)

Γ (2 + 2ε′)
Γ (ε′)

]
, (8.89)

where again, we have used the equations of motion to eliminate terms. The last
amplitude is simply −iδ1M′

1 with δ1 given by (8.29). We obtain

δ1M′
1 = ie3εr1

μ (p1)ur3(p3)Γ̃
μvr2(p2), (8.90)

where we have defined Γ̃ μ as

Γ̃ μ = γμ i

(4π)2

[
− μ2ε′

( 1

ε̂′
)

+ μ2ε
(1

ε̂

)]
. (8.91)

We can now proceed with our calculation of |M̄′∣∣2 using (8.73) or equivalently, we
can define the UV-finite (but IR-divergent) amplitude M′ R

2 = M′
2 + δ1M′

1 thus,

|M̄′∣∣2 = 2Re [M′†
1M′ R

2 ]. Using this last approach, we find

M′ R
2 = i e3εr1

μ (p1)ur3(p3)Γ
μ
R vr2(p2), (8.92)

with Γ
μ
R = Γ μ + Γ̃ μ = ARγμ + B /p2γμ

/p3, and where

AR = −i

(4π)2

[
μ2ε′ 1

ε̂′ + ln
(2p2 · p3

μ2

)
± iπ

]

= −i

(4π)2

[ 1
ε′ + γE − ln(4π) + ln(2p2 · p3) ± iπ

]
+ O(ε′). (8.93)

Using the expansion

ln
(2p2 · p3

4π

)
= 1

ε′

[ (2p2 · p3
4π

)ε′ − 1

]
+ O(ε′), (8.94)

the final expression of AR reads

AR = −i

(4π)2

[
1

ε′
(2p2 · p3

4π

)ε′ + γE ± iπ
]
. (8.95)
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The squared amplitude is finally given by:

∑

ri

|M̄′∣∣2 = 2Re
[
i e4 Tr

{
γμ /p3 (γμ AR + B /p2γ

μ
/p3) /p2

}]

= 8 α2 Q2
( Q2

4π

)ε′
(1 + ε′)

×
[
Re

(
(−1)ε

′)(
− 2

Γ (1 − ε′)
Γ (1 + 2ε′)

Γ 2(ε′)

+ 4
Γ (1 − ε′)Γ (1 + ε′)

Γ (2 + 2ε′)
Γ (ε′)

)
− 1

ε′ − γE

]
(8.96)

where Q2 = p21 = 2p2 · p3. As the squared transition matrix does not depend
on the angle θ we can directly introduce the expression (8.67) for the phase space.
Expanding in ε′ we obtain the needed cross section:

2s σ̄(γ∗ → e+e−) =
∫

d Q2

∑

ri

|M̄′|2

= α2Q2

π

( 4π

Q2

)−2ε′ (1 + ε′)
Γ (2 + 2ε′)

(
− 2

ε′2 + 3

ε′ − 8 + π2
)

(8.97)

Thus, as we mentioned, the poles from the two processes cancel, and the sum is finite

σIRS(γ∗ → e+e−γ) = 3α2

4π
. (8.98)

When studying examples of IR divergences cancellation, the typical process that
one finds is e+e− → hadrons. At leading order the cross section for this process is
simply given by σ(e+e− → qq̄) ≡ σ0 where qq̄ stands for a quark-antiquark pair.
At next-to-leading order one simply adds a gluon attached to the final state quarks
σ(e+e− → qq̄g) ≡ σ1. This last process is of course IR divergent (due to radiation
of soft or collinear gluons). By calculating the QCD vertex correction for the first
process (e+e− → qq̄), with a virtual gluon attached to the final state quarks, again
one finds IR divergences. As seen in the previous example, the IR divergences from
the vertex correction of σ0 and the ones from σ1 cancel and one finds

σ(e+e− → hadrons) = σ0

(
1 + 3α2

s

4π
CF + . . .

)
. (8.99)

withαs the strongQCDcoupling andCF = 4/3 the SU (3) invariant. The calculation
for this process is exactly the same as the one we just did, except we have made a
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Fig. 8.4 Two-loop diagram
that contributes to the
anomalous magnetic
moment of the muon

γ

h

G±

W±W±

μ− νμ μ−

few simplifications. We have considered photons instead of gluons in the final state
(thus, we got rid of the colour factors), we have ignored the initial state collision,
and we have also ignored the tree-level process (given by σ0).

8.7 Introduction to Two-Loops

Two-loop calculations are a highly advanced topic and one small subsection is obvi-
ously not able to cover it. However we just want to provide the reader with one last
computational tool. As we have mentioned at the beginning of this chapter, we shall
explain with a very simple two-loop example how the generic Feynman parametriza-
tion (6.27) can be used for non-integer powers of propagators.

Imagine we want to calculate the contribution from Fig. 8.4 to the anomalous
magnetic moment of the muon (or electron), where G± is the charged Goldstone
boson, W ± the charged gauge boson, and h the Higgs boson of the StandardModel.4

This is a quite simple topology and can be broken into twoparts.Wewill first calculate
the γW W effective vertex (which will, fortunately, turn out to be finite) and we will
use the expression of this vertex to calculate the second loop. Diagrammatically
this is shown in Fig. 8.5, where Q = −1 is the electric charge of the muon. The
amplitude of this process has the form M ∼ εs

μ Γ μ (with εs
μ the polarization vector

of the photon) thus all terms proportional to qμ will not contribute. The structure of
the Γ μ vertex can therefore be written as

ūr (p + q) Γ μ ur ′(p) = ūr (p + q)
[
γμF1(q

2) + i

2m
σμνqν F2(q

2)

+ γ5
i

2m
σμνqν F3(q

2) + . . .
]

ur ′(p). (8.100)

4For a complete set of Feynman rules for the Standard Model read J. C. Romao and J. P. Silva, A
resource for signs and Feynman diagrams of the Standard Model, Int. J. Mod. Phys. A 27 (2012)
1230025, http://arxiv.org/pdf/1209.6213.pdf.
.

http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://arxiv.org/pdf/1209.6213.pdf
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i Γ ρμν ≡

γ

h

G+

W+

W+ ρ
μ

ν
k′

q

k′ − q

k − q

k − k′

−i e Q Γ μ ≡
μ− νμ μ−

γ

k′ − qk′

q

p p + k p + q

μ

ν

ν ′

ρ

ρ′

W+
W+

iΓρμν

Fig. 8.5 One-loop γW W effective vertex and its insertion into the second loop

with Fi (q2) scalar form factors and wherem is the mass of the muon. The anomalous
magnetic moment of the muon, denoted as Δaμ, is given by the F2(q2) form factor
for an on-shell photon i.e., Δaμ = F2(q2 = 0). Using the standard Feynman rules
for the electro-weak SM Lagrangian, working in the linear Rξ gauge with ξW = 1
(thus MG± = MW ), one finds (the needed Feynman rules for this calculation are
given in Fig. 8.6)

i Γ ρμν = −i
e

(4π)2

M2
W

v2
gμν(k′ρ − qρ) μ2ε

∫ 1

0
dx (1 − 2x)

(1
ε̂

+ ln
a2

μ2

)
,

(8.101)

with a2 = −x(1 − x)(k′2 − M2
x − 2k′ · q) and with M2

x = M2
h/(1 − x) + M2

W /x .
It is obvious from (8.101) that, when integrating over x , the divergence (and hence
the μ-dependence) vanishes. Thus we are left with a finite effective vertex given by

i Γ ρμν = −i
e

(4π)2

M2
W

v2
gμν(k′ρ − qρ)

∫ 1

0
dx (1 − 2x) ln a2. (8.102)

Using the expansion (8.94), but this time for an arbitrary small parameter δ (δ � 1)

ln a2 = 1

δ

[
(a2)δ − 1

]
+ O(δ) , (8.103)
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Fig. 8.6 Feynman rules
needed for the calculation of
the anomalous magnetic
moment of the muon given
in Fig. 8.4, using the
Feynman gauge ξ = 1

G∓
k

h

W

p

±i
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v
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−i
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√
2
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G∓

h W

γ

i e
MW

v
gμν ,

W
i

−gμν

p2 − M2
W

,

G±
i

1
p2 − M2

W

,

h
i

1
p2 − M2

h

,

ν
i

/p

p2
,

we can write the following simple expression for iΓ ρμν

i Γ ρμν = −i
e

(4π)2

M2
W

v2
gμν(k′ρ − qρ)

(−1)δ

δ

∫ 1

0
dx

(1 − 2x) xδ (1 − x)δ

(k′2 − M2
x − 2k′ · q)−δ

.

(8.104)

We can observe in the previous expression that we have a propagator-like denomina-
tor with a non-integer power given by “−δ ”. Inserting this expression into the second
loop, discarding terms proportional to γ5 the expression for the vertex function Γ μ

reads

Γ μ = −i
α

16π s2w

M2
W

v2

(−1)δ

δ

∫ 1

0
dx (1 − 2x) xδ (1 − x)δ I μ, (8.105)
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with sw = sin θw with θw the weak mixing angle5 and with I μ given by the integral

I μ =
∫

d Dk′

(2π)D

gμν(k′ρ − qρ) γρ(/p + /k′)γν

(k′2 − M2
x − 2k′ · q)−δ (k2 − M2

W ) (p + k)2 [(k − q)2 − M2
W ] .

(8.106)

Particularizing (6.27) to our case we find

1

A−δ
1 A2A3A4

= Γ (3 − δ)

Γ (−δ)

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3 x−δ−1

1

× 1
(

x1A1 + x2A2 + x3A3 + (1 − x1 − x2 − x3)A4

)3−δ

≡ Γ (3 − δ)

Γ (−δ)

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

x−δ−1
1

D 3−δ
. (8.107)

Taking A1 = k′2 − M2
x − 2k′ · q, A2 = (k − q)2 − M2

W , A3 = k2 − M2
W and

A4 = (p + k)2 we obtain

D =
(

k′ − p(x1 + x2 + x3 − 1) − q(x1 + x2)
)2 − b2,

b2 = M2
x x1 + M2

W (x2 + x3). (8.108)

In the expression of b2 we have ignored the muon mass as it is much smaller than
all the other masses (m � MW , Mh). With this Feynman parametrization, keeping
only the σμνqν Lorentz structure6 and the leading terms (linear in the muon mass)
we obtain

I μ = i m σμνqν
Γ (3 − δ)

Γ (−δ)

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3 x−δ−1

1 x3

×
∫

d Dk′

(2π)D

1

(k′2 − b2)3−δ

= i m σμνqν
Γ (3 − δ)

Γ (−δ)

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3 x−δ−1

1 x3

× J (D, 0, 3 − δ, b2). (8.109)

5Here we have used g/2 = MW /v and e = g sw.
6In order to manipulate the spinor structures and write the final result as in (8.100) one must use
the Dirac algebra introduced in Chap.5 and the Gordon identity: ūr (p + q)(2pμ + qμ)us(p) =
ūr (p)(2mγμ − iσμνqν)us(p).

http://dx.doi.org/10.1007/978-3-319-22966-9_6
http://dx.doi.org/10.1007/978-3-319-22966-9_5
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The function J (D, 0, 3 − δ, b2) is finite for D = 4 and its expression is sim-
ply given by

J (4, 0, 3 − δ, b2) = −i

(4π)2
(−1)δ (b2)δ−1 Γ (1 − δ)

Γ (3 − δ)

= −i

(4π)2
(−1)δ

Γ (1 − δ)

Γ (3 − δ)

[ 1

b2
+ δ

b2
ln b2 + O(δ2)

]
. (8.110)

Introducing the previous expression into (8.109) and integrating over x1, x2 and x3,
we obtain

I μ = σμνqν

2m

2m2

M2
W

Γ (1 − δ)

Γ (−δ)

(−1)δ

(4π)2

(
− 1

4δ

+ −3M4
W + 4M2

W M2
x − 2M4

x ln(M2
x/M2

W ) − M4
x

8(M2
W − M2

x )2

)
(8.111)

Inserting this expression into (8.105), expanding in δ and taking the limit δ → 0 at
the end, we finally find the contribution we were looking for

Δaμ = α

128π3sw

m2

v2

∫ 1

0
dx (2x − 1)

× 3M4
W − 4M2

W M2
x + M4

x + 2M4
x ln(M2

x/M2
W )

8(M2
W − M2

x )2
(8.112)
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Chapter 9
Massive Spin One and Renormalizable
Gauges

Abstract For many decades of the last century, physicists were struggling to define
consistent (renormalizable and unitarity preserving) models for spin-one massive
particles (Proca fields). As we know, this was beautifully achieved by Weinberg,
Salam andGlashow in 1967when they proposed an electroweak unified theorywhich
we now call the Standard Model. The electroweak symmetry breaking mechanism,
among other things, generates mass terms for the W and Z bosons, while preserving
renormalizability and unitarity. The longitudinal degrees of freedom of the massive
spin-oneparticles are givenby theGoldostonebosons.Choosingonegaugeor another
might seem just a matter of convenience and in most cases the unitary gauge is
preferred. Here we will show, with an explicit example, that when performing loop
calculations the unitary gauge is not really a good choice and that some Green
functions are not renormalizable in this gauge. We will also show that working in the
so-called renormalizable gauges completely fixes the problem. As it is a non-trivial
task we shall also explicitly perform the renormalization of the W boson sector of
the Standard Model and check the Ward identities with a simple one-loop example.

9.1 Unitary Gauge

In the unitary gauge, the Goldstone bosons are eaten by the longitudinal degrees of
freedom of the W and Z bosons. The Lagrangian in this case is the most economical
one, as we don’t have the extra terms corresponding to the Goldstone fields. The
number of needed diagrams for a given process (involving massive gauge bosons)
reduces considerably when compared to other gauges.Given that all observables
should be gauge invariant, choosing one gauge or another might just seem a matter
of taste. However, when one tries to compute higher order loop calculations, one
finds that some Green functions cannot be renormalized due to some special type
of divergences (that we shall analyse in a moment with an example) that cannot
be reabsorbed into the Zi renormalization constants, as described in Chap.7. One
can argue that Green functions are not true observables and that when calculating

© Springer International Publishing Switzerland 2016
V. Ilisie, Concepts in Quantum Field Theory,
UNITEXT for Physics, DOI 10.1007/978-3-319-22966-9_9
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Fig. 9.1 W boson
contribution to the H self
energy

i Π(q) ≡
q

k + q

k

W

W

H

a true observable, the final result will render finite. This is completely true. However,
calculations with divergent, non-renormalizable Green functions in the intermediate
steps turns out to be a very difficult technical task.

Consider the W contribution to the Higgs self energy shown in Fig. 9.1. There are
other diagrams (topologies) that involve W contributions but this is the one that is
problematic and that we shall focus on. The needed interaction Lagrangian for this
process is simply given by:

L(x) = 2
M2

W

v
H(x)W †

μ(x)W μ(x). (9.1)

We will also need the expression for W propagator. In the unitary gauge it has the
canonical form of a massive spin-one particle:

i Sμν(k) = i

k2 − M2
W

(
−gμν + kμkν

M2
W

)
. (9.2)

With the previously given ingredients we can now calculate the i�(q) self-energy.
Its explicit expression reads:

i�(q2) = 4M4
W

v2

∫
d Dk

(2π)D

(
−gμν + kμkν

M2
W

) (
−gμν + (k + q)μ(k + q)ν

M2
W

)

× 1

(k2 − M2
W )[(k + q)2 − M2

W ]

= 4

v2

∫
d Dk

(2π)D

(k2 + k · q)2 − M2
W (2k2 + q2 + 2k · q) + DM4

W

(k2 − M2
W )[(k + q)2 − M2

W ] . (9.3)

We are only interested in the UV divergent parts. Thus, (using the calculation tools
introduced in the previous chapters) we obtain the following

�ε(q) = −μ2ε

(4πv)2

1

ε̂

(
12M4

W − 6q2M2
W + (q2)2

)
, (9.4)

where we have chosen the M S scheme for simplicity. We shall see that the (q2)2

term is the one that makes this Green function non-renormalizable.
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Let’s forget for a moment about this diagram and perform the Dyson summation
for the Higgs propagator. Schematically it is given by

i S(q) =

= + + .....1PI 1PI 1PI+

where 1PI stands for one particle irreducible, as usual. Explicitly we have

i S(q) = i S(0)(q) + i S(0)(q)i�(q)i S(0)(q) + . . .

where i S(0)(q) = i/(q2−M2
0 ) is the tree-level scalar boson propagator. The previous

sum gives

S(q) = 1

q2 − M2
0

− �(q)

(q2 − M2
0 )2

+ . . . = 1

q2 − M2
0 + �(q)

, (9.5)

where M0 is the bare mass of the Higgs field. Following the standard procedure for
relating the non-renormalized propagator S(q) with the renormalized one SR(q) (as
described in Chap.7), we define the renormalization constants as

S(q) = 1

q2 − M2
0 + �(q)

≡ Z1SR(q) = Z1

q2 − M2 + �R(q)
, (9.6)

with M the renormalized Higgs mass given by

M2 ≡ M2
0 + δM2. (9.7)

Parametrizing the Higgs self-energy as

�(q) = (q2 − M2)�1 + �2, (9.8)

we are now able to calculate Z1 and δM2 explicitly:

Z1 = (q2 − M2)(1 + �1,R) + �2,R

q2 − M2
0 + �

= (q2 − M2)(1 + �1,R) + �2,R

q2 − M2 + δM2 + �

= (q2 − M2)(1 + �1,R) + �2,R

q2 − M2

(
1 − δM2 + �

q2 − M2

)

=
(
1 + �1,R + �2,R

q2 − M2

)(
1 − �1 − δM2 + �2

q2 − M2

)

= 1 − �1,ε − δM2 + �2,ε

q2 − M2 , (9.9)

http://dx.doi.org/10.1007/978-3-319-22966-9_7
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where �i,R are regular parts of the self energy. Thus,

Z1 = 1 − �1,ε, (9.10)

δM2 = −�2,ε. (9.11)

Let’s now go back to the W boson contribution to�(q) from (9.4). Parametrising
this expression as in (9.8) we obtain

�1,ε = −μ2ε

(4πv)2

1

ε̂

(
M2 − 6M2

W + q2
)
, (9.12)

�2,ε = −μ2ε

(4πv)2

1

ε̂

(
M4 − 6M2

W M2 + 12M4
W

)
. (9.13)

It is obvious that the �1,ε term contains a q2 term, which is forbidden. The renor-
malization constants cannot depend on any momenta. It is left for the reader as an
exercise to analyse this case for the on-shell renormalization scheme.

9.2 Rξ Gauges

The gauge fixing functional for the linear Rξ gauges is given by

LGF = −1

ξ

(
∂μW †

μ + iξMW G+)(
∂μWμ − iξMW G−)

, (9.14)

where the W -Goldstone mixing term is designed to cancel the samemixing (but with
opposite sign) generated by the covariant derivatives. Using this family of gauges is
how ’t Hooft proved the renormalizability of the Standard Model. In this gauge the
W propagator reads

i Sμν
ξ (k) = i

k2 − M2
W

(
−gμν + (1 − ξ)

kμkν

k2 − ξM2
W

)
. (9.15)

For ξ → ∞ one recovers the unitary gauge expression (9.2). If one chooses, however,
a finite value for this parameter, the Green functions of the theory are well-behaved.

The Lagrangian LGF provides the Goldstone field with a mass term ξM2
W . The

Goldstone propagator is thus given by:

i SG±(p) = i

p2 − ξM2
W

. (9.16)
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Fig. 9.2 Feynman rules for the H W ±G∓, H G+G− and Hc±c̄± interaction vertices
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Fig. 9.3 Higgs self-energy diagrams involving Goldstone and W bosons and ghosts

In this gauge, we will also have Fadeev-Popov ghost (c±) contributions associated
to the gauge-fixing Lagrangian. The c± propagator has the same expression as the
previous Goldstone propagator. Finally, the Feynman rules for the new cubic inter-
actions involving one Higgs field are given in Fig. 9.2.

Including these new interactions, we now have four new diagrams corresponding
to our analysed topology. The complete set is shown in Fig. 9.3. One should keep
in mind that c+ is not the anti-particle of c−; their anti-particles are given by c̄+
and c̄−, thus both diagrams (4) and (5) must be taken into account (one should also
remember to include a −1 sign corresponding to a closed ghost loop).

Looking at the diagrams form Fig. 9.3, the diagrams (1) and (2) are the only
potentially dangerous ones, that can generate a (q2)2/ε̂ term. We shall see that none
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of them, however will generate such a term. If one chooses the so-called ’t Hooft-
Feynman gauge (ξ → 1) the kμkν terms of the W boson propagator are absent, thus
in this particular case one needs to perform no calculation in order to see that the
Green functions are well-behaved. However, we shall try to be more generic and
work with an arbitrary ξ parameter. We will separate i Sμν

ξ (k) into its transverse and
a longitudinal parts

i Sμν
ξ (k) = i

k2 − M2
W

(
−gμν + kμkν

k2

)
− iξ

kμkν

k2(k2 − ξM2
W )

≡ i Sμν
T (k) + i Sμν

L (k, ξ). (9.17)

The expression for the first diagram reads:

i�(1)(q) = 4M4
W

v2

∫
d Dk

(2π)D
Sμν
ξ (k)Sξ,μν(k + q)

= 4M4
W

v2

∫
d Dk

(2π)D

(
Sμν

T (k)ST,μν(k + q)

+ Sμν
L (k, ξ)SL ,μν(k + q, ξ)

+ Sμν
T (k)SL ,μν(k + q, ξ)

+ Sμν
L (k, ξ)ST,μν(k + q)

)
, (9.18)

with the tensor contractions given by

Sμν
T (k)ST,μν(k + q) = 2k2(3k · q + q2) + (k · q)2 + 3(k2)2

k2(k2 − M2
W )(k + q)2[(k + q)2 − M2

W ] , (9.19)

Sμν
L (k, ξ)SL ,μν(k + q, ξ) = ξ2(k · q + k2)2

k2(k2 − ξM2
W )(k + q)2[(k + q)2 − ξM2

W ] , (9.20)

Sμν
T (k)SL ,μν(k + q, ξ) = ξ

(
k2q2 − (k · q)2

)

k2(k2 − M2
W )(k + q)2[(k + q)2 − ξM2

W ] , (9.21)

Sμν
L (k, ξ)ST,μν(k + q) = ξ

(
k2q2 − (k · q)2

)

k2(k2 − ξM2
W )(k + q)2[(k + q)2 − M2

W ] . (9.22)

After introducing the Feynman parametrization, shifting the momentum in the
denominator, etc., the only UV- divergent piece will be given by terms of the type1

J (D, 2, 4, b2) = J (D, 0, 2, b2)
D(D + 2)

24

= −i

(4π)2
μ2ε

[
1

ε̂
+ ln

(
a2

μ2

)
+ 5

6

]
+ O(ε), (9.23)

1See Chap.6 for details.

http://dx.doi.org/10.1007/978-3-319-22966-9_6
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thus, no (q2)2/ε̂ is generated. The singular limit of the unitary gauge can be easily
localized by taking ξ → ∞ for the expressions (9.19)–(9.22). We observe that the
tensor contraction of the longitudinal components of the two W boson propagators
(9.20) in the ξ → ∞ limit gives a contribution of the type

Sμν
L (k,∞)SL ,μν(k + q,∞) = 1

M4
W

(k · q + k2)2

k2(k + q)2
, (9.24)

which is exactly the origin of our (q2)2/ε̂ singularity. With similar considerations
one finds that diagram (2) is well-behaved.

Same type of divergences one will run into when considering for example W or
Z self-energies. Thus, if a calculation involves (divergent) loops containing massive
gauge bosons, the safest way of avoiding dangerous non-renormalizable terms is to
simply avoid the unitary gauge. As mentioned before, the number of diagrams grows
when Goldstone (and ghost) fields are included, however, these new diagrams are in
most cases, trivial to compute.

For loops that give a finite final result i.e., H → γγ, one in principle has nothing to
worry about. Onewill obtain the same finite result in any gauge. However, technically
speaking, it is far more difficult to perform such a calculation in the unitary gauge
even if the number of diagrams is significantly smaller.

9.3 Gauge Fixing Lagrangian and Renormalization

One natural question thatmay arisewhen renormalizing themassive W gauge boson2

part of the Standard Model Lagrangian is, does the gauge fixing Lagrangian (9.14)
need to be renormalized? There are two approaches. One can choose to renormalize
the gauge fixing Lagrangian and reabsorb divergent parts into the gauge parameter as
in (7.20) for the QED case, or, one can consider that (9.14) is already the gauge-fixing
functional for the renormalized Lagrangian, also similar to the QED case (where we
gave the alternative prescription to simply choose the Feynman gauge for the tree
level propagator and ignore the qμqν parts when summing higher order corrections,
as they will never contribute to physical observables). The first approach is the most
complicated one from a technical point of view as it would require two (and not
one) bare gauge fixing parameters i.e., the gauge fixing functional in terms of bare
quantities would be given by

LGF = − 1

ξ(0)
1

(
∂μW (0)†

μ + iξ(0)
2 M (0)

W G+
(0)

)(
∂μW (0)

μ − iξ(0)
2 M (0)

W G−
(0)

)
, (9.25)

2Here we shall only focus on the W gauge boson, however, one can extend the discussion to the Z
boson.

http://dx.doi.org/10.1007/978-3-319-22966-9_7
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and only after renormalizing, one can choose the renormalized gauge fixing parame-
ters to be equal (ξ1 = ξ2 = ξ). Thus, the renormalization procedure is in this case
highly complex. Here we shall present the alternative procedure.

We shall choose the Feynman gauge (ξ = 1) for this discussion.3 Expanding the
gauge fixing functional from (9.14) we obtain

LGF = −∂μW †
μ∂νWν − M2

W G+G− + i MW ∂μW †
μG− − i MW ∂μWμG+. (9.26)

The gauge-Goldstonemixture from the StandardModel Lagrangian (that comes from
the covariant derivatives) in terms of the bare quantities reads

L = −i M (0)
W ∂μW (0)†

μ G−
(0) + i M (0)

W ∂μW (0)
μ G+

(0). (9.27)

Introducing the renormalization constants as

M (0)
W = Z1/2

M MW , W (0)
μ = Z1/2

W Wμ,

G±
(0) = Z1/2

G± G±, (9.28)

(where Zi = 1 + δi ) the previous Lagrangian (9.27) in terms of the renormalized
parameters reads

L = −i Z1/2
W Z1/2

M Z1/2
G± MW ∂μW †

μG− + h.c.

= −i

(
1 + 1

2
δW + 1

2
δM + 1

2
δG±

)
MW ∂μW †

μG− + h.c.

= −i MW ∂μW †
μG− − i

2

(
δW + δM + δG±

)
MW ∂μW †

μG− + h.c.

= L̃ + δL. (9.29)

The tree-level gauge-Goldstone mixing given by L̃ is cancelled by the same mixing
from the gauge fixing Lagrangian (9.26) and δL given by

δL = − i

2

(
δW + δM + δG±

)
MW ∂μW †

μG− + h.c.

≡ −i ZW G MW ∂μW †
μG− + h.c. (9.30)

is a counterterm for the gauge-Goldstone mixing that appears at one-loop level. The
Feynman rule for this counterterm reads4

3Any other finite choice for the value of ξ is perfectly valid, however this is the choice that mostly
simplifies the gauge boson propagator.
4An useful trick for deriving the Feynman rules corresponding to interaction terms that contain
derivatives of fields is given in Appendix C.
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W± G±

G± W±

p

p

∓ i pµ MW ZWG

Thus, the following sum is finite

W± G±

+ = finite
G±W±

+ = finite
G± W± W±G±

where the grey blobs from the LHS represent the sum of all the one-loop self-energy
diagrams.

In the following we shall formally perform the Dyson resummation and renor-
malize the W boson propagator, as this is a special case and the procedure is not as
straightforward as in the previously studied cases. The W boson self-energy can be
written as

i�μν
W ≡ igμν�T

W + i
pμ pν

p2
�L

W

≡ i

(
gμν − pμ pν

p2

)
�T

W + i
pμ pν

p2
�̃L

W (9.31)

with �̃L
W = �L

W + �T
W . Performing the Dyson resummation for the propagator in

the Feynman gauge we have

i Sμν = −igμν

p2 − M (0)2
W

+ −igμλ

p2 − M (0)2
W

(
i�λρ

) −igρν

p2 − M (0)2
W

+ −igμλ

p2 − M (0)2
W

(
i�λρ

) −igρσ

p2 − M (0)2
W

(
i�σδ

) −igδν

p2 − M (0)2
W

+ . . .

= −igμν

p2 − M (0)2
W

+ −i
(

p2 − M (0)2
W

)2
(
gμλ�λρg

ρν
)

+ −i
(

p2 − M (0)2
W

)3
(
gμλ�λρg

ρσ�σδg
δν

)
+ . . .
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= −igμν

p2 − M (0)2
W

⎛

⎜⎝1 + �T
W

p2 − M (0)2
W

+ (�T
W )2

(
p2 − M (0)2

W

)2 + . . .

⎞

⎟⎠

+ −i pμ pν

p2
�L

W(
p2 − M (0)2

W

)2

(
1 + �L

W + 2�T
W

p2 − M (0)2
W

+ . . .

)
. (9.32)

Thus, we find

i Sμν = −igμν

p2 − M (0)2
W − �T

W

+ −i pμ pν

p2
×

× �L
W(

p2 − M (0)2
W − �T

W

)(
p2 − M (0)2

W − �T
W − �L

W

) (9.33)

The renormalized propagator is then given by

i Sμν = ZW
−igμν

p2 − M2
W − �T

W,R

+ ZW
−i pμ pν

p2
×

× �L
W,R(

p2 − M2
W − �T

W,R

)(
p2 − M2

W − �T
W,R − �L

W,R

)

≡ i ZW Sμν
R (9.34)

Using the standard procedure, one can now relate the ZW and Z M renormalization
constants with the self-energies at the one-loop level. We shall shortly see with an
explicit example that the divergences of�T

W and�L
W are related andonly one constant

ZW is needed for the wave function renormalization. Thus, it is worth mentioning
that the mass and wave function counterterms are totally determined by�T

W and one
can use only the gμν part of the propagator to calculate ZW and Z M . Starting at the
two-loop level things are a little more complicated, as the previous Dyson summation
must also include one-loop transitions of the type W − G±:

G±W± W±

However, two-loop renormalization is far beyond the goal of this book.
What about tadpoles? The widely spread approach (and the most simple) is to

perform a redefinition of the Higgs field of the Standard Model that generates a
counterterm that cancels the tadpole contributions to the self-energies, as we did for
the φ3 model in Chap.7.5 Thus, if adopting this scheme, one only has to deal with

5This corresponds to the βh scheme from S. Actis, A. Ferroglia,M. Passera, G. Passarino, Two-Loop
Renormalization in the Standard Model. Part I: Prolegomena, Nucl. Phys. B 777 (2007) 1, http://
arxiv.org/pdf/hep-ph/0612122.pdf.

http://dx.doi.org/10.1007/978-3-319-22966-9_7
http://arxiv.org/pdf/hep-ph/0612122.pdf
http://arxiv.org/pdf/hep-ph/0612122.pdf
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1PI diagrams for the previous calculations. However, among the 1PI diagrams, the
Goldstone self-energies include indirectly a tadpole contribution as we shall see in a
moment. After shifting the vacuum expectation value of H one obtains a counterterm
Lagrangian

Lct = −βh

(
2M2

W

g2
+ 2MW

g
H + 1

2
(H2 + G2

0 + 2G+G−)

)
, (9.35)

which, aswe have alreadymentioned, cancel tadpole contributions in all self-energies
as it is shown in Fig. 9.4, but indirectly adds −βh contributions to G±, G0 and H
self energies as shown in Fig. 9.5. The βh constant is shown in Fig. 9.6. Thus, as we
can observe, the renormalization of the massive Gauge boson and Goldstone terms
of the Standard Model Lagrangian is highly non-trivial.

It is also worth mentioning the following detail. The W and G± self-energies and
W − G± mixing are not all independent. They are related through a Ward identity.
Diagrammatically it (the doubly contracted Ward identity) translates into

−
G−W−

+
G− W−

W− W−
−

G− G−
= 0M 2

W

MW pμpμ pν

MW pμ

p

If we adopt the previous renormalization scheme (with no tadpole contributions
except for the indirect one present in the Goldstone self-energy shown in Fig. 9.5)

+ = 0
W± W±h

+
hW± G±

hW± W±

W± G±h
= 0

−t

−t

h G±G±
+

h

−t

G±G±
= 0

Fig. 9.4 Examples of tadpole cancellation in the Standard Model

Fig. 9.5 Tadpole
contribution to the 1PI Higgs
and Goldstone self-energies

−βh

G±, G0, HG±, G0, H
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Fig. 9.6 Higgs tadpole
contribution in the Standard
Model and definition of βh

H
i t = i βh

2MW

g
=

one does not have to consider tadpoles either in the previous self-energies (except
for the indirect ones)!

In order to give a little more sense to the previously presented abstract renor-
malization procedure and the Ward identity we shall take a simple one-loop explicit
example. Consider the following one-loop lepton-neutrino contribution to the W and
G± self-energies, W − G± mixing and tadpole6

W−
i Πμν

W

= i ΠG

W−
=

i Πμ
WG

H
= i βh

2MW

g

= =
W− W−G− G−

+
G− G− G− G−

−βh

i t =

For the W self-energy one obtains the following expression

i�μν
W = igμν�T

W + i
pμ pν

p2
�L

W , (9.36)

with the form functions �T
W and �L

W given by

�T
W = − g2

(4π)2
μ2ε 1

ε̂

(
1

2
m2

l − 1

3
p2

)
+ finite, (9.37)

�L
W = − g2

(4π)2
μ2ε 1

ε̂

(
1

3
p2

)
+ finite, (9.38)

where a2 = −p2x(1−x)+m2
l x withml the mass of the lepton. The tadpole diagram

gives

t = 4m4
l

(4π)2v
μ2ε 1

ε̂
+ finite. (9.39)

6The needed Feynman rules are given at the end of the chapter.
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with βh = gt/2MW . Summing the two corresponding diagrams for the Goldstone
self-energy we get

�G = g2

(4π)2

m2
l

M2
W

μ2ε 1

ε̂

(
m2

l − 1

2
p2

)
− βh + finite

= − g2

(4π)2

m2
l

M2
W

μ2ε 1

ε̂

(
1

2
p2

)
+ finite, (9.40)

where we have used g/2 = MW /v. The W − G± mixed term gives

�
μ
W G = −pμ g2

(4π)2

m2
l

MW
μ2ε 1

ε̂

1

2
+ finite. (9.41)

One can, thus, easily check that the following Ward identity holds

pμ pν�
μν
W + M2

W �G − 2MW pμ�
μ
W G = 0 . (9.42)

Here we have checked this identity only for the UV-pole containing parts of the
self-energies. It is left as an exercise for the reader to try to check this relation also
for the finite parts. Let’s also explicitly check that

i�μ
W G + i MW pμZW G = finite . (9.43)

Separating the W and G± self energies as:

�T
W = (p2 − M2

W )�T
W,1 + �T

W,2, (9.44)

�G = (p2 − M2
W )�G,1 + �G,2, (9.45)

we obtain the following counter-terms in the M S scheme

δW = �T
W,1 = 1

3

g2

(4π)2
μ2ε 1

ε̂
, (9.46)

δM = −�T
W,2

M2
W

= − g2

(4π)2
μ2ε 1

ε̂

(
1

3
− 1

2

m2
l

M2
W

)
, (9.47)

δG± = −�G,1 = g2

(4π)2
μ2ε 1

ε̂

(
1

2

m2
l

M2
W

)
, (9.48)

where we have used the expressions from (9.28) for the Zi constants and Zi = 1+δi .
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Thus

ZW G ≡ 1

2

(
δM + δW + δG±

) = g2

(4π)2
μ2ε 1

ε̂

(
1

2

m2
l

M2
W

)
, (9.49)

and (9.43) follows immediately. As we mentioned earlier, one must note that δW also
cancels the infinities from �L

W (at one-loop level, when renormalizing the kinetic
and the mass terms of the W boson one obtains a counterterm with the Feynman rule
given by i(pμ pν − gμν p2) + igμν M2

W (δW + δM ) that cancels the poles of i�μν
W ).

Finally one should notice that the mass counter-term obtained from the Goldstone
boson propagator does not coincide with the one obtained from the W boson propa-
gator. This is because the mass of the Goldstone is equal to the mass of the W boson,
except, obviously, for quantum corrections which are different in the two cases. This
should be evenmore obvious in theml → 0 limit, for which the Goldstone couplings
to fermions vanish (thus �G = 0), and as it can be observed in (9.47) one of the
terms in δM still survives.

The needed Feynman rules for the fermionic loop calculations are shown below

G−

l

ν

G−

−i
g

2
√

2
ml

MW
(1 − γ5)

−i
g

2
√

2
ml

MW
(1 + γ5)

l

ν

−i
g

2
√

2
γμ(1 + γ5)

l, ν

ν, l

W

l

l

H −i
ml

v
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Chapter 10
Symmetries and Effective Vertices

Abstract When facing the computation of more realistic processes, the calculations
can become lengthy very fast as the number of Feynman diagrams grows. Before
starting the calculation process the problem should be reduced to its minimal form.
Here we will present an example of how to reduce the number of calculated diagrams
for a given process (which in this casewill be aHiggs-like scalar decay to two photons
through a charged scalar loop) using gauge symmetry.

10.1 Higgs Decay to a Pair of Photons

Consider the following interaction Lagrangian for scalar QED,with H± denoting the
charged scalar, plus an hypothetical interaction between a Higgs-like neutral scalar
φ and a pair of H±

L = i e Aμ H+ ←→
∂μ H− + e2 Aμ Aμ H+ H− − v λφH+ H− φ H+ H− (10.1)

where we have introduced the operator

a
←→
∂μ b ≡ a ∂μ b − (∂μ a) b. (10.2)

This interaction Lagrangian is actually part of the Two-Higgs-Doublet Model
(2HDM) extension of the Standard Model (SM) with v the electroweak symme-
try breaking scale.1 This extension assumes the presence of two Higgs doublets
(instead of one, as in the SM), and it is characterized by three physical neutral scalars
(instead of one) and a charged Higgs (H±). In the previous interaction Lagrangian φ
is assumed to be one of the neutral scalars of the model. The most important feature

1For a nice review of the SM read A. Pich, The Standard Model of Electroweak Interactions, http://
arxiv.org/pdf/1201.0537.pdf. Also, for a nice review of the 2HDM read G.C. Branco, P.M. Ferreira,
L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet
models, Phys. Rept. 516 (2012) 1, http://arxiv.org/pdf/1106.0034v3.pdf.
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Fig. 10.1 One-loop φ → γγ
effective vertex

i Γ μν ≡
k′ + q

q

k′

μ

ν

γ

γ

φ

of the 2HDM Lagrangian that we wish to exploit in this chapter, is that it preserves
gauge invariance (just like the SM).

Let’s imagine that, given the previous interaction Lagrangian, wewish to calculate
the decay of the scalar φ to a pair of photons φ → γγ. This decay starts at the
one loop level, as there are no tree-level interaction terms to account for it. Thus,
we can conclude that the result is finite and needs no renormalization (the 2HDM
is renormalizable). Before starting our calculation we can further exploit, as we
mentioned, gauge invariance, in order to simplify our computation. We can write
down an effective vertex describing the Lorentz structure of the final result. Consider
the following kinematic distribution for our process

φ(k′ + q) → γ(q,μ) γ(k′, ν) (10.3)

(with q2 = k′2 = 0 and (k′ + q)2 = M2
φ and with μ, ν Lorentz indices) as shown in

Fig. 10.1. The most generic Lorentz structure that this effective vertex can contain is

Γ μν = S gμν k′ · q + A qμqν + B k′μk′ν + C qμk′ν

+ D qνk′μ + E εμναβk′
αqβ, (10.4)

where S, A, B, . . . , E are Lorentz scalars. The last structure (∼εμναβ) would imply
the presence of couplings proportional to γ5 matrices, thus we can safely discard it.
Due to gauge invariance our effective vertex must satisfy

qμ Γ μν = qν Γ μν = 0. (10.5)

Also, all structures proportional to k′ν and qμ vanish when contacted with the polar-
ization vectors of the photons (when calculating the transition matrix). Thus, one
obtains the following compact form for the effective vertex

i Γ μν = i (gμν k′ · q − qνk′μ) S . (10.6)

The transition matrix and its hermitian conjugate are thus given by

−i M = i (gμνk′ · q − k′μqν) S εr∗
μ (q) εs∗

ν (k′)
i M† = −i (gαβk′ · q − k′αqβ) S∗ εr

α(q) εs
β(k′). (10.7)
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Summing over the photon polarizations, making the usual substitution

∑

r

εr∗
μ (p)εr

ν(p) → −gμν

(there is no triple gauge vertex in our present calculation2 thus we need not to worry
about ghosts) we find

∑

r,s

|M|2 = |S|2 (gμνk′ · q − k′
μqν)(g

μνk′ · q − k′μqν) = 1

2
|S|2 M4

φ. (10.8)

The phase space integral is trivial
∫

d Q2 = 1/(16π), thus we finally obtain

Γ (H → γγ) = M3
φ

64π
|S|2 . (10.9)

The only remaining thing is to explicitly calculate the scalar form factor S.
Let’s now focus on the following detail. We have proven, using symmetry argu-

ments that our final result will have the form (10.6). Therefore, in order to calculate S
we only need to keep the terms proportional to k′μqν and ignore all the other Lorentz
structures.3 The Feynman diagrams that we need to compute are given by

+H±

H±

H±

+
φ

γ

γ

(1) (2) (3)

Considering the distribution of loop momenta from Fig. 10.2, using the Feynman
rules4 given in Fig. 10.3 we obtain the following result for the first diagram

i Γ
μν
(1) = e2 v2 λφH+ H−

∫ 1

0
dx

∫ 1

0
dy

∫
d Dk

(2π)D

2x

[k2 − a2]3
[
4kμkν+

+ 2k′μk′ν(2x2 − 3x + 1) − k′μqν 4x(x − 1)(y − 1)
]
, (10.10)

where a2 = M2
H± − M2

φ x(1 − x)(1 − y). It is left for the reader as an exercise to
show that the second diagram gives exactly the same result.

It is obvious from the Feynman rules that the third diagram only brings contribu-
tions to the gμν structure. Ignoring thus, this third diagram, keeping only the k′μqν

structure, we obtain

2Read Chap.5 for more details.
3One could equally choose to keep only the gμν k′ · q structure, however, with this choice, one has
to compute a greater number of terms and Feynman diagrams as we will shortly see.
4An useful trick for deriving the Feynman rules corresponding to interaction terms that contain
derivatives of fields is given in Appendix C.

http://dx.doi.org/10.1007/978-3-319-22966-9_5
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Fig. 10.2 Contribution of
the first diagram to the
φ → γγ process

k + q

k

k − k′

k′ + q

φ

k′
ν γ∗

q
μ γ

H+

H+

H+

i Γμν
(1)=

Fig. 10.3 Feynman rules for
the interaction Lagrangian

μ

p

q
H+

H+

γ −i e (p + q)μ ,

H±

H±

φ −i v λφH+H− ,

ν

H±

H± γ

μ

γ

i e2 gμν .

i Γ
μν
(1+2) = −e2v2 λφH+ H−

∫ 1

0
dx

∫ 1

0
dy

∫
d Dk

(2π)D

16x2(x − 1)(y − 1)

[k2 − a2]3 k′μqν

= i e2v2 λφH+ H−
∫ 1

0
dx

∫ 1

0
dy

16x2(x − 1)(y − 1)

32 π2 a2 k′μqν (10.11)

Thus, the scalar form factor S is simply given by

S = − e2 v2 λφH+ H−
∫ 1

0
dx

∫ 1

0
dy

x2(x − 1)(y − 1)

2 π2 a2 . (10.12)

Again, the reader is invited to explicitly check that this is exactly the result one
obtains by doing the full calculation.

In this example, using the symmetries of our Lagrangian, we were able to get
rid of one Feynman diagram and all the other Lorentz structures except k′μqν .
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The UV-divergent parts of the structure kμkν obviously cancels against the UV-
divergent parts of the third diagram (that we have ignored).

It might seem at first sight that we haven’t gained that much. This was, however
a very simple example. If one has to calculate the full SM contribution to this decay
(which involves fermions and W bosons) this technique tremendously simplifies the
calculations. Other interesting examples can be found in the first two references.

Further Reading

V. Ilisie, A. Pich, Low-mass fermiophobic charged Higgs phenomenology in two-Higgs-doublet
models. JHEP 1409, 089 (2014). http://arxiv.org/pdf/1405.6639v3.pdf

V. Ilisie, New Barr-Zee contributions to (g − 2)μ in two-Higgs-doublet models. JHEP 04, 077
(2015) http://arxiv.org/pdf/1502.04199v3.pdf

A. Pich, The Standard Model of Electroweak Interactions, http://arxiv.org/pdf/1201.0537.pdf
G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P. Silva, The-

ory and phenomenology of two-Higgs-doublet models. Phys. Rep. 516, 1 (2012)
http://arxiv.org/pdf/1106.0034v3.pdf

C. Itzykson, J. Zuber, Quantum Field Theory
M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory

http://arxiv.org/abs/http://arxiv.org/pdf/1405.6639v3.pdf
http://arxiv.org/abs/http://arxiv.org/pdf/1502.04199v3.pdf
http://arxiv.org/abs/http://arxiv.org/pdf/1201.0537.pdf
http://arxiv.org/abs/http://arxiv.org/pdf/1106.0034v3.pdf


Chapter 11
Effective Field Theory

Abstract Effective field theories (EFTs) are a highly important topic in Quantum
Field Theory. Here we are going to shortly present some important highlights as well
as the renormalization group equations for the Wilson coefficients. Afterwards we
shall focus on one illustrative example and present the matching procedure at the
one-loop level. The infrared behaviour of EFTs is also covered with this example.

11.1 Effective Lagrangian

For a nice introduction as well as more advanced topics consult references. An
effective field theory is characterized by some effective Lagrangian:

Leff =
∑

i

ci

Λdi −4Oi ≡
∑

i

CiOi , (11.1)

where Oi are operators constructed with the light fields, and the information on
the heavy degrees of freedom is hidden in the couplings Ci ; di is the dimension of
the operator Oi and Λ is the scale where the heavy fields come into the game. For
simplicitywe have considered that there is only one operator for a given dimension. If
this was not the case, another summation (over all the operators of a given dimension)
should be included in the Lagrangian i.e.,

Leff =
∑

i, j

c( j)
i

Λdi −4O
( j)
i ≡

∑

i, j

C( j)
i O( j)

i . (11.2)

The operators are classified depending on their dimension as:

di < 4 → relevant, di = 4 → marginal, di > 4 → irrelevant. (11.3)

The Lagrangian Leff contains an infinite number of terms (power series in Λ), there-
fore it is not renormalizable in the usual sense (an infinite number of counterterms

© Springer International Publishing Switzerland 2016
V. Ilisie, Concepts in Quantum Field Theory,
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would also be needed for renormalization). If we truncate the series of the Lagrangian
i.e., we only include terms up to dimension N

Leff =
N∑

i

CiOi , (11.4)

with N finite, the Lagrangian is not, in general, renormalizable either. However, for
a given loop order the needed number of renormalization counterterms is finite.1

In effective theories the number of counterterms needed for renormalization grows
with the number of loop corrections included, whereas, for renormalizable theories
(in the usual sense) the number of conterterms is the same at any loop order.

11.2 Renormalization Group Equations

11.2.1 No Operator Mixing

In the following we shall consider the renormalization group equations (RGEs) for
the coefficients Ci and the operatorsOi . For this first analysis we shall only consider
a simple case for which the coefficients do not mix under renormalization. Normally
this is case when there is only one operator for a given dimension di and is what
we are going to consider next. Given the bare operator OB

i and the bare Wilson
coefficient CB

i , when including loop corrections the Lagrangian can be written in
terms of the renormalized quantities as:

Leff =
∑

i

CB
i OB

i =
∑

i

CB
i Zi (μ)Oi (μ) =

∑

i

Ci (μ)Oi (μ) , (11.5)

where we have defined the Zi renormalization constant as

OB
i = Zi (μ)Oi (μ), (11.6)

and where the renormalized Wilson coefficient is given by

CB
i = Zi (μ)−1Ci (μ). (11.7)

This is the standard approach when renormalizing effective Lagrangians; one
includes the loop corrections, and hence the μ-dependence, that comes from the

1This is true provided that we use mass-independent renormalization schemes i.e., the MS scheme.
In order to understand why mass-independent schemes are needed for renormalization of EFTs
consult for example section 3. Quantum Loops of Effective Field Theory (A. Pich, http://arxiv.org/
abs/hep-ph/9806303).

http://arxiv.org/abs/hep-ph/9806303
http://arxiv.org/abs/hep-ph/9806303
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operator renormalization into the Wilson coefficient so that the renormalized
Lagrangian is μ-independent. All the loop corrections are then contained in the Ci

coefficients (as we shall shortly see with an example). Let us write down the formal
RGEs2 for Ci and Oi . The bare operator is μ-independent, therefore:

μ
dOB

i

dμ
= 0 = μOi

d Zi

dμ
+ μZi

dOi

dμ
. (11.8)

We define the gamma function of the operator Oi as

γOi = μ

Zi

d Zi

dμ
= γ

(1)
Oi

(α

π

)
+ γ

(2)
Oi

(α

π

)2 + . . . , (11.9)

where α is the expansion parameter of the operator. Thus, the RGE for the operator
Oi is simply given by:

μ
dOi

dμ
= −γOiOi . (11.10)

On the other hand, the productOB
i CB

i = Oi (μ)C(μ) isμ-independent, thuswe obtain
analogous RGEs for the Wilson coefficients Ci :

μ
dCi

dμ
= γOi Ci . (11.11)

The solution of this equation is given in (B.23):

Ci (μ) = Ci (μ0) exp

{∫ α(μ)

α(μ0)

dα

α

γOi (α)

β(α)

}

= Ci (μ0)
[ α(μ)

α(μ0)

]γ
(1)
Oi

/β1{
1 + . . .

}
(11.12)

11.2.2 Operator Mixing

Let’s now consider that there are n operators for a given dimension di . Introducing
the short-hand notation O( j)

i ≡ O j (with j = 1, . . . , n), the effective Lagrangian
for the given dimension di can be written as

2For a short reminder of RGEs see Appendix B.
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Li,eff =
∑

j

C( j)
i O( j)

i ≡
∑

j

C jO j ≡ CTO, (11.13)

where we have definedO as a 1-column vector and CT as a 1-row vector. In general
the operators mix under renormalization, i.e.,

OB
i =

n∑

j

Zij(μ)O j (μ) ⇒ CB
i =

n∑

j

(
Z−1)

ji(μ)C j (μ). (11.14)

In this case it turns out to be very useful to use the matrix notation:

OB = Z(μ)O(μ) ⇒ CB = (
Z−1)T

(μ)C(μ). (11.15)

We easily obtain the RGEs for the operators and the Wilson coefficients

(
μ

d

dμ
+ γO

)
O(μ) = 0 ,

(
μ

d

dμ
− γT

O
)
C(μ) = 0

(11.16)

where the anomalous dimension matrix γO is given by:

γO ≡ Z−1μ
d

dμ
Z. (11.17)

In order to solve this equation we must find the matrix U that diagonalizes γO i.e.,

U−1γT
OU = γ̃O, (11.18)

with γ̃O diagonal. Introducing the previous equation into (11.16) we find:

(
UU−1μ

d

dμ
− Uγ̃OU−1

)
C(μ) = 0. (11.19)

Defining C̃ = U−1C we find the following equations in diagonal form:

(
μ

d

dμ
− γ̃O

)
C̃(μ) = 0 (11.20)

Thus, the coefficients C̃i obey the unmixed RGEs:

(
μ

d

dμ
− γ̃

(i)
O

)
C̃i (μ) = 0, (11.21)
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where γ̃
(i)
O are the diagonal terms of the matrix γ̃O. The solution is straightforward

(same as in the previous section):

C̃i (μ) = C̃i (μ0) exp

{∫ α(μ)

α(μ0)

dα

α

γ̃
(i)
O (α)

β(α)

}
. (11.22)

Changing the basis from C̃i to Ci we finally find the solution we were looking for:

Ci (μ) =
∑

j,k

Uij exp

{∫ α(μ)

α(μ0)

dα

α

γ̃
( j)
O (α)

β(α)

}
(
U−1)

jkCk(μ0) . (11.23)

11.3 Matching

11.3.1 ϕφ2 Theory

Consider the following Lagrangian:

L = 1

2
(∂φ)2 − 1

2
m2φ2 + 1

2
(∂ϕ)2 − 1

2
M2ϕ2 − 1

2
λϕφ2 (11.24)

If M � m, E , where E is the energy domain of the process we want to analyse,
we can integrate out (from the path integral) the heavy field ϕ and write down an
effective Lagrangian that describes physical processes at energies E ∼ m. Say we
wish to describe a scattering process like φ(p1)φ(p2) → φ(p3)φ(p4), then we can
write the following effective Lagrangian:

Leff = 1

2
C̄0(∂φ)2 − 1

2
C2φ2 − 1

4!C0φ
4 + . . . , (11.25)

where C̄0, C0 are the Wilson coefficients of zero dimension and C2 is the two-
dimensional one. These coefficients can be expanded as:

C̄0 = C̄(0)
0 + C̄(1)

0 + . . . , C0 = C(0)
0 + C(1)

0 + . . . , C2 = C(0)
2 + C(1)

2 + . . . ,

(11.26)

where the upper index stands for the corresponding loop order. In the following we
shall present the matching procedure. Both theories must give identical results at a
matching scaleμ ∼ M . Thus at this given scale the scattering amplitudes provided by
L andLeff must be the same. At tree-level however, thematching is scale independent
(the scale dependence comes into the game only at the loop level). The tree-level
matching is diagrammatically shown in Fig. 11.1. Explicitly this reads:
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+ =
C(0)
0

+
ϕ

Fig. 11.1 Tree-level matching conditions

M(0) = M(0)
eff . (11.27)

Dropping the −i global factor from −iM, the amplitude of the full theory for the
scattering process is given by

M(0) = −iλ2
(

1

s2 − M2 + 1

t2 − M2 + 1

u2 − M2

)

= i3
λ2

M2 + O(M−4). (11.28)

For the effective theory the amplitude simply reads

M(0)
eff = −iC(0)

0 . (11.29)

Comparing the two results we obtain the tree-level matching conditions

C(0)
0 = −3

λ2

M2 . (11.30)

It obvious that at this level C̄(0)
0 = 1 and C(0)

2 = m2 by comparing the propagators of
the light scalar φ in both theories.

At one-loop level things start to be a little more difficult. The needed diagrams
are shown in Fig. 11.2.

In this analysis we shall only compute the first set of diagrams (first line of
Fig. 11.2). The second line is left as an exercise for the reader. The first two diagrams
of the complete theory give the following contribution to the scattering amplitude:

M(1,a) = i
1

2

λ2

(4π)2

m2

M2μ2ε
[
1

ε̂
+ ln

(
m2

μ2

)
− 1

]
,

M(1,b) = −i
λ2

(4π)2
μ2ε

[
1

ε̂
+

∫ 1

0
dx ln

(
a2

μ2

)]
, (11.31)

where a2 = p2x(x −1)+m2x + M2(1− x). After renormalizing in the M S scheme
we find
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+ =
C(0)
0

+

C(1)
2 , C̄(1)

0

(1, a) (1, b) (1, a)eff (2, a)eff

C(0)
0

+ ........= ++........

C(0)
0 C(1)

0

p

Fig. 11.2 One-loop matching conditions

M(1,a)
R = i

1

2

λ2(μ)

(4π)2

m2(μ)

M2

[
ln

(
m2(μ)

μ2

)
− 1

]
,

M(1,b)
R = −i

λ2(μ)

(4π)2

∫ 1

0
ln

(
a2(μ)

μ2

)
, (11.32)

where λ(μ) and m(μ) are the running coupling and the running mass of the full
theory (as usual, the subscript R stands for renormalized or regular).3 In order to
perform the matching properly we must expand the logarithm of a2/μ2 in powers of
p2/M2:

∫ 1

0
dx ln

(
a2

μ2

)
=

∫ 1

0
dx ln

(
p2x(x − 1) + m2x + M2(1 − x)

μ2

)

= ln

(
M2

μ2

)
+

∫ 1

0
dx ln

(
p2

M2 x(x − 1) + m2

M2 x + (1 − x)

)

≈ ln

(
M2

μ2

)
+

∫ 1

0
dx ln

(
m2

M2 x + (1 − x)

)

+
∫ 1

0
dx

(p2/M2)x(x − 1)

(m2/M2)x + 1 − x

= ln

(
M2

μ2

)
− m2

M2 ln

(
m2

M2

)
− 1 − 1

2

p2

M2 + O(M−4). (11.33)

3In general, after renormalization M will also depend on μ. However we have considered that
M(μ) ≈ constant close to the matching scale μ ∼ M .
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Summing both contributions, (1, a) and (1, b), one obtains:

M(1)
R = M(1,a)

R + M(1,b)
R

= i
λ2(μ)

(4π)2

[
3

2

m2(μ)

M2 ln

(
m2(μ)

μ2

)
− 1

2

m2(μ)

M2

+1 + 1

2

p2

M2 − ln

(
M2

μ2

)]
(11.34)

We will now move on to the computation of the diagrams for the effective theory.
The transition amplitude of the first diagram reads:

M(1,a)eff = 1

2
C(0)
0

∫
d Dk

(2π)D

1

k2 − m2

= i
3

2

λ2

(4π)2

m2

M2μ2ε
[
1

ε̂
+ ln

(
m2

μ2

)
− 1

]
. (11.35)

The second one is simply:

M(1,b)eff = −iC(1)
2 + i p2C̄(1)

0 . (11.36)

After renormalizing in the MS scheme, we obtain

M(1)
eff,R = M(1,a)eff

R + M(1,b)eff

= i
3

2

λ2
eff(μ)

(4π)2

m2
eff(μ)

M2

[
ln

(
m2

eff(μ)

μ2

)
− 1

]

− iC(1)
2 (μ) + i p2C̄(1)

0 (μ) (11.37)

where λeff(μ) and meff(μ) are the running coupling and mass in the effective theory
(which, in general are not equal to the ones in the full theory). For the matching,
in order to avoid potentially large logarithmic contributions from ln(M2/μ2) we
must choose the matching scale μ around M . Here we shall choose it μ = M . The
matching condition M(1)

eff,R = M(1)
R then gives:

3

2

λ2
eff(M)

(4π)2

m2
eff(M)

M2

[
ln

(
m2

eff(M)

M2

)
− 1

]

− C(1)
2 (M) + p2C̄(1)

0 (M)

= λ2(M)

(4π)2

[
3

2

m2(M)

M2 ln

(
m2(M)

M2

)

−1

2

m2(M)

M2 + 1 + 1

2

p2

M2

]
(11.38)
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Therefore we get to the following relations between the parameters of the full and
effective theory

λ(M) = λeff(M), m(M) = meff(M), (11.39)

for the mass and coupling and

C̄(1)
0 (M) = 1

2

λ2(M)

(4π)2M
, (11.40)

C(1)
2 (M) = −λ(M)

(4π)2

(
1 + m2(M)

M2

)
, (11.41)

for the coefficients. Onemust notice that the terms proportional to ln(m2/M2) cancel
exactly in the matching. This is a general feature of effective theories: both the
complete theory and the effective one have the same IR behaviour (thus also the
same IR divergences) and therefore, the IR divergences will always cancel in
the matching. In this case, if we wanted to take the limit m → 0 for the light field
φ, it would give rise to an IR divergent logarithm. However, this logarithm cancels
in the matching and our effective theory is IR safe (well defined in the limit m → 0).

Thus, after the matching we are left with the following effective Lagrangian

Leff =1

2

[
1 + 1

2

λ2
eff(μ)

(4π)2M2

]
(∂φ)2

− 1

2

[
m2

eff(μ) − λ2
eff(μ)

(4π)2

(
1 + m2

eff(μ)

M2

)]
φ2

− 1

4!

[
−3

λ2
eff(μ)

M2 + a
λ4

eff(μ)

(4π)2M4

]
φ4 + . . . , (11.42)

where a is determined by the matching given in the second line of Fig. 11.2 which
has been left as an exercise. The running parameters λeff(μ) and meff(μ) can be
calculated solving the RGEs with the initial conditions given by (11.39). The low
scale is usually chosen as μ2 ∼ m2. Note that the Lagrangian (11.42) doesn’t have
a canonically normalized kinetic term. In order to obtain the canonical kinetic term
and, therefore, use the standard Feynman rules we must perform a field redefinition:

φ → φ

√

1 − 1

2

λ2
eff(μ)

(4π)2M2 . (11.43)
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Thus, our final Lagrangian takes the form

Leff = 1

2
(∂φ)2 − 1

2

[
m2

eff(μ) − λ2
eff(μ)

(4π)2

(
1 + m2

eff(μ)

M2

)

−1

2

λ2
eff(μ)m2

eff(μ)

(4π)2M2

]
φ2 − 1

4!

[
−3

λ2
eff(μ)

M2

+ (3 + a)
λ4

eff(μ)

(4π)2M4

]
φ4 + . . .

≡ 1

2
(∂φ)2 − 1

2
m̄2

eff(μ) φ2 − 1

4! λ̄eff(μ) φ4 + . . . (11.44)

for which we can define the usual Feynman rules following the standard procedure
and that we can use for calculating scattering processes like φφ → φφwith one-loop
matching precision.

Further Reading

A. Pich, Effective Field Theory, arxiv:hep-ph/9806303
I. Stewart, Effective Field Theories Lecture Notes, http://pages.physics.cornell.edu/~ajd268/Notes/
EffectiveFieldTheories.pdf

C. Scrucca, Advanced Quantum Field Theory, http://itp.epfl.ch/files/content/sites/itp/files/users/
181759/public/aqft.pdf

A.J. Buras, Weak Hamiltonian, CP Violation and Rare Decays, arxiv:hep-ph/9806471
W. Skiba, TASI Lectures on Effective Field Theory and Precision Electroweak Measurements,
arxiv:org/pdf/1006.2142v1.pdf

http://arxiv.org/abs/arxiv:hep-ph/9806303
http://pages.physics.cornell.edu/~ajd268/Notes/EffectiveFieldTheories.pdf
http://pages.physics.cornell.edu/~ajd268/Notes/EffectiveFieldTheories.pdf
http://itp.epfl.ch/files/content/sites/itp/files/users/181759/public/aqft.pdf
http://itp.epfl.ch/files/content/sites/itp/files/users/181759/public/aqft.pdf
http://arxiv.org/abs/arxiv:hep-ph/9806471
http://arxiv.org/abs/arxiv:org/pdf/1006.2142v1.pdf


Chapter 12
Optical Theorem

Abstract The optical theorem can turn out to be a handy tool in calculating absorp-
tive (imaginary) parts of self-energies (or scattering amplitudes) or it can be a useful
cross check for some calculations. In this chapter we will explicitly deduce the stan-
dard form of the optical theorem and try to establish a robust and transparent notation.
We will also take an illustrative example and recover the well known Breit-Wigner
approximation for unstable particle propagators.

12.1 Optical Theorem Deduction

The scattering matrix S can be written as S = I − iM, where I is the identity
operator and M the transition matrix. The unitarity property of S guarantees that
S†S = I, to all orders in perturbation theory. Therefore, we can write the following:

S†S = (I + iM†)(I − iM) = I − iM + iM† + M†M = I. (12.1)

Thus:

i(M − M†) = M†M. (12.2)

Given an initial state |i〉 and a final state | f 〉, we have

i〈 f |(M − M†)|i〉 = 〈 f |M†M|i〉. (12.3)

Introducing the closure relation in between M† and M on the RHS of (12.3) we get

i〈 f |(M − M†)|i〉 =
∑̃

n

〈 f |M†|n〉〈n|M|i〉, (12.4)

© Springer International Publishing Switzerland 2016
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where |n〉 is a complete basis of orthogonal states, and where
∑̃

n is defined as

∑̃

n

≡
∑

n

1

(2π)3n j

∫ n j∏

l=1

d3 pl

2El
. (12.5)

In the previous expression n j represents the number of particles in the state |n〉. If
we suppose that the initial and final states are the same, then the LHS of (12.4) reads:

i〈i |(M − M†)|i〉 = i
[〈i |M|i〉 − 〈i |M†|i〉]

= i(2π)4δ(4)(Pi − Pi )
[Mi→i − M†

i→i

]

= −2Im
(Mi→i

)
(2π)4δ(4)(Pi − Pi ) (12.6)

where we have introduced the following notation:

〈 f |M|i〉 = (2π)4 δ(4)(P f − Pi ) Mi→ f . (12.7)

On the other hand, looking at the RHS of (12.4) we obtain the following:

∑̃

n

〈i |M†|n〉〈n|M|i〉 =
∑̃

n

〈n|M|i〉†〈n|M|i〉

=
∑̃

n

(
(2π)4δ(4)(Pi − Pn)

)2|Mi→n|2. (12.8)

Thus, combining (12.8) and (12.6) we obtain the standard form of the Optical The-
orem:

−2Im(Mi→i ) =
∑

n

1

(2π)3n j −4

∫ n j∏

l=1

d3 pl

2El
δ(4)(Pi − Pn)|Mi→n|2. (12.9)

If the initial state is a two-particle state (a + b), the theorem takes the form1:

−2 Im(Mi→i ) = 2λ1/2(s, m2
a, m2

b)
∑

n

σ(a + b → n)

= 2λ1/2(s, m2
a, m2

b)σ(a + b → all), (12.10)

What the previous expression states is that, except for the λ1/2(s, m2
a, m2

b) factor and
a global sign, the absorptive (imaginary) part of the transition matrix is equal (order
by order in perturbation theory) to the sum of the cross sections describing all the
possible final states originated by the initial two body scattering. Schematically:

1See Chap.3 for definitions of decay rates and cross sections.

http://dx.doi.org/10.1007/978-3-319-22966-9_3
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Im ∼ ∑ .
.
.

2

If the initial state is a one-particle state (a), then we can relate self-energies with
decay widths:

Im ∼ ∑

2

.

.

.

Therefore, the imaginary part of the self-energy is proportional to the total decay
width of the particle:

−2Im(Mi→i ) = 2
√

k2
∑

n

Γ (a → n) = 2
√

k2 Γ (a → all) ≡ 2
√

k2 Γa(k2),

(12.11)

where k2 and Γa are the squared four-momentum and the total decay width of the
particle a. Note that in the previous equation we have written

√
k2 instead of the

mass ma . This is because, on the LHS of the previous equation, we have the self-
energy amplitude of a particle that is not necessarily on-shell (k2 �= m2

a in general).
Thus, the total decay width must also be expressed as a function of

√
k2 and not of

ma . This will be better understood with a latter example.
Therefore, (12.11) justifies the Breit-Wigner approximation of the propagator of

an unstable particle. Consider for example the propagator of a scalar particle φ.
After accounting for loop effects and renormalizing, the propagator contains the
renormalized2 two point function Π R

φ (k2):

i

k2 − M2 + Π R
φ (k2)

= i

k2 − M2 + ReΠ R
φ (k2) + i Im Π R

φ (k2)
. (12.12)

As a first order approximation, we can ignore the real part of the two-point function
and we obtain the well-known expression:

i

k2 − M2
φ + i

√
k2Γφ(k2)

≈ i

k2 − M2
φ + i MφΓφ

. (12.13)

2See Chap.7 for more details on renormalization.

http://dx.doi.org/10.1007/978-3-319-22966-9_7
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As we have already mentioned in Chap.7, this term does not need renormalization
thus, the previous approximation is renormalization scheme independent! We shall
try to clarify all possible doubts with the next explicit one-loop example.

12.2 One-Loop Example

Consider a Higgs-like scalar particle φ with the usual Yukawa interaction

L(x) = −m f

v
φ(x) f̄ (x) f (x), (12.14)

where v is the electroweak symmetry breaking scale and m f the mass of the fermion.
The optical theorem in this case, states that the imaginary part of the self-energy
(given by a fermionic loop) is proportional to it’s decay width to fermions:

Im ∼

2

φ

f f

f̄

φ

The decay width is straightforward to compute. It is given by:

Γ (φ → f f̄ ) = 1

8π

m2
f

v2
Mφ

(
1 − 4m2

f

M2
φ

)3/2

. (12.15)

The self-energy is also rather trivial. Taking the following configuration of momenta

i Π(q2) =
q

k + q

k

≡ −i M

we obtain the following expression for the two-point function:

iΠ(q2) = −m2

v2

∫
d Dk

(2π)D

T r{(/k + /q + m f )(/k + m f )}
(k2 − m2

f + iε)[(k + q)2 − m2
f + iε] . (12.16)

Note that we have explicitly written down the iε regulator of the Feynman propagator
because for this calculation it will play a important role (it should not be mistaken

http://dx.doi.org/10.1007/978-3-319-22966-9_7
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with ε = D−4
2 where D is the number of space-time dimensions). Using the loop

functions defined in the previous chapters we obtain

Πε = 12m2
f

(4πv)2
μ2ε

(
m2

f − q2

6

)
1

ε̂
,

ΠR(q2) = 12m2
f

(4πv)2

(
q2

18
− m2

f

3
+

∫ 1

0
dx a2 ln

(
a2

μ2

))
, (12.17)

with a2 ≡ −q2x(1− x) + m2 − iε and where we have separated the regular and the
UV-divergent parts as in the MS scheme (for simplicity). We can now use this result
to explicitly check on the optical theorem. The only piece of the self-energy Π(q2)

that can develop an imaginary part is given bellow:

T (q2) = 12m2
f

(4πv)2

∫ 1

0
dx a2 ln

(
a2

μ2

)

= 12m2
f

(4πv)2

∫ 1

0
dx [−q2x(1 − x) + m2

f ] ln
(−q2x(1 − x) + m2

f − iε

μ2

)
.

(12.18)

In order to find the imaginary part we have to find the roots of the equation:

−q2x(1 − x) + m2
f = 0 ⇒ x1,2 = 1

2
± 1

2

√

1 − 4m2
f

q2 . (12.19)

In the region in between x1 and x2 the only imaginary part of the logarithm is the
one originated by the −iε term and it is ±iπ depending on the sign conventions we
adopt. Here we will choose it −iπ. Thus

−π
12m2

(4πv)2

∫ x1

x2
dx [−q2x(1 − x) + m2

f ] = 1

8π

m2
f

v2
q2

(
1 − 4m2

f

q2

)3/2

. (12.20)

Comparing with (12.15), we finally obtain:

Im Π(q2) =
√

q2 Γ (q2) = −Im(M), (12.21)

which is exactly what we were intending to prove.
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Further Reading

C. Itzykson, J. Zuber, Quantum Field Theory
M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory
V. Ilisie, S.M. Higgs Decay and Production Channels, http://ific.uv.es/lhcpheno/PhDthesis/master_
vilisie.pdf

L.H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1985)
T.P. Cheng, L.F. Li,Gauge Theory of Elementary Particle Physics (OxfordUniversity Press, Oxford,
1984)

F. Mandl, G.P. Shaw, Quantum Field Theory
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Appendix A
Master Integral

Consider the integral J (D,α,β, a2) defined in (6.1):

J (D,α,β, a2) ≡
∫

d Dk

(2π)D

(k2)α

(k2 − a2)β
. (A.1)

Given a four-vector kμ we introduce the following Euclidean quantities (this is often
called a Wick rotation):

kμ = (k0, k) = (ik0E , kE ). (A.2)

Therefore, we find the following:

k2 = (k0)2 − k2 = −(k0E )2 − k2
E ≡ −k2E , (A.3)

dk0 = idk0E , (A.4)

d Dk = id DkE . (A.5)

We can thus, write (A.1) in terms of the previously introduced parameters

J (D,α,β, a2) = i
∫

d DkE

(2π)D

(−1)α(k2E )α

(−k2E − a2)β

= (−1)α−βi
∫

d DkE

(2π)D

(k2E )α

(k2E + a2)β
. (A.6)

Let’s now consider the following integral in spherical coordinates:

∫ +∞

−∞
d Dx =

∫
dΩD

∫ ∞

0
d|x ||x |D−1 ≡ SD

∫ ∞

0
d|x ||x |D−1, (A.7)
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where we have defined SD ≡ ∫
dΩD and where ΩD is a solid angle. Using

√
π =

∫ +∞

−∞
dxe−x2 ,

∫ ∞

0
dxx D−1e−x2 = 1

2
Γ (D/2), (A.8)

we obtain that (
√

π)D can be written as

(
√

π)D =
(∫ +∞

−∞
dxe−x2

)D

≡
∫ +∞

−∞
d Dxe−x2

=
∫

dΩD

∫ ∞

0
dxx D−1e−x2

= SD

2
Γ (D/2). (A.9)

Thus SD is simply given by SD = 2πD/2/Γ (D/2). Introducing the previous result
we can now write (A.6) as:

J (D,α,β, a2) = 2i(−1)α−βπD/2

(2π)DΓ (D/2)

∫ ∞

0
d|kE ||kE |D−1 |kE |2α

(|k2E | + a2)β

= 2i(−1)α−β

(4π)D/2Γ (D/2)

∫ ∞

0
d|kE | |kE |2α+D−1

(|k2E | + a2)β
. (A.10)

All we have left to do is to find the solution to the remaining integral

K ≡
∫ ∞

0
d|kE | |kE |2α+D−1

(|k2E | + a2)β
. (A.11)

Performing a change of variable

z ≡ a2

(|kE |2 + a2)
, (A.12)

we find:

lim|kE |→∞ z = 0, lim|kE |→0
z = 1, dz = − 2a2|kE |

(|kE |2 + a2)2
d|kE |. (A.13)
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Thus, we can write |kE | and d|kE | as

|kE | =
(

a2

z
(1 − z)

)1/2

, d|kE | = −1

2
dz(1 − z)−1/2(a−2)

(
a2

z

)3/2

.

(A.14)

The integral K in terms of the new variable takes the form

K = −
∫ 0

1

1

2
dz(a2)α−β+D/2zβ−α−D/2−1(1 − z)α+D/2−1

=
∫ 1

0

1

2
dz(a2)α−β+D/2zβ−α−D/2−1(1 − z)α+D/2−1. (A.15)

Therefore the expression (A.10) becomes

J (D,α,β, a2) = i(−1)α−β(a2)α−β+D/2

(4π)D/2Γ (D/2)

∫ 1

0
dzzβ−α−D/2−1(1 − z)α+D/2−1.

(A.16)

Introducing the Euler Beta function,

B(m, n) =
∫ 1

0
dzzm−1(1 − z)n−1 = Γ (m)Γ (n)

Γ (n + m)
, (A.17)

taking m = β − α − D/2, n = α + D/2 we finally obtain the expression that we
were looking for:

J (D,α,β, a2) = i

(4π)D/2 (a2)D/2(−a2)α−β Γ (β − α − D/2)Γ (α + D/2)

Γ (β)Γ (D/2)
.

(A.18)



Appendix B
Renormalization Group Equations

In the following we present a compendium of useful formulae regarding the renor-
malization group equations (RGEs) for the coupling constant, mass and a generic
Green function.

B.1 Beta Function

Consider a model with one expansion parameter α, i.e., the QED Lagrangian intro-
duced in Chap.7. After including quantum corrections we need to perform renor-
malization. If α0 is the bare parameter and α is the renormalized one, we have learnt
that both parameters are related through a renormalization constant, say Zα that we
shall define as

α0 = Zαα, (B.1)

(in the QED case for example, we have Zα = Z−1
3 ). As the renormalization con-

stants are renormalization scale dependent (proportional to a μ2ε factor) and the bare
parameter is μ-independent, we conclude that the renormalized parameter must also
depend on μ so that the product Zαα is scale independent:

α0 = Zα(μ)α(μ) . (B.2)

In order to find the scale dependence of the renormalized coupling we differentiate
with respect to μ on both sides of the previous equation:

μ
dα0

dμ
= 0 = μZα

dα

dμ
+ μα

d Zα

dμ
. (B.3)
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The previous equation is called the RGE for the coupling constant. Defining the β(α)

function as

β(α) ≡ − μ

Zα

d Zα

dμ
, (B.4)

we can write the RGE for α in the standard form

μ
dα

dμ
= αβ(α) . (B.5)

The β function is called the anomalous dimension of the coupling and it can be
perturbatively expanded as:

β(α) = β1

(α

π

)
+ β2

(α

π

)2 + . . . =
∑

i=1

βi

(α

π

)i
. (B.6)

where the i index stands for the loop order. We can now proceed to find the pertur-
bative solution to (B.5):

ln

(
μ

μ0

)
=

∫ α(μ)

α(μ0)

1

β(α)

dα

α

=
∫ α(μ)

α(μ0)

1

β1
α

π
+ β2

(α

π

)2 + . . .

(
dα

α

)

≈ 1

α(μ0)

α(μ) − α(μ0)

β1
α(μ0)

π
+ β2

(
α(μ0)

π

)2

+ . . .

(B.7)

Rearranging terms we obtain the following

α(μ) = α(μ0)

[
1 + β1

2

(
α(μ0)

π

)
ln

(
μ2

μ2
0

)
+ β2

2

(
α(μ0)

π

)2

ln

(
μ2

μ2
0

)
+ . . .

]

(B.8)

Resumming the logarithms to all orders we get

α(μ) = α(μ0)

1 − β1

2

(
α(μ0)

π

)
ln

(
μ2

μ2
0

)
− β2

2

(
α(μ0)

π

)2

ln

(
μ2

μ2
0

)
− . . .

, (B.9)

which describes the running of the coupling α with the renormalization scale μ.
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B.2 Gamma Function

Let’s now consider the mass renormalization. If the bare mass parameter is m0 and
the renormalized one is m = m(μ) we define Zm as

m0 = Zm(μ)m(μ) . (B.10)

Following the same procedure as before, we find the RGE equation for the renor-
malized mass to be

μ
dm

dμ
= −mγ(α) , (B.11)

where we have defined the gamma function (called anomalous mass dimension) as

γ(α) ≡ μ

Zm

d Zm

dμ
. (B.12)

Similar to the previous case it can be expanded as

γ(α) = γ1

(α

π

)
+ γ2

(α

π

)2 + . . . =
∑

i=1

γi

(α

π

)i
. (B.13)

Manipulating the expression (B.11) and inserting (B.5) we get to the following:

dm

m
= −dμ

μ
γ(α) = −dα

α

γ(α)

β(α)
. (B.14)

Integrating we obtain the following result:

m(μ) = m(μ0) exp

{
−

∫ α(μ)

α(μ0)

dα

α

γ(α)

β(α)

}

= m(μ0) exp

⎧
⎪⎨

⎪⎩
−

∫ α(μ)

α(μ0)

dα

α

γ1

(α

π

)
+ γ2

(α

π

)2 + . . .

β1

(α

π

)
+ β2

(α

π

)2 + . . .

⎫
⎪⎬

⎪⎭
. (B.15)

Truncating at the two-loop order we find:

γ1

(α

π

)
+ γ2

(α

π

)2

β1

(α

π

)
+ β2

(α

π

)2 =
γ1 + γ2

(α

π

)

β1 + β2

(α

π

) = γ1

β1
+

(
γ2

β1
− β2γ1

β2
1

)(α

π

)
+ O(α2).

(B.16)
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With the previous approximation we find

m(μ) = m(μ0) exp

{∫ α(μ)

α(μ0)

[
dα

α

(
−γ1

β1

)
+ dα

(
β2γ1 − β1γ2

πβ2
1

)]}

≈ m(μ0)

[
α(μ)

α(μ0)

]−γ1/β1
{
1 + β2γ1 − β1γ2

πβ2
1

(α(μ) − α(μ0))

}
, (B.17)

where we have used eA+B = eAeB , eB ln A = AB , and the approximation eε =
1+ ε+ O(ε2). Thus, the running mass with two-loop order precision is simply given
by:

m(μ) = m(μ0)

[
α(μ)

α(μ0)

]−γ1/β1 {
1 + β2

β1

(
γ1

β1
− γ2

β2

)
α(μ) − α(μ0)

π

}
. (B.18)

B.3 Generic Green Function

Finally let’s consider an arbitrary Green function Γ (pi ,α, m), where pi are the
incoming/outgoing momenta. For simplicity we shall consider that the previous
Green function only depends on one coupling α and one mass m. As usual, the
bare Green function Γ0(pi ,α, m) and the renormalized one Γ (pi ,α, m,μ) can be
related through a renormalization constant:

Γ0(pi ,α, m) = ZΓ (μ)Γ (pi ,α, m,μ). (B.19)

The RGE for Γ (pi ,α, m,μ) is then given by:

(
μ

d

dμ
+ γΓ (α)

)
Γ (pi ,α, m,μ) = 0, (B.20)

where we have introduced the generalized gamma function1 as:

γΓ (α) ≡ μ

ZΓ

d ZΓ

dμ
. (B.21)

The dependence on the scale μ can be made more explicit by introducing the β and
γ functions:

1It is worth mentioning that when using mass-independent renormalization schemes γΓ only
depends on the coupling α and this is the case we are going to consider here.
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(
μ

∂

∂μ
+ β(α)α

∂

∂α
− γ(α)m

∂

∂m
+ γΓ (α)

)
Γ (pi ,α, m,μ) = 0. (B.22)

In order to find the solution to this equation one can proceed as in the previous section
and trade the μ dependence by α. We simply obtain

Γ (pi ,α, m,μ) = Γ (pi ,α(μ0), m(μ0),μ0) exp

{
−

∫ α(μ)

α(μ0)

dα

α

γΓ (α)

β(α)

}
, (B.23)

which can be perturbatively solved at any loop-order, just as in the previous cases.



Appendix C
Feynman Rules for Derivative Couplings

The formal steps to derive the Feynman rules from the interaction Lagrangian for
normal vertices is straightforward and nicely presented in the literature. Herewe shall
only present a trick, useful to derive the Feynman rules corresponding to vertices that
contain derivatives of the fields (and correctly assign the corresponding momenta).
Consider the Scalar QED interaction Lagrangian given by

L = ieAμ H+←→
∂μ H− = ieAμ

(
H+∂μH− − (∂μH+)H−)

. (C.1)

We know fromWick’s theorem that H− describes an ingoing particle or an outgoing
antiparticle, also that H+ describes an ingoing antiparticle or an outgoing particle.
Let’s now consider we want to write down the Feynman rule corresponding to the
following process H−(p) → H−(q)γ(p−q) shown in the Feynman diagram below

p

q

H−

H−

Aµ

p− q

As we also know, in momentum space e−i p·x describes an ingoing particle (antipar-
ticle) with momentum p and eip·x describes an outgoing particle (antiparticle) with
momentum p. Thus, substituting the fields from the interaction Lagrangian by their
corresponding exponentials, assigning the momenta shown in the previous Feynman
diagram we get

L = ieei(p−q)·x(eiq·x∂μe−i p·x − (∂μeiq·x )e−i p·x)

= e(p + q)μ. (C.2)
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Multiplying by an i factor (which comes from the S matrix expansion) we obtain the
corresponding Feynman rule for this vertex

ie(p + q)μ . (C.3)

Using the same trick one finds that H+(p) → H+(q)γ(p − q) is given by the
following Feynman rule

−ie(p + q)μ . (C.4)

This can be easily extended to any configuration of momenta and to any Lagrangian
containing termswith derivative couplings. It very usual to find for example Feynman
rules for triple gauge vertices (or similar) i.e., the triple gluon vertex given at the end
of Chap.5, where all momenta are incoming (which seems to violate momentum
conservation). It is done like that for simplicity. Depending on the assignation of
momenta for the process that one analyses, one must simply invert the necessary
signs of the momenta to convert particles/antiparticles from incoming to outgoing.

Further Reading
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