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Preface

RoboCup 2003, the 7th Robot World Cup Soccer and Rescue Competitions and
Conferences, was held at PadovaFiere, in Padua, Italy during July 2–11, 2003.
Following the trend established in recent years, the competition continued to
grow, with 244 teams from 30 countries making up the 1244 participants. These
teams were distributed across different leagues, where each league conducted
one or more competitions. The league reports contained in this book summarize
the scientific advancements made in each league as well as the results of the
competition. Additionally, the supplemental CD coupled with this book contains
the Team Description Papers for each team competing in RoboCup. The leagues,
in alphabetical order, were:

RoboCup Humanoid League
RoboCup Junior League soccer, rescue, and dance competition
RoboCup Legged League
RoboCup Middle-Size League
RoboCup Rescue Real Robot League
RoboCup Rescue Simulation League
RoboCup Simulation League soccer, coach, and visualization competition
RoboCup Small-Size League

This book begins with an overview over the RoboCup competition together with
a vision statement for the future development of RoboCup until 2050 and three
invited papers by internationally leading researchers of the robotics field. The
core part of the book contains papers accepted for oral or poster presentation at
the International RoboCup Symposium 2003, which was held directly after the
RoboCup competitions. The RoboCup team descriptions which, traditionally,
have been part of the proceedings are now provided on a supplementary CD.
This enabled us to allocate significantly more space for the fast-growing number
of participating teams, thus rendering the team descriptions more informative
and thus valuable.

Of the 125 symposium paper submissions received, an increase of 64% over
RoboCup 2002, 39 papers were accepted for oral presentations and 35 papers
were accepted for poster presentations. The International Program Commit-
tee, which contained both RoboCup researchers from around the world as well
as researchers from outside the community, selected two papers for the jointly
awarded RoboCup Engineering Challenge, and one paper for the RoboCup Sci-
entific Challenge Award. The award winners were:

Scientific Challenge Award awarded to Andrea Miene, Ubbo Visser and
Otthein Herzog (University of Bremen, Germany) for Recognition and Pre-
diction of Motion Situations Based on a Qualitative Motion Description.
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Engineering Challenge Award awarded to Daniel Cameron and Nick Barnes
(University of Melbourne, Australia) for Knowledge-Based Autonomous Dy-
namic Color Calibration, and to Michael J. Quinlan, Craig L. Murch, Richard
H. Middleton, and Stephan K. Chalup for Traction Monitoring for Collision
Detection with Legged Robot.

For the keynote speakers, five internationally renowned researchers accepted our
invitation to present special talks at the RoboCup Symposium. The speakers
were:

Manuela Veloso, Carnegie Mellon University, USA
Masahiro Fujita, SONY ID Lab, Japan
Ulrich Nehmzow, University of Essex, UK
Paolo Dario, University of Pisa, Italy
Maja Mataric, University of Southern California, USA

As a final note, the editors of this book are grateful to Enrico Pagello, PadovaFiere,
and the RoboCup Federation for making the RoboCup Symposium and RoboCup
2003 as a whole, possible. The next international RoboCup event will be held
in Lisbon, Portugal in 2004, followed by RoboCup 2005 in Osaka, Japan. All
details regarding RoboCup 2004 can be found at http://www.robocup2004.pt or
at the main RoboCup website http://www.robocup.org.

July 2003 Daniel Polani
Brett Browning

Andrea Bonarini
Kazuo Yoshida
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Overview of RoboCup 2003 Competition
and Conferences

Enrico Pagello, Emanuele Menegatti*, Ansgar Bredenfeld, Paulo Costa,
Thomas Christaller, Adam Jacoff, Jeffrey Johnson, Martin Riedmiller,

Alessandro Saffiotti, and Takashi Tomoichi

Intelligent Autonomous Systems Laboratory (IAS-Lab)
Department of Information Engineering, Faculty of Engineering

University of Padua, Padova, Italy
emg@dei.unipd.it

1 Introduction

RoboCup 2003, the seventh RoboCup Competition and Conference, took place
between July the 2nd and July the 11th 2003 in Padua (Italy). The teams had
three full days to setup their robots. The competitions were held in the new
pavilion n°7 of the Fair of Padua (Fig. 1). Several scientific events in the field
of Robotics and Artificial Intelligence were held in parallel to the competitions.
The RoboCup Symposium was held in the last two days. The opening talks took
place in the historical Main Hall of the University of Padua and the three parallel
Symposium sections in the conference rooms of the Fair of Padua.

Fig. 1. The entrance of the RoboCup-2003 Competition Site.

* Corresponding author.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 1–14, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 2. The ancien Main Hall of The University of Padua where the opening talks of
the RoboCup-2003 Symposium took place.

RoboCup was born with the goal of “building by 2050, a team of fully au-
tonomous humanoid robot to beat the human winning team of the FIFA Soccer
World Cup”. This is a long term goal that someone saw as Utopian or with a
limited scientific appeal, but in the mind of the promoters of RoboCup, this is
a mean to foster Robotics and AI research among the scientists, the students,
and the general public. RoboCup already produced the result of disseminat-
ing interest and knowledge about Robotics and Artificial Intelligence. This is
witnessed by the ever increasing number of people and institutions that get in-
volved in RoboCup and by the offspring of new initiatives within the RoboCup
community. RoboCup is no longer only the Soccer World Cup for autonomous
robots, but it is a container for different robotics event: Soccer Robotics, Rescue
Robotics, Educational Robotics and a Scientific Symposium on Robotics.

RoboCup 2003 was a new record milestone in the history of robotic events.
We had 243 teams for a total of 1244 registered participants coming from more
than 30 countries from four of the five Continents, the only missing was Africa.
Fig. 3 gives a clear understanding of the tremendous growth of the number of
participants along the years. During RoboCup 2003, a small industrial exhibit
took place, where some international companies showed their commercial and
research products. Among the others, we had the presence of COMAU one of
the few “total” suppliers for the automotive industry of automation systems.
COMAU has a long tradition in the robotics and automation industry. Another
important exhibitor was “Polo Robotico di Genova” a research and technological
Consortium of Genoa (Italy).
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Fig. 3. The trend in the number of participating teams in the RoboCup Competitions.

2 RoboCup Symposium and Correlated Scientific Events

The RoboCup 2003 Symposium opened up in the ancient Main Hall of The
University of Padua. This is the hall where Galileo Galilei tought and Manuela
Veloso gave her invited talk on the evolution and achievements of seven years
of RoboCup, under the family crests of the ancient students of the University
of Padua. The organisers wanted a female researcher to open the Symposium to
commemorate Elena Lucrezia Cornaro Piscopia, the first graduated woman in
the world, that graduated in Philosophy at the University of Padua in 1678.

The second invited talk was from Masahiro Fujita who gave an overview of
humanoid robots developed in Japan with an impressive demonstration of the
new prototype of companion humanoid robot of Sony.

The other two invited talk where held in the Conference Center of the Fair of
Padua and were given by Ulrich Nehmzow, on the use of chaos theory in the study
of the interactions between the robot and its environment, and by Paolo Dario, a
President of the Robotics and Automation Society of IEEE, on the use of robotics
in medicine and other application fields. The invited talks were completed by
Maja Mataric talking about multi-robot cooperation, unfortunately this was just
a video contribution, because she could not attend the Symposium.

For the first time in the history of RoboCup, the number of papers selected
for oral presentation and the number of Symposium attendants were so high,
the organisers decided to split the Symposium on three parallel tracks.

The Symposium was closed by the RoboCup roadmap discussion. The road-
map discussion is aimed to identify the intermediate milestone to be reached in
the next five, ten or twenty years in order to achieve the final goal of 2050. The
roadmap discussion was only started in Padua and it continued by e-mail after
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Padua and was finalised in Blaubeuren (Germany) in October 2003 (as detailed
in the Roadmap Discussion contribution in this book).

Several parallel scientific events took place during RoboCup2003. The mostly
articulated event was the Japan-Italy bilateral seminar organised by JSPS
(Japanese Society for the Promotion of Science) and CNR (National Research
Council of Italy). This seminar was chaired by Minoru Asada and Enrico Pag-
ello and lasted three days. The schedule of the seminar was dense of talks and
panel discussion. One of the results of the bilateral seminar was the participants
pinpointed a set of “hot” and promising topics in which to start joined project
between Italian and Japanese research centers. The most promising topics were
identified as Rescue Robotics and standardised Simulation Environment for Mo-
bile Robots.

We had also two one-day Conferences: one on Multi-robot systems: trends and
industrial applications organized by SIRI (the Italian Association for Robotics
and Automation) and chaired by Giuseppina Gini and Rezia Molfino and an-
other one on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster
chaired by Daniele Nardi.

3 Results of Competitions

As we said in the introduction, nowadays the RoboCup competitions are di-
vided in three main branches: RoboCup Soccer, RoboCup Rescue and RoboCup
Junior.

3.1 RoboCup Soccer

Soccer Simulation: This year, the games of Soccer Simulation league showed
a big advance in the performances of the teams. For the first time in the history
of the Simulation League, all games were started automatically. This resulted
in the possibility to have a very tight time schedule with the possibility to play
more games during the tournament. The automatic start of the game forced the
developers to provide more autonomy to their teams (e.g. by effectively using
the ‘coach’). From 56 teams that were qualified, 46 teams participated in the
tournament. In the first round, 8 groups of 5 to 6 teams participated, from
which the first 3 teams of each group advanced. All participating teams showed
a good level of individual skills. The teams that advanced to the second round
additionally showed a good level on team play abilities. In the second round, 4
groups of 6 teams played, from which again the first 3 advanced. For the first
time, a 3rd round was also played in groups. The level of play of the last 12
teams this year was very mature and close to each other. Unlike in previous
years, games often were not decided until the end. Most of the games where
decided just by one or two goals. Exciting games happened among the teams. In
Fig. 4 are reported the results of the final stage of the tournament. The winning
teams of the soccer tournament were: first place: UVA Trilearn (Netherlands),
second place: Tsinghuaelous (China), third place: Brainstormers (Germany). The
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winners of the online coach competition were: UT Austin Villa (USA) first place,
and FC Portugal (Portugal), second place. The winner of game presentation and
analysis competition was the team Caspian (IRAN).

In the word of the organising chair of the Soccer Simulation league “the
top teams showed mature capabilities in team play, in stamina management, in
active vision, in the use of heterogeneous players and communication. The main
reason for the successfulness of the winning teams is a highly elaborated software
design that considers all of the above issues”1.

Fig, 4. The results of the games of the final phase of the Soccer Simulation League
tournament.

Four-Legged League: The RoboCup four-legged league began in 1998, and it
was managed by Sony until 2002. In 2003, the management of the league was
taken over by the RoboCup Federation for the first time. The transition went
rather smoothly, thanks to the kind help received from Sony. In RoboCup 2003,
24 teams from 15 countries participated in the Four Legged League. Teams were
evenly distributed across continents, except Africa: 8 coming from Europe, 7 from
the USA, 5 from Asia, and 4 from Australia. The teams were divided into 4 pools
of 6 teams each. The games were organized in a preliminary round robin phase,
followed by a single elimination championship tournament. The winning team
was rUNSWift (Australia). This team was already champion in 2000 and 2001,
and 2nd place in 2002. UPennalizers (USA) placed second, and NUbots (Aus-
tralia) third. This year the Sony Prize was awarded to rUNSWift (Australia).
The winners of the technical challenge competition are first place German Team
(Germany), second place rUNSWift (Australia), third place Araibo (Japan).

In the four-legged league, two different philosophies of robot programming
are measuring them-self, i.e. learned behaviours and controls vs. hand-coded

1 E. Pagello, E. Menegatti, D. Polani, A. Bredenfel, P. Costa, T. Christaller, A. Jacoff,
M. Riedmiller, A. Saffiotti, E. Sklar, and T. Tomoichi. Robocup 2003: New scientific
and technical advancements. AI Magazine, (to appear), 2004.
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Fig. 5. A phase of a game of the Four-Legged League tournament.

Fig. 6. The results of the games of the final phase of the Four-Legged League
tournament.

robot programs. In the Four-Legged League the research focus is shifting from
lower-level functionalities to higher level skills like planning, coordination, and
adaptation. Most teams in 2003 used some form of multi-robot cooperation,
including dynamic role assignment and information sharing. In fact, most teams
showed fast and stable walking, accurate ball control, reliable ball perception,
and good self-localization. This is derived also from the code sharing policy
adopted by the league. “A drawback of this policy is a potential reduction in
diversity, since many teams prefer to improve on existing successful techniques
rather than try to invent radically new ones” as written by the organising chair
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of the Four-Legged League2. Code sharing is possible because, all teams uses a
common platform: the Sony AIBO robot. This year there was three technical
challenges: 1) to score with a black and white soccer ball in an empty field; 2)
to visit 5 points defined by their coordinates with the colored landmarks
removed; 3) to traverse the field while avoiding collisions with 7 static robots.
The result of the first challenge was rather deceiving. Only 9 teams out of the 20
who tried the challenge managed to perceive the ball and to make contact with
it. The second challenge showed that localization without colored landmarks can
be achieved, and several teams managed to get around the target points. The
third challenge was much more successful, showing that the league is ready to get
more serious about collision avoidance. Of the 20 teams who tried this challenge,
none collided with more than 3 obstacles.

Small-Size League: This year competition saw 20 teams from all over the
world. The results of the final stage of the tournament is reported in Fig. 8.
This year there was no quarter finals because there was a second round robin
with four groups of three teams. The winners of each group progressed to the
semifinals. This was to maximize the games for each team while minimizing field
changes. In Small Size League field changes are hard because the teams have to
unmount, mount and recalibrate their cameras.

Fig. 7. A phase of a game of the Small Size League tournament.

The winners were: first place, BigRed’03 from Cornell University U.S.A.,
second place RoboRoos from The University of Queensland, Australia and third
place FU Fighters Freie Universität Berlin, Germany.
2 ibidem.
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This year a “referee box” was introduced, i.e. all commands which the referee
can communicate to the teams, were sent directly to the software controlling
each robot team from a laptop operated by the assistant referee. The result was
that there was no human intervention during the game and the game flow was
greatly improved. All teams used one or two cameras, placed 3m above the field
to extract the position of the ball and of the robots.

Fig. 8. The results of the games of the final phase of the Small Size League tourna-
ment.

This year there was a certain convergence on the robot design as most teams
adopted an optimized solution. Almost all teams used omnidirectional wheels
with three or four of those wheels per robot. The additional maneuverability of
this solution made the two-wheel configuration almost obsolete on this league.
Most top teams focused on having an efficient dribbler and kicker. A dribbler is
a set of rotating rubber cylinders that transmits a backspin to the ball keeping
it almost glued to robot even when it is travelling on the field. It was a general
concern that this feature was overused and some kind of limitation should be
imposed for next years’ competitions.

Middle-Size League: The Middle-Size tournaments saw 24 teams from 11
countries participating in 2003. Although 32 teams qualified for the games, fi-
nally 8 teams could unfortunately not take part. The main reason was lack of
financial resources or not-finished robots. Only a few teams did not take part
due to missing student resources. The tournament was played on four fields,
thus opening the opportunity to play four games in parallel using one hour time
slots. The organizing committee decided to play two round robins in order to
maximize the number of games for each team. The results of the final section of
the tournament are reported in Fig. 10

As pre-condition for qualification, each team had to submit a team descrip-
tion paper. These papers concentrate on the research focus of the team. All
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Fig. 9. A picture of the match between the AIS-Musashi team and the AllemaniACs
team in the Middle-Size League.

hardware and software details of the robots - which had been included in the
team description paper in the last years - were collected systematically by a
newly introduced Team Questionnaire. The intention of the Questionnaire is to
support information exchange between existing teams and to lower the entrance
barrier for new teams that want to join the Middle-Size-League. In addition, the
material collected in the Questionnaire provides a concise overview of the meth-
ods and technologies used by the teams. The questionnaires of all participating
teams are contained on the CD-ROM of this book.

A larger field of play (i.e.  and removed poles around the field
were the major rule changes for 2003. Nearly all participating teams did not
have problems with this changed field set-up. The security bar around the field
turned out to be suitable and sufficient to prevent robots from leaving the field.

The challenge competition consisted of two challenges. Challenge 1 was per-
formed as described in the Middle-Size-League rules of 2003. The team leaders
decided during the tournament to perform the second part of the challenge
competition as free challenge. The free challenge was a five minutes oral pre-
sentation and a short demonstration of innovative results each team wanted to
demonstrate. A jury consisting of all team leaders voted on the performance of
this challenge and awarded points from 0 to 6 to each presentation. Some teams
demonstrated challenges like proposed in the rules, i.e., co-operative behavior
or the ability to play with a standard FIFA ball. Other teams gave an insight
into ongoing research, new robot developments or special behaviour capabilities
of their robots. This includes for example studies on new ball stopping mecha-
nisms, robots playing continuously passes or soccer playing behaviors that had
been evolved in a physical robot simulator. The winner was the team Attempto!
Tübingen from Germany.
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Fig. 10. The results of the games of the final phase of the Middle Size League
tournament.

Playing the challenge competition at the end of the tournament turned out to
be problematic, since not all teams were able to participate. The main reason was
broken robots. In future, it should be considered to have the challenges before
the start of the round robin and to use their results at least as an additional
criterion for the assignment of teams to groups for the first round robin.

Humanoid League: Started in the previous year, the Humanoid League is still
rapidly developing. The Humanoid league has different research issue to face with
respect to the other leagues. The main difference is that the dynamic stability of
robots needs to be well maintained while the robots are walking, running, kicking
and performing other tasks. Furthermore, the humanoid soccer robot will have
to coordinate perceptions and biped locomotion, and be robust enough to deal
with challenges from other players. Test-games could be performed. However, the
competition consisted of four non-game disciplines, namely standing on one leg,
walking, penalty kick and free style. A number of excellent robots were presented
in the competition.

After a good competition with tight results the team HITS-Dream of the
Honda International Technical School’s received the Best Humanoid Award.
In the Walk Competition HITS-Dream (Japan) won the first place, Senchans
(Japan) the second place, and Foot-Prints (Japan) the third place. In the
Penalty-Kick Competition, Foot-Prints (Japan) ranked first in the class of the
robot shorter than 40cm and Senchans (Japan)ranked first in the class of the
robot under the 80cm. In the Free Performance Competition the winner was
Robo Erectus (Singapore), the second place was of Isaac (Italy) and the third
place of Tao Pie Pie (Canada).

Humanoid soccer robots are complex machines, which should have advanced
abilities from very different fields of technology, namely materials, locomotion,
manipulation, power, communication, perception and intelligence.
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Fig. 11. A picture of the five minutes talk allowed to the teams for explaining the free
performance their are about to demonstrate in the Middle-Size League.

Fig. 12. A picture of a game in Humanoid League Soccer Competition.

3.2 RoboCup Junior

RoboCup Junior 2003 involved 74 teams (258 participants) from 16 countries
world-wide. In Padua, teams could enter four different challenges: one-on-one
soccer, two-on-two soccer, dance and rescue. Three different age groups were



12 Enrico Pagello et al.

Fig. 13. A picture of a game in RoboCup Junior Soccer Competition.

represented: primary (up to age 12), secondary (age 12-18, or end of high school)
and undergraduates. The biggest changes in the event from 2002 were the in-
troduction of a newly designed rescue challenge and the development of a new
entry-level soccer league for undergraduates, called the ULeague. Note that some
teams entered more than one challenge within their age group.

At RoboCup Junior 2003, soccer remained the most popular challenge, en-
gaging 67% of teams overall. Some of the secondary students took advantage
of state-of-the-art technological improvements and used, for example, magnetic
sensors for direction and ultrasonics for collision avoidance. LEGO Mindstorms
continues to be the most popular medium for robot construction but many teams,
particularly in Asia, use the Elekit SoccerRobo. More advanced teams, most no-
tably from Australia and Germany, even constructed their hardware completely
from scratch.

RoboCup Junior has seen strong growth in the number of female partic-
ipants, particularly in the dance challenge, which provides a unique outlet for
creativity. While RCJ attracts in total an average of 15% female students overall
(increased from 10% in 2000), the dance challenge at RCJ-2003 had 31% female
participation.

3.3 RoboCup Rescue

Real Robot League: RoboCup 2003 hosted the third Rescue Robot League
competition, which included 12 teams from 8 countries. The winning teams
were: first place ROBRNO team from the Czech Republic, second place CE-
DRA from Iran, and third place was IUT-MICROROBOT from Iran. Only one
team demonstrated autonomous mapping during the competition, but did not
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Fig. 14. The blimp used by the UVA -Zeppelin team of the University of Amsterdam
in the Real Robot Rescue League tournament.

contribute quite enough points to earn a place award. There were other inter-
esting approaches: fully autonomous robots, a robot almost directly from the
Middle-Size League, and even a blimp. Although two teams demonstrated fully
autonomous robots capable of navigating parts of the yellow arena, they didn’t
produce maps showing victim identifications so did not score well. Meanwhile,
the remotely tele-operated teams showed very few autonomous behaviors to as-
sist their efforts, although several teams were working toward such capabilities.

To evaluate the performances of the teams, the metric of Fig. 15 was used.
This takes into account the quality of the output map, the quality of the robot
sensing and the motion skill of the robot.

Fig. 15. The metric used to calculate the performances in the Real Robot Rescue
League tournament.

Simulated League: In the RoboCup-2003 Rescue Simulation League tourna-
ment, 17 teams participated. Many teams were here competing for the first time.
In fact, after RoboCup-2002, useful tools like Java based agent developing kits,
JGISEdit, and a Multi-platform map editor with the map of the city of Foligno
(Italy) were provided and this helped new comers to join rescue community.
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This year the map of Foligno was adopted as an official map at competi-
tion. This map was chosen in order to easily convey the importance of RoboCup
Rescue to the general audience, especially the Italian audience. In fact, Foligno
is an Italian city that was seriously damaged by an earthquake. The Foligno
map is bigger twice than the two traditionally used maps, Kobe and Virtual
City. The adoption of the Foligno map was a challenge for the teams competing
in RoboCup-2003. In the preliminary games, all team did rescue operations at
two disaster situations per three different maps. The winners of Simulated Res-
cue competition were: first place ARIAN team, Sharif University of Technology,
IRAN, second place YOWAI, University of Electro-Communications, JAPAN,
and third S.O.S, University of Technology, IRAN.

With respect to the games played in RoboCup-2002, the teams showed in-
creased abilities both in the single autonomous agents (fire fighter, police agent,
and ambulance) and in the cooperation abilities among the agents. In order to
improve the capability of their agents the teams used on-line learning methods
for rescue formation, clustering methods or agents group formation mechanism.

4 Special Content of the CD-ROM

Due to the always increasing number of participating teams in the competitions,
it is no longer possible to include the Team Description Paper in the RoboCup
book. Nevertheless, the teams are the engine that move the RoboCup event
and the innovations introduced by the teams are the real thrust that moves
forward research. In order not to disperse the knowledge and the innovations
proposed by the teams during the RoboCup 2003 competition, we proposed to
include with this book a CD-ROM containing the Team Description Papers of
the teams that participated in Padua. The Team Description Papers have been
edited and revised after the competitions in Padua. We expressly asked the teams
to critically analyse the performances of their robots during the competition by
discussing which solutions and techniques proved to be effective (or proved not
to be effective at all).
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1 Introduction (by Manuela Veloso)

RoboCup has been known for the goal of “creating robots capable of beating
the world cup in 2050.” Clearly, we stated this goal back in 1996 not as an exact
scientific goal, but as an audacious challenge to pursue. We aimed at creating
a far away target for RoboCup researchers, as we were well aware that the
development of fully autonomous soccer robots capable of competing against
human world champion soccer players was a rather long term research project.

Although this goal exists, the real RoboCup characteristic has been the re-
search pursuit of its participants to advance the scientific state of the art of the
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fields of artificial intelligence and Robotics. And from its beginning, we have or-
ganized RoboCup along a set of different leagues that provide different research
challenges for multi-robot systems in complex environments. Initially, we cre-
ated robot soccer leagues. In our research pursuit within robot soccer, we soon
realized that our techniques could be applicable to other complex environments,
such as search and rescue. Furthermore, we understood that our long term goals
required the education of children in robotics. So we started Junior leagues for
young children.

The RoboCup competitions include now three major areas, namely RoboCup
soccer, RoboCup Rescue, and RoboCup Junior. We present and discuss research
contributions in the RoboCup Symposium. Furthermore to better share research
interests among different leagues, we created RoboCup Camps for students and
Special Interest Groups (SIGs).

In 2003, and about six years after the first official RoboCup competitions
at IJCAI’97 in Nagoya, we had a special two-day meeting of the Executive
Committee in October 2003. We specifically discussed the immediate directions
and roadmap for each league towards our 2050 goal. This article summarizes
the results of this meeting. The article is organized along the different leagues,
research, and education.

2 RoboCup Roadmap (by Hans-Dieter Burkhard)

The workshop (Oct. 4th- 5th, 2003) can be understood as a continuation of the
panel discussions in Fukuoka 2002 and Padova 2003. The 2050 goal, to win with
a team of fully humanoid robots against the human world champion serves as
the long-term vision. It sets up high challenges, which need to be solved step
by step, and in corporation with other sciences. We are not done with a perfect
kicker for let’s say Midsize League - instead we will change the conditions of our
leagues and our players year by year, according to ambitious scientific problems.

A questionnaire was sent to the participants before the workshop. The ques-
tions concerned the problems to be solved until 2050, the meaning about
RoboCup benefits, and the development of our championships and conferences.
Here are some results concerning the necessary steps in RoboCup:

Perception appears as the mainly mentioned and discussed challenge in the
questionnaire: Recent shortcomings and future requirements (outdoor field,
unpredictable lighting) are next steps to be solved. Expectations range from
10 - 20 years for their solutions.
Robust (humanoid) hardware that can move on outdoor grounds and can
handle the ball like humans do - this will still last 15, 20 or even 30 years.
Safe interaction with humans is one of the most important problems, again
it will require a long time. It is an open questions which restrictions are
necessary for fairness (e.g. are robots allowed to use wireless communication
- or the other way round: will humans be allowed to use additional technical
equipment?).
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Adaptation and learning to play as an individual and as a team against
an opponent with unknown (but partially observable) intentions and skills:
10-20 years were expected for really useful solutions.
Body control will become a hard problem as soon as we are able to build
humanoids which can run, jump etc.: We will have to control a large number
of parameters under complex dynamics.

The answers in this category of the questionaire were mainly focussed on
Robotics from an AI and Informatics centered viewpoint - like perception, learn-
ing, cooperation. Topics like new materials and energy are subsumed under the
general hardware problems, but are not considered in detail. To play a major
role, RoboCup will have to enlarge efforts in these directions. It will need coop-
eration with other sciences.

Another category was called “Benefits of RoboCup”. It was the aim to collect
answers which are useful for discussions and for funding. Many answers were
related to the solutions of the problems from above. The benefits for education
and studies in Robotics were pointed out. RoboCup Junior has an important
role for promotion of RoboCup. RoboCup Rescue is a convincing application,
and it needs further solutions behind the scope of soccer playing robots.

Commercial applications may concern service robotics and robust solutions
for many other problems. It was discussed, how far scientific institutions can
and should invest their power in the development of industrial applications. The
conditions (and needs) are different in different parts of the world. In any case,
it would be good for the image of RoboCup to know about applications with
origins in RoboCup. Again, the cooperation with other scientists is necessary to
prevent from “reinventing the wheel” - and to promote our results.

A next category was related to the development of RoboCup Championships
and Conferences. There was a remarkable tendency for concentration: Not more
leagues, but merging of existing ones. The cooperation between the leagues
should increase (e.g. by comparable challenges, exchange of solutions etc.). The
Symposium could be devoted to special topics of common interest, and peo-
ple from the related communities should be invited. Most important: RoboCup
should become a first-rate, prestigious conference.

During the Workshop, each league gave a report about their development
and their plans. These reports together with the related further discussions are
part of this article (see below). Additional reports were given about the SIGs.

RoboCup has become a good visibility and reputation in many other com-
munities, and RoboCup is often used for examples and illustration. Our progress
is observed from outside, especially for educational efforts in AI and Robotics.
Most of the reported comments are positive, but still we have to promote our
scientific goals. The best way are presentations of our results at various confer-
ences and journals. The participation of RoboCup researchers in other robotic
research projects is another important way.

Besides the more technical viewpoints, the Robotics projects are important
for the Human Sciences, too. Soccer is a good scenario to study natural (hu-
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man) skills, the Robotics perspective opens new insights. More about CDR - the
Cognitive Development Robotics - can be found in M. Asada’s section below.

As our leagues are pursuing new challenges, it becomes harder for begin-
ners to start in RoboCup. Especially for education, where RoboCup scenar-
ios are used to develop the skills of students in a restricted time, a simple
setting is necessary. An “Entry” / “Educational” / “Easy” League (ELeague or
Uleague=“Undergraduate” League, cf. the section of B.Sklar on the Junior
League below), may be on the level of recent Small Size League, could be useful
for such purposes. A concrete proposal will be developed.

Small Size League in its recent format seems to be at a final point: New
challenges for this league point to the direction of Midsize League. Cooperation
in Midsize League is an important future milestone. It can be best realized with
more players on the field. The conclusion of these discussions is the merging of
Small Size League and Midsize League to one League in the next years until
2006. Concrete proposals are to be discussed between the leagues.

As a next step for better perceptional skills, all real robot leagues will reduce
the efforts for special lightings and special field designs step by step in the
next years. It is the hope, that there will be an exchange of e.g. successful vision
systems between the leagues. Common challenges should be defined by the SIGs.

There were several more important topics discussed in Blaubeuren, e.g. the
design and maintenance of a common webpage for tutorials, exchange of useful
solutions, discussions etc. It works fine on the level of the leagues, but it would
be good to have a common page. Like the pages of the leagues, the project should
be realized by volunteering.

3 RoboCup: Yesterday, Today, and Tomorrow
– Humanoid Science Approach – (by Minoru Asada)

Abstract. The sectionr presents the summary of talk in the RoboCup
Workshop at Blaubeuren, Germany, Oct. 4-5th after the RoboCup-2003
Symposium. The talk starts from the early beginning of RoboCup and
raised the future issues towards the final goal, that is, roadmap discussion
and its related issue. Finally, new activities for RoboCity CoRE was
introduced.

3.1 Introduction

The very early days of RoboCup starting from 1993 to 1995 was introduced and
the story about the rejection of the authors’ first RoboCup conference paper in
1994, which as a result activated the promotions of RoboCup in small workshops
is mentioned as RoboCup yesterday. The RoboCup today was just shown as the
number of participating teams at RoboCup 2003, Padova.

Review of future issues in RoboCup from different viewpoints are given. They
are research, education, industrialization, and connection to the general society.
The rest of the section gives the summary of these activities and issues.
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3.2 Research: A Humanoid Science Approach

Two aspects of the research issue are pointed out: funding strategy (how naming
“RoboCup” explicitly does help us?), and research topic (what’s our unique but
not too specific topic?). For the former, data of the past and on-going projects
funded from governments, public organizations, and industries will be collected
for future funding based on RoboCup. For the latter, a humanoid science ap-
proach is proposed as one of the scientific topics towards the final goal.

“Humanoid Science” under which a variety of researchers from robotics, AI,
brain science, cognitive science, psychology and so on are seeking for new under-
standing of ourselves by constructivist approaches, that is expected to produce
many applications. The humanoid science turns the research topics in RobopCup
as follows:

mechanical design for individual robots design of humanoid platforms,
robust sensing, especially, vision (object discrimination and tracking) at-
tention mechanism,
self-localization and map building body representation (body scheme or
body image) and spatial perception,
control architecture freezing and releasing DOFS, NLPCA, SOM,
communication symbol generation and language emergence,
multiagent systems in general social interactions,
combining reactive and modelling approaches embedded structure (na-
ture) and interaction with environment (nurture),
sensor fusion cross modal association for body representation (body
scheme or body image), and
cognitive modelling in general theory of mind.

Cognitive Development Robotics (hereafter, CDR) as one approach to hu-
manoid science [1] consists of the design of self-developing structures inside the
robot’s brain, and the environmental design: how to set up the environment
so that the robots embedded therein can gradually adapt themselves to more
complex tasks in more dynamic situations.

Brief explanations on developmental learning for Joint attention [2], and
vowel imitation [3] are given as typical examples of CDR.

3.3 Design of Humanoid Platforms

The current participating teams are using commercially available or provided
platforms such as Honda Firstep and Fujitsu HOAP focusing on behavior gener-
ation based on these platforms, or completely home-designed humanoids focusing
on the design theory and implementation (mechanical structure, sensor, actu-
ator, controller, and so on). Definitely, the latter is very challenging and very
hard. Therefore, collaboration with industry is indispensable.

A small company (Vstone) developed a small humanoid platform: omni head
that originally designed for Robo-One with a reasonable price. The height and
the weight are 290mm and 1.9kg, the number of DOFs is 22. This sort of cheap
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platforms is not simply useful for research but also for education as a kit product
for high school or college students who are currently not involved in RoboCup
activities.

Collaboration with industry including ventures seems necessary for the devel-
opment of standard parts such as sensors, actuators, controllers, and so on. One
can make competition like AIBO league, say, Qrio (SDR-4XII) league or Vstone
league will be possible. Robot Technologies (hereafter, RT) incubation center is
needed for joint development of robot standard parts and new RT products since
RT is an amalgam of various kinds of artifacts.

3.4 RoboCity CoRE: An Inner City RT Base

A basic concept of RoboCup are an international joint research, a landmark
project: sharing the dream, and open to different disciplines, open to public.
Currently, the competition and conference is once a year, and a natural extension
of RoboCup concept is to have a permanent place to deploy our activities.

RoboCity CoRE (Center of RT Experiments) is an inner city labs for sym-
biotic experiments with robots, new partners of our future life. CoRE aims at
only one RT base around the world where simultaneous progresses of research,
industrialization, and education carry on simultaneously.

Open to public means that researchers, artists, companies, citizens inter-
change with each other to emerge new ideas, that leads the development of
science, technology, and culture. CoRE will be a new cultural symbol of the
future high-technological, ecological city.

Fig. 1. A humanoid platform:Omnihead (left) and open filed in RoboCity CoRE (right)
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4 RoboCupJunior (by Elizabeth Sklar)

RoboCupJunior (RCJ) has been growing and changing since its inception, this
year reaching 75 teams from 16 countries for a total of 258 participants (see
figure 2 for details). In 2003, there were five challenges: 1X1 SOCCER, 2X2 SOC-
CER, RESCUE, DANCE, and ULEAGUE. The overall participation rate of female
students was 15%, while within the DANCE category, this was concentrated at
31%. As the league continues to mature, its internal structure and its role within
RoboCup must adapt.

Fig. 2. RoboCupJunior participation, 2000-2003

4.1 Organizational Issues

The organizational action items for RoboCupJunior from 2002 were:

to define a role for undergraduates;
to continue to close the “gender gap” (i.e., increase participation of female
students); and
to establish national committees in participating countries.

These have been partially achieved. The proposed role for undergraduates is a
new challenge, dubbed the ULEAGUE. This is discussed at length below (see sec-
tion 4.3). The gender gap is still too great, but particularly due to the DANCE

challenge, RoboCupJunior is succeeding in attracting and sustaining participa-
tion by female students. National committees have been established in several
countries. Those most active are Australia, Japan and Germany. National rep-
resentatives from several countries were chosen in 2003 to serve for 2004.

Two new organizational action items came up in 2003. The first is in regard
to age groups and the second concerns record-keeping. Initially, the plan for
RoboCupJunior was to provide an introduction to RoboCup for young students
— primary through high school age. In 2000, there were three age groups: pri-
mary, up to age 12; middle, ages 12–15; and secondary; ages 15–18. For 2001



22 Hans-Dieter Burkhard et al.

and 2002, there were two age groups: primary, up to age 12; and secondary, ages
12–18. For 2003, an experimental challenge targeted at the undergraduate age
group was created (aka, the ULEAGUE); thus there were three age categories:
primary, up to age 12; secondary, ages 12–18; tertiary, ages 18-22.

For 2004, the RoboCupJunior Technical Committee has made the decision
to raise the boundary between primary and secondary age groups from 12 to
14 years of age. The reason for this is that at international events, there is very
little participation in children below age 12. This is primarily because interna-
tional travel is expensive and complicated for young children due to issues of
language and chaperones. However, at these international events, two groups of
students have emerged: one group centering around age 13 and another group
centering around age 16–17. Thus for 2004, the age groupings will be divided
into three categories: primary, up to age 14; secondary, ages 14–18; tertiary,
ages 18-22. Note that individual countries, on the national level, may choose to
re-align these boundaries, as is appropriate for their regional events. However,
it must be emphasized to participants that the international rules will follow
these boundaries and so students must be prepared, at the international level,
to adhere to this structure.

The second new issue that arose in 2003 is that record-keeping has become
quite difficult. Most of the time, there is very poor correlation between those
students registered by a team at pre-registration time and those students who
actually come to the event. As a result, it is extremely difficult to provide ac-
curate statistics, and it is very important, particularly for Junior, to be able to
produce these figures to the media and potential funders. It is suggested that for
2004, on an international level, registration of all team members be centralized
in one database. This registration would pertain not only to students who attend
the RoboCupJunior events, but also to all students who participate at home in
preparing for RCJ events.

For 2004, the organizational goals include: (1) defining a better structure
within the RCJ organization; (2) recognizing and responding to needs of the
RCJ audience and participants, who are quite different from their counterparts
in the senior RoboCup leagues; (3) developing an on-line forum for teams; and
(4) creating a funding mechanism especially for RCJ. The League Chairs for
2004 are Elizabeth Sklar and Jeffrey Johnson. The Organizing Committee Chair
for 2004 is Gerhard Kraetzschmar. The Local RoboCupJunior League Chair for
2004 in Lisbon is Carlos Carderia.

4.2 Technical Issues

The primary technical action item for RoboCupJunior from 2002 was to develop
stepping stones from RCJ into the senior RoboCup leagues. The ULEAGUE was
created in answer to this call and is discussed in detail below in section 4.3.

The RoboCupJunior RESCUE event was resurrected and re-designed. In 2000,
there was a line-following SUMO challenge, which provided an intermediate-level
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task for middle-school age students. The environment is (fundamentally) static1,
however in order to perform line-following accurately, robots must be designed
and programmed with skill and precision. In 2001, this event was modified as a
RESCUE challenge, following the introduction of the RoboCup Rescue League at
the senior level. The original intention for RCJ was that each host country would
define a simulated disaster environment relevant to their local region, but always
keeping within the structure of a static, line-following event. However, in 2002,
this event was dropped, a controversial decision made by the local organizers.
In 2003, the RoboCupJunior RESCUE event was re-designed, as a miniature
version of the NIST Rescue Arenas used at the senior level. The RCJ RESCUE
looks almost like a doll’s house and the robots have to follow a line through the
house, in and out of rooms, up and down ramps, searching for and identifying
“victims”. This event was well-accepted and there were numerous participants
from several countries. For next year, some standards need to be published for
construction and scoring, but overall, the challenge is a success and will undergo
much change.

For 2004, other goals include (1) creating an outreach program/incentive
for graduate and undergraduate students to mentor RCJ teams; (2) beginning
discussion of a RoboCup exchange program; and (3) developing a book on Educa-
tional Robotics through RoboCup. The use of undergraduate students as mentors
for Junior teams has been particularly successful in 2003. One hope for the near
future is to create a formal mentoring program in which senior-league student
team-members who also participate as mentors for Junior teams receive reduced
(or free!) registration fees for the RoboCup event. Another proposal for the near
future is to establish a formal exchange program for graduate students from
RoboCup labs to visit other RoboCup labs around the world. This is already
happening informally, but if a more formal program were established, it might
open up the door to further technical exchange, understanding and advance-
ment. Finally, a resource textbook is being developed, focusing on educational
robotics through RoboCup. The idea is to create a resource for instructors teach-
ing undergraduate courses on topics such as Artificial Intelligence, Programming,
Autonomous Agents and Multi Agent Systems, using RoboCup as an example
for demonstrating technical topics. The book will be a compilation of experi-
ences, curricula and resources contributed by RoboCup team leaders and par-
ticipants who have taught these courses. RoboCup and RoboCupJunior are to-
gether uniquely posed to be leaders in educational robotics on an international
basis; such a book will help achieve this goal.

4.3 Discussion

The most contentious issue which has been raised within RoboCupJunior is
the place for undergraduates within RoboCup. Currently, there exist students
who have “graduated” from RoboCupJunior and are now embarking on their

1 In SUMO, both robots perform at the same time on the same field, so technically the
environment is dynamic however not on the same scale as on the Soccer field.
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undergraduate education. However, there is no obvious place for them within
RoboCup, especially if they do not attend a university where there is already an
active RoboCup team. This motivated the formation of the experimental league
within RoboCupJunior which has been mentioned above — the ULEAGUE. This
league takes the existing RoboCupJunior 2x2 soccer game and combines it with
the Small-Size League (F180), simplifying issues of vision and communication.
It was demonstrated successfully in Padova 2003 with teams from four countries
(USA, Canada, Australia and Germany) and is reported in [1].

This ULEAGUE was a topic of much discussion at the Blaubeuren meet-
ing. There was some concern that the name is a misnomer. Many, many senior
league RoboCup teams are composed partly, even primarily, of undergraduate
students. So calling this new challenge the ULEAGUE and emphasizing that it
is for undergraduates is perhaps not consistent with existing practices. There
was discussion about merging the existing Small-Size League (Smallsize League)
with the ULEAGUE, as it appears that there will be many changes to the Small-
Size League setup over the next year or two. Out of the 24 teams that compete
in Smallsize League, there are apparently only 8 who consistently perform well,
year after year. For these teams, it is appropriate to move to a larger field, begin
to move to local vision, to remove special lighting and to add more robots to the
field. But the other 16 teams are not ready to meet these challenges.

This opens up the question of the role of RoboCup and RoboCupJunior. If the
purpose of RoboCup is to advance the state-of-the-art in Artificial Intelligence
and Robotics research, then it is not in the interest of the initiative to hold back
advances and “wait” for the masses. On the other hand, if the leagues progress
too fast, then they will only be accessible to the elite. If the purpose of RoboCup
is to bring together researchers from different fields to work together to achieve
a common goal, then it is not in the interest of the initiative to push advances
beyond the reach of the “masses”.

The goal of RoboCupJunior has been to introduce the RoboCup initiative to
young students. As well, once RCJ has succeeded in engaging students, some-
where in RoboCup, there must be a mechanism to keep them engaged, as they
grow up beyond high school to undergraduate to graduate school. As the gap
between “entry-level” and competitive level in each league widens, somewhere
within RoboCup, there must always be a bridge from an entry-level to wherever
the senior leagues are.

References
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5 Education (by Daniele Nardi)

RoboCup devotes a special effort to Education, not only through the Junior
League, but also by organizing specific initiatives, that are targeted to students
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at University level. The aim of these activities is to support the creation and
strengthening of the technical and scientific background and skills, that a student
needs to successfully participate in RoboCup.

The design and implementation of a team of autonomous soccer players or
rescue agents, certainly relies on basic knowledge and skills that can be acquired
during University undergraduate and graduate curricula in several branches of
Engineering (e.g. Computer, System, Telecommunication, Electronic, Electric,
Mechanical). However, in order to realize RoboCup teams (or better, contribute
to the realization of RoboCup teams) technical knowledge on specialized issues,
that are often not covered by the University curricula, is required. In addition,
RoboCup provides a unique challenge to implement complex systems requiring
knowledge on a wide set of disciplines and a large spectrum of technical capabili-
ties. Finally, from an educational standpoint, the RoboCup framework is instru-
mental to train the students to a scientific development of ideas, which requires
the ability to understand the technical knowledge available in the literature and
use it as a basis for the development of original and more performant artefacts.
The Education effort within RoboCup addresses all of the above aspects.

The main educational activity organized by RoboCup is the RoboCup
CAMP. RoboCup CAMPs are directed to newcomers to help them entering
RoboCup competitions both from a methodological and from a practical point
of view; moreover, RoboCup CAMPs are also addressed to practitioners that
need to address some of the technical challenges in a more systematic and solid
fashion. The name “RoboCup CAMP” wants to convey the idea that a CAMP
is not only a highly specialized school, but it requires the active participation of
the students. The goal of RoboCup CAMPs is very ambitious, because the aim
is to introduce some background knowledge on specific techniques that are used
in the realization of a soccer/rescue team, while trying to fill all the steps to the
actual implementation. Usually, the RoboCup CAMPs are targeted to specific
leagues, and consequently focus on issues that are more relevant in that context.
In addition, at the RoboCup CAMP the students are shown how novel ideas
needed to improve on the state of the art techniques for specific problems can be
effectively developed. Finally, the RoboCup CAMPs are used as opportunities
for successful teams to present in a coherent and systematic way the techniques
developed, far from the pressure of the competition.

The RoboCup CAMPs held so far are listed below (more information about
them and access to the documentation can be found through the RoboCup web
site):

Padova (Italy), February 2000 - Mid size
Paris (France), April 2001, Small and 4-Legged
Paderborn (Germany), April 2002, Mid size
Bremen (Germany), August 2003, Humanoid and Small size

RoboCup CAMPs in Japanese have also been held in conjunction with the
Japan Open.

Another issue concerning RoboCup Education effort that deserves consider-
ation is the use of RoboCup frameworks as a support to the teaching activity
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in several University courses, Summer Schools and tutorials. There are several
examples of courses on Multi Agent Systems, that use the RoboCup soccer sim-
ulator as a testbed, as well as courses on robot constructions that focus on the
robots of the small-size league. For example, the EURON Summer School on Co-
operative Robotics (Lisbon 2002) had significant contributions using RoboCup
as scenario. The references are available in the league web pages.

Finally, as a follow-up of the teaching based on RoboCup frameworks, text-
books collecting teaching material as well as teaching experiences based on
RoboCup are forthcoming.

6 Rescue League (by Adam Jacoff)

The second annual RoboCup - Rescue Robot League competition, which took
place in Padova, Italy, showed the gaining strength of our league. Twelve teams
participated in a vigorous competition, a 50% increase in teams from the previ-
ous year, and we continue to raise awareness of the opportunities for robots in
urban search and rescue (USAR) applications. Thus, we expect to maintain an
aggressive growth rate for the 2004 event, hosting 16-20 teams in Portugal. In
addition, we are actively engaged in efforts to expand the Rescue Robot League
into the RoboCup national open competitions throughout the world. This year
marked the first such rescue competition at the Japanese open, using the arenas
fabricated for last year’s Fukuoka competition. And a new year-round arena,
hosted by Carnegie Mellon University in the USA, was used for rescue robot
demonstrations at the first such American open event. The Italian rescue are-
nas, fabricated this year in Padova, are being set up at the Instituto Superiori
Anticendi in Rome, a fire-rescue training facility, and will be available for year-
round robot practice starting this winter. They may even host an Italian rescue
event in the near future, either an Italian open competition or maybe a RoboCup
camp devoted to Rescue Robot League research issues. Also, we are actively try-
ing to get rescue arenas fabricated in Germany to host a rescue competition at
the next German open event, and be available for year-round practice for central
European researchers. The current site being considered to host these arenas is
the International University in Bremen. So the league is expanding quickly due
in large part to the enthusiastic response from researchers looking to test their
robot’s capabilities in the unstructured world of USAR applications, and work
on the cutting edge of human-robot interaction for the betterment of disaster
response.

Several changes to the league rules were initiated this year. One change dis-
courages parallel teleoperation, where robot/operator control strategies are repli-
cated within teams simply to inflate scoring. This year, specific starting positions
were identified and sequential negotiation of the arenas was enforced, although
teams could advance as far as they wanted through all three arenas. The first
mission of each round started in the yellow arena, allowing direct comparison of
navigation and mapping capabilities across teams. In subsequent missions, the
teams were allowed to start directly into more advanced arenas to allow purpose
built robots to highlight their specific capabilities. Also, false victim identifica-
tions were discouraged for the first time, so teams that mistakenly identified
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sensor signatures as signs of life suffered point reductions. These changes were
generally appreciated by the teams, and produced a balanced competition that
promoted the pertinent research issues while discouraging certain teaming strate-
gies. Minor rules modifications proposed for next year may artificially limit the
use of radio communications during missions to simulate radio signal dropout
and interference that occurs at actual disaster sites. This would also encourage
development of more autonomous behaviors and tether management systems,
both very beneficial assets in eventual deployment systems. Also regarding ra-
dio communications, we may encourage a move toward the 5 GHz frequency
range and 802.11a communications protocol to generally improve communica-
tions bandwidth and performance in the complex environments of our rescue
arenas and avoid conflicts with other leagues at these large competitions (which
only hints at the radio spectrum difficulties of a real disaster site).

Also this year, we began systematically capturing each team’s human-robot
interfaces (HRI) for subsequent analysis. Researchers from the National Insti-
tute of Standards and Technology (NIST) performed the data capture which
included interviews with the operators, a workload assessment, and continuous
video capture of robot performance. These interfaces will be analyzed for effec-
tive elements or combinations of elements and overall statistics will be published.
This HRI analysis effort will be augmented next year with automatic position
tracking of the robots throughout the arenas via a new ultra-wideband track-
ing system, also provided by NIST. Objective robot tracking data such as this,
along with operator interface and workload analysis, will provide researchers
with important measures of performance of their robots (and other robots), and
help identify “best in class” algorithms, sensors, and mechanisms. Hopefully, this
will further encourage collaboration around the most effective components and
methods, and quicken the pace of technical advancement in the field.

As our league evolves, we are keenly aware of the urgent need for practi-
cal robotic solutions for disaster response. Toward this end, we have appointed
the following Technical Committee members with distinguished, diverse back-
grounds in robotics and disaster response to help steer our league: Dr. Andreas
Birk (International University in Bremen, Germany), Dr. Ali Meghdari (Sharif
University of Technology, Iran), Dr. Ted Sumrall (President, Counter Terror
International, USA/Japan).

In recent times, it has become ever clearer that robots are needed to support
first responders and rescue professionals at disaster sites. Many nations are sup-
porting this endeavor, and Japan is among the leaders. Since their disastrous
Hanshin-Awaji earthquake near Kobe (and others), they have aggressively sup-
ported research and development of robots for search and rescue applications. In
2002, the Japanese Ministry of Education, Culture, Sports, Science, and Tech-
nology (MEXT) started a five year project specifically focused on earthquake
disaster mitigation in urban areas aimed at developing advanced robots and
information systems for disaster response. The International Rescue System In-
stitute, headed by our league chair Dr. Tadokoro, is one such example in that
effort, supporting over forty research projects within Japan.
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7

Efforts such as these will provide the funding required to push the tech-
nology and methods forward quickly. Evaluating the progress of these research
efforts, and encouraging collaborations between organizations to better leverage
advances, is where our league will play it’s most important role. Our arenas repre-
sent standard, representative problems for the community at large. Our metric
provides object evaluation of performance and encouragement toward clearly
needed capabilities. And our competitions provide intensive, periodic develop-
ment efforts and collaboration opportunities as teams react to the representative
rescue situation at hand and attempt to follow increasingly realistic operational
procedures adopted from at actual disaster sites. Practice sessions such as this,
without risk to life or robot, can hardly be over valued. And it can play a pivotal
role in increasing the rate of advancement in robotic capabilities.

As robot teams begin demonstrating repeated successes against the obstacles
posed in the arenas, the level of difficulty will be increased accordingly so that the
arenas continue to provide a stepping-stone from the laboratory to the real world.
Meanwhile, the yearly competitions will provide direct comparison of robotic
approaches, objective performance evaluation, and a public proving ground for
field-able robotic systems that will ultimately be used to save lives.

From the Discussions Concerning Smallsize League,
Midsize League and Humanoid League
(Using Materials from the Slides by Gerhardt Kraetzschmar,
Thomas Christaller, and Changjiu Zhou)

Smallsize League discusses changes (individual vision, larger field etc.) which
makes this league closer to Midsize League. Smallsize league in its recent form
is needed for beginners (cf. B.Sklar’s section on Junior League above), while sci-
entific challenges could be better pursued using the rules and settings of Midsize
League. Moreover, Midsize robots will be smaller in the future. Planned and/or
discussed changes in Midsize League concern:

Less well-defined lighting.
No special lighting (maybe even limited natural light influence) in 3-5 years.
New ways of ball manipulation.
Increasing players-pre-field ratio (larger fields and smaller robots).
Game instrumentation: referee box, tools for recording and evaluating game
data. The referee box is intended to become a common tool for all leagues.
Almost no human interference in 3-5 years.
Behavioral constraints instead of size rules and shape restrictions.
Activation of many FIFA rules (corner kicks, throw-ins, goal kicks, free
kicks).

As a consequence of the discussions in both leagues, Midsize League and Small-
size League will merge in the next years.

Humanoid League will use Midsize League field in 2004 and perform new chal-
lenges (e.g. more complex walking, more complex kicks, passing for soccer and
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balancing for “Free Style”). True dynamic walk, run and jump are considered for
the near future. They may lead to new technical solutions like artificial muscles,
flexible joints, endo-sceleton construction The following roadmap is proposed:

2004: Balancing challenge, passing challenge, obstacle walk challenge.
2005: Match 1 vs 1, object following, multiple objects tracking.
2007: Match 2 vs 2, collision avoidance, safety issues.
2010: Cognitive issues, coordination of perception and locomotion.

A lot of different robots of humanoid type are expected for the future. Never-
theless, there should be a limited number of different competitions. One might
think of

Small-size Humanoid League (SHL) with global vision and focus on walking
and kicking issues.
Mid-size Humanoid League (MHL) with local vision and focus on integration.
Humanoid simulation (cf. M.Riedmillers section on Simulation League be-
low).

A lot of problems are common to all leagues, and many of them are already
covered by the SIGs (the below). Common challenges are considered as useful
means for common work.

8 Future Directions for the Four-Legged League
(by Claude Sammut)

The distinguishing feature of the four-legged league has been that all teams use a
common hardware platform, the Sony Aibo. Since the platform is fixed, the teams
are freed from hardware design concerns and are able to concentrate on software
development. The common platform also means that teams are easily able to
share programs. These features have allowed the league to progress rapidly since
new teams can quickly become competent by using previous code as examples
for their own development and experienced teams are able to understand, in
detail, how other competitors have solved similar problems. Code sharing is an
essential part of the four-legged league and should remain so for the foreseeable
future. Thus, it is important to continue using a common hardware platform and
associated operating system.

As in all RoboCup leagues, the intention of the four-legged league is to pro-
gressively handle more natural environments and develop cooperation amongst
teams of robots. This effort is leading to improved vision and localisation algo-
rithms; a better understanding of information sharing between team members
and faster and more stable legged locomotion. An important side effect of this
research is that new software tools and methodologies are being investigated, in-
cluding simulation, higher-level programming environments and machine learn-
ing.

The common platform poses its own problems for the organisation of the
league. The Sony Aibo is a highly sophisticated robot available to teams at a
relatively modest cost. The league has received exceptional support from Sony
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but inevitably, new models will be produced and older models discontinued.
Thus, teams must update their platform every two or three years. To avoid too
costly a transition, it may be necessary to tolerate some diversity in the models
of robots. However, to preserve the ability to share code, this diversity should
minimised.

Considerations for the future are that if a humanoid robot becomes available
at a reasonable cost would a new league be formed along the same lines as
the four-legged league? What would be the relationship of this league with the
present humanoid league and would there be a reason to continue the four-legged
league? Considering the difficulties that most leagues have with unpredictable
lighting, at what point can we consider outdoor games?

9 Simulation League towards 3D (by Martin Riedmiller)

The major novelty in the soccer simulation league is the development of a new
simulator.

The simulator system will be built from scratch and is currently under de-
velopment. Its main goal is to provide a more realistic simulation of real robots
in order to bridge the gap between the real-robot leagues and simulation league.
The concept comprises a 3D modelling of the environment, a modular approach
that allows to design individual robot actuators and sensors, a more realistic
handling of timing issues and collisions. The simulation of the physics will be
based on the ODE library.

Due to the modularity and flexibility of the new simulator, it will be possible
to eventually simulate even very specialized robots. Therefore, the core simula-
tion system could eventually become the base for simulation of robots through
all the leagues - including the humanoid leagues.

A main challenge for the transition phase will be to get the level of abstraction
right. The simulator league must still focus on its main goals - the development
of scientific approaches for mid- and high-level control (e.g. multi-agent coordi-
nation) - without bothering too much on low level (close to hardware) problems.
In the ideal case, the new simulator will offer various interfaces that allow to
tackle control problems on various levels of abstraction, ranging from a close-to-
hardware view to a reasonably abstract view that directly allows to deal with
mid-level and high-level issues. Providing such a high-level interface (comparable
to the one of the current soccer server interface or even more abstract) will also
raise the attractiveness for researchers that are more interested in AI than in
robotics or control.

The current schedule is

2004, January : First version of new soccer simulator available, discussions.
2004, June: Tournament at RoboCup 2004, in parallel to a ‘classic’ (2D)
simulator tournament.
2005: Tournament at RoboCup 2005, in parallel to a ‘classic’ (2D) simulator
tournament.
2006: New simulator becomes the standard soccer simulation system
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The weighting of the classic (2D) and the 3D simulator competition in 2004 and
2005 will depend on the status of the implementation and the number of teams
participating for the respective competition. As an outlook for future directions:
With simulated humanoid tournaments, Simulation league will become close to
real humanoid robots.

10 Vision SIG (by Andrea Bonarini)

Vision is the primary input for robots, not only in RoboCup, but also in many
applications involving mobile and fixed robots. The vision task in real world
mobile robot applications should be performed in a short time, so to provide
input to the control system, but at the same time should contribute to a reliable
and rich world model.

RoboCup offers an important testbed in all the real-robot leagues to test
vision algorithms and sensors.

The RoboCup community is working on vision aspects as part of the whole
activity of implementing playing robots. The primary aim of this SIG is to sup-
port the research activities concerning perception by vision systems in RoboCup.
In all the leagues working with real robots, people has to implement effective,
real-time, vision systems, facing many different problems which are also of great
interest for applications outside RoboCup.

Among the faced topics are:

color vision,
real-time algorithms for image analysis, object recognition, localization, and
panoramic (omnidirectional) vision,
stereo (multicamera) vision,
multi-sensor fusion.

To promote research in vision within and outside RoboCup, the SIG has
started the following activities.

Maintaining a mailing list. A mailing list for this SIG has been created as
vision@RoboCup.biglist.com. You may connect to
http://www.RoboCup.biglist.com/vision/ and follow the instructions to be
added to the list. You may also find there archives of past messages.
Maintaining a web-based repository of data and tools, available as
http://RoboCup.elet.polimi.it/SIG-Vision/.
Promoting and maintaining a forum to discuss and support the development
of vision related topics.
Organizing vision workshops and special sessions, together with researchers
from outside of RoboCup, at major conferences like CVPR, ECCV, ICPR.
Organizing special events at RoboCup workshops/games. The SIG will work
with organizing committees to organize annual events that emphasize re-
search in vision.
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Encouraging community-based development of general, re-usable, code and
standards, to facilitate comparative evaluation and to accelerate research,
mainly for newcomers on this topic. See the repository and the forum on the
web site.
Proposing rule modifications to steer research within RoboCup, for instance
reducing the role of color, or improving the role of other features.

At the last meeting of the SIG in Padova, people present have agreed to share
code and experience in developing vision systems used in RoboCup. The web
site has been updated accordingly. In particular, we have decided to host also
a repository of open questions and problems, so that newcomers or people not
wishing to be too much involved in vision could find help from the SIG.

We also have decided to focus on some problems, stating a sort of forum to
brainstorm about their possible solutions and to share experiences. The problems
currently on the table are mentioned here below.

Adaptive color classification. Probably, from 2004 many leagues will play
on fields with uneven light coming from different sources. Adaptive color
calibration may play a key role to face this issue, and its real-time solution
is still an important open problem in the whole vision community, with
important impact on industrial applications
Spot light and shadows. On the way to play with natural light, coming from
a directional source, the sun, it may be interesting to work with a single
spot light, providing, for instance, shadows, which may be considered an
important element instead of noise.
Knowledge and interface between sensors and world model. How to interface
the vision system to behaviors? Which kind of information is passed? Would
it be useful to include knowledge in the vision system or this should only
provide raw data and leave the conceptualization to a world modeller? Is a
conceptualization useful at all?
Vision-based self localization. Is self-localization needed in RoboCup? Why?
How do you self-localize your robots? Do you fuse data from different sen-
sors? Which kind of algorithms do you use? Do you merge information from
different robots?

Finally, we have decided to promote the implementation of benchmarks on
the above and maybe other topics, so to focus and base research with a scientific
approach, which is often forgot in the competition activities.

A suggestion of the SIG to the Executive Committee has been the imple-
mentation of specific competitions, or scientific challenges common to different
leagues, so to provide a stimulus to focus research activities on specific, relevant
issues.

11 Multiagent Learning SIG
(by Use of Communication with Peter Stone)

Participants from all the soccer leagues and at least rescue simulation are partici-
pating. Some benchmark tasks for learning were proposed and discussed with the
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goal of making them usable by people outside of RoboCup. Potential challenges
were proposed that could be applicable across the leagues.

The keepaway task is already used for learning in simulation, and may be im-
mediately possible in the Smallsize League. Hopefully it can be incorporated
into other leagues as well.
A multiagent goal-scoring task has been proposed and implemented in a
Midsize League simulator (by Alex Kleiner).
A further proposal could concern a challenge task for vision learning that
would require teams to be able to automatically calibrate their vision. They
would need to send in their code for the challenge task BEFORE seeing the
lighting conditions at RoboCup.

A big challenge is defining tasks that not only CAN be learned, but that RE-
QUIRE learning for success. There is a common understanding that a RoboCup
team with learning has advantages over one without. But the best way to create
a competent team quickly is still to hand-code it. That’s true for most subtasks
that we can think of. By 2010 we hope to have a well-defined and popular suite
of challenge tasks both for RoboCuppers and for the general ML community
who are not RoboCuppers.

12 Other SIGs (by Use of Notes from Thomas Christaller)

SIG Configurable and Modular Robotics:
A web page using wiki-web software was installed to make it easy for everybody
to contribute without any administrative overhead. It serves for e.g.

Setting up shopping infos in a data base.
Mailing list.
Steering committee.

SIG Simulation Tools for Real Robots:
Many teams make use of simulation tools. Current simulation league simulator is
not useful to robot teams (but cf. M. Riedmiller‘s section on Simulation League
above). Research challenges are e.g.

realistic dynamics,
configurability, extensibility,
vision as a primary sensor.

The major goal is an open source simulator with ODE as technical basis. It is
intended to be useful outside RoboCup, too.

13 Final Remarks (by Hans-Dieter Burkhard)

The workshop took place in the beautiful little village Blaubeuren, near Ulm
in the southern part of Germany. Blaubeuren has a well-preserved medieval
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architecture, and it is especially known by the circular Blautopf (“Blue Pot”),
the legendary underground source of the river Blau. This karst spring is among
Germany’s most mysterious nature prodigies, and it is the setting for the “Legend
of the Beautiful Lau”. Thanks goes to Gerhard Kraetzschmar for proposing and
organizing the meeting in Blaubeuren.

Two days if intensive work helped to clarify recent developments and to
outline future challenges and requirements. The main goal of RoboCup is sci-
entific research, hopefully with useful applications. In several countries, funding
is directly connected with impacts for such applications. In fact, the aim of our
community is not to build special purpose soccer machines, but to come up with
new results and new solutions for a broad range of problems. The competitions
serve for evaluation and for demonstration of successful developments. The vi-
sion of the 2050 year goal serves for the identification of problems which are
important for Robotics and AI. Therewith, RoboCup stands for a community
with a longterm project.

Thomas Christaller has compiled a list of general capabilities that a humanoid
soccer robot has to met for the 2050 year goal:

Playing over two times 45 minutes plus possible extensions of 2 times 15
minutes.
Running more then 20 km during one game.
Playing under severe weather and ground conditions sunshine, rain, snow,
slippery, uneven ground, different and changing ground conditions.
Controlling the ball with nearly all parts of the body (excluding arms and
hands).
Jumping, falling down, touching, body check.
Artistic movements lay persons are uncapable to do.
Size, weight, and force similar to an adult man (170cm, 65kg, 100m/12sec,
20m/sec ball speed).
Forecasting and recognizing intention of movements before it is “manifest”.
Knowing team members individually.
Knowing members of opponent teams.
Knowing a lot of past/historical games.

Nobody knows today, if these problems can be solved at all. Most difficult prob-
lems may be

Body construction and energy.
Body control towards artistic/professional movements.
Forecasting intended behaviour/movements of other players. (opponent as
well as team members)

RoboCup research and competitions will help to clarify the related problems
step by step. That forces us to define new goals year by year. The roadmap will
be further discussed on the symposium in Lisbon 2004, and the next workshop
of the Executive Committee is planned for autumn 2004.
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Abstract. The goal of this paper is to highlights one of emergent scien-
tific issues in RoboCup task domains that has broader applications even
outside of the RoboCup task domains. This paper particularly focuses on
robust recognition through information fusions issue among numbers of
others issues that are equally important. The robust recognition through
information fusion is selected because it is one of the most universal is-
sues in AI and robotics, and particularly interesting for domains such as
soccer and rescue that has high degree of dynamics and uncertainty, as
well as being resource bounded. The author wish to provide a conceptual
framework on robust perception from single agent to multi-agent teams.

1 Robustness and Information Fusion

The RoboCup project is an interesting research platform because it has multi-
ple domains that have both difference and similarities in basic domain features.
Soccer is a dynamic game with real-time collaboration within teammate, but
adversarial against opponents. Major uncertainties are generated by (1) oppo-
nent strategies, (2) uncertain and stochastic nature of physics on ball movements
and other factors that affect course of each action, and (3) uncertainty of real-
time behaviors of each player. On the contrary, rescue domain is a dynamic and
mission critical domain with high degree of uncertainty and partial information
under hostile terrain that are totally different in each case. Major uncertainties
are generated by (1) unknown terrain and victim information, (2) uncertain and
stochastic nature of incoming information, success of each operations, numbers
of external perturbations, and other social and political factors, and (3) limited
information on individual victims and their situations.

* This work was partially supported by the Air Force Office of Scientific Research/
Asian Office of Aerospace Research & Development, under the contract number
AOARD-03-4035.
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It is interesting to note that despite differences in the task domain, there are
substantial commonalities in structures of uncertainty. There are uncertainty
and limited information at the macroscopic level at the level of entire terrain or
theater of operation and at the microscopic level which is the scale of individual
players or victims. In addition, there are issues of unknown and unpredictable
perturbations throughout the operation.

In order to best accomplish the task, a team (or teams) of agents, either
robotics or informational agents, need to be robust in perceptions and actions, as
well as their team behaviors. It should be well coordinated to reconstruct a model
of the terrain and other agents in the scene against various noise, uncertainty and
perturbations, so that effective actions can be taken. A set of actions need to be
robust so that failure of one or more of such actions do not leads to catastrophic
failure of the overall mission.

Robustness of the system is generally exhibited as capability of the system
to (1) adapt to environmental fluctuation, (2) insensitivity against fluctuations
in system’s internal parameters, and (3) graceful degradation of performance, as
opposed to catastrophic failure of the system.

This applies from sensory level to higher multi-agent team level. A brief
example at the team level shall make clear what does robustness means. For the
soccer team, this means that the team should be able to cope with differences in
strategy and physical performance of opponent team, not being seriously affected
by changes in fatigue and other factors of players, and removal of one or more
players does not results in complete loss of its team performance. For the rescue
team, it means that the team can cope with various different disaster scenario
and dynamical changes in the situation, ability of cope with unexpected fatigue,
damage, and resource shortage, and capability to carry out missions even if some
of its rescue teams have to be withdrawn from the scene. For the rescue team
that has to cope with extremely hostile environment, robustness is one of the
essential features of the system.

Robustness of the system is usually attained by (1) the use of proper control,
such as negative feedback, (2) redundancy, or overlapping functions of multiple
subsystems, (3) modular design, and (4) structural stability.

Extensive research has been made on properties of robustness in biological
systems, and these traits were shown to be universal using numbers of examples,
including bacteria chemotaxis, robustness of gene transcription against point
mutations and noises, stable body segment formation, cell cycle and circadian
period, etc [4,5].

Bacteria, for example, swim toward chemoattractants by sensing graduent
of concentration. This capability is maintained regardless of concentration level,
steepness of the gradient, and keep track of graduent changes consistently. Inte-
gral feedback has been identified as a key intrinsic mechanism in which bacterial
behaviors are controlled by activation of receptor complex, but deactivated by
a negative feedback loop with integral components. This feedback control en-
ables behavior of bacteria dependent on the level of concentration changes took
place, but independent of absolute concentration level of chemical in environment
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[1,10]. Similar mechanisms are observed widely amoung different speceies. Feed-
back control is only one of several mechanisms behind biological robustness.

On the contrary, artificial systems tend to be less robust, and reply on rigid
build-in design that may easily fail under fluctuations. How to build robust
systems from sensory-level to strategy-level in a consistent manner is one of the
major issues in RoboCup research.

In the rest of the paper, possible research directions for robust systems par-
ticularly focusing on information fusion aspects are discussed. Information fusion
is raised here because it is relatively universal in different domains, and critical
for strategic actions to follow. Issues of robust strategic decisions and executions
will be the other robustness issues in multi-agent teams, but will not be discussed
due to space limitations.

2 Dimensions of Information Fusion for Robust Systems

Information fusion for robust systems has to be considered for multiple aspects:

Abstraction:  An interactive processing of different abstraction levels, such as
interactive processing of low-level sensory information and high-level recog-
nition and strategy, enhances robustness by providing interlocking feedback
of information thereby hypotheses may converge to more plausible one.

Multiple Sensory Channels:  Integration of multiple modal perception chan-
nels can contribute to improve robust perception by complementing missing
information by perception channels with different characteristics.

Perception-Action Loop: Active involvement of probing actions into percep-
tion, that is an integration of perception-action loop to enhance recognition
by actively manipulating the environment so that ambiguity can be resolved.

Spatio-Temporal Distribution:  Integration of spatio-temporally distributed
sensory information, as well as absteacted symbolic information is essential
to create overall picture of the situation, thereby robust adaptation to the
situation can be done with overall re-evaluation of the situation.

Figure 1 illustrates first three dimensions of information fusion for robust
perception.

Information fusion in these aspects contribute robust perception of theater
of operation through one or more of four mechanisms of robustness.

3 Interaction of Low-Level and High-Level Perception
and Actions

Given the multi-scale nature of the domain that requires identification of situ-
ation at both macroscopic and microscopic levels, distributed and coordinated
information fusion need to be performed that are ultimately combined to cre-
ate a coherent model. Information fusion at the macroscopic level is called the
high level information fusion (HiLIF) and that of the microscopic level is called
sensory level information fusion (SLIF).

In the sequential model of AI, a famous Sense Model Plan Act cycle (SMPA
cycle) has been used. This paradigm has been criticized as not being able
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Fig. 1.  Integration at Abstraction, Perception channel, and Perception-Action loop

to respond to environment in real-time, and an alternative approach named
“behavioral-based approach” has been proposed [3]. While the behavior-based
AI demonstrated effectively how simple robotics systems and virtual agents can
behave in the real world without creating an internal model, it never scaled to
perform complex tasks. In both soccer and disaster rescue, coupling of hierar-
chy of sensing and actions from low-level sensory units to high-level strategy
generators is essential. Reactive control of leg movement to kick a ball must be
coordinated with strategic choice of attacking patterns and a pass trajectory
to enable such a strategy. Similarly, local actions and decision for the recovery
of some critical life-lines has to be carefully coordinated with overall strategy.
In this context, low-level perception and action module is not merely behavior-
based module. It must be able to recognize local situation that can be aggrigated
at a higher level. SLIF should have a certain level of internal model.

While these examples are how overall strategy may constrain local actions,
there are cases local actions influence overall strategy. Basically, it is interaction
of bottom-up and to-down processes in which the architecture enabling it has
been long standing theme in multi-agent systems. While this is well recognized
issue, the author would not make further discussions than stating that RoboCup
task domains, particularly humanoid league and rescue, are one of ideal platform
for seriously tacking this problem. This aspect of integration essentially exploits
feedback control of the system for adaptation at certain abstract levels. Low-
level perceptions and local decisions are aggrigated to higher-level that feedback
differences between desired local situations and actions and actual situation and
actions to reduce such descrepancies.

4 Information Fusion of Multiple Sensory Channels
Navigation, localization, and object identification of robotic agents tends to rely
on visual information. While vision provides rich information, it is limited in
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several aspects. First, visual perception can be occluded by obstacles, including
dust and smokes. Second, it has to have certain quality of light sources. These
features impose serious limitations of visual perception for disaster rescue situa-
tion, because disaster scenes are generally highly unstructured, dusty, and may
have serious smokes from fire. Lights are often not available in confined environ-
ment where victims may be embedded. Auditory perception, on the other hands,
has different characteristics. It can transmit over obstacles, do not require light
sources. In fact, various noises victims may make is a critically important sig-
nals for a victim location identification. Other sensory channels, such as odorant,
CO2, and vibrations have different characteristics that complement each other.
Information of multiple modalities of perceptions may provide high level of ro-
bustness in perceiving the environment. Some of early efforts have been done
using integration of auditory and visual perception [6–9]. Vision system often
generates false positive identification of objects that is supposed to recognize
due to similarity of color and shape in irrelevant objects. When the object is
creating certain auditory signals, the use of auditory information to track the
sound stream can effectively eliminates false positives. By the same token, ob-
jects could be occluded by obstacles so that vision system lost tracking, which
can be compensated by keep tracking auditory signals if the object is making
some sound streams. Early experiments indicate that well designed integration of
multiple modal perception channels based on multiple sensory steam integration
is effective for robust perception. Now, the research topic shall be to create basic
principle of robust object identification, tracking, and scene understanding by
using multiple perception channels, most likely by defining a dynamical defined
invariance that corresponds to each object as its signature.This approach is ex-
pected to attain robustness by exploring redundancy, or overlapping functions,
of perception channels, so that degradation or failure of one perception channel
is well compensated by other perception channels with overlapping functions.

5 Integrating Actions to Perception

It is important that the concept of active perception to be integrated into the
system, so that ambiguities of information can be resolved by actively directing
sensory devices and information gathering agents. Early research of this direction
has been proposed as active vision and animated vision [2], but it has to be
extended to include not only vision and other perception channels, but also to
more high level information collections. Conceptually, this is feedback control to
minimize unknown, or ambiguous part of scene to zero.

In the resource constraint situation such as in disaster rescue, the concept of
cost of active probing has to be introduced. Any action to obtain information
is associated with cost, the use of resources, including time. Decision has to be
made on whether actively probe new information or to proceed with ambiguities.

Suppose that a ball that is rolling from right to left is occluded by an op-
ponent player, decision has to be made to use predictions of ball trajectory or
actively probe the ball position. While actively proving the ball position may
resolve ambiguity of information, it may loose time window to intercept the ball.
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By the same token, in the disaster scenario, spreading of fire or cascading col-
lapse of buildings may not be fully monitored by available sensors or information
agents. A tactical decision has to be made to dispatch a unit to counter such in-
cidence by predicting possible front of chain reactions or to mobilize information
gathering agents to make sure the status of incidents. The cost of information
gathering is the use of additional agents and time to wait until the situation to
be disambiguated. On the contrary, a quick deployment of counteraction units
runs a risk that the prediction is false and deployments are deemed ineffective.
Always, there is a trade-off between cost of knowing and risk of not knowing.
One of the research topics may be to find out principles of decision on cost of
knowing versus risk of not knowing.

6 Spatio-temporal Integration

6.1 Heuristics and Knowledge-Based Estimation

Integration of spatio-temporal information is essential, particularly for disaster
rescue operations. Theater of operation is widely distributed, and information is
collected only at limited rate from limited locations. Basically it is a problem of
making the best estimate of the situation by sparse sampling of complex terrain
in 4-D (XYZ+T) space. Certain heuristics, such as continuity of the unfolding
events, and a priori on structure of urban infrastructure are expected to be
highly useful to constrain possible hypotheses. This applies to both low-level and
high-level information fusion, but particularly useful for high-level information
fusion where “fog of war” has to be resolved as soon as possible with limited
resources. Advantage of this approach is that you can make reasoned estimate of
the situation even for the area that cannot be directly measured. The drawback is
that it requires substantial knowledge of the urban structures in usable form that
are generally not available. At the same time, how to increasing sampling points
is the other big issue. One of the best ways is to make sure sensory systems are
ubiquitously present in disaster scene. This can be achieve only by creating multi-
functional systems that are useful in daily life, but can act as sensory units in
emergency. Traffic signals and various monitoring cameras are possible resources
that can cover public space. Home security systems, home entertainment robots,
and a series of home electronic products are ideal for covering situations in each
household. However, there are issues of securing telecommunication with such
devices, as well as protection of privacy that are critical, but are outside of AI
and robotics issues.

6.2 Adaptive Airborne Spatial Information Fusion

One of possible approach to solve this problem is to develop a small disposable
sensory unit and deploy them in large numbers. Figure 2 illustrates one example
of such systems which could be deployed airborne. The goal is quickly understand
target terrain/city situation for the purpose of disaster rescue.

Phase-I: Large number of small IF (information fusion) devices will be deployed
mid-air
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Fig. 2. Aerial Deployment of Small Information Fusion Units for Disaster Area Scan-
ning

Phase-II: Speed break is activated and speed is stabilized. Then each unit has
some visual beacon or visual ID so that relation location of units can be
determined by triangulation.

Phase-III: First aerial photo/video will be taken using multiple camera unit,
but mostly using cameras that are facing terrains below. and send back to
airborne server or other servers. Focus of attention is determined and rough
model will be created. If processing power is sufficient, this can be done
in each unit. Infra-red sensors or other sensors can be used in addition to
CMOS imager to identify specific signature on terrain.

Phase-IV: Each unit deploys small and simple flaps to control trajectory, so that
visual servo will be made effective to regroup IF units, so that areas that are
more significant will be assigned with dense IF units. Photo/video analysis
and reconstruction continues. In low altitude, all 360 angle camera as well as
microphone and other sensors are activated to capture maximum information
on the ground. If possible, frame rate will be increase dramatically.

Phase-V: For those units that safely reached the ground and survived impact,
360 degree vision and microphone systems, as well as other sensors will be
activated to identify objects and terrain structure.
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This approach integrates self-organization of agents and sensory feedback on-
the-fly, and can be enormously useful for rapid deployment at disaster site, as
well as being an excellent test of modern AI techniques.

7 Conclusion

This paper addressed several issues in robust systems for RoboCup domains. Sev-
eral aspects of robustness have been identified, and four aspects of information
fusion have been discussed briefly. Both soccer and rescue provides an excellent
platform for such research, and several research issues have been raised. Integra-
tion of three dimensions (abstraction levels, perception modality, and perception-
action loops) of information fusion poses particularly interesting problems that
community shall tackle. Spatio-temporal integration applies to both soccer and
rescue, but more seriously to rescue scenario. Resolving this issue requires not
only improvement of each robotic and AI agents, but also how such systems are
deployed before and after the onset of the disaster. A systematic approach for
various levels of information fusion is necessary for robust perception of multi-
agent teams.
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Abstract.   A common problem in RoboCup is role allocation: given a
team of players and a set of roles, how should be roles be allocated to
players? Drawing on our previous work in multi-robot task allocation, we
formalize the problem of role allocation as an iterated form of optimal
assignment, which is a well-studied problem from operations research.
From this perspective, we analyze the allocation mechanisms of a number
of RoboCup teams, showing that most of them are greedy, and that many
are in fact equivalent, as instances of the canonical Greedy algorithm.
We explain how optimal, yet tractable, assignment algorithms could be
used instead, but leave as an open question the actual benefit in terms
of team performance of using such algorithms.

1 Introduction

Over the past decade, a significant shift of focus has occurred in the field of mo-
bile robotics as researchers have begun to investigate problems involving multi-
ple, rather than single, robots. From early work on loosely-coupled tasks such as
homogeneous foraging (e.g., [1]) to more recent work on team coordination for
robot soccer (e.g., [2]), the complexity of the multi-robot systems being studied
has increased. This complexity has two primary sources: larger team sizes and
greater heterogeneity of robots and tasks. As significant achievements have been
made along these axes, it is no longer sufficient to show, for example, a pair of
robots observing targets or a large group of robots flocking as examples of coor-
dinated robot behavior. Today we reasonably expect to see increasingly larger
robot teams engaged in concurrent and diverse tasks over extended periods of
time.

As a result of the growing focus on multi-robot systems, multi-robot coordi-
nation has received significant attention. In particular, multi-robot task allocation

* This paper is based in part on “A Framework for Studying Multi-Robot Task Alloca-
tion” by B.P. Gerkey and appearing in Schultz, A., et al., eds.: Multi-
Robot Systems: From Swarms to Intelligent Automata, Volume II, Kluwer Academic
Publishers, the Netherlands (2003) 15–26.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 43–53, 2004.
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(MRTA) has recently risen to prominence and become a key research topic in
its own right. As researchers design, build, and use cooperative multi-robot sys-
tems, they invariably encounter the fundamental question: “which robot should
execute which task?” in order to cooperatively achieve the global goal.

In the RoboCup domain, this problem is usually referred to as role allocation,
with the concept of a time-extended “role” replacing that of a transient “task”.
Regardless, the underlying problem remains the same, so we will use the terms
task and role interchangeably throughout the paper. As in most other multi-
robot systems, the question of how to assign roles in RoboCup is of significant
importance for most teams, as it forms the very core of their teamwork strategy1.
However, the methods demonstrated to date remain primarily ad hoc in nature,
and relatively little has been written about the general properties of the role
allocation problem. The field still lacks a prescription for how to design a role
allocation mechanism and there has been little attempt to analytically evaluate
or compare the proposed techniques. They have, of course, been extensively
evaluated empirically.

In this paper we attempt to fill this gap with a formal discussion of role
allocation in RoboCup. Our goal is to provide a framework in which to under-
stand the underlying problem, as well as existing solutions. solutions. We show
how role allocation can be cast as an iterated form of the long-studied Opti-
mal Assignment Problem (OAP) [4]. In this light, we find that many allocation
mechanisms are in fact algorithmically equivalent, as instances of the canonical
Greedy algorithm, and thus have known worst-case bounds on solution qual-
ity. We also explain how provably optimal allocation techniques could be used
instead, with a negligible increase in computational overhead. We leave as an
open question the actual performance benefit of choosing an optimal allocation
algorithm over a greedy one.

The rest of this paper is organized as follows. In the next section, we formalize
the problem of role allocation as it is encountered in RoboCup, and discuss
greedy and optimal algorithms for solving this problem. In Section 3, we provide
a number of examples from the RoboCup literature of teams performing role
allocation, and analyze their algorithms in the context of our formalization.
We conclude in Section 4 with a discussion of future directions for this kind of
analysis in multi-robot coordination problems.

2 The Problem

When studying the problem of multi-robot role allocation we take inspiration
from operations research, a field that concerns itself with human organizations. In
particular we claim that role allocation can be reduced to an iterated form of the
Optimal Assignment Problem (OAP) [4], a well-known problem from operations
research. A recurring special case of particular interest in several fields of study,
1 Of course, not all teams use role-based strategies, nor do all role-based teams employ

explicit role assignment (an example of intentional cooperation [3]); we restrict our
attention in this paper to those teams that do both.
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this problem can be formulated in many ways. Given our application domain, it is
fitting to describe the problem in terms of jobs and workers. There are workers,
each looking for one job, and available jobs, each requiring one worker. The
jobs can be of different priorities, meaning that it is more important to fill some
jobs than others. Each worker has a nonnegative skill rating estimating his/her
performance for each potential job (if a worker is incapable of undertaking a job,
then the worker is assigned a rating of zero for that job). The problem is to assign
workers to jobs in order to maximize the overall expected performance, taking
into account the priorities of the jobs and the skill ratings of the workers. This
problem was first formally studied in the context of assigning naval personnel to
jobs based on the results of aptitude tests [5].

Our multi-robot role allocation problem can be posed as an assignment prob-
lem in the following way: given robots, prioritized (i.e., weighted) single-robot
role, and estimates of how well each robot can be expected to play each role,
assign robots to roles so as maximize overall expected performance. However,
because the problem of role allocation is a dynamic decision problem that varies
in time with phenomena including environmental changes, we cannot be con-
tent with this static assignment problem. Thus we complete our reduction by
iteratively re-solving the static assignment problem over time.

Of course, the cost of running the assignment algorithm must be taken into
account. At one extreme, a costless algorithm can be executed arbitrarily quickly,
ensuring an efficient assignment over time. At the other extreme, an expensive
algorithm that can only be executed once will produce a static assignment that
is only initially efficient and will degrade over time. Finally there is the question
of how many roles are considered for (re)assignment at each iteration. In order
to create and maintain an efficient allocation, the assignment algorithm must
consider (and potentially reassign) every role in the system. Such an inclusive
approach can be computationally expensive and, indeed, some implemented ap-
proaches to role allocation use heuristics to determine a subset of roles that will
be considered in a particular iteration.

Together, the cost of the static algorithm, the frequency with which it is
executed, and the manner in which roles are considered for (re)assignment will
determine the overall computational and communication overhead of the system,
as well as the solution quality. Before continuing with a formal statement of the
role assignment problem as an instance of OAP, we first introduce the vital
concept of utility.

2.1 Utility

Utility is a unifying, if sometimes implicit concept in economics, game theory,
and operations research, as well as multi-robot coordination. The underlying idea
in all fields is that each individual can somehow internally estimate the value
(or the cost) of executing an action. It is variously called fitness, valuation,
and cost. Within multi-robot research, the formulation of utility can vary from
sophisticated planner-based methods [6] to simple sensor-based metrics [7]. In
the RoboCup domain, it is common to compute utility as the weighted some
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of several factors, such as distance to a target position, distance from the ball,
whether the team is on offense or defense, etc. We posit that utility estimation
of this kind is carried out somewhere in every autonomous task or role allocation
system.

Regardless of the method used for calculation, the robots’ utility estimates
will be inexact for a number of reasons, including sensor noise, general uncer-
tainty, and environmental change. These unavoidable characteristics of the multi-
robot domain will necessarily limit the efficiency with which coordination can be
achieved. We treat this limit as exogenous, on the assumption that lower-level
robot control has already been made as reliable, robust, and precise as possible
and thus that we are incapable of improving it. We discuss “optimal” allocation
solutions in the sense that, under the assumption that all information available
to the system (with the concomitant noise, uncertainty, and inaccuracy) is con-
tained in the utility estimates, it is impossible to construct a solution with higher
overall utility; this notion of optimality is analogous to optimal scheduling [8].

It is important to note that utility is an extremely flexible measure of fitness,
into which arbitrary computation can be placed. The only constraint on utility
estimators is that they must each produce a single scalar value such that they
can be compared for the propose of ordering candidates for tasks. For example,
if the metric for a particular task is distance to a location and the involved
robots employ a probabilistic localization mechanism, then one reasonable utility
estimator would be to calculate the center of mass of the current probability
distribution. Other mechanisms, such as planning and learning, can likewise be
incorporated into utility estimation. No matter the domain, it is vital that all
relevant aspects of the state of the robots and their environment be included
in the utility calculation. Signals that are left out of this calculation but are
taken into consideration when evaluating overall system performance are what
economists refer to as externalities [9]; their effects can be detrimental, if not
catastrophic.

2.2 Formalism

We are now ready to state our role allocation problem as an instance of the
OAP. Formally, we are given:

the set of robots, denoted
the set of prioritized roles, denoted and their relative weights

the nonnegative utility of robot for role

We assume:

Each robot is capable of executing at most one role at any given time.
Each role requires exactly one robot to execute it.

These assumptions, though somewhat restrictive, are necessary in order to reduce
role allocation to the classical OAP, which is given in terms of single-worker jobs
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and single-job workers. It is worth noting that in most existing role allocation
work, especially in RoboCup, these same assumptions are made.

The problem is to find an optimal allocation of robots to roles. An allocation
is a set of robot-role pairs:

Given our assumptions, for an allocation to be feasible the robots and
the roles must be unique. The benefit (i.e., expected performance) of an
allocation is the weighted utility sum:

We can now cast our problem as an integral linear program [4]: find
nonnegative integers that maximize

subject to

The sum (1) is just the overall system utility, while (2) enforces the constraint
that we are working with single-robot roles and single-role robots (note that
since are integers they must all be either 0 or 1). Given an optimal solution
to this problem (i.e., a set of integers that maximizes (1) subject to (2)),
we construct an optimal role allocation by assigning robot to role only when

By creating a linear program, we restrict the space of role allocation problems
that we can model in one way: the function to be maximized (1) must be linear.
Importantly, there is no such restriction on the manner in which the components
of that function are derived. That is, individual utilities can be computed in any
arbitrary way, but they must be combined linearly.

2.3 Solutions

If the robots’ utilities can be collected at one machine (or distributed to all
machines), then a centralized allocation mechanism can be employed. This is
often the case in RoboCup, where locally-computed utility values are generally
either unicast to a single player/coach or broadcast to all players (so that they
each have the same data). In the former case, one machine can execute the
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allocation algorithm and inform the players of the results; in the latter, all players
can execute the allocation algorithm in parallel2.

Perhaps the most common role allocation technique is the following

Assemble the utility values into an matrix.
Find the highest utility assign robot to role and cross out row and
column from the utility matrix.
Repeat step 2 until all roles have been assigned.

1.
2.

3.

Intuitively, this technique is greedy, in that it always selects the next best choice.
In fact, this technique is an instance of the canonical Greedy algorithm, studied
in several areas of optimization [10]. Unfortunately, the OAP does not satisfy
the greedy choice property [11] and so the Greedy algorithm will not necessarily
produce an optimal solution3. The worst-case performance of the Greedy algo-
rithm on the OAP is well-known: it is 2-competitive [13]. An algorithm is said
to be if, for any input, it finds a solution that is no worse than

of the optimum. Thus for an assignment problem, the Greedy algorithm will
in the worst case produce a solution with utility that is of that given by an
optimal solution.

In place of this greedy approach, it is possible to employ optimal solutions, a
great many of which can be found in the literature (for a representative list, see
[14]). The best-known approach is the Hungarian method [15], a linear program-
ming algorithm that exploits the special structure of the OAP. This algorithm
will find the optimal solution to a role allocation problem in time. We
have demonstrated empirically [16] that the constant factor for the Hungarian
method is so small that this algorithm could easily be used for real time role
allocation in RoboCup teams, where

It is also possible to solve assignment problems in a completely distributed
fashion. An optimal distributed algorithm that is relevant to role allocation in
the RoboCup domain was derived by viewing the OAP as a “stable marriage”
problem [17]: given a group of boys and a group of girls, each with preferences
(i.e., utilities) over the members of the opposite sex, find a set of pairings such
that there exists no boy and girl pair that is not paired together but prefers each
other to their current mates. Gale and Shapley developed an intuitive algorithm
in which each boy proposes to his favorite available girl and each girl condition-
ally accepts her favorite proposer. This process is repeated in a series of stages
until, when the last girl has received a proposal, the “courtship” is declared to
be over and the result is an optimal solution to the problem of assigning boys
to girls so as to maximize total utility.

This distributed algorithm obviates the need to communicate the individuals’
utilities among the individuals and requires stages, which may

2 Due to communication issues, different players may occasionally have different util-
ity information. Because reallocation is performed so frequently, the effects of such
inconsistency are usually transient and negligible.
Equivalently, the OAP is a maximization problem over a subset system, but is not
a matroid [12].

3
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seem better than the running time for centralized solutions. Unfortunately
for high-speed, real-world domains like RoboCup, each stage in the proposal
algorithm requires a synchronous exchange of messages between some or all of
the participants. Given the latency characteristics of real networks, especially
wireless networks in congested environments, the time required at each stage to
guarantee the receipt of all messages and maintain synchronization makes this
algorithm far too slow.

In practice, a team seeking optimal role allocation will be better off period-
ically broadcasting utility values to all players and having the players run the
same centralized assignment algorithm in parallel. Assuming that the robots are
linked with a wireless network and that a robot’s utility values for all roles can
be included in a single packet (this is almost certainly the case, as utilities are
scalars), the communication cost of informing robots of each others’ utilities
is just messages. This overhead is negligible, as is the ensuing computational
cost of executing even an optimal assignment algorithm.

3 Some Examples

Inspired by the pioneering work of Stone and Veloso [2], many RoboCup teams
employ role-based coordination, in which the players can take on different roles
within the team. Although it is possible to statically assign roles once at the
beginning of the game, this strategy is brittle and unable to exploit unexpected
opportunities [18]. Thus most role-based teams employ some kind of dynamic
role allocation, in which the current allocation is reevaluated periodically, usually
on the order of l0Hz. Thus they are solving the iterated assignment problem,
though often without recognizing it as such (a notable exception is RoboLog
Koblenz [19], who identify the problem of assigning players to block opponents
as one of stable marriage, though it is not clear whether they actually use an
optimal algorithm to solve it). Furthermore, most teams use greedy algorithms,
despite the fact that tractable optimal algorithms exist.

For example, the assignment algorithm of ART99 consists of ordering the
roles in descending priority and then assigning each to the available robot with
the highest utility [20]. This algorithm is clearly an instance of the Greedy al-
gorithm, and thus is 2-competitive. As is the case with most teams, utilities in
ART99 are computed in a role-specific manner. The same approach, with utility
referred to as function Q, is used in [21]. Vail and Veloso also employ the Greedy
algorithm, with fixed priority roles [22]. Another team [23] describes a more
complex approach in which role allocation is carried out differently depending
on the game situation, such as who has the ball. We conjecture that their tech-
nique can be reduced to the Greedy algorithm by combining the different cases
and appropriately modifying the utility functions.

A common problem with dynamic role assignment is that small changes in
utility estimates can cause roles to be reassigned very frequently, often in an
oscillating fashion. Changing from one role to another is not a costless operation;
for example, a player may have to move from its current position to another
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position on the field. If the team is constantly reassigning roles it will spend less
time actually playing and will tend not to perform well. The underlying problem
is that the cost of transitioning from one role to another is an externality: it
affects system performance but is not included in the utility computation. Thus
the solution is to explicitly consider the cost of role transition in the utility
computation, which will tend to induce a degree of hysteresis. Some teams, such
as RMIT United [24], do this by adding a fixed amount to the utility of a robot
retaining its current role

While the teams discussed so far employ centralized assignment algorithms,
distributed role-swapping approaches are also used. The winners of the F2000
league at RoboCup 2000, CS Freiburg [25], use a distributed role allocation
mechanism in which two players may exchange roles only if both “want” to, in
that they will both be moving to higher-utility roles for themselves. This algo-
rithm is similar to the marriage proposal algorithm discussed previously, but
is not optimal, a fact that can easily be shown by counterexample. This result
is not surprising because an optimal role-swapping algorithm, which considers
all feasible assignments, would be too slow in practice. A similar pairwise ex-
change mechanism is used by FC Portugal [26], who won the simulation league
at RoboCup 2000.

Unfortunately, without more detailed information about these role-exchange
algorithms (e.g., how often are exchanges attempted? how many are attempted?),
it is impossible to derive any performance bounds, other than to say that there
exist situations in which they will produce sub-optimal solutions. Furthermore,
we conjecture that little is saved in terms of communication or computation by
executing such a distributed allocation algorithm. Instead of pursuing pairwise
exchanges, the robots could periodically broadcast their utility values for all
roles, then each execute an optimal centralized assignment algorithm.

4 Discussion

In this paper we have presented a formal framework for studying the RoboCup
role allocation problem. We have shown how this problem can be understood
as an iterated Optimal Assignment Problem (OAP), and how many existing
team coordination strategies can be seen as assignment algorithms that are used
to solve this problem. We have also explained how tractable optimal assign-
ment algorithms developed in operations research can be immediately applied
to RoboCup role allocation problems, in place of the existing greedy and/or ad
hoc solutions.

A natural question arises: what will actually be gained by employing an op-
timal solution? Consider the analysis showing that the allocation mechanism
used by ART99, as an implementation of the canonical Greedy algorithm, is
2-competitive. This kind of competitive factor gives an algorithm’s worst-case
behavior, which may be quite different from its average-case behavior. In fact,
for many small assignment problems, the Greedy algorithm will find an optimal
or near-optimal solution. In this respect, the solution quality bounds established
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for existing allocation architectures are rather loose. One way to tighten these
bounds is to add domain-specific information to the formalism. By capturing and
embedding models of how real RoboCup teams behave and evolve over time, it
should be possible to make more accurate predictions about algorithmic perfor-
mance. For example, while the classical theory of the OAP makes no assumptions
about the nature of the utility matrices that form the input, role allocation prob-
lems are likely to exhibit significant structure in their utility values. Far from
randomly generated, utility values generally follow one of a few common mod-
els, determined primarily by the kind of sensor data that are used in estimating
utility. If only “local” sensor information is used (e.g., can the robot currently
see the ball, and if so, how close is it?), then utility estimates tend to be strongly
bifurcated (e.g., a robot will have very high utility if it can see the ball, and zero
utility otherwise). On the other hand, if “global” sensor information is available
(e.g., how close is the robot to a goal position?), then utility estimates tend to
be smoother (e.g., utility will fall off smoothly in space away from the goal).
A promising avenue for future research would be to characterize this “utility
landscape” as it is encountered in RoboCup, and make predictions about, for
example, how well a greedy assignment algorithm should be expected to work,
as opposed to a more costly optimal assignment algorithm.

Another important issue concerns the way in which the role allocation prob-
lem is traditionally framed. Throughout this paper, we have considered the prob-
lem of assigning a single robot to a single role. In the context of our previously
developed taxonomy of such problems [16], we are studying an iterated instance
of ST-SR-IA (single-task robots, single-robot tasks, instantaneous assignment).
However, in some situations, such as when two or more defenders are needed to
block an attacker, the problem actually involves assigning multiple robots to a
single role or task. It is generally not the case that the utility of a collection of
robots for a given task will be equal to the sum of their individual utilities. Thus
the classical assignment formulation is only an approximation of the real prob-
lem, which is an instance of ST-MR-IA (same as ST-ST-IA, but with multi-robot
tasks). Unfortunately, problems of this kind, which involve coalition formation,
are rather difficult to solve. In the most general case, ST-MR-IA problems are
a form of set partitioning, which is strongly NP-hard [27]. As such, using the
single-robot task approximation is a parsimonious choice.

We have also assumed thus far that robots’ utilities are independent. That
is, a robot’s utility for a particular role does not depend on the other robots’
allocated roles. This assumption is rarely, if ever, true in multi-robot systems. In
general, a robot’s utility for a role can in fact be affected by the overall allocation
of roles to robots. This situation can arise any time that physical interference
contributes significantly to task performance [28]. Unfortunately, the state of
the art for capturing interrelated utilities of this kind is the Markov Decision
Process [29], which remain too difficult to solve quickly enough for domains like
RoboCup (especially if partial observability is considered).

Because it is well-defined and requires researchers to empirically compare
their proposed techniques, RoboCup is an excellent domain in which to study
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role allocation. It is our hope that the formal perspective on the problem that we
have given in this paper will aid in the understanding of how and why existing
techniques work, as well as guide the design of new ones.
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On the Role of Quantitative Descriptions
of Behaviour in Mobile Robotics Research

Ulrich Nehmzow

Dept. of Computer Science, University of Essex, Colchester CO4 3SQ, UK

Abstract. This paper – a summary of a keynote address given at the
Robocup 2003 symposium – argues i) that mobile robotics research would
benefit from a theoretical understanding of robot-environment interac-
tion, ii) that independent replication and verification of experimental
results should become common practice within robotics research, and
iii) that quantitative measures of robot behaviour are needed to achieve
this.
The paper gives one example of such quantitative measures of behaviour:
the reconstruction of the phase space describing a robot’s behaviour, and
its subsequent analysis using chaos theory.

1 Mobile Robotics Research

1.1 Robot Engineering versus Robot Science

Theory Supports Design. Arguably, there are (at least) two independent ob-
jectives of robotics research: on the one hand, to create artefacts that are capable
of carrying out useful tasks in the real world – for example industrial, service,
transportation or medical robots, to name but a few, and on the other hand
to obtain a theoretical understanding of the design issues involved in making
those artefacts – for example sensor and actuator modelling, system identifica-
tion (modelling of entire systems), or sensor, actuator and behaviour analysis.
The former can be referred to as ‘robot engineering’, the latter as ‘robot science’.
It is robot science that this paper is concerned with.

While robot engineering ultimately produces the ‘useful’ artefacts, there is
a lot that robot science can contribute to this process. Without theoretical un-
derstanding, any design process is largely dependent upon trial-and-error exper-
imentation and iterative refinement. In order to design in a principled way, a
hypothesis of some kind (a justified expectation) is needed to guide the design
process. The hypothesis guides the investigation: results obtained are fed back
into the process and brought into alignment with the theory, to lead to the next
stage of the experimentation and design. The better the theory underlying the
design process, the more effective and goal-oriented the design process will be.

Every process of designing technical artefacts is based on some kind of as-
sumptions (a ‘theory’), even if very little is known at all about the object being
designed. This is true for current mobile robotics research, too. When asked
to design a wall-following robot, the designer will not start with an arbitrary
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© Springer-Verlag Berlin Heidelberg 2004
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program, but with a ‘reasonable guess’, sensibly speculating on which sensors
might be useful to achieve the desired behaviour, which general kind of control
program will perform acceptably, etc. But, given our current understanding of
robotics, he is unable to design the entire behaviour off-line!

Instead, mobile robotics researchers to-date are crucially dependent on trial-
and-error procedures. A ‘reasonable prototype’ has to be tested in the target
environment, and refined based on observations and underlying theory (‘hunch’
is often the more appropriate term for such theories). Here is a practical example:
to design the Roomba commercial robot floor cleaner (relying on very simple
sensing, and not involving any sophisticated navigation), thirty prototypes had
to be built over a period of twelve years [EXN 03]!

The first argument we would make in favour of a better theoretical under-
standing of the principles underlying a mobile robot’s operation in its environ-
ment, therefore, is that robot engineering (the process of designing a technical
artefact that will perform useful tasks in the real world) will benefit from the-
ory through the resulting more effective, rigorous and goal-oriented development
methods.

Science Requires Replication and Verification. Current mobile robotics
research practice not only differs from that of established disciplines in its lack of
theories supporting design, but also in a second aspect: independent replication
and verification of experimental results is uncommon. While in sciences such as
biology or physics, for instance, reported results are only taken seriously once
they have been verified independently a number of times, in robotics this is
not the case. Instead, papers often describe experimental results obtained in
specific environment, under specific experimental conditions. These experiments
therefore are ‘existence proofs’ – the demonstration that a particular result can
be achieved – but they do not state in general terms under which conditions
a particular result can be obtained, nor which principles underlie the result.
Existence proofs are useful, they demonstrate that something can be achieved,
which is an important aspect of science, but they do not lead towards general
principles and theories.

The second argument we make, therefore, is that mobile robotics research
is now at a stage where we should move on from existence proofs to a research
culture that habitually includes independent replication and verification of ex-
periments.

The Role of Quantitative Descriptions. Theories, experimental replication
and experimental verification all depend crucially on quantitative descriptions:
quantitative descriptions are an essential element of the language of science.

The third argument we make, therefore, is that an essential first step towards
a sounder theoretical understanding of robot-environment interaction is to de-
velop and apply quantitative descriptions of robot-environment interaction. The
experiments reported in this paper are one example of how to achieve this.
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1.2 Theory

Introduction. When referring to ‘theory’, we mean a coherent body of hypo-
thetical, conceptual and pragmatic generalisations and principles that form the
general frame of reference within which mobile robotics research is conducted.

There are two key elements that make a theory of robot-environment inter-
action useful, and therefore desirable for research:

1.

2.

A theory will allow the formulation of hypotheses for testing. This is an
essential component in the conduct of ‘normal science’ [Kuhn 70].
A theory will make predictions (for instance regarding the outcome of experi-
ments) , and thus serve as a safeguard against unfounded or weakly supported
assumptions.

A theory retains, in abstraction and generalisation, the essence of what it
is that the triple of robot-task-environment does (see also figure 2). This gen-
eralisation is essential: it highlights the important aspects of robot-environment
interaction, while suppressing unimportant ones. Finally, the validity of a the-
ory (or otherwise) can then be established by evaluating the predictions made
applying the theory.

Benefits of Theory. Two significant advantages of a theory have been given
above: generating hypotheses and making testable predictions. But there are
practical advantages, too, particularly for a discipline that involves the design of
technical artefacts: Theory supports off-line design, i.e. the design of technical
artefacts through the use of computer models, simulations and theory-based
calculations.

Example: Aircraft Design. Because of a theoretical understanding of aero-
nautics, it is now possible to design aircraft (such as the Airbus A380, shown in
figure 1) almost completely ‘off-line’. This incurs considerable advantages.

In a report on ‘virtual manufacturing’ to the UK Foresight Programme,
J. Coyle states that virtual manufacturing and virtual prototyping – validating
product design and production processes in a synthetic environment – enabled
aerospace manufacturing companies to reduce design to first-unit build time by
33%, using 25% less manpower. In addition to that, the amount of rework is
reduced by 90% (Boeing claim), sustained engineering work is reduced by 50%,
and production time cycles and planning costs are also reduced. In aircraft de-
sign, there is the additional advantage that simulations are reusable for operator
work instructions and for maintenance tasks.

These considerable benefits are, obviously, based on sound theoretical knowl-
edge of the governing laws of physics, mechanics, aerodynamics, material science
etc. underlying the operation of the designed artefact.

In mobile robotics, such theoretical knowledge to construct sufficiently accu-
rate computer models and computer simulations is not yet available, but it is
obvious that robot design would benefit significantly if it were.
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Fig. 1. Aircraft design is largely based on theory, and computer modelling and consid-
erations based on theoretical understanding have reduced development time and cost
considerably.

2 Quantitative Characterisations
of Robot-Environment Interaction

A key element of the objectives outlined above are quantitative descriptions of
the robot’s behaviour. They will support replication and independent verifica-
tion of experimental results, principled experimental design and analysis of the
influence of individual experimental factors. In this paper we present a way of us-
ing methods from deterministic chaos and dynamical systems theory to achieve
this.

2.1 Robot-Environment Interaction Constitutes
a Dynamical System

The behaviour of a mobile robot is governed by three main factors: (i) the robot
itself: its hardware, physical makeup, inertia, sensor and motor characteristics
etc.; (ii) the environment the robot is operating in: the colour, texture and
structure of walls, floors and ceilings, the temperature and humidity, speed of
sound in the environment, noise etc.; and (iii) the control program (the ‘task’)
the robot is executing (figure 2).

Therefore, we argue, a mobile robot, interacting with its environment, could
be viewed as an analog computer.

Similar to an optical lens, which takes light rays as its input and ‘computes’
the Fourier transformation of the input image as its output (thus acting as an
analog computer), or a cylindrical lens taking the visual image of the environ-
ment as its input and ‘computing’ the positions of vertical edges in the image
as its output (again acting as an analog computer), the mobile robot, execut-
ing some control program in its environment ‘computes’ behaviour as its output
from the three input components shown in figure 2, i.e. robot-specific compo-
nents, environment-specific components and the task (see figure 3).
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Fig. 2. The fundamental triangle of robot-environment interaction: A robot’s behaviour
always has to be seen in the context of robot, task and environment.

Fig. 3. A mobile robot interacting with its environment can be described as an analog
computer, taking environmental, morphological and task-related data as input, and
‘computing’ behaviour as output (see also figure 2).

We furthermore argue that one of the most fundamental manifestations of
the analog computation carried out by a mobile robot interacting with its en-
vironment, is the trajectory taken by the robot. Although the trajectory does
not encompass every aspect of a mobile robot’s behaviour, it is the dominant
result of the robot’s perception, control architecture and actuation. To analyse
the trajectory, therefore, means analysing the dominant aspect of the ‘output’ of
the robot’s ‘computation’. (Note: the methods described in this paper have been
applied to the analysis of mobile robot behaviour. However, it is conceivable that
other kinds of robot behaviour can be analysed in the same way, as our analysis
is a time series analysis, which can be used to analyse any time series describing
a robot’s behaviour, not just trajectories.)

The trajectory of a mobile robot essentially constitutes two time series –
one for the robot’s and one for the In our experi-
ments we analyse these time series for the presence or absence of deterministic
chaos, and use the quantitative descriptors of deterministic chaos as quantitative
descriptions of the robot’s interaction with its environment.

2.2 Chaos Theory to Characterise
Robot-Environment Interaction Quantitatively

Introduction to the Approach. Our aim, then, is to obtain a quantitative
description of a mobile robot’s interaction with its environment. We achieve
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this by applying methods from dynamical systems theory: We first reconstruct
the attractor underlying the robot’s behaviour, then analyse the attractor us-
ing chaos theory, and describe it quantitatively by computing the Lyapunov
exponent (section 2.3). In this way we are able to establish, for instance, that
robot environment interaction does exhibit deterministic chaos, as well as the
influence of individual experimental parameters (such as objects present in the
environment) upon the overall robot behaviour.

Analysis of a Dynamical System in Phase Space. The behaviour of any
dynamical physical system is fully described by giving its position and mo-
mentum at time for every degree of freedom this system has. This
space is the phase space of the system – if it is known, the motion of the system
is known and analysable1.

For actual physical systems, the exact nature of the system’s phase space
cannot be known, due to noise etc. It is, however, possible to reconstruct an
approximation of the system’s phase space very simply from an observed time
series of the system’s motions, through the so-called time-lag-embedding
given in equation 1 [Peitgen et al 92,Kantz & Schreiber 97,Abarbanel 96].

with being a sequential set of measurements (the time series), being
the embedding dimension and being the embedding lag (for a full discussion
see [Peitgen et al 92,Nehmzow & Walker ny]).

In other words, it is not necessary to have full knowledge of a physical sys-
tem’s phase space, a (sufficiently long) observation of the system’s behaviour (for
instance by logging a trajectory, using a camera, or by logging other data de-
scribing the agent’s behaviour) is sufficient to reconstruct its phase space. Once
reconstructed, the phase space can be analysed quantitatively (see section 2.3).

In summary: We are interested in analysing some physical system quantita-
tively. Logging data emanating from the system (such as a robot trajectory) for
a reasonably long period of time, we obtain a time series describing the system’s
behaviour. We know that it is possible to reconstruct the system’s phase space
from that time series [Takens 81]: instead of analysing the system’s motion in
physical space, we analyse the system’s motion on the ‘attractor’ in phase space.
Finally, attractors (and therefore the system that has generated the attractor)
can be described quantitatively, for instance through the Lyapunov exponent or
the dimension of the attractor [Peitgen et al 92].

Example from Mobile Robotics. Figure 4 shows the motion of a Pioneer II
mobile robot in our laboratory, executing an obstacle-avoidance control program
1 A very simple illustration of phase space is the ideal pendulum, which has one degree

of freedom – the arc along which it swings. The phase space of the ideal pendulum is
therefore two-dimensional (speed and position along the arc). The actual trajectory
of the pendulum through phase space – the ‘attractor’ – is a circle.



60 Ulrich Nehmzow

Fig. 4. Quasi ‘Billiard Ball’ Behaviour in Square Arena – Entire trajectory (left) and
150 data points (right).

Fig. 5. Part of the (top) and (bottom) coordinate of quasi billiard ball behaviour.
The attractor describing the robot’s behaviour (shown in figure 6) was reconstructed
from this data, using time-lag embedding [Peitgen et al 92].

that results in a quasi billiard ball behaviour. The trajectory shown in figure 4
was obtained by logging the robot’s motion with an overhead camera for about
2 hours of continuous operation.

Using the time series or shown in figure 5, the robot’s motion in
phase space can be reconstructed through time lag embedding (equation 1). This
phase space reconstruction is shown in figure 6.

As the phase space of a physical system describes that system’s behaviour
fully, we now have a representation of a robot’s interaction with its environment
that can be analysed quantitatively – one of the key requirements of a theory of
robot-environment interaction, as we argued earlier. The following section will
discuss how the Lyapunov exponent can be used to achieve this objective.
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Fig. 6. The phase space reconstruction of the quasi billiard ball behaviour shown in
figure 4. The attractor has a fractal dimension of approx. 1.9, it is ‘strange’.

2.3 Quantitative Analysis of Phase Space

There are a number of quantitative descriptions of phase space, for instance
the dimension of the attractor (correlation dimension), but the description most
easily obtained, and which we have used most in our experiments is the Lyapunov
exponent.

The Lyapunov Exponent. One of the most distinctive characteristics of a
chaotic system is its sensitivity to a variation in the system’s variables: two
trajectories in phase space that started close to each other will diverge from
one another as time progresses, the more chaotic the system, the greater the
divergence.

Consider some state of a deterministic dynamical system and its corre-
sponding location in phase space. As time progresses the state of the system
follows a deterministic trajectory in phase space. Let another state of the
system lie arbitrarily close to and follow a different trajectory, again fully
deterministic. If is the initial separation of these two states in phase space
at time then their separation after seconds can be expressed as

Or, stated differently, consider the average logarithmic growth of an initial
error (the distance where is some arbitrarily small value
and a point in phase space) [Peitgen et al 92, p. 709]. If is the error at
time step and the error at the previous time step, then the average
logarithmic error growth can be expressed by equation 2.
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(which is measured in Hz or or sometimes in bits/s) is known as the
Lyapunov exponent.

For a phase space, there are values, one for each dimen-
sion. If any one or more of those components are positive, then the trajectories
of nearby states diverge exponentially from each other in phase space and the
system is deemed chaotic. Since any system’s variables of state are subject to
uncertainty, a knowledge of what state the system is in can quickly become
unknown if chaos is present. The larger the positive Lyapunov exponent, the
quicker knowledge about the system is lost. One only knows that the state of
the system lies somewhere on one of the trajectories traced out in phase space,
i.e., somewhere on the strange attractor.

The Lyapunov exponent is one of the most useful quantitative measures of
chaos, since it will reflect directly whether the system is indeed chaotic, and will
quantify the degree of that chaos. Also, knowledge of the Lyapunov exponents
becomes imperative for any analysis on prediction of future states.

One method to determine the Lyapunov of an attractor describing the be-
haviour of a physical system is to estimate it from an observed time series of the
system’s motion [Peitgen et al 92]. The methods we have used in our research
are the one proposed by Wolf in 1985 [Wolf et al 95], and the one proposed
by Abarbanel [Applied Nonlinear Sciences 03]. Software packages implementing
either method are readily available.

3 Experiments

3.1 Experimental Setup

In our experiments, we observed autonomous mobile robots (figure 7), perform-
ing simple sensor-motor tasks such as obstacle avoidance, in a laboratory envi-
ronment (see also figure 8).

The robot’s trajectory was logged every 250 ms, using an overhead camera.
Figures 4 and 5 show examples of the kind of trajectories observed, and the kind
of data subsequently analysed.

Results. We carried out a number of different experiments, in which our
robots performed different behaviours, in a range of different environments.
As this paper is concerned with method, we only give an overview of results
here, full results are given in [Nehmzow & Walker 03,Nehmzow & Walker 03b]
[Nehmzow & Walker ny].

First, all our experiments showed that the interaction of our mobile robots
with their environment exhibited deterministic chaos. Lyapunov exponents were
small, but always positive (indicating the presence of chaos), and typically be-
tween 0.1 and 0.3 bits/s. All attractors were ‘strange’, i.e. had a fractal dimension
of typically between 1.5 and 2.5.

Second, we were able to investigate the influence of individual experimental
parameters quantitatively. For instance, changing the robot’s control program
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Fig. 7. The Magellan Pro and Pioneer II mobile robots used in the experiments dis-
cussed here.

Fig. 8. Bird’s eye view of the experimental arena used in our experiments. The robot
is visible in the bottom right hand corner of the arena.

from ‘wall following’ to ‘billiard ball behaviour’ increased the Lyapunov exponent
by a factor of four, whereas changing the environment (by adding a central ob-
struction to it) whilst leaving the behaviour (billiard ball) unchanged, resulted
in no measurable change of the Lyapunov exponent [Nehmzow & Walker ny]
[Nehmzow &; Walker 03]. In other words: in the experiments we conducted, the
control code influenced robot-environment interaction much more noticeably
than the nature of the environment!
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In a different set of experiments we investigated differences between the Pi-
oneer II and the Magellan Pro robots. Using similar control programs for both
robots (the Pioneer and the Magellan use different operating systems, and code
can therefore not be identical), we found in preliminary experiments that there
is a noticeable difference between these two robots: the Magellan attained Lya-
punov exponents that were smaller by about a factor of 2. This observation is
subject to ongoing research.

4 Summary and Conclusion

4.1 Summary

In this keynote paper we argue that i) the design of technical artefacts (engineer-
ing) benefits from theory, that ii) mobile robotics research has reached a stage
of maturity that allows the field to move on from existence proofs to a research
culture that habitually involves independent replication and verification of ex-
perimental results, and that iii) quantitative descriptions of behaviour are the
foundation of theory, replication and verification.

An engineering design process that is not guided by a theoretical understand-
ing of the subject matter has to resort to trial-and-error methods and iterative
refinement. This is very costly, and does not even guarantee optimal results. On
the other hand, design supported by theory can use the hypotheses and predic-
tions afforded by the theory to reduce the design space, resulting in more efficient
and faster design cycles. The aircraft industry, for instance, reports substantial
gains in efficiency through ‘virtual manufacturing’, based on a theoretical un-
derstanding of aircraft design [Coyle 03].

Mobile robotics research, so far, largely relies on trial-and-error methods and
uses iterative refinement techniques to develop task-achieving robot controllers.
Existing computer models of robot-environment interaction are such simpli-
fied representations of sensors, actuators and environments that their predictive
power is of little value for real world applications. Instead of mainly designing
robot controllers off-line, control programs have to be developed through iter-
ative refinement processes, which require large amounts of time and are costly.
Furthermore, because robot control programs are usually developed in specific
target environments, experimental results are typically existence proofs, rather
than generally applicable findings. This limits their usefulness.

Finally, mobile robotics research currently does not benefit from a research
practice in which experimental results are replicated and independently veri-
fied. This, of course, increases the risk that results stemming from accidental
singularities go undetected.

We argue that one of the reasons for the current practice of mobile robotics
research is that we simply haven’t got the means to communicate results in
such a way that theoretical descriptions, independent replication and verifica-
tion are possible – we lack the ‘language’, i.e. quantitative descriptions of robot
behaviour. Statistical descriptions are useful in this regard to some extent, but
they still only represent a statistical description of overall robot behaviour, rather
than a quantitative description of a particular single run.
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In this paper, we present one method to obtain a quantitative description
of robot behaviour, using dynamical systems theory. We first reconstruct the
attractor underlying the robot’s behaviour, then analyse the attractor using
chaos theory, and describe it by computing the Lyapunov exponent (section 2.3).
In this way we were able to establish, for instance, that robot environment
interaction does exhibit deterministic chaos, as well as the influence of individual
experimental parameters (such as objects present in the environment) upon the
overall robot behaviour.

4.2 Conclusion

The experiments presented in this paper and elsewhere [Nehmzow & Walker 03]
[Nehmzow & Walker ny,Nehmzow & Walker 03b] demonstrate that dynamical
systems theory can be used to obtain quantitative descriptions of robot-environ-
ment interaction. Computing the Lyapunov exponent of the phase space under-
lying the robot’s behaviour provides a means of measuring the influence of indi-
vidual experimental parameters upon the overall robot behaviour. By changing
just one of the three components shown in figure 2, for instance, the Lyapunov
exponent can be used to describe the robot itself, the environment it is acting in,
or the task it is performing. Likewise, it can be used to describe the influence of
parameters such as illumination, colour, surface structure etc, by modifying the
parameter in question in a principled way, and measuring the resulting Lyapunov
exponent.
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Abstract. Complexity science is characterised by computational irreducibility,
chaotic dynamics, combinatorial explosion, co-evolution, and multilevel lattice
hierarchical structure. One of its main predictive tools is computer-generated
distributions of possible future system states. This assumes that the system can
be represented inside computers. Robot soccer provides an excellent laboratory
subject for complexity science, and we seek a lattice hierarchical vocabulary to
provide coherent symbolic representations for reasoning about robot soccer sys-
tems at appropriate levels. There is a difference between constructs being hu-
man-supplied and being abstracted autonomously. The former are implicitly lat-
tice-hierarchically structured. We argue that making the lattice hierarchy ex-
plicit is necessary for autonomous systems to abstract their own constructs. The
ideas are illustrated using data taken from the RoboCup simulation competition.

1 Introduction

Robot soccer is an excellent laboratory subject for the emerging new science of com-
plexity characterised by computational irreducibility, chaotic dynamics, combinatorial
explosion, co-evolution, and multilevel lattice hierarchical structure. The earlier
benchmark problem of computer chess also has many of these properties, with the
exception of not being chaotic. Start a game of chess in a given position, compute
each of a sequence of moves, and the result is always the same.

Fig. 1. Structured space in robot chess

Chess players use structure in order to play the game. Some of these structures are
so fundamental that they have been given names such as the ranks, files, and diago-
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© Springer-Verlag Berlin Heidelberg 2004
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nals illustrated in Figure 1. These names reflect spatial properties such as contiguity,
and the functional properties of the pieces, e.g. rooks move on ranks and files, bishops
move on diagonals, while kings and queens do both.

The space of the chessboard is divided into micro-units at the level of a player.
These micro-units are aggregated into structures (e.g. ranks, files, diagonals) reflect-
ing the modes of movement of the players. Thus the space of chessboard is hierarchi-
cally structured, with a well-defined set of areas, the squares, at the lowest level. Soc-
cer and robot soccer do not have such an obvious lowest level of aggregation. At
higher levels the space is structured by the goal area, the halves of the pitch, the pen-
alty spots, the centre spot, and the centre circle, etc. All of these areas are defined
because they play rolls in the rules.

In robot soccer the positions of the players and ball are assumed to be on an x-y
grid. Even when the positions are represented by floating point numbers, this grid is
finite. In this respect, the soccer pitch is like an enormous chessboard. The chessboard
has 8 x 8 squares, while in robot soccer there are typically 1680 x 1088 pixels.

In chess, the players use a hierarchical representation that includes the ranks, files,
diagonals and other more ambiguous areas such the right, left and centre of the board.
Even though the number of squares and the number of these constructs is relatively
small, chess is characterised by combinatorial explosion as chess players attempt to
predict future system states. The 1.8 million pixels of the robot soccer pitch present an
even more formidable combinatorial explosion in the way that the pixels can be
grouped to form coherent and relevant areas of the pitch.

Our research is based on the premise that complex systems have hierarchically
structured vocabulary reflecting the relational structure at micro- and macro-levels.
By their nature, complex systems have to be investigated using computers, and this
means that their representation must be explicit. In the case of robot soccer, this
means there must be vocabulary for representing relationships between dynamically
forming parts of the pitch, and dynamically forming relationships between players,
opponents, and the ball.

Fig. 2. The Knight-Fork

Just as in chess there are ‘interesting’ structural relationships with names such as
the ‘knight fork’, there are ‘interesting’ structural relationships in robot soccer. In
Figure 2 the knight, N, checks the opponents king, K, and threatens the more valuable
rook, R. This structure is so dangerous in chess that it has its own name, the ‘knight
fork’. When players reason about chess, the ‘knight fork’ is an entity in its own right,
with emergent properties not possessed by the individual pieces.

Figure 2 illustrates a similar well-known structure in soccer. In this case, defending
player 3 threatens to take the ball from player-1. If player-1 feigns a pass to player-2,
then player-3 must move to intercept that pass. In so-doing, player-2 moves out of
position, and player-1 can slip past. This structure has its own vocabulary, e.g. player-
2 ‘draws out of position’ player-3, allowing player-1 to pass.
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Fig. 3. Player 3 is drawn out of position by the relationship between players 1 and 2

The richer the vocabulary of these structures, the greater will be the advantage pos-
sessed by teams using that vocabulary. There are of course astronomic numbers of
possible configurations of players and the ball on a soccer pitch. How can the ‘inter-
esting’ structures be found? One answer to this is analyse many soccer games, and
observe which configurations occur at ‘interesting’ times. These include the scoring
of goals, but also include events such as the ball being lost, or even large areas of
space opening up.

Early work in the analysis of RoboCup agents concentrated on the offline analysis
of statistics gleaned from game logs, such as the work of Takahashi and Naruse [1]
who measured statistics for teams at RoboCup 1997 such as number of goals, assists,
kicks, own goals, and so on. Takahashi [2] continued this work and found no relation-
ship between scoring and collaboration between agents when looking at the basic
statistics as above. He did find, however, that collaborative actions, such as the num-
ber of 1-2 passes (player A passes to team-mate B in order to avoid defending player
D, then B passes back to A once A has passed D), correlated highly with team rank-
ing.

Tanaka-Ishii and colleagues [3] did a detailed offline statistical analysis of teams
from 1997 with teams from 1998 with respect to 32 evaluations features, such as
number of pass chains, average distance covered by one play, average pass length,
and so on. They also compared the robustness of teams by replaying games with a
reduced squad and found that some teams performed better with fewer players. They
conclude that teams that perform poorly may not be the worst teams, but merely
teams that have been let down badly by one aspect of their play. They argue for a
collaborative modular team which can take the best performing parts of each team and
also point towards the benefits of the online coach, which was introduced the follow-
ing year.

Raines et al. [4] developed a system called ISAAC for post-hoc offline analysis of
the events leading up to key events, such as shots on goal in the case of the RoboCup
soccer simulation. ISAAC analyses the situations when the defence of the goal sue-
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ceeds or fails with respect to a number of variables, such as the distance of the closest
defender, the angle of the closest defender with respect to the goal, and the angle of
the attacker from the centre of the field, the angle of the shot on goal and the force of
the kick. The user is able to do a perturbation analysis to determine which changes in
a rule will increase the goal success rate (e.g. changing the angle at goal, increasing
the force of the kick). This enables analysing teams to seek improvements.

A similar off line approach is described by Wünstel et al. [5] who analysed player
movement with respect to the ball to determine what kinds of movements a given
player tends to make, although without reference to the context the player is in.

The online coach of Visser et al. [6] compared the formation patterns of opponent
players from past games with a set of pre-defined formation patterns in an attempt to
predict opponent formations. This allowed the coach to direct its own players to deal
with the anticipated behaviour.

The online coach of Riley and Veloso [7] used pre-defined movement models and
compared them with the actual movement of the players to predict future behaviour
and advise its players accordingly.

Recent work in the analysis of agents in RoboCup has centred on predicting oppo-
nent behaviour. Kaminka et al. [8] used a system to identify and learn sequences of
coordinated agent behaviour over one or more games for a given team. This was a
post-hoc offline method which analysed logs of games after they were played. They
ran experiments to show that the system was able to pick sequences that were charac-
teristic of the team rather than arbitrary. Visser and Weland [9] developed a system
that works on live games as opposed to a post-hoc analysis. Their system looks at the
behaviour of the opponent goalkeeper as it leaves the goal as well as the passing be-
haviour of opponent players in order to find rules which characterise these agents. It
updates these rules every 1000 cycles with the intention of making it available to the
on-line coach to take advantage of the data.

Our work differs from that discussed above in our search for a coherent vocabulary
through algebraic structures. This reflects our motivation in complexity science, and
the desire to discover a methodology for representing complex systems in general,
using robot soccer as a well defined, well researched, and replicable laboratory sub-
ject.

2 Complexity Science

Complexity science is characterised by computational irreducibility, chaotic dynam-
ics, combinatorial explosion, co-evolution, and multi-level lattice hierarchical struc-
ture. Each of these suggests that predicting the future behaviour of complex systems
will require relatively high levels of computation:

computational irreducibility means that the computational load on making predic-
tions is relatively high.
deterministic chaos means that a high level of computation will be required for
making useful predictions. A single point sample in the space of future possibilities
has almost no useful information, and many future states have to be computed to
gain information on the distributions of possible future system states.
co-evolving systems tend to be both chaotic and computationally irreducible.
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combinatorial explosion, of its nature, implies high levels of computation for the
search techniques used to explore large spaces of possibilities.
complex systems are usually multi-level with micro- and macro-subsystems. The
vocabulary to represent these systems should be coherent with respect to hierarchi-
cal aggregation, so that higher and lower level data are consistent.

This means that the representation of the system must be absolutely explicit to support
computation. Paradoxically, many complex social systems are currently administered
by people, with nearly all the computation and much of the data being in their heads.
Such intuitive human processing supports many predictions in business and social
administration. It even characterises human soccer. By comparison, the representation
for robot soccer is explicit – it has to be because the system is autonomous and im-
plemented on machines. For this reason we are interested in the simulation competi-
tion of RoboCup, since we believe that this will give new insights applicable more
generally in complexity science and its applications.

3 The Lattice Hierarchy and Representation

Systems are characterised by wholes assembled from parts. This is illustrated in Fig-
ure 4, in which a set of three blocks is assembled to form a structure that we will call
an arch. The arch is clearly more than the sum of its parts since it has emergent fea-
tures, such as the possibility of walking through it on the path between and

Fig. 4. The arch is a structure built from a set of parts, and has emergent properties not pos-
sessed by its parts

In Figure 4, the arrow labelled R indicates that the set is mapped to the whole by
the relation R between the blocks. If the blocks and labelled a, b, and c, then the set is
represented in the usual way by the notation { a, b, c }. We will denote the R-
structured set of blocks as Then,

In Figure 5, the set of blocks is represented by an Euler ellipse, a variant of the
Euler circle used to represent the set properties of intersection, subset, and union. The
hierarchical cone construction then has the Euler ellipse as base and the name of the
structure as its apex.

When analysing any system there is the problem of building a coherent representa-
tion between the highest level construct , ‘the system’, and the lowest level atoms
such as the players or the pixels in simulated robot soccer. Generally there is a pre-
existing vocabulary in vernacular language made up of terms that are more or less
well defined. For example, in soccer the terms ‘goal area’ and ‘Red’s half’ can be
defined precisely, while ‘the left wing’ and ‘the goal mouth’ may be less well defined.
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Fig. 5. The hierarchical cone construction

Fig. 6. A lattice hierarchy

Terms in the vocabulary may exist at many levels and the ‘set’ containing them
will be called the hierarchical soup. As with the computer analysis of other complex
systems, robot soccer has The Intermediate Word Problem of lifting a coherent hier-
archically structured vocabulary out of the soup.

The term hierarchy is often misunderstood to mean a tree-like structure. More
commonly, hierarchies have a ‘lattice’ structure, since things may aggregate into more
than one structure at higher levels. Figure 6 provides a simple example in which three
players define a subset of the pitch according to the pixels they are closest to. For
example, the pixels closest to player a are shown by a Euler ellipse in Figure 6(a).
Some pixels will be equidistant to some players, and so belong to both their areas, as
shown by the intersecting ellipses for the players a and b, and the players b and c.
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These areas have been given the names Area-a, Area-b, and Area-c. The union of
these areas, together with that for all the other Red team members, makes up the part
of the pitch controlled by the Red team, called the Red-Area. This simple hierarchy
has three level.

When constructing hierarchical vocabularies, often there is no obvious bottom
level. Also it sometimes necessary to define new structures between existing levels,
thereby creating new levels. For this reason, levels are usually given the denotation
Level N+k, emphasising the relative nature of the levels (Fig. 6(b)).

Figure 6(b) shows a graph of the ‘part-of’ relation implicit in the assembly struc-
ture in Figure 6(a), illustrating the notation of lattice. A lattice hierarchy is defined to
be a class of objects with a part-of relation. This is anti-symmetric, so that x part-of y
implies not y-part-of x. This is a quasi-order on the class, and in graph theory its
graph is called a lattice. The quasi order is weaker than a partial order, since in a par-
tial order or or both (equality). For example, there is no line between
Area-a and Area-c in Figure 6(b) in the part-of relation between Levels N and N+1.

4 Structure in Robot Soccer

We have experimented with a number of RoboCup games, investigating ‘interesting’
relational structure.

One kind of structure concerns passes between players. A pass,
is a pair of players and a relation between them. A set of passes between player

of the same side is clearly an interesting structure in soccer. Here, a pass is structure
between a pairs of players, and the pass-sequence is a structure on the set of passes.

Fig. 7. A set of passes as a structure

Figure 7 shows a particularly long sequence of passes, which results in a goal be-
ing scored. The path forms as a consequence of the movements of the players, both on
and off the ball, and the relationships that this creates between them.

Figure 8(a) shows a ‘nearest opponent’ relationship between the players. As can be
seen, the graph has five components, reflecting the interactions between the players.
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Fig. 8. Relational structure in robot soccer

Figure 8(b) shows a ‘nearest team-mate’ relationship. Inspection of the graph
shows that Blue’s structure is most highly connected, with two components. By com-
parison, Red’s structure has four components. In some sense, Blue’s structure hangs
together better that Red’s structure.

Related to these structures, there are relations between parts of the pitch and the
players. The parts of the pitch are squares, where sets of pixels make up the squares,
and the set of squares cover the whole pitch.

Figure 9(a) shows a relation between the players and the pitch squares. Figure 9(b)
shows how the blue team, (B), dominates the game by owning almost all the pitch.
This resonates with positional chess, when the players are not seeking tactical mate-
rial advantage, but seeking to control the board. Here it can be seen that the blue team
owns almost all the pitch. This whole game showed a similar dynamic pattern, with
the blue area rapidly growing after the kick-off. Not surprisingly the blue team won
by many goals.

5 Construct Formation

Each of the names or words in a lattice hierarchy vocabulary represents a structure. In
most of the programs that people craft, the constructs exist a priori in the human
mind. One of the goals for intelligent systems is to have them abstract their own con-
structs from their interaction with their environment, to create their own vocabulary.
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Fig. 9. Spatial relational structure

The lattice hierarchical structure is potentially a meta-representation for this proc-
ess. With this architecture, autonomous systems can investigate structured sets and
keep information on those that are ‘interesting’. We would argue that the relational
structure underlying the lattice hierarchy will characterise any vocabulary, and there-
fore the lattice hierarchy will be fundamental in automatic construct abstraction.

6 Conclusions

In this paper we have defined lattice hierarchies as fundamental structures in complex
system. For us, the intermediate word problem is fundamental in robot soccer. We
have investigated relational structure in simulated robot soccer games, and shown
how it fits into lattice hierarchies. The ultimate goal of the research is to have the
lattice hierarchical vocabulary emerge automatically as the robots interact with their
environment. This would make a significant contribution to complexity science and
its application in other areas.
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Abstract. High-level online methods become more and more attractive
with the increasing abilities of players and teams in the simulation league.
As in real soccer, the recognition and prediction of strategies (e.g. oppo-
nent’s formation), tactics (e.g. wing play, offside traps), and situations
(e.g. passing behavior) is important. In 2001, we proposed an approach
where spatio-temporal relations between objects are described and in-
terpreted in order to detect some of the above mentioned situations. In
this paper we propose an extension of this approach that enables us to
both interpret and predict complex situations. It is based on a qualitative
description of motion scenes and additional background knowledge. The
method is applicable to a variety of situations. Our experiment consists
of numerous offside situations in simulation league games. We discuss the
results in detail and conclude that this approach is valuable for future
use because it is (a) possible to use the method in real-time, (b) we can
predict situations giving us the option to refine agents actions in a game,
and (c) it is domain independent in general.

1 Motivation and Related Work

When asking professional coaches in the soccer domain what they do after a game
has started they tell us that the analysis of the opponents team is very important.
First, the strategic information is considered. This can be the overall formation
(e.g. 4-4-2) or whether the team is playing more offensive or defensive. The next
step is to gather tactical information. One example is wing play or frequent use
of the offside trap. Once this information is obtained the coach decides optional
changes with regard to his own team.

If we would like to apply this to the RoboCup scenario, high-level online
methods have to be developed. They become also more and more attractive
with the increasing abilities of players and teams, preferably in the simulation
league. The recognition or even better the prediction of strategies, tactics, and
situations is an important feature that will improve a teams’ performance.

In 2001, we proposed a method that interprets spatio-temporal relations
based on motion direction and speed of single objects and spatial relations be-
tween two objects given by direction and distance. The approach assumes that
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such information can be seen as time series. A threshold-based segmentation
method is then used to derive temporal intervals from each time series. In addi-
tion, qualitative temporal relations between time intervals such as before, meets,
during have been used. As a result, simple events such as approaching, depart-
ing and first complex events such as player 1 passes ball to player 2 can be
interpreted [8].

In this paper we describe a significant extension to this approach. First, a
new monotonicity-based segmentation method will be described to derive more
appropriate temporal intervals. Second, additional background knowledge about
the problem domain is used for a better interpretation of the considered situation
in a game.

Our approach is related to the work from Raines and colleagues [9] who
describe an approach to automate assistants to aid humans in understanding
team behaviors for the simulation league. Their approach ISAAC analyzes a
game off-line using a decision tree algorithm to generate rules about the success
of individual players. Also, the cooperation within a team is considered with the
help of a pattern matching algorithm. ISAAC supports the analysis of so-called
‘key events’. Key events are events which directly effect the result of the game.
Therefore, single players are analyzed that directly shoot towards the goal. In
case of the whole team, kicks of the ball by certain players which lead to a goal are
analyzed. ISAAC has to be used off-line, thus the program is not able to support
real-time conditions. The rules produced by ISAAC are intended to support the
development of the analyzed team. Therefore, they show how successful the team
is in certain situations. The approach is designed for the analysis of games to
gain new experiences for the next game. The main difference to our approach is
that this approach can be used off-line only. Also, key events are limited (e.g.
only a single key event is used in the single player scenario).

Riley and Veloso in 2002 [10] use a set of pre-defined movement models and
compare these with the actual movement of the players in set play situation. In
new set play situations the coach then uses the gathered information to predict
the opponent agent’s behavior and to generate a plan for his own players. The
approach can be used both off-line and on-line. The main difference to our ap-
proach described in this paper is that they analyze the movement of all players
in set play situations.

Frank and colleagues [3] presented a real time approach which is based on
statistical methods. The approach gathers information such as the percentage
of ball-holding of a certain player or which player passes the ball to which team
mate. The result is a thorough statistical analysis which can then be used to
derive information about a game being played. This can help for new future de-
velopments of a team. The main difference to our approach is that this approach
is designed to gather information that can be used after the game.

A hybrid approach to learn the coordinated sequential behavior of teams was
presented by Kaminka and colleagues in 2002 [7]. The idea is to take time-series
of continuous multi-variate observations and then parse and transform them
into a single-variable categorial time-series. The authors use a set a behavior
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recognizers that focus only on recognizing simple and basic behaviors or the
agents (e.g. pass, dribble). The data are then represented in a trie (a tree-like
data structure) to support two statistical methods: (a) frequency counting and
(b) statistical dependency detection. Experiments showed that the latter method
is more suitable to discover sequential behavior. The main difference to our
approach are the data the approach is based on and the fact that this approach
is designed for unsupervised learning.

Huang and colleagues [6] recently published an approach for plan recogni-
tion and retrieval for multi-agent systems. The approach is based on observations
of agents’ coordinative behaviors. The basis are players’ element behaviors se-
quences (e.g. pass, dribble, shoot) which are sorted in a temporal order. The field
is decomposed into cells where each cell denotes one agent’s behavior at a time
slice. Interesting and frequent behavior sequences are considered as the team’s
plans on the assumption that the team’s plan is embedded in those sequences.
The discovery of significance of sequence patterns are based on statistical ev-
idences. The promising results are plans based on observation. The difference
to our approach is the analysis of the sequences. Huang and colleagues use a
statistical-based analysis. Also, the interpretation of the results are different.
The rules are obtained manually.

The remaining sections are organized as follows: the next section provides
information about the qualitative description of motion scenes. Section 3 gives
an overview about the background knowledge used and how we can use this
knowledge to interpret the scene. The application and results of our approach
within the soccer domain are discussed in section 4. Conclusions and future work
are pointed out in the last section.

2 Qualitative Description of Motion Scenes

In this section we present our extended approach on a qualitative de-
scription of motion scenes that we presented first in [8]. The basic
assumption of our approach is that we have
a bird view of a motion scene. We further
need a set of coordinates describing the po-
sitions of the moving objects for each mo-
ment (or cycle). Motion causes change not
only for a single moving object but also for
its spatial relations to other surrounding ob-
jects. To take into account both absolute (in-
dividual) movement and change in spatial re-
lations (i.e., relative movement) of objects we
calculate four types of time series from the
raw positional information: the motion direc-
tion and speed of each object, and the spatial
direction and distance for each pair of objects
(see fig. 1).

Fig. 1. Motion and spatial relations
via direction and length.
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These time series describe the motion within a scene on a quantitative level.
In order to describe the motion on a qualitative level two steps of abstraction
are performed:

a temporal segmentation of the time series into time intervals of homoge-
neous motion and
a mapping of the attribute values describing the intervals to qualitative
classes.

The entire process is carried out online, i.e., at each time cycle one set of posi-
tional data is processed. Intervals are either extended or a new interval is started
with the actual value if the homogeneity criterion fails.

Segmentation

In order to segment the time series into time intervals two different segmentation
methods are used: a threshold-based segmentation method and a monotonicity-
based segmentation method, which groups together strictly monotonic increasing
intervals, strictly monotonic decreasing intervals and intervals of constant values.
Each threshold-based segmented interval is described by a single attribute: the
average of its values. A monotonicity-based segmented interval is described by its
start value, its end value, and the run direction of values: increasing, decreasing
or constant.

Both segmentation methods allow various interpretations of the resulting
intervals. The monotonicity-based segmentation is useful to recognize dynamic
aspects of motion, e.g., acceleration of a moving object. But due to the fact
that the values are measured only at the start and the end of an interval its
intermediate values are not known. Therefore, the threshold-based segmentation
is more useful to find, e.g. an object that moves with a certain average speed.

Mapping into Classes

The second step of abstraction classifies the attributes of the intervals onto
qualitative values for direction, speed or distance, respectively. The mapping
functions have to be defined with respect to the domain. For the soccer domain
the following mapping functions are used: For the directions (motion direction
as well as spatial direction) eight classes as indicated by the dotted lines in fig.
2, i.e., from the viewpoint of object A, object B is in direction 5, object C is in
direction 8 and so on. For the distances five classes are valid: meets, very close,
close, medium distance, far and very far as indicated by the dashed circles in
fig. 2. There object A meets object B and is very close to C, close to D and so
on. For the speed also five classes are distinguished: no motion, very slow, slow,
medium speed, fast and very fast. The speed and distance classes are organized
in distance systems [5]. The radius of each distance class is double the size of
the radius of the previous one.

For each pair of objects 12 sequences of temporal intervals describe their
individual and relative motion: for each of the two objects we obtain one time
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Fig. 2. Spatial relation classes in the soccer domain.

series concerning its motion direction and one concerning its speed (4 time series)
and for the two objects one concerning the spatial direction and one concerning
the distance (2 time series). Each of these 6 time series is segmented with the
two different segmentation methods described in the previous section. Therefore,
altogether we obtain 12 interval sequences.

The entire generation of motion descriptions is shown in fig. 3. The ex-
ample shows the raw positional input data at the left. The time series calcu-
lated from the raw data and the results of the monotonicity-based segmen-
tation method are illustrated in the middle (here: a single time series, the
distance of two objects). One of the resulting intervals is shown with its at-
tribute values as well as the mapping of values to classes. The single interval
already allows a simple interpretation of the movement of the two involved ob-
jects: they approach each other and finally meet, which is expressed by the
term The predicate HOLDS expresses
the coherence between a certain situation (movement or spatial relation), here
approach-and-meet and the time interval in which it is taking place or
is valid [1].

3 Rule-Based Interpretation of Motion Scenes

These motion description intervals are used to recognize as well as predict motion
situations with the help of a logic-based interpretation approach.

Domain knowledge is required for an interpretation of the motion. To know
about the function or type of objects involved in a situation leads to more ap-
propriate interpretations. For example, in the soccer domain the interpretation
that two objects approach each other and finally meet can than be interpreted
that a player gets in contact with the ball. To specialize the interpretation even
more, different types of players can be distinguished, e.g., goalkeepers, defenders
and offenders.
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Fig. 3. Overview: Generation of motion description.

In some domains the location is important in which a certain motion situation
takes place. For the soccer domain such locations are certain regions on the field
of play, e.g. each half of the field, penally area, goal area and so on. E.g. the
term HOLDS(region(player, left-half), denotes that the object player
is in the left half of the field of play during the time interval

Currently, we have defined rules to recognize and predict 10 situations from
the soccer domain. They include simple situations like a player kicking the ball
as well as more complex ones like a one-two situation, a fight for the ball and
offside.

For an experiment, we will have a closer look at the offside situation, because
it is possible to predict an impending offside situation, that may occur while a
team mate is planing to pass the ball. And, as we will show, both aspects of
motion information – absolute and relative – are needed to detect and predict
offside situations. In addition, further finer interpretations are possible, e.g., if
an offside situation occurs it is possible to distinguish an offside trap from a
situation that was caused by the offender himself.

Experiment: Offside Position

A player is in an offside position if he is nearer to his opponents’ goal line than
both the ball and the second last opponent. But he is not in an offside position
in his own half of the field of play. For more details on the official offside rule
refer to the FIFA rules [2], law 11 and appendix.

In order to recognize, whether a player is in an offside position we have to
check if he is in the opponents’ half of the field of play. If so, we have to analyze
his spatial relation to the ball and the players of the opposite team. In detail
we must determine if the ball is behind the player and count the amount of
opponents that are in front of the player. If less than two opponents remain in
front of the player, he is in an offside position:
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The term
denotes the number of opponents located in front of a player during the
time interval where is the number of players belonging to
the opposite team:

A complex situation like the above definition of offsideposition(player) com-
bines several time intervals. The term postulates that
all intervals involved in the situation are contemporary.
specifies the sub-interval covered by all time intervals

The spatial relations behind and in-front-of are generalizations of the 8 direc-
tions shown in fig. 2. Another object is in-front-of a certain player if it is between
the player and the opponents’ goal and otherwise behind the player. Therefore,
the evaluation of the generalization rule depends on the team the player belongs
to.

Eq. 3 specifies the spatial relation in-front-of. The spatial relation behind as
well as the motion directions forward and backward are specified similarly.

The term HOLDS(spatdir(player, object, dir), denotes that object is lo-
cated in the direction dir from the viewpoint of player during interval
This information is obtained from the threshold-based segmentation.

In order to predict an offside situation for player he has to be located in
his own half, actually have the ball behind him and a small remaining num-
ber of opponent defenders (e.g., in front of him. Then it depends on
the relative movement of and if an offside position is impending or not.
Therefore, we have to take into account the actual spatial direction between
and (spatdir), obtained from the threshold based segmentation, and the devel-
opment of the spatial direction between and (clockwise (change-spatdir-cw)
or counterclockwise (change-spatdir-ccw), obtained from the monotonicity-based
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Fig. 4. Development of spatial directions between offender and defender announcing
an impending offside position.

segmentation). If the spatial direction is already close to the change between
the directions in front of and behind, and the values are increasing (clockwise
change of spatial directions) or decreasing (counterclockwise change of spatial
directions) an offside position is impending. For an illustration of this situa-
tion refer to fig. 4. The illustration shows the case of an increasing development
of values. If the present trend lasts for some further time, an offside situation
will occur in the moment the spatial relation changes to the next class (in the
illustration from 5 to 4) and at the same point in time from in front of to behind.

Within the prediction phase we distinguish offside traps (see (6)) from offside
situations caused solely by the movement of the offender himself. The temporal
relation contemporary is defined as in [4]:

An offside trap is caused by a forward movement of an opponent remaining
between the goal and the offender The offender is brought into an offside
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position by the movement of his opponents (with or without moving forward by
himself).

A player is in a punishable offside position, if he is in an offside position
in the moment when the ball is kicked by his team mate and he approaches
the ball while the ball is free, i.e. before another player obtains the ball (7).

with and
The predicate states that an event occurs at the moment

The temporal relations starts and in are defined in [1], contemporary in [4].
If the player comes to close to the ball this behavior should be penalized by

the referee by interrupting the game for a free kick of the opponent team.

4 Results

To evaluate our approach we have chosen three games from the Robocup World-
cup 2002, which contain a reasonable amount of offside situations: FC Portugal
vs. Puppets, TsinghuAeolus vs. FC Portugal and VW2002 vs. Cyberoos. There-
fore, we have analyzed these three games in order to predict and recognize the
occurring offside situations. Table 1 and 2 show the offside situations that oc-
cur in the games FC Portugal vs. Puppets and TsinghuAeolus vs. FC Portugal.
For lack of space a table showing the table concerning the game VW2002 vs.
Cyberoos is not included in this paper.

The first column (ball contact) denominates the player who kicked the ball
before the penally offside situation occurred together with the time interval, at
which he was in contact with the ball. The column offside contains the player
numbers of his team mates which were already in an offside position before
he obtained the ball. The next two columns contain our systems prediction of
impending offside positions of further players. The column mo. contains the num-
bers of the players, who are moving in a direction that will possibly bring them
into an offside position before the ball will be passed. The fourth column lists
players who are possibly running into an offside trap. The column offside/kick
lists the players who are in an offside position at the moment the ball is kicked.
The column penally contains the players who have been in an offside position at
the moment the ball is kicked and are approaching the ball during the following
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cycles. They are penalized by the referee if they come to close to the ball. The
column (break) contains the cycle in which the game was interrupted by the
referee. The tables contain all situations in which the game was interrupted by
the referee due to offside. The last column is marked with an if the situation
was recognized by the system.

Concerning the prediction of offside situations there are also cases of impend-
ing offside situations that do not lead to an offside position before the ball is
kicked the next time. Also there are situations in which a player, who was in an
offside position at the moment the ball was kicked, starts approaching the ball
in a penally way but another player gets the ball before the situation becomes
critical. To keep them short, these situations are not included in the tables.

The game FC Portugal (FCP) against Puppets (see table 1) was interrupted
9 times by the referee due to offside. In 7 cases our system detected the offside
situation. In two situations our systems is not in line with the referee. The first
situations occurred from cycle 531 to 560. When player 7 of team Puppets kicks
the ball (cycle 534), players 10 and 11 are in an offside position. In the following
cycles player 11 approaches the ball, until he is in a very close distance to the
ball (cycle 559), which was detected by our system. But in cycle 559 player 3
of the opponent team (FCP) gets in contact with the ball. In this moment our
system stops looking for an penally offside for team Puppets, because FCP is
already in possession of the ball. Nevertheless, the referee decided on offside and
free kick in favor of FCP in cycle 560. According to our operationalization of
the FIFA rules the referee should have interrupted the game before cycle 559 or
should have let it go on after player 3 of FCP has reached the ball in cycle 559.

A comparable situation can be found from cycle 3844 to 3852. In cycle 3847
the ball is kicked by player 9 of FCP. Player 8 is in an offside position and
approaches the ball in cycle 3850. This is detected by our system. But in the
same cycle the ball touches player 4 of team Puppets. As before, we stop watching
player 8 of FCP. But although the ball has touched a player of the opponent
team the referee decides offside and penalizes player 8 of FCP in cycle 3852,
which is obviously not in compliance to the FIFA rules.
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The game TsinghuAeolus (TsA) vs. FC Portugal (FCP) (see table 2) was
interrupted 9 times by the referee due to offside. In all cases our system detected
the offside situation.

The game VW2002 (VW) vs. Cyberoos (Cyb) was interrupted 35 times by
the referee due to offside. In 29 cases our system detected the offside situation.
In six situations the referee decides offside against a team A although a player
of team B has touched the ball before the game was interrupted.

5 Conclusion and Future Directions

Spatio-temporal relations between objects within real-time environments are
challenging by nature. We presented an approach for tracking single objects
motion in combination with the changes in their pairwise spatial relations over
time. The resulting motion description builds the basis for a qualitative inter-
pretation of the dynamic scene.

This approach is domain independent and can therefore be used in various
applications. We applied this idea to the soccer domain and argue that an imple-
mentation of this method within the online coach could enhance teams abilities.
However, tests have been made off-line only at the moment. The additional back-
ground knowledge helps to interpret the analyzed motion scenes and significantly
improves the results.

The described approach is valuable because it not only analyzes a past sit-
uation, it also is able to predict the next few steps of the opponents team to
a certain extent. This will help the players of the own team to make better
decisions at a certain cycle provided they have the information and can act ac-
cordingly. Also, when using this approach in an online scenario, the position
data of the players have to be considered. For off-line analysis we use the data



88 Andrea Miene, Ubbo Visser, and Otthein Herzog

processed by the soccer server. These data can be quite different than those in
the world model of a single player. Future tests have to be made in order to
obtain valuable information about this problem. A possible solution to get all
the information about the positions of both the opponents and the own team
players is the based on the turn_neck-command and the aggregation of positions
over a few cycles.

One of the biggest advantages of this approach is the independence from the
domain. In the near future, we will also test other domains such as cell tracking
in biological systems. Here, the objects are monitored with a camera and the
method is able to track the objects over time and describe and store the spatial
relations between them as well.
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Abstract. We introduce a concise approach to teamwork evaluation on multi-
ple levels – dealing with agent’s behaviour spread and multi-agent coordination
potential, and abstracting away the team decision process. The presented quanti-
tative information-theoretic methods measure behavioural and epistemic entropy,
and detect phase transitions – the edge of chaos – in team performance. The tech-
niques clearly identify under-performing states, where a change in tactics may be
warranted. This approach is a step towards a unified quantitative framework on
behavioural and belief dynamics in complex multi-agent systems.

1 Introduction

The emergence of system-level behaviour out of agent-level interactions is a distin-
guishing feature of complex multi-agent systems – making them very different from
other complicated multi-component systems, where multiple links among the compo-
nents may achieve efficient interaction and control with fairly predictable and often pre-
optimised properties. In robotic soccer, the emergent behaviour is dependent on agents
architecture and skills, the employed communication policy, the opponent tactics and
strategies, and not least on various unknown factors present in the environment. In short,
it appears to be extremely difficult to rigorously investigate and evaluate multi-agent
teamwork, coordination, and overall performance. One possible avenue for measuring
team performance is to use information-theoretic methods. In particular, we suggest to
characterise dynamics of multi-agent teams in terms of generic information-theoretic
properties, such as entropy, and correlate it with the overall team performance metrics.

Information-theoretic methods are applied in many areas exhibiting multi-agent in-
teractions. For instance, Cellular Automata (CA) are a well-studied class of discrete
dynamical systems, where information-theoretic measures of complexity (such as Shan-
non entropy of certain frequency distributions) were effectively used to categorise and
classify distinct emergent configurations and phase transitions between them [17,6].
Langton has shown in his seminal work [6] that an increase in the mutual information
(defined as a function of individual cell entropies for a particular value of the param-
eter) is an indication of a phase transition from “order” to “chaos”. Wuensche [17] has
used a similar quantitative metric – variance of input-entropy over time – in classify-
ing rule-space of 1-dimensional CA into ordered, complex and chaotic cases, related to
Wolframs’s qualitative classes of CA behaviour [16].

It could be argued that the complexity of emergent behaviour increases with a)
the complexity of the agents, b) the diversity of the agents, achieved either by origi-
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nal design or by a learning process, and c) the variety of the communication connec-
tions among agents. In the context of RoboCup, the behavioural diversity (the second
component of our argument) was extensively analysed by Balch [1], who suggested
a new metric – hierarchic social entropy – to characterise the heterogeneity of agents
behaviours across a team. Robots are said to be absolutely behaviorally equivalent if
and only if they select the same behaviour in every perceptual state. Balch introduced
the concept of hierarchical clustering as “a means of dividing a society into subsets
of behaviorally equivalent agents at a particular taxonomic level” [1], and developed a
measure of behavioral difference, enabling agent categorisation and subsequent calcu-
lation of the hierarchic social entropy.

We will initially focus on the first component – the diversity of a single agent’s be-
haviour in different situations. In other words, we analyse a relation between entropy of
an individual agent’s behaviour and the team performance. Our conjecture, supported
by experimental results, is that each agent is able to express more versatile behaviour
when faced with easier opposition. Conversely, when opposing stronger teams, each
agent may not be able to realise its behaviour in full – leading to lower behavioural en-
tropy. Intuitively, these two extremes resemble the “ordered” and “chaotic” states: when
the opponent is too strong then the agent’s behaviour is limited to “fixed point” or “limit
cycle” attractors, while weak opponents do not put significant constraints allowing the
agent to achieve “strange” attractors symptomatic of chaotic behaviour. If this conjec-
ture is true, then “complex” behaviour lies at the edge of chaos, and the behavioural
entropy would point to a phase transition in this region. Put simply, when playing oppo-
nents of similar strength the agents exhibit most interesting “complex” behaviour, but
at the same time it becomes much harder to evaluate the performance.

In the second part of the paper we study the third component – the complexity of the
inter-agent communications, related to potential of multi-agent coordination. The anal-
ysis is focused on entropy of joint beliefs – the epistemic entropy – and complements
the results reported earlier [10]. The epistemic entropy approach uses the information
entropy as a precise measure of the degree of randomness in the agents’ joint beliefs.
Intuitively, the system with near-zero epistemic entropy (almost no “misunderstand-
ing” in joint beliefs) has a higher multi-agent coordination potential than the system
with near-maximal entropy (joint beliefs are almost random). In addition, we identified
and considered two coupled levels of dynamic activity (following the Kugler-Turvey
model) – showing that self-organisation and the loss of epistemic entropy occur at the
macro (agent coordination) level, while the system dynamics on the micro level (within
the communication space) generates increasing disorder. The entropy within the com-
munication space is also traced against team performance metrics, showing that phase
transitions occur in coordination-communication dynamics as well.

In summary, the developed metrics allow us to evaluate team performance on mul-
tiple levels: from individual “behavioural spread” to multi-agent coordination potential.

2 Input-Entropy and the Edge of Chaos

2.1 Mutual Information and Phase Transitions

The information-theoretic analysis of phase transitions is typically based on the notions
of entropy and mutual information. The entropy is a precise measure of the amount of
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freedom of choice in the object – an object with many possible states has high entropy.
Formally, the entropy of a probability distribution is defined by

The ratio of the actual to the maximum entropy is called the relative entropy of the
source [14]. Langton [6] investigated the mutual information of CA, defined as a func-
tion of the individual cell entropies, H(A) and H(B), and the entropy of the two cells
considered as a joint process, H (A, B), that is: I(A; B) = H(A) + H(B)–H(A, B),
and related it to phase transitions. The average mutual information I(A; B) has a dis-
tinct peak at the transition point: “the jump ... clearly indicates the onset of the chaotic
regime, and the decaying tail indicates the approach to effectively random dynamics”.

Peaks or discontinuities are symptomatic of phase transitions in complex multi-
agent systems. For instance, Miramontes [7] analysed artificial ant societies, composed
of interacting agents that can generate regular cycles in the activity of the colony, and
pointed out that the information capacity of the colony is maximal at certain nest densi-
ties – in the neighbourhood of a chaos-order phase transition. In other words, the maxi-
mum in the average information capacity of the colony, given by the classical Shannon
entropy, corresponds to “the density at which the nest reaches its highest diversity of
activity states”. When the nest density is increased beyond some critical density and the
phase transition has occurred, “the number of ants becomes sufficiently large to facil-
itate and support the existence of long-range correlated behaviour that manifests itself
as coherent collective oscillations in the number active ants” [7].

Another way to identify phase transitions is to use a variance of input-entropy.
Wuensche [17] characterised rule-spaces of 1-dimensional cellular automata with the
Shannon entropy of rules’ frequency distribution. More precisely, given a rule-table
(the rules that define a CA), the input-entropy at time step is defined as

where is the number of rules, is the number of cells (system size), and is the
look-up frequency of rule at time number of times this rule was used at across
the CA. The input-entropy settles to fairly low values for ordered dynamics, but fluctu-
ates irregularly within a narrow high band for chaotic dynamics. For the complex CA,
order and chaos may predominate at different times causing the entropy to vary. A mea-
sure of the variability of the input-entropy curve is its variance or standard deviation,
calculated over time. Wuensche has convincingly demonstrated that only complex dy-
namics exhibits high variance of input-entropy, leading to automatic classification of the
rule-space. Importantly, the peak of input-entropy variance points to a phase transition
again, indicating the edge of chaos (complexity).

2.2 Measuring Agent’s Behavioural Spread

Having identified the appropriate metrics and the forces shaping the space-time dynam-
ics, we now proceed to the analysis of the heterogeneity of a single agent’s behaviour
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in different situations. As mentioned earlier, we shall explore a relation between the en-
tropy of an agent’s behaviour and the team performance. Our intention is to characterise
an agent’s behaviour without a loss of generality, and thus we would prefer to abstract
away a possibly convoluted decision-making mechanism. In other words, we intend to
consider only the action rules (condition-action pairs) that the agent triggered at a given
time step. In other words, we may use (and did use) the agents designed in accordance
with the Deep Behaviour Projection (DBP) agent architecture [10] or another (multi-
layered) architecture, but without taking into account the depth of the agent behaviour
in terms of multiple decision-making layers. This allows us to apply the developed tech-
niques to any rule-based approach capable of identifying action rules taken by an agent
at a given time step. To perform our analysis we employ the input-entropy of a partic-
ular frequency distribution where is a game index, and is an action rule index:

where is the number of rules. Analogously to the CA analysis conducted
by Wuensche [17], we define the behavioural input-entropy as

where is the system size (the total number of rule invocations), and is the look-up
frequency of rule during the game The difference between and is that the
former is calculated for each temporal state of the CA in point, while the latter is deter-
mined for each game in a multi-game experiment. Both metrics, however, characterise
the distribution of rules – either across the CA lattice or during the game.

We intend to show that agents express more diverse behaviour when faced with eas-
ier opposition. Formally, the average behavioural input-entropy, calculated for K games
against the opponent should in general increase with the average
score difference defined as the average difference between the agent’s team score
and the opponent team score. Importantly, a standard deviation of the behavioural
entropy calculated across all games against the opponent will be shown to be an
indicator of a phase transition, reaching a maximum at some close to zero.

3 Experiments: Behavioural Entropy and Phase Transitions

We have carried out our experiments in the RoboCup Simulation League [4], where the
platform simulates essentially a pseudo real-time environment, providing each agent
with fragmented, localised and imprecise (noisy and latent) information about the en-
vironment. Each experiment included 30 games between the test team and a particular
opponent, producing a value for the behavioural entropy and a score
difference (a negative score difference represents losing the game). Figure 1 shows
input-entropy trajectories for 3 experiments, ranging from a much stronger opponent
(the average score difference to an opponent of about the same strength
as the test team to a much weaker opponent It is easy to
observe that not only the the behavioural entropy of a test agent (the left mid-fielder
of the test team, in this case) decreases on average with the strength of the opponent,
but also that fluctuates in a much wider band in the medium case.



Evaluating Team Performance at the Edge of Chaos 93

Fig. 1. Behavioural entropy

Fig.2. Average behavioural entropy Two top plots represent forwards, two middle plots –
midfielders, and two bottom plots – defenders.

To support this claim and to verify our conjecture that there is a phase transition,
however, we conducted more experiments – against 10 opponents, collecting the statis-
tics for 6 agents (wing- and centre-forwards, wing- and centre-midfielders, and wing-
and centre-defenders). Figure 2 shows the average behavioural entropy (after K = 30
games), plotted for these 6 agents and for each of the opponents.

The tendency of the behavioural entropy to increase when faced with a weaker
opposition is obvious in most field positions, and especially in the midfield. There is
also an evident discontinuity exactly in the range we expected – when competing with
the opponents of similar strength This discontinuity is indicative
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Fig. 3. Standard deviation of behavioural entropy.

of a phase transition. To confirm this, we observe the trajectory of standard deviation
of the behavioural entropy , calculated across all games against the opponent and
shown in Figure 3. Standard deviation peaks in the expected region for all positions, and
conclusively points to a phase transition. Interestingly, precise locations of peaks differ
within the narrow range indicating that the peak is not a feature
forced by a particular opponent, but rather a “complexity” attribute of the transition.

This entropy-based technique clearly identifies the edge of chaos. This is important
because it helps to answer the question of whether a change in tactics is needed in some
under-performing cases. During the phase transition, the team performance is unstable
and the score difference should not be used as a sole trigger for drastic design changes
or on-line interventions by a coach-agent.

Epistemic Entropy and Multi-agent Coordination4

4.1 Epistemic Entropy on Macro-level

In this section we analyse the complexity of inter-agent communications. As pointed out
in the literature [8,5], emergent self-organisation or extropy may seem to contradict the
second law of thermodynamics that captures the tendency of systems to disorder. The
“paradox” has been gracefully explained in terms of multiple coupled levels of dynamic
activity (the Kugler-Turvey model [5]) – self-organisation and the loss of entropy occurs
at the macro level, while the system dynamics on the micro level generates increasing
disorder. One convincing example is described by Parunak and Brueckner [8] in context
of pheromone-based coordination. Their work defines a way to measure entropy at the
macro level (agents’ behaviours lead to orderly spatiotemporal patterns) and micro level
(chaotic diffusion of pheromone molecules). In other words, the micro level serves as
an entropy “sink” – it permits the overall system entropy to increase, while allowing
self-organisation to emerge and manifest itself as coordinated multi-agent activity on
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the macro level. The epistemic entropy presented here is analysed in the terms of the
Kugler-Turvey model [5] as well. We intend to show that the higher team coordination
potential is related to lower entropy of multi-agent joint beliefs (macro level). At the
same time, it is explained by increased entropy on a micro level. This micro level is the
communication space where the inter-agent messages are exchanged (the process that
is similar to diffusion of the pheromone molecules).

For convenience, we reproduce here definitions and two characterisations presented
in [10], and follow with extended results. Let us consider a simple protocol allowing
an agent to communicate data about only one agent precisely. In other words, each agent
is able to encode either the data about itself or about the other agent. Without loss of
generality, we may assume that the protocol has enough symbols to encode the data
about agents (objects) in such a way that they are explicitly distinguishable.

A binary relation represents that the agent sends a message containing
the object A function C maps an agent name (symbol) to another agent name (sym-
bol), and the abbreviation denotes that the content of the message from the
agent is the object We intend that if and only if

Definition 1. A multi-agent agreement is called selfish if and only if
for all agents

A multi-agent agreement is called transitively-selfish if and only if
for all agents

Equivalently, for all agents under the selfish multi-agent
agreement – each agent symbol is a fixed-point of the function A transitively-
selfish agreement suggests that the agents are more cooperative, and may communicate
the data about some other agent (when available). Notice, however, that given the tran-
sitive closure everyone is in the “loop”. By definition, a selfish multi-agent
agreement is transitively-selfish. The difference, however, may lie in the presence or
absence of fixed-points The transitively-selfish agreements without fixed-
points, where each agent is cooperative: will be of special interest. Non
transitively-selfish agreements are called mixed.

Definition 2. A multi-agent agreement among agents, where some agents
are selfish and the others are cooperative, is called mixed. There are agents such
that and agents such that where

The parameter is called the team composition parameter.
The mixed agreement where all cooperative agents provide information

about the selfish team-mates is called the mixed agreement of the 1st kind.
The mixed agreement where all cooperative agents are transitively commu-

nicating among themselves is called the mixed agreement of the 2nd kind.

In order to capture the distinction among selfish, transitively-selfish and mixed agree-
ments in a formal information-theoretic setting we shall analyse the joint “output” of
inter-agent communication at the end of each period of team synchronisation [10]. More
precisely, we analyse joint beliefs represented by the sequence of individual beliefs
at time where and the belief-function K is defined
for each agent pair. In order to estimate how much information is contained in the whole
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team after a period of team synchronisation – as the team information progresses from
to – we need to answer how much choice would be there if one were to describe
. To do so we calculate the relative entropy of . The following representation

results for protocol were reported in [10].

Theorem 1. Selfish agreements attain minimal entropy. Transitively-selfish agreements
without fixed-points attain maximal entropy asymptotically when

The first part of the theorem basically states that whenever agents agree to communi-
cate the data about themselves only, they eventually leave nothing to choice, always
maximising their joint beliefs. The intuition behind the second part is that the pair-wise
“ignorance” of agents grows faster than the transitively-selfish agreement can cope with.

The next results for protocol are the extensions produced for mixed agreements.

Theorem 2. Mixed agreements of the 1st kind attain bounded epistemic entropy.
Mixed agreements of the 2nd kind attain bounded epistemic entropy, and attain the

epistemic entropy of mixed agreements of the 1st kind asymptotically when

In other words, the lower limit is not 0, meaning that absolute order is never achievable
regardless of the team composition or the number of agents, while the upper limit is
not 1, so that absolute randomness is avoidable as well. Following [10] and interpreting
the extended results, we would like to point out that the relative epistemic entropy of
joint beliefs in multi-agent teams serves as a generic indicator of the team coordination
potential. In general, the following series is established for the epistemic entropy:

while the respective coordination potentials follow the reverse dependency.

4.2 Epistemic Entropy on Micro-level

The epistemic entropy may now be analysed in terms of the Kugler-Turvey model [5].
The higher coordination potential of the team following the selfish agreement with near-
zero epistemic entropy can be explained by an increased entropy on the micro level –
the communication space where the inter-agent messages are exchanged. Clearly, in
the case of the selfish agreement the communication space is quite saturated, and the
entropy on the micro level increases dramatically. On the contrary, the transitively-
selfish agreement may use the communication channel(s) rather sparingly, resulting in
a lesser increase of entropy on the micro level – while attaining near-maximal epistemic
entropy on the macro level (joint multi-agent beliefs are almost random).

A characterisation of the micro level (the entropy “sink”) can be obtained if one
estimates the “regularity” of the communication space. In order to carry out this analy-
sis we consider low-bandwidth domains requiring real-time response – in other words,
environments where heavy communication among team agents is impossible. For ex-
ample, we may consider Periodic Team Synchronization (PTS) domains introduced by
Stone and Veloso [15] for pseudo real-time environments. However, our analysis is ap-
plicable to more generic domains as well – what is important is that the communication
channel is limited. More precisely, a multi-agent domain should contain a parameter
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determining how many messages can be received by each agent in a cycle. In particular,
we are interested in capturing situations (communication clashes) where communica-
tion messages exceed “hear capacity” in a given cycle, and measuring the average
severity, spread and regularity of clashes. Let us introduce the following notation:

is a function returning 1 if a boolean expression is true, and 0 otherwise.
is a function returning the number of communication messages received from

the team at cycle
is a boolean function returning true if and false otherwise;

The average severity of clashes in the team is given then by

where is the number of cycles, while regularity of the series can be measured
with the auto-correlation function of an integer delay

where is the series average. The auto-correlation function is equivalent to the power
spectrum in terms of identifying regular patterns – a near-zero auto-correlation across
a range of delays would indicate high irregularity, while auto-correlation with values
close to one indicate very high regularity. Some of this regularity is, however, spurious
and is related to the severity of clashes. Therefore, we believe that a better approxi-
mation of the entropy on the micro level (communication space) may be given by the
ratio

This new statistics attempts to capture how much regularity in the series is there per
communication clash, and invert the measure. Our conjecture is that there is a depen-
dency complementary to the dependency 2 over the range of possible values of given
some hear capacity:

The higher entropy on the micro level (communication) corresponds to the lower epis-
temic entropy on the macro level (coordination), and in turn to the higher coordination
potential.

5 Experimental Results: Bounded Epistemic Entropy

Importantly, clear boundaries limiting the team coordination potential are related to par-
ticular communication policies. It is, however, not trivial to demonstrate these limits ex-
perimentally. First of all, the coordination potential can not be measured directly – it can
only be realised in concrete multi-agent interactions. Moreover, the actual multi-agent
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coordination can be comprehensively evaluated only through the overall team perfor-
mance over some period of time. Secondly, the coordinated activities corresponding to
different communication policies would have to sufficiently differ in order to generate
a pronounced difference in team performance.

In the RoboCup Simulation League, the “hear capacity” determines how many
messages can be heard by each agent in a cycle – for example, one message per cycle

To measure coordination potential via team performance, we varied commu-
nication policies, while leaving all other factors (agents skills and tactics) unchanged.
This focussed the experiment on the dependency between communication policies (and
therefore, resultant joint beliefs) and the team coordination potential. In addition, we
attempted to engineer, by varying the communication policies, very distinct types of
coordinated activities, ranging from very local multi-agent coordination to rather global
(zonal) one. For each type we also calculated the statistics and – in order
to estimate the corresponding entropy on the micro level.

We investigated three communication policies based on the protocol The first
policy (“Press”) modelled the transitively-selfish agreement, with high relative entropy
and very local coordination, enabling a pressing aggressive game. The second policy
(“Zonal”) followed the selfish agreement, with low relative entropy and very global
coordination, enabling a passing non-aggressive game. The third policy (“Mix”) was
aimed at some mixture of local and global coordination, balancing predominantly press-
ing game with some passing chances – truly a mixed agreement with (anticipated)
bounded relative entropy. The results are presented in the Table 1. The “Press” policy
showed the best performance against the stronger benchmark “A”, while the “Zonal”
policy was the worst. The results against the weaker opponent “B”, on the contrary,
indicate that a team coordinated zonally (across wider spaces) perform better than the
aggressive pressing team. In other words, these two communication policies lead to
sufficiently different coordinated activities (local vs global) and generate a pronounced
difference in team performance. This is important because, as mentioned earlier, we
attempt to trace the effect of coordination potential – a capacity that is measurable only
via a difference in produced results. The “Mix” policy achieved intermediate results.
Importantly, this mixed policy was within the boundaries marked by the first two vari-
ants (and closer to the first one), as suggested by the relative epistemic entropy. As
expected, the entropy on the micro-level supported our hypothesis:

contrasting with the epistemic entropy inequalities, where the “Zonal” policy is close
to the theoretic minimum and the “Press” policy reaches the maximum.
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Fig. 4. Standard deviation of communication entropy.

6 Experimental Results: Epistemic Entropy and Phase Transitions

We have also investigated phase transitions in the communication space. This investi-
gation is at preliminary stages, but some promising results were obtained. Again, an
experiment included 30 games between the test team (using the “Mix” policy) and an
opponent from the pool of the same 10 opponents as in the behavioural entropy ex-
periments. Each experiment produced a value for the communication entropy

and a score difference The standard deviation of the entropy
calculated across all games against the opponent is plotted in Figure 4. As expected,
standard deviation peaks in the the narrow range indicating a
phase transition in the communication space, and in the coordination potential as well.
In other words, epistemic entropy, directly related to the entropy also identifies
the edge of chaos. In summary, the results not only illustrate the dependency between
communication policy, the epistemic entropy and the team coordination potential, but
also detect a phase transition in the coordination and communication dynamics.

7 Related Work and Conclusions

We presented a set of quantitative techniques for evaluation of team performance on
multiple levels: from individual behavioural spread to multi-agent coordination poten-
tial. These techniques are based on information-theoretic metrics measuring complexity
in multi-agent systems. In particular, we focussed on identifying the “edge of chaos” in
team performance – leading to discovery of evident phase transitions. Our conjectures
and theoretical results were supported by a number of experiments – over 500 games.

As pointed out by Pynadath and Tambe [11], “despite the significant progress in
multiagent teamwork, existing research does not address the optimality of its prescrip-
tions nor the complexity of the teamwork problem”. The unified framework suggested
by Pynadath and Tambe (COMmunicative Multiagent Team Decision Problem – COM-
MTDP model) is general enough to subsume many existing models of multi-agent sys-
tems, and provides a breakdown of the computational complexity of constructing opti-
mal teams in terms of observability and communication cost. The COM-MTDP model
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incorporates the team decision mechanism, and inevitably is rather complex, as almost
any unifying framework. In this paper we attempted to introduce a concise approach
to teamwork evaluation, dealing with behaviour spread and multi-agent coordination
potential, and excluding the team decision process.

The presented analysis targets our overall goal – development of tools for evaluation
of multi-agent adaptability and coordination in comparative terms, rather than methods
for designing an “ultimate” intelligent and/or adaptive system. In pursuing this goal, we
build up on existing quantitative methods for automated analysis of Simulation League
games (eg., the AGL tool – Analysis of Game Logs [2]). We also hope to comple-
ment existing teamwork models and techniques impacting the team performance. A
pioneering system capable of an automated analysis in the context of RoboCup was
the ISAAC system modelling an assistant-coach [12]. ISAAC analyses games off-line
and produces structured suggestions to designers, supported by examples. Another au-
tonomous coach agent is recently described by Riley et.al. [13] – it is not only capable
of extracting models from past games but may also respond to an ongoing game.

Our quantitative analysis complements this line of research by providing methods
and techniques that determine phase transitions in team performance – the edge of
chaos. These techniques isolate the under-performing cases where a change in tactics is
warranted. During the phase transition, the team performance is highly unstable, and the
scope for an on-line coach-agent contribution is limited. The quantitative information-
theoretic methods presented here incorporate both behavioural and epistemic entropy,
and are compatible with the hierarchic social entropy approach developed by Balch [1].
This opens a clear way to a unified quantitative framework on behavioural and belief
dynamics in multi-agent systems. Another interesting possibility is to explore possible
connections between the described techniques and the measures for relevant informa-
tion investigated by Polani et.al. [9], as well as the conditions reducing “the influence
of cognition difference” introduced by Cai et.al. [3] in the context of RoboCup.
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Abstract. Imitation Learning is considered both as a method to acquire
complex human and agent behaviors, and as a way to provide seeds for
further learning. However, it is not clear what is a building block in imi-
tation learning and what is the interface of blocks; therefore, it is difficult
to apply imitation learning in a constructive way. This paper addresses
agents’ intentions as the building block that abstracts local situations of
the agent and proposes a hierarchical hidden Markov model (HMM) in
order to tackle this issue. The key of the proposed model is introduction
of gate probabilities that restrict transition among agents’ intentions ac-
cording to others’ intentions. Using these probabilities, the framework
can control transitions flexibly among basic behaviors in a cooperative
behavior. A learning method for the framework can be derived based
on Baum-Welch’s algorithm, which enables learning by observation of
mentors’ demonstration. Imitation learning by the proposed method can
generalize behaviors from even one demonstration, because the mentors’
behaviors are expressed as a distributed representation of a flow of like-
lihood in HMM.

1 Introduction

Imitation learning is considered to be a method to acquire complex human and
agent behaviors and as a way to provide seeds for further learning [6,9,7]. While
those studies have focused on imitating behaviors of single agents, few works
address imitation for teamwork among multiple agents because the complexity
of the world state increases drastically in multi-agent systems. On the other
hand, stochastic models like hidden Markov models (HMM) have been studied
as tools to model and to represent multi-agent/human interactions [8,3,2]. The
merit of stochastic models is that we can apply the models in both behavior
recognition and generation. However, it is hard to apply these stochastic models
to imitate teamworks by observation because of the complexity of the model
of multiple agents. This study focuses upon intentions of agents as building
blocks of an abstract state of the local world for the agent in order to overcome
the problem. Using intention, I formalize teamwork and propose a hierarchical
hidden Markov model for imitation learning of teamwork.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 102–113, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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2 Teamwork and Imitation

What is teamwork in multiagent systems? Consider a case wherein two soccer
players pass a ball with each other. When a passer, who is keeping the ball,
starts to pass the ball to a receiver, the passer must know that the teammate
is ready to receive. Also, the receiver will start free-running when the receiver
recognizes that the passer is looking for the receiver for a through-pass. This
example illustrates that recognition of the others’ intentions is important factor
for decision making of player’s intention. We enhance usage of intentions to
derive teamwork. This section formalizes teamwork from intention and makes a
correspondence to imitation learning.

2.1 Intention and Play

We suppose that an intention is a short-term idea to achieve a certain condition
from another condition. For example, in soccer, the intention ‘to guide a ball in
a certain direction’ is an idea to move to a certain direction with the ball. We
assume that an intention is an individual idea; therefore, an agent does not pay
attention to others’ efforts to achieve the intention.

A play, as opposed to a team-play, is postulated as a sequence of atomic
actions to achieve a single intention. The play is a basic building block of overall
behavior of agents. For example, in soccer, a ‘dribble’ is a play to achieve the
intention ‘guide a ball in a certain direction’, which consists of atomic actions
like ‘turn’, ‘dash’, ‘kick’, and so on. A play for the intention is also an individual
behavior without collaboration with other agents because an intention is an
individual idea.

We also assume that a play corresponds to just one intention. Therefore, we
use the word “play” and “intention” in the same meaning in the remainder of
this article.

As shown below, an intention and the corresponding play are used as a main
trigger to synchronize team-plays among multiple agents. This means that the
intention is treated as a kind of partial condition of the world. For example,
the fact that a player has a ‘dribble’ intention implies the following conditions:
the player is keeping the ball; the player is moving toward a certain place; and
the player may require teammates for support. In other words, an intention
represents abstracted and simplified conditions of the world.

2.2 Team-Play

We suppose that team-play is a collection of plays performed by multiple agents
to achieve a certain purpose. As mentioned in the previous section, an intention
is an individual idea. This means that multiple agents who do not change their
intentions can not perform a team-play because they have no way to synchronize
their plays. Instead, we assume that they can synchronize their plays by changing
their intentions according to situations of environments and intentions of other
agents. For example, in soccer, when two players (passer and receiver) guide a
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ball by dribble and pass, players will change their intentions as shown in Fig. 2.
In this example, the passer and the receiver initially have intentions ‘dribbling’
and ‘supporting’, respectively. Then, the passer changes the intention to ‘seek-
receiver’, followed by the receiver’s change to ‘free-run’, the passer’s change to
‘pass’, and so on. Play synchronization is represented as conditions when agents
can change the intention. In the example, the passer changes its intention from
‘seek-receiver’ to ‘pass’ when the teammate’s intention is ‘free-run’. In other
words, we can denote the condition as follows:

2.3 Imitation Learning of Team-Play

Finally, we formalize imitation learning of the team-play.
In general, the imitation learning process is: (1) to observe behaviors of a

mentor and interpret them into internal representation; (2) to extract rules of
behaviors from internal representation; and (3) to generate a behavior based
on rules. In the context of the team-play formalized in the previous section, the
above process is realized as;

Observation phase: to observe behaviors of mentors and estimate what inten-
tion each agent has at each time step.

Extraction phase: to extract conditions prevailing when each agent changes
intentions. A condition is represented as a conjunction of others’ intentions.

Generation phase: to generate a sequence of intentions according to changes
of environment and others’ intentions.

In the Extraction phase of this process, the intention plays an important role:
that is, conditions of changes of intentions. As described in Section 2.1, we con-
sider that intention can represent world conditions. In addition to it, we use only
intentions to construct rules for agents to change their intention. Although such
abstraction reduces performance to express detailed conditions of the world, it
provides good features for the machine learning. One important issue in machine
learning is how to represent the state of a complex environment. This becomes a
serious problem under a multi-agent environment because the number of factors
to take into account increases exponentially in such environment. Abstraction of
the world state by intentions can reduce the number of factors during the con-
dition significantly. This kind of abstraction is necessary for imitation learning
because only a small number of examples are given for imitation learning.

3 Hierarchical Hidden Markov Model for Agents

3.1 Basic Behavior Model

We formalize behaviors of a basic play performed by a single agent as a
Moore-type HMM as follows:



Hidden Markov Modeling of Team-Play Synchronization 105

Fig. 1. Dribble and Pass Play
Fig. 2. Changes of Intentions in Dribble
and Pass Play

Fig. 3. Complex Behavior Model

Fig. 4. Joint Behavior Model

where is a set of states for the play is a set of a pair of sensor value
and action commands which are used as outputs from the state,

and are probability matrixes of state transition,
state-output, and initial state, respectively. These probabilities are defined as

and where
means and on the right shoulder of a variable indicate the time

3.2 Complex Behavior Model

As discussed in the previous section, we consider that team-play consists of a
sequence of intentions of multiple agents. This means that cooperative complex
behavior of a single agent in a team of agents is considered as transitions among
several basic plays Therefore, we formalize complex behavior as the
following modified Mealy-type HMM (Figure 3),

where is a set of basic plays and U is a set of output from the
model (normally, same as M); is a set of initial play probabilities,

is a set of exiting probabilities from plays, and is
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a set of entering probabilities to plays. Also, is a set of gate
probabilities between plays. Formally, these probabilities are defined as:

and

Using these probabilities, an actual probability from state in play to
state in play is calculated as

3.3 Joint-Behavior Model

Finally, we coupled multiple each of which represents the behavior of
an agent. Coupling is represented by gate probabilities H (Fig. 4). For example,
when agent X and agent Y are collaborating with each other, in
for agent X indicates the probability that agent Y is performing play at time

when agent X changes the play from to during time

3.4 Learning Procedure

Using the Baum-Welch algorithm, we can derive an learning procedure to adapt
probabilities in The first step is to calculate forward and backward
likelihoods for each state and timestep in all plays as follows:

where

Here, is a positive value called a sticky factor. This factor is introduced
because we should consider that an agent retains an intention relatively per-
sistently. If the agent changes its intention repeatedly, it becomes difficult to
estimate an agent’s intention by observation, rendering complex behavior diffi-
cult. The sticky factor inhibits such frequent changes of intention during
observation and estimation of mentors’ behaviors. Note that the sticky factor is
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used only in the Estimation phase, and ignored in the Generation phase in
the imitation learning.

Using and we can adjust probabilities as follows:

where

3.5 Imitation Learning Using HMM

Using proposed HMMs, we realize the imitation learning as: (1) to train sepa-
rately each for each play; (2) to construct using the trained

(3) to observe mentors’ behaviors and environmental changes; then
estimate likelihoods of each play (and each state in a play) at each time step
by calculating forward and backward likelihoods and as shown in
Section 3.4; (4) to adjust initial, exiting and entering probabilities (E,F and
G) according to observation; (5) to repeat steps 3 and 4 until the probabili-
ties converge (Observation); (6) to calculate gate probabilities (H) using final
forward/backward likelihood (Extraction); (7) to generate transitions among
states and plays according to acquired probabilities (Generation). In the last
phase, play generation is done as follows: The initial state for each agent is de-
cided according to initial probability When the play and the
state of an agent at time are and respectively and the set of others’ plays
is then the next play and the state of the agent is decided according to
the following likelihood L:

where is a partially observed output value in at time

4 Experiments

4.1 Cyclic Alternating Shift Actions

Several simple experiments were conducted to demonstrate the performance of
the proposed model.

In the experiments, two agents change four plays in a certain order by syn-
chronizing them with each other. The four plays are: to move on a round path
clockwise (A), to move on a round path counter-clockwise (B), to move in an

path (C) , and to move in an ‘8’-letter-shape path (D). Actual



108 Itsuki Noda

Fig. 5. Basic Plays used in Exp. 1 and
Exp. 2

Fig. 6. Change Patterns of Team-plays used
in Exp. 1 and Exp. 2

paths are shown in Fig. 5. The agents’ actions (movement) are observed as a
sequence of positions where the agent is located in each timestep1.

We suppose that learner agents are already trained for these four plays; that
is, the learners’ each of which consists of 20 states, are already trained
for these plays. This means that the can generate required movements
of corresponding play-A,-B,-C, and -D.

Note that only one example is given to the learner for each experiment in the
following experiments, Because of imitation learning, learners should be able to
generalize acquired behaviors from the example so that the learners can generate
varied behavior according to difference of environments.

Exp. 1: Simple Shift of Plays: In the first experiment, each mentor agent
simply changes its plays in a certain order for agent X and

for agent Y) alternately with each other as shown in Fig. 6-(a).
Figure 7 shows the relative likelihood of each play state for each agent at each

timestep estimated by Observation phase. In this figure, there are eight rows
of small squares: upper 4 rows correspond 4 plays of the first agent (agent X),
and the rest 4 are plays for the second agent (agent Y). Each row corresponds
to a play A, B, C or D in Fig. 5 respectively. In each row, a column consists of
20 small squares each of which corresponds a state of for the play A–D
at a certain timestep. The ratio of black area in the square indicates the relative
likelihood with which the state of the is active at the timestep. Columns
are aligned along with time. So, a horizontal line of squares means changes of
likelihood of a state of From this figure, we can see that the learner
estimate that the agent X behaves according to play-A at the beginning (states
for play-A (squares in the most upper row) are active in the left most part of
the figure), then adopts play-B, play-C, play-D continuously; it then returns to
play-A, followed by the same changes. Similarly, the learner estimates that agent
Y behaves play-D first, then changes plays in the reverse order of agent X. In
addition to it, the change from play-A to play-B, from play-B to play-C, and
from play-C to play-D in the agent X occur while the agent Y is doing play-C,

1 Actually, the world is quantized into 49 (7 × 7) blocks when it is observed. There-
fore, movements are observed as a sequence of blocks in which the agent is at each
timestep.
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Fig. 7. Exp. 1: Result of Recognition of Mentors’ Behaviors

Fig. 8. Exp. 1: State Transitions Generated by Learned HMM

play-B, and play-A, respectively. These conditions are consistent with the change
pattern of the mentor shown in Fig. 6.

Using the result of the estimation, the learner acquires probabilities in
as conditions of changes of plays. For example, probabilities to transit from play
A to play B and from play B to play C in the agent X were acquired in a certain
trial as follows2:

2 Actual values of these probabilities vary according to initial values before learning
and random noise added in the mentors’ behaviors.



110 Itsuki Noda

These probabilities represent the following conditions about changes of plays:

Using these probabilities, the learner can generate similar behaviors to those
shown in Fig. 8. This figure is constructed in the same way as Fig. 7, but only
one square is filled in a timestep because the learner decides one of the possible
states according to the likelihood shown in Eq. 1. From this figure, we can see
that the learner generates behaviors in the same manner of the mentor; that is,
the order of the generated plays of agent X and Y are and

respectively. Also, timings of the change of plays are consistent
with the mentor’s demonstration.

Generated behaviors are not deterministic because the acquired probabilities
may take intermediate values as like and in Eq. 2. For example,
durations of the play-C in agent Y are different in the first cycle and the second
cycle in Fig. 8. This means that the learner has the ability to adapt to difference
of the environment using methods for HMM such as Vitabi’s algorithm.

Exp. 2: Conditional Change of Plays: The second experiment illustrates
that the proposed framework can learn conditional transitions of plays using
change pattern shown in Fig. 6-(c). The change pattern of Fig. 6-(c) includes con-
ditional branching of the transition of plays. For example, agent X may change
its play from A to two possible destination, B or D. The change can be decided
encountering agent Y’s play. When agent Y is doing play-B, agent X changes
its play from A only to B; when agent Y is play-D, agent X changes to D.
Figure 10 shows resultant behaviors generated after learning. As shown in this
figure, the learner acquires correct conditions of the branching transition. For
example, changes from play-A to -B of agent X only occur during agent Y’s play-
B. Actually, these conditions are represented by gate probabilities: for example,

and for agent X.

4.2 Exp. 3: Dribble and Pass Play in Soccer

Finally, I applied the framework to collaborative play of soccer. The demonstra-
tion by mentors is dribble and pass play as shown in Fig. 1: A player starts to
dribble from the center of the left half field and brings the ball to the right half.
At the same time, another player runs parallel along the upper (or lower) side of
the field supporting the dribbling player. Then, the first player slows to look-up
the second player; it then passes the ball to that player. Simultaneously, the sec-
ond player starts to dash to the ball and dribbles after receiving the ball. After
the pass, the first player exchanges roles with the teammate so that it becomes
a supporting player for the second player.

To imitate this demonstration, I trained six to model ‘dribble’,
‘slow-down and look-up’, ‘pass’, ‘free-run’, ‘chase-ball’, and ‘support’. Each of

has 5 states. The output of these consists of local situations
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Fig. 9. Exp. 2: Result of Recognition of Mentor’s Behaviors

Fig. 10. Exp. 2: State Transitions Generated by Learned HMM

(the relative position and the velocity to the ball) and agent’s actions (‘turn’,
‘dash’, ‘small-kick’, ‘long-kick’, ‘trap’, and ‘look’). Note that there is no informa-
tion about others’ situations for output of As described in Section 2.2,
others’ situations are taken into account during the Extraction phase in learn-
ing.

Two for agent X (the first player) and Y (the second player) are
constructed after the training of the Then, the learner observes be-
haviors of the mentor and adjusts probabilities of the

Figure 1 shows result of observation and estimation. There are six
in this experiments; therefore, there are six rows (denoted by D, K, P, F, C,
and S) for each agent, in which a column consists of five squares. Rows mean
‘dribble (D)’ , ‘slow-down and look-up (K)’, ‘pass (P)’, ‘free-run (F)’, ‘chase-ball
(C)’, and ‘support (S)’, respectively. From this figure, we can see that the learner
estimates changes of play for agent X and Y are ‘dribble’ ‘slow-down’ ‘pass’
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Fig. 11. Exp. 3: Result of Recognition of a Mentor’s Behaviors

Fig. 12. Exp. 3: State Transitions Generated by Learned HMM

‘support’ and ‘support’ ‘chase-ball’ ‘dribble’. Consequently, the learner
can generate various behaviors similar to the demonstration as shown in Fig. 12.
In this example, although the learner sometimes generates wrong state transi-
tions, for example a transition to states to the ‘free-run’ play in agent Y during
agent X is doing ‘slow-down’, it recovers to the suitable transitions and contin-
ues to imitate the demonstrator. This shows robustness of the model against
accidents. Because the model is coupled loosely with world and other’s states by
output probabilities of HMM, it can permit variation and misunderstanding of
world and others’ states.

5 Related Works and Discussion

There are several works on coupling HMMs that can represent combinational
probabilistic phenomena like multi-agent collaboration [5,1,4]. In these works,
probabilistic relation among several HMMs (agents) are represented as state-
transition probabilities, such that the amount of memory complexity increases
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exponentially. This is a serious problem for imitation learning because we assume
that the number of examples is small for imitation. In our model, the relation
among agents is represented by gate probabilities H, in which others’ states are
treated as outputs instead of as conditions of state transition. Using them, the
likelihoods of state-transitions are simplified as products of several probabilities
(Eq. 1). In addition, detailed states of other agents are abstracted by play (in-
tention). As a result, the number of parameters is reduced drastically, so that
learning requires very small number of examples as shown in above examples.
Although such simplification may decrease flexibility of representation as a prob-
abilistic model, experiments show that the proposed model has enough power to
represent team-play among agents.

Intention in the model brings another aspect to communication among
agents. We assume that there are no mutual communication in the proposed
model. However, we can introduce communication as a bypass of observation
and estimation of other’s intention (play). The proposed model will be able to
provide criteria for when an agent should inform their intention to others by
comparing agents’ actual intentions and estimated intention of the agent itself
by simulating its own

One important issue is the design of the intention. In the proposed model, in-
tentions play various important roles like chanking of the actions and conditions
of world state. Therefore, we must design intentions carefully so that team-plays
can be represented flexibly.
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Abstract. Specific behavior description languages prove to be suitable
replacements to native programming language like C++ when the num-
ber and complexity of behavior patterns of an agent increases. The XML
based Extensible Agent Behavior Specification Language (XABSL) also
simplifies the process of specifying complex behaviors and supports the
design of both very reactive and long term oriented behaviors. XABSL
uses hierarchies of behavior modules called options that contain state
machines for decision making. In this paper we introduce the architec-
ture behind XABSL, the formalization of that architecture in XML and
the software library XabslEngine that runs the formalized behavior on an
agent platform. The GermanTeam [9] employed XABSL in the RoboCup
Sony Four Legged League competitions in Fukuoka.

1 Introduction

The Sony Four Legged League (as well as the Humanoid League) differs from
the “wheel based leagues” in the complexity of physical actions that have to be
employed both for interaction and perception. The Sony robots have four legs
with 3 DOF each, and a head with 3 DOF. Instead of kicking with a single
kicking device like in the middle or small sized league, this allows for a lot
of different kicking skills using legs, body, or even head, which often require
preparatory movements. Instead of moving on wheels many different styles of
walking are used in different situations. With the introduction of Wireless LAN
communication in the Sony League in 2002, cooperative strategies became more
complex and consequently require adequately formulated high level behavior.

For perception, the Sony robots need a set of perception behaviors, too.
Because the field of vision, the image quality and the quality of the other sensors
are very limited, information has to be collected over time, the movement of legs
and head has to be coordinated with current vision needs and the perception
process needs to be supported by methods like active vision. Usually, the related
behaviors have to be merged with the other movement skills.

This huge set of abilities results in the need for a complex behavior control
architecture that integrates many behavior patterns. It should be modular in

* The Deutsche Forschungsgemeinschaft supports this work through the priority pro-
gram “Cooperating teams of mobile robots in dynamic environments”.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 114–124, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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the meaning that behavior patterns can be reused in different contexts. It has to
support reactive and realtime decision making as well as long term deliberative
behaviors. The set of behaviors needs to be easy to extend - adding new behaviors
should not have side effects on other ones.

We found C++ not well suited for specifying agent behaviors. Especially
extension and maintenance of complex behavior control systems may become a
tedious and error prone task. More high level behavior specification languages
allow for a separation of the behavior design from the implementation of the
agent platform.

1.1 Related Work

In all RoboCup leagues, intentional cooperation and the pursuit of long term
strategic behavior remain a challenge. According to the dynamics of soccer, the
agents act with only very limited foresight.

Most teams in RoboCup are using layered architectures, with compar-
atively reactive behaviors (basic skills) at the lowest level (cf. e.g. [2,15,8]).
Ordering different behaviors on layers allows to follow different goals in paral-
lel. Behaviors on higher levels invoke or activate behaviors on lower levels. As
long as the architecture has to manage only few basic behaviors, the separation
of behaviors in two or three layers may be sufficient. But in our experience, it
becomes very difficult to control more than a few basic behaviors without intro-
ducting further hierarchies, when their usage depends on a careful analysis of
the situation, when they require complex preconditions to be achieved and when
their performance needs a considerable amount of time.

There are other attempts to use behavior languages in order to simplify the
process of behavior development. For example, GOLOG [12] is an logic based
robot control language. Funge [11] developed the cognitive modeling language
(CML) for the domain of computer games. Obst and Stolzenburg [16,1] employ
UML state charts for specifying multiagent systems. They follow a layered state
machine approach with a fixed number of layers. They used UML because there
exists a rich set of easy-to-adapt editors for editing state charts.

State machines are well suited for behavior modelling (cf. e.g. [16,1,7]).
The decision which action is executed next depends not only on the environment
but also on the last state. That allows to keep behaviors stable and to define hys-
tereses between two behaviors for avoiding oscillations when the sensor readings
are noisy.

1.2 Main Contributions

In this paper we present a flexible, open hierarchical behavior control architec-
ture. It consists of state machines which manage the transitions to new behaviors
according to the last state and the recent situation. In a flat architecture, the
number of transitions between states increases very fast with the number of
states. Therefore we use options to encapsulate a limited number of states and
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transitions according to their abstractness. The options form a rooted directed
acyclic graph. In section 2.1 we describe that approach in detail.

Based on that architecture, we introduce XABSL as an XML based behavior
language that allows to completely specify the behavior of autonomous agents.
The development of a robot control includes the design of a hierarchy of op-
tions and the implementation of their internal state machines. XABSL supports
both tasks using the advantages of XML technologies. The XABSL framework
contains a variety of visualization and debugging tools. The runtime system
XabslEngine (section 2.3) executes the behaviors written in XABSL.

The GermanTeam [9] competes in the Sony Four Legged League and is a
national team that consists of separate teams from five German universities,
amongst them the Humboldt University in Berlin. Section 3 shows how XABSL
was employed by that team and which experiences were made in the competi-
tions. XABSL could be proven to allow the efficient integration of program parts
from different groups. It is possible to develop a new robot control with about
50 different behaviors in only two weeks.

2 Developing Agent Behavior with XABSL

2.1 The Architecture behind XABSL

In the presented architecture an agent consists of a number of behavior modules
called options. The options are ordered in a rooted directed acyclic graph, the
option graph (cf. Fig. 1a), which may be expanded into a tree. The terminal
nodes of that graph are called basic behaviors. They generate the actions of the
agent and are associated with basic skills.

The task of the option graph is to activate and parameterize one of the basic
behaviors, which is then executed. Beginning from the root option, each active
option has to activate and parameterize another option on a lower level in the
graph or a basic behavior. Within options, the activation of behaviors on lower
levels is done by state machines (cf. Fig. 1b). Each state has a subsequent option
or a subordinated basic behavior. Note that there can be several states that have
the same subsequent option or basic behavior.

Each state has a decision tree (cf. Fig. 2) with transitions to other states at
the leaves. For the decisions the agent’s world state, other sensory information
and messages from other agents can be used. As timing is often important, the
time how long the state is already active and the time how long the option is
already active can be taken into account. Additionally, each state can set special
requests, that influence the information processing or determine how and where
the robot should point its camera.

2.2 Behavior Specification in XML

In previous RoboCup participations the GermanTeam made the experience that
implementing such an architecture totally in C++ is error prone and not very
comfortable. The source code became very large and it was quite hard to extend
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Fig. 1. a) The option graph of a very simplified goalie (this is only a simple example
– the option graph developed by the GermanTeam for the competitions in Fukuoka
contains about 50 options). Boxes denote options, ellipses denote basic behaviors. The
edges show which other option or basic behavior can be activated from within an option,
b) The internal state machine of the option “goalie-playing”. Circles denote states, the
circle with the two horizontal lines denotes the initial state. An edge between two
states indicates that there is at least one transition from one state to the other. The
dashed edges show which other option or basic behavior becomes activated when the
corresponding state is active. The charts were generated automatically from the XML
source in Fig. 3.

the behaviors. Therefore the Extensible Agent Behavior Specification Language
(XABSL) was developed to simplify the process of specifying behaviors.

XABSL is an XML 1.0 [4] dialect specified in XML Schema [10]. The reasons
to use XML technologies instead of defining a new grammar from scratch were
the big variety and quality of existing editing, validation and processing tools
(many XML Editors are able to check if an XABSL document is valid at run-
time) , the possibility of easy transformation from and to other languages as well
as the general flexibility of data represented in XML languages. Behaviors spec-
ified in XABSL can be easily visualized using XSLT [6] and DotML [13]. Note
that the figures 1 and 2 were generated automatically from the XML source in
Fig 3.

Agents based on the architecture introduced in the previous section can be
completely described in XABSL. We have implemented language elements for
options, their states, and their decision trees. Boolean logic &&,!, ==,! =, <,
<=, > and >=) and simple arithmetic operators (+, –, *, / and %) can be used
for conditional expressions. Custom arithmetic functions (e.g.
that are not part of the language can be easily defined and used in instance
documents.

Symbols are defined in XABSL instance documents to formalize the interac-
tion with the software environment. Interaction means access to input functions
and variables (e. g. from the world state) and to output functions (e. g. to set
requests for other parts of the information processing). For each variable or func-
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Fig. 2. The decision tree of the state “get-to-ball”, a) Graphical notation: The leaves
of the tree are transitions to other states. The dashed circle denotes a transition to the
own state. b) Pseudo code of the decision tree. Note that both charts were generated
automatically from the XML source in Fig. 3.

tion that shall be used for conditions a symbol has to be defined. This makes
the XABSL framework independent from specific software environments and
platforms.

An example:

The first symbol “ball.x” simply refers to a variable in the world state of the
agent, “utility-for-dribbling” stands for a member function of an utility analyzer
and “goalie-should-jump-right” represents a complex predicate function that de-
termines if a fast moving ball is headed to the right portion of the own goal. In
options, these symbols then can be referenced.

An example:
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The developer may decide whether to express complex conditions in XABSL
by combining different input symbols with boolean and decimal operators or by
implementing the condition as an analyzer function in C++ and referencing the
function via a single input symbol.

As the basic behaviors are written in C++, prototypes and parameter defi-
nitions have to be specified in an XABSL document so that states can reference
them.

An XABSL behavior specification can be distributed over many files. The
GermanTeam uses different XML files for symbol definitions, basic behavior
definitions, predefined conditions, agents and options. This helps larger teams
of behavior developers to work in parallel. It is easier to keep an overview over
the whole agent and a version control system like CVS can be easily used.

We developed tools for generating three different types of documents from
an XABSL instance document set:

An Intermediate Code which is executed by the XabslEngine (see sction
2.3). This was done because on many embedded computing platforms (like
Sony’s AIBO), XML parsers are not available due to resource and portability
constraints.

Debug Symbols containing the names for all options, states, basic behaviors
and symbols make it possible to implement platform and application depen-
dent debugging tools for monitoring option and state activations as well as
input and output symbols.

An extensive auto-generated HTML-documentation containing SVG-charts
for each agent, option and state which helps the developers to understand
what their behaviors do.

Fig. 3 shows an example for an XABSL source file. For more details about
the language, the XABSL web site [14] contains a complete language reference,
the XML schema files and examples.
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Fig. 3. An example for an XABSL XML notation: a source code fragment for the state
get-to-ball (cf. Fig. 2) of option goalie-playing (cf. Fig. 1).

2.3 The Runtime System XabslEngine

For running the compiled behavior on a target agent platform, the runtime en-
vironment XabslEngine has been developed. The engine is meant to be platform
and application independent and can be easily employed on other robotic plat-
forms. This results in a variety of abstract helper classes that have to be adapted
to the current software environment.

The XabslEngine parses and executes the intermediate code. It links the
symbols from the XML specification that were used in the options and states
to the variables and functions of the agent platform. Therefore, for each used
symbol an entity in the software environment has to be registered to the engine.

The following example connects the C++ variable worldState.ballPosition.x
to the XABSL symbol “ball.x”:

While options and their states are represented in XML, basic behaviors are
written in C++. They have to be derived from a common base class and regis-
tered to the engine.

The engine provides extensive debugging interfaces to be able to monitor
the option and state activations, the values of the symbols and the parameters
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Fig. 4. Scenes from a video of a round robin game against the team Georgia Tech (4:1)
in Fukuoka: a) Use of communication. The first forward (1) performs a bicycle kick
directed to the opponent goal. The second forward (2) was told to wait in front of the
opponent goal to be able to help if the kick fails, b) Positioning. The second forward
(1) tries to dribble the ball into the opponent half. The defender (2) stays behind it to
support the forward. The first forward (3) waits in the opponent half for a pass.

of options and basic behaviors. Instead of executing the engine from the root
option, single options or basic behaviors can be tested separately.

A complete documentation of the engine, along with the code, can be found
at the XABSL web site [14].

3 Application

XABSL was developed for the participation of the Aibo Team Humboldt from the
Humboldt-Universität zu Berlin at the GermanOpen 2002 in Paderborn. Later
on this approach was chosen for the participation of the GermanTeam in the
RoboCup 2002 in Fukuoka [9]. In the competitions the GermanTeam won all its
games except against the later finalists from CMU and UNSW.

The strength of the team was based on a big set of different behavior patterns.
For instance the players employed over 16 different kicks in different situations.
Amongst them the bicycle kick is a good method for getting the ball behind
the player without previously turning around the ball. (cf. Fig. 4a) All these
kicks require different behaviors for approaching the ball. Some work better for
bigger ball distances, some require to grab the ball with the both front legs.
Varying ball handling behaviors were chosen depending on whether the ball was
in the opponent half, in the own half, at the left border, at the right border or
in front of the opponent goal. XABSL proved to be suitable for implementing
and integrating all these different abilities.

On higher levels, a set of team strategies based on communication was imple-
mented. As it is often disadvantageous when two players try to obtain the ball
the robots negotiated which of them handles the ball and which stays behind or
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waits for a pass (cf. Fig. 4a). The state based architecture of XABSL simplifies
the developing of such strategies. Each robot sends its option and state activa-
tions to all other robots so that all players know what the others plan to do.
However, since the wireless communication is not always reliable, all strategies
have to be able to resort to non-communicative behavior, when necessary.

Complex positioning strategies were also employed. Each player had to care
for an area of responsibility which changed depending on the score, the number
of own players and the distribution of opponent players on the field (cf. Fig. 4b).

Although XABSL is a state based architecture, continuous approaches can
easily be integrated into the behaviors. A potential field was employed to deter-
mine an optimal dribbling direction. This direction was made available to the
options by an input symbol. A Fuzzy Logic based basic behavior for approach-
ing the ball was implemented. Several options used continuous utility models for
state transitions.

The hierarchical constitution of XABSL allows it to make many both very
short-term and reactive decisions and more deliberative and long-term decisions
co-instantaneous. The lower behaviors in the option hierarchy that are respon-
sible for ball handling react instantly on changes in the environment. The more
high-level behaviors like waiting for a pass, positioning or role changes try to
prevent frequent state changes to avoid oscillations.

Altogether the GermanTeam implemented over 50 different options for the
games in Fukuoka. About 10 team members were involved in developing and
tuning the behaviors. The modular approach of XABSL made it easy to extend
or advance the behaviors. New options could easily be added to existing ones
without having negative side effects. Better solutions of existing options could
be developed in parallel and were easily to compare with the previous ones.

Additionally, to help behavior control developers who want to employ XABSL
on their own robotic platform, an example agent was implemented for the Ascii
Robot Soccer environment [3]. In this simple soccer simulation by Tucker Balch
the field is displayed in a 78 characters long and 21 lines wide text terminal.
A team of four “>” players plays against a team of four “<” players with an
“o” as the ball. All agents retrieve the full information about the world and
the set of possible actions is very limited. This makes the implemented XABSL
agent simple and easy to understand. The example implementation containing
the XabslEngine and the visualization tools can also be downloaded from the
XABSL web site [14].

4 Conclusion and Outlook

In this paper we present an approach for behavior design for teams of au-
tonomous agents based on hierarchical state machines. The Extensible Agent
Behavior Specification Language (XABSL) is an XML dialect that allows to
conveniently develop behaviors using that architecture. We show how the Ger-
man Team employed that language to develop complex team behaviors for the
RoboCup competitions in the Sony Four Legged League. The language and the
code library XabslEngine are independent from the software platform that the
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GermanTeam uses. It is relatively easy to employ XABSL on other robotic plat-
forms; the code library is open source and publicly available at our website [14].

Future Work. Current developments of our behavior architecture aim at sup-
porting the pre-deliberation of long-term strategies, which has to take place in
parallel with the real-time execution of these strategies. This is done by adopting
the Double Pass architecture [5], which has been developed for the simulation
league team AT Humboldt of our work group. The Double Pass architecture
annotates option hierarchies in its deliberation pass as intended, desirable or
inapplicable, and executes the resulting plans in its second pass using a least
commitment approach. The accommodation of additional condition types and
different run-time requirements ask for extensions of XABSL as well as for the
XabslEngine.
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Abstract. In the growing area of multi-agent-systems (MAS) also the
diversity of the types of agents within these systems grows. Agent de-
signers can no longer hard-code all possible interaction situations into
their software, because there are many types of agents to be encoun-
tered. Thus, agents have to adapt their behavior online depending on
the encountered agents. This paper proposes that agent behavior can be
classified by distinct and stable tactical moves, called features, on differ-
ent levels of granularity. The classification is used to select appropriate
counter-strategies. While the overall framework is aimed to be applicable
in a wide range of domains, the feature-representation in the case-base
and the counter-strategies is done in a domain-specific language. In the
RoboCup domain the standard coach-language is used. The approach
has been successfully evaluated in a number of experiments.

1 Introduction

An important factor effecting the behavior of agents in MAS is the knowledge
which they have about each other [3]. Yet, in open domains like RoboCup agents
encounter a variety of opponents which are not known to them beforehand. Tra-
ditional methods for inferring the plans or actions are not always applicable. Plan
recognition [4] [5] focusses on deliberative agent architectures, so its application
in dynamic domains in which (partly) reactive agents are to be encountered is
not successful. Tambe attacked the problem of rapidly changing plans, but relies
on several simplifying assumptions, e. g. that modelling and modelled agent share
the same operator hierarchy and that the exact internal state of the modelled
agent is known [10].

A promising approach which this work builds upon is to compare the tactics
of new opponents to previously encountered ones and then select a strategy
which has been successful back then [7]. It has been successfully applied in
setplay-situations [8].

This work extends this case-based-reasoning approach by applying it to other
game situations as well, and more importantly, by introducing a more flexible
and more compact way of representation.

The remainder of this paper is organized as follows. Section two defines
the representation formalism, feature-based opponent models. Section three de-
scribes how this framework can be applied in RoboCup and shows first experi-
mental results. Finally, section four concludes.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 125–136, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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2 Feature-Based Models

This section defines features and feature-based models in a domain-independent
way. Also an architecture for agents employing this approach is proposed.

2.1 Features

The general idea is that humans use only the most typical properties of the op-
ponent’s behavior to retrieve a similar known opponent strategy. The assump-
tion is that a limited number of opponent models can describe a wide range of
opponents [8]. While Riley stores every observation in the opponent-models [7],
feature-based models contain only a small number of distinct and stable features.
An example of such a feature for the RoboCup domain:

The opponent often does long passes along the left wing
to the forwards.

And for the MODSAF domain [2], a military air-combat simulator:
If the aircraft comes into radar range, it turns onto
collision course.

We propose that rules which map actions to situations are the proper means to
express such features. It is obvious that the features depend on domain-specific
concepts like passing or radar-range. So a domain-specific language is necessary
which can formalize situation and action descriptions. In RoboCup this can be
accomplished by the standard coach language (CLang) [6].

Definition 1. Let S be the set of all situation descriptions. Let H be the set of
all possible actions. Let be the powerset of H. A feature

is a mapping from a situation description to a set of actions A.

On this abstract level, situation descriptions may range from raw sensor data
to preprocessed conceptualizations with domain-specific concepts. The situation
descriptions in S may be incomplete, thereby focussing on only some part of
the world. The actions in H are assumed to carry information on which of the
agents executes it. As an example, in RoboCup a pass from player 6 to player
11 is different from a pass from player 10 to 11.

As suggested by the above examples, features are of a probabilistic nature.
Teams may only tend to execute certain moves to a certain degree of probability.
So features may even contradict each other, thereby reflecting the team’s ability
to decide between alternative options from their repertoire. This is treated in
the feature-based declarative opponent-model (FBDOM):

Definition 2. A feature-based declarative opponent model is a set of 2-tupels
where the are features and the are probabilities of the features to

occur in the strategy which is specified by the model.
Also the constraint has to be satisfied.

Two aspects of features need to be satisfied before a human deems them typical
for a strategy. These are distinctness and stableness which originate from image
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recognition [12]. Distinctness means that a feature appears only seldom, but if
it does the probability of a certain class is high. A stable feature on the other
hand appears with a high probability in the class. Not identical notions, but
close approximations to them, are used for building the opponent models. In
this work, distinctness of a feature is assumed if where M is
an opponent model and is a manually set threshold. Stableness is checked by

where is another manually set threshold.

2.2 Architecture for FBDOM

This section outlines an architecture for an agent applying FBDOM. As shown in
figure 1, the basis are the opponent models containing tactical descriptions on dif-
ferent levels of granularity and specificity. E. g., some might specify the complete
strategy of a certain team, others might only specify the marking-assignment of
the left-wing defender. In order to detect the features in the opponent models,
the observations which come in as raw sensor data have to be processed by the
action- and situation-detectors. They try to match the observations into the fea-
tures of the models. The information if and how the observations match will
be passed on to the model selector. It handles for example cases which match
only partially (see below for a discussion of the different matching methods),
and implements one of the possible selecting methods, e. g. a Bayesian classifier,
or Tversky’s contrast model for similarity [11]. The opponent model with the
best value will be chosen and then a knowledge base will decide which counter-
strategy is applicable. Just like the opponent models, the counter-strategies can
vary in size. They can either contain full team strategies or just partial specifi-
cations, e. g. how a forward should shoot.

Fig. 1. Architecture of a FBDOM system.
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This architecture allows usage as an online- or offline-method. It depends on
the domain though, if the method needs only so much data as is provided during
the encounter with other agents, or if the histories or logfiles of previous encoun-
ters have to be analyzed in order to select the counter-strategy beforehand.

3 Application in RoboCup

This section provides a proof of concept for FBDOM by implementing it in the
RoboCup simulation league domain. The advantages and shortcomings of this
approach are highlighted, and a series of experiments is described.

3.1 Representing Features for RoboCup
The performance of FBDOM is expected to be highly dependent of the used
representation language. It has to be expressive enough to cover a variety of
situations and actions, and should provide different levels of granularity (e. g.
ranging from general descriptions of pass regions of a team to more specific
passing behaviors of a particular player).

For the experiments, the standard coach language (CLang) [6] was chosen,
because it fulfills these demands. Initially, CLang was designed to let the online
coach inform and advice its field players. But it is also suited to represent strate-
gies, since its messages are basically production rules, mapping situations to ac-
tions. The situations are crisp (possibly incomplete) descriptions of the world
state like player and ball positions, play modes, score, and time, combined by
logical operators. The actions are highlevel-actions which are more abstract than
the server primitives and include concepts such as passing-to-regions, passing-to-
players, positioning, and marking. As an example, the first example for a feature
given before would be expressed in CLang as follows:

The first line is due to the coach protocol and irrelevant here. The second line
is the situation description and denotes that the opponent has the ball and that
the ball is in a specific region (which is defined elsewhere). The action is specified
in the last line and says that the ballowner does a pass to another region.

3.2 Situation-Matching
Since the CLang situation concepts are externally observable (i. e. they do not
rely on hidden or internal states), the situation descriptions of the features can
be matched easily to the actual worldstate. In fact, coachable teams have to
implement situation-matching in order to determine when coach advice is ap-
plicable to a situation. The situation-matching code for these experiments was
slightly adapted from the Dirty Dozen [1]. Although CLang conditions are made
up of logical operators and freely definable regions, situation-matching is decid-
able. It can be seen as checking the includedness of points (concrete observed
situations) into regions (general conditions) in the state space.
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3.3 Action Detection

While the situation-matching is straight-forward, detection of actions is highly
ambiguous. E. g. for an external observer it is hard, if not impossible, to decide
if a kicked ball was passed to a player on the ball’s trajectory or if it was shot
to a certain point on that line. Thus, observed actions are often not singular
points in the state-space, but regions. To match actions, we chose an expectation-
driven approach. That is, observed actions are matched successfully to a feature’s
action, if any interpretation of the observed one is not mutually exclusive to the
feature’s action. To illustrate this:

Consider a ball that was kicked and travels along a certain line. Although
the intention of the shooter is not clear, its action would match any feature’s
action that describes a shot or pass to any point or player on that line. That is,
any overlap in situations is considered a match. For a more detailed discussion
about operationalizations of CLang actions see [9].

3.4 Building the Models

Having accurate models for different opponent classes is crucial. The models of
FBDOM are more complicated to build than those of Riley’s approach. While
Riley’s models can be built by just counting positional observations of the mod-
elled teams [8], the models here need distinct and stable features. That is, build-
ing such a model is basically about finding features that reliably describe the
behavior of opponents that belong into the class.

Up to now the models are defined by a domain expert. By definition, fea-
tures are typical moves. For the experiments opponent models for the offensive
behavior of five teams were created manually. Surprisingly, it was sufficient to
watch one or two games in order to build a model for a given team, because the
typical, characteristic behaviors of a team have high saliency. The number of
features in the models ranged from two to fifteen. The associated probabilities
were then acquired automatically by determining the frequencies in the modelled
team and in other teams. These frequencies were also used to ensure distinctness
and stableness. If the frequency of a feature in a model of team was not
significantly greater than the frequency of in all other teams, was removed
from because it was not distinct enough for was also removed if its fre-
quency was not beyond a certain threshold, in order to ensure stableness. In
fact, only three features had to be removed (two due to indistinctness and one
due to instableness), owing to the expertise of the domain expert. Still, future
work aims at acquiring features and models by clustering or rule learning.

3.5 Determining the Best Matching Opponent Model

Feature-based models do not explain every observation, but just a subset. This
has to be taken into account when determining the best matching model. Several
methods are possible and need to be evaluated.
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Matching Types: In MAS pairs of actions can be mutually exclusive (mutex).
This depends on the domain, e.g. in RoboCup an agent cannot turn and kick
at the same time. While in simple one-agent-domains all pairs of action may be
mutex, in MAS most of the action pairs involving two agents are not mutex.

Definition 3. Two actions and are mutually exclusive or short mutex
to each other, if they cannot be executed simultaneously. For two mutex actions

and we write

Definition 4. An action is mutex to a set of actions A iff
We write

Definition 5. A situation is subsumed by situation iff is true whenever
is true. We write

Definition 6. Let S be the set of all situation descriptions. Let H be the set of
all actions. Let be the powerset of H. An observation is a tupel

where is the description of a complete observed situation and
A is the set of observed actions in that situation.

Since observations may contain several typical moves at once (say a defender
stays in a certain region while the forward passes along a typical line), not
observations, but features have to be counted. A feature can be
evaluated into the following primitive results wrt. an observation In
the following list of match-types the probability parameter of the features in the
model is abandoned, having no influence on matching. Because two actions are
either mutex or not, this list is complete:

No-match:
The situation of the feature in the model does not match the observation.
Partial Match:
The situation matches and there is at least one shared action in the feature
action set and the observation action set.
Full Match:
The situation matches and all actions of the feature are in the observation
action set.
Partial Mismatch:
The situation matches and there is at least one action in the feature action
set which is mutex to the observation action set.
Full Mismatch:
The situation matches and all actions in the feature action set are mutex to
the observation action set.

Partial match and partial mismatch can apply together within a given feature.
In the selection process, partial matches or mismatches are ignored. On the other
hand, a given observation can result in any type for different features, e. g. in a
full match in feature 1 and a full mismatch in feature 2. This has to be taken into
account when comparing opponent models in terms of the number of matches.
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Selection Parameters: The above considerations lead to several parameters
that can be combined and need to be evaluated:

The first parameter (Once vs. All) determines how many matches will be
counted for each situation. In case of “Once”, the matching process aborts
after the first successful full match. In the other case several features may be
matched in the same situation. “Once” also means that a match overrules a
mismatch of another feature.
The second parameter (Most vs. Ratio) triggers whether the model that has
the highest number of matches or the one that has the best match-mismatch
ratio will be selected (cf. Tversky’s ratio model [11]).
The third parameter (Increasing vs. Normalized) specifies if the number of
full matches and full mismatches will be divided by the number of features
in the model. This way a normalization is done to overcome the variability
in the number of features.

Combining these parameters results in eight different selection methods which
were evaluated and compared to the Bayesian classifier, which is one of the most
common methods in feature-based approaches [12]:

where are the models and is the observation.

3.6 Benefitting from the Classification

Of course a classification of the opponent alone does not improve the team’s
performance. This knowledge about the opponent’s behavior must be exploited.
So for each model a counter-strategy has been created manually. The counter-
strategies were built depending on the characteristics of the model. To illustrate
this, some examples are listed:

If the model specified a fixed formation, a counter-formation was used. I. e.
in defense players pool around the opponent’s forwards and offensive mid-
fielders, and in offense the forwards are located in the free spaces of the
opponent’s defenders.
If the positions of the forwards were variable, but the forwards kept their role
throughout the game, then the defenders were assigned marking assignments.
If a model used fixed setplays (positions and/or pass chains), the counter-
strategy incorporates marking assignments or positions for kick-offs based
on the opponent’s positions etc.

For the further experiments it was important to test the counter-strategies’
appropriateness against the modelled teams. This was tested by feeding the
counter-strategies into the Dirty Dozen (DD) team whose behavior is specified
by an extension of CLang. So the counter-strategies are directly executed [1].
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It turned out that the counter-strategies indeed achieved significantly higher
scores against the modelled team than the baseline strategy which was used by
DD during RoboCup 2001 (see [9] for the statistical values). So the strategies
could be used in the following experiments.

3.7 Experiments

The experiments were designed to test if feature-based models are able to rep-
resent opponent behaviors, if they generalize to previously unseen teams, and
what effect the observation length (i. e. the amount of classification data) has.
Although FBDOM can be done decentralized, the classification was done by a
centralized coach agent in these experiments.

Experiment 1. Considering that the models were built from only one or two
games per team, the first experiment had to verify that the models are able to
code the behavior of the team they were built for in new games and against
other opponents. Additionally, the experiment was used to determine the best
parameter settings (cf. section 3.5).

There were five opponent models which had been built for teams
Now each team played several times against all other teams, including

itself. 20 games thus resulted in 40 test instances for the nine counting methods.
A classification was counted as correct, if was selected for team To fare
better than random, more than 20% accuracy had to be achieved. Interestingly
all normalized methods performed better than the increasing ones (see table
1). All normalized methods and the best increasing method were significantly
better than random showing that the models were able to generalize
to new games against new opponents. Especially one parameter setting achieved
an accuracy of 82.5 %, which is a promising result for the following experiments.

Surprisingly, the Bayesian classifier performed on random niveau. A possible
explanation for this is that the inter-dependence of the features violated the
independence demand of Bayes. For example, a feature saying that a forward
shoots from the left wing on the goal is highly dependent on a feature that
specifies that the midfielders pass the ball on the left wing to the forward. These
feature dependencies are likely to render Bayesian classification unsuccessful.

Experiment 2. In order to test if the team can benefit from the models even
if it plays against a totally new opponent, experiment 2 had to test if classifying
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a new opponent and then playing with the appropriate counter strategy yields
better goal-differences than playing with the baseline strategy, which was the
behavior specification of DD as it competed at RoboCup 2001.

There were six new teams the baseline strategy DD, the opponent
models and the counter strategies For each new team

a baseline goal-difference was found by running several games against DD. In
order to use the logfiles effectively, these games were also used to classify the new
teams. Subsequently, according to each single classification the new team
played against the counter strategy This resulted in two sets of games per
new team with exactly the same number of instances, the baseline games (set 1)
and the counter strategy games (set 2). Note that in the course of experiments
some games had to be removed from consideration because of server crashes or
connection errors (see and in table 2). The results show that in five out of
six cases the classification and the related counter-strategy yielded significantly
better scores than the baseline.

Experiment 3. While the significant better goal-differences against the clas-
sified counter-strategies in experiment 2 are a necessary condition for showing
that the method is successful, they are not a sufficient condition. It might still
be the case that all counter-strategies are better in general than the baseline
strategy. Especially since the scores are partly very negative, the improvements
might be due to a floor effect. In such a case, the classification would be obso-
lete, because any choice between the counter-strategies would yield better results
than using the baseline strategy. So another experiment was run, in which sev-
eral games were run against the new teams in which the strategy was randomly
selected. That is, DD played against team by using randomly selected counter-
strategies If the means of these games are less than the means of experiment
2 in which the classified counter-strategy was used, it can be assumed that the
optimal strategy was used in the classification & selection-runs. The outcome
of this experiment was non-uniform (see table 3). In three cases there was no
significant difference between the random selection and the selection based on
classification. One of those teams had not yielded significantly better results in
experiment 2, so this case was not surprising. At least in the three other cases,
the selection based on classification performed significantly better than the ran-
dom selection. This means that in these cases the most suitable opponent model



134 Timo Steffens

and the corresponding counter-strategies were selected in experiment 2. It also
means that the opponent-models and counter-strategies did indeed generalize
over the new teams, making the FBDOM approach successful.

However, the three cases in which the approach was not better than random
selection have to be discussed. One possible explanation is that the strategies
of the involved teams are so similar, that the related counter-strategies perform
similarly well. Interestingly, two of these three cases were classified as ATTCMU
or FCPortugal most of the times (see [9] for details), which are very similar to
each other anyway, even for human observers. From this it can be concluded,
that also the counter-strategies for ATTCMU and FCPortugal might perform
similarly, which would contribute to the lack of significant difference. Another
reason for the outcome that several counter-strategies performed similar might
be that they are only different in the defensive parts, because the opponent
models focussed on offensive behaviors. So, whenever the team was in a defense
situation, there was no difference between any of the counter-strategies. Anyway,
in the three cases which did not achieve significant improvements, the counter-
strategy that was selected by the classification was not better than the others.
This might also be due to the fact that the five created opponent-model/counter-
strategy pairs cannot be assumed to cover all existing teams. As of now there
is no evidence how well the six new teams are covered by the opponent-models.
Based on this last thought it is strong evidence for the quality of FBDOM, that
three cases were nevertheless significantly better than the baselines.

Experiment 4. In order to test the amount of data needed for the classification,
six observation lengths were tested. The same recorded games and settings as in
experiment 1 were used, with the difference that only the best parameter setting
was used and that the observation length was variied. All observations started
at kick-off. The results show that the classification performs very well even for
very short observation windows (see table 4). After 100 cycles the classification
is significantly better than random selection (which is 20%). After
250 cycles the classification is already correct in more than 50% of the cases.
The accuracy gets better the more data is acquired.
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This means that the classification cannot only be done offline by analysing
logfiles, but also online. This also renders the idea applicable to select rather
general models in the beginning of the game, and select more detailed models
when more data is acquired.

4 Conclusion

A method for representing opponent models in multi-agent-systems was intro-
duced and its performance was experimentally evaluated in the RoboCup do-
main. It was claimed that for classifying an opponent it is sufficient to focus
on distinct and stable features instead of processing the complete behavior for
all situations. The assumption was that a set of opponent models covers a great
amount of existing opponent behaviors. The experiments showed that the identi-
fication accuracy was high for the modelled teams, so the claim can be supported
that features are a well-suited method to describe opponent behaviors.

Regarding the coverage of new teams, the experiments were non-uniform,
but hint in a promising direction. There are some methodological difficulties to
measure the impact of counter-strategies. In a perfect experimentation setting,
each created counter-strategy would perform well against only one opponent
model, and bad against all other models. Yet, this can only be achieved in
restricted toy-domains or against manually created opponents, but not under
realistic conditions with using real teams. Obviously in the experiments the five
created opponent models were not enough to cover all new teams. In five of
six cases, the selected counter-strategy performed better than the baseline, and
three of these five cases were also better than random selection. More work is
needed to verify that the cause for the unsuccessful cases was the similarity
between the opponent models and the small number of models which cannot be
expected to generalize over all new teams. Creating more elaborate models that
also contain information about defensive situations or in-depth analysis of the
existing offensive behaviors could be helpful for this further work.

However, features form compact opponent models which successfully general-
ized over several new teams, so that the related counter-strategies were effective
against previously unknown opponents. This also revealed that tactics can be
identified by certain typical features, which are at this state of RoboCup still
independent of the opponent, as the experiments suggest. Because of this, oppo-
nent models can easily be created for a team by observing arbitrary opponents
playing against that team.
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Abstract. This paper presents the application of a novel method in the multi-
agent teamwork field called Scenario-based Teamworking (SBT). In SBT
method a team of cooperative intelligent agents could be able to execute com-
plex plans in nondeterministic, adversary, and dynamic environments which
communication cost is high. The base idea of this method is to define Scenario
for different situations. With a graph of scenarios, a team of agents can execute,
learn, adapt, and create team plans automatically. This method has implemented
in a soccer team of intelligent agents (players and coach) and evaluated in the
standard RoboCup simulator environment [1] and results show a significant im-
provement.

1 Introduction

One of the most important and complicated problems in designing multi-agent sys-
tems is the agents teamwork. A team of intelligent agents without cooperation will not
going to act as well as a team of agents with less individual intelligence but teamwork
understanding. The more complex environment and the higher cost for communica-
tion among agents make it harder to design a method for teamwork and managing
agents.

The creation of the robotic soccer, the robot world cup initiative (RoboCup), is an
attempt to foster AI and intelligent robotics research by providing a standard problem
where wide range of technologies can be integrated and examined [2]. Some of the
fields covered include multi-agent collaboration, strategy decision making, intelligent
robot control and machine learning. In the RoboCup simulation league, there is a
soccer simulator that simulates a soccer game. Each team should introduce 11 players
and an optional coach to this simulator. The simulator sends the sensory information
to players and players should declare their actions to the simulator via a network con-
nection in a standard protocol. Like a real match, each player can not see the entire
field (just watch what is in front of him) and has limited stamina. Players should
communicate via the soccer simulator (with sending say commands). In this situation,
a coach with global and noiseless view of the field can dynamically improve the
teamwork of this team.

Similar to real soccer games, the simulated teams can have a coach. The duty of
the coach is to employ appropriate tactics based on abilities of teammates and also the

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 137–144, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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strategy of the opponents. Furthermore, the coach is responsible to finding the weak-
ness of its own team and improves their teamwork by applying appropriate strate-
gies [3].

In this paper we present a powerful method to define plans for a team of soccer
player agents called Scenario-based Teamworking. The main idea in this method was
introduced by the Canned Plans concept of Essex Wizard team [4]. Using scenario –
based approach, player agents are able to learn, adopt and execute complex team
plans against their opponent, and the coach agent is able to modify and teach plans to
its players. Another advantage of SBT is opponent modeling and the capability of
automatically creating new plans.

2 Teamwork Based on Scenarios

The SBT method is based on the concept of defining scenarios. In this method a sce-
narios is defined for each team plan. Each scenario includes:

Triggers: conditions that explain the current situation of the environment and inter-
nal state of the agent. These conditions are divided as follows:

Data Triggers: facts, produced by direct information about the environment. For
example, agent is in area #1, or ball is on opponent side.
Time Triggers: concepts which are dependent on time, such as playing modes.
Communication Triggers: situations that are affected by agents’ communica-
tions, such as “Agent #1 said ...” or “Agent #2 sent a pass request.”
Action Triggers: situations, which are related to an agent’s action, such as own-
ing the ball, or shooting the ball.
Situation Triggers: Conditions that are brought about by what happens in the
game. Usually these conditions are related to the high level concepts in soccer
such as attack mode, or crowding around the ball.

According to the above classifications, we can define different and complex situa-
tions. For example:
T1: Agent1 is ball owner & Agent2 is near Area3 & Agent3 sends a pass request
Goal: describes the final goal of the plan. In simulated soccer field, we categorize
the final goal as Scoring, Clearing, and Possession, when the team is ball owner;
and Blockade, Close goal, and Close pass, when the opponent is the ball owner.
Scoring scenarios occur near the opponent’s goal and describe a plan that its final
action is shooting to opponent’s goal and scoring. Clearing scenarios occur near
home goal and describe a plan that aims at kicking the ball away from home goal.
Possession scenarios occur in the middle of the field and aim art keeping the ball
and creating a chance to achieve Scoring situation. Blockade scenarios are selected
when some agents want to obtain the ball from opponents (make pressure on ball).
In Close goal scenarios, agents will close home goal so that the opponent ball
owner will not be able to score. The final goal of Close pass is to force the oppo-
nent ball owner to keep the ball or make a bad pass by closing its useful pass lines.
Abort Conditions: describes the conditions that abort the plan. They are defined
just like Triggers (but in negative meaning). With separating these two set of con-
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ditions, we make the concept simple. In addition, we can benefit from some fea-
tures, such as approximate matching and risk management involving Triggers or
Abort conditions.
Evaluation: each scenario has its own evaluation parameters. We can classify
evaluation parameters in to two groups: Cost and Score parameters. Cost is a real
number that is determined by the designer in the beginning. The designer can de-
scribe the amount of cost as a function of time, power of the agent, number of
agents participating in the scenario, the effects of the incomplete scenario (if this
scenario fails) and other concepts. The score is also a real number and shows the
rewards that are obtained if the scenario finishes successfully. These parameters
can be learned and changed during a game.
Side Effects: doing a scenario will change the environment and create new situa-
tions. For example “playing in the field width” scenario makes the play wide, and a
scenario based on fast and long passing will increase the speed of the game.

Considering above descriptions, we define the main plan in the scenario model.
Each scenario includes a set of sub-plans that are performed step-by-step. Each step
includes actions, whose its main goal is scoring is shown in figure 1.

Fig. 1. Sample Scoring scenario.

Goal: Scoring Cost: 3.8 Score: 17.3

Step 1:

Triggers: Agent1 is ball owner

Agent1 is in Area3

Agent2 is near Area4

Agent3 is near Area2
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Actions: Agent1 passes ball to agent2 in Area4

Agent2 receives pass from Agent1 in Area4

Agent3 moves to Area2

Step 2:

Triggers: Agent2 is ball owner

Agent2 is in Area4

Agent 3 is in Area2

Actions: Agent2 passes ball to agent 3 in Area2

Agent3 receives pass from Agent2 in Area2

Step 3:

Triggers: Agent3 is ball owner in Area2

Actions: Agent3 shoots to goal

Side Effects: Speed up the game

In the real game three players in the above condition can choose this scenario even
with the lowest and least accuracy information. To make sure that agents are in the
same scenario, each agent can have a priority to suggest a scenario. For example the
agent who owns the ball has more priority to suggest the scenario (selecting a sce-
nario could be done in voting or contract-net techniques). Choosing a scenario identi-
fies the agent’s roles and then there will be a matching procedure to match players
with agents in the scenario, such as (This assignment shows the
player number 7 should accept agent number 2 role in selected scenario). This match-
ing also could be done central or distributed (We implement central matching). In this
case each player knows its role, and the player can do it without extra communication
(in fact with a few communications).

A major problem in the other methods (like Canned Planes) was incompatibility of
plans with the new situation or new opponent’s plan. In SBT model, while a scenario
is performed in a game and it is successful, its score increases with a coefficient. If
the scenario fails, then its score decreases with a coefficient. In this way we can have
a kind of adaptation during the game. Later we define a more flexible method for
adaptation.

In the above, we have described how to define and implement a scenario. There is
one more problem remaining which it is effect of past scenarios on current one. In a
system like RoboCup, the current situation is affected by previous situations, such as
environment and agents’ behaviors; therefore one of the most important decision
factors is the previous situations. For example in playing soccer, the percentage of
success for the scenario shown in fig 1 after a scenario that its main goal is Possession
is more than a scenario that its main goal is Scoring. So the success or fail of a sce-
nario is related to its previous scenarios.

We implement this fact with making a graph by scenarios. Each node of the graph
represents a scenario. Presence of an edge between each two nodes shows the prob-
ability of happening two scenarios sequentially. The weight of each edge represents
the probability of success of the destination scenario after playing the departure see-



Scenario-Based Teamworking, How to Learn, Create, and Teach Complex Plans? 141

nario. The above idea makes the team to learn and perform a sequence of scenarios.
For example a graph which starts with “Clearing” scenario and ends with a Scoring
scenario is a complete plan.

For implementing this part, we use a graph of scenarios. In the first phase, scenar-
ios are not related to each other. The first scenario is chosen in an experimental game
based on matching of triggers. Agents execute the selected scenario and when it fin-
ishes; another scenario is selected based on triggers matching. In this case an edge is
created between the first scenario and the second one in the graph. We continue the
process as long as nodes of the graph are connected together with an acceptable
threshold. In the second phase, we randomly choose a path of the graph that begins
with the clear scenario and end with scoring scenario. Now agents execute scenario
sequence without any evaluation. When a scenario wins we give positive score to the
edge that leads us to the node, and if the scenario fails we give negative score to that
edge and the sequence is failed. If the total path is successful we can give positive
score to the total path.

In this manner, meaningful weights would be assigned to the edges of the graph in
different games. Finally, in a real game, agents select a scenario based on the previous
parameters and weight of the output edges. Also we can continue the learning phase
during the real game. In this order, we can use the effect of more performing scenar-
ios. At last scenarios are chosen with respect to these parameters:

1.

2.

3.

4.

5.

Matching triggers with current conditions: Scenarios are evaluated based on match-
ing with the current situation of the game. We can obtain a matching score for each
trigger set (just like fuzzy rule based systems). For example nearness of a player to
an area could be used as a fuzzy variable in this case.
Matching abort conditions with current conditions: Matching abort conditions are
evaluated like triggers. This parameter has negative effect in the decision process.
Matching the scenario goal with the local team goal: The Scenario goal is com-
pared with the team goal. For example, all teams desire scoring near opponent goal
area. So scenarios whose goal is clearing should not be chosen and vice versa for
scoring scenarios near home goal.
Matching side effect of the scenario with general strategy of the team. If a team
wants to speed up the game, the scenarios having speed up side effect should be
chosen. So the side effect of the scenario should be considered in the decision
process.
We take into consideration costs and scores. In general, scenarios that have good
score and low cost should be chosen. For example, a scenario that takes long time
(high cost), or has lost many times (poor score) should be omitted.

In implementation, we mapped all above parameters to a real number between 0
and 1. Finally the optimum scenario is determined by using a weighted average of all
the above-mentioned parameters. The designer can adjust the effect of each parameter
with its coefficient.

Another benefit of SBT approach is the ability of the coach to automatically create
new scenarios. This can be done in two ways:

Watching the opponent’s playing method, the coach can model the opponents’
scenarios by determining current trigger, opponent’s selected actions, side effects,
and other features of a scenario (some features may not be determined exactly).
The opponent modeling procedure can be done in a similar way [6, 7].



142 Ali Ajdari Rad, Navid Qaragozlou, and Maryam Zaheri

Creating new scenario with evolutionary methods by the coach. New scenarios are
built with random triggers and actions and then an evaluation phase determines the
usability of it. Because of complexity of the environment, some limited rules
should be considered to reach a better performance.

Then these new scenarios are added to team’s scenario bank and are used during
games.

In a real game, based on the opponent’s conditions (prior knowledge about its per-
vious plays), one of the scenario graphs will be selected by human, before the begin-
ning of the game (a team may have different scenario graphs for different strategies).
Players select and execute scenarios and observe the result. Results will modify the
graph so the behavior of team will be changed based on its online experiments. The
modification of graph could be done distributed (each player modifies its graph and
some decision sharing is done) or done by the coach and broadcast to players periodi-
cally. So two levels of adjustable autonomy are seen here: Human-Coach (if online
modification is allowed) and Coach-Player.

3 Evaluation

In this part, we explain the results which are gained by performing and evaluating
SBT method. The scenario bank of Pasargad team has around 50 scenarios. 50% of
the scenarios are with Possession goal, 20% with Scoring, and the rest have other
main goals. Usually, in each time of game two scenarios are performing, and the av-
erage time of any scenario is 100 cycles. For evaluating the effect of SBT method in a
team, the evaluation part has implemented by two version of Pasargad team with
different decision methods (Individual techniques are same).

1.
2.

Pasargad team plays based on decision tree.
Pasargad team plays based on scenario model.

We should mention that there are 10 games held for evaluation, and then the aver-
age result is rounded by 0.5. Each win scored 3 and each draw scored 1.

3.1 Decision Tree Version

Pasargad team has a high capability for individual actions, because of its specific
architecture and optimum algorithms, which are using for technical actions in the
player’s code. So this team can show good performance with using simple ways to
organize team working (Table 1).
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3.2 SBT

We conducted games between the same teams and Pasargad that play based on the
scenario model. The result changed remarkably (Table 2).

In the decision tree version, Pasargad scored 1.4 average score and obtained an av-
erage result 3-3.5 for a game. Using SBT method, Pasargad reached 2.6 average score
and 1-7 average results per game. So SBT could increase scoring about 40% and
increased results about 6 goals per game.

Another interesting conclusion regarding the behavior is convergence of SBT ap-
proach. The team performance improves during the game and better results are always
obtained in the half. Successful sequences of scenarios are repeated during the
game. This fact means that the weaknesses of opponent strategy are found and team
uses this knowledge to select appropriate scenarios to defeat the opponent. Also suc-
cess of selected scenarios increases about 50% in the second half.

The benefit of using the SBT approach is shown in the game between the two ver-
sions of Pasargad shown in the last row of table 2. Both teams use the same base
team, and the individual player actions are the same. A 60% growth of scoring is
observed here just due to the SBT approach.

In a different experiment, the power of the SBT approach is seen more clearly. We
made the duration of games five times longer than standard game duration (30’000
cycles), so the team had more time to learn. Table 3 shows the scoring results for two
games with 6000 cycle window.

It seen that there is a fast growth of success until the segment of the game. Then
this growing is slowed down, and reaches to the highest result that Pasargad with SBT
could reach against its opponent (if the game was continued the result approximately
would be unchanged). According to this, using offline training and the SBT approach
(for example using past games against a specific opponent), the team can achieve a
result twice better than the ordinary result.
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4 Conclusion and Future Works

The Scenario-based approach was used in this paper for analyzing and arranging. The
results show improvement of teamwork. Also implementing this team and analyzing
situations are easier.

The SBT approach could be used in other areas of multi agent systems. In simu-
lated soccer games, implementation of SBT with standard coach language [6], repre-
senting an architecture that adapts this concept [7], using efficient methods for auto-
matically creating new scenarios, and using more parameters to implement efficient
adjustable autonomy for coach and players are suggestion for future works.
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Abstract. The use of agents and multiagent systems is widespread in computer
science nowadays. Thus the need for methods to specify agents in a clear and
simple manner arises. One way of achieving this is by means of a graphical for-
malism. For using such a formalism the availability of tools, that support a devel-
oper, is of great importance. In this paper we present an approach to specifying
agent behaviors on different levels of abstraction with the help of UML state-
charts. Cooperation between different agents can explicitly be modeled. To help
a developer with applying this formalism to the specification of agent behaviors
the statechart editor StatEdit is presented. This development tool supports not
only the modelling of an agent but a simple form of code generation as well.

1 Introduction

The use of agent technologies and multiagent systems has gained entrance into almost
all branches of computer science. Thus the need for standards and design techniques
has arisen. In order to gain wide acceptance an agent specification and design procedure
must fulfill several constraints. It has to be as precise as possible to avoid ambiguities
in the design of an agent. Nevertheless, the formalism must be easy to understand and
use. It would also be desirable, that the application of formal methods is supported by
the specification mechanism. This calls for a formal semantics.

All of these requirements can be met by a graphical formalism. Such a formalism
is usually easy to understand. The definition of the individual graphical elements that
make up the formalism can be done in an unambiguous way. Defining a formal seman-
tics is also possible. Another thing that is always desirable for any formalism, especially
graphical ones, is the availability of development tools which help a developer model
and implement a system. In this paper we present both, a graphical way of modelling
agent behaviors and an editor for working with this formalism.

Our approach is based on UML Statecharts [11]. With this approach it is possible to
specify not only behaviors for single agents on different levels of abstraction, but mul-
tiagent plans as well. Statecharts are a means for describing the behavior of a system in
response to external events. Their graphical notation is intuitive and easy to understand.
In addition to that the use of UML as a specification and modelling language is already
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widely accepted. Although the specification of UML statecharts does not provide a for-
mal semantics, work on this has already been done, mostly with the aim of verifying
properties of UML models, e.g. in [8,14]. A tool for editing statecharts is also presented.
With the StatEdit editor an agent designer can easily create statecharts describing agent
behaviors. The resulting statecharts can also be exported to a number of other formats,
which helps a developer with creating running code from the specification.

The rest of the paper is organized as follows. Section 2 briefly summarizes the rele-
vant parts of the UML statechart formalism. Section 3 introduces our approach to agent
specification with UML. The specification is described on different levels of abstrac-
tion. Special attention is laid on the specification of multiagent plans (Section 3.3). In
Section 4 the statechart editor StatEdit, which is being developed at the University of
Koblenz, is presented. This editor allows for the graphical design of agent behaviors and
exporting the resulting statechart to different formats, e.g. Prolog or XML. Section 5 fi-
nally concludes the paper with an overview over related work, some final remarks and
an outlook to future work.

2 UML Statecharts

The behavior of a system – like a program or an agent – can be described as a sequence
of states the system is in. Depending on (external) events the system changes from one
state to another. Such a change may be accompanied by the execution of an action.

In the Unified Modelling Language (UML) [11] statecharts are used to model be-
havioral aspects of systems. Statecharts are basically directed graphs, where different
kinds of nodes represent states and pseudostates and edges stand for transitions. Labels
on the edges describe properties of the transitions. Statecharts are hierarchical state
transition diagrams, i.e. states in a statechart can contain other states or even whole
state machines. In the following we will briefly summarize those parts of the UML
statechart formalism that are employed by us for the design of agents.

In UML a state (represented as a box with rounded corners) is considered a period
in the life of a system/agent during which a certain condition holds or an activity is
performed. An agent may for example remain in a state while it waits for some external
event to occur. In UML three different types of states are distinguished. Simple states
are atomic in the sense that they do not possess any internal structure. Composite states
can be further decomposed. They contain submachines which describe the activity asso-
ciated with the composite state. Concurrent states are special types of composite states.
A concurrent state contains two or more composite substates, which are called regions.
If an agent is in a concurrent state, it is in all regions simultaneously. Thus concurrent
states are used to model concurrent activities in a system or an agent.

The state of a system can be changed in reaction to external events. Such a transition
is shown as a directed edge from state to state which is labeled with e[c] /a, where
e is an event, c a boolean expression, and a an action. The (informal) semantics of t is
“if the system is in state and event e occurs and the condition c holds, then the system
executes action a and changes to state

Pseudostates may be seen as transient simple states, i.e. a system cannot remain
in a pseudostate – it is left without delay. In other respects a pseudostate behaves just
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Fig. 1. Statechart examples. On the left a composite state with simple substates is shown. The
right statechart shows a concurrent state modelling a producer consumer scenario.

like a simple state. With the help of fork and join pseudostates concurrent states may
be entered and left. The initial pseudostate points to a designated start state of a state
machine. The final state of a state machine is entered, if the activity modeled by this
machine is finished. In this case a completion event is generated. Figure 1 shows two
examples of Statecharts.

Sometimes it is necessary to synchronize the concurrent activities in a statechart.
This can be done with a synch state, which is shown as a circle residing on the dashed
line separating different regions. The transition leaving a synch state may only be en-
abled if the transition entering the synch state has fired at least once. A synch state is
labeled either with a positive integer giving an upper bound on the number of times
the incoming and outgoing transitions have fired or with an asterisk, if there is no such
upper bound.

In a typical producer-consumer scenario, for example, goods are produced by an
agent and consumed by another. But the latter can only consume something that has
been produced beforehand, so the need for synchronization is obvious. Figure 1 shows
such a scenario on the right. Parts of type B are produced by one agent and used by
another to assemble components ABC. The upper bound on the synch state is 6, so only
six parts of type B may be produced, before one has to be consumed.

3 Designing Agents with UML

The behaviors of an agent can be seen as a sequence of states the agent is in. Each state
corresponds to an activity or indicates that he agent is idly waiting for something to
happen in its environment. Furthermore the behaviors of an agent can be specified on
different levels of abstraction. This makes it possible, for example, to design an agent
in a top-down manner by first specifying its tasks and behaviors on a very abstract level
and then refining the abstract behaviors more and more.

One important feature of multiagent systems is the (explicit) cooperation of several
agents to achieve a common goal or solve a problem. The agents play different roles in
a shared (or multiagent) plan, i.e. they execute behaviors that solve parts of the problem
or support other agents. Thus a role in a multiagent plan can once again be modeled as
a sequence of states an agent passes through, partially in response to (external) events.
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Fig. 2. Layered Architecture of an Agent.

But there is an important difference between the design of a single agent behavior
and the role of an agent in a multiagent plan. When different agents work together to
achieve a goal, their behaviors are not completely independent of each other, although
most of the time they can be executed concurrently. But at several points of the multia-
gent plan synchronization of the individual behaviors of the agents is necessary, because
sometimes agents have to work together on a subtask, or one agent has to wait for an-
other agent to finish a subtask.

We present a layered approach to designing agents for the RoboCup Simulation
League. For the specification and implementation of an agent three levels are distin-
guished, each of which is more global than the layer below (cf. Fig. 2).

On the highest level – the mode level – global patterns of behavior are specified.
They can be thought of as the most abstract desires an agent has, e.g. attacking or
handling standard situations like corner kicks. These abstract desires correspond to
different states an agent can be in. We will refer to them as modes.
For each mode an agent has a repertoire of skeleton plans that it can use as long
as it does not change its mode. The specification of these plans or scripts and their
assignment to the global states constitute the second level of the agent design. On
this level explicit specification of cooperation and multi agent behaviors can be
realized.
On the third and lowest level of the hierarchy the simple and complex actions the
agents can execute are described. These actions, the skills of an agent, are used in
the scripts.

So each level shows details of a higher level. The result of the design process is a layered
specification of an agent. The connections between the three levels are not predefined in
a rigid manner. Thus a developer can adapt the modelling technique to the kind of agent
that ist to be designed. If, for example the statecharts created on all levels are merged
into one chart, the resulting statechart models a hysteretic agent as described in [13]. If
an agent for a special architecture (e.g. SOAR) is modeled, the statecharts are mapped
to components of the target architecture.

Throughout the rest of the section we will describe, how UML statecharts are em-
ployed in the specification of agents. Section 3.1 explains the high level specification of
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Fig. 3. Modechart for a simple player. The line up event is generated after a goal and at the
beginning of each half time.

an agent, while the subsequent sections deal with the design of single agent behaviors
(Section 3.2) and multiagent plans (Section 3.3). The skill level will only be addressed
very briefly in Section 3.4.

3.1 Mode Level

In robotic soccer an agent frequently switches its behaviors on a very abstract level. For
example, an agent may either be defending or attacking, depending on which team is
controlling the ball. All changes of such global behaviors happen in response to one or
more external events. If a state is associated with each of the behaviors and the events
and conditions that lead to a change from one state to another are determined, the agent
can already be modeled by a statechart, called modechart, on this very abstract level.

Consider a very simple soccer playing agent with only three such modes. Whenever
the agent’s team controls the ball the agent is attacking. If the opponent team gains
control of the ball, the agent switches to a defensive behavior. Before each half of the
game, as well as after a goal, there is a period in which the teams line up. Figure 3
shows the resulting modechart. As the soccer teams line up on the field before the game
is started, the line-up state was chosen as the initial state. When the game is over, the
agent enters its final state and ceases its activities.

The transitions between different modes are usually triggered by easily observable
events and guided by guards, whose truth values can easily be determined. As a lot of
behaviors an agent performs only make sense in certain situations, its action selection
mechanism is guided on an abstract level by the current mode, and so the search space
for selecting an action is pruned. For example, in the line-up mode the agent only has
to consider a single action, namely moving to its home positon.

3.2 Script Level

Up to now only very abstract desires of an agent have been specified with the help of
modecharts. But nothing has been said about how to achieve those abstract desires.

Each agent is equipped with a repertoire of scripts, which are short local skeleton
plans for handling particular situations. In each mode an agent can access a subset of
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Fig. 4. A script for passing.

all scripts, depending on the situations that can arise in the particular mode. If no script
is applicable, the agent has to fall back to a (possibly purely reactive) default behavior.
One of the main problems of a past approach [15] to specifying such scripts lay in the
rigidity of the plans. Once a script was selected for execution, it was hard to interrupt or
abort it. UML statecharts, however, are very well suited for this kind of specifications.

For an agent, the execution of a script means executing a sequence of activities,
some of which depend on the outcome of previous activities. As they can be associated
with (simple) states in UML statecharts, the whole script can easily be represented by
a composite state. Such a script state is entered at a designated state representing the
beginning of the activity and can be left at a variety of points according to the outcome
of the script. Interruption of a script in response to changes in the world are modeled by
transitions originating from the edge of the composite state.

Consider the example of a passing script in Fig. 4. The agent selects a teammate to
kick the ball to, gets its position on the field and finally kicks the ball to those coordi-
nates. If the agent cannot find a suitable teammate or loses the ball, the script is aborted.
The agent can lose the ball during either activity, so the transition handling this event
originates from the state representing the whole script. But only the choose partner ac-
tivity may fail because the agent cannot find a partner, so the corresponding transition
starts from the substate modelling this activity.

3.3 Multiagent Plans

Up to now we have shown how to model scripts or behaviors of a single agent with
the help of UML statecharts. But what about multiagent plans? In a multiagent plan or
script several agents act simultaneously in order to achieve a common goal. At certain
points their activities have to be synchronized. Those two additional requirements –
concurrency and synchronization – are modeled with the help of concurrent states. A
multiagent script is specified as a concurrent state with a region for each role hat has
to be played by an agent. If the activities carried out by different agents have to be
synchronized, this is modeled with the help of a synch state.

An example may help to clarify this. Consider a typical double passing situation. An
agent A controlling the ball wants to get past an opponent O by playing a double pass.
The agent passes the ball to a teammate B and runs past the opponent. The teammate B
dribbles a little with the ball and passes it back to A as soon as possible. To handle
this situation the agents can be equipped with a multiagent script with two roles that
correspond to the behaviors of the agents A and B. The concurrent state modelling this
script is shown by Figure 5. The simple states in the script correspond to the activities
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Fig. 5. A multiagent script with two roles for double passing.

of the agents. Synchronization is necessary twice in this script, namely for passing the
ball. As an object (the ball) is passed between the agents and both agents can only con-
tinue their role at the respective positions if they are in possession of the ball, the need
for synchronization is evident. Finally, a timeout for the execution is modeled by the
transition labeled after(15), which means that the execution of the script is terminated
after 15 simulation steps. In this case the script has failed. Additional error transitions,
e.g. modelling loss of the ball, may be added.

So far we have modeled the script as a whole. But some aspects have still been
omitted. First of all, we only specified where synchronization has to take place, but we
did not clarify how the activities are synchronized. As the different roles are played by
different agents and their internal states are usually not known to teammates, means
have to be provided that enable an agent to determine whether its partner has already
reached a synchronization point or not. In addition to that an agent can only play one
of the roles in a script at a time. Therefore the specification should model not only the
script on the whole, but also the individual roles.

So we add a second step to the specification of a multiagent script, in which the
behaviors corresponding to each role are derived from the script state to yield an agent
state. This is done by “cutting along the dashed lines”. As each role in the script is
modeled by a region in the concurrent state, it is easy to see that the specification of
an agent’s behavior must be based upon the corresponding region. So the substates of
each region are simply copied to the corresponding agent state. This process is quite
straightforward, since most of the time the agents’ behaviors are independent of each
other.

The only spots that require special attention are the synch states. As we said before,
a synch state only models the need for synchronization but says nothing about how this
synchronization is realized. Unfortunately there is no unique way of handling synchro-
nization in the derivation of an agent state, so the designer has to tackle this issue as the
case arises. The required synchronization may, for example, be indicated by the change
of a guard condition or the occurrence of an event. It may, however, be necessary for
one of the agents to explicitly generate an event, for example by communicating its
internal state.

Transitions modelling interruptions or errors are just copied from the script state. If
such a transition starts on the edge of the composite state, it has to be copied to the edges
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Fig. 6. The derived agent states for double passing. Bold transitions indicate synchronization.

of all agent states representing a role in the script. Finally, some events and guards have
to be chosen, which enable the agent to notice that a situation has arisen in which the
execution of a certain script is appropriate, and to determine its role in the script.

Let us now continue our example from above. The double passing script consists
of two roles, so two agent states have to be generated, which are shown in Figure 6. In
this example synchronization is needed, because the ball has to be transported (kicked)
from one player to another.

As the ball entering the kick range of a player is an observable event and does not
involve the knowledge of internal states of the teammate, synchronization can easily
be handled by using a change event or by putting a guard on the respective transition
edges, which prevents the transition from firing unless the ball has become kickable
for the recipient of the pass. Last but not least, the transition modelling the timeout of
the script has been copied to the edges of both agent states, indicating that both agents
terminate the double pass after 15 cycles as a failure. The determination of the roles the
agents play in the script is handled by the possession of the ball.

3.4 Skill Level

With the use of the server commands (dash, turn, kick, turn_neck,...) alone, the ability
of an agent to interact with its environment is very limited. Therefore there are proce-
dures or functions that provide more sophisticated skills for an agent at the bottom level
of almost all RoboCup simulation teams.

Dribbling, for example, is modeled as a sequence of controlled kicks and dashes.
The dribbling skill of an agent is responsible for generating the sequence of dash, turn
and kick commands needed to keep the ball under control while running to a particular
position. Figure 7 shows a statechart describing a simplified dribbling skill.

From the viewpoint of agent modelling the skill level is very similar to the script
level. Skills are modeled like single agent behaviors. There are, however, no analogues
to multiagent scripts, as skills are abilities of one agent only.
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Fig. 7. A statechart modelling a simple dribbling skill.

4 StatEdit – A Statechart Editor

In order to assist an agent designer in modelling the behaviors of an agent with the help
of the presented formalism the statechart editor StatEdit (Fig. 8) has been developed at
the University of Koblenz [4]. With this editor the designer can easily create statecharts
that specify the desired agent behaviors. Apart from the usual functionality provided
by an editor for graphical elements, such as drawing, moving, erasing, or grouping
objects, StatEdit offers a number of functions to support the modelling tasks of an agent
developer. Two of them will be presented in greater detail, namely splitting (Sec. 4.1)
and exporting (Sec. 4.2) of statecharts.

States and transitions are created and edited via pop up dialogues. The syntax of
a statechart or a selection can automatically be checked, and a selected statechart can
mechanically be beautified. In order to enhance the readability of a diagram, not all
labels are shown at the respective elements. Transitions are only labeled with a unique
identifier. The corresponding transition string is shown in a separate window when the
pointer is over the transition (cf. Fig. 8). The same holds for the entry and exit actions
of composite states.

4.1 Splitting Concurrent States

As we explained in Sec. 3.3 the specification of a multiagent script is done in two steps.
First a concurrent script state is created. In a second step the script state is split into
agent states and means of synchronization are specified.

StatEdit offers the functionality to split a concurrent state c between two regions,
simply by clicking on the border between them. The result of this process are two
(possibly concurrent) composite states and each corresponding to one (group) of
the regions comprising the original state c Transitions originating on the border of c
are copied to the borders of both and while transitions from a substate are only
moved with the corresponding state.

If a concurrent state is split between synchronized regions, synchronization is re-
solved with the help of events. Whenever this has to be done a unique signal event
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Fig. 8. The StatEdit main window with opened export menu. Prolog is selected as export format.
The showinfo window on the right shows the transition string of

is generated by StatEdit. The appropriate transitions in the resulting statecharts are
labeled with transition strings, that either create or are triggered by this event.
Bounded sync states are resolved by putting additional guards on the transitions and in-
crementing resp. decrementing a global variable. Of course the user has the possibility
to avoid the use of these generic events and resolve synchronization interactively.

4.2 Exporting a Statechart

Implementing a system that fulfills a given specification is a difficult and error prone
process, especially for agent systems, which interact with their environment and have a
certain degree of autonomy. In order to simplify this task StatEdit offers functions for
exporting the created Statechart to several other formats. This includes graphical formats
for easy integration of figures into documentation, XML, and functions or function
skeletons in different programming languages for (semi-)automatic code generation.
Currently StatEdit supports conversion to EPS, XML, and a subset of Prolog, which
can be interpreted by a statemachine built into our RoboCup team RoboLog [9, 10].

Exporting a statechart is done in two steps. First the internal representation of a
Statechart is converted to an XML structure which is then translated to the desired target
format. This two step translation makes it easy to add further export modules, as there
are already lots of XML based development tools available, which can easily be adapted
for working as export functions.

5 Conclusion

This section closes the paper with some final remarks. First an overview over related
work is briefly discussed. Then a short summary and an outlook to some future work
will be presented.
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Bergenti and Poggi [3] state that agent oriented software engineering adds another
level of abstraction to the process of modelling software systems. This level, the agent
level, treats agents as atomic units and models multiagent systems as interactions be-
tween agents. They present four agent oriented diagrams using standard UML notation.
With these diagrams ontologies, agent classes and protocols are described. With this
approach only aspects of the interactions among agents can be modeled. The agents
themselves are treated as atomic entities. In contrast to this, our approach allows for the
modelling of interactions between agents as well as describing the behavior of a single
agent, i.e. the internals of an agent with only one formalism.

In [12] Odell et. al propose a number of extensions to UML for modelling multi-
agent systems or interactions between agents under the name of AUML (Agent UML).
A layered approach to specifying interaction protocols for agents is presented. At the
top agent interaction is specified in different levels of detail with (extended) sequence
diagrams and collaboration diagrams. Activity diagrams and statecharts are also used
on this levels to emphasize certain aspects of the specification. On the lowest level intra-
agent processes are specified with extensions of activity diagrams and statecharts. This
approach is continued in [2] with the introduction of protocol diagrams into AUML,
which extend the semantics of agent messages and improve inter-agent protocols. In
contrast to the proposed Agent UML, our approach needs only one formalism to de-
scribe both the inter-agent and intra-agent behaviors in a multiagent system. In addition
no extensions to the existing formalisms of UML have to be made.

In [7] an approach to agent specification and modelling of multiagent-systems based
on object oriented formalisms is presented. Kinny and Georgeff use several object ori-
ented modelling techniques, e.g. class diagrams and statecharts, for specifying agents.
The plans that an agent may apply to reach a certain goal are described by plan dia-
grams which are based on statecharts. In contrast to the method presented in this paper
plan diagrams are not used to express multiagent plans or explicit cooperation among
agents. Multiagent systems are rather modeled by a class diagram, which describes the
different classes of agents and the relationships among them. Object oriented mecha-
nisms like inheritance are then used to distribute attributes between agent classes.

5.1 Summary and Outlook

We presented a graphical formalism for the layered specification of agent behaviors and
multiagent systems. The formalism is based on UML statechart diagrams, which are
used for modelling the behavior of systems in the object oriented software development
paradigm. The approach allows for the explicit modelling of cooperation between two
or more agents to achieve a common goal. From the specification of such a behavior the
individual roles of the participating agents can be derived in a straightforward manner.
To support a developer using our modelling technique the statechart editor StatEdit has
been developed. With this editor statecharts can be created and exported to a variety of
formats for further processing.

Future work includes applying the presented methods to other applications as well.
First steps in this direction have already been taken [1]. The statechart editor StatEdit
will be extended by further export modules. In the near future modules for integrating
StatEdit with Golog [6] and the double pass architecture [5] will be implemented.
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Abstract. Applications of recurrent neural networks (RNNs) tend to
be rare because training is difficult. A recent theoretical breakthrough
[Jae01b] called Echo State Networks (ESNs) has made RNN training
easy and fast and makes RNNs a versatile tool for many problems. The
key idea is training the output weights only of an otherwise topologically
unrestricted but contractive network. After outlining the mathematical
basics, we apply ESNs to two examples namely to the generation of a
dynamical model for a differential drive robot using supervised learning
and secondly to the training of a respective motor controller.

1 Introduction

Neural networks can serve as universal dynamical system representations, thus
they constitute very powerful way of modeling [MNM02]. Simultaneously they
are versatile in the tasks they can solve and without doubt neuronal networks
represent an extremely successful biologically inspired solution concept. Con-
sequently researchers begin to recast technical problems in ways amenable for
solving them by the help of neural networks. Topics cover system modeling, non-
linear control, pattern classification or anticipation and prediction. Examples
are found in form of feed-forward networks i.e. multi-layer perceptrons which
allow autonomous driving of cars [Pom93] or the silicon retinas of Carver Mead
[Mea89] which produce instantaneous optical flow very similar to natural pro-
cesses found in the visual perception of animals. When it comes to even more
interesting recurrent neural networks (RNN), users face some major problems.
They find that using RNNs is in principle possible but mostly too difficult to be
really applicable. Main problems are:

1.

2.

3.

What is the ‘right’ structure for a RNN: i.e. which topology fits to the given
problem best?
The convergence of teaching: i.e. which method will converge fast enough?
There is a very pronounced desire for efficiency of training.
Over-fitting and exactness: i.e how to avoid too literal reproduction yet as-
sure convergent behavior with respect to the teacher signal?

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 157–168, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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There is a proliferation of different approaches for point 1. e.g. Ellman nets,
Jordan nets or Hopfield RNNS to name a few. Yet item 2. severely hinders to
apply RNNs to larger class of problems. Known supervised training techniques
comprise Back Propagation Through Time (BPTT), Real Time Recurrent Learn-
ing (RTRL) or Extended Kalman Filtering (EKF) all of which have some major
drawbacks. Application of BPTT to RNNs requires stacking identical copies of
the network thus unfolding the cyclic paths in the synaptic connections. Unlike
back-propagation used in feed-forward nets, BPTT is not guaranteed to con-
verge to a local error minimum, computational cost is per time step
where N is the number of nodes, T the number of epochs [BSF94]. In contrast
RTRL needs (L denotes number of output units), which makes
this algorithm only applicable for small nets. The algorithm complexity of EKF
is EKF is mathematically very elaborate and only a few experts have
trained predefined dynamical system behaviors successfully [SV98]. In this article
we approach items 1. and 2. from a different point of view and give a stunningly
simple solution. We introduce the notion of Echo State Networks (ESNs) and
apply this concept successfully in two problem domains, namely nonlinear sys-
tem identification and nonlinear control. At this time, it seems that ESNs are
also applicable to many others of the problems generally known to be solvable by
RNNs such as filtering sensor data streams [Hou03] or classification of multiple
sensory inputs [Sch02]. Thus they can be applied to many other every day prob-
lems of roboticists and their use is in no way restricted to the covered examples.
See [Jae01b], [Jae01c], [Jae02] for an in-depth coverage of already investigated
examples.

This article makes the following contribution to ESN related research: for the
first time we successfully apply this technique to system modeling and controller
generation for mobile robots. Using well known error norms from control theory
we demonstrate that ESN based well-trained controller can compete with and
even outperforms a classical handwritten one.

The remainder of this article is structured as follows: in section 2 we define
basic notation and mathematics of ESNs. In the core part section 3 we describe
in depth the process of teacher signal generation, training of system model and
motor controller and give results on the soundness of the application of ESNs in
the chosen application scenario. We close with a summary and give references.

2 Recurrent Neural Networks
and the Echo State Property

In general, a discrete time recurrent neural network can be described as a
graph with three sets of nodes, namely K input nodes u, N internal network
nodes x and L output nodes y. We use the terms nodes, units and neurons
interchangeably. Activation vectors at time point are denoted by

and re-
spectively. The interconnect edges are represented by weights which are
collected in adjacency matrices, such that implies there is an edge from
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node

where are the internal activation functions. Calculation of the
new internal node vector from the current inputs, given old activation and old
output according to equation (1) is called evaluation. The neural network com-
putes its output activations according to

where are the output activation functions and
denotes concatenation of input, internal and previous output

activation vectors. Equation (2) is called exploitation. Observe that we do not
require recurrent pathways between internal units, although we expect them to
exist, and that there is no restriction on the topology. In our case of echo state
networks we usually have full matrices for and if needed at all also
for W is a sparse matrixes with typical densities ranging from 5-20%.
Successive evaluation and exploitation of the net according to equations (1), (2)
might show a chaotic, unbounded behavior. Thus it is necessary to damp the
system. This can be achieved by a proper global scaling of W (see below). With
the given notation the Echo State Property (ESP) can be stated as follows
[Jae02].

Definition 1. Assume that an RNN with defined like above
is driven by a predefined teacher input signal and teacher-forced by an
expected teacher output signal both contained in compact intervals and

respectively. Then the network has the echo state property
(ESP) with respect to and iff for every left infinite sequence

and all state sequences which are generated
according to

it holds true that for all

Intuitively this means that if the network has been running long enough, its
internal state is uniquely determined by the history of the input signal and the
teacher forced output (see [Jae02] for details). The ESP is connected to certain
algebraic properties of the weight matrix W. There are sufficient conditions for
RNNs to either proof or to disproof ESP. Since it eases the further presentation
and the results do not depend on it, we assume from now
on.

We define for the input weights,
for the internal connections, for the output weights and
finally for the weights which project back from output nodes
into the net, subscripts denote dimensions. Observe that direct impact from an
input node to an output node or from one output node to another output node
is possible. Evolution of the internal activation vector given by
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Theorem 1. Define as largest singular value of W, as largest ab-
solute eigenvalue of W.

(a)
(b)

If then ESP holds for the network
If then the network has no echo states for any
input/output interval which contains the zero input/output tuple
(0, 0).

In practical experiments it was found that condition (a) is much too strong
and that on the contrary the negation of (b) appeared to be sufficient in the
sense that it always produced RNNs with ESP though this is not provable up
to now. More precisely we apply the following algorithm to produce RNNs with
ESP:

Algorithm 1 1. Randomly generate a sparse matrix with a
low density (e.g. 5-20% weights

2.

3.
4.

Normalize where is eigenvalue of with maxi-
mal absolute value.
Scale where so is the spectral radius of W.
Then ESP holds for the network

Observe that the ESP prevails regardless of the choice of or
Thus the open parameters of the network which require tuning are the dimen-
sionality N of W, spectral radius and scaling, sign and topology of input
weights and back-propagation weights all of which have be adapted
to the time series data of the given problem domain. The parameter can be
interpreted as the intrinsic time scale of the ESN where small means fast
reacting network and close to one implies slow reactions. The number of in-
ner nodes, N, relates to the short term memory capacity of the net [Jae01c].
Algorithm 1 gives a surprising answer to problem 1 from section 1: the exact
interconnect topology of the RNN can be arbitrary and a condition taming the
largest eigenvalues will suffice. As another convenient consequence teaching of
echo state networks becomes easy and user friendly. Specifically for RNNs with
ESP, only the matrix of output weights needs to be adjusted. In detail,
one applies the following steps:

Algorithm 2 Let be a set of T elements of training
data each consisting of a teach input vector and a desired (to be
taught) output vector Set x(o) = 0 and

1.

2.

3.

4.

Calculate the current network state according to
equation (1).
For concatenate in rows
and store it in a state collecting matrix
Similarly collect in rows into the teacher collection matrix

solve for where denotes the pseudo (Moore-Penrose)
inverse of M and set
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Usually so step 4 amounts to the solution of
an over-determined set of equations by regression, which can be accomplished
by virtually any numerical SW packages in little cpu time. Usually there is no
unique solution but there is unique one shortest in length. The trained network

is now ready to use by application of equations (1)+(2).
In cases necessary arising stability problems can be cured by adding a vector term
of small white noise in equation (1) during step 3. Algorithm 2 addresses item 2
- the difficult teaching problem- from section 1. ESNs teach the L × ( K + N + L)
coefficients of only instead of the whole topology, all other parts remain
untouched.

Now the mathematical basics of ESN can be summarized as follows: we can
heuristically characterize them as RNNs with sparse internal interconnect topol-
ogy and some restriction on the size of its maximal singular (or most of the
time: eigen) value. In ESNs, only output weights are trained. Thus they ease
topology and teaching related problems of classical RNNs. They have a low al-
gorithmic complexity, allow fast teaching and are highly adaptable to AI tasks
like filtering and classification. To train them, a designer still needs to fix some
parameters like dimension, density and spectral radius. Signals have to be prop-
erly filtered, scaled and offset. For each of these operations there exist single or
combined heuristics for an educated guess of the initial values. The most time
consuming part deals with scaling of input and output ranges. Here one needs to
find parameter sets specially adapted to the given problem. Speaking in terms
of electrical circuit analysis shifting and scaling input/output data amounts to
fixing an operating point of the ESN. Like for many other RNN models stability,
data over fitting or lack of generalization abilities remains an issue also for ESNs.
In the next chapter we apply ESNs to real world data stored during a game to
find system models and nonlinear controllers for mobile robots.

3 Applications of ESNs to Control

Our mid size league robots have a standard differential drive with passive caster-
type front wheels, so only nonholonomic movement is possible. As such the
dynamics of the robot forms a nonlinear system which requires expert knowl-
edge to be modeled in an analytic way. Consequently we preferred a black-box
approach to modeling based on RNNs. They are especially powerful when ap-
proximating fast changing dynamics which is frequently the case in our behavior
programming approach called dual dynamics (DD). In DD different behaviors
run simultaneously on each robot [BK01].

Schematically Figure 1 displays the data flow in our robot architecture. Re-
quired left and right wheel speeds are calculated by the DD behavior program
which runs on a LINUX notebook. The two values are send to the PIDs ap-
proximately every 33 msec. The PIDs convert the required speed (cm/s) into a
pulse width modulation signal (PWM) in percent thus effectively controlling the
voltage of the motors. At the two motors actual odometric speed values are mea-
sured. The velocity (cm/s) is feedback to the PID to close the low level control



162 Paul G. Plöger et al.

Fig. 1. Interface to low level robot architecture. Above the dashed line, we have the
non-real-time PC-level. Below it there is a closed fast reactive real-time loop on

 Here physical modeling is mandatory.

Fig. 2. Left: training of system model, middle: training of controller, right: combined
simulation of controller and model, acting as a model of the physical robot.

loop and also to the behavior system running on the notebook. It operates in a
non real-time way while below the dotted line the PID micro-controller operates
in real-time in its feedback loop. We employ ESNs in three different situations,
firstly as a system model. Inputs of the model are two PWMs and outputs are
odometric velocities left and right. This can be seen as a forward model as it
maps from inputs to outputs, in a context of a given state vector [ Jor95]. In terms
of Figure 1 this amounts to replacing the bottom box by an ESN. Secondly, as
a system controller or inverse model which inverts the system by determining
(i.e. by learning) the motor commands which will cause a desired modification
in state. Here the trained ESN acts as controller, as it provides the necessary
motor command (PWM) to achieve some desired state (i.e. the required speed).
This is equivalent to the substitution of the box PID with an ESN in Figure 1.
We train both replacing networks separately. Lastly in a third setup both ESNs
are coupled to build an integrated model robot/low level controller pair. Then
in Figure 1 the whole system below the dashed line is being modeled.
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Model: Figure 2 displays the two different teaching situations and the appli-
cation situation in the simulator. We begin by training the system model like
depicted on the left side. According to Algorithm 1 we construct an ESN of
dimension N = 100, 5% interconnection arcs spectral radius with two
inputs and outputs (i.e. K = 2, L = 2) for left and right wheel. The inputs of
the model are PWMs. Outputs are odometry and the teacher signal is set to
the measured odometry from a stored trace file. The inputs were scaled down
from their original domain [–250, 250] to the range [–1, 1]. We added some mild
noise of +/ – 0.002 during teaching in equation 1 as a fourth term inside the
network activation function. The matrix was set to zero. This is done
for passive filtering tasks. In tasks involving active signal generation, the back
weights are usually different from zero. The parameters and results from training
are summarized in Table 1. We also computed MSEr and MSEl which denote
the mean square error for both learned time series for the left and right wheel.
Teaching took just less then a minute for a training sequence of length 6800 time
steps. The evaluation time took a second on a Pentium III class machine using
a MATLAB 5.30 implementation.

A picture of the desired and trained time series is shown in picture Figure 3.
Firstly it can be stated that the trained model follows the trainer signal quite
closely in general. Taking the maximum norm the overall relative error is 12%.
The integral norm of the difference function between teacher and network
output defined as is 1.1e-2 on the given time interval, the
respective error norm is 4.2e-4. Taking a closer look the following observations
can be made. Firstly we see how the measurement noise on top of the teacher
signal is filtered away. The ESN generated signal appears to be smoother then the
orignal. Secondly in the start interval [6900,7000] the ESN signal saturates and is
not able to reach the desired 175 cm/sec. The explanation for this is very simple,
since the used data file contained only 212 data points above 150 cm/sec and just
10 over 180cm/sec. This data set is far too small to train the network sufficiently
well in this region of high speeds. By itself an ESN can neither extrapolate nor
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generalize for learned situations to close nearby input stimuli yet lying beyond
the previously trained range. Thus it saturates at 150cm/sec. The very same
explanation applies to some observed over-drives when the robot moves back.
During teaching this situation prevailed for just about 10% of the time. We do
not have an convincing explanation for the divergence in intervals [7250,7350]
or [7750,7800] though. It might simply be mentioned that all our observations
indicate that ESNs seems to behave especially well in spiking situations while in
steady state situations a drift is frequently observable. The entire system model
is reasonably exact to be useful in simulations and it surpasses the kinematical
model in prediction quality by far. We then compared this result to a standard
approach applied in the System Identification Toolbox in MATLAB. This SW
supports many different methods but the default is the prediction error method
(PEM) which is used when no special model was given by the user. Observe
that PEM is still a parametric method but it chooses its parametric model all
on its own using some clever heuristics. The comparison of ESN to PEM in
Figure 4 proves that both models suffer from the same flaws. The training data
set contained signals with extraordinary high frequencies. Consequently the fit
at all rapid changes of inputs is very good, but the low frequency part is too
rarely present in the teacher signal. Thus it can be concluded that the teacher
stimulus set is not rich enough. More inputs sets containing rides on a straight
line are needed. A final remark on the phase difference at the very end of the test
data set may be noted. It is due the numerical roundoff error in the numerical
calculation of the step size which PEM must use.

Fig. 3. Comparison of outputs of trained system model and observed robot speeds
after teaching. Teacher is dashed, system is solid.

Controller: A similar teaching setup can be used to try to train a new ESN as
a better controller then the given PID. If an embedded version of an ESN would
be at hand this version could actually be used in the real robot replacing the
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Fig. 4. Comparison of ESN method (solid line) and prediction method error (crossed
line).

old PID controller. Since this hardware unit is not ready at this time we can
only present a feasibility study. The ESN for this enhanced version controller
has again the dimension of N = 100 internal units, 0.06 density, spectral radius
lambda = 0.82, inputs K = 4 and outputs L = 2. In this case we are feeding the
controller with the odometry signal itself and an incrementally delayed odometry
signal (4 steps). Both are again derived from original speed data. A bigger delay
it likely to enhance prediction, but would also result in damping or attenuating,
which is unwanted here. In this training situation the ESN will learn to deduce
how to mimic the given PWMs by using the current velocity and the desired
velocity in near future. In Figure (5) we see a good fit in steady state situations
on interval [50,100] as well as at rapid changes in [205,220].

Controller with System Model in the Loop: The third and last step consists
of testing the new trained controller, but this time in combination the system
model instead of the physical robot, see Figure 2 right frame. After initialization
of start values for odometry, and PWMs, we need only to apply required speed as
reference signal to the controller, while updating controller and model in a closed
loop. These speeds are exactly the outputs from our DD behavior systems. Figure
5 shows the robot PID controller in the top frame and in the bottom frame it
displays desired speeds, modeled odometry and PWMs. The lower part uses the
new enhanced controller in combination with the system model. As it is easier, we
discuss only the left motor. In the original trace on top we see a problem situation
at time interval [380,460]. The desired speed is a constant but the PWM signal
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Fig. 5. Top: original trace data from real robot (black: required speed left, light grey:
PWM, grey: odometry). Bottom: new enhanced controller in combination with learned
physical model for an interval of 750 time steps. There are improvements at steady
state situations and at points with rapid changes.

oscillates around 25 as does the measured odometry around zero. In this situation
the robot was blocked by an obstacle and could not move forward as commanded
by the behavior. Naturally this is an outer force not present in the simulation
of the bottom frame. Instead the simulated velocity smoothly approaches the
limit velocity and saturates with a significant steady state error. The situation
itself was not mimicked by the trained controller instead he is able to handle
it as expected with good results. This indicates that our model is well fitted.
Besides that convergence in all dynamically changing situation seems to be better
especially at [50,110] or at [620,660]. Another difficult situation is pictured in the
time interval [200, 250]. Near step 200, required speeds are 140, but the odometry
takes on this value only in the time step 225 very unstably jumping back and
forth. Different from this, the bottom picture displays rectificated results for the
discussed time intervals. Also the enhanced new controller can anticipate some
step in future. This can be seen at time step 225. Again we computed the
norm, which is one of the most popular ones in controller design, when there are
fitting problems, or -as in our case- when there are big errors or “wild” points.
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For the data in the original trace file the error was 2.3084 over 750 time
steps. The norm for the same interval, with the optimized controller was
about 0.0036.

These results clearly demonstrate the potential of our approach. Yet ESNs do
share problems with other RNN based modeling approaches. For example they
have to be taken as an undividable whole. This means that we can only control
global network parameters like size, spectral radius etc. Changing them will
impact the whole net and optimization space seems to be highly discontinuous
as is it also well known from other areas like integer linear programming. Up to
now we lack a systematic way to enhance convergence at one point while not
sacrificing quality at others. A possible remedy might be a learnt superposition
of network each being an expert in its own regime. Thus a modeling task could
be decomposed and fine tuned in different independent areas. The harder or
“wilder” you train the model, the better your controller will work. Another point,
which is well known from learning theory, is that ESNs cannot master situations
which have never been taught. The system model has to be taught “beyond
limits” to be really applicable in the whole needed dynamical range. Thus in
a future training sequence we want to expose the system model to dynamically
wider situation by training via human operated joystick control with higher gains
in comparison to the gains which the final running robot will have.

4 Summary

We introduced the notion of Echo State Networks as an easily trainable versatile
variant of recurrent neural networks. We showed how these networks can be
used to teach a physical system model of a differential drive robot and also
how to mimic a given controller for it. Furthermore an improved controller was
generated. All three applications show good agreement with observed real life
data. Now an ESN can be implemented in the actual HW of the motor controller,
yet the performance of this extended approach has to be studied in a future
paper.
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Abstract. This paper describes the design, implementation and test of
a goalkeeper robot for the Middle-Size League of RoboCup. The goal-
keeper task is implemented by a set of primitive tasks and behaviors,
coordinated by a 2-level hierarchical state machine. The primitive tasks
concerning complex motion control are implemented by a non-linear con-
trol algorithm, adapted to the different task goals (e.g., follow the ball or
intercept the ball). One of the top level behaviors regularly determines
the robot posture from local features extracted from images acquired
by a catadioptric omni-directional vision system. Most robot parameters
were designed based on simulations carried out with the Hybrid Au-
tomata Matlab/Simulink toolbox CheckMate. Results obtained with the
actual goalkeeper are presented and discussed.

1 Introduction and Overview

In robotic soccer, namely in the Middle-Size League (MSL) of RoboCup, goal-
keepers are interesting robots, due to the potential behavior richness they can
exhibit. Indiveri [1] introduces an elegant solution for a goalkeeper based on a
non-linear state-feedback control algorithm. However, little is said about the co-
ordination of a larger set of behaviors rather than the one corresponding to ball
following and blocking. Jamzad et al [2] describe a very efficient goalkeeper with
changing shape, but they mostly concentrate on its mechanical design. Menegatti
et al [3] were the first to introduce in RoboCup a multi-behavior goalkeeper which
usually moves on an arc in front of the goal and tries to intercept the ball when
a shot is headed at its goal. Nevertheless, they use an ad-hoc model for both
motion control and the overall behavior coordinator.

The coordinated execution of a robotic task is one of the key features for an
autonomous robot. The robot resources (e.g., sensors, actuators, shared mem-
ory, CPU) required to accomplish a given task must be properly managed and
articulated with the different behaviors composing the task.

In the RoboCup MSL, one of the four allowed players is the goalkeeper. A
good goalkeeper should switch among different behaviors to fulfill its role in the
team.

* The three first authors are with Aalborg University and did their work at ISR/IST
under a SOCRATES grant.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 169–180, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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In this paper, the design, implementation and test of a a goalkeeper is de-
scribed. The goalkeeper task is implemented by a set of primitive tasks and be-
haviors, coordinated by a 2-level hierarchical state machine. The primitive tasks
concerning complex motion control are implemented by a non-linear control al-
gorithm, adapted to the different task goals (e.g., follow the ball or intercept
the ball), as detailed in Section 2. One of the top level behaviors, described in
Section 3, regularly determines the robot posture from local features extracted
from images acquired by a catadioptric omni-directional vision system. Most
robot parameters were designed based on simulations carried out with the Hy-
brid Automata Matlab/Simulink toolbox CheckMate, as covered in Section 4.
Results obtained with the actual goalkeeper are presented and discussed in Sec-
tion 5. Conclusions and future work are discussed in Section 6.

The RoboCup MSL ISocRob team consists of four Nomadic Scout II robots,
endowed with an omnidirectional camera and a front camera, both Philips Tou-
Cam Pro web-cams. The goalkeeper’s kicker and cameras assembly, shown in
Figure 1-a) is different from its teammates, namely due to a general 90° rela-
tive rotation of those hardware components and a larger surface for the kicking
device.

Fig. 1. ISocRob’s a) goalkeeper robot; b) functional architecture

ISocRob’s functional architecture is based on the concepts of roles, behaviors,
primitive tasks and guidance primitive functions [4]. Figure 1-b) shows how the
four elements interact with each other. Each robot is assigned a role, which
consists of one or more behaviors. Behaviors are implemented using one or more
primitive tasks, and each primitive task uses the guidance primitive functions to
interact with the lowest level of hardware on the robot. At the top level, a role
is assigned to each robot. In this case, the goalkeeper role is assigned. The role
is filled by executing one of the role’s behaviors, according to the current robot
+ environment state. Each behaviors is assigned to a state of a state machine
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whose arcs are traversed whenever some logical condition associated to the robot
+ environment state or the lower-level state machine becomes true. A behavior
is executed by running a number of primitive tasks, coordinated by the lower-
level state machine, where each state represents a primitive task and arcs are
again traversed when logical predicates over state variables become true.

Fig. 2. The goalkeeper state machine

The state machine of the implemented goalkeeper is depicted in Figure 2.
There are five behaviors in the state machine. The Go2Area behavior is imple-
mented by one of the navigation algorithms introduced in previous papers[5].
KickBall is trivial. The other three behaviors (InterceptBall, Self Localize,
and FollowBall) are detailed in the remaining sections of the paper.

The robot is in FollowBall behavior if the ball is out of the danger zone
specified in Figure 3-a). The ball is not considered as a big threat, but the
goalkeeper has to be able to handle a shot from the distance. The goalkeeper
follows the ball while tracking an arc with adjustable radius and centered with
the goal. The principle of the defensive arc is illustrated also in Figure 3-a). The
r_min andr_max parameters correspond to the minimum and maximum radius of
this arc. This adjustment of the radius is dependent of the distance between the
ball and the goal. When the ball is near the border of the danger zone, the radius
of the arc is at its minimum. When the ball is at the center line or further away,
the radius is at its maximum. The robot assumes the behavior InterceptBall
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Fig. 3. Concepts of danger zone, maximum and minimum defensive arcs. a)
FollowBall; b) InterceptBall

when the ball is in the danger zone in Figure 3-a) and moving towards the goal as
seen in Figure 3-b). In this case, the goalkeeper is not following the arc anymore
but rather moving on a straight line in front of the goal, trying to intercept an
incoming ball.

Transitions between behaviors occur only when the associated predicates,
shown in the state diagram of Figure 2, become true.

2 Motion Control

Both the FollowBall and the InterceptBall behaviors pose trajectory track-
ing and posture stabilization problems [6]. Nevertheless, the trajectories to be
tracked will be different, therefore each behavior will have its own control algo-
rithm, which will be derived in following subsections. Before that, we will take
a brief look at the robot kinematics, required to provide the terminology for the
rest of the section.

2.1 Kinematics

The goalkeeper is based on a differential-drive robot, that can be described by the
same kinematic equations as the unicycle vehicle. The unicycle is a nonholonomic
system with no slippage assumed. Let be the vector that describes
the goalkeeper posture in configuration space. The first-order kinematic model
for the unicycle is given by [7]:

Where is the linear velocity and is the angular velocity. Furthermore and
are the control inputs.

2.2 FollowBall Behavior

Moving on an arc in front of the goal is a trajectory tracking problem. Among the
possible solutions for this problem, we have chosen the algorithm described in [1],
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used in its original form to implement the FollowBall. The goal of the control
design is to track and follow the arc in front of the goal until an equilibrium
point (in front of the ball) is reached for the goalkeeper, as well as to achieve
asymptotic stability for that equilibrium point.

Consider the kinematic model from equation 1. If the position is given in
polar-coordinates an equivalent kinematic model would be:

Where the angle is given as shown on Figure 4-a).

Fig. 4. The goalkeeper posture in polar coordinates: a) FollowBall scenario; b)
InterceptBall scenario

In the figure, the goalkeeper is on the arc when Furthermore the angle
should be equal to 90° when the goalkeeper is moving on the arc in order to

keep the front towards the ball. These two requirements are expressed in the
following error vector:

To achieve asymptotic stability a control law for and must be derived in
such a way that the time derivative of an appropriate Lyapunov function
becomes negative definite [8, 9]. The approach for the choice of is to cancel
some of the undesirable terms which makes it difficult to determine the nature
of The following control law for guarantees aymptotic stability[9]:
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2.3 InterceptBall Behavior

If the ball moves inside the danger zone the goalkeeper switches its behavior to
InterceptBall. When running this behavior, the goalkeeper should defend the
goal on a straight line in front of the goal. It is most likely that the posture
of the goalkeeper is on the arc, when the upper-level state machine switches
to InterceptBall. The control algorithm should therefore not only be able to
track the straight line, but also to make the goalkeeper able to converge to the
line from any posture on the arc. This sounds similar to the trajectory tracking
problem of the previous subsection, for a different trajectory. It is therefore
chosen to re-derive the control algorithm used to control the angular velocity in
FollowBall so that the equilibrium point is now on a straight line in front of the
goal. Since the reasoning for the design already has been given in the previous
subsection the control algorithm design will not be as detailed here. However, it
is important to underline that this derivation is one of the original contributions
of this work.

Consider again the kinematic model from equation 1. The straight line to be
tracked, at a distance of the goal line, as well as the posture variables
and are shown in Figure 4-b). When the goalkeeper moves on the straight line
in front of the goal, the two requirements and are satisfied. The
requirements are expressed in the following error vector:

A Lyapunov candidate function is introduced:

To establish if asymptotic stability is feasible the derivative of is obtained:

Consider the control law:

Applying the control law yields which is a negative
definite function. Since the control law is derived following the same line of
thought as for the control algorithm of FollowBall, a proof for asymptotic
stability will not be given here.

A control law for the linear velocity was designed independent of the control
law for Based on the good results from FollowBall, it was chosen to use a
P-controller for the linear velocity. The control law is given as
where is either the angle to the ball or the angle to the predicted interception
point and is, as in FollowBall, the angle between the center of the
goal and the goalkeeper. Depending on the direction and velocity of the ball, an
interception point between the trajectory of the ball and the defending line may
be used to determine the angle
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3 Vision-Based Self-localization Using Local Features

The motion control algorithms of the previous section rely on good estimates of
the robot posture. However, and especially for a robotic goalkeeper, frequently
subject to bumps from other robots, odometry alone does not provide such a
reliable estimate, as it strongly degrades over time. Therefore, one must reset it
regularly with a more accurate estimate. The solution used in this work consisted
of using goalkeeper local visual features (e.g., the goal and the posts) and a
vision-based algorithm to provide such an estimate.

We have used ISocRob’s omni-directional catadioptric vision system for this
purpose. An image acquired by this system is shown in Figure 5. Since this is a
norm-preserving omni-directional catadioptric system (i.e., distances on the field
are preserved on the image) it is relatively simple to determine the distance from
the goalkeeper to surrounding objects by processing the images. Furthermore the
goal posts will always point towards the position of the robot in the (center of
the) image.

Fig. 5. Omni-directional catadioptric vision image taken by the goalkeeper

Under normal operation the goalkeeper should be near its own goal at all
times. So a good object to detect from the image will be the goal. Extracting
the goal posts as a feature from the image, will reveal the position of the robot
with respect to them. Then the posture of the robot can be estimated by simple
geometry. The algorithm runs in situations while the robot is standing still.

The image processing algorithm is split in four stages, briefly detailed in the
sequel.

Stage 1: Image Processing — to retrieve the contour of the goal from the
image two steps are required (see Figure 6): i) segmentation of the goal in the
image (identifying the pixels with the same color as the defending goal and
disregarding all other pixels); ii) edge-detection revealing the contour of the goal
in the image.

Stage 2: Feature Detection Using the Hough Transform — to detect
the goal posts in the image containing the contour of the goal the following
three steps are performed (see Figure 7): iii) Hough Transform of the image;
iv) line filtering: all straight lines obtained in the previous step which do not
point to the center of the image will be filtered out; v) goal post detection:
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Fig. 6. Steps of image processing stage 1: i) Goal segmentation; ii) edge-detection

Fig. 7. Steps of image processing stage 2: iii) Hough Transform; iv) line filtering; v)
goal post detection; vi) goal posts position estimates

this is accomplished by comparing the angles of all the lines in a histogram, and
detecting the two angles most likely to be the angles of the goal posts. Afterwards
two arrays of one or more lines are created containing the line(s) of each goal
post.

Stage 3: Estimation of Goal Post Positions — If, as a result from the
previous steps, there were only one line describing the goal post, the position of
the goal post would be considered as the line endpoint closest to the robot. In
the case there are more lines, an estimate of the line endpoint is obtained by
first sorting the line endpoints, and then using a Bayesian data fusion algorithm
whose details we will omit here.
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Stage 4: Geometric Calculations — knowing the positions of the two goal
posts with respect to the robot, and the positions of the goal posts in the field, it
is possible to determine the posture of the robot using simple geometry. Again,
due to limited space, the details will be omitted.

The image processing algorithm was implemented in C, using the OpenCV
library developed by Intel.

4 Experimental Setup and Simulations

Simulations were designed to determine the “optimal” values for the danger
zone distance from the goal line and the radius of the defensive arc for the
FollowBall behavior. The purpose is to determine the configuration that will
lead to the highest number of saves by the goalkeeper when the state machine
includes the FollowBall and InterceptBall behaviors only. Since both the
discrete state (FollowBall or InterceptBall) and the continuous state of the
robot as well as of the ball (i.e., their position and velocity) will matter for this
purpose, the goalkeeper was modeled as a hybrid automaton [10], resulting from
the composition of the goalkeeper and ball hybrid automata. The hybrid au-
tomaton was implemented in Simulink using CMU’s CheckMate toolbox. Three
tests were performed. In the first test, several values of used for a danger
zone as wide as the field. In the second test, the best values for were taken
and the danger zone width varied. Finally, for the best pair determined in the
previous tests, several values for were tested. In each of the three tests, shots
were fired from different locations in the field, each shot aiming towards the goal.
For every different setup for the danger zone or the radius of the defensive arc,
625 shots were fired against the goal. The speed and the direction of the shots
differed. In five groups of 125 shots each, the speed was set to 2m/s, 2.5m/s,
3m/s, 3.5m/s, 4m/s respectively. The goalkeeper was initially at the center of
the goal, on the defensive arc.

From these tests, the best results (64.6% of goals saved) were obtained for
a danger zone with the field width, m and m. A constant
radius was also used for the defensive arc, instead of r_min and r_max referred
in Section 1. The failure rate of 35.4% is mainly due to the relatively slow top
speed achieveable by the goalkeeper and the high speed of some of the
simulated shots.

5 Experimental Results

5.1 Self-localization

To test the performance of the self-localization algorithm, two issues were con-
sidered: the success rate of the algorithm and the error of the estimated pos-
tures. The robot was placed with the same orientation (90° in the field frame,
where points towards the opponent goal points upwards and is such that
a right-handed frame is obtained) in 60 different positions in front of the goal,
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Fig. 8. Self-localization results: a) goal-keeper field positions; b) estimation error at
different field positions

as illustrated in Figure 8-a). In each position the algorithm was run until 20
estimates of the posture were determined (in some it was not possible to get 20
estimates though).

As explained earlier the algorithm does not return any posture if one of
several conditions is not met (e.g. if only one goal post is found in the image).
With this in mind, the success rate for the algorithm is defined as the ratio
between algorithm runs which are successful (a posture is found) and the total
algorithm runs. The success rate was evaluated in each of the 60 positions in the
field. The results are plotted in Figure 8-b. The success rate when the robot is
on the goal line outside the goal posts is zero, since the goal color is not visible
from here, and it is needed for posture disambiguation. It is also noticeable that
the success rate is very low in positions 2 m and further away from the goal. The
algorithm has the best success rate in positions 1 and 1.5 meters away from the
field end line, and in general there are more successes in positions in front of the
goal.

Concerning the posture estimation errors, in general errors are larger (around
20 cm) in the direction than in the direction (around 10 cm). Orientation
errors are typically below 10°. Unfortunately, large outliers can sporadically
occur, especially on the coordinate. Therefore, a test is made which accepts an
odometry reset only if the new value does not differ from the current odometry
estimate for more than a given threshold. The algorithm average run time is of
approximately 0.4 s.

5.2 Motion Control

The results regarding the motion control cover the the goalkeeper performance
while tracking the defensive arc, shown for two different speeds in Figure 9-a),
under the FollowBall behavior, and when attempting to intercept a ball heading
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Fig. 9. a) Results of simulated and actual robot motion for the FollowBall behavior.
The goalkeeper moves from its starting position to the arc and stops as it reaches the
line between the ball and the center of the goal. The solid line shows the movement in
goal coordinates logged from odometry and the dashed line is the simulated motion.
The radius for the defending arc is 1.2 m. The parameters used for the control algorithm
were and Results of simulated and
actual robot motion for the InterceptBall behavior under four situations where the
goalkeeper has different start positions. The circle in (2, 1) represents the ball. The
line from the ball to the origin illustrates a shot towards the goal. The defending line
is placed at Starting position for the goalkeeper in the figures from the left
to right is (-1.5, 0.3), (-1.5, 1.5), (-1.5, 3) and (0, 1.5).The dashed line is the simulated
trajectory and solid is the logged trajectory from odometry

towards the goal, starting from four initial positions, under the InterceptBall
behavior, as shown in Figure 9-b).

In general, the tests made show a good performance when following the ball,
even though some differences from the simulated results were found, essentially
due to unmodeled dynamics in the simulations. Among those, the critical prob-
lem is the almost unstable convergence to the arc at higher speeds. Regarding
ball interception, a problem arises due to the usage of a constant value for
instead of a variable one, e.g., equal to the current coordinate of the goal-
keeper. Due to speed limitation, for high ball speeds the robot tends to “open”
the goal while moving towards the intercept line, since it first rotates of 90°.

6 Conclusions and Future Work

This paper presented an integrated design, implementation and test of a robotic
goalkeeper which included hybrid automata modeling of the behavior coordina-
tor, non-linear motion control for trajectory tracking and posture stabilization
and vision-based self-localization. The results are very promising, but further
work needs to be done, namely to improve the reaction speed, to use a variable
intercept line and include further behaviors, such as leaving the goal to face
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an opponent robot carrying a ball. In the latter case, inspiration on work con-
cerning behavior coordination with smooth and conflict-free transitions between
behaviors [11] will be considered.
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Abstract. Recognition of relevant game field objects, such as the ball and
landmarks, is usually based upon the application of a set of decision rules over
candidate image regions. Rule selection and parameters tuning are often arbi-
trarily done. We propose a method for evolving the selection of these rules as
well as their parameters with basis on real game field images, and a supervised
learning approach. The learning approach is implemented using genetic algo-
rithms. Results of the application of our method are presented.

1 Introduction

Teams of the four legged league have generally reported good vision strategies for the
recognition of objects on the game field [3,14], such as the ball, landmarks and goals.
Approaches often rely on the sequential application of a set of recognition rules, such
as making comparisons of sizes and distances between regions of connected pixels of
certain colors. These rules are pre-engineered and their parameters are manually ad-
justed until they become useful at recognizing objects under different locations, illu-
minations, and poses into the image. After applying theory and models to the prob-
lem, the engineering task often falls into a trying and error optimization process.
Some teams [14] have even reported their uncertainty with respect to the application
of some rules.

We believe that this engineering process can be supported or even automated by
the use of a supervised learning approach, for which a large set of real pre-classified
images can be used as a training data. These real images are expected to cover as
much as the interesting examples that one might imagine. A main advantage of this
approach is that such system will gain its knowledge from its own experience rather
than being product of an arbitrary design.

Machine learning methods like evolutionary computation provides optimization
tools which are used in robotics for learning behaviors [5], such as the case of evolu-
tionary robotics, and also for the adaptation of perceptual systems [6,10,11,12]. A
main idea is that genetic algorithms can search for solutions on highly dimensional
spaces contaminated with natural noise. Evolved systems are expected to be more
robust to unseen data sets than those resulting from simulated evolution.

In this work we will explore a method for evolving the selection and tuning of a
group of visual object recognition rules, intended for recognizing objects in the con-
text of the RoboCup four legged league. The proposed evolutionary learning approach
is based on the use of a large set of pre-classified real images. In this paper are pre-
sented results for the detection of ball, goals, and landmarks. We are currently work-

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 181–191, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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ing towards the final goal of this approach, which is to derive rules for the recognition
of other robot players into the game field. Given the complexity of this problem, it has
not yet received sufficient attention from the research community.

In section 2 the related work is presented. Section 3 describes our implemented vi-
sion module which is used for extracting candidate object regions, and section 4 de-
scribes our proposed object recognition approach. Section 5 describes our results, and
finally section 6 presents the conclusions and projections of our work.

2 Related Work

Cliff et al [4,5] uses genetic algorithms for evolving neural-network based controllers
for visually guided robots. They use a computer graphics based model for simulating
the robot vision, their model considers the introduction of certain amount of noise for
preventing it from being entirely deterministic. The resulting approach was computa-
tionally expensive and with poor image resolution.

The approach of using evolutionary computation for computer vision problems has
been widely explored, for example Köppen et al [9] proposes framework for the
automated generation of texture filters using both, genetic algorithms (GA), and ge-
netic programming (GP).

The object recognition problem, addressed with evolutionary computation, has
been first attacked for the character recognition task. Koza [7] shows an experiment
using GP for the classification of just four characters on small bitmaps, this approach
relies on using a computationally expensive attention marker method. He also pro-
poses a system which uses Automatically Defined Functions (ADFs) which were
successful at finding solutions [8], but required populations of extremely large size
(8000 individuals). Andre [1] uses both GP and GA simultaneously, first a GA deter-
mines feature templates and then a GP is used for classifying character bitmaps.

Teller and Veloso [13] used genetic programming for their proposed Parallel Algo-
rithm Discovery and Orchestration (PADO) system. This system performs object
recognition on real gray scale images. Genetic programming is used to induce pro-
grams which operate on pixel values in the image and return a confidence value that
the given image corresponds to the class which is intended to be recognized.

3 Our Vision Module

The software architecture of our UChile1 four legged team is divided in task oriented
modules. One of them, the vision module, is in charge of recognizing relevant objects
from the images captured with the robot cameras. This module in particular, is mainly
inspired on the large experience showed by the UNSW and CMPack teams [3,14].
This module is decomposed into four processing sub-modules: color segmentation,
run-length encoding, labeling of connected regions, and finally object recognition.

For the color segmentation sub-module we use a look-up table of 64 levels in each
YUV dimension, the table is generated by taking a large number of color samples
(about 5000) from images of the game field. Once all samples have been collected, a
median filter is operated over the look-up table values having the effect of clearing
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the interfaces between clusters of different colors and filling empty elements inside
clusters which were not assigned during data collection. This process is particularly
useful for solving ambiguities between red and orange clusters for example. A main
consideration is that we train not just our seven color classes, but also a class for the
set of non-relevant colors.

The output of the labeling sub-module is a set of connected regions of certain
color, or blobs. Each blob can be characterized with a set of descriptors such as the
size in pixels, the integer color index which in this case might take the values
{0,1,2,3,4,5,6}, a set of coordinates describing the bounding box, and the coordinates
of its center of mass.

The task of the object recognition sub-module is to identify image regions which
are related to the relevant game field objects. The recognition of objects is performed
by evaluating the response of a set of rules. For example, the detection of a ball usu-
ally requires that the related blob has the color of the ball, and if this is not the case
one might expect to reject this candidate blob. These rules operate over all the image
blobs or over combinations of them, such as pairs of blobs.

4 Learning Visual Object Recognition

4.1 General Approach

We propose to evolve the visual object recognition sub-module by first collecting
reference region descriptors of objects which are present on a large set of real images;
this stage is performed by an expert user. Then candidate regions are defined as those
automatically extracted with the vision system, or combinations of them, see Figure 3
(left). Then, under a supervised rule learning process, candidate regions are compared
with corresponding reference regions on each image, and the overall degree of corre-
spondence serves as fitness for a genetic algorithm which learns the system recogni-
tion rules. Clearly, the effectiveness of the recognition sub-module is directly related
to the degree of correspondence between candidate regions and reference regions.

We have used in our experiments a set of 180 real images for reference accumula-
tion; these images contain objects such as the ball, landmarks and goals, as well as
non relevant objects on the surroundings of the game field. The images consider a
broad range of viewpoints, rotations, non canonical poses, and even variations on the
illumination conditions. Figure 1 shows examples of these images.

In order to generate a database containing object identifiers for each reference im-
age blob, or the so called references, we have developed a software which allows an
expert user to define image regions related to relevant objects in terms of their bound-
ing rectangles, and linking them to their corresponding identifier by just pressing on
the corresponding object button. Figure 2 shows a screenshot of this software tool.

During the learning process a genetic algorithm evolves a population of recogni-
tion rules intended for detecting a particular object. These rules operate over region
descriptors which are automatically extracted from each image with our vision mod-
ule. In case a region, or a combination of them, is regarded as an object, its degree of
correspondence with the reference is calculated by means of a correspondence quality
function. The overall degree of correspondence between detected regions and refer-
ences is then used as fitness for each individual generated with the genetic algorithm.
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Fig. 1. Examples of images collected from the game field. Each image is subject to inspection
from both an expert and our visual system under adaptation.

4.2 Fitness Function

Assigning a good fitness function is not trivial in this case. This measure should take
its maximum when there is a perfect overlap between reference and candidate image
regions, but it is not necessarily clear how to handle partial overlaps between them.
Köppen et al [9] has proposed a quality function which well fits on our problem. It
consist on measuring the area A of the reference region which does not overlaps the
candidate, the area B of the overlapping region, and the area C of the candidate re-
gion which does not overlaps the reference, see Figure 3 (right). This results in the
following three measures:

the relative amount of correct overlapping pixels within the refer-
ence,

the relative amount of correct empty pixels within the
image, where Q is the total number of image pixels, and

the relative amount of correct overlapping pixels within the candi-
date.

The intention is that genetic search increases all these measures, but we can identify
some priorities among them. For example it is desired that the correspondence degree
counts better for subsets of the reference, as well as for subsets of the reference which
are supersets of other subsets of the reference. We also would like to refuse to assign
good correspondence degrees to false positives, i.e. empty regions.

The following weighted correspondence degree, as proposed by Köppen, accounts
for these requirements:
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Fig. 2. A screenshot of the software developed for labeling image regions which are related to
game objects. It can be seen how coordinates (left) defining rectangles, and object identifiers,
are related to each object which is being selected. This task is performed by just pressing the
corresponding object button (right).

Fig. 3. Left: Illustration of how the candidate image region for the beacon detection is derived
from two image regions. It can be seen how the resulting rectangle is defined in terms of the
region bounding boxes. Right: An example of partial overlap between a reference region and a
candidate region. The sub regions A, B and C are defined as the figure shows.

Using this measure, we compute the fitness for each individual as the sum of the
correspondence degrees over the whole set of images, only when at least one candi-
date region is being selected:

As a consequence, genetic search evolves the population towards the higher
weighted objective first, in this case rejecting false positives, and then towards
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allocating correct portions of the reference. Once candidates correspond to subsets of
the reference, the fitness is increased by expanding them to cover the whole reference.

4.3 Genetic Rule Representation

For each candidate region, detected with the vision process, a set of N binary rules
is evaluated. Each rule is described in terms of M

parameters The rules have as argument the set of candidate region descriptors. In
general the binary rules have the following structure:

Where COND might correspond to a value, as for example the size of a region, the
quotient between regions sizes, and in general to the result of logical or arithmetic
operations performed between the region descriptors. Each candidate region receives
a score computed as the weighted sum of the rule outputs. The region having a maxi-
mum score is regarded as an object if and only if its score is greater than a certain
threshold. This score is computed as follows:

In our implementation, the weights the thresholds and all

the M parameters are represented as 16 bit strings. Thus the chromosome

which encodes a rule has length 16x(N+M+1), where M is the total number of rule
parameters. In some cases, as it will be indicated, the parameters are re-scaled or
discretized to a reduced set of values. These chromosomes will be evolved with a
genetic algorithm. This algorithm uses fitness-proportionate selection with linear
scaling, no elitism scheme, two-point crossover with a crossover probability Pc=0.75
and mutation with a mutation rate of Pm=0.015 per bit. The population size is 8 indi-
viduals evolved over a course of 100 to 150 generations.

5 Results

5.1 Ball Recognition Experiment

We have chosen a group of six rules for the ball recognition experiment. The shapes
of these rules, as well as the range of their parameters are indicated on Table 1. Figure
4 shows results of this experiment. We can first notice from these results, that the
trivial color test implicit on rule R6, is satisfied, i.e. the system learns to choose the
right color of the ball. The parameter P61 is discretized as the integer number 7 which
correspond to exactly the index of the orange color. It is also recognized as the most
important rule, since it has the maximum weight. The second rule on importance is
R1 the low value of its parameter P11 indicates that the candidate region should have
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a minimum width of two pixels. The third rule in importance, R4 indicates that the
bounding box of the region should be relatively square with a minimum quotient
between width and height, or vise versa, of P41=0.5754. The fourth rule, R5 indicates
that the quotient between the region size and the bounding box size should fall be-
tween P51=0.027 and P52=0.553, which is quite logical for our implementation. The
lower bound accounts for those cases in which the ball correspond to a silhouette of
segmented orange pixels, i.e. a region small in size but with a large bounding box.
The upper bound serves for rejecting orange regions which are too close to a square.
The fifth rule, R2 indicates that the region height should be at least a quarter of the
image height. The last rule, R3 establishes that the region size should be at least one
third of the image size. However, we should notice that the weight of R3 is quite low
therefore it is not a relevant rule. The resulting threshold scaled by 6 (the number of
rules) correspond to T=0.99, which can be compared to the maximum theoretical
score of 3.69 (the sum of weights). This means that the threshold is set at the 26% of
the maximum score.

Fig. 4. Resulting evolution of fitness (left), and the resulting weights, parameters, and threshold
for the best evolved individual (right), for the ball recognition experiment.
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Fig. 5. Results for the light blue goal experiment (left), and for the yellow goal experiment
(right). The evolution of fitness (top), and resulting weights, parameters, and thresholds for best
evolved individuals (bottom), are indicated.

5.2 Goal Recognition Experiment

In general there are fewer rules reported for the goal detection than for the case of the
ball. We will use the same group of rules which were used for the ball detection ex-
periment, see Table 1. This group seems to be a good super set of relevant rules for
our analysis. Figure 5 shows the results for the detection of the light blue and yellow
goals. We have again that the color rule R6 obtains right parameters corresponding to
light blue and yellow for each corresponding experiment. This rule is ranked in fourth
place in both experiments. The most important rule is in both cases R1, which estab-
lishes a 9% and a 5% of the image width as lower bounds for candidate regions. The
second place is for R2 in the light blue goal experiment and R3 in the yellow goal
experiment. In both experiment it is established a minimum region height of 6% of
the image height. Similarly, in both experiments, R3 establishes that the minimum
region size should be 6% and 5% of the total image size. The third place is for R5 in
both experiments, it establishes bounds for the quotient between the region size and
its bounding box sizes, the resulting parameters are similar in both experiments. The
fifth place is for R3 in the light blue goal experiment and for R2 in the yellow goal
experiment. The less important rule as indicated in both experiments is R4, taking
quite different parameters on each experiment. One interpretation of this is that ge-
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netic search concentrates on optimizing the parameter of relevant rules, leaving the
irrelevant ones with arbitrary parameters. The thresholds are quite similar in both
experiments; their corresponding scaled values are 0.33 and 0.34. The sum of weights
is 3.569 for the light blue goal experiment, and 4 for the yellow goal experiment.
Therefore the threshold is established at the 10% of the maximum score.

5.3 Beacon Recognition Experiment

In this experiment candidate regions are generated as a combination of the bounding
boxes of two image regions, see Figure 3 (left). In this case it is necessary not to just
evaluate the rules over each region extracted from the image, but also to evaluate
these rules over all the possible pairs of them, clearly the rules of this experiment
have two region descriptors as input. The pair of regions which obtains the maximum
score is selected if satisfies equation 4, and a candidate region is derived from them as
indicated in Figure 3 (left), this region is used for calculating the correspondence
degree as indicated in equation 1. For this experiment we have selected a group of six
rules, presented in Table 2. We will explore the particular case of the category beacon
of colors pink-light-blue and light-blue-pink without distinguishing between the verti-
cal orders of the colors.

Fig. 6. Resulting evolution of fitness (left), and the resulting weights, parameters, and thresh-
olds for the best evolved individual (right), for the beacon recognition experiment.
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It can be seen form these results that the two color rules R6 and R5 are regarded as
the more important ones, their corresponding parameters fit exactly to the expected
colors. The third rule on importance correspond to W1 which performs a minimal
check for the horizontal distance between the blobs, the corresponding parameter
establishes a threshold of 3% of the image width. The fourth rule in importance is R4
which checks for the distances between blobs with invariance to the scale of the ob-
jects, this rule was proposed in [14]. The fifth rule is R2 establishing a minimum
vertical distance between regions of 8% of the image height. Finally R3 is regarded as
the less important rule.

The maximum theoretical score is in this case 3.1 which means that the threshold
was established at the 27% of the maximum score.

6 Conclusions and Projections

We have presented a method for automating and aiding the selection and tuning of
visual object recognition rules in the domain of the RoboCup four legged league. The
system shows to be consistent with the training data sets, and it allows the extraction
of interesting parameters for different rules as well as the identification of the more
relevant ones from a given set. It was particularly explored the case of ball, goal and
landmark detection. We aim at extending this research, first we will explore rules for
the detection of other robots into the game field, and then we will explore the applica-
tion of a similar learning method for aiding the visual estimation of robot pose.

In the presented approach, the resulting parameters are dependent on the color
calibration stage. If the color detection is poor or noisy, the resulting recognition sys-
tem will be adapted to these specific conditions, with the consequence of having to re-
train the system for each different lighting condition. This inconvenient is solved by
ensuring accurate color detection. Our color detection system is accurate under differ-
ent lighting conditions, and its calibration is performed in just about 15 minutes. In
practice, we haven’t had to perform the rule training when changing the lighting con-
ditions.

The intention of this work is to present a method for the improvement of a vision
system. Although we have just analyzed a particular blob-based vision system, we
believe that a similar methodology can be applied for evolving other vision systems,
such as grid based or corner based. Our intention is not necessarily to assess im-
provements of our vision system with respect to others, but to show that the result of
this learning platform performs similarly. In a future work we expect to evaluate our
system in terms of standard quantitative measures, using larger data sets. We also aim
at comparing our visual system with those which are known to be successful within
the RoboCup domain.
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Abstract. Our research on coaching refers to one autonomous agent
providing advice to another autonomous agent about how to act. In past
work, we dealt with advice-receiving agents with fixed strategies, and
we now consider agents which are learning. Further, we consider agents
which have various limitations, with the hypothesis that if the coach
adapts its advice to those limitations, more effective learning will result.
In this work, we systematically explore the effect of various limitations
upon the effectiveness of the coach’s advice. We state the two learning
problems faced by the coach and the coached agents, and empirically
study these problems in a predator-prey environment. The coach has
access to optimal policies for the environment, and advises the preda-
tor on which actions to take. We experiment with limitations on the
predator agent’s actions, the bandwidth between the coach and agent,
and the memory size of the agent. We analyze the results which show
that coaching can improve agent performance in the face of all these
limitations.

1 Introduction

In spite of the increasing complexity of the relationships among autonomous
agents, one agent coaching or advising another is still somewhat uncommon. We
frequently see this relationship among human beings, yet further computational
understanding of how this relationship extends to autonomous agents is needed.

As we start to move beyond agent systems of short, limited duration, we
believe that advising relationships will become more important. Many current
agent systems implicitly allow a complete transfer of knowledge of an agent’s be-
havior structure, both because of the size of the domains and the homogeneity
of the agent’s representations of the world. In other words, if one agent knows a
good way to behave in the world, all agents can easily copy that knowledge. A
coach relationship does not assume this is possible. The goal is to obtain knowl-
edge transfer in spite of limitations in communication bandwidth or differences in
behavior representation. If the coach wants the agent to act differently, the coach
must still consider the best way to guide the agents to this behavior, rather than
simply transferring the knowledge. Additionally, a coach should adapt its idea
of optimal behavior to the strengths and abilities of the agent being coached.

Specifically, our research on coaching refers to one autonomous agent pro-
viding advice to another about how to act in the world. Through research on a
complex simulated robot soccer domain [1,2], we have been exploring how one

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 192–204, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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agent can generate advice for teams. With this experience, we have now under-
taken a series of systematic experiments in more controlled environments. We
present a general scheme for how the coach and agent interact in Figure 1. The
coach can only affect the world through communication with the agent. Both
the coach and the agent are learning. This interaction between the coach and
agent is challenging, as the coach has only an indirect effect on the world and
does not get to see the working of the agent’s decision mechanism. We empiri-
cally investigate varying the limitations of the agent as well as limitations of the
communication between the coach and agent.

Fig. 1. The high-level view of coach-agent-environment interaction

While our previous work has focused on adapting to an adversary and com-
piling past experience, the research here deals primarily with adapting advice
to the agent being coached. One hypothesis that underlies our current work is
that in order for a coach to be effective coaching multiple different agents, it
needs to adapt its advice to the peculiarities of each agent. This is supported
by the results of the coach competition at RoboCup 2001 as discussed in [1,3]
where the ability of a coach to improve a team’s performance varied vastly across
different teams. This paper contributes interesting interaction modes of a coach
and coached agent and a thorough empirical exploration of the ramifications of
various limitations on that interaction. We start from the idea that advice is
recommending an action for a particular state and explore the effects in differ-
ent interaction modes. We choose basic reinforcement learning algorithms as a
starting point since our interest is in the comparative performance of different
algorithms and what that suggests for the general coaching problem.

2 Related Work

This work focuses primarily on how an advice giver can interact with an advice
taker, and how the characteristics of that interaction affect the performance of
the agent. One important component of this is how the advice-taker will function.
A variety of work has been done on using advice (often from humans) to improve
autonomous agent performance.

A significant challenge is to operationalize “fuzzy” advice. For example, [4]
describes a multi-step method to incorporate advice into a reinforcement learner
which uses a neural network to represent the value function. [5] takes a similar
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approach. High level advice from a human being is translated to if-then rules
describing intermediate goals for the agents. By combining these with qualita-
tive descriptions of the domain dynamics, these rules can then be refined with
a genetic algorithm. [6] presents a model for advice taking in a recurrent con-
nectionist network. Advice changes the current activation state rather than the
weights of the network.

Clouse and Utgoff [7,8] take a similar approach to ours to study the effect of
advice on a reinforcement learner. Their focus is primarily on the advice-taker
and how to incorporate advice into the value updates, and little attention is
paid on how the advice was generated in the first place. They do empirically
explore how the rate of advice affects performance. However, they do not allow
the training agent to give advice for states other than the current state or explore
limiting the memory of the agent. Most of the past work on autonomous agents
giving advice has been in tutoring systems.

A closely related research area is that of imitation (e.g. [9]). Similar work has
gone under many different names: learning by demonstration. behavior cloning,
learning by watching. and behavior or agent imitation. In all the cases, the robot
or agent is given examples of some task being done successfully (often from a
human demonstration), and the agent’s goal is to perform the same task. The
demonstration of the task can be seen as a set of advised actions for the agent.

3 Continual Advice

We first consider an agent without limitation and where the coach can commu-
nicate some advice every step with the agent. The first question which must be
answered is how an advice-receiving agent incorporates advice into its behavior.

3.1 Learning Algorithms

We begin with a basic Q-learning agent. The state space is assumed to be rep-
resented explicitly.

During learning, the agent has a fixed exploration probability with proba-
bility the agent takes a random action and with probability it chooses
uniformly randomly between the actions with the highest Q-value. This is com-
monly known as exploration.

For all Q-learning done throughout, the learning rate decays over time. For
each Q-table cell, we keep track of the number of times that cell has been updated
(call it and calculate the learning rate for each update as

Then we add a coach agent. Every step, the coach recommends a single action.
Table 1 shows the algorithm used by the coached agent. The only difference with
a basic Q-learner is in choosing an action. The new parameter controls the
probability that the agent will follow the coach’s advice. Otherwise, the agent
reverts to the normal exploration mode. Except where noted, we use

The coach is also a Q learner, but its actions are to advise optimal actions.
The algorithm for the coach is shown in Table 2. While this algorithm is ap-
parently too complex for this particular task, we will continue to use the same
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algorithm later in more complex settings. There are two primary cases (which
we vary as an independent variable): seeing the agent’s actions and not seeing
the agent’s action. If the coach sees the actions and the agent takes an optimal
action, the coach performs a Q-update with that action. This is based on the
assumption that if the coach had advised that action, the agent probably would
have done it. Note that in general, there may be multiple optimal actions in a
particular state. However, if the action is not optimal, the coach does nothing;
the coach’s Q-table does not even include non-optimal actions.

Note that this algorithm requires that the coach know all optimal actions.
For these experiments, we precompute the optimals beforehand.

What the coach is learning here (and will be learning throughout) is not
what the optimal actions are (the coach already knows this), but rather learning
about what actions the agent is taking. The coach restricts its Q-table to just
the optimal actions and then pessimistically initializes the table. The Q-table
then provide an estimate of the value achieved by the agent when the coach
recommends an action (which is not the same as an agent taking the action).
This will have important consequences when the advisee agent has limitations
in the following sections.

3.2 Experimental Results in Predator-Prey

We use a predator-prey environment in order to test all the algorithms. The
simulation is built upon the SPADES simulation system [10]. The agents operate
on a discrete 6x6 grid world. The agents have 5 actions, stay still or move north,
south, east, or west. There are virtual walls on the outside of the grid so if an
agent tries to move outside the grid, it stays where it is.

There are two prey agents which, for these experiments, move randomly.
The predator agent’s goal is to capture at least one prey agent by being on the
same square as it. The coach’s job is to advise the predator agent. The world
is discrete, all agents have a global view of the world, and all moves take place
simultaneously.
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The world is operated episodically, with an episode ending when at least one
prey is captured; the predator can simultaneously capture both prey if all three
agents occupy the same square. The predator and coach receive a reward of 100
for each prey captured and a reward of -1 every step that is taken. The agents
try to maximize undiscounted reward per episode.

The state space of the world is (the predator location, prey 1
location, prey 2 location), though for any state which is a capture for the predator
(2556 states), there are no actions so no learning need take place. After a capture,
all agents are placed randomly on the grid. Further note that approximately 20%
of the states in this environment have multiple optimal actions.

The optimal average reward per step is approximately 17, which means on
average between 5 and 6 steps to capture a prey. The average reward per step
reflects the value of a policy since we are using episodic undiscounted reward.
In all cases, the coach has access to the complete true values of all actions in all
states and therefore optimal policies of the environment.

Fig. 2. Data for a predator agent learning with a coach advising the agent every cycle

We alternated periods of learning and evaluation. Every 5000 steps, 5000
steps of policy evaluation were done. The results throughout are the average
values per step obtained during the policy evaluation periods. In order to smooth
the curves and make them more readable, the values of two periods of policy
evaluation were averaged together before plotting.

Throughout, we used as the exploration parameter. The Q table was
initialized to 0 everywhere, and the optimal Q values are positive everywhere.

The line in Figure 2 shows the results for the predator agent learning
without the coach. The agent is learning, though over 700,000 steps (half of which
are learning, half are evaluation), the agent achieves only about 40% of optimal.

The rest of Figure 2 presents the results of the coach advising (with the
algorithm CoachContinualAdvice as shown in Table 2) and the predator taking
advice (with the algorithm ContinualAdviceTaker as shown in Table 1), varying
the value of to the ContinualAdviceTaker algorithm. This value controls
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how often the predator listens to the coach, and how often the predator ignores
the advice. As expected, with the coach, the predator agent learns much more
quickly and reaches nearly an optimal policy. The coach is effectively guiding the
agent to the right actions, which improves the speed at which the predator’s Q
table reflects an optimal policy. Also, the more often the predator listens to the
coach (i.e. as increases), the faster the learning and the better the performance.
However, there are diminishing returns with the performance difference between

and rather slight and the difference between and
not significantly different.

4 Limited Agent Actions

We now consider cases where the action space of the coached agent is limited.
For our purposes, this will simply mean that the agent is not allowed/able to
perform some actions.

4.1 Learning Algorithms

A revised algorithm for the coached agent is shown in Table 3. The only difference
from ContinualAdviceTaker (Table 1) is that if the coach recommends an action
the agent can not perform, a random action is performed. This is intended to
simulate an agent which is not fully aware of its own limitations. By trying to
do something which it can’t do, some other action will result.

The coach can follow the same CoachContinualAdvice algorithm as before
(Table 2) and should be able to learn which optimal policy the agent can follow.
If the coach can see the agent’s actions, then only those Q-values for actions
which the agent can perform will have their values increased. If the coach can
not see the actions, then recommending an action that the agent can perform will
tend to lead to a higher value state than recommending an action the agent can
not perform (since the agent then acts randomly). In this manner, the coach’s Q-
table should reflect the optimal policy that the agent can actually perform, and
over time the coach should recommend less actions which the predator agent can
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not do. Note that this algorithm implicitly assumes that the agent can perform
some optimal policy.

4.2 Experimental Results in Predator-Prey

We once again use the predator-prey world as described in Section 3.2.
We assume that the limitations on the agent still allow some optimal policy.

In particular, in this environment, 9392 of the 46656 states have more than one
optimal action. Every choice of optimal action for each of those states gives an
optimal policy, and we restrict the predator agent to be able to perform exactly
one of the optimal policies. The same restriction was used for all experiments
that are directly compared, but different experiments have different randomly
chosen restrictions.

Further, for a given state action pair, the same random action always results
when the agent is told to do an action it can not do. We also chose to use
to emphasize the effects of the coach’s advice.

Results of this learning experiment are shown in Figure 3. An important issue
to consider when analyzing the results is how much our limitation algorithm
actually limits the agent. Only 20% of the states have multiple optimal actions,
and of those, almost all have exactly 2 optimal actions. If an agent performs
optimally on the 80% of the state space with one optimal action and randomly
anytime there is more than one optimal action, the average reward per step of
this policy is approximately 14.2 (optimal is 17.3).

In order to provide a reasonable point of comparison, we also ran an ex-
periment with the coach providing intentionally bad advice. That is, for every
state where the predator has an optimal action disabled, the coach would always
recommend that action, and the predator would always take the same random
action in a given state. This is the data line “Always Rec. Disabled” in Figure 3.
The data line for the predator learning without limitations and with the coach
(with from Section 3) is shown labeled “No Limitation.” Whether or not
the coach sees the actions, the learning coach achieves better performance than
the baseline of bad advice and approaches the performance without limitations
at all.

A natural question to ask at this point is whether the coach is really learning
anything about the agent’s abilities. One measure of what the coach has learned
about the agent is to examine what percentage of the coach’s recommended
actions are ones that the agent can not do. Figure 4 shows this value as the
simulation progresses. The three lines represent the case where the coach is
not learning (basically flat), learning and not seeing the agents actions, and
learning and seeing the agent’s actions. As one would expect, with learning, the
percentage of bad actions recommended goes down over time, and seeing the
actions enables faster learning.

5 Limited Bandwidth

Up to this point, the coach was giving advice to the agent every cycle. We see this
as an unrealistic interaction mode with the coach, and this set of experiments
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Fig. 3. The value of the policy learned
by a limited predator agent under vari-
ous coach conditions

deals with limiting the amount of advice provided, while still using an advisee
agent with a limited action space (as described in Section 4).

5.1 Learning Algorithms

First, to allow the coach to talk about states that are not the current state,
a single piece of advice is now a state-action pair. The coach is advising an
agent to perform a particular action in a particular state. Further, the coach has
limitations on how much advice it can give. We use two parameters: I is the
interval for communication and K is the number of states that the coach can
advise about. Every I cycles, the coach can send K pieces of advice.

The agent stores all advice received from the coach and consults that table in
each state. The new algorithm is shown in Table 5. For this experiment, the table
T simply stores all advice received and if multiple actions have been advised for
a given state, the table returns the first one received which the agent is capable
of doing.

We propose two strategies for sending advice. The first strategy is mostly
random; the coach randomly chooses K states and sends advice for an optimal
action for each of those states (see Table 4). Note that while we call this a random
strategy, it is still providing optimal advice about the states it chooses. If the
bandwidth between the coach and advice taker were large enough, RandomState
would send the entire optimal policy to the agent.

Fig. 4. As a function of time, the per-
centage of coach recommended actions
which the predator can not do
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The other strategy, which we call “OptQ” is more knowledge intensive. It
requires the entire optimal Q table and always seeing the coached agent’s actions.
The algorithm is given in Table 6. Like RandomState, OptQ always provides
optimal advice for the states it chooses. The difference is that OptQ attempts
to choose better states about which to advise. The basic idea is to advise about
the states in the last interval for which the agent performed the least optimal
actions. Note that the smallest values are chosen first since all of the values in
W are negative. If the algorithm runs out of states about which to advise, it
simply chooses random ones rather than wasting the bandwidth.

While neither RandomState nor OptQ may be good algorithms to imple-
ments in a real world setting, they provide good bounds on the range of perfor-
mance that might be observed. RandomState puts no intelligence into choosing
what states to advise about, and OptQ uses more information than would likely
be available in any real world setting. The improvement that OptQ achieves over
RandomState indicates how much benefit could be achieved by doing smarter
state selection in an advice giving framework like this one.

5.2 Experimental Results in Predator-Prey

We once again use the predator prey world as described in Section 3.2. The
predator has limited actions as described in Section 4.2. For the parameters
limiting advice bandwidth, we chose I to be 500 and K to vary between 1
and 50. Recall that every I cycles, the coach can send K pieces of advice.

The results are shown in Figure 5 for different values of K. Note first the
that as the amount of information the coach can send gets larger (i.e. K gets
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Fig. 5. Policy evaluation for the predator for various coach strategies and values of K

larger), the agent learns more quickly. While the same performance as the coach
advising every cycle is not achieved, we do approach that performance. However,
it should be noted that the agent is remembering all advice given.

The surprising result is that the OptQ algorithm with its much higher in-
formation requirements does not perform much better than the RandomState
strategy. There are two things to consider. First, by the end of the simulation,
the RandomState strategy achieves fairly large coverage of the state space. For
example, with K = 25, the random strategy is expected to provide advice about
47% of the states1. Since the agent remembers all of the advice, near the end of
the run it is essentially getting optimal advice for one in two states. Secondly,
the OptQ strategy only advises about states about which the agent has already
been and taken an action. The chance of encountering one of these states again
is about the same as encountering any other given state.

Differences between RandomState and OptQ performance only emerge at
the K = 50 level. This suggests as the bandwidth of the advice interaction is
increased, the first benefit obtained by the agent is simply by obtaining some
coverage of the state space with optimal advice (see the K = 25 line). Only after
the bandwidth is increased more do we see how the advice is given start to make
a difference.

6 Limited Bandwidth and Memory

In Section 5, the coached agent has a limited action space and there is limited
bandwidth between the agents. However, the coached agent remembers all advice
which the coach has sent. This is probably unrealistic once the world becomes

1 With basic probability theory, one can calculate that if T is the number of pieces
of advice and S the size of the state space, the expected number of distinct states
about which the random strategy advises is At the end of 700,000
steps with K = 25, 35000 pieces of advice have been given. With S = 46656, this is
approximately 22035 states.
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Fig. 6. Results of learning with limited predator, limited bandwidth, and limited mem-
ory, M is the number of pieces of advice the predator can remember. The M = 1000
case is not shown as all data lines perform at approximately the K = 1 level

large enough that the advised agent is not using a full state/action table. There-
fore, we explore the additional limitation of varying the amount of advice which
can be remembered.

6.1 Learning Algorithms

We consider a straightforward FIFO model of memory. The coached agent has
a fixed memory size, and when it is full, the agent forgets the oldest advice.

The coach strategies are the same as before: RandomState (Table 4) and
OptQ (Table 6). The coached agent can still uses LimitedBWAdviceTaker (Ta-
ble 5), but now the state advice table T only stores the last M pieces of advice
heard, where M is an independent variable which we experimentally vary.

6.2 Experimental Results in Predator-Prey

We once again use the predator prey world as described in Section 3.2. The
predator has limited actions as described in Section 4.2. Figure 6 shows the
results. With the smallest memory of M = 1000, the predator does not improve
significantly over having no coach at all. This can be explained simply because
the memory can only hold approximately 2% of the state space. As the amount
of memory is increased, the agent’s performance improves. It should be noted
that for K = 1, throughout the entire simulation the coach only sends 1400
pieces of advice, just barely more than the smallest memory. Therefore, we can
not expect increasing the memory of the to improve performance for K = 1 since
memory is not really the limiting resource for most of the simulation.

We see the same general effects of the differences between the RandomState
and OptQ strategies here as when there was no limited memory (Section 5.2).
The difference is that the size of memory effectively lowers the absolute per-
formance of all techniques. It is interesting to note that absolute performance
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improves (in the M = 5000 and M = 10000 cases) when moving from K = 25
to K = 50 only when using the OptQ strategy and not RandomState.

7 Conclusion

This paper examines the problem of how one automated agent (the coach) can
give effective advice to another learning agent (the advisee). Our focus has been
on proposing and exploring modes of interaction between the agents, as well
as various limitations on the agents. We explore both problems of giving and
receiving advice.

A thorough experimental analysis was done in a controlled predator-prey
environment. The predator agent is a Q-learning agent that takes advice by
probabilistically following the advised action. The coach agent was given a large
amount of information about the world, such as the full dynamics and full in-
formation about the value and optimality of all actions.

The results consistently show that advice indeed improves the advisee’s per-
formance under all forms of limitation tested. For constant advice, our results
show that the more an agent listens to coach advice, the better it performs, with
the expected diminishing returns. Further when the bandwidth between coach
and agent is limited, two effects are observed. First, for smaller bandwidths the
presence of advice helps regardless of how that advice is chosen. Only when
the bandwidth is increased further does the choice of which states to advise
about begin to matter. Lastly, limiting the memory of the agent lowers overall
performance, but the same general trends still hold.

Further, we have shown how the coach can learn to adapt its advice to the
limitations of the agent. We show empirically that the coach is effectively learning
about the actions that the limited agent can do.

The challenge of coaching involves learning about an environment, learning
about the agents, and effectively communicating advice while taking into account
agent abilities. We believe that this work is a core step towards completely
answering that challenge.
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Abstract. TsinghuAeolus is the champion team for the latest two
RoboCup simulation league competitions. While our binary and nearly
full source code for RoboCup 2001 had been publicly available for the
entire year, we won the champion again in Fukuka, with more obvi-
ous advantage. This paper describes the key innovations that bring this
improvement. They include an advice-taking mechanism which aims to
improve agents’ adaptability, a compact and effective option scoring pol-
icy which is crucial in the option-evaluation framework, and thorough
analysis of interception problem which leads to more intelligent inter-
ception skill. Although not strongly interrelated, these innovations come
together to form a set of solutions for problems across different levels.

1 Introduction

RoboCup Simulation League provides a challenging platform to promote re-
search. By six consecutive years’ effort of the whole community, the simulation
match has improved amazingly, from being seemingly stupid to so delicate that
some people think it’s more than real. It should in great part owe to the whole
community’s great effort on sharing binaries and source codes. As the champion
team in Seattle, TsinghuAeolus2001 released both executable and source code.
Its effectiveness is convincingly proved by the fact that the newcomer Everest,
who started completely from the released TsinghuAeolus2001 source code, won
the runner-up in RoboCup 2002.

There was a debate in Fukuka on how to schedule simulation platform’s
development, alternatively speaking, how to develop the platform to help all
the participators do research on it. Since the attraction of RoboCup depends
partially on competition, one of the principles should be to encourage winning
from better research. On the other hand, RoboCup is so complex an environment
that various problems have to be solved to build a competitive team. We feel it’s
important to summarize what we have reached so that the following researchers
can build a strong team easily, on the basis of which they can focus on what
they are interested in. For this purpose, in addition to releasing source code, we

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 205–213, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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try to describe our various key innovations in this paper, especially those that
make TsinghuAeolus2002 improve from TsinghuAeolus2001.

Taking external advice is an important way toward adaptability. Our first
innovation is an advice-taking mechanism, which can be attached to an existing
autonomous agent. It works somewhat like case-based architecture. The detail is
discussed in Section 2. In RoboCup, the architecture for action selection in ball
possession is the key component for a team. But few teams have explained their
work on this aspect in detail. Our second innovation focus on the creation and
evaluation of pass options. It is discussed in Section 3. The third innovation is
further analysis on interception, on the basis of which we develop an adversarial
interception skill. More detail is discussed in Section 4.

2 A Scheme Mechanism for Adaptability

Adaptability has been a desirable quality for autonomous agent all along. But in
some complex environments, it’s not easy for an autonomous agent to improve
by itself. RoboCup simulation platform, which is a highly dynamic, adversarial
multiagent environment, is such a typical case. The state space of 22 agents in
a continuous soccer field seems immense, and it’s hard to decide how an action,
in a sequence of hundreds of joint actions, is responsible for final success or fail.
Besides that, player’s local and noisy eyeshot is also a big disadvantage. Recently
there is an increasing focus on external advice which is expected to take a quite
important role for agent’s adaptability in many real applications. In RoboCup
simulation, an online coach acts as an advice-giving agent. In human matches,
teammates also help each other a lot by advising. Besides these, It will also be
quite interesting and meaningful if a domain expert can direct an autonomous
agent online by giving advice.

Given external advice, an autonomous agent needs to incorporate them into
its existing reasoning process. [9] converts the advice to internal neural hidden
units, which are then integrated into the existing knowledge-based neural net-
work. In this way, advice is incorporated seamlessly and can be redressed by later
learning. But it depends on a knowledge-based neural network which is not ap-
plicable in many domains including RoboCup. [3] converts coach advice to some
behavior which competes with other spontaneous behaviors in the same frame-
work of behavior manager. One of its advantages is that advice won’t be followed
blindly. We develop a compact and efficient mechanism to incorporate advice.
It is successfully applied in TsinghuAeolus2002. There are two main roles here:
scheme and scheme manager. Programmly each piece of advice is converted into
an object called “scheme”, which is then inserted into a corresponding scheme
manager. When the agent does related reasoning, the scheme manager will be
called to run in predefined point. Through the whole process, there are three
aspects most concerned:

State of Advice
Advice is often given as condition-dependent. We define four states for each
scheme: sleeping, waiting, working and obsolete. Three conditions are re-
quired to update a scheme’s state: and Before
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is satisfied, the scheme is sleeping. When is satisfied, it is obsolete.
Between them, if is satisfied, it’s working, otherwise waiting. Only
working schemes are really incorporated into the agent’s decision-making.
Where to Consider Advice
This is not always a problem. But if you have already an autonomous agent
and hope to incorporate advice into its existing decision process, which was
not designed to be advice-compatible, you have to consider it. This problem
seems domain-dependent and its solution is quite heuristic. A basic idea we
use is to classify schemes. Then we heuristically select a point, somewhere in
the agent’s decision process, for each class instead of each piece of advice. For
each class of advice, there is a corresponding scheme manager responsible
to update its schemes’ states and run all the working ones in some order.
Alternatively speaking, the scheme managers also determine what kinds of
advice may be incorporated. Those pieces of advice that can’t be classified
into any existing scheme manager have to be abandoned.
Conflicting Issues
How to handle conflicting issues is concerned by many research work [10] [3].
We mainly handle two kinds of conflicting cases: exclusive and competitive.
For exclusive case, according to some heuristic criteria, an value of rank is
given to each scheme, which determines the scheme’s order of being pro-
cessed in its manager. The scheme with the highest rank can be considered
first and then the other kindred schemes are ignored. For example, it’s rea-
sonable to think that an advice from coach is more authoritative then one
from some teammate, so we give the coach advice a higher rank which guar-
antee it can exclude other teammates’ kindred advices. For competitive case,
we give an value of advice strength which means the extent that the ad-
viser recommend this advice. A typical competitive case is option-evaluation
architecture(See Section 3). When an option is advised, its priority is added
by an extra value which is proportional with We’d like to address that the
priority is first calculated according to evaluation, which means the detail
of this advice is verified by the agent itself. This is a fundamental difference
between exclusive case and competitive case. The extra value can also be
negative which means this option is discouraged. Generally, we use a piece
of advice to encourage a group of options. For example, “pass more to region
R”, all the pass options whose destinations lie in R are encouraged to same
extent.

A simple scheme is a five touple The
first four have been explained above. The last one is an extendable component,
the instances of which often differ across classes of schemes. For example,
is extended in Content for classes in competitive cases. The explanation and
execution of Content depends on the corresponding scheme manager.

We haven’t used online coach to give any advice because we haven’t worked
on online learning by coach yet. Although some of other teams’ online coaches
are available, it’s not reasonable to assume their advices more advisable than an
agent’s own autonomous behaviors. To experiment the capability of this mecha-
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nism, we give a variety of heuristic advices by ourselves. Some of them are listed
here, described in natural language.

When Playmode is changed, scan the field with wide visual mode in less
than 7 cycles
When Player gets the ball in Region run to Region and keep
some distance from
Don’t pass across our own forbidden area.

It proves to be quite natural and smooth to incorporate them into the existing
TsinghuAeolus agent under the scheme mechanism. If using online coach to give
advice, we would need to code conditions and actions in some language, for
example CLang [15]. And after the interpretation, the left things are just what
have been discussed above. In the TsinghuAeolus2002 champion agent, there
are totally 5 scheme managers and about 20 pieces of advice that may be given
according to the situation. We make a comparison between enabling advice and
disabling it. The result is shown in Table 1. It proves to work very well. The
improvement should owe to both good advice and the suitable mechanism to
incorporate it.

3 Action Selection for Ball Possession

For controlling the player with the ball, the option-evaluation architecture [2] fits
well. It involves two layers. The lower layer is in charge of producing options, such
as dribbling, passing and shooting and so on. The upper one is to evaluate these
options according to various score policies. Then the option with the highest
score is to be executed. Although not called exactly as option-evaluation, the
corresponding modules in [8], [7] and [12] seem to be quite similar. They differ
only on the creation of options and score policies, which determine a team’s
competence in great part.

As introduced in [2], passing options are created at discreet angle increments
and speed increments. For each angle-speed pair, it’s rejected if some adversary
could intercept the ball before any teammate. Our way to generate pass options
was described briefly in [12]. The full implementation source code is available
in [14]. We also considering passing the ball at discrete angle increments, but
not at speed increments. For each angle, the speed section dominated by each
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agent (Any speed in which, paired with the angle, forms such a pass option that
the agent can receive the ball in advance of the others.) can be calculated in a
simplified model that involves only the positions of all the agents, instead of other
things such as their bodyfacing and heterogenous ability. A key technique in this
algorithm is reviewed in Section 4. Viewed in the polar coordinate of passing
angle and speed, the whole domain is separately dominated by the agents. Here
each agent’s domain is exactly the set of pass options that will be received by it
superior to the others. It’s approximated in both dimensions, angle and speed,
by discretization in [2]. Our method only needs to discretize the angle dimension,
but the cost is that it’s specific to the simplified model.

Option’s score is best understood as expected reward in the sense of Re-
inforcement learning [2]. A set of options defined over an MDP constitutes an
embed SMDP[11]. [11] gives theoretical insight into the related learning issues.
But it’s hard to be implemented in RoboCup right now. As we feel, the biggest
difficulty is how to automatically give the reward for an executed option ac-
curately. In the whole process from kick-off to goal, there are lots of options
executed by different agents. It’s hard, even for human, to decide whether it is
good or not for each of them. Until now, we haven’t known the score policy of
any top team is fully dependent on learning. There is much research work that
can be done on this subject in the future.

[2] calculates the score of an option by where is
the possibility of success and and are the values of succeeding and fail-
ing respectively. TsinghuAeolus2001 also used this natural form and even took
a nearly same way to calculate and Our improvement for TsinghuAeo-
lus2002 comes from further analysis and approximation of these factors. For
there are at least two factors responsible to the failure of a pass course, the noise
of kicking action and the unaccurate knowledge of other agents, such as their
positions, body facing and responsiveness and so on. The danger of the first one
is approximated by the margin of the option relative to the agent’s domain in the
polar system of passing angle and speed. Obviously, bigger is this margin, more
robust it is as kicking concerned. The other one can be approximated by the
margin between its and other agents’ interception times. For we also divide
it into two factors, direct reward and future reward is calculated
according to a static potential field which is built and stored in a neural network
beforehand. It’s a function of location that increases as the ball advances to-
wards the opponent’s goal. is approximated by evaluating the suppositional
situation when the receiver gets the ball. If there’s an open space around it or a
good shooting opportunity, we say there is high future reward expected. It’s not
hard to heuristically combine them to get the final score. In fact, since scores
are used only in competition between the options in the same cycle, we don’t
need to keep them consistent through cycles as what is generally required in
Reinforcement Learning.

Our advantage in pass is quite obvious in RoboCup2002. According to the
statistical data, the counts of TsinghuAeolus’ successful pass are double as many
as that of the other top teams’.
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4 Adversarial Soccer Skill

Basic soccer skills, such as kicking, interception, dribbling and so on, are essential
for a soccer team. In simulation platform, these problems seem quite fitting the
classical machine learning techniques. Various algorithms, such as RL, A* and so
on, have been tried and worked well here. A more challenging problem is to exert
these skills in an adversarial environment. In [5], RL is used to learn dribbling
against an opponent. In [13], Q learning and A star algorithm are combined
to provide a fast and efficient approach for kicking in adversarial environment.
One of our innovations in TsinghuAeolus2002 is an adversarial interception skill
which is based on the further analysis of the interception problem.

Interception problem refers to how to turn and dash, for a given player, until
getting the ball given initial physical information of the ball and itself. Supervised
learning by collecting successful examples is an empirical way to obtain this
skill, which was recommended in [1]. But later, analytical way seems to be more
popular for the advantage of efficiency. [2] presents a numerical algorithm for
computing interception times. We have done the similar work and made some
improvement.

A simplified model of interception involves an arbitrary ball position
initial ball speed and its direction, and receiver position Other factors,
such as the receiver’s body facing, velocity and so on, can be considered heuris-
tically later. The ball’s moving route is fixed if random noise is not concerned,
The reachable area for the receiver in cycles later is a circle with its initial
position as the center. The circle’s radius increases linearly by in the receiver’s
maximal speed With as the third dimension, we can get a 3D view of the
interception process, as illustrated in figure 1. The ball’s route is a curve and
the receiver’s reachable area is a cone. The overlay part of with is
exactly the set of points where interception may be completed, which we call as
Sol. [2] calculates the least time to complete interception. But it’s not always
the best choice to intercept in the least time. Imagine such a scene, a player
lies in front of the ball when the ball is moving forward with a high speed, it’s
not wise for him to run backward to get the ball and then dribble forward. The
better choice is to run forward to meet with the ball. This kind of scene can be
found a lot in human’s match, especially in anti-offside case. So it’s useful to fig-
ure out Sol completely. In the 3D coordinate, lies in an vertical plane which
intersects the surface of in a hyperbola As has already been pointed out
in [2], there are at most three intersection points between and

To look into this problem, assume and the direction of the ball’s velocity
is fixed while is alterable. With varying may be tangent to in
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Fig. 1. Interception

Fig. 2. Two tangent cases

two cases, as illustrated in figure 2. The corresponding values of are
and The corresponding tangent points are and It’s easy
to know that there is only one intersection point between and when
is in or in two when equals or
and three when is in Given and can be
approximately figured out by Newton methods with appropriate initial values
for update. Then the corresponding values of are easy to figure out.

Back to the original problem where both and are given, we use Newton
Method to calculate the intersection points, plus some preprocess and tricky
treatment. is first divided into two symmetrical parts at its apex It’s
obvious that there is not more than one intersection point between the left part
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with which, if exists, can be figured out with standard Newton Method. For
the right part, assume there are three intersection points and We only
discuss this case in the following. The other cases can be handled in a similar
and simpler way. It’s obvious that lies between and between

and between and (a point in whose x value is big
enough). We use to represent the function of and for the right
half of The standard Newton update equation is as following.

But it’s possible to overshoot. lies always in With the maximal
and minimal value replacing in 1, We get the following two modified
update rules.

To take as the initial point and (2) as update rule, converges to
Because in the iterations, which is not hard to prove and
we don’t intend to detail here. Similarly, we can reach by taking as the
initial point and (3) as update rule, by taking as the initial point and
(2) as update rule.

There is another related problem which is crucial for creating pass options
as introduced in Section 3. It originates from the need to know the minimal pass
speed to pass across some point before some player can get it. Here a point
on it, and the direction of the ball’s velocity are given, and the problem equals to
figure out the maximum when there is at least an intersection point before
between and The critical case must be that and intersect in either

or Assume and is the intersection point separately, it’s easy to
get the corresponding values of The bigger one is exactly the answer.

5 Conclusion

The interception problem is a basic but important one. We present a thorough
view of it in analytical way, which leads to a stronger adversarial skill.

TsinghuAeolus have showed amazing passing skill in Fukuka. The crucial
component responsible for that includes the creation and evaluation of pass
options. It’s the accurate analysis of this problem that leads to our advantage.

An integral advice-taking system for an advised agent involves several steps:
receiving, parsing and taking. The scheme mechanism addresses the last step. It
can be attached to an existing complex agent without too much work. And it
forces few requirements on the existing agent’s framework. We also demonstrated
its effectiveness. With this mechanism as the basis, we’re working on agents’
adaptability in the hope of improving the on-line team’s behavior.
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Abstract. This paper presents a real-time approach for object recogni-
tion in robotic soccer. The vision system does not need any calibration
and adapts to changing lighting conditions during run time. The adapta-
tion is based on statistics which are computed when recognizing objects
and leads to a segmentation of the color space to different color classes.
Based on attention, scan lines are distributed over the image ensuring
that all objects of interest intersect with the number of lines necessary
for recognition. The object recognition checks the scan lines for char-
acteristic edges and for typical groupings of color classes to find and
classify points on the outlines of objects. These points are used to calcu-
late size and position of the objects in the image. Experiments on Sony’s
four-legged robot Aibo show that the method is able to recognize and
distinguish objects under a wide range of different lighting conditions.

1 Introduction

The RoboCup real robot soccer leagues (middle-size, small-size, Sony four-legged
league) all take place in a color coded environment. The method described in
this paper was implemented for the Sony four-legged league. The objects the
robot needs to see are two-colored flags for localization (pink and either yellow,
green, or sky-blue), two goals (yellow and sky-blue), the ball (orange), the robots
of the two teams (wearing red and blue tricots), and the white field lines (center
circle, middle line, penalty lines).

A very common preprocessing step for vision-based object recognition in color
coded scenarios is color segmentation using color tables, e. g. [2,7]. Such methods
directly map colors to color classes on a pixel by pixel basis, which has some
crucial drawbacks. On one hand, the color mapping has to be adapted when the
lighting conditions change, on the other hand, the mapping results in a loss of
information, because the membership of a pixel in a certain class is a yes/no
decision, ignoring the influences of the surrounding pixels. Some researchers try
to overcome these limitations [4], but the solutions are too slow to work under
real-time conditions on a robot with limited computational power.

* The Deutsche Forschungsgemeinschaft supports this work through the priority pro-
gram “Cooperating teams of mobile robots in dynamic environments”.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 214–225, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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A method for off-line self-calibration on sample images that first filters the
images to improve color invariance and then applies k-means clustering for the
adaptation of color classes is described in [6]. Lighting conditions can differ
depending on the position on the field or the situation (the ball can be in the
shadow of a player, the carpet can appear in different shades when seen from
different viewing angles). In this paper a method is presented that adapts color
classes during run time, so it is not necessary to perform any kind of pre-run
calibration.

Although it is not necessary to use the full resolution of images to detect
objects, it helps in determining their sizes and positions precisely. A very fast
method for object finding which uses the concept of perspective view is sug-
gested in [5]. Several additional methods restricting the number of pixels being
processed during object finding are presented in this paper.

2 Image Processing

The key ideas of the image processing method presented in this paper are that
speed can be achieved by avoiding to process all pixels of an image, and indepen-
dence of the lighting conditions can be reached by focusing on contrast patterns
in three different color channels and auto-adapting color classification.

2.1 Guiding Attention

Usually objects in the image are larger than a single pixel. Thus for feature
extraction, a high resolution is only needed for small objects. The performance
and robustness of image processing can be improved by guiding more attention
to areas within the image where small objects are expected. Instead of processing
all pixels in the image, a grid of scan lines is used to reduce the number of pixels
processed. Different types of additional information about the image and the
environment can be incorporated:

1.

2.

3.

Image sequences: a robot usually processes a continuous sequence of images.
Low level information (e.g. color clusters) gained in the previous image can
be used to speed up object detection (e.g. a ball will not have moved too far
from one image frame to the next, therefore it is in most cases beneficial to
start searching for the ball in the area of the image where it was previously
detected).
Iterative processing: a part of the image is processed and the information
gained is used in the further processing of the image. For example, the image
can first be scanned for more prominent features; once these are found, their
location in the image can hint to the whereabouts of other features.
Other Sensors: readings from other sensors (such as distance or tilt sensors)
can be analyzed and used to guide visual attention. For example, far away
objects may or may not be of importance and therefore only parts of the
image need to be scanned.
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Fig. 1. Calculating the horizon. The horizon is the line of intersection of the projection
plane P and the plane parallel to the ground H. is the intersection of the horizon
with the left and the right border of the image, is the focal point of the camera.

4.

5.

Knowledge about the environment: domain specific knowledge can be used
to simplify image processing. Heuristics can be derived from this, e. g. in the
RoboCup domain, robots and the ball are in contact with the field at all
times. Therefore the larger parts of these objects will be below the horizon
in the image.
Explicit feedback of (high level) world model information: The robot’s knowl-
edge (or hypothesis) of where it is in the environment can be used to simplify
the search for relevant features. Only areas in the image that, according to
the hypothesis, contain information are being scanned.

2.2 Arranging Scan Lines

First the position of the horizon in the image is calculated from the rotation of
the head and the rotation of the body. The roll and tilt of the body are estimated
from the readings of the robot’s acceleration sensors (indicating the direction of
the gravity), while the rotation of the head is determined from the angles of
the three head joints (tilt, pan and roll). Then the areas below and above the
horizon are scanned. For each of the areas an optimized grid layout is used that
assures that relevant features cannot escape detection.

Calculating the Horizon. The horizon is the line of intersection between the two
planes P and H where

P is the projection plane of the camera, and H is the plane parallel to the
ground through the origin of the camera coordinate system. To calculate the
horizon line pixels on the left/right border of the image and points on
the horizon H are examined, see Fig. 1:
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Fig. 2. Scan Lines. a) Gray horizontal line: horizon calculated from sensor readings,
white horizontal line: horizon calculated from the white border. Vertical scan lines
extend from the horizon to the lower half of the image. The white parts are used for
auto-adaptation. b) A scan along the horizon determines the foot of the flag and its
width. A second scan line vertical to the horizon through the center of the foot is used
to determine the height of the flag.

with opening angle and the screen resolution Pixels that are both on the
horizon and on the border of the image satisfy

with R being the rotation matrix of the camera. This can easily be solved for
the pixel coordinates of the horizon in the camera image:

with the entries of the rotation matrix.

Grid Lines below the Horizon. From the horizon, vertical scan lines (i.e. per-
pendicular to the horizon) extend into the lower half of the image, see Fig. 2a).
The lines are evenly spaced. The distance of the lines depends on the expected
distance to the ball. It is chosen such that at least two lines will intersect with
the ball. Since the ball is the smallest object encountered on a RoboCup field,
all other objects (robots) will also be hit. In addition to the dynamic objects
mentioned, some static features of the field are found below the horizon: field
lines, lower regions of the goals, and field borders.

Scan Lines above the Horizon. Color coded flags are placed at the corners and
at the side of the field above borders to offer additional help for localizing the
robot. Scan lines to find the flags are positioned in three steps: First based on
the robots position and the direction of the camera a prediction of the positions
of all visible flags in the image is calculated and vertical scan lines are arranged
through the predicted flags. If the predicted flags are not found in the image a
second attempt to find the flags is started on a scan line parallel to the horizon. If
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Fig. 3. Left: The reference color is a sub cube in the YUV color space. Other colors
are defined relative to this cube. Right: The ranges for sky-blue, pink and yellow in the
color cube.

this also fails the sensor readings are assumed to be disturbed by the influence of
other robots and the position of the horizon is recalculated based on the position
of the white border found in the image. If the foot of a flag is found on the scan
line parallel to the horizon (based on sensors or image) a vertical scan line is
positioned there, see Fig. 2b).

2.3 Color Classification and Adaptation

Each pixel at the grid lines is assigned to a color class. The color class depends
on the position of the color of the pixel in the color cube. How the color cube is
subdivided into color classes and how this subdivision is adapted automatically
to changing lighting conditions is described in this section.

Color Classification. The camera of the Aibo provides YUV-images. In YUV,
the luminosity of a pixel is stored in the Y channel, its color information in
the chrominance channels U and V. To classify the color a very simple model
is used. Within the YUV color cube, a reference color is defined. In the soccer
application this reference color is the green of the carpet. This color is defined
by upper and lower bounds in the three dimensions, thus producing a sub cube.
Other colors are defined in relation to this cube. For example, sky-blue is defined
as having a V value greater than the upper bound of the reference cube and
a U value lower than the lower bound of the reference cube. Other colors are
defined in a similar fashion. Only a limited number of colors is classified. Colors
not necessary for object recognition are omitted, see Fig. 3.

As this method is so simple it is not possible to separate colors that are close
to each other in color space, e.g. yellow and orange. Such colors are grouped
into one color class. This disadvantage is accepted due to the simplicity of auto-
adaptation of the reference color and the segmentation of the color cube. Ambi-
guities that arise from the bounded number of distinguishable colors are resolved
by using additional information from the image and the environment (see sec-
tions 2.4 and 2.5).
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Fig. 4. a) Two images of the same scene recorded under different lighting conditions
with a highlighted scan line and the recognized points on lines (border, field line, goal).
Left: day light, right: artificial light. b) The intensities of the three channels along the
scan line for both images. Left: image 1, right: image 2. The light and dark gray bars
show the range of green after auto-adaptation for the left and the right image. For
each image the values for sky-blue in the U channel are lower than the values for green.
But the values for sky-blue in the U channel in image 2 are greater than the values for
green in image 1 which shows the need for auto-adaptation.

Adaptation to Lighting Conditions. The effect of changing lighting conditions
to the position of the colors in the color space is illustrated in Fig. 4. The
positions of all colors move along the three axes and the intensities are amplified
or weakened. But the relative position of the colors to each other remains. Thus
it is sufficient to change position and dimensions of the reference cube with the
lighting conditions.

To update the reference cube, from each image a set of green pixels is ex-
tracted. This extraction is not based on the previous reference cube but on a
different heuristic: The changes in the YUV channels on a scan lines have certain
characteristic properties which are used to identify pixels that are considered to
be green. A scan line starting near the horizon will show a characteristic drop in
the luminosity channel Y where the color changes from the white of the border
to the green of the field. Starting from this point, all pixels on the rest of the
scan line are considered to be green. If there is a colored object on the field,
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Fig. 5. Left: Image of a yellow (a) and a sky-blue (b) goal. The highlighted pixels have
been selected by the heuristic for green extraction. Center: Frequency distribution of
the intensities of the extracted pixels. The vertical lines show the 98% ranges. Right:
Frequency distribution of the intensities of each pixel in the image. The vertical lines
show the 98% ranges obtained from the extracted pixels.

there is a change in one of the color channels and the rest of that scan line is
omitted (see the white parts of the vertical scan lines in Fig. 2a). This condition
is rather stringent to assure that no pixels are wrongly added to the set of pixels
used for color-adaptation.

This method is very robust and simple. No classification of clusters in color
space or the frequency distribution of intensities for all pixels is needed.

The reference cube is updated with every image with enough green in it. Most
of the images taken during a RoboCup game satisfy this condition. The YUV
values of the extracted green pixels are used to recalculate the reference cube
such that the new cube contains almost all green pixels. A typical distribution of
the intensities for each channel of the selected pixels is shown in Fig 5. Note that
the distribution of green pixels cannot be assumed as Gaussian but is dependent
on scene illumination, carpet texture, camera noise, etc. The lower and the upper
bound of the cube in each channel are chosen such that they enclose the most
frequent 98% of the intensities.

2.4 Edge Detection and Classification

The edge detection finds characteristic changes in the three color channels. The
points in the image where edges are found are classified using two criteria: the
three dimensional contrast patterns and the surrounding color classes.
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Fig. 6. Scan Lines: a) An image of a pink/sky-blue/white (from left) flag with a scan
line and Y-U-V contrast patterns for each edge, b) the Y-channel of the image of the
flag as height map. There is an up-edge (1) at the begin of the flag, the intensity
increases near the highlight but there is no edge at the change from pink to sky-blue
(0), there is an up-edge (1) from sky-blue to white. The first row of values in the
contrast patterns is therefore (1,0,1). c, d) The height maps of the U- and V-channel
visualize the second and the third row of values in the contrast patterns. Up-Down-Up
(1,-1,1) and Up-Up-Down (1,1,-1).

Contrast Patterns. The contrast pattern for a pixel on a scan line is defined
as

with

for where denotes the values of the color channels of the
pixel of the scan line and denotes the thresholds for large changes in the

three color channels. These thresholds are chosen once so that only edges and no
noise inside objects are detected. The thresholds do not need to be recalibrated
when lighting conditions change, see Fig. 6.

Each pixel with is assigned to one or more edge classes. For
example (0, –1,–1) is assigned to yellow-black, yellow-green, orange-black, and
orange-green, because a significant drop in the U and V channel is an indication
for one of these edges.
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Fig. 7. Scan Lines: a) Three types of lines: field/border, field/goal, and field/line.
Points on the outline of the ball. Circle calculated from the points, b) The ball on the
field and a flag, c) The ball inside the yellow goal, d) A partly occluded ball and a flag.

Surrounding Color Classes. The color classes of the pixels surrounding the de-
tected edges at the scan lines are taken into account to resolve ambiguities ap-
pearing during the classification of contrast patterns and to filter edges caused
by noise.

For example the set of edge classes { yellow-black, yellow-green, orange-black,
orange-green } can be reduced to { yellow-green, orange-green } if the preceding
pixels belong to the color class orange/yellow and the following pixels are green.

The contrast pattern (0,1,1) occurs at the top edge of the orange ball in a
yellow goal but sometimes also if there is a reflection of a spotlight on a robot.
Such contrast patterns are assigned to yellow-orange only if the preceding and
the following color class is orange/yellow, see Fig. 7c).

2.5 Object Recognition

The object recognition combines several classified edges to objects and deter-
mines the size and position of the objects in the image. Different combining
methods are applied to edges from different types of the scan lines.

Flags. To determine size and position of the flags in the image, the sequence
of classified edges on each vertical grid line above the horizon is considered.
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Each flag is characterized by a triple of classified edges containing the expected
color changes at the upper edge of the flag, at the color change inside the flag,
and at the lower edge of the flag. Thus a simple pattern matching algorithm is
sufficient to detect all flags. Flags found in an image are represented by the four
angles describing their bounding rectangle (top, bottom, left, and right edge)
in a system of coordinates that is parallel to the field. The angles to the top
and the bottom of the flag are determined from the positions of the first and
the last edge of the matching edge pattern. To determine the angles to the left
and the right edge of the flag, a new scan parallel to the horizon is started from
the center of the section with higher contrast to the background, i. e. the pink
one, in both directions. The first contrast pattern with a large decrease for the
U-channel on this scan line marks the “end” of the flag and provides a point on
a vertical edge.

Goals and Field Lines. Four different types of lines can be detected on the
RoboCup field: edges between the sky-blue goal and the field, edges between
the yellow goal and the field, edges between the border and the field, and edges
between the field lines and the field, see Fig. 7a). The object detection has not to
extract lines from the image, but pixels on lines instead. This approach is faster
and more robust against misinterpretations, because lines are often partially
hidden either by other robots or due to the limited opening angle of the camera.
The pixels on lines are the input for a Monte-Carlo localization that is described
in [8].

Ball. The edges at the bottom of the ball and at the bottom of the yellow goal
have the same contrast patterns and the same color classes above and below the
edges and thus are in the same edge class. But the top edge of the ball is unique
because the top of the yellow goal is always about the horizon and does never
intersect with the scan lines. Thus bottom ball edges are only accepted if there
is a top ball edge above. As described in section 2.4 even a ball in a yellow goal
can be detected, although yellow and orange are in the same color class.

The points found on the border of the ball are measured values and thus
will not always lie on one and the same circle. First for each triple of points the
resulting circle is calculated. In a second step each of the circles obtains a vote
from each pixel having a distance of less than 3 pixels to the circle. The circle
with most votes is assumed to be the border of the ball. This method assures
that even partly occluded balls are detected, see Fig. 7.

3 Experimental Results

3.1 Lighting Independence

The approach described in this paper was tested in robot soccer games. The
robots were able to localize themselves on the field and to handle the ball in an
accurate manner. Approximately 80% of all taken images could be used to re-
calibrate the color classification. Independence of lighting conditions was tested
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by manually changing the white balance modes of the camera (indoor, outdoor,
fluorescent light) and changing the lighting conditions itself. The objects on the
first image taken under new conditions are not detected as auto-adaptation is
always done for the next image. This does not matter, because each of the 25
images per second provided by the robot is processed. If enough green is in the
first image with new conditions the objects in the second image are recognized
properly. The need for auto-adaptation was shown by changing lighting condi-
tions while keeping old color calibration which lead to misclassifications. The
system fails when there is very little contrast in the image. This is the case in
bright daylight (overexposed camera images) and under very little light (under-
exposure). In both cases colors become indistinguishable even for the human
observer. If the scenario is lighted up with a very yellow light and the white
balance of the camera is set to fluorescent light mode, the orange of the white
of the borders and the yellow of the goal become indistinguishable, too. Under
conditions similar to those at competition sites, the selected white balance mode
had no influence on the quality of object recognition.

3.2 Performance

On an Aibo which is equipped with a 400 MHz processor the whole image pro-
cessing (calculating and scanning the lines, finding edges, classifying colors and
recognizing object) takes 7 ms if the grid lines are dense and 4 ms if the grid
lines are wide spaced (ball is expected near the robot). There is no difference in
running time if the auto-adaptation is switched off. Thus the approach is faster
than classifying the color of each pixel of the image and then finding regions as
described in [2]. It is as fast as the method that was used by the GermanTeam
for the RoboCup 2002 competitions in Fukuoka that is described in [1,3] and
which requires manual color calibration.

4 Conclusion

This paper presents a real-time auto-adjusting vision system for robotic soccer.
The vision system extracts features without processing whole images by guiding
attention to the areas of high interest. Independence of lighting conditions is
reached by an auto-adaptation of color classes and a matching of contrast pat-
terns. The object recognition employs environmental constraints to determine
size and position of the objects. This results in a fast, auto-calibrating, and
precise feature extraction.
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Abstract. Colour labeling is critical to the real-time performance of
colour-based vision systems and is used for low-level vision by most
RoboCup 2002 physically based teams. Unfortunately, colour labeling
is sensitive to changes in illumination and manual calibration is both
time consuming and error prone.
In this paper, we present KADC, a robust method for Knowledge-based
Autonomous Dynamic Colour Calibration. By utilising the known geom-
etry of the environment, landmarks are identified independent of colour
classifications. Colour information from these landmarks is used to con-
struct colour clusters of arbitrary shape. Clusters are dynamically up-
dated through actions and by the use of a similarity metric, the Earth
Mover’s Distance (EMD). We apply KADC to the RoboCup Legged
League, generating a colourtable purely from geometrical knowledge of
the environment and dynamically update this colortable to compensate
for non-uniform changes in lighting conditions.

1 Introduction

Image segmentation based on colour labeling is used extensively in real-time
vision. Colour labeling requires colourspace to be partitioned into a set of colour
classes, each corresponding to a symbolic colour such as ‘blue’ or ‘green’. Each
pixel is labeled with a symbolic colour according to location in colourspace and
from this, objects of a distinct colour can be efficiently and reliably identified.
For optimal effectiveness, colour labeling requires distinctive colour partitions
that are not generally available in real world systems. In such circumstances,
colour labeling can still serve as a useful component of multi-modal systems.

RoboCup playing environments have been constructed such that landmarks
can be easily identified by their distinct colour scheme. By constructing a map-
ping between colourspace and colour classes of interest such as green (field),
yellow (goal & beacons) and orange (ball), landmarks can be tracked in real-
time. Unfortunately, this mapping degrades rapidly with any significant change
in lighting conditions. As a result, RoboCup competitions are held under con-
trolled lighting conditions designed to minimise colour misclassification. Colour
classification poses a significant hurdle for the evolution of RoboCup to a more
realistic environment. The lack of robust autonomous dynamic colour classifica-
tion restricts RoboCup venues, requires an idealised playing environment, and
contributes to long setup times.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 226–237, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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In Robocup, determining which colourspace coordinates map to which colour
classes has been commonly achieved through linear thresholding. The simplest
form of this is achieved by thresholding each colour component, either in the
native camera colourspace [1], or in a transformed colourspace [2]. Unfortunatly,
colour classes may not correspond to the rectangular boxes in colourspace de-
fined by these thresholds. To reduce misclassification, some RoboCup teams have
used learning algorithms such as neural networks [3] and decision trees [3,4] to
semi-autonomously generate arbitrary concave colour classes. Lookup tables in
colourspace allow for the most accurate representation of colour classes as they
handle arbitrary distributions. As with [1], colourspace fidelity is reduced due to
the prohibitive cost of storing lookup values for the entire colourspace.

Current autonomous calibration techniques vary widely in their method of
calibration and domain of application. Austermeier et al., [5] presents a cali-
bration technique that compensates for colour distortions from a reference il-
lumination. Self-organising feature maps are used to compute a vector field for
transforming pixels to their original colour under the reference illumination. This
method is computationally expensive and requires a physical colour calibration
chart to be available under all conditions to be calibrated for. Legenstein et
al., [6] presents a less powerful method suited for finding coloured objects that
calibrates from a set of coloured strips carried by the robot.

Mayer et al., [7] presents a method of semi-autonomous colour self-calibration
using Mid-Sized League robots. The robot collects sample images from the known
environment using colour classifications generated for previous lighting condi-
tions. A filter to improve colour consistency is applied to these images which
then undergoe k-means clustering. From each of these clusters, HSV thresholds
are found that determine each colour class. These colour classes are then man-
ually mapped to symbolic colours.

In this paper, Section 2 presents an overview of the system developed. The
system is composed of three components: actions which allow for the rejection of
landmarks that do not appear in plausible locations, colour independant land-
mark identification to eliminate classification divergence due to feedback, and a
probabilistic colour clustering model which is formally defined in in Section 3.
Section 4 outlines the Earth Mover’s Distance (EMD), a metric used in image
databases [8] adapted for use as a cluster similarity metric. Important imple-
mentation considerations as well as Legged League specific details are given in
Section 5, with experimental results in Section 6.

The probabilistic cluster representation used makes no a priori assumptions
about the distribution of the cluster in colourspace. Notably, concave and disjoint
clusters can be represented without loss of information.

The approach we take considers a broader problem in colour calibration than
most papers. Rather than model uniform lighting changes across the environ-
ment, we also consider non-uniform shifts in colourspace. If a light fails at one
end of the field (as occurred during the 2002 Legged League competition) the il-
lumination of the yellow landmarks drops, whilest the blue remain constant, and
the pink is stretched in colourspace. Further, we consider the problem where the
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colour of landmarks is not known at all prior to calibration. Our results demon-
strate the learning of landmark colours given no a priori information other than
the geometry of the environment.

2 System Overview

In order to generate colour classifications, landmarks must be identified and the
colour information from the landmarks used to generate the classifications. By
taking actions based on geometric knowledge, these landmarks can be identified
with greater certainty than a given set of random images. The system presented
in this paper can be broadly decomposed into three components: actions, land-
mark identification, and colour classification.
Actions: A key difference between robot vision and computer vision in general
is the ability to take actions. By using knowledge of the environment, actions
can be used to increase the probability of particular landmarks being visible.
By only considering landmarks when they are expected to be visible, false posi-
tives can be reduced, leading to more robust classification. By removing human
interaction the overhead of classification is reduced such that it is practical to
recalibrate extensively. This calibration can be performed dynamically during a
game in parallel with existing systems.
Landmark Identification: Once the robot is positioned such that a landmark
is expected to be visible, the image is segmented into 4-connected regions of
self-similar colours using a segmentation algorithm independent of colour classi-
fications (e.g., edges / regions). A landmark is composed of one or more sections
of a single colour. Each section corresponds to a 4-connected region in the image.
To identify a landmark, sets of regions are evaluated as to the probability that
they correspond to the landmark. Spatial constraints known from the geometry
of the environment (such as goals immediately above the field or beacon sections
of similar size and vertically aligned) are used to evaluate the probability of a
set of regions corresponding to a landmark.
Colour Classification: Once a landmark has been identified, the colour informa-
tion from each section is used to construct a candidate cluster for each section.
EMD is used to determine whether candidate clusters for the landmarks are
sufficiently close to the current clusters of the colours associated with a known
colour scheme (such as the current blue cluster and current yellow cluster for the
goals in the Legged League). If a match is found, the current cluster is updated
using the candidate cluster. For all updates, the probability that the region set
corresponds to the landmark determines the magnitude of the update.

3 Clustering Framework

Cluster Representation: To handle the uncertainty present within classifications,
cluster are represented within a Bayesian inference framework. Occupancy grids
[9] are used in mobile robotics to model obstacles. Here we apply occupancy
grids over colourspace to form the basis of clusters. An occupancy grid is used
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for each colour to map the distribution of that colour in colourspace. Colourspace
is trivially divided into cells, each mapping to a distinct colourspace Coordinate.
Each cell C has an associated state variable representing whether that cell
maps to the colour or to non-colour These two
discrete states are mutually exclusive and exhaustive thus the probability of a
cell being in either state sums to 1 Since

the probability mass function
defined over all cells defines the colour cluster for a given symbolic colour.

If no information is available, non-informative priors are used for initialisa-
tion:

Cluster Updating: Since the probability of each cell mapping to a symbolic colour
is treated as an independent random variable, we can use Bayes theorem to
calculate the change in probability of cell C due to the classification M:

Similarly, Bayes theorem also applies to NON:

where

Equations (2) and (3) can be combined and rewritten as:

For efficiency reasons, the log-likelihood of the cell probability is stored. The
likelihood of a hypothesis H given the probability of that hypothesis P(H) is:

taking the log of this results in:

Expressed in terms of likelihoods, (5) becomes:

taking the log of both sides gives:

Which yields a simple update strategy: the cluster value
due to M is added to the previous cluster value for each cell C.
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Classification Representation: For each classification, a multiset of colourspace
coordinates (one for each pixel in the landmark section) representing the colour
information of the landmark is used to generate a new cluster which is subse-
quently merged with the appropiate symbolic colour cluster. Initially, the new
cluster is uninformative with for all cells C (correspond-
ing to (1)). For each element of the multiset, the corresponding cell is updated
as per (9).

Unlike sensors such as laser range-finders used in robot navigation, accurate
sensor models are not available for landmark classification. In this paper we have
modelled these probabilities as

where is the fitness of the landmark and A is the image area of the associated
region (both of which are defined below).

A colourspace coordinate close to a coordinate identified as part of a land-
mark section is more likely to correspond to the colour of the landmark. For
example, if a pixel is identified as blue, pixels which are similar to the iden-
tified pixel are also likely to be blue. We model this by blurring updates over
colourspace using Gaussian blur.

Cluster Decay: In uncontrolled environments, lighting conditions change over
time and the clusters representing landmarks drift from their initial positions.
To incorporate this into (9), a decay factor indicating the rate of depreciation
of previous classifications has been introduced resulting in:

Cluster Discretisation: Since each cluster is treated independently, multiple sym-
bolic colours can map to a single colourspace coordinate. If the colour labeling
algorithm can utilise this ambiguity [10] then each cluster can be thresholded
independently as given by (12).

where is the mapping from colourspace cell C to a set of symbolic colours,
is the likelihood for the cluster of symbolic colour S and is the inclusion

threshold of log-likelihood for S.
In many colour labeling applications, symbolic colours are mutually exclusive

and each colourspace coordinate must be mapped to a unique symbolic colour.
In order to support such applications (which includes the Legged League), the
cluster merging strategy is augmented to include a negative classification. That
is, all clusters which are not being added to are subtracted from. For example,
classifying a landmark as green implicitly classifies the associated candidate clus-
ter as not red and not blue etc. Equation (9) could be augmented to modify all
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other clusters, however, this information is only needed during the discretisation
process, a more efficient solution is to subtract when discretisation is required:

which guarantees mutual exclusion for all thresholds

4 Cluster Similarity Metric – EMD

A cluster similarity metric is required in the cases where landmark identifica-
tion cannot unambiguously determine which symbolic colour a region should be
labeled and to prevent misclassified landmarks from being added to clusters.
The former occurs in the Legged League for the goals and the beacons. These
landmarks have identical geometry and differ only by colour and position.

This section briefly presents a overview of EMD (for a full description see
[8]), and its application to dynamic colour classification. EMD was first proposed
as a similarity metric between colour images and used for image retrieval and
display in image databases. EMD derives it’s name from the analogy that is the
normalised minimum work required to fill a set of holes with earth by moving
this earth from another set of mounds.

More formally, given a set of producers X each producing units, a set of
consumers Y each demanding units, and a cost per unit of transportation
from to determined by the distance between and the total cost
of transportation is given by:

where is the amount transported from to EMD is defined as the nor-
malised minimum total cost of transportation:

This minimisation problem is an instance of the classical transportation prob-
lem from linear programming, to which efficient solutions exist. Thus, EMD takes
a two weighted sets of coordinates in some space, a ground distance in that co-
ordinate space, and computes the minimum average distance required to move
the first set to the second. The weight of each element of the set determines the
capacity of that producer/consumer or in the earth moving scenario, the amount
of earth required to empty/fill the mound/hole. Rubner et al. [8] refers to these
weighted sets of coordinates as ‘signatures’.
Application to Dynamic Colour Classification: In the context of cluster similarity
the signature of a cluster is determined directly from cell values. The signature
of a cluster is composed of all colourspace coordinates with the weight of each
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coordinate equal to the normalised cell value. Cells with a value of zero may be
omitted since they have no effect on the EMD. By normalising by the total sum
of cell values, EMD is unaffected by cluster size and exists for all informative
clusters. The ground distance used for calculating the cost of transportation is
given by the straight-line (Euclidian) distance (L2 norm) between the coordi-
nates in native colourspace. This ground distance does not correspond to the
difference perceived between two colours but the colour distance as determined
by the capture hardware. For applications requiring human interaction such as
image databases, colourspaces that closely resemble the human perception of
colour have been used [8].

5 Implementation

The system has been implemented on a Sony ERS-210 entertainment robot.
A full size 2002 RoboCup Legged League field within a laboratory environment
with partial natural lighting is used. The field comforms to Robocup 2002 Legged
League requirements with exception that the white field lines are not present.
Cluster Compression: A naive implementation of probabilistic clustering using
24-bit colour, 32-bit floating-point precision and 10 colour classes requires
10 = 640Mb of storage. To reduce the memory footprint the least significant bits
of each channels are ignored. By ignoring the lowest 4 bits of Y, 2 bits of U and
V, the total memory required to store the clusters is reduced to 2.56Mb. Note
that this corresponds to a reduced resolution occupancy grid over colourspace in
which probabilistic formulation given in Section 3 also holds. To further compress
clusters, clusters are tiled according to their most significant bits: 2 for Y and 3
for U and V. Colourspace thus is divided into 256 tiling blocks, each containing
256 units. Since clusters only occupy a small portion of colourspace, most blocks
will have a value of zero in all cells and these are stored implicitly. It was found
that on average, 8-16 blocks were occupied thus reducing the memory footprint
from 2.56Mb to around 120Kb.

Calculating EMD directly from the cluster signature is computationally pro-
hibitive so an approximation is used. For each tiling block, the centre of mass
and total weight are used as the cluster signature. This information is cached
for each tile for efficient EMD computation.
Actions: The action sequence undertaken by the robot attempts to maximise the
probability of a landmark being visible when that landmark is being considered
for cluster updating. The following sequence of actions was used for classification:

1.
2.
3.
4.

walk back 0.5m, look down
look up, turn around until a goal visible
walk to 1m from goal, look left, look right
turn around, goto step 2.

Initially, the robot must be on the field, when the robot looks down, the only
landmark present will be the field, except is when the robot is at the edge of
the field facing the white barrier. (1) reduces the probability of seeing the white



Knowledge-Based Autonomous Dynamic Colour Calibration 233

barrier. Using (2), visible goals will be vertically centred in the image, simplify
identification. Since there is one beacon either side of the goal, beacons should
be visible and bounds can be placed not only on the expected image location
but also on the expected size after (3). As the robot cycles between the goals,
and its localisation converges to a line running between the two goals and the
probability of finding beacons at the precalculated angles continually increases.
Landmark Identification: All landmarks in the Four Legged League are composed
of one, or in the case of beacons, two homogeneous sections, each of a single
colour. Since colour within a section varies only due to lighting conditions, and
the colour of adjacent sections are widely separated in colourspace, both edge-
based and region-based image segmentation techniques should be able to identify
the regions of the image that correspond to landmark sections robustly. For this
paper, an edge-based approach based on Canny edge detection [11] has been
used. Canny edge detection is performed on each of the three input channels
separately and the result combined in a boolean OR operation with an edge
being present if it is present in at least one input channel with the result run-
length encoded for efficiency. A region merging algorithm similar to [1] is used
to identify all the 4-connected regions of non-edge in the image.
Landmark Fitness: Since the robot pose is known from the actions taken, simple
heuristics can be used for landmark identification. The green field must occupy
most of the lower part of the image. The goals must be vertically centred and
should be twice as wide as they are high. Beacon sections must be of similar size
and aligned vertically. Beacons and goals should be of the estimated size and
approximately convex (the convex hull area is compared to the actual area).

6 Experimental Results

Static Illumination: To highlight the differences between calibration techniques,
three colour classifications were generated. The first classification was generated
on-board, updating only for landmarks that expected to be visible. The second
was generated on a PC by transmitting images over a wireless LAN. Unlike
the on-board classification, the PC-based autonomous classification updated all
clusters without regard to expected image contents. The third classification was
generated manually from the transmitted images. Due to limited bandwidth, the
on-board autonomous classification was able to process more images and hence
the image sequence used for this classification differs from the image set used
for the autonomous PC-based classification and the manual classification.

To evaluate the three different methods, a second set of images was taken
with the robot manually positioned in front of each landmark. These images
served as a test set from which a reference classification was established by man-
ually labelling regions of each image with appropriate colours. Misclassification
rates were determined by comparing the classifications generated to the reference
classification for each image in the test set. Due to the ambiguity in determin-
ing which edge pixels are considered to correspond to a landmark, the reference
classification was conservative in its classification of landmarks and any false
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positives connected to the reference classification were assumed to correspond
to the landmark.

As can be seen in Table 1, all three classification techniques generated clas-
sifications of comparable quality. The high misclassification rate associated with
the yellow clusters can be partially attributed to the small sample size as the
robot spent most of its time near the blue goal and beacons.
Dynamic Illumination: A second experiment was conducted to evaluate the sen-
sitivity to changes in illumination of the technique presented in this paper. For
this experiment, four beacons were placed next to the blue goal as shown in
Figure 1. Initially, the room was illuminated by two pairs of floodlights, and
standard office neon lighting with the illumination gradually decreased to zero
lighting, then increased to full lighting at a faster rate.

The first row of images shown in Figure 1 demonstrates the classifications
after one floodlight is turned off. The manual calibration shown on the right
exhibits some degree of degradation in classification of the blue goal. Note that
since the autonomous classification only classifies the blue beacon (since no yel-
low goal has been seen hence the pink-yellow and pink-green beacons cannot be
disambiguated), the pink section of the yellow beacon in the left of the image
has been misclassified due to differences in illumination between the beacons.

In the second to fourth rows, illumination continually decreases. The au-
tonomous classification shows little change whereas the static classfication com-
pletely misclassifies. The fourth row displays an instance of misclassification in
the left yellow beacon due to poor image segmentation under the darker lighting
conditions. The edge between the pink and the green was incomplete in previous
frames and as such, the region classified as field also included the pink area of
the beacon. Note however that this misclassification was rectified in subsequent
frames and by the fifth row, the classification returned to pink.

To correctly re-identify landmarks under modified illumination, the change
in illumination must be small enough that there is no ambiguity between the
landmark under the new illumination, and other landmarks of the same shape
of different colour. The fifth row shows classifications after an abrupt increase
in illumination. Note that unlike the field and goal, the classification of the blue
beacon was unable to recover from the abrupt change.
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Fig. 1. Lighting conditions are dynamically changed during the experiment. On the
left is the actual image, the dynamically calibrated classification in the middle, and a
static classification done at the start of the experiment on the right.

7 Conclusion

In this paper, we presented KADC, a new method for Knowledge-based Au-
tonomous Dynamic Colour Calibration. This method and algorithm facilitates
the generation of new colour classifications, and dynamically updates existing
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colour classifications under changing lighting conditions given certain assump-
tions. Specifically, that a method is available for segmenting the regions indepen-
dent of colour classification, that we have knowledge of where important features
might occur in the environment, what they might look like, and a robot which
is able to perform actions to look for these features. We have implemented this
algorithm on an embedded robot platform (Sony AIBO), and have used it to
generate partial colour tables for the Legged League competition given no apri-
ori colour information. The method was able to generate colour classifications
that were comparible to hand segmented clusters under constant illumination.
Further, under changing lighting conditions, the technique presented is able to
dynamically update classifications to maintain a similar quality of classification.
Under these changing conditions hand generated clusters have high error rates.
This is a significant development for RoboCup, where in the physical leagues,
teams have issues of classification robustness, are only able to compete under
controlled lighting conditions, and require long setup times.

The use of a probabilistic interpretation of colour classes allows for uncer-
tainty in classifications to be modeled explicitly and for colour classes to be repre-
sented without loss of information. The application of EMD to cluster similarity
allows for the comparison of colour cluster and hence a measure of similarity
between arbitrary image regions.

The techniques presented are applicable to colour-based vision applications
in general. The method of calibration presented represents a significant improve-
ment in the robustness of colour classification and allows colour labeling to be
used in a more general class of problems with dynamic non-uniform illumination.
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Playing Robot Soccer under Natural Light:
A Case Study

Gerd Mayer, Hans Utz, and Gerhard K. Kraetzschmar

University of Ulm, James-Franck-Ring, 89069 Ulm, Germany

Abstract. The recent debate in the ROBOCUP middle-size community
about natural light conditions shows that a more in-depth analysis of
the problems incurred by this is necessary in order to draft out a focused
and realistic roadmap for research. Based on real-world images taken un-
der varying lighting conditions, we performed descriptive and statistical
analysis of the effects on color-based vision routines. The results show
that pure color-based image processing is not likely to perform well under
varying lighting conditions, even if the vision system is calibrated on a
per-game base. We conclude that color-based vision has to be combined
with other methods and algorithms in order to work robustly in more
difficult environments with varying illumination.

1 Introduction

One of the long-term goals of the ROBOCUP initiative is to construct soccer
robots capable of playing in typical soccer playgrounds, including outdoor soc-
cer fields. As a consequence, soccer robots must be able to play under varying
lighting conditions, ranging from temporally stable artificial illumination (flu-
orescent or floodlight light) to natural illumination with varying temporal dy-
namics (slow changes during the day, fast changes by clouds). An open challenge
for the community is to draft a roadmap for research, which ultimately yields
soccer robots playing well in all these environments.

Currently, the middle-size league plays robot soccer in an environment with
strictly controlled artificial lighting conditions. Providing this environment is la-
borious and expensive for tournament organizers. For this reason, the ROBOCUP
middle-size community discussed on its mailing list, whether competitions can
be held under daylight conditions in the near future or not. Some teams have
already tried to play under natural lighting conditions, e.g. at fairs or exhibition
games, and problems seemed to be not so bad. Nevertheless, permitting daylight
constitutes a significant change in the environment and is expected to severely
affect game play and robot performance. Although everyone seems to intuitively
agree on that, the roadmap discussion would greatly benefit from more detailed
scientific investigations on this topic. This paper contributes to this discussion by
providing an analysis of the effects of various lighting conditions on color-based
image processing for soccer robots.

The paper is organized as follows: Section 2 discusses various lighting condi-
tions, and their effect on image processing and vision routines. The image data

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 238–249, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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used and the methods applied for further analysis are described in sections 3
and 4. Experiments and results are presented in Section 5. Section 6 draws some
conclusions and discusses potential solutions.

2 Survey of Lighting Conditions

In order to gain a better understanding of the causes and effects of varying
lighting conditions, we analyze several different scenarios for playing (robot)
soccer.

The first scenario is the one currently in use for ROBOCUP tournaments: An
indoor soccer field is illuminated by artificial light. The current rules constrain
light intensity to lie between 800 and 1200 lux, but do not impose additional
constraints, e.g. on color temperature. Special care is often taken to provide dif-
fuse lighting. Once calibrated, the lighting system remains unchanged during the
whole tournament. Although there is no a-priori specification of lighting condi-
tions, teams can perform an on-site, one-time calibration of their vision systems
and optimize their performance for the lighting situation on a particular field.
The calibration should account for the remaining small variations of lighting
across the field. This process needs some care, but can be done with reasonable
effort. It results in robots with vision systems well tuned to the lighting situation
on site, but which cannot deal with unexpected disturbances like those caused
by flashlight.

The next scenario is characterized by small
changes over time. An example would be the slow
movement of the sun during the day. In addition, the
shadows thrown by objects in the environment, e.g.
from trees, pillars, or even the robot itself (see the
rightmost image1 in Figure 2), will wander over time,
and dramatically change local perception of other ob-
jects like the goal or the ball. This effect can be even
stronger in indoor environments illuminated by natu-
ral light through windows, which are often located on
one side of the room. Assuming that lighting changes
remain small within the relevant match period, robot
teams can handle this scenario with suitable technol-
ogy for fast on-site, per-game vision calibration. Due

Fig. 1. The computer sci-
ence faculty building at
TU Munich, where most
test images were taken.

to the presence of shadows, the remaining variations in lighting conditions within
the field are harder to deal with.

A third scenario is characterized by sudden, discrete variations of illumina-
tion. This happens especially on days with partially cloudy skies, when a cloud
temporarily covers the sun. Very sudden lighting changes also occur, if something
shadows the sun for a short moment only, like people bending over a robot’s cam-
era. As these changes are hardly predictable, pre-game calibration to cope with
such effects should be very difficult, if not impossible.
1 All color images of this paper can be found at
http://smart.informatik.uni-ulm.de/DataSets/RoboCup/NatLight/
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3 Image Data

A set of soccer robot camera images covering all previously described scenarios
was collected in two different locations in order to allow for further analysis. One
location was the new computer science faculty building of Technical University
of Munich, where we were invited for a few friendly games against the Agilo
robot soccer team. The soccer field was set up in the large central hall (see
Figure 1), the outer hull of which consists almost completely of windows. The
images were made during a period of about 5 hours around midday and early
afternoon, and at the late evening during setup. The other location was a lab
room at the University of Ulm with large windows on one side of the room. In
both locations, the same carpet, goals, and balls were used.

Image set I (Munich, evening) The first set of images were taken during
setup in the late evening. So, no natural light was present. The field was
illuminated only by the fluorescent lights. Thus, illumination consisted of
constant, very diffuse light, so neither hard shadows nor strong reflections
posed a major problem. Although light intensity was probably at the lower
end of the range, this setting was certainly closest to the ROBOCUP setting
currently specified.

Image set II (Munich, daytime) The second set of images were taken over
a period of 5 hours around midday and early afternoon of the next day. The
weather was sunny with occasional clouds. Illumination of the field was both
with the indoor lighting structure and heavy natural light influence through
the dyed windows. Because the sun was very low and surrounding buildings
shaded her from throwing hard shadows on the field, the overall light was
still rather diffuse, although the dyed windows influenced the color spectrum
significantly (see the center image in Figure 2). In addition, illumination
changed slightly over time; see Section 5 for examples on this.

Image set III (Ulm, daytime) A third series of images was made in our lab-
oratory with windows on only one side of the room. Because they were
collected at a sunny day, illumination consisted of very directed light, which
led to hard shadows and non-uniform lighting.

Fig. 2. Examples of the three different lighting conditions used for the experiments.
Neon light in Munich in the leftmost picture, pure daylight in Munich in the middle
one, and again natural but directed light in our lab in the right image.
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Some image examples are shown in Figure 2. Note the differences in color and
illumination uniformity, although exactly the same carpet and the same goals
were used.

4 Method

In order to investigate the effects of varying lighting conditions, it would be
best to take a number of test images for precisely the same situation on the
playground, but under different, carefully controlled lighting conditions. A direct
comparison of these images would then be possible without assuming or implying
any particular method for image processing. Unfortunately, such a data set is
virtually impossible to obtain, because neither can the weather be controlled nor
would it be possible to guarantee comparability of images taken under motion,
so need to use other investigative means for evaluation.

As color-based image processing still is the dominating approach in
RoBoCup middle-size league, we evaluate the effects on the color information in
sets of real-world images taken under different lighting conditions. Furthermore,
we investigate how these variations affect common color-based image processing
methods. In our team, the early visual processing consists of three steps: Trans-
formation (map image from RGB to HSV color space), Classification (Assign a
color class to each pixel) and Blob detection (find regions of contiguous pixels
with the same color class). Most further processing, like object recognition or
field line detection for self-localization, make somehow use of the color-segmented
regions image delivered by this process. Many teams use a similar approach, so
that the results presented here should apply to them as well.

The second step is the one of interest here, be-
cause the quality of the classification process has
a strong influence on any further processing. In
our case, colors are mapped from the HSV color
space to a set of target color classes, containing all
colors relevant to ROBOCUP, and a catch-all color
class gray, to which all colors not of interest are
mapped. The mapping is simply defined by man-
ually specifying for each target color class a lower
and upper bound in each color space dimension. If
the target color classes can be sufficiently narrow

Fig. 3. Illustration of the HSV
color space structure.

defined and are far away from each other in the color space (high separability),
then the calibration process trades off misclassifications between a target color
class and the catch-all color class. Often, however, target classes are bordering
each other or would even have to overlap (i.e. there exist particular pixel values
belonging to different classes, sometimes even in the same image), so calibration
must directly trade off misclassifications between two target color classes.

The HSV color space is a circular, cone-like representation of the dimensions
hue, saturation and brightness. Black is at the cone peak on the bottom, white at
the innermost part of the upper plate and the colors arranged orbitally around
the white color (illustrated in Figure 3).



242 Gerd Mayer, Hans Utz, and Gerhard K. Kraetzschmar

For small variations, like those even present on the current ROBOCUP field
and lighting setup, the calibration process can make cuboids of target colors large
enough to compensate for these variations and still obtain good classification
results. The open question is whether this can also be done for larger variations,
like those present in scenarios involving daylight. In order to answer this question,
we perform the following experiments:

1.

2.

3.

4.

We first compare the target class boundaries for several scenarios. For each
scenario, the boundaries are the result of a manual calibration process based
on a representative set of images.
Using the manually calibrated color classificator for each scenario, we color-
classify a larger set of images. The spatial distribution of pixel values in each
color class is characterized for each scenario by computing and comparing
their mean and standard deviation.
In order to show that the results are not significantly influenced by the
chosen color classification procedure and its calibration process, the previous
results are compared with equivalent distributions of pixel values in HSV
space obtained from idealized color classifications, which were generated by
manually masking in some images areas with objects of interest and mapping
their pixel values to HSV space.
Finally, a few special examples were selected to illustrate some situations,
whose effects are insufficiently described by the above statistics. Even though
these effects may be marginal problems or side-issues, they cannot be ignored
and, under different circumstances, they may occur more frequently.

Fig. 4. Results of manually calibrating color classificators for different scenarios. The
cuboids for the target color classes are projected onto the hue/saturation plane in the
upper row, while the lower row contains projections onto the saturation/brightness
half-plane. Figures on the left relate to image set I, figures in the middle to image set
II and figures on the right relate to image set III.
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5 Experiments and Results

5.1 Comparing Manual Calibration Results for Different Scenarios
Figure 4 illustrates the resulting calibrations for the different scenarios. The
conflict resulting from the overlap between the white cuboid and other color
classes is resolved with a priority rule, which gives any other target color class
priority over white.

The figures show that the color cubes for the midday and lab settings are
larger and closer to each other (e.g. the blue and green cone on the rightmost
calibration for the lab scenario). This means an increased risk to misclassify pix-
els from different color classes. The nearer the color descriptions come together,
the smaller gets the catch-all class gray in between them.

5.2 Variations in Spatial Distribution of Color Classes
For this step, over one hundred images were processed with the appropriately
calibrated color classificator for a particular image set. Then, for each color class
the frequency and spatial distribution of HSV color values were collected from
the original images. Figure 5 illustrates the blobs within the HSV color space
resulting from this processing step for the fluorescent light scenario.

Fig. 5. Three-dimensional plots of the distribution of pixel values in HSV color space
for several target color classes, as obtained by color-classifying a single test image taken
from image set I. Colors in the figures represent the target color classes (e.g. yellow
for the yellow goal). The left image show a top-down view, the middle one the view
from one side and the right an isometric version of the same plot. The leftmost plot
corresponds with the top-left image in Figure 4, the middle with the bottom-left image
in Figure 4. The plot on the right gives a better view of the three-dimensional structure.

For the set of images of each scenario, the standard deviation and the
weighted arithmetical mean are calculated for the distributions of pixel values
for each color class. Table 1 show these values for the three different scenarios
and three different colors.

The standard deviation for the different colors increases the more difficult
lighting conditions become. The standard deviation for the hue values remains
relatively constant for all illuminations, but the standard deviation values for sat-
uration and even more for brightness increase significantly. Note f.i. the values
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for the green floor: During the night in Munich under constant fluorescent light,
the whole playing field was illuminated quite uniformly. As a result, standard
deviation for saturation was very low. The same location during midday shows
an increased standard deviation for saturation. The increased value is possibly
due to slowly varying illumination over time rather than a non-uniform light-
ing. Standard deviations increase also for the laboratory setting. Because these
images are recorded during a short period, the increased standard deviation is
the result of the non-uniform, very directed light, that throws hard shadows and
leaves parts of the playing field darker. The weighted mean also strengthens the
previous insight. Finally, an effect of the colored windows is that while the hue
value for the blue goal remains almost unaffected by daylight influence during
midday, the centers of the other colors change significantly.

Spatial Distributions of Idealized Color Classifications

To exclude the possibility that the results from the previous section are too
strongly influenced by the quality of the manual calibration procedure, we com-
pute spatial distributions of idealized color classifications and compare them
with the previous results. For each scenario and each target color class, several
images with different views of the object are selected. In each image, the ob-
ject represented by the target color class is manually masked and assigned to
the color class. Then, for each color class the spatial distribution of HSV color
values were collected from the original images, just like in the previous section.

Figure 6 illustrates the spatial distributions in the three different setups for
the target color classes green (on top-left, representing the carpet on the floor),
blue (top-right, representing the blue goal), and yellow (bottom, representing
the yellow goal). The three-dimensional structure is visualized using an isometric
perspective. Note, that the colors used in these images do not represent target
color classes, but different lighting situations. The green blob describes the object
under fluorescent light, the blue cluster the same object under midday natural
light conditions, and the red blob the same object under directed daylight in
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our laboratory. The different level of transparency in the plots describe different
iso-levels of the density distribution, with a convex hull drawn over all points
with the same histogram value (i.e. the opaque part has a higher density then
the transparent part, but are the same cluster from the same color).

Fig. 6. Three-dimensional plots of the arrangement of the same object respectively
under different illuminations within the HSV color space. The first image describe the
green color, the top-right plot the blue goal and the bottom image the colors of the
yellow goal.

The plots in Figure 6 seem to confirm the values from Table 1. For example,
in the first image in Figure 6, displaying the spatial distribution of the green
floor color, the opaque part of the red distribution (describing image set III)
is spatially much larger in the brightness dimension then the others. This il-
lustrates nicely the extremely varying illumination in this case. Note also, that
for the yellow target color displayed in the bottom image, the red blob remains
constrained on very low brightness values. This is explained in more detail in
Section 5.2.

The same statistics – standard deviations of the different color channels
within the HSV color space distribution and weighted mean – are calculated
for the idealized color classifications and displayed in Table 2. Because the yel-
low and blue corner posts were also masked out of the images for the idealized
color classification, the values for these two colors decrease slightly. The bright-
ness value for the yellow goal in the lab setting remains on a very low level. The
hue value for the blue goal is virtually the same, whereas for the other colors
it changes significantly. The top-right plot in Figure 6 illustrates the large stan-
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dard deviation for the blue goals during the games under natural light (the blue
cluster).

A remarkable congruence of the data obtained from idealized color classifica-
tions (Table 2) with those obtained from a manually calibrated color classificator
(Table 1) can be observed. This is a strong indication that the effects described
in Section 5.2 are not significantly biased by our choice of color classification
method and the calibration procedure.

Some Specific Examples

Finally, a few specific examples are presented which may serve as worst-case sce-
narios for certain aspects. The first example illustrates the problem of distance-
dependent variations of color recognition. In Figure 7 two views on the yellow
goal (within our laboratory) and the appropriately segmented images are shown.
The yellow goal can only be detected in the second image, where the robot is
closer to the goal. However, this problem is not due to a badly adjusted calibra-
tion of the color classificator. In the right image, parts of the background are
already getting classified as blue, which indicates that the calibration is at the
limit for the darker boundaries. Note that the yellow part of the corner post,
which is lightened directly by the daylight through the window, can be detected
in both images, while the yellow goal, whose side panel shadows the back part
of the goal, cannot.

Another example illustrates the influence of the colored windows during our
friendly game. Figure 8 shows two images with exactly the same robot with
identical cyan color markers in front of the same white border. The left image
is taken from image set I, the right image from image set II. The magnified
details illustrate, how dramatically the color values are changing and especially
the distance between the cyan and white values decreases. Under fluorescent
light, the (spatial) arithmetical distance between the two magnified RGB values
(255,255,255) and (199,255,255) is 56 (assuming all values are within a range
of [0..255]). Under natural daylight conditions with dyed windows, the distance
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Fig. 7. Examples on how the same color can be detected differently dependent on
the distance. The left two images shows the original recording, the right the color-
segmented image.

Fig. 8. Examples on how colored panes can influence the color. The left image shows
the robot with color marker in front of a white border under fluorescent light, the right
image the same robot in front of the same border, this time under daylight conditions.

between the upper detail (150,221,255) and the color marker detail (117,226,255)
decreases to 33 or even to 31 between the color marker and the lower wall-detail.
As an immediate consequence, we were not able to create a manual calibration,
that allowed to separate the color markers reliably from other objects.

The last example illustrates the effects of quick changes in natural daylight
illumination within a short time period. The images in Figure 9 were recorded
within 14 minutes. The leftmost image looks much like the example in Figure
2 for the natural daylight scenario. Note the bluish coloring of the floor, caused
by dyed windows. The second image shows almost the same view on the field a
short time later on, when the sun was briefly covered by clouds, and the field
was more or less illuminated by the additional fluorescent light. The RGB values
for the green color range within each image illustrates this effect nicely: In the
first image the weighted mean for all green values within the RGB color space
is (81,190,168), whereas the weighted mean for the green color in the second
image is (88,149,155). Note the strong shift for the green (middle) value. During
such situations, a fixed calibration of the color classificator causes classification
quality to deter significantly, as the right images of Figure 9 demonstrates. The
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second image from right segments the floor almost perfectly, assigning green color
to most parts of the carpet, whereas the rightmost image shows a significant
increase of the catch-all color class gray within the floor. Remember, that this
effect happens in our case during only 14 minutes – and could happen in even
shorter intervals, so that it may occur within a single half of a match, with no
opportunity of team coaches to perform any kind of manual or manually initiated
re-calibration.

Fig. 9. Example on how the illumination may change within a short time. The left two
images shows the original recording, the right the segmented images.

6 Conclusions

From the experiments and statistical analysis performed we can draw the fol-
lowing conclusions:

Strong variations in field illumination have a strong effect on the spatial
distribution of target color classes. Between certain situations differences
are so strong that the spatial distribution of certain color classes do not
even overlap any more (see Figure 4).
Due to these strong variations of the target color classes in color space it
will not be possible to obtain (neither manually nor by some automated pro-
cedure) a color classificator performing well under strongly varying lighting
conditions. Making color class cuboids large enough to account for lighting
variations causes too much noise and too many misclassifications for any
particular, locally stable lighting setup.
Because of most teams still being largely dependent on working color-based
vision methods, introducing natural light to the field setup is likely to have
dramatic effects on game performance.

We suggest to undertake the following steps in order to obtain robot vision
systems which are more robust against lighting variations:

As lighting will always be different on different playgrounds, teams should
develop and use automated on-site vision calibration routines (see e.g. [1]),
which the robot can perform autonomously when put into a new field.
Another possible path to improve color-based image processing in ROBOCUP
is to enhance and apply algorithms for improving color constancy. These
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algorithms try to “stabilize” color recognition, so that the same colors look
almost the same under different illuminations. Exemplary work in this area
was performed by Forsyth [2,3], or by Jobson and Rahman [4,5].
A third thread of work necessary for ROBOCUP is on using additional vi-
sual features aside of color for object detection and tracking, and possibly
integrating them with color-based methods. The realtime processing require-
ments implied by the ROBOCUP setup pose a particular challenge, especially
for many already existing methods in this area. A notable example for work
in this area which has already been proven in several ROBOCUP competi-
tions is by Hanek et. al. [6,7]. They use deformable models (snakes), which
are fitted to known objects within the images by an iterative refining process
based on local image statistics.

New results and methods in any of these areas would be of interest to everyone
working on sophisticated applications in robotics, e.g. service robotics in normal,
naturally lighted habitations or any variant of outdoor robotics. The ROBOCUP

middle-size league should foster research in this area by defining appropriate
technical challenges involving variations in lighting conditions.
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Abstract. In this paper we present a simple and new algorithm that
tracks the contour of several homogenous regions in a sequence of images.
The method exploits the fact that, when i.e. observing a moving object
(exposing a homogenous region), the regions in two consecutive frames
often overlap. We show that the method is valuable for the RoboCup
domain: It allows to track the green playing field and the goals very
efficiently, to detect the white marking lines precisely, enabling us to
recognize features in them (the center circle, the quatre circles, corners,
the rectangle of the penalty area,...). It is also useful to find the ball
and the obstacles. Furthermore, it provides data for path planning based
on potential field methods without further computation. We compared
the algorithm with the fastest existing method and measured a speed
enhancement of 30 percent. In contrast to other methods, our algorithm
not only tracks the center of blobs but yields the precise boundary shape
of the objects as a set of point sequences. First tests with real world data
have confirmed the applicability for other domains than RoboCup.

1 Introduction

The algorithm presented in this paper emerged from our aim to localize our
middle size robot by detecting the marking lines on the playing field. Our robot
is equipped with an omnidirectional catadioptric vision setup, with the cam-
era looking upwards into a convex mirror. In order to recognize features like
the center circle, the quatre circles, corners, rectangles, T-junctions, etc., it is
important to detected the lines precisely in the images, without false positives
and last but not least connected. The latter issue is important for fast feature
detection. Only if the order of line points is known, we can efficiently calculate
curvature measures and tangent directions, which is important for both, relative
matching as described in [14], and feature recognition.

To detect the marking lines the straight forward way is to use an edge detec-
tor. Possible solutions could be based on the Roberts Cross Edge Detector[19],
the Sobel Edge Detector [18], the Canny edge detector[6], the compass operator
[20], edge detectors using the Laplacian of Gaussian, Gabor filters[16] or wavelet
based solutions [15]. However, applying such a scheme to the whole image is
time consuming. In particular, when processing 15 up to 30 frames per second
for real-time vision, it is important to restrict the area within the image to which

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 250–261, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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the detector has to be applied. Furthermore, the problem of connecting the de-
tected edge points remains [8]. Another approach, which can be found in [11],
uses the Hough transform [10] for grouping, but this is not efficient.

To overcome the problem of linking model based prediction of edges has
been used extensively over the last years [3]. However, the problem is that the
model has to be known, and that the initial pose must be given. Although the
determination of the initial pose is possible by propagation of a probability
distribution [2], it is time consuming. Moreover, problems with matching under
larger translations are known [7], since the models converge to local minima.

We approached the line detection problem differently: The idea is to detect
the regions between the lines (see figure 1a). Since their boundaries neighbor the
lines, they can easily be recognized: Just step around the boundaries, calculate
the normal of the boundary curve at the actual position and apply a direction
specific detector. For instance, search for a green-white-green transition.

Fig. 1. (a) The green regions are tracked. The boundaries of the regions are visualized
by black lines. They are represented as sequences of points. (b) Objects are searched
along the boundaries. Black points mark detected obstacles, for the marking lines three
points are investigated along the normal. One on the line, and two at each side of the
line to verify a green-white-green transition. Detected ball points are painted black for
the sake of visibilitiy.

The method is also useful for detecting the obstacles and the ball: Just look
for something orange or black next to the boundaries of the green regions (figure
1b). Doing so, false balls outside the playing field are not detected since they are
not next to a green region in the image.

In this paper, we will show how the regions and their boundaries can be
tracked very efficiently. We use the results of the last image to calculate the
solution for the next, and on average only 10 percent of the pixels have to
be accessed per frame. Our tracking algorithm is based on the region growing
paradigm [4] [22] [21] [1] [9] [17]. However, we extend the paradigm to track regions
over time.
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The remainder of this paper is organized as follows: Section 2 reviews the
basic region growing algorithm and describes the key observation that leads to
the extension of the algorithm. In section 3 we describe the boundary extraction.
Section 4 illustrates the generality of the algorithm. Section 5 shows results of
the algorithm applying it within the RoboCup domain and comparing it with
the currently most used tracking algorithm by robotic soccer vision systems [5].
Finally, section 6 concludes the paper.

2 Extending the Region Growing Paradigm

We first give a short review of a specific region growing algorithm which will be
extended afterwards.

2.1 Region Growing by Pixel Aggregation

In Region Growing by Pixel Aggregation one starts with a small region (i.e. a
single pixel) and consecutively adjoins pixels of the region’s neighborhood as
long as some homogeneity criterion is fulfilled. This method can be implemented
in the following way: We reserve a two-dimensional array V which has the same
size as the image and which has a boolean entry for each pixel that indicates
whether the respective pixel has been visited yet. Further, we maintain a queue
Q that stores the spreading boundary pixels (their coordinates) of the region
during the execution of the algorithm. We refer to the stored elements in Q as
drops, following the idea that we pour out a glass of water at the seed pixel and
that the drops of this water spread over the region. Q just stores the boundary
drops at each time during the execution of the algorithm. Initially, if we start
with a single pixel, Q stores a single drop corresponding to the pixel which is also
marked as visited in V. The algorithm continues with a loop which is performed
as long as any drops are stored in Q. In each pass of the loop one drop is extracted
from the queue and the neighboring pixels are investigated. In the case of a 4-
neighborhood we inspect the top, right, bottom and left pixels. After assuring
that the pixels have not yet been visited, respectively, we determine whether
they hold for a specific homogeneity criterion, color similarity for instance. For
each pixel that conforms with this condition a new drop is instantiated and
stored in Q. After the loop terminates Q is empty and the region is marked in
V. Figure 2 shows an example of a growing process that finds the region of the
yellow goal.

2.2 The Key Observation

Our goal is to efficiently track regions over time. To give a specific example, we
want to track the yellow goal, while the robot moves. Assume, that the robot
starts at pose and takes an image Then the robot moves a little to pose
and takes another image Assume further that we have determined the region
A of the yellow goal in and the corresponding region B in by the above
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Fig. 2. The array V is visualized by the dark gray surface (visited elements). The white
circles represent the drops. Here, the algorithm does not work on single pixels, but on
blocks of 4 × 4 pixels.

region growing algorithm. If the video frequency is high enough with respect
to the movement of the robot, then the two regions will overlap as depicted in
figure 3. If we apply the region growing algorithm separately to image A and
B, then the running time for each is linear in the number of pixels (or blocks
of pixels) within the respective regions. We want to develop a more efficient
method. Assume that we have extracted region A, then roughly speaking, we
want to use the drops of the region growing of A to somehow flow to the region
of B by making use of the overlap. The drops of region A should first shrink to
the intersection S of A and B and then grow to the boundary of B. Thus, in
order to find region B we don’t start with a seed pixel, but with a whole seed
region, the intersection of A and B. To realize the algorithm a method of how
to shrink region A to the intersection of A and B has to be developed. This will
be done in the following subsection.

2.3 Shrinking Regions

We will develop the shrinking method in two steps. First we consider the case of
shrinking a region without stopping criterion. That is, the region shrinks until it
vanishes. Next, we modify the method so that shrinking stops at the intersection
of A and B.

In the first step, we don’t need any image information but just the array V in
which region A is marked and a queue of drops at the boundary of that region.
As we will need two different queues for growing and shrinking later, we denote
the queue used here as to avoid confusion. We apply the same operations
as in region growing with one exception: We reverse the meaning of V. As a
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Fig. 3. The regions of the yellow goal are determined (a) before and (b) after the robot
has moved. (c) The two regions overlap.

Fig. 4. The region shrinks until it vanishes. For this process no image information is
used.

result, the drops can only spread within the region marked in V and since they
initially are placed at the boundary their only means of escape is to move from
the outer to the inner of the region. Instead of marking elements in V, as in
region growing, entries in V are cleared while the drops spread. At the end,
is empty and V is cleared completely. This process is illustrated in figure 4.

In the second step we use image to determine when shrinking should stop.
We emphasize that the initial region (marked in V) is due to image while
only image is referenced during shrinking. Each time after a drop has been
extracted from we verify the homogeneity criterion for the corresponding
pixel in image If the pixel belongs to the region, then the drop is not allowed
to spread anymore. As a result the region shrinks to the intersection of region
A and B as depicted in figure 5. This is exactly inverse to the growing, where
drops only spread to neighbors that fulfill the homogeneity criterion.
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Fig. 5. The region shrinks up to the intersection area, that means, until all drops are
within the region of the new image.

2.4 Alternating Shrinking and Growing

Region growing is a well known technique which was extensively studied 20 years
ago. However, our new contribution is that region growing can also be used to
shrink regions and that alternation of shrinking and growing allows to track large
regions extremely efficiently.

To alternate shrinking and growing in order to track regions some problems
concerning the interface between the two stages must be solved. The first problem
is that after growing the queue of drops is empty but shrinking initially requires
a list of drops at the boundary of the region. In the same way shrinking ends with
an empty list of drops, but growing requires seed drops. To solve this problem
each of the two processes, growing and shrinking, has to build the initial queue
for the other procedure. We accomplish this by using two queues, Q and
Growing assumes the initial drops to be in Q and after execution Q is empty
and has been built up which stores the initial drops for shrinking. Shrinking
runs with these drops and initializes Q for the next growing.

During growing, when the neighbors of an extracted drop are inspected, the
drop is inserted into as initial drop for shrinking, if any of its neighbors does
not belong to the region. Vice versa, a drop that is extracted from during
shrinking is inserted to Q as initial drop for growing, if shrinking stops for this
drop.
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2.5 Controlling the Tracking

Since the tracked regions can be lost if the movement between two consecutive
images is too large, a control mechanism has to be integrated into the loop of
shrinking and growing. The control mechanism checks whether tracking has lost
the region. In this case an initial search has to be started. Depending on the
application this procedure might search within the whole or just within a part
of the image for a pixel or a block of pixels having a certain color or texture that
satisfies the homogeneity criterion and maybe some other detection criterion.
Later, we also describe how to extract the polygonal shape of the regions. If
a region gets lost, and an initial search is started, then first several regions
can be tracked and by using the information about the size and shape of the
regions some of them can be discarded. In this way the computational power is
concentrated on the regions of interest. To exclude a region from being tracked
one simply has to delete its entries in V and the corresponding drop queues. This
can be accomplished by a shrinking without stopping criterion as illustrated in
figure 4.

Fig. 6. (a) The boundary of a region is composed of a sequence of edge vectors. (b)
The direction of the edge vectors depend on the direction of the spreading at which
they are detected during the growing phase.

3 Boundary Extraction

The boundary of each region consists of a chain of small edge vectors (see figure
6a). Each edge vector represents one of the four sides of a pixel and the last edge
vector ends at the beginning of the first. During the growing phase, when a drop
reaches a border, the corresponding edge vectors are inserted into a special data
structure, the connectivity grid. It is a two-dimensional array, one wider and one
higher than the image. The cells do not correspond to the pixels in the image but
to the inter-pixel positions (corners of pixels), respectively. Each cell has 4 bits,
marking whether an edge vector starts at the corresponding position, directed
up, right, down or left, respectively. Initially, the grid is cleared. After growing
the grid contains the edges. Now, starting at any edge, one can follow the edges
through the grid and clear them in the same pass. Since situations appear where
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an edge has two possible successors, it is important to apply a rule: With respect
to the current direction, always choose the most left/right turning possibility.
In this way, it is guaranteed that all chains of edges are closed. After having
extracted the edges, the connectivity grid again is cleared and ready for the
next insertion process. This approach is similar to [4], but our method occupies
less memory, since [4] employs a supergrid of size and we
just use a grid of size where is the size of the image.
The result of boundary extraction is as set of point sequences, each forming a
closed curve.

4 Homogeneity Criterion

It is important to understand, that the described algorithm works with any
homogeneity criterion. We will give some examples. For RoboCup, our images
are in YUV 422 format. The YUV bytes of a pixel (24 Bit) are an index into
a 16 MB big lookup table. Each entry in the LUT is one byte big, and each of
the 8 bits represent a color class. We refer to a pixel’s LUT-entry as its class
mask. Verifying whether the pixel supports a certain class or collection of classes
is then possible with a single AND-operation. To be robust against image noise,
we do not run our region-tracking algorithm on single pixels, but on blocks of
4 × 4 pixels, in case of an image resolution of 640 × 480. Then, for tracking the
green field, we define a block to belong to the green region, if the number of
“green” pixels exceed a certain threshold (12 is a typical value). We have tested
this with extremely noisy images and we can assert that it works well.

However, the choice of homogeneity criterion is free. For instance, one could
define that two blocks of pixels are homogeneous, if there texture is similar
(assuming a texture classifier). One could also define, that two pixels are homo-
geneous, when an edge detector at the respective position yields low response.
The region tracking algorithm will run with any criterion. However, it is the task
of future research, to find the best criteria, and more important, how the criteria
can be calibrated automatically and adapt to changing lighting conditions.

5 Results

The advantage of our region tracking algorithm is that only the non-overlapping
parts of corresponding regions of successive images are processed. However, if the
regions don’t overlap, the algorithm has to lunch initial searches in each frame
and degenerates. Therefore the question is, how often do the regions overlap?
Of course, the answer depends on the application. In the following, we present
results from our RoboCup application. Here, we have tracked three different
types of regions: the green playing field and the blue and yellow regions (goal and
post markings). While the robot moved through the environment, we computed
the fraction of the processed area with respect to the size of the image and the
percentage of overlapping of the tracked regions. We determined these values for
each pair of successive frames and built the respective average over a longer time
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span (see table 1). We also counted the number of initial searches and repeated
the experiment for different movements (rotation/translation) and speeds of the
robot. Here, we should mention that our robots have omnidirectional wheels and
are able to rotate and translate into any direction at the same time.

The tracked regions overlap greatly and only a small fraction of the image
data is accessed (below 10%). As expected, the rotation is more disadvantages
then the translation. This is because objects that are far away from the robot
(as the goals) have a high speed in the image, if the robot rotates. Therefore
the regions might not overlap, and initial searches have to be executed. With a
rotational speed of 25 initials searches had to be done within 82 frames.
Assuming that an initial search requires accessing all the pixels in the image,
the algorithm yet performs well, compared with common methods, which access
all the pixels in each frame.

Although the theoretic running time of our tracking algorithm is evidently
faster than any algorithm that touches all the pixels in each image, the question
is whether this is also true for the practical running time, since the maintenance
of the drops, the queues and the connectivity grid might be more time consuming
than a straightforward implementation.

Therefore, we decided to compare the algorithm with the color segmentation
algorithm proposed in [5], which is believed to be the fastest color tracking



Tracking Regions 259

algorithm at the moment and which is applied by most teams in RoboCup.
The algorithm is based on classifying each pixel into one or more of up to 32
color classes using logical AND operations and it employs a tree-based union
find with path compression to group runs of pixels having the same color class.
We calibrated both algorithms to track green, blue and yellow regions. We did
not track the orange ball and black obstacles, because our system uses different
methods than color class tracking to recognize them. The following table gives
the absolute running times of the algorithms over 1000 frames with the robot
moving. Each image consist of 640 × 480 pixels ( YUV 4:2:2) and we applied a
Pentium III 800 Mhz processor.

CMU Algorithm
37.47 s

Our Algorithm
22.67 s

Thus, our algorithm is significantly faster. Moreover, our algorithm also extracts
the contour curves of all regions at each frame.

However, we do not claim that our algorithm performs better in all possible
cases. There might be applications where the other algorithm performs better.
This will typically be in cases, where many small and fast moving regions are to
be tracked.

6 Conclusion

We have proposed a new method that is able to efficiently track and extract the
boundaries of several homogeneous regions. The efficiency is accomplished by
not processing the entire images but concentrating on parts where regions are
expected. The algorithm exploits the fact that corresponding regions in succes-
sive images often overlap and it extends the region growing paradigm: Tracking
is accomplished by alternating shrinking and growing. We provide a homepage
for the algorithm, with source code available in C++ and demo videos1.

The algorithm is also very useful for edge extraction and tracking (also for
other features). The advantage is that feature detectors can be very selective and
that they have to be applied at a few locations only. For instance, when searching
for edges, a detector which responds to edges having a predefined direction can
be used. This is possible, because the boundary contour of each region and their
corresponding normal directions are computed by our method.

We have also demonstrated the application of the algorithm in a practi-
cal problem. In our real-time vision system for RoboCup we use the algorithm
to track regions like the goals, in order to locate and recognize these objects.
However, we also use the method to detect the marking lines on the playing
field, which are matched to a predefined model for the purpose of robot self-
localization. What makes the algorithm practical is, that both, region and edge
tracking, can be accomplished in the same run.

1 http: / /page. inf. fu-berlin.de/~ hundelsh/research/RegionTracking/ index.htm
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The method also exposes a useful interface for higher level algorithms. For in-
stance, visual attention can be implemented by controlling which regions should
be tracked. Here the primary issue is that when excluding a region from tracking,
the algorithm is really faster, since less pixels are accessed in the images. Another
interface is the extracted boundary contour. Since the algorithm is based on re-
gion growing connected boundaries are guaranteed. The boundary can serve as a
base for recognition of objects and movements or as a reference into the images.
In RoboCup for instance, we track the regions of the green playing field and
the boundary helps us to find other objects on the playing field. This is because
all objects like the ball and other robots being on the playing field are next to
the green regions in the images. Therefore their boundaries can be used as a
reference into the image where to search for the objects and they can be rapidly
detected. There is another advantage of the method, concerning the interface
between vision and path planning. When using potential field methods for path
planning [12], defining the field is an expensive operation. The occupancy grid
for the tracked green field can be used as potential field. Obstacles must not be
inserted, since they are not part the green region. However, the marking lines
must be inserted to the grid to allow the robot to pass over them. When using
omnidirectional vision, there is also the advantage that the resolution of the path
planning will be high for near but rough for distant positions.

There are three open questions future work should concentrate on. The first is
related to the homogeneity criterion. In this paper we have assumed a predefined
criterion, such as certain color classes for instance. However, rigidly defining a
homogeneity criterion will result in an inflexible algorithm. How can the homo-
geneity criterion be automatically defined? This is not just a question of finding
some thresholds but also of the kind of criterion to be used (color, texture,...).
Related to the homogeneity criterion is the question of scale [13]. How many
pixels should constitute a drop? If, for instance, there was a region whose pixels
had all the same color, then the algorithm could work on single pixels and the ho-
mogeneity criterion could be based on color difference. But, if texture is present,
more than a single pixels has to serve as a unit. The last question concerns the
correspondence of regions over time. Can the fact of overlap be exploited for
correspondence definition?
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Abstract. This paper presents a fast approach for edge-based self-
localization in RoboCup. The vision system extracts edges between the
field and field lines, borders, and goals following a grid-based approach
without processing whole images. These edges are employed for the self-
localization of the robot. Both image processing and self-localization
work in real-time on a Sony Aibo, i. e. at the frame rate of the cam-
era. The localization method was evaluated using a laser range sensor at
the field border as a reference system.

1 Introduction

The Sony Four-Legged Robot League (SFRL) is one of the official leagues in
RoboCup. Besides the use of four-legged robots, there are some other specialties
in that league. The first one is that the robot platform is standardized, i. e. the
Sony Aibo ERS-210 and ERS-210A (cf. Fig. 1a) are the only permitted systems,
and they can only be used without any modification. Therefore, in some sense the
SFRL can be seen as a software league, because it is neither possible nor required
to construct robots. Another characteristic is that the robots are completely
autonomous, i. e. there is no external computer beside the field (except from one
running the so-called game manager for the referee) that can help the players
in their calculations. The main sensor of the Sony Aibo is the camera located in
its head. The head can be turned around three axes (tilt, pan, and roll), and the
camera has a field of view of 58° by 48°. Thus, all teams in the league have to
tackle the problem of directed vision (in contrast to omni-vision as often used
in the middle-sized league or in the first approaches of the small-sized league to
local vision systems). With 20 degrees of freedom, the color camera, and more
than 30 further sensors, the movements and the sensor equipment of the robots
are the most complex in RoboCup so far, and they have to be controlled by a
single 200 MHz MIPS processor (400 MHz in the ERS-210A), i. e. all algorithms

* The Deutsche Forschungsgemeinschaft supports this work through the priority pro-
gram “Cooperating teams of mobile robots in dynamic environments”.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 262–273, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. a) Two Sony Aibo robots and a ball. b) The field used in the SFRL.

used, e. g. for image-processing or self-localization, have to be highly efficient to
run in real-time.

The soccer field in the SFRL has a size of approximately 5m×3m (cf. Fig. 1b).
As the main sensor of the robot is a camera, all objects on the RoboCup field are
color coded. There are two-colored flags for localization (pink and either yellow,
green, or skyblue), the two goals are of different color (yellow and skyblue), the
ball is orange (as in all RoboCup leagues), and the robots of the two teams wear
tricots in different colors (red and blue). However, there are no flags on a real
soccer field, and as it is the goal of the RoboCup initiative to compete with
the human world champion in 2050, it seems to be a natural thing to develop
techniques for self-localization that do not depend on artificial clues. In the
SFRL, all teams have to participate in three technical challenges as part of the
RoboCup championship. In 2003, self-localization without the six two-colored
flags around the field is one of these challenges. This challenge can be seen as a
preparation to remove the flags in the soccer games in 2004.

2 Grid-Based Line Detection

The localization method presented in this paper relies on the detection of edges
between differently colored objects on the field: the edges between the skyblue
goal and the field, the edges between the yellow goal and the field, the edges
between the border and the field, and the edges between the field lines and the
field (cf. Fig. 2a). The key idea of the method presented here is not to actually
extract lines from the image, but pixels on lines instead. This approach is faster
and more robust against misinterpretations, because lines are often partially
hidden either by other robots or due to the limited opening angle of the camera.

A very common preprocessing step for vision-based object recognition is color
segmentation using color tables, e. g. [1, 9]. Such methods directly map colors to
color classes on a pixel by pixel basis, which has some crucial drawbacks. On
the one hand, the color mapping has to be adapted when the lighting conditions
change, on the other hand, the mapping results in a loss of information, because
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Fig. 2. Detection of lines. a) Three types of lines: field/goal, field/border, and field/line.
b) The scan lines are scanned from top to bottom and from left to right. White pixels:
increase in Y-channel, black pixels: decrease in Y-channel.

the membership of a pixel in a certain class is a yes/no decision, ignoring the
influences of the surrounding pixels. Some researchers try to overcome these
limitations [5], but the solutions are too slow to work under real-time conditions
on a robot such as the Aibo.

The key ideas of the image-processing method used in this paper are that
speed can be achieved by avoiding processing all pixels of an image, and a certain
independence of the lighting conditions can be reached by focusing on contrast
patterns in the three different color channels. In case of the Aibo, these channels
are Y, U, and V.

To find pixels on edges, in the image horizontal and vertical lines having a
distance of ten pixels to each other are scanned from left to right and from top
to bottom following the method described in [6] (cf. Fig. 2b). In contrast to
this method color classification is only applied when a significant decrease in the
Y-channel is recognized, because the field is darker then the adjacent surfaces
of the field lines, the border, and the goals. If such a decrease in brightness has
been detected, the colors above and below are this edge are checked for being
green, white, skyblue, or yellow using a color table (cf. [7] for a solution to this
problem without using color tables).

If the color above the decrease in the Y-channel is skyblue or yellow, the pixel
lies on an edge between a goal and the field. The differentiation between a field
line and the border is a bit more complicated. In most of the cases the border
has a bigger size in the image than a field line. But a far distant border might be
smaller than a very close field line. For that reason the pixel where the decrease in
the Y-channel was found is assumed to lie on the ground. With the known height
and rotation of the camera the distance to that point is calculated by projecting
it to the ground plane. The distance leads to expected sizes of the border and
the field line in the image. For the classification these sizes are compared to the
distance between the increase and the decrease of the Y-channel in the image.
The projection of the pixels on the field plane is also used to determine their
relative position to the robot (cf. Fig. 3).
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Fig. 3. The projection of edge points to the field plane. a) Vertically. b) Horizontally.

3 Self-localization Based on Edge Points

An approach to self-localization is the so-called Monte-Carlo localization (MCL)
by Fox et al. [3]. It is a probabilistic method, in which the current location of
the robot is modeled as the density of a set of particles. Each particle can be
seen as the hypothesis of the robot being located at that position. Therefore,
such particles mainly consist of a robot pose i. e. a vector representing
the robot’s and its rotation

In many implementations, MCL was used on robots equipped with distance
sensors such as laser scanners or sonar sensors, e. g. in the original one [3]. Only
in a few approaches, vision is used for self-localization [2, 11]. Self-localization
in RoboCup is different, because the area the robots can be located at is rela-
tively small, i. e. the field, but in that area the position of the robots has to be
determined quite precisely to allow different robots of the same team to commu-
nicate about objects on the field, and to follow some location-based rules of the
game. Odometry is very unreliable, because the robots walk, and they tend to
push each other around. As the Aibo is equipped with a sensor with a narrow
opening angle of 58°, only a few objects usable for self-localization can be seen
at once, and sometimes misreadings are in the majority. The method presented
here takes these circumstances into account.

3.1 Monte-Carlo Localization

A Markov-localization method requires both a motion model and an observa-
tion model. The motion model expresses the probability for certain actions to
move the robot to certain relative positions. The observation model describes
the probability for taking certain measurements at certain locations.

The localization approach works as follows: first, all particles are moved ac-
cording to the motion model of the previous action of the robot. Then, the
probabilities are determined for all particles on the basis of the observation
model for the current sensor readings. Based on these probabilities, the so-called
resampling is performed, i. e. moving more particles to the locations of samples
with a high probability. Afterwards, the average of the probability distribution is
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determined, representing the best estimation of the current robot pose. Finally,
the process repeats from the beginning.

3.2 Motion Model

The motion model represents the effects of actions on the robot’s pose. First
of all, an odometry position is maintained that is derived from the motions
performed (gaits, kicks, etc.). As this value is only a rough estimate, in addition
a random error is assumed that depends on the distance traveled and the
rotation performed since the last self-localization. For each sample, the new pose
is determined as Note that the operation
+ involves coordinate transformations based on the rotational components of the
poses.

3.3 Observation Model

The localization is based on the points on edges determined by the image-
processing system (cf. Sect. 2). Each pixel has an edge type (field, border, yellow
goal, or blue goal), and by projecting it on the field, a relative offset from the
body center of the robot is determined. Note that the calculation of the offsets is
prone to errors because the pose of the camera cannot be determined precisely. In
fact, the farther away a point is, the less precise the distance can be determined.
However, the precision of the direction to a certain point is not dependent on
the distance of that point.

Information Provided by Edge Points.  The four edge types provide very
different information: The field lines are mostly oriented across the field. As lines
only provide localization information perpendicular to their orientation, the field
lines can only help the robot to find its position along the field. The field lines are
seen less often than the border. The border is surrounding the field. Therefore
it provides information in both Cartesian directions, but it is often quite far
away from the robot. Therefore, the distance information is less precise than the
one provided by the field lines. The border is seen from nearly any location on
the field. Goals are the only means to determine the orientation on the field,
because the field lines and the border are mirror symmetric. The goals are seen
only rarely.

If the probability distribution for the pose of the robot had been modeled by
a large set of particles, the fact that different edges provide different information
and that they are seen in different frequency would not be a problem. However,
to reach real-time performance on an Aibo robot, only a small set of samples
can be employed to approximate the probability distribution. In such a small
set, the samples sometimes behave more like individuals than as a part of joint
distribution. To clarify this issue, let us assume the following situation: as the
field is mirror symmetric, only the recognition of the goals can determine the
correct orientation on the field. Many samples will be located at the actual
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Fig. 4. Distances from edges. Distance is visualized as thickness of dots. a) Field lines.
b) Border. c) One goal. d) The other goal.

location of the robot, but several others are placed at the mirror symmetric
variant, because only the recognition of the goals can discriminate between the
two possibilities. For a longer period of time, no goal is detected, but the border
and the field lines are seen. Under these conditions, it is possible that the samples
on the wrong side of the field better match the measurements of the border and
the field lines than the correctly located ones, resulting in a higher probability
for the wrong position. So the estimated pose of the robot will flip from one
orientation alternative to the other without ever seeing a goal. This is not the
desired behavior, and it would be quite risky in actual soccer games.

To avoid this problem, separate probabilities for field lines, borders, and goals
are maintained for each particle.

Closest Model Points.  The projections of the pixels are used to determine
the three probabilities of each sample in the Monte-Carlo distribution. As the
positions of the samples on the field are known, it can be determined for each
measurement and each sample, where the measured points would be located on
the field if the position of the sample was correct. For each of these measured
points in field coordinates, it can be calculated, where the closest point on a real
field line of the corresponding type is located. Then, the horizontal and vertical
angles from the camera to this model point are determined. These two angles
of the model point are compared to the two angles of the measured point. The
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smaller the deviations between the model point and the measured point from a
hypothetic position are, the more probable the robot is really located at that
position. Deviations in the vertical angle (i. e. distance) are judged less rigidly
than deviations in the horizontal angle (i.e. direction).

Calculating the closest point on an edge in the field model for a small number
of measured points is still an expensive operation if it has to be performed for,
e.g., 100 samples. Therefore, the model points are pre-calculated for each edge
type and stored in two-dimensional lookup tables with a resolution of 2.5 cm.
That way, the closest point on an edge of the corresponding type can be deter-
mined by a simple table lookup. Figure 4 visualizes the distances of measured
points to the closest model point for the four different edge types.

Probabilities. The observation model only takes the bearings on the edges
into account that are actually seen, i.e., it is ignored whether the robot has
not seen a certain edge that it should have seen according to its hypothetical
position and the camera pose. Therefore, the probabilities of the particles are
only calculated from the similarities of the measured angles to the expected
angles. Each similarity is determined from the measured angle and the
expected angle for a certain pose by applying a sigmoid function to the
difference of both angles weighted by a constant

If and are vertical angles and and are horizontal angles,
the overall similarity of a sample for a certain edge type is calculated as:

Calculating the probability for all points on edges found and for all samples in the
Monte-Carlo distribution would be a costly operation. Therefore, only a single
point of each edge type (if detected) is selected per image by random. To achieve
stability against misreadings, resulting either from image processing problems or
from the bad synchronization between receiving an image and the corresponding
joint angles of the head, the change of the probability of each sample for each edge
type is limited to a certain maximum. Thus misreadings will not immediately
affect the probability distribution. Instead, several readings are required to lower
the probability, resulting in a higher stability of the distribution. However, if the
position of the robot was changed externally, the measurements will constantly
be inconsistent with the current distribution of the samples, and therefore the
probabilities will fall rapidly, and resampling (cf. Sect. 3.4) will take place.

The filtered probability for a certain edge type is updated
for each point of that type:



and are 20 cm and 30°.

3.5 Drawing from Observations

So far, the observation of edge points has only been used to determine the prob-
ability of the robot for being at a certain location. However, observations can
also be used to generate candidate positions for the localization, i. e. to place
samples at certain positions on the field. This approach follows the sensor reset-
ting idea of Lenser and Veloso [8], and it can be seen as the small-scale version of
the Mixture MCL by Thrun et al. [10]. As a single observation cannot uniquely
determine the location of the robot, candidate positions are drawn from all loca-
tions from which a certain measurement could have been made. To realize this,
the robot is equipped with a table for each edge type that contains a large num-
ber of poses on the field indexed by the distance to the edge of the corresponding
type that would be measured from that location in forward direction. Thus for
each measurement, a candidate position can be drawn in constant time from a
set of locations that would all provide similar measurements. As all entries in
the table only assume measurements in forward direction, the resulting poses
have to be rotated to compensate for the direction of the actual measurement.

Such candidate positions are used to replace samples with a low probability.
Whether a sample is replaced or not is also drawn, based on the probability
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The probability  of a certain particle is the product of the three separate prob-
abilities for edges of field lines, the border, and goals:

3.4 Resampling

In the resampling step, the samples are moved according to their probabilities.
This is done in two steps: First, the samples are copied from the old distribution
to a new distribution. Their frequency in the new distribution depends on the
probability  of each sample, so more probable samples are copied more often
than less probable ones, and improbable samples are removed. In a second step
that is in fact part of the next motion update, the particles are moved locally
according to their probability. The more probable a sample is, the less it is moved.
This can be seen as a probabilistic random search for the best position, because
the samples that are randomly moved closer to the real position of the robot will
be rewarded by better probabilities during the next observation update steps,
and they will therefore be more frequent in future distributions. The samples
are moved according to the following equation:

rnd returns random numbers in the range [–1...1]. Typical values used for
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of that sample in relation to the average probability of all samples, i. e. if the
following condition is satisfied:

In this case, rnd provides a random number between 0 and 1. If a sample is
replaced, the new sample has probabilities that are a little bit below the av-
erage. Therefore, they have to be acknowledged by further measurements before
they are seen as real candidates for the position of the robot.

3.6 Estimating the Pose of the Robot

The pose of the robot is calculated from the sample distribution in two steps:
first, the largest cluster is determined, and then the current pose is calculated
as the average of all samples belonging to that cluster. To calculate the largest
cluster, all samples are assigned to a grid that discretizes the and
space into 10 × 10 × 10 cells. Then, it is searched for the 2 × 2 × 2 sub-cube
that contains the maximum number of samples. All samples belonging to that
sub-cube are used to estimate the current pose of the robot. Whereas the mean

and can directly be determined, averaging the angles is not
straightforward, because of their circularity. Instead, the mean angle is
calculated as the orientation of the sum of all direction vectors:

4 Experiments

To judge the performance of the localization approach, two different experiments
were conducted. The first one measures the localization error when the robot is
continuously moving. The second one evaluates the precision in reaching certain
goal points.

4.1 Experimental Setup

To be able to evaluate the precision of an approach for self-localization, a refer-
ence method for localization is required. Gutmann and Fox [4] have analyzed dif-
ferent localization approaches using the Aibo by manually controlling the robot
around using a joystick, and whenever it reached a position that was previously
marked, they stored the position of that marker and the position as calculated
by the robot in a log file. They also stored all perceptions of the robot, allowing
them to test different localization approaches based on the same data.

The setup used for the experiments presented in this paper is a little bit
different. To be able to continuously track the position of the robot, a laser
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Fig. 5. The experimental setup. The laser scanner is fixed to the border of the field.
The robot carries a vertical paper tube on its back that is measured by the laser sensor.

range finder was placed at the border of the field. Within its opening angle of
180°, it measured distances in a height of 35 cm, i. e. above the goals. The robot
used for the experiment was equipped with a paper tube on its back that was
high enough to be detected by the laser range finder (cf. Fig. 5). This way, the
position of the robot could easily be determined by searching for an area that was
significantly closer to the laser scanner than the neighboring areas. The shortest
distance within that area plus the radius of the tube was used as distance to the
robot. Together with the angle under which the robot was measured, the exact
location of the robot was determined.

In both experiments, the robot was continuously turning its head from left
to right and vice versa. The Monte-Carlo localization method used 100 samples.

4.2 Experiment 1

The goal of the first experiment was to judge the precision of the localization
approach when the robot is continuously moving. To accomplish this, the robot
was randomly moved around on the field with a maximum speed of 15 cm/s
using a joystick. The positions of the robot as calculated by the robot itself and
as measured by the laser scanner were stored in a file. The experiment took
about 18 minutes, resulting in approximately 5300 measurements.

The result was an average error of 10.5 cm, i. e. less than 4% of the width of
the soccer field and less than 2.2% of its length. 60% of the measurements had
an error less than this average. Figure 6a shows the path traveled and the errors
made. Please note that this outcome is similar to the results presented in [4],
with the two exceptions that Gutmann and Fox used color marks for localization,
and that they performed their experiments on a small 3m×2m field. In addition,
they worked on a log file, allowing them to optimally adjust the parameters of
their algorithms, e.g. the Monte-Carlo localization approach used needed only
30 samples.
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Fig. 6. Experimental results. Each line connects a position calculated by the robot
with one determined by the laser scanner. a) First experiment. b) Second experiment.

4.3 Experiment 2

The goal of the second experiment was to evaluate the precision in reaching
certain goal points. In this experiment, random goal positions were given to the
robot. The system then performed the so-called go-to-point skill to reach the
specified location. When the robot did not move anymore, the coordinates of the
goal position, the position calculated by the robot, and the position measured
by the laser scanner were stored in a file. In the experiment, 68 positions had to
be reached.

There were two results: the average error between the goal position and the
position reported by the laser scanner was 9.4 cm. 66% of the goals were reached
with smaller deviations. However, the go-to-point skill does not reach the goal
position precisely. It often stops one or two cm too early. Therefore, the average
error between the position measured by the robot and the position measured by
the laser sensor is smaller, namely 8.4 cm. 60% of the goals were even reached
with a smaller error. Figure 6b shows the 68 goal positions and the positions
reached by the robot.

5 Conclusions and Future Work

This paper presents an approach for edge-based self-localization in the SFRL. It
is based on a vision system that extracts edges without processing whole images.
The localization method is a variant of the well known Monte-Carlo localization.
While using only a small number of samples, it increases the stability of the
localization by maintaining separate probabilities for different edge types for
each sample. These probabilities are only adapted slowly. This results in a fast,
robust, and precise self-localization of the robot, and it can be seen as a milestone
for the SFRL, because it shows that a self-localization without the color beacons
is possible.

However, the results presented in this paper only show that edge-based local-
ization is possible for a robot that is alone on the field. Further experiments have
to show whether the localization method will also work during actual RoboCup
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games. While the recognition of the edge points is quite robust, the head cannot
swing from left to right and back during actual soccer games, because the robot
has to track the ball. Therefore, the situation is different, and it requires for a
suitable control strategy for the head posture.
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Abstract. At present, visual localization of soccer playing robots taking
part in the RoboCup contest is mainly achieved by using colored arti-
ficial landmarks. As known, this method causes further vision problems
like color classification and segmentation under variable light conditions.
Additionally, robots confined to use visual sensor information from com-
mon cameras usually waste time in switching between the modi of playing
soccer and searching landmarks for localization. An upcoming approach
to solve these problems is the detection of field lines. Motivated by our
research in using a compact symmetry operator for natural feature ex-
traction in mobile robot applications, we propose its application to the
RoboCup contest. Symmetry is a structural feature and as results show,
it is highly independent of illumination changes and very compliant to
the task of line detection. We will motivate symmetry as a natural fea-
ture, discuss the symmetry operator and finally present results of the
field line extraction.

1 Introduction

For mobile robot tasks it is preferable to concentrate on visual sensor information
only. In contrast to other types of sensor data, camera images offer additional
information for range estimation, object classification, localization and naviga-
tion. Human vision proves that it is possible to realize these tasks without using
laser scanners or ultrasonic sensors. In this case, performance is relying on robust
image features to be recognized, tracked or classified. In structured workspaces,
extraction of those features may be simple if constant light conditions, color
markings and maps can be used. In arbitrary environments, however, it is nec-
essary to extract natural and cognitive features.

One of those is symmetry. Most objects in our world have a high degree of
symmetry, maybe because it is appropriate to a certain kind of beauty, simplicity
or usefulness. Just like animals or plants are quite symmetrical in shape, humans
are inclined to use symmetry in art, architecture and artifacts. Therefore, sym-
metry has been tested in psychological experiments to examine how and how
effective human vision explores symmetric objects and scenes [5, 6].

Especially reflective symmetry and its orientation seem of high importance
for human vision. Eye-tracking experiments pointed out that there are differ-
ences in quality and speed of detecting several types of symmetry, e.g. vertical
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mirror symmetry (reflective symmetry about a vertical axis) features very quick
and accurate detection in most cases. Assuming the presence of horizontal or
vertical reflective symmetry in a scene, people are able to initially detect and
take advantage of the symmetry axis for further visual exploration.

Because of its relevance in human perception, symmetry has been widely
studied in psychological context. Palmer and Hemenway [6] studied the latency
for detecting different types of reflective symmetry in a set of arbitrary oriented
polygon shapes. Their results show that detection is fastest for vertical sym-
metry, next fastest for horizontal symmetry and slowest for skewed symmetries.
Locher and Nodine [5] made experiments on visual detection and attention of
symmetry in composed pictures and showed that the axis of symmetry is used
as a perceptual landmark for visual exploration. Ferguson [2] presents the de-
tection of symmetry using visual relations, adjustment of an object’s reference
frame using its symmetry axes and analyzation of orientation effects.

In computer vision tasks, symmetry has also been used in different applica-
tions. Sun [8] proposes a fast symmetry detection algorithm to detect the main
symmetry axis of an image. Reisfeld et al. [7] define a generalized symmetry
transform including reflective symmetry to extract regions of interest in arbi-
trary images and to determine an object’s value of symmetry. They use a square
mask detecting symmetry and gradient-based interest to establish a symmetry
picture. Similar results are achieved by Kovesi [4] by analyzing the frequency
components of an image. This is based on the idea that if most components
have their minimum or maximum at a point of interest, it will correspond to
a point of huge symmetry. Chetverikov [1] computes symmetry in order to find
orientations of faces in portraits or to detect structural defects in industrial
applications. Therefore, he defines a regularity value based on the symmetrical
regularity of a pattern. Face detecting is done by Zabrodsky et al. [10] by utilizing
symmetry. By using explicitely defined rotational symmetry, they are able to re-
construct partially occluded objects, in the case that they are roughly rotational
symmetric (e.g. in an image with partially occluded asymmetric flowers).

2 The Symmetry Operator

Related approaches use symmetry in a global sense. Some use symmetry as a
feature of the image itself [1,8], detect reflective symmetries of any direction [1,
4,7,8] or additionally incorporate rotational symmetries [10].

Our line detection method is based on a compact 1-dimensional symmetry
operator for arbitrary images [3]. For each pixel of the image, a qualitative
value of reflective symmetry in horizontal or vertical direction is determined.
Vertical symmetry is defined as symmetry about a vertical axis, thus only pixels
in the same image row have to be considered for the detection
of vertical symmetry about a pixel where is the width of the image.
The same is applied for horizontal symmetry regarding only one column of the
image. Furthermore, robot vision requires processing of real images. Because
of the common image distortion in real images, an operator detecting exact,
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mathematic symmetry fails and offers erroneous symmetry images. Therefore,
we propose the following qualitative symmetry operator based on a normalized
mean square error function:

where is the size of the surrounding of in which its value of symmetry
shall be detected. Thus, the complete number of pixels considered is C is a
normalization constant depending on the used color space and on which
is a radial weighting function. The difference between two opposing points
and is determined by a gradient function which usually is
the Euclidian distance of the corresponding color vectors and For all
presented experiments, we used 8-bit gray-scale representation with

where is the maximum error available (depending on color space), and a linear
weighting function additionally depending on

The larger the more it may exceed the visible region R and the more the
error function gets burdened with the maximum error  (see Eq. 2). In this case,
image border regions (left and right for vertical symmetry, see Fig. 1b and 1d;
top and bottom for horizontal symmetry, see Fig. 1c and 1e) get more influenced
by the effect of fading.

Important symmetry axes can be found at places where not necessarily high
symmetry values but symmetry peaks can be detected. Though the extraction
of maxima and minima of a symmetry image causes more distortion in resulting
binary images, it is more significant than using a threshold value. Thresholds
may vary from application to application or even from image to image. Addi-
tionally, appropriate thresholds are difficult to find for normalized symmetry. A
symmetry value of 0 corresponds to hard black-white transitions between each
pair of opposing points and while a value of 1 corresponds to exact
parity. Thus, high symmetry values are more frequent and much more dense,
which makes threshold setting very ineffective. Symmetry is more adapted for
the application of local extrema, since it is a regional feature characterizing the
local environment (in contrast to local features like edges). Since calculation of
vertical symmetry in one row is independent of those in other rows or columns,
maxima and minima can be detected line by line, respectively column by column
for horizontal symmetry. Results of this symmetry axes detection are presented
in Fig. 2. Note that each result has been achieved by only using the symmetry
operator and maximum detection, without any kind of pre- or post-processing
like Gauss filtering, segmentation or related techniques.
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Fig. 1. Symmetry images of a RoboCup image (174×114) (a): vertical and horizontal
symmetry using (b,c) and (d,e).

Fig. 2. Symmetry maxima of the RoboCup image (a) using for vertical (b) and
horizontal (c) symmetry axes extraction.

3 Experimental Results

In addition to the extraction of symmetry axes, symmetry feature points can
be extracted as crossings of vertical and horizontal symmetry axes. Zhang and
Huebner [11] used this feature type to track and classify points of interest with a
mobile robot using an omnidirectional vision sensor. In the context of panoramic
images, another application is the usage of histograms of vertical symmetry
axes as a feature to recognize doors or the direction of the hallway. The several
methods of feature extraction are presented in Fig. 3, but surely offer further
expansion. Choosing the best feature method mainly depends on the specific
application. Vertical symmetry histograms and symmetry feature points were
useful in panoramic images for mobile robot tasks like range estimation. In this
section, we will demonstrate our RoboCup line detection experiments based on
symmetry axes extraction.
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Fig. 3. Several methods of symmetry feature extraction.

3.1 Symmetry Line Filter

The task of line extraction was motivated by visual mobile robot localization
in the RoboCup contest. In this context, localization highly depends on robust
recognition of color markings that have to be explored around the field. For
robots with common cameras, searching those marks deters from concentrating
on game objects like the ball. Thus, it is only possible to either localize the robot
or to capture the ball at a time, accordingly it would be more efficient to likewise
concentrate on the field for localization. A possible and more intelligent solution
could be offered by the extraction of field lines.

Line extraction techniques usually need some preprocessing, let edge detec-
tion, thresholding or thinning only be a few examples. Using symmetry, we can
detect lines as a structure from arbitrary images. For example, a horizontal
line is a structure where we should continuously detect a given

in each small vertical neighborhood
along the line. Actually, is sufficient, because the symmetry axis S implies
that there is another symmetric to An example for detection of this
structure is shown in Fig. 4, where only horizontal symmetry axes using
were detected. If the specific AS-pattern can be found in the same environment,
we can assume it is part of a line.

3.2 Line Detection

In the following, two approaches are presented to extract lines from the images
resulting from the proposed symmetry line filter. The first one is a modified
Hough approach using the Wallace Muff space [9], which represents a line by its
start and end point on the image border rectangle.

The Muff parameter space (Fig. 5b) shows that there are two lines that lead
from the left to the right side of the symmetry line image (Fig. 5a). The result
shown in Fig. 5c seems quite acceptable, but it needed several adaptation steps
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Fig. 4. (a) RoboCup image. (b) Horizontal symmetry maxima and minima (gray = A,
black = S) using (c) Filtered line points by AS pattern.

Fig. 5. (a) Symmetry line image. (b) Muff parameter space. (c) Lines found in Muff
space.

for this result, mainly because of the difficulty to extract maxima in Muff space.
There are further disadvantages of this approach, for example, a line now is
represented by its image border points, thus information about line segments
is lost. Additionally, curve segments may also be detected as lines with this
method, that yet is complex enough without a modified Hough transform for
circle detection.

Because of these disadvantages, we developed another approach that takes
advantage of the fact that most feature points of the symmetry line image only
have one or two neighboring feature points. Simply using the number of feature
points in the 3×3-neighborhood of a point each feature point can be classified
as follows:

Type A: if has no neighbor, it is not interesting for line extraction.
Type B: if has one neighbor, it is start or end point of a line.
Type C: if has more neighbors, it is part of a line.
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Thus, we only have to search for feature points of type B (a line’s start point) and
recursively search the next neighboring point of type C, until we find another
point of type B (the line’s end point). Therefore, we use the search patterns
described in Fig. 6 that are rotational invariant:

Fig. 6. The two search patterns for line segmentation.

Suppose X and Y are points of type B or C, and Y has been detected as the
neighbor of X. Now we can start searching the neighboring fields as proposed,
until we find a new feature point. If no feature point is found, Y is the end point
of the current line, otherwise we proceed at Y in the same manner. Note that the
fields left empty can not be occupied by feature points because of the symmetry
maxima detection.

Each line segment can now be represented as the list of feature points found
by this method. Based on this representation, we can access further information
about the line, e.g. the variance of each point to the line described by start and
end point. This measure is very useful to easily distinguish curves from straight
lines, because the maximum variance will probably exceed a few pixels in the
first case (see Fig. 7).

Some results of arbitrary RoboCup images are presented in Fig. 8. In each
case, we had to search for thin white horizontal lines. Thus, we applied the hor-

Fig. 7. Screenshot of the Line Classificator Dialog.
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Fig. 8. Results of the horizontal symmetry line detection and classification. In each
line: source image, lines detected by Muff space approach, lines and curves (dotted)
detected by own approach.

izontal symmetry operator using and included an illumination threshold
neglecting those feature points having a gray-scale value smaller than 100 in
the source image. Additionally, we did not care about lines shorter than a given
threshold and implemented a heuristic to combine line segments, in the case
that they seem to belong to the same field line, but are disrupted by occluding
objects.

As proposed, the performance of this method is quite acceptable. Addition-
ally, it is more compact and faster than the Muff space approach. It needs less
adaptation, but offers extraction of line segments and classification of curves. In
Fig. 8, all line segments are simply plotted as lines from start point to end point,
but those identified as curve segments are dotted.
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4 Conclusions

We proposed a compact symmetry operator detecting horizontal and vertical
reflective symmetry. Resulting symmetry images offer multiple feature extraction
methods, especially binary images derived from symmetry axis detection are
interesting for further image processing. The operator can be applied to arbitrary
images without prior adaptation and without thresholds, the only parameters to
specify are the size of the operator mask and the resolution of symmetry data.
As a structural feature, symmetry is additionally less dependant on illumination
changes, thus no color table or classification is needed.

The operator and the proposed line extraction technique are able to detect
lines in a promising and fast way, which is a basic condition for further appli-
cations like localization and navigation. As presented, horizontal and vertical
symmetry are not purely restricted to detect exact horizontal or vertical lines.
For all experiments, only the horizontal operator was used for extracting nearly
horizontal lines, but for surely finding all lines in the image, both operators must
be used.

Considering the algorithm in comparison to competitive approaches will
be another aim. The effort of time seems quite acceptable compared to other
gradient-based operators, but it is worse than approaches based on color seg-
mentation. On the other hand, it is an advantage of the proposed operator that
it is highly independent of color. In addition to this, the quality of the operator
is very convincing with reference to its compactness and line detection ability.

Future work in the context of the RoboCup contest will also consist of sup-
porting localization methods with the lines detected. Some possible approaches
would be the use of lines as observations for Monte Carlo Localization or using
them for position estimation by Spatial Reasoning.
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Abstract. This paper proposes using topics central to RoboCup, partic-
ularly autonomous agents and multiagent systems, as the subject-matter
for a course designed to introduce undergraduate students to all facets
of computer science research. Experiences are presented from the design
and implementation of such a course. The course is structured around
an ongoing incremental programming project that culminates in a class
tournament in the RoboCup Soccer Server, an open-source infrastructure
built to support multiagent systems research and education.

1 Introduction

Most upper-division computer science (CS) majors have determined that they
enjoy taking CS classes, or at least that they are relatively good at it. However,
this determination may not be indicative of a propensity for computer science
research. Indeed, many CS Ph.D. candidates have discovered that they are not
cut out for research only after investing several years in a graduate program.
Conversely, there are presumably those students who could have enjoyed quite
successful research careers had they only thought to give it a shot.

One obvious explanation for these phenomena is that traditional undergrad-
uate computer science courses demand very different skills from those required
of researchers1. In particular, traditional coursework typically requires students
to:

read textbooks;
sit (often silently) in large lectures;
execute programming tasks with correct and complete answers;
work alone; and
take exams.

On the other hand, researchers typically must:

read about and critically assess original research;
speak in public;

1 A similar argument likely holds in other areas of scientific research. This paper speaks
specifically from a computer science perspective due to the fact that the author’s
experience lies mainly in that field.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 284–295, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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collaborate effectively with peers;
devise solutions and/or approaches to open-ended problems; and
write about these solutions and/or approaches.

Given these differences, it is not surprising that proficiency at coursework
does not correlate perfectly with proficiency at research. In response to this
observation, many Ph.D. programs now encourage and/or require their students
to engage in research activities from the outset of their graduate studies with the
aim of helping students to determine quickly whether they are truly interested
in pursuing a career in research.

This paper advocates giving students an opportunity to make this determina-
tion before even entering graduate school. One method for doing so is to encour-
age students to engage in individual undergraduate research projects. However
such opportunities are quite varied in scope and limited in availability. Another
method for doing so – the one put forth in this paper – is to offer undergraduate
coursework specifically designed to require the same skills required of professional
researchers.

This paper argues that RoboCup is an ideal topic around which to build such
a course. Experiences are presented from the design and implementation of such
a course focusing in particular on autonomous agents and multiagent systems.
The course is structured around an ongoing incremental programming project
culminating in a class tournament in the RoboCup Soccer Server, an open-source
infrastructure built to support multiagent systems research and education [11].

The remainder of this paper is organized as follows. Section 2 presents some
general principles to be followed by a course designed to introduce research to
undergraduates. Section 3 details a specific implementation of these principles in
the form of a course entitled Autonomous Multiagent Systems. Section 4 presents
anecdotal results from this course and concludes.

2 General Principles

This section proposes a set of five principles to be followed when creating a course
for the purpose of introducing undergraduates to scientific research. These prin-
ciples are illustrated in the context of an AI-based course that makes extensive
use of the RoboCup domain in Section 3.

Open-Ended Project. The most crucial element of such a course is a long-
term open-ended assignment that leaves as much room as possible for cre-
ativity and innovation. For practical purposes and to avoid mass frustration
on the parts of the students, it must be possible to get some result fairly
easily. However it is very important that there be no natural stopping point.
Instead, students should propose an approach and a goal for their projects
on their own before beginning.
Students are used to assignments with the characteristic that they can rec-
ognize when they have reached a correct or sufficient result and thus can
safely quit. However, researchers often work on long-term projects with no
clear answers. Thus it is important to have some such challenging project in
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the class. The difficulty then becomes motivating the students to meet the
challenge.
One motivational technique is to have the project culminate in a class com-
petition. Even if the competition has no impact on the student’s grade, it
can be a strong impetus to going above and beyond the effort typically re-
served for a class project. AI is rich in domains that are appropriate for such
competitions, with the RoboCup soccer domain [11] being perhaps the most
popular example. Experiences with this domain are reported in Section 3.

Read Research Papers. Students are used to reading secondary sources, such
as textbooks, in which many ideas are synthesized and put into a coherent
perspective. While these sources may be preferable to primary sources from
a pedagogical perspective, they do not prepare students for the activity of
reading and assessing cutting-edge research papers.
Consequently, course readings should be predominantly primary sources.
They need not be the most current articles in the field. But they should
be assigned in the form in which they were originally published. Whenever
possible, readings with opposing views should be selected so that the stu-
dents must form their own opinions about their relative merits.
Finally, the articles must be chosen so as to be accessible to students without
extensive background (other than previous course readings). This require-
ment is perhaps the most difficult to meet for many course topics.

Require Class Participation. It is not sufficient to merely assign the research
papers. There must be some incentive for the students to read them from a
critical perspective. For example, students can be required to come to class
prepared with questions about the readings, or brief written reactions to the
readings can be required.
Whatever the method, the goal should be to have every student verbally
express reactions to the readings. Especially in its more philosophical guise,
AI is rife with topics that excite stimulating class discussions.

Foster Improved Scientific Writing. By all accounts, writing is perhaps the
skill most lacking in students today, perhaps particularly so for science ma-
jors. As such, it is essential that the course place a heavy emphasis on scien-
tific writing. In particular, the students should at least be required to write
a report of their project in the form of a research paper. This report should
count for a significant part of their final grades.
In addition to the final report, there should be at least one prior writing
assignment so that students can receive, and act on feedback from the in-
structors. Ideally, this feedback should concern style and organization as well
as content.

Encourage Collaboration. Students are often made to complete their work
entirely on their own. They may ask their instructors for hints or help, but
they are usually not allowed to work with their classmates. In contrast, a
glance at the bylines in the literature shows that most research papers are
the result of collaborations. Thus, especially for the open-ended project,
students should be given the opportunity to work in small groups.
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Surely there are many ways in which the above principles can be implemented
in the class. Indeed, the details are necessarily dependent upon the subject being
taught. Section 3 illustrates these principles in concrete form within a computer
science curriculum.

3 Implementation

The main thesis of this paper is that RoboCup is an ideal topic around which
to build a course that implements the principles laid out in Section 2. The main
advantages of RoboCup are that it it is an appealing domain for students of
both genders; it is a popular testbed domain used by active researchers in the
field with many recent papers published pertaining to it; it admits for a wide
variety of research foci; and it lends itself well to exciting, visual competitions.
No other domain known to the author combines all of these aspects as well as
does RoboCup.

This section details a specific implementation of the general principles in
the form of a course focusing on autonomous agents and multiagent systems
(AAMAS). AAMAS is one of the fields to which RoboCup participants have
contributed consistently and prominently over the years. Despite being the basis
for a large subfield of AI, there is no generally accepted definition of artificial
intelligence agents. In loose terms, agents are programs that (i) sense their en-
vironment, (ii) make decisions about how to act based on these sensations, and
(iii) then execute these actions. Autonomous agents do all three of these steps on
their own, i.e. without a human in the loop. Multiagent systems are collections
of multiple agents that interact with one another. The field of AAMAS covers
a wide variety of research foci and applications, including software-based infor-
mation processing, robotic control of multiple agents, entertainment agents, and
tutoring agents [6].

The course described in this section is called Autonomous Multiagent Sys-
tems. It has been taught twice, most recently during the fall of 2002 2. It will
be offered again during the spring of 2004 3. The course provides a broad intro-
duction to autonomous agents with an emphasis on multiagent systems. Topics
include:

agent architectures;
inter-agent communication;
teamwork;
distributed rational decision making;
agent modeling;
multiagent learning; and
entertainment agents.

This paper will not go into detail about the subject matter of the course
except as far as is necessary for the purpose of clarity. The subject matter is

2

3
http://www.cs.utexas.edu/~pstone/Courses/378fall02
http://www.cs.utexas.edu/~pstone/Courses/378spring04
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in a sense subordinate to the main purpose of the course. Students are told
explicitly that in order to succeed they will need to attain a mastery of the
subject. However evaluation is based primarily on their ability to engage in the
full range of activities required of researchers.

The remainder of this section describes how each of the principles presented
in Section 2 is implemented in the course.

3.1 Project

The central focus of the course is a semester-long build-up towards a class robotic
soccer competition in the RoboCup Soccer Server [10]. The Robot Soccer World
Cup, or RoboCup, is an international research initiative that uses the game of
soccer as a domain for artificial intelligence and robotics research. The RoboCup
Soccer Server, coupled with the large body of available client code, is an in-
frastructure that is designed to be appropriate for both scientific research and
education [11].

Soccer Server is a multiagent environment that supports 22 independent
agents interacting in a dynamic, real-time environment. The server embodies
many real-world complexities, such as noisy, limited sensing; noisy action and
object movement; limited agent stamina; and limited inter-agent communication
bandwidth. AI researchers have been using the Soccer Server to pursue research
in a wide variety of areas, including real-time multiagent planning, real-time
communication methods, collaborative sensing, agent/opponent modeling, and
multiagent learning [2].

In addition to the server itself being publicly available under an open-source
paradigm, users have contributed several clients that can be used as starting
points for newcomers to the domain. One example is the CMUnited simulated
soccer team [15], champion of the RoboCup-98 and RoboCup-99 robotic soccer
competitions. After winning the competitions, much of the CMUnited source
code became publicly available, and several groups used it as a resource to help
them create new clients for research and as entries in subsequent competitions.
Figure 1 shows a screen shot of Soccer Server.

Soccer Server and the CMUnited client code are widely and freely available
over the internet using an open source paradigm. The software is packaged for
easy installation, supported both by the developers and by the large community
of current users.

This infrastructure is a comprehensive, implemented MAS designed for sim-
ulation experiments. It consists of several independent components, including
visualization, sample client, and coach modules. The coach module is often used
as a tool for experiment construction. The most natural and compelling form
of measurement is game results in tournaments with multiple teams, but the
infrastructure also includes data collection and analysis tools for more rigorous
scientific measurement.

Judging by the large user community (over 1000 researchers worldwide),
this infrastructure is very usable; the fact that it has been successfully used
for multiple international competitions is a testament to its robustness. New
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Fig. 1. Window image of Soccer Server

users can take advantage of its progressive complexity by starting with a single
agent and gradually increasing the size of teams and their communicative and
organizational capabilities. A recent addition to the infrastructure is the ability
to induce intentional failures by disabling selected players.

The italicized words above are all characteristics identified by Gasser [5] as
essential or desirable for MAS infrastructures that support science and educa-
tion.

Two additional favorable properties of Soccer Server are that it is both an
appealing domain for students of both genders [14] and a popular testbed domain
used by active researchers in the field. An IJCAI-97 challenge paper [8] identified
three general research challenges that can be addressed within Soccer Server as
being

multiagent learning;
teamwork structures; and
agent/opponent modeling.

As laid out in [15], other relevant research issues include inter-agent communica-
tion in single-channel, low-bandwidth environments; coordination with limited
communication, collaboration in a dynamic real-time environment; organiza-
tional structures; distributed sensing/sensor fusion; resource management; agent
monitoring; and multiagent planning. These research topics are all addressed by
various researchers in the continuing series of RoboCup books [1,2,7,16,17].

In addition to being the substrate domain for much original research, Soccer
Server has been used previously as a basis for a few other university courses
(e.g. [4,19]). These courses have previously focussed primarily on teaching AI
and/or multiagent systems rather than introducing CS research in general.

Students in the course described here are assigned a series of four preliminary
programming assignments designed to get them familiar with Soccer Server and
the CMUnited client code. By the end of these preliminary assignments, they
have created a fully functional team, but not one that is particularly competent.
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The students are then encouraged to propose an improvement on this team as
the topic for their final projects4. The improvement need not be for the purpose
of creating a winning team in the final tournament. For example, one student
proposed to use machine learning techniques to learn a good goaltender without
paying attention to the rest of the team. In practice, about half of the students
make earnest attempts to create top quality teams, while the remainder focus
on interesting side issues. Both types of projects can yield (and have yielded)
quality results.

3.2 Readings

The majority of the readings for this course are primary sources chosen both
to introduce particular topics relevant to the course and to engender some con-
troversy. For example, during one of the early weeks, the students learn about
“agent architectures” by reading both an article espousing completely reactive
agents (e.g. [3]) and an article that argues in favor of using more deliberative
agents (e.g. [13]).

In order to encourage the students to complete the readings in a timely
fashion, they are required to submit a brief written answer to a single question
pertaining to the readings at least 2 hours before the class starts. For example,
a question associated with the above readings has been:

Part one of your current programming assignment can be implemented
reactively. Describe a non-reactive soccer-playing behavior.

Associated with readings on “agent modeling” was the following:

Describe a domain not mentioned in the readings in which agent mod-
eling could provide a benefit.

Note that these questions can be answered briefly and have no right answers.
But in order to respond, students must complete and understand the readings.
The fact that the responses are due two hours before class allows the instructor
to incorporate them into the class discussion.

3.3 Class Participation

Another effect of the questions pertaining to the readings is that the students
do come to class prepared to discuss the readings. There have been many ex-
tended and heated class discussions pertaining to specific aspects of agents and
multiagent systems.

Another important component of class participation is that each student
is required to moderate at least one class discussion pertaining to that week’s
readings. The student discussion is specifically not a presentation of the readings:
the students are encouraged to assume that the class members have all done the
readings. Rather, they are instructed to either defend a controversial statement

4 They are also given the option to propose a programming project in a multiagent
domain of their choice, but typically few students choose to do so.
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or pose a question and be prepared to defend either side depending on how
the class reacts. Their explicit goal is to moderate an interesting and extended
discussion.

This activity turns out to be one of the most difficult for the students to
complete. Many of them are not used to speaking in front of a class, and they
have rarely been put in the position of facilitating discussions as opposed to
defending specific positions. Some examples of successful questions generated by
the students are:

“Is it better to build in teamwork at the architecture level, or to first build
individually functioning agents and then add on teamwork constructs?”
“We’ve seen some examples of machine learning agents that spend lots of
time and effort learning, but don’t do as well as hand-coded agents. Is it
worth all the trouble?”
“Do we want machines (programs, appliances) to have emotions and person-
ality?”
“Nash Equilibrium is limited in its applicability due to its exponential com-
plexity and the inability to give a deterministic solution. Agree or Disagree?”

3.4 Writing
The course requires a good deal of writing from the students. As already men-
tioned, the students are required to provide weekly written responses to ques-
tions related to the readings. They receive feedback pertaining to the clarity and
soundness of their responses.

Much more significantly, the students are required to write three written
documents pertaining to their final projects. First, they write project propos-
als defining their goals for their projects as well as the proposed methods for
achieving them. Second, they revise their proposals and add a section on their
work in progress to create progress reports. Finally, they write final reports in
the format of conference papers.

In practice, these writing assignments often show an evolution of the students’
ideas. For example, a common proposal is to use some machine learning technique
that has been mentioned in the readings to improve some aspect of the soccer
team’s performance. However, based on feedback from the instructors and their
initial attempts, the students often realize that their initial proposal was too
ambitious and scale it back to more realistic levels given the time available. As
one student who was attempting to use machine learning in conjunction with a
simple general agent architecture wrote in the final report: the “machine learning
part has proven difficult and elusive, and has turned into a research project
over suitable data, choice of representation, and machine learning algorithms.”
Nonetheless, there have been many modestly successful uses of machine learning
in the student teams.

3.5 Collaboration
Productive collaboration cannot be forced. However it should be encouraged. In
this course, students are given the opportunity, but are not required, to work
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in pairs on the final project. Teams of two must still write their proposals and
reports individually, with clear indications of what role each person played in
the collaboration; and as such, more is expected from them as a final product.

The robotic soccer project lends itself to such collaboration nicely since there
are many different ways in which the students can divide up the work. For
example, one can focus on offense while the other focuses on defense; one can
focus on low-level skills while the other focuses on team strategy; one can work
on agent development tools while the other focuses on using them to create the
team; etc. Each of the these three task division strategies has been used by
students in the class.

3.6 The Tournament

The class culminates in the class tournament. The students are told at the
outset that performance in the tournament will have no negative impact on
their grades (A strong performance can have a positive impact.). Nonetheless,
the tournament is a strong motivational factor for the students. Visitors are
invited to the event and the students present their approaches orally and field
questions as their teams are playing.

The performance spread among the teams is often very large, especially given
the fact that some students do not focus on creating winning teams. In the end,
all class champions have been tested against a mid-range RoboCup entry and
lost significantly: despite starting with a fairly detailed client code base, the
students are not able to attain competitive world-class levels. However, given
their time limitations this fact is neither surprising nor discouraging.

4 Results and Conclusion

The true measure of this course is the degree to which it has influenced students’
decisions to pursue a career in computer science research, either positively or
negatively. Perhaps it would be possible to devise a controlled study to measure
a relevant statistic of this form. However, such a study has not been done and
is beyond the scope of this paper.

There is, however, anecdotal evidence available, at least from the positive
perspective. Both times the course has been run, at least one student has de-
scribed the course in graduate school applications as a primary motivation for
going on to do research. In addition, two students from the Fall 2002 version of
the course actively contributed to the UT Austin entry in the RoboCup 2003
competition. In one case, the student played a key role in the winning entry in
the on-line coach competition. The research involved may lead to this student’s
senior thesis.

Various course evaluations and surveys have also provided evidence that the
students appreciate the opportunity to be exposed to the various components of
scientific research. Some of the comments from students have included:
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“I really like reading from research literature. Just the fact that it’s actual
research provokes curiosity;”
“The discussions we have in class are quite unique, I haven’t had such in-
volving discussions in any class before;”
“Format of the class is perfect. I’ve waited through three years of college
for a class like this....I like the class so much that my other classes now
disappoint me;” and
“I loved this course, and it’s the best possible way to be exposed to AI.”

Another indication that the course has been successful is that many of the
students’ final projects have addressed interesting research topics. Of the 25
students who have successfully completed the course to date, 24 have done their
final projects in the Soccer Server domain5.

A rough breakdown by topic follows. The list does not account for exactly
24 projects because some projects (4) were done by pairs of students, and some
are counted under more than one topic.

Five projects made use of machine learning in some way. Two of these used
reinforcement learning to learn aspects of the team, in one case just the
goalie, and in another case, the entire defensive strategy. A third project
learned models of player and ball motion so as to predict their positions
when they are not visible to the player. One project aimed towards learn-
ing to recognize and predict breakaway situations, and another used on-line
adaptive formations via opponent modeling. This last was the winner of the
class tournament in 2002. During the competition, it displayed an ability to
adjust its players’ positions on the field appropriately during play.
Four projects examined the efficacy of some general agent architectures in
the robotic soccer domain. Specifically, they used a BDI model, cooperative
behavior nets, a subsumption architecture, and a decision tree represenation.
Three projects incorporated aspects of ant-based system design as presented
by Parunak [12]. One modeled the entropy flow through the system. One
built an ant-like system using the subsumption architecture and then at-
tempted to improve the result via machine learning. One focused on finding
the minimal reactive rules necessary to create a functioning team.
Three projects focussed on inter-player communication. One of these de-
veloped a paradigm for communincation of high-level strategies. Another
enabled players to communicate their world states. The other focussed on
the challenge of quickly propagating information from a decision-maker to
the rest of the team despite the limitations on message bandwidth enforced
by the simulator.
Three projects focussed on improving high-level general soccer strategies,
including players’ roles, teams’ formations, etc.
Three projects were geared primarily towards creating winning teams. In
these cases, a wide range of challenges were addressed, often with a good

5 The other did an interesting study of a multiagent-based approach to neural network
formation using the Swarm package [9].
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deal of heuristics and manual tuning of parameters. In general, low-level
behaviors were the main emphasis. The teams resulting from these projects
did indeed do well in the class tournaments, winning in 2001 and finishing
2nd and 3rd in 2002.
Two projects implemented planning approaches to the Soccer Server domain.
In both cases, planning was done dynamically during the course of the game.
In one case, each individual constructed entire team plans and then only
executed its own part of the best team plan.
One ambitious project focussed on implementing the team from scratch (i.e.
without the benefit of any code base). Whereas most projects have been pro-
grammed in C++ or Java due to the existing code bases in those languages,
this project was programmed in Perl.
One project facilitated short-term real-time coordination among a few agents
for the purpose of executing certain combination plays, such as the “give-
and-go” and the centering cross.
One project addressed the challenge of maintaining an accurate world state
despite only seeing a part of the environment at any given time. The ap-
proach was to predict the movements of other agents and the ball, and in
the absence of visual information to update the player’s world state accord-
ingly.

Several of these projects were well-written and interesting enough to warrant
follow-up experiments and (usually with a fair amount of additional effort) could
possibly have led to eventual publications. However, so far, none of the reports
has been extended in such a way.

All of the course materials are available on-line, including the RoboCup soccer
server system and the CMUnited client code. As such, the course should be fully
repeatable at other institutions. One goal of this paper is to fully describe the
motivations behind the course so as to encourage such repetition. The primary
goal has been to illustrate the successful use of a course on autonomous agents
and multiagent systems, with project assignments in the RoboCup Soccer Server,
as an introduction to CS research.

In the future, the course may be extended to include exposure to real robots
as well as the Soccer Server. During the spring of 2003, the author taught a
graduate level course6 that culminated in a class entry in the RoboCup Sony
four-legged robot league [18]. The opportunity to work with these legged robots
may be extended to undergraduates in future iterations of the course described
in this paper.
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Abstract. Since team-based projects have been proven to be an effective ped-
agogical tool, we have been using RoboCup challenges as the basis for class
projects in undergraduate courses. This paper unifies several independent efforts
in this direction and presents early work in the development of shared resources
and evaluation. We outline three courses and describe the related class projects
in order to make the context of our investigation clear and to make it possible for
others to replicate or extend our work, and contribute to the shared resource.

1 Introduction

Educational robotics, the use of robotics as a form of hands-on learning environment,
is becoming increasingly common as robot kits are becoming more accessible and af-
fordable [31]. Creative instructors are finding ways to teach science topics using these
technologies, organizing tournaments around the robots; the energy, enthusiasm and
motivation displayed by students of all ages is unsurpassed. We have found RoboCup
– especially Soccer Simulation and the RoboCupJunior challenges – to be particularly
conducive to college-level classroom use. The ability to demonstrate theoretical models
and complex algorithms with a hands-on, accessible medium strengthens the learning
experience.

In this paper, we document our experiences incorporating RoboCup activities into
undergraduate courses with the idea of uniting others who are doing the same. Our aim
is two-fold: one, to create a repository for related curricular materials; and two, to build
a common instrument and database for evaluating the RoboCup learning environment.
While we have found the link between RoboCup and traditional coursework in Intro-
ductory Robotics, Artificial Intelligence and Multiagent Systems to be a natural one, we
presume that this arises out of our familiarity with RoboCup through longterm involve-
ment with the initiative. In developing our repository, we are hoping to make the notion
of incorporating RoboCup into such coursework a relatively easy task for uninitiated
instructors, by providing syllabi, reading lists and project descriptions.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 296–307, 2004.

© Springer-Verlag Berlin Heidelberg 2004
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Others have experimented with the RoboCup paradigm in undergraduate class-
rooms. Coradeschi and Malec used the RoboCup soccer simulator in a course on Ar-
tificial Intelligence Programming1 [11]. Birk has developed a course on Autonomous
Systems that uses the Small-Size RoboCup League for practical exercises2. Vidal and
Buhler [34] have developed a series of graduate level courses on multiagent systems
using the RoboCup Simulation league.

We are also, of course, not the first to use robot kits in an undergraduate classroom
as a hands-on learning environment. In 1989, Martin created the MIT Robot Design
project course (6.270) [16,18]. Yanco [36] has adopted this course, ending the term
with a Botball3 tournament. Mataric’s “Introduction to Robotics” [20] takes a hands-on
approach to the introduction of the basic concepts in the field of robotics and con-
cludes with a contest where robots play a ball game in a hexagonal field. There are
also courses using hands-on robotics that do not focus on teaching robotics as the main
subject. Littman’s “Programming Under Uncertainty” [15] teaches about methods for
programming under uncertainty and a variety of machine learning techniques.

Aside from constructing a shared repository of course materials, we are interested in
conducting a comprehensive evaluation of the pedagogical value of educational robotics
in general and RoboCup activities in particular. Following on the work of Sklar et
al. [30], we are interested in trying to pinpoint the educational value of robotics and
the RoboCup initiative at the undergraduate level. Uniting multiple instructors means
that we can not only share experiences, but also collect course evaluation data on a
grander scale, allowing us to perform analysis across a broader cohort, with a range of
academic as well as cultural backgrounds.

2 Robotics in Undergraduate Education

Here, we describe three classes where we have successfully used RoboCup challenges
as term projects.

2.1 Introduction to Robotics

This introductory course looks at robotics from several aspects: technically, historically
and socially. Many of the technical aspects are based on Mataric’s course described
above. The course is designed for non-engineering students to gain a hands-on expe-
rience with technology, as well as a basic understanding of the field of robotics and
the challenges facing the field today. Part of the course is spent reading and discussing
classic material that relates to robots – including non-technical aspects such as sci-
ence fiction, psychology, cognitive science and education. The remainder of the course
takes a hands-on approach to introducing the basic concepts in robotics, focusing on au-
tonomous mobile robots. LEGO Mindstorms robots4 are used, and students must com-
plete two projects with them. First, they must build robots to execute a line-following

1

2

3

4

http://www.ida.liu.se/~silco/AIP/
http://www.faculty.iu-bremen.de/birk/lectures/COURSES/
autosys.html
http://www.botball. org
http://www.legomindstorms.com
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Fig. 1. Robot contests.

task culminating in a maze contest. Second, they construct robots to play soccer and
perform in a RoboCupJunior style two-on-two tournament.

The course begins with an introduction to robotics and agent-based artificial intel-
ligence [28]. Then we cover some history and the basics of building and programming
with LEGO Mindstorms [17,19], using Not Quite C5 [4,5]. The robots are used as ex-
amples for the remainder of the topics, which introduce the general areas in robotics:
effectors, sensors and control [18,23]. The area of control is covered in more depth,
discussing various architectures including deliberative, reactive, hybrid and behavior-
based [1,6,8,22]. Learning is also discussed [13,21,35]. Other topics presented in-
clude artificial life [3,10], edutainment [14,32], cognitive science and psychology [7,
24] and science fiction [2],

The course is taught over a 14-week semester. There is one 75-minute lecture and
one 75-minute lab per week. There are two exams, and students submit written lab
reports documenting their software and hardware developments. They are encouraged
to record results of tests made and changes to their designs. Students also prepare a term
project, presented both written and orally.

Sklar taught this course in Spring 2001 at Boston College6. Twenty-seven students
were enrolled, three of whom were female. All were undergraduates, and there was
a mix of ages: first year (1 student), second year (3), third year (10) and fourth year
(13). The Computer Science Department at Boston College is in the School of Man-
agement and there is no engineering school in the university, so the hands-on technical
experience of these students was limited. Sixteen members of the class were Computer
Science or Information Technology majors. The rest came from Biochemistry (1 stu-
dent), Communication (1), Economics (4), History (2), Marketing (1), Mathematics (1)
and Physics (1).

The students were placed in groups of three for working on the robotics projects.
Since the experience levels of the class was so diverse, Sklar assigned the groups, at-
tempting to balance each group with an equal number of beginning and advanced stu-
dents. Students were given some lab time during the scheduled course period in order
to work on the projects. However, this was not enough time to perfect robots to perform
well in the contests, so many of the students met outside of class time to work on the

5

6
http://www.baumfamily.org/nqc/index.html
http://www.cs.columbia.edu/~sklar/teaching/spring2001/mc375/
default.html
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robots. Each student was required to submit a lab report individually, which included
an assessment of the contribution of their teammates. The efforts of team members are
never balanced, however the inequities were obvious in reviewing the lab reports, even
without the peer assessment component. Students’ grades were based on the lab reports,
not on their robots’ performance in the contests.

The two contests were held in a public space and students were encouraged to invite
their friends to watch. The excitement of the crowd and the visibility of the event moti-
vated students to work harder after the first (maze) contest in preparing for the second
(soccer) contest.

The term projects presented a major challenge for these students, who were not
typically asked to do any writing in Computer Science classes. They were required to
submit a brief project proposal several weeks prior to the final due date, in order to
get them started and also to provide feedback about the appropriate nature of the topic.
The range of topics chosen was quite broad, from the use of nanotechnology in surgical
robots to the history of robots dating back to ancient Greece. Each student gave a ten-
minute oral presentation on their chosen topic. This was difficult for many students who
were not used to speaking in front of a class. Although discussion following the presen-
tations was encouraged, very little actually occurred and several students skipped class
on presentation days when they were not speaking. Course evaluation results (below)
confirmed that the motivation surrounding the term project was minimal.

Students were given a survey at the end of the course. Forty-four percent of the
class responded. The survey collected demographic data and also queried the students
about their learning experience. They were asked to identify which elements of the
course were helpful in learning the material and which elements of the assessment were
valuable in helping them to solidify and demonstrate their knowledge of the subject.
The results are shown in Figure 2.

Fig. 2. Survey Results from Introduction to Robotics course, Spring 2001.

Overwhelmingly (83%), the students felt that the labs (i.e., building and program-
ming the robots) was helpful for learning the material, whereas only 33% said that the
reading was helpful. Seventy-five and sixty-seven percent responded that the two con-
tests (maze and soccer, respectively) were valuable in helping them solidify and demon-
strate their knowledge of the material. This confirms our intuition that the hands-on
components provide more effective learning experiences than other aspects of course-
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work, particularly at the introductory level. We speculate that the readings chosen were
perhaps too advanced for most of the class.

Student comments were overall quite positive, including the following statements:

“Great course... loved the lax atmosphere and hands-on experience. I’d recommend
the course to any CS major.”
“I think the class idea is great. It is a great hands-on experience to try out. The labs
were very fun times.”

There were many comments that the mixed age group was helpful for all students, as
the inexperienced students learned from the more advanced, and in assisting others, the
advanced also learned more themselves. Negative remarks centered around requests for
more lab time and less time spent on oral presentations.

2.2 Artificial Intelligence

The modern view of Artificial Intelligence (AI) [28] is that it is the study of intelligent
agents – autonomous computing systems that perceive their environments and act upon
them in a way that both responds to changes in their environments and works towards
underlying goals. Robots are prototypical agents that have to move around, and react
to, their environments in pursuit of their goals. Thus it is highly appropriate to explore
areas of a typical artificial intelligence syllabus using robotics projects.

This course is designed to give a broad understanding of the basic techniques in
use today for building intelligent computer systems. The syllabus broadly follows the
outline of Nilsson’s Artificial Intelligence: A new synthesis [25]. Students learn about
state-space representations, problem reduction, means-end analysis, and reinforcement
learning. They study search methods including depth-first, breadth-first and best-first
search, as well as hill-climbing and alpha-beta pruning. Predicate calculus is introduced,
along with various methods of theorem proving. The course is taught over a 14-week
semester, with two 75-minute lectures a week, two exams and two robotics projects.

Parsons taught the course for the first time at Columbia University in Spring 20027.
Thirty-five students were enrolled, of whom 6 were female. There was a wide range of
students taking the course – the bulk were undergraduates (68% of the 19 for whom we
have this data), but there were also 6 graduate students, both Master’s students and PhD
students, and even within the undergraduate students there was a mix of ages from first
year (1 student), second year (1), third year (8) and fourth year (4). The majority of the
undergraduates were Computer Science majors (74%). The rest were from biology (1
student), economics (1), electrical engineering (1) and mechanical engineering (2).

The students formed themselves into groups of three to four and had to program
LEGO robots in the Not Quite C programming language to perform two tasks – a
RoboCupJunior style line-following rescue task (in which the robot had to follow a
convoluted line, detect an obstacle and back-up, climb and descend a gradient, and fi-
nally detect and head towards a light source) and to play a simplified version of the
RoboCupJunior soccer task (the robot started at one end of a standard RoboCupJunior

7 http://www.cs.columbia.edu/~sp/4701-2.html
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two-on-two soccer pitch, with the ball at the halfway point, and the robot had to ma-
noeuvre the ball into the opposite goal, rather like a penalty kick into an empty goal).
The culmination of the project was a contest in which the basis for competition was the
cumulative time taken to complete both tasks, and the students also wrote a report on
the project. Students were also given the option of an extra-credit project of building a
dancing robot exactly as in the RoboCupJunior dance competition.

Two course evaluations were administered. One was an official evaluation done by
the engineering school. The other was an informal paper-and-pencil survey given out
in class. The results of the engineering school’s evaluation showed that 55% of the 33
students who responded gave the robotics project they undertook a rating of 5 (on a 5-
point scale) for interest, and two-thirds gave it a rating of 4 or 5. Twenty-one percent of
the same cohort of students gave the project a rating of 5 for the amount learned during
the project, and 58% rated it 4 or 5.

The informal survey probed more into the students’ perception of the value of the
project as opposed to other aspects of the course. In particular, students were asked to
identify which aspects of the course most contributed to helping them learn the material,
and which aspects were most helpful to them in demonstrating knowledge of the mate-
rial. The results are given in Figure 3. These show that the students felt that the project
work was not as helpful in learning as some of the more traditional aspects of Computer
Science courses, but was more useful than the textbook and additional reading material
(which no students felt were useful). The picture is much the same for the demonstra-
tion of knowledge, with students rating the contest as more helpful than the final, but
less helpful than the homework and midterm. The report was rated least useful of all
(they really hated having to write a report). Despite the rather unencouraging figures
from this second survey, the very obvious enjoyment that the majority of the students
took in the projects encouraged us to repeat the experiment the following semester.

Fig. 3. Survey Results from Artificial Intelligence, Spring 2002.

The second offering of the course was given by Parsons at Brooklyn College, City
University of New York (CUNY) in Fall 20028. With the exception of the absence of
Masters and PhD students, the cohort was broadly similar to that at Columbia in terms
of the factors we measured. Eighteen students were enrolled, of whom 7 were female.

8 http://www.sci.brooklyn.cuny.edu/~parsons/courses/
cis32-fall-2002/
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Again there was a wide range of students taking the course – all were undergraduate
students but there was a considerable mix of ages with 2 second year students, 3 third
year, 10 fourth year and 2 fifth year students9. The majority of the undergraduates were
Computer Science majors (16 students). The remaining students were from Political
Science and Business.

In this offering, the project was given much later (due to problems with access to
the robots) and while the teams were the same size (3 students), the project took the
form of just the line-following exercise described above. Again the project ended with
a contest and there was an extra-credit option to build a dancing robot.

Once again, an unofficial survey was administered, and the results are presented
in Figure 4. These results are a little more encouraging than those from Columbia.
This time the project was still felt to be less helpful in learning than lectures or lecture
notes, but on a par with homework and more helpful than additional readings or the
textbook. In terms of demonstrating knowledge, the students felt that the project was
more helpful than either midterm or final. While gratifying, these figures should be
viewed with some suspicion. First of all, these students had self-selected to do robot
projects (students were allowed to do a non-robotics project instead if they preferred).
Second, as a result of the other project, these figures are based on a very small sample of
just 11 students. Finally, it seems that some of the reaction is because it is so unusual for
students at Brooklyn College to get to do project work (in the open comment part of the
survey several confessed that this was the only project they had ever done). The effect
of this influence is supported by the fact that broadly similar results were generated by
students who did the non-robotics project (though the very small number of students in
this category makes the results extremely unreliable and so they are not presented here).

Fig. 4. Survey Results from Artificial Intelligence, Fall 2002.

Comments from the student surveys from both offerings of the course include:

“When working with the robot, I learnt that nothing is perfect in the real world. A
lot of times the outcome is very unexpected.”
“It reminded me of why I want to stay away from hardware as much as possible.”
“It helped immensely! It helped me understand some of the concepts covered in the
lecture.”

9 It is common for CUNY students to take more than four years to complete since many study
part-time.
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2.3 Autonomous Multiagent Systems

Autonomous agents and multiagent systems (AAMAS) is one of the fields to which
RoboCup participants have contributed consistently and prominently over the years.
Despite being the basis for a large subfield of AI, there is no generally accepted defini-
tion of artificial intelligence agents. In loose terms, agents are programs that (i) sense
their environment, (ii) make decisions about how to act based on these sensations, and
(iii) then execute these actions. Autonomous agents do all three of these steps on their
own, i.e., without a human in the loop. Multiagent systems are collections of multiple
agents that interact with one another. The field of AAMAS covers a wide variety of re-
search foci and applications, including software-based information processing, robotic
control of multiple agents, entertainment agents and tutoring agents [12].

This course provides a broad introduction to autonomous agents with an empha-
sis on multiagent systems. Topics include agent architectures, inter-agent communica-
tion, agent teamwork, distributed rational decision making, agent modeling, multiagent
learning and entertainment agents. In addition to teaching about AAMAS, the course
aims to introduce undergraduates to the full spectrum of research activities engaged
in by professional computer science researchers, emphasizing the difference between
these activities and the activities of a typical undergraduate student [33]. As such, the
course includes an open-ended programming project, readings from the research liter-
ature, public speaking and writing requirements, and opportunities to collaborate with
peers. In order for students to succeed, they need to attain a mastery of the AAMAS
subject. However assessment is based primarily on their ability to engage in the full
range of activities required of researchers.

The central focus of the course is a semester-long build-up towards a class robotic
soccer competition in the RoboCup Soccer Server [26]. Students are assigned a series of
four preliminary programming assignments designed to get them familiar with Soccer
Server and the CMUnited client code [27]. By the end of these preliminary assign-
ments, they have created a fully functional team (although not one that is particularly
competent). The students are then encouraged to propose an improvement on this team
as the topic for their final projects10. For example, one student proposed to use machine
learning techniques to train a good goaltender without paying attention to the rest of the
team.

The majority of the readings for this course are primary sources chosen both to in-
troduce particular topics and to engender some controversy (e.g., reactive [9]) versus
deliberative [29] agent architectures). To encourage the students to complete the read-
ings in a timely fashion, they are required to submit a brief written answer to a single
question pertaining to the readings at least 2 hours before the class starts. The fact that
the responses are due two hours before class allows the instructor to incorporate them
into the class discussion. Another effect of the questions is that the students do come to
class prepared to discuss the readings. As a result there have been many extended and
heated class discussions.

An important component of class participation is that each student is required to
moderate at least one class discussion pertaining to that week’s readings. They are in-
10  They are also given the option to propose a programming project in a multiagent domain of

their choice, but typically few students choose to do so.
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structed to either defend a controversial statement or pose a question and be prepared to
defend either side depending on how the class reacts. This activity turns out to be one of
the most difficult for the students to complete. Many of them are not used to speaking in
front of a class, and they have rarely been put in the position of facilitating discussions
as opposed to defending specific positions.

The course requires a good deal of writing from the students. As above, the students
are required to provide weekly written responses to questions related to the readings.
They receive feedback pertaining to the clarity and soundness of their responses. More
significantly, the students are required to write three documents pertaining to their final
projects. First, they write project proposals defining their goals for their projects as well
as the proposed methods for achieving them. Second, they revise their proposals and
add a section on their work in progress to create progress reports. Finally, they write
final reports in the format of conference papers.

Students optionally work in pairs on the final project. Teams must write their pro-
posals and reports individually, with clear indications of what role each person played
in the collaboration; and as such, more is expected from them as a final product. The
robotic soccer project lends itself to such collaboration nicely since there are many
different ways in which the students can divide up the work.

The class culminates in a simulated soccer tournament. The students are told at the
outset that performance in the tournament will have no negative impact on their grades
(while a strong performance can have a positive impact). Nonetheless, the tournament
is a strong motivational factor for the students. Visitors are invited to the event and the
students present their approaches orally and field questions as their teams are playing.
The performance spread among the teams is often very large, especially given the fact
that some students do not focus on creating winning teams. All class champions have
been tested against a mid-range RoboCup entry and lost significantly: despite starting
with a fairly detailed client code base, the students are not able to attain competitive
world-class levels. However, given their time limitations this fact is neither surprising
nor discouraging.

Stone has taught this course twice, first at New York University in the Fall of 2001.
Fifteen students were enrolled, only one of whom was female. All students were Com-
puter Science majors. All were graduate students: 12 masters and 3 Ph.D. The second
offering of the course was at the University of Texas at Austin during Fall of 200211.
Again, fifteen students were enrolled, however none were female. This time, the cohort
were undergraduates. Fourteen were seniors (fourth year) and one was a junior (third
year). Most students were Computer Science majors, with the remainder majoring in
Computer Engineering.

Course evaluations and surveys were administered at the conclusion of both courses.
At NYU, the course was rated 4.5 out of a possible 5 (highest rating). At UT Austin, the
course was rated 4.6 out of a possible 5. Student comments have also provided evidence
that the students appreciate the opportunity to be exposed to the various components of
scientific research. Both times the course has been run, at least one student has described
the course in graduate school applications as a primary motivation for going on to do
research. In addition, two students from the Fall 2002 offering are actively contributing

11http://www.cs.utexas.edu/~pstone/Courses/378fall02
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to the UT Austin entry in the RoboCup 2003 competition. In one case, the research is
leading up to the student’s senior thesis.

An informal survey was administered in the middle of the term to the UT Austin
cohort. Students were asked to rate the programming assignment on a scale of 1 to 5.
Thirty-three percent gave it the highest rating; 57% gave it the second highest, while
10% scored it average and no students entered low marks. Students also rated the read-
ing assignments on the same scale. Twenty percent gave the highest rating; 60% gave
the second highest, 13% scored it average and 7% gave the lowest rating.

Some of the comments from students have included:
“The discussions we have in class are quite unique, I haven’t had such involving
discussions in any class before;”
“Format of the class is perfect. I’ve waited through three years of college for a class
like this.…I like the class so much that my other classes now disappoint me;” and
“The only thing I dislike about the class is that we are limited in our application of
our knowledge. Our education in AI is directed at implementing a RoboCup soccer
agent. I feel that if we were able to apply our knowledge to other aspects, we would
gain an even better understanding of artificial intelligence.”
“The simulator code was kinda tricky to understand.”

3 Discussion
The three courses described above offer an interesting comparison, not only in terms of
content and presentation but also in regard to the cohorts of students enrolled. Collec-
tively, the courses have been offered five times at five different universities, providing
a broad range of backgrounds, demographics and experience levels – from first-year
undergraduates at a private, non-engineering college to fourth-year undergraduates at a
large state university, and including graduate students from both a public city university
and two large private universities. Thus the positive feedback across the board in regard
to the robotics projects is an encouraging and significant factor.

Comments about the reading materials were typically less enthusiastic, as the fig-
ures presented in the previous section indicate. Stone’s course, where students were
required to respond to the reading in short written assignments and were then given
the opportunity to discuss the readings formally in class, fared better than the other
courses, where reading was assigned in a more traditional manner – without written
reading responses and primarily the material was presented by the instructors in lectures
where questions were encouraged (but infrequent) and discussion was not the central
theme. Comparatively, Stone’s classes had fewer students, so more effective discussion
was possible. Nonetheless, several students from all the courses commented that they
wished there had been better connections between the readings and the project work.
This type of feedback is valuable to us and our colleagues in improving the existing
courses as well as designing new ones.

The challenge presented to students who were required to make oral presentations
to the classes (in both Sklar’s and Stone’s courses) is also notable. No matter what
career path is ultimately taken, students need to know how to communicate their ideas.
The development of oral presentation skills is important and should be encouraged,
despite students’ dislike of this aspect of the courses. Perhaps more creative ways of
oral reporting can be incorporated into all the courses.



306 Elizabeth Sklar, Simon Parsons, and Peter Stone

The evaluations performed on Stone’s course so far is limited to generalized ques-
tions about whether students liked the course and standard questions about the instruc-
tor and workload. While this level of information is useful to administrators, we are
interested in gathering more specific data on the students’ learning experiences. The
discrepancy in evaluation methodology from one course offering to another is one of
the factors that has spurred us to create the repository mentioned here. This will include
a standard instrument for measuring the effectiveness of specific coursework and the
general RoboCup learning environment.

4 Summary

We have presented our development of a repository for educational robotics activities,
particularly focused on RoboCup challenges. Our goal is to build an on-line space for
sharing curricular materials and to develop a unified instrument and database for eval-
uating the RoboCup learning environment. As examples of the type of information we
are seeking and archiving, we have presented an account of our collective experiences
incorporating RoboCup activities into undergraduate courses.

We will continue our efforts with the existing courses described above as well as de-
velopment of new courses. The Autonomous Multiagent Systems course will be offered
in Fall 2003 by Parsons at the CUNY Graduate Center and in Spring 2004 by Stone at
the University of Texas at Austin12. Sklar is currently adapting her course to an intro-
ductory computer science curriculum, using the robotics as a basis for demonstration.
The survey instrument will be adapted to both courses and administered at the end of
each term.

We hope to encourage others to join in this community venture. Our on-line reposi-
tory can be found evolving at http://agents.cs.columbia.edu/er. We welcome
contributions and participants.
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Abstract. Since 2001 the School of Information Technology and Electrical En-
gineering (ITEE) at the University of Queensland has been involved in Ro-
boCupJunior activities aimed at providing children with the Robot building and
programming knowledge they need to succeed in RoboCupJunior competitions.
These activities include robotics workshops, the organization of the State-wide
RoboCupJunior competition, and consultation on all matters robotic with
schools and government organizations. The activities initiated by ITEE have
succeeded in providing children with the scaffolding necessary to become com-
petent, independent robot builders and programmers. Results from state, na-
tional and international competitions suggest that many of the children who par-
ticipate in the activities supported by ITEE are subsequently able to purpose-
build robots to effectively compete in RoboCupJunior competitions. As a result
of the scaffolding received within workshops children are able to think deeply
and creatively about their designs, and to critique their designs in order to make
the best possible creation in an effort to win.

1 Introduction

This paper describes the RoboCupJunior activities implemented by the School of
Information Technology and Electrical Engineering (ITEE) at the University of
Queensland. RoboCupJunior aims to engage 10 to 17 year old children in robot build-
ing and robot programming through structured challenges and competitions. The
University of Queensland has organized two competitions (in 2001 and 2002) featur-
ing the three RoboCupJunior challenges of Dance, Rescue and Soccer. The competi-
tions themselves have been structured to account for age and opportunity differences,
and to provide an environment where learning continues to take place.

The most significant efforts, however, have been placed in the development of ap-
propriate workshops to introduce children and teachers to the RoboCupJunior pro-
gram and the associated technology – most notably the LEGO® RCX™ and
ROBOLAB™ products. In order for the workshop initiative to achieve this goal ex-
tensive efforts have been made to ensure that workshops teach children the fundamen-
tals of robot building and programming in an engaging and meaningful way. The
teaching methods incorporated in ITEE robotics workshops are outlined in this paper.

The robotics workshops provided by the School of Information Technology and
Electrical Engineering have proven to be incredibly successful with over 2200 chil-

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 308–319, 2004.
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dren across 60 schools in Queensland participating. Teachers, children, school admin-
istrators and government bodies have embraced the initiative. The success of the
workshops is primarily due to their ability to provide the necessary robotics education
to support children’s robot building activities. Queensland students are the current
(2002) world champions in the soccer challenge. Furthermore, Queensland students
were winners in every challenge at both age levels in the Australian championships in
2002. Queensland’s successes in both national and international RoboCupJunior
competitions are testament to the success of the initiative.

The development of the workshop program has been guided by the knowledge that
many children require scaffolding in their robot building endeavors. Scaffolding al-
lows children to acquire the knowledge they need to become independent robot build-
ers and programmers. This paper discusses the workshop development process, the
underlying theoretical model, the practical implementation of this model, and the
improvements which have been made based on student and teacher feedback. Empiri-
cal data from both workshops and RoboCupJunior competitions is used to explore the
extent to which the initiative has provided children with the scaffolding they require
to become successful robot builders and programmers.

2 Background

The ITEE Robotics Workshop initiative is guided by the belief that the most powerful
way to learn about technology is to become a creator of technology. One of the most
effective means by which children can create technology is to develop an understand-
ing of the dynamic and programmable properties of that technology. This is an idea
that has been advocated by many in the past 20 years. Papert, in his landmark work
Mindstorms [9] recognized that computer programming as an educational activity had
great potential as a vehicle for the acquisition of useful cognitive skills such as prob-
lem solving and reflective thinking. Other researchers have also identified the impor-
tance of allowing children to experience the unique dynamic and programming prop-
erties of computers and in doing so allowing children to become creators, not just
consumers, of computing activities [11], [5], [15].

Researchers at MIT continued the work of Papert [9], continuing his vision of
computing in which children explore ideas by constructing their own computer pro-
grams. Resnick and his group at the MIT media lab based their research on this phi-
losophy. They started with the development of LEGO/Logo [12] which combined the
LEGO® Technic™ product with the Logo programming language providing children
with an environment where they could build and program robots.

Robot building and programming is a natural – and exciting – extension of com-
puter programming activities. Through building and subsequently programming ro-
bots, children are building agents which they can program to perform a wide variety
of different behaviors. This process allows children to directly see the consequences
of their programming activities – the resultant robot behaviors. In this robot building
process children have become empowered as they purposefully create robots to
achieve a specific function. Researchers are currently exploring classroom technolo-
gies that enable children to learn from construction. Many researchers have identified
that technology which supports children becoming involved in design projects pro-
vides rich opportunities for learning [4], [6], [8].
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The final assumption that underpins the Robot Workshop initiative revolves around
the importance of scaffolding for children in their robot building endeavors. Vygot-
sky, a prominent development psychology, was the first to advocate that complex
forms of thinking have their origins social interactions [2]. Scaffolding – a process
whereby important activities are modeled through cooperative dialogues between a
skillful tutor and a novice – is an important feature of social collaboration that fosters
cognitive growth [2], [14]. Subsequently, guided participation model form the founda-
tion of the ITEE robotics workshops. Within this model, the workshops provide struc-
tured learning activities that are carefully tailored to the children’s abilities. Tutors are
available to provide helpful hints and instructions, to monitor the children’s progress.
The tutors gradually reduce their levels of support as the children become more confi-
dent and competent.

RoboCupJunior is an excellent context within which children can be introduced to
the field of robotics [7], [16]. The RoboCupJunior robotics competitions provide an
additional level of importance to the robot building activities of children. Through the
competition children are able to work in teams to create competitive robots. This
competitive environment motivates children to work of creating robots that are skill-
fully able to complete specific tasks.

2.1 RoboCupJunior Australia

RoboCupJunior is a project-oriented educational initiative that organizes local, re-
gional and international robotic events for young students [13]. Within RoboCupJun-
ior three team challenges have been developed:

Soccer: 2-on-2 teams of autonomous mobile robots play games in an 1800mm x
1200mm field. The soccer challenge in the Queensland RoboCupJunior competi-
tion is open to the senior participants, aged between 14 and 18 years.
Rescue: Robots race to rescue victims from artificial disaster scenarios, varying in
complexity from line-following on a flat surface to negotiating paths through ob-
stacles on uneven terrain. For the Australian competition, the robot is required to
find its way to a hazardous area – following a contrasted line – to rescue the vic-
tim. The challenge is open to the middle school entrants, aged from 10 to 15.
Dance: One or more robots perform to music, in a display that emphasizes creativ-
ity of costume and movement. Within the Australian RoboCupJunior competition
the Dance challenge is split into two age categories, junior (10 - 12yrs) and senior
(13 - 18yrs).
Children between the ages of 10 and 18 produce a robot or robots to compete in

one or more of these three challenges. Australian RoboCupJunior competitors primar-
ily use, but are not limited to, the LEGO® MINDSTORMS™ robot construction envi-
ronment to create their robots. The LEGO® MINDSTORMS™ Kits provide children
with an environment in which they can create and program robots. The LEGO® prod-
ucts are comparatively inexpensive and most importantly reusable, allowing children
to easily work through create-improve-demolish processes.

2.2 Robot Building with LEGO

At the core of the LEGO® MINDSTORMS™ Kit is the RCX™ brick. The RCX brick
is an autonomous microcomputer embedded in a LEGO brick (seen in Figure 1) that
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can be programmed to serve as the “brain” of any LEGO construction [1]. The RCX
is programmable, microcontroller-based brick that can simultaneously operate three
motors, three sensors, and has an infra-red serial communications interface [10].

Fig. 1. The LEGO RCX Brick, a light sensor and the motor that children use to build robots.

The key elements necessary for using the RCX are the RCX brick itself, an infra-
red transceiver, and a personal computer. Additional components, such as motors,
sensors, and other building elements, in combination with this base system allow the
creation of functional autonomous robotic devices [10]. LEGO provides an array of
analog sensors capable of measuring light intensity, rotation and touch as well as a
DC motor (see Figure 1). Within a LEGO MINDSTORMS kit there are also gears,
wheels, axles and bricks which in combination with the other elements provide a
comprehensive robot-building environment. All of the LEGO parts are self contained
units allowing users the opportunity to create robots without the having to machine
their own structures or design electronics components. LEGO MINDSTORMS pro-
vides both children and adults with opportunities to develop robots that move, think,
and react.

2.3 ROBOLAB

ROBOLAB is a software development environment designed for use in the program-
ming of RCX-based creations. The programs created using ROBOLAB can be
downloaded to the RCX using the infrared transceiver. The RCX can then run the
program independent of the computer.

The ROBOLAB software development environment is predominantly used within
the ITEE robotics workshops. ROBOLAB is an iconic programming environment.
The icons represent actions that the robot may perform as well as programming struc-
tures such as loops and decision statements, and commands. Users construct programs
by selecting, placing and connecting icons in a ROBOLAB diagram.

ROBOLAB has a number of levels to accommodate the varying abilities of stu-
dents. Pilot is the basic elementary section and Inventor is designed for use by more
advanced students. While both use icons to represent commands or structures, within
the Pilot section the number and order of icon options is restricted to ensure the suc-
cess of the user.

The second category is Inventor. Inventor has been designed to meet the needs of
students in the middle and upper grades of school. This category allows the users
access to all of the ROBOLAB programming icons. As a result, students have the
freedom to design programs of their choice.
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3 Robotics Activities Coordinated by ITEE

The School of Information Technology and Electrical Engineering offers a number of
robotics activities to schools. Three-hour robotics workshops are conducted during
school terms to provide children interested in robotics the knowledge necessary to
independently create their own robots. Due to demand, the workshops have been
expanded to include groups of teachers and student teachers. For the past two years
ITEE has also offered three-day summer camps designed to provide children with a
greater understanding of the LEGO robot building and programming process. These
workshop and camp activities culminate with the annual RoboCupJunior Queensland
competitions. In addition to these activities, teachers, school administrators and gov-
ernment bodies have actively sought the advice of ITEE robotics staff with respect to
robotics curriculum issues. ITEE has provided assistance though a consultation proc-
ess. Each of these activities is discussed in detail in the following sections.

3.1 Robotics Workshops

The University of Queensland’s School of Information Technology and Electrical
Engineering has been running robotics workshops since 1995 [17]. In 2001, these
workshops were redesigned specifically for the RoboCupJunior initiative. They are
open to school children and operate during the school terms. The workshops are three
hours long. During the workshops students build a robot and then spend time pro-
gramming the robot to perform simple tasks. Due to demand, the workshop program
has been extended recently to include teachers and student teachers.

The workshops are designed to allow students to work at their own pace through
the building and programming processes. Students work in pairs for most workshops,
however when workshop numbers are large they may work in groups of three. Each
pair or group of three are provided with a computer with the ROBOLAB software
installed, an RCX brick and an infra-red transceiver, as well as motors, sensors, and
general LEGO bricks. Experienced tutors are available to answer questions and pro-
vide support. There are usually two tutors who participate in each of the workshops.

There are two levels of workshops: beginner and intermediate. Beginners are de-
fined as those students who have not used ROBOLAB. These students work through
activities which outline the fundaments of the ROBOLAB environment and guide
them through the creation of simple programs. Intermediate students, those who have
already participated in a beginner’s workshop or who have used the ROBOLAB pro-
gramming environment elsewhere, are given more complex activities to complete.

3.1.1 Workshop Participants
Workshop and summer camp participants are school children between the ages of 10
and 17. Children usually come to the workshops as a school excursion. Over the last
year approximately 2200 students from 60 different schools have attended the robot-
ics workshops. Participants are predominantly from schools in the Brisbane metro-
politan area, but participants have also attended from Northern NSW, North Queen-
sland and some rural areas. Both public and private schools have attended the
workshops; however the majority has been public schools.
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Approximately 60% of students who attend the robotics workshops are from pri-
mary schools and are aged between 10 and 12. For the primary schools workshops
generally include between 25 and 30 students. Workshops for older children who
attend secondary schools usually comprise between 10 and 15 students. Students are
predominately volunteers who have a keen interest in robotics. They are accompanied
by teachers and mentors and these adults are encouraged participate as well.

Although both boys and girls attend the robotics workshops generally there are a
greater number of boys in attendance. Boys make up approximately 60% of partici-
pants from the co-educational schools that participate.

3.1.2 Robot Building
During the ITEE robotics workshops participants are required to build the specified
robots and subsequently program it using specially designed worksheets. The robot
that the participants use in their programming exercises is a differential drive robot
(wheel-chair configuration) has two motors (a motor driving each wheel), two light
sensors which are capable of reading levels of light intensity. Both of these sensors
are trained onto the ground and the light intensity measured is that reflected from their
own light source.

Students are initially directed to the website ITEE RoboCupJunior website
http://www.itee.uq.edu.au/~robocup/junior/, which contains the build instructions for
the LEGO™ robot that is used in the workshops. This robot takes between 45 to 90
minutes to build depending on the robot building skills and experiences of the partici-
pants. Workshop attendees construct a robot that has been designed by the workshop
tutors making this process one of “build-by-numbers”. This strategy has been put in
place for two reasons:

Evidence from early workshops which allowed children to construct their own
robots suggested that children could easily spend the three hours playing with the
LEGO™. By providing the children with a robot “recipe”, they move on to pro-
gramming tasks more readily.
The robot used in the workshops is a structurally sound design. The robot is robust
enough to survive falls and collisions. In addition, from building such a robust
LEGO structure it is intended that children learn some of the principles of sound
LEGO construction.

Fig. 2. The robot that participants build in the ITEE robotics workshop.

Figure 2 depicts the robot that children construct in the workshop. The build in-
structions are pictorial. This enables children with limited LEGO™ construction ex-
perience to successfully construct a robust robot. Each step in the build instructions
shows the LEGO™ piece as it is about to be placed, with an arrow indicating its des-

1.

2.
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tination. The next image shows the piece in position. Where possible an additional
illustration depicts the intended destination of those pieces just connected. Colored
backgrounds are used to separate differential the required parts, the steps, and sub-
assemblies. There is no text describing new parts.

On completion of the workshop robot, children then move on to robot program-
ming activities. Children generally create programs for their robots for the remainder
of the workshop. They generally spend approximately 90 minutes creating programs
for the robots. These activities are described to children in a series of worksheets.

3.1.3 Worksheets
All of these worksheets use ROBOLAB at the Inventor 4 level. This level provides
access to all available icons, but requires the users to manually connect added icons.
The worksheets are designed so that by progressing through the worksheets the chil-
dren gradually build up knowledge of how to get their robot to produce certain behav-
iors. The purpose of the worksheets is twofold:

1.
2.

to describe the development environment and its associated syntax; and
to scaffold the novice programmer by guiding through the creation of simple pro-
grams.

Each worksheet introduces a concept or a syntax requirement. The format of the
worksheets is such that they provide step-by-step instructions of how to construct a
particular program. The description is text-based and is supported by an image of
what the program should look like at that step. Figure 3 below provides an example of
a worksheet activity.

Children who are new to the ROBOLAB development environment participate in
the introductory workshop. While there are nine worksheets in all, during an introduc-
tory workshop students have only to complete the first five worksheets. By the end of
these five worksheets, the students have been shown how to use ROBOLAB to pro-
gram their robot to turn a motor on and off, travel in a straight line, turn 180 degrees,
stop when a dark color is detected and consistently follow a dark line. The children in
Figure 4 are attendees at introductory workshops.

A second intermediate workshop is available for children who have completed the
beginner’s workshop or who have had previous experience with ROBOLAB. During
this second workshop children are given the opportunity to explore programming
concepts related to structured programming. They complete worksheets 6 to 9. By the
end of the intermediate workshop children are able to create loops, program robots to
deal with decisions, use variables and apply their knowledge in construction of their
own line following program.

3.1.4 The Evolution of ITEE Robotics Workshops
The ITEE Robotics workshops have evolved over the last two years. Improvements
made have been in response to issues identified by teachers, students and tutors. There
has been a gradual refinement of workshops to meet the needs of participants. The
processes outlined above are the result of this refinement.

Over the past two years the robot construction instructions have improved consid-
erably. These improvements are based on feedback received from children. The first
series of robot build instructions used both pictures and text. While using these in-
structions the children were often observed asking questions that they would have
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Fig. 3. The robotics worksheets provide step-by-step instructions on how to complete a particu-
lar programming task.

Fig. 4. Robotics workshops engage children aged between 10 and 17 in robot building and
programming activities.

known the answers to if they had read the text. In response the children’s failure to
read the important text associated with images, the second generation robot construc-
tion instructions primarily contained images. An image of the parts needed for each
step was shown in a table above each step. A textual description of the parts and how
many were needed was also given. Questions arising from these build notes where
primarily about which part was required. These questions were answered by tutors
referring children to the text accompanying the parts table.

The final version of the build instructions contains images only. The only text in
these instructions is sequence numbers and size information. As mentioned, these
notes have added a step which shows the LEGO™ piece as it is about to be placed,
with an arrow indicating its destination. The number of queries during the construc-
tion of the robot has decreased dramatically. The most common question asked is
“How did you make those pictures?”!

The programming worksheets also went through a development cycle. The first
version only contained one worksheet. This worksheet asked the students to program
the robot with a number of exercises. The worksheet familiarized participants with the
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development environment and introduced them to concepts of actions states, program
looping, binary decisions and message passing. It also introduced the concept of mul-
titasking and described how to make the robot react to sensor readings. Observations
suggested that these worksheets were far too complicated for the children. For the
most part students ignored the text. When challenged by a problem, they would con-
sult the tutors, before they would search the text for clues. Exercises which had no
example program were generally avoided. Observations indicated that the participants
had no real understanding of the ROBOLAB environment or programming on com-
pletion of the workshop session. The participants were generally unable to create their
own programs without assistance.

Based on these observations, the programming worksheets were changed dramati-
cally. The second worksheet was greatly simplified. Children were given more detail
on how to use the ROBOLAB development environment and provided greater detail
about the ROBOLAB syntax. The second set of worksheets provided ROBOLAB
iconic solutions to each of exercise, and an explanation of the principles underlying
the solution. Observations of these students showed that the worksheets had only
partially helped them use the ROBOLAB environment.

The third set of worksheets reverted to a more text based approach, but covered the
description of the environment and solutions to the exercises by progressing step by
step through the exercises with supporting images. Again the bulk of the text in the
worksheets was ignored. Information hidden in the text was not found. Empirical
evidence suggests that after completing the worksheets in these early workshops only
about 1/3 of participants could use the light sensor effectively.

Within the current worksheets each exercise is now a separate worksheet. Each
worksheet introduces a concept or a syntax requirement. Again the worksheets pro-
vide a step per action, but each step is accompanied by an image of what the program
should look like at this stage. The order of the exercises was also changed with the
introduction of using the light sensor in the third worksheet. In earlier iterations, use
of the light sensor was the final concept covered by students in the workshop. This
final set of worksheets covers less programming information than earlier worksheets,
instead concentrating on the functionality of key icons, and focusing on how to use
the ROBOLAB development environment. The new worksheets are based on
observations across many workshops. They have been designed to prevent students
from encountering the programming difficulties common in earlier workshops.

3.2 RoboCupJunior Queensland Competitions

The RoboCupJunior Competitions provide a strong motivation for children to build
robots, and to critically think about their robot creations. The competitive aspects
encourage the children to think deeply and creatively about their designs, and to cri-
tique their designs in order to make the best possible creation in an effort to win.

However, the competition is more than motivation – it is a great educational oppor-
tunity. The competition is a gathering of student minds; an opportunity for students to
share their ideas. Students are keen to share, and are usually ready to offer advice.
This was first observed during the 2001 competition, where some of the teams that
fielded non-functional robots at the start of the competition had robots that functioned
well by the end. When asked how this had come about, the students responded that
they had received assistance from other students: their competitors.
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In 2002, inter-team interaction was encouraged further by the complete exclusion
of adults from the team setup and practice areas. Teachers and parents were invited to
sit in the stands and observe, rather than actively participating in the setup of the ro-
bots. The students quickly tired of climbing the stairs to the stands, and started asking
other students nearby. Social interactions built quickly, and inter-team sharing flour-
ished. Figure 5, a photograph taken at the RoboCup 2001 competition, gives a feeling
for the interest and excitement generated during the competition.

Fig. 5. The soccer quarter finals of RoboCupJunior Queensland 2001 held at the University of
Queensland.

3.2.1 Observations of Robots Built for Competition
All but one of the teams used LEGO™ and the RCX™ brick to build their robots.
The exception was the team from Brisbane Grammar School with the custom design
that won the 2002 championships. Despite the explicit nature of the building and
programming instructions provided in the workshops, no teams arrived with the
workshop design for the construction or programming. All of the teams had taken it
upon themselves to come up with completely new designs, or to significantly custom-
ize the workshop design. There was a notable contrast between younger and older
robot builders. The younger team (aged 10 to 13) would typically build an initial base,
and then add components to fix problems rather than re-designing the whole robot.
Older teams were more able to see the benefit in going back to the design phase and
re-considering their first steps.

Programming the RCX was predominately performed using ROBOLAB, with a
number of teams also using NQC [13]. Dance robots, in both primary and secondary
divisions, used highly linear programs. Rather than using a loop with a counter, stu-
dents would cut and paste long strings of commands to form a long line of motor
control elements with timer elements to set the duration of each motion. There was
almost no use of sensors or sensor programming. Rescue robots, on the other hand,
tended to be programmed with a linear sequence of behaviors. The students would
first run a line following behavior, followed by a search behavior. Soccer produced
the most diverse range of programming styles, and included the most examples of the
use of NQC. Many students used a state based style, where a single behavior would
execute for a fixed amount of time, or until certain sensor conditions were met, before
moving to another behavior. Others used multi-tasking to execute parallel behaviors
that would compete for control of the robot based on competency measures, in a simi-
lar style to the subsumption architecture [3]. A robot programmed in this manner was
the runner-up to the world champions in the 2002 competition.
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4 Future Improvements

Further research is being conducted into the impact on robotics activities on chil-
dren’s ability to independently build and program robots to achieve particular goals.
A full usability study of the ROBOLAB™ development environment is being under-
taken to highlight usability issues which both support and hinder the programming
efforts of students. In addition, in the next year workshop participants will be ob-
served and recorded as they work through programming tasks in an effort to gain an
in-depth understanding of the concepts which cause the most difficulties. While ob-
servations of children using the current worksheets indicate that children are having
success programming their robots during the workshops, further studies will be under-
taken to evaluate the degree to which children are able to use this knowledge at a later
date.

In the coming year minor improvement may be made to both the robot construction
notes and the programming worksheets. The tutors are currently exploring ways in
which the build notes could include three dimensional vector models of the robot and
animated steps in the construction process. Such improvements are possible in an
interactive web-based environment. While the worksheets are fundamentally sound,
minor improvements in the ways certain processes are explained may be made. The
tutors are also in the process of developing three additional intermediate worksheets
which cover GOTO statements, as well as the programming concepts of multitasking
and event handling.

5 Conclusions

Over the past two years, the School of Information Technology and Electrical Engi-
neering at the University of Queensland has been involved in delivering robotics tui-
tion and providing a competitive format to further this educational process, to school
communities across Queensland. The robotics workshops and summer camps initiated
by ITEE have provided opportunities, which may not have otherwise been available,
for a wide range of children to develop knowledge and skills in robot building and
programming. This scaffolding has helped students who have gone on to compete in
RoboCupJunior Dance, Rescue and Soccer competitions. These competitions have
been successful in creating a community of children avidly interested in building
robots, sharing ideas and striving to “do it all better next year”.
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Abstract. In this article we propose an extension for a path planning
method based on the LPN-algorithm to have better performance in a
very dynamic environment. The path planning method builds a navi-
gation function that drives the robot toward the goal avoiding the ob-
stacles. The basic method is very fast and efficient for a robot with
few degrees of freedom. The proposed extension integrates the obstacle
dynamics in the planning method to have better performances in very
dynamic environments. Experiments have shown the effectiveness of the
proposed extension in a very dynamic environment, given by RoboCup
soccer matches.

1 Introduction

Path planning is a fundamental task for autonomous mobile robots. Every ap-
plication that involves the use of an autonomous mobile robot has to deal with
path planning and obstacle avoidance. Examples of such applications are: air
or navy traffic control, exploration and work in hostile environment (such as
sub-sea or space), people rescue during disaster or dangerous situation, office
work, robotic soccer, etc. Path planning is a critical task for the success of those
applications and many different approaches can be found in literature to tackle
the problem [16]. Well known techniques based on road-map construction, cell
decomposition, or artificial potential fields, are widely used.

In many applications the robots have to cope with a dynamic environment,
in which the problem of path planning and obstacle avoidance becomes much
harder, because the robots have to take into account that configuration of the
work space changes as time flows. Among other application domains, RoboCup
[13] is a very good experimental field for such applications because the RoboCup
competitions are characterized by a highly dynamic and hostile environment.

Different solutions for path planning in dynamic environments have been
proposed in literature. A first group of methods do not take into account any
explicit representation of time and are mostly focussed on extending or adapting
a standard path planning method proposed for static environments. The goal is
to have a very fast algorithm to plan trajectories in a static obstacle configu-
ration and replan the trajectories at a fixed time interval to take into account

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 320–331, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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environmental changes [14,18,3,15,10]. Another group of works is based on ex-
plicitly considering the time dimension during the path planning process. Some
of those works rely on the assumption of knowing in advance the dynamic evo-
lution of the environment [9,12]. As the complete knowledge of the dynamics
of the environment is not available in most cases, other authors have studied
the possibility of predicting the future evolution of the environment to plan the
trajectories [20,17,21,22].

In this paper an approach to the problem of path planning in dynamic envi-
ronments is proposed1. The general idea is to integrate the obstacle’s dynamics
characteristic into the planning method, by changing their representation in the
robot’s configuration space. This is a general approach already used in litera-
ture, [9,20], and can be used with different trajectory planning methods. The
effectiveness of the approach depends on the specific planning method, and relies
on how the information about the obstacles dynamics are taken into account.

The basic approach, from which the present work has started, is described
in [14] and provides for an efficient implementation of a path planning method
based on numerical artificial potential field similar to [23,11]. The method in
[14] (referred in this paper as LPN) has very good performance for a robot with
few degrees of freedom. In particular this method computes a navigation func-
tion that avoids local minima, resulting in very effective trajectories. However
by not considering the dynamics of the obstacles often the method results in
undesired behavior of the robot when facing moving obstacles. Our extended
method (LPN for Dynamic Environment, or LPN-DE) gives us better results
in highly dynamic environments as compared with the LPN, but still keeps a
low computational time and avoids local minima. The LPN and the LPN-DE
algorithms have been implemented and compared with several experiments both
in a simulated environment and with real robots in the RoboCup environment.

The LPN method is presented in Section 2 while its extension LPN-DE is de-
scribed in Section 3. In Section 4 experimental results are given while in Section
5 an analysis of the related works is presented. Finally, conclusions are drawn in
the last section.

2 LPN Gradient Method

In this section we describe the method presented in [14] (Linear Programming
Navigation gradient method or LPN), while in the next section we describe the
extension that we propose to improve its performances when the dynamics of
the environment are taken into account.

The LPN gradient method is based on a numerical artificial potential field
approach. The method samples the configuration space and assigns a value to
every sampling point using a linear programming algorithm. The values for the
sampling points are the sampled values of a navigation function; this means that
1 This research is partially supported by MIUR (Italian Ministry of Education, Univer-

sity and Research) under project RoboCare (A Multi-Agent System with Intelligent
Fixed and Mobile Robotic Components).
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the robot can find an optimal path, just following the descendent gradient of the
navigation function to reach the goal. The method can take as input a set of goal
points, the final point of the computed path will be the best one with respect
to the cost function discussed below. In order to build the navigation function
a path cost must be defined. A path is defined as an ordered set of sampling
points

such that:

must be adjacent to or along the axis of the work space
or in diagonal

if then
must be in the set of the final configurations

must not be in the set of the final configurations

Given a point a path that starts from and reaches one of the final
configurations will be represented as A cost function for a
path P is an arbitrary function where is the set of paths. This
function can be divided into the sum of an intrinsic cost due to the fact that
the robot is in a certain configuration, and an adjacency cost due to the cost of
moving from one point to the next one:

where A and I can be arbitrary functions.
Normally, I depends on how close the robot is to obstacles or to “dangerous”

regions, while A is proportional to the Euclidean distance between two points.
The value of the navigation function in a point is the cost of the

minimum cost path that starts from that point:

where is the path starting from point and reaching one of the final
destinations and is the number of such paths.

Calculating the navigation function for every point in the configuration
space directly, would require a very high computational time, even for a small
configuration space. The LPN algorithm [14] is used to efficiently compute the
navigation function. It is a generalization of the wavefront algorithm [19, 6]
that is based into three main steps:

assign value 0 to every point in the final configuration and an infinite value
to every other point;
put the goal set points in an active list;
at each iteration of the algorithm, operate on each point of the active list,
removing it from the list and updating its 8-neighbors (Expansion phase).
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The expansion phase is repeated until the active list is not empty. To update a
point we operate as follow:

for every point in the 8-neighbors of compute its value, adding to the
value of the moving cost from to and the intrinsic cost of
if the new value for is less than the previous one, update the value for
and put it into the active list.

In Figure 1 an update step is shown.

Fig. 1. Update step Fig. 2. Problems due to dynamic obstacle

The navigation function is computed according to the intrinsic cost of the
sampling points in the configuration space. Suppose the obstacles in the work-
space are given by a set of obstacle sampling points. Let Q(·) be a generic function
and the Euclidean distance for the sampling point from the closest sample
point representing an obstacle, then In order to compute
for every sampling point we may apply the LPN algorithm giving the obstacle
sampling points as the final configuration set, and assigning in the initialization
phase a value 0 to the intrinsic cost for all the sampling points. Once (and
then is computed for every sampling point we can execute again the LPN
algorithm to compute the navigation function.

This method has been chosen for our extension for several reasons. First
of all the method is very fast: it is possible to apply the trajectory planning
every 100 ms on a grid of 100×100 sampling points on a modest CPU (Pentium
266 MHz) [14]. Moreover, the method finds an optimal path with respect to
the cost function used. Those properties are very interesting for the RoboCup
environment, which is the environment that we used for our experiments. Thanks
to the low computational requirement the sampling of the configuration space
can be exploited in order to reach a satisfying precision (10 cm in our case).
On the other hand, the known information about the environment (such as field
shape and position of fixed obstacles) can be easily and effectively taken into
account. Moreover, the intrinsic cost function can be tailored in a very direct
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and simple manner, to obtain different trajectories, and so different behaviors of
the robot.

However, the LPN method described in this section does not take into ac-
count the dynamics of the environment. This is a limitation when coping with
very dynamic obstacles and it can result in non-optimal paths in some critical
situations. As an example, in Figure 2 we can see that for the robot R to reach
the goal G, path B would be better than path A, when the obstacle dynamics
is considered, but the LPN method would choose path A, that is the optimal
trajectory with respect to the current time frame.

3 LPN-DE Method

The extension to the LPN method for application in Dynamic Environments
(LPN-DE) is based on additional information about moving obstacles, which
are represented by a velocity vector. Observe that we do not require to have
complete knowledge of the dynamics of the environment in advance (that would
not be possible in many cases), but only assume to know an estimation of velocity
vectors for the obstacles. Notice also that this requirement can be obtained by
an analysis of sensor data, and its precision is not critical for the method, that
is robust with respect to errors in evaluating such velocity vectors. Moreover,
the proposed extension does not depend on the technique used to compute the
velocity vectors for the obstacles. How those information are obtained, mainly
depends on specific sensors of the robot and our particular implementation will
be described later. By suitably taking into consideration the information about
the velocity vectors in the planning method we show that our extension gives
better result than the basic LPN algorithm.

In order to clarify how the LPN-DE integrate the obstacle dynamics infor-
mation into the planning process, we introduce the concept of influence region
of an obstacle. This definition is based on the fact that the intrinsic cost is
generally limited, i.e. it is 0 for points such that for a threshold

Definition 1 The influence region for an obstacle is the set of sample points
whose intrinsic cost is modified by the obstacle

Basically the influence region of an obstacle is the area surrounding the
obstacle that we want to avoid, i.e. the set of point around for which
Considering the obstacle pointwise, an intrinsic cost function depending only on
the distance will result in circular influence regions, as it can be seen in
Figure 3. The LPN-DE extension that we propose here defines a function
resulting in influence regions as shown in Figure 4.

As intuitively shown in Figures 3 and 4, the LPN-DE extension is designed
in such a way to prefer trajectories for which the probability of collisions (or
trajectory intersections) with moving obstacles is minimum. In fact, the function

in LPN-DE modifies the shape of the influence region according to the
information about the obstacle dynamics, as shown in Figure 4. Consequently
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Fig. 3. Simple influence re-
gion (LPN)

Fig. 4. Extended influence
region (LPN-DE)

Fig. 5. Values for comput-
ing

the behavior of the robot is more adequate to the situation, since the chosen
path will be the one passing behind the other robot, which is shorter an safer.

If a given point belongs to the influence region of an obstacle the intrinsic
cost function for will depend not only on the distance from but also on the
position of with respect to the velocity vector of

Therefore the function will depend on (see Figure 5):

the distance of the point with respect to
the angle between the velocity vector and the line reaching the center
of
the velocity’s module of

So in LPN-DE is given by a function
To compute the intrinsic cost function depending on the values de-

scribed above, the LPN algorithm has been slightly changed. We represent each
moving obstacle as a circle and we use the robot sensors for obtaining, at every
new planning cycle, (an estimation of) the center, the radius and the velocity
vector of each obstacle. The basic structure of the algorithm is the same as de-
scribed in Section 2, but the intrinsic cost function, the initialization and update
steps for computing the intrinsic cost change. Specifically:

1.
2.

3.

In the initialization step we have to represent the velocity vector (module
and heading) of each obstacle in each of the sampling points representing
the center of an obstacle; we give to each of those point a high value and
put to zero the values of all the other sampling points.
In the update step, if the new computed cost for a point adjacent
to a point is greater then the actual cost:

update the cost of the point
propagate the velocity vector and position of the obstacle center,
put q in the active list.

In particular at each step we need to propagate the velocity vector and po-
sition information in all the points that are part of the influence region of the
obstacle because those information are needed in the computation of the intrinsic
cost function I(p).
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3.1 Implementation

The described LPN-DE method has been implemented on different kinds of
mobile robots, and several experiments in the RoboCup Middle-Size environment
[13] has been performed.

In our implementation the function is:

where

C is the intrinsic cost of a sample point inside an obstacle.
D is the radius of the augmented obstacle.

For higher value of the value of becomes higher, so that
the influence region results stretched along the axes of the obstacles velocity
vector. For lower value of the value of the function becomes
higher, so that the influence region is greater for greater values of the obstacles
velocity module. The function has been chosen because it is a very simple func-
tion that gives us a reasonable shape for the influence region (similar to the one
represented in figure 4). The value of the parameters have been tuned for the
specific application.

4 Experiments and Results

In this section we present some experiments made in order to show the improve-
ment in the performance of the LPN-DE method. The experimental environ-
ment has been the RoboCup Middle-Size field installed in our laboratory, that
is slightly reduced with respect to current rules. For the implementation of the
method we have used sampling rate of 100 mm. The main robot sensor is a color
camera and the experiments have been performed on different kinds of robots,
with different kinematics (unicycle-like and holonomous ones). The method has
also been used by the SPQR middle-size team during the German Open 2002.

We have performed two kinds of experiments: the first one is based on a
simulation environment, in which we have collected a set of quantitative data;
the second kind of experiments has been done on real robots, substantially con-
firming the behaviors obtained in simulation.

In the simulation environment we made the assumption that the robots know
in every instant the current positions and the velocity vector of the obstacles,
in the experiments with real robots those information have been extracted by
software vision modules from images acquired by the color camera.
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4.1 Experimental Setting

Figures 6 and 7 present a typical situation occurred in all the experiments we
have performed. The robot should reach a goal point, while a moving obstacle
crosses the planned trajectory. In Figure 6 the robot uses the LPN method
to plan the trajectories while in Figure 7 the LPN-DE one. The black dots in
the figures represent sample points influenced by the moving obstacle, the lines
starting from the robot represent the planned trajectory at that instant. The
trajectory planned in Figure 7 using the LPN-DE method is better than that
planned in Figure 6 as the following experiments show.

Fig. 6. LPN method Fig. 7. LPN-DE method

4.2 Experiments with a Simulator

In this set of experiments the robot has to reach a predefined set of check points
in sequence, while a simulated obstacle follows trajectories that intersect many
times the standard path of the robot. An example of such experiments is given in
Figure 8, in which the robot has to reach iteratively the check points highlighted
with circles, while a moving obstacle moves along the bold path.

This kind of experiments have been performed by measuring the average time
needed for the robot to reach the next point in the sequence, considering different
velocities for the robot and the obstacles and comparing the LPN method and
its extension LPN-DE. The table in Figure 9 shows the average time (from a 15
minutes execution of the experiment) needed to reach the next check point, for
different velocities of the robot and of the obstacle and comparing the values of
LPN (upper cells) with LPN-DE (lower cells). The values in the table shows that
LPN-DE generally performs better than LPN, since it is generally able to avoid
critical situations in which the robot trajectory intersects the obstacle path.

4.3 Experiments with Real Robots

The second set of experiments has been done on real robots by considering two
robots that, in order to reach two different target positions, must plan trajec-
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Fig. 8. Simulation experimental setting
Fig. 9. Simulation experimental results

tories that intersect each other. Also in this case we have evaluated the average
time for reaching the two target points and we have obtained results similar
to the ones presented in the previous section, in which the LPN-DE algorithm
generally performs better.

In fact a typical situation arising in this experimental setting is reported in
Figures 10 and 11, that represent the actual trajectories followed by the two
robots, whose initial positions and are shown in the left side of the figures
and the target points and are in the right side.

In the first case both the robots use the LPN method, and their behavior is
not optimal since one robot (robot 1) always tries to pass in front of the other
one. The second case, in which both the robots use the LPN-DE method, shows
instead that the additional information about the obstacle dynamics has been
properly exploited in the LPN-DE method for planning a better trajectory in
presence of moving obstacles. Notice also that in any case the trajectories in
Figure 11 are not optimal, as they would be if any robot would know in advance
the trajectory planned by the other. Thus the robots execute a small portion of
their path in parallel as in the previous case. However, in this case, at a certain
point one of the robots (specifically robot 1) is able to detect such situation and
decides to pass behind the other robot.

5 Related Work

Among the several techniques proposed in the literature for path planning in
dynamic environments, we have mainly compared our approach to approaches
that have been experimented in the RoboCup domain, both because we choose it
as our testbed, and because in this domain a solution to the problem of obstacle
avoidance and path planning among moving obstacle is particularly needed.

The work described in [8] presents an approach based on modified potential
field. The method focuses on the generation of low level commands that enable
the robot to dribble the ball amongst moving obstacle, but do not address the
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Fig. 10. LPN method Fig. 11. LPN-DE method

problem of local minima, that is very important in a crowded dynamic envi-
ronment, like RoboCup soccer; where often several robots are close to the ball.
Our approach on the other hand, as already pointed out, generates navigation
functions that does not contains local minima.

The problem of local minima is instead addressed in [4]. where the authors
propose a method based on a combination of random exploration and biased
motion towards the goal configuration. This method do not solve completely the
problem of local minima, but reduces their occurrence.

A different approach is presented in [5], this work is focused on an hybrid
path planning method that choose the best path planning algorithm depending
on the specific situation. Simulation experiments show that the hybrid method
outperform all the simple methods, but no guarantee is given on the optimality
of the chosen trajectory.

Finally, [1] presents an adaptive planner, based on a static planner (developed
in [2]), that tries to slightly change the plan while the environment configuration
evolves. The experiments reported show good results for this approach; however,
the time required for the trajectory generation is not constant with respect
to obstacle configuration, and in particular becomes quite high in particular
situations (e.g. when the adaptation of the planned trajectory fails).

With respect to all the discussed approaches the present work is a novel at-
tempt to exploit the obstacles dynamic inferred from the environment during
the task execution. In fact, the LPN method is guaranteed to plan optimal tra-
jectories with low computational time requirements in real-time and by avoiding
local minima. Our LPN-DE extension maintains all the above advantages of the
LPN method (including low computational time), but performs much better in
highly dynamic situations.

The general approach of integrating the obstacles dynamic information into
the path planning procedure, changing the obstacle configurations accordingly,
could be also extended to other path planning methods; as an example a suitable
method for an effective extension based on this approach is the one described
in [7]. In this work harmonic functions are used in order to compute a free
path for a robot, using a potential field approach. Those functions contain very
interesting properties, such as completeness in the path calculation, robustness
to unanticipated obstacles and rapid computation.
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6 Conclusions

In this article we have presented an approach to cope with dynamic environ-
ments extending a very efficient method for path planning presented in [14].
This method has been chosen because it is appropriated for our testing envi-
ronment (RoboCup). The basic idea of the LPN-DE relies on the integration of
the information about the velocity of moving obstacles into the path planning
algorithm. In particular, in the present implementation, the dynamics of the
obstacles have been integrated in the LPN method, modifying the cost function
used for computing the global navigation function. Although this extension does
not guarantee optimal trajectories along the time dimension, the performed ex-
periments show that the LPN-DE method performed better than LPN, when
facing fast moving obstacles, keeping the same computational requirement.

The LPN method and the extension have been implemented on robotic plat-
forms with different kinematic models (unicycle-like and holonomous). As the
present work is focused on the generation of effective trajectories for dynamic
environments, we did not investigate the issues related to the low level control
of the robotic platform. We rather provided a simple implementation of a low
level robot controller that given the desired trajectory and the robot kinematic
model, is able to drive the robot along the trajectory fulfilling the application
constraints, that in the RoboCup case are high speed and reasonable precision.

The reported experiments show that better results can be obtained by in-
tegrating into the path planning method the information on the obstacles dy-
namics, and that the proposed extension in highly dynamic environments turned
out to be effective and it has actually improved the performance of the robotic
platform. As future work, we are currently investigating the possibility of apply-
ing a similar extension for dealing with moving obstacles to other path planning
methods.
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Abstract. Grid-based methods for finding cost optimal robot paths
around obstacles are popular because of their flexibility and simple imple-
mentation. However, their computational complexity becomes unfeasible
for real-time path planning if the resolution of the grid is high.
These methods assume complete knowledge about the world, but in dy-
namic environments where sensing is done on board the robot, less is
known about far-away obstacles than about the ones in close proximity.
The paper proposes to utilize this observation by employing a grid of
variable resolution. The resolution is high next to the robot and be-
comes lower with increasing distance. This results in huge savings in
computational costs while the initial parts of the paths are still planned
with high accuracy. The same principle is applied to the time-axis, al-
lowing for planning paths around moving obstacles with only a moderate
increase in computational costs.

1 Introduction

Path planning is an important subtask of the robot navigation problem, which is
to find a path from a start configuration to a target state and to traverse it with-
out collision. The navigation problem can be decomposed into three subtasks:
mapping and modeling the environment, path planning, and path traversal with
collision avoidance.

Many approaches to path planning have been described in the literature
[8,9]. They can be grouped into local and global methods. Local path planning
methods do not attempt to solve the problem in its full generality, but use only
the information available at the moving robot to determine the next motion
command. One well known local path planning technique is the potential field
method [7]. Here, the robot follows the gradient of a force field. The field is
generated by attractive potentials pointing towards a target and by repulsive
potentials that point away from obstacles. The potential field method has a low
computational load and generates smooth paths that stay away from obstacles.
However, the greedy gradient descent may get trapped in local minima. It is
hence most useful in environments where local minima are unlikely. Furthermore,
it can be used for fast reactive obstacle avoidance.
* This work was supported by a fellowship within the postdoc program of the German

Academic Exchange Service (DAAD).
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In contrast, global methods assume complete knowledge about the world.
They frequently rely on the concept of free space, the configurations the robot
can take without collision [10]. It is convenient to shrink the robot to a point
while growing the obstacles accordingly to obtain the free space.

Roadmap path planning methods inscribe a graph into the free space that
contains all possible paths. For instance, a roadmap defined by a visibility
graph [11] can be used to find the shortest path around polygonal obstacles.
Another possibility to define a roadmap is to use Voronoi borders [12] as graph
edges in order to find a path that stays far away from obstacles. To rapidly
explore high-dimensional configuration spaces planners have been proposed that
randomly sample configurations and connect samples in free space by simple lo-
cal paths, thereby creating probabilistic roadmaps [6]. One disadvantage of these
methods is that only a binary representation (occupied/free) of the configuration
space is possible.

Another class of global planning methods decompose the free space into cells.
Exact cell decomposition results in cells of different simple shapes as required by
the shape of obstacles. Approximate cell decomposition methods use predeter-
mined cell shapes, sizes, and positions to approximate the free space [1]. Popular
approximate cell decompositions include uniform coverage with square cells and
quadtree representations [5] that use smaller cells next to the obstacle borders.

Once the decomposition is determined, dynamic programming can be used
to find an optimal path. This requires to fill out a data structure, e.g. a mul-
tidimensional table, that contains solutions for all possible subproblems. If the
resolution of a decomposition is high or the state space has many dimensions
this can still be computationally demanding.

The computational efficiency of path planning is essential for online-problems
[2], where paths are planned and executed in real time, for on board planning,
where the computational resources are limited, and for planning in dynamic
environments, where frequent replanning is required. All three of the above con-
straints are present in many leagues of the RoboCup competition.

On the other hand, in dynamic environments a detailed path from the start
to the target has little chance of execution. Obstacles move unexpectedly as
the robot traverses the path and hence continuous replanning is required. Fur-
thermore, due to limited local sensing capabilities, far-away obstacles can be
determined only with reduced accuracy. These observations motivate the local
multiresolution path planning method proposed in this paper. The idea is to use
high resolution to represent the configuration space in close proximity to the
robot and to lower the resolution with increasing distance from the robot. This
concentrates the planning resources to the begin of the path, the part that must
be traversed first and where the information about obstacles is most reliable.
While the computational load is reduced dramatically, the immediate movement
of the robot can still be planned with high accuracy.

The paper is organized as follows. The next section describes grid-based path
planning and details its extension to the multiresolutional case. In Section 3, the
traversal of planned paths and the effects of the initial robot motion are covered.
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Fig. 1. A* search for the least cost path to the target. The cost of a configuration is
computed by getGrid and stored in the grid array. A heuristic function is used to guide
the search. The cost of the shortest path to a configuration is maintained in the eval
array. The reverse path is produced by traversing the previous list starting at target.

Section 4 applies the multiresolution idea to the time axis to find paths around
moving obstacles. The paper concludes with a discussion of the experimental
results and indicates possibilities for future work.

2 Grid Based Path Planning

Grid-based path planning methods decompose the configuration space into an
array of cells. Costs are associated with the cells to represent the occupancy by
obstacles. Neighboring cells are connected by edges. The cost of an edge can be
derived from the cost of the two cells it connects. An minimal cost path can be
found by searching this graph.

2.1 Basic Method

The basic algorithm used to find the least cost path in such a graph is summa-
rized in Figure 1. It maintains in the eval array the cost of the best path seen so
far to each of the configurations reached. The costs of grid cells are computed
by getGrid as new cells are explored and stored in the grid array for future use.
The edges of the graph are given as adjacency list for each grid point. Each
directed edge contains two lengths, and that describe the distance to the
cell border from its start and its end node, respectively. The cost of an edge is
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Fig. 2. Cost function used for the experiments. The robot is located in the center
of the grid, as indicated by the star. Obstacles are represented by fuzzy discs. With
distance from the center, the discs become larger and their height (indicated by dark-
ness) decreases. (a) single resolution 256×256; (b) multiple resolutions 16×16×5 shown
overlaid; (c) multiple resolutions 16×16×5 shown side by side.

computed as weighted sum of both grid values. The cost of a path is the sum of
its edges.

InitPriorityQueue initializes the search with the start nodes. Since the algo-
rithm is used here for local search around the current robot position, the search
always starts at the center of the grid. The algorithm expands the nodes first
that have the lowest accumulated cost until the best path cannot be improved
any more.

2.2 Cost Function

The cost function that describes the occupancy of a grid cell can be chosen arbi-
trarily. Here, simple disk-like obstacles are modeled, as illustrated in Figure 2(a).
10 obstacles are placed at random positions. Their radius con-
sists of a fixed component, which represents the radius of the obstacle plus
the radius of the robot and a variable component that increases linearly
with distance from the grid center. The far-away obstacles are modeled larger,
because their position can be sensed with less accuracy from the perspective of
the robot and because they might move before the robot gets close to them.
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Fig. 3. Cut through cost function for obstacles with different distances from the robot.

Fig. 4. Connectivity of the multiresolutional cell grid. A detail of the border between
two resolution levels is shown.

Each obstacle is also characterized by a height which is inversely proportional
to the squared radius to keep its integral constant. The cost increase of a grid
cell that is caused by an obstacle depends on their distance, as illustrated in
Figure 3. It is constant if the distance is smaller than the radius and decreases
linearly to zero at three times the radius. To compute the cost of a grid cell, the
contributions from all obstacles are added to a uniform base cost.

The cost function is a simple and flexible way to express uncertainty. Ob-
stacles with noncircular shapes could be included into the cost function in an
analogous way.

2.3 Non-uniform Resolution

It is not necessary to represent the entire grid with a high uniform resolution.
Since far-away obstacles cover a larger area, a coarser resolution suffices there to
approximate them. This is illustrated in Figure 2(b). Here, the resolution is high
in the center of the grid and decreases towards the outside. This corresponds to
the situation shown in Figure 2(c). Multiple low-resolution grids of size M × M
are stacked concentrically. The inner part of a grid
is not used, but the next grid level is placed there, until the highest resolution
is reached. To cover the same area as a uniform N × N grid with the same inner
resolution, only levels of size M × M are needed. If N is
large compared to M this lowers the number of grid cells substantially. In the
following experiments, I use N = 256, M = 16, and K = 5. Hence, the flat grid
has 64 times as many cells as the multiresolutional grid.
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Fig. 5. Path planning without (a-d) and with (e-f) heuristics using a flat (a,c,e) and a
multiresolutional (b,d,f) grid. (a,b,e,f) show the status of the grid and (c,d) show the
status of the of the eval array after the search terminated at the target (lower star).
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Fig. 6. Runtime of the flat and the multiresolutional search for different problem
sizes: (a) linear scale (the multiresolutional search grows approximately linear in K);
(b) logarithmic scale (the flat search grows approximately exponential in K).

The connectivity within cells of the same level of this multiresolutional hierar-
chy is set to the 8-neighborhood. Care must be taken at the borders between res-
olution levels to connect the neighboring cells. Figure 4 illustrates the connectiv-
ity that is used for the experiments. Except for the corners, each high-resolution
cell connects to two adjacent low-resolution cells and each low-resolution cell
connects to four high-resolution cells.

2.4 Heuristics

The A* algorithm [4] is an efficient and well studied best-first search algorithm.
It uses a heuristic function to guide the search. This function is an optimistic
estimate of a path’s total cost.

Since each grid cell has at least the base cost, the remaining part of the path
from a grid point to the target cannot be less expansive than the Euclidean
target distance weighted by the base cost. Hence, the sum of the accumulated
cost of the best path to a grid point plus this heuristics can be used to determine
the expansion order. As can be seen in Figure 5, the use of this heuristics can
substantially lower the number of visited grid cells. The altered expansion order
may alter the path found only if two paths have the same costs.

The figure also compares the algorithm for the flat and the multiresolutional
grid representation. One can observe that the produced paths are very similar.
In particular, the start of the multiresolutional path is as detailed as the path
produced using the flat grid.

2.5 Runtime

The different cell numbers between the flat and the multiresolutional grid result
in different runtimes. Figure 6 displays how this difference grows with the prob-
lem size. The runtimes represent the measured average running time of the path
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Fig. 7. Obstacle placed behind a moving robot to account for its initial velocity. It
discourages sudden changes in direction.

planner to random targets with random obstacles. A 1 GHz Athlon processor has
been used for the measurement. The algorithm has been implemented in C++.
At the leftmost data point, where K = 1 and N = M = 16, both representations
are identical. As N gets larger, K is adjusted accordingly. One can observe that
the runtime grows approximately exponential with K when a single resolution
is used and grows, after some cache effects, approximately linear when multiple
resolutions are used. This corresponds well to the growth of the cell numbers.
For K = 8 and N = 2,048, the flat search needs on average 4.55s while the
multiresolutional search needs only 4.70ms on average.

3 Continuous Planning and Execution

In a dynamic environment, a planned path cannot simply be executed. Since the
obstacles move, the plan must be updated as the robot follows its trajectory.
Furthermore, in order to make consecutive plans compatible, the initial robot
motion must be taken into account.

3.1 Initial Condition

One simple way to account for the initial velocity of the robot is to place an
additional obstacle behind it, as shown in Figure 7. This obstacle favors paths
that initially continue in a similar direction the robot is already moving. The
larger the robot’s initial velocity, the more severe a sudden change in direction
would be and hence the more pronounced this obstacle must be.

3.2 Partial Execution and Replanning

Figure 8 illustrates how two different initial conditions lead to two different
paths. The figure also shows, how the robot generates a trajectory by moving
along the initial segment of the path. The path is continuously updated. As the
robot comes closer to initially far-away obstacles, their radius decreases, since
their position can now be determined with greater precision and they are less
likely to move. Hence, the robot passes these obstacles closer than originally
planned.
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Fig. 8. Different initial conditions lead to different paths. As the path is executed, the
robot is followed by the obstacle representing its velocity. (a) initial downward move-
ment; (b) initial rightward movement. The thin line indicates the generated trajectory.

Fig. 9. Paths executed in an environment with many obstacles. The robot started in
one of the corners and generated the trajectory while driving to the target (star).

Figure 9 shows some additional trajectories that have been generated in an
environment with more obstacles. The trajectories are smooth, relatively short,
and stay away from obstacles. Hence, they are suitable to reach the target fast
while avoiding the chance of collisions.

4 Dynamic Planning

If the movement of obstacles can be estimated, a dynamic path can be planned by
extending the dimensionality of the configuration space [3]. Figure 10 shows how
the time axis can be represented in a multiresolutional fashion. For illustrative
purposes the robot’s position has been reduced to a single dimension.

Since time advances only in one direction, the higher-resolution arrays are not
centered in the middle of the time-axis, but are located at its start. Hence, the
first time-steps of the path are modeled with high precision while later time-steps
are longer. This leads only to a moderate increase in computational complexity.

As can be seen, obstacles are not circular any more, but look like a line
that becomes wider and flatter with distance from the origin. The two obstacles
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Fig. 10. Dynamic planning. The horizontal axis corresponds to time while the vertical
axis represents space. The robot is located at the center of the left edge. (a) multireso-
lutional cost function 16×16×5 shown overlaid; (b) cost function 16×16×5 shown side
by side; (c) planned path to the target position, represented by a horizontal line.

shown move along sinusoidal trajectories. To plan a minimal time path to a
target-position not a single target cell, but a line of cells at this position and all
points of time must be considered as search target.

Part (c) of the figure shows a planned path. One can see that the robot first
moves upwards to avoid the lower obstacle, then moves downwards to avoid the
upper obstacle and finally moves straight to the target. A direct motion to the
target is not possible, since the maximum speed of the robot has been set to one.
This is reflected in the connectivity shown in Figure 11. The edges are a subset
of the edges from Fig. 4. Only edges that advance in time and do not exceed the
maximum speed are included.

5 Conclusions

The paper proposed a local multiresolutional path planning algorithm. In con-
trast to quadtree algorithms [5] that focus the computational resources at the
obstacle borders, this algorithm represents the configuration space next to the
robot with higher resolution than far-away from it. This leads to the use of fewer
grid cells, as compared to a representation that is based on a uniform grid. These
savings result in substantially lower runtimes.
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Fig. 11. Edges for dynamic planning. A detail of the border between two resolution
levels is shown. All edges advance in time. The maximal speed is one.

The coarse approximation of far-away obstacles was motivated by the limited
precision of robot-based sensing for far-away objects and by the larger obstacle
movements that are possible before the robot comes close to them. If these con-
ditions are met, the generated paths have similar quality as the ones generated
using a grid of uniformly high resolution.

Since the runtime of the multiresolutional path planner is very short, it can
be used for continuous replanning. This is not wasteful, since only the initial part
of the path that is executed immediately after planning is planned in detail.

An example with a two-dimensional configuration space has been presented.
The generated trajectories facilitated the fast movement towards the target while
at the same time minimizing the chances of collisions.

Furthermore, it has been shown, how to include time into the configuration
space. This makes planning with moving obstacles possible. The non-uniform
sampling of the time-dimension leads only to a moderate increase in computa-
tional costs.

So far, the kinematics of the robot has not been included in the configuration
space. Since the running time of the planner is only a few milliseconds long, it
would be feasible to increase the dimensionality of the configuration space and
still replan at a high rate. One could e.g. explicitly model the orientation or the
velocity of the robot. This will be subject to future research.
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Abstract. This paper presents a method for generating vision-based
humanoid behaviors by reinforcement learning with rhythmic walking
parameters. The walking is stabilized by a rhythmic motion controller
such as CPG or neural oscillator. The learning process consists of two
stages: the first one is building an action space with two parameters (a
forward step length and a turning angle) so that infeasible combinations
of them are inhibited. The second one is reinforcement learning with the
constructed action space and the state space consisting of visual features
and posture parameters to find feasible action. The method is applied
to a situation of the RoboCupSoccer Humanoid league, that is, to reach
the ball and to shoot it into the goal. Instructions by human are given
to start up the learning process and the rest is completely self-learning
in real situations.

1 Introduction

Since the debut of Honda humanoid [3], the research community for biped walk-
ing has been growing and various approaches have been introduced. Among
them, there are two major trends in the biped walking. One is model based ap-
proach with ZMP (zero moment point) principle [4] or the inverted pendulum
model [14] both of which plan the desired trajectories and control their bipeds to
follow them. In order to stabilize the walking, these methods need very precise
dynamics parameters for both the robot and its environment.

The other one is inspired by the findings [2] in neurophysiology that most
animals generate their walking motions based on the central pattern generator
(hereafter, CPG) or neural oscillator. CPG is a cluster of neural structures that
oscillate each other under the constraint of the relationships in their phase spaces,
and generates rhythmic motions that interact with the external environment
and the observed motion can be regarded as a result of the entrainment between
robot motion and the environment. This sort of approach does not need model
parameters that are as precicise as ZMP or the inverted pendulum.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 344–354, 2004.
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Fig. 1. A model of biped locomotion robot

Taga et al. [11] gave the mathematical formulation for neural oscillator, con-
structed a dynamic controller for biped walking on the sagittal plane, and showed
the simulation results which indicated that his method could generate stable
biped motions similar to human walking. Others extended his method to three
dimensions [8] and adaptive motion on the slope by adjusting the neural oscil-
lator [1].

The second approach seems promising for adaptation against changes in the
environment. To handle more complicated situations, the visual information has
been involved. Taga [12] studied how the robot can avoid an obstacle by adjusting
the walking pattern assuming that the object height and the distance to it can
be measured by the visual information. Fukuoka et al. [5] also adjusted CPG
input so that a quadruped can climb over a step through the visual information.
In these methods, however, the adjusting parameters were given by the designer
in advance. Therefore, it seems difficult to apply to more dynamic situations,
and learning method seems necessary.

This paper presents a method for generating vision-based humanoid behav-
iors by reinforcement learning with rhythmic walking parameters. A rhythmic
motion controller such as CPG or neural oscillator stabilizes the walking [13].
The learning process consists of two stages: first one is building an action space
with two parameters (a forward step width and a turning angle) so that infeasi-
ble combinations of them are inhibited. The second one is reinforcement learning
with the constructed action space and the state space consisting of visual fea-
tures and posture parameters to find feasible action. The method is applied to a
situation of the RoboCupSoccer Humanoid league [6], that is, to approach the
ball and to shoot it into the goal. Instructions by human are given to start up
the learning process and the rest is solely self-learning in real situations.
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Fig. 2. A walking control system Fig. 3. A phase control system

2 Rhythmic Walking Controller

2.1 Biped Robot Model

Fig. 1 shows a biped robot model used in the experiment which has a one-link
torso, two four-link arms, and two six-link legs. All joints rotate with a single
DoF rotation. Each foot has four FSRs to detect reaction force from the floor
and a CCD camera with a fish-eye lens is attached at the top of the torso.

2.2 Rhythmic Walking Controller Based on CPG Principle

Tsujita and Tsuchiya [13] designed a rhythmic walking controller based on CPG
principle and generated walking motions adaptive to the environment through
the mutual entrainment between non-linear neural oscillators. Following their
design principle, we build a controller which consists of trajectory and phase
ones to control reciprocation of each leg. (see Fig. 2). The former drives motors
attached to joints according to the motor command from the latter which consists
of two oscillators. The phase controller receives the feedback signal of reaction
force from the floor through the FSRs attached at the soles.

The stable walking motion is realized as follows.

1.

2.

3.

4.

Each leg motion has two kinds of modes: a free leg mode and a support leg
one both of which trajectories are specified by the designer in advance (see
Fig. 4).
In each mode, the joint trajectories are given as a phase function in terms
of the corresponding neural oscillators.
Mode switching is triggered by phase shift of the free leg caused by the
ground contact information from the FSRs. That is, if the free leg contacts
with the floor, the phase of the free leg (the support leg, too) is accelerated,
and mode switch (free leg support leg) happens.
Various kinds of walking are generated with two parameters: a forward step
length and a turning angle (see Fig. 5).
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Fig. 4. Trajectories of the leg

Fig. 5. Waking parameters

3 Reinforcement Learning
with Rhythmic Walking Parameters

3.1 Principle of Reinforcement Learning

Recently, reinforcement learning has been receiving increased attention as a
method for robot learning with little or no a priori knowledge and higher ca-
pability of reactive and adaptive behaviors. Fig. 6 shows the basic model of
robot-environment interaction [10], where a robot and an environment are mod-
elled by two synchronized finite state automatons interacting in a discrete time
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Fig. 6. Basic model of agent-environment interaction

cyclical processes. The robot senses the current state of the environment
and selects an action Based on the state and action, the environment
makes a transition to a new state and generates a reward that is passed
back to the robot. Through these interactions, the robot learns a purposive be-
havior to achieve a given goal. In order for the learning to converge correctly, the
environment should satisfy the Markovian assumption that the state transition
depends on only the current state and the taken action. The state transition
is modelled by a stochastic function T which maps a pair of the current state
and the action to take to the next state Using T, the state
transition probability is given by

The immediate reward is given by the reward function in terms of the
current state by that is Generally, (hereafter
and (hereafter are unknown.

The aim of the reinforcement learner is to maximize the accumulated sum-
mation of the given rewards (called return) given by

where denotes a discounting factor to give the temporal weight to
the reward.

If the state transition probability is known, the optimal policy which maxi-
mizes the expected return is given by finding the optimal value function
or the optimal action value function as follows. The derivation of them
can be found elsewhere [10].
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In this paper, the learning module examines the state transition when both
feet contact with the ground. The state space, S, consists of the visual informa-
tion and the robot posture and the action space consists of two parameters
of rhythmic walking. Details are explained in the following subsections.

3.2 Construction of Action Space Based on Rhythmic Parameters

The learning process has two stages. The first one is to construct the action space
consisting of feasible combinations of two rhythmic walking parameters
To do that, we prepared the three-dimensional posture space in terms of the
forward length (quantized into four lengths: 0, 10, 35 60 [mm]), the turning
angle (quantized into three angles: -10, 0,10 [deg].) both of which correspond to
the result of the execution of the previous action command, and the leg side (left
or right). Therefore, we have 24 kinds of postures. First, we have constructed the
action space of the feasible combinations of excluding the infeasible ones
which cause collisions with its own body. Then, various combinations of actions
are examined for stable walking in the real robot. Fig. 7 shows the feasible actions
(empty boxes) for each leg corresponding to the action, which determines the
resultant posture of the next step. Due to the differences in physical properties
between two legs, the constructed action space was not symmetric although it
should be theoretically.

3.3 Reinforcement Learning with Visual Information

Fig. 8 shows an overview of the whole system which consists of two layers:
adjusting walking based on the visual information and generating walking based
on neural oscillators. The state space consists of the visual information and
the robot posture and adjusted action is learned by dynamic programming
method based on the rhythmic walking parameters In a case of ball
shooting task, consists of ball substates and goal substates both of which are
quantized as shown in Fig. 9. In addition to these substates, we add two more
substates, that is, “the ball is missing” and “the goal is missing” because they
are necessary to recover from loosing their sight.

Learning module consists of a planner which determines an action based on
the current state a state transition model which estimates the state transition
probability through the interactions, and a reward model (see Fig. 10).
Based on DP, the action value function is updated and the learning
stops when no more changes in the summation of action values.

where denotes the expected reward at the state
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Fig. 7. Experimental result of action rule

Fig. 8. Biped walking system with vi-
sual perception

Fig. 9. State space of ball and goal

4 Experiments

4.1 Robot Platform and Environment Set-Up

Here, we use a humanoid platform HOAP-1 by Fujitsu Automation LTD. [9]
attaching a CCD camera with a fish-eye lens at the head. Figs. 11 and 12 show a
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Fig. 10. A learning module

Fig. 11. HOAP-1 Fig. 12. An overview of the robot system

picture and a system configuration, respectively. The height and the weight are
about 480[mm] and 6[kg], and each leg (arm) has six (four) DoFs. Joint encoders
have high resolution of 0.001 [deg/pulse] and reaction force sensors (FSRs) are
attached at soles. The colour image processing to detect an orange ball and a
blue goal is performed on the CPU (Pentium3 800MHz) under RT-Linux. Fig.
13 shows the on-board image.

The experimental set-up is shown in Fig. 14 where the initial robot position
is inside the circle whose center and radius are the ball position and 1000 [mm],
respectively, and the initial ball position is located less than 1500 [mm] from
the goal of which width and height are 1800 [mm] and 900 [mm], respectively.
The task is to take a position just before the ball so that the robot can shoot
a ball into the goal. Each episode ends when the robot succeeds in getting such
positions or fails (touches the ball or the pre-specified time period expires).
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Fig. 13. Robot’s view (CCD camera
image through fish-lens)

Fig. 14. Experimental environment

4.2 Experimental Results

One of the most serious issues in applying the reinforcement learning method
to real robot tasks is how to accelerate the learning process. Instead of using
Q-learning that is most typically used in many applications, we use a DP ap-
proach based on the state transition model that is obtained separately from
the behavior learning itself. Further, we give the instructions to start up the
learning, more correctly, during the first 50 episodes (about a half hour), the
human instructor avoids the useless exploration by directly specifying the action
command to the learner about 10 times per one episode. After that, the learner
experienced about 1500 episodes.

Owing to the state transition model and initial instructions, the learning
converged in 15 hours, and the robot learned to get the right position from any
initial positions inside the half field. Fig. 15 shows the learned behaviors from
different initial positions. In Fig. 15, the robot can capture the image including
both the ball and the goal from the initial position while in Fig. 15 (f) the robot
cannot see the ball or the goal from the initial position.

5 Concluding Remarks
A vision-based behavior of humanoid was generated by reinforcement learn-
ing with rhythmic walking parameters. Since the humanoid generally has many
DoFs, it is very hard to control all of them. Instead of using these DoFs as ac-
tion space, we adopted rhythmic walking parameters, which drastically reduces
the search space and therefore the real robot learning was enabled in reasonable
time. In this study, the designer specified the state space consisting of visual
features and robot postures. State space construction by learning is one of the
future issues.
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Fig. 15. Experimental results
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Abstract. This paper describes the methodology that we used to design and im-
plement balancing and walking gaits for TAO-PIE-PIE, a small 30cm tall hu-
manoid robot. TAO-PIE-PIE is a fully autonomous robot with all power, sensing,
and processing done on-board. It is also a minimalistic design with only six de-
grees of freedom. Nevertheless, its performance is comparable to that of other
more complex designs. The paper describes three patterns: (a) a straight walk, (b)
a turn on the spot, and (c) a kicking pattern. Sensor feedback is provided by two
gyroscopes that provide angular velocity in the left-right and forward-backward
plane and a CMOS camera providing vision information. The feedback from the
gyroscopes is not used to actively control the walking gait, because the signal
is noisy and it would be computationally to expensive for the current processor
hardware. Instead, coarse feedback from the gyroscopes is used to monitor the
transition from one phase of the pattern to the next. TAO-PIE-PIE proved to be a
successful design winning a number of honors at international competitions.

1 Introduction

This paper describes the design and implementation of a stable walking gait, a turning
motion, and a kicking motion for TAO-PIE-PIE, the third generation humanoid robot
developed in our laboratory.

Recent advances in material science, control engineering, robotics, and Artificial
Intelligence has enabled researchers to build fully autonomous humanoid robots that
can walk, dance, climb stairs, and other functions.

For the first time, these robots are not limited to academia and research labora-
tories, but have been developed as commercial products. Recently, several companies
have developed commercial humanoid robotic platforms, for example Honda, Fujitsu,
Mitsubishi, and Sony.

These designs have many degrees of freedom and are very complex mechanical and
electronic systems. Correspondingly, they are expensive.

Nevertheless, many research questions about humanoid robots remain unanswered.
Apart from the general problems of localization, computer vision, path planning, mo-
tion planning, and task planning, these also include some problems that are specific
to the control of humanoid robots. For example, what is the minimum set of actuators
needed for stable walking, what sensor information is necessary to walk over uneven

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 355–365, 2004.
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terrain, how to minimize the energy required in walking, or what are the trade-offs
between walking speed and stability.

This paper describes our work on designing TAO-PIE-PIE, a small humanoid robot.
One of the design goals of TAO-PIE-PIEwas a minimal design; using only as many
degrees of freedom as necessary to achieve a stable walk.

The paper describes related work in section 2. The design requirements for our
humanoid robot are shown in section 3. Section 4 gives details of the mechanical and
electronic design of TAO-PIE-PIE. The methodology used to develop and details of
the implementation of the walking gaits are given in section 5. We implemented three
different walking patterns: a straight walk, a turn, and a kick. The paper concludes with
section 7. This section also critically evaluates the performance of TAO-PIE-PIE against
that of other robots.

2 Related Work

Many teams worldwide have also developed small humanoid robots. This section gives
an overview over other small humanoid robot designs. This section attempts to give an
overview over the different types of designs rather than trying to be exhaustive.

2.1 Viki

Viki was developed by Prof. Lund’s team from the University of Southern Denmark [7].
Similar to TAO-PIE-PIE, Vicki is a minimalistic design approach. It embodies a bottom
up approach focusing on the interaction between physical properties and control.

Viki uses only five motors. Two motors are used to turn the legs sideways, one motor
moves the hip, and one motor moves the upper body. Another motor is used to control
the arms of the robot.

Viki only uses four motors for the walking motion compared to TAO-PIE-PIE’s six
RC servos. However, Viki’s mechanical design is significantly more complex including
a gear box and timing belts. It is difficult to compare the kinematic abilities of the two
robots. Viki has the ability to turn either leg sideways, but can not kick a ball straight
forward. TAO-PIE-PIE can not turn its hips sideways, but it can kick with either the
right or left foot.

It is also interesting to note that TAO-PIE-PIE Viki (both based on minimalistic
design philosophies) were by far the smallest robots in the competitions. TAO-PIE-PIE

is 28cm tall, whereas Viki is about 25cm tall.
Viki does not include any sensors for balancing and walking. Rather it seems to

have been developed primarily for the RoboCup Junior competition, since it has a set
of infrared sensors that can detect an infrared emitting ball over long distances.

2.2 Pino and Morph

Pino and Morph are a humanoid robots developed by the Kitano Symbiotic Systems
group [9]. Pino is approximately 50cm tall. It uses high torque servo motors to control
26 DOF (6 DOF in each leg, 5 DOF in each arm, 2 DOF in the trunk, and 2 DOF in
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the head). Pino includes a vision sensor, posture sensors, joint angle sensors (using the
potentiometers of the servos), and force sensors in the feet.

Morph is a next generation humanoid robot. It is similar to Pino’s design, but
smaller.

2.3 Robo Erectus

Robo Erectus is a series of small humanoid robots developed by Changjiu Zhou at
Singapore Politechnic, Singapore [10]. It is a approximately 40cm tall and has 12 DOFs.
It uses standard RC servos as actuators.

Although its walking gait is not as stable as that of other robots, it can move at an
amazing speed of approximately l0cm/sec. Robo Erectus was the fastest of the small
sized robots in the RoboCup competition achieving a second place finish in the robot
walk even against taller robots.

2.4 Kaist Robot

Prof. Kim from KAIST, Daejon, Korea developed a 50cm tall robot which uses DC
motors and timing belts. The robot performed superbly during the 2002 FIRA HuroSot
competition and won first prize. [5].

2.5 Johnny Walker

Johnny Walker is a 40cm tall humanoid robot developed by Dr. Thomas Bräunl from the
University of Western Australia [2]. It also uses the Eyebot controller. It has four DOFs
in each leg. Feedback is provided by a vision cameras as well as two accelerometers,
two gyroscopes, and force sensors in the feet.

2.6 Development of Walking Gaits

There is a rich literature on the design of walking gaits for specific humanoid robots
(see for example [8,6]). However, much of this work was done in simulation only, and
those using real robots succeed only by constraining the range of motion of the robot
(e.g., through the use of oversize feet, or by restricting the motion in the saggital plane).

The representation of the walking gait is also important. A smooth control curve is
needed, since otherwise the motion of the robot will be too jerky. Jerking introduces
unwanted forces into the motion of the robot, is not energy efficient, and introduces
even more noise into the output of gyroscopes and accelerometers. Ijspeert describes the
walking gaits with a set of differential equations [4]. The differential equations describe
a set of attractors using Gaussian kernel functions. A walking gait is represented as a
set of weights on the kernel functions, and thus an attractor landscape.

3 Design Requirements

TAO-PIE-PIE was intended as a research vehicle to investigate methods for deriving
control methods for stable walking patterns for humanoid robots. Stable walking, es-
pecially over uneven terrain is a difficult problem. One problem is that current actuator
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technology (RC Servos, DC motors) generate less torque in comparison to their weight
than human muscle. Another problem is that feedback from gyroscopes and actuators
is very noisy. The necessary smoothing of the input signals makes it hard to use it in
actively controlling the walking motion.

Another research direction was the investigation of computer vision based methods
for balancing and walking. Humans use vision when balancing. This can be demon-
strated convincingly by having a person balance on one leg and then ask them to close
their eyes, which makes balancing much harder for people. The idea is to use the optical
flow field of the camera to control the robot’s walking motion. This requires fundamen-
tal scene interpretation since to extract a motion vector (in general, a six dimensional
vector representing translation in the X, Y, and Z plane as well as pan, tilt and swing
angles) from an image sequence requires knowledge of the geometry of the scene. This
problem can be simplified by making assumptions about the world and limiting the
amount of

Furthermore, TAO-PIE-PIE was intended to compete at international humanoid
robotic competitions such as RoboCup and FIRA HuroSot. Among other, this meant
that TAO-PIE-PIE had to be able to balance, walk, run an obstacle course, dance, and
kick a ball.

Cost was an important design criteria in TAO-PIE-PIE’s development. Previous ex-
perience has shown us that the use of commonly available cheap components does not
only help to keep the cost of a project down and the Head of Department happy, but it
also has lead to the development of novel, versatile, and robust approaches to problems
in robotics.

For example, most teams in the small sized league use a camera mounted directly
overhead. Since the viewing field is limited with a standard lens, most teams purchased
wide angle lenses and expensive cameras. In contrast, our small size league team, the
All-Botz [1], mounted the camera with a side view. This made the vision problem harder
but resulted in the development of more complex and robust camera calibration routines.
However, this effort is now paying off since the development system is flexible and
robust enough to handle the newer larger playing fields introduced in 2002 as well as
even larger playing fields planned for the future.

Another design goal was to reduce the number of degrees of freedom (DOF) of the
robot. This reduces the cost of the humanoid robot as well as increases its robustness.
Each DOF adds extra complexity in the mechanical design and the design of the control
electronics. Furthermore, reducing the number of DOFs in the robot allows us to exploit
the dimensions of the humanoid walking problem. The minimum set of DOFs that allow
a humanoid robot to walk is of interest since it leads to energy efficient designs.

4 Mechanical Design of TAO-PIE-PIE

TAO-PIE-PIE is the third generation of humanoid robots developed in our lab. The first
two humanoid robots RX-78 and Zaku were both based on commercially available toy
model figures. Both model provided important stepping stones and insights into the
design of a small humanoid robot.

A number of lessons were learned from RX-78 and Zaku and included in the me-
chanical design of TAO-PIE-PIE.
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Firstly, the plastic model kits were not strong enough to withstand the pressures
and forces during walking and thus would often break. Therefore, TAO-PIE-PIE was
constructed from aluminum.

Secondly, Zaku proved the need for a joint in the left-right (so-called sagittal) plane
to shift the center of gravity from right to left. Although Zaku was able to shuffle in a
straight line, the absence of a joint in the saggital plane meant that it could not lift its
feet of the ground and thus had a very short stride length. The only way for Zaku to shift
the center of gravity from left to right was by bending its knees. TAO-PIE-PIE therefore
had an extra DOF in each ankle which allows it to shift in the saggital plane.

Thirdly, the importance of feedback in the control of humanoid walking was demon-
strated was demonstrated by RX-78 which used a modified mouse as make-shift pitch
and roll sensor. TAO-PIE-PIE includes two gyroscopes to measure the angular velocity
in the left-right and forward-backward plane.

Figure 1 shows the mechanical construction of TAO-PIE-PIE.

Fig. 1. Front and side view of TAO-PIE-PIE.

The actuators and sensors consist of widely available RC servos and RC gyroscopes
for remote controlled cars and helicopters.

The Eyebot controller ([3]) was chosen as embedded processor, since it is relatively
inexpensive, yet powerful enough to provide vision information. A small CMOS camera
provides visual feedback for the robot.



360 Jacky Baltes and Patrick Lam

The details of the mechanical construction of TAO-PIE-PIE are shown in Figure 2.
The mechanical design was done in conjunction with Dr. Nadir Ould Kheddal’s robotics
group at Temasek Politechnic, Singapore.

TAO-PIE-PIE is constructed out of 0.5mm aluminum. The RC servos are used as
structural components in the design.

Fig.2. CAD Drawing of TAO-PIE-PIE.

5 Development of Walking Gaits

One of the fundamental problems in humanoid robots is the development of stable walk-
ing patterns. A walking pattern is dynamically stable if the COP is within the supporting
area. A statically stable walking pattern also has the COM within the supporting area.

We used a divide and conquer approach and divided the walking gait into six phases:
three for the right and three for the left leg.

The phases were selected in such a way that the robot is statically stable at the end
of each phase.

5.1 Inverse Kinematics

Inverse Kinematics allow us to compute the correct joint angle to position a robotic link
at a target position. After determining the desired location for the COM, we compute
joint angles for all RC servos in the leg. By controlling the joints angles, we can control
the stability during the motions.

To keep the humanoid balanced, we must keep the center of mass within the sup-
porting region during the termination of all phases of the walking motion.

To solve the inverse kinematics model of the humanoid robot we use a simplified
two link model of the robot.

Solving the equations for   first and then for we can find a solution to the
inverse kinematics problem. The solution for and are shown below.
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Fig. 3. Inverse Kinematics model of the robot. P, represent center of mass. L2 - hip joint link,
L1 - knee joint link.

5.2 Pattern for Straight Walk

The walking pattern for a straight walk is shown in Figure 4. The pattern is based on
the control curves shown in the previous section.

The walking pattern consists of six phases. The walking pattern repeats itself after
the sixth phase. The bottom row of images shows the approximate position of the COM.

TAO-PIE-PIE starts in phase 1 — “Two Leg Stand” — where the right leg is in front
and the left leg is behind. Both legs are on the ground and the COM is between the two
legs.

From phase 1, TAO-PIE-PIE moves to phase 2 — “One Leg Stand” —. In this phase,
the ankle servo generates a torque which moves the COM to the inside edge of the right
leg. This also results in the back (left) leg to lift off the ground.

During the transition from phase 2 to phase 3 — “Ready for Landing” — is in
static balance. TAO-PIE-PIE moves the free left leg forward and positions it so that it is
ready for land. The COM moves to the front of the supporting leg. This stabilizes the
transition to phase 4.

During the transition from phase 3 to phase 4 — “Two Leg Stand Inverse” — the
robot is in dynamic balance. The supporting leg extends its knee joint to shift the COM
over the front edge of the supporting leg. The ankle servo of the supporting leg generates
a torque to move the COM over the right side. The left leg will touch the ground in front
of the right leg.

Phases 5 to 6 are the mirror images of phases 2 to 3. After phase 6, the motion
continues with a transition to phase 1.

5.3 Pattern for Turning Walk

TAO-PIE-PIE possesses two different patterns for changing the direction of its walk
from a straight line walk: (a) varying the stride length, and (b) lower body twist.
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Fig. 4. Walking Pattern of TAO-PIE-PIE.

Fig. 5. Turning Pattern of TAO-PIE-PIE.

By changing the speed at which TAO-PIE-PIE moves through phases 2 and 5 re-
spectively, it can vary the stride length of the left and right part of the walking pattern
which turns the robot into this direction. However, the turning rate is slow and requires
a lot of distance for TAO-PIE-PIE to turn noticeably.

TAO-PIE-PIE can turn on the spot by twisting its lower body, which is shown in
Figure 5. The turn occurs in phase “turn.” In this phase, the front and back legs will
swap position. During the turn, the COM and the COP are in the center between the
two feet.
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Fig. 6. Kicking Pattern of TAO-PIE-PIE.

5.4 Kicking Pattern

The RoboCup competition also required our robots to kick a ball. Therefore, we de-
veloped a kicking pattern for TAO-PIE-PIE. The kicking pattern shown in Figure 6 is
similar to the walking pattern.

The difference is that in phase 2, the rear leg is moved back as far as possible. This
increases the range of motion of the kick, which results in more energy for the kick. To
keep the robot balanced, TAO-PIE-PIE leans the upper body forward by moving both
hip joints.

This is necessary to keep the COM over the supporting area of the front leg.
TAO-PIE-PIE then snaps the back leg forward as quickly as possible. At the same

time, it straightens out the upper body, which readies it for landing on the kicking foot.

5.5 Sensor Feedback

The only feedback about the motion of TAO-PIE-PIE is provided by two gyroscopes
that provide information about the angular velocity in left-right and forward-backward
plane respectively.

However, the computational requirements of on-board computer vision are large
for the Eyebot embedded processor (MC 68332). Furthermore, the data from the gyro-
scopes is noisy and without significant pre-processing unsuitable to control the motion
during the transition from one phase to another.
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Instead, only large changes in the output of the gyroscopes are used to recognize
when a certain phase has been entered successfully. For example, the robot listens for a
sudden change in the angular velocity in the left-right plane to determine when the free
leg has landed in phases 1 and phases 4 of the straight walking pattern.

The feedback from the gyroscopes is also used to detect abnormal behavior. For ex-
ample, if the robot’s foot is caught on the carpet and instead of moving the leg forward,
the robot will fall onto the leg too early. If this abnormal feedback is detected the robot
attempts to stabilize itself by putting both feet on the ground as quickly as possible and
straighten up its upper body. The motion will then stop until both gyroscopes show little
angular velocity.

6 Evaluation

It is difficult to quantitatively evaluate the performance of different walking gaits and
humanoid robots. Many factors that are not directly related to the walking gaits (e.g.,
size of the feet of the robot) can influence the performance of a humanoid robot. Further-
more, all humanoid robot designers attempt to find a balance between the stability and
speed of the walking pattern. A robot that walks quicker usually has a higher chance of
falling. Therefore, not only the maximum speed, but also the probability that the robot
will fall at any given speed needs to be considered.

Therefore, this section will provide anecdotal evidence based on observations dur-
ing the 2002 RoboCup and FIRA HuroSot competitions to highlight TAO-PIE-PIE’s
strength and weaknesses.

TAO-PIE-PIE competed at two international competitions for humanoid robots in
2002: FIRA HuroSot and RoboCup. It performed well in the competitions winning a
technical merit award for fully autonomous operation at FIRA HuroSot and second and
third places at RoboCup.

More importantly, TAO-PIE-PIE’s walking gaits have proved themselves to be very
robust. TAO-PIE-PIE walked for a combined time of over an hour and only fell ones
during the FIRA HuroSot competition. A similar result was achieved during RoboCup.

TAO-PIE-PIE also was the only robot in the small robot class that demonstrated
during the RoboCup 2002 penalty kick competition, that it could quickly turn on the
spot and kick a ball into either the right or left part of the goal. This strategy was
successful up until the final against Footprints. After having been scored on by TAO-
PIE-PIE in the preliminary rounds, the Footprints goal keeper moved quickly out of the
goal in a straight line and thus covered the angle.

This highlights the biggest shortcoming of TAO-PIE-PIE at the moment. Its walking
gait is slowed compared to that of other robots. It moved at an average speed of only
1cm/s. This is comparable to the performance of Vicki, the only other very small robot
in the competition, but is very slow compared to robots in the 40cm class. The fastest
robot in this class was Robo Erectus which walked at about 10cm/secs.

7 Conclusion
TAO-PIE-PIE has shown itself to be a powerful and flexible platform for research into
humanoid robotics. It has proven itself during international competitions winning a sec-
ond place in the RoboCup and a technical merit award in the FIRA 2002 competitions.
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We have learned important lessons in the design of humanoid robots from TAO-PIE-
PIE, which we will use in the design of the next generation humanoid robot HIRO. HIRO
will use four additional DOFs (two in the hip and a pan and tilt camera). It also features
a faster embedded processor (Intel Stayton), which allows us to implement better on-
board computer vision algorithms. One of the main goals of the HIRO platform will be
to investigate methods for augmenting the balancing of the robot using visual feedback.

Currently, only limited feedback from the gyroscopes is used to control the motion
of the robot. With the addition of a more powerful embedded systems, finer grained
control over the motion is possible.
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Abstract. Humanoid robots are without question a hot topic in research today.
But will they really be the next break-through invention that changes the face of
the world, or are they just another over-hyped research toy? ProRobot is a study
funded by the European Commission that will have a close look on the future of
humanoid robots and their economic and social impact. The complete study will
be published in summer 2003, and will especially concentrate on the prospects
of research efforts and the differences of research activities throughout the
world.

Keywords: Humanoid robots, study, roadmap, future predictions, socio-eco-
nomic analysis

1 Introduction

The development of humanoid robots is in an interesting phase at the moment. The
technological preconditions seem to be met, the first prototype developments look
very promising, commercial interest is awakening. However, the future of humanoid
robots is not clear, as it is not yet known if humanoid robots can manage the leap
from the research stage to the general usage by non-researchers. There seem to be as
many promising application fields as there are doubts about them. To help clarify the
situation, the ProRobot study was set up. The study is funded by the European Com-
mission, and will not only show the current state-of-the art of humanoid robot tech-
nology, but will give a full socio-economic analysis of this emerging area. The analy-
sis will be based on a cost-benefit model comprising of five layers:

Social Benefit. What is the benefit to the end user? Measures the value of a new tech-
nology in terms of its usefulness to an end user or group of users in their eve-
ryday life.

Usability. What is needed to make the technology user-friendly? Measures the effort
required by a user or group of users to be able to use a given technology.

Technical Viability. What technological opportunities make the project valid? Are
new component technologies, infrastructures and methods available to im-
plement the idea?

Feasibility. Can a production of the robots be assumed realistically? Are there obsta-
cles or side-effects that make the technology too challenging?

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 366–373, 2004.
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Exploitability. Can the product be sold? What is the market value and competition
for the technology, product, or service. This depends upon the added value it
offers to the user (i.e. social benefit) and the cost the user must make to ac-
quire the benefit (i.e. usability).

In this way, predictions on the potential market size should be given, including
predictions on the advance of all needed technologies. Significant technological barri-
ers and socio-economic obstacles will be identified which may motivate specific
R&D or support activities. As a conclusion, a road map will be given that shows all
expected technological advances, research efforts and market developments.

The complete study will be published by the European commission in August
2003, and will be freely accessible to the public. As the study is under development
right now, this paper can only give an overview about the related problems and tasks,
while the detailed analysis and road-maps will be found in the study itself.

In this paper, we will give now a basic overview about the tasks and problems
when predicting the future of humanoid robots.

2 So What Is Humanoid?

When talking about humanoid robots, the question will soon arise what can be called
a humanoid robot, and what not. There is no widely accepted definition for a human-
oid robot. For most developers it’s enough if anybody can recognize a robot as hu-
manoid just by looking at him. However, as the development of humanoid robots
became more and more popular, there were soon machines where it was quite unclear
if they still can be called ‘humanoid robots’. All in all, there are two existent points of
view: The first is to call a robot a ‘humanoid robot’ if he looks humanoid, which
means that he has a structured body similar to a human being: An upright body with
two legs (preferable with knee joints and the right proportions) and two arms, hands
with five fingers and a head on top of all. The problem here is that even very cheap
toy gadgets, that can hardly be called robots at all, meet this definition. Nevertheless
this point of view is quite popular, because it’s the most natural way for normal peo-
ple to decide if a robot is humanoid. The other, more academic point of view is to
define a robot as ‘humanoid’, if he can act like a human being. The emphasis here
lays more on the possible actions of a robot, and less on his outer appearance and
structure. If he can achieve typical ‘humanoid’ tasks in a normal ‘humanoid’ envi-
ronment, he can be called humanoid, no matter how many arm joints he has or how
many legs he uses. This point of view is not very satisfying, as some robots may
achieve humanoid tasks without looking humanoid at all. Both approaches work to-
gether, if the robot needs the humanoid body to achieve the humanoid tasks. For mov-
ing in a normal house, for example, he needs to climb stairs and therefore needs legs
instead of wheels. This is especially true if the robot must work in environments
which are especially designed for the abilities of the human body. An example would
be the driver seat in a standard automobile, where all arms and legs are needed in the
right spot to allow the usage of the driving controls. The conclusion is that a robot that
should act totally like a human must look totally like a human. He does not need how-
ever to copy the restrictions of the human body, so knees which bend in both direc-
tions might make him look a little bit non-humanoid, though.
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What really brings together both points of view is the interaction with real humans.
It is a widely accepted fact that a humanoid robot does not make much sense if he
cannot interact with humans in one or the other way. For this task the humanoid ap-
pearance of the robot is without question beneficial. If a real human wants to work
with a robot, or maybe just wants to play with the robot, he will feel much more con-
fident if the robot is shaped in a friendly, humanoid form. He is more aware of what
the robot can do, and what he cannot do, making the over-all work much easier.

In practice, most researchers and developers do not seem to care much about a
clear definition for humanoid robots. Normally a collection of tasks is given, which
should be fulfilled by the robot while using the structure of a humanoid body. Popular
tasks and properties for such a humanoid robot are:

Being a mobile robot with power supply and computer control on-board
Navigating and moving in an environment made for humans
Biped walking in a humanoid style
Gripping and manipulating objects designed for humans
Cooperative working with humans
Interacting with humans without endangering their safety
Having autonomous behavior
Communicating with humans in a simple and intuitive way
Using a stereo-vision system as main sensor system
Using learning and adaptive behavior strategies
Using human-like intelligence
Having a design pleasing to real humans

While a complete humanoid robot should of course be able to show all of the
above behavior, the technology at the moment is not advanced enough. Most human-
oid projects are busy working on one or two of these tasks at the moment.

For the ProRobot study, we will examine all projects that intend to work on a hu-
manoid robot, and work at least on two tasks of this list.

3 The Technological View

Not all technology for normal robots is essential for humanoid robots, and not all
technology for humanoid robots is needed for normal robots. Based on the list of tasks
that was given in the previous section, we can have a closer look on the different
technology fields that are especially interesting when developing a humanoid robot.
The progression of these technologies will greatly effect the performance of future
humanoid robots, so a prediction of the future developments in this field is surely
interesting.
Bipedal Walking Technologies: Often considered to be the core technology for a
humanoid robot, there is not only the problem of mechanics, but also the sensorial
problem of keeping the balance. True dynamic walking is still a challenge for every
humanoid robot, but recent developments are looking quite promising, and good pro-
gress is expected in the future if the research interest is staying high. The research of
bipedal walking is closely linked to the research on humanoid robots [1].
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Navigation in Human Environments: This task should not be underestimated, as the
natural environment of humans is quite complex. The robot must navigate with many
dynamic objects (called humans) in his workspace while guarantee extreme safety to
them. Most service robots face the same problems, and the development is still in a
very basic level.
Gripping and Manipulation of Objects: For humanoid arms, the large technology
knowledge of industrial manipulators can be used, so the arm development is consid-
ered to be a minor problem. However, humanoid shaped hands and gripping patterns
are still under research, and working together with a humanoid sensor system is no
trivial task. Many service robots deal with similar problems.
Communication with Humans in a Natural Way: Understanding and speaking in
natural language is a complex task, but is already heavily researched by countless
developers of computer systems needing a human-machine interface. Impressive
progress has been made, and the commercial interest is rather high, so it seems as if
solutions already on the market can be used for the humanoid robot.
Humanoid Vision and Senses: There seems to be no need to make the sensor system
of a humanoid robot especially human-like, although stereo-vision systems are pre-
ferred by most development teams. Image processing is already a hot topic in research
nowadays, so most times standard systems are used for the humanoid robots.
System Integration: This is the problem of putting all of the above technologies into
a single, autonomous humanoid body while keeping the weight as low as possible.
The robot must have good computational power, and must carry his own power sup-
ply with him. While computers are getting smaller and faster in regular steps, the
power supply is still an unsolved problem. Batteries for supplying a very power con-
suming robot over a long period are very heavy, a problem well known from the de-
velopment of service robots.

Depending on the intended tasks for the robot, some technologies might be more
important than others. For RoboCup, the goal was formulated to have a team of hu-
manoid robots playing against human opponents in the year 2050, which would cer-
tainly need good solutions for all technology fields above. Fig. 1 gives an overview
about the state of the art today with help of a score card.

4 The Economic View

No prediction of future developments can be made without regarding the commercial
interest in the desired technologies. The developers of humanoid robots are quite
aware of the fact that these robots should be for sale one day, not only for a few scien-
tists, but for a wide audience of normal people. So, while examining what the robot
technology can achieve, we should also think about what the robot is intended to do.
There are many different application fields for humanoid robots, from the more futur-
istic scenarios to the markets where robots are already for sale at the moment. In all
application fields the main characteristic is that the robot must interact with real hu-
mans. Without any form of human interaction, a specialized robot will always have
advantages over the humanoid robot.
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Fig. 1. An overview of the current state of the different technologies needed for a humanoid
robot. Bubble sizes represent the importance of the technology for the goal of RoboCup. The
RoboCup goal robot was put in there as a comparison, and was assumed to be of maximal
commercial interest.

Possible fields of application are:
Industry: There are many robots working in the industrial production at the moment,
but not humanoid ones. The reason is that the work is very specialized and repetitive,
with human work force reduced to a minimum. The humanoid robot cannot profit
from his greatest advantages, flexibility and human interaction. There are industrial
fields where humanoid robots can be helpful because they can work close together
with humans. The building industry is such a field, where a humanoid robot could act
like a reliable co-worker, especially in unsafe environments. There are research
groups that think of such an application field for their robot [2][3], but the goal seems
to be very hard to reach. In addition, the cost efficiency of such work can be seriously
doubted.
Military: Science fiction stories are full of super-human battle robots, which act as
powerful, tireless and reliable soldiers. Chances are very high that these things remain
completely fictional, as there are much better ways for robots to be used in the mili-
tary. Even the U.S. military, which often favors high-sophisticated technologies, do
not seem to think about this field of application. Corresponding to newspaper releases
[4][5], however, they have raised a $50 million fund to research the usage of mecha-
nized exoskeletons for human soldiers, and will share some of the problems with the
developers of humanoid robots, e.g. a suitable power-supply. The U.S. defense re-
search agency DARPA has also shown some interest in the development of autono-
mous, self-navigating robotic vehicles [6].
Service: This is perhaps the application field with the highest expectations for hu-
manoid robots. Human interaction and flexibility are core characteristics of the ser-
vice field, and the humanoid shape is certainly an advantage for any service robot, as
the working environments doesn’t need to be adjusted for such a robot. Especially
working places with high personnel expenses, wide requirements and high cost pres-
sures seem to be predestined for the usage of humanoid robots. An example is the
health care field where many people are required to care for diseased, old or handi-
capped people. The usage of service robots seems to be not far away in the costly
health care field [7].
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Research: Most of the humanoid robots that are sold today are meant primarily for
research purposes. While this is good for itself, it is mainly regarded as an intermedi-
ate step in the development of robots for other purposes. There are some research
groups which develop robots very similar to real humans, and try in this way to learn
more about the functionality of the human body and mind.
Entertainment: Last but not least, the entertainment sector is not one that should be
underestimated, as its economic power might be greater than the service sector. For
example, the retail figures of the latest U.S. census [8] show that over $62 billion
have been spent on sporting and toy products, and $32 billion on consumer electron-
ics like radio and television sets (not including computers), while only $10 billion
have been spent on classic household appliances like refrigerators, dishwashers, vac-
uum cleaners and so on. Application fields for a humanoid robot in the entertainment
sector seem to be unlimited, with high-sophisticated robots used as perfect toy com-
panions. Many humanoids which are for sale today are meant primary as toys, while
using impressive technology [9].
Advertisement: It might seem to be a little odd to mention the advertisement sector
as an application field for humanoid robots, but in practice, many companies are rais-
ing high fundings for their humanoid robot projects mainly because of the reputation
and prestige they gain with them. Humanoid robots are a good field to show the tech-
nological abilities of a company, and can get the interest of a big, world-wide audi-
ence including the media. The research community can certainly profit from these
marketing issues. After all, it was also a question of prestige that brought man to
moon and back.

The ProRobot study will carefully look at all of the above mentioned application
fields and examine their future potential for humanoid robots. Commercial interest
has always given a significant boost to the research activities, and so the future of
humanoid robots will depend on how they can be used in an economically reasonable
way.

5 The Social View

As mentioned in the previous section, the interaction with real human beings is one of
the most important tasks for a humanoid robot. The question now is if real humans are
willing to interact with a robot. The quality of cooperative work of humans and hu-
manoids depend on the efforts by both sides, and service or entertainment robots are
totally useless if people are afraid of them. Even assuming there is a perfect humanoid
robot who can achieve all wanted tasks, the question remains if he is accepted by the
people. How persons react on humanoid robots depends on a number of factors, some
of them are shown below:
Local Society and Culture: People of different regions and nations react different on
humanoid robots. It is well-known that people in Japan are quite enthusiastic about
them, while people in Europe do not seem to care too much for them. The reasons for
this might be based in the fundamental relationship of people towards new technol-
ogy. The local differences might vanish when the new technology gets more common.
After all, many new technologies are similarly popular throughout the world today.
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Intended Audience: Humanoid robots are not intended to work solely with robotic
specialists, researchers and academic persons. Instead, they should be able to interact
with normal people who do not have any preconditional knowledge of robotics. Dif-
ferent audiences will react differently on a humanoid, though. It might be more diffi-
cult to establish a care robot in a home for old people than as a toy for children. It is
therefore necessary to have a close look on the target audience before introducing a
humanoid robot.
Safety Concerns: Absolute safety is a prerequisite for the successful introduction of
humanoid robots in the human society. No human will work together with a human-
oid robot if he must fear to be smashed by him. With every little safety concern the
public opinion will drop noticeably. This is well-known from other technologies.
Nuclear power and genetic engineering were once celebrated as wonderful technolo-
gies and are nowadays regarded with much more suspicion. There are even people
who do not want to use a mobile phone because they fear the electromagnetic radia-
tion. Robotic technology today is regarded as harmless for the most part, and great
attention should be paid that it stays so.
Employment Concerns: To face the facts, robots have a slight reputation of stealing
jobs. Much work once done by human workers is today accomplished by industrial
robots. In most cases, this will presumably be not true for humanoid robots. They are
hardly a solution for industrial work and make only sense when there are humans to
interact with. However, there might be employees that seem to be replaceable by
humanoid service robots. Anyhow, a long time will pass until humanoids are ad-
vanced enough (and cheap enough) to replace any human worker.
Movies and Literature: Humanoid robots are long time known from fictional stories
and movies, and the image they got from this sources may influence the opinion of
real humans about real humanoids. Chances are high, that the first thing a normal
person on the street has in mind when he hears about ‘Humanoid robots’ is a Holly-
wood creation. For long times, robots were the bad boys of fictional stories, trying to
enslave humanity for countless times. In the recent years, humanoid robots were used
in a much more positive roles, and they act now mostly as comic relief (‘Star Wars’,
Disney’s Treasure Planet’) or even as heroic sidekicks (‘Star Trek’). It is good to see
that a wide audience can accept a humanoid robot in this way.
Appearance: As the development of humanoid robots progresses, the question of the
optical appearance and the design of the robot arises. Human users are strongly influ-
enced by the look of the robot, and will react differently because of the emotions
caused by its appearance. For example, a huge, 2-metres-sized robot will frighten
many people, while they are quite comfortable with a child-sized robot with the same
abilities. The realistic mimicking of the human appearance can be more frightening
than a futuristic metallic look of the robot. It is therefore obvious that the role of de-
sign will increase when humanoid robots reach sale status.

6 Conclusion

This paper presented the scope of the ProRobot study. The study will concentrate on
the predictions of technological advances, economic scenarios for humanoid robots
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and social problems concerning these robots, as presented in this paper. These factors
will be combined in a socio-economic analysis of the humanoid robot market. All
potential markets will be discussed, but also potential obstacles and problems. A
roadmap for future research activities will be given to act as a recommendation for
research efforts. As the study is funded by the European Commission, a main point of
interest will be the comparison of European efforts with other activities in the world.
The study will be finished in the end of August 2003 and will be made available by
the European Commission.

The content of the study as well as more resources for humanoid robots are
presented on the web site of the ProRobot project, which is available under
http://www.aboutrobotics.net.
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Abstract. With the introduction of commercially available programm-
able legged robots, a generic software method for detection of abnor-
malities in the robots’ locomotion is required. Our approach is to gain
satisfactory results using a bare minimum amount of hardware feedback;
In most cases we are able to detect faults using only the joint angle sen-
sors. Methods for recognising several types of collision as well as a loss
of traction are examined. We are particularly interested in applying such
techniques to Sony AIBO robots in the RoboCup legged league environ-
ment. This investigation provided us with a technique that enabled us
to detect collisions with reliable accuracy using limited training time.

1 Introduction

An important goal of research in adaptive robotics is to develop robots which
can navigate efficiently and robustly in different environments. This includes
driving or walking on a variety of surfaces such as for example, sand, ice, grass
or carpet, and dealing with obstacles such as stairs or rocks. These skills would
be required by robots which explore changing or unknown environments, for
example, disaster areas [12] or the surface of Mars [6]. The same methods would
also help to improve some transport machines which currently have only a very
restricted ability to move such as wheelchairs [4].

Wheeled, tracked and legged robots seem to have their advantages and dis-
advantages in different environments. On even and hard surfaces wheeled robots
are usually faster, while legged machines would typically be better in dealing
with stairs or similar obstacles. However, some six-legged robots can also walk
very fast [1,5] and some tracked tank-like machines [7] have been developed
which can climb stairs and jump over rocks with remarkable speed.

It is not yet completely clear what would be the practical advantages of
4–legged or biped robots over 6– or 8–legged robots and what could be useful
applications other than entertainment. Nonetheless, major effort is currently put
into the development of 4–legged and bipedal robots with the aim to achieve some
similarity to dogs, cats, and humans [2,3].

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 374–384, 2004.
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Traction monitoring is a fundamental task in traction control and achieving
collision detection for satisfactory robot movement in particular with legged or
wheeled robots. If the wheels spin in sand or the legs slip on ice the machine
would not be able to move forward and may even fall over. Similarly, if the robot
crashes into a wall or into other robots or if its legs get entangled in some smaller
obstacles, its movement could be impaired.

In the present study we investigate methods to monitor traction measures
and employ them for collision detection with 4–legged AIBO robots [2] in the
environment of the legged league of RoboCup [11]. The idea is that detection
of an abnormal situation should be used to alter the robot’s behaviour – for
example, if a collision while walking forwards is detected, the robot should either
walk backwards, strafe or turn to avoid the obstacle. Particular goals are to
increase the speed of the robots and to find a good strategy to deal with situations
where the legs of two robots get entangled (leg-lock), see figure 1.

Fig. 1. Leg-locked Robots.

In section 2, we give a brief overview of the Sony Legged League robot soccer
environment followed by a discussion on gait control in section 3. In section 4, we
describe a direct statistical approach to fault detection. Section 5 illustrates the
different types of collisions which may occur and techniques to detect them, while
section 6 deals with the detection of a loss of traction (slip). The discussion in
section 7 addresses possibilities for integrating our results into behaviour control
as well as future developments. The paper concludes with a summary in section 8.
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2 The Legged League Robot Soccer Environment

The hardware used for this project is the Sony AIBO Entertainment Robot,
model ERS-210(A). The robots are programmed in a C++ software environment.
They have an internal 64-bit processor and PC Card slot allowing communication
via Wireless LAN.

The legs each have three degrees of freedom to enable walking and kicking.
The joints in the legs are termed the rotator, abductor and knee. The rotator is
the shoulder joint responsible for leg movement parallel with the body (along the
length axis), while the abductor is the shoulder joint involved in leg movement
perpendicular to the body. The knee functions in principle like a dog’s knee in
nature, allowing 174° of movement in only one dimension.

The robots have a CMOS colour image sensor (camera), microphones, speak-
ers, a temperature sensor, an acceleration sensor, pressure sensors (on the head,
back, chin and legs), LEDs on the head and tail and an infrared distance sensor.
The robot is powered by a lithium ion battery pack.

The dimensions of the robot (width × height × length) are 154 mm × 266
mm × 274 mm (not including the tail and ears) and the mass is approximately
1.4 kg (including battery and memory stick).

The Sony AIBO is a state of the art entertainment robot. With a good de-
velopment environment and a robust design, the AIBO provides a solid platform
for investigations into robotics and AI. Further information on the Sony AIBO
can be found at [14].

The dimensions of the soccer field are 270 cm × 420 cm. The walls are angled
at 45°. The playing surface itself is carpeted to protect the robots and to allow
better grip (although the friction of the carpet seems to vary from location to
location). Each team has four robots. The rules are only loosely based on soccer,
but the objective of the game is identical. More detailed rules and specifications
are available at the RoboCup Legged League web site [13].

3 Gait Control

Sony’s 4–legged AIBO robots come equipped with a default motion system which
is adequate for general use. However, it lacks the speed and versatility required
to effectively play soccer.

Instead, legged league RoboCup teams typically use a system based on inverse
kinematics to achieve more efficient locomotion. The motion engines used in
competition tend to be highly parameterised and extremely flexible. They are
mostly based on the walk developed by the legged league team of the University
of New South Wales (UNSW) in Australia [8].

In the original UNSW “ParaWalk” system, each leg follows a roughly rectan-
gular trajectory in world space. These world space coordinates are then converted
to joint angles using inverse kinematics and sent to the effectors. Inclining the
trajectory planes of different legs to the side allows omnidirectional motion to
be achieved. Diagonally opposite legs are raised simultaneously (as in a trot).
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Many variations on this general method have since been developed. The
system employed for the traction monitoring described in this paper is based on
the use of ellipsoidal trajectories. Note however that the fault detection methods
presented below are independent of the particular locomotion system used.

4 Method for Fault Detection and Training

Current methods in legged robots use a complicated array of sensors (360° range
finders, multiple cameras, sonar) [9] to minimize the chance of a robot colliding
with an obstacle. In addition more sensors (torque sensors etc) [10] are used to
detect a collision if one occurs. Such approaches are only possible if the developer
has access to the workings of the robot. In a situation where the hardware is
fixed, a technique that uses only the provided hardware is needed. We were
confronted with this problem in the legged league of RoboCup. Here all teams
are restricted to the use of unmodified Sony AIBO ERS-210(A) robots.

The camera and infrared distance sensor on the ERS-210(A) don’t provide
enough support in avoiding obstacles unless the speed of the robot is dramatically
decreased. Even in the case that the robot avoids obstacles, the unpredictable
movements of other robots mean that collisions are likely to occur. Again the
camera and infrared distance sensor generally can’t be used for detection as the
majority of collisions occur outside the field of view of these sensors. For these
reasons we have chosen to use the joint sensors (i.e. the angle of the joint) as
the only input to our fault detection system.

The historical data needed to accurately determine the “normal” motion of
the limbs is acquired using on-line training (described below). In our case the
parameterised walk allows for an infinite number of parameter combinations.
To minimise the number of possible combinations we have identified three key
walk parameters, backStrideLength, turn and strafe. A fourth parameter is also
important, the time parameter, t. It increases from 0 to 1 as the leg moves along
its trajectory from start to finish. The parameter space was further divided into
the following intervals:

Training involves letting the robot walk without collision or slip for a period of
time, gathering sensor information from each joint. In our experiments we train
the robot for about ten minutes. We then calculate the mean and standard
deviation for each joint with all possible parameter combinations. To save
memory while calculating the variance (1) we store only the total of the inputs,
the total of the squared inputs, and the number of inputs rather than the
complete set or sensor data This miserly approach to memory
usage allows us to perform these calculations on the limited hardware of the
robot.
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Figure 2 shows the joint sensor as the step progresses (that is, as moves
from 0 to 1 on the horizontal axis) for six steps with the identical parameters.
The parameters used for the steps shown are backStrideLength turn

and strafe

Fig. 2. Movement of legs through six forward steps with identical parameters. This
shows the natural variation in “normal” motion.

Although only six steps are shown, the figure gives an indication of the nat-
ural variation in “normal” motion that occurs. The roughly horizontal lines are
the abductor joints (which move very little during a forward motion), while
the curved lines shown are the rotators. It can be seen that the trot gait for a
forwards walk leads to the rotators on the right legs being 180° out of phase
from the left legs. The unequal default positions of the rotator joints lead to the
extreme values of the front and back rotators differing.

5 Collision Detection

Detection of a collision involves observing a joint position substantially differing
from its expected value. In our case using an empirical study we found two
standard deviations to be a practical measure. Initially we would have considered
a collision to have occurred if a single error is found, but further investigation has
shown that finding multiple errors (in most cases, three) in quick succession is
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necessary to warrant a warning that can be acted upon by the robot’s behaviour
system. It should be noted that if the locomotion engine was more reliable finding
only one error may provide accurate results.

For RoboCup a more domain specific diagnosis system is used to provide
detailed information about exactly what occurred. This section is further divided
into the different types of collisions that occur and the distinguishing features
that can be used to identify them.

In the experiments we collected data during different types of collisions;
Walking forwards, turning and walking backwards into the field boundary. We
assumed this data is representative for all other types of collisions that could
occur during a soccer match, such as dog-to-dog collisions.

5.1 Walking Forwards

Our forward walking motion extracts most of its drive from the rear legs - or
more precisely, their associated rotator joints. This means that collisions on the
front legs result in the most noticeable change occurring on these rear rotators.

Figure 3 indicates the movement of the rear rotators. The graph plots the
joint sensor values on the vertical in microrads against on the horizontal

The bold line shows the path of a step that involved a collision. The
dotted line represents the mean “normal” path of the joint (that is, during
unobstructed motion), with the error bars indicating two standard deviations
above and below.

It can be noticed that the clearest differences occur at roughly the midpoint
of the time interval. Furthermore, the first few samples of joint positions in each
step tend to be influenced by transitions between walk types. It is therefore
prudent to deem a collision to have occurred only if an error occurred on the
rear rotators with

Data was gathered in a two step process. First the robot was placed in a
situation where no collisions would occur - this test was designed to find false
positives (detecting a collision that we deemed not to have happened). False
positives occurred in fewer than 1% of steps. In the second test we placed the
robot directly in front of the field boundary to test the success rate of detecting
a collision. In this case about 98% of collisions were detected. It should be noted
that there is a level of human interpretation (and therefore human error) in
the gathering of data. The output of the system is compared against what we
perceived to have occurred. So if the system did not trigger an expected fault
this may be the result of an incorrect human assumption.

5.2 Turning

Detecting a collision during a turn is not unlike detecting a forward collision,
except a better conclusion about the impact point and therefore the position
of the obstacle may be made. Our current turn motion uses only the rear legs,
keeping the front legs stationary so they may be used for controlling the ball.
Unfortunately, this also means that any obstruction to the rear legs severely
affects the robot’s ability to turn. Recognising that a collision has occurred may
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Fig. 3. Rear Rotators for a forwards walking boundary collision on both front legs, front
right leg hitting first. The bold line shows the path of a collided motion. The dotted line
represents the mean “normal” path of the joint (that is, during unobstructed motion),
with the error bars indicating two standard deviations above and below.

therefore be very useful, as we could then choose to reemploy the front legs to
assist with the turn.

Figure 4 shows the values of the rear abductors for turning to the right when
the left rear leg impacts with the boundary. In this case the obstruction can
easily be seen on the left rear rotator while the values for the right rear rotator
remains within the standard bounds. These are reversed when turning to the
left (and a collision occurs on the right rear leg).

Data was gathered in similar manner to that of a forward collision, except
for the second test the robot was positioned next to the field boundary in such a
way that it would collide when turning. False positives occurred on 6% of unob-
structed steps while 100% of collisions were detected. These results differ from
forwards collisions because the turn movement is more sensitive, thus detection
of a collision is easier but the step is also more likely to generate a fault under
normal operation.

5.3 Walking Backwards

Detection of a collision while walking backwards requires a slightly different
mechanism compared to a collision while turning or walking forwards. Here,
we found it is useful to examine the gradient of the sensor values between two
specific time locations. Generally when this type of collision occurs the impact
of the first leg is enough for the second leg to make little or no contact with the
obstacle, meaning the motion of that leg is unaffected. Again the rear rotators
give the most reliable indication that a collision has transpired.

Figure 5 shows the standard and obstructed movement of the left rear rotator
when the left rear leg makes the first impact with the wall. The key time interval
for the left leg is between and if a collision took
place the gradient will be more than one standard deviation less than that of the
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Fig. 4. Rear Abductors for turning to the right with the left rear impacting with the
boundary. The bold line shows the path of a collided motion. The dotted line represents
the mean “normal” path of the joint (that is, during unobstructed motion), with the
error bars indicating two standard deviations above and below.

Fig. 5. Rear Left Rotator for walking backwards into the boundary, left rear leg hitting
first. The bold line represents the path of a collided motion and the mean path of the
joint is shown.

average step. For the right leg the key time interval is between
and

We experienced no false positives while still detecting 71% of the expected
collisions. Limiting detection to a single time interval decreased the accuracy of
detecting a collision but ensures a low rate of false positives.

5.4 Leg-Lock

The aim of this section is to detect when the legs of two robots are locked (Fig.1).
This situation occurred frequently during the 2002 RoboCup competition, and
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Fig. 6. Front Abductors for a leg-lock on the right front leg. The bold line shows the
path of a leg-locked motion. The dotted line represents the mean “normal” path of the
joint (that is, during unobstructed motion), with the error bars indicating two standard
deviations above and below.

appears to be a side effect of the low forward leaning stance adopted by most
teams. Robots involved in a leg-lock can take several minutes to free themselves
and are useless for the game during this time.

We are able to detect when leg-lock occurs in exactly the same manner as
we detect a regular forward collision (see section 5.1). Unfortunately, the two
problems appear to be virtually identical as far as the joint paths are concerned.
The front abductors (shown in Fig.6) do appear to show a greater deviation
during leg-lock, but with our current approach it is insufficient to accurately
discriminate between the two types of collision.

6 Slip Detection

We approached the detection of a slip in the exact same manner as detection
of a collision. As with leg-lock, recognising a fault is simple but distinguishing
a slip from a regular collision can be challenging. To simulate a slip occurring
for the purposes of training, we simply allowed the robot to move around on a
slippery tarpaulin on which it is almost completely unable to gain traction.

We only considered slipping during a forward walk. The key indicator of a
collision is a substantial change in the rear right rotator, while the left rotator
remains mostly unchanged (Fig.3). When a slip took place, the exact opposite
occurred (Fig. 7). We also added an additional constraint as a precaution against
false diagnosis: A “slip” is only recognised if the left rear rotator is outside
two standard deviations and the rear right rotator never exceeded two standard
deviations anytime during the time interval, This extra constraint
prevents us from detecting a slip during the middle of a step - we must instead
wait until the critical part of the step has completed (that is, must reach 0.70).
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Fig. 7. Rear Rotators for a forwards step that slipped. The bold line shows the path
of a slipped motion. The bold line shows the path of a collided motion. The dotted line
represents the mean “normal” path of the joint (that is, during unobstructed motion),
with the error bars indicating two standard deviations above and below.

7 Discussion

The techniques described above provide us with results that enable our behavior
system to make previously impossible decisions. We can now detect a possible
collision in locations that were once blind spots, for example while walking back-
wards or collisions while turning. This extra information enables us to vary our
behaviour accordingly.

The most prominent use of the system is during a collision while chasing a
ball. Basically our behaviour is designed so only one dog will chase at any given
time. In the past the only input on whether to chase was the vision distance to
the ball. You could deem that a collision occurred if you were attempted to move
towards the ball yet the ball distance appears to be steady. This approach was
flawed - obstruction of the ball, bad lighting or even the ball moving away at
a speed equal or greater then your speed results in failure. Having the collision
data enables us to quickly detect the problem and allow another un-obstructed
dog to chase the ball.

In addition, we are able to improve the reliability of odometry data by taking
collisions into account. This allows us to better determine the robot’s location
on the field.

Future improvements to the system include an unsupervised learning ap-
proach to train and classify the data. This would eliminate the human observa-
tion errors that occur and hopefully lead to a more precise and robust classifi-
cation.

8 Summary

In this study, a traction monitoring system was developed in software using
a minimum of hardware feedback. The techniques of the present study were
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developed and tested using Sony’s AIBO robots. Collisions and leg-lock were
detected with a very high degree of reliability. Additionally, slips are recognised
with reasonable accuracy.

The experiments show that traction monitoring for a legged robot is feasi-
ble without hardware modification. Such a system provides the possibility of a
future locomotion system able to adapt to changes in the environment while
maintaining a high level of stability.

After appropriate modifications it should be possible to employ these tech-
niques for different types of robots and in more general environments as well.
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Abstract. The control and coordination of multiple mobile robots is a challeng-
ing task; particularly in environments with multiple, rapidly moving obstacles
and agents. This paper describes a robust approach to multi-robot control,
where robustness is gained from competency at every layer of robot control.
The layers are: (i) a central coordination system (MAPS), (ii) an action system
(AES), (iii) a navigation module, and (iv) a low level dynamic motion control
system. The multi-robot coordination system assigns each robot a role and a
sub-goal. Each robot’s action execution system then assumes the assigned role
and attempts to achieve the specified sub-goal. The robot’s navigation system
directs the robot to specific goal locations while ensuring that the robot avoids
any obstacles. The motion system maps the heading and speed information
from the navigation system to force-constrained motion. This multi-robot sys-
tem has been extensively tested and applied in the robot soccer domain using
both centralized and distributed coordination.

1 Introduction

This paper addresses multi-robot control for teams of robots that operate in uncertain,
dynamic environments against unknown, competing agents. These conditions require
an integrated, systematic approach that simultaneously addresses the problems of
effective cooperation between robots while allowing fast, smooth reaction to ever
changing conditions. This paper addresses such multi-robot control issues in dynamic,
adversarial environments. The work is demonstrated within the context of robot soc-
cer, where the task for the team is well defined and the performance is measurable,
but the opposition and their reaction with the environment are highly uncertain and
hard to model.

This paper specifically addresses the issues of integration between multiple layers
of competency in a multi-robot system. It shows a planning system that can make
short term coordinated plans based on uncertain world models; while addressing the
single robot issues of behavior selection, high speed navigation and smooth motion
generation. An overview of the system is presented in the next section, with the fol-
lowing sections explaining the detail of the individual modules.

1.1 Testing Environments

Results are given in the context of performance across three variations of the robot
soccer problem, RoboCup [1]. The results have been validated by performance in the
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RoboCup world championships which, in 2002, involved over 200 robot soccer teams
from 30 nations. This system has been applied in the following RoboCup leagues.

Small-Size: where the team of five real robots has a central world model from a
camera mounted over the soccer field. This team is named the RoboRoos [2], [3],
[4].
Small-Size Local Vision: where the each of the five real robots on the team has its
own limited view of the world from an on-board camera. This team is named the
ViperRoos [5].
Simulation: where eleven simulated robots compete with limited perception from a
simulated and noisy local view. The team is named the CrocaRoos [6].

The three leagues provide significantly different testing domains for the multi-
robot control system. The small-size represents the simplest domain, as all robots
have the same world model. The small-size local vision league introduces the signifi-
cant problem of different world models on individual robots, while the simulation
league presents a further challenge in the increased number of agents and the in-
creased size of the environment.

2 Overview of the System

The encompassing principle of the multi-robot control system used in this paper is
that each module can operate competently and sensibly within its domain despite
conflicting or rapidly varying information from the environment or from other mod-
ules. The domain of each module is limited by the extents of the data available to that
module; a module with broad reaching data can provide direction for long term plans,
while a module using only internal data can only provide assistance in generating
smooth motion. The key to interfacing the various modules is that information passed
between modules acts more as a series of suggestions rather than commands, respect-
ing the need for the lower level modules to deal appropriately with their immediate
task domain.

This principle is implemented in the general architecture shown in Figure 1. Each
module operates with different levels of data with regard to the state of the world. The
modules at the top of the diagram deal with broad, often imprecise, and always time-
delayed data; while the modules at the bottom access narrow, precise and immediate
data. The connections between modules show the path of resource data flowing down
to the eventual control of actuation.

2.1 Types of Data

There are three types of data that provide input to the system: the global external
state, the local external state, and the local internal state. The global external state
represents the robot and the environment in a fixed global reference frame. This state
is particularly useful for adding a priori information such as locations for goal ori-
ented tasks. The problems with maintaining a global view often lead to this data be-
coming uncertain and imprecise. The local external state represents the perceived
environment in a robot centered frame of reference. It is current, and mostly limited
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Fig. 1. The multi-robot control system. Modules at the top of the diagram use broad, imprecise
data, while the modules at the bottom operate with precise, immediate data.

by the robot’s external sensory abilities in terms of bandwidth and precision. The
local internal state represents the dynamics and motion of the robot which can usually
be measured rapidly and with high certainty.

The development of global and local external data is dependent on the nature of the
multi-robot system. In the case of a system with a centralized world model generated
by some external sensor, such as a camera or set of cameras with a complete view of
the environment, the global data forms the basis for the local view. This is the case for
the RoboRoos, in the small-size league. In a distributed system, where each robot has
its own local view from on-board sensors, the global view must be formed from the
local view of the robot, and communication about the local view of other robots. This
is the case for both the CrocaRoos and the ViperRoos. These two distinct forms of the
global data create a challenge for the planning system that relies upon it.

2.2 Modules

The Multi-Agent Planning System (MAPS) uses the global data to decompose the
overall team goal into actions for the individual robots. The action from MAPS is
combined with the local external state by the Action Execution System, which deter-
mines each individual robot’s next immediate behavior. The Navigation system de-
termines the robot’s immediate path for the desired behavior while reactively avoid-
ing obstacles maintained by the local external state. The motion control system
smoothly maneuvers the robot in the desired direction using the local internal state for
feedback.
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2.3 Centralized Control System

The RoboRoos team is an example of a team using this multi-robot control system in
a centralized form. The RoboRoos have been applied and extensively tested in the
small size league environment. In the RoboRoos system the global external state is
maintained on a central off-field PC. The RoboRoos vision system determines the
global external state by identifying and locating the robots and the ball on the soccer
field using an overhead camera. The Multi-Agent Planning System is also executed
on this central PC. The actions that MAPS determines and the global external state of
the field are sent to the robots using a broadcast radio system.

The rest of the multi-robot control system is run on the individual robots. Each ro-
bot maintains it own local external state that is derived from the common global ex-
ternal state. By running these systems on the robots, they are able to utilize local
feedback from the actuator motion. This feedback is used to update their position in
their version of the local external state.

2.4 Distributed Control System

The CrocaRoo and ViperRoo systems are examples of robot soccer teams using a
distributed version of this multi-robot control system. In the CrocaRoo and ViperRoo
systems the entire multi-robot control system is run on each robot.

Each ViperRoo robot has an on-board camera that is used to identify and locate
other robots and the ball. The robot integrates this local view to generate a global
external state for its MAPS system. The rest of the system is similar to the one de-
scribed in the central control system except that the robots may communicate their
local external state to their team members using a wireless network.

Each CrocaRoo agent is a network client that communicates with a network soccer
server. The server sends noisy local view information to the clients. As for the Viper-
Roos, the CrocaRoo clients integrate this noisy local information to generate a global
external state. The agent’s individual MAPS modules then determines their individual
sub-goals. The agent’s other systems are similar to other teams, although navigation is
greatly simplified. Instead of driving motors, the agents send their desired motion to
the soccer server. The agents communicate with each other using a simulated low-
bandwidth shouting system.

3 Multi-agent Planning System

The Multi-Agent Planning System (MAPS) is the highest level planner in the system,
responsible for distributing the overall goal of the team amongst the individual robots
[7]. MAPS is responsible for the multi-robot coordination and cooperation by select-
ing an action and an action location for each robot. MAPS determines the team’s
actions based on the current world model, the team goal and the currently available
actions.

MAPS is a plan-by-communication system, as opposed to a plan-by-program sys-
tem [8]. In a plan-by-program system plans are represented as a sequence of steps to
be followed. The robots attempt to follow these steps but may be unable to cope with
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unforeseen contingencies. In a plan-by-communication system the robots determine
how to achieve the sub-goal themselves. By using the MAPS sub-goal, but paying
careful attention to local state, the robot is better able to complete its part in the plan.
MAPS continually monitors the global state and does not rely on a robot to complete
its action.

MAPS uses potential fields as the mechanism for determining action selection and
action location. The potential fields can model the suitability of an action for the dif-
ferent agents, or be used to find a suitable action location. MAPS has a library of
potential field functions and abstractions, where each field is a two dimensional array
of values. A more positive value represents a more desirable action for an agent, or, in
the case of determining action location, a more desirable location for that action. The
following four types of potential fields are examples of the type of fields used.

Basefield: This field represents favorable regions of the physical environment. The
regions of the field that will always be favorable to the goals of the team are the
most positive.
Object Regions: These fields model physical objects on the field by representing an
area of effect around an object. Object regions can be used to bias the positions of
other team members to ensure they don’t attempt to occupy the same location.
Clear Path: This is an abstract feature that represents clear paths to objects or loca-
tions. It biases regions that offer a line-of-sight path to the point in question.
Distance: This is another abstract feature that represents the distance from objects,
thus favoring action locations close to the robot or to a goal location.

It is the overlaying of multiple fields that gives an abstract goal-biased terrain map
that provides the information to determine the robots’ sub-goals. By weighting the
strengths and shapes of the component fields, MAPS can be tuned to give peak per-
formance for a specific goal, or to act against specific opponent strategies.

MAPS uses potential fields to determine the location to dribble and kick the ball,
where to place defending and attacking robots and which player should be kicking or
dribbling the ball.

MAPS handles tasks that require coordination between multiple agents implicitly.
Coordination emerges from the interaction of multiple potential fields and multiple
actions. One task that requires coordination is passing. The location for the receiver is
determined by overlaying clear paths to the player with the ball onto clear paths to the
opponent’s goal. This keeps this player in both a position to receive a pass and a posi-
tion to take a shot on goal. When determining where to kick the ball a positive object
region is overlaid at the receiver’s location on the ‘kick to’ field. (The other positive
object region is the goal.) By overlaying the clear paths from the ball the preference
of kicking at the goal or passing to the receiver is weighed up.

3.1 MAPS in Operation

Figure 2 shows the potential field generated to determine the location to which a ball
should be dribbled during a robot soccer match. The opponent’s goal is on the right
side and the darker robots are the opponents. There are several overlapping fields at
work here.
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Basefield: The field is ramped towards the opponent’s end of the field and off the
walls. This encourages dribbling towards the opponents’ goal.
Clear Path: Clear paths from the opponent’s goal are created. This encourages
movement towards a clear shot on goal.
Distance From: Locations further from the ball are given higher values. This en-
courages shorter dribble distances.
Object Regions: The opponent’s positions are given low values. This encourages a
dribble to a location away from the opposition.

Fig. 2. An example potential field that determines where to dribble the ball to. The light colored
player on the bottom right of the figure has being given a DRIBBLE action. The lightest point
in the potential field represents the desired location to dribble to. Note the strong effect of the
basefield and the clear path to the opponent’s goal.

3.2 MAPS in Distributed Environments

In distributed environments, MAPS needs to account for each robot maintaining its
own world model. The system must account for the uncertainty in the positions of
objects outside the robot’s local field of view. It also must account for the uncertainty
in its own position relative to the global reference. Not accounting for this uncertainty
could lead to individual robots attempting conflicting actions.

One method currently implemented is to distribute the robot’s object region across
the uncertainty in its position. This is achieved by convolving a probability distribu-
tion that represents the uncertainty in the robot’s position with the potential fields that
represent features of the environment. In this way the plan becomes fuzzier but main-
tains robustness.
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3.3 Performance

Robust multi-robot control in highly dynamic, competitive environments is difficult.
MAPS has shown itself to be a capable system for coordination and cooperation in
such an environment. The potential field methodology of MAPS is preferred over
state based approaches in highly dynamic and competitive environments. The two
inherent drawback effects of using potential fields, minima and oscillations, are not
persistent due to the dynamic nature of the environment. Other methods such as bias-
ing the last selected player and the last action location further reduce these effects.

The RoboRoos system has the capability of playing against itself. A test was per-
formed with two identical RoboRoos teams, except that one team was using MAPS,
while the other used a zone-based role assignment technique. This zone strategy re-
quires each player to maintain a fixed position unless they are the closest to the ball.
In repeated tests, the team with MAPS would typically lead by 4 goals to 1 over a ten
minute period. A similar test with the CrocaRoos distributed MAPS implementation
showed a similar result, with the average lead being 3 goals to 1 over a similar simu-
lated time period.

4 Action Execution System (AES)

The Action Execution System is responsible for selecting the immediate robot behav-
ior. The local external state and the MAPS assigned action are used as resources to
determine this behavior. As MAPS is a plan-by-communication style planner the AES
system must fill in the details of the assigned actions. This is done by decomposing an
assigned action into a series of small tasks that can be performed using simple behav-
iors. The AES then decides on the immediate task to be achieved.

The tasks are associated with a set of behaviors. Each behavior has a set of associ-
ated parameters and desired robot motion. Parameters associated with a robot include
accelerations and top velocities, application specific actuator state and desired repul-
sive strength of obstacles.

By necessity, this subsystem is specific to the applied environment. This is because
it is the interface between the general actions and the specifics of the environment. By
using an AES system the MAPS system is removed from that level of detail. This
enables the MAPS system to be portable across multiple leagues.

4.1 AES in Operation

In a real soccer match the most important and complex actions that a field player
performs is kicking and dribbling the ball. As such the kick action provides a good
example of the role of the AES. The kick action sequence involves acquiring the ball
then dribbling until the robot is lined up for the kick to the MAPS assigned location.
The AES breaks the kick action into a series of smaller tasks. These are:

1.

2.

Move to near the ball. This step moves the robot to near the ball at high accelera-
tions and speeds. If the robot already controls the ball then skip to step 3.
Acquire the ball. Acquiring the ball is dependent on its position relative to the field
and the opponent robots. If the ball is amongst other objects a modified version of
navigation is used to acquire the ball, otherwise the robot drives directly at it.
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3.

4.

Dribble until kick. Once the ball is acquired the robot must assume a pose that
allows kicking to the MAPS specified location. AES chooses the appropriate mo-
tion to maintain control of the ball.
Kick the ball. Activate the kicking mechanism while maintaining pose.

5 Reactive Navigation (NAV)

The NAV module is responsible for achieving the desired motion behavior while
avoiding obstacles. It determines the desired heading direction and distance for the
motion system. It uses the local external state for object mapping. The AES system
provides the relative avoidance strength for each obstacle to the NAV system. Obsta-
cles may be physical objects such as the robots and the field boundaries. They may
also be virtual obstacles. These are used to keep a robot out of a particular area for
example.

NAV uses a biologically plausible reactive navigation method that is appropriate to
highly dynamic environments [9]. Schema theory is a behavior based approach
whereby overall robot behavior results from the interaction of many simple schemas
operating in parallel. In this navigation system, multiple schemas are represented by
polar mappings that are centered on the robot. Three mappings are generated: the
Goal Direction (GD) Map, the Obstacle Map (OM) and the Motor Heading Map
(MHM). An example of these maps and their interaction is shown in Figure 3.

Fig. 3. Example navigation maps. The OM is showing a close obstacle just to the robots left
and a more distant obstacle to the robots rear. The heading direction to avoid obstacles in
marked.

The GD map represents the desired motion of the robot towards the goal location.
It is a triangular map with the peak orientated towards the goal. The OM map repre-
sents the repulsive strength of each obstacle. It maps out the distance, bearing, angular
width and strength of each obstacle by modeling each as a rectangular activity packet.
Uncertainty is accounted by sloping the edges of this activity packet. Each obstacle is
mapped separately to the OM.

The MHM map represents the best direction for the robot to head in. It is deter-
mined by a piece wise subtraction of the OM from the GD map. The peak of this map
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is the desired heading direction for the robot. This is determined on each run through
the navigation system.

5.1 Performance

The NAV system has shown itself a capable system for achieving desired motion
behavior while competently avoiding obstacles in highly dynamic environments. This
is because:

The complex problem of navigation is broken down into simple schemas that rep-
resent the different navigational influences.
Reaction to environment change is fast as navigation is based on reactions, not on a
plan.
Navigation maintains competence even with poor behavior selection by AES due
to robust avoidance of obstacles.

The deficiencies of a reactive navigation system, local minima and non-path opti-
mal generation are generally not apparent. Local minima do not exist for long because
the environment is highly dynamic and therefore states do not exist for long. Process-
ing an optimal path is wasteful, as the environment state in which the path was
planned does not exist for long.

6 Motion Control

The implementation of the motion control module is quite specific to the type of robot
upon which it operates, but there are several key functions that it must perform in
order for the complete multi-robot system to function correctly. The NAV module
provides a desired direction of travel and a total length that remains to the goal loca-
tion. The primary function of the motion control module is to ensure that the robot
complies as closely as possible with that request without causing the robot to lose
traction with the surface. Even the simulated agents have dynamic properties that
must be carefully monitored to provide good performance.

In the case of the wheeled robots, the motion control software seeks to provide
constant force acting from the wheel to the ground. Typically, this force is somewhat
less than the normal force applied by the robot to the ground so that good traction is
achieved. Consequently, the robot limits straight line acceleration and rotational ac-
celeration, and must adjust speeds when maneuvering so that sufficient centripetal
force can be generated by the wheels.

Maintaining good traction with the ground means that the motion control system
can adequately perform its other essential role: keeping track of the robot position
between external sensor updates. In high speed environments, where the robots move
at over 1 m/s, significant rotation and translation can occur between external sensor
updates. Furthermore, where the sensor information comes from a delayed source
such as vision the motion control system can account for self motion during the delay
period. By accounting self motion between updates and during sensor delays, the
motion control system greatly enhances the accuracy of its interactions with the envi-
ronment.
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In the context of robot soccer, it is critically important to time and aim kicks cor-
rectly. Criticality in timing also applies to many robot manipulation tasks. By using
the immediate feedback from local sensors and local external state that has been
brought up to date with respect to self motion, the motion control software can exe-
cute timing critical functions with a precision beyond the other software modules.

Another interesting use of the motion control software is to change the point of ref-
erence for navigation commands. The RoboRoos robots have an omni-directional
drive system that can simultaneously translate in a plane while rotating. In typical
operations, rotation operations take place about the centre of the robot. Under direc-
tion from the AES, the motion control system can switch the rotation centre to an
arbitrary point. This is applied, for example, to ball control. When the ball is directly
in front of the robot, as detected by the local ball sensor, the motion control system
can switch to rotating the entire robot about the ball’s centre. This provides better
control of the ball during dribbling operations.

7 System Performance

The RoboRoos have competed in the last five years of RoboCup with varying levels
of success. During these years, the structure of the system has remained constant and
has now been applied in three leagues. Even though the RoboRoos have undergone a
complete mechanical redesign, the system architecture has remained as described in
this paper.

In February 2003 the RoboRoos team competed in a friendly game against the
RooBots team from Melbourne University, Australia. The RooBots came fourth in the
2002 RoboCup competition. The RoboRoos won the game 6-0.

The ViperRoos team is known as the first local vision team to win against a global
vision team. (Final score 2-0.) In simulation the distributed MAPS system has shown
the ability to coordinate multiple robots. However due to technical difficulties with
the real local vision software the ViperRoos team has never reached the potential
ability that is suggested by simulation results.

The CrocaRoo team has also suffered poor performance at RoboCup due to vision
problems. However in lab tests, the team demonstrates the ability to play soccer com-
petently against older teams.

7.1 System Performance against Humans

When the multi-robot control system is pitted against humans, the results are interest-
ing. In 2001, the RoboRoos competed against humans for five hours of non-
continuous play. The humans controlled their robots using game pads. Continuous
running rules were adopted and the teams were limited to three players each. The final
score was 196 – 24 with a convincing win for the RoboRoos. The most notable obser-
vation was the relative lack of team coordination and cooperation in the human teams
compared to the multi-robot control system.
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8 Next Generation Multi-robot Control

The next generation of this multi-robot control system is currently under considera-
tion. New abilities are to be added to the system in the area of multi-agent planning.
This includes integrating predictions of the opponent’s future behaviors based on their
current behavior and models of how their behaviors were previously executed.

The distributed MAPS system is also to be improved. Most of this work is in gen-
erating a more complete global external model through probabilistic fusion of sensed
elements with information received by communication. While this model may not be
more accurate, it will offer a better representation for MAPS to perform short term
planning.

9 Conclusions

This paper presents a robust and layered approach to the difficult task of multi-robot
control in highly dynamic, competitive environments. This approach has simultane-
ously addressed the need for effective robot cooperation, while allowing fast reactive
response to a highly dynamic environment. System performance is high because there
is:

competency in every layer of control,
appropriate state maintained for each subsystem,
team goal decomposition into plan-by-communication actions by MAPS,
behavioral approach to parameter selection by AES,
the use of simple schemas to the reduce the complexity of navigation by NAV,
smooth dynamic control by the motion control system.

Although work on this multi-robot control system continues, especially in the
higher level control and planning systems, the overall structure of the system is to
remain constant.
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Abstract. This paper sketches and discusses design options for complex prob-
abilistic state estimators and investigates their interactions and their impact on
performance. We consider, as an example, the estimation of game states in au-
tonomous robot soccer. We show that many factors other than the choice of algo-
rithms determine the performance of the estimation systems. We propose empiri-
cal investigations and learning as necessary tools for the development of success-
ful state estimation systems.

1 Introduction

Autonomous robots must have information about themselves and their environments
that is sufficient and accurate enough for the robots to complete their tasks compe-
tently. Contrary to these needs, the information that robots receive through their sensors
is inherently uncertain: typically the robots’ sensors can only access parts of their en-
vironments and their sensor measurements are inaccurate and noisy. Recent longterm
experiments with mobile robots [11] have shown that an impressively high level of re-
liability and autonomy can be reached by explicitly representing and maintaining the
uncertainty inherent in the available information.

One particularly promising method for accomplishing this is probabilistic state es-
timation [10]. Probabilistic state estimation modules maintain the probability densities
for the states of objects over time. The probability density of an object’s state condi-
tioned on the sensor measurements received so far contains all the information which is
available about an object that is available to a robot. Successful state estimation systems
have been implemented for a variety of tasks including the estimation of the robot’s po-
sition in a known environment [2], the automatic learning of environment maps, the
state estimation for objects with dynamic states (such as doors), for the tracking of
people locations [9], and gesture recognition [11].

So far, research in state estimation for robots has focussed on the development on
more reliable, more accurate, and faster algorithms [10]. With the services that au-
tonomous robots are to provide becoming more demanding, the states that the robots
have to estimate become more complex. Therefore, the choice of algorithms has be-
come only one among many different factors that determine the performance of the
state estimation systems. As a consequence, the application of state estimation algo-
rithms becomes a difficult engineering effort. In this engineering effort, programmers
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must address questions such as (1) the specification of objectives in terms of cost func-
tions; (2) the filtering of observations; (3) the design of action models; (4) the frequency
of updates; and (5) the choice and combination of algorithms. We will show that the
proper design of state estimators achieves both substantial and significant performance
gains.

In this paper, we argue that developing high performance state estimation systems
for difficult estimation problems requires careful system design and analysis. We pro-
pose empirical investigations and learning as necessary tools for the development of
successful state estimation systems. In the remainder of the paper we proceed as fol-
lows. Section 2 describes and discusses the game state estimation problem, the design
of cost functions for state estimation, and different design options for state estimation
systems and their possible effects on robot performance. The subsequent section 3 de-
scribes the design of a state estimator for game situations in autonomous robot soccer
and investigates the impact of design decisions on the perfomance of the estimator. We
end with conclusions from our results.

2 Complex State Estimation

The task of state estimation is the computation the robot’s beliefs about its own state
and the state of its environment. The results of the state estimation contain information
such as the robot’s estimated state, the accuracy and a measure of the ambiguity of the
state estimate, the state of other objects.

Approached probabilistically, the state estimation problem can be considered as a
density estimation problem, where a robot estimates a posterior distribution over the
space of its states and the states of other objects conditioned on the available data.
Denoting the state at time by and the data up to time by we write the posterior
as Here is the world model (e.g., a map). We will also refer to
this posterior as the robot’s belief state at time

2.1 Game State Estimation in Robot Soccer

In this paper we apply probabilistic state estimation to the assessment of game situa-
tions in autonomous robot soccer. In robot soccer (mid-size league) two teams of four
autonomous robots — one goal keeper and three field players — play soccer against
each other. The robots of our team are equipped with, among other components, a wire-
less Ethernet for communication (1), an onboard computer (2), a fixed color CCD cam-
era (3), a guide rail for the ball (4), and a kicker (5). All sensing and all action selection
is done on board of the individual robots.

The game state estimators provide the robots’ action selection routines with esti-
mates of the positions and may be even the dynamic states of each player and the ball.
This estimation problem confronts probabilistic state estimation methods with several
challenges: limitations of the robots as well as environmental conditions make the rea-
soning task difficult to perform. The camera system with an opening angle of 90° and
pointed to the front gives an individual robot only a very restricted view of the game
situation. In addition, relevant visual information may be occluded by other robots. Vi-
brations of the camera, spot light effects, specularity, and shadows cause substantial
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inaccuracies. Even small vibrations that cause jumps of only two or three pixel lines
cause deviations of more than half a meter in the depth estimation, if the objects are
several meters away. Also, the positions of the robots are uncertain and inaccurate. In
addition, the robots change their direction and speed very abruptly and therefore the
models of the dynamic states of the robots of the other team can only be very crude and
uncertain. Finally, vast amounts of data must be processed in real-time.

In our case, the estimated game state consists of the compound state variables
The compound state variable

comprises the position and orientation of robot
and its translational and rotational velocity and refers to the value of

these variables at time step Analogously, denotes the po-
sition and velocity of the ball, where the ball velocity is interpolated from the last ball
position estimates. Finally, where is again interpolated
from previous estimates.

Unfortunately, the compound state variables are not independent of each others.
Inaccuracies in the estimation of a robot’s position causes even higher inaccuracies in
the estimation of the observed robots. Also, since robots often go for the ball, the ball
position often influences the movements of the robots.

2.2 Objectives of State Estimation

For the purpose of this paper, let us consider state estimation tasks that include the
detection of objects, the recognition of their identity, and the inference of their states. In
this setting performance aspects of state estimation include, whether the state estimation
process hallucinates objects (false positive), overlooks objects (false negative), and the
expected accuracy of their estimated states.

To capture these concepts we first introduce the notion of an object hypothesis. An
object hypothesis is a data structure in the robot’s belief state that represents an object
that the robot believes to exist. An object hypothesis contains the most likely position

and a region of possible position The second concept that we need is the
notion of designation (grounding), which is a mapping of an object hypothesis to an
entity in the real world that caused the last observation supporting the hypothesis. This
entity might also be a hallucination. To specify the designation function for a game
episode a programmer has to step manually through the captured images and assign
each observed image blob to an entity in the world.

Because this definition cannot be made operational, we will use a weaker notion
of designation that can be fully automated (this is closely related to the least square
criterion). We say that an object hypothesis designates an object at position if
(1) lies within and (2) there exists no other object hypothesis that does not
already designate another object such that the distance between the most likely position

and is smaller then the distance between and
Using our notion of designation we can now state what we mean by overlooking and

hallucinating an object. We say a state estimator overlooks an object if there exists
no hypothesis in the belief state that designates A state estimator hallucinates an
object if its belief state contains an object hypothesis that does not designate any object
in the world.
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In general, the design of a state estimator is part of the design of a robot controller.
Thus, the goal in the design of the robot controller is design a state estimator se and an
action selector as such that taken together they will achieve the optimal performance of
the robot. More formally, we intend to find a pair such that

The drawback of this approach is that the design of the state estimator interacts with the
design of the action selector.

We can abstract away from action selection by stating the objective of state esti-
mation as a cost function [3]. In this approach we have to design a state estimator that
minimizes the given cost function

So far most state estimators have been designed without specifying sophisticated
cost functions. In the museum tour guide projects, some of the most successful appli-
cations of state estimation in autonomous robotics, the robot mainly estimated its own
position. Therefore, the performance factors are simply whether or not the robot was
lost and the average accuracy over the episodes in which it was not lost [4,5].

In a nutshell, the cost of game state estimation in a soccer situation could be stated
as

where and are weights that assess the relative importance
of hallucinating and overlooking and the accuracy of observations. In robot soccer it
is more important not to overlook objects than to hallucinate them. Overlooking oppo-
nents could result in collisions for which the robots might be sent off the field or not
knowing where the ball is and therefore not being able to issue goal-directed actions.
Hallucinations, on the other hand would mainly cause the robots to follow suboptimal
trajectories, which is less critical.

The design of informative cost functions for game state estimation is much more
subtle than suggested above and therefore the weights have to be set in situation specific
ways. It is more important not to overlook the ball than the opponent players because
knowing the ball position is necessary for focussed play. Overlooking team mates is not
important at all because the team mates broadcast their own position estimates. It is also
much more important to have accurate estimates in the area around the ball and for the
ball handling robot than for objects that are not in the focus of the play or for players that
only perform backup roles. Stating such informed cost functions is important because
they also allow us to exploit task specific simplifications. For example, through the
nature of soccer the ball handling robot is typically the one closest to the ball and
facing the ball. It is therefore automatically the one that has the most accurate and
reliable observations of the area around the ball.

2.3 Design Dimensions of State Estimation

When designing state estimation systems there are many design decisions to make in-
cluding the ones listed below.

Decision 1: The Form of Probability Densities. One of the most critical decisions to
make are the assumptions about the form of the probability densities. In many robot
applications, this density is assumed to be unimodal and Gaussian distributed. Here,
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the distribution can be represented by the mean value and an associated covariance
matrix. This has the main disadvantage that we cannot represent ambiguities in posi-
tion estimates. These ambiguities can be represented and reasoned about in the Markov
state estimation framework. The increased expressiveness must be paid for with higher
computational cost. Particle filter are an alternative method in which probability distri-
butions are approximated by sample sets. Particle filter have the advantage that they can
be run in resource adaptive fashion. A particularity of particle filter is that they perform
worse as data get very accurate.

Decision 2: State Estimation Algorithms. The choice of state estimation algorithms is
constrained by the representation of the probability distributions. The most common
approaches are Kalman filters, Markov localization algorithms, and particle filters. If
states to be estimated involve multiple objects then observations have to be associated
with object hypotheses. This is done, for example, in Reid’s multiple hypothesis track-
ing algorithm or in Joint Probabilistic Data association filters. Recently, researchers
have been proposed hybrid state estimation mechanisms, in which they combine multi-
ple representations in parallel.

Decision 3: Decomposition and Simplification. A key problem in solving difficult state
estimation problems is the complexity of the joint probability density and the huge
amount of data that the probability density is conditioned on. This requires us to factor-
ize, approximate, simplify (by making assumptions, such as the Markov assumption),
and decompose the probability density [10]. State estimation problems can also be sim-
plified based on their usage. In robot soccer, for example, instead of track exactly each
opponent we can confine the estimator to track a superset of opponents. Less pressure to
integrate observations of different robots. When making simplifications, assumptions,
or approximations it is often possible to provide routines that monitor them.

Decision 4: Probabilistic Models. The update rules for probability densities often use
parameter that are to be supplied by the programmer. These parameters can often be
derived from problem specific probabilities, such as sensor or action models. There are
two ways in which we can set these parameters in more informed ways. First, we can
learn the values of these parameters from experience. Second, we can supply the algo-
rithm with situation specific probabilities instead of general ones that average over all
possible situations. For examples, in situations where objects become occluded, the es-
timator should assume a longer lifetime for object hypotheses even without supporting
observations.

Decision 5: Observation Filtering. Another important design dimension is how many
and which observations to take to maintain the belief state. If the estimator takes too
many it might consume too much computational resources. On the other hand, it can
often get away with less informative predictive models if it updates its belief with higher
frequency.

Another issue is that observations are often corrupted and integrating a corrupted
observation causes a less accurate belief state. For example, if a robot turns quickly the
odometric data and image data do not correspond well and tracking opponents while
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turning quickly is therefore very unreliable. These problems can be mitigated by simply
ignoring observations that are probably inaccurate and unreliable.

Decision 6: Managing Computational Resources. Yet another issue is what to spend
the computational resources for. Typically, in autonomous robot control the robot has a
limited amount of computational resources available that can be assigned to the differ-
ent computational tasks. For example, the programmer can spend resources for a more
accurate interpretation of sensory data, it can apply more sophisticated probabilistic
models for predicting the resulting state (eg, ones that allow for predicting nonlinear
movements), or it can use crude and cheap computation mechanisms and rather run the
iterative state estimation with a higher frequency.

Discussion. We have sketched in this section a number of dimensions for the design
of complex state estimators. Unfortunately, there is no general model of the influence
of these design decisions on the performance of a state estimation system. Even worse,
the different design decisions interact with each other in very subtle and application
specific ways. Therefore, it is necessary to design state estimators specifically for the
application at hand and to empirically evaluate the design decisions by comparing the
expected performance with respect to the specified cost function.

3 Empirical Investigation

We will now sketch the design and the main parameters of the game state estimator and
then investigate the effects of design choices on its performance.

3.1 The Game State Estimator

The game state estimation subsystem consists of the perception subsystem, the state
estimator itself, and the belief state. The perception subsystem consists of a camera
system with several feature detectors and a communication link that enables the robot
to receive information from other robots. The belief state contains a position estimate
for each dynamic task-relevant object.

The state estimation subsystem consists of three interacting estimators: the self lo-
calization system, the ball estimator, and the opponents estimator. The self localization
estimates the probability density of the robot’s own position based on environment fea-
tures, the ball position, and its predicted position. The ball localizer estimates the prob-
ability density for the ball position given the robot’s position, its observation, and the
ball estimates of team mates. Finally, a robot estimates the positions of the opponents,
based on its own position, the robots’ appearances in the images, and the estimations of
the team mates.

The decomposition of game state estimation reduces the overall complexity of the
estimation problem and enables the robots to exploit the structures and assumptions un-
derlying the different subtasks. However, as stated in the previous section, the different
estimation problems are not independent.
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Self Localization. State estimation is an iterative process where each iteration is trig-
gered by the arrival of a new piece of evidence, a captured image, an odometry reading,
or a partial state estimate broadcasted by another robot. These data are integrated over
time to a maximum a posteriori (MAP) estimate of the robot’s pose. The MAP estimate

is given by where is the prior of the pose
summarizing all evidence gathered in the past. The prior at the current time step is

obtained by predicting the pose distribution estimated for the previous time step. The
second term is the likelihood of receiving data given the robot’s pose

Self localization runs a fast Kalman filter for tracking the position of the robot and
thereby makes the assumption that the probability density is Gaussian. To detect situ-
ations where this assumption yields localization failures a particle filter with a lower
frequency is run concurrently. In cases where evidence implies multi modal probability
densities the particle filter detects that the robot gets lost and provides the different local
maxima for reinitializing the Kalman filter.

Parameters and Assumptions. The parameters of the self localization module that can
be set include the the probabilistic models for the different kinds of data.
The programmer can also decide on the mechanisms applied to image interpretation,
the frequency at which to run the algorithms, and which observations to take for state
estimation.

Opponent and Ball Tracking. For opponent tracking a variant of Reid’s Multiple Hy-
pothesis Tracking (MHT) algorithm [6] is used. The objective of the MHT algorithm is
to maintain a set of object hypotheses, each describing a unique real object and its posi-
tion and estimate the likelihood of the individual hypotheses. The MHT algorithm deals
with two kinds of uncertainties. The first one is the inaccuracy of the robot’s sensors
and is represented using a Gaussian probability density. The second kind of uncertainty
is introduced by the data association problem, i.e. assigning feature blobs to object hy-
potheses. It is represented by a hypotheses tree where nodes represent the association
of a feature blob with an object hypothesis. A node is a son of the node if

results from the assignment of an observed feature blob with a predicted state
of the hypothesis Computing the association probability which
indicates the likelihood that observed object and object hypothesis refer to the same
object given the sequence of all measurements up to time is the heart of the
MHT algorithm [1,7].

Parameters and Assumptions. The opponents tracking system can be parameterized as
follows. First, we can set the minimum likelihood of a hypothesis to be kept in the
hypotheses tree. If the threshold is set higher then the tree is pruned more aggressively.
Smaller trees require fewer computational resources but have a higher risk of deleting
correct hypotheses from the tree. Other parameters include the average time of detecting
spurious features and of keeping hypotheses without supporting observations, which
is needed to deal with occlusions. Additional parameters are the motion models for
opponents, the routine for deciding whether an observation is informative enough to
improve the belief state.
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Fig. 1. Game episode (100 seconds long). Subfigure (a) shows the results of self localization.
The trajectories of the robots are plotted as solid lines. Ground truth position data for robots is
indicated with ’+’. Ground truth position data for the ball is indicated with ’o’. Subfigure (b)
shows the individual observations of an opponent where the color indicates which one of the
robots made the observation. The overlying black lines are the ground truth data.
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Fig. 2. Game episode (100 seconds long). Subfigure (a) shows the tracks of opponent robots
exploiting observations made by all team mates. Subfigure (b) shows the tracking of opponents
without cooperation.
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3.2 Setup of the Experiment

To get a better understanding of the design options, we have recorded robot soccer
games to evaluate system performance more carefully. To do so, we have mounted a
ceiling camera into our robot lab in order to record a bird’s eye view from the soccer
games that will serve as the ground truth for our experiments. The state estimator for
the ceiling camera has an average accuracy of 10-15 cm depending on the situation and
the position on the field. For evaluating the results of game state estimation we use the
criteria of hallucinations and overlooking that we have stated in section 2.

To acquire the data for our empirical studies we have played friendly games against
the Ulm Sparrows for a total net playing time of more than two hours in the setup
described above. The following subsection will describe some of our first preliminary
findings about the operation of the game state and the effects of setting certain parame-
ters.

3.3 Experiments and Experiences

Fig. 1 shows a typical result of game state estimation with standard parameterization
of the system. The Kalman filter self localization runs with a frequency of 20-30 Hz
(frame rate), the particle filter self localization at about 15Hz and with 1000 samples.
The MHT algorithm runs at 4*20 Hz. The action models for opponent tracking assume
constant speed with a process variance of 0.03. The criterion for associating an observa-
tion with a hypothesis is a Mahalanobis distance of less than 5.9, which means that the
observation lies within the 95% confidence interval of the prediction. Key performance
criteria of the opponent tracking system are listed in the subsequent table.

Self-Loc. accuracy
Tracks
Tracks correct
Tracks hallucinated
Tracks omitted
Tracks accuracy

Robot 1
11 cm

1038 51%
820 41%
218 10%
913 59%

33 cm

Robot 2
48 cm

992 49%
720 36%
272 13%
1008 51%

37 cm

Robot 3
28 cm

1067 53%
893 44%
174 9%

933 47%
36 cm

Robot 4
19 cm

1162 58%
1002 50%
160 8%

838 42%
31 cm

cooperation
—

1278 64%
1087 55%
191 9%

722 36%
23 cm

1/4
—

635 31%
528 26%
107 5%

1365 69%
37 cm

Self localization performs worse than expected [8]. The reason is that the soccer
field has changed due to rule changes. The field has become larger which causes higher
inaccuracies in vision-based depth estimation. Also, the field provides fewer features
that can be used for self localization and the lack of a surrounding wall yields observa-
tions outside the field. Qualitatively, the robots loose track of their positions much more
often and jump to alternative position estimates because of the particle filter. When the
robots roughly know where they are then the accuracy is still sufficiently high (around
10-20cm).

The table lists the results for a robot with cooperation and the individual robots as
columns. The rows represent the different performance measures. The maximal number
of base points for the opponent tracks (given omnidirectional view and no occlusion) is
2000 for the individual robots and the cooperating robots. From those a robot with co-
operation was able to observe 1278 tracks (64%), 9% of those where hallucinated track
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points. In the table these numbers are listed as observed tracks, correct designations,
hallucinated tracks, and average accuracy.

Cooperation Helps – Does It? We can see that in our episode cooperation increases
the number of detected tracks as well as increases the accuracy, which is typical. These
results are depicted in Fig. 2. Fig. 2 (a) shows the opponents tracked with cooperative
tracking and Fig. 2 (b) the same estimation made without cooperation. You can see that
gaps in the tracks that are mainly caused by occlusions can often be closed by using
the observations of team mates. Accuracy can be substantially increased by fusing the
observations of different robots because the depth estimate of positions are much more
inaccurate than the lateral positions in the image. This can be accomplished through the
Kalman filter’s property to optimally fuse observations from different robots into global
hypotheses with smaller covariances.

However, cooperation is not always a good idea. We have experienced this when
running the game state estimation under extremely poor lighting conditions. Under
these conditions self localization could not well discriminate between some symmet-
ric positions on the field. Therefore, integrating observations from dislocalized robots
caused incoherent hypotheses and we were forced to disable the cooperation to get more
stable estimates.

Specify Cost Functions Explicitly! If we add a notion of relevance to the opponent
players depending how important they are for the game state then the percentage of
coverage of the relevant opponents is much higher. This is because the robots often
look into the direction of the ball and therefore see the opponents that are close to the
ball more often. It would be inadvantageous to design the state estimator such that it
has a uniform coverage of all positions on the field.

Tune the Parameters of Estimation Algorithms. Tuning of algorithm parameters has
an enormous impact on the performance of the systems. The most promising approach
seems to be to learn these parameters from the experimental data. Due to space limita-
tion we cannot discuss the issues here.

If You Can’t Do It Accurately Then Do It Fast! The column 1/4 in our table shows the
performance of the system if we run state estimation at 0.25 of its normal frequency.
This causes less accurate position estimation as well losing more than half of the tracks
because of less redundant information and stronger dependency on action models. Re-
call that we assumed motion to be constant whereas motions in robot soccer are very
often changed abruptly. This suggests that we can deal with worse motion models by
estimating with a higher frequency.

Implement Estimators That Check Their Work! We have pointed out in section 2 that
Kalman filter localization is fast but relies on the assumption that the probability distri-
bution for the robots is Gaussian distributed. We use a particle filter in parallel that runs
at a third of the frequency of the Kalman filter as a monitor that detects ambiguous po-
sition estimates and that initializes the Kalman filter localization after the position track
is lost. We didn’t use a particle filter on its own because we couldn’t run it fast enough
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and because Gaussian distributions can be communicated much more compactly and
used as evidences in the other state estimation problems. Our findings are that the time
needed for relocalization could be reduced from about 10 seconds to about 2 seconds
and that lost position tracks could be detected earlier.

Lesson. Applying multiple state estimation techniques with different strength and
weaknesses in parallel is a viable design option for state estimators. In particular, if
the computationally more expensive method can be used to monitor the faster but less
reliable method.

Learn to Look Away! In state estimation it is often assumed that every observation
provides the robot with additional information that can be used to improve the state
estimate. In reality, however, this is often not true. We have used Quinlan’s C4.5 deci-
sion tree learning algorithm to learn predictive rules as to whether or not to integrate
an observation into state estimation considering the current situation. The robot learned
rules that state, an observation is likely to be informative (within 30cm of the ground
truth position) if

the observed distance D is less than 3.76086 and the robot has not lost track of its
position
the robot is not turning, the angle between the observation and the direction the
camera is pointed to is less than 22.91° and
the robot is turning, and

1.

2.

3.

Applying these rules to filtering observations we could reduce the hallucinated tracks by
one third, and further improved the track accuracy, and overlooked fewer tracks (which
get otherwise corrupted by the noisy observations).

Lesson. What is interesting here is not the specific feature language and rules. They
are different for different robots, environments, and cost functions. What is important
is that we can try to learn predictive models as to whether or not an observation can be
expected to improve the state estimate. These rules can be used to filter out worthless
observations.

4 Conclusions

In our view, research in state estimation is focusing too much on algorithm design and
analysis and too little on system design. As we will apply state estimation in very com-
plex autonomous robot applications, such as household robotics, where the estimated
states are extremely high dimensional we won’t be successful unless we know how
to parameterize the systems and how to provide them with the necessary probabilistic
models. Therefore, our most important conclusion is an obvious one: the development
of complex high-performance state estimation systems is a complex design problem
with many design options. The choice of estimation algorithms is only one of these
options but many other design dimensions have an equally large impact on system per-
formance. The design has to be tailored to the particular application at hand and the
different design option interact with each other in obscure and opaque ways. We pro-
pose empirical investigations and learning based on ground truth data as necessary tools
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for the development of successful state estimation systems. We have illustrated these is-
sues using a probabilistic game state estimation in autonomous robot soccer. Our results
are preliminary and a lot more has to be done to understand the design of complex state
estimators properly.
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Abstract. One of the typical cooperative actions is the pass play in
RoboCup small-size league. This paper presents three technical key fea-
tures to realize robust pass play between robots. The first one is the high
resolution image processing to detect the positions and orientations of
the robots. The second one is the control algorithm to move and adjust
the robots for the pass play. The third one is the mechanism to catch
the ball moving at high speed. This paper discusses these methods and
shows the effectiveness of the methods by experimental results.

1 Introduction

RoboCup gives full scope to realize a soccer game by robot [1–5]. It is important
to realize a robust pass play. There are many key features to realize robust pass
play between robots. From the viewpoint of software, it is important to realize
the high resolution image processing algorithm to detect the positions and the
orientations of the robots. If the image processing system couldn’t detect moving
objects correctly or it would take too much time, it would be impossible to kick
and receive the ball at the promised place. A control algorithm to move and
adjust both robots for the pass play is also required because the ball would not
be passed at the time promised. From the viewpoint of hardware, it is necessary
to design a mechanical device to catch the ball moving at high speed, because
the ball collides with the robot at high speed and rebounds off to an unexpected
direction.

From these considerations, we realized simple but high-speed image process-
ing system whose processing speed is about 1.4 msec to detect and track the
robots and a ball by reducing the searching range, and also implemented an
algorithm to control both robots, the passing robot and the receiving robot, for
the robust pass play. We improved the dribbling mechanism to catch the ball
moving at high speed by intentionally adding some loose to the joint part of the
dribbling device.

In the following, the image processing system and cooperative algorithm to
realize a pass play are shown in sections 2 and 3, respectively. The mechanical
devices to catch the ball and its modeling are shown in section 4.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 410–421, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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2 Image Processing System

2.1 Objects to Be Detected

It is allowed to attach other submarkers to detect the identity number (ID) of
each robot and/or the orientation of the robot. The number, size and layout of
submarkers are unrestricted but approved colors are limited so as not to affect
the robotic image processing systems used by opposing teams. Figure 1 shows
submarkers of our team. A rectangle submarker (105mm× 16.5mm) has been
used to determine the orientation of the robot, and small circle submarkers (1~
4 pieces, 8.5mm diameter) have been used to determine ID of each robot. Our
image processing system aimed to detect these markers.

2.2 Image Processing System

CPU in the host computer is a Pentium Xeon 2GHz and the OS is Windows
2000. We employ a progressive scanning camera (DXC-9000, SONY) to avoid
the problem of the difference between the odd frame and the even frame caused
by the high-speed movement of the robot.

Global vision camera is set at 3.0m over the game field. Since the length along
to the side-line including the goal area becomes about 3.2m, at least 56 degree
view angle is needed. In our system, wide lens attachment (Fujinon, WCV-65, ×
0.75) covers this range. The size of the global vision image grabbed by the frame
grabber (Matrox, GEN/X/00/STD) is 640(W)×480(H), and the resolution is 5
mm/pixel.

Fig. 1. Top surface of robot

2.3 Image Processing Algorithm

Image processing system detects the location of each robot by using team color
markers, and determines the orientation and the ID number (code) of each
robot by using submarkers attached on the top of the robot. Figure 2 shows
the flowchart of image processing. The outline of processing is shown below and
literatures [6–9] give detailed description.
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Step-1 (Input Image) Get an RGB image from frame grabber which is captured
through the progressive camera. Figure 3 shows an example of input image.
Figure 3(b) is the enlarged images around the robots.

Step-2 (Calculation of Search Range) Calculate the search range based on the
reliability of respective objects. Since the reliability is an important param-
eter which characterizes the performance of image processing, the details of
the calculation are explained later in this section. White rectangles around
robots in Fig.4 are the search ranges. Only in these ranges, RGB color for-
mat image is converted to YUV color format image. This greatly reduces
computation time.

Step-3 (Segmentation of Colored Region) In the same ranges as restricted in
Step-2, the simultaneous pattern matching is executed for 9 colors (max.
32colors) in YUV color format image by using the CMU’s color segmentation
algorithm [10]. Since the real game is not played under the uniform light
conditions, the intensity and color spectrum are not uniform over the game
field. Therefore, we assign several colors as a candidate for the object. We
assign 2 colors for the ball, 2 colors for each team color and 3 colors for the
areas that we would like to remove from processing. This method realizes
the robust color extraction under the non-uniform lighting conditions.

Step-4 (Labeling) Apply the first propagation in the labeling algorithm, which
we have developed last year [9], to label the object region. Figure 5 shows the
result. In this algorithm, the processing for interlaced image is not applied,
since we use non-interlaced image.

Step-5 (Selection of Objects) Detect team marker region and expand the region.
Then, detect ID markers and rectangle submarker in the expanded region.
ID markers area and rectangle submarker area are distinguished by the size
of area. Figure 6 shows the result.

Step-6 (Calculation of IDs and Directions) Calculate the ID and the rough ori-
entation of the robot by the numbers and the positions of circle submarkers,
respectively. The precision for the angle is about 8 degrees.

Step-7 (Calculation of Modified Directions) Calculate the precise orientation
of the robot by detecting the long-side edges of rectangle submarker and
applying the least mean square method to the detected edges. The precision
goes up to less than 1 degree.

Step-8 (Record of Positions and Directions) Record the current positions and
directions.

Step-9 (Output of Object IDs, Positions and Directions) Convert the objects
positions from the camera coordinates to the world coordinates.

We utilize the reliability factor to decide the search range in Step-2 and Step-
3. Reliability indicates how much the result of image processing is correct. Wide
range should be searched if the reliability is low. On the contrary, it is enough
to search in the restricted range if the reliability is high.

We defined 4 levels of reliability, i.e. non-, low-, intermediate- and high-
reliability level. The reliability level is updated every frame cycle (i.e. 60 times
per second). Basically, it goes up 1 level if the object detection ends in success,
otherwise goes down 1 level.
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Fig. 2. Flowchart of image processing

The decreasing of the reliability level makes the search range wider and causes
the increasing of computation time. However, information management system
prevents the reliability level from excessive go-down. Such cases happen when
the ball is occluded, since the ball detection ends in failure. The information
management system keeps the reliability level at 2 (intermediate).

The search range is restricted when the reliability level is in 1–3, i.e. the
range of 20 × 20 pixels, 30 × 30 pixels and 60 × 60 pixels is searched when the
reliability level is 3, 2 and 1, respectively. 20 × 20 pixels range is about 10 cm
× 10 cm in the real field. This search range works for the tracking of a moving
object up to 3m/sec.

Fig. 3. An example of grabbed image from a global vision camera

3 Cooperative Control Algorithm

There are many types of cooperative play in our system, for example, pass-
play, defense-play, assist-play and so on. In this paper, we discuss the pass play
algorithm. Algorithms for passing robot and receiving robot are given below.

First, we define variables and flags. Let the line connecting the center of
passing robot and the receiving robot be and let the line on the heading
direction of passing robot be Let the angle between and
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Fig. 4. Restricted region to be searched (whitened area) and enlarged images

Fig. 5. An example of line noises to be deleted by the proposed labeling algorithm

Fig. 6. The result of marker extraction

be Let the direction flag and stabilization flag be Dir and PassCounter,
respectively.

[Initializing]

Step 1 Decide the rotation speed based on the velocity profile shown in figure
7. depends on Start rotation.

Step 2 Start dribbling device.
Step 3 If there is an obstacle on then compute which side of the

center of that obstacle is located. If it located on left-hand side of the passing
robot, then set Dir to 1, otherwise -1. If there is no obstacle on then
set Dir to 0.
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[Pass Algorithm]

Step 1 Do the Initializing.
Step 2 If Dir is not 0, then set PassCounter to 0 and go to Step 5.
Step 3 Go along at a speed of
Step 4 If is less than and the distance between the ball and the passing

robot is less than then increase PassCounter by 1. If PassCounter
is greater than and is less than then start the kicking device.
Reset PassCounter.

Step 5 Wait for the next frame cycle. Go to step 1.

In the above, are constants and are determined by the
experiments.

[Receive Algorithm]

Step 1 Do the Initializing.
Step 2 If Dir is not 0, then go in the direction of  from at a

speed of
Step 3 Wait for the next frame cycle. Go to Step 1.

In the above, are constants and are determined by the experiments.

4 Catching Mechanism and Its Analysis

4.1 Robot Mechanism

The robot must be constructed in order to execute the commands, such as a
move, a shoot and a dribble. Figure 8 shows our robot. Our robot has 3 omni-
wheels and can move any direction. As shown in Fig.8 (a), 3 DC motors with
encoders are used (FAULHAVER). The gear ratio is 9.7:1. The kicking device
that is driven by a solenoid (SINDENGEN) is mounted (Fig.8 (a) below). It can
kick the ball at the maximum speed of about 3m/sec. Dribbling device utilizes
the rotating roller to give backspin to the ball. Uncovered robot in Fig.8 (b)
shows dribbling roller.

Fig. 7. Velocity profile
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Fig. 8. Our robot system

There are two important technical issues to realize a pass play. One is the
correct recognition of the position and the orientation of each robot and the ball.
The other is the mechanical improvement to catch the ball. For the former, our
precise and high-speed image processing system solved the problem as described
in section 2, and for the latter subject, our system solved the problem by adding
shock absorption mechanism to the dribbling device. It may be natural to use a
spring like the Cornell University’s BigRed, but our team realizes it by another
method.

The dribbling device is attached in front of the robot as shown in Fig.8 (b).
The roller made of rubber rotates and gives backspin to a given ball and holds
the ball. However, because the roller is hard enough not to bite into the ball
which is also hard, the ball will bounce off of it if the dribbling device receives
the fast ball. To solve this problem, we made the joint of the roller looser than
normal and making it possible for it to move upward slightly. This simple looser
joint enables the impact of the ball to be sufficiently absorbed. Still, it remains
necessary to adjust the degree of looseness depending on the quality on the
surface of the carpet on the robotic soccer field.

4.2 Modeling of Catching Device

There are so many factors to model real shock absorption mechanism. Since our
system realizes it by adding adequate space to the joint of the dribbling roller,
we analyzed it by three simplified models, (a) at the impact, (b) transition to
the stable state, and (c) in the stable state.

(a) Impact Model
Let the angle between the horizontal line and the line crossing to the centers of
the roller and the ball be and let and and be mass and velocity
of the roller and the ball, respectively, in the world X – Y coordinates as shown
in Fig.9. Let the components of and be and in
the local coordinates parallel to the tangent line and the normal line at
the collision point as shown in Fig.9.
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Fig. 9. Physical situation at a the impact

First, by modeling the collision without rotation of the roller and the ball by
the law of conservation of moment, following equations for the

are obtained, here dash denotes the velocity after collision and is the coefficient
of rebound for As the same way for

are obtained, and the collision of ball and roller is modeled when they are as-
sumed as a particle.

Since the roller and the ball are rotating, it is necessary to introduce some
equations concerning to the angular momentum. Let the moment of inertia and
angular velocity be I and respectively. From the law of conservation of angular

and following equations,

are realized at the collision point, here, are the radius of the ball and
roller, respectively. Since our system utilizes rubber of cylinder, the moments
of inertia and are easily calculated as and
respectively. The solutions of at the impact are calculated
by solving equations (1) ~ (6).

(b) Transition Model
The center of gravity of the ball repeats the reflection after the impact as shown
in Fig.10. It is sufficient to consider the movement of the center if the angle

momentum,
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Fig. 10. Reflections of ball in the transition

Fig. 11. An example of shock absorption at

varies within the range of a few degree during the transition. Precise analysis
and modeling are one of our future works, but it is possible to realize simple
model as follows if the relation is satisfied in the local coordinates.

Reflection angle increases reflection by reflection as shown in Fig.10, namely
After times reflections, it exceeds and the ball returns

back to the inverse direction. Figure 11 shows the case of In this
case, the ball rebounds in a short time and if the roller moves to the direction
illustrated with arrow in order to absorb the shock, these angular relations are
satisfied during transition.

(c) Stable Model
Let the reactions be and let the coefficients of kinetic friction be
as shown in Fig.12. The equations of motion for the ball are as follows.

By solving equations (7) and (8), the solutions for are obtained as
follows.

So the force by backspin of the ball is derived as
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From equation (11), following equations are obtained.

It is easily known that larger force could be obtained according to the
increase of because and It is important that has a critical
point at At this point, becomes 0.

Fig. 12. Stable model by dribbling device

5 Considerations

From the viewpoint of mechanical performance, we confirmed the effectiveness
to use the dribbling and kicking devices. Dribbling device worked well except for
the case that the coefficient of kinetic friction of the field’s carpet is high and
the robot lost a ball around the wall of the game field.

For the performance of image processing system, it was experimentally con-
firmed that the angle accuracy is sufficient to realize cooperative play. Experi-
mental results are shown in Table 1 under the condition that two incandescent
lights are added to the fluorescent lights for making the environment near the
actual game hall. As a result, the luminosity value on the game field was set
to 450-800 lux. In the ID detection experiment, five robots have been placed at
the free kick markers and at the center on the field, and each robot’s ID was
recognized 10,000 times under the condition that the robots do not move. If the
distance between the recognized position of robot and its planned position is less
than 10cm, the recognition is succeeded, otherwise failed.

The accuracy of angle detection is experimented on nine points on the field
and the orientation of the robot was set to 0, 45, 90 and 135 degrees at each
setting point. It was measured 1,000 times at each point, and the maximum
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angle error was calculated from the real position. There is no weak point (place)
on the field to detect ID’s and submarkers.

The recognition rates for the objects, ball, team color marker, submarkers, are
evaluated during a real game. Although the intensity on the field is determined
as 700–1000 lux by the regulation, it varies by the lighting condition. From some
practical games, it is confirmed that our image processing system could extract
all objects under the condition that the intensity is about 200 lux.

In our image processing system, the whole image was searched only when
(1) just after the game started, (2) ball has been occluded completely for some
period, and (3) shoot speed exceeds 5m/sec. Even though it takes long time for
the whole image search, it is confirmed that it works in 20msec/frame. So that,
our system could defend a fast ball even if it was shot from the region occluded
by a robot.

6 Conclusions

This paper discussed the algorithms, the robot mechanism and image processing
method to realize cooperative play in RoboCup small-size league. Key features in
our system are simple pass algorithms, implementation of dribbling and kicking
devices, and high speed and robust image processing method. In particular, the
visual feedback system of every 1/60 seconds realized high speed tracking to the
ball moving at 3.0m/sec. From the viewpoint of image processing, if the light
includes wide spectrum like natural light, more robust method will be required,
because color blur appears around the boundary of the object to be detected by
optical color aberration. The light with too wide dynamic range like a spot light
bothers our image processing system, so it is also required to be more robust
for the change of the intensity, exceeding the value specified in the regulation.
From the view point of mechanism, further analysis and modeling of catching
and shock absorption are expected. These are future works.

Acknowledgement

This paper was partially supported by The Hibi Research Grant, AI Research
Promotion Foundation and the RoboCup Japanese Committee grant.



Cooperative Soccer Play by Real Small-Size Robot 421

References

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

http://www.robocup2002.org/
M.Veloso, E.Pagello, and H.Kitano (Eds.), “RoboCup-99: Robot Soccer WorldCup
III”, Springer (June 2000)
P.Stone, T.Balch and G.Kraetzschmar (Eds.), “RoboCup 2000:Robot Soccer
WorldCup IV”, Springer (March 2000)
A.Brik, S.Coradeschi, and S.Tadokoro (Eds.), “RoboCup 2001:Robot Soccer
WorldCup V”, Springer (March 2002)
G.A.Kaminka, P.U.Lima and R.Rojas (Eds.), “RoboCup 2002:Robot Soccer
WorldCup VI”, The 2002 International RoboCup Symposium PreProceedings,
Fukuoka, (June 2002)
Y.Kodama and K.Murakami, “Small-Size Robot Extraction Method by High-speed
Image Processing for RoboCup”, Proc. of VIEW2002, Yokohama, (Dec.2002) (In
Japanese)
S.Hibino, Y.Kodama, T.Iida, K.Kato, S.Kondo, K.Murakami, and T.Naruse, “Sys-
tem configuration of RoboDragons team in RoboCup small- size league”, Proc. of
SI2002, Kobe, (Dec.2002) (In Japanese)
Y.Kodama, S.Hibino, K.Murakami, and T.Naruse, “Small Robot Detection by Us-
ing Image Processing and its Application to Action Planning and Action Analysis”,
Proc.of MIRU2002, Vol.1, pp.223-228, Nagoya, (July 2002) (In Japanese)
S.Hibino, Y.Kodama, Y.Nagasaka, T.Takahashi, K.Murakami, and T.Naruse,
“Fast image processing and flexible path generation system for RoboCup small size
league”, The 2002 International RoboCup Symposium Pre-Proceedings, pp.45-57,
Fukuoka, (June 2002)
Bruce, J., Balch, T. and Veloso, M.: “Fast and Inexpensive Color Image Segmen-
tation for Interactive Robots”, Proc. of IROS ’00, pp. 2061-2066 (2000)



On-Board Vision Using Visual-Servoing
for RoboCup F-180 League Mobile Robots

Paul Lee, Tim Dean, Andrew Yap, Dariusz Walter,
Les Kitchen, and Nick Barnes

Department of Computer Science and Software Engineering
The University of Melbourne

Melbourne, VIC 3010, Australia
http://www.cs.mu.oz.au/robocup/2003/F180/

publications/2002/localvis/index.php

Abstract. In the RoboCup F-180 league competition, vision is predom-
inantly provided by an overhead camera which relays a global view of the
field. There are inherent disadvantages in utilising this system, particu-
larly the delays associated with the capture, transmission and processing
of vision data. To minimise these delays and to equip the robots with
greater autonomy, visual servoing on-board the individual robots is pro-
posed. This paper presents evaluation of two visual servoing methods
for mobile robots: position-based and image-based servoing. Traditional
implementations of image-based servoing have relied on partial pose esti-
mation, negating much of the advantage gained from using this method.
This paper will present an alternative implementation of image-based
servoing for approaching objects on the ground plane, which disposes of
the pose estimation step and fully relies only on image features. To eval-
uate the suitability of both visual servoing methods to F-180, the task
of docking with the ball is used as a basis of the investigation.

1 Introduction

The implementation of vision as a form of feedback for robotic tasks is a major
field of research dating back to the 1970s, where much of the early investigation
concentrated on pattern recognition problems [6]. Owing to the reduction in
hardware costs and the increase in computing power, the focus of vision research
has turned to the introduction of visual data into the control loop of a robot.
Using visual data within the control loop has been termed visual servoing.

The classical approaches to visual servoing are position-based servoing and
image-based servoing. In position-based servoing the world pose of the target is
estimated from the image, generally based on a geometric model of the object,
and a position-based control signal is generated accordingly. In image-based
servoing, the motion is controlled directly based on information from the image
plane, with the control error signal being the difference between a desired feature
vector, and the current feature vector. However, there are problems with image-
based servoing such that large undesired motions of the robot can occur, and
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the object may move out of camera view [10,12]. To deal with these problems,
recent work has examined visual servoing, where the camera displacement
between current and desired positions is estimated in 3D coordinates without
the need for a 3D model of the target [8]. Other work emphasises robot path
planning in image space to avoid the problems of loosing the object from the
field of view [10,12].

In this paper, we examine visual servoing for on-board control in the
RoboCup F-180 League. Currently, vision for most F-180 teams is provided
by an overhead camera which relays a global view of the field and all game-
play information back to a host computer. The disadvantages of a global vision
system are the delays inherent in the capture, transmission and processing of
the image by the host, which then issues commands to the robot. By employing
vision on-board each individual robot, and using visual servoing to produce a
much ‘tighter’ closed-loop control, decisions can be made by the robot without
the intervention of the host.

The possibility of integrating both global and on-board vision provides the
advantage of being able to select whichever form of vision is most appropriate
for a particular task. For reflex actions such as aiming and shooting at goal,
on-board vision would most likely be appropriate. Higher-level actions such as
team strategies would be handled by global vision.

In F-180, the environment is well-known so a model of the object is available,
facilitating position-based servoing. Further, in dealing with specific tasks such as
chasing the ball, the problem is well posed for image-based servoing. We present
the algorithms for both these approaches, and demonstrate through real robotic
experiments using the University of Melbourne entries to the F-180 League as
the platform for experimentation that both approaches are suitable for the F-180
league.

2 Theory

2.1 Position-Based Servoing

In position-based control, the task of positioning the robot is based on

extraction of image features during iteration of the control loop, and
evaluation of an estimate of the target pose with respect to the camera.

1.
2.

An error signal is determined from the difference between the current and desired
pose. This error signal acts as an input to the system control law, as shown in
Figure 1. Corke [3] states that the advantage of position-based control is that
it neatly separates the computation of the feedback signal from the estimation
problems involved in computing the pose from visual data. Corke, Hager and
Hutchinson [7] contend that, in general, image-based control is preferable to
position-based control due to factors such as positioning accuracy of the system
being less sensitive to camera calibration, and the computational advantages
which can be gained from a reduced number of transforms. However, Martinet
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Fig. 1. Position-Based Control System

and Gallice [9] demonstrated that using non-linear state feedback, 3D visual
features can still be incorporated into the control loop and achieve performance
comparable to image-based servoing.

2.2 Image-Based Servoing

Image-based control consists of specifying the positioning task directly from the
image without an estimation of the pose of the target. Feedback is purely from
the image plane, and the error signal is computed as the difference between the
desired feature vector and the current feature vector f. A feature vector is
a set of visual features such as the coordinates of vertices or the areas of the
faces of an object. Elements of the task are therefore specified in the image space
rather than the world space. i.e. in pixels rather than Cartesian coordinates.

Fig. 2. Image-Based Control System

It is ideal in image-based control to reduce an appropriate error function
such that when the desired position is achieved, is 0. While the error function is
defined in the image parameter space, the input to the robot is in the task space,
as shown in Figure 2. Therefore, in order to relate changes in image features
to changes in the position of the robot, the concept of an image Jacobian is
introduced [3,4,7,11]. The following relationship is then given,

where is a point in the body frame and the velocities of this
point. As shown by Sharma, Sutanto and Varma [11], the Jacobian is evaluated
from
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Assuming that the image Jacobian is square and non-singular, a simple con-
trol law can be determined as

where k is a diagonal gain matrix which will implement simple proportional
control.

Image-based control possesses underlying weaknesses since visual data is in-
terpreted using a constantly refined Jacobian matrix as part of the control loop.
Chaumette and Malis [1,2] exposed the possibility of a local minimum being
reached and the image Jacobian being singular during servoing. In order to avoid
these problems, visual servoing combines visual features obtained directly
from the image with position-based features [8].

3 Implementation

3.1 Position-Based Servoing

Since an image is two-dimensional, it is difficult to extract three-dimensional
(3D) Cartesian coordinates, because depth is unknown. However, the 3D co-
ordinates are required to properly implement the control system. In order to
calculate the depth of the centroid of an object, an assumption was made that
the object will always be on the ground and of known size, which is reasonable to
assume for the ball. Since the camera height and tilt angle were known, the posi-
tion of any image objects was determined by triangulation. Once the position of
the object was determined, a simple proportional and derivative controller was
used regulate the motion of the robot to achieve the docking position.

3.2 Image-Based Servoing

For the simple task of docking the robot with a ball, the degrees of freedom
considered were translation forwards and backwards, and rotation about the
current position of the robot. Translation sideways was deemed redundant, since
this can be achieved through a combination of forward motion and rotation.

The pinhole camera model was selected for the perspective projection, and
the feature vector was utilised, where and represent the image
coordinates of the centroid of the object. Using the coordinate system in Figure 3,
the velocity of a point p was expressed relative to the camera frame as,
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where and were the chosen degrees of freedom shown in Figure 4. Note that
the camera used for on-board vision had non-unit aspect ratio and was oriented
on its side to achieve the greatest possible depth of vision. Thus to reflect the
reorientation of the camera, the normal convention of having and representing
the horizontal and vertical coordinates was changed (see equation 7). As well as
viewing the ball when docked with the robot, it was considered more important
to be able to perceive objects at a distance, rather than to have a wider viewing
range close to the robot. This is reflected in the image coordinate system.

Fig. 3. Perspective projection of a pinhole camera

Fig. 4. Top view of configuration of omni-driven Kanga robot

The perspective projections

were used to express the velocities in (4) in terms of the feature parameters

Using these relationships the differential change in the image features was
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Equations (12) and (14) can be written in matrix form as,

The relationship between robot velocities and changes in the image is therefore

A simple proportional controller was used to regulate the motion of the robot
for image-based servoing. The aim of this investigation was not to examine the
performance of the control system, but rather to focus on the characteristics of
the visual-servoing methods. The simplest control system was therefore chosen.

In order to find the inverse Jacobian, J must be square and non singular,
that is, the determinant must be non-zero.

According to Equation (17), the determinant can be zero only if either is zero,
or is infinite. However, in practice these occurrences were defined as a no-
ball case at the image-processing stage and handled prior to the control system.
Thus, the Jacobian could be considered as always non-singular. Furthermore,
in our experiments the underlying error function was monotonic and no local
minima occurred in the control loop.

The derivation given for the image Jacobian considered the camera axis hor-
izontal to the ground. However, for this implementation, the camera was tilted
to enable the ball to be seen when at the base of the robot. The main effect
of the tilt angle is to introduce a constant scaling factor into the robot control
velocities. This scaling factor can be absorbed by the gain factor (k) in the con-
trol law. It was found through experimentation that the appropriate selection of
the controller gains results in the derived control law being effective even with
camera tilt. The non-tilt derivation can therefore be used in the general case.

As discussed by Corke [3], many image-based models still require the depth
of the target in the formulation of the image Jacobian. This results in a par-
tial pose estimation, which is the basis of the position-based model. By utilising
the image size of the target as an indicator of the relative distance from the
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camera, Zhang and Ostrowski [12] were able to remove the dependence of the
image Jacobian on the depth of the target. However, for the implementation of
image-based control used in this investigation, image size was not considered
an accurate representation of the depth because the entire object might not be
recognised. This was a major problem encountered, as specular reflections and
self-shadowing under the F-180 competition overhead lighting conditions caused
variable recognition of the ball. In F-180 most dominant teams rely only on over-
head cameras, and the lighting design is more suitable for overhead applications.
However, the centroid height was determined to be a more robust ball feature
when the ball is close, as partial occlusion will only change the distance estimate
slightly. Although it does cause larger errors when the ball is far away, the con-
trol behaviour will not be significant different compared with when it is close by.
Depth was therefore expressed as a function of the chosen image features and
the geometry of the camera placement, as shown in Figure 5.

Fig. 5. Camera Placement

Using the geometry of the camera placement shown in Figure 5, the depth
and angle were evaluated to be

Since the angle of elevation of the camera is known, both and were
evaluated as constants. Furthermore, using (19) and Pythagoras’ Theorem,
and can be evaluated, allowing to be determined.

4 Experimental Procedure

Two forms of experiments were designed to analyse the behaviour of each method
of visual servoing: docking with a static ball, and docking with a moving ball.
Both experiments performed docking with an orange golf ball, as used in
RoboCup competition. The purpose of these tests was to observe the effects
of system parameters such as frame rate, computation time and calibration.

In the static experiment the ball was placed at three locations in front of
the robot: to the left, in the center, and to the right of the robot. The ball
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was also placed at differing distances from the robot: near, middle and far away
from the robot respectively. Figures 6(a) and (b) illustrate where the placement
locations were placed relative to the robot. The ruler seen in these images is 1m
in length. For the moving target tests, the ball was released from a ramp of fixed
height and rolled towards the robot. The ramp allowed reasonable repeatability
of tests with a consistent velocity. The robot was required to track varying ball
trajectories at 90°, 45°, and almost parallel to the robot’s line of vision.

Fig. 6. Placement of the ball and test locations relative to the robot, as seen from
(a) an overhead view and (b) the robot camera

5 Results and Discussion

Two sets of results for each experiment were collected for analysis. The results
were of the overhead view of the test and of the on-board camera view. The
overhead camera provided a world-space view of the path taken by the ball and
the robot as docking occurred. The overhead view was also used to track changes
in velocities as the robot approached the docking position. This was achieved by
knowing the sampling rate used for the camera. The on-board view was used to
observe the changes in ball position within the image frame. This data provided
a better understanding of the servoing behaviour of the robot as it attempted to
reach the commanded position. Note that the overhead camera was used only to
record the motion of the robot for evaluation, not for servoing, which was done
by on-board vision.

A representative sample of the results is given in Figures 7 to 9. Figure 7
presents the tests as seen by the on-board camera. Figures 8 and 9 present
the global view of the tests seen by the overhead camera. The overhead plots
contain markers at one-second intervals, while the local camera has markers at
half-second intervals. The markers for image-based control are depicted by the

and for position-based control by the marker. Complete results for all
tests are given in [5].

From the results obtained there was no discernible difference in the perfor-
mance of the two methods. Both servoing implementations were able to track
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Fig. 7. Local camera view of two tests

Fig. 8. Overhead camera view of far distance static ball test



On-Board Vision Using Visual-Servoing 431

Fig. 9. Overhead camera view of near distance moving ball test

the ball reliably, and were able to successfully approach the docking position.
Neither method was able to achieve the exact docking position due to the in-
ability of the robot to move when given low-velocity commands. This was a
potential control system problem which could be solved through the implemen-
tation of more advanced controllers. However, the simple controllers used for the
experiments still demonstrated that visual servoing using either method can be
satisfactorily achieved. Furthermore, during operation in the actual F-180 com-
petition it would not be desirable to stop next to the ball, but rather to move to
the ball at the highest speed possible in order for it to be picked up on a roller.

It was noticed that for the image-based method that the robot travelled at
constant velocities to the docking position, whilst the velocities for the position-
based method had a ramping effect. This is attributed to the different controllers
used for each implementation. A proportional controller was used for the image-
based method and accounted for the constant or linear velocities observed. For
the position-based implementation, a derivative controller was added, introduc-
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ing the ramping effect. The ramping effect was due to the predictive nature of
a derivative controller, evidenced by the reduction in the commanded speed as
the robot approached the docking position.

The position-based method was a much more intuitive means of visual ser-
voing than the image-based method. Position-based servoing is essentially an
extension of image-based servoing by the addition of a pose estimation step.
Both methods required the extraction of image features in the feedback loop.
The derivation of the Jacobian proved difficult to analyse for errors due to the
coupling involved in the evaluation of the velocities. The position-based servoing
was therefore a more straightforward method to conceptualise and implement.

In terms of computational costs, image-based servoing was much cheaper
than position-based servoing. The removal of the transformation from image
space to Cartesian world space allowed computation involving only addition,
subtraction, multiplication, and division operations. The additional cost of us-
ing tan and arctan operations made position-based control much more computa-
tionally expensive. It needs to be considered, though, that when the complexity
of the task increases, the computational cost of the image-based method would
increase in proportion to the size of the Jacobian matrix. Image-based servoing
could therefore potentially be more expensive than position-based methods for
complex tasks.

In an application such as visual servoing calibration effects are an important
issue to be considered. It was observed that for position-based servoing, external
and internal calibration issues such as camera positioning and angle of field-of-
view will cause errors in position estimation. However in image-based servoing,
the main effect of calibration was from determination of the focal length, an
integral step in the development of the image Jacobian. To minimise the erro-
neous influences of calibration and to achieve reliable servoing, it was therefore
important for both servoing methods that the calibration be conducted offline.

6 Conclusion

In this paper, it has been shown that it is possible for visual servoing to be per-
formed on board the F-180 robots under RoboCup conditions. The two classical
methods of position-based and image-based servoing both satisfactorily achieved
the task of docking a robot with static and moving targets. In conducting this
investigation it was shown that both methods had advantages and disadvantages
over each other and neither proved to be a superior implementation. As such,
both are equally suitable to be used in the F-180 League, and the decision on
using either method would be based on which features of position-based and
image-based servoing are more desirable.
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Abstract. Simulation has become an essential part in the development process of
autonomous robotic systems. In the domain of robotics, developers often are con-
fronted with problems like noisy sensor data, hardware malfunctions and scarce
or temporarily inoperable hardware resources. A solution to most of the problems
can be given by tools which allow the simulation of the application scenario in
varying degrees of abstraction and the suppression of unwanted features of the
domain (like e.g. sensor noise). The RoboCup scenario of autonomous mobile
robots playing soccer is one such domain where the above mentioned problems
typically arise.
In this work we will present a flexible simulation platform for the RoboCup
F2000 league developed as a joint open source project by the universities of
Freiburg [13] and Stuttgart [8] which achieves a maximum degree of modular-
ity by a plugin based architecture and allows teams to easily develop and share
software modules for the simulation of different sensors, kinematics and even
complete player behaviors.
Moreover we show how plugins can be utilized to implement benchmark tasks
for multi robot learning and give an example that demonstrates how the generic
plugin approach can be extended towards the implementation of hardware inde-
pendent algorithms for robot localization.

1 Introduction

Simulation has become an essential part in the development process of autonomous
robotic systems. In the domain of robotics, developers often are confronted with prob-
lems like noisy sensor data, hardware malfunctions and scarce or temporarily inopera-
ble hardware resources. A solution to most of the problems can be given by tools which
allow the simulation of the application scenario in varying degrees of abstraction and
the suppression of unwanted features of the domain (like e.g. sensor noise).

The RoboCup scenario of autonomous mobile robots playing soccer is one such
domain where the above mentioned problems typically arise. In contrast to the the sim-
ulation league [6] where there is a predefined type of player with fixed action and per-
ception capabilities in the simulated environment, the F2000 league permits a great
diversity of robots in shape, kinematics and sensorics. Typically, teams in the F2000
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league use multi sensor approaches to gather relevant information about their environ-
ment for the task of playing soccer. Here, all kind of local sensors, like ultrasonic or
infrared sensors, laser range finders, cameras or omni-vision sensors, may be used in
arbitrary combinations on the robot.

Existing simulation tools for the F2000 league usually are rather specialized for
a certain robot architecture of one team, restricted to a certain software language or
deeply interwoven within the team’s software structure [1]. Even if a certain adaptabil-
ity to different kinds of robot setups or robot control properties partially was considered
within some software designs [2], usually a lot of work still has to be spent to adapt
the software to the individual needs of one team without any general benefit for other
teams.

In this paper we present a flexible simulation platform for the RoboCup F2000
league developed as a joint open source project by the universities of Freiburg [13] and
Stuttgart [8]. The simulator is based on a client/server concept that allows the simulation
of diverse robots and also the simulation of team play.

The simulator achieves a maximum degree of modularity by a plugin based archi-
tecture. Software plugins are well known from the field of software engineering, par-
ticularly in the Internet context.They are basically dynamic libraries which extend the
functionality of an application while loaded at runtime. We introduce a generic plugin
concept for the simulation of the dynamic model and the sensors of an autonomous
robot. This concept makes it possible to easily develop and share modular software
components which can be re-used in various robot setups of different teams.

Furthermore we introduce plugins for robot behaviors. These are software compo-
nents which implement a full player behavior in the sense of reading and reacting on
sensor data while running as integrated module of the simulation. We show how they
can be utilized to implement benchmark tasks for multi robot learning.

Finally we give an example that demonstrates how the generic plugin approach can
be extended towards the implementation of hardware independent algorithms for robot
localization. The simulator is freely available from our home page [11].

The remainder of this paper is structured as follows. Section 2 gives an overview
of the server and section 3 of the client part of the simulator. The concept of plugins
which is used by both parts, will be described in more detail in Section 4. In section 5
we sketch some applications like localization and learning and in section 6 we give an
outlook to future developments.

2 Server Architecture
The core of the server is a 2D physics simulation that continuously computes the state
of the world within discrete time intervals At time the simulation calculates the
subsequent world state for time by taking into account velocities of objects and
their modified internal states, like for instance committed motion commands to a robot.

As indicated in figure 1, the physics simulation is basically influenced by robot
objects existing on the server. Robots can either be controlled by clients connecting via
the message board over a TCP/IP socket or by a player plugin which is started within
the graphical user interface (GUI). In case a player plugin is created by the GUI, a robot
is created and assigned to the plugin. If created by the message board, the robot will be
controlled by the remote connected client.
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To each robot there is a motion plugin and a sensor container associated. The mo-
tion plugin simulates the robot’s dynamics, whereas the sensor container aggregates
various plugins that implement the simulation of its sensors. The creation of the dif-
ferent plugins is done by a plugin factory which detects the available plugins at server
startup. A more detailed description of the plugins will be given in section 4.

The individual setup of a robot is defined by a robot configuration file which con-
tains information on its sensor and motion plugins. Furthermore the file includes a de-
scription of the robot’s geometry and manipulators.

Manipulators are designed as variable parts of the robot geometry which can be
switched between a set of states with differing geometric setups. Furthermore manipu-
lator states can contain an additional parameter describing their ability to accelerate the
ball which is needed for the definition of kicking devices.

Additionally, the state of the world can be influenced by the referee module. The
intention of this module is to implement a set of rules restricting the robots actions in
some way. At the current stage, however, the referee is limited to count the score, taking
the ball back into the game if crossing the field boundary and resetting the game when
a goal was scored. The physics simulation and the communication will be described in
more detail in the following section.

Fig. 1. Overview of the server architecture.

2.1 Physics Simulation

The physics simulation is carried out in the plane. Simulation parameters, such as fric-
tion, restitution and cycle time are configurable by the simulation configuration file.
The file also defines the setup of the environment which is described by a set of geo-
metric primitives like rectangles, ellipses and triangles which nearly any scenario can be
built from. As some domains may require three-dimensional information, each primi-
tive contains two optional parameters specifying their beginning and end within the

 Robots are described by these primitives as well, but within their specific robot
configuration file. With a world described by primitives, a simulation of rigid body



A Plugin-Based Architecture for Simulation in the F2000 League 437

collisions can be carried out. Unfortunately at the beginning of the simulator project
there was no open source package for this simulation available. Therefore we imple-
mented calculations based on “Dynamics”, an old but enlightening book from Pestel
and Thomson [10].

Given two objects with centers of mass the veloci-
ties rotations and masses that collided in A, compute
the velocities and rotations after the collision. For a solution,
we need six equations to determine the six unknowns. By the law of conservation of
momentum along each space axis we get:

The angular momentum of each body with respect to the origin is conserved. Due to
the restriction that the simulation is carried out in the plane the angular momentum is
one-dimensional and because there are two bodies, this results in two equations:

where and denote the moment of inertia of the two bodies. After Newton’s hy-
pothesis the ratio of the relative velocity in the X direction (if we assume the impact
is in X direction) before and after the collision equals a constant where is the
elasticity (also known as restitution):

In order to get the sixth formula, we have to make assumptions about the friction be-
tween the two bodies and thus about forces in the tangent plane. In the simulator so
far, we use a simple solution that interpolates between the two extremes “stickiness”
and “no friction” , which has been introduced by John Henckel[5]. The shown calcu-
lation can be generalized for the three dimensional case with little effort. If there are
collisions of more than two bodies at the same time, the computation seems not to be
straight forward and hence is currently treated on a higher level of the simulation.

One difficulty in simulation is to determine the exact moment of collision. Usually
when a collision is detected the two objects involved overlap by some degree due to
a limited time scale resolution of the simulation. Thus we implemented a divide-and-
conquer algorithm that searches, if an impact has been detected, until a minimal time
resolution for the time of the event. So far, the accuracy of the collision detection
suffices for a simulation in real-time and up to five times faster when executed on a
Pentium3 600MHz computer.

2.2 Communication

Robots can be controlled by clients connecting via a TCP/IP socket to the message
board. This has the advantage that clients can be programmed in any kind of language,
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Fig. 2. Overview of the client architecture. Dashed components are optional.

as long as they comply with the protocol. The protocol for commands from the clients
to the server is based on ASCII strings that start with a unique command identifier
followed by a list of parameters. Due to the generic plugin architecture, the protocol
between server and client does not prescribe a format for the exchange of sensor data.
Thus, plugins have to implement two abstract methods, one for reading and one for writ-
ing an array of unsigned integers respectively. This array, which represents the sensor’s
current data, is then transmitted together with a unique sensor identifier and a times-
tamp from the server to the client. On the client side, the received array and timestamp
are written into the appropriate sensor plugin.

Since computer clocks are usually running asynchronously, we had to integrate a
time synchronization mechanism between server and client. This is done by exchanging
timestamps between server and client during the connection phase which are used to
calculate a time offset value. When transmitting sensor data to a client this offset is
added to the timestamp of the package.

The time duration until the world state is completely transmitted depends strongly
on the amount of data the client’s sensor plugins requests. We measured on our internal
network for a client requesting 180 beams of a Laser Range Finder (LRF) sensor, dis-
tance and angle to all lines, poles, and goals on the field, and odometry information, a
duration between 2ms and 3ms. The latency of the server, which depends on the num-
ber of simultaneously connected clients, has been measured between 6ms and 8ms in
the case of 3 actively operating clients.

3 Client Architecture

Figure 2 shows an overview of the client architecture. The client consists of a mod-
ule that manages the communication with the server (Comm), a module for parsing
and accessing information from the robot configuration file (Parameters) and a sensor
container holding sensor plugins which are created by the plugin factory.
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The Parameters module parses the client’s robot configuration file from which in-
formation is used for creating the respective sensor plugins, for example the type of
feature the sensor plugin provides. The file is also transmitted to the server during the
server connection phase and used there for the creation of an equivalent robot object in
the simulation.

Sensor plugins created on the client side are equal to plugins created on the server,
but reduced of the ability to generate data. They can be considered as data buffers which
are filled by the communication module. As indicated by the dashed modules in the
figure, one could also fill the container using threads that process information from
real sensors. This is particularly useful when designing high-level algorithms based on
the sensor container concept which work on the generated features. In this case the
algorithms can easily be evaluated both in the simulation and on real robots.

The sensor plugins are automatically generated and inserted into the sensor con-
tainer which provides functionality to search for and access specific sensor data ob-
jects by certain characteristics. Within the container, sensor plugins are distinguished
by three identifiers:

1.
2.
3.

The specific model of the sensor, for example DFW5001 or LMS2002

The type of the sensor, for example camera or LRF
The name of the particular feature, for example ballDistance or 180DegreeScan

In order to address a particular plugin, one can query the container by providing one
or more of the above identifiers. This has the advantage that features can be addressed
in a more abstract way by their functionality rather than by a specific sensor name. Thus
plugins that provide equal features, e.g. distanceToGoal from a vision or LRF plugin,
can be exchanged in the container without direct consequences for the user program.

Furthermore the client package provides an optional GUI module that can be used to
display information from the sensors or additional information generated by algorithms
on a higher level.

4 Plugin Architecture

The plugin concept was chosen since it offers the highest degree of flexibility and exten-
sibility while maintaining an independent and stable simulator core. The plugin concept
evolved in stages with the increasing need for a stronger modularity of certain parts of
the simulator until reaching the current state which, we hope, meets most of the expec-
tations and requirements for the teams of the F2000 league. Figure 3 shows the plugin
architecture for the sensorics and motion simulation which will be described in the fol-
lowing.

Sensor Plugins. Usually the biggest discrepancies between robots of different teams
apart from the robot chassis are the sensors used on the robots and the data representa-
tion used by the data processing modules, like differing coordinate frames or a camera

1

2
Firewire camera used by the University of Freiburg
SICK laser range finder used by the RoboCup teams of Freiburg and Stuttgart
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Fig. 3. Server/client view of the sensor and motion plugin concept.

image data format needed by a specific color segmentation algorithm. Consequently the
sensorics play a central role within the plugin architecture of the simulator.

Although sensor plugins were referred to as one plugin type in the previous chapters
for the sake of simplicity, the sensor concept consists of two separate plugin types, one
for data generation and one for data storage. Sensor plugins access the current world
state of the simulator to generate data of any desired form. This data is stored within
the second plugin type named sensor data plugin which is needed for a transparent
communication between server and client as well as for a data buffering on the client
side. One functionality of the sensor data plugins is the transformation between their
specific data representation and the data format required by the communication module.

On an update request from the client, sensor data plugin objects on the server side
are filled by the sensor plugins, transformed to the data transmission format, transferred
to the client and re-transformed to the original data format by the corresponding sensor
data plugin objects on the client side. One major advantage of this concept is that sensor
data processing can either be done on the client or on the server side as both share the
same view on the sensor data. This can be extremely useful when the amount of data
grows too large to transmit it to a client in a reasonable amount of time like e.g. a
rendered high resolution camera image.

To build a new sensor plugin basically one method generateData() has to be imple-
mented by the developer. Within this method the position of the sensor itself as well as
information about all other objects concerning position, color and geometric shape are
accessible by the framework within an absolute coordinate frame. This information can
then be used to create the data as usually provided by the real sensor. Optionally there
are auxiliary functions for simulating sensor noise or for two dimensional ray tracing.
Until now there exist several sensor plugins for different kinds of sensors based on the
sensor equipment used by the teams of Freiburg and Stuttgart:

odometry sensor providing the current translational and rotational velocities and a
position within the odometry coordinate frame.
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Fig. 4. Two screenshots from the plugin for generating artificial camera images: (a) an omnidi-
rectional view as seen by a perfect warp free omnidirectional camera using an isometric mirror
shape as proposed by [9]. (b) a conventional camera perspective.

camera for iconic data of ball, goal and corner posts within its field of view
iconic omnivision camera detecting field lines and goals, corner posts and the ball
in a 360° field of view
laser range finder providing either raw distance data obtained by ray tracing or
iconic information about obstacles and an absolute position within the field
ultrasonic sensor detecting the nearest obstacle within the opening angle of the
sensor
camera image by 3D scene reconstruction delivers a 3D rendered view of a com-
monly used 2D camera or an unwarped omnivision sensor as shown in Figure 4.

Motion Plugins. The integration of different kinematics and controller types is done
by a further plugin type of the architecture named motion plugin. Within the simulator
a robot’s motion is represented by a change of its pose (relocation) within a
certain interval of time. This relocation of the robot is requested from the motion plugin
within each update cycle of the simulation to update the robot’s pose in the environment.

For the physics simulation the motion plugins must provide further information
about its current velocity and the rotational speed needed for the collision calculation.

To set motion commands motion plugins can either be addressed by a set of stan-
dard commands, such as setRotationalVelocity or setTranslationalVelocity, or by a

vector. The latter allows to address more complex motion models.
Since a motion model may require to send data about its internal state back to the

client the motion plugin interface provides one further method to retrieve motion data
that is automatically invoked by the default odometry sensor plugin of the server which
makes the data available on the client side as well.

Currently there are three different motion plugins available. One model is based on
a neural network that basically predicts the robot’s state at depending
on the previous state and velocity settings at The plugin was trained
for Freiburg’a Pioneer hardware base, but can easily be trained for other platforms by
a small application. A similar method has also been used for state prediction by the
Agilo RoboCuppers [3, 2]. A second model is a mathematical calculation of a two wheel
differential drive based on a a linear acceleration assumption and parameter tuned to
map the behavior of the Nomadic Scout hardware base of Stuttgart’s CoPs team. A
holonomic three wheel robot base was contributed by the University of Dortmund.
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Player Plugins. After various experiments and applications of the simulation server,
we found it a useful feature to facilitate the implementation of simple robot behaviors
that run within the simulator without the overhead of a remote connected client. This
turned out to be useful to simulate opponent players like e.g. goalkeepers or for gather-
ing simulated robot sensor data to create an environment map which e.g. was used for
a Monte Carlo localization approach. For this kind of application the framework offers
a third type of so called player plugins.

Each player plugin controls one robot which is created based on its configuration
file that is specified within the plugin. Its core functionality is implemented within a
method senseAndAct that retrieves sensor information from the sensor data plugins and
determines an action which usually is a command to the motion plugin or a triggering
of its robot manipulators. Alternatively a player plugin can access the world state of
the simulator directly and manipulate it if needed. This may either be useful when im-
plementing a perfect player behavior without limitations by its sensors or when certain
environment situations shall be created artificially.

To model coordinated or cooperative group behaviors of different player plugins the
simulator provides a common communication channel for message broadcasts among
player plugins. Each player can thus broadcast and receive messages from other player
plugins to synchronize group actions.

Currently there are two player plugins, a goalkeeper plugin and a plugin for gener-
ating a sensor expectation model which will be described in the following chapter.

5 Applications

5.1 A Benchmark for Multiagent Learning

The proposed architecture comes with two crucial advantages that makes it valuable for
robot learning: Firstly, customized sensor and motion plugins allow for different kinds
of robots to be used within the same learning environment. Secondly, the usage of player
plugins on the server offers a modular way of designing and distributing benchmark
tasks while keeping the same setup.

Within the simulator framework, algorithms can be designed for learning on either
the client or server side. In both cases, the algorithm’s input is taken from a sensor data
container and the output is a command to a motion plugin. Due to the abstract inter-
faces it is possible that an algorithm can be applied to different robot types. As already
discussed in section 3, sensors are addressable by their specific model, their type or the
name of a feature they provide. By addressing the feature directly, e.g. DistanceToGoal,
the algorithm can be executed, regardless by which sensor the data was produced. Note
that this works for plugins that provide features with equal identifiers and equal data
format.

For the evaluation of Multiagent learning algorithms we introduced the player plug-
ins. They allow to build unique benchmark situations that are defined by a set of robots
behaving in a particular way. One plugin, which is included in the simulator package,
implements the control of a goalkeeper and can be started with different policies. The
plugin can be used to evaluate the performance of an opponent (or a team) that learns



A Plugin-Based Architecture for Simulation in the F2000 League 443

policies to score against the defending goalkeeper with a specific skill level. The goal-
keeper plugin can be started with the policies randomly moving, moving by a pattern,
blocking the ball, intercepting the ball and mixed policy. The benchmark has recently
been introduced within the RoboCup Special Interest Group (SIG) on Multiagent Learn-
ing.

Our own experiences with learning a complex control task have shown that behav-
iors learned in the simulation can be executed successfully on a real robot as well [7].
Even tricky tasks, such as dribbling and approaching the ball, were managed well by the
pre-trained robots that have been trained within games against hand-coded opponents or
against themselves. Also the team from the University of Stuttgart uses the simulation
for learning skills.

5.2 Plugin Based Localization

In this section we give an example that demonstrates how the plugin approach can be
extended towards hardware independent implementations of robot localization algo-
rithms. We extended the sensor plugin interface for the utilization of the well known
Monte Carlo Localization method (MCL)[12]. Since the method has been well docu-
mented by several other researchers, we will not discuss it in detail any further here.

To implement MCL, one needs to build the perceptional model In the case
of containers, is a vector of features, where each feature is stored by a plugin in the
container. If we assume independence among the features with respect to the pose, the
perceptual model can be calculated by

We extended the abstract interface of the sensor data plugins by the two methods
and These methods are supposed for learning

the sensors observation and accessing the perceptual model for the pose respec-
tively. It is defined that in case the sensor has an expectation for the queried pose,

returns a number between 0 and 1 and –1 otherwise. The interface
also provides a method that allows to weight a sample set ac-
cording to the current sensor reading at pose Note that it is assumed that there was
either a call of generateData or setData beforehand to assure that the latest observations
are available inside the plugin. The interface leaves open how the perceptual model
has to be represented. We used a common representation that separates the perceptual
model in two tables, one for the expectation of each pose and one for the sensor model
itself [12]. In this case it is assumed that learnProbability is called with noise free data,
since the data is stored in the table of expectations. The second table is pre-calculated
from a Gaussian distribution that reflects the sensors noise. The return value of get-
Probability is then simply calculated by a nested lookup of the two tables. Figure 5(a)
shows the expectation of the features LRF Beam, PoleDistance, PoleAngle, GoalDis-
tance, GoalAngle, and 5(b) the mixed perceptual model of the latter two for the blue
and yellow goal.

The perceptual model can be learned at once for all features by a special player
plugin in the simulator. The plugin basically moves the robot to all poses on the field
and executes generateData and learnProbability for all Markov plugins found in the
container.
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Fig. 5. Calculating perceptual models: (a) the robots expectation of the features LRF Beam,
PoleDistance, PoleAngle, GoalDistance and GoalAngle (b) the mixed perceptual model of the
features distance and angle to the blue and yellow goal. Darker regions indicates a higher proba-
bility of the robot’s position. Sensor noise is modeled by a Gaussian distribution with
and for distances and angles respectively.

During localization, the MCL implementation executes getProbability on the con-
tainer for weighting the sample set representing the current belief. We are planning to
develop a similar interface for the motion plugins. By this, the localization algorithm
can be designed completely independent of the robot’s hardware.

6 Summary and Outlook

In this paper we presented a modular and extendible multi-robot simulation environ-
ment for the F2000 league that is suitable for simulating sensors, robot control tasks
and cooperative team play. An open plugin architecture has been introduced that per-
mits teams to design their own robot models regarding sensor configuration and motion
control. With a growing community of teams using this simulator even full test matches
can be held on a regular basis without physical presence of the teams. Furthermore
we showed exemplarily, how the simulator framework can be utilized for multiagent
learning.

Past experiences in robotics have shown that besides a good idea for e.g. a new
localization or feature extraction algorithm the concrete implementation plays an even
more important role. Unfortunately, there are only a few implementations freely avail-
able and those are in turn tailored for particular hardware or data structures.

One of the key motivation of our work is to foster the exchange of software for
autonomous robots. The proposed simulator architecture makes clear how this can be
achieved in the case of a robot simulation. Even more beneficial, however, can be the
exchange of software components for real robots. In order to accomplish this goal, one
has to introduce a level of abstraction and to define standardized methods for accessing
this level. We believe that the introduced concept of sensor containers provides also
a good level of abstraction on real robots. In the same way, as the proposed sensor
plugins generate data inside the simulation, one can implement sensor plugins that run
on robots and generate feature data from real sensors. RoboCup teams using the same
kind of sensors could then easily share those components.
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Furthermore the example shown in section 5.2 demonstrated how algorithms can be
designed to operate on generic containers rather than on specific implementations for
sensor data processing. Algorithms that are based on generic containers can easily be
shared among teams that use the same abstract interface.

The German research project SPP1152-RoboCup is concerned with certain aspects
regarding software architecture, system integration and learning. One aim is to find
a common description for sensor types and properties as well as robot geometry and
physics. We will adapt and contribute our approach to the project and look forward to
get one step closer to the goal of a common description of robots and more efficient
software development in the RoboCup domain.
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Abstract. In this paper, a simulator of environment and measurement
that considers camera characteristics is developed mainly for RoboCup
four legged robot league. The simulator introduces server/client system,
and realizes separation of each robot’s information, introduction of each
robot’s difference and distribution of processes. For producing virtual
images, the simulator utilizes OpenGL and considers the effects of blur
by lens aberration and so on, random noise on each pixel, lens distortion
and delayed exposure for each line of CMOS device. Some experiments
show that the simulator imitates the real environment well, and is a
useful tool for developing algorithms effectively for real robots.

Keywords: Simulator of Environment and Measurement, Camera
Model, Modeling of Measurement Error, Server/Client System

1 Introduction

So as to develop robots or a multiple robots’ systems that work in real, dy-
namic environment, it is necessary to assume a lot of conditions and test the
robots or robots’ systems for the conditions. However, this requires much cost
by much trials and errors. To reduce the cost, simulation is effective. Many kinds
of simulators have been developed for various applications, e.g., teleoperation[2],
autonomous mobile robot[3]. It is also the case in RoboCup and simulators have
been developed [4,5]. They simulate kinematics or motions, but sensing is not
well considered that suffers noises, distortions, etc.

In this paper, we develop a simulator for multiple mobile robots that have
the ability to produce images by considering explicitly the characteristics of a
camera, and the ability to simulate the real robots’ behaviors. The concrete
target as the multiple mobile robots system is the RoboCup four legged robot
league.

In developing the simulator, we focus on the following features:

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 446–457, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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programs for real robots can be applied directly,
multiple robots can share environment and interact with each other,
images obtained by a real robot can be imitated well.

2 Outline of the Simulator

In the field, a lot of information are obtained from the ball, the landmarks, the
robots, etc., and multiple tasks are executed simultaneously in real robots. The
simulator is designed so that it produces virtual images precisely for each robot
with arbitrary position and orientation, and that the following tasks can be
executed virtually in the simulator. Consequently, debugging of programs and
verification of algorithms can be effectively performed virtually on PC. Fig.1
illustrates the relation between a real robot and the simulator.

Fig. 1. Tasks in image input cycle of a real robot and of the simulator

Objects in the virtual field that is produced on the simulator are modeled
with precise size by using OpenGL[7](see Fig.2.). Each robot on the virtual field
produces images by evaluating its camera coordinate that is calculated using the
position and orientation of the robot, the elbow angles of its legs, the pan/tilt
angle of its neck(see Fig.3(a).). By considering the characteristics of its CMOS
camera, the simulator can produce images that imitate real images precisely(see
Fig.3(b).). Each robot applies a method of color detection for the synthesized
images, and detects 8 kinds of color regions(see Fig.3(c).).

3 Server/Client System

So as to realize the requirement that multiple robots can share environment and
interact with each other, server/client system is introduced in the simulator;
tasks are performed cooperatively by two kinds of processes, i.e., a server process
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Fig. 2. Virtual field

Fig. 3. Virtual image
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and client processes. The server process administrates the environment of the
field totally, and the client processes execute robots’ behaviors. By introducing
the server/client system,

1.
2.
3.

separation of each robot’s information,
realization of each robot’s difference,
distribution of processes

are realized. By 1., the condition is satisfied that each robot cannot acquire other
robots’ information explicitly without communication. By 2., robots’ behaviors
with different algorithms for each team can be implemented and a new algorithm
can be easily tested. By 3., each process can be run on a different PC by using
TCP/IP protocols, and calculation cost for each PC can be reduced.

Fig. 4 illustrates the structure of the server/client system. Production of
a virtual image, analysis of the image, active sensing and simulation of some
behavior strategy are performed by clients. Each client program is assigned to
the control of each robot. By executing multiple client programs simultaneously
and connecting them to the same server, multiple robots in the same field are
realized. At the same time, the server administrates the environment on the
field; it administrates the connected clients and the ball, recognizes the collisions,
etc. Each client can recognize the information on the field through the server.
Information is communicated at a constant period among the server and the
clients so as to adjust the field environment.

4 Consideration of Camera Characteristics

The images are generated by OpenGL assuming an ideal pinhole camera(see
Fig.3(a)), and thus they are different from real images obtained by the CMOS
camera on the real robots. Therefore, we consider the camera characteristics of
the CMOS camera so as to produce images that closely simulate the real images.
The parameters of the ERS-2100’s camera are as follows.

CMOS 1/6inch, 178 × 144 pixels
Lens F2.0, f=2.18mm
Angle of View H:57.6deg, V:47.8deg
White Balance: 4300K
Frame Rate: 25fps
Shatter Speed: 1/200sec

We consider the following characteristics.

blur by lens aberration, focusing error, etc.
random noise on each pixel
lens distortion
delayed exposure for each line of CMOS device
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Fig. 4. Server/client system

4.1 Blur by Lens Aberration, etc.

Blur is generated by various lens aberration, focusing error, etc. Supposing the
blur of each pixel is approximated by Gaussian distribution, we apply Gaus-
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sian filter to the virtual image. For an image two dimensional Gaussian
distribution function

is convoluted, and the blurred image is obtained. In the simulator, the area of
convolution is set to 5 × 5, and is set to 1.

Fig.5(a) shows an image by the real camera for the ball with the distance
of 1m. Fig.5(b) is the virtual image generated by the simulator on the same
condition for Fig.5(a). Fig.5(c),(d) are the close-ups of Fig.5(a),(b). Fig.5(e) is
the image generated from Fig.5(d) by applying Gaussian filter. It is shown that
Fig.5(e) is closer to the real image, and additionally, aliasing that appears in
Fig.5(d) is not observed.

4.2 Random Noise on Each Pixel

Random noise is inevitable, and it is remarkable in principle for CMOS device.
The simulator adds the random noise on each pixel with the variance that is eval-
uated a priori by experiments. Fig.5(f) shows the image generated from Fig.5(d)
by adding random noise. Additionally, we consider limb darkening generated by
the lens as shown in Fig.5(g). Parameters of limb darkening can be evaluated a
priori by experiments.

4.3 Lens Distortion

Images are distorted by lens distortion. As the model of lens distortion, we apply
the equation approximating a radial distortion:

to the virtual image, where is the coordinates on an original image and
is that on the distorted image. in eq.(2) can be evaluated by camera

calibration. Fig.6 shows an example of the simulation of lens distortion.

4.4 Construction of Virtual CMOS Filter

In order to make the calculation time shorter, we integrate the multiple processes
for camera characteristics into one filter, called CMOS filter. By using this filter,
the cycle time of producing virtual images became shorter from 208 [msec] to
112[msec] by PentiumIII 600MHz. Fig.7 shows the final image by applying the
CMOS filter.
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Fig. 5. Consideration of camera characteristics

Fig. 6. Lens distortion

Fig. 7. CMOS filter: total consideration of camera characteristics
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Fig. 8. Line exposure and shutter speed

Fig. 9. Exposure delay and shutter speed

4.5 Delayed Exposure for Each Line

For motions of the robots, two more camera characteristics have to be considered.
One is the motion blur. This is regardless of the kind of the camera, and depends
on the exposure time. The other is specific to CMOS cameras as the ERS-2100’s:
exposure for each line of the CMOS device is asynchronous. There exists about
one frame time delay of the timing of exposure between the first and last line of
a CMOS device as illustrated in Fig.8. For ERS-2100, the phenomenon occurs
especially when it fast rotates its head. Fig.9(a) shows an example for the velocity
of 0.30deg/msec.

5 Evaluation of the Developed Simulator

In this section, we show some experimental results to verify that the proposed
simulator well imitates the real environment. One experiment is measurement
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Fig. 10. Setting of distance measurement by real robot(upper), virtual robot in the
simulator(lower)

of the distance to a ball, and the other is self localization, both of which are
essential and important technologies for the robocup games.

5.1 Evaluation for Ball Measurement

The distance to a ball was measured by a real robot and by a robot in the sim-
ulator. The algorithm to measure the distance was the same for both the real
and the virtual robots: distance was measured from the number of pixels of the
ball region, the coordinates of the center of the ball region, edge information,
etc. The ball was set from constant distances from the robot as shown in Fig.10,
and the distance was measured 100 times and the average and the standard
deviation were evaluated for each distance. Fig.11 and Fig.12 show the results
of the average and the standard deviation respectively. In Fig.11, the simulator
measures almost the same distance as the real robot, especially when the cam-
era characteristics are considered. In Fig.12, when the camera characteristics
are not considered, the standard deviations are zero; and when the characteris-
tics are considered, the deviations by the simulator show the same tendency as
that by the real robot. Fig.10 shows color detection for distance measurement
with/without the consideration. When considered, the color detection seems
much more realistic.

5.2 Evaluation for Self-localization

We have been applying Monte Carlo Localization(MCL) that is a kind of Markov
Localization methods for self localization of real robots[6]. MCL represents po-



Development of a Simulator of Environment 455

Fig. 11. Comparison of ball distance measurement: average

Fig. 12. Comparison of ball distance measurement: standard deviation

Fig. 13. Color detection for distance measurement by the simulator with/without con-
sidering camera characteristics
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sition and orientation of each robot by distributed probabilistic distribution of
a lot of sample points. Experiments were performed at 36 positions and orienta-
tions of a robot for 9 positions (intersection points of x=0, 1000, 1750[mm] and
y=0, 500, 1000[mm]) and 4 orientations Self localization
was performed by rotating the camera for 30[sec]. Table 1 shows the results.

It is shown that the real robot and the simulator obtain similar results for
self localization. However, the errors of the simulator are larger than of the real
robot. The reason is perhaps that in the simulator, production of images and
the cycle of waving head synchronized, and consequently, images had some bias.

6 Conclusion

In this paper, we developed a simulator of environment and measurement that
considers camera characteristics. The simulator introduced server/client system,
and realized separation of each robot’s information, introduction of each robot’s
difference and distribution of processes. For producing virtual images, the simu-
lator utilized OpenGL and considered the effects of blur by lens aberration, etc.,
random noise on each pixel, lens distortion and delayed exposure for each line
of CMOS device. Some experiments show that the simulator imitates the real
environment well, and is a useful tool for developing algorithms effectively for
multiple mobile robots.
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Abstract. We present a modular approach to model multi-agent simulations
in 3D environments. Using this approach, we implemented a generic simulator
which is totally decoupled from the actual simulation it performs. We believe
that for Soccer Simulation League a transition to 3D states exiting new research
problems and equally makes it more attractive to watch for spectators. We are
proposing to use our framework as basis for a next generation Soccer Server.

1 Introduction

For eight years now Soccer Server [9] exists as a testbed for evaluating multiagent sys-
tems and has inspired a lot of researchers from Computer Science and Artificial Intelli-
gence to compare their approaches. Since its beginning Simulation League is confined
to two dimensions in order to reduce complexity. During the past years quite a number
of advances have been made by the participating teams, and new features were added
to the server to provide a more realistic simulation and a tougher challenge1.

Meanwhile, the server models different types of players with distinct abilities such
as speed, size, and stamina. Players can also point into directions, turn “head” and
body separately from each other and perform a kind of tackling. A coach can substitute
players, analyze the match, and give advice and information to players in a standardized
coach language [1]. As rich as the new features appear to be, a number of caveats can
be identified:

2D Simulation. A fundamental problem with the current soccer server is that it simu-
lates the game of soccer in a 2D world, making it seem more like a game of table
hockey with soccer rules. Nevertheless, the game of soccer is a three-dimensional
game. The ball and players can actually leave the ground. It is absolutely necessary
to move the simulation into a 3D world in order to accomplish the mission state-
ment of the RoboCup Federation (cited from [6]): By mid-21st century, a team of
fully autonomous humanoid robot soccer players shall win the soccer game, com-
ply with the official rule of the FIFA, against the winner of the most recent World
Cup. Small steps towards a 3D server have already been made [5]. We believe that
the transition to a three-dimensional system states exiting new research problems,
like for instance in the area of spatial resoning. Also applicability of approaches
used in 2D for three-dimensional space has yet to be shown.

*

1
Partially supported by the grant Fu 263/6-1 from the German research foundation DFG.
Thanks to Tom Howard for his great and constant effort in maintaining the Soccer Server.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 458–469, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Physics. The physics model used by the current RoboCup soccer server is very lim-
ited. Motion of objects is only described using acceleration, velocity and positional
vectors. As objects do not have an associated mass, no real forces act upon the
objects of the simulation. This also means that other effects, which usually result
out of physics have to be tacked onto the simplistic model (e.g. effect of wind, or a
ball slowing down). This only increases code complexity and the need for special-
casing, resulting in a long-term maintenance problem. A robust physics system
would handle all these effects transparently, as it is just driven by the forces which
act on objects in the world. Essentially, what is now a code-driven system would
become a data-driven system. Also the combination of a three-dimensional repre-
sentation plus a data-driven physics system situates robots in a world that follows
the same basic principles as the world of real robots. It facilitates using robot mod-
els consisting of several components connected by joints and certain degrees of
freedom.

It is just soccer! This is not really a problem for the soccer server, but nevertheless
it is a limitation. If the above mentioned changes were made, the soccer server
would allow player programs to perceive a 3D world and perform actions within
this world. The real question which should be raised at that stage is: Why restrict
this system to just the game of soccer? A flexible approach would allow for various
kinds of simulations including soccer or rescue so that the same platform could be
used for tasks with different levels of complexities in research and education.

1.1 Resulting Goals

Now, that an overview of the subject matter at hand has been given, it should be clari-
fied how all this relates to the system we created [7]. The goal was to create a system
which can provide simulations of 3D environments. The choice to provide 3D simu-
lations greatly simplifies the transition of real world environments to virtual simulator
environments or vice versa.

Another important aspect is the integration of a robust physics system, which is
responsible for producing realistic motion of the objects within the environment. This
system should not be forced into the simulation, as that would limit the applicability.
With “forced” we mean no general assumptions are made regarding the need for physics
of the simulation. The system should remain unobtrusive and only provide services for
simulations which request it.

As we are creating a simulator which can be used for multi-agent systems, we also
have to think about how agents live and act in the environment. Clear interfaces for
the sensing of the environment have to be presented, as well as how actions can be
performed.

Also, we have to provide a means to visualize the state of our 3D environment. It is
hardly possible for a human spectator to comprehend spatial relationships of complex
3D environments without having a visual reference, especially if it is not only the out-
come of the simulation which is of interest to the researcher, but also the way it was
achieved.

Ultimately, we want the system to be applicable to not just a single type of simula-
tion, but an entire class of simulations, namely those which can be represented within a
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3D environment. Another challenge for this system will be that it should run in realtime
on a modern desktop PC.

2 World Representation

One of the biggest challenges was designing the system used for the representation
of the environment being simulated. We have already seen that the environment plays
a significant role in multi-agent simulations, as it controls what and how agents can
perceive the virtual world that they live in. The world representation has to be accessible
to a variety of different subsystems of the simulation and visualization components and
be able to handle all these accesses in realtime.

In this section we will take a closer look at what is necessary to represent a complete
virtual 3D world. We begin by describing the concept of an environment and then ex-
amine how the objects living within that environment have to be represented. Following
that, we discuss scene graphs and how this concept can be used to unify everything into
a single, flexible and extensible data structure.

In our simulation agents should not be the only entities which exist in the environ-
ment. It also contains passive objects, such as chairs, tables, or soccer balls. Passive
objects lack the agent property, whereas agents possess sensors and effectors to per-
ceive and interact with the environment. Aside from this, passive objects also lack the
ability to reflect their current state [2]. Their state is only affected by the natural laws of
the environment they live in and by agents performing actions on them (either direct or
indirect). Using these ideas as a basis an environment can be defined as follows2:

Definition 1. An environment E is a three-dimensional space and contains a set of
objects O. Each object has a location within the environment and can be perceived and
manipulated by agents. An environment contains a set of agents A, such that

Definition 1 captures two important concepts. First, agents are always objects in
the environment. This relationship allows agents to also be perceived and manipulated
by other agents, yet it clearly illustrates that there is a semantical difference between
the concept of agents and objects. Second, all objects are situated. This means that
we are always able to tell where each object is located within the environment. This is
extremely important, because without a location, the ability to perceive the environment
would be ill-defined.

Definition 1 only places one real restriction on the environment, namely the three-
dimensionality of the space it represents. Other than that the environment is solely de-
fined through the objects which it contains.

3 Object Representation

An object living in our 3D environment has to meet the needs for many different subsys-
tems of the simulation and visualization engine. For example, the visualization compo-
nent has to have some information about how to display the object, whereas the physics

2 Definition inspired by Ferber’s definition of multi-agent systems [2].
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component needs access to physical properties. The visualization component might re-
quire a complex 3D model, but a simple sphere which encloses the object suffices for
the collision system. From now on, we will refer to these object properties as object
aspects.

3.1 Object Aspects

In order to arrive at a scaleable and versatile system an object will be represented by
modelling its aspects. Given the requirements of a 3D world and support for a physics
simulation we arrive at the following categorization of aspects for an object:

Visual Aspect. This aspect captures what the object looks like. It contains all the nec-
essary information to display the object on the screen using the graphics applica-
tion programmer interface (API) that the simulator program supports (in our case
OpenGL).

Physics Aspect. The physics aspect is used to provide an interface to the physics sys-
tem. This aspect will collect different forces acting on the object, as well as its
physical properties, such as mass and mass distribution (which affects how the ob-
ject behaves when in motion).

Geometry Aspect. The geometry aspect is used to define the solidity of the object, its
shape and size as it is used by the subsystem which detects and resolves collisions.
This is usually done with simple volumes, such as spheres, capsules and boxes. We
need these simple collision proxies, because the visual aspect is usually much too
complex for performing real-time collision detection. Obviously, the shape and size
of the geometry aspect should be chosen in a way that at least somewhat resembles
the visual aspect. Otherwise one could end up with objects looking like a box (vi-
sual aspect), but behaving like a sphere (geometry aspect). When it is not possible
to find a suitable collision proxy, a triangle mesh is used.

All these aspects are linked by a single property of the object, its location in the 3D
world. The location determines where the visual aspect will be displayed with respect
to a virtual camera. The physics aspect modifies the location of the object, as changes
in location are the result of motion and motion is controlled by physics. Two objects are
colliding when their respective collision proxies overlap. To determine whether this is
the case or not, the geometry aspect also requires the location of the collision proxies,
which is identical to the object location.

Aspects also have to be able to interact with each other. For example for resolving
collisions the collision system has to resolve the situation by moving the two participat-
ing objects apart. It has to generate the forces necessary to separate the two objects and
apply these forces via the physics aspect in the next simulation step.

Another difficulty which arises when trying to represent objects is, that not all of
them have to posess all three aspects. Imagine a very simple environment containing
two objects: A ground plane and a sphere which is floating above the plane. When the
simulation starts, gravity should cause the sphere to fall down, while the plane should
not. This is why the plane should not possess the physics aspect. Both the sphere and
plane are solid, so the sphere should collide with the plane, bounce a few times and
come to rest once its kinetic energy has been consumed.
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Fig. 1. a) Conceptual hierarchy b) Conceptual hierarchy with instances

The reason why some objects in the virtual world lack certain aspects comes from
the fact that we are just modelling real world. Surface of the Earth in the example above
is modelled by a plane. So, as our model is just an approximation to the real world, we
have to bend the natural laws of the universe a bit to accurately represent it.

Now that we have looked at the concepts necessary to represent an object in a 3D
environment, we have to extend these ideas to be able to represent agents within this
system.

3.2 The Agent Aspect

Our definition of environment already states that an agent is an object. Therefore, it
makes sense that an agent can posess the same aspects as an object. In order to represent
the additional capabilities of an agent, we introduce the agent aspect. It has the ability
to perceive the environment using perceptors, think about what actions to perform next
and actually perform them using its effectors. Using this modular approach it is possible
to turn almost any object into an agent and vice versa. Section 4 will deal with the agent
aspect in greater depth.

3.3 Scene Graph

Scene graphs represent the de-facto standard when it comes to representing spatially-
oriented data. In the early nineties, scene graphs were popularized by SGI Open In-
ventor as a user-friendly way to composite objects within a 3D world [10]. SGI Open
Inventor was the basis for the Virtual Reality Modelling Language (VRML).

Conceptual Representation. Another important property of scene graphs is that they
aid in structuring the 3D world by organizing the objects it contains into hierarchies,
both on a conceptual and on a spatial level. For example, imagine a room which contains
a table, a chair and a bed. The concept of the room containing these objects can be
expressed through a parent-child relationship yielding the tree depicted in Fig. 1 a).

The scene node is the root of the scene graph. We see that the relationship of the
chair belonging to the room manifests itself in the form of a simple link between the
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parent (room) and the child (chair). This form of representing such a relationship gives
rise to a resource sharing scheme. When we add a second (identical) chair to the scene,
the scene graph only has to create another link to the chair object to reflect that change
in the scene (Fig. 1 b)).

Representing Spatial Relationships. It was stated above, that the scene graph is also
capable of representing spatial relationships, but from the above descriptions we still
do not know where the objects are located within the room. Before being able to tackle
this problem, we have to look at the term location more closely.

A location in a 3D space is defined by a position vector which is the
translation from the origin and the orientation of the object at that position. The orien-
tation is usually specified in the form of a rotation matrix, see also [3].

Using a transformation matrix it is possible to convert from one coordinate space
to another. For our world representation we have to cope with two different spaces:
the model space and the world space. A 3D model consists of a number of points, so-
called vertices. These vertices can be connected with other vertices to form triangles
or polygons describing the surface of the object. Each vertex has a positional attribute
which is a 3D coordinate. In order to allow this object to be independent of its location
in the world, the positional attribute is specified in the objects coordinate space, the
model space. The location of an object is given in the form of a transform, the object’s
world transform. Given a homogeneous position in model space in column vector form,

and the world transform we can convert it to world space simply by
right-multiplying the position vector:

The column vector form is necessary for the multiplication with the matrix to be
denned. We also can concatenate several transforms. Each transform will convert from
one coordinate space to another. This allows the chaining of coordinate frames and
gives rise to the concept of local transforms. A local transform is always relative to a
coordinate space. If the coordinate space is the identity space, the local transform is the
world transform. The idea of local transforms allows us to add spatial relationships to
a scene graph. This is done by introducing transform nodes. Using this new node type
we can augment the scene graph for the previous example. The behavior of retrieving
local and world transforms is best described inductively:

The above behavior clearly shows that only transform nodes need to know about con-
crete local and world transforms. The corresponding matrices are data members of the
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actual transform objects. The world transforms are updated during a scene graph traver-
sal which takes place every simulation step by concatenating the local transforms. How-
ever, many nodes (as we will see) do not need to specify spatial relationships.

Thus, we chose to express spatial relationships through explicit transform nodes. As
world transforms are always recalculated from the local transforms, we can move entire
subtrees without disturbing their spatial relationships. For example, when we modify
the parent transform of the room, it would move the room and its child objects around,
but the position of the objects relative to the room would remain constant. This makes
assembly and reuse of complex objects very easy.

Aspect Representation. All aspects should also be reflected in the scene graph struc-
ture. The most flexible solution is to represent each aspect as a node in the scene graph.
As all the aspects are (in a sense) synchronized via the object location, a node represent-
ing that location would be an ideal candidate for the aspects parent node. This role will
fall to the transform node mentioned above. In the room example, we would replace the
object nodes with the aspects making up that object. All edges attached to the object
node would go directly to the parent transforms.

4 Simulation

In this section we add the ability to act to objects and present how all the aspects interact
with each other. We will also illustrate how it is possible to add the necessary flexibility
so that the simulator is able to provide more than a single specific simulation.

4.1 Agent Aspect

The agent aspect is the node in our scene graph which distinguishes agent objects from
other world objects. It has to perceive the environment through perceptors, decide which
actions to perform next to satisfy its goal, and finally to perform actions through effec-
tors.

The perceptors and effectors represent the agent’s interface to the environment. In
order to provide a flexible solution we chose to model and implement these agent ca-
pabilities as individual classes, rather than having each agent aspect deal with them
internally. Thus, the agent does not have to directly access the scene graph structure.
Instead, it can receive all the necessary information through its perceptors and perform
all actions through effectors. This relationship is illustrated in Fig. 2.

The approach of modeling perceptors and effectors separately is beneficial because
it allows us to hide away the implementation details of the sensory and action models
from the agent, which as a result only has to deal with comparatively high-level con-
cepts. This design decision also makes the specification of agent abilities extensible. It
is very easy to add new perceptors or effectors to an existing code-base. For example,
the design could be exploited to simulate actual physical devices.

The agent aspect controls which perceptors and effectors it needs. When an agent
aspect is attached to an object in the simulation, it performs an initialization proce-
dure. During this procedure it can request specific instances of perceptor and effector
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Fig.2. UML diagram showing the relationship between agent aspects, perceptors, and effectors

classes to be added to itself. When all requested classes are accepted, the agent aspect
be allowed to participate in the simulation.

Perceptors. We already mentioned above, that a very strong focus has been given to the
visual aspect. This is not only the case for the scene graph, but also for the perceptors.
The primary ability, which is necessary to navigate through a 3D environment is vision.
A Perceptor class and its subclasses have the ability to process the scene graph structure
to extract sensory information, which is made available to its client (the agent aspect).
Every agent receives its own instance of a concrete perceptor class, so it is possible
for the perceptor to store internal state. Before the agent aspect executes its thinking
process, it can query all its perceptors for information about the world.

Concrete perceptors are derived from the base Perceptor class as illustrated in Fig. 2.
Thus, the actual implementation of the perception algorithms can change freely with-
out breaking the agent aspect code. This design is very similar to the Strategy design
pattern outlined by Gamma et. al. [4]. As we would like to add arbitrary perceptor im-
plementations to the system, the interface they expose to the agent aspect is crucial.
The interface has to allow the arbitrary passing of data from the perceptor to the client.
In order to strike a compromise between simplicity, safety and generality two mecha-
nisms are made available. The first mechanism is just a dictionary of string and value
pairs. This allows easy access to individual data and is sufficient for simple perceptors.
We also provide a more general interface to return data like rendered images through
a function which returns a C++ void-Pointer (untyped) to a memory location. As the
agent aspect has knowledge about which perceptors it deals with, it also has knowledge
about how to interpret the data it returns. Therefore, it is able to cast the void-Pointer
back to its original type and use that data structure.

Example 1. Two implemented perceptors from our simulator framework:

CollisionPerceptor. The CollisionPerceptor allows an agent to receive information
about when it has collided with another object of the world. The physics engine
is responsible for detecting these collisions and will update the collision percep-
tor, if present, for each object involved. The only data the CollisionPerceptor of an
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agent will return is the path in the object hierarchy corresponding to the respec-
tive collision partner. This is done using the name-value pair return facility. The
“colidee”-entry holds the above information.

VisionPerceptor. The vision perceptor is a bit more complex than the CollisionPer-
ceptor as its functionality is not provided by an existing subsystem. The VisionPer-
ceptor models the eye of an agent through the same kind of viewing volume we
used for the camera frustum. Unfortunately, just culling objects against the Vision-
Perceptor’s frustum is not enough, as it does not handle occlusion. Therefore, we
have to perform extra visibility-checks for every object within the view frustum.
This is done by tracing rays through the scene. The ray-testing is performed recur-
sively, beginning at the root of the scene graph. The ray is always tested against the
bounding-box of a node, before its interior is tested.

Effectors. An Effector has the ability to modify the contents of the scene graph (even
create new objects). Every agent aspect can request a number of effectors during its ini-
tialization. All concrete effector implementations derive from a common Effector base
class, as illustrated in Fig. 2. Thus, we also have an open design, which can be easily
customized. Again, the Strategy design pattern comes to mind [4]. In a RoboCup soccer
simulation, we might have (among others) a KickEffector, a MoveEffector, a DashEf-
fector and a CatchEffector (for the goalie). For every action an agent wants to per-
form he needs to request its accompanying effector. This design facilitates simulation
growth, being able to successively add new functions without breaking old functions. It
would even be possible to add new functionality in parallel to old functions. Looking
at RoboCup again, it would be possible to add experimental functionality through new
effector classes. The old effectors would still be available, so this kind of experimen-
tation would not break existing code. Existing agents could slowly migrate to the new
interfaces.

4.2 Control Aspects

With all this freedom inside the agent aspects, we still have to address how the actual
simulation is controlled. Basically, the legality of the agents actions somehow has to
be enforced. When looking again at the game of soccer, we have an entity on the field
which is responsible for making sure the rules of the game are followed: the referee.
Thus, it makes perfect sense to employ a similar “construct” to watch over simulations.
We call these entities control aspects and they are very similar to the agent aspect. In
fact, on an implementation level they are equivalent, control aspects are just specialized
agent aspect which posses some advanced perceptors and effectors, giving them the
ability to analyze the entire scene graph.

Some simulations might be too complex to be watched over by a single control
aspect. Going back to the soccer analogy, we also have two line referees which help
the field referee. Thus, more than a single control aspect could be employed to monitor
the simulation. This makes it easy to extend this functionality. For example, if the rules
each control aspect enforces are mutually exclusive it is possible to provide several
flavors of a simulation. Imagine a game of soccer with and without the offside rule,
only influenced by the presence or absence of an “OffsideControlAspect”.
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Control aspects have the ability to register a few custom perceptors and effectors.
For example, when an agent aspect is added to the simulation it is interesting for the
control aspect to perceive which perceptors and effectors the agent tries to request.
Based on this the control aspect also has a special effector which allows him to dis-
qualify an agent from the simulation. Thus, aspects and effectors are much more, than
just interfaces of the agent to the environment. They are also the basis for an event-like
system, where perceptors act as the sinks for events.

4.3 Putting It All Together

We have looked at the different aspects of our simulation objects now in quite some
detail. Some of the interactions between them have already been hinted at, but the big
picture about how they all interact with each other to result in the desired simulation
have yet to be presented. The scene graph unifies and triggers this simulation procedure.

Warming up. In the beginning the scene graph does not contain any world objects. It
is only composed of the scene node as its root.

The simulator is initialized by registering a host of perceptor and effector classes.
After this step is realized, the actual simulation can be initialized. At first the above
discussed control aspects are added to the simulation. This can be one or more aspect,
depending on the complexity of the task. No control aspect is needed for purely physical
simulations. At this stage the world can be populated with objects and their correspond-
ing aspects. During this step every agent aspect performs its initialization procedure,
requesting perceptors and effectors. After the world is initialized, we can now start the
simulation process.

Simulating. The simulation is performed in a so called run-loop. Every iteration of
the loop corresponds to a frame being displayed by the simulator. The production of
a single frame involves the interaction of all aspects to update the scene graph. At the
beginning of the current iteration the world is in a legal state. This means, it contains
only agent aspects which were not disqualified and the transform nodes correspond to
their corresponding physics aspect’s location.

The first group of aspects, which get updated by the simulator are the agent aspects.
They use their perceptors to get feedback about the current world state. Each agent
processes this information resulting in one or more effector being triggered to achieve
its current goal. The usage of perceptors is usually monitored by a control aspect, as
there often is a number of limited effector usages allowed in a simulation. For example,
in the RoboCup Soccer Simulation you can only execute a single dash command per
cycle, but you could issue a turn_neck command in parallel [1].

The use of effectors changes the state of the environment. A move effector will
apply forces onto the physics aspect of an object, for example. This brings us to the next
step, where the physics engine resolves the resulting object motion using the geometry
and physics aspect. At this point, collision perceptors are also notified when applicable.
Once this update pass terminates, the location of all objects already reflects the state of
the next simulation iteration, bringing us to the final aspect, the visual aspect.
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Updating the visual aspect of the scene graph objects begins by locating the camera.
Based on this, the scene graph is culled (geometries and lights), resulting in a very
conservative estimate on what needs to be displayed. Then a rendering procedure is
utilized to bring the simulation on the screen and the next iteration can begin.

4.4 Parameterizing the Simulation

One of the main features of our simulator is the ability to provide more than just a single
simulation. It is possible to parameterize the simulator with a simulation description.
We have identified a simulation to be composed of two parts, the classes which are
required to build the simulation and the structure in which instances of these classes
are combined to form the scene graph. A simulation description contains a series of
classes, which are added to the class pool of the simulator. These classes are mainly
implementations of AgentAspect, ControlAspect, Perceptor, and Effector inter-
faces. In addition to this, the simulation description might also contain other custom
classes, which have to be added to the scene graph (e.g. new visual aspects). However,
this information alone would be useless, as we still need to know how the simulation
is modeled using instances of these classes. This is done using a so-called assembly
script. It describes the structure of the scene graph and the initial parameters of the
objects within the scene graph.

This design requires a tremendous amount of flexibility on the implementation side,
as the simulator has to be able to instantiate concrete classes without having any knowl-
edge about them. We also need a way to be able to add new classes to a simulator
that can remain static and constant. Part of this flexibility was achieved by integrat-
ing Ruby [8] as scripting language into our simulator. For the sake of brevity we omit
the details here, for details on our class object system and the object hierarchy in our
simulator see [7].

5 Conclusions and Future Work

In our approach we have provided a flexible way to represent 3D simulations using a
scene graph architecture, modeling the aspects of objects in the virtual world and their
interactions with the environment directly. By integrating a class object framework it
is possible to extend the simulator at runtime, allowing it to be parameterized with
simulation descriptions, ultimately giving the simulator the ability to provide more than
a single simulation. This makes our simulator ideal as a platform for trying out new
simulations.

When performing 3D simulations, a good visualization component is also neces-
sary. In order to provide a flexible simulation component, we have implemented a real-
time lighting solution on the basis of the OpenGL graphics API. The visualization com-
ponent can operate in two distinct modes, ambient lighting (fast, but low quality) and
local lighting (slower, but high quality), allowing it to scale based on simulation needs
and hardware requirements.

We are convinced that our simulator framework would be an ideal basis for a next
generation Soccer Server. Many problems have been solved with the system developed,
yet a number of issues still remain.
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5.1 Future Work

The current design of the simulator is very monolithic. We have a single application,
which is responsible for the physics simulation, agent simulation and visualization, it is
not a server system yet. The current RoboCup Simulation League Soccer Server allows
for a distributed simulation. Our most favoured approach is to solve this problem at the
scene graph level. The idea would be that every node in the scene graph can either be
local or remote.

The way we chose to represent the simulation by modeling the different aspects of
objects will greatly ease the creation of a distributed simulator, as the various parts of
the simulation process are already decoupled from each other. This decoupling is one
of the primary strengths of the simulator design, as it allows different aspects to be
changed without disturbing the others.

A different issue is that we have only created a simple and small example simulation
up to now. For a new soccer simulation, some important questions have still to be dis-
cussed, as the simulator design will encourage exploration and experimentation. How
should the soccer agents be represented in 3D? Through the addition of complex joints
it would also be possible to create articulated structures, such as agents with two legs.
The design of the simulator allows for such changes to be made easily without breaking
too much other code (if any). So there is still work to do, but the current Soccer Server
was not built in a day, either.
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Abstract. The educational experiences from robot contest of entry, junior and
advance level are presented based on guided constructionism approach in edu-
cation that combines hands on guidance with hands-on experience. The aim of
the competition as a whole are to allow the student to (i) conceptualise the robot
(ii) manage the non-deterministic characteristic of the environment and (iii)
manage integrated hardware and software development projects. Indeed with
this knowledge the student should be able to win a number of international ro-
bot tournaments.

1 Introduction

Technological education in Malaysia is undergoing reform in relation to its status,
goals and teaching/learning strategies. This trend in reforming technological teach-
ing/learning strategies is following the worldwide general reform process with the aim
of making technology education at all levels more meaningful, intellectual and crea-
tive [1]. Real world problems, interdisciplinary approaches, project oriented learning,
team cooperation and authentic assessment have become the highlights of recent cur-
riculum innovations. The skills in focus now are used to integrate different competen-
cies an intelligent application to construct hardware objects so that they are governed
by intelligent software that continuously interacts with non-deterministic real
world [2].

The goal of introducing robot games as a healthy competition in the education sys-
tem is to accelerate the acquisition of general skills in problem solving and scientific
concepts in experimental science domain. Robot competition involves the use of com-
puters to acquire, analyse, control and model different worlds not reduced to screen
simulation but with real device control. The educational strategies employed as the
impetus for organising robot competitions are those mostly linked to theory of con-
structionism and refer to active pedagogy [3]. For the past two years the Software and
Intelligent System Development Program of SIRIM Berhad has been actively
promoting and organizing a number of robot competitions for various level of educa-
tion. The aim of the competitions is to create awareness in robotic technology among
the Malaysian public.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 470–477, 2004.
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2 Competition Set-Up

The competitions have been set-up differently according to the participants’ level of
education. However all the competition set up have an educational purpose based on
the guided constructionism approach towards technological education [4]. The set-ups
of the competition were designed as a three-step educational process in which they
work with imaginary robots followed by robot with modifiable body plan with com-
plex team behaviour and lastly project coordination through robot construction and
problem solving. By going through this series of robot competitions it has been the
organisers hope that the students through their competitive and dedication will get a
thorough understanding of robot concept in relation to the effect that the robot will
have on human lives. The student also will have an understanding of the body and
brain relationship with regard to the real world applications and an understanding of
communication and distributed systems role in real world problem solving. In general
the student should learn to manage and understand the non-deterministic characteris-
tics of the real environment and to integrate hardware and software solutions to find
the optimal set-up in solving the problem laid out for the competition.

2.1 Robot Drawing Contest

Every year in January invitations are sent through the ministry of education and mass
media to invite primary school children to send in their drawings for the national
robot-drawing contest. The drawings are based on the current trend of social-robot
themes e.g. for the year 2002 the theme is ‘Robot Maid’ and for the year 2001 is ‘My
Friend is a Robot’.

The robot drawings are judged mainly on its originality and the ability of the par-
ticipant to bring the concept in the competition theme into their drawing. The partici-
pants are from primary school (7-12 yrs old) thus their exposure to robots at this stage
are mainly from televisions and toys, which has somehow hampered their effort in
producing the original drawing. Therefore from the judges’ observation the robots in
the drawing actually depicted how the participant impression of how their favourite
robot will effect their lives. Although one of the main purposes of this competition is
to encourage the student to concept out an original robot, the organisers feel that their
achievement in being able to concept out the theme with their favourite robot is an
achievement to note. However it has to be noted that from the organisers interview
with the participants, the robot are mainly thought of as the perfect being where as in
real life most robots tend to break down regularly!

2.2 Learning to Manage the Non-deterministic Characteristics
of the Real Environment (RoboCup Junior Soccer)

This event is adapted from the RoboCup (World Cup of Robot Soccer) and has been
the penultimate event for the yearlong RoboFest Malaysia. The RoboCup is an inter-
national tournament where teams of autonomous intelligent robot compete in soccer-
like games [5]. It is a serious educational event where the main purpose of the events
is to give the student a hands-on experience in managing the non-deterministic char-
acteristic of a real environment. The RoboCup Junior Soccer is a two-on-two
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competition i.e. there are two robots on each team. By having two robots in each team
it is hoped that this rule will encourage team play because it is obvious that the match
will be advantageous for the team that can develop team play. Each team has to de-
velop the robot soccer player with the Elekit Robot Soccer M195 kit. The M195 is a
miniature robot kit that includes infrared, ambient-light, touch sensors and two inde-
pendent motors. The OOPic system can be programmed using a java based simulator
known as ‘Tile Designer’ which provides the user with a graphical user interface to
program the robot. The simplistic robot sensory system coupled with the low process-
ing power of the OOPic due to high overhead caused by the java based simulator
means that the robot soccer behaviour will be limited at all times.

The simplistic sensory system defines the environmental characteristic that the stu-
dents have to contend with, where the ambient light and infrared strength are not
uniform over different areas of the fields. Even though the students are told about the
effect of the limited sensory system with regard to the information that they received
several times during the training sessions, they are always amazed by changes in envi-
ronmental conditions during the robot soccer player building process.

The two goal markers are equipped with different infrared signal frequency to dif-
ferentiate between their own goal and the opponent goal. However the students very
seldom reach the point where they have to consider the goals as they grappled with
the problem of getting the robot to recognize the ball. Therefore, so far in the Malay-
sia RoboCup competitions the incident of own goals are frequent but it is believe that
in future after the student have mastered the sensory systems the robot behaviours will
be more complex.

The organisers also experienced many periods ended with the robot(s) pushing the
ball into one of the four corners of the playing field. The robot(s) was unable to move
the ball out from the corner, partly because of the shape of the robot. However in the
second year of the competition some student tried a number of different strategies to
move the ball out from the corner, e.g. turning very fast around itself while having
contact with the ball, but these strategies were only successful in some particular
cases with the right placement of the touch sensor.

The above situations showed that a lot of empirical tests are necessary in order for
the students to make the environment suitable for the purpose that they have in mind.
Often one has to manipulate the light, colours and shape of the playing field based on
this many empirical tests. In this case, the interest is in teaching the future scientist
about real-world application and therefore the set-up was biased by the educational
purpose. For instance we chose to allow only the same kind of robot on each team. In
other RoboCup and FIRA competitions, different teams are allowed to use any kind
of robot that they build or buy within a specific size. Therefore as they are using one
specific robot, the focus is on improving the robot behaviour through programming
and creative tinkering. All teams start with the same motor characteristics, the same
sensory system etc. to work with and therefore the performance can directly be com-
pared to the properties of different robot controllers and different development proc-
ess.

In a sense at this level of education, the secondary school (13-17 yrs old) there is a
limit on the number of free parameters available for the students as they are using the
same hardware platform for all robot soccer players. This is made as such so that the
students have better focus towards solving the problem and learning how to manage
real-world applications.
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2.3 Learning to Integrate Hardware and Software
in Distributed Systems (RoboCon)

In the RoboCon tournament the students are again given the task of making the ro-
bots, but this time they need to develop both the controller and the morphology of the
robot to suit the task given. However, in this case they are confined to the budget
given to them by their college and universities. This limitation requires the student to
‘shop around’ and opening their option to various possibilities.

The arena for this competition are large at 20m x 20 m and had different kind of
colour and lines on the floor in different areas, so one could make a robot navigate
around on the floor in different areas according to the colours perceived with the cho-
sen sensor. Even though the student was able to manipulate the characteristics of the
arena, it was difficult for the student to design robots that would satisfy the task re-
quirement. The successful team however managed to use the sensor through rigorous
testing phase. However more importantly the student obtained new knowledge on top
of what was experienced with their entry into the competitions. At this level the
knowledge is more complete as the student experience the principles for the develop-
ment of controllers, mechanical aspect of the robots and integrating them through
programming whilst at all time managing the project as a whole.

3 Educational Experience

In this section the use of guided constructionism will be discussed. Emphasis is put on
the observation of how students learn to manage non-deterministic characteristics of
real-world systems. The observation is based on our assumptions that the students’
knowledge on real-world application with control of devices is minimal and in the
earlier competition is none. Therefore the students have a number of ungrounded
expectations of the performance of such systems. Often these expectations are based
on students’ previous experience with programming in deterministic environment in
the computer. Also it partly arises from the whole natural science approach in which
we have profound belief that the systems can be broken down into smaller systems
and each of them has a deterministic functionality. Therefore, the students must go
through a number of empirical experiments before they are convinced to change their
unrealistic view of real-world applications [6]. The student belief in a deterministic
reality can be observed mainly in their robot soccer project and from our observation
that the student change this view by going through the process of building robot soc-
cer players. Some of these experiences are documented by taking note of their ques-
tions while robot workshop are conducted.

First of all, when starting the educational process, the students have totally unreal-
istic beliefs of the capabilities of the robots. For the two-on-two robot soccer project
with M195 robot, one of the members in the robot soccer team laid out their plan for
the game as locate the ball by turning side to side and guide the ball to the opponent
goal. Obviously these students had no idea about the capabilities of the simple sen-
sory system available at their disposal. Their general idea was that they would be able
to translate the human soccer player skills to the robots. After many failed experi-
ments they admitted that the robot capabilities have to be built from the robot ability
and not the ideal soccer player condition. In general most students go through the



474 Amir A. Shafie and Zalinda Baharum

process of having to change their ideal general strategy when they achieved more
experience working with the real robots in the real environment.

On the more advance level of competition (RoboCon) is that almost all students be-
lieve that they can incorporate a very precise global positioning system in order to
solve the problem. The sense of locality are then established based on this global
positioning system so that a relationship between the robot and the goals (the tubes).
The implementations are based on a counter that keep track of how much the wheel
has moved. Apparently at this stage these students do not have an idea on the role of
friction, spinning etc. At the tournament many students found out that with very little
interference the robot lose its orientation quickly and the method failed miserably.

Many groups realised the difficulties in making a global positioning system work
in reality and teams that consider the use of environmental feedback to approximate
the robot position fares much better. Obviously the students are used to having all
information available in pure form in the simulation work that they performed_in their
study. However the experience from this competition makes many realise that this
information will not be available in a pure form in real-world applications. They
change their view and start to think about how to make use of little knowledge that
they might obtain via feedback from the environment. However, they also experience
difficulties when trying to obtain feedback from the environment, because the more
affordable sensors are almost much more primitive than the student expect.

The students initially believe that sensors give a clear and unambiguous input and
that they can use abstraction. The abstraction and pseudocode is used instead of ex-
perimentation in order to overcome software complexity and only later through ex-
perimentation do the students realize the true nature of the sensors. In a sense this
resemble the discussion about the classical approach to robotics in which the hard-
ware and software tasks were believed to be distinguishable, so that the engineers
could work on the hardware while AI researchers could make abstractions and work
on the software only in order to create an intelligent system (robot). Nowadays the
newer AI approaches on robotics begin to reject this division and focus on embodied
AI.

The students found out during the test period and competition in the real field that
the sensory information cannot be interpreted in a straightforward manner using fixed
threshold to classify the inputs. They experience that the approach works one day but
fails miserably the next day when for example it is no longer sunny weather outside of
the arena. Initially the student became frustrated and blamed the hardware. However,
the long process of experimentation makes the student realize that the adaptive ap-
proaches can be used to overcome this problem. In fact the winning robot in all com-
petitions has a version of adaptive systems in their logic to overcome the changes
during play. It is strongly believe that simplistic approaches in suppressing the arena
information will lose out in the latter stage of the competition where the teams have
better integration between hardware and software. At this stage the adaptive aspect of
the robot in determining its behaviour will hold the key between winning and losing.
At any level of competitions the students learn the importance of the power supply to
the robots. Here they found that the due to battery power levels the logic and abstrac-
tion that they chose initially will not work as usual because the abstraction are based
on ideal condition. Again the problems arise because the students believe in being
able to make abstractions for example classify sensory data with fixed, pre-defined
thresholds.
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Therefore from an educational perspective the robot competitions put forth the im-
portance of hands-on experiments on real world systems. This is because the students
will have difficulties in believing in another view on the real world with deterministic
characteristics in which abstraction is feasible. It seems like the students are only able
to change this view when they are actually experiencing themselves a lot of times,
that their robot will fails with a control program that depends on the abstraction. Then
the student start changing their view and implement the more adaptive solutions based
on their experimentations.

4 Related Work and Discussion

There exist a number of open robot competitions such as Micro Mouse and FIRST
(For Inspiration and Recognition of Science and Technology) competitions. Micro
Mouse has been running since the late 1970’s and it consists of designing an autono-
mous robot known as mouse, which should navigate its way through a maze. The
robot mouse has no prior knowledge of the maze configuration before its release in
the maze. During the runs the robot mouse should travel from the starting point to the
centre of the maze. The first two runs are used for data gathering and the final is
meant for a high-speed run to obtain the fastest handicapped time. FIRST competition
is an engineering contest in which high school students team up with engineers from
businesses and universities. In six intense weeks students and engineers work together
to brainstorm, design, construct and test their robot. The aim of the FIRST competi-
tion is to bring together businesses, schools and universities and thereby provide an
exchange of resources and talent highlighting mutual needs, building cooperation and
exposing students to new career choices. The similarities on the educational perspec-
tive have clear resemblance everywhere, which include the MIT series of competi-
tions [7]. The competitions at MIT are part of hands-on, workshop like courses for
undergraduates, which usually run as part of their summer course. The conclusions
from these series of programs resembles our observations reported in section 3 where
most of the students tend to build robots that perform only in ideal conditions. The
approach taken by the Malaysian series of robot competitions is based on theoretical
considerations put forward by Seymour [8], in what he terms as constructionism.
Constructionism suggests that learning is achieved most effectively by participation in
the construction of artefacts. The artefacts become an ‘object to think with’ which can
be used to explore and express ideas such as In the robot competitions, the students
are allowed to construct their own robots and learn about real-world applications by
going through the building process.

The Malaysian RoboFest committee choose to have robotic competitions at differ-
ent levels because the organizers believe that the educational process to be slightly
more complex than what is often suggested in constructionism. In its most pure form
constructionism theory seems to suggest that children should be allowed to play in
what they find fun and they will learn by this play. However in many subject areas the
students need guidance and that there exists subjects that are profound for scientific
knowledge which do not lend themselves to a constructionism approach but will have
to be thought in a more traditional manner especially the case when educating stu-
dents with the fundamental knowledge of the subjects. Constructionism then at a
higher level can be combined with other pedagogical methods to ensure that the stu-
dents obtain a profound knowledge about the subject under study.
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Therefore, the idea of guided constructionism uses a three step process with (i)
imaginary robots, (ii) robots with modifiable body plan and team behaviour and (iii)
construction of robots and complex team behaviour. Constructionism is the core of
(ii) and more at (iii) while it plays a minor role in (i). With the three-step process the
organizers try to ensure that the students first get the knowledge about programming
in the real world and a tool to compare their different approaches. The comparison of
how the robot should work is achieved at the level where the students are given the
knowledge on how to modify the robot body. The students then obtain an essential
knowledge about robot programming by working with the robot projects outlined in
the competitions where they learn the relationship between controller and robot body
plan to manipulate the environment. Hence our approaches stress on the case where
the constructionism approach should be combined with other methods and that there
exist essential arguments that are better acquired by the student with another ap-
proaches. However hands on experience must remain as the major role in technology
education and it often facilitates the student acquisition of knowledge about an arte-
fact.

5 Conclusions and Future Work

In this paper the Malaysia Robot Competition Program is outlined in relation to the
guided constructionism ideas and the observation from it has been outlined. The test
case, used now is the three-step process (i) the conceptual aspect of the artefact, (ii)
the manipulation of robot behaviour in Relation to Real World Environment and (iii)
the management of the integrated hardware and software project. Further, the idea can
be very useful in education for a number of other objects. For instance, robot can be
used as an educational tool for artificial life and biological investigation as described
by Miglinio [9]. Also in this context the robot competition might be a test platform
since one can for instance imagine studying the evolution of robot controllers, the
evolution of communication, the evolution of suitable bodies etc. In future the differ-
ence between guided constructionism and unguided constructionism should be inves-
tigated more thoroughly in order to verify the indications presented in this paper.
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Abstract. In the development of robotic systems, an interactive software plat-
form plays an important role for control design and parameter optimisation.
This paper presents a modular approach to the development of a hybrid soft-
ware platform for Sony quadruped robots. Such a platform consists of an over-
head vision system, a Sony AIBO robot and a desktop PC, and is designed to be
interactive in order to speed up the development of various algorithms for ob-
ject recognition and gait generation. Based on this platform, both the colour
segmentation algorithm and the gait control algorithm are investigated. The ex-
perimental results are presented to show its operation and good performance.

1 Introduction

In the development of robotic systems, software development platforms play an im-
portant role for control design of robots, especially before a prototype system is avail-
able. A good software platform can provides simulation functions that speed up the
development of different algorithms, including complex programming and huge data
collection. There are mainly two types of software development platforms for robotics
research. One is the pure simulation platform, in which only models of real robotic
systems are presented. It is based on an assumption that the developed algorithms can
be implemented in future. Another type is hybrid, which partially relies on the real
robotic system. The parameters of this kind of systems are fully collected from real
robots and the real environment, which is also based on real experiments. If the algo-
rithm works well under such a hybrid platform, it can also work well on real robots.
The benefit of developing a suitable software platform includes the ability to sample
and store sensory data.

In this paper, we describe our research work based on Sony AIBO robots. In each
AIBO, there are 20 motors for its motion control and over 30 sensors for feedback
control and navigation. However, there are some difficulties in the development of
control software and sensing algorithms based on AIBO robots. Firstly, programming
Sony AIBO robots is complex since different algorithms and individual programs
need to be developed and debugged on real robots. Such development cycle takes a
long time and may have a risk to damage the robot. With a hybrid experimental plat-
form, most of the work is done on a PC safely and efficiently. Secondly, the processor
on the Sony AIBO robot is not powerful enough. Complex algorithms cannot be im-
plemented on real robots in real time. It becomes necessary to develop complex algo-
rithms on a PC during the development phase, then optimised in size for the real ro-
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bots. Thirdly, the current interface between the Sony robot and human operators is not
friendly. Each time when the experiment completed, all the results need to be
downloaded from the memory stick manually, which is very time consuming. With
the proposed hybrid platform, the progress of experiments is displayed on the screen
directly and any problem with the experiment can be seen immediately, i.e. a conven-
ient way to develop control and vision algorithms.

The rest of the paper is organized as follows. In section 2, a modular experimental
platform is proposed, which consists of three parts: a real robot, an overhead camera
and a PC. Section 3 describes the adaptive colour segmentation algorithm and some
experimental results. Section 4 presents the gait generation algorithm being developed
by using the proposed platform. Finally, section 5 presents a brief conclusion and
future work.

2 A Hybrid Software Platform

The Sony AIBO robot is a dog-like robot mainly for entertainment. It can also be used
for research on multi-agent systems and the robot soccer competition [4]. Each Sony
AIBO robot has a quadruped design, approximately 30cm long and 30cm tall includ-
ing the head. The neck and four legs of each robot have 3 degrees of freedom (DOFs).
The neck can pan almost 90 degree to each side, allowing the robot to scan around the
pitch for beacons, ball and other objects. And it has an onboard colour CCD camera
and a hardware colour detection engine.

Fig. 1. System configuration of the proposed hybrid development platform
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The proposed platform is based on three sub-systems: a Sony robot, a PC, and an
overhead camera with one frame grab card. Figure 1 shows the system configuration
in which wireless LAN is used for communication between the robot and the PC. In
contrast, Figure 2 shows the basic software functions. More specifically, the program
on the robot is designed to read instructions and implement basic behaviours. Its dia-
gram is shown at the lower part of Figure 2. In contrast, the program on the PC is
designed to provide a human-machine interface for the development vision and robot
control algorithms. There are four main modules in it, namely,

Fig. 2. Configuration of the proposed software development tool

State Reflector – An internal state reflector has been incorporated to mirror the ro-
bot’s state on the host computer, which is an abstract view of the actual robot’s inter-
nal state, such as sensor information from the robot and control commands from the
host computer. More details can be seen in [2].
Communication Routines – The designed controller communicates with the robot
using a handshake mechanism, and sends an appropriate command to the robot.
Gait Generator – The gait generator communicates with the robot by passing a se-
quence of arrays that are transformed into a sequence of robot movements. It creates
different gaits in a form of a sequence of arrays.
Image Interpreter – Gathering image snapshots and processing images can be done
completely independently from the rest of the application. The size of a captured
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image is 144 x 76 pixels and each pixel has three bytes for colour information. A
locking mechanism has been adopted to allow the transfer of the current image to be
safely completed before the new snapshot image can be grabbed.

3 Adaptive Colour Segmentation Algorithm

The task of extracting a colour object and estimating its position in images depends
on colour segmentation [1][5], which needs to be robust to the varying lighting condi-
tions and adapt to dynamic changes in the environment. The first step is to adjust the
camera’s shutter, aperture and amplifying rate settings, which is difficult for the
Sony-legged robot. Such adjustments may cause other problems, such as change of
the depth of view in the image. Therefore the implementation of different thresholds
in different lighting conditions is necessary. Three main parts in our colour segmenta-
tion algorithm is shown in Figure 3.

Fig. 3. The colour segmentation algorithm

3.1 Manual Threshold Setting

The threshold for the colour segmentation depends on the colour space in which the
operation implemented. Commonly, HSV colour space is suitable for the colour seg-
mentation, but the camera of a Sony AIBO robot outputs the images in YUV format
and has a hardware colour detection table (CDT). The GCD method was developed
by an Australia team, UNSW, to solve such a problem, which is very similar to the
LUT methods presented by Schroter [8], i.e. a statistical approach. The thresholds of
the GCD method can be any shapes in the UV space. The main difficulty of the GCD
method is how to construct the thresholds under different lighting conditions.

Based on the proposed experimental platform, we can grab images from the on-
board camera of the connected Sony AIBO. Figure 4 shows the raw image and the
segmented image by using the CDT table at AGC=112. In contrast, Figure 5 presents
the raw image and the segmented image by using the GCD table at AGC=112. Note
that AGC represents “Auto Gain Control” here. As can be seen, the GCD method
works better than the CDT method.
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Fig. 4. Raw and segmented images (CDT) Fig. 5. Raw and segmented images (GCD)

3.2 Threshold Training Algorithm

Learning algorithms can be adopted to produce a suitable GCD or other kind of
thresholds automatically [7] [8]. Figure 6 shows the learning network used for GCD
training, in which Y, U, and V are inputs, and output is the colour mark of the GCD.
L1 is the luminance decided by the meter, and L2 is the luminance measured from the
image. Training data are current GCD tables that are manually constructed with a set
of lighting conditions. There are many different methods to measure the luminance of
the images. Basically, most methods need a patterned object for measuring, which
may be not reliable in the application of Sony legged robots. The field colour of a
football pitch is green, which is not sensitive to the change of the lighting condition.
However, the colour of other objects such as ball and goal is affected by light refec-
tion. With different angles, the measured results can vary dramatically under same
lighting condition.

Fig. 6. A learning network for GCD training

Experiments were carried out using the real Sony robots to show the performance
of the algorithm. Three different lighting conditions were adopted in the experiments:
405 Lux, 455 Lux, 535 Lux. GCD tables under 405 and 535 Lux were constructed
manually. GCD tables for 455 Lux were constructed by the supervised learning. With
large data sets, the speed of learning is very slow. For the learning process in a HSV
colour space, the network was trained by 32MBytes test data over many hours. With
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the parameters such as the learning speed 5, 1 hidden layer, and 32 hidden neurons, it
produced an inadequate GCD table with two many binary values 0 and the learning
progress was too slow. On the other hand, with the parameters: learning speed 50, 1
hidden layer, and 8 hidden neurons, it produced a GCD table with too many binary
values 1. The learning speed seemed very fast. Figure 7 shows the results obtained by
using suitable GCD tables from training.

Fig. 7. Some Processed Images

4 Gait Generation Algorithm

4.1 Generation of Wheel-Like Motion

For a Sony AIBO, a trajectory refers to both the path of the movement of the tip of a
limb (paw), and the velocity along the path. Thus, a trajectory has both spatial and
temporal aspects. The spatial aspect is the sequence of the locations of the endpoint
from the start of the movement to the goal, and the temporal aspect is the time de-
pendence along the path. The essential conditions for stable dynamic walking on
irregular terrain and on the flat ground can be itemized with physical terms:

the swinging legs not be prevented from moving forward during the former period
of the swinging phase,
the swinging legs must be landed reliably on the ground during the latter period of
the swinging phase,
the angular velocity of the supporting legs during their pitching motion around the
contact points at the moment of landing or leaving should be kept constant,
the phase differences between the legs should be maintained in spite of delay of
motion of a leg receiving disturbance from irregular terrain.

For the creation of wheel-like leg motion shown in Figure 8, we used six parame-
ters for front and six parameters for rear legs. These twelve parameters determine the
spatial aspect of a robot trajectory. The parameter is bound to temporary aspect
and determines the speed of paw movement.

In total, there are 13 real-valued parameters are used to determine a gait for the lo-
comotion module. Table 1 lists some of these parameters, which are also the genes for
individuals evolved by the evolutionary algorithm. These parameters specify the posi-
tion and orientation of the body, the swing path and the swinging rate of the robot
legs, the amplitude of oscillation of the body’s location and orientation.
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Fig. 8. Paw trajectory–Wheel-like motion

4.2 Implementation of Evolutionary Algorithms

We model natural processes, such as selection, recombination, mutation, migration,
locality and neighbourhood. Figure 9 shows the structure of a genetic algorithm we
implemented. Evolutionary algorithms work on populations of individuals instead of
single solutions. In this way the search is performed in a parallel manner.

4.3 Evolving Results

The evaluation takes place inside of AIBO robot’s football pitch. Each generation
member produces a gait that runs for 5 steps. The 13th gene specifies the speed. If the
robot falls over, it is fully capable of getting up and continuing its execution. After
executing one member evaluation takes place and the speed and stability parameters
are produced which qualitatively determines fitness values. The overhead camera
records offset from the starting position and the changes when the robot to return to
the starting position. In order to do that, an appropriate number of steps, e.g. forwards
and backwards, are executed by the robot. We adopted a population size of 20 and run
it for 50 generations, and results are presented in Figure 10.
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Fig. 9. Structure of a single population evolutionary algorithm

Fig. 10. The results of gait generation based on GA

At the beginning, most of the population members didn’t perform very well. Some
of them didn’t even walk in the straight line or they even walked backward. Some of
them were also causing the robot to fall. By the end of the experiment, the perform-
ance of the members significantly improved. The best member manages to walk in the
straight line with good stability with the speed of 7m per minute.

We also investigated the improvement of speed and stability over a sequence of
generations and the affects it has on the overall fitness functions, see [2] for details.

5 Conclusions and Future Work

A hybrid experimental platform for Sony AIBO robots is developed in this paper,
which is a useful tool in the development of vision and gait generation algorithms in
the RoboCup domain. Based on this platform, we can develop different vision algo-
rithms for colour segmentation, object recognition and object tracking. Sony AIBO
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robots can learn good walking behaviours with little or no interaction with the design-
ers. Once the learning method is put into place, the module can learn through its inter-
action with the world. The mutating and combination behaviours of the Genetic Algo-
rithms allow the process to develop to a useful behaviour over time.

Our future work will be concentrated on three aspects:
how to achieve the efficient operation and evaluation of tracking algorithms;
how to improve vision system in terms of speed and accuracy;
how to build robust and adaptive algorithms for gait generation.
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Abstract. In this paper, the problem concerning how to coordinate concurrent
behaviors, when controlling autonomous mobile robots (AMRs), is investi-
gated. We adopt a FSM (finite state machine)-based behavior selection method
to solve this problem. It is shown how a hybrid system for an AMR can be
modeled as an automaton, where each node corresponds to a distinct robot state.
Through transitions between states, robot can coordinate multiple behaviors
easily and rapidly under dynamic environment. As an illustration, a soccer task
was finished by an AMR system with this method. The robot performed well in
the soccer games and won the game in the end.

1 Introduction

For an autonomous mobile robot, the ability to function in, and interact with a dy-
namic, changing environment is of key importance [1, 2]. A successful way of struc-
turing the control system in order to deal with this problem is within hybrid architec-
ture [3, 4]. This way of structuring the control system has the major advantage that it
makes the system own planning ability, and at the same time, the system can react
rapidly.

However, within this framework, a number of design issues need to be addressed.
An important issue is how to deal with multi-behavior coordination problem. For
instance, given a reactive obstacle-avoidance behavior, how should an approach–
target behavior be designed and combined with it? There are two main methods to
manage this problem: one is arbitration [5, 6, 7]. That is, select one behavior between
several ones based on priority or through competition. This kind of method has defini-
tude meaning and new behaviors can be added easily. But it has the major disadvan-
tage that it both affects the performance in a negative way, not allowing for the
smooth performance that concurrently active behaviors produce, and that it increases
the risk of introducing chattering into the system [8]. Another method is to work with
concurrently active behaviors. Different controllers affect the system simultaneously,
resulting in a smooth overall performance [9, 10, 11]. However, in this case, the
analysis of the system is becoming difficult as new behaviors are added. Egerstedt
proposes regularization techniques to improve the first method. But he pays more
attention to smoothness between behavior transitions and ignores rapidness of the
system. For tasks under dynamic environment, simple, rapid, and efficient control
method is necessary.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 487–494, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Now, autonomous soccer robot is a hot topic in AI and robot fields [12, 13]. The
game has been a standard platform for theory study under dynamic, uncertain envi-
ronment. In this paper, we first introduce an AMR system applicable under dynamic
environment. Then, an FSM-based behavior selection method is adopted and used in
the robot soccer game successfully. With this method, the robot can coordinate multi-
ple behaviors easily and react rapidly under dynamic environment. The result of
CRC games (the First Chinese Robot Competition) shows the validity of the method.

2 System Description

The JiaoLong robots are constructed as part of a
project to build inexpensive, autonomous robots for
the study of multi-robot systems. We made three
robots of the same type and one goalkeeper robot as
shown in Fig.1. The hardware system consists of
motion platform, sensing system, communication
system and control system.

The motion platform is a 45×45×60cm, differen-
tial driven car. Each robot employs a LRF (laser
range finder) and two cameras as its main sensors.

Fig. 1. JiaoLong soccer robot

The whole group utilizes a wireless LAN device for communication. Every robot acts
as a node in the LAN and has a wireless card that can transfer data at the speed of
11Mbps.

For software design, we propose a distributed architecture based on priority. There
are one main process and three assistant processes sharing one CPU. Main process
makes decision and three assistant processes dispose sensor information of LRF and
two cameras. Information communication between main process and assistant process
is realized through IPC (inter-process communication) mechanism. Also, this mecha-
nism can ensure the communication between robots.

3 System Architecture and Behavior Design

3.1 Hybrid Architecture for Dynamic Environment

Robot architecture can be divided into three kinds: deliberative, reactive and hybrid
architecture [3]. The first one always need precise information and is not suitable
for dynamic environment. The second one makes the system react quickly and
robustly, but it is not suitable for complex task. The hybrid one is suitable for dy-
namic environment and the system can react rapidly. Our architecture is a hybrid one,
but differs from others in two aspects (Fig. 2). First, we add short-time memory in
behavior-based control. Secondly, our system only needs local path-planning. The
whole task will be divided into several subtasks. Robot schedules tasks according to
his perception. In every time cycle, there is only one subtask executed, which gener-
ates one behavior. More details will be introduced in 3.2.
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Fig. 2. Planning and control diagram

The reactive architecture characterizes having no memory and reacting rapidly.
The long-time memory will ask for better hardware and lead to wrong decision due to
the uncertain data. We add short-time memory in the behavior-based control accord-
ing to the task. Tab. 1 shows an example of the memory content. Fig. 3 shows the
meaning of the angle In Fig. 3, X-axis represents robot’s heading.  means the
angle between ball centre and Y-axis, and is determined
by camera visual angle.

Whenever the robot sees ball, he will update the value
of SIGN in Tab 1. If the ball disappears suddenly, robot
could find it rapidly according to SIGN. For example, if
the ball disappears at time of T, and the value of SIGN at
time T-l is positive, then the robot turns to left. Thus the
ball can be found in the shortest time. If ball disappears
for a long time (longer than 20 seconds), the SIGN will be
set to zero until ball appears again.

Fig. 3. Short-time memory

The global path-planning has some disadvantages when using under dynamic envi-
ronment. It needs precise environment model, and will make system complex. For
example, in football game, the robot always be put under a dynamic environment, a
proper path at this time will be improper during a short time, especially when many
robots stay together. So it is not worthy of planning globally. Based on this opinion,
our system only makes local path-planning. Path-planning lets robot reach a place
behind the obstacle, and only needs local information about obstacles. Experiment
and games verified that local path-planning could improve the robot’s decision abil-
ity, and make robot react rapidly.
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We also define some special behaviors. For example, when the ball stays on a cor-
ner on the playground or made by other robots, our robot will turn suddenly, thus, the
ball will be moved out of the corner. Through this behavior, the ball will not be out of
play, and robot can show more intelligence.

3.2 Primary Behaviors and Their Synthesis

Soccer is a complex task for robot, especially for autonomous robot. In the game,
robot should search ball, move ball and shoot ball autonomously. Moreover, when he
meets an obstacle, he must coordinate multiple behaviors. Generally, we decompose
the whole task into several subtasks associated with ball. Behaviors are divided into
two kinds: manipulating ball and avoiding obstacle. Every subtask generates a behav-
ior associated with the ball. The final behavior should be made through arbitration or
fusion. That is, we make a two-step decision: in the first step, every subtask generates
a behavior, and then system decides the final behavior. From the view of human’s
behavior, when we do such a work, there is just a natural behaviors transition but not
such a layered decision.

Thus, we decomposed the whole task into four subtasks corresponding to four
states: Get_Ball, Move_To_Ball, Search_Ball and Avoid_Obstacle. If robot is in a
state of the first three ones, he can manipulate ball directly and needs not to avoid
obstacle. If the robot has to avoid obstacle, he will be in the forth state. In this state, a
behavior generated by local path-planning will help him leave this state. Different
from common avoiding behavior, robot does not care about where the ball locates, he
only moves directly to the target generated by path-planning at highest speed, that is,
there is only one behavior. The result is that robot escapes from the situation where
multi-behavior conflicts, and can manipulates ball directly. This simple behavior
makes robot transit from the forth state to one of the other three ones. Moreover,
through such task decomposition, there is only one behavior generated in every state
at a time, and this is the final behavior of the robot. Robot needs not to select a behav-
ior from multi behaviors. From above, we can see that this method can simplify the
control architecture, and new behaviors can be added randomly without making con-
trol system more complex.

Every robot has seven basic behaviors: MoveToBall, MoveToTarget, SearchBall,
Defend, Shoot, AvoidObstacle and SearchGoal. The robot’s program for accomplish-
ing the task can be represented as a FSM diagram as shown in Fig. 4.

In this approach, each state corresponds to a suite of activated behaviors for
accomplishing that step of the task. Transitions between states are initiated by real-
time perception.

We will give an example to illuminate the algorithm. Suppose the robot is in the
state of Move_To_Ball, at this time, an obstacle suddenly appears in the way, the
robot then will transfer to the state of Avoid_Obstacle. The path-planning module
generates a target for the robot as shown in Fig.5. DIST_1, DIST_2 is related to the
robot’s size and can be modified. During this period, if the ball moves to the place
where it can be manipulated directly by the robot, robot will transfer to other state,
otherwise, he will move to the target at all times. During this period, robot will not
avoid obstacles except that an obstacle appears in the way and is very near. When
robot reaches the target, if he cannot see the ball, he will turn according to his short-
time memory. Thus the states transition is realized.
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Fig. 4. State transition

Fig. 5. Local path planning

Formula 1,2,3 can calculate the translational velocity (V ) and rotational velocity
In formula 1, DIST means the distance between robot and the goal calculated by

visual information. The units of V and are mm/sec, degree/sec. are

parameters. Ang means the angle of the goal position in robot’s local coordinate as
shown in Fig. 3.

When the obstacle is very near the robot, the line speed is calculated by formula 3.
OBST_DIST is distance between robot and obstacle calculated according to LRF.
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4 Experiments and Results

Fig. 6 shows a standard action sequence of our robots played in the “CRC Soccer
Robot in China”.

The playground is set according to RoboCup rules. As there is only 1vs1 and 2vs2
game, the ground is a 6×5m place. The two teams are both autonomous robots. They
can be started from outside but cannot be interfered during the competition.

Fig. 6. Action sequence

“S” represents our robot, and “T” is the opponent. In Fig. (a), robot saw the ball,
but could not manipulate it directly because of the obstacle in the way. The path-
planning module generated a target behind the obstacle. Through actions in Fig. (b)-
(c)-(d), robot moved to the target. At this time, robot could not see the ball, so he
turned to left according to his short-time memory. Thus, after action sequence in Fig.
(e)-(f), robot returned to the state of Get_Ball. Through such task decomposition,
robot could finish task rapidly.

Fig.7 shows trajectories
of the robot in different
situations. In the figure, 2
represents dashed line. 1
and 3 represent straight line.
We can divide the whole
process into three periods
corresponding to three lines.
In the first period, the tra-
jectory is generally similar
during many cases. The
robot moves to the target

Fig. 7. Trajectories of the robot

rapidly and directly. In the second period, the robot moves at a certain translational
speed and rotational speed. That is, the trajectory is an arc, and this ensures the
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smoothness of the behavior transition. After searching for some time, robot will see
the ball and move to ball directly. This is the third period.

Fig.8 shows the trajectory of a real robot’s motion. The environment is set like fig-
ure 7. The dark circle means an obstacle. The unit of X-axis and Y-axis is centimetre.

Fig. 8. The robot’s motion trajectory

Tab. 2 shows the time of state transition from Avoid_Obstacle state to Search_Ball
state to Move_To_Ball state. These states are corresponding to the three periods of
the trajectory as shown in Fig.7. The highest speed of robot is 8000mm/sec and the
robot is stationary at the beginning. For each case (a and b), we made experiment for
10 times. The value in the table is an average one. From Fig.8 and Tab.2, we can see
that the robot reacts rapidly and the trajectory is smooth.

In a word, the proposed method for multi-behavior coordination has two advan-
tages. From the high level, there is only one behavior generated in one state and this is
just the final behavior. This behavior is easily understood as this is only related to one
goal or obstacle but not a coordinated one. This means the control process is simple
and easy to test. From the low level, in the Avoid_Obstacle state, the robot always
makes a straight-line motion and can keep a high speed in avoiding obstacles. But in
some fusion method, the robot’s speed is a low one when the robot is near the obsta-
cle.

5 Conclusion

This paper introduces an AMR system applicable under dynamic environment, and
adopts an FSM-based behavior selection method to solve multi-behavior coordination
problem. With this method, the robot can coordinate multiple behaviors easily and
react rapidly under dynamic environment. At the same time, this method simplifies
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the control architecture. The results of experiments and games show the validity of
the method. In the future, this work should be extended to study more complex tasks
such as multi-robot learning and coordination under dynamic environment.
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Abstract. This paper presents a full description of the design of a
trot locomotion that has been implemented on AIBO quadrupeds in
the Sony legged league. This work is inspired by the UNSW achieve-
ments in RoboCup 2000 and 2001 in Melbourne and Seattle. The French
team rebuilt a complete trot locomotion from scratch, and introduced
special features that differ from the Australian original design. Many pa-
pers have already been dedicated to the work on quadruped locomotion
[2–4]. However they do not detail all the parts of the design.

1 Introduction

This paper is dedicated to the design from scratch of a trot gait that allows
combining linear and angular body velocities, which can make the robot walk
along a sideways direction or make turns round any point. From 1999 to 2001
the French team developments in locomotion [1] gave good results but motion
turns were only possible round points located on the transverse axis of the body.
BY the end of 2001 it was decided to design a new trot gait algorithm to allow
better maneuverability of the robot and to incorporate the option of performing a
crawl-like trot introduced with success by the New South Wales University team
in RoboCup 2000. The algorithms developed by the French team are inspired by
the details given by the UNSW team in its 2000 RoboCup report [2] but have
been rewritten and adapted to include specific features. These features include
exact support phase leg trajectories that are not approximated to straight line
segments, leg home positions that vary with linear body velocity to improve
dynamic balance, and times of changing velocity at leg landing.
Thanks to this locomotion design, the robot should be able to adopt a high-
legged trot to cover large distances at high speed, and to adopt a crawl-like gait
that is very efficient for approaching and covering the ball. This paper describes
the parameters used for locomotion and the details of the design.

2 Parameters Used to Tune Locomotion

2.1 Leg Trajectory Placement Parameters

Leg trajectory placement parameters permit to place the leg trajectory with
respect to the body reference frame. We distinguish the horizontal parameters,
the  parameter for shifting home position, and the vertical parameters.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 495–502, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Horizontal Distance Parameters. Figure 1 shows longitudinal and lateral
spacings, and right and left shifts from geometric body centre (GBC) called

and Longitudinal spacings are taken from the limit defined by
the GBC shifts.

Fig. 1. Horizontal distance parameters that define fixed home positions for legs in
stance phase.

Fixed home positions that serve as references are called FHP1, FHP2,
FHP3, and FHP4. They are defined by the horizontal distance parameters.

Home Position Shifting Parameter. To implement a variable home position
called CHP (see fig. 2) the parameter called is introduced.

The home position shift from the fixed home position (FHP) is expressed
as:

where v is the linear velocity, T the cycle period, and and the linear
velocities at the beginning and the end of the step.
This parameter allows to better distribute the load of the body between the two
thrusting legs whatever the motion direction. Hence we get a CHP point for
every leg. The CHP point is the middle point of the leg straight-line trajectory
in support phase. This straight line joins landing and take-off points of the leg.

Vertical Parameters. They are the height of the front legs and the height of
the rear legs with respect to the related shoulder joint.
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Fig. 2. Top view of the robot achieving a linear sideways motion. Velocity of the robot
has two components and The dotted rectangle joins the fixed home positions
(FHP) as they are defined by the trajectory parameters (section 2.1). When a linear
motion is required the home position varies as a function of the stride length (that is
the velocity magnitude times the period of the stance phase (T/2)) and the direction
of motion. The variable home positions are called CHP (current home positions). Here
they are the middles of the linear stride segments.

2.2 Kinematic Parameters

They describe the shape of the leg trajectory over a cycle period. The kinematic
parameters are the following:

step period = T/2, where T is the total time of the leg cycle,
upward phase height,
downward phase height,
time ratio of upward phase with respect to total air phase,
time ratio of downward phase with respect to total air phase,
maximal accelerations for and

The upward phase starts when the leg leaves the ground. It terminates when
the leg starts its swing phase. The downward phase starts when the leg ends the
swing phase. It terminates when the leg touches ground. By varying maximal
accelerations, we can vary the time of acceleration/deceleration of the robot.
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2.3 Additional Parameters for Oscillation Moves

The oscillation moves that can be introduced are the following:

up and down moves of the body,
lateral moves of the body (right and left),
angular moves round the transverse axis of the body.

The relating parameters are the amplitude and the phase lag of each oscil-
lation move. The phase lag is defined with respect to the time cycle of a leg
trajectory.

3 Design Details

3.1 Velocity or Position Control

The decision making module of the robot can run velocity or position control,
and switch between both when needed.
Velocity control allows to request for a set of combined velocities, and
Position control allows to request for a set of combined displacements

This means that after a series of steps, the body centre should have moved
by the displacement vector and the body should have turned an angle
equal to In position control mode, it is possible to specify maximal velocities
during the required displacement.

3.2 Adjusting Velocities to Robot’s Leg Workspaces

In velocity control the velocities to be adjusted are the velocities the robot must
reach. In position control the velocities to be adjusted are:

the maximal velocities the robot should not exceed along the displacement
required. They are given by the decision module.
the successive velocities the robot must use to achieve the required displace-
ments. These velocities must converge towards zero.

Use of a “workspace” calibration table. For adjusting velocities a
calibration table taking leg workspace boundaries into account is used. This
calibration table can be illustrated by a 3D space where point coordinates repre-
sent body displacements over a step. A triplet of constant velocities

is linked to the displacements by

where
In the 3D space, we can calculate a closed 3D surface whose

points represent the optimum set of triplet the leg can achieve
while remaining inside its workspace.
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In other terms, components of points located inside the closed surface are
displacements that can be achieved by the robot over one step.

Hence if the set of velocities required is located out of the 3D surface, the
robot cannot achieve them. They must be reduced. Hence the decision module
commands the robot to reach the optimal triplet of velocities given by

where is defined by

where is a reduction factor.
Directions of vectors and remain the same.
Of course the triplet of velocities remains unchanged if inside the 3D surface.

The 3D surface can be computed at boot time using the trot parameters set.

How the workspace calibration table is built. The calibration ta-
ble contains 3D points of the 3D surface. The table is built using 3D discrete
spherical coordinates. Starting with (0, 0, 0) the number of points explored grows
radially until the surface is reached. Beyond this surface the set of displacements
cannot be achieved over a step.

Given a triplet of displacements over a step, it is marked as be-
ing inside the 3D surface if landing and take-off points belong to the workspace
of the leg in support. Using this technique is adjusted automati-
cally, and the decision module does not have to set a stride parameter for the
gait.

In summary, the 3D surface ensures that leg trajectories will not go beyond
the leg working space. And adjusting to a minimal value permits to set
maximal forward velocity.

3.3 Update Velocity at Next Step or After Next Step

Once a pair of legs is on the ground, the velocity profile that has been planned
cannot be changed all along this leg pair support phase.

When the request comes in the first half of the current step, new velocities
are taken into account at starting the next support phase (i.e. the next step).
When the request comes in the second half of the current step, new velocities are
taken into account at starting the after next support phase (i.e. after the next
step). This is because we consider that we do not have enough time to re-plan
the stance phase trajectory of the current legs in the air.

• Defining velocities at the end of a step.   A step is defined by an initial
and a final triplet of velocities (see section 3.5 for generating support stance
phase), and by the landing point. Knowing the initial velocity of the next step
and before starting it, the problem is to get the final velocity to define the step
completely. This final velocity must be known in advance (T/4 before starting
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Fig. 3. Linear velocity profiles used to deal with velocity control. is the velocity at
the beginning of the step. is the velocity at the end of the step.

the next step at least). All three velocities follow a linear profile (see
figure 3).

The rate of increase in velocity is defined by a maximal acceleration that is
fixed. There is a different acceleration for every velocity and They
have been set so that the robot can reach maximal velocity from still motion in
a step time period. This implies: where represents whatever
velocity, and acc the related acceleration (positive value).

Defining velocities in position control. In position control, the goal
is different. Here we do not want the robot to reach a certain set of velocities
but we want it to halt motion after trotting the requested distance and turning
the requested angle. And to allow re-entrance of velocity control with position
control and conversely, position control is designed by updating velocities for
every leg switch, like in velocity control. Velocities must converge towards 0
since the robot must halt motion once distances and angle have been achieved.

Let be the displacements to achieve in position control. Veloc-
ities are updated 2 times a cycle period in the middle of two consecutive steps.
At these times of update, the remaining displacement to
perform is calculated The displacements already achieved are simply subtracted
from the previous displacements.

Velocities are initialized to and filtered using
workspace 3D surface (see section 3.2). Then velocities are optimized in or-
der to finish the displacements as soon as possible. In case the initial velocity is
too high and distance requested to be covered too small, it can appear that the
robot oversteps the point to reach. But even so, the position control algorithm
makes the robot joint the point by making it trot in the reverse direction.

3.4 Updating the Landing Point for the Next Step
or the after Next Step

Knowing velocities at the beginning and the end of the step considered (i.e.
velocities at leg landing and take-off) and by intergrating the velocity profile
described in the previous section, we compute the displacements
over this step. Then landing point coordinates are computed the following way:
if stands for the linear displacement over a step (legs numbered 1 and
3 for instance) and for the angle to rotate, we have A and A’ respectively
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Fig. 4. A are are the landing and take-off points of the step. The body turns round
C (GBC shifted) with an angle Hence the leg tip turns If we start with the
translation, we get to by passing through A” . If we start with the rotation, A” is
the image point obtained by rotation of leg landing point A. Then the translation of
vector must be performed.).

landing and take-off points of the first leg (1) of the diagonal pair (figure 4), and
B and B’ referring to the second leg (3), expressed as:

These equations refer to figure 4 that describes how landing and take-off
points of the first leg of the diagonal support are defined knowing translation
and turn-in-place motions of the body over the step.

3.5 Computing Current Cartesian Point of Leg Trajectory

The reference frame considered is the body reference frame whose plane xy is
horizontal and whose centre is C (C is the point shifted from the geometric body
centre GBC by along the longitudinal axis).
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Stance phase. At every time interval of the stance phase displacements
performed from time of landing until present time are calculated by

integrating the velocity profile, knowing velocities at the beginning and the end
of the step.

Then the stance point is calculated using these displacements by:

Air phases. They are implemented using the heights to move the leg up
and down, and the next landing point.

4 Conclusion and Perspectives

Trot parameters can be adjusted easily by updating the calibration table. Hence
it is possible to implement high-legged trot or the trot introduced by the UNSW
team where the fore part of the body is lowered. However the whole locomotion
is based on the trot gait. And it would be great to be able to switch between
trot gait and other gaits such as crawl gaits that feature always three legs on
the ground. Crawl gaits can be useful for approching maneuvers when slow and
precise moves are required. In addition maybe gaits faster than trot can be
introduced. These gaits involve the control of ballistic phases. New studies will
focus on how to switch between trot, crawl and faster gaits continuously.
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Abstract. In this article we will concentrate on the communication
problems in a multi-agent system, operating within the ‘RoboCupRes-
cue’ Simulator system. To cope with the limited communication between
the center and the agents in the field, we separate the communication in
two layers that focus on synchronizing world models with different levels
of detail, responsiveness and range. In this article we will explain the
requirements and methods used in the high-level communication that
distributes summaries of the current situation in different sectors of the
map.

1 Introduction

The world is often shocked by catastrophic events. These may range from natural
occurrences, such as earthquakes or floods, to urban riots or terrorist attacks.
Crisis management is essential under such circumstances. Unfortunately, real
large catastrophes do not only mean thousands of deaths or injured people,
but also hit the communication and civil protection infrastructure, jeopardizing
all but the most carefully prepared rescue plans. There is always more to be
done in order to minimize such damage in the future. It is possible that the
new solutions may be aided by the use of advanced technologies such as robotic
rescue operators and artificially intelligent expert systems.

In this article we will investigate multi-agent communication within the
‘Robo CupRescue Simulator System’ [1]. The RCRSS simulates a small piece
of a real world environment, in which a disaster takes place. The simulation
starts with an earthquake, after which several buildings in the disaster map col-
lapse. This causes buildings to catch fire, roads to be blocked and civilians to get
buried under the debris. Simulated rescue agents need to respond in the most
appropriate way, in order to minimize damage.

In section 2 we will determine what kind of information system is needed for
the agents to accomplish this goal. In section 3 we will then explain the details
of how we implemented this system. Finally in section 4 we will show that our
design does indeed meet our requirements.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 503–509, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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2 Requirements

2.1 Agent Objectives

There are three different types of intelligent entities in the simulator system:
civilians, agents, and centers. Civilians represent ordinary people who can not be
controlled by our multi-agent system, they are programmed to flee from danger
and run to refuge buildings. The main objective of agents and centers is to save
as many civilians as possible and to minimize damage due to fires. The agents
and centers are separated in three operational types: the fire brigade to put out
fires, ambulance units to rescue civilians from under the debris and to transport
them to refuges, and police units to clear the roads.

The agents perform the actual rescue tasks. This requires a fair amount of
localized intelligence. There are many practical problems to overcome like getting
to the location of the next task, making sure a fire brigade has enough water to
put out the fire and making sure there is room in an ambulance to pick up more
wounded. Simple operational subprograms take care of the most basic logistics.
We call these subprograms ‘behaviors’. Selecting which behavior to execute is
a decision making process that can be handled in many different ways. In our
approach all the decision making is done by the localized intelligence of the
agent. The suggested hierarchy of the centers standing above the agents is used
only for spreading information and not for coordinating task assignment. The
agents decide which other agents to cooperate with and what tasks to perform.
To do this they need an overview of the global situation. They can not base this
overview on their limited visual observations alone. This is why communication
is required to update this overview.

2.2 Situation Awareness

The coordinating part of each agent relies heavily on information. Because of the
limited visual range of agents, information gathering will be an active task. Some
of the available agents will be patrolling the disaster space looking for problems
that are not yet known by the agents. After a risk area is identified, a risk
assessment is made. This consists of the measuring of the extends of a fire, the
number of collapsed buildings, the number of buried civilians and their survival
chance and finally the number of blocked roads. Based on this information a
distribution of agents to tasks can be made.

The information that is observed by an agent is combined with the infor-
mation that is communicated to it into a world model [2], which is used in the
decision making process. This world model is based on summaries of what agents
encounter in the field so it will not be a perfectly detailed model, nor should it
be. Cutting down on the number of variables in the world will make the job of
the decision making process easier. It is also a more realistic simulation of what
goes on in a real disaster control center.

The information in the summaries can be limited by aggregating the details
for certain areas. By grouping the elements on the map (roads, building) of
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the simulated city by a algorithm described in [?], the information that has to
be exchanged can reduced considerably. We call the grouped elements on the
map sectors. A sector can be seen as a possible problem area. Observations
of properties like burning buildings, blocked roads, collapsed buildings can be
summed up to give a factor of these problems for all sectors. The positions of
all agents are reported and send along with the sector values. Together these
values form an information package, that is sufficient for an agent to decide
which problem area to go to. By making this decision for other agents as well,
an agent can find out what other agents are going to be aiding it there.

The information in the summaries does not need to be detailed in the sense
that agents can plan their actions with it. For this the agents use their obser-
vations supplement by a more direct method of communication. The execution
of the tasks and the communication required for this is not the focus of this
paper. The coordination of what problem area to focus on is separated from the
cooperation that is required to fulfill this task.

2.3 Information Usage

The right number of agents should cooperate to accomplish a task. Too many
agents dealing with a single fire is wasteful and hampers secondary goals like
patrolling or containment of another fire. A decent estimation of the required
team composition has to be made. To do this the information in the world model
needs to be accurate.

The precision of the summaries is best secured by making enough observa-
tions. Some agents are reserved to patrol the area and make these observations.
The combination of these observations into one state vector has to be done by
weighing new data based on trustworthiness. In this process visual observations
are trusted over communicated ones. The time of observations is remembered
and compared with the time of arrived communication. Only communicated in-
formation that is newer than the last observation should be integrated in the
overview. Only the observations that were made since the last communication,
should be transmitted to other agents.

Agents use the world model to choose their next task. Because of the limited
time and number of agents during a simulation, this has to be done in a very
efficient way. It is important that fire agents travel towards a new fire as soon
as it has been detected. Because of this the information in the world model
has to be recent. On the other hand big decisions like switching teams do not
have to be reconsidered as often as decisions on what action to take next. A
reaction to every small change in the overview would make it harder for agents
to finish their tasks. This is why agents choose new tasks and teams only after
new global information is available and therefore this information does not have
to be updated every cycle. As an extra bonus combining the data of sectors over a
period of time, further reduces the amount of information transmitted concerning
overviews by discretizing it in the time dimension. Still the information needs to
reflect sudden developments accurately, so the period we chose for these updates
is the minimum number of cycles required to synchronize the summaries between
agents.
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To prevent misunderstandings in the cooperation of agents the information
in the agents needs to match. The centers not only fulfill this requirement by
distributing the information, but also an active role in maintaining a common
view. They accumulate observations from the agents they have a direct commu-
nication channel with, which are agents of the same type. Next they combine
these into one summary by negotiating with each other. The same common sum-
mary is then send back to all agents at the same time. This guarantees that all
agents base their task and team decisions on the same information.

3 Solution

This section will explain the working of the communication protocol which is an
attempt to make the world model as accurate as possible. The protocol consists
of two different communication layers. In the low level communication layer, ‘low
level information’ is transferred between agents that are near to each other. The
high level communication layer distributes ‘high level information’ amongst all of
the platoon and center agents. Low level information refers to basic observations
that are directly relayed to other agents in the field, whereas high level informa-
tion is first extracted from the low level information before it is distributed. The
two communication layers match nicely on the two different kinds of message
primitives provided by the kernel.

The message primitives are implemented by means of SAY and TELL mes-
sages. SAY messages can be used to talk to another agent and it only reaches
agents in a limited range. However it does not matter what kind of agent is on
the receiving side. The opposite is true for TELL messages where agents must
be of the same type in order to communicate, but it arrives at all agents and
centers of the same type regardless of distance. For both message primitives cer-
tain restrictions are imposed on the amount of messages that may be sent or
received during each simulation cycle. Moreover each message should adhere to
a special format. The details have been summarized in tables 1 and 2.
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3.1 The Communication Protocol

Within the communication protocol TELL messages are used for the high level
communication layer and SAY messages for the low level communication layer.
The presence of communication restrictions during each cycle leads to the defi-
nition of ‘communication phases’. An agent can only enter a new phase after at
least one cycle has passed since the previous phase was entered. For high level
communication, each phase has the property not to violate the restrictions that
were mentioned in previous section. For example platoon agents will not produce
more than four messages during a phase. It is also ensured that the receiving
party is ready to accept all incoming messages without the need to throw them
away. In particular centers indicate that they are ready for reception by sending
a single TELL message. Thus within the high level layer, agents wait until all
participating agents have reached the appropriate phase before they exchange
information. The following phases have been defined:

Platoon agents: AC_EXCHANGE, AA_SAY
Centers: AC_EXCHANGE, CC_READY, CC_EXCHANGE, CA_READY

These phases are entered in this specific order (reading from left to right) and
when the centers enter the last phase, one high level communication cycle has
finished. Then a new communication cycle starts and each agent enters the first
phase again. Experiments showed that 5 kernel cycles were needed to finish 1
high level communication cycle. So during the simulation there are 300/5 = 60
high level cycles.

The first two letters of each phase describe what kind of agents participate in
the communication. For example the prefix AC means that there is communica-
tion between a platoon agent and a center agent. The suffix gives an indication
of what happens during a particular phase. The following list clarifies this:

AC_EXCHANGE
Platoon agents provide their centers with new world information, after which
they obtain summaries that have been produced by the centers. Soon after,
the platoon agents enter the AA_SAY phase, enabling them to do low level
communication.
CC_READY
The centers prepare to enter the CC_EXCHANGE phase by first entering
the CC_READY phase. In this phase they notify other centers that they are
ready. This is when all AC_EXCHANGE messages have been processed.
CC_EXCHANGE
The centers distribute the new world information among each other, and
merge the into summaries. Then they enter the CA_READY phase.
CA_READY
Platoon agents prepare to enter the AC_EXCHANGE phase, when their cen-
ters notify that they are ready.

So what actually happens is that agents communicate with their centers,
exchanging information. Then the centers communicate with each other while
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the platoon agents can do low level communication with agents in their vicinity.
Once the centers are ready the process starts over again. We want to emphasize
that this high level communication scheme is synchronous; all agents know about
the same information at approximately the same time. This is very useful because
by using high level information (summaries) one can predict what other agents
are doing. Another feature is that if for some reason the high level communication
layer breaks, then the platoon agents remain in the AA_SAY state so the low
level layer is still operational. Table 3 summarizes the differences between the
high level and the low level communication layer.

4 Research Methods
4.1 Proving the Design Goals
More important than our ranking in the RoboCup Rescue competition is proving
that we reached our design goal presented in this document. Our goal was making
sure that the information provided by the proposed communication system is
accurate, and recent enough to base decisions on and lastly that it matches
whenever it is used to make decisions. We have measured the total percentages
of buildings that are known to be burning, during a simulation that is typical
for a competition. The map we used is known is Kobe and it is measured over
300 cycles with a couple of stationary agents on different sides of the map.

4.2 Results
To measure the precision we have to compare the world models of an agent in the
field with the actual situation. It is expected that the error will be large in the
first few iterations. As agents scout out the map their approximation of the real
situation should improve fast and keep up with new developments like spreading
fire. The amount of spreading fire as known to the kernel is shown in figure 1.
This amount is compared to the knowledge of agents. We have measured the
amount of fire known by two agents and show that it exceeds the amount of fire
known by a single agent.

The amount of known fire of an agent in communication with another agent
exceeds the amount of known fire of a single agent. What is more important is
that the error between the amount of actual fire and the amount of known fire is
a lot smaller. Because large, hard to extinguish fires are easier to spot from far
away the difference mostly consists of young fires that are easier to extinguish
and therefore more important to take action against.
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Fig. 1. Two agents patrolling together increase their knowledge of burning buildings
over that of a single patrolling agent. The vertical lines mark high level communication
cycles.

5 Conclusion

With an early version of this approach we have competed in the 2003 version of
RoboCup Rescue Simulation League [3]. Unfortunately technical problems and
flaws in our situation negotiation algorithm prevented us from seeing the effects
of our approach reflected in our competition scores. We have shown that it is now
working as expected and hope to see improvements in our competition results
because of it.
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Abstract. Pseudo-local vision system, which simulates visual informa-
tion derived from an on-board camera of mobile robot based on a ceiling
camera image, is proposed. It consists of a vision server and a client mod-
ule which communicate with each other in the SoccerServer-like protocol.
An image processing module for the on-board camera in the control pro-
gram is replaced with this system. The simulated visual information is
not a two-dimensional image data but a one-dimensional array which
represents the nearest edge in each direction around the robot. However,
it contains some of essential information of the on-board camera image.
This concept was implemented for our robot system for the RoboCup
Small-Size League. The server can transmit the edge data to 10 clients
30 times per 1 second. The time lag between grabbing image on the
server and extracting visual information on the client is about 10[ms].

1 Introduction

Coordination of multiple autonomous robots with vision is an interesting re-
search theme. However, autonomous robots equipped with an on-board camera
tend to be large and require large experimental environment like the RoboCup
Middle-Size League. On the other hand, we developed a small multi-robot plat-
form equipped with an on-board camera and participated in the RoboCup Small-
Size League. Since it is not easy to load all of the system on the robot for reasons
of space, power, CPU capability, and so on, the video signal of the on-board cam-
era is transmitted by radio link to PC outside the field and is processed on it
(Fig. 1 [1]). Accordingly trouble in the video radio link (e.g. interference) is fatal
for our system and we could not demonstrate the fruit of our research in the
RoboCup2001 competition.

To avoid such a trouble, we propose a pseudo-local vision system, which gen-
erates the on-board camera information approximately from a ceiling camera
image and has compatible function with an image processing module for the
on-board camera. It is a client/server system. The server periodically sends vi-
sual information computed from the ceiling camera image to the clients which
control the robots. Using the earlier version of this system, we participated in
the RoboCup2002 competition (Fig. 2[3]).

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 510–517, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Real local vision system Fig. 2. Pseudo-local vision system

Fig. 3. Nearest edge Fig. 4. Pseudo-local vision information

In such a system, there are some methods of generating the on-board camera
information from the ceiling camera image. It is hard to make two-dimensional
image data and to send it for 10 clients 30 times for 1 second. Therefore, in
this paper, we propose a method of sending one-dimensional array data which
represents the nearest edge on the floor in each direction around the robot. Fig. 3
and Fig. 4 show examples of the nearest edge of robot A and the one-dimensional
array data respectively. We call this edge data pseudo-local vision information.
It is not a real image (two-dimensional data), but contains some of essential
information of the on-board camera image. For example, it represents a hidden
object and overlapping objects. This system is useful as a research platform of
autonomous mobile robot not limiting to the RoboCup.

This paper is organized as follows. In section 2 we discuss functions required
for the pseudo-local vision system. Next the developed system is explained in
section 3. In section 4 we evaluate the system. Finally conclusion and future
works are described in section 5.
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2 Discussion about Required Functions

2.1 Requirement

Let us consider generally requirements for the pseudo-local vision system. As
a useful platform, we require that (P1) It can simulate image or alternative
information derived from the on-board camera, (P2) Program code for on-board
camera robot is almost available without change, (P3) Special equipments and
devices are not necessary, and (P4) It can provide data for multiple robots 30
times per 1 second (same as the standard video rate). Moreover, as a tool for
the RoboCup competition, we require that (R1) All teams can share the server
impartially, (R2) It can serve 10 robots maximum with small time lag, and (R3)
The protocol is easy to use.

2.2 Solutions

Since what is derived from the ceiling camera image is two-dimensional informa-
tion on the floor plane, it is impossible to directly convert it into the on-board
camera image of three-dimensional object on the floor. Thus, it is necessary to
re-construct an image from the positional data derived from the ceiling camera
and three-dimensional geometric models. Using recent high-performance proces-
sor, one can make simulated images with high fidelity at high speed. However,
it is hard to make 10 images 30 times per 1 second.

If the server can output the simulated image as analog video signal, whole
system including the frame grabber can be tested and our team does not need to
change software at all. However, other teams which do not have on-board camera
system need additional hardware to use the pseudo-local vision system. In case
that the server transmits the simulated image as digital data, under condition,
8bit/pixel, 640 × 480pixel/frame, and 30frame/s without data compression for
10 clients, the necessary communication capacity is about 700[Mbps], which is
too much for the standard Ethernet.

2.3 Proposed Method

According to our experience of participating in the RoboCup Small-Size League
with robots equipped with omni-directional on-board camera, the most signif-
icant in the on-board camera information is the free space around the robot
and the type of object beyond it in each direction. In such situations, a hidden
object and overlapping objects are important problems. Therefore, we propose a
method of using a one-dimensional array which represents the nearest edge on the
floor around the robot in each direction as a simulated local vision information
instead of the two-dimensional real image data. We call the array pseudo-local
vision information. For example, in Fig. 3 bold lines show the nearest edge of
robot A in each direction. Fig. 4 shows the contents of one-dimensional array
of the nearest edge of robot A. The horizontal axis means the direction of 0 ~
360[deg]. The upper part shows the distribution of distance to the nearest edge.
The lower part shows the distribution of type of the nearest edge.
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3 Developed System

3.1 Structure

The developed pseudo-local vision system is a client/server system. It consists
of the vision server and the client module which is a part of the robot control
program (Fig. 5). Two parts are connected with network. Maximum of 10 clients
can connect with the server considering that two teams use the server together
in the RoboCup competition. The vision server derives position and orientation
of all robots and ball from the ceiling camera image, computes the nearest edge
data for each robot, and send it to each robot periodically. The client module
communicates with server and converts the edge data into a form which can be
used by the upper modules. The module replaces the image processing module
for the on-board camera.

3.2 Protocol

The communication protocol is similar to that of the SoccerServer[5] on UDP/IP.
The method of initializing is same as the SoccerServer. At first the client sends
(init) message to the server and then receives visual information from the port
specified by the server. The vision server accepts a team color (blue or yellow)
and a robot number (1 ~ 5) in (init) message unlike the SoccerServer.

The visual information sent by the vision server consists of the time when
the image is grabbed, the nearest edge array, and the ball data. The reason why
the ball data is separated is that it is smaller than other objects. The format of
the visual information is shown as follows.

Time
EdgeString

Time when the image is grabbed.
Character string which represents the nearest edge data. The
edge data in one direction is represented by three characters.
The first character means the type of edge. The second and third
characters means the distance of the edge on the image plane in
hexadecimal notation [pixel]. The method of representing the
type of edge for robot has three options as follows.

The edge types of all robots are same.
The team color is distinguishable by the edge type.
The robot number is distinguishable by the edge type.

Distance

Direction
Size

Distance to the ball on the image plane [pixel]. In case that the
ball is hidden, -1 is set.
Direction of the ball [deg].
Size of the ball on the image plane in angle [deg].

An example of the visual information is shown as follows.

EdgeString contains 1080 characters in our current version.
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Fig. 5. Structure of the pseudo-local vision system

3.3 Vision Server
The vision server extracts color markers on the robots from the ceiling camera
image, distinguishes them, and derives their positions and orientations. It also
measures the position of ball. A inexpensive frame grabber is employed to digitize
video signal. Modified CMVision [4] is embedded in our program to obtain color
region in the image. Moreover, Kalman filter is introduced to improve the quality
of information.

After that the processes are carried out for each client separately. At first the
coordinates of all objects are transformed into the processed robot’s coordinate
system. In this system the nearest edge is found from intersection points between
the object boundary and line through the origin. The boundary of robot and ball
is modeled as a circle. Next the distance of the nearest edge is converted into
the distance on the image plane in integer.

In the current implementation, the view angle is 360[deg] (omni-directional),
the direction is quantized every 1[deg], the conversion of the distance on the floor
into the distance on the image plane is based on the model of omni-directional
hyperboloidal mirror used for our on-board camera. The conversion model is the
following form.

where is the distance on the floor plane from the robot center, R is the distance
on the image plane from the image center, A, B, and, C are constants, is
function to make integer. In the current version all they are fixed. However,
in the future version, they will be variable.

The above mentioned processes are carried out for maximum of 10 clients.
After computing of the nearest edge for all clients, they are sent to the clients
in random order in the format specified by the protocol.

3.4 Processes on Client Side
The client module replaces the on-board camera information with the infor-
mation made from the edge data sent by the server. In our program for robot
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control, the multi-thread library is employed, the lowest image processing (grab-
bing image frame, extracting color, labeling, and AND operation with template)
is assigned to one thread. Thus this thread is replaced with a new thread with
the client module. The other threads need no change. Based on output of the
substituted thread, the upper threads can execute detecting free space around
the robot, self-localization, estimation of the ball position, and so on in the same
manner as on-board camera case [2].

3.5 Clock Synchronization between Server and Client

In order to use image of a moving object, it is indispensable to precisely detect
the time when the image is grabbed. Since the vision server which grabs image
and the client module which uses visual information are running on different
machines generally, clock synchronization between them is necessary. We found
that a method of using the system clock of Linux and NTP (Network Time
Protocol) does not give enough precision for this purpose. Therefore, we devel-
oped a method of time measurement and clock synchronization using RDTSC
(ReaD Time Stamp Counter) of Pentium processor referring to Bernstein’s clock-
speed [6]. As a result, we can measure time among multiple machines to a pre-
cision of under one millisecond. Using this, time lag in the system is evaluated,
control method of considering time lag is carried out.

4 Evaluation

The above mentioned system is implemented on Linux. In this experiment for
evaluation, the server PC equipped with Pentium IV 2 [GHz] grabs the ceiling
camera image with frame grabber using BTB878 in 640×480 [pixel]. 10 client
programs are connected with the server. Some clients are executed on the same
machine. The performance of PC for clients is various. The client whose perfor-
mance is measured is executed alone on a machine with Pentium III 500[MHz].
The server PC and client PCs are connected with 100Base-TX.

4.1 Example of Vision Processing

Fig. 6 is a simulated on-board camera image of robot A in Fig. 3, which is made
from the nearest edge array shown in Fig. 4 by drawing it on omni-directional
image plane. This robot is also equipped with an omni-directional camera. An
image taken with the camera at the same point is shown in Fig. 7. Comparing
the two images, there is no information of the part beyond the nearest edge in
Fig. 6. However, except for this point, the nearest edge data well simulates the
real image. Note that Fig. 6 is not used in the control program but is help to
human to understand the situation.

4.2 Processing Period and Time Lag

The server can accept 10 clients and has capability of processing image and
sending information simultaneously every 33[rns] under the above mentioned
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Fig. 6. Pseudo-local vision image Fig. 7. On-board camera image

Fig. 8. Time lag in vision processing

condition. Fig. 8 shows the trend of time lag between grabbing image on the
server and extracting visual information on the client. A, B, and C in the figure
mean the time lags on server side, network, and client side respectively (see also
Fig.5). The time lag is almost constant, the total is about 10[ms]. Time lag
from time when the shutter is released is added 33[ms] to it, which is spent in
grabbing image.

In case that our robot control program for the on-board camera is executed
on PC with Pentium III 500[MHz], the time lag between grabbing the image
in 320 × 240[pixel] and extracting information is about 23[ms]. Introducing the
high-performance PC for the vision server, the time lag of the pseudo-local vision
is smaller than that of the real local vision, even if the server works for 10 clients.

4.3 Resolution and Hidden Ball

In case that the ceiling camera image is grabbed in 640 × 480 [pixel], the resolution
is almost uniform all over the field, one pixel corresponds to 5×5[mm] on the
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field. On the other hand, in case that the image of our omni-directional on-board
camera is grabbed in 320×240[pixel], one pixel corresponds to 4.4×4.4[mm] on
the field at the nearest and available point, almost same as the ceiling camera
case at point 220[mm] far from the robot, worse than it at farther point. However,
it is only an example. If the view angle of the on-board camera is narrower than
360[deg] and/or the resolution is higher, the current version cannot simulate
in enough precision. Moreover, there is a problem that the robots sometimes
hide the ball from the the ceiling camera. It means that the system cannot
completely simulate a property of the on-board camera that a nearer object is
easier to observe. To overcome these problems, multiple ceiling cameras will be
introduced in the future work.

5 Conclusion

In this paper we propose the practical method of simulating the on-board cam-
era information using the ceiling camera for multiple mobile robot platform.
Although the simulated visual information is simple, it represents some of es-
sential problem of the on-board camera information. Evaluating the developed
system, we found that the processing period and the time lag are small enough for
the system to be used practically. Actually we participated in the RoboCup2002
using the earlier version of proposed system.

In the near future, we will open the source code of the vision server to the
public on the Internet. By using this framework we may be able to realize “the
Pseudo-Local Vision League”. Moreover it will be a bridge between the simula-
tion league and the real robot leagues in the RoboCup.
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Abstract. We present a method to build a hypothesis on the condition of the en-
vironment in which a robotic multi-agent team moves. Initially the robots have
a default assumption about the conditions of the floor and on how moving under
these condition works. For certain parts of the environment however, the default
assumption may be wrong and moving around does not work in the expected way.
Now the robotic team builds a hypothesis on the conditions of the yet unvisited
part of the environment in a way similar to computing a diagnosis for electri-
cal circuits. Resources can be saved by avoiding areas that possibly also contain
obstacles.

1 Introduction

In RoboCup Simulation League, the simulated robots are situated in a two-dimensional
world where objects move according to some fixed rules, which are known to the play-
ers. Usually, during a regular tournament, these rules are not going to change. Addi-
tionally to the regular tournament during RoboCup 2001 there was an evaluation round
where parts of the physics of the simulation was changed before the matches started,
without that programmers knew of this in advance. The change in the physics had the
effect that dashing on the upper half of the field resulted in only half of normal speed
for all the players. Some of the teams did manage these matches better than others, but
to the best of our knowledge none of the teams could come up with a diagnosis of what
happened on the field, though this was immediately visible for human spectators.

In this paper, we present a solution to the problem how a team of robotic agents can
come up with a hypothesis of what might globally be wrong with the environment in
similar situations. Hypotheses should entail the currently observed behavior and provide
some kind of “forecast” for those areas that no other member of the team visited so far.
As time proceeds the hypothesis will be refined to match the actual situation more
closely. With a hypothesis about the condition of the environment, single robots can try
to avoid areas that potentially contain obstacles, take the shortest way out of these areas,
or instead enter these areas to (dis-)prove the hypothesis dependent on the strategy of
the team.

* This research is supported by the grant Fu 263/6-1 from the German research foundation DFG.
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2 From Problems to Hypotheses

What we essentially want the robots to do is related to the approach of model-based
diagnosis: abnormalities have to be identified and a kind of explanation for these abnor-
malities should be generated (see for instance [4]). Though we identify some differences
between doing model-based diagnosis for devices and building hypotheses for robots
in the first part of this section, we can apply the same procedure to compute the result
in our approach.

2.1 Differences between Model-Based Diagnosis for Devices
and Building Hypotheses for Robots

Though at first sight both problems seem to be very similar, there are differences with
respect to some general points:

Devices vs. Space. Model-based diagnosis is usually used for physical devices con-
sisting of several components. The “device” we are interested in in our approach is
space, i.e. the floor on which the robots move. To use a procedure like model-based
diagnosis, we artificially have to introduce components like smaller areas which
make up space.

Diagnosis vs. Hypothesis. Even if we introduce kinds of devices in both approaches
there is a difference with respect to result that should be computed: By taking a
description of the system and a description of the behavior of the system, model-
based diagnosis is usually used to explain the observed behavior by providing a
diagnosis which states possible faulty components. For our robots, we observe the
– possibly faulty – behavior of some of the components (parts of an area) and by
this observation, we want to build a hypothesis on the behavior of the whole system
(the complete area).

2.2 Identifying Abnormalities

The only way our robots can deduce the presence of an obstacle at their current location
is by moving forward and using position estimation or odometric information, that is
robots can execute a kind of move operation and recognize if it succeeded or if it failed.
A description of the (usual) behavior of the move operation, an observation of the be-
havior of the move operator and some knowledge concerning the accuracy of these both
are necessary to decide if a robot actually has a problem or not.

3 Representation of the Environment

The assumptions made in the previous section enable us to do two things: Firstly, robots
can clearly identify a part of the field as being defective if move does not work in a par-
ticular situation. Secondly, robots can exchange information on abnormal tiles by send-
ing logical facts to each other. These informations need only to be sent in unexpected
situations. By doing so, robots exchange and collect information about tiles on the field
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Fig. 1. Left: Area partitioned into atomic tiles with robotic team. On the gray tiles, robots cannot
move as fast. Right: Created hypothesis from this situation.

they already visited. To get an idea of how the yet unvisited tiles could be like, we set
up rules that relate tiles of different levels to each other. The basic assumption here is
that if there is an unexpected change in the environment, this change usually concerns
areas larger than the size of our atomic tiles. If there is a tile containing an obstacle,
its unvisited neighbors will probably also contain obstacles. In the next subsection we
are going to explain how we want to relate tiles of different levels to each other. We
will assume that the area is partitioned into squares, but other ways of partitioning are
possible. In the second part of this section we are going to describe the logical rules we
are using for the relation between tiles.

3.1 Hierarchical Layering of Tiles

To build a hypothesis on defective tiles, we use a hierarchical layering of tiles inspired
by quad trees [6]. In the case of squared tiles, we use 2 × 2 atomic squares (level 0) to
make up a higher-level square (level 1), 2 × 2 squares of level 1 to make up a square of
level 2 and so forth. The last layer in this hierarchy covers the whole area accessible for
the robots. Like the atomic tiles, each of the higher-level tiles gets a symbolic label so
that it can be identified uniquely.

The idea behind building a hierarchical representation using tiles is the following:
Initially, all robots have the default assumption that move succeeds in the whole area.
If, for a tile of a certain level, it is known that it covers only unknown (smaller) tiles
and at least one tile where move succeeds, our hypothesis should be that move will work
for the complete tile. If the tile covers only unknown smaller tiles and at least one tile
where move fails, our hypothesis should be that move will fail for the complete tile.
Tiles containing both kind of smaller tiles (and possibly unknown tiles) have to be split
up into tiles of the next lower level. For an example hypothesis see the graphics on the
right in Fig. 1.

3.2 Logical Representation

Each tile in our representation can be identified by its level and its coordinates, so the
tiles are the “components” of the field. Logically, a tile is an atom with level l,
where x and y denote the coordinate of the respective tile in that level. The non-atomic
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tiles contain lower level tiles. These connections including the resulting assumptions on
the state of respective tiles can be described using logical rules.

In model-based diagnosis, a model of a device is used to compute the expected
output given a particular input. Discrepancies between expected and the actual output
are used to detect faults in the system. In our setting, the attempt to move on a certain
position can be regarded as “input” to an atomic tile. Thus, we denote the fact that the
robot tries to move on location by

The result of this attempt can be regarded as “output” of an atomic tile, and so
we denote the success of the operation move by while a failure of this
operation is denoted by

There can be different kinds of faults in a system like this: in our approach, we
are aiming at faulty tiles, the components in the system. Possible are also faults in the
actuators or in the sensors measuring the output of the actuators; however for now we
ignore them.

Definition 1. An atomic tile is called defective (or abnormal), if it is known that
the move operation fails on (written: An atomic tile is called
normal if it is known that the move operation succeeds on

In our approach we use two definitions concerning the connections between atomic
and higher level tiles: Definition 2 deals with implications for a higher level tile from
knowing that the move operation succeeds on an atomic tile, while Definition 3 de-
scribes implications for higher level tiles from knowing that the move operation failed.
A third possibility for an atomic tile is that no robot visited the tile so far, so that there
is no knowledge on the behavior of the move operation on the respective tile.

Definition 2. A tile of level l (l > 0) containing a normal atomic tile is not abnormal.

This relation between atomic tiles and higher level tiles can be expressed used log-
ical formulæ. The number of formulæ for each tile is dependent on the level of the tile
and the used topology. In the case of square tiles the branching factor is 4, i.e. a tile of
level one contains four level 0 tiles, while a tile of level two contains sixteen level 0
tiles.

Example 1. In the case of square tiles consisting of four lower level tiles the rules for
Definition 2 look like this:

Definition 3. (At least) one of the tiles containing an abnormal atomic tile is abnormal.

Example 2. In the case of square tiles consisting of four lower level tiles the rules for
Definition 3 look like this:
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The number of formulæ of this kind necessary is equal to the number of atomic tiles
for the complete area. The right hand side of each formula denotes that move failed on
an atomic tile, while on the left hand side we have a disjunction of all tiles that contain
the respective atomic tile – including the atomic tile itself. The length of the right hand
side of these formulæ is logarithmic with respect to the number of atomic tiles.

4 Building a Hypothesis

Once the set of clauses as described in the last chapter is available, collected knowledge
from moving around and from communication and a theorem prover can be used to
solve the problem of building the actual hypothesis. We need to compute models of
the given set of clauses, where the extension of the ab-literal is minimal. That means
the theorem prover used should find solutions for the given clauses so that there exists
no solution containing a subset of true ab-literals. A procedure to compute minimal
diagnosis with a theorem prover can be found in [1], the theorem proverNIHIL1 we have
been using to compute hypotheses is based on this procedure. We briefly explain some
basics for this procedure in the following subsection; in principle any other procedure
for computing minimal models could be used.

4.1 Model-Based Diagnosis with Hyper Tableaux

Usually, for a diagnosis we need a system description (SD), a set of components of
the system (COMP), and an observation (OBS). As stated earlier, a component c can be
abnormal (ab(c)), or it can behave normal (¬ab(c)). According to Reiter [9], a diagnosis
is defined as follows:

Definition 4 (Reiter 87). A Diagnosis of (SD, COMP, OBS) is a set such
that is consistent. is called a
Minimal Diagnosis, iff it is the minimal set (wrt. with this property.

As we shall see later, the set of observations is simply a set of logical facts. A basic
ingredient to the diagnosis method mentioned above are hyper tableaux [2]. Basically,
a hyper tableau is a finite ordered tree T where all nodes, besides the root node, contain
literals from a finite set of ground clauses. A branch b in T is called regular if each
literal in b occurs at most once, otherwise it is called irregular. A tree T is regular iff
all its branches are regular. Branches containing containing contradicting literals are
labeled as closed, and as open otherwise. A tableau is closed if each of its branches is
closed, otherwise it is open. Computing minimal diagnoses is possible by finishing all
open branches and collecting the ab-literals from open branches.

1 NIHIL = New Implementation of Hyper In Lisp. Thanks to Peter Baumgartner for providing
helpful information on the calculus and on using his system.
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Fig. 2. Example with one robot on a defective tile (0,1) and two possible hypotheses.

4.2 Selecting a Hypothesis

Even if the computed diagnosis are minimal, for a given situation there could be several
minimal ones. Consider a robot put on the center of a square finding the atomic tile on
its place defective. In each level of the hierarchy of tiles there is one tile surrounding
the atomic tile that could be a hypothesis for being a defective tile. The least conser-
vative hypothesis covers only atomic tiles which are known to be defective. The most
conservative hypothesis expands to the largest tiles that contain at least one abnormal,
but no normal atomic tile.

Example 3. Consider the four robots from Fig. 2. The facts about their current locations
are like this:

So it is known that tile is defective, whereas tiles and are
known to be working. There is nothing known about the other tiles. The rules describ-
ing the relation of tiles between the different levels are selected as in Example 1 and
Example 2. One diagnosis as shown in Fig. 2 b) will be computed, and the
other one as shown in Fig. 2 c) To select the most conservative hypothesis,
one has to choose the diagnosis with the least number of faults. If there is more than
one diagnosis with this property, the one containing tiles with the largest levels l is
the most conservative one.

4.3 Why Logic?

Looking at the hypothesis and the way it gets computed the question arises why one
should do it this way instead of using the quad trees directly. There are different answers
to this question.

Firstly, we have chosen to use a theorem prover because it was available. Creating
the rules to represent the environment was done automatically by a simple program,
so the programming effort to solve the problem was very small. But there are other
advantages of this approach:
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Flexibility. The approach using a theorem prover is flexible with respect to the selected
topology, because the representation is independent of the computation. A robot
moving in a building consisting of several different rooms can select a topology
dependent on the room it is in.

Robustness. The use of logic for communicating facts about the environment can add
robustness to the negotiation process among different team members. We assume
that robots communicate an observation only if it contradicts their current hypoth-
esis about the environment. By receiving known information robots can possibly
still improve their current hypothesis, because it can be deduced that a previous
message must have been lost.

Use of Additional Knowledge. By using additional knowledge about potential obsta-
cles, the selection of hypotheses can be controlled. This is possible because the
theorem prover computes all minimal diagnosis, from which we can select an ap-
propriate one. By choosing the hypothesis containing the tiles with the largest lev-
els we select the most conservative one. Dependent on knowledge or assumptions
about the environment we can also prefer hypothesis with obstacles of a certain
size, if applicable.

However, a disadvantage of our approach is that with larger areas and increasing
number of tiles calculation of hypothesis becomes slow. This is due to the fact that the
number of formulæ increases quadratic with the number of tiles.

5 Related Work

As mentioned earlier, model-based diagnosis [9,4] is usually concerned with computing
an explanation for a certain behavior of technical devices. Logical descriptions of the
device and of the components of the device are used to predict the expected behavior
of the device, given a particular input. The diagnostic task is to identify possible faulty
components by comparing the actual with the predicted output. The ab-literal is used to
denote faulty components. Approaches as described in [1] take the system description
and the observation of the behavior as a set of clauses to compute models so that the
extension of the ab-literal is minimal. Besides the reasoning strategies the assumptions
made for the reasoning process are a matter of concern, see for example [5]. For an
overview about symbolic diagnosis in general see [7].

As in our approach to specify and implement a team of agents [8], the authors in
[3] use a logical approach to specify the knowledge of an agent. The agent architecture
ALIAS is introduced, where agents are equipped with hypothetical reasoning capabili-
ties. Hypothesis are raised by an agent and it is checked if the hypothesis complies with
the other agents knowledge, contrary to our approach where the knowledge is collected
prior to raising hypotheses.

6 Conclusions and Future Work

In this paper we showed a way to build hypotheses about the environment of robotic
teams with a theorem prover. A hypothesis about unknown areas can be useful to guide
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the selection of actions, so that resources can possibly be saved. The logical description
of the environment can be generated automatically for different topologies. Because
the method to actually compute the hypothesis is separated from the description of the
environment, topologies could be switched at run time. Should the time of computation
take too long due to a large number of atomic tiles the approach can be used to compare
different kinds of topologies and to be reimplemented in a more efficient fashion later
on. In our approach we looked at changes in the environment only, incorporating sensor
and actuator faults into our model is left to future work. Other points for future work are
methods to recover from message loss, and using methods to acquire knowledge from
teammates without communication. For large areas with a low density of facts a logical
description with variables could be tried.
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Abstract. We propose a new method of self-localization using two land-
marks and dead reckoning for a soccer robot equipped with an omni-
directional camera as a local vision sensor. This method requires low
computational cost. Thanks to rapid process, the system can afford to
run multiple localization process in parallel resulting robust and accurate
localization. An experimental result in the field of Robocup Middle-size
league indicates that the approach is reliable.

1 Introduction

Many problems are left unsolved to develop an autonomous mobile robot work-
ing in a dynamically changing environment. Especially, self-localization is the
most fundamental problem. Many solutions developed so far are classified into
two categories, i.e., relative method and absolute method. Relative method es-
timates pose of the robot by the integration of incremental motion using infor-
mation obtained by intrinsic on-board sensors. A typical technique of relative
localization is dead reckoning[1]. This method cannot be used for long-distance
navigation because it suffers from errors caused by various disturbances. The
localization error grows over time. Absolute method calculates the absolute pose
of the robot using various landmarks. The localization error is suppressed when
measurements is available. One problem in this method is that movement of
small distances cannot be calculated because of rather lower resolution of sensed
data as compared with resolution of motion. Another problem is that the robot
cannot always observe sufficient number of landmarks due to occlusion.

Both approaches have drawbacks. To cope with the drawbacks, absolute
method and relative method are often combined[4][10][12][13][14]: Kalman fil-
ter [2] [3] [7] [8] and Monte Carlo Localization (MCL)[6][9][11][15] are often intro-

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 526–533, 2004.
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duced. Kalman filtering, MCL and other localization methods are comparatively
reviewed in [16].

In self-localization in the soccer field of RoboCup Middle-size league, the
goals and the corner posts can be used as landmarks. The mutual geometrical
relationship among these landmarks is known. These field features are mainly
distinguishable by their color. If three landmarks are recognized by vision sensor,
the pose of the robot can be obtained by triangulation based on the measured
direction of them with respect to the robot frame[5]. However, robots often fail
to simultaneously recognize three different landmarks during the soccer game:
landmarks are easily occluded by opponent robots and teammate robots which
are always moving around and are rushing to the ball.

We developed a new self-localization method for a mobile robot and applied
it to the soccer robot in RoboCup Middle-size league. Initial samples of the pose
of the robot are distributed on a circumference of a circle determined by mea-
sured direction of two landmarks. Then the correct pose is determined through
iterative evaluation steps. This method requires low computational cost. This
enables multi-process of localization running simultaneously. In addition to this,
reinitialization of samples is performed when samples become highly improbable.
Thus robustness and accuracy of localization is guaranteed.

This paper is structured as follows. Principle of our localization method is
explained in Sect. 2. In Sect. 3, we explain techniques for satisfying constraints
of real-time response. Sect. 4 describes our soccer robot and an experimental
result is included in Sect. 5.

2 Principle of Localization

Throughout this section, we assume that observed landmarks are recognized
correctly and that their position in the soccer field is precisely known. When a
robot detects two landmarks and measures angles of their directions with respect
to a robot centered coordinate system, the robot is positioned at somewhere on
a circle which passes these two landmarks while satisfying that the angle at
the circumference is the measured angle (Fig. 1). Orientation of the robot is
determined as a function of its position on the arc and measured direction of the
landmarks. To uniquely determine position and orientation of the robot, dead
reckoning of the successive motion of the robot is used as followings. Discretizing
position on the arc, we obtain a set of candidates of pose of the robot

N is at most 360 in our current implementation. Successively
the robot moves for a short period and then detects plural landmarks and
measures angles of direction. Pose displacement of the robot for this short period
is also obtained using odometry with measured rotation of wheels. Adding this
displacement to each candidate of the pose, we obtain a set of renewed candidates

Localization error of each renewed pose is evaluated by difference of direction
angle to the landmarks: comparison is made between computed direction to each
landmark from the renewed pose and actually measured direction by the robot
(Fig. 2). Error value is accumulated over time by equations:
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In these equations, is an absolute value of difference between measured
observation angle of two landmarks from the robot and computed one, is
an absolute value of difference between measured direction angle and computed
one for each landmark respectively.

Fig. 1. Initial and renewed candi-
dates of robot pose

Fig. 2. Localization error of each renewed
pose

Error(0) is cleared to be 0 at the beginning of the localization process. Then
evaluation of all the candidate for the pose of the robot is repeated based on
visual measurement of the landmarks and odometry in every short period
Error value obtained by Eq. 2 increases gradually. Increase of accumulated er-
ror value is slow for those candidates which are closely located near the correct
pose, while increase is rapid for those which are far from the correct pose. Fi-
nally correct pose is determined uniquely as the one having the smallest error
accumulation.

In the initial step, the robot needs to detect two landmarks to make a circle
corresponding to the candidates of the pose of the robot. On the other hand, in
subsequent evaluation step, a robot should just discover one landmark at least. If
plural landmarks are observed by the robot, observation of landmarks effectively
functions to evaluate errors, resulting earlier determination of the unique pose
of the robot.

3 Localization Process

Localization is formalized as a selection process of the best one in a set of can-
didates based on the error evaluation over time. Error evaluation is performed
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for every candidates in every short time period Generally number of candi-
dates in an initial set is large, outliers should be eliminated as soon as possible
to reduce the number of candidates to be evaluated. We have developed several
methods to satisfy constraints of real-time response of the soccer robot.

3.1 Early Elimination of Inadequate Candidates for Pose

As the robot moves, accumulated error increases rapidly for these candidates
located far from the correct pose. So we introduce threshold values for the ac-
cumulated error, the error in observation angle of two landmarks, and the error
in observation direction to each landmark. As soon as an error exceeds the cor-
responding threshold value, the candidate is immediately removed from the set
of pose thus reducing computational cost (Fig. 3).

Fig. 3. Accumulation of errors

3.2 Selection of Two Landmarks among Available Landmarks

There are eight landmarks available in the soccer field: four corner poles and four
goal posts. Two adequate landmarks must be selected whenever more than three
are observed by an omni-directional camera of the robot to make the initial set
of candidates of the pose of the robot P(0). This selection is made in real time
based on a table prepared in off-line as followings. An initial set of possible pose
P(0) is composed of points obtained by discretization of a circle: the circle is
defined by two landmarks and observation angle of them by a robot. Maximum
number of elements is 360 in our current implementation. Those located out of
the field are eliminated at the beginning. Therefore, those two landmarks which
generates least number of initial pose in the field are selected. Considering the
symmetry of the field and location of landmarks, there are eleven possible pair
of two landmarks. Given an observation angle of landmarks from the robot,
number of discretized points on the circle within the field is enumerated for each
pair. Using 180 discretized observation angles from 1 degree to 180 degrees, a
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table is structured containing number of possible candidates for eleven pairs of
landmarks. Using this table, selection of two landmarks is made in real-time.

3.3 Control of Localization Processes

As described so far, the localization process is composed of generation of pose
candidate and successive selection of unique pose by traveling with dead reckon-
ing. Due to various errors, the pose of the robot may not be determined uniquely
even if the robot continues traveling. Further extension of travel distance causes
increase of accumulated error in dead reckoning. This would result erroneous
pose even if the pose should be determined uniquely. In such case, the local-
ization process should be aborted and a new process should be initiated. In
the current implementation, the running process is aborted if the number of
eliminated candidate exceeds a threshold value and the minimal error exceeds a
threshold value.

On the contrary, once the pose is uniquely determined in the course of travel-
ing, a new localization process is initiated at the point while the former process is
continued. In this way the robot maintains multi-process of localization running
simultaneously (Fig. 4). We compute a weighted sum of poses obtained in each
process as a best estimate of the pose of the robot. Reciprocal of accumulated
error obtained in Eq. 2 for each pose is used as a weight value. Number of pro-
cesses cannot grow limitlessly due to the real-time constraint of the soccer robot.
In addition, a lifetime is defined for a localization process, since an accumulated
error of the dead reckoning increases over time. In the current implementation,
number of the processes is limited to three.

4 Robot System

Our soccer playing robot is shown in Fig. 5. The robot is driven by two powered
wheels and is equipped with an omni-directional vision system. Two additional
free wheels with rotary encoders are installed to the robot for odometry with
least slippage.

An omni-directional camera is mounted on the top of the robot enabling
panoramic view around it (Fig. 6). The camera is composed of a CCD camera
with a hyperboloidal omni-directional mirror. Obtained image frame is processed
by an electronics board (IP5005, Hitachi).

5 Experiment

An experiment has been made in a half of Robocup soccer field composed of a
goal and a corner pole on the green carpet (Fig. 7). Two goal posts (A and B)
on both side of a goal and a corner pole (C) are used as landmarks. Performance
of the proposed method is compared with conventional two methods.

A field player robot is initially placed at point Then it is manually pushed
to follow a given reference test trajectory composed
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Fig. 4. Multi-process of localization

Fig. 5. Our soccer robot for RoboCup
Middle-size league

of straight line segments and rectangular corners. In Fig. 8, we show performance
of localization for three different cases: 1) localization by the proposed method
with two landmarks (A, B), 2) localization by the conventional triangulation with
three landmarks(A, B, C), and 3) localization by conventional dead reckoning.

In the first case, the robot succeeds in localization after traveling for distance
of 75 cm, and keep going with good accuracy till the end of the trajectory. In the
second case, when all three landmarks are correctly recognized

Fig. 6. Panoramic view of omni-
directional camera
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Fig. 7. Experimental setup Fig. 8. Experimental result

the robot succeeds in self-localization with good accuracy. On the trajectory
the robot often fails to recognize the landmark A and then fails

in localization. In the third case, localization by dead reckoning suffers large
error. In our proposed method, the amount of movement required to decide
the pose of the robot becomes small when three landmarks can be observed,
compared with the case of observation of two landmarks.

6 Conclusions

We have presented an self-localization method based on two landmarks and dead
reckoning for autonomous mobile soccer robot. The effectiveness of the proposed
method was proved by an experiment. The presented method becomes reliable
in robot soccer compared with the other technique such as triangulation with
three landmarks. Especially the method has a high adaptability for localization
of a keeper robot: although the keeper can always observe two goal posts behind,
it cannot almost observe other landmarks.
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Abstract. An obstacle avoidance approach is introduced that has dynamic ac-
tive regions. The dynamic regions are adapted to the current speed of the robot
and there are different active regions used, one for speed reduction and one of
turning away from obstacles. The overall strategy of this approach is that the
robot can drive with high speed which will be reduced in front of an obstacle in
order to do a sharper turn.

1 Introduction

Successful obstacle avoidance has to consider the abilities of the vehicle to slow down
and turn. When driving at high speed, a robot needs more time to stop and making
sharp curves becomes impossible. So if the robot slows down, the amount of possible
trajectories increases. In presence of an obstacle, it has to be decided whether the
robot should slow down and turn more sharply closer to the obstacle, or keep its speed
but deviate more from the desired path.

The potential field method [8, 6] is commonly used for autonomous mobile robots
in recent years. Basically it builds up an artificial potential field consisting of repul-
sive forces which pull the robot away from obstacles, and an attractive force directed
towards a target direction. If the position of obstacles and target(s) is well-known and
stable, the potential field can be used for planning a trajectory towards the target, e.g.
[15]. In case of unknown environments where the robot can sense obstacles only in its
near vicinity, the potential field method can only be used for local obstacle avoidance,
i.e. compute the next direction to go for. The same holds true for dynamic environ-
ments, like RoboCup [1], where obstacles (e.g. robots) change their positions con-
tinuously.

The potential field method regards the robot to be holonomic, i.e. it can drive at
any moment in any direction. Obviously this is not true for robots depending on their
speed and mass. Non-holonomic, e.g. differentially steered, robots have to turn first
before they can move in the desired direction. Obstacle avoidance methods, like
VFH+ [14] and the Curvature Velocity method [11], consider this by cost functions.
Using these cost functions the costs for each direction is computed. The dynamics and
kinematics of a robot are considered as only feasible directions are evaluated using
the cost function. A differentially steered robot can drive only small curvatures at
high speed, so only these directions are considered. Finally, the direction with mini-
mal cost is selected.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 534–542, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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In VFH+, cost increases if a direction leads towards obstacles, deviates from the
goal direction, or deviates from the current steering direction. The robot only slows
down if every direction is blocked. So if a robot should drive along a corridor and turn
into a narrow door, it may miss it because the speed isn’t reduced. The same problem
has been experienced for the Curvature Velocity method [9], and in [12] for the Dy-
namic Window approach [5].

The Lane Curvature method [9] chooses a free lane by minimizing an objective
function which has to implement the trade-off between avoiding obstacles, heading
for a target position, and maximizing speed. Among these three aspects, speed has the
lowest priority, so the direction with minimum costs may demand to slow down the
robot. This is similar to the effects of our approach.

In our approach, collisions are avoided by reducing the linear speed which again
enables the robot to turn away from obstacles and towards the target direction. Both,
speed reduction and turning, influence each other:

speed reduction enables the robot to turn sharper, and
turning to free space enables the robot to increase its speed again.

Speed dependency is mainly introduced by enlarging/shrinking the active region. The
active region is an area that moves with the robot, usually a circle around the robot,
see e.g. [6, 13]. In [12], a channel around a path (produced by a A* planner) is used.
Only obstacles within the active region are considered for obstacle avoidance. An
obstacle outside the active region is ignored as it is not regarded as a possible hazard.

Speed reduction and turning use different active regions. This is another out-
standing characteristic of our approach. This brings the advantage that they can be
tuned independently.

Speed reduction and turning are implemented as distinct behavior modules. In
compliance with the Dual Dynamics architecture [7, 10, 3, 2], each module has a so
called activation dynamics and a target dynamics. The target dynamics computes the
motor commands by which the module wants to pursue its goals. The activation dy-
namics computes the activation value of this behavior, ranging in from 0 to 1. The
activation value is used as a weight in order to superimpose concurrently active be-
havior modules. An activation value of 0 means that the module is not active, i.e. it
should not influence the motors in any way. The activation of an obstacle avoidance
module expresses the danger of having a collision; when approaching an obstacle it
rises continuously from 0 to 1 and, after turning away, back to 0 again.

We will describe the speed reduction module SlowDown (section2) and the module
TurnAway which makes the robot turning away from an obstacle (section 3). Section
4 tells how the outcome of these two modules is superimposed with the motor values
of the goal-oriented behaviors. Our experience with speed-dependant obstacle avoid-
ance is sketched in section 5.

2 Speed Reduction

2.1 Active Region

The active region of the module SlowDown is in front of the robot regarding its cur-
rent direction of movement. In case of a differentially steered robot this active region
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is either at its front, or, if it moves backwards, at its back. The active region is shaped
like a rectangle because obstacles within this region would collide with the robot as it
moves forward. The length and the width of the active region is computed as follows:

where is the robot’s width, is the robot’s current speed, is some
time span (e.g. 1 sec) and mDist2Obstacle is the minimum distance within which the
robot should react on obstacles.

Fig. 1. The active region of SlowDown

2.2 Collision Danger

While the robot senses its environment (e.g. using ultrasonic distance measurement),
it may detect a number of obstacle points. The possible danger of colliding with an
obstacle point which is measured inside the active region, decreases exponentially
depending on its distance to the robot.

Fig. 2. An obstacle point is viewed with and

The weight of the obstacles is computed during several stages. First, it is propor-
tional to the cosine of the obstacle’s angle

where denotes another safety margin.
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If the robot drives at high speeds, the obstacles at the side (having low values for
should gain more importance. This is achieved by the following step

Finally, the weight is multiplied with a constant depending on how the obstacle has
been classified. For instance, in the RoboCup domain there used to be a wall which
has to be touched in order to get a ball away from it. So this kind of obstacle should
not repel the robot as much as, for instance, other robots. If the ball lies between the
robot and its own goal, it has to be avoided in order not to shoot self goals; so in this
situation is very high, otherwise zero.

2.3 Activation Dynamics

The activation dynamics of SlowDown computes its activation value which expresses
the need for speed reduction for the current situation. Basically, it is the maximum of
all repulsive “forces” clipped to 1.

This target value is low-passed by an ordinary differential equation

where the time constant T (which expresses how fast should follow de-
pends on the current speed of the robot.

2.4 Target Dynamics

The target dynamics of SlowDown computes the maximum speed which is admissible
for a certain situation. Basically it reduces the maximum Speed depending on

especially if is zero, equals This is done by a
weighted sum where ensures speed reduction in case of high values of

In situations when turning is dangerous, i.e. will lead to collisions, the robot
has to drive backwards for a short while.
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3 Turning away from an Obstacle

3.1 Active Region

The active region of the module TurnAway is oriented towards the current target di-
rection.This region differs from the active region of SlowDown; especially it is inde-
pendent of the current orientation of the robot.

Fig. 3. The active reiogn of TurnAway

Also the shape of the active region differs from the one of SlowDown: first, there is
a circle around the robot; if there are no obstacle point within, the robot can turn,
otherwise not. Second, there is an active region oriented towards the target. It is
shaped like a parabola of a width (near the robot) and a length defined like

Similar to the active region of SlowDown, the length of the parabolic active region
depends on the robot’s speed. In addition, the length is clipped to dist2destination, the
distance between the robot and its target. This is because the robot should not care
about obstacles being behind its target. Otherwise such obstacles would cause the
robot to turn away before reaching its target. For instance, in RoboCup, the target may
be the ball and there may be other robots behind the ball. These should not be avoided
if a robot approaches the ball.

For the same reason the parabolic shape was chosen for the active region: the robot
should not turn away (but only slow down), if there are other robots in the vicinity of
the ball. This example illustrates that the active region should be shaped in an applica-
tion specific way. For other applications than RoboCup, other shapes could be advan-
tageous.
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3.2 Collision Danger and Activation Dynamics

The collision danger and activation dynamics of TurnAway are computed in the same
way as for SlowDown (see equations (2) to (7)). However it should be noted that

a different active region is used, and
the used constants are different.

This way, the modules TurnAway and SlowDown can be tuned independently (e.g.
scope, reaction time, the strength of reaction) which helped us a lot while tuning the
system.

3.3 Target Dynamics

The target dynamics of TurnAway computes the direction which is recommended to
the robot by the obstacle avoidance module. Here we use a potential field approach:
Each obstacle point has, beside and a which is a unit vector
pointing from the obstacle to the front of the robot.

Fig. 4. the repulsive unit vector

When computing the weighted vector sum, using as weights, we get
again a unit vector the direction where TurnAway recommends to
turn.

4 Superposition of Goal-Oriented Behaviors
and Obstacle Avoidance

After the obstacle avoidance modules have computed their output (activation values
of SlowDown and TurnAway together with the recommended direction and the maxi-
mal admissible linear speed), we have to tell how the final motor commands result
from this.
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In the computation of the maximal admissible linear speed, the activation value of
SlowDown is already used. So, the only thing left to be done is to clip the speed of the
goal-oriented behavior(s) by this speed.

Compromising between and the direction wanted by the goal-
oriented behaviors is done again by a weighted sum of vectors. Giving

the weight 1, has to be >> 1 in order to let
dominate if increases. This gives TurnAway the power to suppress if
obstacles are very close (i.e. if gets close to 1).

5 Results

The dynamic active region approach has been used since April 2001 by our RoboCup
robots participating in the middle-size league. Each robot is equipped with 5 infrared
distance sensors, two of them can sense obstacles up to 80 cm in front of the robot
while the other three have a range of 50 cm. Obstacle points are remembered up to 1.5
seconds in an occupacy grid; as the robot turns, it gets a scan of obstacle points in its
vicinity. Thus, the robot is quite short-sighted and the sensory input is sometimes
incomplete, i.e. obstacles are not sensed. Even with this limited sensory input, our
approach worked even in very crowded and dynamic situations. We limited the
maximum speed of our robots to 160 cm per second because of the limited scope of
our sensors and due to the fact that other robots also move fast. Under other condi-
tions we expect our approach to work at higher speeds.

Figure 5 shows a scenario where a robot wants to drive behind the ball but finds its
way obstructed by obstacles. The resulting trajectory is shown at the right side of
figure 5: the points are drawn in equidistant time steps; it can be seen that the robot
slows down in the vicinity of obstacles.

6 Conclusions

A novel obstacle avoidance approach is introduced that has dynamic active regions.
The dynamic regions are adapted to the current speed of the robot. There are different
active regions used, one for speed reduction and one of turning away from obstacles.
The overall strategy of this approach is that the robot can drive with high speed which
will be reduced in front of an obstacle in order to do a sharper turn.

The obstacle avoidance module is placed in the system architecture in a way that it
can not be overruled by the behavior system. Also, the behavior system may choose
among several possible paths by using the obstacle avoidance module as an oracle.
This creates a highly flexible system that has shown good results in experiments, even
with low dimensional sensor data of limited range.
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Fig. 5. A robot going for a ball while avoiding obstacles. The two snapshots at the left show the
robot at positions (A and B) marked in the robot’s trajectory shown at the right hand side
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Abstract. Modeling agents’ behavior has always been a challenge in
multiagent systems. In a competitive environment, predicting future be-
haviors of opponents helps to make plans to confront their actions prop-
erly. We have used the RoboCup soccer server environment [1] to design
a coach, capable of analyzing simulated soccer games and making deci-
sions to improve teammate players’ behavior during the games. We will
introduce our “Opponent Pass Modeling” method which makes a model
of opponent team’s passing behavior to guard opponent players and as a
result, to improve the defending behavior of our team. We will also de-
scribe a new approach to evaluate coach algorithms using soccer server
log-files and LogCoach tool.

1 Introduction

The Simulation League of RoboCup provides a standard competition platform
where teams of software agents play against each other in a simulated soccer
game [2]. In robotic soccer tournaments, a team of agents plays against another
team of agents for a single, short (typically 10-minute) period. The opponents’
behaviors are usually not observable prior to this game and so they must be
analyzed and modeled during the game. A common challenge for agents in mul-
tiagent systems is trying to predict what other agents are going to do in the
future. Such knowledge can help an agent determine which of its current action
options are most likely to help it achieve its goals.

So far, there has been some good works done on opponent behavior modeling
in robotic soccer environment. Ideal-model-based behavior outcome prediction
(IMBBOP)[3] is a technique which predicts an agent’s future actions in rela-
tion to the optimal behavior in its given situation. An online opponent model
recognition method is introduced in [4,5], in which the coach uses a number
of pre-defined opponent models to provide the agents with proper team plans.
More recently, some methods focus on unsupervised autonomous learning of the
sequential behaviors of agents, from observations of their behavior [6].

In this paper, we will introduce the “Opponent Pass Modeling” method which
uses statistical information about opponent players’ successful passes to mark
them during a game. We will also describe a new approach to test this method
using soccer server log-files, by the means of some useful software tools designed
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in Sharif-Arvand soccer simulation team [7] including LogCoach. As a platform
for our coach algorithms, we have designed and implemented a coach, which
is capable of gathering a rich collection of statistical information during soccer
simulation games. This statistical information then can be used for doing analysis
in a game to make decisions to improve players behavior [7,8].

This article is organized as follows. Section 2 will describe the opponent
pass modeling method from coach-side view which is more about gathering and
analyzing statistical information and from players-side view which focuses on
utilizing the results provided by coach. Section 3 introduces our testing approach
using soccer server log-files with the tools implemented in Sharif-Arvand team. In
section 4 we suggest some minor changes to adapt this method with the standard
coach language. Section 5 presents conclusions and directions for future work.

2 Modeling Opponents’ Passing Behavior

In a typical soccer simulation game, single player attacks will rarely result in
scoring a goal; It is simply because of the fact that opponent team already ben-
efits from players defending the area. So, players use passing techniques during
an attack to keep the ball from opponents and make the situation ready for
scoring. Figure 1 shows two sample effective methods applied by good teams
during previous RoboCup competitions. The models have been recognized by
observing different log-files of the games played by these teams. In each case,
attacking players have used passes to open teammates to change the region of
attention (where the defenders have crowded) making them free to position bet-
ter for next passes. Numbers on the arrows indicate steps of scenario, and for
simplicity, only the important movements have been shown in each step. It can
be seen that if the defenders had marked the attackers properly they could have
avoided surrendering a score. Marking, generally means guarding a player to
prevent it from advancing the ball towards the goal, making an easy pass or
getting the ball from a teammate.

Fig. 1. Two samples of successful group attacks

To determine which players should be marked, we take advantage of the fact
that teams are likely to show similar behaviors in similar cases. So, the players
may use a similar sequence of actions when they are in similar situations. During
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a game, coach considers the successful passes of opponent players to model their
passing behavior. A successful pass can be defined as a ball transfer between two
teammate players. Players will use the results later, to mark opponents during
a game.

2.1 Coach-Side Analysis

A coach client has the advantage of receiving noise free data about the field from
soccer server. So it is the best agent to centrally collect and analyze information
in a game. In a typical layered design for coach, the lower layers are responsible
for communicating with the soccer server, storing the received data in proper
data structures and recognizing the skills done by players. For example, skills
like possessing the ball or shooting the ball can be detected by comparing the
position and the speed of the ball and players during a sequence of cycles; or for
detecting passes which are a more complex skill, we use the lower detected skills
like the current possessor of the ball and the last player who kicked the ball; if
they both belong to the same team the ball has been passed, otherwise it has
been intercepted. Then, based on these primary information in the lower layers,
more intelligent algorithms for the coach have been designed.

In our method, the coach uses information about successful passes of oppo-
nent players to build a simple model for their passing behavior. As it can be
seen in figure 2(a), the coach stores the passes that opponents have done in the
defense area as well as initial coordinates of the receivers of the passes. The de-
fense area is defined as a portion of the field near our own goal and is about one
third of the field length. This information is then sent to the players in proper
cycles. Here is a simple pseudo code showing this part of the method:

2.2 Players-Side Utilization

Now it is players’ turn to use the information recently received from coach. The
basic idea is to mark the opponent who is the most probable to receive a pass
from the player possessing the ball. So, when an opponent player possesses the
ball in our defense area we check whether the current position of that player is
near to one of the BallPos_1s in the list received from coach; i.e. the starting
point of the passes. If so, the player may send a similar pass and we should mark
the player who will probably receive the pass. As shown in figure 2(b) we choose
the nearest player to the PlayerPos corresponding to that pass; i.e. the nearest
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Fig. 2. (a) Coach collects information about successful passes (b) Players decide about
the opponent to be marked

plater to the guessed pass destination. Now, one of our players (e.g. the nearest
player) should mark the selected opponent player. Pseudo code below shows the
described algorithm in more details:

Lots of optimizations can be done to improve the collected information and
the decision of the players when implementing this algorithm. In case more than
one BallPos_1 is nominated, the opponent player which has less defense players
near will be chosen. Also, in addition to original coordinates of successful passes,
we store the symmetric coordinates related to the fields’ x-axis; because of the
fact that, teams usually have symmetric formations which causes the players to
play symmetrically. We can also compute values for passes according to their
regional importance or consequential effect in the game (e.g. surrendering a
goal). In players-side, we only consider opponents who can receive the predicted
pass in a point near the previous successful pass (near BallPos(T2)). Note that
this method does not rely on the individual players (their uniform number). So,
players’ substitutions will not affect the result.

3 Using LogCoach for Evaluation

Using results of games is not necessarily a good way to evaluate most coach
algorithms. It is because of the fact that decisions made by a coach, are usually
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high level commands which need to be executed by players. So, even if coach
makes decisions properly, they won’t be effective unless players can utilize them
during a game, which will require well programmed players in skills, tactics, etc.
For example, considering our pass-behavior modeling algorithm, even if players
correctly predict opponents who will receive passes, they need a good marking
skill to mark opponents. If for any reason, a player fails to mark an opponent
properly, not only it will not be able to stop the attack, but also one of the
defenders uselessly will be hanging around.

Fig. 3. (a) Layered structured of Sharif-Arvand coach (b) LogCoach structure

So, we have designed and implemented LogCoach tool. Figure 3 presents
the structure of Sharif-Arvand online coach client and LogCoach. In the online
coach, connection layer is responsible for gathering data by communicating with
soccer server. While, in the LogCoach, LogPlayer module uses soccer server
output log-files to provide the the game data and stores the output as graphical
information which can be viewed using a visualizer tool called CoachDebugger
later. So, rather than running real soccer simulation games, we can use stored
log-files as the input data, without any changes required in other layers.

Using the LogCoach instead of coaching actual games, offers some benefits
and some limitations. Instead of running a complete soccer simulation game a
log-file can be processed in a few seconds; so it increases speed of development
and testing. Also, combined with the CoachDebugger it is a great help for test-
ing algorithms while enabling us to analyze the coach decisions by observation.
An other main advantage of using logfiles is that exactly the same input data
is available between the changes of the algorithms allowing it to see if new code
segments really improve the algorithm. However, without a real game, it is im-
possible to have active behavior like interacting with the players or adapting the
parameters according to the result of the previous decisions in a game.

To test and evaluate the correctness and effectiveness of our opponent pass
modeling algorithm, we developed a simple testing module using the LogCoach.
The idea is basically to find out how many opponent passes could be avoided
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during a game, and more precisely, how many goals could have been avoided
if players had used the opponent pass modeling algorithm to mark opponent
players. Actually, we put our players’ predicting algorithm in the test module
and use the coach’s statistical information to predict players who will receive
passes:

In the end the will be the percentage of correct guesses
during the game. To test the algorithm we used over 40 log files most of which
were from the last two RoboCup official games. We chose the games whose total
scored goals were more than 10 and we considered the defeated team as our team
for which the coach was used. The result is presented in Table 1. As you can see
the results are satisfactory; even in the worst case, about half of the opponents’
passes in our defense area could be predicted and probably avoided. Although it
does not mean that avoiding the passes could completely stop the attacks, but
they sure could deviate the opponents’ main plan.

Doing some changes in the evaluation function, the results were even more
interesting. This time we just considered the passes which consequently resulted
in a goal.
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Table 2 shows results of the new evaluation approach. Correctness column
shows the percentage of the goals which could be avoided if the scorer was marked
before receiving the last pass. Again we insist that this does not mean that the
defending team could survive from all the successfully predicted attacks, specially
because of their weakness in skills and tactics comparing with the opponents
players.

4 Adapting for the Standard Coach Language

Standard Coach Language is a general language for communication between a
coach and players during a soccer simulation game. The idea is that a coach uses
a unified standard language to communicate with teammate players, so it can
be used for coaching any team that can understand this language.

The syntax of the standard coach language allows the coach to define rules,
regions, constraints and instructions [1]. Our opponent pass modeling method
can be easily adapted to be used with a standard language based coach. For
each successful pass, it defines regions around the starting point of the pass and
starting point of the pass receiver. Then it defines a rule for the teammate players
to mark the opponent inside a region, related to where the ball exists. Here is an
example showing usage of the standard coach language for this method (based
on soccer server version 8.0).

where X_FROM & Y_FROM will be coordinates of starting point of the pass,
X_PASS_REC & Y_PASS_REC will be initial position of the pass receiver. R and
INITIAL_TIME are constant values (e.g. 5 and 1000) indicating the radius of the
regions and the initial time to be waited before executing the rule (a minimum
time, coach needs to collect more data), “markl” is an instruction defined in the
standard language, tells the players to mark the line from the ball to a specific
region.

5 Conclusions and Further Works
In this paper, we described a new method to model the passing behavior of op-
ponent teams, based on statistical information about previous successful passes.
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We saw that the model then can be used by players to guard opponents properly
and as a result to improve their defense ability. We presented a new approach to
evaluate coach algorithms using soccer server log-files instead of running actual
games. We also showed how the opponent pass modeling method can be adapted
to be used with standard coach language.

We are currently working on using this method to decide about team forma-
tion. For example if coach observes situations in which there are more opponent
players to be marked than the number of defenders it may decide to improve the
defense line by changing number or placement of defenders in the formation.
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Abstract. This paper describes a topological navigation system, based
on the description of key-places by a reduced number of parameters that
represent images associated to specific locations in configuration space,
and the application of the developed system to robotic soccer, through
the implementation of the developed algorithms to RoboCup Middle-
Size League (MSL) robots, under the scope of the SocRob project (Soc-
cer Robots or Society of Robots). A topological map is associated with a
graph, where each node corresponds to a key-place. Using this approach,
navigation is reduced to a graph path search. Principal Components
Analysis was used to represent key-places from pre-acquired images and
to recognize them at navigation time. The method revealed a promising
performance navigating between key-places and proved to adapt to dif-
ferent graphs. Furthermore, it leads to a robot programming language
based on qualitative descriptions of the target locations in configuration
space (e.g., Near Blue Goal with the Goal on its Left). Simulation results
of the method application are presented, using a realistic simulator.

1 Introduction

The problem of robot navigation is, perhaps, one of the key issues in mobile
robotics. Roughly, it consists in driving a robot through a given environment,
using the information from his sensors.

The most common form of solving this problem is to construct a world model
from the sensorial information. Based on this model, it is relatively easy to apply
control algorithms and drive the robot to its target locations. One of the problems
with this approach is the amount of computational effort required to store the
above-mentioned world model. Even when that is not an issue, most of the times
the sensorial information is not as exact as it would be desirable.

In this line of thought, approaching the problem in a more qualitative manner
seems to be quite a promising alternative, in which the relevant places of the
world are determined from their appearance. Vision sensors are normally used
to extract the relevant information, as opposing to non-vision sensors which are
widely used in the construction of world models. The problem of appearance
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based methods for navigation is surely not a closed one and has been addressed
in various manners, in a recent past.

In [1] the localization of the robot in a topological map is obtained by ana-
lyzing images in the frequency domain. On the other hand, [2] uses the original
input images and [3] uses the color histograms of such images. An interesting idea
is to use Principal Component Analysis methods to extract the most important
characteristics from an image or group of images, as proposed in [4].

This paper introduces the application of topological navigation methods to
robotic soccer. We have developed a flexible method that allows the robot to
pursue its navigation objectives, during a match, using a qualitative approach,
making the interaction with higher knowledge levels natural. The methodology
used in solving the overall problem is summarized in Fig. 1.

The outline of this paper is as follows: Section 2 describes the PCA methods
used to construct the topological map. Section 3 presents the techniques used for
localization and navigation. In Section 4 the application of the previous methods
to robotic soccer is explained and Section 5 presents the main results. Finally in
Section 6 some conclusions are drawn and future research perspectives explained.

Fig. 1. Summary of methods used in this work

2 Map Construction

The first step of the topological navigation approach is to build a representa-
tion for the topological map, based on which the robot will navigate. Several
representations of this map can be used; in our case we have chosen a directed
graph, where the nodes represent the key-places in the map and the transitions
represent the functions used to navigate between key-places.

This kind of representation is general enough to be used in a large number of
applications. In our case, the nodes will be identified with groups of postures in
the configuration space and the transitions correspond to basic functions
like move back or move forward.

After defining the topological map, the information required to represent
each of the nodes must be gathered. As this is an appearance based method, we
first start to acquire a set of images P that represents the space where the robot
will navigate. This set of images has to be general enough to represent all the
areas of the configuration space where we want the robot to navigate.
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The following step is to use Principal Component Analysis (PCA), also known
as Karhunen-Loeve (KL) expansion [5,6], to compress the information in P. At
the end of the expansion, a basis for the that best approximates
the acquired images, in the least squares sense, is obtained. This method is equiv-
alent to retain the directions with the larger variance (i.e., the largest amount
of information) of the data set.

Furthermore, it’s possible to define the error we are making in the approxi-
mation, by the following expression:

or, in percentage terms:

where corresponds to the number of eigenvalues chosen to represent the eigen-
space. These expressions provide a criterion to choose the number of eigenvectors
to be used.

Having explained the idea behind the approximation, an iterative procedure
can be used to compute the principal images, as explained in [5]. We call principal
space to the space obtained after all these calculations.

The next step in the construction of the topological map is to associate the
previously gathered information with the nodes of the graph. In this part of the
method, we start by projecting each image in the principal space, associating the
projection with the node of the graph that the corresponding image represents.
Of course, it is essential that the input images are previously grouped according
to the node they best characterize.

We can think of the obtained groups of projections as classes of patterns,
which allows the localization problem to be formulated as a pattern classification
one.

3 Topological Navigation

With the tools to represent the topological map available, it is possible to de-
fine the methods to use in the navigation itself. So, we start by presenting the
localization problem and then move to the discussion of the path planning and
path execution problems.

It must be pointed out that navigation procedures, as opposed to map con-
struction, must be executed in real-time.

As previously stated, the localization of a certain image in a node of the graph
can be formulated as a classification problem. To solve this problem, a known
classifier can be used. We chose to classify the images in the neighbor
[7] sense. In this classifier, the current input image projection is compared to
the projections of all the images used in the map construction (also known as
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learning) stage of the method. We then retain the closest images and classify
the image in the most represented class among the selected images.

A path to the objective node of the robot was obtained using widespread
search algorithms [8]. Of course, an heuristic could be used to improve the search
efficiency.

The other step in the navigation process concerns guidance, in which we must
ensure that the robot accomplishes the goals set by the path planner. In this
context, it is straightforward to achieve such goals, since the path is defined as a
sequence of primitive transition functions. The guidance loop for this approach
is described through the flowchart in Fig. 2. The problem with this solution is

Fig. 2. Open loop guidance supervisor Fig. 3. Modified open loop guidance super-
visor, to include path replanning

that, if a transition fails and the robot finds itself, e.g., in a node which does
not belong to the path, it simply cannot fulfill its objectives. A straightforward
solution for this problem is to generate a new path each time the robot detects
a failure in a transition, as explained in the flowchart of Fig. 3.

4 Application to Robotic Soccer

Our team of robots, the RoboCup MSL ISocRob team, consists of four Nomadic
Super-Scout II robots, which have, among other sensors, a front camera and
moves based on a differential drive kinematic structure.

In order to better test the previously described navigation method, we de-
veloped a simulator, which could generate images similar to the front camera of
our robots. This simulator was implemented in Virtual Reality Modeling Lan-
guage (VRML), and field textures were used to improve the realism. The images
obtained were RGB images with 320 × 240 pixels taken over a field with 10×5[m].

Figure 4 compares a simulator image and the image seen by the robot’s front
camera, in a real situation.
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Fig. 4. Simulated vs Real images

Fig. 5. Graph representation of the Topological Map

4.1 Topological Map

To construct the map, we considered 3 nodes where the BLUE goal was visible,
3 nodes where the YELLOW goal was visible and 4 nodes where no goal was
visible. We used 7 different transitions to travel between these nodes.

The nodes where defined considering the relative position of the goal w.r.t
the robot. We used four nodes for the situation where there is no goal on the
images to avoid conflicts and ambiguities in the definition of the graph. However,
the difference between these nodes can only be determined based on the history
of the robot path accomplished so far.

The transitions where defined specifying the angular and/or linear speed,
and the relative position which we want to maintain of a specific goal (if any)
w.r.t. the robot (e.g., move forward keeping the blue goal in the right of the
robot).

The graph that was used in the robots navigation is shown in Fig. 5. After
defining the graph, we extracted a set of 528 training images and applied the KL
transform. To determine how many principal components to use, we computed all



556 Gonçalo Neto, Hugo Costelha, and Pedro Lima

the 528 eigenvalues and used equation (2) to compute the number of eigenvalues
required to achieve leading to 46 principal components.

In Fig. 6, a plot comparing the mean square error for the training set and
for a testing set is presented. The latter was obtained in random field positions
and the error was calculated for several principal spaces with different numbers
of eigenvalues, between 0 and 60.

4.2 Navigation

For localization, we used, as previously stated, the neighbor classifier,
with an associated Euclidean metric, in the principal space. We obtained
several classification results using a large number of postures from most regions
of the configuration space. In Section 5 we explain some of those results.

The overall algorithm was tested by running it on the simulator, generating a
new goal node randomly each time the last one was accomplished. Furthermore,
we created another graph having the same nodes and transitions topology but
where the images associated with each of the nodes were different — we only
considered an image to be “near a goal” when it was taken at a distance of 2m
from that goal, as opposing to the first situation where this distance was extended
to 5m (mid-field situation). This setup also allowed us to test the percentage of
times a given transition would fail for a given representation. Some of the results
from those tests are presented in Section 5.

5 Experimental Results

The principal space was obtained from a set of training images. Obviously, not
all images with the same size live on this space and, in general, they are far
from it. In fact, by neglecting the smaller eigenvalues we are doing an acceptable
approximation of the eigenspace obtained from the training images but, on the
other hand, the principal space might not be so good so as to approximate
conveniently other images of the same size.

In Fig. 6 we compare the mean square error for training and test sets. As
expected, the error for the training set converges to a constant value. This value
corresponds to the mean square distance between the test set and the eigenspace.
For the training set the mean square error converges towards zero. The imple-
mented classifier was also tested, as mentioned in Section 4, by using a large
number of postures on the soccer field, with small distances between them, which
ensures a good representation of the whole configuration space. We present an
example of a 2 dimensional cut in the configuration space, with the coordinate

fixed in the zero value. Refer to Fig. 8 for information on the frame used.
The localization tests led to the conclusion that the classifier is not immune

to the presence of outliers, which can make the path execution a bit more trou-
blesome, justifying the need for a supervisor. However, the results are much
better for 5 neighbors than the use of a single nearest neighbor classifier.

As for the execution of the complete navigation method, we stated that it was
mostly successful in travelling between key-places of the topological map, due to
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Fig. 6. Mean square error in the train
and test sets

Fig. 7. Example of the classifica-
tion/localization

the usage of an execution supervisor. In fact, some of the transitions proved to
have a failure rate higher than 50%, which suggests that there are some implicit
transitions on the graph which were not defined a priori. This was, in fact,
expected, since the nodes did not quite correspond to the configuration space
regions we intended them to represent.

A more serious situation that occurred, due to the existence of these implicit
transitions, were live-locks — situations where the robot stays in a loop from
where it cannot get out, unless a new goal node is given. Other than that, the
method was always successful in achieving the proposed key-places.

In Fig. 8 we can see a trajectory of the robot in a multi-objective situation,
and where the border between Far Goal nodes and Near Goal nodes was set at
the distance of 2 m from the goal. It is interesting to underline angular velocity
control to ensure that the robot keeps the goal on its right or left, leads the
robot to align itself with the goal-posts.

Fig. 8. Example of a trajectory

6 Conclusions and Future Work

This paper addressed the application of topological navigation methods to
robotic soccer. We introduced an appearance based method which can navigate
between different regions of the configuration space, represented by key-places
of a topological map.
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The method has shown promising results, when navigating between key-
places. Although some of the transitions displayed high failure rates, the inclu-
sion of the supervisor was able to deal with most of those situations, making the
robot reach its goal nodes. However, some parts of the algorithm still need to
be improved. The main one is the occurrence of live-locks, not in the topological
map but as the result of the method application, due to specific failure cycles in
the transition execution. We will investigate the application of Discrete Event
Supervision techniques [9] to the detection and prevention of such cycles.

Another part of the method with open research topics is image compression.
Actually, we would like to show it is possible, for this application, to use a
smaller number o eigenvectors, compressing the needed information much more.
This goal is most likely to be accomplished by reducing the size of the acquired
images and/or using omnidirectional cameras instead of the front camera.

We are currently committed to use the developed methodology to solve the
RoboCup Challenge 4 - Play with an arbitrary FIFA ball of RoboCup 2003 MSL.
The idea is to use PCA to extract the most important features describing the
ball, Topological Navigation to move the robot close to the ball and, finally,
metric-based navigation already implemented in the ISocRob team to take the
ball to the desired goal.
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Abstract. In this paper, we propose a reinforcement learning method
called a fuzzy Q-learning where an agent determines its action based on
the inference result by a fuzzy rule-based system. We apply the proposed
method to a soccer agent that intercepts a passed ball by another agent.
In the proposed method, the state space is represented by internal in-
formation the learning agent maintains such as the relative velocity and
the relative position of the ball to the learning agent. We divide the state
space into several fuzzy subspaces. A fuzzy if-then rule in the proposed
method represents a fuzzy subspace in the state space. The consequent
part of the fuzzy if-then rules is a motion vector that suggests the mov-
ing direction and velocity of the learning agent. A reward is given to the
learning agent if the distance between the ball and the agent becomes
smaller or if the agent catches up with the ball. It is expected that the
learning agent finally obtains the efficient positioning skill.

1 Introduction

Fuzzy rule-based systems have been applied mainly to control problems [1]. Re-
cently, fuzzy rule-based systems have also been applied to pattern classification
problems. There are many approaches to the automatic generation of fuzzy if-
then rules from numerical data for pattern classification problems.

Reinforcement learning [2] is becoming a more and more important research
field for acquiring the optimal behavior of autonomous agents. One of the most
well-known reinforcement learning methods is Q-learning [3]. In the original Q-
learning, it is assumed that both a state space and an action space is discretely
defined. The optimal discrete action is obtained for each discrete state in a
learning environment through updating the mapping from a state-action pair to
a real value called Q-value.

In order to deal with continuous state space and action space, various meth-
ods have been proposed such as tile coding, neural networks, linear basis func-
tions and so on (see [2] for detail). Fuzzy theory has been also successfully applied
in order to extend the Q-learning to fuzzy Q-learning. For example, Glorennec
[4] proposed a fuzzy Q-learning algorithm for obtaining the optimal rule base
for a fuzzy controller. Horiuchi et al. [5] proposed a fuzzy interpolation-based
Q-learning where a fuzzy rule base is used to approximate the distribution of
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Q-values over a continuous action space. In [5], action selection was performed
by calculating Q-values for several discrete actions and then selecting one action
through the roulette wheel selection scheme.

In this paper, we propose a fuzzy Q-learning that can deal with a contin-
uous state space and a continuous action space. Q-values are calculated using
fuzzy inference from the sensory information of the learning agent. We apply
the proposed method to a soccer agent that tries to learn to intercept a passed
ball. That is, it tries to catch up with a passed ball by another agent. In the
proposed method, the state space is represented by internal information that the
learning agent maintains such as the relative velocity and the relative position of
the ball. We divide the state space into several fuzzy subspaces. We define each
fuzzy subspace by specifying the fuzzy partition of each axis in the state space.
A reward is given to the learning agent if the distance between the ball and the
agent becomes smaller or if the agent catches up with the ball. Simulation results
show that the learning agent can successfully intercept the ball over time.

2 Ball Interception Problem
The problem we solve in this paper is called a ball interception problem, where
the task of the learning agent is to follow the passed ball by another agent. This
problem is illustrated in Fig. 1. First, the passer approaches the ball to kick
it. Then learning agent tries to catch up with the passed ball. Let and

be the absolute position of the learning agent and the ball, respectively.
We also denote the velocity of the learning agent and the ball as and

respectively. Suppose that the learning agent moves at the speed of
from the position at the time step 0, and the learning agent

can intercept the ball at the time step The position of the ball at the time
step 0 is Here we do assume that there is no noise nor friction in the
movement of the objects. The positions of the learning agent and the ball at the
time step are and respectively. In
order for the learning agent to successfully intercept the ball, it is necessary that
the following two conditions hold:

and

Thus, we have

The objective of the ball interception problem can be viewed as the minimization
of the time to intercept the ball. There is a constraint that the learning agent
can not move at more than some pre-specified maximal speed. Let us denote the
maximal speed of the learning agent as Then the ball interception problem
can be rewritten as follows:



A Fuzzy Reinforcement Learning for a Ball Interception Problem 561

Fig. 1. Ball interception problem.

[Ball interception problem]
Minimize

subject to

3 Q-Learning
In the conventional Q-learning, a Q-value is assigned to each state-action pair.
The Q-value reflects the expected long-term reward by taking the corresponding
action from the action set A in the corresponding state in the state space S.
Let us denote as the Q-value for taking action in state at time step

When a reward is obtained immediately after taking action the Q-value
is updated as follows:

where is a learning rate, is a discount factor, and is the maximum Q-value
in the state after taking the action in the state at the time step which
is defined as

where is the next state assuming that the agent took action in the state
The action selection in the Q-learning is done considering a trade-off between

exploration and exploitation of the state-action pairs. The roulette wheel selec-
tion scheme is often used for selecting an action where the following Boltzmann
distribution is used with the selection probability of the action

The main procedure of the Q-learning is as follows. First, the learning agent
observes the state of the environment. Next, action selection is performed ac-
cording to the Q-values for the observed state. Then, Q-values corresponding
to the selected action is updated using the reward from the environment. This
procedure is iterated until some pre-specified stopping criterion is satisfied.
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The Q-values are stored in a Q-table that is referred by the learning agent
for retrieving Q-values for action selection. One difficulty in the Q-learning is so-
called curse of dimensionality. That is, the number of Q-values to be stored in
the Q-table is intractably large when the state space is large. Another problem is
that the conventional Q-learning can not be applied when the state space and/or
the action set is continuous. In order to overcome this problem, we propose fuzzy
Q-learning that can deal with continuous state and continuous action.

4 Fuzzy Q-Learning

4.1 Fuzzy If-Then Rule

Let us assume that we would like an agent to learn the optimal behavior in a con-
tinuous state space with continuous actions. We also assume that the state space
in the fuzzy Q-learning is described by real vector
and there are representative values for determining a sin-
gle continuous action. In the fuzzy Q-learning, we use fuzzy if-then rules of the
following type:

where is the label of the fuzzy if-then rule, is a fuzzy set
for a state variable, is a consequent real vector of the fuzzy if-then rule
and N is the number of fuzzy if-then rules. As fuzzy sets we can use any type of
membership functions such as triangular, trapezoidal, and Gaussian type. Each
element of the consequent vector corresponds to the weight for a typical
vector in the continuous action space.

4.2 Action Selection

From a state vector the overall weights of each typical point
in the continuous output space is calculated through fuzzy inference as follows:

where is the compatibility of a state vector x with the fuzzy if-then rule
that is defined by a multiplication operator as follows:

where is the membership function of the fuzzy set
(see (7)). While various schemes for action selection such as Boltzmann selection
and selection can be used as in the conventional Q-learning, we use
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a fuzzy inference scheme for selecting the action of the learning agent. That
is, we do not use the explorative action selection method but the exploitative
action selection method that is strictly determined by the fuzzy inference of the
fuzzy rule base in (7). The similar approach was used in [6] where his proposed
TPOT-RL method was used for optimizing the packet routing problem without
any explorative action selection but only with greedy action selection.

The final output o is calculated as

4.3 Updating Fuzzy If-Then Rules
After the selected action was performed by the learning agent, the environment
provides it with either a reward or a punishment according to the resultant
state of the environment. Assume that the reward is given to the learning
agent after performing the selected action which is determined by (10). Weight
values of each fuzzy if-then rule is updated by

where is a reward, is the maximum value among before
the update, is a positive constant, and is an adaptive learning rate which
is defined by

where is a positive constant.

5 Computer Simulations
In order to apply the fuzzy Q-learning to the ball interception problem, we use
the fuzzy if-then rules of the following type:

where and is the relative position and the relative velocity of
the ball to the learning agent, is the velocity of the learning speed
by the fuzzy if-then rule and is the vector of the
recommendation degree for each velocity. Thus the following relations hold:
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As fuzzy sets for each state variable, we use triangular type of fuzzy partitions
in Fig. 2. Since we partition each state variable into three fuzzy sets, the total
number of combinations of the antecedent fuzzy sets is

Fig. 2. Fuzzy partitions.

Each of the consequent part represents the recommended
velocity of the learning agent by In this paper, we use four combinations
of and to calculate the motion vector of the learning agent. They are
determined according to the maximum velocity of the learning agent in the
constraint of the ball interception problem (see Section II). We use the following
four recommended velocities (also see Fig. 3):

Fig. 3. Four typical velocities in the continuous action space.

After receiving the state vector the motion vector of the
learning agent is determined using the weights for the recommended velocities
as follows:
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where is the compatibility of the fuzzy if-then rule to the state vector
s and defined as the product operator as follows:

where is the membership of the antecedent fuzzy set
The action is determined by the interpolation among the recommendation

degrees of the four typical velocities. That is, the velocity of the learning agent
is determined by the following equation:

In this paper, we consider two types of reward to the learning agent. One is
task reward that is given when the learning agent can successfully intercept
the passed ball. Since the task reward is sparsely given to the agent, we use
an intermediate reward that is given to the learning agent when the learning
agent can reduce the distance between the passed ball and the learning agent. In
our computer simulations in this paper, we specified those rewards as and

Note that when the learning agent goes away from the passed ball, the
negative value is given (i.e., to the learning agent as the punishment.

The consequent weight vector is
updated by the following equation:

where is the discount rate, and is the learning rate, and is the total reward
to the learning agent. and are determined by the following equations:

We applied the proposed fuzzy Q-learning to RoboCup server 7.09 which is
available from the URL http://sserver.sourceforge.net/. In our computer sim-
ulations, one trial ends when the learning agent can successfully intercept the
passed ball or the maximum time step is reached. We specified the maximum
time step as simulator cycles. Before the computer simulations, we
set the initial values for the recommendation degree in
the fuzzy if-then rule randomly from the unit interval [0,1].

We performed the computer simulation for 300 trials. Every 25 trials we
examined the performance of the fuzzy Q-learning by making the learning agent
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intercept the passed ball with the fixed learned fuzzy if-then rules for 50 trials.
We show simulation results of the fuzzy Q-learning in Fig. 4. Fig. 4 shows the
success rates over the 50 runs of performance evaluation with the fuzzy if-then
rules fixed. From Fig. 4, we can see that the number of the successful intercept
increases as the number of trials increases. The learning curve in Fig. 4 did not
monotonically increase to the number of trials. This is because the RoboCup
server employs some degree of noise in the movement of objects such as the
ball and agents and in the perception such as the information on the location
and velocity of the objects. Also we observed the effect of the result of learning
at the previous trials on the performance of succeeding learning. For example,
when the learning agent successfully intercept the passed ball and received the
positive reward, the next trial is likely to succeed as well. On the other hand,
the learning agent is not likely to succeed when the negative reward was given
to the agent in the previous trial.

Fig. 4. Simulation results.

6 Conclusion

In this paper, we proposed a fuzzy Q-learning that can deal with the continuous
state space and the continuous action space. In the fuzzy Q-learning, a fuzzy
rule base is maintained that is used to calculate the recommendation degree
by the fuzzy inference scheme. The action was determined by the exploitation-
only scheme that includes no exploration procedure of continuous actions. The
reward was used for updating the recommendation degrees of fuzzy if-then rules.
In the computer simulation, we applied the fuzzy Q-learning to the ball intercept
problem. Simulation results showed that the learning agent can gradually learn
to successfully intercept the passed ball by another agent.
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Abstract. This paper deals with an intelligent control of an autonomous mobile
robot, which can adapt to dynamical environments. RoboCup soccer robots are
chosen as demonstration targets. An important issue in robotic soccer is how to
respond to dynamical environment. This study presents an intelligent control
method based on System-Life concept for the autonomous mobile robot system.
In other words, it is presented how to design the activating controller, sensing
element, processing element and so on. Furthermore, Kalman filter and Euler’s
method are applied to estimate the motion of the ball. First, the soccer robot
system is developed based on System-Life concept. Second, the intelligent con-
trol method is applied to them. Finally the experiment is carried out on Ro-
boCup Soccer field. It is demonstrated the field player succeeds in approaching
moving ball and goalkeeper prevents moving ball from netting. The validity of
the proposed method is verified.

1 Introduction

Recently, specialized robots have been installed in factories. It is expected that
autonomous mobile robots will be used in dynamical environment. Although there
have been considerably many researches on the design methods and adaptation to
dynamical environment for autonomous mobile robots, the results of these researches
have not necessarily been put into practice. In such classical planning methods as
sense-model-plan-action framework, the environment was supposed to be static [1].
Working in dynamical environment is very hard for autonomous robots. For achiev-
ing intellectual action in dynamical environment, it is necessary to use such decision
making based on sensory information as Subsumption Architecture [2] and [3].
However, these methods adapt an artificial system to the environment unilaterally and
there is not a concept of symbiosis with natural systems. Natural systems include
some information in gene. The information is influenced through the evolutionary
process of adaptation to the environment. And in natural systems the information on
their existences and evaluation is embedded. In the design of artifacts, the information
of a system is not necessarily embedded, but it is possessed by the designer. It will be
effective to embed this information into artificial systems. The above-mentioned con-
cept was proposed as System-Life Concept (SLC) [4] and [5] which is applied to the
design concept of the soccer robots system. In this concept, the System-Life Informa-
tion (SLI) is provided for designing well-balanced artificial systems, so that an effec-
tive behavior control can be achieved.
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2 Design of Autonomous Soccer Robot System

2.1 Application of SLC

The soccer robot system is designed to play soccer game on the field of RoboCup
MSL. The system consists of Sensing, Processing, Activating and Expression mecha-
nisms. The sensing mechanism recognizes environment in real-time. The processing
mechanism selects the most appropriate behavior with environmental information.
The activating mechanism drives actuators. The expression mechanism is a commu-
nication system to realize cooperative behavior. SLI comprises environmental model,
memory, estimated state, purpose, and self-evaluation. Figure 1 shows the scheme of
the System-Life architecture, for the robot.

Section 2.2, 2.3, 2.4 and 2.5 describe the sensing mechanism, the processing
mechanism, the activating mechanism and the expression mechanism, respectively.

Fig. 1. System life concept on RoboCup soccer

2.2 Sensing Mechanism

The sensing mechanism is constructed by a normal color CCD camera, an
Omni-directional vision system, encoders of DC motors and receiver of wireless
LAN. The sensors for external environment are only cameras. Two image frames
(256*220 pixels) from these normal and omni cameras are combined by field-mix
circuit. The combined image (256*440 pixels) is shown in Fig.2. This combined im-
age is the object of image processing. Robots recognize the distance (r) and the direc-
tion to the ball and two goals on polar coordinate shown in bottom half of Fig.2. In
this paper, for decreasing image-processing time, only the image from the
Omni-directional camera is used to recognize environment. Additionally, im-
age-processing area is narrowed by and calculated by when robots
recognize where
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the state in some situation such as direction and distance
to the ball and two goals
the state recognized 1 sampling time before
the processing area when robot recognizes
the gravity point of each recognized object: ball and two
goals
the area of each recognized object

This situation is shown in Fig.2. Each image-processing time is decreased to 40ms.

Fig. 2. Processing image

2.3 Processing Mechanism

Pentium II 450MHz CPU is used for the processing mechanism. This mechanism
receives the environmental information obtained from the sensing mechanism, selects
an action and outputs control signal. In this paper the following action modules are
provided.

For field player
Ball approach, Dribble, Shoot and so on

For goalkeeper
Defense based on Defense based on the predicted state and so on

These modules are allocated in the same level as shown in Fig.1, where the dribble
module is selected. Robots can adapt to dynamical environment by selecting these
modules in real-time.

2.4 Activating Mechanism

Activating mechanism is constructed by a kicking device and two DC motors to drive
robot. The robot can run about 1.5m/s and kick the ball about 1.6m/s. The activating
mechanism works according to the control signal from the processing mechanism.

2.5 Expressing Mechanism

The expressing mechanism is constructed by a wireless LAN. In this paper the Info(n)
is sent and received to realize a cooperative behavior. The Info(n) is Ball-position,
Self-position, Self-evaluating value and Degree of risk for loss.



Intelligent Control of Autonomous Mobile Soccer Robot 571

3 Extended Kalman Filter for Predicting Ball-Position

Accurate information of the ball-position is necessary to estimate ball-position
on the absolute coordinate The ball-position on is calculated by the
self-position and the ball-position on the relative coordinate How-
ever, the self-position and the ball-position on obtained from camera image include
errors. Therefore, a method for predicting ball-position with only the ball-position on

is considered.

3.1 Modeling of Ball Dynamics

The dynamics of a ball is formulated as Eq.(1) on the polar-coordinate shown in
Fig.3.

where
m: mass of a ball c: damping coefficient w,v: uncorrelated noise each other

Fig. 3. Prediction coordinate

3.2 Predicting Ball-Position

In order to estimate and predict the ball-position an extended Kalman filter and
Euler’s method are used. Equation (3) indicates the algorithm of the extended Kalman
filter for Eq. (2). By applying Euler’s method to the estimated state, the ball-position
in the future is predicted. To predict ball-position at intervals of Eq.(4) is used.
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4 Control Method

This section describes the method for action selection as shown in Fig.1. The method
is divided into 6 steps. Figure 4 shows the action selection concept.

Step1

Step2

Step3

Step4

Step5

Step6

Info(n) obtained from the sensing mechanism is sent to the proc-
essing mechanism.

is recognized and is predicted with the method mentioned in
section 3.2. (i=1,2,...,10), the satisfaction values of
system objective and self-evaluation value are elements of SLI.
In this paper the objective is to carry the ball to the opposing goal
and to defend the own goal.
the integrator shown in Fig.4 selects an action module by and

the processing mechanism outputs control signal to the activating
and the expression mechanisms.
the activating mechanism executes the action based on the control
signal which the processing mechanism outputs.
the self-evaluating value is fed back to the integrator. Each action
module has the self-evaluator as shown in Fig.1. If the
self-evaluation value is satisfactory, the action is carried over
without the decision by the integrator. Otherwise, the action is
stopped and the integrator selects another action module.

By repeating Steps 1 to 6, it is possible to select an action module adapting to the
environment.

The feature of this control method is to use the integrator and the self-evaluator.
Additionally, it also has characteristics of the robustness against lacking image infor-
mation from the sensing mechanism, which is achieved by using and so on.
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Fig. 4. Action selection scheme

5 Experimental Results

5.1 Experiment of Prediction

The precision of the prediction method is examined. The experiment is performed
under the condition that a ball is rolled at the speed about 500 mm/s, and the
ball-positions after 1 second and 3 seconds are predicted. In the experiment, the posi-
tion of the robot is not changed. The prediction result is shown in Fig.5. The average
and the maximum errors of r and after 1 second are shown in Table. 1. These errors
are mainly caused by the errors of the ball-position estimated from camera image. In
Table. 1, the error of r is large, while the error of  is small. Therefore, the prediction
result is accurate enough for the robots, since they are designed to behave using
mainly information.

5.2 Experiment of Behavior Control

Experiment is carried out to compare two kinds of the behavior control methods using
only the present environmental information and using predictive information.
The initial positions of the ball and the robot are shown in Figs. 6 and 7. Where the
unit is [mm]. The initial position of the ball is (6000, 3500) in the experiment using
field player and the initial position of ball is (3000, 500) in the experiment using
goalkeeper, and the ball is rolled toward the left side of the own goal at initial veloc-
ity, 1.6 m/s and 2.0 m/s, respectively. The ball and robot are started at the same
time. The experimental results are shown in Figs. 8 to 11. The goals in these figures
are own goal.

In the experiment using a field player, the ball goes through the front of the robot
and then the robot follows the ball, in the case of only using On the contrary, in the
case of using SLI, the robot can shoot directly by predicting the path of the ball.

In the experiment using a goalkeeper, the robot moves right to defend own goal,
and then moves left after goal is scored, in the case of using On the other hand, in
the case of using SLI, the robot moves left immediately and a defensive action is
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achieved. Furthermore, a ball clearing action is achieved and the action selection is
also smooth.

These experimental results show that the behavior control adapting to the dynami-
cal environment is realized by selecting an appropriate action module with SLI.

Fig. 5. Result of predicted ball-position

Fig. 6. Field player starting position Fig. 7. Goalkeeper starting position

Fig. 8. Result of experiment without SLI
(Field player)

Fig. 9. Result of experiment with SLI
(Field player)

6 Conclusion

In this paper, the purpose was the realization of intelligent control for autonomous
mobile robots in the dynamical environment. The object of this research was the soc-
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Fig. 10. Result of experiment without SLI
(Goalkeeper)

Fig. 11. Result of experiment with SLI
(Goalkeeper)

cer robot of RoboCup middle size robot league. The robots were designed based on
the System-Life Concept where there are sensing, activating, processing, expression
mechanisms and system life information. The behavior control method was applied to
action module selection using an integrator. The experiments demonstrate that field
players and goalkeeper can cope with the dynamical environment and the proposed
method is effective. The proposed method was applied to soccer robots at RoboCup
2002 in Fukuoka and the validity of this method in dynamical environment was dem-
onstrated.

This concept leads to the design methodology such that the system itself possesses
explicitly the information on its objective and evaluation with respect to action con-
trol and decision-making. The design methodology is expected to cope with unpre-
dicted situation and will be applied to various fields as an intelligent control method-
ology.

Future works are decrease of designing difficulty, emersion of new action adapted
to environment and realization of self-repairing and self-organization.
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Abstract. We propose a hierarchical multi-module leaning system based
on self-interpretation of instructions by coach. The proposed method en-
ables a robot to decompose (i) a long term task which needs various
kinds of information into a sequence of short term subtasks which need
much less information through its self-interpretation process for the in-
structions given by coach, (ii) to select sensory information needed to
each subtask, and (iii) to integrate the learned behaviors to accomplish
the given long term task. We show a preliminary result of a simple soccer
situation in the context of RoboCup.

1 Introduction

Reinforcement learning (hereafter, RL) is an attractive method for robot be-
havior acquisition with little or no a priori knowledge and higher capability of
reactive and adaptive behaviors [2]. However, single and straightforward applica-
tion of RL methods to real robot tasks is considerably difficult due to its almost
endless exploration which is easily scaled up exponentially with the size of the
state/action spaces, that seems almost impossible from a practical viewpoint.

Fortunately, a long time-scale behavior might be often decomposed into a
sequence of simple behaviors in general, and therefore, the search space is ex-
pected to be able to be divided into some smaller ones. Connell and Mahade-
van [3] decomposed the whole behavior into sub-behaviors each of which can
be independently learned. However, task decomposition and behavior switch-
ing procedure are given by the designers. Takahashi and Asada [4,5] proposed
a multi-layered RL system. The modules in the lower networks are organized
as experts to move into different categories of sensor output regions and learn
lower level behaviors using motor commands. In the meantime, the modules in
the higher networks are organized as experts which learn higher level behaviors
using lower modules. However, this system tends to produce not only purposive
behavior learning modules but also many non-purposive ones, and as a result,
to require large computational resources.
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When we develop a real robot which learns various behaviors in its life, it
seems reasonable that a human instructs or shows some example behaviors to the
robot in order to accelerate the learning before it starts to learn. Whitehead [6]
showed that instructions given by coach significantly encourages the learning and
reduces the learning time. This method, called LBW (Learning By Watching),
reduces the exploration space and makes learner have experiences to reach the
goal frequently. Asada et al. [1] proposed a method, called LEM (Learning from
Easy Mission). The basic idea is that a learning scheduling such as a robot starts
to learn in easy situations to accomplish a given task at the early stage and learns
in more difficult situations at the later stage accelerates learning the purposive
behaviors. They applied this idea to a monolithic learning module. In order to
cope with more complicated tasks, this idea can be extended to a multi-module
learning system. That is, the robot learns basic short term behaviors at the
early stage and learns complicated long term behaviors at the later stage based
on instructions given by coach.

In this paper, we propose a behavior acquisition method based on hierarchical
multi-module leaning system with self-interpretation of coach instructions. The
proposed method enables a robot to

1.
2.
3.
4.

decompose a long term task into a set of short term subtasks,
select sensory information needed to accomplish the current subtask,
acquire a basic behavior to each subtask, and
integrate the learned behaviors to a sequence of the behaviors to accomplish
the given long term task.

We show a preliminary result applied to a simple soccer situation in the context
of RoboCup.

2 A Basic Idea

There are a learner and a coach in a simple soccer situation (Fig. 1). The coach
has a priori knowledge of tasks to be played by the learner. The learner does
not have any knowledge on tasks but just follows the instructions. After some
instructions, the learner segments the whole task into a sequence of subtasks,
acquire a behavior for each subtask, find the purpose of the instructed task,
and acquire a sequence of the behaviors to accomplish the task by itself. It is
reasonable to assume that the coach will give instructions for easier tasks at the
early stage and give ones for complicated tasks at the later stage although it
does not have any a priori knowledge about the learning system on the agent.

Fig. 2 shows a perspective of development of the learning system through
instructions given by coach at three stages. When the coach gives new instruc-
tions, the learner reuses the learning modules for familiar subtasks, generates
new learning modules for unfamiliar subtasks at lower level and a new module
for a sequence of behaviors of the whole instructed task at the upper level. After
the learning at one stage, the learner adds newly acquired learning modules to
the learning module database. The learning system iterates this procedure from
easy tasks to more complicated ones.
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Fig. 1. Basic concept: A coach
gives instructions to a learner.
The learner follows the in-
struction and find basics be-
haviors by itself

Fig. 2. A perspective of of development of the learn-
ing system with staged instructions

3 Hierarchical Multi-module Learning System

3.1 An Architecture

The basic idea of multi-layered learning system is similar to [4,5]. The details
of the architecture has been extended. The robot prepares learning modules of
one kind, makes a layer with these modules, and constructs a hierarchy between
the layers. The hierarchy of the learning module’s layers can be regarded as
a role of task decomposition. Each module has a forward model (predictor)
which represents the state transition and reward models and a
behavior learner (policy planner) which estimates the state-action value function

based on the forward model in an RL manner (Fig. 3(b)). The state
and the action are constructed using sensory information and motor command,
respectively at the bottom level.

The input and output to/from the higher level are the goal state activation
and the behavior command, respectively, as shown in Fig. 3. The goal state
activation is a normalized state value, and when the situation is the goal
state. When a module receives the behavior command from the higher modules,
it calculates the optimal policy for its own goal, and sends an action command
to the lower module. The action command at the bottom level is translated to
an actual motor command, then the robot takes an action in the environment.

3.2 A Learning Procedure

The steps of the learning procedure are as follows:
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Fig. 3. A multi-layered learning system

1.
2.

3.

4.

5.

Coach instructs some example behaviors to accomplish a task.
Learner evaluates the availability of learned behaviors to accomplish the
task by watching the examples.
The learner segments the task into subtasks, and produces new learning
modules at the lower layer if needed, and learns the behavior for each.
The learner produces a learning module at the higher layer and learns the
whole behavior to accomplish the task.
Go to step 1.

3.3 Availability Evaluation

The learner needs to evaluate the availability of learned behaviors which help
to accomplish the task by itself because the coach neither knows what kind of
behavior the learner has already acquired directly nor shows perfect example
behavior from the learner’s viewpoint. The learner should evaluate a module
valid if it accomplishes the subtask even if the greedy policy seems different from
the example behavior. Now, we introduce in order to evaluate how suitable
the module’s policy is to the subtask as follows:

where indicates the action taken in the instructed example behavior. be-
comes larger if leads to the goal state of the module while it becomes smaller
if leaves the goal state. Then, we prepare a threshold and the learner
evaluates the module valid for a period if If there are modules whose
exceeds the threshold simultaneously, the learner selects the module which
keeps for longest period among the modules (see Fig. 4).
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Fig. 4. Availability identification during the given sample behavior

3.4 Producing New Learning Modules

If there is no module which has for a period, the learner creates a new
module which will be assigned to the not-learned-yet subtask for the period. In
order to assign a new module to such a subtask, the learner identifies the state
space and the goal state. The following shows the steps briefly.

State Variables Selection. We introduce heuristics and set priorities to the
set of state spaces as follows:

1.

2.

Only a few state variables are needed for all subtasks even if large number
of state variables are necessary for the whole task: We limits the number of
variables to only three in this study.
Higher priority is assigned to the state variable which changes largely from
the start to the end during the example behaviors because it can be regarded
as an important variable to accomplish the subtask.

1.
2.

3.

4.

5.

Prepare a set of state spaces S and, set their priorities as
For each state space
(a) Estimate a goal state space G in the state space based on the

instructed example behaviors.
(b) If the estimated goal state space G covers all of the state space

increment   and goto step (a).
(c) Construct a learning module and calculate Q values.
(d) Check the performance of the learned behavior for the subtask. If the

success rate is low, increment and go to step (a).
Add a new module based on the state space and the goal state space
G.
Check the availability of modules over the given task. If there is a period
where there is no available module, go to step 1.
Exit.
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3. Higher priority is assigned to the state space which has smaller average of
entropy (see equation 2) of the state transition probability for
the experienced transition. The reason is that the learning module acquires a
more purposive behavior with more stable state transition probability which
has lower entropy.

Goal State Space Selection. It is hard to specify the goal state of the sub-
task with limited number of experiences of example behaviors. We need other
heuristics here.

A state variable of the goal state tends to be the maximum, the minimum,
or the medium.
If the value of a variable has no consistent one at the terminate state of the
example behavior, the variable is independent of the goal state.

The system produce a reward model based on these heuristics.

3.5 Learning Behavior Coordination

After the procedures mentioned above, there should be necessary and sufficient
modules at the lower layer, then the learning system puts a new learning module
at the upper layer, and the module learns to coordinate the lower modules. The
upper module has a state space constructed with the goal state activations of the
lower modules. A set of actions consists of the commands to the lower modules.

4 Experiments

4.1 Setting

Fig. 5 (a) shows a mobile robot we have designed and built. The robot has an
omni-directional camera system. A simple color image processing is applied to
detect the ball area and an opponent one in the image in real-time (every 33ms).
Fig. 5 (b) shows a situation with which the learning agent can encounter and
Fig. 5 (c) shows the simulated image of the camera with the omni-directional
mirror mounted on the robot. The larger and smaller boxes indicate the opponent
and the ball, respectively. The robot has a driving mechanism, a PWS (Power
Wheeled Steering) system.

4.2 Learning Scheduling and Experiments

The robot receives instructions for the tasks in the order as follows:

ball chasing
shoot a ball into a goal without obstacles
shoot a ball into a goal with an obstacle

Task 1:
Task 2:
Task 3:
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Fig. 5. Real robot and simulation environment

Fig. 6. Example behaviors for tasks

Fig. 7. The acquired hierarchical structure

Figs. 6 (a), (b), and (c) show the one of the example behaviors for each task.
Figs. 7 show the constructed systems after the learning of each task. First of
all, the coach gives some instructions for the ball chasing task. According to
the learning procedure mentioned in 3, the system produce one module which
acquired the behavior of ball chasing. At the second stage, the coach gives some
instructions for the shooting task. The learner produces another module which
has a policy of going around the ball until the directions to the ball and the
goal become same. At the last stage, the coach gives some instructions for the



A Hierarchical Multi-module Learning System 583

Fig. 8. A sequence of an experiment of real robots (task3)

shooting task with obstacle avoidance. The learner produces another module
which acquired the behavior of going to the intersection between the opponent
and the goal avoiding the collision. Fig.8 shows a sequence of an experiment of
real robots for the task.
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Abstract. This paper describes work in progress to enable a real robot to recre-
ate trail following of ants engaged in pheromone-reinforced recruitment to food
gathering. Specifically, it is proposed that development of a set of macro-
behaviours for creating and following a trail can be achieved by use of micro-
behaviours in a simulated environment to develop a novel neural architecture –
the Neural Nest - for learning without explicit representation. A simulated ‘neu-
ral nest’ has been tested to determine the feasibility for ant colonies to encode
higher-level behaviours for controlling a physical robot. In our experiments, the
emergent behaviour from reinforcement of interactions between unsupervised
simple agents, can allow a robot to sense and react to external stimuli in an ap-
propriate way, under the control of a non-deterministic pheromone trail follow-
ing program. Future work will be to implement the architecture entirely on the
physical robot in real time.

1 Introduction

Swarm Intelligence (SI) research has been useful for applying models of adaptive
behaviours of complex biological structures, consisting of simple entities (e.g. ter-
mites, ant nests, and beehives), to computational problems that require prohibitively
expensive search algorithms [1]. One of the key strengths of SI is that elements have
flexibility to interact in unpredictable ways, to facilitate optimisation. Specifically,
Ant Colony Optimisation (ACO) [2] and Ant Colony Routing (ACR) [3] have been
proposed, which use the analogy of pheromones in stylised environments to govern
search and routing strategies. However, these techniques have, so far, been mostly
applied to specific topological/geographical problems (e.g. the Travelling Salesman
Problem [2], Communications Networks [3-5], etc). It should be noted that other
approaches, such as novel neural networks [6] or evolutionary algorithms [7] may be
more successful, where potential solutions are numerous, or uniformly distributed [1].

SI has also been applied to the problem of coordinating groups of autonomous ro-
bots to collaborate on a task [8]; the concept of simulated ants being mapped directly
onto sets of robots situated in a simulated or real environment. The power of SI has,
therefore, been in coordinating these situated agents at the macro-level without the
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need for planning or explicit communications. However, most existing ant colony
simulations do not attempt to address the complex emergent control of individual
physical ants (robotic or biological). We believe that the strength of SI – its use of
micro-components to optimise a complex macro-system – may also contribute to the
control of individual micro-components, such as a single physical robot, rather than
just simulating them as part of a larger macro environment. Many adaptive robot
control architectures have been proposed, to control agents at the micro-level, that is,
within the individual robot; these include traditional and recurrent neural networks
and evolutionary programming, etc. (A good summary can be found in [9, 10]).
Ethology, in the form of Tinbergen’s instinct centres [11] has inspired a learning
classifier approach using Genetic Algorithms (GAs) [12]. However, there has been no
attempt to make direct use of SI to control robots at the micro-level; namely to im-
plement an autonomous learning robot using an Ant Colony System (ACS). Simula-
tion of ant behaviour may yet prove useful for understanding the emergent properties
of complex biological structures within the human brain. The neural nest, proposed in
this paper, is an ant colony inspired implementation of a real-time neural network,
without a pre-defined symbolic representation or the need for supervised learning. To
allow emergent intelligence, it is, vital that a physical platform be available to repro-
duce the conditions for evolutionary development, and to enable evaluation of the
ant-powered brain. Finally, we describe integrating the symbolic ant brain with the
physical robot.

2 Previous Work

2.1 Aunt Hillary – A Reprise

In his seminal work “Gödel, Escher, Bach – an Eternal Golden Braid” [13], Douglas
R. Hofstadter describes Aunt Hillary, a conscious ant colony, who consists of signal
propagating and symbol manipulation activities using ants as base units interacting
with the colony environment to shape the activities of ants into higher level concepts.
This is not at odds with more symbolic representations. However, it is difficult to
perceive how behaviours could evolve, when we only consider large grained views of
intelligent systems. While Aunt Hillary serves principally as a clever analogy to ex-
plain how neurons can collaborate to produce symbol manipulation and, ultimately,
human consciousness, the concept is an inspiring one, raising many interesting ques-
tions, especially when the brain can be considered a network of real-time processes
(or neurons), with a flow of control from sensors to motors. Symbolic and sub-
symbolic techniques make no attempt to describe how higher-level concepts could be
implemented in the structures of the brain, and draw a sharp distinction with the
physical nervous system. It must also be remembered that it is not just brains, but also
bodies (sensors, actuators, etc.) that have co-evolved. Biological systems have not
only learned to adapt, but also adapted to learn.
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2.2 AntNest – A Reprise

Real ants have limited senses and communication, but manage to evolve optimal
solutions to search and routing problems, using pheromones trails, which result in a
positive feedback effect. Several simulations of this activity exist, but most have a
simple rule-based approach for controlling ant behaviour. Furthermore, these simula-
tions are limited, especially where the strength, degradation and effectiveness of
scents can be critical for success. Our previous work, AntNest, has been particularly
successful due to using two scents: one for food-bearing ants (food scent), and one
for foraging ants (nest scent) [14]. The revised rules in AntNest are as follows:

1)
2)
3)
4)
5)

Ants leave the nest in a random direction, leaving a nest scent in the process.
Random search influenced by the food scent level, if any, leads the ant to food.
Some of the food is acquired and the ant begins to lay food scent towards home.
Random movements, influenced by the nest scent level, lead the ant homeward.
The ant then returns to step 1.

AntNest was originally conceived as a means for visualising Economics problems,
by modeling a biological simulation of an ant colony; ants had several roles in addi-
tion to food gathering: nursing babies, clearing the dead from the nest, attacking
enemies and sleeping. However, we were inspired by the similarity of the simulations
to the architectures of neurons: axons and dendrites. Several features of current neural
network architectures have been abstracted from the biological reality: real neurons
react to rates of fire, and do so in a continuous time-frame; they are also excitatory or
inhibitory in nature, whereas artificial neurones can generate positive and negative
values, mediated by weightings (again positive or negative) at the receiving neuron.
The research question was whether we could use competing ant colonies to imple-
ment a neural architecture that was more closely inspired by the qualities of real neu-
rons: ant trails being analogous to neural links, while the rate of flow of ants from
source to nest representing the rate of fire of a neuron.

3 Neural Nests – A Proposal

In this section, a connectionist reinforcement learning architecture is described, which
may enable an autonomous robot to acquire motor-sensory navigation strategies
without explicit representation. The use of an embedded ACS to implement a novel
neural architecture has several advantages: Firstly, it allows us to experiment with
combining the strengths of both SI and neural networks; Secondly, it allows the pos-
sibility of applying SI techniques in a direct manner, within a single entity, namely a
physical robot ant in a real setting; Thirdly, it satisfies an aesthetic need to explore the
ability for complex systems, such as the human brain, to evolve and manipulate
meaningful symbols using simple components, without explicit prior representation
as is the case for many other solutions to robot control.
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Fig. 1. Neural Nest Internals: Food Sources and Motor Nests are passive entities inside the
environment, which represent sensor inputs and motor outputs respectively. Ants collecting
food and returning to the nest will cause the external robot to act accordingly depending on
their behavioural properties

Furthermore, a tentative cognitive model of unsupervised neural learning is de-
scribed – the Neural Nest – which uses a set of simple micro-agents to recreate the
linkage and firing behaviours of biological neurons to demonstrate the feasibility of
our approach to real autonomous robot control. It was recognised that a physical
implementation in a real robot was needed as early as possible, rather than working
purely with simulation, and then attempting to port to a robot afterwards. Simulation
does not throw up the real–world errors and inconsistencies that are present with even
the most simplest physical environments; this is especially important as we consider
the body evolution to be key to brain evolution. However, the neural nest architecture
is a slow one at present – certainly not capable of working in real-time – so a simu-
lated robot was modelled in a closed environment. Initially, this robot had just two
touch sensors and two motors.
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The basic currency of the Neural Nest architecture is the collection of food from
food sources linked to external sensors on a real or simulated robot. Nests are associ-
ated with external actuators (in this case, motors on the robot) and the collection of
food and its return to the nest provides a signal processing capability that will control
the robot’s behaviour. The first experiment in the Neural Nest simulator was to see
whether the robot would more sensibly with two motor nests and two sensor food
sources (See Figure 1). This first experiment showed the gradual grafting of the two
touch sensors onto their respective motors. The early effect of this was to drive the
robot into obstacles rather than away from them. However, over time a cross-link
occurred that allowed the robot to be a little more effective at avoiding walls, when
approaching them with one of the sensors. The second experiment involved adding
light sensors to the robot, in order for it to engage in line following. We added food
sources related to position of the sensor array on the front of the vehicle to the previ-
ous simulation arrangement, placing the new food sources in comparable positions to
their placement on the physical robot described in Section 4. Again in simulation the
architecture generated by the simulation did not show the bipolar symmetry that most
animals display. This may be a fault in the model, such as scent evaporation, or faults
in the simulated environment1 but it may also be due to a very limited time available
for the system to evolve a solution before testing. The model generated is shown in
Figure 2. From observation of the simulated robot, what appeared to be happening
was as follows:
1)

2)

3)

The right motor stayed on continuously, so directions and steering came from the
activities of the left motor, unless the right touch sensor was activated;
The left motor stayed on continuously, but reacted to both the left touch sensor
and the left and centre light sensors.
When a line was detected by either of these light sensors the left motor would
stall. If both detected a line the left motor would reverse, turning the robot left.

This gave a limited ability to sense and follow lines, while also maintaining the
ability to react partially to the touch sensors. The effect of this architecture on the
physical environment is detailed in Figure 4.

Fig. 2. Touch and Light Simulator: (a) The two motor nests search for food; (b) Neural archi-
tecture is complete with the left-hand nest also using the left light sensor

1 This could be the random number generation skewing movement.
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4 Robot AUNT2 – The Macro-level

Robot AUNT is a tracked robot with two touch sensors on the front corners and three
light sensors mounted facing down at the front of the canopy. The experiments ran on
a white board placed on the ground and fenced off with walls, which the touch sen-
sors would detect. A retractable white-board marker allowed the robot to lay a trail
for the light sensors to follow. The initial problem to be faces was whether such a
pen-based trail on a whiteboard could act as a suitable environment for testing
pheromone following with a robot. Initial experiments were performed using a hand-
coded program to test the feasibility of a real physical implementation of pheromone
following. Note: This was done for various reasons, but the most significant was to
test whether I could get the tracks to perform a rudimentary form of evaporation – the
pen marks will not fade the way that a scent trail would, and there is only one robot,
rather than thousands. In fact, the robot tracks provided an excellent mechanism for
reproducing the effect of scent evaporation, even if not in the way it would in reality3.

Fig. 3. Robot AUNT: (a) Touch sensors mounted on the corner; (b) Three light sensors facing
down; (c) A retractable pen mounted at the pivot point to mark trails

The key issue was then to determine whether the neural nest architecture could be
used to control a physical robot. In order to do this effectively, an abstraction of the
simulated network was implemented as a set of probabilistic choices in the control of
robot motors, dependent upon sensor values. We simulated the arrival of ants as deci-
sions to go forwards and backwards, with the delay between sensing and acting pro-
portional to the average time for an ant to travel between the food source and the nest.
Clearly, this is not a perfect reproduction of the actual nest architecture, but allowed a
simple implementation on the robot. As was true for the simulation, the robot tended
to veer to one side and occasionally trapped itself in corners. The next stage of the
experiment was to implement the architecture described in Figure 2, using light and
touch sensors. In order to do this, Robot AUNT would need to be able to lay trails
autonomously. Modifications were made to the environment to allow the robot to
detect whether it was at a food source (shiny surfaces) or the nest (black surface). The

2

3

AUNT stands for Autonomous Unsupervised Neural Turtle – in honour of Aunt Hillary. The
robot is a turtle rather than an ant because of its previous incarnation as a drawing robot.
It is a little known fact that white-board marker is easier to wipe off once it is completely dry.
The efficacy of the tracks to wipe the board clean was proved beyond doubt when we forgot
to change the pen for one experiment and returned to find the board eerily clean.
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program was modified so that the pen would be lowered once the robot had found
food, and raised when it had returned successfully to the nest. Given that there was no
help from a number of ants leaving trails, Robot AUNT did mark out trails to and
from the nest (see Figure 4). It also performed slightly better at following lines than
the simulation did4.

Fig. 4. Robot AUNT II: (a) Searching for food by following lines from previous journeys; (b)
Carrying food back to the nest, leaving a scent trail in white-board pen

5 Conclusions

A cognitive model of unsupervised neural learning has been described – the Neural
Nest – which uses a set of simple micro-agents to control the macro-behaviours of a
physical robot. We have seen a neural nest link touch and light sensors to motors in a
way that is effective in both a simulated and real robot, with a degree of sensor fu-
sion. Ant trails and food foraging have been used as the basis for a computational
model of how neurons forge links and activate by rate of firing and excitatory and
inhibitory behaviours. Results are encouraging, but tentative, with more quantifiable
analysis needed to ensure that this is a valid technique for evolving robotic control
systems. However, the current scent model needs some revision, as nests switch be-
tween different sensors, with only one good link at a time. Sensitivity analysis of the
range of producible behaviours is also needed. Furthermore, the resulting robot
search pattern is prone to the lack of positive reinforcement, where real ants would be
surrounded by recruited colleagues in scent trail generation; our studies only used one
macro-robot. Further research into the use of multiple robots may show more clearly
the effectiveness of this macro and micro approach to robot control. While this may
not produce the most efficient solution to the problem, it is our hope that such an
evolutionary approach may also eventually lead to a better abstract representation of
the link between low-level neural functioning and higher order behaviours of a robot.

4 This is most probably due to the need to use eight fixed directions in the simulation, where a
physical robot would be changing direction more uniformly using real motors.
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Abstract. Due to the complexity and sophistication of the skills needed in real
world tasks, the development of autonomous robot controllers requires an ever
increasing application of learning techniques. To date, however, learning steps
are mainly executed in isolation and only the learned code pieces become part of
the controller. This approach has several drawbacks: the learning steps themselves
are undocumented and not executable.
In this paper, we extend an existing control language with constructs for specify-
ing control tasks, process models, learning problems, exploration strategies, etc.
Using these constructs, the learning problems can be represented explicitly and
transparently and, as they are part of the overall program implementation, become
executable. With the extended language we rationally reconstruct large parts of
the action selection module of the AGILO2001 autonomous soccer robots.

1 Introduction

Programming sophisticated low-level control skills as well as action selection strategies
for autonomous robots acting in dynamic and partially observable environments is both
tedious and error prone. Autonomous robot soccer, which has become a standard “real-
world” test-bed for multi robot control, provides a good case in point. In robot soccer
(mid-size league) two teams of four autonomous robots – one goal keeper and three
field players – play soccer against each other. The key characteristics of mid-size robot
soccer is that all sensing and action selection is done on-board.

Competent soccer play entails, besides other capabilities, the skillful execution of
various navigation tasks such as defending, dribbling, moving past opponents, and inter-
cepting the ball. To realize them, robots could use computational means to infer which
control signal should be issued to arrive at a desired state, how long it will take to get
there, and how promising it is in the current situation to try to arrive at this state.

Because of the dynamical and adversarial nature of a soccer play and physical sub-
tleties such as friction on different surfaces and the weight of the robot, programming
procedures for these reasoning tasks is very difficult. An attractive alternative is the
development of control systems that can acquire and adapt such procedures automat-
ically. Obviously, such a control system must learn at various levels of abstraction. It
must learn process models from sensory data such as the effects of control signals on
the dynamical state, and optimize control laws, e.g. for approaching the ball. It must
acquire models of control routines including their success rates and time requirements
to decide whether or not to go for a ball or defend the goal. Finally, it must learn the
situation-specific selection of appropriate actions.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 592–599, 2004.
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In current practice, such learning tasks are typically considered and solved in iso-
lation. A programmer gathers a set of examples for learning or provides an exploration
strategy. Then a learning system, a feature language in which the acquired data are to
be encoded, and a suitable parameterization of the learning system are selected. Subse-
quently, the learning step is executed, the learned routine transformed into an executable
piece of code, and provided as part of a software library. The controller can then use the
learned routine by calling it as a subroutine. This approach has several disadvantages:
the learning steps themselves are undocumented and not automatically executable, and
therefore difficult to reproduce.

In this paper, we extend an existing control language to automate this process. Us-
ing the constructs of this language, the system model can be specified, and the learning
problems can be represented explicitly and transparently, both becoming an integrated
part of the overall program. Therefore, the learning problems become executable, doc-
umentation of models is integrated in the program, modularity is higher, and analysis
of the system is simplified.

Several programming languages have been proposed and extended to provide learn-
ing capabilities. Thrun [8] has proposed CES, a C++ software library that provides prob-
abilistic inference mechanisms and function approximators. Unlike our approach a main
objective of CES is the compact implementation of robot controllers. Programmable
Reinforcement Learning Agents [2] is a language that combines reinforcement learning
with constructs from programming language such as loops, parameterization, aborts,
interrupts, and memory variables. A difference with our method is that learning tasks
can also be specified in our language, and that the learning methods are not confined to
reinforcement learning only.

In the remainder of this paper we proceed as follows. The next section describes
how process models can be specified. In section 3 it is shown how learning problems
can be specified, and in section 4 we give a case example: the AGILO2001 controller.
We conclude with a detailed outlook on our future research investigations.

2 Modeling the System

In this section we specify models of different components of the robot and its environ-
ment, and show how they can be made explicit in our language. The first class of models
we present are process models, such as the robot’s dynamics and sensing processes. The
second class models the robot’s control routines.

2.1 Specifying the Environment Process

The construct above specifies that the “robot field process” is a controlled process
(we use the dynamic system model, described in [6]), consisting of a static field model
and environment and sensing process. These two processes can themselves be decom-
posed into subprocesses. In the model of the AGILO RoboCup control system the envi-
ronment process consists of the dynamics of the robot, which specifies how the control
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inputs change the physical state of the robot. The other subprocesses of the environ-
ment process are those that change the physical states of the team mates, the ball, and
the opponent robots. All these processes are largely independent of each other. The only
interactions between them are collisions and shooting the ball.

By using this construct the model of the environment is an explicit part of the overall
program. This ensures that documentation about the model is integrated, and that mod-
ularity of different processes is enforced. Not only does this construct model the real
environment, it can also be used as an environment simulator specification. To realize
this simulator, the process models need to be implemented. A straight-forward method
of realizing this is by manually implementing procedures for each process. If these pro-
cess models suffice for predicting the effects of control signals on the game situation
then they constitute an ideal simulator for the system. In section 3 it will be shown
that by using learning task constructs, the manual implementation can be replaced by a
learning procedure, which can be integrated into the overall program as well.

2.2 Specifying the Control Process
In this section we provide the control system with models of its control routines. These
models enable the robot to do more sophisticated action selection and thereby improve
its behavior with respect to the given performance measure. We provide this model in
two pieces. First, the control task that specifies what has to be done and second, the
control routine that specifies how it has to be done. The rationale behind separating
these two aspects is that a task can be accomplished by different routines that have
different performance characteristics.

Control Tasks specify what the robot should be capable of doing. For example,
the robot should be capable of going to the ball, intercepting a ball, and defending. A
control task can be specified in two ways: first, we can specify it using a start state
and a description of goal states. An example of such a control task is the following
one: reach the position of the ball facing the opponent goal, which we represent as

The set of possible control tasks can be constrained
as For example, we might constrain this control task
to situations where the ball is not in the own penalty area. In addition, we can specify
a probability distribution over the possible set of tasks. This probability distribution
affects the expected performance of the control routines.

An alternative way of stating a control task is to specify it using the start state and
an objective function, a performance measure that the robot should try to maximize.
For example, for attacking, an appropriate performance measure might be the expected
time needed to shoot a goal, which should be minimized.
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Let us consider, as an example, the control task specification shown above. The task
specification states the desired values for the state variables and   The process
signature indicates that the current dynamic state and the desired dynamic state are
mapped into control inputs for the translational and rotational velocity of the robot. The
control process specification then states when the control task should be activated and
the different possible outcomes of performing the control task.

Control Routines specify how the robot is to respond to sensory input or changes
in the estimated state in order to accomplish a given control task. We might have differ-
ent routines for a given control task, which have different performance characteristics.
Control routines first of all consist of an implementation, a procedure that maps the es-
timated state into the appropriate control signals. Besides the implementation we have
the possibility to specify models for the control routine, encapsulating the procedural
routine within a declarative construct which can be used for reasoning and manipulat-
ing. Suppose we had a model consisting of decision rules that can identify situations
in which the control routine is very likely to succeed and very likely to fail. We could
then apply these rules in order to decide whether to activate the routine in the current
situation or terminate it if the routine is likely to fail. This is not possible with only a
procedural representation of the control routine.

3 Adding Learning Capabilities

In the last section we have specified process models and implemented them as pro-
cedures. However, it is often difficult and tedious to program them manually. In this
section we will describe how the corresponding learning problems and the mechanisms
for solving them can be specified. There are a number of program pieces that can be
learned rather than being specified by programmers. In our robot soccer application,
the robot learns, for example, the process model for its dynamics. Also, there are many
opportunities for learning the implementation as well as the models of control routines.

We will restrict ourselves to learning problems that can be solved by function ap-
proximation. In particular, we will look at problems that can be learned by artificial
neural networks and by decision tree learning algorithms. Our primary example will be
learning how to achieve a given dynamic state, which is representative for learning in
the context of control routines.

To state learning problems we must provide several pieces of information. The type
of function that is to be learned, whether it is a process model or a control task. We must
also specify the robot to be controlled and the environment it is to act in. In addition, the
learning problem specification contains a specification of a problem specific learning
system, and the data gathering process. This information is provided using the macro
define-learning-problem.
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The learning problem specification shown above specifies these information pieces
for the task achieve dynamic state. In the remainder of this section, we introduce the
representational structures for specifying the different components of learning problems
and then discuss issues in the implementation of these constructs.

3.1 Specifying Data Collection

The first step in learning is the data collection. To specify data collection we must state
a control task or sample distribution and we have to provide monitoring and exception
handling methods for controlling data collection. CLIP [1] is a macro extension of LISP,
which supports the collection of experimental data. The user can specify where data
should be collected, but not how.

In order to acquire samples we have to define a sample distribution from which sam-
ples are generated. During data collection the perception, control signals, and control
tasks of each cycle are written to a log file. The data records in the log files can then be
used for the learning steps.

The task distribution specification above defines a distribution for the initial state
consisting of the robot’s pose and translational and rotational velocity, as well as the
goal state of an episode, which consists of the desired translational and rotational ve-
locity. The body of the episode consists of setting the robot in its initial state and then
setting the desired dynamic state as a goal for the controlled process.

The data collection cycle starts with an initialization phase in which a task is sam-
pled from the task distribution. In the distribution above this is the setstate command
in the with setup statement. The data collector monitors the initialization to detect
whether or not it has been successful. Unsuccessful initialization is particularly likely
when the learning task is performed using the real robots. Upon successful initializa-
tion the data collection phase is activated. In the data collection phase the perception
and control signals are collected. The data collector then detects the end of the episode
and decides whether or not the episode is informative and should be recorded.

Thus, in order to collect data reliably and efficiently it is necessary to specify special
purpose code for the initialization phase, for failure handling, and resetting the robot.
These code pieces can be provided using the define data collection functions .

3.2 Specifying Learning Systems
Learning problems can be solved with very different learning systems such as artificial
neural networks or decision tree learners. In order to specify a task-specific learning
systems three pieces of information must be provided. First, we have to specify how the
collected data are to be transformed into patterns that are used as input for the learn-
ing system. An example is the transformation of global coordinates to an robot-centric
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coordinate system. Second, a function for parameterizing the learning system. For an
artificial neural network for instance we have to define the topological structure of the
network. Finally, we must provide a function that transforms the output of the learning
system into an executable function that can be employed within the robot control pro-
gram. Thus, the input patterns for the achieve-dynamic-state control task can be defined
as follows:

The macro declares the training pattern to consist of the feature which is
taken to be the of the percept component of a log file entry and that is the

of the goal state of the log file entry. The output value of the pattern, called is
the translation velocity of the subsequent entry in the log file. The output of the learned
function will be

3.3 From Partial Specification to Executable Program

We have implemented our representational structures using LISP’s macro facilities and
provided them in the context of Structured Reactive Controllers (SRCs) [3]. The LISP-
based parts are equipped with an abstract robot interface consisting of C libraries loaded
as shared objects. The system uses shared memory communication as a coupling to the
low-level control processes. To date, we have provided the functionality of two learning
systems: the decision tree learning algorithm C4.5 and the Stuttgart Neural Network
Simulator (SNNS).

An important implementational aspect is how we get from declarative problem spec-
ifications to executable and effective learning processes. For this and other purposes
control routines, process models, and control routine models are represented as first
class objects that computer programs can reason about and manipulate. One property
of these objects is that they can have an implementational status, such as to-be-learned.
The distinct characteristic of this program is that in the beginning it only partially spec-
ifies the behaviour, leaving unspecified behaviour to be learned at a later stage.

Transforming this partial specification to an executable control program proceeds in
three steps. In the first phase a problem collector traverses the top-level control routine
and collects all references to procedures with the status to-be-learned and stores them in
the set of learning problems. In the second phase, the routines are learned. We consider
a routine as learnable if it is to-be-learned and does not call any code to-be-learned.
Therefore, the procedures are learned in an order that respects the dependencies be-
tween them, until all routines are learned. Finally, the complete program can be run to
produce the behaviour, for instance playing robot soccer.

4 A Rational Reconstruction of the AGILO2001 Controller
With the extended language we have rationally reconstructed large parts of the action
selection module of the AGILO autonomous soccer robots, with processes, data collec-
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tion, learning system generation specified in constructs. The control program resulting
from this reconstruction can automatically learn a repertoire of routines for playing
robot soccer competently. In this section the learning process is demonstrated.

In the bootstrap learning phase the first learning task that is tackled is the learning of
the robot dynamics. This learning task acquires a process model for the environment and
does not depend on the solution of any other learning problems. To learn the dynamics
we use the log files obtained from earlier RoboCup games and transform them into a
pattern file for the learning system. For learning, we train an artificial neural network
using the SNNS system in order to approximate the mapping:

In [4] this procedure is described in more detail.
The next learning task that the robot can address is how navigation tasks are to be

achieved. We have already seen in the specification of this task in section 2.2. This is
learned in a simulated environment, which only requires the learned robot dynamics. To
solve the learning task as a function approximation problem we provide the robot with
streams of control signals that generate good navigation trajectories. From this data the
robot learns the mapping using a multi layer
neural network. For a more detailed description see [5].

Once the controller can execute the navigation task, the robot learns a model of
the task. Given the simulated dynamics and the controller learned in the two previous
steps, the robot is given many automatically generated navigation tasks to execute. The
duration of the task is recorded, and this training data is used to learn the mapping

again using a multi layer neural net-
work. This mapping is necessary to coordinate the behaviour of our robots, the next
step in creating the complete AGILO controller. How this is done is discussed in [5].

Since all these learning tasks are specified with constructs in the program, adapta-
tion of the program is simplified. Learning tasks can be exchanged, without requiring a
redesign of the program structure. The program just needs to check if any constructs are
to-be-learned, and relearn them and any depending constructs. Another case example
that shows the strength of making learning tasks explicit is when hardware is upgraded.
Recently our robots have received new control-boards. Instead of having to repeat all
learning steps to model these new boards manually (involving undocumented scripts,
manual data copying and transformation, and so forth), we only have to provide the
system with a log-file, and set all relevant learning tasks to to-be-learned. The depen-
dencies between the learning tasks ensure that first the robot dynamics will be learned.
Given these dynamics, which can be used in the simulator, the navigation tasks can
be relearned. Given the navigation routines, models of the navigation routines can be
learned, and so on, until the complete executable AGILO2001 controller is acquired. We
are currently testing these procedures. Furthermore, the scope of learning tasks is being
extended beyond the AGILO2001 controller, to include additional control tasks such as
dribbling with fake movements, defending, shooting, and others. In addition, we are
starting to tackle reinforcement learning problems.

5 Conclusions

In this paper, we have extended a control language with constructs for explicitly rep-
resenting (1) the physical system that is to be controlled and (2) the learning problems
to be solved. In the extended language entities such as control tasks, process models,
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learning problems, and data collection strategies can be represented explicitly and trans-
parently, and become executable. In the learning and execution phase, the entities are
first class objects that control programs cannot only execute but also reason about and
manipulate. These capabilities enable robot learning systems to dynamically redesign
learning problems. We have also sketched the implementation of the learning phase and
showed how a bootstrap learning method can automatically complete a partially de-
fined control program by solving the stated learning problems. The extensions that we
have presented are expressive enough to rationally reconstruct most of the AGILO2001
action selector. Other complex control systems need to be implemented using our ap-
proach and the conciseness and expressivity of our constructs need to be assessed and
analyzed. We are just starting to incorporate optimizing learning techniques such as
reinforcement learning into our approach.

We see the main impact of our framework along two important dimensions. From a
software engineering perspective, the language extensions allow for transparent imple-
mentation of learning steps and abstract representation of complex physical systems.
These aspects are typically not adequately addressed in current control systems, which
makes them hard to understand and adapt to new requirements and conditions. The sec-
ond dimension, which we find much more exciting, is the use of the framework as a
tool for investigating more general and powerful computational models of autonomous
robot learning. The programmability of learning systems, the modifiability of state rep-
resentations, the possibility of reparameterizing learning systems, and the executability
of learning specifications within the framework enables us to solve complex robot learn-
ing tasks without human interaction. The framework thereby enables us to investigate
adaptive robot control systems that can autonomously acquire sophisticated skills and
competent task control mechanisms for a variety of performance tasks.
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Abstract. This work describes an investigation to reduce positioning error of 3
wheel middle size robot by using a modified odometry system. In this technique
the positioning sensor (shaft encoders) are mounted on 3 free-running wheels so
the slippage of the driving wheels does not affect the measurements of the sen-
sors. This will result in decreasing the cumulative error of the system. This
mechanism accompanying by omnidirectional vision system presents reliable
and accurate self-localization method for any 3 wheel driving robot. Ex-
perimental results have shown performance improvement up to 86% in orienta-
tion error and 80% in position error.

1 Introduction

Self-localization is one of the most important issues in mobile robots. Different meth-
ods have been suggested for self-localization, naming a few, vision based self-
localization, laser range finders, odometry [1], ultrasonic approach, gyroscope [5] and
global positioning system (GPS). These methods mainly differ in their robustness,
measuring accuracy, speed, cost and ease of implementation.

In odometry, robot displacement and change of direction are measured comparing
to previous position. This method has acceptable results on platforms where robot
moves on a smooth surface. Ease of implementation, relatively cheap and light weight
instrument are some advantages of this method.

One of the platforms in which robots need self-localization is RoboCup middle size
league (MSL). In this environment, because of predefined colors for different objects
and smooth surface, vision based self-localization and odometry are assumed to be
effective [6]. Laser range finders were also a good solution until the field walls were
not removed [9]. Using vision based self-localization alone has some drawbacks:

Field landmarks are limited to flags, goals and border lines. Because of moving ob-
jects in the field, a few land marks may not be seen by robot. In addition, errors in
object detection and the nonlinear map (from image units (pixels) to physical units
(centimeters)) cause unreliable output. Robust image processing algorithms can en-
hance the precision, but the algorithms are complex and time consuming.

Adding another sensor and using sensor data fusion is assumed to be a suitable
method for precision enhancement, odometry sensors are an example [1]. In case
where sufficient landmarks can not be detected, odometry results would be helpful.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 600–610, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Variation in odometry results is smooth, this can help to detect and avoid sudden
faulty reports of vision based self-localization. In the other hand, odometry errors are
cumulative and regarding slippage, sensor outputs could be of low confidence.

In this article, three improvements are introduced for decreasing slippage error and
enhancing sensor precision. The designed mechanical structure is also presented.
Then two methods for position estimation are introduced and discussed in detail.
Finally the implementation of a linear controller is described. The aim of this work is
to implement a reliable navigation system, using modified odometry accompanying
omnidirectional vision based self-localization.

2 Modified Odometry Sensors

Asymmetric errors are those errors which are caused by slippage and field uneven-
ness. In MSL RoboCup, due to the flat playground, the highest portion of asymmetric
error in odometry is caused by slippage when the robot accelerates or deaccelerates.

The designed structure includes an omni-directional system in which three omni-
wheels are placed under the robot 120° apart.

Fig. 1. Fig. 2.

These free wheels are then coupled with shaft encoders and are assembled on a
flexible structure, which ensures their firm contact with ground. The symmetry point
of this structure coincides with the robot’s center of mass and the wheels have an
angular distance of 60° from the active (driving) wheels (Fig. 1,2). Most slippage
occurs on the driving wheels during acceleration and changing direction.

Separating the sensors from driving wheels, decreases the slippage of the sensor
wheels to a great extent, which results in decreasing the cumulative error of the sys-
tem. In addition, special designed multi-roller wheels have vibration amplitude of less
than 0.2 mm, also slippage decreases notably on carpet playground.

3 Robot Kinematics Model [3]

is defined as the vector representing robot center of mass in (Fig.3). The position

and tangential vector of each odometry wheel in the frame fixed to the robot are:
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Fig. 3.

where L is the distance of wheels from the center of mass.
Using the above notations, the wheel position and velocity vectors can be ex-

pressed with the rotation matrix by the following equations:

The angular velocity of each wheel can be expressed as:

where is the angular velocity and r is the radius of odometry wheels.

Substituting from (4) into (5) yields:

where the second term in the right hand side is the tangential velocity of the wheel

This tangential velocity could be also written as so from (6), we have:

From the kinematics model of the robot, it’s clear that the wheel velocities are lin-
ear functions of the robot linear and angular velocities.
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4 Self-localization Using Odometry

In this section two self-localization methods based on shaft encoder outputs are intro-
duced, which are called differential method and direct method.

4.1 Differential Method

In this method, the outputs of shaft encoders are differentiated temporally resulting
the individual wheel velocities. Using the kinematics equations, the robot linear and
angular velocities are computed. Integrating these velocities, one can extract the robot
position. The algorithm for this method can be described as fallows:

Using kinematics equation of the robot (8), x , y and are the parameters to be

computed by having from shaft encoders. Solving equation (8) using the inverse

of W results:

where can be calculated from the current encoder samples, compared with previ-

ous samples. Using numerical integration methods on (knowing the
initial position of the robot), the new position can be obtained.

Although this method is very simple, but due to inherent differentiation operations,
it is not reliable in long term. The main drawback of differential method is the error
accumulation. Some of important errors are: error in measuring time intervals, errors
caused by the quantized nature of shaft encoders and output errors due to floating
point computations.

Practically, time is divided into equal intervals, in which the robot wheels’
velocities are assumed to be constant. Considering these constant speeds, both robot
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linear and angular velocities are determined, and the head angle and robot position
would be grown with the extracted differential values.

The assumption of constant velocities in each time interval will cause some
error, which in turn will decrease the reliability of the computation results as time
passes. In addition, limited precision of shaft encoders will result in some kind of
quantization error which therefore leads to inaccuracy, the last point is that this error
might increase due to digital computations. In order to decrease these errors, one
possible solution is to define as small as possible and to increase shaft encoder
resolutions. Needless to remark that this solution will increase the calculation’s over-
head.

4.2 Direct Method

The differential method was described as digitally differentiating the output of shaft
encoders, applying the kinematics equations of the robot to the result of differentia-
tion and integrating over the results.

Because of quantized nature of the values in time, integration and differentiation
can not be implemented without approximation. If these operations could be elimi-
nated and results can be driven directly from the measured angle by shaft encoders,
more accuracy in calculation results are then achieved.

Using the equations of motion (9), in order to calculate x, y, directly, the follow-
ing integral should be computed:

where

system of equations in (10), results:

Further simplification of (14) results:
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It’s apparent from (15), that could be easily calculated from shaft encoder out-
puts, but it is impractical to extract x or y as direct functions of from equa-
tions (12), (13). This could be demonstrated with the following example:

Fig. 4. The robot has the displacement of 2L however the shaft encoder outputs are the same as
initial position.

In the above example, robot has started moving from an initial position. After mov-
ing a straight path with length L, it rotates 180° and then moves straight the same
length along the previous direction and then rotates -180°. It is clear from (Fig.4) that
for both initial and end points, while the robot has a displacement of

2L. Therefore direct computation of x and y from is not practical, which

necessitates some restrictions on x and y to be extractable directly.
As it is understood from equations (12), (13) the coefficients of are functions

of which itself is a function of time. Assuming to be independent of time, equa-
tions (12), (13) could be rewritten as follows:

Assuming to be independent of time, will result in to be zero, thus:
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Equation (18) shows that robot position can be extracted directly if the robot has
had no rotation while moving to the new position. If changes to a value other than
zero, the origin of the coordinate system should be moved according to the calculated
robot displacement vector and the computation should be started over again. In prac-
tice the condition on is satisfied if the difference between the new head angle and
the last stored angle exceeds some certain threshold.

Although the above equations are extracted assuming to be constant, for further
improvement in precision, in (16,17) is replaced dynamically with the instantaneous
angle which is easily computed from (15). In the method described above, the num-
ber of times which error accumulation takes place has been reduced to a great extent,
this will result in improving the overall performance of direct method comparing to
the differential method.

5 Robot Controller

In [10] it has been shown that two identical PID controllers for robot position and
orientation are suitable for controlling a robot. If the residual error is negligible the
integrator can be omitted. This controller has shown to be robust enough for control-
ling a soccer player robot. P and D coefficient are adjusted manually.

5.1 Position Controller Architecture

In order to implement the position controller, the position error vector is determined
as follows:

where expresses the output of the position controller for driving units, which it’s
components on each driving wheel are extracted with:

5.2 Head Angle Controller

Assuming that the head angle of the robot is and the desired head angle is The
angle controller is then determined as follows:

where is the angle error of the robot.
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5.3 Scaling

The output of the position or angle controller in Equations (21), (22) may exceed the
range of the applicable voltages on the motors. In order to deal with such a situation, a
scaling algorithm is believed to be efficient.

If the output vector of position controller was out of range of maximum motor
voltage it is scaled down with the following scale factor:

For the angle controller, another scaling method is used, in which the output of the
angle controller is clipped to The reason for using such threshold is
that a relatively high angle error would result in high motor voltages and this in turn
affects the output of position controller.

5.4 The Final Motor Controller

The final applicable voltages on the motors are computed as:

The following scale factor is used for before being applied to each motor if

6 Experimental Results

In order to check the improvement of the odometry system introduced in this article
compared to similar systems, a test condition was suggested to measure the position
and head angle error.

In the designed test condition, care was taken to simulate the real situation. The test
condition and the results are presented in the following two sections. At the end, the
effect of the odometry sensor in reducing vision based self-localization overhead will
be discussed.

6.1 Test Condition

UMBmark method is a popular benchmark for odometry systems [8], but the follow-
ing test condition was used for simulating robot behavior more closely.

In this test, the robot is placed at one end of the field, and then the robot moves
straight to the other end (10 meters) while rotating 360°. The position and head
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angle error are then measured. This procedure is repeated several times, and the mean
values are computed.

In the following figure, shaft encoder outputs of an ideal odometry system under
the test condition are presented.

Fig. 5. Up: Position and orientation of robot while moving straight in 2.5 meters intervals.
Down: The output of shaft encoders plotted over the length of 10 meters under the test condi-
tion.

6.2 Test Results

The following table demonstrates a comparison between robots with the ordinary
odometry sensor, which the shaft encoders are connected to driving wheels, and the
next generation robot in which the improved odometry system was installed on. The
direct method was used for position calculations.

Using the improved sensors, the relative position error is 1.5%, while the relative
orientation error is 1.1%. So, the new odometry sensors have improved the orientation
error to 86%, and the position error to 80%. In this way we have reduced the asym-
metric errors to a great extent.
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Considering the position accuracy, the vision based self-localization can be up-
dated with longer time intervals, while the odometry results are used for self-
localization. This in turn enables us to perform accurate, complicated and time con-
suming vision based self-localization algorithms.

Having relatively precise information about orientation is also used in searching
algorithms of stationary objects (goals and flags), which causes the image processing
algorithms more robust.

7 Conclusions

Joint visualization – odometry localization of moving robots has attracted the atten-
tion of many researchers. In this work we intended to improve the performance of the
existing algorithms by proposing a new odometry system with lower asymmetric
errors. In our approach there are free wheels accompanying the driving wheels solely
to measure the robot rotation and displacement. Hence slippage is reduced considera-
bly and error accumulation diminishes. New methods for converting measurements
into desirable data are also proposed to avoid the amplification of inaccuracies in
differentiations. Test results verified the improvements clearly.
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Abstract. Since texture is a fundamental character of images, it plays an impor-
tant role in visual perception, image understanding and scene interpretation.
This paper presents a texture-based pattern recognition scheme for Sony robots
in the RoboCup domain. Spatial frequency domain algorithms are adopted and
tested on a PC while simple colour segmentation and blob-based recognition
are implemented on real robots. The experimental results show that the algo-
rithms can achieve good recognition results in the RoboCup Pattern Recogni-
tion challenge.

1 Introduction

In many applications, texture-based pattern recognition typically uses discrimination
analysis, feature extraction, error estimation, cluster analysis (statistical pattern rec-
ognition), grammatical inference and parsing (syntactical pattern recognition). Be-
sides colour, texture is a fundamental character of natural images, and plays an impor-
tant role in visual perception. The basic methods for texture-based recognition are
combinations of both spatial and frequency domains.

Texture-based segmentation algorithms divide the image into regions yielding dif-
ferent statistical properties. Such methods assume that the statistics of each region are
stationary and that each region is extended over a significant area. However, most
image regions do not present stationary features in the real world. Also, meaningless
small-sized regions related to stains, noise or punctual information might appear.
Consequently, methods relying on a priori knowledge of the number of textures in a
given image [7] [11] often failed, because if any unexpected texture region appears,
like the ones related to shadows or boundaries, a wrong fusion of two non-related
regions is forced. Unsupervised segmentation [1][3] does not rely on such knowledge,
but it is slow because it requires a computationally expensive additional stage to cal-
culate the correct number of regions. Gabor filters and Gabor space are very useful
tools in spatial frequency domains. There is some similarity between Gabor process
and human vision [8][9][10][6]. Multi-resolution and multi-band methods, as well as
a combination of statistical and learning algorithms are very useful in this area [8]..

In the area of texture recognition and segmentation, image modulation and multi-
band techniques are very useful tools to analyse texture-based patterns. Havlicek has
done a lot in AM-FM modulation for texture segmentation [3][4][13]. Images with
multi-texture are processed by a bank of Gabor filters. Using the filter responses,

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 611–620, 2004.
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Dominant Component Analysis and Channelised Component Analysis are imple-
mented for texture decomposition. There are also other researchers using similar
methods.

The rest of the paper is organized as follows. Section 2 describes briefly texture-
based recognition, including the pattern recognition challenge in RoboCup and the
texture analysis process. In section 3, the issues related to colour filters and spatial
domain processes are investigated. Then, both multi-band techniques and Gabor fil-
ters are proposed for texture segmentation in section 4. Section 5 presents image
modulation modules based on multi-dimensional energy separation. Experimental
results are presented in section 6 to show the feasibility and performance of the pro-
posed algorithms. A brief conclusion and future work are given in section 7.

2 Texture-Based Pattern Recognition

2.1 Pattern Recognition Challenge in RoboCup

In the Sony robot challenge of RoboCup 2002, each Sony robot is expected to recog-
nize the targets with chessboard texture pattern and individual geometrical shapes,
which are placed at random positions and orientations. To implement this task, we
define a function F to represent the pattern recognition system that can be used in this
challenge. More specifically, its inputs are images with dimension of M × N , and its
output for each image is the element of a name set or a code set. For example, a name
set S={triangle, square, rectangle, T, L} may be defined here for the recognition
challenge of Sony robots in the RoboCup competition. Figure 1 shows 4 targets to be
identified in the challenge. The size, rotation angle and background are random.

Fig. 1. Target patterns in the RoboCup Sony Robot Challenge

The whole process of recognition can be decomposed to four stages. There are
many methods that can be applied at each stage. In general, complex methods can do
well, but are expensive. Simple methods are required for real-time systems. More
specifically, we have four stages in recognition as follows:

Stage 1 -- Image processing stage can enhance image quality and make segmenta-
tion or edge detection much easier by removing noises and blurs images. Some
images that are not focused well can be sharpened.
Stage 2 -- Image conversion includes filter process, DFT (Discrete Fourier Trans-
form) process, DWT (Discrete Wavelet Transform) process and so on. Its main
purpose is to make properties of images easy to be extracted. For instance, skin
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colour can be used to identify hands of humans. In the RoboCup Sony robot
league, the competition field is colour-based. Under natural environment with
complex backgrounds, Sony robots may be unable to find objects easily by using
colour information only. Further complex methods are required [5].
Stage 3 -- Information extraction to obtain useful information for recognition. In
most cases, it should output data in a special format for processing at a later stage.
For instance, blob-based methods should output useful information for all blobs,
including position, size, and so on. In some cases this part is called coding, as it is
describing objects with numeric properties.
Stage 4 -- Pattern recognition converts numeric properties to most-like objects
and output their name. The process depends on the previous results. If input data
is easy to be discriminated, this process can be very simple.

2.2 Texture Analysis Process

Texture is a fundamental character of natural images. It plays an important role in
visual perception and provides information for image understanding and scene inter-
pretation. Figure 2 (a) shows the target texture used in the experiments.

Figure 2 (b) shows the magnitude of the DFT result from Figure 2 (a). The result is
cantered, logarithmically compressed and histogram stretched. From this result, the
frequency distribution of the pattern is clear. However, it is difficult to design a filter
for recognition. Figure 2 (c) shows an original image captured by the robot.

Fig. 2. Texture Analysis Process

Figure 2(d) shows the DFT magnitude for luminance in Figure 4. Because of its
complex background, no filtering hint for the pattern can be seen from figure 5. It is
impossible to separate the pattern from complex background by using a simple filter
in the frequency domain.

3 Colour Filter and Spatial Domain Process

A colour filter can be used to obtain pixels with the concerned colour. Spatial domain
processes such as morphology filters cost little, but are very effective for smoothing
binary images. Following processes are all based on the image shown in Figure 2(c).
The colour filter here are LUT (Look Up Table) based, which was implemented on
the robots for the purpose of good performance. Figure 3 shows the result by the LUT
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method. The concerned colour is white. Figure 4 shows the Horizontal Signature, i.e.
the image projection onto the x-axis. The first peak is the dark area and the second
part is mainly white part.

It is not easy to separate white and black blobs from the background on the basis of
the signatures alone. Figure 5(a) shows the result for black blobs.

Fig. 3 An image Fig. 4. Horizontal Signature

With LUT results, edges can be extracted. Figure 5(b) shows the image with edges
of white blobs. The edge detection here is morphology based, i.e. binary calculation.
Figure 5(c) shows an image with edges of black blobs. Figure 5(d) shows the overlay
of black and white edges. The main problem with spatial processes is that they are
limited by the size of masks. In fact, the target frequencies are fixed with masks. It is
therefore difficult to extract useful information for recognition, especially with com-
plex background.

Fig. 5. Spatial domain process

4 Multi-band Techniques and Gabor Filters
for Texture Segmentation

In this section, the research focus is placed on multi-band techniques in order to over-
come the problem existing in spatial processes described in the previous section. Ga-
bor filters are adopted for texture segmentation in the RoboCup domain. As presented
in [6], multi-band techniques are based on the following model:

It assumes that an image f(m, n) can be decomposed into Q components and each
component is based on a given frequency band. As we know, Gabor filters are wave-
lets based narrow band filters. With a bank of Gabor filters, it is possible to isolate
components from one another. In some cases, they can be used to detect the direction
of target’s rotation. Gabor wavelets have following properties:
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Gabor functions achieve the theoretical minimum space-frequency bandwidth
product; that is, spatial resolution is maximised for a given bandwidth.
A narrow-band Gabor function closely approximates an analytic function. Signals
convolved with an analytic function are also analytic, allowing separate analysis of
the magnitude (envelope) and phase characteristics in the spatial domain.
The magnitude response of a Gabor function in the frequency domain is well be-
haved, having no side lobes.
Gabor functions appear to share many properties with the human visual system.

4.1 Two-Dimensional Gabor Function: Cartesian Form

The Gabor function is extended into two dimensions as follows. In the spatial fre-
quency domain, the Cartesian form is a 2-D Gaussian formed as the product of two 1-
D Gaussians:

where is the orientation angle of and

In the spatial domain, is separable into two orthogonal 1-D Gabor functions

that are respectively aligned to the x’ and y’ axes:

An image could be represented as

where

are constants; and Assume that the parameters are

chosen appropriately, approximation to are obtained by using

4.2 Gabor Filtering Results

In this research, a bank of 72 Gabor filters are implemented on images captured by
Sony robots. The filters are of 9 frequencies. For each frequency, there are 8 orienta-
tion angles. The parameters of the filters can be set for different applications. Figure
6(a) shows the filter property of its real part and the orientation is 0. Figure 6(b)
shows anther filter property of its real part. It has higher frequency and the orientation
is 90. Figure 6(c) shows the product of Gabor filter.

The responses with only low frequency features remain. By adjusting the fre-
quency and orientation parameters, some results can be used as texture recognition or
segmentation. Figure 6(d) shows a suitable frequency with an orientation of 0-degree.
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Fig. 6. Gabor filtering results

Fig. 7. Different responses of filters at different orientations

Figure 7 shows different responses by filters with different orientations. Orienta-
tion is very important for filtered results. The texture region is stressed greatly in
several image results. The next problem is how to find a good result in object recogni-
tion without human supervision. It will be discussed in the next section.

5 Image Modulation Models
and Multidimensional Energy Separation

The unsupervised image segmentation is very important for computer vision and
image understanding, especially for robotic systems. Comparing with colour segmen-
tation, texture based segmentation is much more challenging. Image modulation mod-
els are very useful in this area, which may be used to represent a complicated image
with spatially varying amplitude and frequency characteristics as a sum of joint
amplitude-frequency modulated AM-FM components [4].

5.1 Multidimensional Energy Separation

For any given image f(n,m), there are infinitely many distinct parts of functions

As an example, we could interpret the variation in f(n,m) exclu-
sively as frequency modulations by setting and

Teager-Kaiser energy operator (TKEO) could be used to

estimate the AM-FM function.
For a 1-D signal f(n) the discrete TKEO is defined by following:
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When applied to a pure cosine signal the TKEO yields

a quantity that is proportional to energy required to generate the

displacement f(n) in a mass-spring harmonic oscillator. For many locally smooth
signals such as chirps, damped sinusoids, and human speech formats, the TKEO de-
livers

where and are good estimates of an intuitively appealing and physically

meaningful part of modulations. satisfies The quan-

tity is known as the Teager energy of the signal f(n). A 2-D discrete
TEKO is:

Fig. 8. An example of TEKO

For a particular pair of modulation functions satisfy-
ing the operator approximates the multi-

dimensional Teager energy For images that are reasonably lo-

cally smooth, the modulating functions selected by the 2-D TKEO are generally con-
sistent with intuitive expectations. With the TKEO, the magnitudes of the individual
amplitude and frequency modulations can be estimated using the energy separation
analysis (ESA), as shown by equations (9), (10) and (11).

Fig. 8 shows the magnitude with the TEKO. The operation is based upon the image
in Figure 6(d) and the luminance level was adjusted here for the purpose of presenta-
tion.

5.2 Multi-component Demodulation

Multi-component demodulation is based on the following model:

One popular approach for estimating the modulating functions of the individual
components is to pass the image f(n,m) or its complex extension z(n,m) through a
bank of band pass linear Gabor filters mentioned above. Each filter in the filter bank
is called a channel. For a given input image, each channel produces a filtered output
that is named as the channel response.
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Suppose that and are respectively the unit pulse response and

frequency response of a particular filter bank channel. Under mild and realistic as-
sumptions, one may show that, at pixels where the channel response is

dominated by a particular AM-FM component the output of the TKEO is

well approximated by

In fact, the results of the filters can be passed into this conversion for the AM mag-
nitude separation. Figure 9 shows the AM modulation result from Figure 15 and Fig-
ure 16. No luminance level was adjusted.

Fig. 9. AM modulation result from Figure 7

For real-time requirement, to select a suitable frequency and orientation of the fil-
ter can be based on pre-known data and energy separation. The Sony robot can meas-
ure an approximate distance to a target with an infrared range sensor. This means that
the frequency and orientation of the target can be estimated by a robot system, which
is very helpful for the selection of a suitable filter.

6 Experimental Results

Information extraction from a well-pre-processed image is a simple task. From the
image in either Fig. 7 or Fig. 9both edge-based and blob-based methods can work
well. Harris algorithm [2][12]can be used to get the corner and edges. In contrast, a
blob-based algorithm can obtain the exact position and the number of blobs in a tex-
ture pattern, especially for the image in Fig. 9. Then, the pattern can be recognized
based on the position of corners or blobs. The method can be described as follows:

Step 1: Find one edge of the shape & rotate it to make the edge parallel with Y-axis.
Step 2: Calculate the distribution of blob or corner positions on X-axis and Y-axis.
Step 3: Recognize the pattern by using the rules as follows:

If position numbers are equal on both X-axis and Y-axis, it is a square target.
If position numbers are equal on X and Y respectively, it is a rectangle target.
If position numbers in the middle of X are bigger than both side, and position
numbers of one side of Y are bigger than another side, it is a T-shape target. Oth-
erwise, it is a triangle target.
If position numbers of one side are bigger than another side on both X and Y axes,
which is a L-shape target.
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Figure 10(a) shows the edges detected from the image in Figure 7(e). Figure 10(b)
shows the result of linearisation. Figure 10(c) shows the result of rotation. In fact,
from the result of linearisation, it is clear that the pattern is a square. Ambient meth-
ods can avoid problems caused by viewpoints. For complex shapes, complex algo-
rithms are necessary.

It is estimated that for each operation of a Gabor filter, with an image dimension
M×N, filter dimension W×H, the number of basic calculations can be up to

For the experiment above, M=176, N=144, W=9, H=9,
it costs about 149905278 basic calculation, 0.5 second on a Pentium III 500 PC. If it
runs on the robot with a MIPS 4000 100 CPU, it will take about 1.5 second. The cost
can be reduced by 64% if reducing the filter dimension to 7x7. For the new version of
Sony AIBO robot with a supercore CPU, it is possible to implement the filtering
processes at a rate of 6Hz, which becomes necessary for complex environments.

Fig. 10. Experimental results

7 Conclusions and Future Work

In this paper, we have developed spatial frequency domain algorithms that can recog-
nize shapes in chessboard texture in a cluttered environment. Unlike simple algo-
rithms that require clear background and less interfere; spatial frequency domain
algorithms can recognize shapes from a cluttered background. These algorithms have
been successfully implemented on a PC. In contrast, simple colour segmentation and
blob-based recognition are implemented on real robots to satisfy the real-time re-
quirements. When the background is less cluttered, good recognition results can be
achieved reliably.

In our future work, the spatial frequency algorithms will be implemented on real
robots for real-time performance, especially object recognition under a complex envi-
ronment. A leaning system will be integrated in order for the Sony robot to recognize
colour objects under complex and cluttered environments.
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Abstract. At present, various kinds of robots such as AIBO, ASIMO and etc,
are available in public. However, the development of robots is still having some
difficulties since of their complexity, continual changes of environments, limita-
tion of resources and etc. To overcome this problem, robot developers often use
the simulator that allows to program and test robots’ program effectively under
ideal environmental conditions where specified various conditions can easily be
reproduced. It is still difficult to realize the simulator regardless of its usefulness,
because the cost of simulator implementation seems the unexpected cost in the
development of robots. As a result, it is need to realize the open robot simulation
environment in which any kind of robots can be simulated. This paper focuses on
vision-based robot simulation environment and describes a method to construct
it. Finally, we implemented a simulator for Robocup Sony 4-Legged League by
using this method.

1 Introduction

Nowadays various robots are available in public such as AIBO, ASIMO and etc. How-
ever, the development of robots is still having some difficulties because of their com-
plexity, continual changes of environments, limitation of resources and etc. Considering
environment changes in vision-based robot, for instance, changes of the lighting con-
dition in a specific environment will affect robot’s behavior seriously. To understand
the problems of the robot’s strategies in the real environment, it needs to check robots
strategies in exactly the same environment conditions. Because of in each testing time,
sensory values such as camera images and the effectors will change. There are two
types of robot simulators in order to solve this problem. One aims to simulate the robot
mechanical behavior with accurate robot model data and the other aims to simulate the
vision of the robot in order to test robot strategy. The simulator allows developers to
program and test robots’ program effectively in the ideal environment where specified
conditions can easily be reproduced. It is still difficult to realize the simulator regardless
of its usefulness since the cost of simulator implementation can be an unexpected cost in
robot development. Can overcome this problem by realizing the open robot simulation
environment as it can simulate any type of robots.

This paper focuses on vision-based robot simulation environment and describes a
method to construct it. The next section describes concept of open robot simulator.
Section 3 shows architecture of this method. Section 4 presents an implementation
of the environment. Section 5 shows evaluation of the simulator for Robocup Sony
4-Legged League. Finally, section 4 concludes with a discussion of our method.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 621–627, 2004.
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Fig. 1. The Simulation Environment Architecture

2 System Design

The purpose of the method is to improve the development efficiency of the vision-
based robots’ strategies. To achieve this, we implemented an open robot simulation
environment so that different robot developers can introduce different robots to the
environment in order to realize the functions of the simulator. The overall policy of
the method is as follows.

Openness is the main focus in the system design stage. With high openness, de-
velopers can manipulate the simulation environment easily to treat various kinds
of robots. It also allows customizing simulation environment according to the real
environment to introduce new robots, new planning strategy, new color modules,
new collision detection module, new image processing module, etc
Reproducibility - Real robot always changes the behavior according to the environ-
mental condition changes such as lighting condition. Since testing of robot strategy
consumes number of development cycle consists of coding and debugging, the sim-
ulator must support to reproduce a certain situation.
Distribution in a Network - Since individual robots exist distributed in a physical
space, the environment must support distribution in a network.
Minimize the Requirements - When migrating between real robot and the simulator,
it needs to reduce the cost of migration. In our method it is possible, since the
robot’s strategy program having less modification and its easiness to modify

3 Architecture

Fig 1 illustrates the system architecture, which adopts client/server model and intro-
duces two servers called the simulation server (SimServer for short) and the communi-
cation hub (ComHub for short). In this model, there are multiple heterogeneous robot
agents, which are implemented in different program languages and can participate to
this environment because clients connect to the server via the network.
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Fig. 2. A Tree Representation Ex-
ample of SimServer’s Objects

Fig. 3. An Example XML Output of Environment Infor-
mation

3.1 Simlation Server

The SimServer manages all the objects in the simulated environment and synthesizes
virtual camera images and simulates the robots’ effector. To reduce the cost of real-
ization of the simulator, the system provides a class library of fundamental component
which are implemented with opened interface in order to operate easily. The following
list show the main part of the class library.

Robot holds cameras, effectors and its position and orientation.
Camera holds parameters such as view angle, resolution and so on, synthesized images

by the Core Engine.
Effector keeps current value and the range of values. It also can hold any sub-effector

and camera as children.

This library allows users (i.e. robot developers) to construct the virtual robot by
few steps; combination of any object according to real robot, customization of object
parameter such as camera resolution and the range of effectors, and corresponding to
existing 3D shape model data of the robot. The SimServer manages all the objects in
tree structure and provides name space according to that structure so as to developer can
get information user friendly. The robot’s strategy program and developers can access
all the objects and its all attribute information by that name. Fig 2 shows an example of
tree structure of the Sony ERS-210.

Any object in the SimServer can be appended and removed in runtime to configure
the simulation environment dynamically. For example, when a new robot participates in
the simulator, the SimServer create new objects according to robot template on demand.

3.2 Communication Hub

The communication hub (ComHub for short) holds whole environmental information
including from each robot’s estimated position in the soccer field to camera images
generated through the SimServer.
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Snapshot. The hub also can take a snapshot of its contents. The snapshot is XML
formatted so that programmers can modify and export. (Fig 3 gives an example of
the XML output result.)

Dynamic Connection/Disconnection of Clients. This is one reason why we introduce
the hub. In development cycle, we frequently kill/run the clients. Using this hub,
the system can continue the execution regardless of disconnection because the last
state of a robot is still hold even if it was crashed.

Dual Communication. We provide two communication mechanisms - one is synchro-
nous operations: read () and write () operations to the tree. These operations
are fairly simple. To read value on the path name of/robot/head/camera/rgbImage
is read (" /robot/head/camera/rgbImage"). It returns a byte array con-
tainer. To gain the performance, bulky versions of these operations are provided.
The other is an asynchronous event mechanism which supports send and listen
event operations. All events must be sent with a string label to address the contents.
The event receiver can set a filter to receive interested events and reduce bandwidth
by specifying a regular expression. Only events matches the regular expression can
be received.

A communication pattern may be used in common is like that 1) a client receives an
update event, and 2) issues read () operations to get its interested nodes, 3) send
an finish read event. 4) After receiving the finish read event, a client who wants to
write data start to write the nodes through write () operation. After that, 5) it sends
an update event. The tree held in the communication hub works as a shared memory.
Asynchronous event mechanism can be used as a synchronization mechanism between
data producer and consumer.

3.3 Functionality

The following functionalities enhance the simulation environment: plugin user module,
a script language, persistence of simulation environment state, communication among
the agents and visualization of view frustum.

First, developers can insert fragment of program as plug-in module to the virtual
robot in order to customize its behavior. The environment provides interfaces for plug-in
modules such as image transformation plug-in, effector plug-in and constraints plug-in.
By using this functionality, user can realize strange camera image, reduction of effector
speed, etc without time consuming task. For instance, if a simulator should provide the
YUV image, the robot developer only prepare a plug-in which transform from RGB
to YUV color space. In fact, our team implemented the plug-in described a few codes,
since Sony ERS-210 generates YUV camera image. Since every plug-in module is as
the SimServer ’s object, they can be appended / removed and enabled / disabled by
scripting at runtime.

Second, to provide interaction between developers and the SimServer, a script lan-
guage likes the S-Expression is introduced. The following enumeration shows typical
features of the scripting:

Getting and setting values of all the objects in the environment
Loading new objects and plugin at runtime



An Open Robot Simulator Environment 625

Fig. 4. An Example of script language Fig. 5. An Example of image transformation
plug-in

Removing all the objects and plugins at runtime
Configuration of system setting such lighting condition, frame rate of the simulation
Easy to introduce new commands

This allows us to test the robot’s strategy in the exactly the same environment because
the simulator can reproduce it repeatedly. Fig 4 shows an example code to place a ball
between two robots (named robo0 and robo1).

Third, the ComHub can export its snapshot to a file as described the above. By using
this feature, the system can reproduce a certain situation according to the snapshot. This
functionality increases reproducibility.

Forth, by using the ComHub ’s feature that holds whole environmental information
as shared information, the system provides communication among the each client. The
ComHub allows the SimServer and every client to put different information to it. When
putting information, the ComHub notifies this update to the SimServer and each client.

Finally, when using the active camera, enhancement of camera motions is important
to recognize the virtual environment. The simulator provides functionality to visualize
the view frustum that each of the cameras is now seeing. This visualization is useful in
order to adjust and tune-up camera motion.

4 Implementation

Initially, we implemented the SimServer and the ComHub by using Java and Java3D
[2]. The SimServer is shown in Fig 6 and it consists of four components; global view,
command line panel, the tree view, local camera views.

On the global view, user can change his own view by mouse operations. The com-
mand line panel allows us to interact with the simulator by the script language described
in the above. The tree view shows information about all the objects in the simulation
environment.
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Fig. 6. The overview of the SimServer

Second, to evaluate the method, we implemented a simulator for the Robocup Sony
4-Leggued League on the environment. Then we succeed in migration from real robot’s
strategy program [1] to the simulator with minor modification.

5 Evaluation

We measured the frame rate of the simulator on the PC Intel Pentium 4, 2.8GHz,
1024MB Ram with ATI RADEON 9700 Pro video card and three robot agents con-
nected to the simulator via 100MB LAN. As a result, each client worked at almost 6.2
fps (frame/seconds).

At this time, the main differences arise in the simulator environment against the real
field one are that lack of a robot physical model, accurate sensory values, ideal effectors
(no slippery walking), no collision to the ball, robots and the field boundaries, noiseless
synthesized local vision images, relatively rich computation resources rather than ERS-
210, lesser inter-robot communication latency. Most of the factors would be dealt with
the introduction of new plug-in modules (like a noisy camera filter). But depending on
applications, these differences could break precision of a target simulation and make
the results unusable. However, as far as we have tested the simulator from 1 years ago,
in our application practice shows its strong effectiveness. The following is the some
practical examples.

1. Multi-agents coordination programming: The simulator can accommodate mul-
tiple-agents with its inter-agent communication facility. A programmer checked
an inter-agent information sharing mechanism, ball occlusion test (Fig 5), a lot of
team formation strategy. Through this process, the programmer successfully cre-
ated a coordination algorithm which applied in a real game.
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2.

3.

4.

Vision module debugging: A programmer discovered a serious vision code bug
which appears very occasional. With the simulator, debugging can be done effec-
tively because of rich development environment.
Robustness test: A lot of the audience wears colorful clothes which can easily con-
fuse the robots vision system. To minimize the influence, we introduced a filter
which eliminates too high markers. The simulator can create an ideal bad environ-
ment in a fraction of time.
Education: For aibo programming beginners, we provided the simulation environ-
ment as a primary test bed. This accelerates their learning curve. The simulator
never hurts real robots so the learner can try new things freely.

6 Conclusion

On the vision-based robot simulator, it is important to reduce the cost of robot strat-
egy programming. To achieve this, we proposed the open robot simulation environment
to accommodate any kinds of robots by using standard Java, distribution in a network
with TCP/IP, minimized the requirements through simple communication operations,
providing rich information through the tree structured external representation, open-
ness with communication hub and plug-in facility in the simulator and rich debugging
facility.

In the four-legged league in RoboCup 2002, our system had not been implemented.
Now we have a good fundamental to experiment new planning and coordination strat-
egy and so on. At this time, the primary implementation has been done. As a future
work, we have to evaluate the system in practical and to introduce another sensor such
as omni-directional camera and laser range sensor, etc. On the other hand, the system
has been yet considered physical effects in the simulation, nevertheless, we plan to in-
troduce simple method by using collision detection.

The authors would like to express their gratitude to the Information-technology
Promotion Agency (IPA), Japan for sponsorship of this project and Professor Takaichi
Yoshida for supporting.
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Abstract. We propose a novel agent framework to describe behaviors
of the general public in rescue simulations and implement an applica-
tion for “Risk-Communication for disaster rescur”. Conventional agent
description languages are designed to model intellectual behaviors of hu-
man that solve a task to achieve a single goal. In a disaster situation,
however, it is difficult to model civilians’ behaviors such as goal-oriented
problem-solving. Instead of such a formalization, we introduce the “Par-
allel Scenario Description” approach that models agents’ behavior as an
action pattern or plan of situations. We call these “Scenarios”. In the pro-
posed framework, behaviors are divided into multiple scenarios for each
goal by Posit and Posit operator, in which behavior rules are grouped
based on situations where the rules are active. The problem solver
constructs a rule-set of behavior dynamically according to the situation
of the environment and the agent’s state. The framework is implemented
as civilian agents for RoboCupRescue Simulation to adapt to a general
civilian simulation. Moreover, we implemented refuge simulation for dis-
aster rescue simulations to realize “Risk-Communication”.

1 Introduction

RoboCupRescue Simulator[1,2] is designed to maximize contribution to the so-
ciety and attain high throughput in research. We aim to utilize this simulator
for “Risk-Communication” of a disaster rescue. That is, it is very important to
simulate civilian agents suitably for simulating realistic phenomena in disaster
simulation. This is true because furthers that civilian agents comprise the ma-
jority of agents in the simulated world and behave for multiple and ambiguous
purposes. Moreover, the general public are themselves, our target people.

In this paper, we model the general public as agent suitably for disaster res-
cue simulator (RoboCupRescue Simulator) and implement some applications.
In disaster rescue simulation, civilian are numerous elements: calculation cost
becomes an obstacle to scalability. Moreover, human actions are very compli-
cated. One important attribute of autonomous agents is the ability to behave
for multiple and ambiguous goals in rescue simulation, including disaster rescue
simulation. Therefore, the behavior design of civilian agents is a key issue from
the viewpoint of disaster rescue simulation.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 628–636, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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The “Risk-Communication” is promotion for education about some risk re-
lated with various phenomena. We aim to perform “Risk-Communication” using
RoboCupRescue simulator in that disaster rescue is important. It is important
for applications about disaster rescue to design many civilian agents. So, we
implement a civilian agent for RoboCupRescue Simulator and simulate various
situations used by these agents.

2 Behavior Description: Parallel Scenario Description

We motivate “Parallel Scenario Description” by describing the difficulty of agent
design of a civilian agent in RoboCupRescue Simulation. We introduce an agent
framework, that we call “Parallel Scenario Description”. This framework has the
following features: ‘Scenario-based Behavior Description’, ‘Light-weight Process-
ing’ and ‘Prototyping Programming’.

Agents’ behaviors have various styles from reflective action to deep-thinking
decision making accompanied with long-term plans. The agent behavior descrip-
tions are expressed as reactive planning [3] or deliberative planning [4, 5]. How-
ever, these planning approaches present some problems. The former has difficult
describing long-term planning; the latter presents difficulty in maintaining true
expression of an environment and wastes large amount of calculation time in
identifying each condition of action rules.

In rescue simulation, on the other hand, human tend to behave as a cus-
tom action patterns and plans of a heuristic knowledge to achieve a specific
task. It is not easy to decide own action with deep-thinking. In this research,
we model human behavior as a collection of such action patterns or plans, and
call it a “scenario”; We then behavior description by scenario-based behav-
ior description. Scenario-based behavior description is based on scenarios. A
“scenario” is an action pattern or plan to achieve a specific task, e.g, “move to
a safe location” and “look for refuge”. With individual scenarios, designers of
agent behavior(scenario-writer) write action rules that are utilized for achieving
a specific goal.

We propose Posit and for an agent framework based on “Parallel Sce-
narios Description”. Posit is rule description syntax and is problem solver,
which accomplishes multiple purposes(scenarios) in parallel, suitable for simu-
lation of civilian. Civilian agent is implemented with Posit, Posit Operator and

2.1 Posit: Part Of SITuation

Posit is a framework of behavior rule description for and a behavior rule set
under a specific situation. Posit means a piece of situation of agent. “Scenario”
is a set of Posit and edges, which represent a temporal transition between each
Posit. Figure 1 shows syntax of Posit.

Action rules, in this Posit, consist of Condition, Activation and Action. These
rules are applicable in the specific situation, and are candidates for firing when
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Fig. 1. Syntax of Posit

the Condition is satisfied. Activation shows a value function, which is expressed
as a numerical value or formula of Action. This Activation value is utilized as a
value for conflict resolution in decision-making. Finally, the agent process system
executes the Action’s rule that is selected by some selection rule1. The Action
part has two types of operations: one is primitive action, e.g., move, search,
say, and so on; the other is Posit Control operator. The primitive action is used
to request an agent to output to external environment mainly. The latter will
be able to manage an internal environment. In Posit,a word starting with “?”
indicates a passive action; the same one with “!” is a positive action, and “*” is
variable. These are shown Fig. 1.

2.2 Posit Operator

Posit is a collection of rules, which are usable in a spacific situation. This means
that Posit is a piece of situation, which agent faces. That is, the current situation
of an agent is expressed as a set of Posit is active. In this study, we call this set the
“current-situation”. Posit operator the manages “current-situation” by replacing
Posit in accordance with the situation and means temporal-transition of the
situation of an agent. Scenario-writer writes these operations in Posit clearly.
An Agent can control its own rule candidates used by this Posit operator.

1 e.g., max selection, roulette selection
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Posit controller has two basic operators: one is (add_posit ...), the other is
(remove_posit ...). In addition, there is reserved operator; e.g. (transit_posit A
B), (start_scenario S), or some other.

2.3 Parallel Scenario and Parallel Scenario Problem Solver

An agent’s simple behavior with Posit can be shown using a state-transition
diagram. This state-transition diagram shows the basic routine-work or behavior
pattern which accomplishes a single goal or a simple task in the short term. We
call its state-transition a “Scenario”. An agent behavior represents a collection of
Posit and transitions among them by Posit operator. It is changed by changing
the component of its collection.

 is an inference engine that infers the manipulate Posits and determine
behaviors according to Scenarios. The key concept of         is situated-ness evalu-
ation, that is, not to say that rules are evaluated in a cycle; only rules in active
Scenarios are evaluated, where activeness of Posits are handled explicitly as sit-
uational manipulations. In addition, activation of a Posit is operated by another
Posit action slot specifically.

Fig. 2. The processing flow of Decision Making of an Agent’s Behavior with

In an entire scenario is stored in “Scenario DB”, a form by which a
set of active Posit is selected into “Current Situation” (CS). Only rules in CS
are candidates to be applied in the current situation. Figure 2 shows a flow of
information and control in A basic cycle to determine one’s own action is as
follows: Condition parts of all rules in CS are tested for the current environment.
Then, for each rule that passes this test, the activation value of these rules is
calculated under the current situation. Finally, a rule is selected used by a value
of Activation, and fire. This basic cycle is repeated until no rule can be applied
in the current environment.
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3 Application for Social Simulation

3.1 Civilian Agent for RoboCupRescue

Here, we would like to providing explanation of application with our proposed
agent architecture: Civilian Agent for RoboCupRescue. Figure 3 shows construc-
tion of modules for civilian agent.

Fig. 3. CivilianAgent Architecture of RoboCupRescue Simulator

The agent consists of several modules. First, the basic level module is
“RoboCupRescue Agent Interface”, which is provided by RoboCupRescue Simu-
lator as a sample program. It has library modules for connecting with a simulator
kernel and a parser of communications protocol, etc. Next, level one is a
This module needs a specific property definition for RoboCupRescue Simula-
tor to implement this. Other modules are: Posit Processor, which manages a
current-situation, and which interprets scenarios.

We extended the definition of Posit, is mentioned by Fig. 1, to RoboCupRes-
cue Simulator implementing of civilian agent. A module with the necessity of
implementing for civilian agents newly, in the module which constitutes an agent
is the area, which is covered by gray color, of Fig. 3. We show syntax of Posit is
the extended definition for RoboCupRescue Simulator, as follows:

3.2 Refuge Action Simulation

We implement a sample application to simulate a refuge action. It is an agent
who takes refuge during a disaster. This sample aims at simulating a refuge the
general public when an urban disaster is assumed to have occurred; it utilizes
RoboCupRescue Simulator as a field of simulation. Concretely, we assume imple-
mentation of three kinds of refuge methods: a safe refuge, a guided point refuge,
and an instruction absorption refuge. We intend to find from minimum experi-
mentation that refuge time was different by each refuge method. An example of
civilian behavior and its Posit is as follows:
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Fig. 4. Definition of Local Data for RoboCupRescue

Fig. 5. ‘Agent A’ and ‘Agent B’: both
civilian knew the surrounding map

Fig. 6. Agent B: this agent did not know
surrounding map, but ‘Agent A’ knew
surrounding map detail, so that ‘Agent
B’ chases ‘Agent A’ to find the refuge

Figure 5 & 6 shows the refuge action of an agent. Their difference is their
own detailed knowledge of the surrounding map.
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4 Discussion

4.1 Contribution of Parallel Scenario Description
for a Disaster Rescue Simulation Agent

This paper presents a novel agent architecture for large-scale agent-based simula-
tion. Key contributions include: (i) Situated-ness description, (ii) Scenario-based
description, (iii) Parallelism and Multiplicity of ordinary human behavior.

These contributions provide several merits for large-scale agent-based sim-
ulation. First, a scenario writer is able to design agent behavior in each situa-
tion independently according to the scenario and to define dependence among
scenarios later. Second, scenarios can be defined individually, and join agent
behavior later. Thus, the scenario writer can complicate agent behavior by de-
grees as a prototyping programming. Third, our framework selects appropriate
rules according to circumstances, so that this provides light-weight processing
for agents’ processes. Fourth, Posit is a set of rules under a specific situations.
Scenario-writer reuse a Posit in other scenarios.

4.2 Related Works

Among related works, our proposed framework differs from conventional system:
production systems, Soar and ACT-R, in that these systems aim to model intel-
lectual behavior of humans that solve tasks to achieve a simple goal effectively.
In contrast, our approach aims to express knowledge of human behavior as a
scenario.

A reactive system: RAPs[3,6], may enable application to represent parallel
scenarios. In RAPs, a task is deconstructed into several sub-tasks that can be
executed in parallel. However, RAPs does not offer flexible mechanisms to resolve
conflicts of application of multiple rules like activation in Posit. For example,
it is hard to implement behaviors for an emergency situation that override all
other tasks and behaviors. Compared with this, we can realize such behaviors
by adding comprehensive activation values to rules for the emergency.

The scenario-type description of agents’ behavior in Posit was inspired from
the work of Interaction Design Language Q[7,8]. Language Q can handle multiple
scenarios. However, its behavior description is complicated because Q has only
a “goto” operator. Figure 7 shows, for example, the difference of creating a
behavior combining scenario A and scenario B. In the case of Posit, a scenario-
writer need only add a new edge between A and B. In the case of Q, however,
a scenario-writer sets new scenario is combined A and B, and creates complex
state-transition. Thus, when scenario-writer wants to add new scenario, writer
needs to consider an existent scenario and add new condition in one. Compared
with this, scenario writer can create new additional scenario independently, and
add several state-transition edges among existent scenarios and new ones in our
framework.

Posit shares the mechanism to handle “situated-ness” with GAEA[9,10].
Both works treat a complex situation as a collection of atomic situations pieces;



Application of Parallel Scenario Description 635

Fig. 7. The difference of rule description flexibility between Q and Posit: Agent be-
havior becomes complex

final behaviors then emerge as composites of atomic behaviors from these situa-
tions. However, because GAEA includes full implementation of Prolog, it is too
heavy to apply to numerous agents’ simulation.

5 Conclusion

This paper proposed a novel agent behavior description and framework using
“Parallel Scenarios Description”. Agent description languages have been stud-
ied intensively, but are not yet proposed as a convenient language used for
RoboCupRescue simulation. To utilize knowledge of social scientists, we devel-
oped Posit (Part Of SITuation) and (Parallel Scenarios Problem Solver), a
parallel scenario description language, to capture behavior patterns in a specific
situation, and to connect edge each small scenario.

We implemented some disaster rescue agent using its behavior model, be-
cause our proposed aims to model general public, who has multiple and am-
biguous goals, as civilian agent. Concretely, we implemented a civilian agent for
RoboCupRescue and a disaster refuge simulation as an application. We intended
to use civilian agnet as agent simualtion tools for Risk-Communication, etc.

Moreover, our approach has some demerits. It is not easy to write behavior
rules on a text-based interface. Moreover, it is difficult to decide activation values
for each rule considering the relation among different Posit, and so on. That is,
we focus on several point as Feature Work. as following:

Communicate model base on RoboCupRescue Civilian ACL [11]: To do co-
operation work with other rescue agent.
Another application: for example, Rescue Agent etc.
Development Environment:To promote of civilian agent development for so-
cial scientist, Visual Programming Environment etc..
Learning Mechanism: To change Activation function to acquire appropriate
action of civilian agent, and management balance of each scenario.
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Abstract. RoboCup Advanced 3D Monitor is a three-dimensional ap-
plication for visualizing and debugging games of the RoboCup Soccer
Simulation League. This paper discusses the issues pertaining the imple-
mentation of this monitor using OpenGL, a standard API for rendering
high-performance 3D graphics. Our application provides a true 3D soc-
cer game experience maintaining a healthy balance of realistic anima-
tion features and high-speed rendering achieved by the implementation
of specific computer graphics techniques. Besides its main usefulness as
a visualization tool, this monitor may be used as a supporting tool for
the development of other robotics techniques. To illustrate this, two of
such techniques are discussed here: sensor fusion and Markov localization
methods.

Keywords: three-dimensional monitor, simulation league, levels of de-
tail, markov localization, sensor fusion.

1 Introduction

The RoboCup soccer server simulates a 2D virtual field in which two agent teams
play a soccer match. Although the environment is two-dimensional, the soccer
server has proved to be an adequate platform for the development of realistic
3D visualization tools.

In this paper, the RoboCup Advanced 3D Monitor (RA3DM), a three-dimen-
sional monitor for the RoboCup Simulation League is introduced. RA3DM aims
to turn the visualization of simulated soccer games more realistic and entertain-
ing. As we were developing RA3DM we realized that the RoboCup soccer server
provides an interesting testbed for prototyping algorithms which could be used
afterwards on real robots. A Markov localization algorithm and a sensor fusion
method were successfully implemented in this environment and the latter has
already been adapted to real robots of the middle-size league. Our monitor was
extremely useful for developing/testing/debugging the implemented algorithms.

RA3DM is implemented on OpenGL, a low-level graphics library which is
designed to be used with C and C++ programming languages. One of the main
advantages that OpenGL presents is its independence from operating and win-
dowing systems. This feature enabled the development of versions for the Linux,
MacOS X and Windows platforms with only a little extra effort.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 637–644, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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The remainder of this paper is organized as follows. In the next section the
global architecture of the distributed system is briefly described. In Section 3
we present the main features of the implementation of RA3DM. Section 4 ex-
plains how RA3DM was used for the application of sensor fusion and Markov
localization algorithms in the RoboCup Simulation League. Finally, in Section 5
conclusions are drawn and future work is discussed.

2 System Overview

The RoboCup simulation system is controlled by a central process — the soccer
server — that runs the whole simulation, sending and receiving all the relevant
information to and from all the client programs connected to it [1]. An extra
connection was added to enable us to visualize the internal state of a soccer
player. The RA3DM connects to a special port on the soccer player program to
be monitored via a dedicated UDP socket. The global architecture employed in
our implementation is illustrated in Fig. 1.

The soccer server program sends information to all its connected monitors
every 0.1 s. However, the majority of hardware available today (both graphic
cards and main processors) is capable of delivering full-screen image update
rates (or frame rates) well above 10 Hz (i.e., 10 frames per second). This fact
led us to an architecture that maximizes drawing performance by allocating the
maximum possible CPU time updating the scene. To accomplish this we use
two permanently running threads [2]. One of the threads is responsible for all
transactions with the soccer server such as sending commands issued by the user
and receiving data concerning the state of the simulation. The other thread will
update the displayed 3D scene as fast as the underlying hardware allows. This
thread is also responsible for managing all user interaction through the use of
menus, mouse and keyboard.

3 Implementation

3.1 Player

RA3DM uses a skeletal animation system which allows for three main animations
to be performed by the player: walk, run and kick (see Fig. 2). A skeleton is
defined by a hierarchy of bones connected by joints with a position and an
orientation, arranged in a tree structure. The model, usually a single mesh of

Fig. 1. Global architecture of the distributed system.
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Fig. 2. Player model and its bone struc-
ture.

Fig. 3. Collapsing vertex onto

vertices or polygons, is attached to the skeleton through a process known as
skinning. When the latter is animated, the mesh is deformed accordingly, and
therefore, the model is continually morphed to match the movements of the
skeleton.

The animation process is simplified by keyframe interpolation techniques.
A keyframe animation is created by interpolating frames (snapshots in time)
between several successive keyframes that define specific pivot points in the
action. Each keyframe contains the values of the rotations of each joint of the
skeleton. The mesh is stored only once, along with the skeleton and the keyframes
of the animation, resulting in a very compact representation. Each animation is
created according to an uniform and constant speed that can be modulated
directly in RA3DM to obtain different running or walking velocities.

3.2 Levels of Detail

The computation and storage requirements for complex scenes, typical in some
computer graphics applications, far exceeds the capacity of modern hardware.
In order to accelerate the rendering of such scenes, approximations of decreasing
complexity (levels of detail) are produced similarly to the initial model. The
simpler versions contain fewer details that can not be noticed when the object
is farther away [3]. Most of the best techniques of polygonal simplification are
based on Hughes Hoppe’s progressive mesh work [4]. One possible simplification
is achieved by continuously applying an edge collapse operator that merges two
edge vertices into one, thus removing that edge.

Vertex Remove. This operation takes two vertices and (the edge
and “moves” or “collapses” one of them onto the other [5]. Figure 3 illustrates
a polygon before and after the application of the edge collapse operator. The
following steps explain how this operation is implemented:

1.

2.
3.

Remove any triangles that have both and as vertices (i.e., remove trian-
gles on the edge
Update the remaining triangles that use as a vertex to use instead.
Remove vertex

The removal process is repeated until the target polygon count is reached.
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Selection of the Next Vertex to Collapse. When selecting a vertex to col-
lapse, the basic idea is to preserve (as far as possible) the global appearance of an
object, trying to cause the smallest visual change to it. Despite the considerable
number of algorithms that determine the “minimal cost” vertex to collapse at
each step, they are, in general, too elaborate to implement. A simple approach
for this selection process may be to just consider the cost of collapsing an edge
defined as its length multiplied by a curvature term (the latter having half the
weight of the former in this calculation). The curvature term for collapsing an
edge is therefore determined by comparing dot products of face normals in
order to find the triangle adjacent to that faces furthest away from the other
triangles that are along Equation (1) expresses this idea, where is the set
of triangles that contain refers the set of triangles that contain both
and and and are the face normals of triangles and

The algorithm described throughout this section can be summed up as fol-
lows: while the current polygon count is greater than the desired target number,
select a candidate edge to collapse (according to its associated cost) and apply
the edge collapse operator to it.

Player Simplification. In practice, the polygon simplification algorithm pro-
duces very reasonable results. Our soccer player originally contained 347 vertices
and 639 triangles which, after the application of this algorithm, were reduced to
68 vertices and 130 triangles. These two versions correspond to the highest and
the lowest level of detail used in RA3DM. The former is used when the camera
is closer to the player while the other is selected if it is far away. In between
we consider intermediate levels obtained by the continuous variation of the total
number of vertices used to draw the player. In this way, it is possible to avoid
an undesired effect, named popping, that can be seen as an abrupt change in the
detail present in the object’s shape caused by the considerable difference in the
number of vertices.

3.3 Cameras

There are three distinct types of views into the field available to the end user:
static, user controlled and automatic cameras. A view similar to the display of
the official 2D soccer monitor (i.e., aerial view, pointing towards the center of
the soccer field) is available, as well as a completely custom camera that the user
controls using the mouse and the keyboard. Next we describe two of the most
interesting automatic cameras:

TV camera has a fixed position slightly raised on one side of the field and
constantly follows the ball with a small delay delivering image sequences
similar to those captured by a human camera operator. This camera zooms
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in and out as the subject being shot approaches and moves away from the
camera;

Event-driven cinematic camera consists of a series of cameras placed in
some strategic points of the 3D scene. Some of these cameras have a fixed
position whereas others are capable of some dynamic motion. At any given
point in time during the simulation of a soccer match, each one of these pre-
defined cameras will be assigned a subjective value representing the quality
and usefulness of the image sequence provided by it. The measurement of
this value and its assignment to the cameras is taken care of by a director
agent through the use of some heuristics. This agent also decides how to
point the cameras to the scene and how much zoom to use. After this eval-
uation, an editor agent in charge of producing the sequence of images seen
on screen will decide (based on the values produced by the director) which
camera to choose and for how long. Different director and editor agents can
be defined. By changing the way the director rates the footage and the way
the editor chooses among them will effectively change the resulting cine-
matic style, thus giving a totally different experience to the user [6]. For
example, if two players are fighting for the ball in the midfield, the director
may choose to zoom in one of the closest cameras to make a close-up and
give that camera a high priority value. The editor will then be able to use
that footage, always taking into account the minimum and maximum time
intervals allowed between cuts.

4 Applications

In this section we describe the implementation of sensor fusion and Markov
localization algorithms in the framework of the RoboCup Simulation League.
Our 3D monitor was a valuable resource allowing the visualization of the player’s
internal state and the gathering of experimental results. RA3DM includes a low
quality viewing mode that was extensively used in order to facilitate the data
observations.

4.1 Sensor Fusion

Sharing information among robots increases the effective instantaneous percep-
tion of the environment, allowing accurate modeling. Two known sensor fusion
approaches were tested in the RoboCup Simulation League: the Stroupe and the
Durrant-Whyte methods [7].

To perform sensor fusion the soccer server’s noise model is approximated by
a two-dimensional Gaussian distribution where is a vector repre-
senting the calculated position of the object and is a diagonal matrix that
denotes the variance along both axis (see Fig. 4). The variance along the axis
that points from the robot towards the observed object is calculated
based on the quantization made by the soccer server. Thus, represents the
variance along the perpendicular axis and is based on the maximum error in
angle that an observation can have.
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Fig. 4. Distribution parameter definitions: mean angle of major axis major
and minor standard deviations and distance to mean

In order to use sensor fusion we must exchange sensor information between
team members. This exchange provides a basis through which individual sensors
can cooperate, resolve conflicts or disagreements, or complement each other’s
view of the environment. In this case, an agent communicates information

and about seen objects to other agents.
Our goal was to compare the efficiency of the two mentioned sensor fusion

methods. The first approach simply merges the Gaussian distributions of the
observations made by the robot with the ones made by the others. The second
method takes into account the last known position of the object and tests if
the readings obtained from several sensors are close enough to make the fusion.
When this test fails, no fusion is made and the sensor reading with less variance
is chosen. The conditions in which this test fails and succeeds are presented in
Fig. 5.

Fig. 5. Two Bayesian observers with joint posterior likelihood indicating agreement
and disagreement.

The ball in Fig. 7 (a) with the black and white texture represents the real
ball position communicated by the soccer server. The farthest ball from the
real position represents the position where the goalkeeper, on the other side of
the field, sees the ball. The position communicated by a team member to the
goalkeeper is represented by the other dark ball. Finally, the white ball represents
the fusion between heard and seen ball obtained with the Stroupe method. As
can be noticed, the newly calculated position represents a better estimate than
the observed value.

4.2 Markov Localization
For mobile robots, localization is the process of updating the pose of a robot,
given information about its environment and the history of its sensor readings.
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An implementation of the Markov localization method was applied to self-localize
a player in the RoboCup Simulation League [8].

At any point in time, Markov localization maintains a position probabil-
ity density (belief) over the entire configuration space of the robot based on
an incoming stream of sensor data (observations) and an outcome of actions.
This probability framework employs multi-modal distributions for the robot be-
lief enabling the representation of ambiguous situations by considering multiple
hypotheses in parallel.

This particular implementation of Markov localization uses a fine-grained
geometric discretization to represent the position of the robot. A position prob-
ability grid is three-dimensional, as each possible location is defined by a tuple

representing the robot position and orientation. The principle of the
position probability grid approach ascribes to each cell of the grid the proba-
bility of the robot being located in that cell, denoted by Figure 6
illustrates the structure of a position probability grid and the correspondence
between grid and field positions in the RoboCup simulation system. Each layer
of the grid assigns all possible poses of the robot with the same orientation.

Fig. 6. Transformation of grid coordinates into field coordinates.

When used as a debugger, RA3DM enables us to inspect the internal state of
a player (more precisely, its position probability grid) in real time. Figure 7 (b)
shows a screen capture of RA3DM while it was monitoring the goalkeeper player.
The cells with a belief value above a certain threshold are drawn in a shade of
blue and the one with the highest belief at each time step is distinguished with
a red color.

Experimental results show that, generally, the Markov localization method
keeps the robot position error bound within very reasonable limits. For example,
we obtained a medium error of 2.44 m for a grid of cells of 2.63 × 1.70 meters.

5 Conclusions and Future Work

Watching simulated soccer games on a realistic 3D monitor such as RA3DM is
far more motivating than on the traditional 2D monitor. We showed that the
RA3DM is a powerful tool that can be used as an aid for testing and debugging
of prototype applications that may later be employed on real robots. Another
possible application that we are considering consists of using RA3DM to simulate
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Fig. 7. (a) Ball localization using Stroupe’s sensor fusion method. (b) Goalkeeper self
localization using Markov estimation.

humanoid stereo vision. This way, the soccer playing agents could receive images
supplied by RA3DM instead of the visual perceptions in the form of strings
provided by the soccer server.

There are some features we would like to add in the future, such as sound
effects, the recording of parts of a game to instant replay them later on and the
addition of a commentary system.
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Abstract. The activities of search and rescue of victims in large-scale
disasters are not only highly relevant social problems, but pose several
challenges from a scientific standpoint. In this context, the RoboCup-
Rescue project focused on the problems of bringing aids immediately
after a large disaster, and aims at creating system based on AI and
Robotics technologies, where heterogeneous agents (software, robots, hu-
man beings) interact in a cooperative manner.
In this paper we present the achievements of a research project, based
on the RoboCup Rescue simulator, carried out in Italy in collaboration
with the Italian Fire Department. The overall project goal is to devise
tools to allow monitoring and supporting decisions which are needed in
a real-time rescue operation in a large scale disaster, and to provide a
methodology for evaluation of multi-agent system which considers not
only the efficiency of a system, but also its robustness when conditions
in the environment change, as well as other features, such as the ability
to acquire a precise and coherent representation of the disaster scenario.

1 Introduction

Search and rescue of victims in large-scale disasters is a very relevant social prob-
lem, and pose several challenges from a scientific standpoint. When earthquakes,
eruptions or floods happen, a considerable organizational capability to aid the
disaster victims as fast as possible is required. This task is rather difficult since
often different secondary disasters (e.g. fires, damages in the transportation and
communication systems) connected with the main one, occur, which make the
correct execution of a rescue plan a priori decided impossible. Moreover, one of
the critical issues for a proper response to emergencies is to have timely and
reliable information on the disaster scenario, thus enabling for a more effective
use of the resources available for the rescue operations [3].

In the recent past significant research initiatives have been undertaken in
Japan [5], in the USA [3], and also in Italy [4], that specifically focus on the
problem of developing software tools to support the management of this kind
of emergency and, more specifically, to design a support system for search and
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rescue operations in large-scale disasters. These tools are intended both for on-
line support during the actual operations as well as for previsional analysis and
training.

In this paper we present the achievements of a research project [4], based
on the RoboCup Rescue simulator, carried out in Italy in collaboration with
the Italian Fire Department and the University of Geneva and Politecnico di
Milano. The overall goal of the project was to devise tools to allow monitoring
and supporting decisions which are needed in a real-time rescue operation in a
large scale disaster.

The activities needed to reach the project’s goals were: (i) the creation of
a simulation environment, (ii) the design of a framework for Cognitive Agent
Development and (iii) a definition of a evaluation methodology. Since in this
paper we want to focus more on the evaluation aspects for a MAS in the rescue
domain than on the agent development, the agent development tools are just
sketched, in order to give a basic for understanding the experimental settings.
The first two issues are described in the next section, the evaluation methodology
is outlined in section 3.

2 Project Description

In this section we provide a general overview of the project “Real-time planning
and monitoring for search and rescue operations in large-scale disasters”1, that
has been developed in collaboration with other Italian Universities (University of
Genova and Politecnico di Milano) and the VVF (Italian Fire Department) [4].

The goal of this project has been to develop a prototype tool, based on the
RoboCup Rescue simulator, to allow monitoring and supporting decisions which
are needed in a real-time rescue operation in a large scale disaster, by integrating
competences and tools already available to the VVF and using as a case-study
event the Marche and Umbria earthquake in Fall 1997.

The development of a system with the desired characteristics requires to
integrate in an effective way, the three following main components: (1) mod-
eling of events related, in a direct way or not, to the disaster; (2) acquiring
and integrating data coming from different heterogeneous sources; (3) model-
ing/monitoring/planning the resources used in the intervention. The simulator
developed in the framework of RoboCup-Rescue considers simultaneously all of
the three elements above-mentioned, offering an environment for experimenta-
tion, which provides completely innovative characteristics compared to those of
the existing applications related to this field. For these reasons the RoboCup
Rescue simulator has been chosen as a basic tool in the project development for
monitoring and planning rescue operations.

In order to ground our project in a real scenario we have chosen to access
the data of the Umbria and Marche earthquake (1997), and in particular of the
city of Foligno, that is one of the most important cities in that region. Foligno
1 Funded under the program Agenzia 2000 of the Italian Consiglio Nazionale delle

Ricerche.
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is located in a flat region of eastern Umbria. Its urban structure is character-
ized by a medieval center surrounded by more recent suburbs; in particular we
focused our attention on an area of about in the city center. In the area
under consideration there are no high-rise buildings; most recent structures are
mid-rise, in the four- to nine-story range. All large, multi-story buildings were
constructed of reinforced concrete. Oldest buildings were mainly constructed
of rubble-work, whereas only few structures are steel frame buildings or wood
buildings. There are no industrial structures; most buildings are housing estates
having variously-shaped plants. The road network is quite irregular, with not
very large roads and narrow alleys (see Figure 1).

Moreover, by considering and analyzing the structures and the strategies
currently adopted by the Fire Department (VVF), we have acquired not only a
significant body of expertise on the rescue operations, but also the opportunity
to set up a prototype experimental setting to show the results of the project.

In order to reach the project goal, two main operations have been performed:

the set up of an initial environment situation, simulating a disaster in Foligno,
the definition of multi-agent systems acting in the simulated world perform-
ing rescue operations.

In the following we shortly describe two tools that address the above issues,
while in Section 3 we focus on the experiments that has been preformed with the
systems created on those tools. Such tools have to be considered in this context,
mainly for the support given in the rapid development of the MAS systems on
which the experiments have been run, and for a better understanding of the
settings.

GIS Editor. For running the RoboCup Rescue simulator on a new scenario, a
map of the chosen simulation environment in a format suitable for the simu-
lator is needed, moreover some other parameters, like the fire ignition points,
or the earthquake magnitudo level, has to be specified. In order to match the
above requirements we realized a graphical tool, for generating RoboCup Rescue
configuration files: GIS Editor, a screenshot of which is shown in Figure 1.

Fig. 1. The map of Foligno(right). A GIS editor screenshot(left)
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Cognitive Agent Development Kit. In order to reach good performances in the
post-earthquake disaster situation agents needs to exhibit both planning and
cooperation capabilities, since the abilities of a single individual agent are often
not enough for fighting an expanding disaster. Another item to be considered
while developing a team of rescue agents is the need of integrating partial and
noisy information coming from the agents, in order to assess a global situation,
on which to perform the resource allocation. The Cognitive Agent Development
Kit (CADK) is a tool that allows for the rapid development of a team of agents
that perform rescue operations in the simulated world. Moreover the CADK
provides some debugging facilities for run-time inspecting the internal agent state
and the communication state. We used the CADK for experimenting different
combination of methods for approaching the above problems in a structured way.

Fig. 2. The Cognitive Agent Development Kit architecture

The architecture of an agent built on the CADK is sketched in Figure 2. The
CADK itself is built on the RoboCup Rescue Agent Development Kit [1], by
adding coordination, planning and information integration layers.

3 Experimental Evaluation of Multi-agent Systems
in the RoboCup Rescue Domain

Evaluation of multi-agent systems in the RoboCup Rescue domain is important
not only within the RoboCup Rescue simulation competitions, but also for eval-
uating actual plans to be used during rescue emergencies. Evaluation of MAS in
the RoboCup Rescue domain is currently carried out within international con-
tests, by rating each competing rescue team with a score representing the result
of its activity in a simulated scenario. The one with the highest measured score
is the contest winner.

In the real world, however, events not always develop in a known and pre-
dictable way, since unexpected charges in the operative conditions and failures
can occur at every time. The evaluation rule used in RoboCup Rescue simula-
tion competitions is applied in a standard fixed situation and does not take into
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account the ability of a multi-agent system to work under troublesome situations
and its ability to adapt to non-standard operative conditions.

The evaluation method proposed here is based on [2] and allows the analysis
of a rescue team in a more realistic way, by analyzing the performance of a
multi-agent system in terms of efficiency under normal conditions, as well as in
terms of reliability and robustness under changing working conditions.

3.1 Experimental Setting

To acquire a measure of the reliability and the robustness of a MAS, a series of
simulations have been executed under changing operative conditions. These tests
give a measure of the system adaptability to unexpected situations. The chang-
ing parameters that we have considered are: (i)perception radius, (ii)number of
agents and (iii) errors in the communication system. Each parameter character-
izes a particular series of simulations, referred respectively as the visibility test,
the disabled agents test and the noisy communications test.

The Visibility Test. In outdoor environments, visibility conditions are ex-
tremely variable. Rescue operation can be needed every time of the day, also in
the night. Thus, it is necessary to probe the activity of a system also in these
situations. The visibility test is performed by executing five simulations, each
with decreasing perception radius, modeling activities under different visibility
conditions (i.e. twilight, night time, fog). In this test the changing conditions are
on the perception range of each agent, that is 30 meters under normal conditions,
and we have performed experiments for the same multi-agent system also using
20, 10, 5 and 3 meters of perception range.

The Disabled Agents Test. In a real emergency situation, it can happen
that an agent suddenly become not operational for some reason (for example a
mechanical failure of its vehicle or its equipment); this test analyzes the reactions
of a system against new operative conditions in which some of the operative
agents are disabled.

The disabled agents test is composed of five simulations: in the normal con-
ditions all the agents are active, for the other simulations one, two, three, and
four of the best agents for each force are disabled. The choice of the best agents
to disable is based on the number of tasks performed: for each force, the agent
that has completed more tasks in shorter time will be disabled.

The Noisy Communication Test. Agent cooperation in the rescue domain
is mainly attained by radio communications among coordination centers and
between a coordination center and the operative agents. In real conditions com-
munication transmissions are not free from network failures, or human misun-
derstandings. This test verifies the robustness of an analyzed multi-agent system
by introducing errors in the communication channel, thus preventing messages
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to reach their destination. The noisy communication test is composed of five
phases: under normal conditions there are no errors in the communication chan-
nel, while in the other simulations 1/10, 1/3, 1/2, and 9/10 of the sent messages
are lost.

3.2 Performance Measures

The performance of a rescue multi-agent system is measured in terms of effi-
ciency and reliability. The efficiency is directly evaluated by the formula used
in RoboCup-Rescue tournaments, which is:

where P is the number of living agents, S is the remaining hit points (health
level) of all agents, is the total hit points of all agents at initial, B is the area
of houses that are not burnt and is the total area at initial; the higher the
value of V for a rescue system, the better the results of the rescue operation.

The reliability describes how much system efficiency is affected by the wors-
ening of operative conditions, and how much it depends on the values V assumed
in the simulation sequence of a single test. It is evaluated with the linear regres-
sion slope formula:

where are the coordinates of a point in a Cartesian system, the
average values of these coordinates, N the number of points considered.

Since each point of the graph represents the value of V obtained in the i-th
phase, this formula is applied for evaluating the reliability of a system, by using

and For example, if in the visibility test V assumes values
described in the following table:

the efficiency is 23.3, while the reliability, calculated by the LRS formula, is -2.65 .
It is reasonable to have a negative value of the LRS, since usually the effectiveness
of the agents decreases with the worsening of the operative conditions. A little
absolute value of the LRS means a good degree of reliability of the system to
adverse situations.

3.3 Performance Comparison

The values presented in the previous section are of little significance if not com-
pared to the measures obtained from simulations of other rescue systems. The
performance comparison allows to establish the effectiveness of a new technique
over the previous ones or over the state-of-the-art.
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In the following section it is shown as an example the performance evalua-
tion executed on four different rescue-systems created with the ADK tool. The
analyzed MAS are distinguished for the information integration and resource
allocation techniques employed, as shown in the following table:

For these four multi-agent systems, the controlled experimentations are exe-
cuted, providing the results shown in the following tables:

In each test there is a rescue system which gets the best value about efficiency
and another one which is better in reliability. Rarely in these tests the same
rescue system is the best for the two measures, since usually more sophisticated
techniques means less robustness to nonstandard operative conditions.

To get some more meanings from the previous results, a graphical represen-
tation is presented, sorting the results of each test both by Efficiency and by
Reliability, as shown in the following picture.

Fig. 3. Performance comparison

At last, it is not easy to identify which system has the best overall perfor-
mance. In the first test, the visibility one, MAS1 is the best one in terms of
efficiency, but it gets the worst rating about reliability. MAS2 and MAS3 have
the same efficiency value, and are jointly ranked in the second place. MAS4,
which is the worst system in terms of efficiency, it’s the best one with respect to
reliability. Looking at the graph, it can also be seen that MAS3 offers the best
compromise between efficiency and reliability, since it is second in both of the
two measures. In the noisy communication test, MAS1, which has the best effi-
ciency value, is also a good system in terms of reliability, ranking in the second
place; in this case, it seems to be better than the other ones.
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This example shows that the choice of the best system is hard to cast in
absolute terms. Depending on the application of the evaluated systems, it should
be selected the system which offers the best score with respect to efficiency,
reliability, or to a (weighted) combination of the two, but this is still an open
problem.

Currently, in RoboCup Rescue tournaments, competing teams are evaluated
for their activities in standard situations, thus measuring only their efficiency.
It should be pointed out that rescue teams in real life barely operate in normal
conditions, and official tournaments should also evaluate the ability of a rescue
system to face unattended situations.

4 Conclusions

We have presented the current development of the project “Real-time planning
and monitoring for search and rescue operations in large-scale disasters”. The
aim of this research has been to develop a tool to support search and rescue
operations in large scale disasters. In particular, we built our system upon the
RoboCup Rescue Simulator, that provides an environment for experimentation
of multi-agent technology in the framework of the RoboCup initiative. We have
addressed a specific application domain: the disaster scenario recorded after the
earthquake of Umbria and Marche. The availability of the RoboCup simulator
has been extremely valuable for the development of the present project, providing
an experimental setting that can be effectively used for developing a prototype
implementation.

The main results of the project has been:

1.

2.

a set of tools for improving the development of rescue systems based on
the RoboCup Rescue simulator, namely: the GIS Editor and the Cognitive
Agent Development Kit.
the definition of an evaluation system for MAS in order to analyze different
rescue strategies

The research developed in this project has provided a significant use of agent
technology in the design of tools supporting the acquisition of information as
well as the planning of activities when there is the need to act immediately with
partial information about the situation, as in a typical emergency scenario.

Evaluating the activity of a MAS is an hard task since it involves the anal-
ysis of several parameters, and the system evolves in unpredictable ways; more-
over the rescue operations has to be performed in situations in which the agent
adaptability to different environment settings is required. The proposed evalua-
tion system allows for an easy comparison of different MAS, providing an easy
understandable graphical representation of the performances, and considers the
robustness a key factor as well as the agent efficiency under normal conditions
for the overall performance measure.

While the prototype developed has been designed for demonstration and not
intended for actual operation, it shows the potential benefits of an integrated
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approach to the simulation and monitoring of a real search and rescue scenario.
While it is premature to consider the effectiveness of the tool in the manage-
ment of operation, both the analysis of past scenarios as well as the training of
personnel seem to be already suitable for application.
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Abstract. One of the main challenges in RoboCup is to maintain a high
level of speed and accuracy in decision making and performing actions
by the robot players. Although we might be able to use complicated
hardware and software on the robots to achieve the desired accuracy, but
such systems might not be applicable in real-time RoboCup environment
due to their high processing time. This is quite serious for the robots
equipped with more than one vision systems.
To reduce the processing time we developed some basic ideas that are
inspired by a number of features in the human vision system. These ideas
included efficient need-based vision, that reduces the number of objects
to be detected to a few objects of interest with the minimum needed
accuracy, introduction of static and dynamic regions of interest, which
proposes the most probable areas to search for an object of interest, an
experimentally reliable method for color segmentation in variable illumi-
nation situation, and finally, the usage of some domain specific knowledge
that is used in detecting and tracking a unique safe point on the ball.
We have implemented these methods on RoboCup environment and sat-
isfactory results were obtained.

Keywords: RoboCup, Object Detection, Need-based Vision, Variable
Illumination.

1 Introduction

Human vision system, including its ability to recognize objects is based on a
combination of image processing, volitional interpretation of colors and shapes,
according to a prior knowledge and beliefs. Some of the main capabilities of the
human vision system can be listed as follows:

1. The attention of human vision can go towards a particular object or area in
the scene, extracting detailed and precise information about it. For example,
in real soccer, during the game, a player has close-up looks at the opponent
goal when he is about to shoot, but in many other situations he has just
rough estimates for objects’ locations.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 654–661, 2004.
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2.

3.

However, except for a few systems that consider the problem of visual at-
tention, computer vision systems have to process the entire image (scene) to
locate the objects of interest.
Usually, human vision is a Need-based Vision mechanism; i.e., in order to
perform a certain action, we receive the necessary information from our
environment.
Human vision system can perfectly adjust itself to correctly determining
colors in different illumination levels. Designing a machine vision system
with the same capability of humans is not trivial. Extensive research on this
issue has been done, some of which are listed in the area of color constancy
(e.g. [6,7]).
However, since in RoboCup 2003, the rules allow variable illumination, there-
fore, in this paper we describe a method for estimating field illumination and
color segmentation accordingly.
Our vision system uses the information and natural/logical relation of events
in the environment and continuously adds it to our knowledge. This process,
plays a key role in our fast and efficient interpretation of the scene and
understanding of the environment. If we could model and implement such a
fast and extendable knowledge-base for the robot, then a robot can correctly
recognize objects in similar situations. However, current knowledge-based
robot vision systems are far beyond that of humans.

4.

The mobile robots used in RoboCup usually have only one front view CCD
camera that has a field of view of about 45 to 90 degrees, or an omni-directional
viewing system that can view 360 degree around the robot. Our robots has
both viewing systems ([1,3]). Real-time processing of 30 frames per second is a
challenging problem for the robots. In order to get a near real-time speed for the
vision system, we introduce intelligent methods inspiring a number of the above
mentioned features in human vision system. In our method a mobile robot can
use its processing power efficiently by extracting only the required information
with minimum needed accuracy in different situations.

2 How Can a Robot See Intelligently

In present stage of RoboCup research, a robot vision system may be considered
intelligent if it can perform some degree of human intelligence used by a human
player during a real soccer game. In the following sections we address a number
of these features and propose methods towards exploiting them.

2.1 Static and Dynamic Regions of Interest

We have introduced a fast search mechanism based on an idea of Perspective
Jump Points [1] for finding objects in the RoboCup field. In our previous work,
we used only one pattern of jump points with a perspective distribution as
shown in figure l(a) for finding all objects in the field. These jump points are
distributed in such a way that no matter where the ball (i.e. the smallest object)
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might be located in the field, at least 5 such jump points will be located on
the ball. Although it is possible to find a minimum number of such jump points
and their distribution, this optimal model would not be applicable because of
existing shadows under, labels on, and brightness on top of the ball. So, we
experimentally determined the distribution of all maps of jump points (figure 1),
which are discussed later on.

Fig. 1. (a) Map of jump points for the front view CCD camera used for detecting the
ball. (b) - (d) Map of jump points used for detecting goal objects, field lines and player
robots, respectively.

Since in RoboCup each object has a unique color, by introducing the idea of
jump points, we have reduced the problem of color segmentation of the whole
image to the problem of examining the color of pixels at jump points followed
by a novel idea of region growing [1].

However, in our way towards modeling the efficient need-based features of
human vision for a robot, the robot vision system should be able to detect any
object of interest in a least possible time. The areas on which we search to find
a class of objects is called Predefined or Static Regions of Interest (ROI).

Table 1 and 2 show the frequency of time that the omni-vision camera and
front view camera needed to use the static and dynamic ROI. For example, for
searching the ball by omni-directional view camera, only in 40 % of times we
need to use its static ROI that contained 3400 jump points (i.e. figure 1 (a)) but,
in the rest (60 %) of time the Dynamic ROI was used to find the ball. Similar
results are given for robots and also the field lines for front vision camera as
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well. The right most column of these tables show the processing time needed for
object detection using jump points in static ROI.

We used a SONY VAIO laptop with Intel 800 MHZ CPU as the processor
on each robot.

The idea of ROI, leads us to consider a separate map of jump points for each
class of objects such as ball, goals, robots, field lines, etc. For example, if a goal
is seen by a robot’s front view CCD camera, it always appears at the topmost
area of the image plane. Therefore in order to find the goal in this image we
only need to check the color of jump points shown in figure 1 (c). Similarly the
distribution of jump points for field lines and robots are shown in figure 1 (b)
and (d), respectively.

However, we extended the idea of predefined search areas for objects (static
ROI), and introduced Dynamic ROI. Suppose a robot is moving near the borders
of the field or near the corner posts. In these situations, processing of a large
sector of the omni-directional image that shows spectators and the background
area would be a great waste of processing time. In these situations, Dynamic ROI
is determined by using the localization information (that enables us to discard
areas outside the field) or by tracking of objects in the field. As an example
of the later case, we restricted search areas in the omni-directional image to
just one half of the captured round image for the ball, when ball has been seen
far in previous frames and it is most probable to appear in nearby locations.
Tables 3 and 4 show a few Dynamic ROIs and the reduction percent in the
number of search points obtained in omni-directional and front viewing systems,
respectively.

2.2 Need-Based Vision

When we decide to do something and that job requires information from the
environment, we start looking at specific objects to satisfy our needs. In addition,
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the information retrieved from the objects of interest may have low precision at
first, and if higher resolution is required, we get that in close-up looks. In most
current computer vision systems, usually there are a number of processing layers,
each of which provides input data for another layer. The results are available
when the topmost layer finishes processing its input data [4].

However, inspiring need-based vision in human beings, we have developed
a dynamically configurable vision system that is capable of providing just the
needed information about the environment, i.e. detecting specific objects of in-
terest, and specific precision of information. These requirements are provided
by the playing algorithms of our robot. For example, while dribbling, the robot
may need to get only the information about the nearest opponent player (s) in
the direction of its movement with the highest possible accuracy.

Determining these sensing needs by playing algorithms of the robot can po-
tentially be quite complex, as long as the robot can have a good degree of inter-
agent communication and cooperation mechanisms. In this regard, suppose a
teammate gets the possession of the ball; the sensory needs of other players will
then change, that is, they do not need to look for the ball.

3 Using Domain Knowledge in Tracking the Ball
In RoboCup, the accuracy of the playing algorithms highly depend on the ac-
curacy of ball detection, i.e. its distance and angle with respect to the robot. In
this way, we need to know the coordinate of ball’s contact point with the
field. This contact point is estimated as the middle point of the lower edge of a
surrounding rectangle or bounding box around the ball [1].

3.1 Defining a Safe Border Point on the Ball
In practice, due to shadow under the ball and also the bright spots on top of the
ball caused by projector illumination sources, in most cases, it is very difficult to



An Efficient Need-Based Vision System 659

find the bottom most and topmost points on the ball with relative accuracy. But
in such situations, there is not much noise on the rightmost and leftmost parts
of the ball. This means that these two parts can be detected more accurately.

Therefore, we introduced an algorithm for estimating the bounding box
around the ball by detecting its leftmost and rightmost positions [2].

3.2 Tracking the Ball

Having determined a unique point on the border of the ball (i.e. the leftmost
point on its horizontal diameter) we can compute the speed vector of the ball by
detecting the same unique point in consecutive frames. Using this speed vector,
we can track the ball by predicting the position of the bounding box around the
ball in consecutive frames. As we discussed in section 2, this box is considered
to be dynamic ROI for the ball. Therefore, to find the ball, we can first examine
the area inside dynamic ROI and an area around it in the direction of speed
vector. However, if the ball was not found, we can check the jump points of the
static ROI of the ball (i.e. figure 1(a)).

4 Color Constancy in Variable Illumination

According to the rule changes of RoboCup 2003, variable illumination in a lim-
ited range is allowed1. In this situation, we have to consider the luminance of
the field according which color segmentation shall be carried on.

4.1 Estimating the Field Illumination Level

In order to measure the field luminance, we mounted a piece of the same green
carpet used for the field on top of robot body such that the omni-vision system
of our robot can always see that. Figure 2(d) shows one of our robots with a
green piece of carpet mounted on the right side of its body.

Since the green color of this piece of carpet will always be seen in fixed
position in the image plane, we selected a small rectangle of size 10 × 30 pixels on
the image plane corresponding to this piece of carpet. Field average illumination
is estimated to be the average Y (i.e. Y component of YIQ color model [5])
value of all pixels inside the above mentioned rectangle.

However, the reason for using the green color as a reference for measuring the
field illumination, is because the whole soccer field is covered with green carpet,
and thus green is the dominating color in RoboCup environment.

4.2 Real Time Updating of Scene Illumination

In order to determine the scene illumination in real time, in each loop of our
vision algorithm, we calculate the average intensity (i.e. for a set of

1 From 800 to 1200 Lux.
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pixels inside the green color marker. If this intensity is much different for its
previously calculated value, a new average value is determined. In this way, the
estimation for field illumination is updated upon changes in the environment
illumination.

4.3 Using Average Illumination Estimate for Color Segmentation

For color segmentation we used the HSY color model (i.e. components HandS
are taken from HSI and Y is taken from YIQ color model [5].) Since the Y
axis is perpendicular to HS planes, therefore, if the value of Y is known in an
environment, then we can find the range for H, S and Y that best segment the
standard colors in RoboCup. However, to give a solution for variable estimation
situation, we used two set of lamps on the roof of our RoboCup field. One set of
lights were always on, but we controlled the brightness of the other set in seven
different levels. At each level, we manually selected a few areas on each standard
color in RoboCup (i.e. red, green, yellow, etc) and determined the average values
for H, S and Y for that colors. Figures 2 (a),(b) and (c) show these averages in
each illumination level for H, S and Y.

Now, during the real games, since our vision system is dynamically updating
the filed illumination (i.e. by locating this on the horizontal
axis of figure 2, we can approximate the corresponding H, S and Y for each
color and segment the image accordingly.

Fig. 2. (a)-(c) The average value of H, S and Y components in different levels of filed
illumination for standard colors of RoboCup. (d) One of our robots having a piece of
green carpet installed on it as reference marker.
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5 Conclusion

Achieving the final goal of RoboCup that is “by year 2050 a team of robots
will play against human world soccer champion” needs enormous amount of
investment in related research fields, some of which can be named as mechanical
design, accurate control, sensor fusion, multi agent cooperative behavior, etc.,
and especially a fast vision system.

In this paper, we introduced some basic concepts on how to develop an ef-
ficient vision system for robots in RoboCup environment. We introduced and
implemented ideas of need-based vision, reduction of search areas in images ac-
quired by robot’s CCD cameras by means of static (predefined) and dynamic
ROI, a color segmentation method in variable illumination. These methods were
designed with the goal of reducing the processing time while maintaining a reli-
able level of accuracy.

Although our approach is in its early stages of making an intelligent robot
vision system, but we believe that continuing research in this domain can lead
to a level of intelligence that can be compared with that of human vision in a
real soccer field.
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Abstract. Coordination, planning, and reactivity are important for suc-
cessful teams of autonomous robots, in dynamic adversarial domains. In
this paper, we propose a fuzzy cognitive model to integrate coordina-
tion, planning and reactive behaviors in a team of cooperating robots.
In our architecture, behavioral modules are used as high-level macro-
actions that compose structured plans defined by a flexible multi-agent
coordination system. The use of an unifying cognitive model provides an
effective tool for seamless integration of reactive and deliberative com-
ponents in the robots, gaining as much as possible from the presence of
different skills and competencies in the team. The control model is de-
signed to be tuned and adapted on-line so that the team strategies and
the role of robots in the control schemata can be automatically modified
to face different opponent teams, and changes in robot capabilities.

1 Introduction

Since some years, the architecture of autonomous robots integrates the tradi-
tional planning activity, which provides goals for the robot, with behavior-based
architecture that implements simple and fast control modules. In designing this
kind of hybrid architectures, most of the issues arise from the connection be-
tween the abstract and physical level representations used respectively in the
deliberative and reactive components of the system [6].

Usual solutions propose an ad-hoc integration, without any high-level cogni-
tive model as a uniform substratum for the overall system. The architecture we
are proposing in this paper is aimed at integrating coordination, planning, and
reactivity using such a cognitive approach where agents have internal models,
intentions, goals, and can still react to unexpected events. This cognitive model
is implemented by fuzzy predicates that we use to represent concepts.

In our architecture, the perception-action loop is performed through an ab-
straction process that, starting from raw data gathered from sensors, produces
the high-level concepts used in planning, coordination, and execution. On the
first stage of this process, we have the Sensing activity: intelligent sensors (i.e.,
sensors with some computational capabilities) process the raw data stream into

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 662–669, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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features to be used on the next stage for Data Interpretation. For instance, om-
nidirectional vision systems [2] provide relative positions and distance of colored
objects in the Robocup domain.

Data interpretation is obtained using MAP (MAP Anchors Percepts) [4]
to realize sensor fusion, anchoring, and self-localization. MAP is suitable for
enhancing the local internal model of each agent in a Multi-Agent System (MAS)
also with information coming from other agents obtaining, in such a way, global
distributed sensing, and map integration. The results of this data interpretation
is a real-valued internal model on which are evaluated basic fuzzy predicates
that describe the percepts of the robot in the higher level formalism used for
knowledge processing both in deliberative and reactive components.

The use of fuzzy predicates gives the possibility to represent both interpre-
tation of data coming from sensors, and high level abstractions coming from a
deliberative process involving planning, coordination and communication. The
selection of a fuzzy representation makes it possible to face, with an intrinsi-
cally robust model, uncertainty and approximation, unavoidable in applications
interfaced with the real world. At the same time, fuzzy predicates can be quite
effectively automatically adapted to changing situations. Our robots represent by
fuzzy predicates also their intentions and goals, which are in this way integrated
with data in a unique, simple, adaptive model.

Coordination among robots is defined using the deliberative component de-
scribed in the next section. In this activity, we consider also aggregated informa-
tion about the skills of each robot and their appropriateness in a given situation.
These are parameters that can be easily defined and tuned on-line in a relatively
short time, and can affect the behavior of the single robot and of the whole
team. This results in a team able to adapt on-line to different types of oppo-
nents, and to possible performance degradation of its members. On the reactive
side of the control loop, we have a behaviors management system that maps
fuzzy predicates into actions to be executed by the robot actuators. Actions are
weighted considering their applicability, intentions and goals, so that the behav-
ior of a robot depends both on actions proposed by reactive module, desires, and
intentions.

In the next section we give a brief description of the deliberative component
in charge of coordination and long-term planning in our architecture. Section 3
introduces the behavior management system used in our robotics applications,
and in the section that follows we describe how deliberative and reactive com-
ponent can be easily integrated by mean of the underlying cognitive model that
we have previously introduced. Section 5 presents a robotic application in which
we have adopted our cognitive approach as a case study.

2 SCARE: The Coordination System

Cooperation holds a very important role in multi-agent system applications.
To face the typical issues of these applications, we have implemented SCARE
(Scare Coordinates Agents in Robotic Environments) [5] a general architecture
for coordination in multi-robot domains. SCARE is able to deal with:
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heterogeneity when a MAS is made up of agents with different skills, our
architecture exploits these differences in order to improve the overall perfor-
mance

communication coordination policy may change according to the amount of
information that can be exchanged among agents and according to the net-
work connectivity

adaptation in order to grant the autonomy of the system, the coordination
mechanism is able to dynamically modify its parameters in reaction to en-
vironment changes

Using SCARE, the MAS application developer has to identify the macro-
activities that the agents can carry out: jobs and schemata. A schema is a com-
plex activity consisting of sequences of jobs that require the collaboration of two
or more agents. A job is defined by the goals that should be achieved, and each
agent is free to select the procedures to achieve these goals according to its own
capabilities.

The job assignment process is carried out by a special kind of agent called
meta-agent(Â), through two phases: decision making and coordination. In the
decision making phase, Â computes the suitability of an agent for each activity,
through the composition of several parameters, all but the second implemented
by fuzzy predicates:

cando define when the activity can take part in the assignment process;
attitude define how much the skills of an agent are useful for the activity;
chance define the situation where the agent has good possibilities to succeed

in the activity;
utility define the situation where the activity is useful for the agent team;
success define the goal achievement situation for the activity;
failure define the situation where the activity should be stopped because of

unrecoverable failure.

An activity terminates when the success or failure condition is verified. If an
agent is idle, Â tries to assign it to some activity. Â firstly evaluates, for each
activity, the cando predicates in order to reject those activities that cannot take
place. For each remaining activity, Â evaluates utility and chance predicates, and
the agent’s attitude, thus obtaining indicators to take the decision. Â obtains an
ordered list of activities (agenda) by solving the optimization problem, and can
start the coordination phase.

The coordination phase considers that the agents are not working individually
and that they must cooperate to achieve the MAS goals. If we simply assign
each agent to the most suitable activity according to the decision making phase,
it may happen that the assigning process does not satisfy some coordination
constraint, such as: cardinality – for each job the designer sets the minimum and
maximum cardinality (i.e., the minimum and maximum number of agents that
can be assigned to the job at the same time) – and schema coverage, a schema
can be assigned only if there is a suitable agent for each functionality.
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In this phase, Â searches for the best job allocation to agents by observing
coordination constraints. How this can be achieved depends on the structure of
the MAS communication system and is better discussed in [5]; in that paper we
also show some configurations which match different qualities and topologies of
the communication network.

At the end of this process, each agent is assigned to a job, and new fuzzy
predicates are produced by SCARE to be used in the behavior management
system.

3 BRIAN: The Behavior Management System

Especially in dynamic environments, the main approach to robot control design
is the so called behavior-based architecture, where the robot is controlled by the
implicit cooperative activity of behavioral modules. Each module operates on a
small subset of the input space implementing a relatively simple mapping from
sensorial input to actions.

In our behavior management system BRIAN (Brian Reactively Implements
AgeNts) [3], we face the issue of controlling the interactions among modules by
decoupling them with context conditions described in terms of internal state,
environmental situation, goals, and communications with other agents. All these
concepts are defined using the cognitive model introduced in Section 1, based
on fuzzy predicates. Integration and coordination among behavior modules is
achieved using two sets of fuzzy predicates associated to each of them: CANDO
and WANT conditions. CANDO conditions are used to decide whether a be-
havior module is appropriate to the specific situation. For instance, in order to
consider to kick a ball into the opponent goal, the agent should have the ball
control, and it should be oriented towards the goal.

WANT conditions represent the motivation for an agent to execute a behavior
in the present situation. They may come either from the environmental context,
or from strategic goals.

The use of these two different sets of conditions allows the designer to design
a dynamic network of behavior modules defined by means of context predicates.
This is our main improvement with respect to usual behavior-based architec-
tures; we do not have any complex, predefined interaction schema that has to
take into account all possible execution contexts.

Since tasks have typically different priorities, it may happen that, in particu-
lar situations, some behavioral modules would like to filter the actions proposed
by less critical modules. Let us consider, for example, the case of the AvoidObsta-
cle behavior; it is implemented by rules which become active when an obstacle
is detected on the path followed by the robot, and they produce actions which
modify the current trajectory in order to avoid collisions. The problem that we
must face is that the actions proposed by the AvoidObstacle module are com-
posed with the output of the other behavioral modules, thus possibly producing
unexpected and undesirable results. One possible solution consists in disabling
any other behavior module while the AvoidObstacle is active. This approach



666 Andrea Bonarini, Matteo Matteucci, and Marcello Restelli

achieves the aim of avoiding collisions with other objects, but it has some draw-
backs. If the AvoidObstacle module is the only active behavior module, it avoids
the obstacles by taking a trajectory that is independent from the one that would
have been produced by the other behavior modules, thus degrading the perfor-
mances. Moreover, if we have several levels of priority, with several behavioral
modules for each level, this approach turns out to be very awkward.

To overcome the previously described problem, we have adopted a hierar-
chical organization of the behavior modules Any module at level receives as
input, besides the sensorial data, also the actions proposed by the modules which
belong to the level Behaviors (except those at the first level) can predicate
on the actions proposed by modules at lower levels, inhibit some actions, and
propose other actions. For the behavior of level we have:

where is the set of the actions proposed by all the modules at level

is the set of the action proposed by the behavior, while is the set of actions
that should be inhibited.

With this organization, behavioral modules with higher priority must be
placed in the higher levels of the hierarchy, so that they can modify the proposed
actions in order to manage urgencies. For example, if we place the AvoidObstacle
module at the second level, we could write rules of this kind: “if I am facing any
obstacle that is near and I would like to move forward then cancel all the actions
that propose a forward movement”. Whenever the robot has no obstacle in its
proximity, the AvoidObstacle module passes all the proposed actions unchanged
to the following level.

Apparently this design approach may seem in contrast with the behavior-
independency principle, but it is actually the opposite. Consider the KeepBall
behavior, taken again from the RoboCup domain. The goal of this behavior is
to hold the ball inside the kicker while the robot is moving. If we think that,
when the robot takes the ball, it is of primary importance to maintain the ball
possession, we must put the KeepBall module at the highest level, so that it can,
if necessary, modify the proposed actions as much as it is needed for keeping the
ball inside the kicker. In a single level architecture, the most effective way of
implementing this KeepBall behavior is to embed it in each behavioral module,
thus complicating the rules and really breaking the principle of modularity. In
our architecture, dependencies among modules are explicit in the hierarchical
structure, and the interface is limited to the action proposed by the modules.

4 Embedding Plans in Reactive Control

Several robotic control architectures present both planning and reactive modules.
The main difference between these approaches is the interaction between the two
modules. In many approaches [1] [7], the planning module simply activates and
deactivates behaviors in order to achieve more abstract goals. In our architecture,
the execution of plans is completely integrated in the reactive behavior engine.
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SCARE interacts with BRIAN sending to it two kinds of predicates: Co-
ordination predicates, which influence the enabling conditions, and Perceptual
predicates, which are used by the parametric behavioral modules. Coordination
predicates refer simply to the job that is assigned to the agent. This informa-
tion allows to activate only those behavior modules that are necessary to the
execution of the assigned job. Perceptual predicates are all the information that
BRIAN needs to execute the job, and it is not directly available through the
world model. At each iteration, SCARE sends both the Coordination and Per-
ceptual predicates, and it monitors the state of execution of the assigned job.
When a termination condition (either success or failure) occurs, SCARE starts
a new job assignment process, in order to identify the best activity, considering
the multi-agent context.

5 Experimental Results

We have successfully employed our architecture in several robotic applications,
where we have verified the versatility of the proposed approach. Both in mono
and multi-agent systems, we exploited the benefits deriving from the interaction
between the coordination, planning, and reactive modules. The use of a con-
ceptual model allows an easy and quick development of the high-level control
structures. In the following, in order to show the effectiveness of our method, we
describe a case study in the RoboCup context.

RoboCup is a multi-robot domain with both cooperative and adversarial
aspects, suited to test on the effectiveness of our approach. In the coordination
layer we have defined several jobs (RecoverWanderingBall, BringBall, Defense,
etc.) and schemata (DefensiveDoubling, PassageToMate, Blocking, etc.). These
activities are executed through the interactions of several behavioral modules
(see Figure 1). We have organized our modules in a five levels hierarchy. At the
lower level we have put the behavioral modules whose activation is determined
also by the information coming from the planning layer. At this level we find both
purely reactive modules and parametric modules (the latter can be distinguished
by a couple of round brackets after their name). The higher levels contain only
purely reactive behavioral modules, whose aim is to manage critical situations
(such as avoiding collisions, or leaving the area after ten seconds). The activation
of these modules does not depend on the high level activity. In order to give an
idea of how the whole system works, we present a couple of examples.

Let us consider the behavior MarkOpponent: the goal of this behavior is to
obstruct the way between the ball and a certain opponent robot. Once SCARE
decides that our robot must mark an opponent, there are several ways in which
this can be achieved by BRIAN. We could define the parametric behavioral mod-
ule GoBetween, that takes as input the polar coordinates of two points and has
the goal to put the robot in a position along the joining line. SCARE activates
this behavior which receives as input the polar coordinates of the ball and of
the opponent. Using another approach, SCARE could compute the polar coor-
dinates of a point on the joining line and then activate the GoToTarget module.



668 Andrea Bonarini, Matteo Matteucci, and Marcello Restelli

Fig. 1. The behavior configuration used in RoboCup

A further approach, consists in employing a planning algorithm in order to find
a free trajectory that leads on a point belonging to the line that joins the ball
with the opponent. The trajectory will be followed by the robot through the ac-
tivation of the GoToTarget module with different values of its parameter. These
three modalities are ordered by increasing complexity from the SCARE point
of view, that implies a simplification for what concerns the behavior modules.
In fact, the implementation of the GoBetween module is more difficult than the
implementation of the GoToTarget module. In the third approach it is not even
necessary the interaction with the AvoidObstacle module, since it is all man-
aged at the planning level. On the other hand, in environments where situations
change very quickly, it would be necessary to always replan everything. We have
adopted the second approach because, by exploiting the potentiality of both
SCARE and BRIAN, it keeps low the complexity of the whole system.

6 Conclusion

Robot control architectures have deeply evolved in the last twenty years, but
there is still considerable debate over the optimal role of internal representation.

In this paper we have presented the fuzzy cognitive model we use to integrate
in a uniform framework the deliberative and reactive components of multi-agents
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systems. The cognitive model we propose, integrates coordination, planning and
reactive behaviors providing a common cognitive substratum for a team of robots
where behavioral modules are used as high-level macro-actions that compose
structured plans defined by a flexible multi-agent coordination system.

From the multi-agent system perspective, the use of such unifying cognitive
model provides an effective tool for seamless integration of the heterogeneous
members in the team, gaining as much as possible from the presence of different
skills and competencies in the robots. Moreover, all the elements in the knowledge
processing level are based on simple fuzzy predicates that can easily be managed,
designed and adapted. Doing it this way, the control model can be easily designed
to be tuned and adapted on-line so that the team strategies and the role of robots
in the control schemata can be automatically modified to face different opponent
teams, and changes in robot performances.
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Abstract. This paper outlines ideas for establishing within RoboCup a league
geared toward, and limited to, undergraduate students. Veterans of RoboCupJu-
nior are outgrowing the league as they enter college and this has motivated us to
develop a league especially for undergraduate students – the ULeague. The de-
sign of the league, presented here, is based on a simplied setup of the Small-size
league by providing standard Vision and Communication packages.

1 Introduction

With the rise in popularity of RoboCupJunior (RCJ) [4], a growing base of participants
are graduating from high school and wanting to continue with RoboCup but are unable
to because they do not have the resources required to enter the senior leagues. Some
of these students may be attending a university that has an existing RoboCup team, so
that they will perhaps have an opportunity to participate on a senior league team as ad-
vanced undergraduates. Other students attend universities where there is no RoboCup
senior team and/or no robotics lab; and for these students, participation as undergradu-
ates is not an option. We are thus motivated to create a RoboCup league especially for
undergraduates, and we have spent recent months designing and prototyping this league
– the ULeague.

The goal of the ULeague is to provide a stepping stone from RoboCupJunior to
participation in the Small-size (F180) or Mid-size leagues. There is a significant leap
in both expertise and resources necessary to be a competitive entrant in either of these
leagues compared to the Junior league. The sophistication and costs of the robots used
in the F180 league may be prohibitive. A typical Small-size team has robots that have
omni-directional drives, dribble bars and powerful kicking mechanisms. Such a robot
has four to six high quality motors and a powerful on-board processor to control them.
Each one of these robots costs around US$3,000. Added to this is the cost of high
quality video cameras. These and other expenses typically drive the cost for a team to
around US$20,000–US$30,000.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 670–677, 2004.
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The ULeague is intended to provide a scaled-down and cheaper version of the
Small-size league problem for undergraduate students. To achieve this goal, the
ULeague factors out the most complex aspects of the Small-size league, namely vi-
sion processing and communication, by providing common platforms for these tasks,
so teams may focus on robot development.

In addition to practical rationale, the ULeague also provides unique research chal-
lenges and opportunities. In the F180 league, it is possible for multiagent aspects of the
game to have little impact on the performance of a team. A powerful dribble bar and
kicker or other combination of physical features makes it possible for a single robot to
be dominant. The physical constraints placed on robots in the ULeague are intended to
force teams to rely more on coordination and cooperation to make progress in the game.
Moreover, since a common architecture is employed, the ULeague can be thought of as
a physical version of a simulation league. It is hoped that the ULeague will encourage
collaboration with teams from the RoboCup Simulator League. This could mean faster
dissemination of the research and progress made by teams in the Simulator league to
physical robot competitions.

We have chosen the Small-size league as our primary model, since this league re-
quires the least amount of space and the least expense in terms of equipment1. Given
this, we have identified two major stumbling blocks for teams entering the Small league:
vision and communication. So for the ULeague our idea is to provide a standard solu-
tion for these two aspects, provided by league organizers, and have teams build the rest
(see figure 1).

Fig. 1. High-level architecture of the ULeague. The dashed lines represent an Ethernet connection

2 Vision

The ULeague will use a standard vision software package to make it easier for teams
to enter the ULeague and to speed up setup time at a competition. The current video
server is the Doraemon package developed by Baltes [2], which is open source software

1 As opposed to the Mid-size, Four-Legged or Humanoid leagues.
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released under the Gnu Public Licence2. Doraemon has been in development for over
three years and has been used by several robotic teams in international competitions,
including RoboCup. Doraemon includes real-time camera calibration, color calibration
and object tracking components.

Several features separate Doraemon from similar software written for other global
vision robotic soccer teams. It supports full 24-bit color. It supports maximum field
capture rates of 50 (PAL) or 60 (NTSC) fields per second. It includes sophisticated Tsai
camera calibration [5], allowing the system to calibrate the geometry of the scene from
any view, which means that it is not necessary to have the camera mounted directly
overhead relative to the playing field, nor is it necessary to add a wide-angle lens to
the camera. It tracks objects in two or three dimensions (the latter requires using multi-
ple cameras or stereoscopic vision); and it employs a clean object-oriented design that
makes it easy to define different types of robots. Currently robots using two colored
markers or bar codes are available, but there are also more sophisticated object recog-
nizers that use only a single colored spot on the robot [2]. The developers are currently
working on a pattern-recognition process using neural networks that does not require
any markers [3].

Installation and setup of Doraemon consists of four phases: (1) setting up the camera
and the viewing angle, (2) calibrating the camera geometry, (3) calibrating the rotation-
translation matrix, and (4) calibrating colors. Each phase is detailed below.

2.1 Setup of the Camera

In the F180 league, each team provides their own video camera and mounts it in their
desired position. Most teams choose to place the camera directly overhead. This means
that the local organizing committee must provide a physical structure above the playing
field onto which teams can mount their cameras. However, the limited angle of view
requires that a wide-angle lens be mounted on the camera in order to have a view of
the whole playing field. Doraemon has more complex camera calibration routines and
is not limited to overhead views (see figure 2).

Fig. 2. A sample view of the playing field

2 http://sourceforge.net/projects/robocup-video
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2.2 Camera Calibration

Doraemon’s camera calibration uses the well-established Tsai camera calibration [5]
which is popular among computer vision researchers. It is also suitable for global vision
in robotic soccer since it can compute the calibration from a single image. The Tsai
camera calibration computes six external parameters and of the camera position
as well as angles of roll, pitch and yaw) and six internal parameters (focal length, center
of the camera lens, uncertainty factor and radial lens distortion parameters) of
a camera using a set of calibration points. Calibration points are points in the image with
known world coordinates. In practice, Tsai calibration requires at least 15 calibration
points.

Doraemon uses a fast, robust and flexible method for extracting calibration points
from the environment. A simple colored calibration carpet is used. The user selects a
colored rectangle and specifies the distance in the and direction between the centers
of the rectangle. Doraemon’s calibration is iterative, so it can compensate for missing
or misclassified calibration points.

2.3 Rotation Matrix

The Tsai calibration results in the overlay of a world coordinate system over the scene.
In principle this is sufficient to play soccer. However, Doraemon uses an additional ro-
tation and translation matrix to establish the world coordinate system. Instead of being
forced to compute the twelve parameters, the rotation and translation matrix allows one
to rotate, scale, shear and translate the playing field. This results in a set of linear equa-
tions with three unknowns and allows a rotation and translation matrix to be established
with only three points. The four corner points of the playing field are used (resulting in
one more point than required), and a least-squared error approximation of the matrix is
produced.

2.4 Colors

Doraemon uses a sophisticated 12-parameter color model that is based on red (R), green
(G) and blue (B) channels as well as the difference channels red-green (R-G), red-
blue (R-B) and green-blue (G-B). Simple thresholding of the R, G and B channels is
sensitive to the brightness of the color. Even on a robotic soccer playing field with its
controlled lighting, it is difficult to detect more than four colors robustly using only
these channels. Other color models that have been proposed in the literature are less
sensitive to brightness (e.g. the HSI, YUV, or SCT models). However, these models
are computationally expensive, which greatly impacts the performance of the video
server. The color model used in Doraemon attempts to balance the best of both worlds.
The difference channels in the color model are similar to the hue values in the HSI or
similar models, but have the advantage that they can be computed faster than the HSI
model.

2.5 Output of the Video Server

Doraemon transmits the position, orientation and velocity of all objects being tracked
to the team clients listening on the Ethernet. The messages are transmitted in ASCII via



674 John Anderson et al.

UDP broadcast in a single package. Each line is terminated by an end of line character
(\n). For the ULeague, each message contains eleven lines: two lines of header infor-
mation, one line for ball information and eight lines for robot information. An example
is shown in figure 3.

Fig. 3. Sample output message from Doraemon

The first line of each message contains (a) the number of objects that the video
server is currently tracking; (b) the absolute frame number; and (c) the time difference
in seconds between this message and the previous message. A client can use the absolute
frame number and time difference value to determine if any frames were dropped by
the video server.

The second line of each message contains the coordinates in millime-
ters, of the camera with respect to the real-world coordinate system. This is used in dis-
tributed vision or stereoscopic vision applications and will not be used in the ULeague.
The example shows that in this case, the camera was mounted 2.3m above the playing
field (line 1 in figure 3).

Following this package header, there is one line for each object that the video server
is tracking3. Each object line contains the following information:

the type of object (0=robot, l=ball);
the name of the object;
whether the object was found in the image or if the video server did not find the
object and predicted the positions based on previous motion (Found or NoFnd);
the and coordinates of the object, in millimeters;
the orientation of the object in radians; and
the velocity of the object in the and directions.

The names used for each of the nine ULeague objects are ball for the ball, b0
through b3 for the four robots on the blue team and y0 through y3 for the four robots
on the yellow team (lines 2-10 in figure 3). The example shows that ball (ball) was
not found and that the video server’s best estimate of where the ball is is the position

A ball has no orientation and the video server always gives
it an orientation of 0 radians. Note that the height of all objects is fixed if
only a single camera view is used. For example, the height of the ball is 35mm and the

3 In the case of the ULeague, this will always be 9.
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height of the robot in the next line (below) is 100mm. The best guess for the velocity
of the ball is a vector The example also shows that the robot b0
was found at position The orientation of the robot is
approximately 0 degrees and its motion is given by the vector
Note that since this particular robot is a differential-drive type robot, it is not surprising
that the direction of the velocity and the orientation of the robot coincide. The actual
velocity of the robot is approximately 43 cm/s. The information for robots b1 through
y3 is in the same format as described above for robot b0.

3 Communication

The ULeage Communications component consists of two paths. One path goes from
each team’s client program to the Communication Server. We refer to this as the input,
or read, path. The second path goes from the Communication Server to the robots, and
we refer to this as the output, or write, path. We have defined protocols for both paths.
The Communication Server contains two threads, one for reading messages from clients
and one for writing messages to robots.

Input messages are passed along an Ethernet link, connecting each team’s computer
to the computer where the Communication Server is running (see figure 1). The Comm
Server listens for messages from clients on a socket. The clients send ASCII messages
of the form: [name]:[msg]\n where [name] is the name of the robot (as above,
b0 through b3 and y0 through y3) and [msg] is an 8-bit (one byte) message to be sent
to the specified robot, i.e., a number between 0 and 255 (however value 0 is reserved as
a NULL command, described below). Thus an example of a complete message would
be: y0 : 123\n. The Comm Server maintains an 8-byte command buffer, one byte per
robot. Each time an input message is received, the Comm Server updates the byte cor-
responding to the robot specified in the message.

Output messages are transmitted to robots using a standard Infra-Red (IR) trans-
mitter connected to the computer via a serial or USB port. The output thread writes
continuously to the output port, sending messages of the form: [ START] [ command-
buffer] [CHKSUM] where [START] is a one-byte start value (255) and [CHKSUM]
is a stop byte with an included 3-bit checksum (so the values of the checksum will range
from 0 to 7). The checksum computation is taken from the Lego networking protocol
as implemented in BrickOS4.

4 Platform

The ULeague will not use a standard platform like the RoboCup Four-Legged league.
However, we have agreed that we need to choose standard platform specifications in
order to keep teams on an equal plane regarding costs of the robots. Thus we provide
maximum specifications for processor capability, in terms of size (RAM) and speed.
This allows the option either to purchase a pre-designed robot kit or to build one from

4 BrickOS is a free OS for the Lego Mindstorms RCX. For more details, see
http://brickos.sourceforge.net
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basic components. Several popular robotic kits that are within the range we are currently
testing include: Basic Stamp Board of Education (BOE Bot)5, Handyboard6 and LEGO
Mindstorms 2.07.

5 Rules of Play

The field set-up and rules of play are based on those of the Small-size league [1], with
adjustments as outlined below.

Field. The field of play is rectangular, 274cm by 152cm in size. The playing surface is
heavy green felt or carpet. There are goals at the long ends of the field: 70cm wide by
22cm high by 18cm deep. The field of play is marked with lines and does not have walls
(see figure 4). The organizers will place a digital video camera above the field, which
will send images to a central vision computer as described in section 2. The organizers
will also place IR transmitter(s) around the field, to send messages to all the robots on
the field (see section 3). The organizers will also supply a means to transmit the referee’s
signals to the robots; this will be a keyboard/mouse interface to the communications
computer.

Fig. 4. The ULeague field of play

Robots and Ball. The ball is a standard orange-colored golf ball. Each team consists
of four robots. Teams may designate one of these robots to be a goalie, but this is not
required. Each robot must fit inside a cylinder 22cm in diameter and 22cm in height.
Robots are intended to use wheels or rubber tracks for locomotion. Metal spikes and
velcro are specifically prohibited for the purpose of locomotion. Robots do not com-
municate with each other directly; however, their client programs may communicate
with each other through sockets on the team computer. Before a game, each of the two
teams has a color assigned, either yellow or blue. The teams change colors and ends of
the field for the second half of a match. The organizers will supply circular markers of
each color, to be placed on the top of each robot so that they are visible by the overhead
camera.

Play. A human referee controls the game. The match lasts two equal periods of 10
minutes, with a half-time interval of 10 minutes. The clock will run at all times, with

5 http://www.parallaxinc.com
6 http://www.handyboard.com
7 http://www.legomindstorms.com
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allowances only made for major stoppages as per the FIFA laws. The game begins with
a kick-off by the team that wins the coin toss. The other team kicks off to begin the
second half of the game. The ball is out of play when it has completely crossed any
of the field boundaries. The referee may stop all the robots using the referee interface,
retrieve the ball and resume play. A goal is scored when it fully crosses the goal line,
between the goal walls. The winning team is the one that scores the greater number of
goals during a match.

6 Summary

We have presented our design for a new undergraduate league within RoboCup, as a
means for students who grow too old for RoboCupJunior to stay involved in the initia-
tive and as an entry level for new undergraduates and universities to gain experience
with RoboCup soccer. As well, the ULeague gives undergraduates who have tried the
RoboCup Simulator League a chance to experiment with physical robots without need-
ing to build a sophisticated and expensive hardware setup. The ULeague architecture
consists of a common platform for Vision and Communication. Both will be provided
by the league organizers at any competition venues.

There are still several open questions relating to the design of the ULeague. We
propose a field without walls, but how will this work in practice? Our proposed com-
munication mechanism has not been tested in a RoboCup competition yet; again, how
will this work in practice? The exact restrictions on robot platforms have not been de-
fined yet; what should these be?

The first full exhibition of this league will be held at RoboCupJunior-2003, in Padua,
Italy (July 2003). Presently, we have teams from three universities developing the league
(University of Manitoba, Canada; Columbia University, USA; Virginia Military Insti-
tute, USA). Teams from Australia, Iran and Singapore are also following along with
the development. We hope to open the league to any interested parties in 2004. Reg-
ularly updated information and a discussion board can be found on our web page:
http://www.robocupjunior.org/uleague.
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Abstract. We shortly review a mobile robot localization method for
known 2D environments, which we proposed in previous works; it is
an evidence accumulation method where the complexity of working on
a large grid is reduced by means of a multi-resolution scheme. We then
elaborate a framework to define a set of weights which takes into account
the different amount of information provided by each perception, i.e. sen-
sor datum. The experimental activity presented, although the approach
is independent on the sensory system, is currently based on perceptions
coming from omnidirectional vision in an indoor environment.

1 Introduction

In previous works [1] [2] we introduced a method for robot localization, named
MUREA (MUlti-Resolution Evidence Accumulation). It is an evidence accumu-
lation method where the complexity of working on a large grid, i.e. at a useful
accuracy of the localization estimate, is reduced by means of a multi-resolution
scheme. This work has some correlations with other known works. In the follow-
ing we very shortly review the ones which are more related to our, outlining the
limitations which our proposal tries to overcome. Grid-based Markov Localiza-
tion [3] operates on raw sensor measurements and, when applied to fine-grained
grids, could turn into a very expensive computation. Our method can be classi-
fied as a grid-based method too; we propose to circumvent the problem with the
use of a multi-resolution scheme. Scan matching techniques [4] [5], which make
use of Kalman Filtering, are sensible to small errors in data association. Our
proposal solves jointly the data association problem as well as the generation of
a pose estimate. Monte Carlo Localization [6] have problems in recovering from
unexpected events with respect to the motion model. Our approach reacts im-
mediately, i.e. in the same activation, whenever the sensor data does not match
the a priori pose estimate; in such case it turns into a global localization. The
works mentioned so far, including ours, share the capability to handle so-called
dense data sets.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 678–685, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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2 Localization Algorithm

The method we proposed has three main components: the map of the environ-
ment, the perceptions and the localization engine. The environment is repre-
sented by a 2D geometrical map that can be inserted in the system through a
configuration file or can be built by a SLAM system, e.g. as in [5]. The map
is made up of simple geometrical primitives, like points, lines, circles, etc. On
the other hand, we have sensor data. The localization engine takes in input the
map of the environment as well as the perceptions, and outputs the estimated
pose(s) of the robot (if the environment and/or the perceptions have inherent
ambiguities).

In evidence accumulation the difficulty is in working at high resolution in
order to get an accurate estimate. We divide the search-space in subregions
(hereafter cells), to which we associate a counter. Each cell represents a local-
ization hypothesis. Each perception increases the counter associated to a cell if
some point, inside that cell, can be found, which is compatible, see [1] for details,
with both the perception and the model. Then, on the basis of the votes collected
by each cell, the method selects the ones which are more likely to contain the
correct robot pose. Those cells undergo a refinement phase, which is where the
multi-resolution comes into play. This process is further iterated on the refined
hypotheses until a termination condition is matched, see [1] for details. The com-
patibility verification is in charge of checking whether a perception, e.g. a point
perception, can be an observation of a certain map element, e.g. a line, for the
pose associated to the cell. The more the votes of a cell, the more trustable is
the match between the perceived world and its model, and the higher are the
chances that the robot pose falls inside that cell. Therefore we search for the
maximum in the vote accumulator; this is done at each level of resolution, which
in turn increases at each iteration of the process.

3 The Weights of the Perceptions

According to what has been presented so far, the compatibility verification of a
perception concludes with a vote or a non-vote to a cell, which in turn implies
to increase or not, by a constant value, the cell counter (here we have the main
difference with respect to other Bayes-based approaches). This is unsatisfactory
since the amount of information carried by each perception is not the same. We
think that the problem of detecting the perceptual saliency, i.e. the informative-
ness, of each sensor datum (i.e. perception) in order to give it more credit is quite
general and applies to other approaches (including the method proposed in our
previous work) as well. Our proposal is to analyze how much each perception is
useful for the localization process and determine a criterion to define the weight
that each perception should have in the voting phase. In this paper, we propose
a voting approach which estimates the probability that each cell contains the
actual robot pose. In this way, the selection phase will choose those cells that
have an high probability of being the correct one.
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There are two main factors that determine the perceptual saliency of a per-
ception: the informativeness and the reliability. The information carried by a
perception is directly proportional to the number of localization hypothesis that
it excludes. This implies that perceptions which vote for few cells are more in-
formative; on the other hand, a perception that votes all the cells provides no
information, whilst a perception that votes only one cell provides the maximum
information. The reliability of a perception is linked with the probability that
this perception carries erroneous information, for localization purposes. We try
to capture this concept with the probability of the correctness of a perception.

Definition 1.  A perception is correct if it votes, i.e. is compatible with, the cell
containing the actual robot pose.

3.1 Probabilistic Analysis

We want to identify which weight to associate to each perception, in order to
select the cells that are most likely to contain the actual robot pose.

Definition 2. Let be the set of cells into which the C-Space is divided, and
N the cardinality of

Definition 3. Let P be the set of perceptions acquired at time

Definition 4. Let be the subset of all the perceptions acquired at time which
vote for cell

Definition 5. Let be the subset of all the perceptions acquired at time which
do not vote for cell

Definition 6. Let be the cell containing the actual robot pose (a priori un-
known).

Definition 7. Let be the event where the generic cell is actually cor-
responding to cell The complement of the event is represented by

Definition 8. Let be the event where perception votes cell i.e.

Definition 9. Let be the number of cells voted by

Definition 10. Let be the event where all the perceptions belonging to the set
are not correct, i. e. they do not vote for can contain a single perception;

in this case we write With we mean the event where the perceptions in
are correct.

We want to evaluate the probability of event A priori, i.e. without
having any information from the perception system, this value is the same for
every cell.
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Let us compute the same probability, given that some perceptions are com-
patible with cell while others are not.

First we applied Bayes’formula (eq. (2)), then we develop both the numerator
and the denominator through the total probability lemma, and finally we deleted
the second addendum (since and obtained the
expression of eq. (3). If we substitute eq. (1) in eq. (3) and divide both the
numerator and the denominator by we obtain:

where

The Numerator of The numerator of is the probability that the
perceptions which belong to vote and those that belong to do not, given
that is the cell containing the actual robot pose. This probability equals the
probability that the perceptions are correct, and that the other perceptions
are not correct (see def. 1).

Eq. (5)exploits the fact that these events, i.e. whether the perceptions are
correct or not, are statistically independent (the noise, which makes them vote
or not a cell acts independently on each perception).

The Denominator of As far as the denominator of is concerned, if we
assume that the perceptions vote independently a cell that does not contain
the actual robot pose, we can introduce the following factorization:

The probability that a perception votes a cell given that does not
contain the actual robot pose, is:
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The probability that a perception votes a cell is equal to the ratio of the
number of cells voted by and the total number of cells (N). Given that

the number of possible cells becomes N – 1. If we also know that the
perception is not correct, could be any of the cells voted by On the
other hand, if we know that the perception is correct, there are only
cells that are voted by and are different from

Let us now consider the probability that does not vote given that does
not contain the actual robot pose; its value is:

which comes from considerations similar to those used for eq. (7).

Expression. Finally, using the results of eq. (5), (6), (7) and (8) we can
obtain the expression for and, from it, the expression of
(see eq. (4)):

It is worthwhile observing that the introduction of allows each perception
to provide a contribution, i.e. a factor of which is independent on the con-
tribution of the other perceptions. Moreover, from eq. (4) we can notice that

is a function which is monotonically larger than This im-
plies that cells which have higher values of will also have higher probabilities
of being the cell that contains the actual robot pose.

In the following section we will show how this result leads to the implemen-
tation of a weighting method that can be used in our localization approach.

3.2 Implementation

We would like, for each perception, to just add a quantity to the voted cells.
To this aim we apply the logarithmic operator to and, since it maintains the
ordering, we will be able to discriminate among the localization hypotheses.

is the accumulator value, after the voting phase. From eq. (10) we can see
that each perception must be associated to a couple of weights:
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In order to compute the weights for each perception we have to know the
values of N, and for each resolution level. Moreover, we would like
to know these values before starting the localization process. For this reason,
the set P is partitioned in subsets called groups, e.g. the group of the “blue
direction perceptions”, the group of the “white point perception between 50cm
and 100cm” and so on. In the off-line phase, for each group and for each resolution
level, the three values are estimated and the weights are computed by means
of eq. (11). These values will then be used as an approximation of the actual
(unknown) values. The rationale behind this is that all the perceptions in a group
are quite homogeneous, so that their and values can be approximated
by the group values, determined off-line. This process occurs at each resolution
level since the weights change accordingly with it.

Definition 11. is the number of cells at level

Definition 12. is the number of cells that a perception of the group votes
at level

Definition 13. is the probability that a perception of the group does
not vote the cell containing the actual robot pose, at level

The estimation of is accomplished considering one perception and
testing its compatibility with all the cells at level Since the number of cells
voted by a perception is independent of the sensors and time of acquisition,
this estimation process can be carried out off-line. The same does not hold for

The value of this probability is a priori unknown, since it is related to the
sensor that generates the perception, and, above all, it may change with time.
At each level after the voting phase,

by considering the probabilities
not voted. Since we know the value

is estimated for each perception
for those cells that has

only for the cells which
have been analyzed (i.e. which resulted from the refinement of the cells selected
al level and in order to normalize the sum of the we
propose to use the following approximation instead:

where is the set of the cells analyzed at the current level and is the
subset of whose elements are the cells that have not been voted by This
approximation is justified because we do not analyze the cells with a low proba-
bility of being the correct cell. The estimate of is computed as the average

of the which, by means of eq. (11), allows to determine
the weights for the next iteration of the localization process.

4 Localization Experiments

We made some experiments with a robot equipped with an omnidirectional vi-
sion system, based on a multi-part mirror [7]. This mirror allows the vision
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system to have a resolution of about 40mm, for distances under 6m. We put
the robot into a RoboCup middle-size league playground. We defined three map
elements of type line and attribute blue to describe the blue goal and four lines
to describe the borders of the half-field used. The vision sensor produces two
types of perceptions: white point perception and blue direction perception.

Fig. 1. White point and blue direction perceptions re-drawn on the map, altogether
with the map elements; the black and white circle represents the actual robot pose

We devised a preliminary experiment for validating the definition of the
weights. In table 1 and table 2, we have reported, respectively, the positive
and negative weights associated with some group of perceptions at some lev-
els of resolution. We can notice that perceptions begin (i.e. when considering
large cells) with a zero weight for both positive and negative weights. The
reason is that the localization hypotheses are too wide and the perceptions
vote all the cells, bringing no information about the robot pose. On the other
hand, as the resolution increases, we have that the positive weights grow, while
the negative weights decrease their value. The values of table 1 and table 2
were computed following the procedure described in section 3.2, with the val-
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ues of initialized to 0.1. In the experiment reported in Figure 1 we
had several white point perceptions and only one blue direction perception
(which coulb be outweighted by the white ones). If we had considered the white
point perceptions only, we would have had ambiguities, because of the envi-
ronment symmetries. In such case (all the perceptions have the same weight)
the localization ends up with four distinct poses, at the same level of likely-
hood: (465cm, 143cm, 180°), (101cm, 220cm, 270°), (34cm, –143cm, 0°), (382cm,
–229cm, 90°). With the weighting mechanism here presented, the correct solu-
tion could be reached: actual value (25cm, –150cm, 0°), estimated value (26cm,
– 138cm, –1°).
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Abstract. Coordinated action for a team of robots is a challenging problem, es-
pecially in dynamic, unpredictable environments. In the context of robot soccer,
a complex domain with teams of robots in an adversarial setting, there is a great
deal of uncertainty in the opponent’s behavior and capabilities. We introduce the
concept of a play as a team plan, which combines both reactive principles, which
are the focus of traditional approaches for coordinating actions, and deliberative
principles. We introduce the concept of a playbock as a method for seamlessly
combining multiple team plans. The playbook provides a set of alternative team
behaviors which form the basis for our third contribution of play adaptation. We
describe how these concepts were concretely implemented in the CMDragons
robot soccer team. We also show empirical results indicating the importance of
adaptation in adversarial or other unpredictable environments.

1 Introduction

Coordination and adaptation are two of the most critical challenges for deploying teams
of robots to perform useful tasks. These challenges become especially difficult in envi-
ronments involving other agents, particularly adversarial ones, not under the team’s con-
trol. In this paper, we examine these challenges within the context of robot soccer [6],
a multi-robot goal-driven task in an adversarial dynamic environment. The presence
of adversaries creates significant uncertainty for predicting the outcome of interactions
particularly if the opponent’s behavior and capabilities are unknown a priori, as is the
case in a robot soccer competition. As such, this task encapsulates many of the issues
found in realistic multi-robot settings.

Despite this unpredictability, most robot soccer approaches involve single, static,
monolithic team strategies (e.g., see robot team descriptions in [1].) Although these
strategies entail complex combinations of reactive and deliberative approaches, they
can still perform poorly against unknown opponents or in unexpected situations. With
the uncertainty present in the task, such situations are common. An alternative approach
uses models of opponent behavior, constructed either before or during the competi-
tion [5], which are used then to determine the best team response. A model may be
used in a reactive fashion to trigger a pre-coded static strategy, or in a deliberative fash-
ion through the use of a planner [7]. Although these techniques have had success, they
have limitations such as the requirement for an adequate representation of opponent
behavior. For a completely unknown opponent team, constructing an a prior model of
their strategy is impractical.

Here, we take a novel approach based on observing our own team’s effectiveness
rather than observing the opponent’s behavior. We replace a single monolithic team

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 686–693, 2004.
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strategy, with multiple team plans that are appropriate for different opponents and situ-
ations, which we call plays. Each play defines a coordinated sequence of team behavior,
and is explicit enough to facilitate evaluation of that play’s execution. A playbook en-
capsulates the plays that a team can use. Each execution of a play from the playbook
can then be evaluated and this information collected for future play selection. Success-
ful plays, whose successes may be attributed to weaknesses in the opponent or particular
strengths of our team, are selected more often, while unsuccessful plays are ignored.

2 Overview

The work described in this paper was fully implemented on our CMDragons’02 small
size league (SSL) robot team. We competed with our robots at the RoboCup 2002 In-
ternational competition in Fukuoka, Japan. As with other SSL teams, our small robots
utilize perceptual information from an overhead color camera, and an off-field com-
puter for centralized team processing. Hence, our approach does not yet address issues
of distributed coordination per se. Due to space limitations, we do not go into the details
of the larger architecture. Instead, we refer the reader to [3] and [4].

From the perspective of strategy, each robot can perform a range of individual skills.
Each individual skill is encapsulated as a tactic, and all tactics are heavily parame-
terized to provide a wide range of behavior. The role of strategy is to assign tactics,
with suitable parameters, to each robot. The robots then execute the tactic actions each
and every frame. Hence, the strategy layer provides the coordination mechanism and
executes one instance for the entire team and must meld individual robot skills into
powerful and adaptable team behavior. Tactics can be classified as either active or non-
active. An active tactic is one that attempt to manipulate the ball in some manner. Active
tactics include shoot, steal, and clear, while example non-active tactics include
position_for_loose_ball, defend_line, and block. Parameters are tactic
specific, but example parameters often include target points, regions, or information
affective behavior such as whether to aim or include deflections etc. Each is itself a
complex interaction between the robot control layer that maintains robot-specific infor-
mation, navigation, and motion control.

3 Play-Based Strategy

The main question addressed in this work is: “Given a set of effective and parameterized
individual robot behaviors, how do we select each robot’s behavior to achieve the team’s
goals?” This is the problem addressed by our strategy component.

3.1 Goals

The main criterion for team strategy is performance. However, a single, static, mono-
lithic team strategy that maximizes performance is impractical. Indeed, in adversarial
domains with unknown opponents, optimal static strategies are unlikely to exist. There-
fore we break down the performance criteria into more achievable subgoals. The sub-
goals are to (i) Coordinates team behavior, (ii) Executes temporally extended sequences
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of action, (iii) Allow for special behavior for certain circumstances, (iv) Allow ease of
human design and augmentation, (v) Enable exploitation of short-lived opportunities,
and (vi) Allow on-line adaptation to the specific opponent.

The first four goals require plays to be able to express complex, coordinated, and
sequenced behavior among teammates. In addition, plays must be human readable to
make strategy design and modification simple (a must at competitions!). These goals
also requires a capable of executing the complex behaviors the play describes. The
fifth goal requires the execution system to recognize and exploit fortuitous opportuni-
ties not explicitly described by the play. Finally, the last goal requires the system to
improve its behavior over time. These goals, although critical to robot soccer, are also
of general importance for coordinated agent teams in other unpredictable or adversar-
ial environments. We have developed a play-based team strategy, using a specialized
play language, to meet these goals. We describe the major components of this system,
specifically play specification, execution, and adaptation, in the following sections.

3.2 Play Specification

Plays are specified using the play language, which is in an easy-to-read text format (e.g.,
Table 1, Plays use keywords, denoted by all capital letters, to mark different pieces
of information. Each play has two components: basic information and role informa-
tion. The basic information describes when a play can be executed (“APPLICABLE”),
when execution of the play should stop (“DONE”), and some execution details (e.g.,
“FIXEDROLES”, “TIMEOUT”, and “OROLE”). The role information (“ROLE”) de-
scribes how the play is executed, making use of the tactics described above (see Sec-
tion 2). We describe these keywords below.

The APPLICABLE keyword denotes the state of the world under which a play can
be executed. It defines the state of the world through a conjunction of high-level predi-
cates following the keyword. Multiple keywords, on separate lines, define a logical DNF
where the result of each line forms a disjunction. Examples of common predicates in-
clude offense,defense,their_ball, where the meaning of the predicate should
be apparent. The ability to form logical DNF’s means that we can choose exactly which
conditions a play can be operate under.

Unlike classical planning, the level of uncertainty when running real robots makes
it difficult to predict the outcome of a particular plan. Although, a play does not have
effects, it does have termination conditions. Termination conditions are specified by the
keyword DONE followed by a result (e.g., aborted) and a conjunctive list of high-level
predicates similar to the applicability conditions. Plays may have multiple DONE condi-
tions, each with a different result, and a different conjunction of predicates. Whenever
any DONE condition is satisfied, the play terminates. In the example play in Table 1, the
only terminating condition is if the team is no longer on offense. In this case the play’s
result is considered to have been aborted. In addition to the termination conditions,
a play may be terminated by a timeout or by completing the sequence of tactics for
each role. Timeouts, the length of time which can be overridden with the TIMEOUT
keyword, are necessary to prevent the team becoming irretrievably stuck attempting
an action that is not succeeding. Completions, defined by the keyword completed,
means the play terminated correctly but did not lead to a goal score. Finally, a play is
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considered to have succeeded or failed whenever a goal is scored during the play
for, or against, the team. These play results form the basis for evaluating the success of
the play for the purposes of adaptation.

Roles are the active component of each play, and each play has four roles corre-
sponding to each non-goalie robot on the field. Each role contains a list of tactics with
associated parameters for the robot to perform in sequence. As tactics are heavily pa-
rameterized, the range of tactics can be combined into nearly an infinite number of play
possibilities. Table 1 shows an example play where the first role executes two sequenced
tactics. First the robot dribbles the ball out of the corner and then switches to the shoot-
ing behavior. Meanwhile the other roles execute a single behavior for the play’s dura-
tion. Sequencing implies an enforced synchronization, or coordination between roles.
Once a tactic completes, all roles move to their next behavior in their sequence (if one
is defined). Thus, in the example in Table 1, when the player assigned to pass the ball
completes the pass, then it will switch to the mark behavior. The receiver of the pass
will simultaneously switch to receive the pass, after which it will try to execute the
shooting tactic.

3.3 Play Execution

The play execution module is responsible for instantiating the active play into ac-
tual robot behavior. Instantiation consists of many key decisions: role assignment, role
switching, sequencing tactics, opportunistic behavior, and termination. Role assignment
is dynamic, rather than being fixed, and is determined by uses tactic-specific methods.
To prevent conflicts, assignment is prioritized by the order in which roles appear. Thus,
the first role, which usually involves ball manipulation, is assigned first and considers
all four field robots. The next role is assigned to one of the remaining robots, and so
on. The prioritization provides the execution system the knowledge to select the best
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robots to perform each role and also provides the basis for role switching. Role switch-
ing is a very effective technique for exploiting changes in the environment that alter
the effectiveness of robots fulfilling roles. The executor continuously reexamines the
role assignment for possible opportunities to improve it as the environment changes.
Although, it has a strong bias toward maintaining the current assignment to avoid oscil-
lation.

Sequencing is needed to move the entire team through the list of tactics in sequence.
When the tactic executed by the active player, the robot whose role specifies a tactic
related to the ball, succeeds then the play transitions each role to the next tactic in their
relative sequence. Finally, opportunistic behavior accounts for unexpected fortuitous
situations where a very basic action would have a valuable outcome ie. when an op-
portunity to shoot directly on goal presents itself. Thus, opportunistic behavior enables
plays to have behavior beyond that specified explicitly. As a result, a play can encode
a long sequence of complex behavior without encumbering its ability to respond to
unexpected short-lived opportunities. Finally, the play executor checks the play’s termi-
nation criteria, the completion status of the tactics, and the incoming information from
the referee to determine if the play has completed, and with what result.

3.4 Play Selection

The final facet of the playbook strategy system is the mechanism for play selection
and adaptation of play selections given experience. Our basic selection scheme uses the
applicability conditions for each play to form a candidate list from which one play is
selected at random. To adapt play selection, we modify the probability of selecting a
play using a weighting scheme. We describe this mechanism, along with experimental
results, in more detail below.

4 Playbook Adaptation

Playbook adaptation is the problem of adapting play selection based on past execution
to find the dominant play, or plays, for the given opponent and the history of execution.
In order to facilitate the compiling of past outcomes into the selection process, we
associate with each play a weight, For a given set of applicable plays, A,
the weights are normalized to define a probability mass distribution for selecting each
play as,

Playbook adaptation involves adjusting the selection weights given the outcome of a
play’s execution. An adaptation rule is a mapping, from a
weight vector, a selected play, and its outcome, to a new weight for that play. These
new weights are then used to select the next play.

There are a number of obvious, desirable properties for an adaptation rule. All things
being equal, more successes or completions should increase the play’s weight. Simi-
larly, aborts and failures should decrease the weight. In order for adaptation to have
any effect, it also must change weights drastically to make an impact within the short
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time-span of a single game. This leads us to the basic rule that we implemented for
the RoboCup 2002 competition uses a weight multiplication rule, where each outcome
multiplies the play’s previous weight by a constant. Specifically, the rule is,

With       fixed to

4.1 Evaluation

Our strategy system was used effectively during RoboCup 2002 against a wide range
of opponents with vastly different strategies and capabilities. Throughout, we observed
that our team quickly honed in on the plays that worked within a few minutes. We
predominantly began each game with a uniform prior. That is, with for each
play As the competition progressed, we developed more capable plays, in a reason-
ably efficient manner helped by the readability of the play language (our final playbook
contained around 20 plays, including specialized plays for penalties, free kicks etc).
Although we have no specific results, anecdotally, adaptation appears to make the team
work as good as the performance of the best play given the underlying tactics. Thus,
in situations where the tactics cannot perform their assigned objective, say when play-
ing a very good team, play adaptation does not improve the performance of the team.
However, it does not hinder performance either.

In order to more scientifically understand the capabilities and limitations of the play
approach, we constructed a number of simplified scenarios to evaluate adaptation per-
formance. These scenarios compare whether multiple plays are actually necessary, and
also examine the usefulness of playbook adaptation. We compared four simple offensive
plays paired against three defensive tactics. Only two offensive robots were used against
one defensive robot, where the offensive plays consist of the various combinations of
shoot with and without aiming for the active role, and position_for_rebound
or screen for the supporting role. The defensive robot executed a single tactic, which
was one of block, active_def, or brick where the robot did not move. In all
cases, the robots start in the usual “kick off” position in the center of the field. For
each scenario 750 trials were performed in our UberSim SSL simulator [2]. A trial was
considered a success if the offense scored a goal within a 20s time limit.

Table 2 shows the play comparison results. Each trial is independent, and so the
maximum likelihood estimate of each play’s success probability is the ratio of successes
to trials. Note that there is no static strategy that is optimal against every possible op-
ponent even in this simplified scenario. Our results support the notion that play-based
strategies are capable of exhibiting many different behaviors with varying degrees of
effectiveness. For instance, the screen plays, one of which was shown in the exam-
ple trace, are effective against an “active” defender which tries to steal the ball from
the offense, because the non-shooting attacker is capable of setting screens for the non-
shooting attacker. On the other hand, the screen plays are less effective against a “block-
ing” defender which guards the goal.

To explore playbook adaptation we use a playbook containing all four offensive
plays against a fixed defender running eitherblock oract ive_def. We initially used
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the algorithm described above, but discovered an imperfection in the approach. Due to
the strength of the reinforcement for a completed play, it is possible for a moderately
successful but non-dominant play to quickly gain reward and dominate selection. This
phenomenon did not occur in competition due to the larger disparity in plays against
a given opponent and lower success probabilities. The issue is a lack of normalization
in the weight adjustment to account for play selection probabilities. Therefore, we in-
cluded a normalization factor in the weight updates. Specifically, we used the following
rule,

where is the probability assigned to according to w.
To evaluate the performance of the algorithm, we compare the expected success

rate (ESR) of using this adaptation rule against a fixed defensive behavior. We used
the results in Table 2 to simulate the outcomes of the various play combinations. All
the weights are initialized to 1. Figure 1(a) and (b) show the ESR for play adaptation
over 100 trials, which is comparable to the length of a competition (approximately 20
minutes). The lower bound on the y-axis corresponds to the ESR of randomly selecting
plays and the upper bound corresponds to the ESR of the playbook’s best play for the
particular defense. Figure 1(c) shows the probabilities of selecting each play over time
when running the adaptation algorithm.

As graphs (a) and (b) indicate in Figure 1, against each defense the overall suc-
cess rate of the offense quickly grows towards the optimal success rate within a small
number of trials. Likewise graph (c) shows that against the block defense, the proba-
bility of selecting either of two plays with comparatively high individual success rates
quickly dominates the probability of selecting the two less successful plays. Clearly, the
algorithm very quickly favors the more successful plays.

These results, combined with the RoboCup performances, demonstrate that adapta-
tion can be a powerful tool for identifying successful plays against unknown opponents.
Note the contrast here between the use of adaptation to more common machine learning
approaches. We are not interested in convergence to an optimal control policy. Rather,
given the short time limit of a game, we desire adaptation that achieves good results
quickly enough to impact the game. Hence a fast, but non-optimal response is desired
over a more optimal but longer acting approach.
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Fig. 1. (a), (b) show ESR against block and active_def, (c) shows expected play success probabil-
ities against block. These results have all been averaged over 50000 runs of 100 trials.

5 Conclusion

We have introduced a novel team strategy engine based on the concept of a play as a
team plan, which can be easily defined by a play language. Multiple, distinct plays can
be collected into a playbook where mechanisms for adapting play selection can enable
the system to improve the team response to an opponent withoutprior knowledge of the
opponent. The system was fully implemented for our CMDragons robot soccer system
and tested at RoboCup 2002, and in the controlled experiments reported here. Possible
future directions of research include extending the presented play language, enhancing
the play adaptation algorithm.
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Abstract. Reinforcement learning has been successfully applied to sev-
eral subtasks in the RoboCup simulated soccer domain. Keepaway is one
such task. One notable success in the keepaway domain has been the ap-
plication of SMDP with tile-coding function approximation [9].
However, this success was achieved with the help of some significant task
simplifications, including the delivery of complete, noise-free world-state
information to the agents. Here we demonstrate that this task simplifi-
cation was unnecessary and further extend the previous empirical results
on this task.

Introduction1

RoboCup simulated soccer has been a popular test-bed for studying reinforce-
ment learning algorithms over the years. In principle, modern reinforcement
learning methods are reasonably well suited to meeting the challenges of
RoboCup simulated soccer; and RoboCup soccer is a large and difficult instance
of many of the issues which have been addressed in small, isolated cases in pre-
vious reinforcement learning research. Despite substantial previous work (e.g.,
[10, 7]), the extent to which modern reinforcement learning methods can meet
these challenges remains an open question.

This article builds upon the work of Stone & Sutton [9] who began scaling
reinforcement learning up to RoboCup simulated soccer by considering a subtask
of soccer involving fewer than the full 22 players. In particular, they consider
the task of keepaway, a subproblem of RoboCup soccer in which one team, the
keepers, tries to maintain possession of the ball within a limited region, while
the opposing team, the takers, attempts to gain possession. Parameters of the
task include the size of the region, the number of keepers, and the number of
takers. We have recently incorporated the framework for this domain into the
standard, open-source RoboCup soccer simulation software [4].

In their previous work, Stone & Sutton [9] apply episodic SMDP
with linear tile-coding function approximation (CMACs [1]) to the keepaway
task. The learners choose not from the simulator’s primitive actions (e.g. kick,
dash, and turn) but from higher level actions constructed from a set of basic
skills (implemented by the CMUnited-99 team [8]).

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 694–702, 2004.
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Keepers have the freedom to decide which action to take only when in pos-
session of the ball. A keeper in possession may either hold the ball or pass to
one of its teammates. Keepers not in possession of the ball are required to select
the Receive option in which the fastest player to the ball goes to the ball and
the remaining players try to get open for a pass.

The keepers’ set of state variables are computed based on the positions of: the
keepers and takers ordered by increasing distance from and
C, the center of the playing region. Let be the distance between and

and be the angle between and with vertex at For 3 keepers
and 2 takers, we used the following 13 state variables:

The behavior of the takers is relatively simple. The two fastest takers to the
ball go to the ball while the remaining takers try to block open passing lanes.

Using this setup, Stone & Sutton [9] were able to show an increase in average
episode duration over time when keepers learned against hand-coded takers.
They compared their results with a Random policy that chooses among its
options with uniform probability, an Always Hold policy, and a hand-coded
policy that uses a decision tree for pass evaluation. Experiments were conducted
on several different field sizes. In each case, the keepers were able to learn policies
that outperformed all of the benchmarks. Most of their experiments matched 3
keepers against 2 takers. However, they also showed that their results extend to
the 4 vs. 3 scenario.

In the RoboCup soccer simulator, agents typically have limited and noisy
sensors: each player can see objects within a 90° view cone, and the precision of
an object’s sensed location degrades with distance. However, to simplify the task,
Stone & Sutton [9] removed these restrictions. The learners were given 360° of
noiseless vision. Here, we demonstrate that these simplifications are unnecessary:
the agents are able to learn successful policies despite having sensor noise and
limited vision. We also extend the results to larger teams and provide further
insights into the previous results based on additional controlled experiments.
One of our key observations is that a large source of the problem difficulty is the
fact that multiple agents learn simultaneously: when a single agent learns in the
presence of pre-trained teammates, it is able to do so significantly more quickly.

2 Experimental Setup and Results

This section addresses each of the following questions with focused experiments
in the keepaway domain:

1.

2.

3.

Does the learning approach described above continue to work if the agents
are limited to noisy, narrowed vision?
How does a learned policy perform in comparison to a hand-coded policy
that has been manually tuned?
How robust are these policies to differing field sizes?
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4.
5.
6.

How dependent are the results on the state representation?
How well do the results scale to larger problems?
Is the source of the difficulty the learning task itself, or the fact that multiple
agents are learning simultaneously?

2.1 Limited Vision

Limited vision introduces two challenges with respect to the complete vision
setup of Stone & Sutton. First, the agents must model their uncertainty in the
world state and make the appropriate decisions based on those uncertainties.
Second, the agents must occasionally take explicit information-gathering actions
to increase their confidence in the world state.

To model state uncertainty, a player stores a certainty factor along with
each state variable that decays over time. When the player receives sensory
information, it updates its world state and resets the certainty factor. If the
keeper with the ball does not have reliable information about the position of its
teammates, then we force the player to hold the ball and turn its neck until it
has enough information to make a pass.

Using this method, we attempted to reproduce the results of Stone & Sutton
for 3 vs. 2 keepaway on a 20m × 20m field but without the simplification of
unrestricted vision. In their work, keepers were able to learn policies with average
episode durations of around 15 seconds. However, learning with noisy, narrowed
vision is a more difficult problem than learning with complete knowledge of the
state. For this reason, we expected our learners to hold the ball for less time.
However, since these same difficulties impact the benchmark policies, the salient
question is whether or not learning is still able to outperform the benchmarks.

Fig. 1. Learning curves and benchmarks for
limited vision: 3 keepers vs. 2 takers.

We ran a series of 6 independent
learning trials in which the keepers
learned while playing against the
hand-coded takers. In each run, the
keepers gradually improved their
performance before leveling off af-
ter about 25 hours of simulator
time. The learning curves are
shown in Figure 1. We plotted all
6 trials to give a sense of the vari-
ance.

All of the learning runs were
able to outperform the Always
Hold and Random benchmark

policies. The learned policies also outperformed our Hand-coded policy which
we describe in the next section.

2.2 Comparison to Hand-Coded

In addition to the Always Hold and Random benchmark policies described
previously, we compared our learners to a new Hand-coded policy. In this
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policy, the keeper in possession, assigns a score to each of its teammates based
on how “open” they are. The degree to which the player is open is calculated as
a linear combination of the teammate’s distance to its nearest opponent, and the
angle between the teammate, and the opponent closest to the passing lane.
The relative importance of these two features are weighted by the coefficient
If the most open teammate has a score above the threshold, then will pass
to this player. Otherwise, will hold the ball for one cycle.

This Hand-coded policy was designed to use only state variables and calcu-
lations that are available to the learner. We chose initial values for and based
on educated guesses. We tuned these values by experimenting with values near
our initial guesses. Altogether, we tried about 30 combinations, before settling
on our final tuned values.

We ran a few thousand episodes of our tuned Hand-coded policy and found
that it was able to keep the ball for an average of 9.6 seconds per episode. Also,
for comparison, we tested our Hand-coded policy before manual tuning. This
policy was able to hold the ball for an average of 8.2 seconds. From Figure 1
we can see that the keepers are able to learn policies that outperform our ini-
tial Hand-coded policy and exhibit performance roughly as good as (perhaps
slightly better than) the tuned version. We examined the Hand-coded policy
further to find out to what degree its performance is dependent on tuning.

2.3 Robustness to Differing Field Sizes

Stone & Sutton already demon-
strated that learning is robust to
changes in field sizes [9]. Here we
verify that learning is still robust
to such changes even with the addi-
tion of significant state uncertainty.
We also benchmark these results
against the robustness of the
Hand-coded policy to the same
changes. Overall, we expect that as
the size of the play region gets
smaller, the keepers will have a
harder time maintaining possession

Fig. 2. Average possession times (in simula-
tor seconds) for hand-coded and learned poli-
cies on various field sizes.

of the ball regardless of policy. Here we compare the Hand-coded policy to
learned policies on five different field sizes. The average episode durations for
both solutions are shown in Figure 2. Each value for the learned runs was cal-
culated as an average of six separately learned policies.

As can be seen from the table, the hand-coded policy does better on the
easier problems (30m × 30m and 25m × 25m), but the learned policies do better
on the more difficult problems.

A possible explanation for this result is that the easier cases of keepaway have
more intuitive solutions. Hence, these problems lend themselves to a hand-coded
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approach. However, without any impetus to choose a simpler approach, learned
policies tend to be more asymmetric and irregular. This lack of rhythm seems
to lead to suboptimal performance on easier tasks.

In contrast, when the keepers are forced to play in a smaller area, the “intu-
itive” solution breaks down. The hand-coded keepers tend to pass too frequently,
leading to missed passes. In these more difficult tasks, the trained keepers appear
to find “safer” solutions in which the ball is held for longer periods of time. This
approach leads to fewer missed passes and better overall performance than the
hand-coded solution.

2.4 Changing the State Representation

A frequent challenge in machine learning is finding the correct state represen-
tation. In all of the experiments reported so far, we have used the same state
variables as in Stone & Sutton’s work, which were chosen without any detailed
exploration [9]. Here we explore how sensitive the learning is to the set of state
variables used.

As a starting point, notice that our Hand-coded policy uses only a small
subset of the 13 state variables mentioned previously. Because the Hand-coded
policy did quite well without using the remaining variables, we wondered if
perhaps the unused state variables were not essential for the keepaway task.

To test this theory, we perfor-
med a series of learning runs in
which the keepers used only the five
variables from the hand-coded pol-
icy. Figure 3 shows the learning
curves for six runs. As is apparent
from the graph, the results are very
similar to those in Figure 1.
Although we found that the keep-
ers were able to achieve better than
random performance with as little
as one state variable, the five vari-
ables used in the hand-coded policy
seem to be minimal for peak perfor-

Fig. 3. Learning with only the 5 state vari-
ables from the Hand-coded policy.

mance. Notice by comparing Figures 1 and 3 that the keepers are able to learn at
approximately the same rate whether the nonessential state variables are present
or not.

To explore this notion further, we tried adding additional state variables to
the original 13. We ran two separate experiments. In the first experiment, we
added 2 new angles that appeared relevant but perhaps redundant.

In the second experiment, we added 2 com-
pletely irrelevant variables: each time step, new values were randomly chosen
from [–90,90] with uniform probability.
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Fig. 4. Learning with the original 13 state
variables plus an additional two.

From Figure 4, we can see that
the learners are not greatly affected
by the addition of relevant
variables. The learning curves look
roughly the same as the ones that
used the original 13 state variables
(Figure 1). However, the curves
corresponding to the additional
random variables look somewhat
different. The curves can clearly be
divided into two groups. In the first
group, teams are able to perform
about as well as the ones that used
the original 13 variables. In the sec-

ond group, the agents perform very poorly. It appears that agents in the second
group are confused by the irrelevant variables while the agents in the first group
are not. This distinction seems to be made in the early stages of learning (be-
fore the 1000th episode corresponding to the first data point on the graph). The
learning curves that start off low stay low. The ones that start off high continue
to ascend.

From these results, we conclude that it is important to choose relevant vari-
ables for the state representation. However, it is unnecessary to carefully choose
the minimum set of these variables.

2.5 Scaling to Larger Problems

In addition to our experiments with 3 vs. 2 keepaway, we ran a series of trials
with larger team sizes to determine how well our techniques scale. First we
performed several learning runs with 4 keepers playing against 3 hand-coded
takers. We compared these to our three benchmark policies. The results are
shown in Figure 5. As in the 3 vs. 2 case, the players are able to learn policies
that outperform all of the benchmarks.

We also ran a series of experiments with 5 vs. 4 keepaway. The learning curves
for these runs along with our three benchmarks are shown in Figure 6. Again,
the learned policies outperform all benchmarks. As far as the authors are aware,
these experiments represent the largest scale keepaway problems that have been
successfully learned to date.

From these graphs, we see that the learning time approximately doubles every
time we move up in size. In 3 vs. 2, the performance plateaus after roughly (by
eyeballing the graphs) 15 hours of training. In 4 vs. 3, it takes about 30 hours
to learn. In 5 vs. 4, it takes about 70 hours.

2.6 Difficulty of Multiagent Learning

A key outstanding question about keepaway is whether it is difficult as an indi-
vidual learning task, or if the multiagent component of the problem is the largest
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Fig. 5. Training 4 Keepers against 3 tak-
ers with benchmarks.

Fig. 6. Training 5 Keepers against 4 tak-
ers with benchmarks.

source of difficulty. To see how the number of agents learning simultaneously af-
fects the overall training time, we ran a series of experiments in which a subset
of the keepers learned while the remaining teammates followed a fixed policy
learned previously. We ran each experiment three times. The learning curves for
all nine runs are shown in Figure 7.

Fig. 7. Learning curves for varying number
of keepers learning simultaneously.

From the graph we can see that
the learning curves for 2 learning
agents and 3 learning agents look
roughly the same. However, the
runs with only 1 player learning
peak much sooner. Apparently,
having pre-trained teammates
allows an agent to learn much
faster. However, if more than one
keeper is learning, the presence of
a pre-trained teammate is not help-
ful. This result suggests that mul-
tiagent learning is an inherently
more difficult problem than single

agent learning, at least for this task. In the long run, all three configurations’
learned policies are roughly equivalent. The number of learning agents does not
seem to affect the quality of the policy, only the rate at which the policy is
learned.

3 Related Work

Several previous studies have used keepaway soccer as a machine learning
testbed. Whiteson & Stone [11] used neuroevolution to train keepers in the Soc-
cer Bots domain [3]. The players were able to learn several conceptually different
tasks from basic skills to higher-level reasoning using a hierarchical approach
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they call “concurrent layered learning.” The keepers were evaluated based on
the number of completed passes. Hsu & Gustafson [5] evolved keepers for 3 vs. 1
keepaway in the much simpler and more abstract TeamBots simulator [2]. Keep-
ers were trained to minimize the number of turnovers in fixed duration games. It
is difficult to compare these approaches to ours because they use different fitness
functions and different game dynamics.

More comparable work to ours applied evolutionary algorithms to train 3
keepers against 2 takers in the RoboCup soccer simulator [6]. Similar to our work,
they focused on learning keepers in possession of the ball. The keepers chose from
the same high-level behaviors as ours. Also, they used average episode duration
to evaluate keeper performance. However, because their high-level behaviors and
basic skills were implemented independently from ours, it is difficult to compare
the two learning approaches empirically. Additional related work is discussed
in [9].

4 Conclusion and Future Work

Taken together, the results reported in this paper show that SMDP with
tile-coding scales further and is more robust than has been previously shown.
Even in the face of significant sensor noise and hidden state, it achieves results
at least as good as those of a tuned hand-coded policy.

The main contribution of this paper is a deeper understanding of the dif-
ficulties of scaling up reinforcement learning to RoboCup soccer. We focused
on the keepaway task and demonstrated that players are able to improve their
performance despite having noisy, narrowed vision. We also introduced a new
hand-coded policy and compared it for robustness to our learned policies. We
demonstrated the difficulty of scaling up current methods and provided evidence
that this difficulty arises mainly out of the fact that several agents are learning
simultaneously.
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Abstract. This paper describes a walking gait for a humanoid robot with a dis-
tributed control system. The motion for the robot is calculated in real time on a
central controller, and sent over CAN bus to the distributed control system. The
distributed control system loosely follows the motion patterns from the central
controller, while also acting to maintain stability and balance. There is no
global feedback control system; the system maintains its balance by the interac-
tion between central gait and “soft” control of the actuators. The paper illus-
trates a straight line walking gait and shows the interaction between gait genera-
tion and the control system. The analysis of the data shows that successful
walking can be achieved without maintaining strict local joint control, and
without explicit global balance coordination.

1 Introduction

Humanoid robots typically require coordinated control of a large number of joints. In
most existing implementations of humanoid robots, coordination is achieved by the
use of a central control computer that interfaces to all sensors and actuators providing
local control of joint positions and torques as well as global control of balance and
posture. This paper describes a distributed approach to control and coordination that
provides local control of position and torque at each joint in a fashion that maintains
global balance and posture.

1.1 Paper Overview

After a brief description of related work, the paper describes the GuRoo robot that
forms the basis for the later experiments. Details of the architecture and design of the
robot are followed by a description of the computing system that supports the distrib-
uted control system. The paper then describes the approach to distributed control and
provides details of gait generation, including results gathered from a straight line
walk.

2 Related Work

The OpenPino project [Yamasaki, 2000], utilizes a very centralized approach to hu-
manoid control. An onboard SH2 micro-controller is responsible for taking high level
commands from a PC, such as walk forward, stop etc, and converts them into position

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 703–711, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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information. These positions are converted into PWM signals by a single CLPD,
responsible for controlling all 26 degrees of freedom.

The University of Waseda’s humanoid, WABIAN, employs a similar control sys-
tem, with high level commands generated by the onboard Pentium 166Mhz com-
puter[Yamaguchi, 1998]. The resulting velocity profiles are fed into one of two 16
channel D/A boards via an ISA bus, which supply the motor drivers the required sig-
nals to actuate the motors. This system is physically centralized with all computa-
tional equipment and motor drivers located in the torso.

Similarly, H6 from the University of Tokyo makes use of an onboard PIII 700Mhz
computer to generate high level commands [Nishiwaki, 2000]. A pair of Fujitsu I/O
controller, similar to WABIAN’s, generates the control signals necessary for the mo-
tors. Individual motor drivers supplying the necessary power are located physically
close to each motor.

2.1 The GuRoo Project

GuRoo is a 1.2 m tall, fully autonomous humanoid robot designed and built in the
University of Queensland Robotics Laboratory [Wyeth, 2001]. The robot has a total
mass of 34 kg, including on-board power and computation. GuRoo is currently capa-
ble of a number of demonstration tasks including balancing, walking, turning, crouch-
ing, shaking hands and waving. The robot has performed live demonstrations of com-
binations of these tasks at various robot displays.

The intended challenge task for the robot is to play a game of soccer with or
against human players or other humanoid robots. To complete this challenge, the
robot must be able to move freely on its two legs. Clearly, the robot must operate in a
completely autonomous fashion without support harnesses or wiring tethers. The
current GuRoo robot cannot withstand the impacts associated with playing soccer, but
serves as an excellent platform for research into the design of balance behaviors and
dynamic gait control. The location and axis of actuation of each joint can be seen in
Figure 1.

Fig. 1. The GuRoo Humanoid robot and the degrees of freedom of each joint.

2.2 Electro-Mechanical Design

The key element in driving the mechanical design has been the choice of actuator.
The robot has 23 joints in total. The legs and abdomen contain 15 joints that are re-
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quired to produce significant mechanical power, most generally with large torques
and relatively low speeds. The other 8 joints drive the head and neck assembly, and
the arms with significantly less torque and speed requirements.

The 15 high power joints all use the same motor-gearbox combination consisting
of a Maxon RE 36 motor with a gearbox reduction of 156:1. The maximum continu-
ous generated output torque is 10 Nm. Each motor is fitted with an optical encoder for
position and velocity feedback. The 8 low power joints are Hi-Tec RC servo motors
model HS705-MG. with rated output torque to 1.4 Nm.

The motors that drive the roll axis of the hip joints are supplemented by springs
with a spring constant of 1 Nm/degree. These springs serve to counteract the natural
tendency of the legs to collide, and help to generate the swaying motion that is critical
to the success of the walking gait.

Power is provided by 2 × 1.5Ah 42V NiCd packs for the high power motors, and 2
x 3Ah 7.2 V NiCd battery packs for computing and servo operation. The packs are
chosen to give 20 minutes of continuous operation.

2.3 Sensing

The position feedback from the encoders on the high power joints provides 867 en-
coder counts per degree of joint motion. In addition, each DSP can measure the cur-
rent to each motor. Provision has also been made for inertial and balance sensors, as
well as contact switches in the feet and in the joints.

3 Distributed Control Network

A distributed control network controls the robot, with a central computing hub that
sets the goals for the robot, processes the sensor information, and provides coordina-
tion targets for the joints. The joints have their own control processors that act in
groups to maintain global stability, while also operating individually to provide local
motor control. The distributed system is connected by a CAN network.

3.1 Central Control

The central control of the robot derives the joint velocities required to perform the
walking gait. A PIII 1.1 GHz laptop currently calculates velocities for all 23 degrees
of freedom in real time. The velocities are passed along a serial link to a distribution
board which serves as a bridge between the serial bus and Control Area Network
(CAN) Provision has been made to port this control to a Compaq IPAQ mounted on
the robot to enable true autonomy, free of any tethers.

3.2 Joint Controllers

All joint controllers are implemented using a TMS320F243 Digital Signal Processor
from Texas Instruments, a 16 bit DSP designed for motor control. The availability of
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the CAN module in this series, along with bootloader programmable internal Flash
memory makes the device particularly attractive for this application. Five controller
boards control the 15 high power motors, each board controlling three motors. A sixth
controller board controls the eight RC servo motors. Figure 2 outlines the interaction
between the various node on the control network.

Fig. 2. Block diagram of the distributed control system.

4 Software

The software consists of four main entities: the global movement generation code, the
local motor control, the low-level code of the robot, and the simulator. The software is
organized to provide a standard interface to both the low-level code on the robot and
the simulator. This means that the software developed in simulation can be simply re-
compiled to operate on the real robot. Consequently, the robot employs a number of
standard interface calls that are used for both the robot and the simulator including
reading the encoders and setting PWM values as well as the transfer of CAN packets.

4.1 Gait Generation

The gait generation module is responsible for producing realizable trajectories for the
23 joints so that the robot can perform basic behaviors, such as standing on one leg,
crouching and walking. The most important properties of the trajectories are that they
are smooth and that they can be linked together in a smooth fashion. Smoothness of
motion implies less disturbance to the control of other joints. Based on these criteria,
a normalized joint movement as shown in Figure 3 is applied to all motor trajectories.

The trajectories are generated from a parameterized sinusoidal curve where is
the desired joint velocity, is the total joint angle to move and T is the period of that
movement. The trajectory contrasts with typical trajectories generated for robotic
manipulators, which typically focus on smoothness of the end effector motion rather
than smoothness at the joint.

Trajectories for each of the motors may be coordinated by using the same begin-
ning time for the motion and specifying the same period for the trajectory. Trajecto-
ries may be naturally linked as the velocities all reach zero at the beginning and the
end of a motion. Section 5 will illustrate how trajectories may be coordinated and
linked to perform a walking operation.
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Fig. 3. The trajectory used for a total joint movement of 1 radian over a period of 1 second.

4.2 Joint Controller Software

There are two types of joint controller boards used in the robot – five controller
boards control the fifteen high power motors and one controller controls the eight low
power motors. The controller software for the low power motors is a single interrupt
routine that is triggered by the arrival of a CAN packet addressed to the controller’s
mailbox. The routine reads the CAN mailbox for the change in position sent by the
gait generation routine. The PWM duty cycle that controls the position of the RC
servos is varied accordingly.

The control loop for the high power controllers has two interrupt routines. As for
the low power controller, an interrupt is executed upon receipt of trajectory data in the
CAN mailbox. The data is used to set the velocity setpoints for the motor control
routine. There is also a periodic interrupt every to run the motor control soft-
ware. The motor control routine compares the error between velocity setpoint and the
encoder reading and generates a PWM value for the motor based on a Proportional-
Integral control law. The routine also checks the motor current against the current
limits, and adjusts the PWM value to prevent over-current situations.

The PI control law on each joint has been hand tuned to provide both good trajec-
tory following for typical velocity input profiles, and spring-damper model impedance
to torque disturbances from gravity and the cross-coupling torques from other joints.
The “soft” response of this control law to disturbance prevents torques being transmit-
ted throughout the robot and helps to maintain global stability. The disadvantage is
that the controller suffers from position error that must be accounted in the gait gen-
eration software. Section 5 illustrates how this potential liability is turned to an asset
in the generation of a dynamically stable walk.

4.3 Low-Level Code

The lowest level of code on the robot provides direct access to the sensors and com-
munication system. The level of abstraction provided by function calls at this level
aids in the cross development of code between the simulator and the real robot.
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4.4 Simulator

The simulator is based on the DynaMechs project [McMillan, 1995], with additions to
simulate specific features of the robot such as the DC motors and motor drives, the
RC servos, the sensors, the heterogeneous processing environment and the CAN net-
work. These additions provide the same interface for the dynamic graphical simula-
tion as for the joint controller and gait generation code. The parameters for the
simulator are derived from the CAD models and the data sheets from known
components. These parameters include the modified Denavit-Hartenberg parameters
that describe the robot topology, the tensor matrices of the links and the various motor
and gearbox characteristics associated with each joint. The surface data from the CAD
model is also imported to the simulator for the graphical display.

For the high power DC motor joints, the simulator provides the programmer with
readings from the encoders and the current sensors, based on the velocities and
torques from the dynamic equations. In the case of the RC servos, the simulator up-
dates the position of the joints based on a PD model with a limited slew rate. The
programmer must supply the simulator with PWM values for the motors to provide
the control. The simulator provides fake interrupts to simulate the real events that are
the basis of the control software.

The simulator uses an integration step size of and updates the graphical dis-
play every 5ms of simulated time. When running on 1.5 GHz Pentium 4 under Win-
dows 2000, the simulation updates all 23 joints at a very useable 40% of real time
speed.

5 Walking

The robot can walk with a step rate of 1 Hz using a step length of 100 mm. The walk
is open-loop; there is no feedback from the joint controllers to the gait generation
software. The lack of global feedback, combined with the absence of a global balance
sensor presents a substantial challenge in walking algorithm design.

5.1 Walking Algorithm

The robot uses a simplified version of a typical human gait. In particular, it limits the
swing of the legs to prevent balance disturbance as this cannot be corrected without
global balance control. In order to minimize the accelerations of the torso, head and
arms (which make up 1/3 of the mass of the robot), the robot maintains a constant
relative position of the torso, such that the face of the torso is always normal to the
direction of travel. The allowable roll of the torso is also limited. The stabilization of
the torso also reduces disturbances from gravity to the control of the leg joints.

Before walking, the robot loads each motor against gravity by performing a slight
squat that introduces a 6 degree ankle pitch, with the knee and hip pitch joints set to
keep the torso upright. The initial loading of the joints reduces the likelihood of back-
lash in the gearheads.

The walking gait commences with a side-to-side sway generated from the roll axes
of the ankles and hips. The sway frequency of 0.5 Hz is sympathetic with the spring
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mass system formed by the ankle controllers with the mass of robot. The sway sets up
the pattern of weight transfer from one foot to the other necessary to swing the legs
alternately to achieve walking. At each extreme of the sway, the inertia of the upper
body ensures the ZMP (Zero Moment Point) of the robot lies within the support poly-
gon formed by the support foot, even thought the centre of mass may not. This action
places requires less torque from the hip and ankle roll actuators, as the motion due to
gravity brings the robot away from the extreme of each sway.

Fig. 4. Frontal view of the walking process.

Once the sway is sufficient to leave no ground reaction force on the non-supporting
foot, the non-supporting leg is lifted using the pitch axes of the hip, knee and ankle.
Between the lifting and lowering of the non-supporting leg, each yaw axis motor
twists, so that the non-supporting leg swings forward to create the step. When the
swing leg contacts the ground, the robot is dynamically stable, with the centre of mass
over the supporting foot in the frontal plane, but in front of the toes in the sagittal
plane. The robot then swings across to the other foot, repeating the sequence and
progressing with the walk.

5.2 Analysis of Results

The motion of the robot is best analyzed by comparing the desired velocity from the
gait generation module to the actual velocity at each joint. Figure 5 shows this com-
parison for the motion of the hip, knee and ankle in the roll, pitch and yaw axis. The
graphs are initialized midway through the double support phase, with both legs in
contact with the ground. The graphs comprise one second of data, describing the right
leg as it moves from the double support phase, through the swing phase back to the
double support phase.

At the point t = 0.25 s, the swing leg starts to lift and loses contact with the ground.
With the hip roll axis of the swing leg no longer contributing to the support of the
robot, the spring located in this axis briefly dominates the actual velocity causing the
overdamped oscillation seen at hip joint at this time.

Once the foot leaves the ground the ankle roll motor switches from driving the leg
from the foot, to driving the foot from the leg. This large decrease in relative inertia
results in a brief increase in the magnitude of the ankle roll velocity. The foot has a
relatively low inertia compared with the rest of the robot, and as such the PI controller
has little trouble following the desired velocity until the foot again makes contact with
the ground. The robot reaches the extreme of each sway at t = 0.5 s, where all motion
in the roll plane ceases. The swing leg is now theoretically fully lifted, although the
knee and hip pitch do not reach their desired positions until T=0.6s.
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Fig. 5. Desired vs Actual joint angles for straight line walking over a 1 second period. Graphs
start during the double support phase and follow the right leg through the swing phase.

The actual joint velocity profile for each pitch motor in the swing leg shows the in-
creasing effect of gravity and leg inertia through the swing stage. The integral term in
the PI controller seeks to eliminate steady state error, and as such, dominates the ac-
tual velocity, driving each pitch motor to its desired position. As the motor does not
reach the maximum desired velocity, it is forced to lengthen the movement time to
ensure the areas under each graph are equal. The low proportional term results in the
poor tracking of the desired velocity, but enables the joint to better deal with external
disturbances.

The comparison of the actual velocity with the desired velocity for each pitch mo-
tor in each leg degrades from the ankle to the knee to the hip. The ankle need only
accelerate the foot, whereas the knee must accelerate the foot and lower leg. The hip
pitch must accelerate the entire leg during the swing phase.

The motion of the yaw axis as the swing leg is lifted, propels the robot forward.
When the yaw motion occurs on the support leg, the momentum of the robot causes
the joint to overshoot its position. The swing leg is then lowered placing the robot into
a double support phase. The friction of two feet against the ground and the weight of
the robot on the support leg prevents the yaw axis positional error from being re-
solved. This provides a pre-loading of the joint that supports the motion of the next of
yaw swing phase.

As the robot sways back to the other side, weight is gradually released from the
supporting foot, until the torque acting on the joint overcomes the co-efficient of
friction between the foot and the floor. This is not necessarily the point at which the
swing leg loses contact with the ground. By time the leg has resolved this error, the
joint is experiencing the yaw motion associated with the swing leg twist. As a result,
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the area under the curve for the hip yaw during the swing phase is greater than the
desired area.

Contact with the ground is achieved at T=0.85s and once made, the robot returns to
the double support phase of its gait. Both the hip and ankle of the swing leg now as-
sist the support leg roll motors to sway the robot across to the other foot, and in the
process gradually switch the roles of the support and swing leg

6 Conclusions

This paper has illustrated that a humanoid robot can walk without the need for explicit
global feedback, or tightly controlled joint trajectories. By combining a group of
loosely coordinated control systems that use “soft” control laws with smooth trajec-
tory generation, the robot can use the natural dynamics of its mechanical structure to
move through a gait pattern. The work in this paper shows sound walking perform-
ance that can only improve with the augmentation of global inertial sensors and feed-
back paths.
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Abstract. This paper describes a method to reduce the effects of the
system immanent control delay for the RoboCup small size league. It
explains how we solved the task by predicting the movement of our robots
using a neural network. Recently sensed robot positions and orientations
as well as the most recent motion commands sent to the robot are used
as input for the prediction. The neural network is trained with data
recorded from real robots.
We have successfully field-tested the system at several RoboCup compe-
titions with our FU-Fighters team. The predictions improve speed and
accuracy of play.

1 Introduction

The time elapsed between making an action decision and perceiving the conse-
quences of that action in the environment is called the control delay. All physical
feedback control loops have a certain delay, depending on the system itself, on
the input and output speed and, of course, on the speed at which the system
processes information.

In the RoboCup small size league a global vision module is used to determine
the positions of all robots on the field. In order to control the behavior of the
robots in a way that is appropriate for the situation on the field we need the exact
positions of them at every moment. Because of the delay inherent in the control
loop, however, the behavior control system actually reacts to the environment
four frames ago (about 132 ms). When moving faster – our robots drive at a
speed of up to 2 m/s – the delay becomes more significant as the error between
the real position and the position used for control grows up to 20 cm.

In order to correct this immanent error we have developed a neural network
which processes the positions, orientations, and the action commands sent to
the robots during the last six frames. It predicts the actual positions of the
robots. These predictions are used as a basis for control. We use real recorded
preprocessed data of moving robots to train the network.

The concept of motor prediction was first introduced by Helmholtz when
trying to understand how humans localize visual objects (see [6]). His suggestion
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was that the brain predicts the gaze position of the eye, rather than sensing it.
In his model the predictions are based on a copy of the motor commands acting
on the eye muscles. In effect, the gaze position of the eye is made available before
sensory signals become available.

The paper is organized as follows. The next section gives a brief description
to our system architecture. Then we explain how the delay is measured and we
present some other approaches to eliminate the dead time. Section 4 describes
architecture and training of the neural network used as a predictor. Finally, we
present some experimental results and some plans for future research.

2 System Architecture

The small size league is the fastest physical robot league in the RoboCup com-
petition relative to the field size. Top robot speeds exceed 2m/s and acceleration
is limited by the traction of the wheels only, hence a robot can cross the entire
field in about 1.5 sec. This is possible, since the sensing is done mainly by a
camera overlooking the field and behavior control is done mainly by an off-the-
field computer. Action commands are sent via a wireless link to the robots that
contain only minimal local intelligence. Thus, the robot designer can focus in
this league on speed, maneuverability, and ball handling.

Our control system is illustrated in Fig. 1. The only physical sensor we use
for behavior control is one S-Video camera1. It looks at the field from above and
produces an output video stream, which is forwarded to the central PC. Images
are captured by a frame grabber and given to the vision module.

The global computer vision module analyzes the images, finds and tracks the
robots and the ball and produces as output the positions and orientations of the
robots, as well as the position of the ball. It is described in detail in [3].

Based on the gathered information, the behavior control module then pro-
duces the commands for the robots: desired rotational velocity, driving speed
and direction, as well as the activation of the kicking device. The central PC
then sends these commands via a wireless communication link to the robots.
The hierarchical reactive behavior control system of the FU-Fighters team is
described in [2].

Each robot contains a microcontroller for omnidirectional motion control.
It receives the commands and controls the movement of the robot using PID
controllers (see [4]). Feedback about the speed of the wheels is provided by the
pulse generators which are integrated in each motor.

3 Delay: Measurement, Consequences, and Approaches

As with all control systems, there is some delay between making an action de-
cision and perceiving the consequences of that action in the environment. All
1 There are various other sensors on the robots and in the system, but they aren’t

used for behavior control. For example, the encoders on the robots are only used for
their motion control.
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Fig. 1. The feedback control system. All stages have a different delay. But only the
overall delay is essential for the prediction.

stages of the control loop contribute to the control delay that is also known as
dead time. Although image capture, computer vision, and behavior control run
at a rate of 30 Hz, motion control runs at 80 Hz, and the entire system is opti-
mized to minimize delay, all the small delays caused by the individual stages add
up to about 100 to 150 ms. For the purposes of control, all delays can be aggre-
gated to a single dead time. This is illustrated in Fig. 2(a). If a robot moves at
2 m/s and the dead time is 100 ms, the robot will travel a distance of 20 cm before
we perceive the consequences of an action decision. This causes problems when
robots move fast, producing overshooting or oscillations in movement control.

In order to measure the system delay, we use the following simple technique.
We let the robot drive along the field with a speed that is determined by a
sinusoidal function. This means, the robot moves back and forth with maximum
speed in the middle of the path, slowing down and changing direction at both
turning points. We then measure the time between sending the command to
change the direction of motion and perceiving a direction change of the robot’s
movement.

There are many possibilities to counter the adverse effects of the control delay.
The easiest way would be to move slower, but this is frequently not desirable,
since fast movement is a decisive advantage in play. Another possibility would be
to reduce precision requirements, but this would lead to unnecessary collisions
with other players and uncontrolled ball handling.

Control researchers have made many attempts to overcome the effects of de-
lays. One classical approach is known as Smith Predictor [8]. It uses a forward-
model of the plant, the controlled object, without delays to predict the con-
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Fig. 2. Control with dead time: (a) control is difficult if the consequences of the con-
troller actions are sensed with significant delay; (b) a predictor that is trained to output
the state of the plant can reduce the delay of the sensed signal and simplify control.

sequences of actions. These predictions are used in an inner control loop to
generate sequences of actions that steer the plant towards a target state. Since
this cannot account for disturbances, the plant predictions are delayed by the
estimated dead time and compared to the sensed plant state. The deviations re-
flect disturbances that are fed back into the controller via an outer loop. The fast
internal loop is functionally equivalent to an inverse-dynamic model that con-
trols a plant without feedback. The Smith Predictor can greatly improve control
performance if the plant model is correct and the delay time matches the dead
time. It has been suggested that the cerebellum operates as a Smith Predictor to
cancel the significant feedback delays in the human sensory system [7]. However,
if the delay exceeds the dead time or the process model is inaccurate, the Smith
Predictor can become unstable.

Ideally, one could cancel the effects of the dead time by inserting a negative
delay of matching size into the feedback loop. This situation is illustrated in
Fig. 2(b), where a predictor module approximates a negative delay. It has access
to the delayed plant state as well as to the undelayed controller actions and is
trained to output the undelayed plant state. The predictor contains a forward
model of the plant and provides instantaneous feedback about the consequences
of action commands to the controller. If the behavior of the plant is predictable,
this strategy can simplify controller design and improve control performance.

A simple approach to implement the predictor would be to use a Kalman
filter. This method is very effective to handle linear effects, for instance the
motion of a free rolling ball [5]. It is however inappropriate for plants that contain
significant non-linear effects, e.g. caused by the slippage of the robot wheels or by
the behavior of its motion controller. For this reason, some teams use a Extended
Kalman-Bucy Filter [9] to predict non-linear systems. But this approach requires
a good model of the plant. We propose to use a neural network as a predictor
for the robot motion, because this approach doesn’t require an explicit model
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and can easily use robot commands as additional input for the prediction. This
allows predicting future movement changes before any of them could be detected
from the visual feedback.

4 Neural Network Design

Since we have no precise physical model of the robot, we train a three layer
feed-forward network to predict the robot motion. The network has 42 input
units, 10 hidden units, and 4 output units. The hidden units have a sigmoidal
transfer function while the transfer function of the output units is linear.

We train the network with recorded data using the standard backpropagation
algorithm [1]. A great advantage of the neural network is that it can be easily
trained again if something in the system changes, for example if a PID controller
on board the robot is modified. In this case, new data must be recorded. However,
if the delay itself changes we only have to adjust the selection of the target data
(see below) before retraining.

4.1 Input Vector

The input presented to the neural network is based on position and orientation of
the robot as perceived by the vision module during the last six frames, as well as
the last few motion commands sent to the robot. Some preprocessing is needed
to simplify the prediction task. The preprocessing assumes translational and
rotational invariance. This means that the robot’s reaction to motion commands
does not depend on its position or orientation on the field. Hence, we can encode
its perceived state history in a robot-centered coordinate system.

The position data consists of six vectors – the difference vectors between the
current frame and the other six frames in the past, given as
The orientation data consists of six angles, given as difference of the robot’s
orientation between the current frame and the other six ones in the past. They
are specified as their sine and cosine. This is important because of the required
continuity and smoothness of the data. If we would encode the angle with a single
number, a discontinuity between and would complicate the training. The
action commands are also given in a robot-centered coordinate system. They
consist of the driving direction and speed as well as the rotational velocity. The
driving direction and velocity are given as one vector with
normalized by the velocity.

Preprocessing produces seven float values per frame, which leads to a total
of input values for the neural network.

4.2 Target Vector

The target vector we are using for training the network consists of two compo-
nents: the difference vector between the current position and the position four
frames forward in the future and the difference between the current orientation



Predicting Away Robot Control Latency 717

and the orientation four frames ahead. They are encoded in the same format as
the input data.

4.3 Data Collection and Constraints

Data for training the network is generated by moving a robot along the field.
This can be done by manual control using a joystick or a mouse pointer, or by
specialized behaviors developed for this purpose.

To cover all regions of the input space, the robot must encounter all situations
that could happen during game play. They include changing speed over a wide
range, rotating and stopping rapidly, and standing still. We also must make sure
that the robot drives without collisions, e.g. by avoiding walls. This is necessary
because the neural network has no information about obstacles and hence can
not be trained to handle them. If we would include such cases in the training
set, the network would be confused by conflicting targets for the same input.
For example driving freely along the field or driving against a wall produce the
same input data with completely different target data.

We could solve this problem by including additional input features for the
neural network, e.g. a sensor for obstacles, and thus handle also this situation,
but this would complicate network design and would require more training data
to estimate additional parameters.

5 Results

We have extensively tested the neural network for the prediction of the position
and orientation of the robots since its first integration into the FU-Fighters’
system. It performs very well and we have nearly eliminated the influence of the
delay on the system.

To demonstrate the effect of the prediction on robot behavior, we have tested
one particular behavior of the robot: drive in a loop around the free kick points.
We compare the performance of the neural predictor to a linear predictor that
has been trained on the same data.

The histograms in Fig. 3 show that the neural network prediction has much
more samples with small errors than the linear prediction. The average position
error for the linear prediction is 5.0471 cm and 2.8030 cm for the neural network
prediction. The average orientation error for the linear prediction is 0.1704 rad
(9.76°) and 0.0969 rad (5.55°) for the neural network prediction.

6 Conclusion and Future Work

We have successfully developed, implemented, and tested a small neural network
for predicting the motion of our robots. The prediction compensates for the
system delay and thus allows more precise motion control, ball handling, and
obstacle avoidance. To make the perception of the world consistent, predictions
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Fig. 3. Comparison between the histograms of linear and neural network predicted
robot position (left) and orientation (right) error. Both histograms have about 3000
samples.

are not only used for own robots, but also for robots of the opponent team and
the ball. However, here the action commands are not known and hence simpler
predictors are used. We employ Kalman filters to model linear effects.

For advanced play, it would be beneficial to anticipate the actions of opponent
robots, but this would require learning during a game. Such online learning is
dangerous though, because it is hard to automatically filter out artifacts from
the training data, caused e.g., by collisions or dead robots.

Another possible line of research would be to apply predictions not only to
basic robot motion, but also to higher levels of our control hierarchy, where
delays are even longer.

Finally, one could also integrate the neural predictor into a simulator as a
replacement for a physical robot model. A simulator allows quick assessment of
the consequences of actions without interacting with the external world. If there
are multiple action options during a game, this ’mental simulation’ could be used
to decide which action to take.
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Abstract. A framework for asynchronous stochastic linear control the-
ory is introduced using a simple example motivated by the early
RoboCup soccer server dynamics. Worst and average case scenarios are
studied and it is demonstrated that they fit smoothly into the framework
of standard synchronous control theory.

1 Introduction

In the early versions of the RoboCup Soccer Simulator, a central problem was
the synchronization of the soccer clients with the soccer simulator. The games
were run in real-time, but the UDP/IP protocol used does not guarantee that
the communication packets will reach the other side such as to guarantee a well-
defined temporal relation between the agent state and the soccer server state [11].
An important question was how a consistent world view could be maintained [12].
Commands sent by the agents to the server, as well as the agent world model
might not be synchronized with the server cycle. In tournaments from 1999
onwards, faster machines, networks and better synchronization algorithms, like
that developed by CMU [14] increasingly made this view obsolete and allowed
agents to become synchronized with the simulator.

In the present paper, we will revisit the original problem. But why return to
a problem which seems to be no longer relevant? There are several reasons for
that: First, the existence of precisely timed world states is a model which is a
coarse approximation of physical reality. In newer versions of the soccer server
simulator it is considered to introduce a continuous time, where actions will be
incorporated into the physical dynamics as they arrive; this means that they will
not be buffered to be processed only at the fixed time steps of the simulation
update. Second, although current hardware robots are often organized in syn-
chronized time steps due to technical reasons, it is far from clear that, say, their
sensorics and processing systems should obey this principle of equal and consis-
tent timing. Different concepts of timing and of time processing exist in biological
systems and may, among other aspects, be responsible for the phenomenon of
consciousness [6]. Third, the concept of what constitutes a worldly “reality” is
a generally intriguing question. In the extreme cases of relativity theory, the
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concept of “now” loses all its meaning without additional assumptions. The un-
synchronized relation between world and agent time in the early soccer server
can be interpreted as a kind of “unorganized relativistic system” For this reason,
we believe that the question of studying systems with a stochastic asynchrony
bears an interest in its own right. In the present paper, we will study a linear
control model for a strongly specialized class of stochastic asynchronous control
systems as a starting point for a generalized theory of stochastic asynchronous
control.

Asynchronous systems are of interest in the development of highly integrated
systems where tight timing schedules make asynchrony an integral part of the
dynamics [2]; such systems are usually of digital nature and analyzed using Petri
networks [9]. In continuous systems, the typical approach is linear [13] or non-
linear [10] control theory, typically assumed to be synchronous. Another line of
research studies the dynamics in spiking neural networks [8] exhibiting phenom-
ena of asynchronicity not unlike technical systems. Hassibi et al. [4] introduce a
method for the control of asynchronous dynamical systems. The method consid-
ers asynchronous events in the control loop whose behaviour is only restricted by
an event rate. In their work, few assumptions are made and stochastical aspects
of time delays are not modelled. These, however, will be part of the present work.
The relation between models studied in this paper and switched systems [7] as
well as Markovian jumping systems [1] will be studied in a later paper.

2 A Scenario

2.1 The Synchronization

We concentrate on a simple scenario in the framework of the early soccer server
to illustrate the approach. Assume that at integer times the server
world state is updated according to its dynamics [3], taking into account all the
agent action commands that arrived before After time the server sends out
its updated world state to the agents. Upon receiving this update, the agents
decide on an action to take and send it to the server which will incorporate it
into the simulation step at time We now make several assumptions: 1. The
server sends out world state information after each simulation step. This does
not conform to the standard setting of the soccer server, but serves to simplify
our present considerations. 2. The world state information sent out at time
is processed by the agent which then issues an action command. 3. The action
command from 2., called has a probability of of reaching the server in time
for the next simulation step. In that case, it will be included in calculation of
the next world state. has a probability of of not reaching the server
in time, and instead after time What now happens depends on whether
the following action command reaches the server in time or not. If is
late again, then at time the server performs action already in its buffer.
If is in time, though, it will overwrite in the server buffer and will be
performed at time (this is the case shown in Fig. 1).
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Fig. 1. The simulation-control cycle. The arrows from the server time-line to the agent
denote sensor world information sent from server to agent, the arrows from the agent
time-line to the server denote the action commands. With probability action
reaches the server in time for the update at with probability it is
too late and stays in the buffer until after If the following command is late
again, in the buffer will be processed at time The present figure, however,
shows the case where reaches the server in time and overwrites in the buffer;
thus, at time will be carried out.

2.2 An Example for a Control Variable

As example, let us assume that we wish to control the orientation of the agent,
in approximation for small angles so that we can assume that The goal
is now a linear control rule that will stabilize to 0. Consider the synchronous
control case. If the orientation after time is then sending results
in a new orientation after the next update. The control rule
is linear in the update rule The best possible
control is achieved setting immediately stabilizing the angle at 0.

Consider now the asynchronous case with a synchronization pattern as in
Sec. 2.1. Represent the state of the system by the vector Here, is
the possible action from before time stored in the server buffer. If no action is
stored set to 0. is not known to the agent. As in the synchronous case,
set Now there are two possibilities: 1. With probability the action
will reach the server in time to be processed at The new system state will
now be The 0 in the second component indicates
the empty action buffer. 2. With probability the action will be late for
the update at Thus, the new orientation will be obtained using the action
in the server action buffer, and the present command will end up in the action
buffer: In case 1., the transition matrix for
the states is given by In case 2., the transition matrix is given by
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Fig. 2. Example for asynchronous control of the orientation if the probability that
the action command reaches the server in time is The time axis is to

from bottom to top; the diagram shows the probability that the agent has a
certain orientation if it issues a change orientation command in each step. For
more details, see text.

2.3 Solving the Control Problem: Example

The linear control of a single variable is the simplest possible control scenario in
the synchronous case and a special instance of a control problem. In our example

solves the problem. In the asynchronous case, this is not anymore the case.
Assume an extreme delay probability, e.g., that the probability that the action
command is received in time

Figure 2(a) shows the dynamics of the system. From bottom to top the
state information for times are shown. The graphs show the
probability distribution that the agent has a given orientation at a certain time.
The bottommost line shows the probability distribution at time The agent
starts with the orientation and the server with an empty action buffer.
The command to correct the orientation by reaches the server in time only
with probability We see that in the second graph from the bottom. With
probability 0.1, the agent has assumed the desired orientation of 0. In the rest
of the cases, the agent has remained in its original orientation since the action
command has not reached the server.

Now, if still in state the agent will reissue a reorientation command
while there is already such a command in the queue. In the following step
the agent will then have assumed orientation 0, because now the original
reorientation action has finally reached the server (or, either, it had already
reached and does not need reorientation). However, since in 90% of the
cases the agent had reissued a reorientation command in time step the
system overshoots; this process repeats itself in the next cycles. It takes consid-
erable time until the probability for or becomes negligible. While
therefore in the undelayed and synchronous control problem it makes sense to set

this setting is too “aggressive” in the asynchronous case. For comparison,
the same control problem is shown in Fig. 2(b) for
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3 Towards a Methodology
for Asynchronous Linear Control

Is there a consistent method to handle the asynchronous stochastic control case?
The present paper will demonstrate an approach in the concrete example, be-
cause the concretization is more useful in bringing the point across. The principle
is not limited to the present case and can easily be extended to different and
more general systems. Since we do not have a single-valued system variable like
in deterministic control theory, but a probability distribution of the system vari-
able, we have a variety of choices for the criterium according to which we wish
to control. Here, we will discuss the worst case scenario and the average case
scenario.

3.1 The Worst Case Scenario

The worst case scenario is not concerned with the probability that a certain state
is assumed, as long as it is assumed; the worst possible state (i.e. the state that
is the farthest away from the desired one) determines the quality of the control.
To explain this, consider the case of Fig. 2(a). Here, even for large times there
is still a nonzero probability for the orientation still to be at i.e.
as far away from the target state as in the beginning. Though this probability
decays exponentially, for the worst case scenario this is not relevant. It is the
slowest decaying branch of the probability dynamics that counts. In the worst
case scenario, one is interested to control the system in such a way as to maximize
the decay of the slowest decaying branch. The present section demonstrates the
approach, using the matrix lub-norm (“lub” = lowest upper bound).

Decay Calculation via LUB-Norm in a Simple Case. Assume for a minute
that were 1, i.e. we had a synchronized system with the transition matrix as
above Then, for a general initial state the state at time is
given by An upper bound for the worst case is obtained via

the lub-norm of matrices1. Obviously The strongest decay
in this case is obtained by as done above.

The General Case. In our scenario, neither nor vanish. Thus the set
of states that may have a nonzero probability at a time step is given by

with for This is the set of all
possible states arising via all possible combinations of delayed and undelayed
simulation updates. Call such a sequence of updates a simulation run. We now
show how one can obtain increasingly accurate decay boundaries which can be

1 For a matrix A, the lub-norm is defined as with the Euclidean

metric. One obtains with the largest eigenvalue of The
lub-norm fulfils the criterium of submultiplicativity, [5].
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Fig. 3. The values of and for different values of

used to determine the optimal control variable The coarsest possible boundary
can be calculated via the property of submultiplicativity of the lub norm (Foot-
note 1). We obtain for the state after any possible simulation runs

In this approximation, the decay rate is bounded by We
know and have to calculate the lub-norm of One

obtains This gives the set of eigenvalues

the square root of the larger of the which is the lub-norm of
The results are shown in Fig. 3. The larger of the two values and is
the estimate for the worst-case decay factor achievable by selecting a given value

The figure shows that for no choice of becomes smaller than 1. I.e.,
it is not possible to construct a decay rate below 1 considering only a one-step
lookahead. However, by iterating three times, there are, in fact, values of
for which the lub norm of drops below 1 (Fig. 32).

We therefore see that the lub-norm provides us only with an upper bound
for the worst case scenario; if we wish more accurate boundaries, one has to
construct the possible simulation runs (sequences of ps and qs) and calculate the
pertinent lub-norms. Calculating the lub-norms for

gives the plot shown in Fig. 4. This
procedure can be extended to longer sequences of and and used to determine
the pertinent control coefficient

2 An alternative way of showing that would have been to consider the eigenvalues of
and seeing that their modulus is smaller than 1; however, this does not allow us

to identify the best value of
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Reduction to State Variable. The above calculation has still not exploited
further options to reduce the boundary. Since we are not actually interested
in having the total norm of the state vector decaying, but actually only
the first component, which is the orientation (the second component is the
buffered action which we are not interested in), what we are actually seeking is to
maximize the worst case decay for where P is the projection
of the current total state vector onto the orientation component. For a more
accurate estimate, the control variable should minimize the lub-norm of above
term. We will not proceed to do that here, but the idea is analogous to Sec. 3.1.

3.2 The Average Case Scenario

The average case scenario differs from the worst case one that probabilities
are incorporated in calculating the state vector whose behavior is going to be
controlled. A simulation with updates results in a vector
with probability with (note that we abuse notation by
using and as index names for the T, but as numerical values for the

For the expectation value for the state vector we have to sum up over
all the possible probabilities and combination of and obtaining

where the first equa-
tion is the probability-weighted sum over all possible mutually disjoint
histories and the second equation arises from the binomial theorem. This quan-
tity is a matrix operator obtained by averaging and according to their
weight and iterating it times. To this operator, the methods from Sec. 3.1 can
be applied again in a straightforward manner. Thus, we can smoothly incorpo-
rate the average case scenario in the methodology developed above. The same
holds for the projection P of the average state on the orientation component.

4 Conclusion

The methodology developed here to describe and solve the linear stochastic
asynchronous control problem has been described given a specific example, to
make it more accessible, but is not restricted to it. It smoothly encompasses
both description of worst case and average case. Standard analysis methods
from linear control control theory [13] can be easily applied to the formalism,
thus making available the toolbox of standard control theory to the stochastic
asynchronous case, thereby complementing the formalism of standard control
theory.

5 Summary and Outlook

A formalism to solve a linear stochastic asynchronous control problem was pre-
sented in the framework of a simple, but paradigmatic case. It was discussed in
view of the worst and average case scenario. Future work will study the relation
of the present framework to existing work on switched systems and Markovian
jumping models [7, 1]. In addition, it will focus on the relation of information
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Fig. 4. Plot of the lub-norms for all three-step simulation runs. Since it is difficult to
distinguish the varieties of different graphs, it should be mentioned that the maximum
of the lub-norms is dominated by for smaller values of and by for
larger values of

theory, control and time and combine it to extend the information-theoretic
perspective of control theory from [16, 15] towards a better understanding of
how information and time are related in a control loop. We believe that these
questions are not just of mainly academic interest, but will instead lead to a
better fundamental understanding of the role of time in intelligent information
processing.
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Abstract. Case Based Reasoning is a feasible approach for recognizing
and predicting behavior of agents within the RoboCup domain. Using the
method described here, on average 98.4 percent of all situations within
a game of virtual robotic soccer have been successfully classified as part
of a behavior pattern. Based on the assumption that similar triggering
situations lead to similar behavior patterns, a prediction accuracy of up
to 0.54 was possible, compared to 0.17 corresponding to random guess-
ing. Significant differences are visible between different teams, which is
dependent on the strategic approaches of these teams.

1 Introduction

Our work is concerned with the analysis of the behavior of agents in a highly
dynamic and heterogeneous domain– virtual robotic soccer (RoboCup [4]). Here,
two teams of 11 agents each connect to a server that simulates their environment
and their ‘bodies’ in discrete time-steps of 100 ms [11]. The agents have a limited
field of view and partially incomplete information about their surroundings.
Agents within a team may communicate, but this is limited.

This paper addresses a way of automatically classifying and an attempt at
predicting the behavior of a team of agents, based on external observation only.
A set of conditions is used to distinguish behaviors and to partition the resulting
behavior space. From observed behavior, team specific behavior models are then
generated using Case Based Reasoning (CBR) [5,6]. These models, which are
derived from a number of virtual soccer games, are used to predict the behavior
of a team during a new game.

This work is based on a diploma thesis by Uwe Müller [9] and a doctoral
thesis by one of the authors [15].

2 Approach

There have been previous attempts at recognizing behavior within RoboCup, es-
pecially for automatically commenting on soccer games (see, for instance, André

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 729–738, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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et al. [1], Voelz et al. [14], Matsubara et al. [7], Frank et al. [2] and Raines et
al. [12]). Wünstel et al. (see, for instance, [18]) use self organizing feature maps to
highlight typical behavior elements of teams of agents on a global scale. In Miene
and Visser [8] a universal approach for specifying and recognizing behavior is
introduced based on spatial and temporal relations.

Relatively little has been published in the RoboCup domain concerning the
prediction of individual moves of soccer agents, however, Riley and Veloso [13]
use behavior models to predict movements of opponents in standard soccer sit-
uations by maintaining probability distributions of the positions of individual
agents.

In [17], one of the authors has used a CBR based behavior model to imitate
the successful behavior of agents (specifically, the passing behavior).

2.1 Terms

A behavior model is a structure where is a nonempty set of
causes, is a nonempty set of behaviors, and is a function
Behavior models may be based on actions or situations. Actions are not directly
observable in our approach and can not always be determined because they can
not always be distinguished by their outcomes. Therefore, we base our approach
on situations and assume that similar situations correspond to similar behavior.

Behaviors may be modeled implicitly or explicitly; for instance, the agents
of our team AT Humboldt 98 [3,10] have used an implicit model based on their
own interception algorithm to estimate the intercept behavior of opponents and
teammates.

A situation is what the agent knows of a world situation This
situation is generated by combining several observations. An observation is
a part of a world situation interpreted by an agent and may be erroneous
and incomplete. A world situation consists of the features that determine the
state of the agents’ environment at a given time-step such as the positions
of agents and the ball, their speed vectors, the game-state, the score and the
stamina values of the agents.

An (observed) behavior is a process that extends over several adjacent situ-
ations and may be described by events. A behavior is caused by the actions of
multiple agents and what follows from these actions. The part of the data that
is considered to lead to a behavior is what we call a trigger. As trigger we apply
an extract (relevant data from an observers point of view) of the situation at
the start time of the according behavior.

Similar behaviors are grouped into behavior patterns, and likewise, sets of
triggers that lead to the same behavior pattern are grouped into trigger patterns.

To describe behaviors, we resort to a sequence of values that we call a
behavior-essence, with being the set of all behavior essences. Thus,
we can describe the behavior model as with
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2.2 Using CBR

is implemented by a CBR system, which consists of a case base, a similarity
measure defined between the cases, a method for updating the case base, and a
method for predicting behavior.

To collect cases, behaviors needs to be specified and recognized (section 3).
The behavior essences and its triggers are specified (sections 4.1, 4.2) and cases
which consist of a trigger and a behavior essence are generated (section 4.3).

Because triggers and behavior essences are determined by a sequence of val-
ues, combined similarity measures are used (section 4.4). Each combined measure
consists of local similarities between two individual values and a weighted sum
of these local similarities. For the behavior similarities, weights and values are
specified by the designer. For triggers, only local similarities are given by the
designer, and weights are determined automatically.

Based on the case base and the similarity measure the methods to predict
behaviors and to update the case base are introduced (section 4.5).

3 Behavior Recognition

The basic recognition process is based on behavior patterns. Behaviors are con-
structed from events, and they can be recognized by performing a pattern match-
ing of these events against the observations. The general behavior recognition
algorithm can be found in [15].

Whenever behaviors contain each other, the longest recognizable behavior is
used (for instance, within a dribbling, further instances of dribbling may occur.
Currently, we only examine behaviors involving the ball (i.e. positioning behavior
such as the building of a pass chain are not considered).

3.1 Specification of Behaviors

Behaviors are specified by defining and arranging the events they are constructed
of. We have specified behaviors for passing, dribbling, goal-kicking, clearing and
other. We will give a short overview how the pass behavior has been specified.
The exact specification can be found in [15] and [16].

For the pass behavior it is necessary that one player controls the ball exclu-
sively during a small time interval. After that the ball mustn’t be controlled by
any player for some time. Finally the ball needs to be exclusively controlled by
another player. Further conditions are used to distinguish a pass from a mere
ball transfer, like that the ball is departing from the kicker with enough speed
and other.

By adding further conditions regarding ball speed and player movement fur-
ther differentiation between direct passes, indirect passes and passes with ap-
proaching movement is possible. Diagonal passes, back passes and transversal
passes can be identified by taking the angle of the ball movement into account.

A behavior fails if an opponent gets into possession of the ball, or if the
game-state changes in such a way that an opponent will receive ball control, for
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instance, when the ball has been shot out of the field. We have added conditions
to classify both cases for the four behavior patterns pass, dribbling, goal-kick
and clearing.

3.2 Abstraction Levels for the Description of Behaviors

A behavior instance is (from the point of view of an observer) completely deter-
mined by a sequence of world states. We discern four levels of abstraction:

General description: on this level we use names like pass, dribbling or other.
Manifestation description: this introduces sub-categories like direct pass etc.
Source-target description: the source of all ball transfers is given by the
kicking agent. The target may be a receiving agent, the goal, a position on
the field etc.
Detailed description: this consists of all relevant features of the behavior,
that is, of the values of all important attributes. For passing, these are the
kicking and the receiving players, the start and end time of the pass, the ball
speed and the movement of the receiver.

Of these levels, the source-target description and the detailed description are
used for the behavior prediction, while the general and manifestation description
maybe important to describe and predict higher level strategies.

4 Prediction of Behaviors

4.1 The Trigger Patterns

The prediction of behaviors is based on the recognition of associated triggers,
which are assumed to cause the agents to start the corresponding behavior.
Unfortunately, the comparison between triggers that account for all relevant
attributes is computationally expensive, let alone the recognition of similarities.
To make the comparison of triggers feasible in real-time, only the most important
attributes are considered. The primary attributes for a pass are the position of
the initiating player the vector from the initiating to the receiving player

the angle to the first opponent to the right, the distance
to the angle to the first opponent to the left and the

distance to
For dribbling, clearing and goal-kicking, similar attributes have been defined.

For additional tests, player number, game state, name of opponent team and
time-step are included as secondary attributes.

4.2 Behavior Essences

Just like triggers, behavior essences consist of a sequence of primary and sec-
ondary attributes. Only the primary attributes are used for the similarity cal-
culations. For passing, the primary attributes are the ball speed, the direction
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of ball movement, the movement of the receiver, the duration and success or
failure.

The reason for failure is examined as secondary attribute.
For other behaviors, similar behavior essences have been specified.

4.3 Generation of Cases

A case assigns a behavior essence to a trigger:

Let us examine the generating process of a case. As mentioned in section
2.1, the agents each perceive a partial extract of a world-situation as an
observation and react with actions that contribute to the world-situation

This results in a sequence of world situations within the environment. In
every time-step, the modeling agent observes the multi-agent system and receives
a sequence of observations, which is subsequently evaluated until a complete
behavior is recognized. For this behavior, the situation at its starting point
is examined to determine the respective Eventually, the pair of recognized
trigger and behavior essence is added to the case base.

4.4 Similarity Measures

To determine the similarity between triggers of the same trigger pattern and
between behavior essences of the same behavior essence pattern two similarity
measures are required:

These are defined using a weighted sum of the local similarities that correspond
to the individual primary attributes of the triggers and behaviors. The weights
are specific to each pattern, that is, they are the same for all triggers or behaviors
of the same pattern, respectively. Thus, for each pattern a sequence of weights
is required.

The local similarities are functions that return values as an example,
we give the local similarity function for the positions of initiating players
for the pass trigger pattern:

Similar functions exist for the other primary attributes of the pass trigger
pattern.
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While the local similarities and the weights for behavior patterns are defined
by the designer, the weights for trigger patterns are determined automatically
using the following method. The goal of this method is, given a set of models
and a finite set of data to find the model that best describes
the functional relationship between the input values to the output values

is separated into a set of base data and a set of test data. Each model
is then evaluated in combination with the base data for every test item. The
best model M is determined by calculating the prediction error of all models
and choosing the one with the minimal error.

The course of a game is taken as test data
and the best weights model is then determined using

where predict is the behavior prediction function that returns an estimate for
the behavior based on a sequence of weights for the trigger

a case base and a situation

Thus, this method determines the sequence of weights that maximizes the
similarity between predicted and recognized behavior for a set of test data
The sequence of weights depends on the basis data and test data and therefore
on the modeled team.

The complexity of this calculation depends linearly on the cardinality of the
test set on the cardinality of the set of weight sequences and
the complexity of predict. By assuming that identical attributes have identical
weights, we may reduce the space of from (because there are 20
primary attributes) to (there are only 5 different primary attributes). If
the weights for each attribute are limited to natural numbers only
sequences of weights have to be tested. Still, this is too computationally expensive
for the given predict function.

Instead of varying the weights between 0 and a distribution of weight
units on primary attributes is considered, i.e. weight points are completely
distributed to the attributes,

Thus, the set of weight sequences has elements, and for 10 weights
and 5 primary attributes, there are 1001 weight sequences.

4.5 Selecting Cases from the Case Base

The function of the behavior model is
primarily determined by the function predict:
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that is, gives results only in decision situations - this is the case when an agent
of the modeled team controls the ball. Furthermore, decision situations have to
be at least 4 time-steps apart (this is the minimal dribble duration).

In a decision situation, first potential triggers are identified. For passing this
are up to 10 triggers, for goal-kick up to one trigger, and for dribbling and
clearing exactly 6 triggers.

For every identified trigger, the case base is searched for cases with similar
triggers. The similarity leads to an assessment of the cases. The best cases are
selected.

From these cases, the best case is chosen using preferences, which are partly
derived from the secondary attributes. Cases are preferred, if e.g.

they reflect the same game state as the trigger
they have the same opponent team as the trigger
they have the same initiating agent as the trigger

The degree of preference depends on a bonus value for each criterion. The
bonus values are determined automatically and in the same manner as the trigger
weights.

The case that maximizes the sum of similarity and bonus value is chosen.
Finally, the case is adapted according to the situation at hand: by comparing
the observed trigger and the trigger stored in the case, the speed and angle of
the ball movement, as well as the behavior duration are adjusted.

The function predict returns the adapted behavior essence of the case that
maximizes the sum of similarity and bonus value.

The case base is extended by the current case (i.e. the case derived from
the trigger and the actually observed behavior) if the similarity between the
predicted behavior and the observed behavior is smaller than a fixed value
(i.e. the behavior essences differ significantly). Deletion or modification of cases
does not take place. The similarity measure is updated by recalculating the
sequence of weights for all trigger patterns.

5 Evaluation

For testing our approach, we made use of the data set derived from the Ger-
manOpen RoboCup competition of 2001, which consisted of 44 games by 12
teams.

5.1 Behavior Recognition

We have found that using our approach on the full set of 44 games, we managed
to classify between 96.4 and 99.7 percent of all ball controlling behaviors. Of
these, passing amounted on average to 43.4 percent, dribbling to 24.8 percent,
clearing to 20.2 percent and goal kick to 2 percent. Ball combat was observed in
8.2 percent of the time, one-two passes in 1.1 percent. Only in 1.4 percent of the
time, non-classifiable ball transfers were observed, with 0.1 percent of completely
unrecognized behavior.

The results of the algorithm have been verified against an independent, de-
tailed manual classification of the same data.
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5.2 Prediction of Behavior

Prediction of behaviors can be done at different abstraction levels (see section
3.4). We use here the “detailed description”-level and concentrate our experi-
ments on pass behaviors. For every pass the predicted pass instance is compared
with the actual performed pass instance. For the comparison the similarity mea-
sure for behaviors are used.

Using the described approach, a number of experiments for the prediction of
ball-handling behaviors were conducted, especially to determine the relationship
between prediction accuracy and the number of cases and the number of weight
units. In detail we will only present the experiment regarding the dependency
of the behavior model on the modeled team. For more experimental results,
especially on the prediction of passing partners, see [15].

When using different numbers of weight units, it becomes clear that the
distribution of weights on the individual attributes differs with the modeled
team, i.e. teams differ in the importance they apply to the individual attributes.

During the experiments we discovered that a small number of weight units
is sufficient to find a good team specific weight sequence. With more than 10
weight units, no further substantial improvements in prediction accuracy could
be made using our approach.

The accuracy of prediction can be improved by increasing the number of
cases. When using between 900 and 1000 cases (8 games), a plateau in prediction
accuracy was reached, and the inclusion of more cases did not result in visible
improvements any more. The maximum average prediction accuracy for the team
“Brainstormers01” amounted to 0.54 (using 928 cases), however, for a game of
the “Brainstormers01” against a different team, the accuracy was 0.46, using the
same case base.

Dependency of Behavior Model on Modeled Team. To establish that
the models obtained using cross validation are indeed team specific, we have
used the “Brainstormers01” model to predict the behavior of other teams in the
tournament. We have found that the behavior models are indeed specific for the
modeled team.

The experiment was done for all teams who reached the final round. The
case bases were generated based on the first five games per team. The weight
sequences are determined for a randomly chosen game (among the 5). The pre-
diction is evaluated for all final games of the team a) using the case base of the
modeled team, and b) using the case base of the team “Brainstormers01”.

The prediction using the team specific model is in all cases more accurate
than the one with the ‘alien’ “Brainstormers01” model. The relatively high simi-
larity between the prediction results of “Brainstormers01” to “DrWeb”, “MRB”
suggest that these teams use strategies for behavior selection that bear similarity
to that of “Brainstormers01”.

“Aras”, “FCPortugal” and “RoboLog2k1”, on the other hand, seem to use
strategies that are very different from those of “Brainstormers01”.
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Fig. 1. Prediction accuracy for eight teams using a team specific model and the model
of the “Brainstormers01” team

5.3 Conclusion and Outlook
We have found that, using our approach, ball controlling behaviors can be suc-
cessfully classified, but predicted only with an accuracy between 0.39 and 0.54.
However, this compares favorably to random guessing, which returns an accu-
racy of only 0.17. To obtain these results, a case base with about 1000 entries
and a similarity measure using 10 weight units are sufficient.

It can be shown that the prediction model is specific for each team, whereby
the use of the model of another team points to the use of similar strategies.

The limited accuracy of the results is due to two aspects: First, there are
limitations that stem from the assumptions of the approach, which is ignorant
of internal states of the agents, such as an incomplete world model, previous
communication between agents or the execution of long-term plans. On the other
hand, the description of the cases has been severely restricted to few parameters,
which was necessary to limit the complexity of the modeling process.

Our approach only attempts to determine the behavior with the maximum
probability. A more general description can be achieved by learning the proba-
bility distribution of the behaviors that are triggered by each trigger pattern.

Still, we consider the approach as being successful. We expect that some im-
provements over our current results can be made with alternative case descrip-
tions. Substantially better results will probably be obtained with the simulation
of internal states of the agents, thus performing a transition from a reactive to
a context dependent model.
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Abstract. Robot Soccer involves planning at many levels, and in this paper we
develop high level planning strategies for robots playing in the RoboCup Four-
Legged League using case based reasoning. We develop a framework for devel-
oping and choosing game plays. Game plays are widely used in many team sports
e.g. soccer, hockey, polo, and rugby. One of the current challenges for robots play-
ing in the RoboCup Four-Legged League is choosing the right behaviour in any
game situation. We argue that a flexible theoretical model for using case based
reasoning for game plays will prove useful in robot soccer. Our model supports
game play selection in key game situations which should in turn significantly
advantage the team.

1 Introduction

Robot Soccer involves planning at many levels. In this paper we are concerned with
developing high level planning strategies for robots playing in the RoboCup Four-
Legged League. We develop a framework for developing and choosing game plays.
Game plays are widely used in many team sports e.g. soccer, hockey, polo, basket-
ball and rugby. There are several important differences between robot soccer in the
Four-Legged League and human soccer, e.g. all the players on a team have the same
physical capability so specialisation cannot exploit individuals physical talents. This is
in contrast to the simulated league where it is possible for the players to have different
attributes and physical capabilities. In addition because of their poor sensors, relative to
humans, the AIBO robots possess a limited capability to predict detailed actions of oth-
ers and hence there is little advantage to be gained from certain moves, e.g. disguising
a kick.

Robot Soccer is a relatively new research initiative and in terms of its development
it is in its infancy. One of the current challenges for robots playing in the RoboCup
Four-Legged League is choosing the right behaviour, e.g. the best kick, in any game
situation. Soccer is all about positioning; being in the right place at the right time. If
a robot implements a kick then it needs to be in the best position to obtain maximum
power and control.

We argue that a flexible theoretical model for using case based reasoning [8] for
game plays will prove useful in the Four-Legged League. Our model will support game
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play selection in key game situations which should, in turn, significantly advantage the
team. Case based reasoning has been used in other robot soccer leagues for various
purposes. Most of the focus in strategy development has been in the Simulated League.
The Simulated League lends itself to cased based techniques and to machine learning
approaches because of the speed and flexibility of developing virtual robots as well as
the ease and practicality of data collection during actual games.

In 1999 Wendler et al [10] developed a case based reasoning approach to action
selection in the Simulation League, whilst Wendler, Kaminka and Veloso [11] pro-
vided a general theoretical case based reasoning model for robot coordination between
team members. More recently, Gabel and Veloso [3] described a highly sophisticated
case based approach to enhance the performance of the online coach in the Simulated
League. Their system allows knowledge about previous match performances to be in-
corporated into the online coach’s decision making process.

In this paper we propose a simple and robust cased based reasoning model for the
RoboCup Four-Legged League that can be customised and enhanced. In a companion
paper we will describe some experimental results that evaluate the model’s performance
using the UTS Unleashed Robot Soccer System (http://magic.it.uts.edu.au/unleashed).

2 Robot Soccer Game Play
A major benefit of developing a case base for robot soccer game plays is that it will
result in a powerful knowledge base containing important knowledge about the game.
A case base of game plays can capture creative genius and enduring principles of how
to play the game for the purpose of teaching robots to play soccer more effectively.

Cases can describe set situations, like kickoffs, as well as running and passing game
plays, attacking moves, and defensive formations. For any game situation, in our model,
game plays are chosen based on the similarity between the current state of play and
a collection of cases in the knowledge base. As our robot soccer multiagent system
evolves, more ambitious new game play cases can be added, for example, as the robots
become better at passing we can develop cases for pass blocking.

The game play strategies embedded in the cases can blend the lessons of the past
with best guesses for future matches, and as such they incorporate some key elements
for a winning game. The game play cases in the knowledge base can be selected de-
pending on the type of game required. For example, if it is known that a particular
opposition plays a certain style of game then the case base used could reflect specific
tactics and strategies to counter that style.

Game play cases allow teams to string several plays together that take advantage
of a teams’ strengths. In other words, game play cases can form the building blocks
of larger plans. Set game plays could prove critical for the success of team. In human
games the difference between winning and losing is often the successful execution of
set game plays in both offense and defense. In human soccer it has been calculated that
as many as 40% of all goals scored are from set game play situations.

3 Case Based Reasoning in Conceptual Spaces
Categorisation of information helps robots reduce the complexity of the information
they need to acquire and manage during their lifetime. In addition, the ability to cat-
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egorise gives rise to broad powers of explanation. For example, without the ability to
categorise, robots would not be capable of representing visual information beyond the
pixel level, and as a result would not develop a world model that could support even
simple forms of object recognition and reasoning. The ability to form and manipulate
categories enhances robots capacity for problem solving, communication, collaboration
etc. We expect robots to respond appropriately to information acquired through their
sensory systems. The ability to categorise new sensory information and to anchor it to
objects in the real world allows a robot to behave sensibly in previously unencountered
situations[6].

For the purpose of this paper we believe that categorizing game situations will assist
robots play better soccer. We use the conceptual spaces approach [4,6,5] to categoriza-
tion driven by similarity measures.

Few concepts or categories of objects can be specified using necessary and sufficient
conditions: Mathematical entities like triangles can, but almost all everyday objects,
like chairs for example, defy explicit definition.

A similarity based approach to categorization is more widely applicable to robot
soccer than explicit rules, because soccer playing robots need to make useful general-
izations about previously unencountered situations. To play soccer well robots cannot
be hardwired they must be able to respond appropriately to situations that were not
foreseen at design time.

Conceptual spaces are multidimensional spaces that can be used to describe both
physical and abstract concepts and objects. In contradistinction to the use of explicit
(causality) rules to describe the relationship between objects, conceptual spaces adopt
a similarity-based approach to categorization.

The main idea is that objects are categorized according to how similar they are to a
prototype or (cluster of) exemplar(s). For instance, the colour yellow is more similar to
green than it is to blue. For the purpose of robot soccer strategies we are interested in
identifying prototypical or important game states and measuring the similarity across
different game states.

Conceptual spaces are geometrical structures based on quality dimensions. Quality
dimensions correspond to the ways in which stimuli/features are judged to be similar or
different. Judgments of similarity and difference typically generate an ordering relation
of stimuli/features, e.g. judgments of level of control of the ball generate a natural or-
dering from “weak” to “strong” [4]. There have been extensive studies conducted over
the years that have explored psychological similarity judgments by exposing human
subjects to various physical stimuli.

Objects are characterized by a set of qualities or features Each
feature takes values in a domain For example, the distance from a robot to the
goal can take values in the domain of positive real numbers. Objects are identified with
points in the conceptual space and concepts/categories are
regions in conceptual space.

For the purpose of problem solving, learning and communication, robots can adopt
a range of conceptualizations using different conceptual spaces depending on the cogni-
tive task at hand. For this reason we develop various meta-level strategies that determine
the cases to consider and a number of pertinent similarity measures for our application
in robot soccer.
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For our current purpose, and without loss of generality, we often identify a concep-
tual space C with but hasten to note that conceptual spaces do not require the full
richness of For example, in two of our similarity measure given in Section 4 we
measure the distance between two objects on the soccer field using Euclidean distance,
however we also develop a third qualitative similarity measure based on a partition-
ing of the field into strategic regions where each region can be given a weighting that
represents its strategic importance (see Figure 1).

Similarity relations are fundamental to conceptual spaces [7]. They capture infor-
mation about similarity judgments. In order to model some similarity relations we can
endow a conceptual space with a distance measure; A distance measure is a function
from C x C into T where C is a conceptual space and T is a totally ordered set. Dis-
tance measures lead to a natural model of similarity; the smaller the distance between
two objects in conceptual space, the more similar they are. The relationship between
distance and similarity need not be linear, e.g. similarity may decay exponentially with
distance.

A categorization results in a partitioning of a conceptual space into (meaningful)
subregions. The geometrical nature of conceptual spaces coupled with representations
for prototypes, and the ability to manipulate dimensions independently of one another
ensures that they provide a highly flexible and practical representation of context-sen-
sitive case-based reasoning.

Our cases consist of prototypical situations and important situations that are en-
countered during a soccer match. For example: kick off, a single attacking player in the
goal penalty area, a player with the ball in a goal-end corner, or a player with the ball
on the field border.

The cases have been developed over the last year through observation of the NUbot
[1] team in practice matches and in competition matches at RoboCup 2002, and more
recently during the practice matches of UTS Unleashed!. In Part II, the sequel to this pa-
per, the cases will be refined and tested using experimentation. During the experiments
robots will be placed in preselected positions and their behaviour monitored. Successful
sequences of actions that lead to positive results will be adopted and incorporated into
the cases.

Our aim is to develop a collection of cases to create a conceptual space for the
purpose of providing strategic decision making assistance to robots. To that end we must
define the appropriate quality dimensions, i.e. features, which will prove crucial for the
similarity measure, and then the similarity measure itself. In addition, we identify some
meta-level features which can be used to determine the set of cases that should be
considered during a game.

Each of our cases consists of a set:

The State of the Field is described in terms of absolute coordinates with the center
of the field prescribed as the origin of the coordinate system. The positive is
directed along the opponents goal. In such a system we can then denote the position of
the players by an ordered pair
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The state of the field is defined by the position of the players. We denote the set of
our players by P and the opponents by the set where

Here and are the absolute and coordinates of the
player.

The Degree of Possession is another important dimension in our case. The degree of
possession is a measure of which team possesses the ball and what the nature of that
possession is.

This numerical degree given to an otherwise qualitative characteristic will allow
us to use it effectively in calculating a similarity between a current situation and our
case-base.

In addition to the object level features we also use several meta-level features (or
global parameters) that can aid in the selection of the appropriate strategy. For exam-
ple, these meta-level features can help us identify a subset of the possible cases that
should be considered in a given situation. Furthermore, they can also be used to resolve
conflicts when two or more cases are “equally” similar.

The Situation involves a numerical evaluation that represents the context of the player
with a high degree of possession. If the player with control of the ball has no obstacles
between herself and the goal, then the team’s situation is said to be “wide open” and is
given a degree of 2. If the player with control of the ball has obstacles between herself
and the goal, then the team’s context is clear and assigned a degree of 1 and if the
player is in a scrum then the situation is given a degree of 0. Negative numerical values
are attributed to the above situations if the ball is in possession of the opponent team.
A player’s situation differs to a player’s degree of possession in that the situation is
determined by the global state of the field, whilst degree of possession only concerns
the immediate vicinity of the robot.

The Score and the Time to Game Completion are two important meta-level parameters
that can be used to determine the set of cases that should be considered. In this way
the score and the time left in the game can influence the strategy. For example, an
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unfavourable score and a short time remaining might induce the robots to take more
adventurous actions. In contrast a favourable score and a short time remaining could
induce a more defensive behaviour.

Countering Opponent Team Strategies. This parameter can be advantageous in the case
where reliable information about the opponent teams strategies can be obtained. For
example if the other team is known to play a strong attacking game, then it would be in
the interests of a team to ensure that they maintained possession of the ball at the cost
of pushing the ball forward.

4 Measure of Similarity and Action

As mentioned earlier an appropriate measure of similarity is essential for developing
strategies based upon past experiences. The performance of case based reasoning is
strictly dependent on the quality of the similarity measure adopted. We intend to verify
our similarity measures’ effectiveness via experiment and for that reason we have de-
veloped several measures of similarity; two quantitative measures and one qualitative
measure.

The quantitative similarity measures that we chose to make a correlation with a
prototypical case and the current situation on the field are calculated by minimising the
Euclidean norm.

Let N be the number of cases. Then the field in the case can be represented as:

We let the current field situation be represented by If we now want to
determine the similarity between a case and the current situation, we have to come
up with a pairing between the players in the case and the current situation. We will use
a permutation for this purpose.

For any given case and given permutation we find the distance between the
players

We construct a 4 × 4 matrix as follows

A corresponding matrix can be constructed for the opponent team as well. We now
look at two different methods of defining a quantitative similarity measure. Both of
these methods can be easily extended to include a weighting given to the position of the
players.



Case Based Game Play in the RoboCup Four-Legged League 745

Method 1. The similarity measure is achieved by calculating the following:

If the minimum is found for and then we say that in terms of the field configuration
the case with player pairing is the most similar to the current situation.

Method 2. In this method we first find the maximum distance between any two players:

The rationale behind this is that the similarity between two cases should be based on
the time required to move all robots into the positions from one case to the other. Since
each robot can move independently it can be done in parallel, hence it is enough if we
look for the maximum distance.

The similarity measure is then found by:

Since we have to consider all pairings between our own players and between the
opponent players, we have to compare all in all N × (4! + 4!) (sub-) cases with our
current situation, i.e., we have to look at 48 × N (sub-)cases. If we want to apply this
method to larger teams, e.g., with 11 players, one clearly needs to employ different
methods because we would have to consider approx. (11! + 11!) × N cases which
is approximately equal to cases. However, fortunately, one could use
minimal-weight perfect matching [2] techniques at this point, which are polynomial in
the number of players.

However it is important to note that our case actions are based solely upon the posi-
tion of our team’s players since we have no control over the movement of the opponent
team’s players. So in order to have a more comprehensive strategy we include in our
analysis a subset of similar cases. Suppose that the similarity measure for the state of
the field gives us a minimum distance D from a particular case. Instead of simply con-
sidering the best matched case, we could also consider cases which satisfy where

is small. The best case can then be selected from this subset by taking a meta-feature
such as the situation into account.

The qualitative measure of similarity is based upon the minimum number of moves
that the players have to make to go from a particular situation to one of the situations
in our case-base. To achieve this numerical value we divide the field into 30 strategic
regions. For simplicity we assume that the various regions are rectangular regions. The
sectors are created by dividing the field into three vertical regions and then each region
is subdivided into four smaller regions (along the horizontal direction). The four corners
thus generated are further subdivided into four regions. Each region or sector of the field
is given a number to uniquely identify the region. The diagram of the field is shown in
Figure (1).

We can then classify the regions by assigning them a number. Our goal region is
given the number 0 and then starting from the field on our side we number the regions
left to right. Each player is then given a corresponding number which is equal to the
number of the region it is found in. We define our similarity measure by calculating the
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Fig. 1. The soccer field divided into 30 strategic regions and an example of game play scenario

minimum number of moves our players have to make to be in the same position as the
case being compared with. We weight the moves as: a move towards the opponents goal
is given a weight of +2, a move backward towards our goal is given a weight of –2 and
a move to the left or the right is given a weight of +1.

5 Example

Let us consider a prototypical case in a soccer match; the player and the ball are stuck
in a corner with the player facing away from the field and obstructed by an opponent
player. The situation is represented in Figure (1) which illustrates the motion of the ball
and the movement of the players. Our team players are represented by fully shaded cir-
cles while the opponent team players are represented by hollow circles. Dotted arrows
indicate the motion of the ball and the arrows with a shaded head show the movement
of our team players. The unshaded arrows indicate the motion of the opponent team
players.

In this particular example, the strategy is to kick the ball backwards. As a result of
the motion of the ball the opponent players move along the direction of the moving ball.
The receiving player (Player 2) then kicks the ball back to Player 3. This motion leaves
the situation wide open and without any obstructions and allows Player 1 to position
itself in front of the opponents goal.

6 Discussion

Robot Soccer involves planning at many levels, and in this paper we developed a the-
oretical case based reasoning model for robot soccer strategies for the RoboCup Four-
Legged League.

We argued that a flexible theoretical model for using case based reasoning for game
plays will prove useful in robot soccer. Our model will support game play selection in
common and key game situations which should in turn significantly advantage the team.
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One of the current challenges for robots playing in the RoboCup Four-Legged
League is choosing the right behaviour in any game situation. Our model allows robots
to develop and choose game plays for any game situation.

We adopted the conceptual spaces framework which relies on the determination of
prototypical situations and a measure of similarity across all situations. We developed
three similarity measures for our model; two quantitative and a strategically oriented
qualitative measure.

Having developed a theoretical model we intend putting it to the test using experi-
mental evaluations, and have begun to develop our experimental framework using the
UTS Unleashed! Robot Soccer Multiagent System.

One of the challenges for our future work is to extend our model to handle incom-
pleteness and uncertainty. Throughout our discussion we have assumed that the robots
world model is reasonably, but not perfectly, accurate, however in reality much of the
information required to choose the best matching case may be simply unknown even in
the case where robots can communicate. We expect our experimentation to reveal the
best way to design for high level incompleteness and uncertainty and plan to address it
using techniques given in Liu and Williams[9].
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Abstract. The aim of this article is to describe our experience in the participa-
tion and organization of robot contests, and to show how these actions have in-
creased the activities on robotics in Chile. We describe the annual Latin Ameri-
can IEEE Robotics Competition, we present the IEEE Latin American Robotics
Council, we explain our participation in RoboCup, and we present our activities
concerning robotic courses for children.

1 Introduction

The purpose of RoboCup and in general of robot contests is to foster the activities on
robotics and to push the field and inspire future research. The aim of this article is to
describe our experience in the participation and organization of robot contests, to
show how these actions have increased the activities on robotics in Chile, and finally
to give our view about the effect of this kind of activities. We believe that our experi-
ence can be useful for other developing countries.

In this article we first show the current state of the robotics field in Chile and we
contrast it against the current state of other disciplines (section 2). For doing that we
carried out an extensive research study, which considered investigation on Internet, on
public paper databases, on national science databases, as well as direct contact with
the researchers. We show that the robotics field is underdeveloped in our country, and
that its development degree is low compared with other research fields.

Afterwards we show how robot contests in general, and RoboCup in particular, can
help in reverting this situation. In section 3 we give concrete examples of that. We
describe the annual Latin American IEEE Robotics Competition, we present the IEEE
Latin American Robotics Council, we explain our participation in RoboCup, we pre-
sent our activities concerning robotic courses for children, and finally we show how
all these activities have largely increased not only our own activities in the field, but
also the activities on robotics in Chile and Latin America.

We consider that the development of robotics is important not only by its own, but
also because it serves as a motivation to work in related technologies as sensoric,
electronics, power systems, signal processing, automatic control, intelligent systems,
software agents, just to mention a few.

Finally, in section 4 some conclusions of this work are given.
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2 Problem Definition

2.1 Research in Chile

The state of research in science and technology in Chile will be analyzed on hand of
the number of papers produced by researchers working in Chile, the impact of these
papers, as well as indicators of the local technological development (e.g. patents indi-
ces). The main information source will be CONICYT, the National Chilean Council
of Science and Technology [1].

Chile is a country of 15 millions inhabitants with a per capita income of US$ 4346,
an alphabetization rate of 95.2% and an expenditure in R&D of US$377.2 millions
(table 4.4 in [2]). There are 7.2 thousand researchers in Chile, and 22575 ISI publica-
tions were generated during period 1981-2000, the number of citations was 152070
(table 4.4 in [2]). According to CONICYT the impact index of the publications gener-
ated in Chile is 6.74, which is well compared to similar indices of Spain (6.78), Ar-
gentina (5.63), Hungary (6.57), Portugal (5.99), Mexico (5.48) and Brazil (4.99), just
to show some examples (USA has the largest index: 16.34). Chile has the highest
research indices in Latin America, with 11.94 ISI papers per 100 thousand inhabitants
and 0.978 ISI papers per researcher (tables 4.8 and 4.9 in [2]).

However, if we look carefully on the Chilean research indices, we will notice that
science is much more developed than technology. While in the period 1981-2000 only
658 ISI paper where published in engineering, 2120 were published in astrophysics
and astronomy, 4079 in biology, 3138 in chemistry and 1397 in physics (table 4.1 in
[2]). Moreover, if we observe the number of requested patents in Chile, an indicator
of technological development, we will see that in year 2000, 407 patents were re-
quested by Chilean residents, while 3276 were requested by non-Chilean residents
(table 4.16 in [2]). The number of patents requested per every 10 thousand inhabitant
is only 0.32 (table 4.20 in [2]). Just as a last fact, Chile was classified number 20 in
the IMD 2002 World Competitiveness Yearbook [3], which is a very good position.
However, the IMD report indicates that the main drawback of Chile in order to raise
his relative position is on its low R&D indices.

As a final conclusion we can say that although sciences in Chile shows good de-
velopment level, engineering and in general technology has a low development level.

2.2 Study about the State of Robotics in Chile: Methodology

The aim of our study was to determine the state of the robotics field in Chile. For
doing that we required information about: (i) researchers working in robotics in Chile
and their institutions, (ii) the international and national publications on the field, (iii)
the research projects, and (iv) courses on robotics given to undergraduate and gradu-
ate students. For carrying out our study we have made the following sequential ac-
tions:
1.

2.

All main Chilean universities were asked for their activities in robotics and for the
researchers working on robotics and related fields. These researchers were directly
contacted by e-mail.
An exhaustive Internet investigation using the search engines google and todocl [4]
was carried out. All Chilean sites containing the words “robot” and “robot”, which
are the seeds for robotics related words in English (robot, robotic, etc.) and in
Spanish (robótica, robótico, etc.), were analyzed.
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3.

4.

5.
6.

All government-funded projects in robotics, which are listed in the databases of
CONICYT, were analyzed.
Using the information obtained with these three described actions, a first database
of researchers working on robotics in Chile was built.
The personal web pages of these researchers were analyzed.
Finally, we looked for the international papers published by these researchers,
using the ISI databases [5] and “Citeseer” [6].

2.3 Study about the State of Robotics in Chile: Results

This first study about the state of robotics in Chile gives the following results:

International Publications: The number of international publications on robotics
is very low. Only 3 papers were published in international journals (2 of them cor-
respond to joint collaborations with foreign institutions) [7, 8, 9] and 14 papers in
international conferences. The publications were done between years 1985 and
2002. The situation is shocking. These first results clearly indicate that the field is
underdeveloped in Chile and that their development degree is low in comparison
with other research fields in Chile (see section 2.1).
National and Latin American publications: 13 papers were published in national
journals (non ISI indexed) and 53 in conferences. The publications were done be-
tween 1983 and 2002. We believe that these results show that either the level of the
publications is below international standards or the researchers have no interest or
no means to publish outside Chile. Even if the later is the case, the number of pub-
lications is still rather low.
Research Projects: We found just 15 projects on the field between years 1987 and
2002. 7 correspond to projects of the National Fund for Science and Technology
Development, FONDECYT [10], 3 correspond to projects of the Fund for Foster-
ing Scientific and Technological Development, FONDEF [11], 2 correspond to
FONDECYT-DOCTORAL projects and the last 3, to projects funded by universi-
ties. FONDECYT and FONDEF are the two main national research program from
CONICYT, and according to the Chilean standards, these projects have normally a
better level than projects funded by universities. However, we find a contradiction
on these numbers. We have 10 (7+3) good level projects, but just 3 international
journal papers and 14 international conference papers generated by them. This fact
could indicate either that the projects were not successful in terms of the obtained
results or that the researchers had no interest on publishing.
Courses: At this moment we can find just 5 courses on robotics given by 3 Chilean
universities. At the end of this year this offer will increase to 7. In two more years
this number will reach to 9 courses given by 4 different universities.

By analyzing the presented results we can conclude the following:

By all different possible measures we can affirm that the robotics field is underde-
veloped in Chile. Its development degree is low compared with other research
fields. Even if we think that the results of this study are not accurate and that they
have a deviation of 100%, the obtained numbers are extremely poor.
These first results contrast with our experience on which robotics generates high
interest in Chilean engineering students, especially from fields like electrical and
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mechanical engineering, as well as computer science. Just 2 examples: (i) from 70
students entering our department this year, 31 have interest on robotics and com-
puter vision (13 as first choice, 9 as second choice and 9 as third choice), and (ii)
our robotics course, given by the first time this semester, has 25 students.
Taking into account the number of publications, research projects, as well as
courses on robotics, we can establish that four universities concentrate most of the
activities performed on the field of robotics in Chile. They are (in alphabetic order)
Universidad de Chile (Dept. of E.E.), Universidad de Santiago de Chile (Depts. of
Computer Science, E.E. and Industrial Eng.), Universidad Técnica Federico Santa
María (Dept. of Electronics) and Pontificia Universidad Católica de Chile (Depts.
of Mech. Eng. and E.E.). In this four universities no more than 10 researchers are
active in the field.

2.4 Understanding This Situation

Chile has a low level of industrial development and its economy is based either on the
service industry (basic services, banking industry, tourism industry, etc.) or in the
exploitation of natural resources (mining industry, forestry, fishing, wine industry,
farming industry, etc.). Moreover, given the current per capita income, the cost of the
manual labor is still low, although not as low as in south Asia or other Latin American
countries. For these reasons robotics related technologies have not attracted much
attention, either in industrial or educational sectors. Another factors to mention are: (i)
lack of knowledge on the importance of the field and (ii) research in robotics is usu-
ally considered as extremely expensive.

However, things are changing. Chilean economy was growing at a 7% rate during
the last decade, and experts say that a condition to keep this growing rate is to intro-
duce technology in the Chilean traditional economy areas for increasing productivity
and also in the manufacturing industry for improving their development. In both cases
robotics related technologies can play an important role.

3 Robot Contests Can Foster the Research Activities on Robotics

In this section we will show how robotic contest can revert the situation described in
the previous section.

3.1 Latin American IEEE Student Robotics Competitions

The first Latin American IEEE Student Robotics Competition was held last year in
Chile (http://ewh.ieee.org/reg/9/robotica/1stRobotContest/). The event was organized
by the Department of Electrical Engineering of the Universidad de Chile and by the
IEEE Region 9. The main objective of this competition was to increase the interest of
engineering students in robotics.

A second objective was to stimulate student involvement in advanced technologies
and their application to practical use. The competition looked for bringing the exhila-
ration of scientific discovery to young students, fostering technological innovation in
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the graduating engineers, while providing more technical activities to local IEEE
students. A robotics competition was considered an activity that could help in that
direction, particularly given the success of similar events in other countries. The com-
petition was held during period 29-30 November 2002, at the Department of Electri-
cal Engineering, Universidad de Chile, Santiago, Chile. Two separate robot competi-
tions took place, details are provided in Spanish in [20].

The first competition (“beginners”) was aimed for students starting to work in ro-
botics and was based on the use of Lego MindStorms building blocks. In this category
the proposed challenge was the design and programming of a robot, or equipment of
robots, that accede and cross a simulated minefield. The robot or equipment had to
detect simulated, explosive charges and to avoid stepping on them in an inadvertent
form. The success criterion was the number of detected mines, the time from the de-
parture point to the term of the mission, and the number of inadvertently detonated
mines (those that damage the robot).

The second competition (“advanced”) was for more experienced student groups.
The competition consisted in crossing a soccer field with obstacles using any kind of
legged robots (biped, hexapods, etc.). Robots could be designed and constructed by
the own participants, or could be bought and then adapted (mechanical modifications,
new sensors, etc.). It was understood that robots should be autonomous and in no case
they could be controlled, although partially, in remote form. There were no restric-
tions concerning the size of robots, the power source used, neither the sensors em-
ployed (infrared, ultrasonic, laser, cameras, etc.). The success criterion was the cross-
ing time.

The first competition day was for reception of the participants and for setup of the
robots. A plenary talk on robotics technology, given by a Distinguished Lecturer from
the IEEE Robotics and Automation Society was also scheduled for the first day. The
second day was dedicated to the contests. Both competitions were developed in paral-
lel, although the finals of each one were scheduled at different time. Before competi-
tions a 5 minutes presentation of each robot to the jury and the general public by the
participants was considered. After the competitions there was an exhibition of all
participants robots to general public, especially to school’ children.

We believe that this first Latin American competition was a success. 29 groups of
4 different countries (Argentina, Chile, Mexico and Peru) participated in the contest,
totaling more than 100 engineering students and 4 high school students. Considering
the short preparation time (6 months) and the long distances in Latin America, this
was a good starting that for sure will be improved in the next versions of the contest.
During the second competition day we had more than one thousand persons attending
the event. The event was also covered by almost all Chilean newspapers (see some
articles in [21]) and by the most important TV station in its main news program. Me-
dia coverage was considered very important, because it promotes public awareness of
the importance of technology in society.

In general terms we believe that the main result of this event is that it will foster
the activities in robotics in Chile and also in Latin America. Here we mention some
concrete examples:

The institution of an annual Latin American IEEE Student Robotics Competition
as a regular activity of the IEEE Region 9. The next competition will be held on
Sept. 2003 in Brazil, while in 2004 it will be held in Mexico.
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The foundation of the IEEE Latin American Robotics Council in January 2003,
with the long-term mission of developing IEEE activities on robotics in Latin
America. A detailed explanation can be found in section 3.2.
The institution of an annual Chilean IEEE Student Robotics Competition, which
next version will be held on August 2003 at the Department of Electrical Engineer-
ing, Universidad de Chile.
At a national level the activities on robotics, such as the creation of robotics
courses and the conforming of robot research groups, have increased in the univer-
sities where students participated in the robotic contest. As an example, based on
the demands of our students we have created an introductory course on robotics,
which is being given for the first time during this fall semester (March-June). Dur-
ing our spring semester (August-November) we will give, also for the first time, a
course on mobile robotics. These two courses will be added to our related courses
on mechatronics and in automatic control. Since October 2002 our “Robotics Lab”
is full from students, not only from our department, but also from Computer Sci-
ence and Mechanical Engineering.
Also at national level we can see an increasing interest in similar kind of robot
contests, especially on robot soccer. Recently the Pontificia Universidad Católica
de Chile (Dept. of Mech. Eng.) has conformed a FIRA robot team and our depart-
ment has conformed two RoboCup teams, F-180 and “Four-Legged”. This activity
is described in section 3.3.

3.2 IEEE Latin American Robotics Council

For giving continuity to the IEEE robot contest in Latin America in January 2003 was
founded the IEEE Latin American Robotics Council [22], whose organization and
operation is in charge of us. The main purpose of this council is to organize, with the
support of local groups, an annual IEEE Student Robotics Competition in Latin
America. The Council will promote the programming of these events, define the basis
for the competitions, and interact with the local volunteers who finally will develop
the activities themselves. The council will grow from this event into helping at devel-
oping more IEEE activities in robotics in Latin America.

As a first activity, the council is organizing the Latin American IEEE Student
Robotics Competition (http://www.ewh.ieee.org/reg/9/robotica/2ndRobotContest/),
which will be held in September 2003, in Bauru, Brazil. This competition will include
beginners and advanced contests, as well as robot soccer competitions.

3.3 RoboCup Teams of the University of Chile

As a way of canalizing the increasing interest of our students on robotics activities,
we decided to create two robotic soccer teams, which will participate in RoboCup,
from this year on. The teams are from the small-size F180 league and from the AIBO
four-legged league. In December 2002 we took that decision, in spite of we had only
7 months before RoboCup 2003 and just 4 months before the classification stage. We
started from zero. We had no experience with RoboCup (no Chilean team was in
RoboCup before) and we neither had all the robots.
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To achieve our difficult objective we started to work in parallel, in several fronts,
with a group of 35 undergraduate and graduate students. In a first stage of ‘setup’, one
student group was in charge of the compilation of all necessary RoboCup information
(official site, leagues information, rules, source codes, simulators, etc.) mainly
through Internet. Another group was in charge of building the two official soccer
fields, while a last group was in charge of buying the AIBO robots, and buying and
adapting the robots for the F-180 league. This stage took about 25 days.

Afterward we started the second stage that consisted in the research work for writ-
ing the algorithms and designing the playing strategies for both teams. We divided
our 35 students in two teams, 20 for the F-180 league and 15 for the four-legged
league. This decision was based on the fact that the F-180 league requires work in
hardware and software aspects, while the four-legged not. For each robot team we
defined the block diagram of the final system we wanted to implement. A group of 3
to 4 students was in charge of each one of these blocks. In each category we have a
special group in charge of making simulators. Given that we have 9 groups working
in parallel, organizational aspects are very important. We have a hierarchical organi-
zation of the work and meetings every two days for each team, whose main objective
is to coordinate the work of the teams. A graduate student from our doctoral program
on automation was in charge of each team. After months of very hard work, including
holidays, we finished this second stage last March.

Since March 15 we are working on the third stage, which can be characterized as
“playing, playing and playing”. The aim of this stage is to increase the performance of
our teams by means of intensive experimentation. In this context, we participated in
the RoboCup American Open with our two teams. This stage will be finished on July
2, with the participation of our four-legged team in the RoboCup 2003.

Participating in RoboCup has been an interesting challenge for us. We built a mul-
tidisciplinary team of students, which includes students with different majors like
computer science, automatic control, telecommunications, electronics, power systems,
signal processing and even physics. These students have been working for free and
also during their vacations time. Student holidays are from December to February in
Chile and universities are closed during February. We believe that this group of stu-
dents will be the basis for the consolidation of our research group on robotics. It
should be stressed this is the first time that in our department 35 students are working
together in a single research project.

3.4 Current Projects

Things are changing very fast in our “Robotics Lab”. The lab started on May 2002
and at the moment we have two doctoral students and four master degree students
doing their thesis in mobile robotics. Four more master degree students are perform-
ing their final thesis in robotic vision. At the moment we have several projects in
robotics. In addition to robot soccer, we are involved in the development of robotic
vision systems using robotic-heads, and in the development of a friendly robot inter-
face that interacts with humans by detecting and recognition their faces. We are build-
ing an electronic glove for the haptic control of our robot arms, and we are developing
a 1.5-meter-high mobile robot, with the final goal of installing it in an important Chil-
ean museum.
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Last but not least, thinking on the future we have been working with school’ chil-
dren by doing practical robotics courses. Our motivation comes from the need, espe-
cially in developing countries like ours, of motivating and foments the interest of
children and young people in technology as early as possible. The participation in
practical courses of robotics is a highly motivating activity, because it allows the
students to approach the technology in an entertained and intuitive form. Based on
that we have achieved that more than 700 children and 80 school’ teachers assisted to
one of our one-week robot courses. As a side effect of our courses, some Chilean
schools are planning the installation of their own robotics laboratories. For more in-
formation about our activities with children, in Spanish, see http://www.robot.cl/.

4 Conclusions and Projections

The main purpose of robot contests is to foster the activities on robotics and to push
the field and inspire future research. The aim of this article was to describe our ex-
perience in the participation and organization of robot contests, to show how these
actions have increased the activities on robotics in Chile, and finally to give our view
about the effect of this kind of activities. We showed the current state of the robotics
field in Chile and we contrasted it against the current state of other disciplines. After-
wards, we described some actions taken to revert the current situation: the organiza-
tion of annual Latin American IEEE Robotics Competition, the creation of the IEEE
Latin American Robotics Council, our participation in RoboCup, and our activities on
robotics with children. After all of this we can conclude the following:

The robotics field is underdeveloped in Chile and its development degree is very
low compared with other research fields.
Robot contests in general, and RoboCup in particular, can help in reverting this
situation. The organization and the participation in robot contests have largely in-
crease not only our own activities in the field, but also the activities on robotics in
Chile and Latin America.
Robotics related technologies could play an important role in the technological
development of countries. In this context, the development of the robotics field is
important not only by its own, but also as a motivation to work in related technolo-
gies.
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Abstract. Robots interacting with other agents in dynamic environments re-
quire robust knowledge management capabilities if they are to communicate,
learn and exhibit intelligent behaviour. Symbol grounding involves creating,
and maintaining, the linkages between internal symbols used for decision mak-
ing with the real world phenomena to which those symbols refer. We imple-
ment grounding using ontologies designed for the Semantic Web. We use
SONY AIBO robots and the robot soccer domain to illustrate our approach. On-
tologies can provide an important bridge between the perceptual level and the
symbolic level and in so doing they can be used to ground sensory information.
A major advantage of using ontologies to ground sensory and symbolic infor-
mation is that they enhance interoperability, knowledge sharing, knowledge re-
use and communication between agents. Once objects are grounded in ontolo-
gies, Semantic Web technologies can be used to access, build, derive, and
manage robot knowledge.

1 Introduction

Robots interacting with other agents in complex dynamic physical environments
require sophisticated and robust concept and knowledge management capabilities if
they are to solve problems, communicate, learn and exhibit intelligent behaviour [4].
The Semantic Web is touted as the next stage in the World Wide Web’s evolution,
and involves the use of ontologies - collections of information that formally define
the relations among terms. The structured nature of ontologies allows agents, such as
autonomous robots, to make sense of the knowledge available on this global network.

For autonomous agents, ontologies can provide an important bridge between the
perceptual level and the symbolic level, and in so doing they can be used to ground
sensory information. Ontologies can be used to help link sensory data with symbolic
representations by defining the associated sensory phenomena of real-world objects.
Symbolic information can then be derived for the purpose of planning or communica-
tion. A major advantage of using ontologies to ground sensory and symbolic informa-
tion is that they can be used to enhance interoperability, knowledge sharing, knowl-
edge reuse and communication between agents. Once objects are grounded in
ontologies, Semantic Web technologies can be used to access and manage robot
knowledge.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 757–764, 2004.
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Grounding Robot Sensory and Symbolic Information
Using the Semantic Web
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Knowledge management requires the formation and evolution of concepts and
categories. Categorization forms the foundation of intelligent behaviour. Robots, for
example, need to categorize both physical and abstract entities of interest in their
environment to achieve their goals. Ontologies are a practical tool for developing a
conceptual network that robots can use to classify and identify objects with a high
degree of exception tolerance. The ability to classify new information is essential for
reasoning, problem solving, communication and learning [4].

OWL is a semantic markup language for Web resources that can be used to define
ontologies (http://www.w3.org/). Using OWL, robots can build rich and grounded
world models from a wide variety of internal and external knowledge (re)sources,
such as sensors, ontologies, databases, knowledge bases, the Semantic Web, web
services, and other agents.

In this paper we describe a Robot Soccer Ontology (RSO) in OWL. This ontology
enhances the knowledge management capability of a robot and allows it to integrate
information from multiple sensory and symbolic sources as well as understand its
environment to the extent of communicating with humans and other agents. We use
AIBO robots that play robot soccer to illustrate our framework and approach. Our
area of concern is modeling how robots utilize concepts and knowledge as a result of
their interaction with heterogeneous information landscapes. One of our motivations
for this work is to build a robot soccer multiagent system in which each robot knows
it is playing soccer and understands all the important elements of the game such as it
is a ballgame with a set of rules that govern how it is played.

Our Application – Robot Soccer2

The AIBO ERS-210 is an entertainment robot produced by SONY. The AIBO has a
MIPS CPU with a clock cycle of 192 MHz and a 32 megabyte main memory. It is
equipped with an array of touch sensors, on positions such as the head, back, chin and
paws. The AIBO’s vision system is driven by a single CMOS camera, while there is
also an infrared range finder. All four legs, as well as the head, have three degrees of
freedom allowing for a large range of motion. Sony’s freely available OPEN-R soft-
ware development kit provides a set of application programming interface library
files and related tools that allow both querying and control of the AIBO’s range of
hardware through C++ code. The ERS-210 has wireless LAN capabilities that allow
inspection of the robot’s internal state and access to the vast resources of the Internet.

The SONY Four-Legged RoboCup Competition is held annually. Each robot soc-
cer team is comprised of four AIBOs; of which one is designated as the goalkeeper.
Most of the robot functions and soccer behaviours are driven by visual sensory in-
formation. The soccer field and other objects of importance in the game are uniquely
colour-coded. The field is green in colour and defined by six bi-coloured beacons;
one in each corner, and two on either side of the half-way line. One goal is blue and
the other is yellow. The ball is orange. The beacons, goals and ball are all of known
size. The beacons are used by the robots to determine their location on the field. Since
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AIBOs do not possess stereo vision they cannot make independent and reliable judg-
ments about distances to objects using vision alone, so algorithms based on vision
data determine distance using known dimensions of objects. The vision processing
system of the robot converts raw camera images in YUV format into conceptual in-
formation about physical objects. Pixels in the initial YUV image are classified using
a set of colour concepts which are of value to the robots’ task of playing soccer e.g.
recognising the ball, the beacons, and the goals. Classified pixels are accumulated
into larger “blobs” of colour. The blobs are then attributed to specific objects, e.g.
beacons.

3 Grounding Sensory and Symbolic Information

The symbol grounding problem refers to the task of linking the internal concepts used
by an agent in its world model for reasoning and decision making with the real world
phenomena to which they refer [7]. An agent using ungrounded information could be
considered delusional because it can perceive things that do not exist while failing to
perceive things that do exist. A special case of the symbol grounding problem is an-
choring [3]. Anchoring involves maintaining the link between an agent’s internal
representation, and the physical objects represented by these symbols. For example,
in the RoboCup domain, grounding (or anchoring) could involve linking an orange
blob in a robot’s camera image with a soccer ball.

Simple systems that are purely reactive, such as an elevator, do not require a sym-
bolic model of their environment, and thus avoid the grounding/anchoring problem
entirely. However, for more complex systems a symbolic system can allow an agent
to construct an internal model of the world, which importantly allows the agent to
reason, plan and predict future states - activities integral to intelligent behaviour. Any
agent functioning in a physical environment that has a symbolic reasoning component
must have a solution for grounding or anchoring symbols. However, such solutions
tend to be restricted to the particular domain for which the agent operates. There is a
need for more general, less domain-specific solutions.

Harnard [7] argues that symbolic representations must be directly grounded bot-
tom-up using iconic and categorical representations, where both iconic and categori-
cal representations are non-symbolic. Iconic representations can be thought of as
copies of sensory projections that preserve relevant features of the projection, where
as categorical representations are reduced to the features of the projection that can
determine category membership. By building categories that filter features of iconic
representations, within category similarity differences compress, while between-
category similarity distances expand, allowing for reliable classification of category
membership.

The use of categories restricts the symbol grounding problem to a reduced set of
elementary symbols, where each of these elementary symbols has a corresponding
real world grounded object or event [1]. High-order symbols can be built through
combinations of elementary symbols, making it possible to learn new concepts from
pure linguistic definition. For example, the concept of zebra could be defined as
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“horse + stripes”, with the terms “horse” and “stripes” grounded in the real world. By
grounding bottom-up high order symbolic representations can be developed from
elementary symbols.

Ontologies can provide an important bridge between the low-level, sub-symbolic
Perception Layer, and high-level symbolic representations in the Deliberative Layer,
by defining the properties of physical objects in terms of sensory data and events. In
providing libraries of structured knowledge universally accessible to machines (in-
cluding autonomous robots), we can move towards a generalised solution to the
grounding problem. For instance, a robot confronted with a banana for the first time
could use the semantic web to discover that this yellow, curved shaped object is a
non-toxic fruit, and can not move on its own,. As such, ontologies represent a general
domain independent mechanism for grounding sensory and symbolic information in
autonomous robot systems.

4 Concepts and Knowledge Management on the Semantic Web

Categorization involves partitioning objects into cognitively useful groups, with these
groups referred to as categories or concepts. Resultant concepts can be used to build
knowledge; concepts can become predicates which are used to describe the world and
its behaviour in a knowledge base, e.g. Situation Calculus [8].

Concepts help robots reduce the complexity of the information they need to ac-
quire and manage. Furthermore, concepts give rise to broad powers of explanation.
For example, without concepts robots would not be capable of representing visual
information beyond the pixel level, and as a result they would not develop a world
model that could support even simple forms of object recognition and reasoning. The
ability to form and manipulate concepts explicitly enhances robots capacity for prob-
lem solving, communication, collaboration etc, as they forage around information
rich heterogeneous environments.

We expect robots to respond appropriately to information acquired through their
sensory systems. The ability to categorize new sensory information and to anchor it to
physical objects in the real world allows a robot to behave sensibly in previously
unencountered situations. Ontologies provide a powerful and practical tool for devel-
oping feature based categorizations of physical and abstract concepts.

According to Guarino [6] an ontology is a philosophical discipline, a branch of
philosophy that deals with the nature and the organisation of reality, and for Aristotle
it is the science of being. In the enterprise of building artificial agents, an ontology is
an explicit specification of a conceptualization which involves terms and relations in
a domain [5], or a shared understanding of some domain [9].

Ontologies are collections of information that formally define the relations among
terms. Communication relies on the ability to share meaning – this can be achieved
via ontologies. For example, two robot soccer knowledge bases may use different
identifiers for what is the same concept e.g. one might use beacon and whilst the
other uses marker. An agent that wants to compare or combine information across
these databases must know that the two terms mean the same thing. Ideally, an agent
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should have the capability to discover common/shared meanings for whatever data-
base it encounters.

The most typical kind of Ontology for the web has a taxonomy and a set of infer-
ence rules. The taxonomy defines the class of objects and relations among them (see
Appendix A for our Robot Soccer object model). Ontologies can be used for multiple
purposes, from improving the accuracy of web searches to more advanced applica-
tions, such as Robot Soccer which can use ontologies to relate the information from a
robot’s sensors or knowledge base to the associated knowledge structures and infer-
ence rules. A markup language like OWL helps to develop programs that can tackle
complicated problems whose answers require the fusion of information from multiple
sources.

We describe our Robot Soccer Ontology in Appendix A. It is an explicit and for-
mal description of the concepts (and categories of objects) in the domain of robot
soccer and is composed of an object model and axioms. The concepts of interest are
classes, where the properties of each concept describe important features and attrib-
utes of the concept, and restrictions on properties constrain roles of the properties.
The ontology, a set of individual instances of classes, together with a set of axioms,
constitutes our Robot Soccer Knowledge Base.

Classes describe concepts in the domain, and are the base objects of an ontology.
In OWL each class is represented by a URI, and can be defined as a sub-class of an
existing class. A description of the class can be added, as can restrictions to that class.
These restrictions are based on properties. For example, the super-class Thing
represents all objects of interest in Robot Soccer for the purpose of our application.
Specific objects are instances of Thing, e.g., a goalie would be an instance of Goal
Keeper, a subclass of Player which, in turn, is a subclass of Thing, while a
cardinality restriction states that there is only one Goal Keeper per Team.

Axioms are used to state facts and rules about classes and their relationships. Axi-
oms are provided in addition to class definitions which are essentially restricted forms
of subsumption/equivalence axioms. OWL allows class definitions to assert the dis-
jointness or equivalence of classes. An example of an axiom is that for all teams,
there exists only one defensive player who may enter the penalty area, and that player
is the designated goal keeper. Other ontologies can be incorporated into OWL using
namespaces which are URIs that have been imported from other ontologies.

5 The Semantic Web and Web Services for Robots

The aim of the Semantic Web is to bring meaningful content to the World Wide Web,
creating an environment where agents interact and accomplish sophisticated tasks.
The Semantic Web is designed to offer access to ontologies, knowledge resources,
and knowledge management tools and services. It allows people and agents, like
robots, to embed meaning into web pages to enhance “understanding” of the content
using the Resource Description Framework (RDF).

RDF represents data as triples; subject, predicate and its value. RDF Schema ex-
tend this binary prepositional language’s expressivity to that of a semantic net. RDF
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Schema allow a wide variety of knowledge resources to be described. OWL is an
example of a restricted semantic net that can be used to build complex ontologies. An
OWL ontology is essentially a web page containing: (i) an optional owl:Ontology
instance, (ii) a set of classes , (iii) a set of properties, and (iv) a set of restrictions
relating the classes and properties. OWL extends RDF(S) by: (a) supporting XML
Schema Datatypes rather than just string literals, (b) local restrictions, (c) enumera-
tions, (d) class expressions, and (e) ontology and instance mapping.

Web services are self-contained, modular applications that have an explicit de-
scription of a service offerred. They can be published, accessed and used on the web.
Web services are currently based on a small set of XML based standards for message
transfer (i.e. SOAP), Web Service description (WSDL), and Web Service discovery
(e.g. UDDI framework). Web Services not in registries can be published using Web
Service Inspection Language which assists search engines to find them. Logic for the
Semantic Web can be added to web pages using a combination of OWL, Resource
Description Framework (RDF), RDFS (RDF Schema) and XML.

We have developed a Robot Soccer Ontology which describes the domain of Ro-
bot Soccer for the RoboCup SONY 4-Legged League. The purpose of the RSO is to
assist robots to play soccer by providing a mechanism for grounding their sensory
and symbolic information to physical and abstract objects and concepts. In particular,
the RSO is used to allow the robots to answer the following questions:

Am I seeing a beacon? Which beacon am I seeing?
Am I seeing a robot? What team is the robot I am seeing on?
Am I seeing the goal? Which goal am I seeing?
What is the score? Is my team winning?
Which goal should I aim for? Where is the goal?
Where are my team-mates?
Which kick should I use?

The RSO can be implemented in OWL and placed on the internet for the robots to
access. Once assessable it can be used for the robots to acquire and share information.
Some examples of “Things” in the RSO represented in OWL are given below:

Robot Class Example.

Example Instance of Robot Class.
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6 Summary

Grounding involves the creation and maintenance of linkages between objects in a
robots internal world model and objects in the environment. In this paper we de-
scribed methods that can be used to implement the grounding of sensory and sym-
bolic information embedded in a robots world model using ontologies designed for
the Semantic Web. We use SONY AIBO robots and the robot soccer domain to illus-
trate our approach.

We developed a Robot Soccer Ontology and Knowledge Base that can be used to
identify and reason about real-world objects and events. For example, the RSO de-
fines the individual colours of the colour-coded RoboCup world in terms of sensory
data, such as YUV pixel values.

A major advantage of using ontologies to ground sensory and symbolic informa-
tion is that they enhance interoperability, knowledge sharing, knowledge reuse and
communication between agents/robots. Once objects are grounded in ontologies,
Semantic Web technologies can be used to access, build, infer from, and manage
robot knowledge.
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