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Preface

This volume contains the proceedings of the VIII Hotine-Marussi Symposium on Mathemat-
ical Geodesy, which was held June 17 to 21, 2013. For a second time in row, the Symposium
took place at the Faculty of Engineering of the University of Rome “La Sapienza”, Italy. Again,
the symposium was hosted in the beautiful ancient chiostro of the Basilica of S. Pietro in
Vincoli, famously known for its statue of Moses by Michelangelo.

The traditional name mathematical geodesy for the series of Hotine-Marussi Symposia
may not fully do justice to the Symposium’s broad scope of theoretical geodesy in general.
However, the name for the series has been used since 1965, i.e. the days of Antonio Marussi,
which is a good reason to adhere to it. The venue of the Hotine-Marussi Symposia has
traditionally been in Italy, as exemplified in the historical overview and map on the next pages.

Since 2006 the series is under the responsibility of the Intercommission Committee on
Theory (ICCT), a cross-commission entity within the International Association of Geodesy
(IAG). The overall goal of the Hotine-Marussi Symposia has always been the advancement
of theoretical geodesy. This goal is aligned with the objectives of the ICCT, which has the
developments in geodetic modelling and data processing in the light of recent advances of
geodetic observing systems as well as the exchange between geodesy and neighbouring Earth
sciences as its central themes. Indeed, the current proceedings are testimony to the width and
vibrancy of theoretical geodesy.

The Symposium attracted 90 participants who contributed 88 papers (71 oral and 17 poster),
organized in eight regular sessions plus the session at the Accademia Nazionale dei Lincei. To
a large extent, the sessions’ topics were modelled on the study group structure of the ICCT.
The chairs of the ICCT study groups, who constituted the Symposium’s Scientific Committee,
were at the same time responsible for organizing the sessions:

1. Geodetic data analysis
W. Kosek, R. Gross, C. Kreemer

2. Geopotential modeling, boundary value problems and height systems
P. Novák, M. Schmidt, C. Gerlach

3. Atmospheric modeling in geodesy
T. Hobiger, M. Schindelegger

4. Gravity field mapping methodology from GRACE and future gravity missions
M. Weigelt, A. Jäggi

5. Computational geodesy
R. Čunderlík, K. Mikula

6. Theoretical aspects of reference frames
A. Dermanis, T. Van Dam

7. Digital Terrain Modeling, Synthetic Aperture Radar and new sensors: theory and methods
M. Crespi, E. Pottier

8. Inverse modeling, estimation theory
P. Xu

A special session was organized at the Accademia Nazionale dei Lincei by Fernando Sansò,
himself a member of this venerable academy, with three keynote addresses. What Fernando did

v



vi Preface

not know at this point was that the organizing committee had decided to dedicate the
VIII Hotine-Marussi Symposium in his honour. To put Fernando into the spotlight four
brief speeches followed by four renowned geodesists and old-time colleagues of Fernando:
Michele Caputo, Sakis Dermanis, Erik Grafarend and Christian Tscherning. Please note that
the latter three names represent the universities of Thessaloniki, Stuttgart and Copenhagen,
respectively, from which Fernando has been awarded honorary doctorates. Each of these
gentlemen reminisced about their long-term collaboration and friendship with Fernando,
but they also characterized him by entertaining anecdotes. Thus the long-term commitment
and dedication of Prof. Sansò was acknowledged, who has been the driving force behind
the series of Hotine-Marussi Symposia over the past decades. Whether this honour might
be a burden at the same time, as the cartoon seems to suggest, well: future will tell.

Credits: Riccardo Barzaghi

We want to express our gratitude to all of those who have contributed to the success
of the VIII Hotine-Marussi Symposium. The aforementioned study group chairs (Scientific
Committee) put much effort in organizing attractive sessions and convening them. They also
took a leading role in the peer-review process, which was managed by the IAG proceedings
editor Dr. Pascal Willis. We equally owe thanks to all reviewers. Although much of the review
process itself remains anonymous, the complete list of the reviewers is printed in this volume
as a token of our appreciation of their dedication.

Financial and promotional support was given by the Faculty of Engineering of the Sapienza
University of Rome.

But most of our thanks are due to Mattia Crespi and his team of the Area of Geodesy
and Geomatics (AGG), which is part of the Department of Civil, Building and Environmental
Engineering (DICEA), who hosted the Symposium. It is well known that the quality of a



Preface vii

Local Organizing Committee (LOC) is decisive to a successful scientific meeting. Beyond
responsibility for website, registration, technical support and all kinds of other arrangements,
the LOC organized a visit to the Villa Farnesina and a great social event to the Capitoline
Hill, including a guided museum tour and a roof-top dinner with an astonishing view over
the eternal city. Through their able organization and improvisation skills Mattia Crespi and
his team (Elisa Benedetti, Mara Branzanti, Paola Capaldo, Gabriele Colosimo, Nicole Dore,
Francesca Fratarcangeli, Augusto Mazzoni, Andrea Nascetti, Jolanda Patruno, Francesca
Pieralice and Martina Porfiri) have done more than their share in bringing the VIII Hotine-
Marussi Symposium to success.

Stuttgart Nico Sneeuw
October 2014 Pavel Novák

Mattia Crespi
Fernando Sansò





Fifty Years of Hotine-Marussi Symposia

In 1959, Antonio Marussi, in cooperation with the Italian Geodetic Commission, started a
series of symposia in Venice. The first three of these covered the entire theoretical definition
of 3D geodesy, as delineated in discussions with renowned contemporary scientists:

• 16–18 July 1959, Venice, 1st Symposium on Three Dimensional Geodesy, published in
Bollettino di Geodesia e Scienze Affini, XVIII, Nı 3, 1959

• 29 May–1 June 1962, Cortina d’Ampezzo, 2nd Symposium on Three Dimensional Geodesy,
published in Bollettino di Geodesia e Scienze Affini, XXI, Nı 3,1962

• 21–22 April 1965, Turin, 3rd Symposium on Mathematical Geodesy, published by Com-
missione Geodetica Italiana, 1966

From the very beginning, Martin Hotine provided essential inspiration to these symposia.
After his death in 1968, the following symposia bear his name:

• 28–30 May 1969, Trieste, 1st Hotine Symposium (4th Symposium on Mathematical
Geodesy), published by Commissione Geodetica Italiana, 1970

• 25–26 October 1972, Florence, 2nd Hotine Symposium (5th Symposium on Mathematical
Geodesy), published by Commissione Geodetica Italiana, 1973

• 2–5 April 1975, Siena, 3rd Hotine Symposium (6th Symposium on Mathematical Geodesy),
published by Commissione Geodetica Italiana, 1975

• 8–10 June 1978, Assisi, 4th Hotine Symposium (7th Symposium on Mathematical
Geodesy), published by Commissione Geodetica Italiana, 1978

• 7–9 September 1981, Como, 5th Hotine Symposium (8th Symposium on Mathematical
Geodesy), published by Commissione Geodetica Italiana, 1981

After Marussi’s death, in 1984, the symposia were finally named the Hotine-Marussi
Symposia:

• 3–6 June 1985, Rome, I Hotine-Marussi Symposium (Mathematical Geodesy)
• 5–8 June1989, Pisa, II Hotine-Marussi Symposium (Mathematical Geodesy)
• 29 May–3 June 1994, L’Aquila, III Hotine-Marussi Symposium (Mathematical Geodesy,

Geodetic Theory Today), published by Springer, IAG 114
• 14–17 September1998, Trento, IV Hotine-Marussi Symposium (Mathematical Geodesy),

published by Springer, IAG 122
• 17–21 June 2003, Matera, V Hotine-Marussi Symposium (Mathematical Geodesy), pub-

lished by Springer, IAG 127
• 29 May–2 June 2006, Wuhan, VI Hotine-Marussi Symposium (Theoretical and Computa-

tional Geodesy, 1st time under ICCT), published by Springer, IAG 132
• 6–10 July 2009, Rome, VII Hotine-Marussi Symposium (Mathematical Geodesy), pub-

lished by Springer, IAG 137
• 17–21 June 2013, Rome, VIII Hotine-Marussi Symposium (Mathematical Geodesy),

published by Springer, IAG 142
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Lincei Session



Opening Remarks for the VIII Hotine-Marussi
Symposium

Michele Caputo

Abstract

Opening remarks for the 2013 Hotine-Marussi Symposium Special Session at the
Accademia Nazionale dei Lincei.

Keywords

Anelasticity • Geoidal ondulations • Gravity • Rheology

1 The Intrinsic Geodesy

At the previous Hotine-Marussi symposium in Rome, 2009,
I told of the Marussi pendulums, of the gravity absorption
experiments, of the gravitons and of the important develop-
ments of the models of the gravity field of the Earth produced
and discussed a century ago by Pizzetti and Somigliana,
eventually presented in the Accademia, and founders of the
well known elegant modelling of the gravity field of the
Earth.

Then I asked myself what comes next? To my surprise I
had not mentioned Marussi’s Intrinsic Geodesy. The reason
probably is the Cayley-Darboux theorem, which was pre-
ceded by the important works of Mainardi and of Codazzi
on the mapping of revolution surfaces.

Marussi knew all this so well that he assigned the theorem
as subject for a thesis asking me to be correlatore since
he was very busy and often away (Milani 1961; Sansò and

Fernando Sansò and Mattia Crespi kindly asked me to open the works
of the 2013 Hotine-Marussi symposium and speak of Geodesy and of
the Accademia dei Lincei, and gave me the great pleasure to be here
among my friends since Geodesy and the Accademia have filled a good
part of my life.

M. Caputo (�)
College of Geosciences, Texas A&M University, College Station
Texas, Rome, Italy
e-mail: mic.caput27@gmail.com

Caputo 2008). Probably because of this theorem, Marussi
never encouraged me to work in this field nor went any fur-
ther with the concept of intrinsic geodesy which, practically,
extends to the gravity field the classic principle of embedding
any problem in its most appropriate coordinate system.

In this case the possible coordinate system would have
been the family of equipotential surfaces of the gravity
field which, unfortunately, did not turn out to satisfy the
conditions of the theorem, except locally.

In this sense it was Grafarend (1988) to see that the theory
could be applied locally. In another sense I feel that I should
quote Bocchio (1974) who wrote on the extension of the
concept of intrinsic to geophysics.

Philosophically I see the word intrinsic as the opera-
tion of imbedding the problem in its reality. Dig into the
problem, deep enough until you find the pepita de oro, or
the truffle depending on your taste, which shows you the
path. The pepita may be the appropriate geometric space,
or the appropriate functional space, or the appropriate sen-
sor’s type and/or the best intrinsic space distribution of the
data.

2 Geodesy and Rheology

Let me now go back half a century when I was sharing the
office, with the person who was then my mentor, his desk
between the two windows in the corner, my desk in front of
his but in the opposite corner. The institute had been founded
by Marussi, director, and members: me and a technician; in

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_3

3© Springer International Publishing Switzerland 2015
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4 M. Caputo

an old building of Trieste then still occupied by the allied
troops. The library of the institute was Marussi’s office. On
the shelves on the side of my desk was a book with the title
Rheology, then mysterious for me, which at that time seemed
to have very little to do with geodesy or geophysics.

All I knew after 5 years of studies of the Greek language
in high school was that rheo means movement; digging out
of my memory, I arrived to panta rei; but that was certainly
not enough to satisfy any level of curiosity.

It was a sign on the wall. Later I realised that rhe-
ology would be implied in the future of geophysics and
geodesy to the point to make it important for some realistic
results. If I may make a comparison it would be a study
of macroeconomic problems without taking into account
memory (Demaria 1976, Caputo 2012a, Caputo 2012b).
Rheology was the last discipline to join the set forming the
interdisciplinary royal crown of Geodesy and Geophysics.

For instance today we are not so concerned with eleva-
tions but with their time variations either in the case of the
coast lines and of sea level as separate matters.

We measure earth tides to study, with very poor resolution
as a matter of fact, some average elastic properties of the inte-
rior of the Earth, but the major expected result was the esti-
mate (Slichter et al. 1964) of the phase lag of the Moon rela-
tive to the bulges it creates in the Earth, involving the inelas-
tic properties of the Earth; in this case more interesting than
the elastic properties, and, in turn, we found that it is rheol-
ogy modelling and ruling the history of the Earth–Moon sys-
tem: and its future as well as those of all planetary systems.

Always concerned with rheology, one mystery is the
distribution of the continental masses on the surface of the
Earth, apparently disordered, although not casually, but with
little longitudinal and latitudinal symmetry, which does not
seem compatible with the stability of the Earth relative to the
axis of rotation (Caputo and Caputo 2013). It is the rheology
which adjusts the distribution of masses in the interior in
order to keep the Earth in the same position relative to the
axis of rotation, at least in the recent decades. The absence
of the possible and inevitable associated precessions relative
to the axis of rotation proves it.

Naturally all occurs in obedience of the second principle
of thermodynamics, which is embedded in the constitutive
equations of rheology and makes the general equations of
elasticity physically consistent when rheology is included
and finally acceptable. I do not mean the elasticity as is com-
monly used in seismology or that existing only in elementary
books but that which considers also the dissipation of elastic
energy or if you like the second principle of thermodynamics.

At that time, I mean when I was in Marussi’s office, the
Geoid was the Tanni’s (1940) Geoid or little more. Limited to
several lines hundreds of kilometres long in northern Europe.
Practically in the first part of the twentieth century the Geoid

was an unreachable fluid spectrum and no attention was
given to the effects of rheology. You could see Geoid, since
it was there on all coast lines but, since it did not have any
mathematical representation, it was as for Martin Eden in
Jack London’s book: : : : . the instant he knew, he ceased to
know.

Today we have the Geoid and observe the tides, also for
the solid Earth.

The question is then posed: if we accept that all is
changing during and between repeated measurements what
should we change in our strategy and techniques in observing
and interpreting the results? Will Geomatics alone answer
this question? Or should it be interdisciplinary?

How to go further in the concept of embedding the
problem, or more generally the matter, in its reality? How
about symmetries?

The pepita concerning the functional space of rheology
seems to be in the various types of mathematical formalisms,
practically representing the second principle of thermody-
namics, whose use in recent decades has spread in many
fields of science.

Applied in fields such as theoretical physics (e.g. Naber
2004), biology (e.g. Cesarone et al. 2004), geodesy (e.g.
Baleanu et al. 2009), medicine (e.g. El Shahed 2003), dif-
fusion (e.g. Mainardi 1996), chemistry (e.g. Martinell et al.
2006), plasmas in bounded domains (e.g. Agrawal 2002),
geophysics (e.g. Iaffaldano et al. 2006), in economy and
finance and in plasma turbulence (e.g. Del Castillo Negrete
et al. 2004).

3 Symmetry and the Design
of Networks

A particularly important step concerning intrinsic geodesy or
geophysics was to find an appropriate network for the obser-
vation and the needed observables which obviously should
concern Geomatics. A network intrinsic of the problem or,
better, dictated by the problem and by the characteristics
of the needed observable as suggested in the, perhaps only
a seminal, work of Caputo (1979a, b) followed by the
interesting and important meeting Optimization and Design
of Geodetic Networks (Grafarend and Sansò 1985).

In accordance and with the help which may come from the
principles of symmetry (Weyl 1983), I considered networks
resulting from the pflastersatz.

For instance the selections of seismographic networks
distributed among those suggested by the pflastersatz may
improve the knowledge of the depth of earthquake which is
so poorly known and also estimate the amount of lost infor-
mation in the sites unreached by the network. At least such
network would ensure homogeneity in the data collection.
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Perhaps not surprisingly, from the distribution of the station
depends the frequency of certain types of events and types of
signals recorded.

One clear example is the survey of the stress tensor in
the Phlaegrean Fields near Naples which showed surface
deformations of the order of 10�4 from which was inferred
the possibility of an earthquake of magnitude 5 (Caputo
1979c).

I apologise for using my work for this example, not only
because it was easier to dig out than someone else’s work
but the point is that knowing it better I can dig out its most
important aspect here: my regret about it, is that I did not
finish the work, the emblem of what I am trying to say. The
underground is often rich, I may not say full, of cavities
and the cavity effect (Neuber 1937; Harrison 1976), or the
anomalies of the elastic materials may also affect the stress
field which we are observing on the surface of the Earth and,
therefore, we may not be extrapolated to the underground
without additional information.

This in turn casts some doubts on the reliability of the
estimate of the magnitude of an earthquake possibly due to
the release of the estimated elastic energy stored in the local
portion of the crust. In fact was also missing an accurate
knowledge of the local values of the elastic parameters.

A stress field estimate based on data taken 40 years later
would miss also the information on the balance between
the relaxation of the elastic energy already stored and that
accumulated in the additional 40 years. Obviously this is due
to a lack of interdisciplinarity. Which instead, in a world of
easy communication, as today, should be the emblem of most
earth science research projects.

Moreover not sufficient attention was given to the large
displacements of the order of half a meter over a distance
of the order of a km observed in Pozzuoli and to the
causes of this displacement and to the need of extending the
observations at depth.

In other words since a surface network is not sufficient
for a detailed and significant study of the inelastic field,
additional data at depth is needed to model the important
anomalies of the stress field at depth.

The same may be repeated for the networks of meteoro-
logical stations using the essential fact that temperature is not
a physically meaningful parameter unless one associates to it
the humidity and the pressure, that is at least the elevation of
the station.

The time is ripe for a systematic, numerically quantita-
tive, description of the state of health of regions by means
of appropriate parameters which would allow comparisons
between different regions and at different times. A descrip-
tion essential for the establishment of the priorities of the

interventions, of the detailed and of the global risk. It is the
most appropriate task for Geomatics, which however should
have some sort of interdisciplinarity.

The matter, to say it concisely, is to allow the description
of physical objects with a limited number of parameters
which, in turn, permits a direct, numerical, and therefore
quantitative, comparison with its previous condition and with
similar cases. The classic example is that of radioactiv-
ity where the most important property of the material is
described by a single number: the average life directly related
to the very simple linear differential equation of Malthus.

I am not suggesting to introduce “abstract equations” but
those rightly defined as phenomenological.

These phenomenological equations, when adequately ver-
ified with experimental data, represent a step forward in
respect to the usual empirical equations which are still very
useful in many branches of applied science and technology.
However some scientists resent the fact that they are not
logically obtained from first principles ignoring that if we
stick very strictly to first principles some types of progress
are made very slow and difficult.

Also, when possible and when better methods are not
available, we may use the method based on the numerical
solution of the Cauchy problem for a stochastic differential
equations (e.g. Caputo et al. 2000).

Moreover not only GPS data but also earthquake’s data
result from observation with many, sometimes different,
instruments and, most important, at different places where
the signals arrive after paths which are different in length
but also travelled through different media. This, in turn, may
cause remarkable effects on seismic risk and cause great
difficulties in earthquake prediction. Here again interdisci-
plinarity is in order through the modern geodetic theories.

Rheology is one of the most efficient and less damaging
mechanisms used by nature for its evolution to the inevitable
attractor: the equilibrium. So memory is important for the
planetary systems and down to include what is generically
understood as economy.

However mathematical memory formalism of rheology
and its irreversibility, changed all the equations of classical
physics, from those of Maxwell to those of Navier-Stokes
and of Fourier and general mechanics (Baleanu and Trujillo
2008).

Concerning anelasticity all attempts to use the equiparti-
tion of energy are subject to the restriction that the energy is
subject to a decay with a frequency dependent mechanism.
It would be surprising to find that, for all materials, the fre-
quency dependent dissipation of energy be such to dissipate
the energy of each degree of freedom in a way to preserve
the equipartition. Finally most reciprocity theorems had to
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be changed because of the second principle; an example
at hand is that due to Graffi (1946) which was recently
adjourned.

I wish to all of us good working days, pleasant weather
and good stay in Roma.
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Fernando Sansò Laudation

Michele Caputo

You must know that in the last century the chairs of the
Italian University Prof were loaded with dust because the
Italian Prof was always away: chairing meetings, attending
symposia, going to the capital city to seek subsidies for the
research of his group, or attending the faculty meeting; some,
as Marussi and Desio, went in scientific expeditions loaded
with curiosity and of risk for their lives, I never heard that
they had an insurance for this. The Profs were very rarely on
their chair.

Fernando survived all this.
In this, as a teacher, Fernando has been very good and

I like to quote an interesting result, which is not in his
vita. It concerns one of his former students who, with a
couple of colleagues, found that in the GPS is imbedded
new type of seismograph, in other words they explored the
GPS in a different frequency band and gave light to a new
seismograph, they called it VADASE. And the credit for this
is perhaps, in one of those mysterious ways of nature, to be
added to the merits of Fernando.

And let me add that in these days we are gratified also
by the inventions of a new shoe-box size seismograph called
the TREMINO which may perform as those costing tens of
thousand of dollars.

The invention of the TREMINO (S. Castellaro, M. Muc-
ciarelli, F. Mulargia), and of the VADASE (G. Colosimo, M.
Crespi, A. Mazzoni), let me tell you, are emblematic of the
evolution in Italian Geodesy and Geophysics.

It is a cultural change as that from laser ranging for which
was needed a big truck, as that of Contraves, to the GPS, from
seismographs needing room size space to the TREMINO and
of the VADASE which may stay in shoe size boxes.

The old generation of Italian geodesists across nineteenth
and twentieth century, I am referring to that of Pizzetti-
Somigliana theory, was mostly theoretical with limited

M. Caputo (�)
Department of Geology and Geophysics, Texas A&M University,
College Station, TX, USA
e-mail: mic.caput27@gmail.com

interested in the industry. In the middle of the twentieth
there was some interest in the photogrammetric industry
but apparently the Italian industry missed the bus and
disappeared. Then we had the revolution of the satellites,
the GPS; but the Italian contribution in this field, although of
good and recognised quality, could not go very far.

The new generation of this century instead produces
instruments. And part of this is also due to Fernando.

He assures us that he will continue to be busy. But I warn
him from my experience, it may be because of the age, it
may be because they say that the climate is changing or
because of the electromagnetic pollution and that the glaciers
are melting, we are bound to be more and more busy, simply
because it is the only choice we have.

Simply because I do not know what else to do or I am not
interested in anything but what I hope to be able to do well
or I like to satisfy my curiosity. For instance asking where
are those blessed roots which keep the Alps, where they are
now for our games of all sorts and pleasures, or wondering if
gravitons may be the cousins of neutrinos : : : ..

If you believe that retirement means freedom I warn you
since, beginning 30 years ago, I formally retired 3 times
and the worse one was when it was not formal but practical
when all sorts of rasthaus disappeared. I warn you because
you will loose the recreation of the faculty meetings, the
recreation of driving to the office and back, the recreation
given by some colleagues momentarily free come to your
office warning you that it is for few minutes only, you
will loose the recreation of students asking questions, the
recreation of hoping that one day we finally give some order
to all the papers spread on the tables, the shelves on the walls,
the chairs and floor of the office.

Often the retired person does not need to go to the office
and finally may stay home to work where all escapes or
recreations are gone because even the wife, who respects him
so much, does not dare to interrupt his work and does not
allow him to spread the papers all over the studio; because at
that time the office is a studio to be kept in rigorous constant
order.
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After retirement it will be endless work almost an obses-
sion, with the fear that the curiosity will not have time to
unravel all secrets of nature.

After this jocular perspective I congratulate Fernando
for his life and his exceptional and innovative scien-
tificproduction, for his devotion to science, for growing

and guiding such a numerous group of very good students. I
also thank him for his purpose to stay around and work and
I wish him long busy life in geodesy with us.



Global Reference Systems: Theory and Open
Questions

Athanasios Dermanis

Abstract

In this review paper theoretical aspects of global reference systems are critically discussed
in relation to their practical implementation through reference frames. These include the
problem of the mathematical modeling of a spatiotemporal reference system for the deform-
ing Earth, the relation of geodetic discrete-network reference systems to geophysical ones
for the Earth mass continuum, the contribution of the various geodetic space techniques,
the estimation issues related to the combination of the various data types, and issues
relating to the compatibility of earth rotation representation. Finally issues related to future
development of the International Terrestrial Reference Frame are discussed, concerning
the addition of non-linear quasi-periodic terms in coordinate variation and their proper
geophysical interpretation.

Keywords

Earth rotation representation • Geodetic datum problem • Global geodetic networks •
ITRF • Nonlinear station motions • Reference systems

1 Introduction

A reference system is merely a mathematical device within
the framework of Newtonian mechanics that is conveniently
used for the description of shape and its temporal defor-

mation. It consists of a local basis �!e D
h�!e 1

�!e 2
�!e 3

i
at a

particular origin O and provides Cartesian coordinates x D�
x1 x2 x3

�T
of points P as the components of their position

vectors �!x D ��!
OP D �!e x. In Earth related applications a

(usually geocentric) global reference system separates the
motion of Earth masses in space into the translational motion
of the origin, the rotation of its axes around the origin
(Earth rotation) and the apparent motion of Earth masses
with respect to the reference system (Earth deformation).

A. Dermanis (�)
Department of Geodesy and Surveying, Aristotle University of
Thessaloniki, University Box 503, 54124 Thessaloniki, Greece
e-mail: dermanis@topo.auth.gr

Earth deformation forces geodesy to introduce a kinematics
spatiotemporal concept of reference system, defined at every
time epoch, which is much richer than the static spatial
concept of classical mechanics. Truesdell and Noll (1965)
who gave the axiomatic foundation of “rational” mechanics
give such a limited concept:

: : : The position of an event can be specified only if a frame of
reference, or observer, is given. Physically, a frame of reference
is a set of objects whose mutual distances change comparatively
little in time, like the walls of an observatory, the fixed stars, or
the wooden horses on a merry-go-round. : : :

The French astronomer Felix Tisserand (1845–1896)
has realized the need of a spatiotemporal reference system
and introduced the concept of what we now call Tisserand
axes (Munk and MacDonald 1960). In his choice the
temporal evolution of the orientation of the reference
system axes is defined by minimizing the apparent motion
of the point masses, quantified by the relative kinetic
energy TR D 1

2

R
E

PxT Px dm D min, which is secured by
vanishing of the relative angular momentum components
hR D R

E
Œx�� Px dm D 0 (here dots denote differentiation

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
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with respect to time, Œa�� denotes the antisymmetric
matrix with axial vector a, dm is the mass element and
integration is carried over the whole Earth). The origin
of Tisserand’s reference system is the geocenter G with
vanishing coordinates xG D 1

M

R
E

x dm D 0 (M D Earth
mass).

The problem of the definition of a reference system for
a global geodetic network shows up in the formulation of
a “reference frame” a term which in geodesy means the
realization of a reference system by means of the coor-
dinate functions xi(t) of a selected set of network points
Pi. Coordinate time series provided by four fundamental
space techniques VLBI, SLR, GPS and DORIS are utilized
by the International Earth Rotation and Reference Systems
Service (IERS) in order to realize the official International
Terrestrial Reference Frame (ITRF) (Altamimi et al. 2002,
2004, 2007, 2011) and provide Earth Orientation Parameters
(EOPs) describing the rotation of the Earth (Bizouard and
Gambis 2009). Although the operational procedures for the
ITRF formulation are now a matter of routine, there are still
some recent advances as well as open problems in the theory
of reference systems that may contribute to the improvement
of the existing techniques. The present work is a short review
of relevant results and a discussion of remaining problems for
future investigations.

2 A Reference SystemModel
for Geodetic Networks

The choice of reference system for a N-point three-
dimensional geodetic network assigns to it a vector
x D �� � � xT

i � � � �T
of 3N coordinates, which represents a

point in R3N . These coordinates are not the only ones
that describe the network shape. Any arbitrary rigid
transformation Qxi D R .™/ xi C d (™ being the rotation and
d the translation parameters) provides a vector Qx 2 R3N

that describes the same network shape. The submanifold

Mx D
n

Qx
ˇ̌
ˇQxi D R .™/ xi C d; 8™; d

o
� R3N generated as ™

and d take all permissible values, is the set of all points
corresponding to the same network shape. Thus Mx is the
shape manifold generated by x (Dermanis 2000). Shape
manifolds are naturally disjoint and through each point
in R3N passes only one manifold. Hence they constitute a
fibering of an open subset of R3N . The six parameters ™, d
may serve as a set of coordinates on the six-dimensional
shape manifold. For a deformable network, x(t) is a curve
in R3N which represents the continuous time sequence of
shape manifolds Mx(t) corresponding to the shapes of the
network at various time epochs t. We may define a reference
system as a section of the shape manifold fibering, i.e. a curve

intersecting each manifold at one point. Each such curve Qx.t/

can be generated from the original curve x(t) by means of six
functions ™(t), d(t) through Qxi .t/ D R .™.t// xi .t/ C d.t/.
Different optimal reference systems are possible, depending
on the arbitrary choice of Qx .t0/. The optimal choice Qx.t/,
is the shortest geodesic through Qx .t0/ connecting the initial
manifold MQx.t0/ with the final one MQx.tF / for a time interval
of interest t 2 Œt0; tF �. Such shortest geodesics are known to
be perpendicular to both MQx.t0/ and MQx.tF /. Since the choice
of initial and final epoch is rather arbitrary, Qx.t/ should be
perpendicular to any of the manifolds MQx.t/ that it crosses.
Therefore the tangent vector PQx should be perpendicular to
the tangent hyperplane of M Qx.t/ at Qx.t/, which is spanned by
the coordinate base vectors @Qx.t/=@qi , qi been the elements
of ™(t), d(t), i.e., by the columns of the matrix Œ@™ Qx @d Qx�.
Therefore the differential equations defining the optimal
reference system Qx.t/ on the basis of a given arbitrary
reference system x(t) are Œ@™ Qx @d Qx�T PQx D 0. With x(t) chosen
to be barycentric . 1

N †i xi .t/ D 0/ we arrive at the differential
equations

W .™/ P™ D C�1h; Pd D 0: (1)

where W D Œw1w2w3� with wk being the axial vectors
of the antisymmetric matrices Œwk�� D �

@�k
RT

�
R, h DP

i Œxi�� Pxi is the discrete relative angular momentum in
the initial reference system and C D �P

i Œxi ��2 is the
discrete inertia matrix. The solution to the above equations
is not unique but depends on integration constants ™(t0),
d(t0) or Qx .t0/. Any two solutions generate corresponding
reference system curves Qx.t/, Qx0.t/ which are “parallel” in
the sense that they are connected by a time-independent rigid
transformation Qx0

i .t/ D QQxi .t/ C c, .Q; c/ D constant.
Passing from an N-point discrete network to the contin-

uous Earth body, calls for the replacement of R3N with the
infinite-dimensional space of the coordinates of all material
points of the Earth, but the intricacies of a corresponding
rigorous mathematical model are far from trivial. In any case
the fibering by six-dimensional shape manifolds having the
transformation parameters ™, d as coordinates is preserved.

It is interesting to see how a given geocentric (i.e.
barycentric for all Earth points) reference system x(t)
can be transformed by a point-wise rigid transformation
Qx.t/ D R .™.t// x.t/ C d.t/ into a geocentric Tisserand
reference system Qx.t/, satisfying 1

M

R
E

Qx dm D 0 and Qh DR
E

ŒQx�� PQx dm D 0. Carrying out the necessary computations
we arrive at d D 0 (which is one of the solutions of
Pd D 0) while ™ satisfies again the differential equation
W .™/ P™ D C�1h, with the only difference that the relative
angular momentum and inertia matrix are given in this case
by h D R

E
Œx�� Px dm and C D �R

E
Œx��2dm.
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3 Definition of the Reference System
in the ITRF Formulation

The static version of the adoption of a reference system for
non-deforming networks is an old geodetic problem mostly
known as the “geodetic datum problem” that emerged in
the so called “free networks”, i.e. local networks which
do not inherit their reference system from a pre-existing
higher order network. It has also given rise to geodetic con-
tributions to the statistical linear estimation theory without
full rank, in relation to the linear(ized) model b D Ax C v,
v � �

0; �2P�1
�

with n observations b, m unknowns x and
rankA D r < m. The rank deficiency and the correspond-
ing infinity of least squares

�
vT Pv D min

�
solutions for

the unknown parameters is due to the use of coordinates
as unknowns, while observations can only determine the
geometric figure of the network. However all least-squares
solutions lead to the same values for observable quantities as
well as all the functions of the observables which are statisti-
cally characterized as estimable quantities. A unique solution
is obtained by posing additional constraints CT x D d on the
unknowns, which are minimal i.e. they resolve the coordinate
indeterminacy without affecting the estimated geometric fig-
ure of the network. The coordinate estimates and their singu-
lar covariance matrices merely serve as a depository of infor-
mation for the further computation of estimates of estimable
quantities and their covariance matrices. The role of minimal
constraints is that of assigning an arbitrary reference system
so that coordinates can be computed. Particularly popular
have been the so called inner constraints ET x D 0, which
satisfy xT x D min among all least squares solutions. The
matrix E results from the coordinate transformation x !
Qx D T .x; p/ under a change of the reference system, where
p are transformation parameters such that T .x; 0/ D x. The
linearized form of the transformation Qx D x C Ep allows the
determination of the desired matrix E. Sometimes the total

inner constraints ET x D �
ET

1 ET
2

� �
x1

x2

�
D 0 are replaced by

partial constraints ET
1 x1 D 0 involving only a subset x1 of the

parameters and satisfying xT
1 x1 D min, instead.

For deformable ITRF network the choice of reference
system is dominated by one extension, that of defining
its temporal evolution and two restrictions. The first
is the restriction to coordinate transformations “close
to the identity” i.e. with very small transformation
parameters p(t), which allow the replacement of Qx.t/ D
.1 C s.t// R .™.t// x.t/ C d.t/, with the linear approxima-
tion Qx.t/ � x.t/ C s.t/x.t/ C Œx.t/�� ™.t/ C d.t/ realized
by R .™/ � I � Œ™�� and neglection of second and higher
order terms. More severe is the second restriction to

transformations which preserve the linear-in-time form of
the ITRF coordinate model xi D xi0 C .t � t0/ vi � xi0 C
�tvi , where xi0, vi are the initial coordinates and constant
velocities of the network point Pi. This necessitates the use
of transformation parameters that are also linear in time, i.e.,
s.t/ D s0 C �t Ps; ™.t/ D ™0 C �t P™; d.t/ D d0 C �t Pd;

which effectively restricts the transformation parameters to

the 14 parameter set p D
h
s0™

T
0 dT

0 Ps P™T PdT
iT

. The use of

minimal or inner constraints on the parameters x, which due
to the linearization are corrections to approximate values
of the unknowns, have the disadvantage that they depend
on the choice of the approximate values. An even more
serious disadvantage of such “algebraic” constraints is that
they have no clear physical meaning and they do not lead to a
choice of reference system which is “optimal” in a physically
meaningful way. A different type of physically meaningful
kinematic constraints have been proposed by Altamimi and
Dermanis (2009), which minimize the apparent motion of
network points with respect to the reference system. They
are based on a discrete version of Tisserand’s ideas where
network points are treated as mass points of unit mass. The
main idea is to minimize the network’s discrete relative
kinetic energy T .t/ D 1

2

P
i PxT

i .t/Pxi .t/ at every epoch t
or equivalently to nullify the relative angular momentum
h.t/ D P

i Œxi .t/� Pxi .t/ D 0, a relation which establishes the
temporal evolution of the orientation of the reference system.
The origin of the system is defined by setting constant the
coordinates of its barycenter xB.t/ D 1

N

P
ixi .t/ D xB .t0/,

a particular choice being xB .t0/ D 0 (barycentric system).
Scale is taken care by setting constant the mean quadratic
scale of the network S.t/ D Q.t/1=2 defined by Q.t/ D
1
N †i Œxi .t/ � xB.t/�T Œxi .t/ � xB.t/� D Q .t0/ D const:
Applied to the ITRF model xi D xi0 C �t vi the kinematic
constraints become

X
i
Œxi0�� vi D 0 (2)

1

N

X
i
xi0 D xB .t0/ (3)

1

N

X
i
vi D 0 (4)

1

N

X
i
.xi0 � x0/

T .xi0 � x0/ D Q .t0/ ; (5)

1

N

X
i
.xi0 � x0/T .vi � v/ D 0 (6)
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where x0 D 1
N †i xi0 and v D 1

N †i vi . Operational expres-
sions in terms of corrections ıxi0 D xi0 � xap

i0 , ıvi D vi �
vap

i to approximate values xap
i0 , vap

i of the initial coordinates
and velocities can be found in Altamimi and Dermanis
(2009).

Kinematic constraints define only the evolution of the
reference system with respect to orientation (2), origin (4)
and scale (6). Initial epoch constraints are either missing
(for orientation) or depend on the arbitrary constants xB(t0)
for origin (3) and Q(t0) for scale (5). The arbitrary choice
of the initial epoch orientation, origin and scale leads to
different but equivalent “parallel” reference systems, i.e.,
realized by coordinate functions xi(t), Qxi .t/, which are at
any epoch related by a time-independent similarity transfor-
mation Qxi .t/ D .1 C �/ Qxi .t/ C t with constant �, Q and
t. The lack of initial orientation is inherent in Tisserand
reference systems; initial origin may result by selecting a
barycentric xB.t/ D xB .t0/ D 0 or a geocentric one since
the geocenter is an additional network point in SLR observa-
tions. The presence of the scale parameter in the coordinate
transformations does not actually correspond to a deficiency
but rather to the fact that different space techniques have
a different unit of length. This is theoretically due to the
use of different units of time realized by different sets
of clocks, while additional effects come from systematic
errors (tropospheric corrections, phase center corrections for
satellite and ground antennas, etc.). In the past (ITRF 2005)
ITRF scale was based on VLBI only, currently (ITRF 2008)
a weighted combination of VLBI and SLR is used, with
expected future contributions from GNSS.

4 ITRF Formulation: The One-Step
and the Two-StepApproach

There are two basic approaches for the formulation of the
ITRF the one-step (Angermann et al. 2004; Rothacher et al.
2011; Seitz et al. 2012) and the two-step approach (Altamimi
et al. 2002, 2004, 2007, 2011). They both use as pseudo-
observations coordinates series estimates from space tech-
niques

bT D AT xT C vT ; vT � �
0; �2P�1

T

�
; T D V; S; G; D

(7)

(V D VLBI, S D SLR, G D GPS, D D DORIS) using the
standard assumptions of the Gauss–Markov model for zero
mean errors with known covariance matrices up to a scalar
factor. Since the networks of different techniques are distinct,
additional observations

bc D CV xV C CS xS C CGxG C CDxD C vc: (8)

with weight matrix Pc are utilized, which connect stations of
different techniques at co-location points.

The one-step approach proceeds to the formulation of the
normal equations for all data

Nbx D

2
6664

NV C Nc
V V Nc

VS Nc
VG Nc

VD�
Nc

VS

�T
NS C Nc

SS Nc
SG Nc

SD�
Nc

VG

�T �
Nc

SG

�T
NG C Nc

GG Nc
GD�

Nc
VD

�T �
Nc

SD

�T �
Nc

GD

�T
ND C Nc

DD

3
7775

�

2
664

bxV

bxS

bxG

bxD

3
775 D

2
664

uV C uc
V

uS C uc
S

uG C uc
G

uD C uc
D

3
775 D u

(9)

where NT D AT
T PT AT , uT D AT

T PT bT , Nc
T T 0 D CT

T PcCT 0 ,
uc

T D CT
T Pcbc . Within the data of each technique bT D

AT xT C vT there is an inherent rank deficiency due to
their inability to determine a reference system to which the
unknown coordinates refer. This is expressed as a deficiency
in the (column) rank of the design matrix AT . If QxT D xT C
ET pT is the result of a coordinate transformation with trans-
formation parameters pT , due to a change of the reference
system, then both xT and QxT yield the same value for the
invariant observables yT D AT xT D AT QxT . This means that
AT ET D 0 and consequently

NT ET D 0; T D V; S; G; D: (10)

No matter how the one-step approach is operationally real-
ized, it can be shown for the sake of comparison with the
two-step approach to be equivalent to a modified two-part
approach (Dermanis 2011). The first part is identical to
the first step of the two-step approach but it is also used
in the one-step approach for preprocessing (identification
of outliers and discontinuities). It involves the formula-
tion of the separate normal equations for each technique
NVbxs

V D uV , NSbxs
S D uS , NGbxs

G D uG , NDbxs
D D uD and

estimate computation using separate minimal constraints.
The second part should replace the second step of the two-
step approach in order to secure identical results with the
straightforward one-step approach. It involves a least squares
adjustment of the following set of uncorrelated observation
equations

bxs
V D xV C eV ; bxs

S D xS C eS ;

bxs
G D xG C eG; bxs

D D xD C eD;

bc D CV xV C CS xS C CGxG C CDxD C vc (11)
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with corresponding weight matrices: NV , NS, NG, ND and Pc.
The corresponding normal equations

2
6664

NV C Nc
V V Nc

VS Nc
VG Nc

VD�
Nc

VS

�T
NS C Nc

SS Nc
SG Nc

SD�
Nc

VG

�T �
Nc

SG

�T
NG C Nc

GG Nc
GD�

Nc
VD

�T �
Nc

SD

�T �
Nc

GD

�T
ND C Nc

DD

3
7775

2
664

bxV

bxS

bxG

bxD

3
775

D

2
664

NVbxs
V C uc

V

NSbxs
S C uc

S

NGbxs
G C uc

G

NDbxs
D C uc

D

3
775

(12)

are readily seen to be identical to those in a single step
(Eq. (9)) since the separate estimates satisfy NVbxs

V D uV ,
NSbxs

S D uS , NGbxs
G D uG and NDbxs

D D uD .
In the two-step approach the first one (stacking per tech-

nique) is identical to the above first part of the one-step
approach. In the second step however it is recognized that
each of the separate estimates bxs

V , bxs
S , bxs

G , bxs
D refers to

separate reference systems which also differ from the final
ITRF reference system of the sought estimates bxV , bxS , bxG ,
bxD . For this reason transformation parameters are included
in the model which becomes

b D

2
66664

bxs
V

bxs
S

bxs
G

bxs
D

bc

3
77775

D

2
66664

xV C EV pV

xS C ES pS

xG C EGpG

xD C EDpD

CV xV CCS xSCCGxGCCDxD

3
77775

C

2
66664

eV

eS

eG

eD

vc

3
77775

D Ax C v D �
A E

� �
x
p

�
C v (13)

where A is the same as for (11), p D �
pT

V pT
S pT

G pT
D

�T
and

E D

2
66664

EV 0 0 0
0 ES 0 0
0 0 EG 0
0 0 0 ED

0 0 0 0

3
77775

: (14)

The corresponding normal equations take in this case the

extended form Nbx D u, where bx D
h
bxT bpT

iT

,

N D A
T

PA D
�

AT PA AT PE
ET PA ET PE

�
D

�
N AT PE

ET PA ET PE

�

u D A
T

Pb D
�

AT Pb
ET Pb

�
D

�
u

ET Pb

�
: (15)

However according to (10) it holds that

PE D

2
66664

NV EV 0 0 0
0 NS ES 0 0
0 0 NGEG 0
0 0 0 NDED

0 0 0 0

3
77775

D 0 (16)

Consequently the normal equations degenerate into

Nbx D
�

N 0
0 0

� �bx
bp

�
D u D

�
u
0

�
(17)

i.e. into the normal equations Nbx D u of the second part of
the one-step approach and 0bp D 0, which does not allow the
determination of the transformation parameter estimate bp. In
conclusion, the second step of the two-step approach needs
to be replaced by a proper combination at solution level (as
opposed to the combination at the normal equation level of
the one-step approach), in order to secure identical results.
For a comparison of these two approaches as currently
applied see Appendix B of Angermann et al. (2004).

5 Relating the Reference System
of a Global Geodetic Network
to a Tisserand Reference System

From a geophysical point of view an “optimal” reference
system for a global network falls short in representing the
deformation of the Earth, or just the lithosphere, even when
established by kinematic constraints which minimize the
apparent motion of station points. For this purpose the
motion of the masses of the lithosphere must be approx-
imately inferred with the help of a geophysical model.
Such a widely accepted model is that of rotating tectonic
plates where within plate deformations play a minor role
and may be ignored in a first approximation. If on each
plate or subplate PK lies a subnetwork DK of the global
geocentric network, information of the coordinate variation
xi(t), i 2 DK can be used to deduce the rotation vector ¨K

of each plate and its contribution QhPK to the relative angular
momentum of the lithosphere Qh D P

K
QhPK . Setting Qh D 0

allows the determination of the rotation vector ¨ which
transforms the original geocentric reference system into a
Tisserand geocentric one for the lithosphere. Such a system
is appropriate for comparing its observed rotation with that
predicted by theories of Earth rotation. The computation
algorithm consists of the following: For each subnetwork
DK the discrete matrix of inertia CDK D �P

i2DK
Œxi��2 and

the relative angular momentum hDK D P
i2DK

Œxi�� Pxi with
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respect to the geocenter are used to compute the rotation
vector ¨K D C�1

DK
hDK of the corresponding plate PK . The

contribution of each plate PK to the matrix of inertia of the
lithosphere is computed as CPK D �R

PK
Œx��2dm in order

to compute the rotation vector

¨ D
�X

K
CPK

	�1 �X
K

CPK¨K

	
(18)

from the original reference system fxig to the Tisserand
reference system of the lithosphere fQxi g. Solving the general-
ized Euler differential equations Œ¨�� D �RT PR D PRT R, the
parameters ™ of the rotation matrix R(™) are determined and
finally the coordinates of the global network are converted
according to Qxi D Rxi . The specific Tisserand system, out of
infinite “parallel” ones having the same temporal evolution,
depends on the chosen initial values ™(t0). It is also possible
to use a model with arbitrary rigid plate motion instead of
simple rotation or even to incorporate internal plate deforma-
tions deduced from the station motion of the corresponding
subnetwork. It must be noted that the computation of the
inertia matrices CPK requires knowledge of the geometric
boundaries of each plate or subplate as well as of its internal
density distribution.

6 Compatibility of Earth Rotation
Representation

The official IERS representation (Petit and Luzum 2010)
of the rotation matrix R converting celestial to terrestrial
coordinates (xT D RxC ) has the form

R D WDQ D R3 .�F / R2 .�g/ R3 .F C s0/ R3 .�/

� R3 .�E � s/ R2.d/R3.E/ (19)

where Q D R3 .�E � s/ R2.d/R3.E/ D R3 .�s/ G .X; Y /

is the precession–nutation matrix, D D R3 .�/ is the diur-
nal rotation matrix, W D R3 .�F / R2 .�g/ R3 .F C s0/ D
GT .�; �/ R3 .s0/ � R1 .�yP / R2 .�xP / R3 .s0/ is the polar
motion matrix, while xP � � and yP � �� are the coordi-
nates of the pole. Two intermediate reference systems are the

celestial intermediate system �!e IC D �!e C
QT and the inter-

mediate terrestrial one �!e IT D �!e T
W, which are related by

�!e IT D �!e IC
DT D �!e IC

R3 .��/ having a common 3rd axis

along �!p D �!e IC

3 D �!e IT

3 D �!e C
pC D �!e T

pT the unit vec-
tor in the direction of the celestial intermediate pole (CIP),
with celestial components pC D ŒX Y Z�T and terrestrial
ones pT D Œ� � 	�T . The original 7 parameters (functions of
time) are reduced to 5 by means of the 2 NRO (Non Rotating
Origin) conditions (Capitaine et al. 1986) s D s .d; E/ D
s .X; Y / and s0 D s0 .g; F / D s .�; �/ D s .xP ; �yP / which

define the directions of the TIO (Terrestrial Intermediate Ori-

gin) �!e IT

1 and the CIO (Celestial Intermediate Origin) �!e IC

1 .
For a precise definition of the NRO conditions we need the

concept of the relative rotation vector �!! A!B D �!e A
¨A D

�!e B
¨B between two reference systems connected by �!e B D

�!e A
RT

A!B having components determined from the general-
ized Euler kinematic equations Œ¨A�� D RA!B

PRT
A!B and

¨B D RA!B¨A. The NRO conditions are the perpendic-

ularity conditions �!! T !IT ?
��!e IT

3 D �!p
	

and �!! C !IC ?��!e IC

3 D �!p
	

, or in terms of the components in the inter-

mediate systems .!T !IT /3
IT D 0, .!C !IC /3

IC D 0. They
produce the differential equations

Ps D PE .cos d � 1/ ; Ps0 D PF .cos g � 1/ : (20)

Any orthogonal rotation matrix R depends on only three

parameters, so that the original seven parameters (E, d, s,
� , F, g, s0) or (X, Y, s, � , � � xP , � � �yP , s0) must
fulfill four conditions. Such conditions cannot be established
for the CIP �!p D �!e IC

3 D �!e IT

3 , because the latter lacks a
clear and rigorous definition either physical or mathematical.
Roughly speaking it is a smoothed version of the direction
�!n D !�1�!! (! D

ˇ̌
ˇ�!!

ˇ̌
ˇ) of the rotation vector of the Earth

�!! (�!! C !T ), where “unobserved” high frequencies of �!!
predicted by theory have been removed from precession–
nutation and included in polar motion so that the same
rotation matrix is maintained. The CIP is an evolution of
the CEP which replaced the instantaneous rotation vector �!!
after Atkinson (1973) and others remarked that higher than
diurnal frequencies cannot be observed as a consequence of
the related temporal resolution of the then available observa-
tions. Although the idea of replacing in a model a concept
with its smoothed version due to observational resolution
problems may seem strange to an outsider, astronomers
developed the firm belief that the CEP is “observable” while
the direction of instantaneous rotation vector is not. Never-
theless, today’s observations have higher than diurnal reso-
lution and will certainly improve in the future (see e.g. Hefty
et al. 2000; Artz et al. 2012) and even astronomers recognize
the possibility of observing the instantaneous rotation vector
(see e.g., Bolotin et al. 1997). We will therefore seek com-
patibility conditions for the case where the rotation matrix
has a similar to the IERS representation, with the third axes

are aligned to the rotation vector direction �!e IC

3 D �!e IT

3 D�!n D !�1�!! instead of the CIP �!p . This allows the use of

the rigorous definition of the rotation vector �!! D �!e T
¨T �

�!e T
¨ through the generalized kinematic Euler equations

Œ¨�� D R PRT . Assuring that the diurnal rotation D D R3 .�/

represents the rotation of the terrestrial system, both with
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respect to the direction of its rotation �!e IC

3 D �!e IT

3 D �!n and
its rotation rate ! D P� yields the three conditions

�!! D P��!e IT

3 D P��!e IC

3 (21)

or in terms of components ¨IT D P� i3 D ¨IC . The explicit
computation of either of the last relations is rather
complicated but simple in principle. With R D WDQ
in Œ¨�� D R PRT it follows that ¨ D ¨T D WD¨Q C
W¨D C ¨W where

�
¨Q�� D Q PQT , Œ¨D�� D D PDT ,

Œ¨W �� D W PWT . Setting �!e T D �!e IT
WT in �!! D �!e T

¨ D
P��!e IT

3 D �!e IT
� P� i3

	
gives �!e IT

WT ¨ D �!e IT
� P� i3

	
,

or ¨ D P�Wi3 D WD¨Q C W¨D C ¨W , or WT ¨ D
D¨Q C ¨D C WT ¨W D P� i3. Finally we arrive at the three
conditions

R .E C s/

� PE sin d
Pd

�
D R .�/ R

�
F C s0�

� PF sin g

Pg
�

;

(22)

Ps0 � PF cos g C PF D Ps � PE cos d C PE; (23)

where R(˛) denotes rotation in the plane. Instead of the four
conditions required to reduce the seven rotation parameters
to the three, we have only three, which fix the orientation of�!n and the rotation rate ! D P� , but they leave undefined the

positions of �!e IT

1 (TIO) and �!e IC

1 (CIO), regulated by the
values of s and s0. If both sides of (23) are set equal to Pf ,
where f is an arbitrary function, then s and s0 are determined
from Ps0 D PF .cos g � 1/ C Pf , Ps D PE .cos d � 1/ C Pf and
TIO and CIO are both displaced by the same amount f, leav-

ing the angle � between �!e IT

1 and �!e IC

1 unaltered. To resolve
this indeterminacy we must resort to the NRO conditions
which correspond to the particular choice f D 0! Thus (23)
splits into the two NRO conditions

Ps0 � PF cos g C PF D 0; Ps � PE cos d C PE D 0; (24)

which together with the two conditions in (22) reduce the
seven parameters to the required three independent ones.
The essence of conditions (22) is that when precession–
nutation (E, d) and diurnal rotation � are known then polar
motion (F, g) is uniquely determined! And the other way
around when polar motion and diurnal rotation are known
precession–nutation is uniquely determined! The above con-
ditions should all be satisfied to assure the alignment of
�!e IT

3 D �!e IC

3 with �!! and the proper rate ! D P� . The condi-
tion (23) or the NRO conditions (24) alone do not guarantee

that ! D P� . For the current IERS representation with �!e IT

3 D
�!e IC

3 aligned to the CIP ! ¤ P� and specific corrections must

be applied to P� in order to obtain the angular velocity of Earth
rotation ! and the related correct Universal Time (UT1).

No matter what the chosen direction of �!e IT

3 D �!e IC

3

(axis of diurnal rotation) the resulting rotation matrix R
implies a mathematically compatible instantaneous rotation
axis �!! which can be computed and compared to the CIP

direction �!p . The separation between �!n D
ˇ̌
ˇ�!!

ˇ̌
ˇ �1�!! and

�!p are the so called Oppolzer terms (or at least one the
possible definitions, see Moritz and Mueller 1987). Dermanis
and Tsoulis (2007) have computed these differences by two
independent methods and found that although they have the
same spectral characteristics as the Oppolzer terms, their
amplitudes are too large, rising to the order of tens of meters
on the Earth surface.

7 Open Issues for Further Research

There are of course many open problems within the analysis
of data in the various space techniques deserving separate
reviews, here however we will concentrate to theoretical
issues relating to the exploitation of data coming from these
techniques.

Current approaches to the formulation of the ITRF are
based on the false assumption of zero mean random errors
and known covariance matrices. An analysis and comparison
is needed on the effect of both biases such as quasi-periodic
terms and of incorrect covariances, which, for the GPS case
at least, are known to be too optimistic.

Another issue of great practical importance is the optimal
merging of local or regional networks to the ITRF. This
is the old network densification problem, where the main
rule is that the ITRF coordinates and velocities cannot be
altered. Some researchers (see e.g. Altamimi 2003; Kotsakis
2013) suggest the use of minimal constraints based on ITRF
parameters. The question is which minimal constraints to use
in order to best reference local networks to the “official”
ITRF reference system. An answer to this problem has been
given by the generalized inner constraints of Kotsakis (2013)
where he minimizes the trace of the covariance matrix of the
local network when the effect of the uncertainty in the ITRF
parameters used in the constraints is taken into account. This
however is only optimality in appearance, while optimality
of the connection to the ITRF reference system is rather
desired. In any case merging through minimal constraints has
an important disadvantage: high quality ITRF information
on the shape of the common subnetwork and its temporal
variation is completely ignored.

The examination of the residuals of ITRF coordinates
after the fitting of the linear-in-time model demonstrates
the existence of mostly annual and also semiannual signals,
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especially in the height component. If an annual signal is
fitted to an annual moving window, different amplitudes and
periods will result. This suggest a quasi-periodic signal with
a physical significance which is best revealed by modeling
as an amplitude and phase modulated signals on an annual
(semiannual) carrier of the form

xi .t/ D A.t/ cos .2
t=T0 � �.t//

D a.t/ cos .2
t=T0/ C b.t/ sin .2
t=T0/ ; (25)

where T0 is the annual (semiannual) period of the carrier
frequency. The time varying amplitude A(t) corresponds to
the varying severance of weather related phenomena, while
the time varying phase �(t) corresponds to the time shift
of maxima & minima of weather related phenomena. Of
course the last term of the above model is more appropriate
for data analysis because of its linearity with respect to a(t)
and b(t), which in any case can be directly converted to the
more physically meaningful A(t) and �(t). The question how
to model these functions, e.g. by piecewise linear models,
can only be answered by extensive analysis of the coordinate
residuals where different models may be more appropriate
for different stations and coordinates. For example, some
coordinates demonstrate a “saw” effect where the annual
wave is steeper when descending than when ascending, a
behavior which suggests a periodic phase modulation. An
interesting alternative to the periodic model (25) is to use
a discontinuous piecewise linear model (epoch reference
frames, see e.g. Blossfeld et al. 2014).

Two main questions are open with respect to the modeling
of the quasi-periodic terms: Should the quasi-periodic part
of the model be included in the data analysis step for the
ITRF formulation along with the linear part, or it should it be
fitted a posteriori to the residuals of the linear trend? Should
the definition of the kinematically optimal reference system
(minimal coordinate variation) also refer to the additional
quasi-periodic part (“swinging” reference system) or should
it stick to the linear part related to secular plate motion?

The final challenge in any case is the efficient geophysical
interpretation of the quasi-periodic variations in relation to
other geophysical data. From the geodetic point of view
the correlation between temporal coordinate and gravity
variation, which to a great part must be have common origins,
has not drawn the attention it deserves.
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Noise Analysis of Continuous GPS Time Series
of Selected EPN Stations to Investigate
Variations in Stability of Monument Types

Anna Klos, Janusz Bogusz, Mariusz Figurski, and Wieslaw Kosek

Abstract

The type of monument that a GPS antenna is placed on plays a significant role in
noise estimation for each permanent GPS station. In this research 18 Polish permanent
GPS stations that belong to the EPN (EUREF Permanent Network) were analyzed using
Maximum Likelihood Estimation (MLE). The antennae of Polish EPN stations are placed
on roofs of buildings or on concrete pillars. The analyzed data covers a period of 5 years
from 2008 to 2013. The analysis was made on the daily topocentric coordinate changes.
Firstly, the existence of the combination of white noise, flicker noise and random-walk on
each of the stations was set up before the analysis, secondly – a random-walk plus white
noise model was assumed, because monument instability is thought to follow random-walk.
The first combination of noises did not yield any conclusions about stability of monuments,
probably because of the domination of flicker noise in the time series. The second one,
even if not quite correct – noises in GPS time series do not strictly reflect random-walk
only-showed that concrete pillars perform better than buildings for GPS antenna locations.
Unfortunately, on the basis of this it cannot be clearly stated whether they are better as
monuments or not. Moreover, the stacked Power Spectral Densities (PSDs) of topocentric
coordinates were obtained with Fast Fourier Transform (FFT) for each monument type.
Even though stacked spectra are quite similar and do not really show any differences, PSDs
made for certain station are more varied.
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1 Introduction

Each topocentric component of station coordinates (by
means of North, East and Up) is considered to follow the
sum of:

x.t/ D x0 C vx � t C
nX

iD1

ŒAi � sin .!i � t C 'i/�

COx C
mX

j D1

pj � x
off
j C "x.t/

(1)

where x0 is the initial value of the coordinate component, v is
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the velocity, A, B, !, � are the amplitudes, angular velocity
and phase shift of the i-th periodic component of a time
series, Ox stands for any known outliers, xoff for offsets, p is
the Heaviside step function that is equal to 0 or 1 depending
on the position of the offset, "x is the noise component.
The noise component "x is, in most cases, a combination of
white noise and coloured noise with amplitudes of a and b� ,
respectively (Zhang et al. 1997):

"x.t/ D a � ˛.t/ C b� � ˇ.t/ (2)

As stated previously, Agnew (1992), noises in a geophysical
time series are correlated in time and are well described by
power-law process with a power spectrum equal to:

Px.f / D P0

�
f

f0

��

(3)

where f is the spatial or temporal frequency, P0 and f0 are
normalising constants and � is the spectral index (Man-
delbrot and Van Ness 1968). Mandelbrot (1983) and Feder
(1988) discussed processes with different spectral indexes
and attempted to attribute causes to. Agnew (1992) proved
that the power spectra of most geophysical phenomena can
be described by the power-law process with spectral indexes
often falling in the range of �3 up to �1. The integer values
of indexes indicate special types of noises. Processes with
“� D 0” correspond to white noise (WH) with a flat power
spectrum, “� D �1” stands for flicker noise (FL) (Mandel-
brot 1983) which is commonly recognized in most GPS
coordinate time series and can be present in data time series
due to GNSS signal propagation errors (Wielgosz et al. 2012;
Hadas et al. 2013), finally, “� D �2” is described as random-
walk (RW) noise and is considered to be related to instability
of monuments that GPS antennae are attached to (Johnson
and Agnew 1995; Williams et al. 2004; Beavan 2005; Hill
et al. 2009). In order to improve the detection of a random-
walk influence from a geodetic monument is to repeat the
high-precision measurements in a tectonically stable region.
In addition, its appearance in a time series can be reliably
detected only in time series where the appropriate length of
data, sampling frequency and favourable (low) amplitudes
of other noises are present in the data. The issue of noise
analysis is of great importance in the determination of the
reliability of the velocity field on local and regional scales
(Bogusz et al. 2012, 2013). In addition, most of the perma-
nent stations belong to active geodetic networks supporting
precise positioning, hence their stability influences the user
position (Grejner-Brzezinska et al. 2009).

There are a few different techniques which can be used
to easily detect noise in a time series. The first one, often
considered to be the most effective, accurate and precise

(Beran 1994; Williams et al. 2004), is the technique of Max-
imum Likelihood Estimation (MLE) (Langbein and Johnson
1997). MLE has already been used in many papers that
describe noise evaluation, e.g. Beavan (2005), Bergstrand
et al. (2007), Teferle et al. (2008), Bos et al. (2008). It is
calculated (e.g. Williams et al. 2004) using the following:

lik .Ov; C / D 1

.2��/N=2�.det C /1=2 �
� exp

�
�0:5 � OvT � C �1 � Ov

� (4)

where lik is the likelihood function, Ov stands for postfit
residuals from linear or nonlinear models applied to data, N
is the number of epochs, C is the data covariance matrix.
The second method of evaluating noise, spectral analysis, is
based on the evaluation of the power spectrum of the data
(as in Zhang et al. 1997; Mao et al. 1999). Both King and
Watson (2010) and Bogusz and Kontny (2011) used it in their
analysis but Langbein and Johnson (1997) and Pilgrim and
Kaplan (1998) have both stated that it is less precise than
MLE. The classical definition of the periodogram is:

Px .!/ D 1

N0

ˇ̌
F Tx .!/

ˇ̌2
(5)

where F Tx .!/ D
N0X

j D1

x
�
tj

� � exp
��i � ! � tj

�
for j D

1; 2; : : : N0

2 Data Analysis

Data used in this research was processed according
to the EPN (Bruyninx et al. 2002) guidelines using
Bernese 5.0 software (with absolute models consistent
with IGS08 (Rebischung et al. 2012)) by the Centre of
Applied Geomatics that cooperates at Military University of
Technology as one of 18 EPN independent Local Analysis
Centres. The processing strategy was performed in the
Bernese 5.0 software and included parameters mentioned
in Table 1. As the result, the coordinates in ITRF2008
Reference Frame were obtained (Altamimi et al. 2011).
We have used 18 permanent Polish EPN stations with daily
changes of topocentric coordinates (North, East, Up) (Fig. 1).
One of the most important issues in studies of GPS noise is
the monumentation used for instance whether the antenna
is mounted on buildings or specialist concrete pillars. The
main goal of this analysis is to investigate if the amplitudes
of random-walk noise change with the different types of
station monumentation. This investigation is a continuation
of the author’s research concerning reliability in a GNSS
time series (Bogusz et al. 2011).
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Table 1 Parameters used during the processing strategy in Bernese 5.0 software

Processing strategy in Bernese 5.0 software

Elevation angle cut-off 3 degrees, elevation dependent weighting using cos(z)

Orbits and ERPs IGS precise final orbits and ERPs

Troposphere
Saastamoinen – based dry component (Dry-Niell mapping function) as a priori model and the Wet-Niell mapping
function

Ionosphere
CODE global iono models (help to increase the number of resolved ambiguities), finally cancelled out due to
ionosphere-free linear combination

Ambiguity
QIF strategy – for baseline lengths shorter than 100 km – L5/L3 approach, for baselines shorter than 20 km –
L1/L2 approach

Observations
Only GPS observations (RINEX format) were used with carrier phase as a basic observable (double-differences,
ionosphere-free linear combination)

Planetary ephemeris model DE405

Ocean tides model OT_CSRC

Earth geopotential model JGM-3

Nutation model IERS2000

Tidal displacements Solid Earth tides-according to IERS2003 standards

Ocean loading model FES2004

Fig. 1 Permanent Polish EPN
stations used for the research.
Grey dots stand for antennae
placed on concrete pillars, white
ones for antennae placed on
buildings. The map was drawn in
GMT software (Wessel and
Smith 1998)

The preliminary analysis of the data involved the removal
of outlying values that exceeded the criterion of three times
the standard deviation (3¢), the removal of seasonal compo-
nents with annual and semi-annual periods as well as a linear
trend with least squares. The outliers constituted about 1-3%
of each time series. Any missing data was interpolated
using linear interpolation before further analysis (to obtain
regularly sampled data). For each topocentric component,
the FFT was performed and stacked power spectral densities

were made. The scale for them was changed from linear
into log–log one. The main advantage of using PSD is that
the slope of the graph in log-log space corresponds to the
spectral index of the dominant noise existing in the time
series. Long-period components are thought to follow flicker
or random-walk noise, whereas high-frequency ones follow
a white noise model. For each graph, the theoretical values
of “� D �2”, “� D �1” and “� D 0” were added so as to
show how noise type influence a time series at low and high
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Fig. 2 Stacked Power Spectral Densities for North (left), East (middle)
and Up (right) coordinate components. Stacked PSDs for concrete
pillars (red) and buildings (green) are placed on one plot to compare

both monument types. Theoretical values of spectral indexes for white
noise (� D 0), flicker noise (� D �1) and random-walk (� D �2) were
also added

Fig. 3 Exemplary PSDs for two types of antennae monumentation.
Left – station BPDL with antennae placed on buildings. Right – station
LAMA with antennae situated on concrete pillar. PSDs were made for

each station for N, E and U coordinate components. Theoretical values
of integer spectral indexes were added to the plots

frequencies (Fig. 2). In spite of the fact that the stacked PSDs
are almost the same, PSDs made for individual permanent
stations show a few differences (Fig. 3). Slopes of PSDs for
sites where the antennae is placed on buildings are in few
cases higher than for ones mounted on concrete pillars. It
indicates that monument instability is probably higher for
buildings and may be caused by the settling of the building
or perhaps thermal changes.

For the MLE analysis we assume that the noise present
in the coordinate time series follow a combination of white
noise, flicker noise and random-walk. However due to the
fact that monument instability is thought to follow a random-
walk noise model and it’s amplitude is such (King and
Williams 2009) that it may be masked by the FL and WH
noise components we have analysed our time series with
MLE using two different choices of noise combination: the
first – WH, FL and RW and the second one – only WH and
RW. All analyses were performed using the CATS software
(Williams 2008).

The amplitudes of the noises in the first test show that
FL dominates over WH and RW (Fig. 4). Although the
typical range is between 2 and 4 mm year�0.25 for the
horizontal components, it is much higher for the vertical (6–
12 mm year�0.25). The similarity in flicker noise amplitude
over the whole region are most likely explained by the fact
that FL is thought to be regionally coherent and for small
areas (such as in Poland) it can reach similar values. The
amplitudes of the WH component are also smaller for North
and East than for Up. Unfortunately, for the first combination
of noises, random-walk is close to zero for the majority of
stations. Some of estimates allow for RW but its maximum
amplitude reach the 1 mm year�0.5 in the most extreme
case (Up component, KRAW station). Such small values
of RW indicate the relative stability of Polish EPN stations
monuments or prove that the data is clearly not enough to
detect it. The small RW noise amplitudes are consistent with
the results presented in King and Williams (2009) which
showed that if random-walk is considered as monument
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Fig. 4 Amplitudes of white noise (grey), flicker noise (pink) and
random walk (green) for North (top), East (middle) and the Up
(bottom) components obtained with the MLE method. For each of
these amplitudes a 1-sigma error bar was added. Different types of

monumentation (building or concrete pillar) were marked with different
colours representing station abbreviations (black for buildings, grey for
concrete pillars)

noise it is smaller than previously thought. They have anal-
ysed 10 short-baselines (two of them were created between
stations analysed in the following research – BOGI-BOGO
and JOZE-JOZ2) with the assumption of power-law or first-
order Gauss Markov noise model. It was found that the
amplitudes of noises for baselines are in general an order of
magnitude smaller than in case of single station. They stated
that random-walk is probably no higher than 0.5 mm year�0.5

for well monumented stations. On the other hand, we should
be aware of the fact that RW amplitudes may be quite small
(or estimated to be zero) because of the present domination
of FL and the limited length of the data (only 5 years). On
the basis of Williams et al. (2004), to detect RW with an
amplitude of 0.4 mm year�0.5 a period of at least 30 years
worth of data is needed to detect it easily. But of course, the
longer the data period, the more reliable the estimations of

noises which can be obtained. Scatter plots made for the first
noise combination (Fig. 5) show some dependencies between
the amplitudes of WH and FL. For the Up component the
amplitudes are higher and much more spread out than for
the horizontal components. Unfortunately, due to the small
values of RW, no dependencies between RW and WH or FL
were noticed.

The noise amplitudes obtained for the combinations of
WH and RW with the MLE method for horizontal compo-
nents (North, East) are quite varied for random-walk noise
while they remain similar for white noise at around 1 mm
(Fig. 6). The highest amplitude for both North and East
components were found at the station, BPDL. White noise
amplitudes for the Up component are greater than for hori-
zontal ones and are at the level of 3 mm. All of the random-
walk amplitudes are higher than 6 mm year�0.5 while some
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Fig. 5 Scatter plots for different noise types: flicker noise vs. white noise (left), random-walk vs. white noise (middle), random-walk vs. flicker
noise (right). Amplitudes for North, East and Up components are represented with different colours – red, yellow and blue, respectively

Fig. 6 Amplitudes of white (grey) and random-walk (green) noise
for Polish EPN stations obtained with the MLE method with the
assumption of WH and RW noise only. The plots are presented for

North (top), East (middle) and Up (bottom) components. The 1-sigma
error bars were added to each of amplitude

of them even exceed the value of 20 mm year�0.5 (20 times
greater than for the first combination). They also have greater
error bars which can be the result of incorrect fit and the
inappropriate assumption of WH plus RW only. This rather

unrealistic result is likely due to the domination of flicker
noise in the series which, in the absence of a flicker noise
component in the MLE, is misinterpreted as random-walk.
Furthermore the length of data means that the MLE could
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Fig. 7 Scatter plot for amplitudes of white and random-walk noise for
Polish EPN stations obtained with MLE for the assumption of WH and
RW noise only. The coordinate components are represented with red
(North), yellow (East) and blue (Up) colours

not give us significant results. The scatter plot for the WH
and RW combination (Fig. 7) clearly presents dependencies
between noises. It can be noted that noise amplitudes for
horizontal components are placed adjacent to another while
they are more scattered and not centred around one specific
value for the vertical. Although the second assumption of
noise combination has some drawbacks as described above,
amplitudes of RW obtained with this combination appear
to show that concrete pillars are better as monuments for
antennae than buildings. Unfortunately, due to the fact that
this assumption is not correct, it cannot be stated for sure.

3 Discussion

Application of the MLE algorithm to the determination of
the amplitudes of white, flicker and random-walk noise
showed how they influence the accuracy and reliability of
the parameters that are estimated from GPS time series
(e.g. velocities of permanent stations). We compared two
stochastic models that were combinations of white noise,
flicker noise and random-walk and alternatively white noise
plus random-walk noise. We showed that the amplitudes
of the assumed models influence the coordinate time series
measured by Polish EPN stations. The second combination
of noise unexpectedly gave values of RW up to 20 times
larger than in the first combination. However if flicker noise
is present in the time series and its existence is ignored,
it will influence the estimated amplitudes of the random-
walk component. The flicker noise was found to be at a
similar amplitude over small areas, such as the size of
Poland, and therefore variations in the estimated random-
walk amplitudes may still be considered to be due to the
influence of monument instability. The questionable point

is whether the current time series (5 years) are really long
enough to detect changes related to random-walk. As showed
by Williams et al. (2004) to detect easily random-walk with
a magnitude of 0.4 mm year�0.5 the 30 years data will be
needed. Of course, the longer the time series, the more
reliable the estimation of random-walk.

We also applied FFT to the topocentric components to
create their Power Spectral Density estimates. Their slopes
in log-log space also indicate the characteristics of the noise
that appears in GPS time series. We averaged or stacked the
power spectra as a function of monument type. However,
when plotted together we could not visibly discern any
obvious differences. Individually, the PSDs made for each
station did show small variations in their slopes. Taking
into consideration the power spectral densities (some of
the estimated spectral slopes, or indices, for buildings are
closer to �2 than for concrete pillars) and the second noise
combination (WH plus RW) in the MLE results although
somewhat lacking (time series do not simply reflect such a
characteristic so it cannot be stated for sure) the results hint
that antennae placed on concrete pillars are apparently more
stable than those mounted on buildings.
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Improvement of Least-Squares Collocation
Error Estimates Using Local GOCE Tzz Signal
Standard Deviations

C.C. Tscherning�

Abstract

The method of Least-Squares Collocation (LSC) may be used for the modeling of the
anomalous gravity potential (T) and for the computation (prediction) of quantities related
to T by a linear functional. Errors may also be estimated. However, when using an isotropic
covariance function or equivalent reproducing kernel, the error estimates will be nearly
constant if the used data have a good (regular) distribution. In this case the error estimate
will vary only if the data distribution changes (e.g. for satellite data as a function of latitude),
if data are missing in an area, or if predictions are made outside the data area.

On the other hand, a comparison of predicted quantities with observed values show that
the error also varies depending on the local data standard deviation. This quantity may be
(and has been) estimated using the GOCE second order vertical derivative, Tzz, in the area
covered by the satellite.

The ratio between the nearly constant standard deviations of a predicted quantity (e.g.
in a 25

ı � 25
ı

area) and the standard deviations of Tzz in smaller cells (e.g., 1
ı � 1

ı

) have
been used as a scale factor in order to obtain more realistic error estimates. This procedure
has been applied on gravity anomalies (at 10 km altitude) predicted from GOCE Tzz. This
has given an improved agreement between errors based on the differences between values
derived from EGM2008 (to degree 512) and predicted gravity anomalies.

Keywords

Collocation • Error estimates • Gravity anomalies • Gravity gradients

1 Introduction

Error estimates (and error correlations) are needed for
several purposes, such as: (1) an indicator of the quality
of an observed or estimated quantity (e.g. Andersen and

�Prof. Christian Tscherning passed away October 24, 2014. Through-
out his scientific career Christian has passionately and constructively
contributed to discussions on theoretical geodesy. He was a regular and
vociferous participant in the long series of Hotine-Marussi Symposia.
The editors decided to publish his contribution to the current proceed-
ings of the 2013 Hotine-Marussi Symposium.

C.C. Tscherning
Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen
Oe., Denmark

Remmer, 1982; Balmino, 2009); (2) for the use of data in a
data assimilation procedure such as estimating ocean current
velocities (e.g., Bingham et al. 2011); (3) in simulation
studies (Arabelos et al. 2007); (Arabelos and Tscherning,
1999, 2008) ; and (4) for gross-error detection (Tscherning
1991). The geodetic literature on errors, both random and
systematic, is vast. However, in several cases the estimated
errors are of little use due for example to missing information
of the physical variation of a signal. The cause of this has
often been missing knowledge of the statistical character-
istics of a phenomen. A characteristic example is the error
of prediction of gravity anomalies in an inaccessible area
like high mountains or large lakes. Here the situation has
changed. The data collected by ESA’s Gravity and Ocean
Circulation Explorer satellite (GOCE) has now given us

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_70
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an excellent picture of the gravity field variation between
83ı latitude south and north. In the following it will be
shown how the information can be used to improve the
error estimates of quantities predicted using Least-Squares
Collocation (LSC), (Moritz, 1980; Sansò and Sideris, 2013).
Similar possibilities exist for the results of other gravity field
modeling methods.

2 Error Estimates in LSC

LSC may be used for the modeling of the anomalous gravity
potential (T) and for the computation (prediction) of quan-
tities related to T by a linear functional, LP. The subscript
P indicates a contingent point of evaluation. Error variances
�2(Lp) may also be estimated. When using a covariance
function cov(LP, LQ) or equivalent reproducing kernel, the
error variance becomes,

�2
�
Lp

� D cov
�
LP ; LP

��˚
cov

�
LP ; Li

��T ˚
cov

�
Li ; Lj

�

C eij

��1 ˚
cov

�
LP ; Lj

� �
(1)

where Li and Lj are linear functional associated with the
observations and eij are the variance-covariances of the noise
associated with the observations. If an isotropic (rotational
invariant) basic covariance function is used this equation may
show where data are missing or not available or where the
noise is large, see the figure in Sansò and Sideris (2013),
p. 329, which is a typical example of error estimates of
predicted height anomalies from gravity anomalies in the
New Mexico test area.

The error, however, is strongly related to the local data
variance, cov(LP,LP) in Eq. (1), which is constant for a
specific quantity at a specific altitude due to the isotropy but
which in reality will vary depending on the position.

We will show how this can be used to improve the error-
estimate in situations where the observations are of the same
kind, e.g. second order radial derivatives of T, Tzz, as used in
Arabelos et al. (2013) for the prediction of global grids of
gravity anomalies at 10 km altitude. In the “ideal” situation,
the data have a normal distribution. In this case the absolute
value of the ratio between the error and the error estimate
should follow a t-distribution, see Tscherning (1991). A
possible improvement should then bring us closer to this
distribution, cf. Tables 1 and 2 below.

3 The Trench Example

The computations were done in 25ı � 25ı blocks., and a
covariance function was estimated using gravity anomalies
computed from EGM2008 to maximal degree 512 (Pavlis

Table 1 Distribution of the ratio abs(predicted–“observed”)/error esti-
mates in 1.0 intervals. 625 values used

Interval 0.0–1.0 1.0–2.0 2.0–3.0 >3.0

Number 544 66 12 3

% 87 10 2 0.48

t-distribution 68 26 6 0

Table 2 Ratio between abs(predicted–“observed”) and new error esti-
mate grouped in 1.0 bins

Interval 0.0–1.0 1.0–2.0 2.0–3.0 >3.0

Number 453 114 35 14

% 74 19 6 1

et al. 2012) but with the contribution from ITG-Grace2010s
(Mayer-Guerr et al. 2010) to degree 36 subtracted. (This
has been done in order to assure a zero mean value in this
block and the global set of blocks described in the next
section).

The block with the “best” signal to noise ratio is
found in the area bounded by 27.5

ı

, 52.5
ı

in latitude and
137.5

ı

,162.5
ı

in longitude. Here the gravity field is very
inhomogeneous due to a deep trench, see Figs. 1 and 2
which shows the gravity anomalies at 10 km.

The gravity anomalies were predicted using LSC from Tzz

(minus the ITG-Grace contribution) with data spaced as close
as possible to the mid-points of a 0.1666

ı

grid; see Fig. 2.
The differences between the predicted values (in a 1

ı

grid) and the computed values are shown in Fig. 3, and the
error estimates computed using Eq. (1) are shown in Fig. 4.
The distribution of the ratio between the absolute value of
the differences and the error estimate is shown in Table 1
grouped in 0.5 bins.

We can see that a very large number of values have a
very small error estimate associated. This is caused by the
very smooth field in the South-Eastern part of the block; see
Fig. 3. We have however, from the observed gradients the
actual value of the field in the area; see Fig. 5.

If we scale the error estimates using these local standard
deviations, (see Fig. 6), we will obtain munch more realistic
error estimates. The mean value in the 1

ı

blocks is different
from zero, so alternatively we could have used the root-
mean-square value.

As a scale factor we use the ratio between the error
standard deviations computed from the covariance function
(Fig. 8) and the local standard deviations in the 1

ı

blocks
(Fig. 7), which then result in a modified error-map, see Fig. 6
and a new histogram, Table 2.

The distribution of the ratios have improved the error
estimates in the sense that their distribution have become
closer to the t-distribution than before see Table 1. However,
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Fig. 1 Gravity anomalies (mGal) at 10 km computed from EGM2008
minus the contribution from ITG-Grace2010s, used as equivalent to
observed data

Fig. 2 Gravity anomalies (mGal) at 10 km (minus ITG-Grave2010s to
deg. 36) predicted from GOCE Tzz

Fig. 3 Differences between “observed” and predicted gravity anoma-
lies at 10 km altitude, (mGal)

Fig. 4 Error estimate of predicted gravity anomalies at 10 km using
Eq. (1), (mGal)
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Fig. 5 Contour map of standard deviations of Tzz (minus ITG-
Grace2010s to deg. 36) at satellite altitude computed for 1

ı

grid blocks.
Units E .1E D 1eötvös D 10�9s�2/

Fig. 6 Scaled error estimates. Units mGal

the use of Tzz root-mean square values instead of standard-
deviations would have given a slightly different (worse)
result.

4 Global Scaling

The same procedure may be applied globally. The standard
deviations of Tzz for 1

ı

blocks are shown in Fig. 7. The
standard deviations for the prediction of gravity anomalies in
25

ı � 25
ı

blocks are nearly constant within a block, and are
shown in Fig. 8. When these standard deviations are scaled
we have a much more realistic and varying picture, see Fig. 9.
The scale factor is determined based on the ratio between the
local standard deviations and the standard deviation of the
data in 20

ı � 20
ı

blocks.
If ec is the error estimate computed using collocation,

e20, e1 the standard deviation of the data in the 20
ı

and a
1

ı

block, respectively then scaled error-estimate es of the 1
ı

block becomes

ee D ec � e1=e20 (2)

We now clearly see how the magnitude of the error is large
in mountainous or trench areas and small in “smooth” areas.

5 Conclusion

The scaling of LSC derived error estimates may improve the
estimates, so that the variation of the error due to changing
local signal standard deviation is seen. It is planned to use the
procedure in order to provide error estimates of the gravity
anomaly grids described in (Arabelos et al. 2013). There are
however some problems remaining. How should the local
signal standard deviations be computed in case of a local
bias? Should the root-mean-square variation be used? Should
the scaling be done regionally or by using the global root-
mean-square variation? In both cases the bias is small due to
the subtraction of for example the ITG-Grace 2010s field or
other Earth Gravity Models to the same maximal degree.

Acknowledgment Thanks to Prof. D.Arabelos for valuable comments.
The GMT software, http://gmt.soest.hawaii.edu/, has been used to
produce all figures.
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Multivariate Integer Cycle-Slip Resolution:
A Single-Channel Analysis

P.J.G. Teunissen and P.F. de Bakker

Abstract

In this contribution we study the strength of the single-receiver, single-channel GNSS model
for instantaneously resolving integer cycle-slips. This will be done for multi-frequency
GPS, Galileo and BeiDou, thereby focusing on the challenging case that the slip is due to a
simultaneous loss of lock on all frequencies. The analytical analysis presented is supported
by means of numerical results.

Keywords

Global navigation satellite systems (GNSS) • Integer cycle-slip • Single-channel model

1 Introduction

Integrity monitoring and quality control can be exercised at
different stages of the GNSS data processing chain. These
stages range from the single-receiver, single-channel case
to the multi-receiver/antenna case, sometimes even with
additional constraints included.

In the present contribution, we consider the single-
receiver, single-channel model. It is a challenging model
as it is the weakest of all, due to the absence of the relative
receiver-satellite geometry. In Teunissen and de Bakker
(2012), we studied this model’s multi-frequency GNSS
integrity performance against modelling errors such as code
outliers, carrier-phase slips and ionospheric disturbances.
By means of the minimal detectable biases (MDBs) of the
uniformly most powerful invariant (UMPI) test statistics, it
was shown how well these modelling errors can be found.

In (ibid.) the carrier-phase slips were allowed to be non-
integer, and therefore real-valued, as well. This implied that

P.J.G. Teunissen (�) • P.F. de Bakker
Department of Spatial Sciences, GNSS Research Centre, Curtin
University of Technology, Perth, WA 6845, Australia

Department of Geoscience and Remote Sensing, Delft University
of Technology, Delft, The Netherlands
e-mail: p.debakker@curtin.edu.au; p.teunissen@curtin.edu.au

hypothesis testing theory with the DIA-method for the detec-
tion, identification and adaptation of the modelling error
could be directly applied (Teunissen 1998a). In the present
study, however, attention is restricted to integer slips only.

The problem of detecting and recovering from integer
cycle-slips is an important one and one that has already been
considered in several studies, see e.g. (Bisnath et al. 2001;
Liu 2010; Carcanague 2012) for the dual-frequency case and
(Dai et al. 2009; Xie et al. 2013) for the triple frequency case.
It seems, however, that one is of two minds in these studies.
On the one hand, namely in the detection step, one treats the
slips as real-valued (i.e. integerness is not imposed), while
on the other hand, after one has decided that a slip indeed
occurred, one imposes the integerness by estimating it as
such. This is not consistent and also not needed. Moreover,
the cycle-slip detector used in these studies is often not an
UMPI-test statistic.

In the present contribution we will not make the above
referred to difference between real-valued slip-detection
and integer-valued slip-repair. Instead we estimate the slip
directly as an integer and use its probability mass function for
evaluation. Consider the following slip-free and slip-biased
models,

H0 W E.y/ D Gx; x 2 R
�; D.y/ D Qyy

Ha W E.y/ D Gx C H z; z 2 Z
n; D.y/ D Qyy

(1)

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_69
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Table 1 GPS, Galileo, BeiDou frequencies (f ) and wavelengths (�), and zenith-referenced standard deviations of undifferenced code (p) and
phase (�) observables

Signal L1 L2 L5 E1 E5a E5b E5 E6 B1 B3 B2

f (MHz) 1575.42 1227.60 1176.45 1575.42 1176.45 1207.14 1191.795 1278.75 1561.1 1268.52 1207.14

� (cm) 19.0 24.4 25.5 19.0 25.5 24.8 25.2 23.4 19.2 23.63 24.83
p (cm) 25 25 15 20 15 15 7 15 31 25 30

� (mm) 1.0 1.3 1.3 1.0 1.3 1.3 1.3 1.2 1.4 1.7 1.6

These results were aggregated for GIOVE-B from Simsky et al. (2008), for GPSCGIOVE A/B from de Bakker et al. (2012) and from initial BeiDou
results obtained at Curtin’s GNSS Research Centre (Khodabandeh and Odolinski, 2013, BeiDou standard deviations, “Personal communication”)

with y normally distributed and z denoting the integer cycle-
slip. Let Ox0 and Lxa be the least-squares estimators of x under
H0 and Ha, respectively. Then

Lxa D Ox0 � GCH Lz (2)

with GC D .GT Q�1
yy G/�1GT Q�1

yy the least-squares inverse
of G and Lz the integer least-squares estimator of z. In general
the distribution of Ox0 under H0 will differ from that of Lxa

underHa. The latter has namely the multi-modal distribution
as given in Teunissen (1999a). However, in case the proba-
bility of correct integer estimation P.Lz D z/, also known as
success-rate, is sufficiently large, then the distribution of Lxa

can be approximated by a normal distribution. In that case
the distribution of Lxa under Ha can be considered given by
the distribution of Ox0 under H0:

LxajHa � Ox0jH0 � N.x; Q Ox0 Ox0
/ (3)

Thus if the success-rate is sufficiently large, the decision
whether or not a slip occurred (the so-called detection) is
automatically implied in the above correction (2): if the
outcome of Lz is zero, then H0 is considered true, otherwise it
is assumed that a cycle slip is detected.

In this contribution we study the single-receiver, single-
channel model’s ability to achieve sufficiently high success-
rates for the estimated integer cycle-slip vector. This will be
done for multi-frequency GPS, Galileo and BeiDou, thereby
focusing on the challenging case that the slip is due to a
complete loss-of-lock, i.e. a loss of lock on all frequencies.
The results show that instantaneous integer cycle-slip reso-
lution is possible for multi-frequency Galileo, but for triple-
frequency GPS and BeiDou only for cut-off elevation angles
larger than 25ı.

2 The n-Frequency, 1-Receiver, 2-Epoch
Model

2.1 The Observation Equations

The carrier phase and pseudorange (code) observation equa-
tions of a single receiver that tracks a single satellite on fre-
quency fj D c=�j (c is speed of light, �j is j th wavelength

and j D 1; : : : ; n) at time instant t (t D 1; : : : ; k), are
given as

�j .t/ D ��.t/ � �j i.t/ C b�j C n�j .t/

pj .t/ D ��.t/ C �j i.t/ C bpj C npj .t/
(4)

where �j .t/ and pj .t/ denote the single receiver
observed carrier phase and pseudorange, respectively, with
corresponding zero mean noise terms n�j .t/ and npj .t/.
The unknown parameters are ��.t/, i.t/, b�j and bpj . The
lumped parameter ��.t/ D �.t/Ccıtr .t/�cıts .t/CT .t/ is
formed from the receiver-satellite range �.t/, the receiver and
satellite clock errors, cıtr .t/ and cıts.t/, respectively, and
the tropospheric delay T .t/. The parameter i.t/ denotes the
ionospheric delay expressed in units of range with respect to
the first frequency. Thus for the fj -frequency pseudorange
observable, its coefficient is given as �j D f 2

1 =f 2
j . The

GPS, Galileo and BeiDou frequencies and wavelengths are
given in Table 1. The parameters b�j and bpj are the phase
bias and the instrumental code delay, respectively. The phase
bias is the sum of the initial phase, the phase ambiguity and
the instrumental phase delay.

Both b�j and bpj are assumed to be time-invariant. This
is allowed for relatively short time spans, in which the
instrumental delays remain sufficiently constant (Liu et al.
2004). The time-invariance of b�j and bpj implies that only
time-differences of ��.t/ and i.t/ are estimable. We may
therefore just as well formulate the observation equations in
time-differenced form. Then the parameters b�j and bpj get
eliminated and we obtain

�j .t; s/ D ��.t; s/ � �j i.t; s/ C n�j .t; s/

pj .t; s/ D ��.t; s/ C �j i.t; s/ C npj .t; s/
(5)

where �j .t; s/ D �j .t/ � �j .s/, with a similar notation for
the time-difference of the other variates.

Would we have a priori information available about the
ionospheric delays, we could model this through the use
of additional observation equations. In our case, we do not
assume information about the absolute ionospheric delays,
but rather on the relative, time-differenced, ionospheric
delays. We therefore have the (pseudo) observation equation

io.t; s/ D i.t; s/ C ni .t; s/ (6)
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with the (pseudo) ionospheric observable io.t; s/. The sample
value of io.t; s/ is usually taken to be zero.

2.2 The Null- And Alternative Hypothesis

If we define �.t; s/ D .�1.t; s/; : : : ; �n.t; s//T , p.t; s/ D
.p1.t; s/; : : : ; pn.t; s//T , y D .�.t; s/T ; p.t; s/T ; io.t; s//T ,
x D .��.t; s/; i.t; s//T , then the n-frequency, 2-epoch model
can be written in compact matrix-vector form as

H0 W E .y/ D Gx ; D.y/ D Qyy ; y 2 R
2nC1; x 2 R

2

(7)

where

G D
2
4

en ��

en C�

0 1

3
5 ; Qyy D blockdiag.2Q��; 2Qpp; �2

di /

(8)

with en the n-vector of ones, � D .�1; : : : ; �n/T , Q�� and
Qpp the n � n variance matrices of the undifferenced phase
and code observables, and scalar �2

di the variance of the time-
differenced ionospheric delay.

In our computations we assumed the variance matrices
Q�� and Qpp to be diagonal with its entries derived from
Table 1. Since these entries are zenith-referenced, they still
need to be multiplied with an elevation dependent factor to
account for the elevation dependency. Based on the custom-
ary elevation-dependent models (Euler and Goad 1991), we
used the following factors: 1:5 for 30ı–40ı, 2 for 25ı–30ı,
and 3 for 15ı–20ı elevation range.

If we assume that the time series of the ionospheric delays
can be modeled as a first-order autoregressive stochastic
process, then

�2
di D 2�2

i .1 � ˇjt�sj/ (9)

For two successive epochs we have �2
di D 2�2

i .1 � ˇ/, while
for larger time-differences the variance will tend to the white-
noise value �2

di D 2�2
i if ˇ < 1. Thus �2

i and ˇ can be
used to model the level and smoothness of the noise in the
ionospheric delays. We determined the approximate range of
�di -values as given in Table 2.

Model (7) will be referred to as our null hypothesis H0.
This null-hypothesis assumes that no loss-of-lock occurred
between the two epochs. Would such loss-of-lock occur,
however, then one or more of the n carrier-phases may
become biased by an unknown number of integer cycle slips.
Here we assume the worst scenario, namely that all n of
the carrier-phases are affected by the loss-of-lock. Hence,
instead of a one-dimensional integer cycle-slip, we consider
the case of an integer cycle-slip vector z 2 Z

n. The model

Table 2 Approximate range of values for �di (m) when sampling with
intervals of 1, 10 and 30 s, respectively, using a 10 degree cut-off
elevation angle

min. �di max. �di

1 s 1:5 � 10�3 3 � 10�3

10 s 2 � 10�3 10�2

30 s 4:5 � 10�3 2:5 � 10�2

These values were obtained for mid-latitude (Delft) under moderate
ionospheric conditions

for such ‘loss-of-lock’ hypothesis is given by the alternative
hypothesis

Ha W E.y/ D ŒG; H�

�
x

z

�
; D.y/ D Qyy ; z 2 Z

n (10)

with H D Œ�; 0; 0�T and � D diagŒ�1; : : : ; �n�.

3 Estimability of Multivariate
Carrier-Phase Slip

3.1 Variance Matrix of Multivariate
Cycle-Slip Estimator

From the structure of ŒG; H� in (10), it follows that the carrier
phase vector �.t; s/ will not contribute to the estimation of
the parameters ��.t; s/ and i.t; s/ under Ha. These parame-
ters are therefore solely determined by the code observables
and a priori ionospheric information. As a consequence, the
two-epoch cycle-slip estimator is given as the difference Oz D
��1.�.t; s/ � O�.t; s//, where O�.t; s/ D en O��.t; s/ � �Oi.t; s/

is the least-squares phase estimator based solely on the code
observables and a priori ionospheric information. Solving
for O��.t; s/ and Oi.t; s/, followed by applying the variance
propagation law to Oz D ��1.�.t; s/ � en O��.t; s/ C �Oi.t; s//

gives then the variance matrix of the multivariate cycle-slip
estimator. The result is given in the following Lemma.

Lemma 1 (Variance Matrix Multivariate Slip) The vari-
ance matrix of the least-squares estimator of z under Ha is
given as

QOzOz D ��1

0
B@2Q��„ƒ‚…

phase

C 2PenQppP T
en„ ƒ‚ …

codeIrankD1

C .Ren�/�2

d Oi .Ren�/T

„ ƒ‚ …
ionosphereIrankD1

1
CA��1 (11)
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with Ren D In C Pen , Pen D en.eT
n Q�1

pp en/�1eT
n Q�1

pp , P ?
en

D
In � Pen , and where

�2

d Oi D �2
di

1 C 1
2
�2

di jj� � N�pjj2Qpp„ ƒ‚ …
frequency�diversity

; N�p D Pen � (12)

}
Note that the slip variance matrix is a sum of three terms,
the entries of which may differ substantially in size. The first
matrix term in this sum is governed by the precision of the
phase observables and will therefore have small entries. The
second matrix term is governed by the precision of the code
observables and will therefore have generally much larger
entries than the first matrix term in the sum. The third matrix
term depends, next to the precision of the code observ-
ables, also on � and �2

di . Its entries will become smaller,
if �2

d Oi gets smaller. This happens for smaller �2
di (smoother

ionospheric delays) and/or larger jj�� N�pjj2Qpp
(better code

precision and/or larger frequency diversity). Thus if �2
di D1,

frequency diversity is needed (i.e. jj� � N�pjj2Qpp
¤0) so as to

avoid the entries of the third matrix term in (11) to become
infinite.

Due to the relative poor code precision (as compared to
phase) the confidence ellipsoid of Oz is usually very elongated.
This elongation gets larger if �di gets larger. Figure 1
shows the dual-frequency L1/L2 confidence ellipse of the
cycle-slip estimator Oz for different values of the ionospheric
standard deviation. Such an elongated ellipse implies that the
component of the cycle-slip in the direction of elongation
is poorly estimable, whereas the component orthogonal to
it, is very well estimable. Note that for larger �di , the
elongation approximately points into the z1 D z2-direction.
This explains why in those cases the wide-lane combination
has good precision. But also note, that the ellipse rotates
away from the z1 D z2-direction as �di gets smaller. This
implies that for those cases other combinations than the
wide-lane have better precision.

If we consider more than n D 2 frequencies, it is
important to point out that the second and third matrix terms
of (11) are both of rank 1. This implies that the elongation
of the confidence ellipsoid of Oz remains restricted to two
dimensions only, irrespective the value of n � 2. This
indicates that in higher dimensions one should be able to
profit from the increase in frequencies and thus better be
able to successfully resolve the integer cycle-slip vector in
case of a loss-of-lock. To what extent this is possible, will be
investigated further in the next sections.

Fig. 1 Dual-frequency L1/L2, 95% confidence ellipse of cycle-slip
estimator Oz, for different values of ionospheric standard deviation �di

(cf. 11). Units along axes are cycles

4 The ADOP of theMultivariate Slip

The ADOP was introduced in Teunissen (1997) as an easy-
to-compute scalar diagnostic to measure the intrinsic model
strength for successful ambiguity resolution. The ADOP is
defined as the square-root of the ambiguity variance matrix
determinant taken to the power one over the number of inte-
ger ambiguities, which, in the present case, is the dimension
of the integer cycle-slip vector z,

ADOP D jQOzOzj 1
2n .cycle/ (13)

The ADOP has the important property that it is invariant
against the choice of ambiguity parametrization. Since all
admissible ambiguity transformations can be shown to have
a determinant of ˙1, the ADOP does not change when
one changes the definition of the ambiguities. It there-
fore measures the intrinsic precision of the ambiguities.
As a rule-of-thumb, an ADOP smaller than about 0.10
cycle, corresponds to an ambiguity success-rate larger than
0.999.

From the variance matrix of Lemma 1, an analytical
closed-form formula can be derived for the corresponding
ADOP. A useful and easy-to-interpret approximation to this
analytical expression is given in the following lemma.

Lemma 2 (ADOP Rule-of-Thumb) If Q�� D �2
�In and

Qpp D �2
pIn, then the ambiguity dilution of precision of the

multivariate cycle-slip can be approximated as
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Fig. 2 Left: Multi-frequency cycle-slip ADOPs, as function of �di ,
for GPS, Galileo and BeiDou. The dashed curves are based on the
approximation (14), while the full curves are based on (13); Right:

Multi-frequency, zenith-referenced, bootstrapped success-rates (SR) of
resolving the integer cycle-slip vector z, as function of �di , for GPS,
Galileo and BeiDou

ADOP �
 p

2

N�

!2664˛
�
�n�1

� �p

�2

„ ƒ‚ …
iono�fixed

C.1 � ˛/
�
�n�2

� �2
p

�2

„ ƒ‚ …
iono�float

3
775

1
2n

(14)

with N� D Qn
iD1 �

1
n
i and ˛ D Œ1C 1

2

Pn
iD1.�i � N�/2�2

di =�2
p��1.

}
Note that N� is the geometric average of the wavelengths,
whereas N� is the arithmetic average of the �i . Also note that
the term within the square brackets is a convex combination
driven by the scalar ˛. For ˛ D 1, the ionosphere-fixed result
is obtained, while for ˛ D 0 the ionosphere-float result is
obtained. Thus

ADOP˛D1 �
�p

2
N�
� �

�n�1
� �p

� 1
n

.iono � fixed/

ADOP˛D0 �
�p

2
N�
� �

�n�2
� �2

p

� 1
n

.iono � float/

(15)

This clearly shows the roles played by the contributing
factors: wavelengths ( N�), phase precision (��), code
precision (�p) and number of frequencies (n). It also
shows the very different contributions of phase and code
to either the ionosphere-fixed case or the ionosphere-float
case. For instance, for the single-frequency case, n D 1,
the ionosphere-fixed ADOP is driven by the code-precision
only, whereas for the ionosphere-float case, the ADOP gets
further magnified by �p=�� , i.e. a factor of about 100. For an

arbitrary number of frequencies the ratio between the two
ADOPs is given as

ADOP˛D1

ADOP˛D0

�
�

��

�p

� 1
n

(16)

Figure 2(Left) shows, as function of �di , the multi-
frequency, loss-of-lock cycle-slip ADOPs for GPS, Galileo
and BeiDou. These results are promising as the ADOPs are
all below 0.1 cycle for most of the relevant �di -range (cf.
Table 2). In the next section we will study their success-rates.

5 Multi-Frequency, Cycle-Slip
Resolution Success-Rates

5.1 Bootstrapped Success-Rates

Different integer estimators can be used to solve for the
integer cycle-slip vector z. Three popular integer estimators
are integer rounding, integer bootstrapping and integer least-
squares. As the following theorem shows, there exists a clear
ordering among these three estimators.

Theorem 1 (Teunissen 1999b) Let Oz � N.z; QOzOz/ and let
LzIR, LzIB, and LzILS denote the estimators of integer rounding,
integer bootstrapping and integer least-squares, respectively.
Then their success-rates are ordered as

P.LzIR D z/ � P.LzIB D z/ � P.LzILS D z/ (17)

}
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Fig. 3 Multi-frequency, GPS, Galileo and BeiDou, bootstrapped success-rates (SR) of resolving the integer cycle-slip vector z, as function of �di ,
for different elevation angles (Left: 30ı–40ı, Middle: 25ı–30ı, Right: 15ı–20ı)

Integer rounding (IR) is the simplest, but it also has the
poorest success rate. Integer least-squares (ILS) is the most
complex, but also has the highest success rate of all. Integer
bootstrapping (IB) sits in between. It does not need an
integer search as is the case with ILS, and it does not
completely neglect the information content of the ambiguity
variance matrix as IR does. Moreover, bootstrapping is the
only integer estimator for which an easy-to-use and exact
expression can be given of its success-rate. This success-rate
is given in the following theorem.

Theorem 2 (Teunissen 1998b) Let Oz � N.z; QOzOz/. Then the
success-rate of integer bootstrapping is given as

P.LzIB D z/ D
nY

iD1

 
2˚

 
1

2�zi jI

!
� 1

!
(18)

with ˚.x/ D R x

�1
1p
2	

expf� 1
2
v2gdv and �zi jI

the standard

deviation of the i th entry of Oz, conditioned on the previous
I D f1; : : : ; .i � 1/g entries. }
In this contribution we used the bootstrapped success-rate.
It has been used after applying the decorrelating transforma-
tion of the LAMBDA method (Teunissen 1995a). For such
decorrelated cases namely, the bootstrapped success-rate
becomes a sharp lower bound of the ILS success-rate.

Figure 2(Right) shows the cycle-slip vector resolution
success-rates for the same frequency-combinations as shown
in Fig. 2(Left). As predicted by the ADOPs, the success-rates
are indeed very high, 99:99% or larger for �di � 10�2.
However, the results of Fig. 2(Left and Right) are zenith-
referenced and therefore only hold true for an elevation angle
of 90ı.

5.2 Success-Rates Versus Elevation

For the same frequency combinations as before, Fig. 3 now
shows the success-rates for different elevation angles. The
results clearly show that the success-rates get smaller as
the elevation angle gets smaller. The results also show
that some frequency combinations are more sensitive than
others to the changes in elevation angle. For instance, the
success-rate of the Galileo frequency combination E1-E5a-
E5b, is the first to drop in value when the elevation gets
smaller, see Fig. 3(Left). The combinations that retain a
large success-rate, even at low elevation, are the triple and
quadruple Galileo combinations E1-E5-E6 and E1-E5a-
E5b-E6, see Fig. 3(Right). For these combinations one
can expect to have at least a 99.9% success-rate up to
�di D 10�2 m.

Also note, although the triple-frequency success-rates
of GPS and BeiDou are too low for low elevations, their
success-rates are still large for elevations in the 25ı–30ı
range, see Fig. 3(Middle). This is a relevant finding, since
as shown in Odolinski et al. (2013a), positioning with a
combined GPS and BeiDou system will allow one to make
use of much higher cut-off elevation angles. Similarly, it was
shown in Nadarajah and Teunissen (2013) that this is true
for GPSCBeiDou MC-LAMBDA attitude determination as
well. Hence, for those positioning and attitude-determination
applications, instantaneous loss-of-lock integer cycle slip
resolution will become feasible.
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Theory of Earth Rotation Variations

Richard S. Gross

Abstract

The theory currently used to study small variations in the Earth’s rotation that occur on time
scales longer than a day is reviewed. This theory is based on the principle of the conservation
of angular momentum. Using this principle, changes in the rotation of the solid Earth can be
shown to be caused either by changes in the mass distribution of the solid Earth or by torques
acting on the solid Earth. Such torques can be caused, for example, by the motion of the
atmosphere and oceans or by the gravitational effect of the Sun, Moon, and planets. When
applying this principle to the rotation of the Earth a number of simplifying assumptions are
made including: (1) linearity; (2) axisymmetry; (3) equilibrium oceans; (4) Tisserand mean-
mantle; (5) the core is uncoupled from the mantle; and (6) the rotational variations occur on
time scales much longer than a day. While the resulting theory has been successfully used
in the past to interpret the observed variations in the Earth’s rotation, it is argued that the
accuracy of the observations has improved to the point that the current theory is no longer
adequate and that a new, more accurate theory of the Earth’s rotation is needed.

Keywords

Earth rotation • Length-of-day • Polar motion • Universal time

1 Introduction

The Earth’s rotation changes on all observable time scales,
from subdaily to decadal and longer. The wide range of time
scales on which the Earth’s rotation changes reflects the wide
variety of processes that are causing it to change, including
external tidal forces, surficial fluid processes involving the
atmosphere, oceans, and hydrosphere, and internal processes
acting both within the solid Earth itself and between the fluid
core and the solid Earth. These changes in Earth rotation are
usually studied using the principle that angular momentum
is conserved as it is transferred between the solid Earth
and the fluid regions with which it is in contact. Using

R.S. Gross (�)
Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109, USA
e-mail: Richard.Gross@jpl.nasa.gov

the principle of the conservation of angular momentum the
equations governing small variations in both the rate of
rotation and in the position of the rotation vector with respect
to the Earth’s crust are derived. As a prelude to developing
an improved, more accurate theory of the Earth’s rotation,
particular attention is paid to the various assumptions and
approximations that are made when deriving these equations.
The approach taken here to derive the equations that are
currently used to study small changes in the Earth’s rotation
follows that of Smith and Dahlen (1981) and Wahr (1982,
1983, 2005) and has been recently reviewed by Gross (2007).

2 Long-Period Equations of Motion

2.1 Rigid Body Rotation

The equation expressing conservation of angular momen-
tum within a rotating terrestrial reference frame is (e.g.,

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_13
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Goldstein 1950):

@
@t

Œh.t/ C I.t/ � ¨.t/� C
¨.t/ � Œh.t/ C I.t/ � ¨.t/� D £.t/

(1)

where £(t) represents the external torques that are acting on
the Earth and where the angular momentum L(t) has been
separated into two parts: a part h(t) due to motion relative to
the rotating reference frame, and a part due to changes in the
distribution of the Earth’s mass and hence in its inertia tensor
I(t):

L.t/ D h.t/ C I.t/ � ¨.t/ (2)

Note that strictly speaking ¨(t) in these equations is the
angular velocity of the rotating reference frame with respect
to inertial space. But since the rotating frame will be later
attached to the solid body of the Earth, it is also taken to be
the angular velocity of the solid Earth with respect to inertial
space.

The first simplifying assumption that is made when deriv-
ing the equations governing the Earth’s variable rotation is
to assume that the variations are ‘small’. This is reasonable
because observations taken over the last century show that
the Earth’s rotation deviates only slightly from a state of
uniform rotation, being a few parts in 108 in speed, cor-
responding to changes of a few milliseconds in length-of-
day, and being about a part in 106 in the position of the
rotation pole with respect to the Earth’s crust, corresponding
to variations of several hundred milliarcseconds (mas) in
polar motion. Assuming that the variations are ‘small’, Eq.
(1) can be simplified by linearizing it.

Let the Earth be initially in a state of uniform rotation
¨o about the z-coordinate axis of the terrestrial reference
frame and let the frame be oriented within the Earth in
such a manner that the inertia tensor of the Earth is diag-
onal in that frame. In this initial state, the Earth is rotat-
ing at a constant rate ˝ about its figure axis, there are
no mass displacements, and there is no relative angular
momentum.

Now consider some general perturbation to this initial
state that introduces both mass displacements and relative
angular momentum. The perturbed relative angular momen-
tum, instantaneous rotation vector, and inertia tensor of the
Earth is:

h.t/ D ho C �h.t/

D hx.t/bx C hy.t/by C hZ.t/bz
(3)

¨.t/ D ¨o C �¨.t/

D ˝bz C ˝
�

mx.t/bx C my.t/by C mz.t/bz
� (4)

I.t/ D Io C �I.t/

D
0

@

A 0 0

0 B 0

0 0 C

1

A C
0

@

�Ixx.t/ �Ixy.t/ �Ixz.t/

�Ixy.t/ �Iyy.t/ �Iyz.t/

�Ixz.t/ �Iyz.t/ �Izz.t/

1

A

(5)

where the hat denotes a vector of unit length, the hi(t) are
the elements of the time-dependent perturbation �h(t) to the
initial value ho of the total relative angular momentum h(t),
the ˝mi(t) are the elements of the time-dependent perturba-
tion �¨(t) to the initial value ¨o of the total rotation vector
¨(t), the �Iij(t) are the elements of the time-dependent
perturbation �I(t) to the initial value Io of the total inertia
tensor I(t), and A, B, and C, the non-zero elements of the
initial inertia tensor Io, are the mean principal moments of
inertia of the Earth ordered such that A < B < C. Note that
ho D 0 because there is no relative angular momentum in the
initial state.

In Eqs. (3)–(5), the perturbations to the initial state are
arbitrary. But if it is now assumed that the perturbations are
small, so hi(t) << ˝C, mi(t) << 1, and �Iij(t) << C, and if
just terms of first order in small quantities are kept, then
the equatorial and axial components of the conservation of
angular momentum equation (1) becomes:

1

�r

@mx.t/

@t
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�

B .C � B/

A .C � A/
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my.t/ D
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where the external torques £(t) have been set to zero,

�2
r D

�

C � A

A

� �

C � B

B

�

˝2 (9)

and the �r,i(t), known as excitation functions, are:

�r;x.t/ D hx.t/ C ˝�Ixz.t/

˝
p

.C � A/ .C � B/
(10)

�r;y.t/ D hy.t/ C ˝�Iyz.t/

˝
p

.C � A/ .C � B/
(11)

�r;z.t/ D 1

C˝
Œhz.t/ C ˝�I zz.t/� (12)
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Equations (6)–(12) describe changes in the rotation of
triaxial bodies that are subject to small perturbing excitation
and can be applied directly to triaxial bodies that are rigid.
But the Earth is not rigid – it has a fluid atmosphere and
oceans, a fluid core, and a solid crust and mantle that can
deform in response not only to the applied excitation but also
to changes in rotation caused by the excitation. As shown
in the next section, deriving relatively simple equations
for the rotational motion of the Earth that account for its
deformable nature will require assuming more than what has
been assumed so far, namely, that the variations in relative
angular momentum, inertia tensor, and rotation are ‘small’.

2.2 Non-rigid Body Rotation

In general, all parts of the Earth including its fluid core,
solid crust and mantle, and fluid atmosphere and oceans
will respond to changes in rotation. And this response will,
in general, involve both motion and mass displacements,
causing changes in both relative angular momentum and
in the inertia tensor. The contribution of all parts of the
Earth to changes in relative angular momentum and in the
inertia tensor caused by changes in rotation thus needs to be
considered.

Because the crust and mantle of the Earth can deform,
they can undergo motion relative to the rotating reference
frame and hence can contribute to relative angular momen-
tum. This is taken into account in Earth rotation theory by
letting the rotating terrestrial reference frame in the perturbed
state be oriented in such a manner that the relative angular
momentum due to motion of the crust and mantle vanishes.
In this frame, known as the Tisserand mean-mantle frame
(Tisserand 1891), the motion of the atmosphere, oceans, and
core have relative angular momentum, but the motion of the
crust and mantle does not. Furthermore, if it is assumed that
the oceans stay in equilibrium as the rotation of the solid
Earth changes so that no oceanic currents are generated by
changes in rotation, a reasonable assumption if the rotational
variations occur on time scales much longer than a day, then
there are also no changes in relative angular momentum due
to motion of the oceans. Effects of the atmosphere can be
ignored here because of its relatively small mass and inertia
compared to the oceans. Thus, under the assumptions of
the Tisserand mean-mantle frame and of equilibrium oceans
only the core will contribute to changes in relative angular
momentum caused by changes in rotation.

Hough (1895) showed for a homogeneous, incompress-
ible, non-dissipative, fluid core with a rigid, elliptical
core-mantle boundary that, in the frequency domain, the

contribution of the core to changes in relative angular
momentum ıhi(¢) can be written as:

0

@

ıhx .�/

ıhy .�/

ıhz .�/

1

A D
0
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E iE 0 0

� iE 0 E 0

0 0 QE

1
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where to first order in the ellipticity "c of the core-mantle
boundary and at frequencies � << ˝ :

E D �

�2=˝
	

Ac (14)

E 0 D �� .1 � "c/ Ac (15)

QE D �˝Cc (16)

where Ac and Cc are the equatorial and axial principal
moments of inertia of the core. Equation (16) for Ẽ is
obtained by assuming that there is no coupling between the
core and the mantle.

Dahlen (1976) studied the passive influence of the oceans
on the Earth’s rotation, including the changes in the Earth’s
inertia tensor ıIij caused by changes in the rotation of the
Earth. In the absence of oceans he found:
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where a is the mean radius of the Earth, G is the Newtonian
gravitational constant, k2 is the second-degree body tide Love
number of the whole Earth, and no comes from the change
in the mean moment of inertia of the Earth caused by the
term in the centripetal potential that gives rise to purely radial
deformations.

The approach followed by Dahlen (1976) neglects the
effects of rotation on the Earth’s elasto-dynamics and also
neglects the Earth’s ellipticity as it modifies the Earth’s
elastic response. So for the wobble, Smith and Dahlen (1981)
took a hybrid approach in which the body tide Love number
k2 is replaced by an oceanless, wobble-effective Love num-
ber kw that is computed from normal mode theory. This not
only allows the deformation of the crust and mantle to be
more accurately modeled, it also allows the effects of mantle
elasticity and core structure to be included in the theory of
Hough (1895) for the response of the core to changes in the
rotation of the mantle.

In the presence of oceans, Dahlen (1976) found that
their equilibrium influence can been written in terms of an
“oceanic Love number” �kocn that modifies the body tide
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(or wobble-effective) Love number. Because of the non-
uniform distribution of the oceans, this oceanic Love number
is different for each component mi of the Earth’s rotation.
However, the average of the equatorial components was
taken to define a mean oceanic Love number �kocn,w for the
wobble, distinct from the oceanic Love number �kocn,s for
the spin. The non-uniform distribution of the oceans also
couples the equatorial components of the Earth’s rotation
to each other and to the axial component by introducing
off-diagonal elements in Eq. (17). However, this coupling
is weak, with the off-diagonal elements being about three
orders of magnitude smaller in numerical value than the
diagonal elements (Gross 2007). To first order, the coupling
introduced by the non-uniform distribution of the oceans can
therefore be ignored, both the spin-wobble coupling and the
coupling between the equatorial components.

In the above discussion about the changes in the iner-
tia tensor caused by changes in rotation the mantle was
assumed to be elastic. But the mantle is anelastic, causing
a modification 4kan to the Love number. Unfortunately,
accurate models of mantle anelasticity are not available, so
this modification to the Love number cannot be accurately
computed. In order to account for mantle anelasticity in the
rotational equations of motion at the frequencies of interest
here, namely, at frequencies � < ˝ , a hybrid approach was
taken. The wobble-effective Love number kw as modified by
equilibrium oceans and mantle anelasticity was eliminated
from the equations of motion by substituting the observed
complex-valued frequency �o of the Chandler wobble for
its theoretical value (which depends on the wobble-effective
Love number kw as modified by equilibrium oceans and
mantle anelasticity). The resulting final equations of motion
are (for details see Gross 2007):

1
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mz.t/ D ��z.t/ (20)

where the excitation functions �i(t) are:
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where A0 D (A C B)/2 is the average equatorial principal
moment of inertia of the Earth, Cm is the axial principal
moment of inertia of the crust and mantle, A0

m D A0 � Ac

is the equatorial principal moment of inertia of the crust and
mantle, and kr is a factor, whose value is near unity, that
accounts for the effects of rotational deformation on the axial
component:

kr D
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The deformation of the Earth associated with surficial exci-
tation processes that load the solid Earth has been taken into
account in Eqs. (21)–(23) by including the second-degree
load Love number k

0

2 where �k
0

an accounts for the effects
of mantle anelasticity on the load Love number and where,
because of core decoupling, the load Love number in the
axial component is modified by a factor ˛3. Expressions for
the excitation functions for processes that do not load the
solid Earth can be recovered from Eqs. (21) to (23) by setting
the load Love number k0

2 C �k0
an to zero.

Numerically, the real parts of the excitation functions
(21)–(23) can be written as (Gross 2007):

�x.t/ D 1:608 Œhx.t/ C 0:684˝�Ixz.t/�

.C � A0/ ˝
(25)

�y.t/ D 1:608
�

hy.t/ C 0:684˝�Iyz.t/
�

.C � A0/ ˝
(26)

�z.t/ D 0:997

Cm˝
Œhz.t/ C 0:750˝�Izz.t/� (27)

These results differ from those of Wahr (1982, 1983, 2005)
by about 2%, mostly because of differences in the values of
the numerical constants.

The theory of the Earth’s rotation described by Eqs. (18)–
(23) is a linearized theory in which it has been assumed that:
(1) the perturbing excitations are small with hi(t) << ˝C and
�Iij(t) << C; (2) the rotational response of the Earth is small
with mi(t) << 1; (3) the induced relative angular momentum
of the core is linearly related to changes in the rotation of the
solid Earth; (4) the induced deformations of the mantle, crust,
and oceans are linearly related to the changes in rotation;
(5) the rotating terrestrial reference frame is the Tisserand
mean-mantle frame; (6) the oceans stay in equilibrium as the
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rotation changes; (7) the core is uncoupled from the mantle;
(8) the crust, mantle, and core are axisymmetric; (9) the
rotational variations occur on time scales much longer than
a day; (10) the coupling between the components of rotation
introduced by a non-uniform ocean are negligibly small and
hence can be ignored to first order; and (11) the difference
in the oceanic Love number for the two components of
polar motion is negligibly small and hence to first order
can be replaced by a mean oceanic Love number for the
wobble. In addition, Eqs. (14) and (15) for changes in the
equatorial components of relative angular momentum caused
by changes in rotation are valid only to first order in the
ellipticity of the core.

The theory of the Earth’s rotation described by Eqs. (18)–
(23) is also a hybrid theory in which: (1) the body tide
Love number k2 has been replaced with a wobble-effective
Love number kw computed from normal mode theory in
order to more accurately model the structure of the core
and the deformation of the crust and mantle; and (2) the
theoretical Chandler wobble frequency has been replaced
with its observed value �o in order to account for the effects
of mantle anelasticity since no adequate theory of these
effects currently exists.

3 Discussion and Summary

Equations (18)–(23) describe small changes in the rotation
of a deformable axisymmetric body that is overlain by non-
uniformly distributed equilibrium oceans and that is subject
to small perturbing excitation. They are the standard equa-
tions currently used to study variations in the Earth’s rotation
and were developed in the late 1970s and early 1980s by
Smith and Dahlen (1981) and Wahr (1982, 1983). When
these equations were developed, Earth rotation observations
were much less accurate than they are today. For example, in
the late 1970s observations of polar motion were accurate
to a few mas. Today they are accurate to better than 50
microarcseconds. This great improvement in the accuracy of
the observations allows smaller signals to be studied today
than could be studied when the theory was developed, such
as the ellipticity of the Chandler wobble.

The Chandler wobble of a triaxial body is elliptical, as
can be seen in the rigid body case from Eqs. (6) to (7), the
solution of which in the absence of excitation is:

mx.t/ D m cos .�r t C ˛/ (28)

my.t/ D
�

A .C � A/

B .C � B/

�1=2

m sin .�r t C ˛/ (29)

where m is the amplitude of the motion along the x-axis
and ˛ is the phase of the motion. The motion described by
Eqs. (28) and (29) is prograde elliptical motion of frequency
� r. Using the observed values for A, B, and C of the whole
Earth (Groten 2004) and an amplitude m of 200 mas for the
Chandler wobble, these equations predict that the difference
between the semimajor and semiminor axes of the Chandler
ellipse is 1.34 mas for a rigid Earth. Of course, the real Earth
is not rigid. But the theory for the rotation of a deformable
Earth, Eqs. (18)–(23), applies to an axisymmetric body, not
to a triaxial body. As a result, the theory currently used to
study Earth rotation variations predicts that the Chandler
wobble is prograde circular, as can be seen by solving Eqs.
(18) and (19) in the absence of excitation, or from Eqs. (28)
to (29) by setting B D A. So the current theory of the Earth’s
rotation cannot be used to study the ellipticity of the Chandler
wobble even though Höpfner (2003) may have observed it in
modern space-geodetic polar motion observations.

The theory of the Earth’s rotation that is currently used
is nearly 30 years old and should be improved. It should
at least be extended to describe the rotation of a triaxial
body with a fluid core. It may be possible to still use the
theory of Hough (1895) in this case because it was developed
originally to study the motion of a fluid core caused by the
rotation of a triaxial mantle. More challenging may be the
extension of the theory to non-equilibrium oceans. While
it may be adequate to assume that the oceans remain in
equilibrium at long periods, tidal observations indicate that
the oceans are strongly out of equilibrium at the fortnightly
period (e.g., Gross 2009). Accounting for the dynamic nature
of the oceans may be the biggest challenge to improving the
theory of the Earth’s rotation.

As challenging as improving the theory of the Earth’s
rotation is, there have already been some promising
advances. Yoder and Standish (1997) and Van Hoolst and
Dehant (2002) included triaxiality in their theories of the
rotation of oceanless elastic bodies like Mars. More recently,
Chen and Shen (2010) have developed a theory of the Earth’s
rotation that accounts for the triaxiality of the mantle and
core, the anelasticity of the mantle, and dissipation in the
oceans. And Bizouard and Zotov (2013) have developed a
theory of the Earth’s rotation that accounts for the triaxiality
of the Earth and includes the effect of asymmetric, but still
equilibrium, oceans.

In addition to these efforts, the International Astronomical
Union and the International Association of Geodesy have
recently established a Joint Working Group on the Theory of
the Earth Rotation (Ferrándiz and Gross 2013). The purpose
of the Joint Working Group is to promote the development
of more accurate theories of the Earth’s rotation, not of just
polar motion and UT1 but also of nutation and precession.
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Variable Seasonal and Subseasonal Oscillations
in Sea Level Anomaly Data and Their Impact
on Prediction Accuracy

W. Kosek, T. Niedzielski, W. Popiński, M. Zbylut-Górska, and A. Wnęk

Abstract

Weekly sea level anomaly (SLA) maps are now available courtesy of the Archiving,
Validation and Interpretation of Satellite Oceanographic (AVISO) data. Using the Fourier
Transform Band Pass Filter (FTBPF) variable broadband seasonal and subseasonal oscil-
lations were computed as a function of geographic location. Irregular amplitude and phase
variations in these oscillations cause the increase of prediction errors of the SLA data for
a few weeks in the future. The amplitude and phase variations of the broadband annual
oscillation were computed by a combination of the FTBPF and the Hilbert transform. In
order to detect the impact of irregular amplitude or/and phase variations of the annual
oscillation on the SLA prediction errors, standard deviations maps of amplitude time
differences as well as of the products of phase time differences and amplitudes were
examined. The SLA data prediction errors in certain geographic regions of the ocean
seem to be caused mainly by nonlinear behaviour of the broadband annual oscillation. The
nonlinearities are probably driven by mesoscale eddies, and the significant impact on SLA
prediction errors was observed in the vicinity of the western boundary currents.

Keywords

Fourier transform band pass filter • Prediction • Satellite altimetry • Sea level change

1 Introduction

Sea level varies across multiple spatial and temporal scales,
and its changes are driven by eustatic and steric processes.
A radar-based satellite altimetry technique offers absolute
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observations of sea surface height (SSH) with respect to the
Earth’s centre of mass. The complexity of physical processes
which influence these variations is considerable, and hence
sea level modelling and prediction is still an ongoing chal-
lenge. Numerous researchers have scrutinised the problem
of seeking models suitable for sea level prediction (Röske
1997; Gregory and Lowe 2000; Rahmstorf 2007; Niedzielski
and Kosek 2009). In addition, there are dedicated systems
designed for calculating and publishing the sea level prog-
noses on maps. Noteworthy four initiative have to be men-
tioned: the Ocean Prediction Center of NOAA, the HYCOM
Consortium, MyOcean and Prognocean. The increased inac-
curacy of sea level predictions produced by the latter system
has recently been found to follow the locations where highly
nonlinear ocean processes act (Chelton et al. 2011), and
hence mesoscale eddies have been assumed to control depar-
tures from accurate prognoses (Niedzielski and Miziński
2013). Although the aforementioned correspondence has
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been identified a detailed diagnosis of the prediction error
is needed. The objective of the work discussed in this paper
is to verify the hypothesis that the reason behind inaccurate
prognoses of sea level change derived in real time using a
few empirical time series methods, within the system known
as Prognocean (Niedzielski and Miziński 2013), is related to
certain characteristics of selected annual broadband oscilla-
tion.

2 Prediction of Sea Level Anomaly Data

The gridded sea level anomaly (SLA) data for geographic
latitudes � 2 Œ�90I 90� and longitudes � 2 Œ0I 360� from
AVISO (Archiving, Validation and Interpretation of Satellite
Oceanographic Data) were used spatial resolution of 10 � 10.
The sampling interval of these data is equal to 1 week and
their time span is 1992–2013. These data are computed from
observations of altimetric and remote sensing satellites such
as TOPEX/Poseidon, ERS 1 and 2, Jason 1 and 2, Cryosat-2
and Envisat. The aim of Prognocean is to compute real-time
predictions of SLA data for lead times ranging from 1 to 14
days, making use of several methods constructed as combi-
nations of the polynomial-harmonic (PH) model with several
stochastic forecast methods, such as for instance autoregres-
sive (AR) and threshold autoregressive (TAR) techniques.
For each prediction method the maps of the root mean
square (RMS) prediction errors are generated (Niedzielski
and Miziński 2013). High RMS values of the SLA prediction
for PH C AR and PH C TAR combinations are similar for
both methods and are observed in the vicinity of the western
boundary currents, independently of the prediction method
applied (Fig. 1).

3 Analysis of Sea Level Anomaly DATA

To analyse the SLA data the Fourier transform band pass
filter (FTBPF) was used (Kosek 1995; Popiński 2008), and

hence the following formula was applied:

u�;� .t; !/ D FT�1
�
FT

�
x�;�.t/

�
P .!; �/

�
; (1)

where FT is the Fourier transform operator, x�,�(t)
is the SLA time series, u�,�(t, !) is the broadband
oscillation with the central frequency !, P .!; �/ D�

1 � ..! � �/ =ƒ/2 if j! � �j � ƒ

0 if j! � �j > ƒ
is the parabolic

transmittance function, � is the frequency argument and
ƒ is half of the frequency bandwidth.

The mean amplitude spectrum as a function of geographic
location and oscillation period T D �t=! is computed as:

bS�;�.T / D
r

2

n � 2k

Xn�k

tDkC1

ˇ
ˇu�;� .t; T /

ˇ
ˇ 2; (2)

where �t D 7 days is the data sampling interval, n is the
number of data in SLA time series, k D 20 is the number of
points to be dropped at the beginning and at the end of the
filtered oscillations time series due to filter errors.

The annual oscillation mean amplitude computed by Eq.
(2) is the greatest and reaches 25 cm at Arafura Sea, in the
areas of Kuroshio, Gulf Stream and Antarctic Circumpolar
currents, Red Sea, Thailand Bay and equatorial regions
(Fig. 2). The amplitudes of the semi-annual oscillation are
high in the areas where amplitudes of the annual oscillation
attain large values. The highest values of the order of 6–9 cm
are observed in the Baltic Sea, West and East Indian Ocean
and Arctic regions.

The mean amplitude of the annual oscillation for the
entire ocean � 2 Œ�90I 90�, the Northern � 2 Œ0I 90� and
Southern � 2 Œ�90I 0� Hemispheres is computed by bS.T / D
X

�

360X

�D1

bS�;�.T /. The mean amplitude of the annual oscil-

lation in the Northern Hemisphere is twice as big as in the
Southern Hemisphere (Fig. 3), as previously inferred (Kosek
2001). The peaks in these amplitude spectra correspond to
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Fig. 1 The RMS prediction error of SLA data for 14 days in the future computed with PH C AR (left) and PH C TAR (right) combinations
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Fig. 2 The mean amplitudes of the annual (left) and semi-annual (right) oscillations computed by the FTBPF for half of the bandwidth ƒ D 0:01
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Fig. 3 The mean amplitude spectrum of the entire ocean (heavy line), the Northern Hemisphere (thin line) and the Southern Hemisphere (dashed
line), computed by the FTBPF (ƒ D 0:01)

the integer multiplicities of the annual frequency e.g. the
semi-annual, 120-day and quarter-annual oscillations, which
suggests that the annual oscillation is broadband.

4 Amplitude and Phase Variations
of the Annual Oscillation

The broadband character of the annual oscillation suggests
that its amplitude and phase are variable. To compute varia-
tions of its amplitude and phase a combination of the FTBPF
and the Hilbert transform (HT) was applied. In this method
the HT of the broadband oscillation u�,�(t, !) is used as the
imaginary part to create the complex-valued time series:

z�;� .t; !/ D u�;� .t; !/ C i � HT
�
u�;� .t; !/

�
: (3)

It can be proved that (Gasquet and Witomski 1999; Popiński
2008):

z�;� .t; !/ DFT�1
�
FT

�
x�;�.t/

� � P .!; �/ � .sign .�/ C1/
�
:

(4)

To examine their influence on prediction errors of the SLA
data, variable amplitudes A�,�(t, !) and phases ��,�(t, !) of
z�,�(t, !) were computed.

To detect the variable amplitudes and phases the Mor-
let wavelet transform (MWT) can be applied too (Kosek
et al. 2006). Subsequently, the time series of the amplitude
differences �A�,�(t, !), as well as products of amplitudes
and phase differences A�;� .t; !/ � ���;� .t; !/ were com-
puted. Both, amplitude and phase differences were computed
as differences between the relevant values on succeeding
time moments. After subtracting the mean values of these
difference based time series their standard deviations were
computed (Fig. 4).

If amplitudes of oscillations are small then the phase
changes do not influence oscillation variability significantly.
Thus, phase differences were multiplied by amplitudes in
order to estimate their impact on the irregular character
of an oscillation. It can be noticed that the products of
amplitudes and phase time differences have bigger standard
deviations than the amplitude time differences. Therefore,
phase variations of the annual oscillation have greater impact
on irregular character of the annual oscillation than the
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Fig. 4 The standard deviations of the amplitude time differences (left) and the product of the amplitude and phase time differences (right) of the
annual oscillation

amplitude variations. The geographic regions of high signif-
icant amplitude variations are similar to geographic regions
of the phase variations of the annual oscillation.

5 Conclusions

The FTBPF analysis of the SLA data reveals that the annual
oscillation has a broadband character. It comprises oscilla-
tions with higher frequencies being integer multiplicities of
the annual frequency. The amplitude maxima of the semi-
annual oscillation are located in geographic regions where
the amplitude maxima of the annual oscillation occur. The
mean prediction errors of the SLA data for 14 days in the
future are usually considerable in geographic regions where
amplitude maxima of the annual oscillation are the largest.
Geographic regions of the significant phase and amplitude
variations of the annual oscillation correspond to high RMS
prediction errors of the SLA data. The increase of the
prediction errors of sea level anomaly data is mostly caused
by variable phases and amplitudes of the broadband annual
oscillation. It can be argued that the irregular phase variations
of the annual oscillation are the main causes of the increase
of the SLA prediction errors.
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Permanent GPS Networks in Italy: Analysis
of Time Series Noise

R. Devoti, G. Pietrantonio, A.R. Pisani, and F. Riguzzi

Abstract

Over the last few years numerous GPS networks in Italy have been installed and man-
aged, mainly by local authorities and institutions. Therefore the GPS stations have been
constructed with a variety of different monument types according to their needs and have
been operated in fairly different environmental conditions, such as in towns or industrial
regions, in the open country or mountainous regions. In this work we aim to assess the
reliability and repeatability of the station positions and to study the noise property of
different categories of GPS monument types. We analyze over 500 continuous GPS time
series in Italy with a mean temporal length of 5.6 years. All the GPS observations were
processed with the Bernese v5.0 software using a loose constraints approach. We include
45 sites in central Europe that are used as fiducial stations in the regional reference frame
realization. After fitting a linear drift, offsets and annual sinusoids and after filtering a
common mode movement of the whole network, the residual GPS time series represents
the noise of each GPS station. We analyze the residuals using different power spectrum
estimation schemes and estimate a power law noise model for each time series. The average
noise characteristics are compatible with outcomes from earlier studies but we were not able
to isolate distinct noise behaviors between different GPS monument types nor to ascertain
a preferred monumentation, as far as noise amplitude and spectral indexes are concerned.

Keywords

GPS time series • Italy • Power law noise • Spectral index

1 Introduction

The first attempt to build a nation-wide continuous GPS
network was undertaken by the Italian Space Agency (ASI)
in the late 1990s. Since then, ASI (ftp://geodaf.mt.asi.it)
delivers continuous GPS data from about 30 sites and main-
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tains the regional reference frame in cooperation with the
European reference frame consortium (EUREF). In 2001, the
Istituto Nazionale di Oceanografia e Geofisica Sperimentale
(OGS) started installing a local GPS network in the Friuli
region (Northeast Italy, http://www.crs.inogs.it/frednet) and
in 2004, the Istituto Nazionale di Geofisica e Vulcanologia
(INGV) started the construction of the first national GPS net-
work (RING, http://ring.gm.ingv.it/). At present, the RING
network consists of about 170 stations, most of them are
built on short or deep-drilled braced tripods (Avallone et al.
2010). More recently an increasing number of permanent
GPS sites have been installed by regional administrations and
private companies, dedicated mainly to topographic applica-
tions and commercial services. These networks, although not
conceived to measure long term ground deformations, have
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proved to be useful in augmenting the backbone of more
reliable geodynamic networks and are currently distributing
their data, making it available for the scientific community.
All these datasets are currently archived and processed at
INGV providing over 700 RINEX files per day for a mean
geometric inter-distance of about 20 km over the whole
country, thus realizing an important dataset for geodynamical
studies. In this perspective, the assessment of the perfor-
mance of a GPS station is very important, especially in the
Italian area were the crustal deformations are slow (at the
few mm/year level) but gradients (strain-rates) are changing
rapidly from point to point.

2 GPS Data andMethods

In this paper we restrict our analysis to all the permanent
GPS stations located in Italy. At present over 700 stations
are active and we selected 563 stations spanning a life time
between 2.5 years (912 days) and 14.7 years (5,382 days).
The mean length of the analyzed time series is 5.6 years
(2,046 days). All the data have been processed using the
Bernese Processing Engine (BPE) ver. 5.0 (Beutler et al.
2007). The processing strategy follows the EUREF Guide-
lines for EPN Analysis Centres (http://www.epncb.oma.be/_
documentation/guidelines/). The GPS orbits and the Earth’s
orientation parameters have been fixed to the combined IGS
products and an a priori loose constraint of 10 m has been
assigned to all site coordinates. The elevation-dependent
phase centre corrections and absolute phase centre calibra-
tions have been applied to the processing. The troposphere
modeling consists in an a priori dry-Niell model fulfilled by
the estimation of zenith delay corrections at 1-h intervals at
each site using the wet-Niell mapping function; in addition
one horizontal gradient parameter per day at each site is
estimated. The ionosphere is not modeled a priori, it is
removed by applying the ionosphere-free linear combination
of L1 and L2. The ambiguity resolution is based on the
QIF baseline-wise analysis. The final network solution is
solved with back-substituted ambiguities, if integer; other-
wise ambiguities are considered as real valued measurement
biases.

The daily GPS solutions are not estimated in a given refer-
ence frame but computed in a loosely constrained reference
frame. Therefore, the coordinates are randomly translated
or rotated from day-to-day and their covariance matrices
have large errors (on the order of meters) as a consequence
of the loose constraints applied to the a priori parameters.
To express the coordinate time series in a unique reference
frame and to compute the real covariance matrix, we perform
two main transformations. First the loose covariance matrix
is projected into a well-defined reference frame imposing
tight internal constraints (at the mm level), and then coor-

dinates are transformed into the ITRF2008 by a 4-parameter
Helmert transformation (translations plus scale factor); the
proper set of constraints is driven by the rank deficiency of
the normal matrices, a comprehensive discussion of the rank
deficiency of our solutions is given in Devoti et al. (2010).
The Helmert transformation uses 45 sites located in central
Europe as anchor stations for the regional reference frame
realization.

Velocities are estimated fitting simultaneously to all sta-
tion coordinates a linear drift, episodic offsets and annual
sinusoids. Figure 1 shows the estimated velocity field of
the regional GPS network. Offsets are estimated whenever
a change in the GPS equipment induces a significant step in
the time series whereas seasonal oscillations are accounted
for by annual sinusoids. At this stage outliers have been
rejected whenever the weighted residual exceeds three times
the global chi square (¦2). Finally the common mode error
signal has been filtered out with a procedure similar to
that adopted by Wdowinski et al. (1997), we compute daily
weighted mean of the residuals of a local fiducial network (57
stations) selected among the best performing stations. After
the common mode filtering the time series scatter decreases
by 25–35%, the final median weighted-root-mean-squared of
the residuals in the Vertical, East and North components are
4.3 mm, 1.4 mm and 1.4 mm respectively.

3 Noise Model

GPS site monuments are very heterogeneous in type since
there are many networks at regional and national scale
managed by different owners. We recognize three main types
(Fig. 2): shallow drilled braced tripods, formed usually by
four stainless steel rods arranged in a pyramid structure and
anchored to bedrock (a); a less standardized monumentation
fixed with steel structures on the roof of buildings (b)
and different types of concrete pillars with, usually, 1–2 m
foundations (c).

One source of noise in geodetic measurements is thought
to develop from random motions occurring at the connection
of the geodetic instrument to the ground (Wyatt 1982, 1989).
It is thought that this connection (i.e. the monument) follows
an approximately random walk process, i.e. a process in
which the monument position is expected to deviate from
an initial position as the square-root of time (Langbein and
Johnson 1997; Zhang et al. 1997). Several other papers
have demonstrated that daily GPS positions are temporally
correlated and not simply independent measurements using
both short-baseline, regional or globally distributed GPS
networks (e.g. Mao et al. 1999; Johnson and Agnew 2000;
Langbein 2004; Williams et al. 2004; Beavan 2005; Langbein
2008; King and Williams 2009; King and Watson 2010).
An overview of studies dealing with time-correlated noise in
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Fig. 1 Map of the estimated velocities of 563 continuous GPS stations
in Italy expressed in the Eurasian reference frame. Each GPS site spans
different life times, we select all those with a minimum of 2.5 years

of continuous observation time, the general average time span being
5.6 years. The error ellipses represent the 95% confidence region

this field is given in Santamaria-Gómez et al. (2011). Recent
analysis show that GPS time series include complex noise
processes that are less correlated than simple random walk
noise or in which the random walk process exhibits lower
amplitudes.

Noise processes are conveniently described in the fre-
quency domain, in a log–log plot, the noise spectrum shows
a general negative slope as frequency increases. For random
walk noise the slope is �2, for an intermediate noise called
flicker noise, the slope is �1, whereas for uncorrelated white
noise the slope is 0. In order to study the noise features of our
GPS time series we assume a generic power law model with
amplitude C0 and spectral index K superimposed on a white
noise component of amplitude WN. Thus the power spectrum
can be modelled as:

P.f / D C0f
K C WN (1)

where the unknowns are C0, K and WN. Using the above
model we estimate the noise parameters from the power
spectrum of each coordinate component (Vertical, East and
North directions) using a nonlinear optimization algorithm
based on the simplex search method (Lagarias et al. 1998).
We test different methods to compute the power spectral
density (PSD), each with positive aspects and known draw-
backs. Here we restrict the analysis to the direct fast Fourier
transform (FFT) and two particular algorithms that pro-
vide estimates of the power spectrum in different ways:
the Lomb–Scargle (LS) periodogram and the Welch (W)
power density spectrum. Data gaps in GPS time series are
not interpolated nor filled with any a priori noise model,
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Fig. 2 Three typical classes of GPS monument types: shallow drilled braced tripod anchored on bedrock (a); steel structure fixed on the roof of
buildings (b) and concrete pillar with usually 1–2 m foundations (c)

thus we prefer not to induce any artificial distortion to the
data in order to minimize the effect of arbitrary a priori
assumptions. The LS algorithm (Lomb 1976; Scargle 1982)
was developed to deal with unevenly sampled data estimat-
ing the power spectrum using least-squares. It provides an
approximation to the real spectrum and reduces to the Fourier
power spectrum in the limit of equal spacing. Unfortunately
the method provides a relative noisy power that does not
diminish in amplitude as the sample population increase,
see Scargle (1982) for a detailed discussion. Finally we
test a more complex algorithm that tends to decrease the
variance of the single periodogram (Welch 1967). It consists
of dividing the time series data into overlapping segments,
computing a modified power spectrum of each segment,
and then averaging the power spectral density estimates. We
apply a Hamming window to each segment and allow a 50%
overlap between segments. In order to obtain homogeneous
results we consider only spectral frequencies greater than
1/(5.6 years) and to avoid unwanted aliasing caused by large

outliers we apply a median based filter rejecting all residuals
exceeding 3.5 times the median.

4 Results and Discussion

Figure 3 shows the PSD of the common mode noise of the
regional solution of Italy obtained with the Welch method.
The spectra of the Vertical, East and North components of
the network center are shown in the panels, the red line
represents the fitted noise model (1). The common mode
analysis covers the entire time span (15.5 years) of the GPS
data, the white noise amplitude (WN) in the vertical direction
is about three times larger than the horizontal. The spectral
index ranges from �1.2 to �1.7, being slightly lower in
the horizontal rather than in the vertical components. Due
to the longer time span we are probably able to detect
lower frequency components of the common mode noise, i.e.
shifted towards a more pronounced random walk behavior,
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Fig. 3 Power spectrum of the
estimated common mode time
series. The vertical component is
shown in the upper panel and the
horizontal components in the
lower two. The red line
represents the fitted noise model
(power law C white noise). The
estimated spectral index (K) and
the white noise amplitude (WN)
are shown in the insets.
Frequency tags in
correspondence of 1 year, 1, 3,
6 month and 2 week periods, are
also indicated in the plot

compared with the noise properties of the individual GPS
time series that, on the average, have one-third of the obser-
vation time span. The common mode noise doesn’t show any
pronounced periodic signal in the three components, apart
from a weak seasonal signature.

The GPS time series are sampled at daily frequency but
the final residuals may look rather sparse and irregularly
sampled after the whole analysis process. Therefore we
compare the noise model parameters (1) obtained by fitting
three different power spectrum estimates as described in the
previous paragraph. The three classes of GPS monument
types show rather similar noise behavior, Table 1 shows the
median of spectral indexes (K) and white noise amplitudes
(WN) obtained from two well populated families: the roof
based (B) and the ground based (G) monuments, two broad
classes that aggregate respectively 238 and 151 stations. The
spectral index of the vertical residuals is only slightly less
than the horizontal K in all the spectral approaches, the
median being around �1.0, whereas the horizontal noise

is more correlated showing a median between �1.1 and
�1.3. The subscript and superscript numbers in Table 1
represent the 25 and 75 percentile of the distribution. It is
worth noting that the FFT and Lomb–Scargle spectra provide
more scattered parameters since they do not smooth the
power in any way, and furthermore the Lomb–Scargle is
intrinsically a noisy estimation (see the relevant discussion
in Scargle 1982). For this reason we adopt the Welch PSD
estimation scheme to infer the noise parameters. Figures 4
and 5 show the histograms of estimated spectral indexes
and white noise amplitudes for two relevant end members
of monument types, namely the ground-based (G) against
the roof-based (B) antennas (Fig. 4), and the ground-based
tripods (G-tripod) against the roof-based steel antenna mast
(Fig. 5). The white noise amplitudes are generally low and
reflect the intrinsic uncorrelated noise of the analysis, it
is on the order of the best performing SOPAC regional
solutions time series (Williams et al. 2004). Both Figs. 4 and
5 provide very similar results in terms of spectral indexes,
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Table 1 Summary table of the noise amplitudes obtained with three
different spectral analysis algorithms: FFT, Lomb-Scargle and Welch.
On rows, K are the medians of the spectral index amplitudes, whereas
WN are the medians of the white noise amplitudes, respectively of

the vertical, north and east components. The subscript and superscript
numbers represent the 25th and 75th percentile of the distribution.
Columns labeled with B and G refer respectively to roof-based and
ground-based monuments.

Vertical North East

B G B G B G

K �1:0�0:8
�1:4 �1:0�0:7

�1:2 �1:3�1:0
�1:6 �1:1�0:9

�1:6 �1:2�0:9
�1:6 �1:3�1:0

�1:7 FFT

WN 4.36.4
3.1 4.36.6

3.1 0.40.6
0.3 0.50.7

0.4 0.40.6
0.3 0.50.7

0.4

K �1:0�0:7
�1:3 �0:9�0:7

�1:2 �1:2�0:9
�1:6 �1:2�0:9

�1:6 �1:2�0:9
�1:6 �1:2�0:9

�1:6 Lomb Scargle

WN 4.56.7
2.8 4.96.8

3.1 0.40.6
0.3 0.50.7

0.4 0.40.6
0.3 0.50.7

0.4

K �0:9�0:8
�1:2 �0:9�0:7

�1:1 �1:1�1:0
�1:4 �1:1�1:0

�1:4 �1:2�1:0
�1:5 �1:3�1:1

�1:5 Welch

WN 5.28.0
3.7 5.78.8

3.9 0.50.7
0.4 0.60.8

0.4 0.50.7
0.4 0.60.8
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Fig. 4 Comparison between the roof (B, blue bars) and the ground
anchored (G, green bars) monuments, the two classes include a
total of 238 and 151 GPS stations respectively. The K distribu-
tion of the considered stations is shown on the left panel and the

WN amplitude distribution on the right panel. The numbers in the
insets refer to median values of the relevant distributions. Note that
the darker green arises from the intersection of the two G and B
classes

and no clear differences can be found between the monument
types, not even between the ground-based tripods, generally
considered as the best performing monuments. This partially
confirms previous findings concerning regional networks
mainly located in the US (e.g. Williams et al. 2004; Langbein
2008) in which the inferred spectral indexes of the power
law noise range between �0.9 and �1.4. Similarly a recent
paper by Santamaria-Gómez et al. (2011) treating globally
distributed time series concluded that 71% of the sites show a
dominant flicker noise component (K D �1). Beavan (2005)
reports lower values with averages ranging between �0.6

and �0.5 for the continuous New Zealand GPS network.
Since the latter findings are based on short time series (2–
4.5 years), low K values are not surprising since the low
frequency content cannot be properly resolved. A different
study that assesses the stability of GPS monumentation from
short-baseline time series shows spectral indexes very close
to those presented in this study but with noise amplitudes
at least one order of magnitude lower (King and Williams
2009). Furthermore King and Watson (2010) demonstrate
that unmodeled multipath or subtle variations in the GPS
constellation are able to produce several millimeters tem-
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Fig. 5 Histograms of the ground-based tripods (G-tripod, green bars)
and the roof-based steel antenna mast (B-roof, blue bars), the two
classes count 67 and 143 GPS stations respectively. The K distribution
of the considered stations is shown on the left panel and the WN

amplitude distribution on the right panel. The numbers in the insets
refer to median values of the relevant distributions. Note that the darker
green arises from the intersection of the two G and B classes

poral variations in time series. Thus it is hard to believe
that what we observe in our time series is a real monument
motion, we instead believe that errors in geophysical models
or biases in the reference frame (orbits and Earth orientation)
may be the main source of the observed correlated noise.
We are aware that this work is still at a preliminary stage,
in future we intend to use more sophisticated approaches
(e.g. Bos et al. 2013) that allow us to treat massive data
and assess the noise content of extensive GPS networks in
different ways. This is an important step in order to be able
to resolve as close as possible the long term noise component
(random-walk) and thus compute reliable uncertainties for
the GPS velocities (see e.g. Langbein 2012).
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VADASE: State of the Art and New
Developments of a Third Way to GNSS
Seismology

E. Benedetti, M. Branzanti, G. Colosimo, A. Mazzoni, and M. Crespi

Abstract

In recent years, extensive work has been done to effectively exploit Global Navigation
Satellite Systems (GNSS) for estimating important earthquake parameters such as the
seismic moment and magnitude (i.e. GNSS Seismology). The rapid and accurate assessment
of these parameters is of crucial importance to achieve reliable tsunami generation scenarios
and eventually dispatch an early warning. In this framework, Geodesy and Geomatics
division (AGG) of Sapienza University of Rome developed a new approach to obtain
in real-time the 3D displacements of a single GNSS receiver. This solution, called
VADASE (Variometric Approach for Displacement Analysis Standalone Engine), utilizes
the broadcast orbits and the time differences of the high-rate (i.e. 1 Hz or more) carrier
phases observations to ascertain the receiver movements over short intervals at a few
centimeters accuracy level in real-time.

First we summarize the state-of-art of VADASE. Then, we illustrate the most recent
developments of the algorithm, which include model refinements, single frequency (L1)
capability and functionality with Galileo real data. Finally, we present the first results of
an automatic procedure enabled by VADASE real-time capabilities. The epoch-by-epoch
displacements (i.e. velocities) of approximately 100 stations of the IGS (International GNSS
Service) high-rate (i.e. 1 Hz) network are retrieved every 15 min using VADASE, and the
whole network can be characterized in terms of noise level (ranging from 1 to 5 mm/s for
the horizontal and from 2 to 10 mm/s for the height); on this basis, corresponding thresholds
(i.e. 3-sigma) could be set up in order to highlight significant displacements caused by an
earthquake and eventually raise a tsunami alarm.
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1 Introduction

The Global Positioning System (GPS) has been repeatedly
proven to be a powerful tool to estimate coseismic dis-
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placements and waveforms, with accuracies ranging from
few millimeters to few centimeters. These promising results
were achieved following two main strategies: the Differential
Positioning (DP) and the Precise Point Positioning (PPP)
(Bock et al. 1993; Kouba 2003; Larson et al. 2007; Larson
2009; Ohta et al. 2012; Xu et al. 2012; Hung and Rau 2013).

In particular, GPS-derived displacement waveforms can
contribute both to the modelling of fault rupture and to the
seismic moment estimation, since GPS is not affected by
the saturation problems experienced by seismometers located
near the epicenters of strong earthquakes. In the last years
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some authors (Bock et al. 2000; Langbein and Bock 2004;
Blewitt et al. 2006; Bock and Genrich 2006) addressed the
problem to retrieve displacement waveforms in real-time,
with accuracies of few centimeters, from GPS high-rate
observations (1 Hz or more).

In this context, the variometric approach VADASE (Var-
iometric Approach for Displacements Analysis Standalone
Engine) has been proposed in Colosimo et al. (2011a) and
Colosimo (2013) as a third way to GNSS Seismology. The
approach is based on time single differences of carrier phase
observations continuously collected using a standalone GPS
receiver and standard GPS broadcast products (orbits and
clocks) that are available in real-time. Hence, one receiver
works in standalone mode and the epoch-by-epoch displace-
ments (equivalent to velocities) are estimated. Then, they are
summed over the time interval when the earthquake occurred
to retrieve coseismic displacements and waveforms. Since
VADASE does not require either additional technological
complexity or a centralized data analysis, in principle, it can
be embedded into the GPS receiver firmware and work in
real-time. Moreover, differently from DP and PPP, VADASE
does not require phase ambiguity fixing and it is also able
to work with single frequency data only. The effectiveness
of VADASE was already proved through the application to
the catastrophic Tohoku-oki earthquake (United States Geo-
logical Survey (USGS) M D 9.0, March 11, 2011, 05:46:24
UTC) (Colosimo et al. 2011b; Branzanti et al. 2013).

Here we present the state of the art of the imple-
mentation and the new developments and applications of
VADASE.

In Sect. 2 a short description of the variometric approach
estimation model is recalled and main developments of
VADASE with respect to its first implementation are pre-
sented.

In Sect. 2.2 VADASE model refinements are discussed.
In Sect. 2.3 VADASE single frequency (L1) capability is
presented through its application to the Emilia earthquake
(United States Geological Survey (USGS) M D 6.0, May 20,
2012, 02:03:51 UTC) Pondrelli et al. (2012). In Sect. 2.4 the
first application of VADASE to Galileo real data is described.
In Sect. 3 a different application of VADASE is presented:
the (near) real time network monitoring. In Sect. 4 we present
our conclusions and discuss future research directions
for GNSS Seismology, in particular, toward the real-
time application of the variometric approach, considering
observations collected from geodetic (dual frequency
and multi-constellation) and low-cost (single-frequency)
receivers.

2 VADASE State of the Art and New
Developments

2.1 VADASE Fundamentals

VADASE is an algorithm able to estimate, on the basis of
carrier phase observations and broadcast orbits, the velocity
of a GNSS receiver between two observations epochs. The
receiver displacements waveforms, for short intervals (few
minutes), can be retrieved from the estimated velocities by
simple integration. The results presented in this section are
all obtained using observation and broadcast orbit RINEX
(Receiver Independent Exchange Format) files.

Here we recall the functional model of the least square
estimation of the variometric approach in order to bet-
ter assess the developments discussed in the next subsec-
tions. For a complete description of the VADASE estimation
model, please refer to Colosimo et al. (2011a), Colosimo
(2013), and Branzanti et al. (2013)

We assume that subscript r refers to a particular receiver
and superscript s refers to a satellite; ˚s

r is the carrier phase
observation of the receiver with respect to the satellite; � is
the carrier phase wavelength; �s

r is the geometric range (i.e.,
the distance between the satellite and the receiver); c is the
speed of light; ıtr and ıts are the receiver and the satellite
clock errors, respectively; T s

r is the tropospheric delay along
the path from the satellite to the receiver; ps

r is the sum of the
other effects (relativistic effects, phase center variations, and
phase windup); and ms

r and �s
r represent the multipath and the

noise, respectively. Equation (1) is the difference in time .�/

between two consecutive epochs (t and t C1) of carrier phase
observations in the ionospheric-free combination (˛ and ˇ

are the standard coefficients of L3 combination referred to
the two phases L1 and L2)

˛Œ��˚s
r �L1 C ˇŒ��˚s

r �L2 D .es
r � ��r C c�ıtr/C

C �
Œ��s

r �OR � c�ıts C �T s
r C Œ��s

r �EtOl C �ps
r

�C
C �ms

r C ��s
r (1)

where es
r is the unit vector from the satellite to the receiver,

��r is the (mean) velocity of the receiver in the interval t and
t C1, Œ��s

r �OR is the change of the geometric range due to the
satellite’s orbital motion and the Earth’s rotation, Œ��s

r �EtOl is
the change of the geometric range due to the variation of the
solid Earth tide and ocean loading.
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Fig. 1 Comparison between
VADASE 2011 undetrended
solutions Colosimo et al. (2011a)
vs current version. Displacements
for P496 station during the Baja
California, Mexico earthquake
(Mw 7.2, 4 April 2010)

The term .es
r � ��r C c�ıtr/ contains the four unknown

parameters (the 3-D velocity ��r and the receiver clock error
variation �ıtr / and .Œ��s

r �OR � c�ıts C �T s
r C Œ��s

r �EtOl C
�ps

r / is the known term that can be computed on the
basis of known orbits and clocks and of proper well-known
models (for a complete orbits, clocks and atmosphere error
analysis, please refer to Colosimo (2013)). The least squares
estimation of the 3-D velocities is based upon the entire set
of variometric equation (1), which can be written for two
generic consecutive epochs (t and t C 1). The number of
variometric equations depends on the number of satellites
common to the two epochs, and at least four satellites are
necessary in order to estimate the four unknown parameters
for each consecutive epoch couple.

In the next subsections we present the main developments
of the VADASE implementation.

2.2 Known Term Computation Algorithm
Refinements

In Colosimo et al. (2011a), it was shown that the velocities
estimated with VADASE were generally affected by bias
that displayed their signature as a trend in the displace-
ment waveforms computation obtained by simple velocities
integration over time. Since the first implementation of
VADASE, the software has been continuously developed

and some refinements have been carried out in the code.
In particular, in the known term computation function some
subroutines were added in order to improve the accuracy
of the time used in the orbits computation. Specifically, an
iterative routine has been added in order to perform a receiver
clock estimation (in single epoch) based on code obser-
vations and a priori reference coordinates. Also a correct
Sagnac effect model has been refined (Colosimo 2013). This
code refinement significantly improved VADASE solutions
in terms of amplitude of trends that cumulate in the displace-
ments waveforms. In Fig. 1 is shown the comparison between
the current and 2011 version of VADASE. In particular,
we applied the current VADASE to the P496 5 Hz data
during the Baja California, Mexico earthquake (Mw 7.2, 4
April 2010, 22:40:42 UTC) already analyzed in Colosimo
et al. (2011a), where the displacement waveforms were
affected by a trend. The current VADASE displacements
waveforms are no longer affected by significant trends in
a 5 min time interval. We want to remark that, in order to
provide fast and reliable magnitude estimations (earthquake
early warning), the estimation of static offset from GPS
displacements waveforms is performed over short intervals.
For the Tohoku-oki earthquake (USGS M D 9.0, March 11,
2011, 05:46:24 UTC), for example, reliable magnitude was
estimated extracting static offsets from the Japanese GPS
Earth Observation Network (GEONET) 120 s after the event
time (Colosimo 2013).
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Fig. 2 Comparison between
VADASE L3 and L1 solutions
over the 120 s interval
02:04:00-02:06:00, May 20, 2012
(DOY 141), GPS time, 1 Hz data
collected from MO05 station

2.3 VADASE Single Frequency (L1)
Capability

Here we show the current capability of VADASE to process
single frequency (L1) data applying the Klobuchar (1987)
ionospheric model in order to remove the ionospheric delay.
In Fig. 2 are shown displacements waveforms estimated for
MO05 station 1 Hz data collected during the Emilia earth-
quake (United States Geological Survey (USGS) M D 6.0,
May 20, 2012, 02:03:51 UTC, Pondrelli et al. 2012). For this
earthquake, 7 permanent stations data were processed with
VADASE and the solutions compared with the ones obtained
with other well-established strategies and softwares (RMSE
for L3 solutions with respect to the reference ones within
1.1 cm in horizontal and within 1.5 cm in height, L1 solutions
with respect to L3 and the four reference ones within 1.7 cm
in horizontal and within 1.8 cm in height, Benedetti et al.
2014) Here, in order to limit our discussion on VADASE
single frequency capability, we show only VADASE L3
(ionospheric free combination) and L1 (single frequency L1)
results for one station. The agreement in terms of Root Mean
Square Error (RMSE) of the difference between the two
solutions, over a 2 min time interval, is 0.4 cm in horizontal
and 1.7 cm in height. VADASE in single frequency has been
also tested with low cost receivers (U-blox). The obtained
results are promising and the possibility of deploying dense
networks of low cost receivers for monitoring purposes is
currently under investigation.

2.4 VADASE Galileo Capability

VADASE was already tested with Spirent simulated full
Galileo constellation data (Colosimo 2013), we show
now the first application of VADASE to real Galileo
data.

Specifically, M0SE permanent station 1 Hz RINEX 3.0
format data collected on 2013, Sep. 10 (86400 observed
epochs) were processed using only Galileo observations. In
standard configuration VADASE rejects non redundant solu-
tions (i.e. less than 5 satellites observed in two consecutive
epochs). For this application it was forced to run also with 4
satellites observed, since, at the moment, only Galileo E11,
E12, E19 and E20 are operational.

For this first real data test, a single frequency configura-
tion was chosen (L1C). The algorithm succeeded in all the
consecutive epoch pairs with the above 4 Galileo satellites
simultaneously observed (about 7,700). In Fig. 3 results for
a 300 s sample are shown in terms of estimated velocities.
The RMSE of the estimated velocities (compared to the null
reference real velocity) are respectively at 1, 3 and 4 mm/s for
East, North and Up components. In Fig. 4 the displacements
obtained by simple integration of the estimated velocities
are shown. Since only four Galileo satellites were used in
the processing, this results are only to prove the VADASE
Galileo capability and a deeper analysis of the accuracy
achievable with only Galileo data will be carried out in the
next future.
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Fig. 3 Sample of 300 s of
VADASE estimated velocities—4
Galileo satellites data for M0SE
permanent station 2013, Sep. 10

Fig. 4 Sample of 300 s of
VADASE displacement
waveforms—4 Galileo satellites
data for M0SE permanent station
2013, Sep. 10

It is also important to underline that in this first
only Galileo real data test, it was not possible to
apply the ionospheric model correction since it was not
recorded in the Galileo navigation file supplied by Leica
Geosystems GR25 receiver. The VADASE ionospheric
free combination for Galileo data is currently under
development.

3 VADASE (Near) Real-Time Network
Monitoring

In this section we present the application of VADASE as a
tool for (near) real-time network monitoring. An automatic
routine has been implemented in order to download from the
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Fig. 5 Sample statistics of
VADASE application to IGS high
rate sites (15-min, 1 Hz rate data).
RMSE of East, North and Up
velocities are in m/s
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Fig. 6 VADASE velocities bias
over 15 min

high rate directory of the Crustal Dynamics Data Information
System (CDDIS) the IGS (International GNSS Service)
high rate stations data (Dow et al. 2009; Noll 2010). In
this directory the observations (in RINEX format) of more
than 100 worldwide stations are available. For each station,
15-min interval (1 Hz rate) are uploaded, as soon as they
are collected. The implemented routine downloads all the
available files referred to the last 15 min with respect an input
time and automatically runs VADASE on the downloaded
files. Then, all the VADASE output files (i.e. the epoch-
by-epoch estimated parameters) are analyzed and for each
station possible outliers with respect to threshold values are
highlighted. Finally, statistics and plots are automatically
generated.

In Fig. 5 statistics referred to one 15 min sample interval
are shown for some stations. RMSE values for estimated
velocities (with respect to the presumed null reference veloc-
ity) for East, North and Up components for each station are
plotted. The RMSE values range (depending on permanent
stations characteristics) from 1 to 5 mm/s for the horizontal
and from 2 to 10 mm/s for the height. The distribution
of velocities bias (over the same 15 min interval) shown
in Fig. 6 supports the effectiveness of the current version
of VADASE in bias mitigation (90% of stations between
�0:001 and 0.001 m/s in all components). This tool is useful
to achieve two main results. On one hand it is possible to
evaluate the noise level of each station in terms of velocity
estimation and then monitor the stability of this level. On
the other hand, it is possible to mark a threshold useful to
highlight statistically significant fast movements.

4 Discussion and Conclusions

With respect to the first VADASE implementation some
model refinements have been done. The current version is
able to mitigate the biases in the velocity estimation and
the detrending of the retrieved displacement waveform is no
more needed when the velocity integration interval is limited
to few minutes (what was proven sufficient and effective in
order to estimate reliable earthquake magnitude Colombelli
et al. 2013).

The VADASE single frequency capability has been fully
developed. Some experiments with low cost single frequency
receivers are in progress also to support the possibility
of deploying dense networks of receivers for monitoring
purposes.

First tests on real Galileo data have been successfully per-
formed. The integration of the GPS and Galileo observations
processing is currently under development.

An automatic routine able to continuously process 15 min
length observation files of a worldwide permanent stations
network as soon as they are available has been presented.
Stacking the estimated solutions, it is possible to evaluate
the noise level of each station in terms of velocity estima-
tion. Once a station is characterized it is possible to mark
a threshold useful to highlight statistically significant fast
movements.

The software, written in C/C++ language, in its current
version, runs with I/O files structure. Also a real-time data
stream structure of the VADASE implementation is currently
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under development in order to process real time observations
broadcasted in RTCM (Radio Technical Commission for
Maritime Services) format via NTRIP (Networked Transport
of RTCM via Internet Protocol). Therefore it is possible to
draw two different scenarios for VADASE real-time appli-
cations. In the first, VADASE runs directly on board GNSS
receivers and broadcasts solutions (for example in NMEA-
like (National Marine Electronics Association) format, a
very light data in terms of transmission band); in this con-
text VADASE has been already tested on board a receiver
working in real-time with short interval observation files.
In the second scenario VADASE runs in a dedicated server
over real-time broadcasted observations; this functionality
has been already tested in the frame of a cooperation with
DLR Institute for Communications and Navigation at Oberp-
faffenhofen. In conclusion, VADASE new developments and
applications prove once more its effectiveness for GNSS
Seismology.
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On the Spatial Resolution of Homogeneous
Isotropic Filters on the Sphere

Balaji Devaraju and Nico Sneeuw

Abstract

Interest in filtering on the sphere was rejuvenated by the necessity to filter GRACE data,
which has led to the development of a variety of filters with a multitude of design methods.
Nevertheless, a lacuna exists in the understanding of filters and filtered fields, especially
signal leakage due to filtering and resolution of the filtered field. In this contribution, we
specifically look into the latter aspect, where we take an intuitive and empirical approach
instead of a rigorous mathematical approach. The empirical approach is an adaptation of the
technique used in optics and photography communities for determining the resolving power
of lenses. This resolution analysis is carried out for the most commonly used homogeneous
isotropic filters in the GRACE community. The analysis indicates that a concrete number
for the filters can only be specified as an ideal number. Nevertheless, resolution as a concept
is described in detail by the modulation transfer function, which also provides some insight
into the smoothing properties of the filter.

Keywords

Empirical approach • Filters • Filtering on the sphere • Modulation transfer function •
Spatial resolution

1 Introduction

The advent of the GRACE satellite mission (Tapley et al.
2004) has revived the subject of filtering on the sphere, which
was long forgotten after the seminal contribution of Jekeli
(1981). Filtering is and has been a central subject of GRACE
data processing as the GRACE data needs to be filtered due to
the presence of high-frequency noise that manifests itself as
north-south stripes (Swenson and Wahr 2006). A variety of
filters have been developed since the launch of the GRACE
mission (e.g., Kusche 2007; Swenson and Wahr 2006), which
has made it daunting to choose a filter as reflected by the
some of the studies (e.g., Werth et al. 2009; Longuevergne
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Institute of Geodesy, University of Stuttgart, Geschwister-Scholl-Str.
24D, 70469 Stuttgart, Germany
e-mail: devaraju@gis.uni-stuttgart.de

et al. 2010). Spatial resolution is integral to the discussion of
filter choice as it determines the resolvability of features after
filtering, and hence, the usability of the dataset for the given
study.

In physical geodesy, spatial resolution of a gravity field,
given in terms of spherical harmonic coefficients up to
complete degreeL, is expressed as the half-wavelength ( 1

2
)

of the harmonicL at the equator.

 1
2

D � aE

L
� 20; 000

L
; (1)

where aE is the semi-major axis of the ellipsoid approx-
imating the Earth. The value  1

2
is the Nyquist-Shannon

sampling required along the equator, and also approximately
the spacing between the zeros of the Legendre polynomial of
degreeL. Due to the isotropic nature of spherical harmonics,
this value is assumed to hold over the entire sphere. However,
Laprise (1992) points out that the half-wavelength at equator
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is one of many possible values for the resolution, and also
proposes that at best such values can only be used as an upper
limit. When we apply a filter to a band-limited field, we are
still left with a field that is band-limited up to L, but with a
different resolution. In one-dimensional Fourier analysis, the
resolution of a filter is taken to be the 6 dB point, which is
the filter width at half of the amplitude at the peak (Harris
1978). However, the idea of resolution has not been studied
in the case of filters on the sphere. Thus, our quest in this
contribution is to determine the resolution of a filtered field,
albeit empirically.

We will first detail the mathematical background behind
filtering in Sect. 2, following which we will illustrate the
idea of spatial resolution and the methodology to determine
it in Sect. 3. In the same section we will apply the method
to some filters commonly used in the GRACE community
to determine their effective resolution. We will then test
the estimates for the resolution by filtering GOCE gravity
anomalies in Sect. 4. Finally, we will summarize our findings
and draw conclusions in Sect. 5.

2 Filters and Filtering on the Sphere

Any square integrable scalar function (e.g., gravity field)
f .!/ on a sphere (˝) can be represented in terms of a
spherical harmonic spectrum

f .!/ D
1X

lD0

lX

mD�l
Flm Ylm.!/ D

X

l;m

Flm Ylm.!/ ;

(2a)

Ylm.!/ D
8
<

:

Nlm Plm.cos �/ eim� ; m � 0

.�1/m Y �
l;�m.!/ ; m < 0

; (2b)

Nlm D .�1/m
s

.2l C 1/
.l �m/Š

.l Cm/Š
; (2c)

Flm D
Z

˝

f .!/ Y �
lm.!/ d˝ ; (2d)

d˝ D 1

4�
sin � d� d� ; ! D .�; �/ : (2e)

where Ylm.!/ are the geodetic normalized complex surface
spherical harmonics of degree l and order m with jmj � l ;
� , � are the co-latitude and longitude of the point ! on the
sphere; Flm are the geodetic normalized spherical harmonic
coefficients of degree l and order m; Plm.cos �/ are the
Associated Legendre functions of degree l and order m; and
Nlm is the normalization factor.

Filtering a scalar field f .!/ given on the sphere ˝ can
be performed by taking a weighted average of a region
around the point of concern !, where the weights and the
region are prescribed by a filter function. The filter functions
on the sphere, like the covariance functions, are two-point
functions in that the filter weights are specified for a pair
of points. The pair constitutes the point whose filtered value
is sought (!), and the point, within the region specified by
the filter function, to which the weight is applied (!0). Thus,
the filter function is denoted as b.!; !0/, and the filtering
operation to obtain the filtered field, Nf .!/, is mathematically
expressed as

Nf .!/ D
Z

˝0

f .!0/ b.!; !0/ d˝ 0 ; (3)

where the filter function satisfies the following condition:

Z

˝0

b.!; !0/ d˝ 0 D 1 : (4)

In this study, we will only be concerned about filters
whose weights depend only on the spherical distance ( )
between the points ! and !0. Such filters are rotationally
symmetric and translation invariant, and hence called homo-
geneous isotropic filter functions. The homogeneity property
of these filters renders this filtering operation as a convolu-
tion operation (Jekeli 1981). Further, due to their dependency
only on the spherical distance, they take a special spectral
form

b. / D
1X

l D 0

Bl

lX

m D �l
Ylm.!/ Y

�
lm.!

0/ (5a)

D
1X

l D 0

.2l C 1/Bl Pl .cos / ; (5b)

where Pl.�/ are the unnormalized Legendre polynomials
with  being the spherical distance between ! and !0. As it
can be seen from (5b) the speciality is that the spectrum of the
filter depends only on the degree of the spherical harmonics,
which makes them ideal for designing a variety of filters
(e.g., Jekeli 1981; Sardeshmukh and Hoskins 1984). Now,
combining (2a), (3) and (5a), we get the spatial and spectral
forms of the filtering operation.

Nf .!/ D
Z

˝0

f .!0/ b. / d˝ 0 D
X

l;m

Ylm.!/Bl Flm : (6)
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Fig. 1 Methodology for determining the resolution of homogeneous
isotropic filters. The light gray lines indicate the unfiltered input signal
and the dark gray lines indicate the filtered output. The level of

distinction between the two peaks in the filtered and resolved field
can be quantified by the quantity modulation. The method is illustrated
using the Gaussian filter of radius 285 km

3 Spatial Resolution

Spatial resolution defines the smallest possible feature that
can be identified distinctly from its surroundings (Lillesand
and Kiefer 1994). In signal processing, resolution is in
general associated with sampling as expounded by the corre-
sponding sampling theorem, for example, Nyquist-Shannon
sampling theorem in the Euclidean space. As mentioned
earlier, it becomes difficult to use such definitions once some
filtering is performed on the field that changes its resolution.
The optical and remote sensing communities use resolution
charts to determine the resolution of lenses, which can be
adapted for our problem. The resolution chart consists of a
number of vertical and horizontal lines of varying thickness
drawn at varying spacings. These charts are then imaged by
the sensors and the least distance between the fully resolved
lines is taken as the resolution of the lenses (Lillesand
and Kiefer 1994). We base our method on this technique
to determine the resolution of the homogeneous isotropic
filters.

3.1 Methodology

We define a scalar field g.!/ on a unit sphere defined as

g.!/ D
X

jDP;Q

ı.!; Q!j / ; (7)

where ı.�; �/ is the Dirac’s pulse on the sphere (Freeden and
Schreiner 2009), located at the points P and Q, which are
separated by a spherical distance of  PQ. The Dirac’s pulse
is defined as a pulse with unit area at the point where it is
located, which is expressed as

Z

˝

ı.!; Q!j / d˝ D
(
1 ; ! D Q!j
0 ; elsewhere

: (8a)

Its spherical harmonic spectrum is given as

ı.!; Q!j / D

8
<̂

:̂

X

l;m

Ylm.!/ Y
�

lm. Q!j / ; ! D Q!j

0 ; elsewhere
: (8b)

Smoothing g.!/ with an isotropic filter gives

Ng.!/ D
Z

˝0

b. / g.!0/ d˝ 0 ;

D
Z

˝0

X

l;m

Bl Ylm.!/ Y
�

lm.!
0/

X

j;n;k

Ynk.!
0/ Y �

nk. Q!j / d˝ 0 ;

D
X

j

X

l;m

Bl Ylm.!/
X

n;k

Y �
nk. Q!j / ıln ımk ;

D
X

j

X

l;m

Bl Ylm.!/ Y
�

lm. Q!j / : (9)

The above equation suggests that the filtered field Ng.!/ is the
sum of the weights at ! with respect to !P and !Q. Since
the filters that we deal with in this study are rotationally
symmetric and homogeneous, (9) can be rewritten as

Ng.!/ D
X

j

X

l;m

Bl Ylm. Q!j / Y �
lm.!/ :

This suggests that the Ng.!/ is equivalent to the sum of the
filter located at the pointsP andQ. We scrutinize the filtered
field to see if the two Dirac’s pulses are resolved, if not, we
increase the separation  PQ between the signals until they
can be seen distinctly in the filtered field. The sequence is
depicted in Fig. 1. This method was also employed by Harris
(1978) to demonstrate the spectral resolution of different
filter windows in the harmonic analysis of time-series. We set
up the field g.!/ for the computation by placing the Dirac’s
pulses at 30ı (P) and 30.5ı (Q) co-latitudes in the zero
meridian, and increase the separation in steps of 0.1ı. This
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set up was chosen for ease of computation as the separation
 PQ is the difference between the two positions. All the
computations were performed in the space domain in order
to avoid truncation errors.

3.2 Modulation Transfer Functions

The concept of spatial resolution does not merely stop at
the point where we are able to identify the two signals as
distinct. It continues with the qualitative question of how
distinct are those signals from each other before and after
filtering. At the point of resolution, the two signals are
distinct, but as we separate the two signals a bit further,
then they are readily recognizable as two different entities
(cf. Fig. 1). Therefore, there is a need for quantifying the
level of distinctness of the resolved signals in comparison
with the unfiltered signals. Again, this has already been
treated by the remote sensing community, where they use the
concept of modulation transfer function (MTF) to quantify
the distinction between the two signals.

Originally, in the unfiltered field, there is no signal in
the region between the Dirac pulses, but due to filtering we
initially see only one ‘peak’ (Fig. 1a, b) and then a ‘valley’
between the two resolved ‘peaks’ (Fig. 1c). As we separate
the signals farther apart, beyond the point of resolution, the
valley deepens (Fig. 1d). We will denote the ordinate of the
local minimum in the valley as modulation, which when zero
indicates completely resolved signals (Fig. 1e). As we deal
with rotationally symmetric functions, this local minimum in
the valley will always occur at the mid-point of the geodesic
between P and Q. Thus, modulation is

Modulation D 2 b

�
 PQ

2

�
: (10)

However, the peak value does not share such a property as
it shifts from the mid-point of the geodesic between P and
Q to the points P and Q themselves. Therefore, they have
to be determined empirically. Now, we can set our rules for
estimating resolution: When modulation is less than peak
signal, we can say that the signals are resolved. Since the
modulation and peak signal values are subjective to the filter
function, we need to devise a relative measure, which we
denote as the modulation transfer (MT). It is defined as

MT D 1 � Modulation

Peak signal
: (11)

As the name suggests MT indicates how the original
modulation between the two signals is transferred to the
filtered field. The MT takes a value zero until the signals are

0.0

0.5

1.0

M
od

ul
at

io
n 

tr
an

sf
er

 [
 ]

0 1000 2000 3000 4000 5000 6000

Signal separation [km]

von Hann

20
0

40
0

60
0

80
0

10
00

16
00

20
00

40
00

 km

48
0

Gaussian

10
0

20
0

30
0

40
0

50
0

80
0

10
00

2000 km

28
5

L
 =

 1
0

20

30

10
0

20
0

60 Ideal low−pass

Fig. 2 Modulation transfer functions of three homogeneous isotropic
filters for different filter parameters—filtering radius is the parameter
for Gaussian and von Hann filters and maximum degree of spherical
harmonic expansion for ideal low-pass filter. The black lines indicate
the functions for the filters used in Fig. 3

resolved, because the peak signal always resides at the mid-
point until the signals are resolved. As soon as the signals
are resolved the valley starts appearing. and the value of
modulation starts decreasing. Therefore, the value of MT
starts to increase. Further, by plotting the MT against the
signal separation for a given set of filter parameters we get
a unique curve, which we denote as the modulation transfer
function MTF (Fig. 2). The important feature of the MTF
curve is the slope of the curve between 0 and 1 MT, which
directly depends on the speed at which the filter function
decays from peak value to zero. This is indicated by (10),
where filters which decay slowly to zero (e.g., Gaussian)
will not reduce quickly to zero modulation, and therefore, the
corresponding MTF will have a gentle slope and vice versa
(cf. Fig. 2).

3.3 Resolution of a Band-Limited Field

The term band-limited refers to the select bandwidth of
frequencies that represents a given field in the spherical



Spatial Resolution of Filters on the Sphere 71

Table 1 Definitions, and spectral and spatial cross-sections of the
three homogeneous isotropic filters in this study

Filter Definition

Ideal low-pass Bl D
(
1 ; 0 � l � L

0 ; l > L

Gauss b. / D ˇ
e�ˇ.1�cos /

1� e�2ˇ
; ˇ D ln.2/

1� cos 0

von Hann b. / D
8
<

:

�

2

�
1C cos � 

 0

�
; 0 �  �  0

0 ;  0 �  � �
;

� D 2
�
�2 � 2

0

�

�2
�
1� cos 0

� � 2 2
0

Ideal low-pass Gaussian von Hann

b. /

Bl

The quantity  0 is the smoothing radius defined for the Gaussian and
the von Hann filters and L is the cut-off degree for the ideal low-pass
filter

harmonic spectral domain. In spherical harmonics, the spec-
tral frequencies are denoted by the degree (l) and order
(m) of the spherical harmonic expansion. In general, gravity
field estimates are disseminated as a spherical harmonic
expansion up to a maximum spherical harmonic degree
(L), thereby making the field band-limited between the
frequencies 0 and L. As per (2a), by definition the spherical
harmonic expansion extends up to infinity, but in practice
these are truncated up toL due to a variety of reasons: spatial
sampling, measurement accuracy and computational limits.
This band-limitation can be expressed as a low-pass filter
as shown in Table 1. This filter is also referred to as the
ideal low-pass filter, Shannon window and box-car filter. Due
to the nature of its spectrum the filter is homogeneous and
isotropic, which allows us to determine the resolution of a
band-limited field using the method proposed in Sects. 3.1
and 3.2.

The MTF of the ideal low-pass filter is shown in Fig. 2 for
a range of spherical harmonic degrees. The striking features
of the curves are their steep slopes and the oscillation of
the modulation transfer values around one. While the steep
slope of the MTF indicates that the filters decay to zero
very quickly, the oscillation is caused by the well-known
ringing effect caused by the truncation of a harmonic series
at a finite degree L. Further, the magnitude of the overshoot
and its convergence to unity clearly depends on the number
of spherical harmonic degrees involved in the synthesis: the
more the harmonic degrees the less the overshoot and faster
the convergence. This is a characteristic feature of the ideal
low-pass filter.

3.4 Resolution of Homogeneous Isotropic
Filters

Here, we will take a look into two well-known homogeneous
isotropic filters, Gaussian and von Hann filters, of which
the Gaussian filter is the most widely used filter in the
GRACE community due to its relative ease of implemen-
tation and also its effectiveness in smoothing out noise.
These two filters are adaptations of their counterparts in one-
dimensional harmonic analysis, and were adapted by Jekeli
(1981) amongst a host of other filters. Their filter definitions
are given in Table 1, where it is obvious that both the filters
are parameterized via the filter radius. Also what is obvious
is the continuous nature of the Gaussian and the piece-wise
nature of the von Hann filters.

The Gaussian function is a unique function in that its
spatial and spectral forms are both bell-shaped and its tail
converges to zero asymptotically. Further, the filter radius
of the generic form of the Gaussian filter is the spread of
the filter, but for the sake of convenience the filter radius is
defined at a certain fraction of the peak value—in geodesy
the fraction is taken to be one-half of the peak value. It is
also interesting to note that a von Hann filter, whose radius is
twice that of the Gaussian filter radius, gets half of its peak
value at half of the filter radius. This unusual coincidence
allows us to tacitly verify whether resolution of a filter can
be defined using the 6 dB point. Due to this reason, von Hann
filters whose filtering radii are twice that of Gaussian filters
are chosen. The MTF of Gaussian and von Hann filters are
shown in Fig. 2 for a variety of filtering radii.

The MTF of the Gaussian filter shows that the resolution
is much more than the filter radius, which negates the use of
6 dB point as the resolution of the filter. It rises from zero and
converges to one in an asymptotic manner, while increasing
along a gentle slope. Due to these characteristics, the Gaus-
sian filter takes a lot of distance to completely resolve the
two input pulses. For example, the Gaussian 500 km filter—
a very widely used filter radius for the Gaussian filter in
the GRACE community—needs a signal separation of at
least 2,500 km to completely resolve the signals. This can
be explained by the asymptotic nature of the Gaussian filter,
which implies that in realistic signal scenarios the Gaussian
will provide smoother signals.

The MTF curves for the von Hann filter show that the
resolution is slightly more than the filter radius itself. The
slope of those curves are steeper than those of the Gaussian
MTF curves, but gentler than those of the ideal low-pass
filter. The piece-wise nature of the filter is clearly reflected
in the way the MT values increase sharply from zero. In
contrast to the ideal low-pass filter, both the Gaussian and
von Hann filter MTF curves do not show any overshoot
beyond 1 because they do not suffer from ringing effect.
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Fig. 3 Comparison of unfiltered
and filtered GOCE data along a
longitudinal profile of 82ıE. The
filter parameters are given in the
brackets adjacent to the label
indicating the filter
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4 An Example: Filtering GOCE

We now put to test our estimates of the resolution of the
three filters, and for this purpose we use the Gravity field and
steady state Ocean Circulation Experiment (GOCE) (Rum-
mel et al. 2011) data computed by Bruinsma et al. (2013)
and apply the three filters to the GOCE gravity anomalies.
For the case of the ideal low-pass filter, we chose a cut-off
degree of L D 60, which provides a resolution of 490 km.
The Gaussian filter of radius 285 km and von Hann filter of
radius 480 km provide the same resolution as the ideal low-
pass filter, and therefore, they can be compared with each
other to study their resolving abilities. In Fig. 3, we show the
filtered fields as a profile along the longitude 82ıE overlaid
with a 5ı grid. The profile we have chosen here provides a
lot of features that are both smaller and larger compared to
the maximum achievable resolution.

The ideal low-pass filter, despite experiencing ringing
effect, provides a more detailed filtered output, and the
Gaussian provides the smoothest output. The Gaussian fil-
tered profile shows very few details in addition to a strong
reduction in the amplitude. In terms of detail, the von Hann
filtered profile is no better, but it certainly retains a lot more
amplitude than the Gaussian. Here, the level of detail and
the amplitude retained is associated with the slope of the
corresponding MTF curve, because the slope determines how
fast the filter is able to resolve two signals completely. To

understand this let us consider the two negative peaks located
at 80ı and 85ı which are separated by a narrow wedge. These
two peaks are 5ı (� 550 km) apart, and therefore, we can
expect them to be resolved as the separation is greater than
the resolution of all the three filters. As expected the two
peaks are resolved by all the three filters, but the modulation
of the wedge differs according to the filter used. This is
important while choosing a filter, because for changing the
resolution of a given field one might be interested only in
losing finer details but retaining the amplitudes as much
as possible in which case a filter with a steep slope in
the MTF must be preferred. The situation is opposite in
the case of filtering data to reduce noise, where the details
are mostly corrupted by noise, and hence a need for a
smoother filtered field. This explains the success enjoyed by
the Gaussian filter in negotiating the noise levels in GRACE
datasets.

While the above example vindicates our method for deter-
mining resolution, there are also some examples that illus-
trate the ideal nature of our method. For example, the two
positive peaks at 55ı and 60ı are again separated by 5ı, but
they are unequal signals and there is some signal between
the peaks. Based on the distance between the two peaks we
might expect them to be resolved, but they are unresolved
mainly because they are unequal signals, with the peak at 55ı
significantly higher than the one at 55ı. This is the reason we
term the signal separation at the least non-zero modulation
transfer of a given filter the ideal resolution.
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5 Summary and Conclusions

In this study, we outlined a method to determine the resolu-
tion of homogeneous isotropic filters defined on the sphere.
Initially, our aim was to provide a single number for the
resolution, but it was shown that the idea of resolution
can be qualitatively extended to describe the distinction
between signals via modulation transfer. The modulation
transfer when plotted against a host of signal separation
distances between the distinct signals gives the modulation
transfer function. An interesting feature of the modulation
transfer function is that its slope describes the smoothing
properties of the filter. Nevertheless, in cases where only one
number needs to be specified we propose the use of the ideal
resolution, which is the signal separation at the least non-zero
modulation transfer. Further, it was also shown in the GOCE
filtering example that care must be exercised in using these
numbers as the modulation transfer function is constructed
from an ideal scenario.
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On Time-Variable Seasonal Signals: Comparison
of SSA and Kalman Filtering Based Approach

Q. Chen, M. Weigelt, N. Sneeuw, and T. van Dam

Abstract

Seasonal signals (annual and semi-annual) in GPS time series are of great importance for
understanding the evolution of regional mass, e.g. ice and hydrology. Conventionally, these
signals are derived by least-squares fitting of harmonic terms with a constant amplitude
and phase. In reality, however, such seasonal signals are modulated, i.e., they have time-
variable amplitudes and phases. Davis et al. (J Geophys Res 117(B1):B01,403, 2012) used
a Kalman filtering (KF) based approach to investigate seasonal behavior of geodetic time
series. Singular spectrum analysis (SSA) is a data-driven method that also allows to derive
time-variable periodic signals from the GPS time series. In Chen et al. (J Geodyn 72:25–
35, 2013), we compared time-varying seasonal signals obtained from SSA and KF for two
GPS stations and received comparable results. In this paper, we apply SSA to a global
set of 79 GPS stations and further confirm that SSA is a viable tool for deriving time
variable periodic signals from the GPS time series. Moreover, we compare the SSA-derived
periodic signals with the seasonal signals from KF with two different input process noise
variances. Through the comparison, we find both SSA and KF obtain promising results from
the stations with strong seasonal signals. While for the stations dominated by the long-term
variations, SSA seems to be superior. We also find that KF with input process noise variance
based on variance rates performs better than KF with the input process noise variance based
on simulations.

Keywords

Kalman filtering • Singular spectrum analysis • Time variable seasonal signals

1 Introduction

Over the last few decades, the Global Positioning System
(GPS) has demonstrated its capability for monitoring defor-
mations of the Earth’s surface. Seasonal signals in GPS
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position time series, which are well known to result from
surface mass loading (e.g., Dong et al. 2002), are of great
value for studying the evolution of surface mass cycles, e.g.,
the hydrological cycle.

Conventionally, seasonal signals are retrieved with a lin-
ear model via least squares fitting prior to or simultaneous
with some noise assumption (e.g., Williams et al. 2004),
which results in constant amplitudes and phases. In real-
ity, seasonal variations are not constant from year to year,
neither in amplitude nor in phase. Several studies have
suggested determining the time-varying periodic signals by
relying, for instance, on KF based techniques (Murray and
Segall 2005; Davis et al. 2012), on piecewise continu-
ous linear polynomials (Davis et al. 2006), on a flexible
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semi-parametric model (Bennett 2008), on non-parametric
annual signal (Freymueller 2009; Tesmer et al. 2009), or on
singular spectrum analysis (SSA) (Chen et al. 2013).

In line with Davis et al. (2012) and Chen et al. (2013)
in this paper, we further investigate the abilities of singular
spectrum analysis and the KF based approach to extract
time-varying periodic signals from the GPS time series. To
fulfill the goal, we first apply SSA to the time series from
79 global IGS stations with more than 11 years of weekly
measurements. To obtain a better understanding of the KF
approach, we adopt two scenarios to handle the input process
noise variances. One is directly based on variance rates from
Davis et al. (2012), the other is to simulate the random walk
process variances and implement an ensemble KF approach
(Weigelt et al. 2013). It should be noted that those two
scenarios, in principle, follow Davis et al. (2012).

As SSA has its prominent advantages, e.g., model
independence, and disadvantages, e.g., time-consumption,
another purpose of this work is trying to investigate the
capability of KF with different settings in separating time-
variable periodic signals. However, true time variable
seasonal signals buried in the GPS time series are unknown.
We thus tentatively take the SSA-derived results as reference
in comparison to the results from the two KF scenarios,
which helps us to understand the application of KF to the
GPS time series analysis.

This paper is organized as follows: in Sect. 2 we shortly
outline the methodologies of SSA and KF. This is followed
by a brief discussion of the strengths and weaknesses of both
approaches in this section. Section 3 is the data analysis part,
which demonstrates the performance of SSA. In this section,
we also implement a comparison between SSA and two KF
scenarios. Finally, we draw a conclusion in Sect. 4.

2 Methodology

2.1 Singular Spectrum Analysis

Following the description of SSA from Broomhead and King
(1986) and Vautard and Ghil (1989), the main procedure of
the technique can be summarised as follows:
1. Given a centered time series xt (1 � t � N ), the

first step is to construct a covariance matrix. We follow
the VG algorithm, proposed by Vautard and Ghil (1989),
to compute the covariance matrix, which is based on
the lagged-covariance matrix of the process xt . With a
maximum lag (or window size), M , the matrix CVG has a
Toeplitz structure, i.e., constant diagonals corresponding
to equal lags:

CVG D

0
BBBBBBBBB@

c0 c1 c2 � � � � cM�1

c1 c0 c1 � � � � �
c2 c1 c0 � � � � �
� c2 c1 c0 � � � �
:::

:::
:::

:::
:::

:::

� � � � � c1

cM�1 � � � c1 c0

1
CCCCCCCCCA

; (1)

where entries cj , 0 � j � M � 1, are the covariance of x

at lag j . Its unbiased estimates are:

cj D 1

N � j

N �jX
iD1

xi xiCj ; 0 � j � M � 1 (2)

2. We apply eigenvalue decomposition to C in order to
obtain the eigenvalues, �k , and eigenvectors (also called
EOFs), Ek , of this matrix. These are then sorted in
descending order of �k, where index k D 1; 2; : : : ; M .
The kth principal component (PC) is

ak
i D

MX
j D1

xiCj Ek
j ; 0 � i � N � M (3)

3. We reconstruct each component of the original time series
as given by Vautard et al. (1992)

xk
i D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

1
i

iP
j D1

ak
i�j Ek

j 1 � i � M � 1

1
M

MP
j D1

ak
i�j Ek

j M � i � N � M C 1

1
N �iC1

MP
j Di�N CM

ak
i�j Ek

j N � M C 2 � i � N:

(4)

4. According to Plaut and Vautard (1994), harmonic oscil-
lations can be identified in terms of the three funda-
mental properties: (1) two consecutive eigenvalues are
nearly equal; (2) the two corresponding time sequences
described by EOFs are nearly periodic, with the same
period and in quadrature; (3) the associated PCs are in
quadrature.
In the practical implementation of the SSA algorithm, the

choice of the lag-window size M is of great importance.
Generally, the lag-window size M depends not only on the
length of the data but also on the desired periodic cycles.
Both empirical and mathematical rules exist in the literature
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to suggest how to make a proper choice of the lag-window
size M . When dealing with GPS time series, Chen et al.
(2013) demonstrated that a window size of 2 or 3 years, that
is, 105 or 157 weeks of weekly GPS time series, is appropri-
ate. Attention is required since the standard SSA technique
can only handle evenly sampled data. For dealing with
GPS time series with gaps, we employed a modified SSA
algorithm which was suggested by Schoellhamer (2001). In
this modified SSA algorithm, a parameter f .0 � f � 1/

is introduced that represents a specified fraction of allowable
missing data points within a given window size M . A more
detailed description about the application of SSA technique
to the GPS time series analysis is referred to (Chen et al.
2013).

2.2 Kalman Filtering

We follow the concept described in Davis et al. (2012) and
implement the model (see Eq. (5)) that includes stochastic
annual and semiannual terms using linear Kalman filtering.

x.t/ D x0 C v.t/.t � t0/

Ca0
1.t/ cos.2�f0.t � t0// C b0

1.t/ sin.2�f0.t � t0//

Ca0
2.t/ cos.4�f0.t � t0// C b0

2.t/ sin.4�f0.t � t0//;

(5)

where f0 D 1 cpy and t0 is a reference epoch, v.t/ is time-
variable velocity term and a0

1.t/, a0
2.t/, b0

1.t/ and b0
2.t/ are

instantaneous time-variable amplitudes.
We apply the same dynamic process model (random

constant for x0 and random walk for stochastic terms) but
we adopt two different strategies to handle the input process
variance. One scenario is the simple case which is based on
the variance rates (variance rate values of 1 mm2 year�3 for
the rate term and 0:5 mm2 year�1 for sinusoidal amplitudes)
given by Davis et al. (2012) and multiplied by the time
interval between two epochs. We call this scenario as KF 1
through this paper.

The other scenario of dealing with input process noise
variance is to simulate the random walk process noise,
normalize and scale them onto corresponding GPS noise
level (Weigelt et al. 2013). In practice, this is done by
integrating a random sequence drawn from a Gaussian dis-
tribution. In order to minimize a possible dependency on the
used sequence of random numbers, an ensemble approach
is employed, i.e. the estimation is repeated using different
random sequences of the process noise. We obtain an ensem-
ble of solutions which are averaged. We call the second
scenario as KF 2 likewise through the paper. It should be
noted that a Rauch–Tung–Striebel smoother (Rauch et al.
1965) is employed during the running of KF.

2.3 Strengths andWeaknesses of SSA
and KF

Both SSA and KF have their own merits. One big advantage
of SSA is model independence so that SSA is free of any
prior model or noise assumptions. This big merit leads to its
drawback at the same time: it does not produce uncertainties
of the result. On the contrary, the KF approach is based not
only on the functional model (the observation model (Eq. (5)
and the state transition model) but also on the stochastic
model (observation noise and process noise). Together both
models control the output estimates and produce uncertain-
ties. Model dependence is the big drawback of KF because
the assumed functional model and stochastic model will
force the estimation process to follow prescribed behaviors.
Inaccurate models will produce erroneous estimates.

Another drawback of applying SSA in the GPS time series
analysis is its time-consumption. Due to the complicated
composition of the GPS time series, an empirical lag-window
size M works for one GPS time series while it might not
work for another. A trial and error of the window size makes
the analysis process time-consuming. As a result, SSA, to
a certain extent, is not a globally efficient analysis tool in
comparison with the KF based approach. This motivated us
to look into the model-based approaches, especially the KF
based approach. On the basis of Murray and Segall (2005)
and Davis et al. (2012), we search for a better understanding
of functional models and stochastic models of KF. To be
specific, within the framework of Davis et al. (2012), we
compare two process noise models in this work.

3 Data Analysis

As an extension of (Chen et al. 2013), we follow its settings
regarding SSA and will not repeat the details. We select 79
height time series with more than 10 years of weekly obser-
vations from IGS stations over the globe. We use the weekly
height GPS time series from Collilieux et al. (2012), which
preserves crustal deformation information in the coordinate
time series, especially at the seasonal timescale. Figure 1
shows the station distribution.

We analyze 79 height time series with SSA and separate
modulated annual and semiannual signals from original GPS
time series. During the analysis, a window size of 157 weeks
(3-year window) is most frequently assigned (55 stations).
For the remaining stations, a 2-year window (8 stations), a
4-year (12 stations) and a 5-year window (4 stations) are
applied to accommodate the specific GPS time series. To
some extent, it validates the description in Chen et al. (2013)
about the choices of window-size (a 2- or 3-year window
should be appropriate).
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Fig. 1 Distribution of the selected 79 GPS stations and five examples
of SSA analysis. Gray lines in each subplot are original time series and
blue curves are seasonal signals extracted by SSA. Different colored

dots represent the GPS stations with different window size in the course
of SSA analysis. Green, red, blue, magenta dots stand for the GPS
stations with a window size of 105, 157, 209 and 261 weeks respectively

Annual signals appear frequently in the first and second
components due to the significant annual signal in GPS
height time series. We choose five examples to show the
performances of SSA, see Fig. 1. The five subplots clearly
demonstrate that seasonal signals derived by SSA follow the
original time series quite well. KOUR and COCO contain
strong annual signals. DAV1 and ZIMM show both annual
and semi-annual signals. While for FAIR, the semi-annual
signal dominates the whole time series.

To assess the performance of the KF based approach, we
utilize the two scenarios described in Sect. 2.2. Due to the
unknown true time variable seasonal signals, we tentatively
take the results from SSA as the reference, i.e.‘true’ signal,
and compare with the results from KF with two process
noise scenarios. Note that assuming the SSA-derived results
as reference is an assumption that we can not yet fully
verify. The correlation and RMS of difference between SSA
and the KF based technique are employed to evaluate the
performance.

Tables 1 and 2 show the statistical results of the com-
parison. At the annual signal level, both scenarios (KF 1
and KF 2) achieve a high correlation (more than 0.9) and

Table 1 Comparison of correlation between SSA and two KF
scenarios

Max Min Mean

Only annual

SSA vs KF 1 0:99 0:74 0:96

SSA vs KF 2 0:99 0:48 0:91

Only semi-annual

SSA vs KF 1 0:98 0:19 0:84

SSA vs KF 2 0:91 0:19 0:67

AnnualCsemi-annual
SSA vs KF 1 0:99 0:79 0:95

SSA vs KF 2 0:98 0:64 0:89

relatively good RMS values (less than 1 mm), which results
from the strong annual signal buried in the GPS height time
series. At this level, KF 1 performs better than KF 2. At the
semi-annual signal level, correlations decrease while they are
still acceptable. RMS values do not change much because
of weak semi-annual signal strength. At the combination
level (annual plus semi-annual), correlations are high in
both scenarios. As for RMS values, with the signal strength
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Table 2 Comparison of RMS values (mm) between the difference of
SSA and two KF scenarios

Max Min Mean

Only annual

SSA vs KF 1 2:0 0:3 0:6

SSA vs KF 2 3:4 0:4 0:9

Only semi-annual

SSA vs KF 1 3:4 0:2 0:5

SSA vs KF 2 2:7 0:4 0:9

AnnualCsemi-annual
SSA vs KF 1 4:3 0:4 0:8

SSA vs KF 2 8:3 1:0 2:3

increasing, KF 1 could still receive a mean RMS less than
1 mm. However, the mean RMS value of KF 2 increases to

2.3 mm. As the input process noise variances balance the
predicted and observed values during the running of KF, we
alter the scale factor in KF 2 by 10 times and 100 times
larger or smaller, which means to enlarge or reduce the input
process noise variances, to investigate its sensitivities. No
matter how we alter the scale factor, the performance of KF
2 is still inferior to KF 1. It may indicate that the method of
KF 2 to create input process noise variances is not suitable
for this situation. One possible reason is that the KF 2 does
not consider the time interval in the GPS time series when
generating the noise process. In Weigelt et al. (2013), the
CHAMP data they used were equally sampled while data
gaps exist in the GPS time series we used.

Figure 2 show two examples of the comparison at annual,
semi-annual and seasonal levels. DRAO, which is located in
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Fig. 2 Comparison of the extracted annual signals (subplot a and b),
semi-annual signals (subplot c and d) and their combinations (subplot
e and f) in DRAO and CLAR, respectively. The long-term variation
presented in CLAR is extracted by SSA. It is interesting to find in the
subplot (b) that the signal that KF obtains in an annual signature at the

beginning and the end of the CLAR coordinate time series is modeled as
the long-term variation by SSA. Given the amplitude of the variabilities
of the long-term and annual signals produced by SSA, this would seem
to be a more reasonable partitioning of the signal, but we have no data
with which to test this assumption
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Penticton, Canada, has very strong seasonal signals while
long-term variation dominates CLAR, which is located in
Claremont, United States. In cases like DRAO, both KF
scenarios obtain very promising results. Nevertheless, in
cases like CLAR, the KF based technique performs poorly
probably due to the insignificant annual and semiannual
signals, or the inaccurate observation model we used in KF.

The solid lines in magenta in the subplots Fig. 2b, d, f are
the long-term variations in CLAR which is extracted by SSA.
It is interesting to find that the signal that KF obtains in an
annual signature at the beginning and the end of the CLAR
time series is modeled as the long-term variation by SSA.
Given the amplitude of the variabilities of the long-term and
annual signals produced by SSA, this would seem to be a
more reasonable partitioning of the signal, but we have no
data with which to test this assumption. This issue will be
followed up in future work.

4 Conclusion

In this study, we confirm the capability of singular spectrum
analysis for modeling the time variable periodic signals
over 79 GPS stations. As a data-driven approach, SSA is
capable of extracting amplitude and phase modulated sea-
sonal signals from the GPS time series. In addition, we also
demonstrate two ways of handling the input process noise
variances in the KF process. The results show that both KF
scenarios work well for the stations that have strong seasonal
signals. Nevertheless, for stations which are dominated by
long-term variations, SSA seems to be superior.

In terms of a comparison of two KF scenarios over 79
GPS stations, we conclude that KF 1 which is based on the
variance rates (Davis et al. 2012) outperforms KF 2 that
is based on the simulation of the process noise variances
(Weigelt et al. 2013). It indicates that the Weigelt et al. (2013)
way of dealing with input noise variances is not an optimal
choice for the case of GPS time series analysis.
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Extensive Analysis of IGS REPRO1 Coordinate
Time Series

M. Roggero

Abstract

The work describes the analysis conducted on the IGS REPRO1 coordinate time series, in
order to detect GNSS permanent stations periodic behavior. Frequency analysis requires
cyclostationary time series, while observed coordinates time series are not cyclostationary
because of discontinuities of different kind and origin and of long term linear or non linear
trend. For this reason time series offsets and trends must be estimated and eliminated, prior
to conduct the harmonic analysis.

Discontinuities are usually documented by IGS, but undocumented discontinuities also
exists and need to be detected. The long term component of the signal is generally modeled
as a linear trend, but the linear model is often inadequate to obtain cyclostationary residuals.
An alternative model based on a discrete time Markov process will be adopted.

The study has been conducted on the up component of the REPRO1 raw coordinates
time series. No correction for the atmospheric pressure loading has been applied. Harmonic
analysis has been performed using the non linear least square algorithm implemented by
F. Mignard in the Frequency Analysis Mapping On Unusual Sampling software (Mignard,
FAMOUS, Frequency Analysis Mapping on Unusual Sampling, (OCA Cassiopee), 2003).

We obtained a complete statistic on the vertical component period, amplitude and phase.
Signals at from 1 to 7 cycle per solar and draconitic year can be observed in most stations
as expected, but also other signals have been detected that can be attributed to tidal model
errors. Some interpretation will be given referring to recent literature.

Keywords

Periodic signals • REPRO1 • Time series

1 Introduction andMotivation

Recently IGS released a first full reanalysis of all GPS data
collected since 1994, the REPRO1 solution, based on the
weekly SINEX solutions, from GPS week 729 (01/01/1994)
to GPS week 1631 (04/16/2011). We performed a retrospec-
tive analysis of the REPRO1 coordinate time series, focusing
at first on the detection, estimation, and elimination of time

M. Roggero (�)
Politecnico di Torino, Viale Mattioli 39, 10125 Torino, Italy
e-mail: marco.roggero@polito.it

series offsets, than on the long term model estimation and
finally on the harmonic analysis of model residuals.

Published harmonic analysis of GPS coordinates time
series have shown significant variation in the respective
spectrum. The most recent studies include (Ray et al. 2008;
Collilieux et al. 2007, 2010; Fritsche et al. 2009; Mtamakaya
2012). A comprehensive analysis of the whole REPRO1 data
set,1 providing a significant and self consistent sample, can
help to understand the impact of detected signals at a global
scale. Moreover regional dependent spectral signatures can
be observed, even if the analysis suffers of a lack of data in

1ftp://cddis.gsfc.nasa.gov/pub/gps/products/repro1.
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Fig. 1 BAKO UP time series with the estimated jumps

the southern hemisphere and in the polar areas. Coordinate
and formal error time series of 526 IGS stations have been
extracted from REPRO1 SINEX (4E, 4N, 4h and ¢N,¢E,
¢h) and in the present work we examined the up component
(4h, ¢h). Time series discontinuities are documented by
IGS in the SOLN.SNX file, that reports 1206 documented
discontinuities in position and velocity, over 338 stations
(a mean of 3 or 4 discontinuities per station). The cause
of about 25% of the discontinuities is unknown, while it is
not possible to exclude the presence of other undocumented
discontinuities. The reprocessing of IGS had been carried
out by using fully consistent models in order to avoid
model dependant discontinuities and coordinates variance
anisotropy that occur in operational time series. However,
the discontinuities due to hardware or monument change
or to geophysical effects remain also in the reprocessed
time series as noted in Steigenberger (2009). An example
of discontinuity estimation is given in the BAKO station UP
time series of Fig. 1, that presents eight different position
discontinuities reported by IGS.

The changes in velocity, usually caused by earthquakes
or by other geophysical effects, can be described by multi
linear models, as shown in Perfetti (2006) and Ostini (2012).
In these works the coordinate time series are represented as
the sum of a long term linear or multi linear trend and a step
function, taking in account for position offsets, and cyclical
components. Harmonic analysis requires to be applied on
cyclostationary residuals, having statistical properties that
vary cyclically with time, however linear and also multi lin-
ear models seem to be often inadequate to describe the long
term behavior of a station in order to obtain cyclostationarity,
as it will be shown in Sect. 2.3.

To overcome the inadequacy of multi linear models
applied to coordinate time series, the presented approach

is based on a discrete time Markov process modeling and
focuses on three steps:
1. Detect, estimate and remove the level shifts, performing

iteratively the so called detection, identification and adap-
tation procedure (DIA) as explained in Roggero (2012).

2. Model the long term signal constraining the system
dynamic, in order to obtain cyclostationary residuals.

3. Residuals harmonic analysis by the non linear least
square algorithm implemented in the FAMOUS software
(Mignard 2003).
The step 1 of the proposed algorithm has been tested

on synthetic data in the framework of the DOGEx project
(Gazeaux et al. 2013). The signals estimated by FAMOUS
will be analyzed in frequency, amplitude and phase, stacking
the power spectra in order to detect the most significant
effects. Some preliminary consideration will be given in
Sect. 4. The software FAMOUS has been used also in
Collilieux et al. (2010) to analyze the ITRF2008, that is based
on entirely reprocessed GPS solutions from 1997 to 2008.

2 Time SeriesModeling

2.1 Discrete Time Linear Model

GNSS time series can be modeled as discrete-time Markov
process. Consider a discrete-time linear system described
by a finite state vector x, evolving with known dynamics T
through the epochs t (2t [1, n]), with system noise � (with
variance-covariance matrix Rvv):

xtC1 D TtC1xt C �tC1
ytC1 D HtC1xtC1 C "tC1 (1)
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The observations y are known with observation noise "
(with variance-covariance matrix R""). It has been shown
by Albertella et al. (2006) that the system has the optimal
solution

bx D �

DTW!D CMTW"M
��1
MTW"y (2)

where bx is the estimated state vector, D and M are block
diagonal matrices representing respectively T and H over
the considered time interval, while W! and W" are weight
matrices. The 3D state vector bx is estimated constraining the
system dynamic, by setting the system noise � at a given
value. The process is detailed in Roggero (2008, 2012).

For a system with slow dynamic as GNSS coordinate time
series, the motion can be described by a constant velocity
model in T, with acceleration Rp D 0

ptC1 D pt C Ppt � ıt
PptC1 D Ppt T D

�

1 ıt

1

�

(3)

where the position p and the velocity Pp are the two elements
of the state vector x D �

p Pp �

, with system noise � D
�

�p � Pp
�

. The approach is equivalent to Kalman filtering and
smoothing, but allows to manage the estimation of constant
biases more efficiently, as will be shown in Sect. 2.2.

In state estimation the outliers are not rejected but prop-
erly weighted according to the system and observation noise.

2.2 Discontinuity Model

Discontinuities has been detected, estimated and removed
applying the detection, identification and adaptation proce-
dure (DIA) presented in Teunissen (1998), as applied in
Perfetti (2006) and in Roggero (2012). Taking in account for
discontinuities requires to modify the model (1). The bias
vector b represents the time series offsets and modifies the
system as follows:

xtC1 D TtC1xt C BtC1bt C �tC1
ytC1 D HtC1xtC1 C CtC1bt C "tC1 (4)

btC1 D bt

The bias vector b is constant with steps, and it is linked to
the system dynamic and to the observations by the matrices
B and C. The matrix C, whose elements are 0 or 1, represents
the occurrence of the biases in the time series. The number
of rows is equal to the number of observation epochs, while
the number of columns is equal to the unknown number of
jumps to be estimated. The matrix B it is assumed equal
to zero if the bias affects only the observed position and
not the real position. However it can be different by zero
in the case of seismic displacements. These matrices can be

known a priori in the case of documented discontinuities, or
determined by means of some detection criteria for undocu-
mented discontinuities. The estimation of the extended state
vector z D �

x b
�

requires the inversion of a large sparse
normal matrix. This matrix has a bordered block or band-
diagonal structure (quasi-triangular Schur form), so it can
thus be block wisely inverted by using Shur decomposition
as in Roggero (2008).

The offsets detection is based on a hypothesis test which
assumes as null hypothesis H0 that the time series do not
have any offset. This hypothesis is tested against a certain
number of alternative hypotheses HA, with a jump in a
given epoch. An alternative hypothesis can be formulated for
each observation epoch or for candidate epochs only. The
adequacy of the model can be verified using the ratio test,
which is known to have the ¦2 distribution. After detecting
the offsets, they can be estimated and removed.

Because offsets do not necessarily affect horizontal and
vertical components similarly, the vertical component is
studied separately using the same approach. This approach
also makes it possible to consider documented and undoc-
umented offsets, to predict the station coordinates in data
gaps, and to correctly represent pre-seismic and post-seismic
deformations or other non-linear behaviors.

The frequency analysis shows that not only the coordinate
time series present discontinuities in position and velocity,
but also in their characteristic frequency signature. This
last kind of discontinuity can be site dependant and in this
case seems to be related to hardware change or to other
site effects to be investigated. Model dependant frequency
discontinuities can also exist, but have been avoided in
REPRO1 solution by adopting models and methods fully
consistent during the time.

2.3 Long Term Signals

In the long term signals we include the linear trend, the non
linear and non periodic signals, and also the periodic signals
with period larger than the time series length, that therefore
are not estimable by harmonic analysis. From this point of
view linear trend is only one component of the long term
signal, often the larger one, but to obtain cyclostationary
model residuals we can’t neglect the non linear long term
signals.

As we have seen in Sect. 2.1, the time series are modeled
as a Markov process, and the system dynamic is described by
a constant velocity model. A way to estimate the long term
signal is by decreasing the variance �� of the system noise �;
in other words, the system noise is related to the maximum
frequency of the estimated signal.

Because of the system noise depends on the system
dynamic, the model can follow different dynamics by setting
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Fig. 2 Two different variance model used to estimate the long term behavior of the ALGO station in the UP component: Model 1: short
wavelength, �P D 10�6 m and �

PP D 10�5 m; Model 2: long wavelength, �P D 10�6 m and �
PP D 10�6 m

different values for the system noise variance �� , that has
been done empirically. Figure 2 shows the UP component
time series of the ALGO station. Two different model have
been estimated: model 1, with �P D 10�6 m and � PP D
10�5 m, that follows the short term signal, and model 2 with
�P D 10�6 m and � PP D 10�6 m, that follows the long term
signal.

The choice of the system variance noise is critical and
depends on the sampling frequency and on the system noise.
It has been fixed empirically on a subset of ten stations,
randomly chosen. However the algorithm is insensitive to
quite large variations of this parameter.

3 Harmonic Analysis

Harmonic analysis leads to the representation of the signal
as a superposition of basic waves. A variety of different
approaches are presently available such as Fast Fourier trans-
formation (FFT), Frequency Analysis Mapping On Unusual
Sampling (FAMOUS) and least squares spectral analysis
(LSSA). LSSA software was developed in the Department
of Geodesy and Geomatics Engineering at the University
of New Brunswick and it is based on the developments by
Vaníček (1969, 1971), Wells et al. (1985) and Pagiatakis
(1999, 2000). However, all of them use a set of base functions
made up of sine and cosine functions in the decomposition
process, to generate a frequency spectrum. FAMOUS and
LSSA have been developed as an alternative to bypass some
of the limitations present in the classical Fourier methods.
These limitations include the need for long time series,
constant sampling rate, equally weighted data values, no
presence of gaps or datum shifts all of which render the time
series strongly non stationary (Fig. 3).

FAMOUS (Frequency Analysis Mapping On Unusual
Sampling) makes the decomposition of a time series as

 .t/ D c0 C
k

X

iD1
ci cos

�

2��0i t
� C si sin

�

2��0i t
�

(5)

where ci and si are constant or polynomial of time:

ci D a0i C a1i t C a2i t
2 C � � � C a

p
i t
p

si D b0i C b1i t C b2i t
2 C � � � C b

p
i t
p (6)

The model

min jS.t/ �  .t/j2 (7)

is a non linear least square very sensitive to the starting
values, solved in two steps (SVD and Levenberg-Marquardt
minimization).

The solution is also given in term of A cos .!t C �/ and
the signal can be reconstructed as

 .t/ D c0 C
k

X

iD1
Ai cos

�

2��0i t C 'i
�

(8)

FAMOUS allows the analysis of equally weighted data,
with known or unknown a priori variance factors, assuming
them to be uncorrelated; the algorithm can handle unevenly
spaced time series without a pre-processing requirement.
Tests of statistically significant spectral peaks are imple-
mented, with respect to S/N ratio. FORTRAN source code
is available by F. Mignard.
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Fig. 3 KOSG station 16 years time series, UP component. The process
is clearly non cyclostationary, it presents a long term non linear behavior
and a large data gap in the year 2008. The model 2 (black dashed line)
with �P D 10�6 m and �

PP D 10�6 m, follows the long term behavior

of the data. The periodic model (red dashed line) has been estimated by
FAMOUS on the stochastic model residuals, and it is the sum of a linear
component and of five different periodic signals with periods of 775.6,
527.8, 365.8, 271.0 and 41.6 days

4 Analysis of IGS REPRO1 Time Series

Coordinate and formal error weekly time series of the full
data set of 526 IGS permanent stations have been analyzed.
The presented three steps procedure has been implemented
in fortran90 integrating the FAMOUS source code and it is
completely automatic. For this reason a complete reanalysis
of REPRO1 data set takes only few minutes. The S/N
threshold value for acceptance of the detected signals has
been set equal to 3, as in Collilieux et al. (2007), Mignard
(2003). For each time series we obtain:
• the estimated offsets,
• the long term signal model,
• the cyclostationary residuals,
• the frequency, amplitude and phase of the detected har-

monics, with their RMS.
We must note that the analysis has been conducted on

the REPRO1 raw coordinates, without taking in account
for atmospheric loading correction. It was been observed in
Mtamakaya (2012) that a slight improvement to coordinates
repeatability may result if Atmospheric Pressure Loading
were included in the processing, however this does not
cause any significant reduction in spectral peaks that are still
present in the REPRO1 solutions. See also (Tregoning and
Watson 2009) for a quantitative analysis of atmospheric load-
ing. The global analysis starts from the number of detected
signals over the total number of stations in (%), reported in
Fig. 4. We can observe three classes of signals, related to
seasonal, orbital (draconitic) and tidal effects. The minimum
sampling frequency (Nyquist frequency) for weekly time
series is 14 days, at which a strong signal has been also
detected, that will be attributed to tidal model errors.

The 89% of the stations present an annual signal and
signals have been detected at the 2nd, 3rd, 4th and 7th har-
monics of the solar year (seasonal signals), with respective
periods of 182.6, 121.8, 91.3 and 52.2 days. The annual
signal amplitude, represented in Fig. 5, has a mean value of
3.1 mm and it is strongly spatially correlated. The maximum
value of 1.0 cm is at the station WSLR (Whistler, Canada).

The observed signatures appear to be consistent also
around the 1st, 2nd, 3rd, 4th, 6th and 7th draconitic2 har-
monics with respective periods of 351.2, 175.6, 117.1, 87.8,
70.2, 58.5 and 50.2 days. No signal has been detected at the
higher frequencies of the draconitic harmonics, even if some
signal can be aliased by the tidal harmonics. Note in the
Fig. 4 that the 1st, 2nd and 3rd draconitic harmonics overlap
the 1st, 2nd and 3rd seasonal harmonics. For this reason, in
many time series draconitic errors cannot be distinguished
by seasonal signals and contribute to them, as already noted
by Rebischung et al. (2012), and beating between draconitic
and seasonal harmonics can explain the annual an inter-
annual amplitude variations. Draconitic and solar year are
in phase every 26 years3 during which the amplitude of the
combined signal ranges between 0 and 6.8 mm with a beating
effect. The superimposition of the seven draconitics and
four solar detected harmonics results in a signal amplitude
that ranges from 3 to 27 mm. The wavelength RMS are
larger for the detected seasonal harmonics and smaller for
the draconitic and tidal harmonics, because seasonal effects
present a greater variability. The mean amplitudes are coher-

2Draconitic year is the interval of 1.040 ˙ 0.008 cycles per year
(351.2 ˙ 2.8 days) needed for the Sun to return to the same point in
space relative to the GPS orbital nodes (as viewed from the Earth).
3365.25/(365.25-351.2) � 26.
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Fig. 4 Detected signals over the number of stations in (%). The signals evidenced in blue are the solar year harmonics (seasonal term), in red the
draconitic harmonics, while in black are the tidal harmonics

Fig. 5 Amplitude of the annual term

ent with the values reported by Ostini (2012), obtained by the
FODITS method proposed in Ostini et al. (2008).

Two peaks has been found with period of 14 and 28 days
that are doubtless related to tidal model errors. The peak at
14 days has been attributed to sub-daily EOP tidal errors by
Ray et al. (2013). The relative motions of the Earth, Moon
and Sun cause the tides to vary in numerous tidal cycles, the
two most important ones being the spring-neap cycle and the
equinoctial cycle. The spring-neap cycle is a 14.77 day cycle
resulting from the tidal influence of the sun and moon either
reinforcing or partially cancelling each other (neap tides).
The semi-annual equinoctial cycle is caused by the tilt of the
Earth, and its orbit around the Sun which leads to higher than
average spring tides around the time of the equinoxes (March
and September) and lower than average spring tides in June
and December. Because of its seasonality this effect cannot
be distinguished by other seasonal effects. The Moon crosses

the ecliptic at the same node every �27.3 days, and a peak
can also be observed at a frequency of 28 days. Finally three
peaks are at 41 (D3 � 14), 82 (D6 � 14) and 163 (D12 � 14)
days, that can also be related to tidal model errors. A
synthesis of the detected signals is reported in Table 1.

The remaining signatures could be attributed to other
un-modeled effects that must be investigated, such as non
tidal loading displacement, high order ionosphere terms and
mismodeling effect in GPS attitude models. For example,
on remarkable peak is at 66 days, that cannot be related to
seasonal, draconitic or tidal effects.

The phase � represents the signal maximum in the model
(8). It seems to be spatially correlated, as can be noted in
Fig. 6, where the signal phase is represented with respect
to station latitudes. The European cluster is represented in
red and has it maximum between doy (day of year) 120 and
220 (April–June). As consequence of the seasonal loading
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Table 1 Detected signals that are consistent with the solar, draconitic and tidal harmonics

Harmonics (days) Mean amplitudes (mm)

Expected Estimated

Cpy Drac. Solar Tidal Drac. Solar Tidal Drac. Solar Tidal

1 351:2 365:3 164:0 355 ˙ 3 364 ˙ 10 163 ˙ 2 3.2 3.1 1.3

2 175:6 182:6 82:0 175 ˙ 3 180 ˙ 6 82 ˙ 1 2.0 1.7 0.8

3 117:1 121:8 118 ˙ 2 121 ˙ 5 1.3 1.1

4 87:8 91:3 41:0 88 ˙ 2 91 ˙ 3 41 ˙ 1 1.1 1.5 0.7

5 70:2 73:1 70 ˙ 2 1.0

6 58:5 60:9 27:3 58 ˙ 1 28 ˙ 1 1.0 1.1

7 50:2 52:2 50 ˙ 1 53 ˙ 1 1.0 0.7

12 13:7 14 ˙ 1 1.1

Fig. 6 Phase of the annual term, in term of doy of the UP maximum. It can be noted some correlation with the station latitude

effects, the phase distribution seems to be coherent with the
Earth deformation global model proposed by Blewitt et al.
(2001), according to which during February to March the
Northern Hemisphere compresses and the Southern Hemi-
sphere expands. The opposite pattern of deformation occurs
during August to September. More uniform data from both
the hemispheres are necessary to clearly identify this latitude
dependant effect.

5 Conclusions

Spectral analysis of weekly station coordinate time series of
526 IGS sites reveals signals at the seasonal, draconitic and
tidal harmonics. The analysis has been conducted on the UP
component of the REPRO1 time series, while E and N are not
yet analyzed and they must be considered in future works.
It has been shown that the detected annual signal is spatially
correlated in both amplitude and phase, and it depends on the
loading changes due to the water cycle. Similar analysis must
be conducted on the sub annual signals, in order to better
understand their origin, that seems to be related to model
errors. Some geophysical effect can also be observed at a

global level, such as the expansion of the hemispheres during
the summer and their contraction during winter. Other non
periodical geophysical signals can be potentially discovered
in the long term signal models, not studied in the present
work.
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Part III

Geopotential Modeling, Boundary Value Problems
and Height Systems



Determination of W0 from the GOCE
Measurements Using theMethod
of Fundamental Solutions

Róbert Čunderlík

Abstract

The paper presents the method of fundamental solutions (MFS) applied for global gravity
field modelling. MFS as an inherent mesh-free method is used to derive the geopotential
and its first derivatives from the second derivatives observed by the GOCE satellite mission,
namely from the radial components of the gravity tensor. Unknown coefficients of the
approximate solution by MFS are determined at the source points located directly on
the Earth’s surface. Afterwards, the disturbing potential or gravity disturbance can be
evaluated at any point above the Earth’s surface. To get their values on the Earth’s surface,
singularities of the fundamental solutions need to be overcome. In this paper two strategies
are used: (1) the source points are located on a fictitious boundary (FB), which is situated
below the Earth’s surface, or (2) ideas of the singular boundary method that isolate the
singularities are implemented. The paper studies how a depth of FB influences accuracy of
the MFS solutions. All particular solutions are compared with the GOCO03S satellite-only
geopotential model. In all cases mean values of the residuals are smaller than 0.04 m2s�2

(�4 mm). The best agreement in terms of the standard deviation of residuals is for the FB
depth of 20 km. Finally, the geopotential on the DTU10 mean sea surface is evaluated from
the MFS solutions resulting in the W0 estimates. The obtained W0 values differ from ones
based on GOCO03S or EGM2008 by less than 0.1 m2s�2 (�1 cm).

Keywords

Geopotential on the mean sea surface • Global gravity field modelling • GOCE
measurements • Method of fundamental solutions • W0 estimates

1 Introduction

The unification of local vertical datums and establishment of
the World Height System (WHS) is one of the main tasks
of modern geodesy, cf. (Sideris and Fotopoulos 2012). It
involves a determination of W0 as a reference value of the
geopotential on the geoid. All recent W0 estimates are basi-
cally derived from global geopotential models (GGMs) that

R. Čunderlík (�)
Department of Mathematics, Slovak University of Technology
in Bratislava, Bratislava, Slovakia
e-mail: cunderli@svf.stuba.sk

are developed using the spherical harmonics (SH) approach,
cf. (Burša et al. 2007), (Sánchez 2009), (Dayoub et al.
2012), (Čunderlík et al. 2014). However, the GOCE satellite
mission, which is directly measuring the second derivatives
of the geopotential, has brought new opportunities in appli-
cations of other numerical approaches for global gravity
field modelling. In this paper, the method of fundamental
solutions (MFS) is presented to derive the geopotential and
its first derivatives on or above the Earth’s surface from the
second derivatives observed by GOCE.

Basic ideas for the formulation of MFS were first devel-
oped by V. D. Kupradze and M. A. Alexidze, cf. (Kupradze
and Alexidze 1964). However, MFS as a computational tech-
nique was proposed by Mathon and Johnston (1977). Later,

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_39
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Fig. 1 Distribution of the source points for the exterior potential problem using (a) the method of fundamental solution (MFS), and (b) the singular
boundary method (SBM) (from the source: Gu et al. 2012)

MFS was extended to deal with inhomogeneous equations
and time-dependent problems (Golberg and Chen 1994). At
present, MFS has become a useful tool for solving a large
variety of physical and engineering problems, cf. (Hon and
Wei 2005), (Fan et al. 2009) or (Chen et al. 2011). To cure
the problem of a fictitious boundary in MFS, some new
techniques have recently been developed, e.g., the singular
boundary method (SBM) (Chen and Wang 2010).

In this paper MFS is applied to derive the disturbing
potential and its first derivatives from the radial components
Trr of the disturbing tensor observed by GOCE. Numerical
experiments show how the depth of the fictitious boundary
influences the accuracy of the obtained MFS solution on or
above the Earth’s surface. In case that the source points are
located directly on the Earth’s surface, the ideas of SBM
that isolate singularities of the fundamental solution (Gu et
al. 2012) are applied. Finally, the geopotential on the mean
sea surface is evaluated from the different MFS solutions. It
allows estimating the W0 values independently from the SH-
based approach. The objective of the paper is to explore how
such W0 estimates differ from ones computed from the SH-
based GGMs.

2 MFS for the Potential Problems

MFS is a technique for the numerical solution of certain
elliptic boundary value problems (BVPs) (Mathon and
Johnston 1977). It belongs to the general class of the
boundary collocation methods. Like the boundary element
method (BEM), it is applicable when the fundamental
solution of a partial differential equation (PDE) of interest
is known. MFS was developed to overcome the major
drawbacks of BEM, i.e., to avoid numerical integration of
the singular fundamental solution by introducing a fictitious

boundary (FB) outside the physical domain. In contrast to
BEM, MFS is an inherent mesh-free method and does not
involve integral evaluation. Hence, it provides an efficient
computational alternative for problems in higher dimensions
with irregular domains.

In the following we focus on the exterior potential prob-
lem in 3D that corresponds to the geodetic BVP. Let us
consider the potential field u satisfying the Laplace equation
exterior a 3D domain ˝ (the Earth) (Fig. 1)

r2u .x/ D 0; x 2 ext:˝; (1)

with the following boundary conditions (BC)

u .x/ D u .x/ ; x 2 �D .Dirichlet BC/ ; (2)

q .x/ D @u

@n
.x/ D q .x/ ; x 2 �N .Neumann BC/ ;

(3)

where � D and � N construct the whole boundary of the

domain ˝ , and n devotes the outward normal.
An approximate solution by MFS is expressed as a linear

combination of the fundamental solutions with respect to
different source points

u
�
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where xi is the i-th observation point and s j is the j-th
source point, ˛j denotes the j-th unknown coefficient of the
distributed source at s j, N represents the number of source
points and

G
�
xi ; sj

� D 1

4� jxi � sj j ; (6)

is the fundamental solution of the Laplace equation in 3D,
which represents the basis functions of the method. For a
well-posed BVP, the unknown coefficients f˛jg, j D 1, : : : ,N,
can be determined by collocating N observation points with
BC from Eq. (2) or (3). Once all the unknown coefficients
f˛jg are solved, physical quantities at any point inside the
physical domain (i.e., the exterior of ˝ in our case) including
its boundary can be easily evaluated from the field equations
(4) or (5).

To avoid singularities of the fundamental solutions, the
source points are located on the FB outside the computational
domain. For the exterior BVP described in Eqs. (1–3), the
FB is inside ˝ , i.e., below the Earth’s surface (Fig. 1a).
However, despite many years of great effort, the determina-
tion of the FB is largely based on experiences, especially for
problems in complicated geometries and higher dimensions.

3 MFS for Gravity FieldModelling
from the GOCEMeasurements

The gravity field modelling is usually formulated in terms
of the Laplace equation (1) for the disturbing potential T.
The GOCE observations provide the second derivatives of
the geopotential, or the disturbing potential. In this study, the
radial components Trr of the disturbing tensor are used to
derive the unknown coefficients ˛j at the source points s j

using the expression
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and ri denotes the radial unit vector at xi, dij D xi � s j and
dij D jdijj represents the distance between the i-th collocation
point and the j-th source point. By collocating N observation

points with respect to N source points, we get the linear
system of equations
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Since the GOCE observations are given sufficiently far
from the Earth (approximately 250 km above the Earth’s
surface), the source points can be located directly on the
Earth’s surface considering its complicated topography. Such
a configuration does not generate any singularities. The
unknown coefficients f˛jg can be determined by solving the
linear system of equations (9). Afterwards, the disturbing
potential or its first derivatives can be easily evaluated any-
where above the Earth’s surface using Eq. (4) or (5). The
problem with the singularities appears when computing the
gravity field quantities directly on the Earth’s surface. In this
case it is possible to use two different strategies: (1) to locate
source points on the FB, which needs to be shifted below
the Earth’s surface, or (2) to apply ideas of SBM that isolate
singularities of the fundamental solution at source points on
the Earth’s surface.

In the first approach, a main problem is to determine an
optimal position of the FB. As mentioned earlier, this is
largely based on experiences. Therefore, in the presented
numerical experiments we will change step by step the depth
of FBs, testing how it influences the resulting MFS solution
on the Earth’s surface.

In the second approach, the ideas of SBM (Chen and
Wang 2010) are implemented to overcome singularities of
the fundamental solution. Like MFS, SBM also uses the
fundamental solution as the basis kernel function of its
approximation. In contrast to MFS, the collocation and
source points of SBM are coincident and they are all placed
on the physical boundary (Fig. 1b) avoiding any FB. For the
3D exterior potential problem described in Eqs. (1–3), the
SBM interpolation formulation can be expressed as

u
�
xi

� D
NX

j D1;i¤j

˛j G
�
xi ; sj

� C ˛i uii; (10)

q
�
xi

� D
NX

j D1;i¤j

˛j

@G
�
xi ; sj

�

@nxi

C ˛i qii; (11)



94 R. LCunderlík

where uii and qii, called the origin intensity factors, denote
the singular terms G(xi, s j) and @G(xi, s j)/@n, respectively,
i.e., the diagonal elements of the SBM interpolation matrix.
These singularities need to be regularized using some special
treatment. Applying the regularization technique proposed in
(Gu et al. 2012) and omitting details described in this paper,
the original singular term qii for the Neumann boundary
equation (11) can be transformed into the regular term

qii D 1

Pi

2

41 �
NX

j D1;i¤j

Pj

@G
�
xi ; sj

�

@nsj

3

5 ; (12)

where Pi, or Pj, is the area corresponding to surrounding of
the collocation point xi, or the source point s j, respectively.
In this way a distribution of the source points is taken into
account. To evaluate the origin intensity factor uii for the
Dirichlet boundary equation (10), an inverse interpolation
technique can be used. Due to the limited extend of this
paper, the readers are kindly addressed to (Gu et al. 2012)
for more details.

Since the observations from GOCE are sufficiently far
from the Earth’s surface, the unknown coefficients f˛jg
can be determined from the linear system of equations (9).
Afterwards, the origin intensity factors uii and qii need to be
determined and finally Eqs. (10–11) can be used to evaluate
the disturbing potential or its first derivatives at the source
points directly on the Earth’s surface. In this way the problem
of singularities can be overcome.

4 Numerical Experiments

In the numerical experiments we have processed the GOCE
measurements from its first 61 days period, i.e., from October
1 to December 1 2009. In particular, the radial components
Vrr of the gravity tensor have been transformed to Trr of the
disturbing tensor (Fig. 2a) using parameters of the GRS-80
normal gravity field. Then the nonlinear diffusion filtering
has been applied to reduce the noise included in the input
data. The regularised Peron-Malik model has efficiently
reduced the noise while preserving main structures (Fig. 2b),
for more details see (Čunderlík et al. 2013). In the first
experiment the source points have been located directly
on the Earth’s surface with a resolution of 0.075ı. It has
corresponded to 5,760,002 points (N) regularly distributed
over the Earth’s surface. To consider the real topography, the
vertical position of the source points were generated from

the SRTM30_PLUS global topography model (Becker et al.
2009).

To get the linear system of equations (9), the same num-
ber of the input observations (collocation points) has been
chosen. Their horizontal positions as well as ordering have
been adopted from the source points. This has required an
interpolation from the original GOCE measurements (firstly
filtered by the nonlinear diffusion). To reduce the enormous
memory requirements for the full matrix in Eq. (9), an itera-
tive approach has been applied for the elimination of the far
zones’ contributions, primarily proposed for the direct BEM
(Čunderlík and Mikula 2010). This approach, together with
a parallel implementation using the MPI (Message Passing
Interface) procedures, enables us to reach such a high level of
resolution. The large-scale parallel computations were per-
formed on the cluster with 1 TB of the distributed memory.
At first, the unknown coefficients f˛jg at the source points
located directly on the Earth’s surface have been determined.
To obtain the disturbing potential or its derivatives at these
points, the strategy of SBM has been used determining the
unknown origin intensity factors uii and qii (see Sect. 3).

Afterwards, the MFS approach based on the FB has also
been used. The depth of the FB has been changing step by
step, namely the vertical positions of the source points, while
the input GOCE observations have remained the same. For
every new position of the FB, new set of the coefficients f˛jg
has been determined. From these coefficients, the disturbing
potential at points on the Earth’s surface (with the same
positions as in the first experiment) has been evaluated
avoiding the problem of singularities.

All particular solutions have been compared with two
GGMs developed by the SH-based approach, namely, with
the GOCO03S satellite-only model up to degree 250 (Mayer-
Gürr et al. 2012) and the EGM2008 combined model up to
degree 2160 (Pavlis et al. 2012). Graphs in Fig. 3 depict how
the statistical characteristics of the residuals are changing
depending on the FB depth. The standard deviation (STD)
of the residuals is minimal for a depth of 20 km. The
closer to the Earth’s surface, the stronger the impact of
the singularities becomes and the STD is asymptotically
increasing. A special treatment of the singularities by the
SBM approach (see Sect. 3) slightly improve this asymp-
totic worsening, however, the agreement with GOCO03S
is worse than for the FB depth in the interval 5–30 km.
For the FBs deeper than 30 km, the STD is increasing
considerably.

On the other hand, the overall mean value of residu-
als is changing minimally. For FB depths in the interval
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Fig. 2 (a) The GOCE observations – the radial components Trr of the disturbing tensor, and (b) after reducing noise using the nonlinear diffusion
filtering

0–30 km, it changes less than 0.01 m2s�2 (�1 mm) (Fig. 3).
Considering the mean value over oceans only, it varies within
0.07 m2s�2 (�7 mm). The mean values over oceans also
indicate that the W0 estimates evaluated from the MFS
solutions will differ from one based on GOCO03S by less
than 0.06 m2s�2 and from other computed from EGM2008
by less than 0.1 m2s�2. Here we remind that our solutions

are obtained by processing only 2 months of GOCE data
whereas GOCO03S is based on GOCE data measured over
1 year combined with data from GRACE, CHAMP and SLR
(Mayer-Gürr et al. 2012).

Figure 4 depicts the disturbing potential on the Earth’s
surface obtained from the MFS solution (FB depth D 20 km)
and from GOCO03S up to degree 250, as well as their
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Fig. 3 An impact of the depth of the fictitious boundary on the obtained
MFS solutions – statistical characteristics of the residuals between the
MFS solutions and the GOCO03S model up to degree 250 and the
EGM2008 model up to degree 2160 (dashed lines for the residuals at
oceans only)

comparison. Analogously, Fig. 5 shows the first deriva-
tives (the gravity disturbances) for both models and their
comparison.

Finally, the geopotential on the DTU10 mean sea surface
model (Andersen 2010) is evaluated from the MFS solutions
(Fig. 6). The disturbing potential T computed from the
MFS coefficients at points over oceans, whose 3D positions
are interpolated from DTU10, is simply added to the
normal gravity potential U evaluated at these points. Then
weighted averaging of the geopotential over oceans allows
us to estimate the W0 value for the selected integration
area. Table 1 summarizes our W0 estimates from the MFS
solutions for different FB depths. They can be considered
independent from the ones obtained using the SH-based
GGMs. In spite of quite large differences between the

MFS solutions and GOCO03S in zones of abrupt changes
of the gravity field, e.g., along edges of the lithospheric
plates (Figs. 4c, 5c, and 6), the W0 estimates differ by less
than 0.1 m2s�2. Such a good agreement shows that both
independent approaches, i.e., MFS and SH-based methods,
are providing almost the same W0 estimates.

5 Conclusions

The paper demonstrates that the method of fundamental
solutions is an efficient technique for global gravity field
modelling. It has an advantage that the approximate
solution by MFS satisfies the Laplace equation also in the
computational domain with more complicated boundaries.
There is no restriction to have spherical (or ellipsoidal)
approximation of the Earth’s surface like in the SH-
based approach. On the other hand, position of the FB
in the MFS approach has significant influence on the
results.

In contrast to BEM, MFS as a mesh-free method does not
involve integral evaluations, which make it more efficient.
However, to obtain the gravity field quantities, it involves
two computational steps (similarly as for SH). At first,
the unknown coefficients at the source points need to be
determined and then the potential or its derivatives can be
evaluated.

The parallel implementation of MFS and the elimination
of far zones’ interactions allow high-resolution modelling. In
all presented numerical experiments the radial components
of the gravity tensor are processed and the source points are
distributed with a resolution of 0.075ı. This yields precise
global gravity field models that are in a good agreement
with the SH-based GGMs, e.g., GOCO03S and EGM2008.
The overall mean values of the residuals are smaller than
0.04 m2s�2. The mean values over oceans do not exceed
0.1 m2s�2. Hence, the W0 estimates evaluated from the MFS
solutions differ from the ones estimated from GOCO03S or
EGM2008 by less than 0.1 m2s�2. Such small differences
indicate a reliability of the computed W0 estimates for the
WHS realization.
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Fig. 4 The disturbing potential on the Earth’s surface obtained from (a) the MFS solution with the fictitious boundary in the depth 20 km,
(b) from GOCO03S model up to degree 250, and (c) the residuals between both models
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Fig. 5 The gravity disturbances on the Earth’s surface obtained from (a) the MFS solution with the fictitious boundary in the depth 20 km,
(b) from GOCO03S model up to degree 250, and (c) the residuals between both models
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Fig. 6 The geopotential on the DTU10 mean sea surface evaluated from (a) the MFS solution with the fictitious boundary in the depth 20 km,
and (b) from GOCO03S model up to degree 250 (the constant 62,636,800.0 m2s�2 is removed)
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Table 1 W0 estimates evaluated on the DTU10 mean sea surface
model (integration area: 82ıS–82ıN) from the MFS solutions with dif-
ferent depths of the fictitious boundaries (FB), and from the GOCO03S
and EGM2008 geopotential models (W0 units: m2s�2)

FB depth
(km) MFS solution

GOCO03S
(SH up to
d/o 250)

EGM2008
(SH up to
d/o 2160)

0 62,636,854.01 62,636,854.00 62,636,853.96

2 62,636,853.98

5 62,636,854.02

10 62,636,854.03

20 62,636,854.05

30 62,636,854.06

100 62,636,854.22
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Combination of GOCE Gravity Gradients
in Regional Gravity Field Modelling Using
Radial Basis Functions

Verena Lieb, Johannes Bouman, Denise Dettmering, Martin Fuchs,
and Michael Schmidt

Abstract

The satellite gravity mission GOCE measured the second-order derivatives of the Earth’s
gravitational potential with high accuracy. The GOCE data enrich our gravity field
knowledge especially at spatial resolutions from 750 km down to 80 km. In this paper
we carry out regional gravity field analysis using radial localising basis functions that
permit the combination of different data types tailored to their accuracy and spectral signal
content. We formulate observation equations for each individual GOCE gravity gradient as
they are distinctive reflections of the gravity field and contain directional information. To
optimally use the original GOCE measurements, we derive the mathematical expressions
in the gradiometer reference frame. The expressions and their implementation are validated
for a test area in Scandinavia by comparison with the global gravity field model GOCO03s,
which yields small differences of less than ˙ 1mE. The relative weighting of the
observations is determined by variance component estimation. Moreover manually fixing
the weights leads to smaller residuals with respect to GOCO03s, which is probably caused
by systematic errors in the gradients. We demonstrate the capabilities of our method through
a combination of the gradient data with terrestrial free-air anomalies. At spatial resolutions
down to 40 km the terrestrial data get much larger relative weights than the GOCE data,
which indicates the proper performance of the combination method.

Keywords

Data combination • GOCE gravity gradients • Radial basis functions • Regional gravity
field modelling • Relative weighting

1 Introduction

Equipped with a 3-axis gradiometer the satellite mission
GOCE (Gravity field and steady-state Ocean Circulation
Explorer) (Rummel et al. 2002) observed all second-order
derivatives of the Earth’s gravitational potential. The gravity
gradient tensor contains the complete curvature information

V. Lieb (�) • J. Bouman • D. Dettmering • M. Fuchs • M. Schmidt
Deutsches Geodätisches Forschungsinstitut der Technischen
Universität München (DGFI-TUM), Munich, Germany
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of the local gravity field, with the advantage over the 1D
gravity field information from GRACE (Gravity Recovery
And Climate Experiment) (Tapley et al. 2004) that it can
be applied in high-resolution gravity field determination
(Pail et al. 2011), but also contains directional information
allowing the gradients to be used for Earth interior research
and for geophysical exploration (Ebbing et al. 2013).

An advantage of regional over global gravity field analysis
is that one can adapt to local data availability and signal
content. Well-established methods exist such as least-squares
collocation (Tscherning and Arabelos 2011) or spherical
splines (Eicker et al. 2007). We apply radial basis functions
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enabling a consistent spectral combination of different
observation types in order to create regional gravity fields
containing maximum degree of information (Schmidt et al.
2007). The main focus of this paper lies on setting up
the observation equations for the GOCE gradients in the
gradiometer reference frame (GRF), which was not done so
far for this method. Variance component estimation (VCE)
offers the possibility of combining all six GOCE gradients
in a flexible way: less accurate measurements can be down-
weighted or excluded.

The GOCE measurement technique and the data set that
is used are described in Sect. 2. The modelling approach
itself consists of analysis and synthesis procedures which
are explained in detail in Sect. 3. In Sect. 4 the results are
presented and the relative weighting of the input data is
discussed. We validated the regional models with a global
model. Furthermore the modelling approach can be extended
by combining GOCE observations with other observation
types. We present an example for the combination with high
resolution free-air anomalies.

2 Gravity Gradient Measurements
from GOCE

We use the reprocessed release 2 of GOCE observations
(level-2 products), available through the GOCE Virtual On-
line Archive1. Three pairs of accelerometers measured the
gradients in the Cartesian GRF with its xyz axes pointing
approximately along-track, cross-track and in radial direc-
tion. The 3 � 3 gravity gradient tensor is

Vab D
2
4
Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

3
5 (1)

with Vxy D Vyx , Vxz D Vzx, Vyz D Vzy , a; b 2 fx; y; zg
and trace .Vab/ D 0. Vxy and Vyz are less accurate than the
other components and a rotation of the GOCE observations
would reduce the accuracy in the rotated frame (Bouman
2007; Fuchs and Bouman 2011). We use observations from
02/2010 until 05/2012. The gradient errors are lowest in
the measurement bandwidth (MBW) between 5mHz and
100mHz, above and below the MBW the errors increase
rapidly. As the low part of the frequency spectrum is less
accurately observed, it is removed by high-pass filtering with
a cut-on frequency at the lower boundary of the MBW and
filled up with model information from GOCO03s (Mayer-
Gürr et al. 2012) to obtain a complete data set. Furthermore
outliers and less accurate measurements have been removed.

1eo-virtual-archive1.esa.int/Index.html

3 Regional Gravity FieldModelling
Approach

Our regional gravity field modelling approach uses radial
basis functions that act as low-pass filters. They are related
to specific frequency bands denoted as resolution levels
j (Fig. 1). The basis functions can be expressed in terms
of Legendre polynomials Pl (cf. Eq. (2)) developed up to
a certain degree l D l 0j . This degree is related to the
upper boundary of the corresponding level j with l 0j D
2j � 1, representing the cut-off frequency of the low-pass
filter. The degree is related to the spatial resolution at the
Earth’s surface as r � 20;000 km=l 0j . Higher levels allow
to model higher spatial resolutions contained in the gravity
data.

In our approach we start with the choice of an appropriate
level j D J C 1 related to the resolution r of the input
data. Next we set up the basis functions �JC1 of level J C 1

which remove the high frequencies of the input data above
degree l 0JC1 (Schmidt et al. 2007). Finally we approximate
gravitational potential differences�V between the potential
V and an appropriate global background model, in order
to represent high frequency deviations for specified regions.
The series expansion in terms of scaling functions �JC1 and
scaling coefficients dJ;q reads

�V.xp/ D
NJX
qD1

dJ;q �JC1
�
xp; xq

�

D
NJX
qD1

l 0
JC1X
lD0

2l C 1

4�
dJ;q˚JC1;l

�
R

r

�lC1
Pl .cos /

(2)

for an observation point P .xp/ with position vector xp D
r rp . Herein r D jxpj means the radial distance and rp D
Œcos � cos�; cos � sin�; sin ��T is the unit vector depending
on spherical longitude � and co-latitude � . The number NJ
of unknown scaling coefficients dJ;q (q D 1; : : : ; NJ ) and
thus the number of computation points Q

�
xq
�

on which the
functions �JC1 are located depends on the level J C 1. In
Eq. (2) ˚JC1;l are the Legendre coefficients, R is the mean
Earth radius and  is the spherical distance between point
P and Q (Schmidt et al. 2007). Equation (2) is given in a
Terrestrial Reference Frame (TRF) in spherical coordinates,
whereas the GOCE gravity gradients are measured in the
Cartesian GRF. Consequently, the second-order derivatives
of Eq. (2) are needed and have to be transformed into the
GRF.
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Fig. 1 Extract of the frequency spectrum which is split into resolution levels j: upper boundary corresponds to a maximum degree l, related to the
spatial resolution r at the Earth’s surface. Levels where GOCE has its highest sensitivity are indicated in red (MBW)

3.1 Adopted Scaling Functions

The six different space dependent GOCE gravity gradients
in Eq. (1) are treated as six separate measurements and thus
K D 6 observation equations have to be formulated. The
elements �Vab can be expressed by

�Vab D @2�V

@a @b
D

NJX
qD1

dJ;q �JC1;ab
�
xp; xq

�
(3)

for level J C 1 according to Eq. (2). The adopted scaling
functions �j;ab

�
xp; xq

�
read for level j � J C 1

�j;xx D
l 0jX
lD0

2l C 1

4�

�
R

r

�lC1
˚j;l

�
�
1

r
Pl .cos /

�
� l C 1

r

�
C 1

r2
@Pl .cos /

@�2

�
(4)

�j;xy D
l 0jX
lD0

2l C 1

4�

�
R

r

�lC1
˚j;l �

�
1

r2 sin �

@Pl .cos /

@�@�

� 1

r2 sin2 �

@Pl .cos /

@�

�
(5)

�j;xz D
l 0jX
lD0

2l C 1

4�

�
R

r

�lC1
˚j;l

�
�
1

r2
@Pl .cos /

@�
� 1

r

�
� l C 1

r

�
@Pl .cos /

@�

�
(6)

�j;yy D
l 0jX
lD0

2l C 1

4�

�
R

r

�lC1
˚j;l �

�
1

r
Pl .cos /

�
� l C 1

r

�

C 1

r2 tan �

@Pl .cos /

@�
C 1

r2 sin2 �

@Pl .cos /

@�2

�
(7)

�j;yz D
l 0jX
lD0

2l C 1

4�

�
R

r

�lC1
˚j;l �

�
1

r2 sin �

@Pl .cos /

@�

� 1

r sin �

�
� l C 1

r

�
@Pl .cos /

@�

�
(8)

�j;zz D
l 0jX
lD0

2l C 1

4�

�
R

r

�lC1
˚j;l

� Pl .cos /
.l C 1/ .l C 2/

r2
: (9)

Similar expressions can be derived for other radial basis
functions, as e.g. covariance functions (Tscherning 1993) or
spherical splines (Eicker et al. 2007).

3.2 Analysis

The reduced GOCE gradients are treated as separate obser-
vations assuming that we have no error correlations. The
observation equation reads for one tensor element �Vab ,
observed at the observation points xp with p 2 f1; : : : ; P g
according to Eq. (3) and considering the measurement error
eab

�Vab .xp/C eab .xp/ D ���Tab .x
p/dJ : (10)

���ab is the NJ � 1 vector of modified scaling functions
according to Eqs. (4)–(9). In the analysis step we use the
Shannon scaling function with the Legendre coefficients
˚SHA
JC1;l D 1, which is an ideal low-pass filter up to degree

l 0JC1 (Schmidt et al. 2007). Rotating the resulting expressions
into GRF leads to the observation equations of the tensor in
GRF. The NJ � 1 vector dJ D ŒdJ;1; : : : ; dJ;NJ �

T of scaling
coefficients is then estimated by VCE as will be briefly
explained in the following. We collect all measurements of
a particular gravity gradient, so that each observation group
�vk with k 2 f1; : : : ; Kg represents a P � 1 vector of
the measurements�Vab and���k represents the corresponding
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P �NJ matrix of scaling functions:

2
6666664

�Vxx

�Vxy

�Vxz

�Vyy

�Vyz

�Vzz

3
7777775

D

2
6666664

�v1
�v2
�v3
�v4
�v5
�v6

3
7777775

D �v and

2
6666664

���1
���2
���3
���4
���5
���6

3
7777775

D ���: (11)

For the combination of GOCE gradient observations with
further measurement techniques the vector �v can be
extended by other observation groups �vk with k > K .
The stochastic part is formulated as

D

0
BBBBBBBB@

2
666666664

�v1
�v2
�v3
�v4
�v5
�v6
���d

3
777777775

1
CCCCCCCCA

D

2
6664

	21P�1
1 0 : : : 0

0 	22P�1
2 : : : 0

:::
:::

: : :
:::

0 0 : : : 	2d†d

3
7775 : (12)

D is the covariance matrix, Pk is the P �P weighting matrix
of the observation vector �vk . Note, the background model
is introduced as additional observation group to avoid singu-
larity problems. Referred to Schmidt et al. (2007) the vector
���d contains the expectation values of the coefficients after
subtracting the background model and †d is the correspond-
ing NJ � NJ covariance matrix. The variance components
(VC) 	2k and 	2d are determined iteratively according to Koch
and Kusche (2002). With the estimated VCs the estimated
coefficients OdJ result in

OdJ D
 

6X
kD1

1

O	2k
���Tk Pk���k C 1

O	2d
†�1
d

!�1

�
 

6X
kD1

1

O	2k
���Tk Pk�vk C 1

O	2d
���d

!
: (13)

The estimated covariance matrix of the coefficients reads

Qdd D
�P6

kD1 1

O	2k
���Tk Pk���k C 1

O	2d
†�1
d

��1
.

3.3 Synthesis

For the synthesis step we set up the series expansion (3) in
terms of Blackman scaling functions �JC1;ab , characterized
by the Legendre coefficients ˚BLA

JC1;l (Schmidt et al. 2007).
Compared with the Shannon kernel these functions act also
band-limiting as low-pass filters up to degree l 0JC1 according
to Fig. 1, but with a smoother declining behaviour. Conse-
quently, in the spatial domain the oscillations and sidelobes

of the Blackman functions are much smaller. Thus erroneous
edge effects are significantly reduced. Inserting the estimated
coefficients OdJ (cf. Eq. (13)) into Eq. (3) and using Eqs. (4)–
(9) with ˚BLA

JC1;l yield the estimated gradients of the reduced
gravitational potential.

4 Numerical Investigations

4.1 Study Area andModelling Parameters

We study the Scandinavian region with an extent of 2ı to
25ı in longitude and 54ı to 78ı in latitude, see Fig. 2a.
The frequency part where GOCE measures with its highest
sensitivity can be seen from Fig. 1. It is highlighted in red
and indicates a spatial resolution down to � 80 km. Level
j D 8 is the maximum level which is completely located
within the sensitivity domain of GOCE, whereas the upper
part of level 9 contains a lot of noise so that only the
low frequencies of j D 9 deliver significant information.
For our numerical investigations we consequently use the
modelling approach up to level J C 1 D 8. The level
depending computation points of the scaling functions can be
seen in Fig. 2b (red dots). The computation area has a larger
extent than the modelling area (green bordered) to diminish
edge effects. The observation area containing the GOCE
satellite tracks has an extension in-between both margins.
Furthermore the data set is reduced by the global background
model GOCO03s up to maximum degree and order 250
following Eq. (3). We used exactly the same model as for
filling up the low frequencies to be consistent. The resolution
of GOCO03s reaches nearly to the modelling resolution at
level 8, so that most of the signal is reduced and only small
deviations remain which are approximated in the estimation
process.

Inserting the reduced GOCE gradients in the observation
equation (10), assuming that the measurement errors are
uncorrelated and have the same accuracies within an observa-
tion group k, allows us to introduce identity matrices for the
weighting matrices Pk in Eq. (12). As prior information we
use the same model as the background model (GOCO03s).
Consequently we assume that the NJ � 1 vector���d is equal
to 0 and the covariance matrix †d corresponds to the identity
matrix.

4.2 Gradient Grids

As output from the synthesis procedure we obtain approx-
imation signals which can be expressed as any functional
of the gravitational potential (e.g. geoid undulations N ,
gravity anomalies �g). Restoring the background model,
subtracting the normal potential from the reference ellipsoid
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Fig. 2 (a) Geographical location of the test area Scandinavia (green bordered) with altitude encoding topography. (b) Distribution of the grid
points (red dots)

WGS84 and computing the second-order derivatives Vab
lead to the gradients of the disturbing potential Tab for all
combinations of the xyz Cartesian coordinates. Figure 3
shows the results according to the xyz tensor arrangement
in a local-north-oriented frame with its axes pointing north-,
west- and upwards. The modelling height corresponds to the
mean GOCE orbit height of 270 km within this region. The
gradients of the disturbing potential show clearly different
structures depending on the different spatial directions. As
expected, the radial zz component pointing directly along
the field line of the Earth’s gravitational potential has the
largest magnitudes between ˙0:5E. The sum of the diagonal
elements should be zero according to the Laplace condition
trace .Tab/ D 0. The trace criteria gives values which are 3
orders of magnitude smaller than the signals of the single
components. Considering the modelling accuracy, which
depends on edge effects, oscillations of the scaling functions,
smoothing and interpolation effects, the Laplace condition
is therefore fulfilled. The approximation signals without
restoring the background model GOCO03s vary between
˙ 1mE containing additional signal to the global model but
also errors from the regional approach.

4.3 Analysis of VCE

Variance component estimation provides a flexible tool for
relative weighting of different observation groups by com-
bining them at the level of observation equations. A large
VC 	2k means hereby a low relative weight of the observation

group �vk in Eq. (13). Table 1, col. (a) lists the orders of
magnitude of the iteratively estimated VCs with reference to
Vzz. The diagonal component Vxx obtains the same weight
as the radial pointing Vzz. It has a smaller signal content, but
also a twice smaller noise level, so that similar weighting
seems to be appropriate. The less accurate components Vxy
and Vyz are down-weighted by 2 and 5 orders of magnitude,
respectively. Thus some information from Vxy is still present
in the solutions while the influence of Vyz is negligible. The
prior information is down-weighted by 2 orders of magnitude
indicating that it contributes also to the output grids. The
down-weighting is justified in the errors of the long wave-
lengths part of GOCO03s which cannot be accounted for.
Against the expectation that the 4 accurate GOCE gradients
should have comparable weights, Vxz gets a lower weight
signifying that this gradient component is less accurate than
the diagonal elements. We assume that this effect is specific
for the Scandinavian region, as studies in other regions
deliver similar VCs for the four components.
Vyy gets the same weight as the diagonal components

Vxx and Vzz, but as our test area is located near the North
pole we further have to deal with systematic errors in this
component (Bouman et al. 2011; Bouman and Fuchs 2012).
In a second computation we thus manually fix the relative
weights (Table 1, col. (b)): the VCs of Vxx and Vzz are
adapted to the estimated values, but Vyy is down-weighted
by 5 orders of magnitude. We assume a noise behaviour
comparable with that of Vyz obtained in the estimated case.
Vxy and Vyz are additionally down-weighted. Using those
fixed weights we apply least squares estimation within a
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Fig. 3 Gravity gradient grids of the second-order derivatives of the disturbing potential modelled from GOCE gradient measurements at 270 km
height

Table 1 Relative weighting of observations. Given are the orders of
magnitude of the related VCs 	2k [–]

Observation (a) est (b) fix (c) fix

GOCO03s 102 102 102

Vxx 1 1 1

Vxy 102 1013 108

Vxz 103 102 102

Vyy 1 105 105

Vyz 105 1013 108

Vzz 1 1 1

FA 10�2

Gauss-Markov model. We compare the results from both
weighting strategies with the global GOCO03s model. The
mean standard deviation of the difference grids decreases
from 0:1mE (for estimated VCs) down to 0:03mE when
setting a lower relative weight for Vyy component. In our
study area the differences decline especially in the northern
part at latitudes > 70ı. We conclude that this might be due
to the down-weighted impact of Vyy and plan to investigate
further studies.

4.4 Combinationwith Free-Air Anomalies

Finer structures can be modelled by combining GOCE grav-
ity gradients with high-resolution data sets such as free-air
anomalies (FA). Figure 4 shows gravity anomalies with vari-
ations between ˙ 100mGal at the Earth’s surface obtained
from a combination at level 9 (l 0 D 511). Compared with
GOCE, the FA data set (Olesen et al. 2010a,b) contains
detailed information from altimetry, terrestrial and shipborne
gravimetry. The FA data therefore get a higher weight than
the GOCE Vzz gradients (2 orders of magnitude, deter-
mined with VCE). Table 1, col. (c) shows the corresponding
manually fixed weights of all input data sets. The lower
frequency domain of the solution is stabilised by the GOCE
observations. For areas where high-frequency data are avail-
able, our regional gravity field modelling approach offers
the opportunity to combine data sets which are sensitive to
different frequency domains by VCs such, that the data with
the highest signal content up to a specific level j contribute
the most. In contrast to other gravity analysis techniques
weights can be introduced individually for each resolution
level.
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Fig. 4 Combination of GOCE gravity gradients and free-air anomalies at level 9 (j 0 D 511) using manually fixed relative weights, Table 1,
col. (c)

5 Summary

We derived the observation equations for GOCE gravity
gradient measurements in a regional gravity field modelling
approach using radial basis functions. Our aim was to use
the original GOCE gravity gradients in the GRF to maintain
the precision of the four accurate components. The resulting
gradient grids show different structures that give information
of the Earth’s gravitational potential depending on different
spatial directions. This advantage might further be used
for research on the Earth’s interior and for geophysical
exploration (Ebbing et al. 2013). A validation of our regional
gradients grids with GOCO03s gives differences that are
smaller than ˙ 1mE, which confirms that our method works
properly. We also found that the use of VCs for the automatic
estimation of the relative weights of the different gradient
components may not be optimal. Manually down-weighting
the less accurate Vxy and Vyz components as well as down-
weighting the regionally less accurate Vyy component, sig-
nificantly reduces the differences to the global GOCO03s
model. Thus the optimal combination of the gradient data
sets requires further study, especially in the presence of
systematic errors as may be the case for Vyy . Moreover we
demonstrated a combination of the GOCE gravity gradients
with high-resolution FAs. The latter enable to model more
detailed structures at higher resolution levels. With this
additional information radial basis functions might offer the
possibility to enrich and supplement global gravity fields in
specified regions.
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Rosborough Representation in Satellite
Gravimetry

Nico Sneeuw and Mohammad A. Sharifi

Abstract

Rosborough representations are known from and used in satellite altimetry. The radial orbit
perturbation is represented in spherical coordinates and separated into a geographically
mean (ascending plus descending) and a geographically variable (ascending minus descend-
ing) part. This principle is easily generalized to any functional of the gravitational field,
observed along the orbit. Therefore, this type of representation can be used for gravity field
recovery from missions like GRACE and GOCE.

We describe here the nature of the Rosborough formalism in terms of forward and
backward rotation of spherical harmonics. A more practical derivation is subsequently given
by transforming the orbital coordinates back into spherical latitude � and longitude �, given
a nominal inclination I . This transformation is greatly alleviated by making use of complex-
valued functions, as opposed to the binomial series in Rosborough’s original formulation.

Keywords

Rosborough representation • Spaceborne gravimetry

1 Introduction

The original Rosborough problem in satellite altimetry
(Rosborough 1986) deals with the question, which part of the
radial orbit error �r is visible in the cross-over difference
at the location .�; �/. This automatically led Rosborough to
the question, how to represent (radial) orbit perturbations in
spherical coordinates. Since the sphere is virtually sampled
twice from satellite orbit, both from ascending and from
descending tracks, a separation follows naturally:

�r.�; �/ $ �ra=d.�; �/ $ �rm=v.�; �/ :
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The more general problem then consists in expressing any
along-track gravitational observable in spherical coordinates,
i.e. turn the time-wise approach into a space-wise approach:

f .t/ $ f .u; �; I; r/ $ f a=d.�; �/ $ f m=v.�; �/ :

The indices a/d refer to ascending and descending orbits,
whereas m/v refer to mean and variable, to be explained
furtheron.

On a historical note one should mention that the question
of a spatial representation of radial orbit errors was inves-
tigated around the same time by Engelis (1987). However,
the name “Rosborough” seems to have stuck in literature.
As such, we will talk about Rosborough problem, approach,
representation and functions in the following.

Although the Rosborough representation is space-wise,
it uses transfer (or sensitivity) coefficients that are rooted
in the time-wise approach. Thus the advantages from both
approaches can potentially be combined to yield a powerful
gravity recovery method. This, however, has never been
achieved beyond the description of radial orbit errors in
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altimetry. One of the main hurdles for wider implementa-
tion has most likely been the use of real-valued variables,
leading to quite involved algorithms, e.g. Balmino (1993).
The formulation was compounded by the need of developing
trigonometric functions into binomial series and to multiply
such series. Moreover, the p-index, as introduced by Kaula
(1966), related to the azimuthal wavenumber k by k D
l � 2p, is not conducive to understanding the pertinent
formulas. In terms of real-valued quantities, the algorithm
was optimized in an internal technical report by Bosch
(1997).

As mentioned above, the method was developed and came
to fruition for the analysis of satellite altimetry. For this field
of application, the method was restricted to cross-over loca-
tions – although including the concept of multiple-satellite
cross-overs, e.g. Klokočník et al. (1995) – and to the gravi-
tational functional of type radial orbit perturbation. Sneeuw
(2003) generalized the Rosborough approach and extended it
to the analysis of other along-orbit gravitational functionals.
At the same time a major algorithmic improvement was
presented in Sneeuw (2003) by making use of complex-
valued trigonometric functions, completely eliminating the
need for binomial series developments (and their products).
As a result Rosborough functions could be computed in a
fast and stable way up to high degree. In the era of CHAMP
(Reigber et al. 2005), GRACE (Tapley et al. 2004) and
GOCE (ESA 1999; Rummel 2011), however, the approach
did not seem to have been used. More recently, Sharifi et al.
(2013a) demonstrated by closed-loop simulation that the
Rosborough approach can work with GOCE gravity gradient
data. The first successful proof-of-concept, in which real
GOCE data were analyzed with the Rosborough approach,
was given by Sharifi et al. (2013b).

Beyond being merely an alternative formulation, the Ros-
borough representation separates ascending from descend-
ing arc information in a natural way, which is the reason
why it was developed for cross-over analysis in satellite
altimetry in the first place. Such separation is a helpful
property when performing error analysis in cases where the
error behaves differently between ascending and descending
tracks. Examples would be (a) time tag errors in altimetry
that map to different errors on ascending and descending
tracks, (b) analysis of the tidal aliasing error, where the tidal
phase between descending and ascending track are distinct,
or (c) ionosphere-induced orbit tracking errors due to dawn-
dusk orbit geometry, which may result into the geomagnetic
equator to become visible in GOCE gravity field recoveries.

However, in this contribution we do not engage in
discussing the merits of the Rosborough formalism relative
to more standard (time-wise, space-wise) approaches.
Instead we want to elucidate the nature of the Rosborough

representation and to focus on the algorithmic aspects, that
were only very briefly touched upon in Sneeuw (2003).

2 Transforming into Orbit and Back

The nature of Rosborough functions will be revealed by the
following derivation:

V.�; �/ W potential on the sphere

+ transformation

V.u; �; I; r/ W potential along the orbit

.Kaula representation/

+ transfer Hlmk.r; I /

f .u; �; I; r/ W functional along the orbit

+ reverse transformation

f a=d.�; �; r; I / W functional on 2 spheres

.ascending & descending/

The spherical latitude � and longitude � are transformed into
orbital coordinates u, I and �, to be explained below. The
above transformations refer to rotations of the coordinate
system into the orbital plane (and back). As a consequence,
the spherical harmonics must transform accordingly, e.g.
Sneeuw (1992). Note that this is not the type of derivation
followed by Rosborough (1986) or Engelis (1987), which
will be the topic of Sect. 3.

2.1 The Geopotential on the Sphere

Starting point is a spherical harmonic (SH) series of the
geopotential. For reasons of compactness, complex-valued
quantities are employed. Moreover the dimensioning factor
GM=r and the upward continuation term .R=r/l are sup-
pressed. It is assumed that spherical harmonics and coef-
ficients are fully normalized, although this is not indicated
notationally.

V.�; �/ D
X

l

X

m

KlmYlm.�; �/ ; (1)

with: Ylm.�; �/ D Plm.�/eim� ;

and complex spherical harmonic coefficients Klm.
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Fig. 1 Spherical triangle between the satellite, its footpoint on the
equator and the instantaneous ascending node

2.2 The Geopotential Along the Orbit

It was shown in, e.g., Sneeuw (1992) how to arrive at a
complex-valued expression in orbital variables by applying
the rotation sequence Rz.u/Rx.I /Rz.�/. Use is made of the
orbital coordinates u D ! C � (argument of latitude), I

(inclination) and � D ˝ � GAST (longitude of ascending
node, with ˝ being the right ascension of the ascending
node). The Greenwich actual sidereal time GAST is denoted
by the variable � in Fig. 1. For the spherical harmonics this
implies:

Ylm.�; �/ D
X

k

Dlmk.�; I; u/Ylk.�0; �0/ (2)

with Dlmk.�; I; u/ D ik�mdlmk.I / ei.ku C m�/ ; (3)

which makes use of Wigner’s rotation symbols Dlmk and dlmk.
Application to (1) returns:

V.�0; �0/ D
X

l

X

m

X

k

Klmik�mdlmk.I / � (4)

� ei.ku C m�/Ylk.�0; �0/ :

The rotations are chosen such that the new equatorial plane
(x0y0-plane) coincides with the orbital plane, hence �0 D 0.
At the same time, the last rotation R3.u/ assures that the new
x0-axis will always point to the satellite, i.e. �0 D 0, such

that Ylk.�0; �0/ D Plk.0/. This gives rise to the inclination
functions

Flmk.I / D ik�mdlmk.I /Plk.0/ : (5)

They were introduced by Kaula (1966), although not derived
along the above lines. For algorithmic aspects of efficient
inclination function computation, the reader is referred to
Kostelecký et al. (1986) and Goad (1987) or Sneeuw (1992)
among others.

With the coordinates �0 and �0 now defunct it is better to
express the potential in the orbital coordinates u; I; � (with
r suppressed, but not defunct): V.u; I; �/.

2.3 Functionals Along the Orbit

The use of the inclination function is not followed here,
though, since it obscures the coordinates �0 and �0. A func-
tional of the geopotential is obtained by applying a specific
transfer hlmk. Thus from (4) one obtains the expression:

f .�0; �0/ D
X

l;m;k

hlmkKlmik�mdlmk.I / � (6)

� ei.ku C m�/Ylk.�0; �0/ :

In this equation, hlmk may contain dimensioning and upward
continuation again. A collection of transfer coefficients,
relevant to spaceborne gravimetric observables, is provided
in Sneeuw (2000).

2.4 Functionals on the Sphere(s)

If one can rotate from the original sphere into the orbital
system, one can surely rotate back to the sphere again. Thus,
rotation (2) is reversed now:

Ylk.�0; �0/ D
X

k

Dlkp.�u; �I; ��/Ylp.�00; �00/ (7)

D
X

k

ip�kdlkp.�I / ei.�ku � p�/ :

Naturally, �00 D � and �00 D �. Inserting all this in (6) yields
a SH series expression of the functional:

f .�; �/ D
X

l;m;k;p

hlmkKlmip�mdlmk.I /dlkp.�I / � (8)

� ei.m � p/�Ylp.�; �/
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Now � is the longitude of the ascending node. Therefore, if ˛

denotes the right ascension of the satellite, we have ˛ � ˝ D
���, cf. Fig. 1. With � D �� .˛ �˝/, the latter two terms
can be recast into:

ei.m � p/�Ylp.�; �/

D ei.m � p/.� � .˛ � ˝/Plp.sin �/ eip�

D ei.p � m/.˛ � ˝/Plp.sin �/ eim� :

Performing the summations over p and k subsequently gives
the expressions:

f .�; �/ D
X

l

X

m

KlmQlm.�; I / eim� ; (9)

Qlm.�; I / D
X

k

hlmkdlmk.I /˚mk.�; I / ; (10)

˚mk.�; I / D
X

p

ip�mdlkp.�I /Plp.sin �/ � (11)

� ei.p � m/.˛ � ˝/ :

Expression (9) represents the functional in a series, similar
to a spherical harmonic development. This type of series
is referred to as Rosborough representations. Instead of
Legendre functions, every functional f would have its own
Rosborough function Qlm. Since ˚mk contains terms in
.˛ � ˝/, it must be separated in two functions, one for
ascending tracks, the other for descending ones, cf. next
section. Consequently the same holds true for Qlm and the
functional itself. This is treated more explicitly in the next
section.

2.5 Isotropic Transfer

An isotropic transfer coefficient hlmk does not depend on m

or k, which is an azimuthal wavenumber, like m. Thus we
can write hlmk D hl . For this special situation the summation
over k in (8) can be performed directly. Rotating back and
forth about the inclination returns a Kronecker ı, i.e. the unit
matrix: X

k

dlmk.I /dlkp.�I / D ımp :

Thus (8) boils down to:

f .�; �/ D
X

l

X

m

X

p

hlKlmip�mımp ei.m � p/�Ylp.�; �/

D
X

l

X

m

hl KlmYlm.�; �/ ;

which is just (1) with isotropic transfer applied. In this
case, there is obviously no separation between ascending
and descending contributions. Expressed in terms of the next
section, the functional only contains a geographically mean
contribution, no geographically variable one. Consequently,
cross-over differences will vanish in case of isotropic func-
tionals.

Inclination functions will naturally arise by rotating spher-
ical harmonics into the orbital coordinate system. In this
view, the previous derivation of generalized Rosborough
functions by inverse rotation – after applying a specific
transfer – reveals the nature of Rosborough functions. Never-
theless, this derivation has never been used, probably because
of conceptual, but also for practical reasons. The additional
summation over the p-index and the evaluation of Wigner
coefficients dlkp can be avoided, as shown in the next section.

Before that, two remarks are in place here. Firstly, the
separation between ascending and descending track contri-
butions, is hidden in the term exp.i.m � p/�/. The variable
u has vanished, though. Secondly, the Rosborough formalism
does assume a so-called nominal orbit, in which orbital
radius r and inclination I are constant. In principle, the
above formulas do allow them to be variable, but it would
lead to an impractical algorithm.

3 Rosborough Representations

Any functional of the gravitational potential along the orbit
can be written by:

f .r; u; �; I / D
X

l

X

m

X

k

Hlmk.r; I /Klm ei.ku C m�/ :

(12)

This equation is derived from (6) by inserting inclination
function (5) and collecting Flmk.I /, hlmk, dimensioning and
upward continuation into the transfer coefficient Hlmk.

The goal now is to eliminate the orbital variables u
(argument of latitude) and � (longitude of ascending node),
such that (12) becomes an expression in spherical earth-
fixed coordinates � and �. The elimination is not achieved
here by rotating the orbital frame back into the Earth-fixed
frame, as in the previous section. We will not follow the
lines of derivation as in Rosborough (1986), which led
to cumbersome manipulation of real-valued trigonometric
series developments with arguments of ku and m�. Instead,
we manipulate the complex-valued term exp.i.ku C m�//

from (12).
For that purpose the spherical triangle between the satel-

lite, the ascending node and the footpoint of the satellite on
the equator (along its local meridian) is considered, cf. Fig. 1.
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We note again that � � � D ˛ � ˝ , such that

eim� D eim� e�im.˛ � ˝/ : (13)

Thus the longitude � appears naturally. The sides of the
spherical triangle are � along the satellite’s meridian, u along
the orbit and ˛ � ˝ along the equator. With basic spherical
trigonometry, e.g. Kaula (1966), it is:

cos u D cos � cos.˛ � ˝/ (14)

sin u D cos � sin.˛ � ˝/= cos I (15)

sin u D sin �= sin I (16)

From the latter, one obtains:

cos u D ˙ 1

sin I

q
sin2 I � sin2 � ; (17)

where the C-sign is valid for ascending tracks (u 2
Œ��=2; �=2	) and the �-sign for descending tracks (u 2
Œ�=2; 3�=2	). This distinction is the starting point of the
separation in mean and variable parts of the functional in
the Rosborough representation. Moreover, (17) implies the
condition sin2 � < sin2 I , or j�j < �=2 � j�=2 � I j. This
means that all following formulae are only valid as long as
the latitude is outside the polar gaps with spherical radius
j�=2 � I j.

Combining (14) and (15) gives:

ei.˛ � ˝/ D 1

cos �
.cos u C i sin u cos I / ;

which still contains terms in u. Making use of (16) and (17)
gives the set of equations:

eiu D
�
˙

p
sin2 I � sin2 � C i sin �

�

sin I

ei.˛ � ˝/ D
�
˙

p
sin2 I � sin2 � C i sin � cos I

�

cos � sin I

Exponentiation of these with positive k and m, respectively,
leads to

eiku D
�
˙

p
sin2 I � sin2 � C i sin �

�k

sink I

e�im.˛ � ˝/ D
�
˙

p
sin2 I � sin2 � � i sin � cos I

�m

cosm � sinm I

Note that the complex conjugated was used in the latter, since

e�ix D eix . This identity is also used to generalize to
arbitrary k and m. Combining these results and renaming the
complex-valued trigonometric function into ˚ yields:

˚ṁk.�; I / D ei.ku � m.˛ � ˝// (18)

D 1

cosjmj � sinjmjCjkj I
�

�
�

˙
q

sin2 I � sin2 � C i
jkj
k

sin �

�jkj
�

�
�

˙
q

sin2 I � sin2 � � i
jmj
m

sin � cos I

�jmj

The powers are all positive. The sign of the imaginary parts
depends on the sign of m and k. The following symmetry
holds: ˚�m;�k D ˚mk .

Inserting (18) into (12) results in:

f ˙.r; �; �; I /D
X

l

X

m

X

k

Hlmk.r; I /Klm˚ṁk.�; I / eim� :

(19)

In a next step the summation over k is performed in order to
get an expression, similar to an ordinary SH series develop-
ment. In this step we also revert to using the indices a and d
for ascending (C) and descending (�), respectively:

f a=d.r; �; �/ D
X

l

X

m

KlmQ
a=d
lm .�; I / eim� (20)

with Q
a=d
lm .�; I / D

X

k

Hlmk.r; I /˚
a=d
mk .�; I / : (21)

Finally, the ascending and descending contributions are
permuted to yield a geographically mean (or geographically
correlated) part and a geographically variable part:

f m=v.r; �; �/ D
X

l

X

m

KlmQ
m=v
lm .�; I / eim� (22)

with Qm
lm D .Qa

lm C Qd
lm/=2 (23)

and Qv
lm D .Qa

lm � Qd
lm/=2 (24)

Vice versa, the ascending and descending contributions can
be derived from the mean and variable parts by means of

Qa
lm D Qm

lm C Qv
lm (25)

Qd
lm D Qm

lm � Qv
lm (26)
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These permutations show that representations in terms of
m/v and in terms of a/d are equivalent. The geographically
variable part is expressed in cross-over differences. The mean
part is invisible in cross-overs.

4 Concluding Remarks

The representation (20) is a complex-valued counterpart of
Rosborough’s representation (Rosborough 1986). Depending
on the transfer coefficient Hlmk it applies to any functional
of the gravitational potential. It is valid only outside the
polar gaps, i.e. j�j � �=2 � j�=2 � I j. Although the use
of transfer coefficients in the framework of the time-wise
approach may seem to imply validity along the satellite
tracks alone, it must be pointed out that the fields them-
selves were rotated. Consequently the formulations is valid
anywhere.

The complex-valued valued formalism and the corre-
sponding notation avoid the necessity of the tilde-, overbar-
and c- and s-variants of the functions used in Rosborough
(1986). A great algorithmic advantage is that there is no need
to expand (18) or its constituents further into binomial series,
using functions Y and 
 , as is done by Rosborough (1986)
and in all other works that build on or improve his derivation,
e.g. Bosch (1997). The complex quantities within brackets
in (18) can be exponentiated and evaluated directly. Note
also that from their definition (18) the ˚mk-functions obey
jj˚mkjj D 1. Numerical stability is therefore guaranteed.

One could even consider to obtain u and .˛ � ˝/ directly
from � and I (and ˙) by inversion of (14)–(17). The function
˚mk.�; I / is then evaluated directly by the very simple first
line of (18).

We have provided the derivation of the Rosborough
representation in complex-valued terms here in more detail
than Sneeuw (2003). The only other attempt at such
formulation was made in an unpublished memorandum
by Balmino (1996, A note on Rosborough transformation,
unpublished memorandum), who also demonstrated that
binomial series expansions can be avoided when using
complex notation. The complex-valued algorithm is
efficient, while it avoids series expansions, and stable.
By plugging in the appropriate transfer coefficient Hlmk,
any gravity functional along the orbit can be represented.
The Rosborough function Qlm.�; I / is defined in terms
of such Hlmk. If, for instance, one takes the representation
coefficient H xx

lmk of along-track gradients, one obtains a
spatial representation of along-track gradients, i.e. in the

local orbital frame, irrespective of location on Earth. The
Rosborough approach is thus a versatile methodology in
spaceborne gravimetry, that deserves implementation on
a broader scale. The proof-of-concept for GOCE data by
Sharifi et al. (2013b) is a first step.

In this contribution we demonstrated the nature of the
Rosborough representation through reverse transformation of
spherical harmonics.
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Combining Different Types of Gravity
Observations in Regional Gravity Modeling
in Spherical Radial Basis Functions

Katrin Bentel and Michael Schmidt

Abstract

With the increasing number of high-resolution gravity observations, which became available
in the recent years, global Earth gravity models can be regionally refined. While global
gravity models are usually represented in spherical harmonic basis functions with global
support, a very promising option to model the regional refinements is the use of spherical
radial basis functions with quasi-compact support. We use the approach of regional gravity
modeling in spherical radial basis functions, with parameter estimation to determine the
coefficients of the signal representation, on a test data set provided by the IAG-ICCT study
group JSG0.3. We demonstrate on the data set for Europe that the approach is well-suited for
different types of observations, such as terrestrial, aerial, and satellite-based measurements,
as well as their combination. Furthermore, our results contribute to the study group’s goal
of inter-comparison of different modeling methodologies. Our regional modeling approach
leads to relative errors of about 0.2–2% when compared to the validation data sets on the
topography.

Keywords

Combination of different observations • ICCT study group test data • Radial basis func-
tion • Regional gravity field modeling

1 Introduction

A study group under the umbrella of the IAG (Interna-
tional Association of Geodesy)—ICCT (Inter Commission
Committee on Theory) between Commission 2 (Gravity
Field) and Commission 3 (Earth Rotation and Geodynam-
ics) titled as Joint Study Group JSG0.3 Comparison of
Current Methodologies in Regional Gravity Field Model-
ing was established in 2011 with duration until 2015. The
goal of this study group is to compare different regional

K. Bentel (�)
Department of Mathematical Sciences and Technology, Norwegian
University of Life Sciences, IMT, Postboks 5003, 1432 Ås, Norway
e-mail: katrin.bentel@umb.no

M. Schmidt
Deutsches Geodätisches Forschungsinstitut, Munich, Germany

modeling methodologies and to finally outline standards and
conventions for future regional gravity products. One of the
activities so far was to provide synthetic test data sets which
are used for inter-comparison of regional gravity modeling
methodologies. Among the objectives are the choice of the
type of basis function, the point grid, an appropriate method-
ology to solve the adjustment problem, and the consideration
of errors.

Details on the study group as well as the test data can be
found online at http://jsg03.dgfi.badw.de. Synthetic gravity
observations of different types are provided for two different
regions in Europe and in South America. For each region
satellite-based, aerial, as well as terrestrial observations are
provided, along with noise information for each observations
type, and validation data sets in terms of disturbing gravity
potential on the topography.

We use the test data sets in Europe for our regional grav-
ity modeling approach in spherical radial basis functions.

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_2
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In Chap. 2 we explain the approach, in Chap. 3 we present
our results with the individual data sets, and in Chap. 4
their combination. Finally, in Chap. 5 all modeling results
are summarized and discussed. Thereby, with this article, we
contribute to the goal of the study group of inter-comparison
of different regional gravity modeling approaches by present-
ing our results with the study group’s test data.

2 Regional Gravity Modeling
in Spherical Radial Basis Functions

For regional gravity modeling, we use spherical radial basis
functions, as presented in Freeden et al. (1998), Holschneider
et al. (2003), or Schmidt et al. (2007) and references therein,
amongst many others. We follow the approach given in
Bentel et al. (2013). A regional residual gravity signal �F

is represented in a series expansion in spherical radial basis
functions according to

�F.x/ D
KX

kD1

dkB.x; xk/: (1)

Thereby, B.x; xk/ are the radial basis functions, which
depend only on the spherical distance between their location
point xk and the evaluation point x, and are defined as

B.x; xk/ D
NX

nD0

2n C 1

4�R2

�
R

r

�nC1

BnPn.x; xk/: (2)

Pn are the Legendre polynomials, R is the radius of a
reference sphere (e.g. mean Earth radius), and r is the radius
of the evaluation point x. The coefficients Bn define the type
of radial basis function. For the computations here, we use
cubic polynomial radial basis functions, motivated by the
findings in Bentel et al. (2013). They are defined by

Bn D .1 � 1

N
n/2 .

2

N
n C 1/; (3)

and can be found in Freeden et al. (1998). The values for N

are adjusted according to the signal which is to be modeled.
With x, the different types of observations are directly used
at the locations at which they are obtained. The points xk,
the locations for the radial basis functions, are chosen on a
Reuter grid, see Freeden et al. (1998).

To determine the coefficients dk of the regional signal
representation, regularization is needed due to the downward
continuation problem of gravity which is involved and due
to non-uniqueness of the coefficients to be estimated. We
use variance component estimation according to Koch and

Kusche (2002) to determine the variance components of the
data sets and the prior information. The variance components
can further be used to determine relative weighting factors
between the different data sets as well as the regularization
parameter with respect to the prior information. Prior infor-
mation in terms of the expectation vector for the coefficients
to be estimated is added. We set the vector of prior infor-
mation equal to zero, because a residual signal is modeled
after removing a reference field (EGM 96) up to spherical
harmonic degree 60. All results presented here are obtained
with sets of physically meaningful coefficients, what means
they are correlated to the signal to be modeled as well as
small on the margins, which are needed beyond the area of
observations in order to avoid boundary effects. They are
between 2ı and 3ı wide.

All modeling approaches are validated with the given
validation data sets. From the regional gravity field repre-
sentation, the disturbing potential is synthesized at the same
points where validation data is available, respectively in the
area where observations are available after subtracting a
margin width. This is necessary to avoid boundary value
effects and the margin widths are given together with the
results in Table 1. Then the errors in terms of differences
in each point are computed as well as a relative RMS error
value in terms of percentage of the error RMS from the signal
RMS of the full signal up to degree 2,190.

3 Different Examples of Gravity
Observations in Europe

We use the test data provided by the ICCT study group ready
for download at http W ==jsg03:dgfi:badw:de with the given
realistic level of white noise on the observations. For the test
region in Europe, two sets of synthetic observations are pro-
vided for each observation type. Satellite-based observations
are available from GRACE (Tapley et al. 2004) and GOCE
(Drinkwater et al. 2007), two sets of aerial observations
are available for two different flight campaigns, and the
terrestrial observations are available on a regular grid on
the topography with two different grid spacings, one with
300 and the other with 50 spacing. From all different types
of observations, a reference field (EGM 96) up to spherical
harmonic degree 60 is removed, and restored later, when the
gravity values for validation purposes are synthesized. With
the regional gravity modeling approach, only a residual grav-
ity signal is represented. Three different sets of validation
data defined on the topography are provided, one in a larger
area and two in a smaller area. We use the one which fits
best with the area of observations for the different types of
observations.

http://jsg03.dgfi.badw.de/index.php?id=5
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Table 1 Summary of the modeling results

Individual data sets

Type of observations Error RMS% N kernel Margin width Œı]

GRACE-type 2.1 300 0

GOCE-type 1.26 350 0

Terrestrial, 300 spacing 1.55 300 0

Terrestrial, 50 spacing 0.21 1,200 2

Aerial, case I 0.40 700 1
Aerial, case II 0.37 900 1

Combination of the data sets

Type of observations Error RMS% appr. A Error RMS% appr. B N kernel Margin width [ı]

GRACE C terrestrial (300) 1.28 0.95 350 0

GRACE C GOCE 2.26 1.26 350 0

Aerial case I C terrestrial (50) 0.35 0.22 1,200 2

GRACE C aerial case I C aerial case II 2.3 2.7 350 2
GRACE C aerial case I C terrestrial (50) 0.65 0.17 1,000 2

Fig. 1 GRACE observations with white noise with a standard deviation
of 0.0008 m2/s2, together with validation area (red box)

The modeling results, in terms of RMS error after valida-
tion, for all data sets are given in the first part of Table 1.
In the following, two examples are presented in more detail.
The first example are GRACE-type observations. The obser-
vations, potential differences along real GRACE orbits, are
given in Fig. 1. Figure 2 shows the modeling results from
the GRACE observations in terms of disturbing potential on
the topography on the left hand side. The plot in the center
shows the validation field, and the plot on the right hand side
the difference between the two previous ones, that is, the
modeling errors. The second example are aerial observations
for one flight campaign. Again, Fig. 3 shows the observations
and Fig. 4 the modeling results.

4 Combination of the Different Data
Sets

Investigations in combining heterogenous data sets have
already been made, as for example in Panet et al. (2012)
with a wavelet approach. We combine different data sets
by determining a relative weighting, favourably related to
the accuracies of the individual observation sets. For that
purpose we use here the method of variance component
estimation (VCE) as already mentioned before. To establish
our linear model we first transform the observation equation
as defined in Eq. (1) into the matrix equation �Fi Cei D Ai d
where i D 1; : : : ; n means an individual observation set.
Then we combine the n single models to the combined model

2
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which means a Gauss-Markov model with unknown coeffi-
cient vector d and unknown variance components �2

i with
i D 1; : : : ; n for the n observation sets and �2

� for the prior



118 K. Bentel and M. Schmidt

Fig. 2 GRACE regional modeling results for a region in Europe; all results given in disturbing potential [m2/s2]; relative error RMS: 2.1%

Fig. 3 Airborne observations (case I) with white noise with a standard
deviation of 1 mGal together with validation area (red box)

information. In the following we distinguish between two
approaches on variance component estimation (according to
the Koch and Kusche (2002)):
(a) We introduce the assumption �2

1 D �2
2 D : : : D �2

n DW
�2

0 for the n variance components �2
i . Thus, in this

approach we determine the estimations of d as well as �2
0

and �2
�. The iteratively determined variance components

lead—in the point of convergence—to the solution
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for the unknown coefficient vector d.
(b) Besides the unknown coefficient vector d we here intro-

duce all n C 1 variance components �2
i for i D 1; : : : ; n

and �2
� defined in the model (4) as unknown parameters.

With the estimation of the individual variance compo-
nents the relative weighting between all observation sets
and the prior information is determined. Thus, the VCE
yields in the point of convergence the solution

Od D
 

nX

iD1

1

O�2
i

AT
i Ai C 1

O�2
�

I�

!�1

 
nX

iD1

1

O�2
i

AT
i �Fi C 1

O�2
�

I��

!
:

The different sets of observations are combined according to
the two approaches discussed before. The modeling results
from these two combinations are presented in the lower part
of Table 1. In Fig. 5 the modeling results for one combination
example are presented.

5 Regional Modeling Results

In Table 1, all modeling results from the ICCT study group
test data for the region in Europe are summarized. For
each set of observations, the relative RMS error is given in
%-values together with the maximum degree in the cubic
polynomial basis function and a margin width which is used
in order to avoid boundary effects. The values given in Œı�

indicate by how much the validation area is smaller than the
area of observations. For the results obtained from combina-
tion of different data sets the error RMS% values are given
for both of the approaches outlined before. The results from
satellite based observations lead to slightly worse results
than the other observations. This is due to the downward
continuation problem of gravity, which is of course included
when gravity on the Earth surface is computed from obser-
vations at satellite orbit height. Downward continuation is an
ill-posed problem by its physical nature, the gravity signal
gets attenuated with distance from the masses. The terrestrial
observations with 300 spacing lead as well to an RMS error
which is not as low as from the other terrestrial data sets.
This is due to the fact that also in the observations with 300
spacing, information up to spherical harmonic degree 2,190
was included. But the spacing of observations is not dense
enough to sample this high frequency signal. Thus, not the
full signal content can be recovered from the coarse observa-
tions. The very dense sampling of the terrestrial observations
with 50 spacing as well as from the aerial observations lead
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Fig. 4 Regional modeling results for a region in Europe, from aerial observations, case I. All fields are disturbing potential, in [m2/s2]; relative
error RMS: 0.40%

Fig. 5 Regional modeling results for a simultaneous analysis of
GRACE and two sets of aerial observations. The plot shows the differ-
ence in the disturbing potential field on the topography synthesized from
the modeling approach and the reference field. That is, the modelling
errors in [m2/s2]. The red boxes indicate the area of the two flight
campaigns (called case I and II). GRACE observations (see Fig. 1) are
available throughout the whole area. The relative error RMS is 2.3%
and the plot shows that the errors are small in the areas where aerial
observations are available, but high outside

to very small errors in the recovered signal. The spacing
of the sampling is dense enough to recover the maximum
frequency in the signal (spherical harmonic degree 2,190).
The terrestrial observations lead to even better results than
the aerial observations, since in the terrestrial observations
no downward continuation of gravity is included, while in
the aerial observations it still plays a role.

In the data combination results in the second part of
Table 1 approach B, with individual weights for the data sets,
generally leads to better results than approach A. The only
exception is the combination of GRACE data with the two
sets of aerial results. This special case is discussed in the
following in more detail.

In the combination of GRACE-type and terrestrial obser-
vations with 300 spacing it can be seen how additional
terrestrial observations lead to a better result. The combined
error is lower than the individual errors. This also holds for
the combination of GRACE and GOCE data, however, when

two satellite-based data sets are combined, the result does not
improve that much. The combination of aerial and terrestrial
observations leads to good results, since the error RMS of the
aerial data can be significantly improved by adding terrestrial
observations.

The results of combining GRACE-type observations and
the two aerial data sets show that even if the two aerial
data sets cover a reasonable part of the area of interest
(but still less than half of the area), this is not enough to
make the solution of the whole area significantly better than
from GRACE observations alone. For validation, the data
set with spherical harmonic degrees up to 2,190 was chosen.
These high degrees can not be recovered in the areas where
only GRACE data is available and with a basis function of
only degree 350. Therefore, the overall RMS% error is even
higher than for GRACE data alone. Furthermore, the results
for approach B are even worse than for approach A, since in
this non-realistic scenario, no appropriate variances can be
assigned to the data sets, and the errors outside the areas of
aerial observations get very high.

Finally, the combination of three different types of data
sets, namely satellite-based, aerial and terrestrial observa-
tions, leads to very good modeling results. The error RMS
value is amongst the lowest to be achieved.

6 Summary and Outlook

Different types of gravity observations can be combined in
one parameter estimation step in the regional gravity field
modeling approach in spherical radial basis functions. The
different sets of observations can be directly used in the
approach, without prior processing or griding of the observed
values. The results presented in this paper are not only useful
for comparisons with other methods for the ICCT study
group, but they are also a first step towards the analysis of
real observations. All results shown above are obtained from
simulated observations with a realistic noise level according
to the ICCT study group. They lead to modeling errors
between 0.2 and 2% for the different scenarios.
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Due to more and more available high-resolution gravity
observations, regional gravity modeling techniques play an
important role, since the common approach of gravity mod-
eling in spherical harmonic basis functions cannot accom-
modate regional gravity refinements appropriately. However,
using real data in the regional modeling approach would be
more tricky than this simulation, e.g. due to coloured noise
of and correlations between the observations. In order to take
the simulation study closer to processing real observations,
stochastic properties of the different data types could be con-
sidered and improved in the variance component estimation
step as well.
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Height Datum Unification byMeans
of the GBVP Approach Using Tide Gauges

E. Rangelova, M.G. Sideris, B. Amjadiparvar, and T. Hayden

Abstract

In this paper, we discuss the methodology of height datum unification by means of the
Geodetic Boundary Value Problem (GBVP) approach and tide gauge information. We apply
the global multiple vertical datum GBVP approach with an observation equation for the
datum offset written in terms of the ellipsoidal height of the mean sea level at a tide gauge,
the height of mean sea level in the national vertical datum and the geoid height. An example
is given for CGVD28 and NAVD88 datums in North America. A few issues related to the
geoid height are studied: the magnitude of the so-called indirect bias term, as well as the
GOCE global geopotential model (GGM) commission and omission errors and their effect
on the accuracy of the computed datum offsets. It is shown that the indirect bias term is
below 1 cm if a residual Stokes’s kernel is used, which corresponds to a degree and order
180 of the GOCE GGM. The GOCE geoid commission error computed from the time-wise
approach GGM of degree 180 is 2–3 cm at the North American tide gauges. The GOCE
GGM omission error could affect the computed mean vertical datum offsets at the tide
gauges by as much as 7 cm.
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1 Introduction

The geodetic boundary value problem (GBVP) approach
for height datum unification was proposed decades ago
by Colombo (1980), Rummel and Teunissen (1988), Rapp
and Balasubramania (1992) and others. In this study, we
review the global single vertical datum GBVP (Heiskanen
and Mortiz 1967) and the global multiple vertical datum
GBVP (Rummel and Teunissen 1988), both in spherical
approximation. For the multiple vertical datum problem in
ellipsoidal approximation, Sansò and Venuti (2002) can be
consulted.
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Global or regional height system unification requires
local height datum offsets that refer to one globally or
regionally defined equipotential surface and are computed
by means of the most accurate GOCE-based satellite global
geopotential model (GGM) for long and medium gravity
field wavelengths, terrestrial gravity data and ellipsoidal
heights in ITRF. The local datum offsets can be computed
on land using GNSS-surveyed levelling benchmarks, at the
coast using GNSS-surveyed tide gauge stations, and at sea
using high resolution mean dynamic topography and geoid
models. Height system unification with tide gauge stations
seems a natural approach as the classical height datums were
typically defined by the local mean sea level computed at one
or more tide gauge stations.

In this work, we compute the offsets of the Canadian
and US height datums, namely CGVD28 (Cannon 1929)
and NAVD88 (Zilkoski et al. 1992). Both CGVD28 and
NAVD88 have the typical flaws of the continental-size
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vertical datums realized through levelling data that were
collected over the time span of many decades: poor absolute
accuracy of heights, large coast-to-coast distortions and
many local distortions, some of which are a result of signif-
icant crustal uplift or subsidence, to name a few. It should be
noted that recently CGVD28 has been replaced by the new
geoid-based datum CGVD2013 with which the aforemen-
tioned datum issues have been resolved. However, computing
the CGVD28 offsets at the Canadian tide gauges with respect
to a common equipotential surface for North America is still
useful as the Canadian gravity database and high resolution
digital terrain models are based on this old datum.

We apply the global multiple vertical datum GBVP
approach with an observation equation for the datum offset
written in terms of the ellipsoidal height of the mean sea
level, the height of mean sea level in the national vertical
datum and the geoid height at a tide gauge. We focus on a
few issues related to the last of the three height components:
the magnitude of the so-called indirect bias term in the geoid
height resulting from the use of biased local gravity data in
geoid computations, as well as the GOCE commission and
omission geoid errors and their effect on the accuracy of
the computed datum offsets. The vertical datum offsets
refer to the equipotential surface defined by the value
Wo D 62636856.0m2 s�2, which was computed by averaging
the potential of the mean water level at the North American
tide gauges (Hayden et al. 2012).

2 Single Vertical Datum Problem

With a harmonic disturbing potential T D W �U outside the
boundary surface �, the global single vertical datum GBVP
in spherical approximation is defined as follows:

ˇ
ˇ
ˇ
ˇ

�T D 0

� @T
@r

� 2
R
T D �g � 2

R
�Wo

; (1)

where R is the mean radius of the Earth, represented by
�, and �g is the gravity anomaly given on the boundary
surface. The datum problem can be solved for the potential
upon introducing the regularity condition T ! 0 when
the geocentric distance r ! 1. On the boundary surface,
the �g values are corrected for the unknown height datum
parameter �Wo D Wo � Uo, where Wo is the potential of
the geoid and Uo is the normal potential of the reference
ellipsoid.

When the geoid heightNPGOCE is computed from a GOCE-
based GGM (e.g., Pail et al. 2011), the solution to the single
vertical datum problem at point P is

NP D No CNPGOCE C 1

�
SP�gres; (2)

where � is the normal gravity on the reference ellipsoid
and No D ıGM=R� � �Wo=� . ıGM is the difference in
the geocentric gravitational constant GM of the geoid and
GMe of the normal ellipsoid. It is shown by Kotsakis et al.
(2012) that the uncertainty of ıGM imposes an error of 1 cm
in absolute vertical positioning with respect to an arbitrary
equipotential surface.

SP�g D R

4�

�
�

St
�

 PQ
�

�gd�Q (3)

is Stokes’s integral (Heiskanen and Mortiz 1967), where the
integration is performed over the sphere � with radius R.
The integration kernel St( PQ) is Stokes’s function, which
depends on the geocentric distance  between point P and
the variable location Q of �g.

Stokes’s integral in Eq. (3) is evaluated with the residual
gravity anomalies �gres D �g � �gGOCE. The classical
GBVP approach requires that the effect of the topographic
masses on gravity is removed before the integration and is
restored on the geoid afterwards.

3 Multiple Vertical Datum Problem

In reality, gravity anomalies do not refer to a global vertical
datum defined by Wo. Instead, they refer to local vertical
datums j, defined by the equipotential surfaces with potential
Wj

o (the so-called local zero height level). The single vertical
datum problem is transformed to a multiple vertical datum
problem with as many unknown vertical datum parameters
(biases) ıW j

o D Wo �W j
o as vertical datums exist.

Assuming that each local zero height level is biased with
respect to one reference surface (although tilts and other
long-wavelength datum distortions can exist in practice),
Rummel and Teunissen (1988) proposed a solution to the
multiple vertical datum problem, which we adopt herein. It is
assumed that the Earth is represented by the sphere � that is
covered by J C 1 non-overlapping vertical datum zones �j,
j D 0,1,2, : : : ,J such that � D �o [ �1 � � � [ �J . The zone
�o defined by Wo is chosen arbitrarily as a reference datum.

The input to Stokes’s integral in Eq. (3) are the local
gravity anomalies�g j corrected for the unknown bias ıWj

o:

�g D �gj C 2

R
ıW j

o ; j D 0; 1; 2; : : : ; J (4)

where the gravity anomalies �g refer to �o. The term
2ıWj

o/R is the “free-air” reduction one uses to reduce �g j

from the local zero height level Wj
o to the reference level Wo.

When long and medium wavelengths of the geoid height
at point P are determined from a GOCE-based GGM, i.e.,
NPGOCE , a residual geoid heightNPres is computed by integrat-



Height Datum Unification by Means of the GBVP Approach Using Tide Gauges 123

Fig. 1 Schematic representation
of necessary data for computing
vertical datum offsets using tide
gauges and the GBVP approach

ing the residual gravity anomalies �gjres D �gj � �gGOCE

over the sphere �:

NPres D R

4��

�
�

St
�

 PQ
�

�gjresd�Q; (5)

where, in principle, the superscript j takes on all J C 1values
0,1, : : : ,J.

The full geoid height at P is represented by NP D
NoCNPGOCE CNPres , whereNo D �Wo=� D .Wo � Uo/ =� ,
and is used subsequently to formulate the observation
equation

N
j
P D No CNPGOCE CNPres C ıN j CN ind

P : (6)

Nj
P on the left hand side of Eq. (6) is the GNSS-levelling

geoid height computed with the ellipsoidal height hP and the
orthometric height Hj

P asNj
P D hP �Hj

P . It differs from the
geoid height NP on the right hand side of Eq. (6) by the direct
bias term (datum offset)

ıN j D ıW j
o =� (7)

and the indirect bias term
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which is added in Eq. (6) because Stokes’s integral is
evaluated with the biased gravity anomalies �g j instead
of �g, or, to be more specific, �g j

res are used rather than
�gres. The first term on the right hand side of Eq. (8) is the
contribution to the geoid height at point P from the offset
ıWj

o of the datum zone j, and the second term represents the
effect on the geoid height at P from the offsets ıWi

o of all
other datum zones �i , i D 1; 2; : : : ; J; i ¤ j , excluding
the reference zone �o for which the offset is zero by
assumption.

Using Eq. (7), the indirect bias term in Eq. (8) can be
written as

N ind
P D 1

2�

JX

jD1
ıN j

�
�j

St
�

 PQ
�

d�
j
Q D

JX

jD1
ıN j f j : (9)

To solve the multiple vertical datum problem, at least
one point P should be given in the datum zone j with
its ellipsoidal, orthometric and geoid height, and this point
could be the fundamental tide gauge TG j

o (Fig. 1). In this
case, Eq. (6) can be rewritten as

hTG �Hj
TG � .No CNTGGOCE CNTGres/

D ıN j C
JX

jD1
ıN jf j ;

(10)

where hTG is the ellipsoidal height of the local mean sea
level (MSL) at the tide gauge and Hj

TG is the MSL height
in the datum j. The geoid height NTG D No C NTGGOCE C
NTGres is known and moved to the left hand side in the
equation.

By means of Eq. (10), a linear system with J unknowns
can be written with a fully populated design matrix A whose
entries are the coefficients of the unknown offsets ıN j ; j D
1; : : : ; J . The constant No can also be assumed unknown and
estimated together with the datum offsets.

Gerlach and Rummel (2013) have shown that the indirect
bias term determined by Eq. (8) can be negligibly small
provided that Stokes’s integral is evaluated with a resid-
ual kernel, which contains only spherical harmonic degrees
n> nmax; see Eq. (23) in their work. The omission of the
indirect bias term results in a significantly simplified design
matrix A, and the offset in each datum zone can be estimated
separately from the other datum zones. One can solve a linear
system of n observation equations for n tide gauges in the
datum zone�j and estimate the mean offset ıNj by means of
the least-squares adjustment model:

AıNj D l; Ql l D Qhh CQHH CQNNGOCE CQNNres ;

(11a)
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ıbN
j D �

ATQ�1
l l A

��1
ATQ�1

l l l; Q
ıbNıbN

D �

ATQ�1
l l A

��1

(11b)

with l D hTG � H
j
TG � .No CNTGGOCE CNTGres/ of size

n � 1, a n � 1 design matrix A D .1; 1; : : : ; 1/T and a
stochastic model Qll composed of Qhh of the GNSS ellip-
soidal height of the local MSL, QHH of the height of MSL
in the local datum, QNNGOCE of the GOCE geoid height and
QNNres of the residual geoid height.

With known error variances �2
hh, �2

HH , �2NNGOCE
and �2NNres

,
and assuming uncorrelated observations h, H, NTGGOCE , and
NTGres , the mean datum offset is estimated as a weighted
mean following from Eq. (11a):

ıbN
j D

nX

iD1
pi li=

nX

iD1
pi ; b�

2

ıbN
D b�

2
o=

nX

iD1
pi (12)

with pi D
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�2hh
�

i
C �

�2HH
�

i
C �

�2NNGOCE

�

i
C �
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and the a posteriori variance factor b�
2
o D

nX

iD1

�

li � ıbN
�2

pi=

.n � 1/.

4 Required Data

4.1 Mean Sea Level in Local Height Datum
and Ellipsoidal Height

Ideally, MSL should be computed from 19-year long con-
tinuous records of water levels so that nodal tides, atmo-
spheric pressure and storm events are averaged out (Pugh
1987). For the purpose of height system unification, MSL
can be computed from shorter records and/or records with
data gaps in a network of tide gauge stations to possibly
reduce both the effect of the GOCE-based geoid omis-
sion error on the computed mean vertical datum offsets
(Gruber et al. 2012) and the effect of random data errors.
In areas with significant crustal motion, heights of tide
gauge benchmarks should be corrected using GNSS-derived
vertical crustal velocities or geophysical models of crustal
motion. In addition, water levels should be corrected for local
long-term sea level changes determined at the tide gauge
stations.

The ellipsoidal height of MSL at each tide gauge is
computed with respect to the reference ellipsoid by reducing
the ellipsoidal height of the tide gauge benchmark with
the height difference between the benchmark and the
chart datum obtained by precise levelling and adding the
measured water level from the chart datum (Woodworth
et al. 2012). The GNSS ellipsoidal heights should be given

in a common ITRF and epoch. This is not usually the
case when tide gauges are surveyed by different agencies,
and, in some cases, the reference frame may not be
known.

Tide gauge stations used in this work are revised local
reference stations from the Permanent Service for Mean
Sea Level (PSMSL) with MSL data measured relative to a
known benchmark. The MSL data are for the time period
1993–2002. They were corrected for the inverse barometer
effect, but a correction for the nodal tide was not applied.
All computations herein are performed in a conventional
tide free system. The GNSS ellipsoidal heights are given
in either ITRF2005 or ITRF2008. Accuracy information is
not available for the GNSS ellipsoidal heights and heights of
MSL in the local datum.

4.2 Geoid Height

In order to apply the GBVP approach in coastal areas
with as small a geoid omission error as possible, the geoid
height should be computed from a GOCE-based GGM up
to the highest possible degree that keeps the high-degree
commission error small. This degree is usually determined
by means of evaluation of the GOCE-based GGM with local
GNSS-levelling data, and typically the improvement over
EGM2008 (Pavlis et al. 2012) is assessed for different spher-
ical bands. Our evaluation for North America using GNSS-
levelling geoid heights shows that the useful GOCE spherical
harmonic degree (after which the GOCE geoid error becomes
larger than the EGM2008 geoid error, e.g., Amjadiparvar
et al. 2013) of the recent releases of the GOCE-based time-
wise GGM (Pail et al. 2011) varies among Canada (degree
180), conterminous USA (degree 210), Mexico (degree 230)
and Alaska (degree 230). Here, we adopt the minimum of
these values, i.e., degree 180, for the whole North America
and use it in the following computations of the indirect
bias term and the GOCE geoid commission and omission
errors.

4.2.1 Indirect Bias Term
To compute the indirect bias term over North America using
Eq. (8), preliminary mean offsets of NAVD88 (conterminous
USA, Alaska and Mexico) and CGVD28 (Canada) with
respect to the level Wo D 62636856.0m2 s�2 (Fig. 2a) are
computed by means of GNSS ellipsoidal heights, ortho-
metric heights and GOCE geoid heights at the first order
levelling benchmarks. Figure 2b shows a map of the indirect
bias term obtained by Eq. (8) using a residual kernel, where
nmax D 180. The indirect bias term ranges between �0.9 and
0.9 cm due to artificial effects from truncating the kernel. It
can be concluded that the error in the datum offset introduced
by the omission of the indirect bias term is less than 1 cm
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Fig. 2 (a) Vertical datum offsets
from the level
Wo D 62636856.0 m2 s�2

computed with GNSS-levelling
data, (b) Indirect bias term
computed with a residual kernel
with nmax D 180

even for such an extreme offset of �140 cm of NAVD88 in
Alaska.

4.2.2 GOCE Geoid Commission Error
The magnitude of the GOCE geoid commission error
�NNGOCE computed by propagating the GOCE-based time-
wise GGM errors by the m-block approach (Gerlach and
Fecher 2012) up to degree and order 180 has a noteworthy
north-south variation. The geoid commission error in Fig. 3
varies from 1.9 cm at the northernmost North American

tide gauges to 2.7 cm at the southernmost tide gauges. A
more substantial variation of 1.3 cm is produced by the
propagated GOCE-based GGM errors by means of the
diagonal approach (Gerlach and Fecher 2012).

4.2.3 GOCE Omission Error
The omission error of the GOCE-based time-wise release 4
GGM (TIM4 for short, Pail et al. 2011) of degree and order
180 is estimated by means of EGM2008 from degree and
order 181 to the maximum degree 2190. Statistics of the
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Fig. 3 Geoid commission error
computed at the PSMSL North
American tide gauges from the
time-wise GOCE GGM of a
maximum degree and order 180

Table 1 Statistics of the GOCE TIM4 geoid omission error values at the North American tide gauges computed with EGM2008

Region Mean (cm) Std (cm) Min (cm) Max (cm)

Canada Atlantic (7 TGs) 1 33 �56 38

US Atlantic (28 TGs) �3 37 �84 72

Canada Pacific (5 TGs) 6 40 �36 64

US Pacific (17 TGs) 7 33 �49 74

Gulf of Mexico (13 TGs) 3 26 �62 28

Table 2 Statistics of the extended GOCE TIM4 geoid omission error values at the North American tide gauges computed with USGG2012 and
CGG2010 (brackets)

Region Mean (cm) Std (cm) Min (cm) Max (cm)

Canada Atlantic (7 TGs) �3 (0) 6 (5) �11 (�5) 8 (6)

US Atlantic (28 TGs) �3 (2) 3 (5) �8 (�8) 4 (15)

Canada Pacific (5 TGs) 1 (2) 6 (5) �6 (�2) 8 (10)

US Pacific (17 TGs) �3 (�6) 4 (6) �10 (�16) 4 (9)

Gulf of Mexico (13 TGs) �2 (0) 3 (5) �7 (�5) 4 (9)

omission error at the tide gauges (12 in Canada and 58 in
the USA) in five coastal regions are given in Table 1. It can
be seen that the omission error has very large maxima and
minima of a few dm, but it tends to cancel out at the tide
gauges. The omission error of TIM4 of degree and order
180 extended with EGM2008 to the maximum degree 2190
is also estimated (Table 2) by means of comparison with
the gravimetric geoids of Canada (CGG2010, Huang and
Véronneau 2013) and the USA (USGG2012, https://www.
ngs.noaa.gov/GEOID/USGG2012/). The omission error of
the extended TIM4 geoid at the North American tide gauges
is at the level of 3–6 cm. As the standard deviation shows,
the extended TIM4 geoid agrees better with CGG2010 at
the Canadian tide gauges and with USGG2012 at the US
tide gauges depending on the quality of the local gravity

information used by the national geodetic agencies and
some differences in the computational procedures of the two
gravimetric geoids.

5 Vertical DatumOffsets

Examples of the mean CGVD28 and NAVD88 datum
offsets with respect to the reference defined by
Wo D 62636856.0m2 s�2 are given in Table 3. The mean
datum offsets are computed by means of the least-squares
adjustment model given by Eqs. (11) and (12), but an identity
matrix is assumed for Qll because of the lack of information
about accuracies of the ellipsoidal heights and the CGVD28
and NAVD88 heights of the local MSL. One should also take

https://www.ngs.noaa.gov/GEOID/USGG2012/
https://www.ngs.noaa.gov/GEOID/USGG2012/
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Table 3 Mean vertical datum offsets with respect to the level Wo D 62636856.0 m2 s�2

CGVD28 NAVD88 (Pacific coast)

Geoid Model •Nj (cm) Diff •Nj (cm) •Nj (cm) Diff •Nj (cm)

TIM4 (degree 180) �28 ˙ 13 � �81 ˙ 9 –

TIM4 (180) C EGM2008 (2190) �25 ˙ 10 3 �74 ˙ 5 7

CGG2010 (20 � 20) �24 ˙ 10 4 �80 ˙ 5 1

USGG2012 (10 � 10) �26 ˙ 10 2 �77 ˙ 5 4

into account that the USGG2012 gravimetric geoid is not
accompanied by an error model.

The mean CGVD28 offset is computed by means of 12
Canadian tide gauges. The offset computed by means of the
TIM4 geoid differs by no more than 4 cm from the offsets
computed with the three high resolution geoid models. The
mean NAVD88 offset is computed for the Pacific USA by
means of 17 tide gauges. The large offset of 80 cm reflects
the large errors of the Pacific MSL in NAVD88 as a result of
the error accumulation from the datum origin in Rimouski.
Differences of the mean offset computed with the TIM4
geoid and the high resolution geoid models are at the level
of 1–7 cm, which shows that the GOCE geoid omission error
nearly averages out at the US Pacific tide gauges.

A more realistic stochastic model is also tested, where
an error of 6 cm is assumed for the difference between the
GNSS ellipsoidal height and CGVD28 or NAVD88 height
of the local MSL, and the geoid error is provided by the
CGG2010 error model and the TIM4 geoid error model in
Fig. 3. The a posteriori error, computed with Eq. (12), of
the mean CGVD28 offset is 10 cm (CGG2010) and 13 cm
(TIM4), similar to the a posteriori error in Table 3. The
a posteriori error of the mean NAVD88 offset computed
with the Pacific US tide gauges is 6 cm (CGG2010) and
11 cm (TIM4). The increase in the offset error when
the TIM4 geoid is used reflects the model omission
error.

6 Conclusions

This study demonstrated the use of Rummel and Teunissen
(1988) multiple vertical datum GBVP approach in height
system unification using tide gauges. For this purpose, the
observation equation for the datum offset was written in
terms of the ellipsoidal height of the mean sea level, the
height of mean sea level in the local vertical datum and the
geoid height at tide gauges. Based on the presented results, it
can be concluded that
1. the indirect bias term can be omitted for North America

as its value is below 1 cm if the used GOCE-based GGM
is of a maximum degree and order 180;

2. with the configuration of the network of PSMSL North
American tide gauges, the mean height datum offsets can
be computed with an error of 10 cm or less provided that
the GOCE geoid omission error is taken care of;

3. the average omission error of the geoid computed from
a GOCE-based GGM extended to the full resolution of
EGM2008 indicates that there is still room for improve-
ment of the local geoid heights. Such an improvement
can be achieved by designing a unified procedure for
computing the residual geoid heights at the North Amer-
ican tide gauges with the best local gravity data and
topography/bathymetry models available.
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Computation of Zenith Total Delay Correction
Fields Using Ground-Based GNSS
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Abstract

Tropospheric refraction is one of the major error sources in satellite-based positioning.
The delay of radio signals caused by the troposphere ranges from 2 m at the zenith to
20 m at low elevation angles, depending on pressure, temperature and humidity along the
path of the signal transmission. If the delay is not properly modelled, positioning accuracy
can degrade significantly. Empirical tropospheric models, with or without meteorological
observations, are used to correct these delays but they cannot model tropospheric variations
exactly since they are limited in accuracy and spatial resolution resulting in up to a
few decimetres error in positioning solutions. The present availability of dense ground
based Global Navigation Satellite System (GNSS) networks and the state of the art GNSS
processing techniques enable precise estimation of Zenith Tropospheric Delays (ZTD) with
different latency ranging from Near Real-Time (NRT) to post-processing. We describe
a method for computing ZTD correction fields interpolating, through Ordinary Kriging,
the residuals between GNSS-derived and model-computed ZTD at continuously operating
GNSS stations. At a known user location, the correction which is added to the modelled-
ZTD value can be obtained through a bi-linear interpolation with the four nearest grid points
surrounding it. The performance of the method has been evaluated over a 1-year period at
25 European stations belonging to the EUREF and IGS network. It is found that such an
empirical tropospheric model can be improved when considering tropospheric corrections
coming from ground based GNSS network.
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1 Introduction

Tropospheric refraction is one of the major error sources
in satellite-based positioning because GNSS positioning is
complicated by the presence of the tropospheric propagation
delay. In current positioning services, as European Geosta-
tionary Navigation Overlay System (EGNOS) in Europe,
Wide Area Augmentation System (WAAS) in United States,
Multi-functional Satellite Augmentation System (MSAS) in
Japan, tropospheric delay corrections, unlike ionospheric
corrections, are not broadcast to the user. The delays are
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supposed to be corrected locally using an empirical tropo-
spheric model adopted by the users. These models are based
on the estimates of five meteorological parameters: pressure,
temperature, Water Vapour (WV) pressure, temperature lapse
rate and WV lapse rate which depends on user’s height,
latitude and day of the year (Penna et al. 2001; Collins and
Langley 1997; Ueno et al. 2001). The residual delay after
modelling is at a level of a few cm in the zenith direction,
which may lead to a Single Point Positioning error of up to a
few dm (Santerre 1991).

The present availability of dense ground based GNSS
networks and the state of the art GNSS processing tech-
niques enable precise estimation of ZTD with different
latency ranging from Near Real-Time, for hourly assimila-
tion into Numerical Weather Prediction models (Bennitt and
Jupp 2012), to post-processing, useful for climate studies
(Ning et al. 2012). In Europe a GNSS ground-based water
vapour network has been established in the framework of
the E-GVAP project (http://egvap.dmi.dk) set to provide
its EUMETNET members with European GNSS delay and
water vapour estimates for operational meteorology in Near
Real-Time. The E-GVAP network consists of more than
1,800 GNSS sites, mainly in Europe.

Following the general idea outlined in Zheng et al. (2005),
we propose a method for estimating ZTD corrections based
on Ordinary Kriging, which takes the residuals between
GNSS-derived and model-computed ZTD at continuously
operating GNSS stations as input. At a known user location,
the correction which is added to the modeled-ZTD value can
be obtained through a bi-linear interpolation with the four
nearest grid points surrounding it.

The outline of the paper is as follows: in Sect. 2 we
describe the GNSS Tropo Grid Creator; we assess its per-
formance with respect to IGS final tropospheric solution
(Byun and Bar-Sever 2009), radiosonde (RS) and Very Long
Baseline Interferometry (VLBI) ZTD estimates in Sect. 3.
Conclusions are drawn in Sect. 4.

2 GNSS Tropo Grid Creator

To generate ZTD correction fields we need ZTD residu-
als between GNSS-derived and model-computed ZTD at
continuously operating ground-based GNSS stations. Since
the Zenith Hydrostatic Delay (ZHD) can be modelled and
removed with an accuracy of a few millimetres (Saasta-
moinen 1972), the residual tropospheric delay remaining
after applying a tropospheric model is mostly due to the wet
component.

The GNSS-derived ZTD estimates used are the E-GVAP
Italian Space Agency (ASI) NRT solutions. A detailed
description of the processing strategy together with a quality

assessment of the NRT atmospheric parameters are reported
in Pacione (2005) and Pacione and Vespe (2008).

The empirical tropospheric delay model used in this
study is the UNB3m model, developed at the University of
New Brunswick Leandro et al. (2006), which is capable of
predicting ZTD with a bias value of �0.5 cm and a standard
deviation (STD) of 4.9 cm. The first step in the UNB3m
algorithm is to obtain the meteorological parameters for a
particular latitude and day of the year.

Once all meteorological parameters are determined, the
ZHD and ZWD are computed according to the following
equations:

ZHDMOD D 10�6k1R

gm
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�
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� g
Rˇ
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where ‘MOD’ stands for modelled, T0 (temperature), P0

(pressure), e0 (water vapour pressure), � (water vapour
pressure height factor) and ˇ (temperature lapse rate) are
the meteorological parameters, e0 is carried out follow-
ing the IERS conventions (2003), H is the orthometric
height in m, R is the gas constant for dry air, gm D
9:784

�
1 � 2:66x10�3cos .2�/ � 2:8x10�7H

�
is the accel-

eration of gravity at the atmospheric column centroid, g is
the surface acceleration of gravity, �0 D � C 1, Tm D
T

�
1 � ˇR

gm�0

�
is the mean temperature of water vapour in

Kelvin and k1, k
0

2 and k3 are refractivity constants.
Gridded corrections are obtained through Ordinary Krig-

ing, which takes the residuals between GNSS-derived and
model-computed ZTD at continuously operating GNSS sta-
tions as input. The interpolation is done over a geographical
area spanning [35ı, 55ı] in latitude and [�10ı, 20ı] in
longitude, both with 0.5ı spacing. Ordinary Kriging is a
powerful spatial interpolation technique, especially for irreg-
ularly spaced data points, and is widely used throughout the
earth and environmental sciences. It uses known values in
neighbourhood and a variogram to determine the unknown
values of the location being estimated. In this study the var-
iogram is based on a spherical correlation function between
points, with a radius of 50 km, and the interpolation is based
on a linear regression model.

At a user location site-ZTD correction (RES) is obtained
through a bi-linear interpolation with the four nearest grid
points surrounding it:

RES D
4X

iD1

!i RESi (3)

http://egvap.dmi.dk
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Fig. 1 GNSS network
considered for the GNSS tropo
grid creator evaluation. Circle
sites are the stations belonging to
the European Permanent Network
and International GNSS Service
Network. Triangle sites are the
input GNSS ZTD data
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where RESi are the gridded corrections and

! .x; y/ D x2y2 .9 � 6x � 6y C 4xy/

is the general weight function with x and y, positions of the
point within the proper grid cell, calculated from:

x D ��

longitude grid interval
; y D �'

latitude grid interval

Finally, site-ZTD is the sum of site-ZTD correction (equation
(3)) and modelled-ZTD value (obtained as sum of Eqs. (1)
and (2)).

3 GNSS Tropo Grid Creator Evaluation

The performance of the method has been evaluated over
a 1-year period (January–December 2011) considering 25
European stations belonging to the European Permanent
Network (EPN, http://www.epncb.oma.be, Bruyninx et al.
2001) and International GNSS Service (IGS, http://igscb.jpl.
nasa.gov/, Dow et al. 2009) Network (circle sites in Fig. 1,
triangle sites are the input GNSS ZTD data). At those 25
stations we compute site-ZTD.

3.1 Comparisons Against IGS ZTD Values

The evaluation is done via a comparison to IGS post-
processing tropospheric products (Bar-Sever and Byun 2010;
Byram 2011).

Figure 2 shows the statistical comparison of UNB3m-
ZTD values (in grey) and site-ZTD (in black) with respect to
IGS ZTD estimates for all the 25 test sites. The upper figure
reports the absolute values of biases, while the bottom figure
plots the standard deviation values. A decrease of about 30%
for the bias and 50% for the STD is shown when site-ZTD,
rather than UNB3m-ZTD values, are compared with respect
to IGS estimates.

The monthly variation of the IGS ZTD values versus site-
ZTDs for each test site is analyzed. Sites are sorted according
to increasing latitude and increasing orthometric height to
study the dependence of site-ZTD from these parameters.

Considering the latitude dependence (Fig. 3), we find that
the STD increases during the summer months having the
largest values for sites in the northern part of Europe that is
at the boundary of the considered geographical area. As far
as the height dependence is taken into account (Fig. 4), the
standard deviation ranges from 5 to 50 mm with the largest
values for sites having the lowest heights located in coastal
areas, probably experiencing the highest humidity.

http://www.epncb.oma.be
http://igscb.jpl.nasa.gov/
http://igscb.jpl.nasa.gov/
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Fig. 2 Statistical comparison of
UNB3m-ZTD values (in grey)
and site ZTD (in black) with
respect to IGS ZTD values.
Absolute values of bias (top),
standard deviation (STD)
(bottom)
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Fig. 3 IGS ZTD vs. site-ZTD –
Monthly bias (top) and STD
(bottom). Sites sorted in the
legend according to increasing
latitude
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Since the GNSS sites we use as input of the GNSS tropo
grid creator are not homogeneously distributed, we study
how site-ZTD accuracy changes as function of the distance
from the nearest GNSS input site. As can be expected the

STD increases for sites most distant from the nearest GNSS
input site. In Fig. 5 sites are sorted according to increasing
distances from the nearest GNSS input site and the seasonal
bias and STD between IGS-ZTD and site-ZTD are plotted.
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Fig. 4 IGS ZTD vs. site-ZTD –
Monthly bias (top) and STD
(bottom). Sites sorted in the
legend according to orthometric
height
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Fig. 5 IGS ZTD versus
site-ZTD – Seasonal bias (upper)
and STD (lower). Sites sorted
according to increasing distances
w.r.t. the nearest GNSS input site.
For each season the following
calendar months are considered:
autumn from September to
November; winter from
December to February; spring
from March to May; summer
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For each site, seasonal bias and STD are computed averaging
over all the available data throughout the considered season.
The bias is ˙5 mm with few exception in the summer period
and for some stations at the boundary of the considered area

having a distance larger than 200 km with respect to the
nearest input GNSS sites. The seasonal STD increases with
the distance being in the range of [5;15] mm till 25 km,
[10;30] mm till 200 km and [15;45] mm till 300 km. The



136 B. Pace et al.

Table 1 Radiosonde versus site-ZTD – Annual statistics. For each
GPS Site is reported the corresponding radiosonde code (values in
column 2) and the number of synchronized data used in comparison
(values in column 5). Distance (values in column 6) is the horizontal

distance between the radiosonde launch and the GPS antenna. Distance
(values in column 7) is the horizontal distance between the nearest
GNSS Tropo Grid Creator input site and the GPS antenna

RS code BIAS (mm) STD (mm) # Sample Distance from RS (km) Distance from the GNSS (km)

HERT 3882 10.6 10.6 386 03.42 0.150

WROC 12425 1.5 23.2 578 14.49 221.738

CAGZ 16560 �0.9 17.5 666 14.49 0.002

VILL 8221 3.5 14.2 545 29.56 32.405

ZIM2 6610 5.9 11.1 573 41.02 0.019

largest STD values are found during the summer period,
which can be related to the atmospheric seasonal cycle.

3.2 Radiosonde ZTD Versus Site-ZTD

Radiosondes measure directly humidity, temperature and
pressure during their ascent, enabling determination of ZTD.
They are ideal for validation of GNSS ZTDs, and have been
used for that over many years (see, e.g., Vedel et al. 2001;
Haase et al. 2003; Wang and Zhang 2008, 2009).

Radiosonde profiles come from World Meteorological
Organization (WMO) Global Telecommunication Service
(GTS) and are provided by the Danish Meteorological Insti-
tute in the framework of E-GVAP as independent data set
to validate GPS ZTD data. The radiosonde profiles are
passed through a program (Haase et al. 2003) that checks the
quality of the profiles, converts the dew point temperatures
to specific humidity, transforms the radiosonde profile to
correct for the altitude offset between the GPS and the
radiosonde sites and determines ZTD, ZWD and Integrated
Water Vapour (IWV) compensating for the change of gravi-
tational acceleration with height.

The annual bias and STD for 5 sites where nearby
radiosonde profiles are available is reported in Table 1.
Among them HERT is the closest to the radiosonde launch
site (3.42 km) while ZIM2 is the most distant (41.02 km).
The bias (Table 1) is positive, except for CAGZ, meaning
that site-ZTD is dryer than radiosonde ZTD in agreement
with what reported in Pacione et al. (2011). The STD ranges
from 10 to 23 mm. It is larger than the STD reported in other
studies (Pacione et al. 2011; Dousa and Bennitt 2012) where
GPS and radiosonde data are compared. Moreover it is larger
than the STD obtained comparing IGS and radiosonde data
for the 5 sites in the same period which ranges from 6.5 mm
for WROC up to 12.57 mm for CAGZ. Except CAGZ, the
obtained STD values seem to be not only related to the
horizontal distance between the radiosonde launch and the
GPS antenna but also to the distance from the nearest GNSS
input site.

Table 2 VLBI versus site-ZTD Annual statistics (January–December
2011). For each GPS Site is reported the number of synchronized data
used in comparison (values in column 5) and the correlation coefficients
(CC, values in column 4)

BIAS (mm) STD (mm) CC # Sample

MAT1 0.05 9.04 0.97 875

WTZA �0.30 9.88 0.97 2,092

WTZS �0.14 9.88 0.97 2,092

3.3 VLBI ZTD Versus Site-ZTD

VLBI data provide another basis for comparison. Three
test sites, namely MAT1 (Italy), WTZA (Germany) and
WTRS (Germany), are co-located with VLBI radio-telescope
antenna. The VLBI solutions are the ASI/CGS contribution
to the International VLBI Service (IVS) tropospheric prod-
ucts for IVS-R1 and IVS-R4 weekly 24-h sessions.

Site-ZTD and VLBI ZTD estimates are very highly corre-
lated, with an overall bias of the ZTD differences –0.13 mm
(see Table 2) and a STD of about 10 mm, which is larger
than the median standard deviation of about 5 mm over
all sites reported in Teke et al. 2011 where IGS and IVS
ZTD estimates during the CONT08 campaign have been
compared. The 5 mm standard deviation value is confirmed
comparing IGS and VLBI data for the three sites in the same
period.

4 Conclusion

Satellite-based positioning application is complicated by the
presence of the tropospheric delay which is supposed to be
corrected locally by empirical tropospheric models. In this
paper we describe a method for estimating ZTD correction
fields by using ground-based GNSS ZTD estimates. We
evaluate it over a 1-year period demonstrating that such ZTD
correction fields can augment empirical tropospheric models
resulting in an improvement of about 30% for the bias and
50% for the standard deviation with respect to the IGS final
tropospheric solutions.



Computation of Zenith Total Delay Correction Fields Using Ground-Based GNSS 137

The GNSS Tropo Grid Creator is running operationally
using the E-GVAP ASI NRT solutions as input on hourly
basis and providing ZTD correction fields over Europe in
a IONEX-like format (http://igscb.jpl.nasa.gov/igscb/data/
format/ionex1.pdf). Beyond the proposed method, ZTD cor-
rections can be obtained from Numerical Weather Prediction
(NWP) Model with the same level of accuracy (Teke et al.
2011) site-ZTD has.

NWP ZTD and site-ZTD can be both used in positioning
service but comparison campaigns as well as field trials
deserve to be carried out to highlight pros and cons of each
method.
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Rigorous Interpolation of Atmospheric State
Parameters for Ray-Traced Tropospheric Delays

Camille Desjardins, Pascal Gegout, Laurent Soudarin, and Richard Biancale

Abstract

The transformation between European Center for Medium-range Weather Forecast
(ECMWF) model level assimilations and the refractivity at any given point of the neutral
atmosphere has been investigated. We first present the IFS interpolations and extrapolations
of each physical parameter done in operations at ECMWF. These formulae are used
to compute, for example, pressure levels from model levels at ECMWF. We use this
formulation to compute the pressure levels, the large majority of which are found similar
to the pressure levels provided by ECMWF with an appropriate accuracy for ray-tracing.
The IFS-based scheme (IFS-BS) is then presented. It is an adaptation of the interpolations
and extrapolations done at ECMWF for troposphere delay computation by ray-tracing. This
scheme ensures the coherence with the ECMWF meteorological model and is used in our
software Horizon designed to compute the Adaptive Mapping Functions (AMF). In the
IFS-BS, vertical interpolations are adapted for each thermodynamic parameter necessary
to precisely rebuild the refractivity along the ray path according to the physical laws.
In order to take into account the atmospheric part between the lowest model level and
the Earth’s topography during the ray-tracing, extrapolation of physical parameters below
the lowest model level are included. The proposed scheme is expected to be relevant for
applications where accuracy of refractivity is important as troposphere delay modelling for
high-accuracy geodesy.
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1 Introduction

For space geodetic measurements based on radio ranges such
as GNSS or DORIS, the tropospheric delays induced by the
neutral part of the atmosphere are still an important source
of error. Indeed, estimates of neutral atmosphere are highly
correlated with site displacements and receiver clock biases.
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Accurate models of atmospheric delays have to be used to
mitigate such effects. It is commonly accepted to model tro-
pospheric delays by calculating the zenith tropospheric delay
and obtaining the slant tropospheric delays with a mapping
function. New mapping functions have been developed in
the 2000s (Boehm et al. 2006a,b; Niell 2001) and signif-
icantly improve the geodetic positioning. Although mod-
ern mapping functions are derived from numerical weather
models (NWM), most of these mapping functions ignore
the azimuth dependency which is usually introduced by
two horizontal gradient parameters—in north-south and east-
west directions—estimated directly from observations (Chen
and Herring 1997). More recently, the use of ray-traced
delays through NWM directly at observation level has shown
an improvement on geodetic results (Hobiger et al. 2008,
2010; Nafisi et al. 2012; Zus et al. 2012).

During the design of the Adaptive Mapping Functions
(AMF) detailed by Gegout et al. (2011), our goal was to
use the most information available in NWM—especially the
azimuth dependency—with the aim to preserve the classical
mapping function strategy. AMF are thus used to approxi-
mate thousands of atmospheric ray-traced delays using a few
tens of coefficients with millimetre accuracy at low elevation.
AMF have a classical form with terms which are function
of the elevation � (Eq. 1). But, they also include coefficients
which depend on the azimuth ˛ to represent the azimuthal
dependency of ray-traced delays (Eq. 2). In addition, AMF
are suitable to adapt to complex weather by changing the
truncation of the successive fractions.

AMF.˛; �/ D Sf �
1 C a1

1C a2
1C:::

sin � C a1

sin �C a2
sin �C:::

(1)

where � is the elevation angle and Sf is the scale factor which
can be empirically adjusted to observations.

8i � 1; ai D ai0 C
nX

j D1

Cij cos j˛ C Sij sin j˛ (2)

We discuss here the vertical interpolation and extrapolation
of each tropospheric propagation depending parameters.

2 Description of the ECMWFModel
Level Data

2.1 The ECMWF Integrated Forecasting
System (IFS)

The Integrated Forecasting System (IFS) is the ECMWF
global meteorological forecasting model. The IFS coordi-
nates are geographic latitude and longitude for horizontal

and the hybrid coordinate � for the vertical. In the following,
these coordinates are called meteorological coordinates. The
vertical hybrid coordinate �.P; Ps/ introduced by Simmons
and Burridge (1981), is a terrain-following monotonic func-
tion of the pressure P and also depends on the surface
pressure Ps such that �.Ps; Ps/ D 1 and �.0; Ps/ D 0.
Pressure as a function of � is given by

P.�/ D A.�/ C B.�/ � Ps (3)

where A.1/ D 0; B.1/ D 1 and A.0/ D B.0/ D 0: (4)

The ECMWF model uses a spectral method with spheri-
cal harmonics basis functions and triangular truncation for
horizontal discretization. For the vertical, the model divides
the atmosphere into NLEV layers from the model surface to
P D 0. When this study was carried out, NLEV was equal to
91 in operational data. The vertical discretization is currently
a finite-element scheme with cubic B-spline expansion based
on (3) (Untch and Hortal 2004). Until January 2002, the
finite-difference scheme defined by Simmons and Burridge
(1981) was used operationally at ECMWF. The set of fixed
constant coefficients AkC1=2 and BkC1=2 with 0 � k �
NLEV is the finite-difference discretization of A.�/ and
B.�/. Because only this set is provided by ECMWF, we
consider here the finite-difference scheme.

2.2 TheModel Levels

The model levels are the native levels of the IFS. They follow
the model surface in the lower atmosphere and are isobars
in the upper part (Fig. 1). They are not constant in height
or pressure. The model level data are archived in spherical
harmonics or reduced Gaussian grids. The fields are for one
epoch: the pressure Ps and the geopotential ˚s at the model
surface, the temperature Tk and the specific humidity qk

for each level k 2 f1; 2; � � � ; NLEVg. The pressures PkC1=2

(Eq. 5) at the interface between layers—called half-model
levels—and the pressure Pk (Eq. 6) at the middle of each
layer—called full-model levels or simply model levels—are
recovered using AkC1=2 and BkC1=2 values. Geopotentials
˚kC1=2 at half-model levels are rebuilt using the discrete
analogue of hydrostatic equilibrium (Eq. 7) (ECMWF 2012).

0 � k � NLEV ; PkC1=2 D AkC1=2 C BkC1=2 � Ps (5)

1 � k � NLEV ; Pk D PkC1=2 C Pk�1=2

2
(6)

0 � k � NLEV ; ˚kC1=2 D ˚s C
NLEVX

j DkC1

Rd .Tv/j

� ln

�
Pj C1=2

Pj �1=2

�
(7)
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Fig. 1 Model levels in function
of latitude at longitude 1:48ı

Fig. 2 Difference between
half-model levels (red line) and
model levels (blue line).
Illustration of extrapolation

where .Tv/j is the virtual temperature at layer j

.Tv/j D
�
1 C

�
Rw

Rd

� 1

�
qj

�
Tj (8)

and Rd and Rw denote respectively the specific gas constants
of the dry air and the water vapour. Geopotentials ˚k at each
model level are given by

1 � k � NLEV; ˚k D ˚kC1=2 C ˛kRd .Tv/k (9)

with

(
˛1 D ln 2

8k > 1; ˛k D 1 � Pk�1=2

PkC1=2�Pk�1=2
ln

�
PkC1=2

Pk�1=2

�
:

(10)

The difference between half-model levels and model levels
are illustrated in Fig. 2. The model surface, also called orog-
raphy by the meteorologists, defines the envelope of the real
topography. The conditions (4) ensure that ANLEVC1=2 D 0

and BNLEVC1=2 D 1. So using (5), it comes PNLEVC1=2 D Ps .
The orography is thus the lowest half-model level.

3 The Horizon Software
and Ray-Tracing Technique

3.1 The Horizon Software

The Horizon software has been developed to compute AMF
for space geodetic sites from ECMWF model level data. For
each site and epoch when the ECMWF data are available,
one AMF is computed following the next steps:
1. Read ECMWF model levels: Model level fields are read

and interpolated on a regular 0:125ı �0:125ı grid centred
on the site (Fig. 3). The sub-grid size is 25ı for all sites.
It is an empirical value to ensure that rays stay inside the
volume even at low elevation.

2. Rebuild the pressures and geopotentials: The pressure
and geopotential at each half- and full-model level are
recovered using Eqs. (5)–(10).

3. Convert meteorological into geodetic coordinates: We
need to convert the meteorological coordinates used in
the IFS into geodetic coordinates used in the Horizon
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Fig. 3 The sub-grid of Toulouse
(France) site used for ray-tracing

software. We precisely rebuild the shape of the atmo-
sphere from geopotentials using a realistic geodetic model
described by Gegout et al. (2011). Moreover, we partici-
pate in discussions on this topic under the umbrella of the
International Association of Geodesy—Intercommission
Committee on Theory Joint Studying Group 0.4 “Coor-
dinate systems in numerical weather models” (see http://
hobiger.org/blog/iag-ic-ssg12/).

4. Compute tropospheric delays by ray-tracing technique:
Using the data pre-processed by the three first steps,
ray-traced tropospheric delays of the required site are
computed with 4ı azimuth steps and non-regular eleva-
tion steps. The ray-tracing principle done here for each
azimuth and elevation is: define initial conditions—site
position, elevation and azimuth, compute next point using
the Eikonal equation and so on until the top of the
atmosphere empirically defined as a sphere of radius
6,450 km. The total tropospheric delay is relative to the
distance from the site to the top end of the ray. The delay is
reassessed when the parallax problem is solved for, when
the precise target’s position is adjusted. At the end of
this step, ray-traced delays are available for all azimuths
and elevations. Hardware accelerations to reduce time
consumption are discussed by Gegout et al. (2013).

5. Determine AMF coefficients from ray-traced delays: The
ray-traced delays are used to determine AMF coefficients:
ai0, Cij and Sij (Eq. 2). The problem is non-linear and
over-determined. The Levenberg-Maquardt algorithm is
used to solve it. The fit residuals defined here as the
absolute difference between AMF values and ray-traced
delays are typically less than 2 mm (Gegout et al. 2011).

3.2 Focus on Ray-Tracing Computation

During ray-tracing, the Eikonal equation is solved at each
step. The Eikonal equation depends on the refractivity at the
current point which is needed at any point along the ray
path. The refractivity N can be expressed as a function of
the pressure P , specific humidity q and temperature T :

N D k1

P

Tv

C k0
2

Pw

T
C k3

Pw

T 2
(11)

where Pw is the partial pressure of water vapour

Pw D q

Rd

Rw
C

�
1 � Rd

Rw

�
q

� P (12)

Tv is the virtual temperature (Eq. 8) and k1, k0
2 and k3

are empirical coefficients. Following Cucurull (2010), we
have chosen to use the k1, k0

2 and k3 values determined
by Bevis et al. (1994). Because the refractivity depends
on meteorological parameters available only on sub-grid
discrete points, the refractivity computation is based on the
physical values of the eight neighbour points of the current
point. Vertical and horizontal interpolations are required to
transform meteorological parameters of the neighbour points
into the refractivity at the current point. Horizontal gradients
of refractivity are hundred times smaller than vertical gradi-
ents. Bilinear interpolations may be sufficient for horizontal
interpolations but not for vertical interpolations discussed
later.

http://hobiger.org/blog/iag-ic-ssg12/
http://hobiger.org/blog/iag-ic-ssg12/
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3.3 On the Use of ECMWFModel Levels

Because the model levels are not constant in height or
pressure (Sect. 2.2), some precautions have to be taken to
avoid vertical interpolation errors. Moreover, using model
levels addresses the problem of extrapolation because the
orography differs from topography (Fig. 2). The difference
between these two layers can be several hundred of meters
in mountainous regions. The layer between orography and
topography is a dense part of atmosphere which may contain
a lot of humidity. Due to this fact, this atmospheric layer
can have an important impact on tropospheric delays. We so
need to take into account this atmospheric layer in the best
possible way on the modelling of tropospheric delays. Using
model levels to compute refractivity raises some questions:
How to interpolate within model levels? How to extrapolate
below the orography?

3.4 Vertical Interpolation
and Extrapolation Strategies

To provide the refractivity at the current point, our first
approach was to interpolate or extrapolate exponentially in
height the refractivities of the neighbour points and then
interpolate horizontally. Directly interpolating the refractiv-
ity in height supposes that the refractivity varies exponen-
tially in height between model levels. Hobiger et al. (2008)
suggested that this assumption might not be reasonable
because the refractivity depends on three physical parameters
(Eq. 11) which have different characteristics with height and
the refractivity is not computed by a linear interpolation of
these parameters. These led us to develop a new vertical
interpolation strategy, preserving the physical laws and IFS
native discretizations. Our new approach is based on the
vertical interpolations and extrapolations defined in the IFS.

4 Interpolations and Extrapolations
Done in the IFS

In this section, we describe how the physical parameters—
the geopotential ˚ , the specific humidity q and the temper-
ature T —useful to compute the refractivity are interpolated
in IFS (ECMWF 2012) in function of the pressure P and the
meteorological values of the two closest model levels.

4.1 Geopotential

4.1.1 Interpolation
The geopotential ˚ at a given pressure P is computed
from model level data using the International Civil

Aviation Organization (ICAO) temperature profile (ICAO
1993; ECMWF 2012). First, the ICAO temperature T ICAO

k

and the ICAO geopotential ˚ ICAO
k at model levels are

computed using the standard temperature profile. Integrating
the hydrostatic equation provides �˚k (Eq. 13) which is the
difference between model level geopotential and the ICAO
standard atmosphere at each model level.

�˚k D PkC1
j DNLEV Rd

�
.Tv/j � T ICAO

j

�
ln

Pj C1=2

Pj �1=2

C˛kRd

�
.Tv/k � T ICAO

k

	 (13)

.Tv/k and ˛k are respectively defined in Eqs. (8) and (10).
Then, the difference at the required pressure �˚P is obtained
by vertical interpolation from �˚k . The interpolation is
linear in ln P between model levels. After computing the
geopotential ˚ ICAO at the required pressure and the geopo-
tential ˚ ICAO

s at the orographic pressure, the geopotential at
the required pressure is obtained by

˚ D ˚s C �˚P C ˚ ICAO � ˚ ICAO
s : (14)

4.1.2 Extrapolation Above the Highest Model
Level

The geopotential is computed in the same way as interpola-
tion assuming a constant �˚P D �˚1.

4.1.3 Extrapolation Below the Orography
The geopotential is

˚ D ˚s � Rd Ts

�

"�
P

Ps

��

� 1

#
where � D �Rd

g
(15)

and Ts is the temperature at the orography

Ts D
�
1 � �Rd

g

�
Ps

PNLEV�1

� 1

��
TNLEV�1: (16)

� D �0:0065 K � m�1 is the constant ICAO temperature
gradient and g D 9:80665 m � s�2 is the standard gravity
adopted by the World Meteorological Organization (WMO
2008).

4.2 Temperature

4.2.1 Interpolation
The temperature T is linearly interpolated in pressure to the
required pressure P between the two closest model levels,
here k and k � 1.

T D Tk�1 C Tk � Tk�1

Pk � Pk�1

.P � Pk�1/ with Pk�1 � P � Pk

(17)
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Table 1 Number of points in percent by intervals of absolute difference �q of specific humidity in kg�kg�1 (left) and of absolute difference �T

of temperature in K (right)

Difference of specific humidity (kg�kg�1) Number of points (%) Difference of temperature (K) Number of points (%)

�q < 10�6 99.97 �T < 0:1 98.87
10�6 < �q < 10�5 0.03 0:1 < �T < 0:5 1.13

�q > 10�5 < 0.01 �T > 0:5 < 0.01

4.2.2 Extrapolation Above the Highest Model
Level

The temperature T is assumed to be constant and equal to the
value of the highest model level T1.

4.2.3 Extrapolation Below the Lowest Model
Level

Between the lowest model level and the orography, the
temperature is linearly interpolated between Ts and TNLEV .
Below the orography, the temperature is extrapolated by a
third-order polynomial in the logarithm of pressure (Eq. 18).

T D
"

1 C � ln
P

Ps

C 1

2

�
� ln

P

Ps

�2

C 1

6

�
� ln

P

Ps

�3
#

Ts

(18)

4.3 Specific Humidity

4.3.1 Interpolation
The specific humidity q is linearly interpolated in pressure
to the required pressure P between the two closest model
levels, here k and k � 1.

q D qk�1 C qk � qk�1

Pk � Pk�1

.P � Pk�1/ with Pk�1 � P � Pk

(19)

4.3.2 Extrapolations
Below the lowest and above the highest model level, the
specific humidity q is assumed to be constant and equal to
qNLEV and q1 respectively.

4.4 Conversion fromModel to Pressure
Levels

ECMWF also produces operational data on other vertical
discretizations than model levels, for example in pressure
levels. The pressure levels are computed from model levels
at ECMWF by post-processing. So converting model levels
into pressure levels leads to a loss of vertical resolution: when
the operational model included 91 model levels, there were
only 25 pressure levels. To validate our implementation of
the vertical interpolations and extrapolations used by the IFS

post-processing and to point out numerical and modelling
errors, we test our ability to retrieve pressure levels from
model levels. We first compute values at each pressure level
from model levels using interpolations and extrapolations
above-mentioned for one epoch (August 2nd, 2009 at 9 a.m.)
and for each point of the reduced Gaussian grid. Then, we
compare obtained values with ECMWF pressure level data.
The results (Table 1) show that the retrieval is done with
an appropriate accuracy for the ray-tracing for more than
98% of the points. However, it is important to note that this
validation only shows the way to retrieve pressure levels
from model levels. The difference between tropospheric
delays computed from model levels and those derived from
pressure levels is not considered here. For this issue, further
investigations have to be done.

5 IFS Formulation Adapted
for Ray-Tracing: The IFS-Based
Scheme (IFS-BS)

5.1 Adaptation of the IFS Formulation
for Ray-Tracing

The vertical coordinate is the pressure in the scheme
described in Sect. 4 whereas it is the geodetic height in
the Horizon software. We have to adapt this scheme to use
it in the ray-tracing step of our software. We choose to
convert geodetic height into pressure via geopotential and
then vertically interpolate or extrapolate the temperature and
the specific humidity in pressure as described in Sects. 4.2
and 4.3. First, at the required point, the geopotential is
computed from the geodetic height with the reciprocal
function of the conversion which permits to have geodetic
height from geopotential in the step 3 of the Horizon software
(Sect. 3.1). Then, pressure is computed from geopotential at
the required point. The applied method is based on the
integration of the hydrostatic equilibrium (Eq. 20).

P D PkC1=2 exp

�
˚kC1=2 � ˚

Rd .Tv/k

�
(20)

Equation (20) is still valid above the highest model level but
not below the orography. In this case, the transformation is
deduced from the geopotential extrapolation done in the IFS
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Fig. 4 Azimuthal variability of
the ray-traced tropospheric delay
for the GNSS station located in
Arequipa, Peru on May 1st, 2013
using the exponential scheme
(left) and the IFS-based scheme
(right)
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rearranging Eq. (15) to get P (Eq. 21).

P D
�

1 C ˚s � ˚

Rd Ts

�

� 1
�

Ps (21)

5.2 Refractivity Retrieved
from the IFS-Based Scheme

The basic idea of the IFS-based scheme (IFS-BS) is to
interpolate or extrapolate vertically and then horizontally
each physical parameter separately at the required height
from the values of the neighbour points and then compute
the refractivity at the required point using interpolated values
of pressure, specific humidity and temperature. The vertical
interpolations and extrapolations used here are described
in Sects. 4.2, 4.3 and 5.1. The IFS-BS has the advantage
to adapt vertical interpolation and extrapolation strategies
for each physical parameter according to the physical laws
and be consistent with the vertical discretization done in
the IFS.

5.3 Assessment of the IFS-Based Scheme

To investigate the impact of the vertical interpolations
and extrapolations on tropospheric delays, the IFS-BS
(Sect. 5.2) and the exponential scheme (Sect. 3.4) are
compared. The difference between the two schemes can be
significant especially in mountainous regions. For example,
at Arequipa, Peru, where the height difference between

orography and topography is 520 m, the difference on zenith
tropospheric delay between the two schemes is 5 mm. In
addition, the 5ı slant tropospheric delays obtained with
the exponential scheme have a larger azimuthal anisotropy
than when the IFS-BS is used (Fig. 4). On the contrary,
at Toulouse, France, where the height difference between
orography and topography is 30 m, the difference on
zenith tropospheric delay is less than 0.1 mm and there
is no difference on the azimuthal variability of the 5ı
slant tropospheric delays. The IFS-BS with its physically-
based extrapolation is more consistent, especially in
mountainous regions where the height difference between
orography and topography is large. So, using the IFS-BS
can be an improvement on the modelling of tropospheric
delays.

6 Conclusion and Perspectives

The IFS-BS described here is based on the interpolation
and extrapolation scheme adopted by ECMWF for its global
meteorological forecasting model called IFS. Using this
formulation ensures the coherence with model level data and
permits to adapt vertical interpolations and extrapolations
for each physical parameter according to its own physical
law. Practical investigations of a large number of situations
and sites are undergoing to provide a realistic accuracy
versus GNSS measurements of the IFS-BS and the AMF.
The liquid and ice water contents are not considered in
this formulation although integrated in the IFS. We plan
to include these parameters in our modelling in order to
continue step-by-step improvements in the Horizon soft-
ware.
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Comparison of Different Techniques
for Tropospheric Wet Delay Retrieval Over
South America and Surrounding Oceans

A. Calori, G. Colosimo, M. Crespi, and M.V. Mackern

Abstract

Water vapour (WV) plays a fundamental role in several weather processes that deeply
influence human activities. Satellite based radiometers, Ground based Global Navigation
Satellite Systems (GNSS) and Numerical Weather Models (NWM) permit to obtain either
measurements or estimates or forecasts of WV. This work presents a 2 years systematic
comparison to address the agreement on the tropospheric wet delay retrieved by the
three mentioned independent techniques over permanent stations belonging to SIRGAS
(Sistema de Referencia para las Américas) GNSS network. SIRGAS tropospheric total
delay estimations are compared with the official International GNSS Service (IGS) ones,
with the measurements from the Jason-1 satellite radiometer (JMR) in terms of Zenith Wet
Delays (ZWD) and, finally, with the ZWD computed from ERA Interim, the last reanalysis
dataset from the European Center for Medium-Range Weather Forecasts (ECMWF). All
the differences between the techniques, which were considered in order to yield a reliable
comparison, are discussed. The statistical results of mean (�), standard deviation (�) and
correlation (�), show that the highest agreement is reached between SIRGAS and IGS
products (� D �0:5 mm, � D 5:6 mm, � D 0:98), whereas slightly worse values are
obtained in the comparisons with the JMR measurements (� D �7:4 mm, � D 15:4 mm,
� D 0:91), and the ERA Interim data (� D �1:5 mm, � D 16:6 mm, � D 0:91).
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1 Introduction

Water Vapour (WV) plays a fundamental role in several
weather processes that deeply influence human activities
and it has been recognised as the most important among
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the greenhouse gases (Mitchell 1989). Several studies have
confirmed how deeply water vapour is bound to climate
changes, for instance by showing the high correlation
between the yearly temperature variation and the WV content
in the atmosphere (Wentz and Schabel 2000). It has been
clearly understood that the knowledge of high accurate WV
content and its distribution in the atmosphere improves short
term weather forecasts significantly. At the same time, WV
reveals very rapid changes both in the temporal and in the
spatial domains such that, at present, there are no theoretical
models that can reliably predict its behaviour.

Retrieving WV content in the atmosphere can be
performed in different ways using independent techniques:
starting from the more traditional and established ones, such
as radiosondes and ground-based microwave radiometers, up
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to the more recent ones, such as satellite based techniques
like satellite radiometers (Christensen et al. 1994), Global
Navigation Satellite Systems (GNSS) (Bevis et al. 1992),
Radio Occultation (Kursinski et al. 1997) and Numerical
Weather Models (NWM). Since each of these techniques
presents advantages and limitations, researchers’ efforts have
been recently focused on comparing the different approaches
with the aim of combining them to retrieve WV content
with the highest possible accuracy. The issues addressed in
this work are related to the research activities promoted by
the International GNSS Service (IGS) Troposphere Working
Group.

Satellite based radiometers can provide integrated water
vapor (IWV) measurements at different epochs. However,
their application is limited over sea and ocean surfaces,
the revisit time on the same location is rather low and
reliable measurements are obtained only at certain weather
conditions (e.g., no rain). Ground based GNSS stations can
be used to estimate the signal delay caused by tropospheric
refraction (Hogg et al. 1981). This delay, which is referred
to as Zenith Total Delay (ZTD), can be unfolded into two
components: the Zenith Hydrostatic Delay (ZHD) and the
Zenith Wet Delay (ZWD), which are due to the contribution
of the hydrostatic gases and to the water vapour, respectively.
The GNSS technique has been proven capable of estimating
the ZTD and then using these estimates to infer the IWV
with accuracies of few millimetres (e.g., Rocken et al. 1997).
Moreover, thanks to its dense station networks and to the very
high temporal resolution of the estimates (up to few minutes)
the interest in GNSS as IWV data source is continuously
increasing. NWM, such as the European Center for Medium-
Range Weather Forecasts (ECMWF), exploit data from many
different sources and can be used to compute and forecast
IWV all over the world with a medium-high temporal reso-
lution (i.e., a few hours).

This work presents the results of a 2 years (i.e., June
2008–2010) comparison of the three described techniques
for the determination of the tropospheric wet delay ZTD
and the IWV over the South and Central American region.
Initially, in order to assess the performances of SIRGAS
estimations, the results were compared with the official
ZTD distributed by the IGS. Then, the consistency of the
products was evaluated with respect to: (1) ZWD measured
by Jason-1 satellite mission; (2) ZWD computed from data
of the ECMWF ERA-Interim reanalysis model. Following
this introductory section, Sect. 2 describes the main features
of the used techniques. The results from the comparison are
discussed in Sect. 3. Finally, conclusions and future research
prospects are outlined in Sect. 4.

2 Data Processing: Retrieving the ZTD
from the Different Techniques

2.1 Ground Based GNSS Stations

2.1.1 ZTD from the SIRGAS Network
SIRGAS-CON is the regional densification of the
International Terrestrial Reference Frame (ITRF) over
Latin America and Caribbean, it spans a huge extension
�71ı < � < 20ı; �109ı < � < �2ı, with altitudes
up to 3:770 m and, at present, it encompasses about 250
continuously operating GNSS reference stations, 48 of them
belonging to the global IGS network (Brunini et al. 2012).

Within this research work, the site-specific ZTDSIR were
estimated for approximately 100 GNSS SIRGAS stations
(SIRGAS-CON-D-SUR) (Mackern et al. 2009) with a global
formal precision of few millimeters, as described in detail
in Calori et al. (2013). Figure 1 shows the overall distribu-
tion of the used GNSS stations over the South American
region.

The main processing features which are relevant for the
next sections are as follows:
– Software: Bernese GPS Software 5.0 (Dach et al. 2009)—

Differential positioning
– Elevation angle cutoff: 3ı
– Mapping function: Niell (1996) for hydrostatic and wet

component
– A priori values: (Berg 1948; Saastamoinen 1972)
– Temporal resolution of ZTD estimates: 15 min (tropo-

spheric gradients not estimated)

2.1.2 IGS Tropospheric Products
Ever since 2003, a precise point positioning (PPP) approach
is used within IGS to estimate ZTD values using raw GPS
range measurements and the IGS Final Orbits and Clocks.
This process produces one file per site per day containing
a time series of ZTD with temporal resolution of 5 min
and a formal precision of few millimetres (Buyn and Bar-
Sever 2009). The main processing features relevant for the
comparison are detailed:
– Software: GIPSY—Precise Point Positioning
– Elevation angle cutoff: 7ı
– Mapping function: Niell (1996) and GMF (Böhm et al.

2006)
– A priori values: Hydrostatic delay based on altitude (2.3 m

at sea level), and 0.1 m for the wet delay
– Temporal resolution of ZTD estimates: 5 min (tropo-

spheric gradients estimated)
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Fig. 1 Overall distribution of
stations of
SIRGAS-CON-D-SUR network
processed within this work (small
orange circles). Stations used in
the comparison with only Jason-1
radiometer, are displayed as
green circles. Stations used in the
comparison with only IGS official
products are displayed as brown
diamonds. Blue stars represent
stations that were used in the
comparison with IGS and Jason-1
products. Red pattern displays the
results of the automatic
procedure implemented to select
Jason-1 measurements that lie
inside a circular area of a certain
radius (1ı) centred on the station

The comparison between the ZTDSIR and ZTDIGS was
carried out over 27 sites common to both networks (Fig. 1,
blue stars and brown diamonds).

2.2 Jason-1 and Satellite Radiometry

Jason-1 has been an altimetry satellite mission jointly
operated by the French aerospace agency—Centre National
d’Etudes Spatiales (CNES) and the United States National
Aeronautics and Space Administration (NASA).

To retrieve the ocean topography with an accuracy of a
few centimeters, Jason-1 was equipped with a Microwave
Radiometer (JMR) used to measure the delay caused by the
water vapor along the altimeter beam. JMR measures the
brightness temperatures in the nadir direction over a circular
footprint approximately between 20 and 30 km (Picot et al.
2003). Using a combination algorithm (described in p. 155
Keihm et al. 1995), the brightness temperatures can be

coupled to retrieve the delay caused by the water vapor in the
atmosphere (i.e., the ZWD) with a Root Mean Square Error
(RMSE) of 1.2 cm that is, however, limited to open ocean
areas (Ruf et al. 1994).

For the present work, we have chosen to utilize the Geo-
physical Data Records (GDR) version c. Besides the altime-
ter measurements, GDR contain as ancillary information the
hydrostatic meteorological correction (ZHD) provided by the
ECMWF, which are then used to obtain the ZTD according
to the standard equation

ZTD D ZHD C ZWD (1)

For this research, Jason-1 GDR version c binary data
corresponding to the period from June 2008 to June 2010
were downloaded from the web. Then, a tuned software was
implemented to filter out only those measurements which
are close to the GNSS sites. Since JMR provides reliable
measurements only over open ocean areas, 20 stations were
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Table 1 Statistical results
(compared product, number of
stations, size of the dataset,
average bias and standard
deviation of the differences,
correlation coefficient between
the products) of the comparisons
performed

Stations Samples � �

Product (#) (#) (mm) (mm) �

IGS–SIR 27 1,309,868 �0.5 6.9 0.98

ERA–SIR 30 65,534 �1.5 16.6 0.91

JMR–SIR 14 1,052 �7.4 15.4 0.93

ERA–IGS 27 67,638 �2.4 14.8 0.92
JMR–IGS 11 983 �5.6 14.9 0.93

JMR–ERA 14 958 �8.5 15.5 0.94

Different techniques have been compared in terms of ZWD whereas
GNSS intra-comparison refers to ZTD

selected which fulfil the geographical criteria being located
within a limited distance from coastline and the height of
the station. Figure 1 shows the distribution of the selected
stations (green dots and blue stars) subset and the Jason-1
ground tracks (red lines) for orbit cycle 275. As described
in detail in Calori et al. (2013), the differences between
the radiometer measurements and the GNSS estimates were
addressed to yield a reliable comparison between the techni-
ques.

2.3 ERA Interim

ERA-Interim is the latest global atmospheric reanalysis
product computed by the ECMWF. This contains gridded
data that describe the weather as well as ocean-wave and
land-surface conditions together with upper-air parameters
covering the troposphere and stratosphere (Dee et al. 2011).
With the purpose of retrieving the ZWD at the GNSS sites
from meteorological information, the binary data in grib
format of 3 meteorologic parameters (i.e., the mean sea level
pressure (Patm), the total column water vapour (TCWV)
and the 2 m temperature (2T)) were downloaded from the
ECMWF web site for the time frame of the present analysis.
These grids have a spatial resolution of 0.75ı � 0:75ı and
a temporal resolution of 6 h (i.e., at 0, 6, 12 and 18 UTC).
Here, it is also worth noting that both the TCWV and 2T are
referred to the orography height (ho), so that some height
corrections were needed to retrieve the tropospheric delays
(ZHD and ZWD) at the GNSS station height. As first step,
the atmospheric pressure was computed at the GNSS station
height (h) according to the standard pressure model of Berg
(1948)

Ph D Patm.1 � d � h/5:225 (2)

where d D 0:0000226. Then, the ZHD at the GNSS station
height (i.e., ZHDERA;h) was retrieved following Davis et al.
(1985)

ZHDERA;h D a
Ph�

1 � b � cos.2�/ � c � h
� (3)

where a D 0:0022768, b D 0:00266, c D 0:28 � 10�6, � is
the station latitude. The mean temperature of the troposphere
(Tm) was modelled using the 2T according to Mendes et al.
(2000, Eq. 17), model UNB98Tm1. This step was neces-
sary in order to retrieve the ZWD at the orography height
ZWDERA;ho using the relation between the TCWV and the
ZWD introduced by Askne and Nordius (1987, Eq. 25). To
refer the ZWD retrieved by the ECMWF to the GNSS station
height, the empirical relation proposed by Kouba (2008) was
applied

ZWDERA;h D ZWDERA;ho � e�.h�ho/=2000 (4)

Finally, according to Eq. (1), we computed ZWDSIR using
ZHDERA. The comparison with ZWDSIR was performed for all
sites at which a comparison with either IGS or JMR values
was already available (displayed as blue stars and brown
diamonds in Fig. 1). At this stage of the research, no temporal
interpolation was introduced so that GNSS and ECMWF
were analysed only at identical times (i.e., 4 times per day).

3 Results and Discussion

The accuracy of the tropospheric estimations retrieved from
SIRGAS network was assessed in terms of consistency with
three different products: (1) the official ZTD generated by
IGS; (2) the ZWD computed using meteorological infor-
mation provided by ERA-Interim, ECWMF; (3) the ZWD
measured by the JMR aboard the Jason-1 satellite altimetry
mission. The comparison was carried out from June 2008
to 2010 and, because of the inter-techniques differences, it
involved separate clusters of SIRGAS stations: 27 sites for
comparison 1, 30 sites for comparison 2 and 14 sites located
along the coastline for comparison 3. In each comparison,
the agreement between the techniques was evaluated using
the bias (�), the standard deviation (�) of the differences and
the correlation coefficient (�) of the time series as statistical
indexes.

Table 1, which reports the statistical inter-techniques
indicators averaged over the whole set of stations, reveals
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Fig. 2 5 days (9–14 December
2008) time series of IGS (blue)
and SIRGAS (red) ZTD
estimations

Fig. 3 Mean and standard
deviation of the differences
between IGS and SIRGAS ZTD
grouped every 2 h (a) and every
month (b). Here, it has to be
underlined that hours of the day
refer to UTC time

that SIRGAS GNSS tropospheric delays agree with those
obtained from the different techniques (i.e., with a bias
in the difference varying from a minimum of 0.5 mm for
the IGS values up to a maximum of 7.4 mm for the JMR
measurements). As expected from using the same technique,
the best agreement is found between SIRGAS and IGS
ZTD. Nonetheless, the different strategies used to process the
GPS observations (Sect. 2.1) influence the ZTD estimations:
in particular, a refined analysis showed that ZTDSIR are

characterized by a higher estimation noise, as it is shown
in Fig. 2. Further, to investigate possible dependencies either
on the epoch of the day or on the month of the year,
the differences for the whole period have been grouped
every 2 h and every month, respectively. Figure 3, which
displays the results of the hourly and monthly compar-
ison, does not highlight any degradation of the ZTDSIR

neither with the epoch of the day nor within the whole
year.
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Fig. 4 (a) Bias and standard deviation over the 2 years of analysis on
each SIRGAS site used in the 3 comparisons: (1) ZTDIGS � ZTDSIR in
red; (2) ZWDERA � ZWDSIR in blue; (3) ZWDJMR � ZWDSIR) in green.

(b) The height in meters of each SIRGAS site: ellipsoidal height in light
grey, orography height from ERA-Interim in dark grey

Table 1 shows that SIRGAS estimates agree to a high
extent both with JMR measurements and with ERA-Interim
weather data and the achieved results are fully consistent
with Fernandes et al. (2013), Edwards et al. (2004), Bock
et al. (2010). For each station, the results of the three
comparisons are summarized in Fig. 4a; here, to investigate
any latitudinal dependency of the results, the stations are
sorted from north to south. Importantly, Fig. 4b displays
the difference between the ellipsoidal height of the GNSS
stations and the orography height of the ERA-Interim grid
(i.e., h and ho).

Although no clear latitudinal dependency in terms of bias
is visible, Fig. 4a shows a slow decrease of standard deviation
in the southern regions. The same situation is described by
Teke et al. (2011) in their multi-technique comparison of
ZTD and is most probably related to the lower content of WV
in the colder regions as compared to the hotter regions, where
the evaporation is dominating. Such effect is clearly visible
in the inter-technique comparison 2 and 3. From the results
of comparison 2 it is important to notice that large biases are
obtained both for large and for little height differences (e.g.,
BOGT, UNSA and UYMO, MANA, respectively); therefore
it appears difficult to infer a clear dependency between the
results and the height differences.

4 Conclusions and Perspectives

In the period from June 2008 to June 2010, the ZTD of
approximately 100 permanent stations belonging to SIRGAS
network were estimated and then compared with the official
ZTD distributed by the IGS. Then, the accuracy of the
products was assessed in terms of consistency with respect
to 2 independent techniques: (1) ZWD measured by Jason-1
satellite mission; (2) ZWD retrieved from observations data
of the ECMWF ERA-Interim reanalysis model. The best
agreement is reached between SIRGAS and IGS products
(� D �0:5 mm, � D 6:5 mm), whereas slightly worse
statistical values are obtained in the comparisons with the
JMR measurements (� D �7:4 mm, � D 15:4 mm), and the
ERA Interim data (� D �1:5 mm, � D 16:6 mm).

A more detailed comparison undertaken with the IGS
products confirmed that SIRGAS estimations quality is con-
stant, independent from the local time or season of the year;
at the same time, to mitigate the higher estimation noise in
the final ZTD a further refinement of the processing parame-
ters is required (e.g., using tighter constraints for parameters
estimation). Overall, the achieved results are in accordance
with previous researches. On one hand this testifies that
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the inter-technique differences were correctly accounted for,
on the other, it further confirms SIRGAS capabilities to
contribute to short and long term meteorological studies.

Future investigations are oriented to evaluate the impact
of including other GNSS (GLONASS, Compass, Galileo)
constellation in ZTD estimation to derive reliable near real-
time short weather forecast over the whole South and Central
American region.
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Part V

Gravity Field Mapping Methodology fromGRACE
and Future Gravity Missions



The Role of Position Information for the
Analysis of K-Band Data: Experiences from
GRACE and GOCE for GRAIL Gravity Field
Recovery
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Abstract

The Gravity Recovery And Interior Laboratory (GRAIL) mission orbiting the Moon and
the Gravity Recovery And Climate Experiment (GRACE) mission orbiting the Earth
share many conceptual commonalities. Major differences reside, however, in the absolute
positioning of the spacecraft, which is accomplished by Doppler tracking from NASA’s
Deep Space Network (DSN) for GRAIL and by the Global Positioning System (GPS) for
GRACE. Data from GRACE and from the Gravity and steady-state Ocean Circulation
Explorer (GOCE) are used to investigate the role of position information. Artificially
degrading either the geographical coverage or the accuracy of kinematic positions serving
as input data together with continuously available K-Band inter-satellite data is shown not
to be a limiting factor for gravity field recovery using the Celestial Mechanics Approach
(CMA). Eventually, the CMA is applied to Level-1B data of the GRAIL mission to derive
first Bernese lunar gravity field solutions.

Keywords

Celestial mechanics approach • Farside of the Moon • GOCE • GRACE • GRAIL •
Gravity field determination • Position information

1 Introduction

The Gravity Recovery And Interior Laboratory (GRAIL)
mission, launched on September 10, 2011, has mapped the
lunar gravity field with unprecedented accuracy and spatial
resolution and will substantially contribute to a significantly
improved understanding of the Moon’s internal structure
(Zuber et al. 2013b). The GRAIL mission concept was
derived from the Gravity Recovery And Climate Experiment
(GRACE) Earth mission (Tapley et al. 2004) and utilized a
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modified GRACE inter-satellite link called the Lunar Gravity
Ranging System (LGRS; Klipstein et al. 2013). Despite this
important heritage, there are major differences between the
GRAIL and the GRACE science payloads, such as the instru-
mentation used for absolute spacecraft positioning (Asmar
et al. 2013). Whereas the GRACE spacecraft are equipped
with Global Positioning System (GPS) receivers allowing
the geolocation of the satellites with cm-accuracy at any
time, e.g. Jäggi et al. (2009), the orbits of the GRAIL satel-
lites are primarily determined by the Doppler tracking from
NASA’s Deep Space Network (DSN). As a consequence, the
GRAIL orbits may only be constrained by Doppler mea-
surements on the nearside of the Moon, inevitably resulting
in a degradation of the reconstructed spacecraft trajectories
over the Moon’s farside. The trajectories reconstructed by
the GRAIL science team, relying on both the DSN data
and the (continuously available) inter-satellite Ka-Band data,
are publicly available at NASA’s Planetary Data System
(PDS). They are, e.g., provided in the lunar-centred solar
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system barycentric frame (GNI1B products; Kahan 2012).
Meanwhile, first GRAIL gravity fields have been released to
the public (Konopliv et al. 2013; Lemoine et al. 2013).

GRACE gravity field recovery is performed at the
Astronomical Institute of the University of Bern (AIUB)
using the so-called Celestial Mechanics Approach (CMA;
Beutler et al. 2010) for analyzing GPS, accelerometer, and
inter-satellite K-band observations in a rigorously combined
orbit and gravity field determination procedure. Gravity
field recovery experiments based on data of GRACE and
the Gravity and steady-state Ocean Circulation Explorer
(GOCE) are performed here to investigate the role of position
information for GRAIL gravity field determination. GOCE
data are used in Sect. 2 to illustrate the consequences when
using dynamic or reduced-dynamic positions as pseudo-
observations for gravity field determination. In Sect. 3 the
implications of using an artificially reduced geographical
coverage (Sect. 3.1) and a reduced accuracy (Sect. 3.2) of
position information are studied for combined orbit and
gravity field recovery from kinematic GRACE positions and
continuously available K-Band data by adopting the GRAIL
observation scenario. Eventually, the CMA is applied to the
GNI1B and KBR1B data of the GRAIL mission in Sect. 4 to
derive first Bernese lunar gravity fields.

2 Role of Position Information for GOCE
GPS-Only Gravity Field Recovery

Gerlach et al. (2003) already stated for CHAMP gravity field
recovery that unbiased solutions may only be achieved when
using kinematic orbit positions as pseudo-observations, but
not when using reduced-dynamic orbit positions. Despite
that finding reduced-dynamic orbit positions were occa-
sionally used for gravity field recovery, e.g., together with
gradiometer data, for the determination of the first GOCE
gravity field model using the direct approach (Pail et al.
2011). Therefore, GOCE data are used in this section to
illustrate possible consequences when using the position
information from the GNI1B products for GRAIL position-
only gravity field recovery, as it will also be performed in
Sect. 4.

Figure 1 shows the difference degree median of GOCE
gravity field solutions based on different types of orbit posi-
tions covering the period of Nov-Dec 2009 with respect to
the GRACE gravity field model ITG-GRACE2010 (Mayer-
Gürr et al. 2010). Apart from the independent gravity field
solution based on the GOCE kinematic positions, which are
derived in the frame of the GOCE High-level Processing
Facility (HPF; Koop et al. 2006) as part of the GOCE
Precise Science Orbit product (PSO; Bock et al. 2011),
GOCE reduced-dynamic positions, being as well part of the
PSO product, are also used for gravity field determination.
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Fig. 1 Difference degree median of GOCE GPS-only gravity field
recoveries with respect to ITG-GRACE2010 when using different orbit
input data

Figure 1 shows that the gravity field solution based on
the reduced-dynamic positions agrees significantly better
with the ITG-GRACE2010 model, because the reduced-
dynamic GOCE PSO is based on the gravity field model
EIGEN-5S (ESA 2010), i.e., on a gravity field model also
derived from GRACE K-Band observations (Förste et al.
2008).

Figure 1 further illustrates that an even slightly better
agreement with ITG-GRACE2010 may be achieved when
using purely dynamic orbit positions based on EIGEN-5S,
i.e., when only solving for initial conditions in the orbit
determination process, but not for 6-min piecewise constant
acceleration parameters as done for the reduced-dynamic
orbit determination. Such a solution does, however, not
provide independent gravity field information. This fact is
also supported by the reduced-dynamic solution based on the
gravity field model EGM96 (Lemoine et al. 1997) shown in
Fig. 1, which yields a considerably inferior agreement with
ITG-GRACE2010 due to the use of EGM96. Figure 2 shows
the same gravity field solutions with respect to EGM96 and
underlines the strong dependency on the gravity field model
used for orbit determination – the solution agreeing least with
ITG-GRACE2010 shows the best agreement with EGM96.

GRAIL gravity field recovery using GNI1B products as
pseudo-observations instead of original DSN tracking data is
thus expected to be biased towards the gravity field model
underlying the GNI1B products. The situation is only miti-
gated insofar as the inter-satellite Ka-Band data are heavily
dominating the solution for most degrees, as it is known
from the experience with GRACE (Beutler et al. 2010).
Nevertheless the recovery of the very long wavelength part
of the gravity field has to be interpreted with care when using
reduced-dynamic positions as pseudo-observations.
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Fig. 2 Difference degree median of GOCE GPS-only gravity field
recoveries with respect to EGM96 when using different orbit input data

3 Role of Position Information for
GRACE K-Band Gravity Field Recovery

GRACE gravity field determination using the CMA is based
on the analysis of inter-satellite K-band measurements and
GPS-derived kinematic positions (Jäggi et al. 2009). Using
a priori orbits derived from the kinematic positions of both
GRACE satellites and from the inter-satellite measurements,
normal equations (NEQs) for both types of observations
are set up on a daily basis for the unknown gravity field
coefficients and for additional arc-specific parameters. The
resulting technique-specific daily NEQs are then combined
into one system for each daily arc. Eventually, arc-specific
parameters are pre-eliminated and the combined daily NEQs
are accumulated into monthly, annual or multi-annual sys-
tems. Details about the general procedure may be found in
Jäggi et al. (2010) or Meyer et al. (2012).

3.1 Impact of Position Coverage

In order to study the impact of missing position information
over the “farside” of a planet, kinematic GRACE positions
covering the period of January 2008 were artificially reduced
by discarding all positions falling within the range of �90ı
� � � 90ı geographical longitude. Orbit and gravity
field determination from the reduced/full set of kinematic
positions and the K-Band range-rate data (assumed to be
continuously available also over the farside) are performed
within three experiments to simulate the GRAIL situation.

In a first experiment the static part of the AIUB-
GRACE03S (Jäggi et al. 2011) gravity field model up to
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Fig. 3 Position (top) and K-Band (bottom) residuals of the a priori
orbits of experiment 1 (see text)

degree 160 was used to generate a priori orbits based on
the reduced/full set of kinematic positions and K-Band data.
Non-gravitational accelerations were modeled by taking
into account the GRACE accelerometer data. Figure 3
(top) shows the orbit residuals for one particular day of
the generated a priori orbits in the along-track direction for
all kinematic positions, irrespective whether they were used
for the orbit computation (without gaps) or not (with gaps).
The kinematic positions actually used from the artificially
reduced data set are marked by green points.

Figure 3 (top) shows that the absolute orbit quality is only
marginally degraded when position information is lacking
due to a farside effect, because high quality background
models (GRACE gravity field model, accelerometer data) are
used for the experiment.

Figure 3 (bottom) shows that no differences can be seen
in the K-Band residuals. When further degrading the absolute
quality of the a priori orbits, e.g., by not taking accelerometer
data into account (experiment 2), similar results are obtained
without almost any visible impact on the K-Band residuals
caused by a farside effect (not shown).

In a third experiment the EGM96 gravity field model up
to degree 160 was used to generate a priori orbits based
on the reduced/full set of kinematic positions and K-Band
data without taking accelerometer data into account. Figure 4
(top) shows the orbit residuals of the generated a priori orbits
for the same day in the along-track direction. A severe degra-
dation of the absolute orbits with deviations up to the meter-
level is observed when position information is lacking, in the
K-Band residuals again no differences are seen irrespective
of using the reduced or the full set of position information
(see Fig. 4, bottom). A significant degradation of the general
RMS-level with respect to Fig. 3 (bottom) is obvious due to
the use of the EGM96 gravity field model.
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GRACE monthly gravity field solutions up to degree
and order 60 were generated for all experiments with the
reduced/full set of position information. Figure 5 shows the
difference degree amplitudes of all solutions and confirms
the expectations from Figs. 3 and 4 that only marginal degra-
dations are induced by the reduced coverage. Irrespective
of the quality of the background modeling used for the
three experiments, all monthly gravity field solutions are
dominated by the ultra-precise K-Band data and only suffer
marginally from a reduced coverage with position informa-
tion. The same behavior is observed when not using a static
gravity field model to reduce omission errors from degrees
61–160 (not shown), which is a more realistic scenario for
GRAIL.
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Fig. 4 Position (top) and K-Band (bottom) residuals of the a priori
orbits of experiment 3 (see text)
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Fig. 5 Difference degree amplitudes of GRACE monthly fields with
respect to ITG-GRACE2010 when using different position information
with different geographical coverage

3.2 Impact of Position Noise

In order to provoke an impact of degraded position infor-
mation on the gravity fields of a planet, kinematic GRACE
positions covering the period of January 2008 were artifi-
cially degraded in this section by adding an additional white
noise of 1 m RMS. Orbit and gravity field determination
from the degraded/original set of kinematic positions and the
(original) K-Band range-rate data are performed within two
experiments.

In view of GRAIL, where a high quality static gravity field
model could not yet be used at the time of writing to reduce
omission errors, the static part of the AIUB-GRACE03S
gravity field model was used in a first experiment only
up to degree 60 to generate a priori orbits based on the
degraded/original set of kinematic positions and K-Band
data, and monthly gravity field solutions up to degree 60.
In a second experiment the AIUB-GRACE03S gravity field
model was used in analogy to Sect. 3.1 up to degree 160 to
avoid omission errors when determining the monthly field up
to the same maximum degree of 60.

Figure 6 shows that, apart from degree 2, the difference
degree amplitudes of the first experiment are almost identical
when using the degraded/original set of kinematic positions.
Only for the second experiment, where omission errors
are not dominating the solution, a negative impact of the
degraded positions on the recovery of the monthly solution
can be seen. Figure 6 also shows, however, that the impact of
the degraded positions can be “cured” for the low degrees to
a large extent by adapting the weighting between the NEQ
contribution of the positions and the NEQ contribution of
the K-Band data according to the additionally imposed noise
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level. Inferior accuracy of GRAIL position information (an
accuracy of 20 cm is claimed (Konopliv et al. 2013)) might
thus be indeed an issue for lunar gravity field determination
based on Ka-Band data, but it should not be a limiting
factor.

4 First Results from GRAIL Gravity Field
Recovery

GRAIL gravity field determination using the CMA based
on the methodology described in Sect. 3 is now applied to
the GRAIL inter-satellite Ka-band measurements and the
GRAIL orbital positions stemming from the GNI1B prod-
ucts. The pre-GRAIL lunar gravity field models based on
Lunar Prospector data (JGL165P1, Konopliv et al. (2001))
and SELENE data (SGM150J, Goossens et al. (2011)),
respectively, serve as a priori gravity field models to generate
a priori orbits based on the GNI1B positions and the Ka-
Band data, and to estimate lunar gravity field models up to
degree 120 using data collected during the GRAIL primary
mission phase covering the period of Mar–May 2012. During
that period the GRAIL satellites were orbiting the Moon on
polar orbits at mean altitudes of about 55 km above the lunar
surface. Complete coverage of the lunar surface was achieved
within 27.3 days (the Moon’s rotation period), resulting in
a total of three mapping cycles during the GRAIL primary
mission phase (Zuber et al. 2013a).

Figure 7 shows for one particular day the orbit residuals
of the generated a priori orbits in the radial direction for the
GNI1B positions when using the a priori gravity field model
JGL165P1 and SGM150J up to degree 120, respectively.
Empirical pulses were estimated every 20 min to compensate
for imperfect modelings of non-gravitational accelerations,
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Fig. 7 Position residuals of the a priori GRAIL orbits when using
different gravity field models

e.g., caused by solar radiation pressure. Figure 7 shows that
orbital fits at the level of few centimeters may be achieved for
both models on the nearside of the Moon, but larger residuals
are occurring on the farside. Deviations up to 10 m occur
for JGL165P1, which is a model uniquely based on data
covering the nearside of the Moon. SGM150J is, however,
based on data partly covering also the farside of the Moon
by 4-way Doppler tracking (Namiki et al. 2009), which
significantly reduces the maximum residuals on the farside
to the one meter-level.

Figure 8 shows the difference degree amplitudes with
respect to the SELENE gravity field model SGM150J for
recoveries from positions of the GRAIL-A satellite alone
and for recoveries from positions of both GRAIL satellites
and the inter-satellite Ka-Band range-rate data. In analogy
to GRACE (Jäggi et al. 2012) essentially the same results are
obtained for the recoveries irrespective of whether SGM150J
or JGL165P1 are used as a priori gravity field models (not
shown), which largely differ in their quality as shown in
Fig. 8. Figure 8 also shows that the SELENE field only val-
idates the quality of the recovered fields up to about degree
35. Due to the limited quality of the SELENE gravity field
model (in comparison to the GRAIL data), no differences
are seen for higher degrees when taking the Ka-Band data
for gravity field determination into account. The error degree
amplitudes reveal, however, that the enormous potential of
the GRAIL Ka-Band data is by no means exploited by a
gravity field solution up to degree 120. Even at this early
stage recoveries up to degree 180 or higher seem to be
possible with the CMA, despite the relatively large number
of shortcomings in our current background modeling. The
resulting free-air gravity anomalies are shown in Fig. 9,
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Fig. 9 Lunar gravity anomalies (in mgal) up to degree 120 of the
combined GRAIL solution using the CMA

already revealing the most pronounced signatures of the
lunar gravity field.

5 Summary

We studied possible consequences of using reduced-dynamic
positions as pseudo-observations for Earth-based gravity
field determination using GOCE data. The resulting gravity
field solutions are heavily biased towards the gravity field
model underlying the reduced-dynamic orbit determination,
which renders the use of the GNI1B products questionable
from a methodological point of view for independent GRAIL
gravity field recovery. The problem is mitigated only insofar
as combined GRAIL solutions are dominated by the Ka-
Band data.

We used GRACE data to investigate the implications of a
reduced coverage of a planetary surface with position infor-
mation. Even for a GRAIL-like situation with inferior a priori
gravity field information and lacking accelerometer data,
almost no degradation was found due to the farside effect.
Only a severely degraded accuracy of the position informa-
tion led to a small degradation of the monthly solutions.

We used the CMA for lunar gravity field determination
with the GRAIL positions from the GNI1B products and the
Level-1B Ka-band range-rate data from the primary mission
phase to generate first Bernese lunar gravity field models up
to degree 120. Even our first GRAIL gravity field solutions
reveal the enormous potential of the Ka-Band data. Further
refinements of the CMA will primarily focus on the modeling
of non-gravitational accelerations and the implementation of
the DSN analysis capability.
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Gravity Field Mapping from GRACE: Different
Approaches—Same Results?

Christoph Dahle, Christian Gruber, Elisa Fagiolini, and Frank Flechtner

Abstract

GFZ as part of the GRACE Science Data System (SDS) is routinely processing time-
variable global gravity field models on monthly and weekly basis throughout the whole
GRACE mission period. These operational products consist of spherical harmonic coef-
ficients which are calculated based on the so-called dynamic method, i.e. integration of
variational equations. As a matter of fact, these coefficients are imperfect due to different
error sources such as inaccurate background models, instrument noise and inhomogeneous
sampling and thus have to be filtered during post-processing in an appropriate way. Never-
theless, the current release named GFZ RL05 shows significant improvements compared to
its precursors with an average error level of only about a factor of 6 above the pre-launch
estimated baseline accuracy.

Additionally, an alternative approach using radial basis functions is developed at GFZ.
This approach is based on the inversion of integral equations using gradient differences
as in-situ observations. The resulting gravity field products can be directly derived as
gridded data making this approach also suitable for regional applications. No post-filtering
is necessary, as regularization is already applied during system inversion. Additionally
applying a Kalman filter, higher temporal resolution can be achieved.

This paper gives a brief overview of the methodology of both approaches and their
particular strengths and weaknesses are discussed. Results from GFZ RL05 and the latest
results of the radial basis function approach are compared and also validated against
independent data sources.

Keywords

Dynamic method • GRACE • Kalman filter • Radial basis functions • Time-variable
gravity field

1 Introduction

The main objective of the GRACE mission (Tapley et al.
2004) consists of monitoring the temporal variations of the
Earth’s gravity field. During the past decade, an increasing
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GFZ German Research Centre for Geosciences, Telegrafenberg,
14473 Potsdam, Germany
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number of different GRACE releases generated by different
groups have become available. The temporal resolution of
these releases varies from monthly over 10-day and weekly
to even daily gravity field solutions, whereas their spatial
resolution naturally increases with lower temporal resolution
or by applying any type of regularization but is generally
limited to a few 100 km. Moreover, different approaches of
gravity field recovery are applied by the processing centers.
An overview of the most important approaches is given in
Table 1. Although differences between different solutions
have become smaller with every new release, they are still
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Table 1 Overview of available global time-variable GRACE gravity
field models

Processing Temporal
Approach center resolution Reference

Dynamic
method

GFZ Monthly & weekly Dahle et al.
(2012)

CSR Monthly Bettadpur (2012)
JPL Monthly Watkins and

Yuan (2012)
GRGS 10-day Bruinsma et al.

(2010)

Short-arc
method

IGG/Bonn Monthly & daily Mayer-Gürr
(2006),
Kurtenbach et al.
(2009)

Acceleration
approach

TU Delft Monthly Liu et al. (2010)

Celestial
mechanics
approach

AIUB/Bern Monthly Meyer et al.
(2012)

present. However, they cannot be simply explained by the
different approaches alone, as background models and stan-
dards are also not consistent.

In this paper, two different approaches based on the same
background models are compared. The first is the dynamic
method, which has been used at GFZ for the operational
GRACE processing since many years (Sect. 2). The second
is an alternative approach based on radial basis functions
(Sect. 3) which has recently been developed at GFZ (Gruber
et al. 2014). Using the same background models, one can
expect very similar results in case that both approaches
overcome known shortcomings concerning the availability of
satellite gravity data in view of the subtle temporal gravity
field variations. This can either be achieved by a posteri-
ori destriping and smoothing or by introducing spatial and
temporal constraints during the solution process beforehand.
On the other hand, possible differences can be related to
the approaches and thus indicate their potential strengths
and weaknesses. This is investigated in Sect. 4, where the
results of both methods are compared and validated against
independent data.

2 Dynamic Method

At GFZ, both monthly and weekly global GRACE gravity
field models are operationally processed within the GRACE
Science Data System (SDS) using the dynamic method
(see Table 1). Its application to GRACE data is described
e.g. in Reigber et al. (2005) or Schmidt (2007). Briefly
summarized, this approach is based on numerical integration

of the satellites’ equations of motion and the corresponding
variational equations. Then, by setting up the linearized
observation equations, the unknowns, i.e. gravity field, orbit
and instrument specific parameters, can be solved in a least
squares adjustment. The resulting gravity field solutions are
obtained in form of spherical harmonic coefficients which
can be transferred to gridded values of the desired gravity
field functional such as geoid undulations or gravity anoma-
lies. However, an appropriate smoothing of the solutions has
to be applied, as the derived grids are degraded by merid-
ional striping and artefacts mainly caused by the anisotropic
observation geometry of GRACE.

The current release of monthly and weekly gravity field
models labelled as GFZ RL05 shows clear improvements
compared to its precursor GFZ RL04, in particular when
looking at the noise level which has been significantly
reduced. The average RL05 error level has dropped to only
about a factor of 6 above the pre-launch estimated baseline
accuracy (Kim 2000), whereas this factor has been around
15 for RL04. The improvements are the results of several
modifications w.r.t. RL04 described in Dahle et al. (2014)
and can be summarized in the following six groups of
changes, denoted as Mod1, Mod2, . . . , Mod6, resp.:
– Update of GFZ’s Earth Parameter and Orbit System

software (EPOS-OC), mainly due to implementation of
IERS2010 standards (Mod1)

– Use of reprocessed GRACE Level-1B data (L1B RL02,
provided by JPL) (Mod2)

– Improved GPS processing (Mod3)
– Updated background models (Mod4)
– Modified relative weighting of GPS and K-band range rate

observations (Mod5)
– Modified parameterization of accelerometer biases

(Mod6)
The individual contributions of these modifications are

quantified in Fig. 1. In addition, further notable noise reduc-
tion has been achieved by keeping all orbit parameters fixed
in the final run and solving only the gravity field parame-
ters. This strategy requires an already good, i.e. sufficiently
close to the geophysical truth, a priori information for the
background gravity field model. For RL05, this is the case
as EIGEN-6C (Shako et al. 2014) including its time-variable
part is used. However, fixing the orbit parameters also regu-
larizes the solutions towards the a priori model (Meyer et al.
2015). This effect has become visible especially in the most
recent years (2009 and later), where the linearly modelled
trend of EIGEN-6C is deviating from the geophysical truth in
certain areas. As a consequence, GFZ has decided to provide
an alternative RL05a time-series, where orbit and gravity
field parameters are estimated together.



GRACE Gravity Field Mapping 167

Fig. 1 Degree variances for the
April 2008 monthly solution in
terms of geoid height [mm];
Mod1, Mod2, . . . , Mod6
represent the individual
contribution of the corresponding
modification with GFZ RL04 as
reference, RL05a is the sum of all
six modifications, and RL05 is
the latter with fixed orbit
parameters
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3 Radial Basis Function Method

The basic idea behind the Radial Basis Function (RBF)
method is the transformation of satellite instrument data to
in-situ observables and subsequent inversion of gravity func-
tionals, i.e. their corresponding integral equations, defined by
reproducing kernels. Novák (2007) has already introduced
a kernel function for the GRACE-type observation low-low
satellite-to-satellite tracking (SST) based on inter-satellite
range-accelerations (Rummel 1975). The application of the
RBF method has been described in Gruber et al. (2014); in
the following, only the most essential formulas are briefly
introduced.

First, inter-satellite ranges �, range-rates P� and range-
accelerations R� taken from GRACE KBR1B-products as well
as inter-satellite velocity differences jı Prj are transformed to
in-situ observables representing gradient differences of the
gravity potential � between the two GRACE spacecrafts:

f .�; P�; R�; jı Prj/ D hr�.rA/� r�.rB/; eLOSi (1)

with rA, rB the geocentric position vectors of GRACE-A
and -B, resp., and eLOS the unit vector in line-of-sight (LOS).

The integral equation

f .P / D
“

S

�.Q/ hırK.P;Q/; eLOSi dS (2)

describes the relation between the potential � at grid points
Q located at the Earth’s surface S , approximated by the
bounding sphere R (assuming that all relevant gravitational
masses are embedded inside this surface) and the gravity
functional f at the evaluation points P with the corre-
sponding radius rP . The chosen grid is equiareal to reduce
the number of grid points by about 30% compared to an
equiangular version. The reproducing kernel K.P;Q/ reads

K.P;Q/ D
1X
nD2
.2nC 1/

�
R

rP

�nC1
Pn.cos / (3)

with the Legendre polynomial Pn.cos /, depending on
degree n and the spherical distance  between P and Q.

As the potential values at the grid points Q are the
unknowns to be solved for, Eq. (2) has to be inverted. This
is achieved by least squares adjustment. Because the nor-
mal equation system is ill-posed, regularization is required.
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This can either be achieved by a Tikhonov regularization
or by adopting a Kalman filter system evolving the a priori
values of the normal equation system. Whereas the former is
a suitable choice for monthly solutions, using a Kalman filter
enables a higher temporal resolution.

For this work, daily global Kalman filtered RBF solu-
tions have been generated first. The feasibility of solutions
with daily resolution has been shown by Kurtenbach et al.
(2009). For the prediction step, covariance information for
the relevant sources of mass change is required. The spatial
correlations between the grid points are directly present in
the kernel matrix. Estimates for the temporal correlations are
derived from a hydrology model (WGHM, Döll et al. 2003),
from the atmosphere and ocean de-aliasing model (AOD1B,
Flechtner et al. 2014) and from other available GRACE time-
series (here: GFZ RL05). Dynamic GRACE orbits, needed
in Eq. (1), and corresponding background forces to reduce
the in-situ observations are also taken from GFZ RL05
processing. No time-variable gravity field background model
has been reduced, as the Kalman filter stochastically predicts
the a priori state using the most recent estimate of the state
vector.

In a second step, monthly global RBF solutions have been
inverted. The daily RBF solutions are removed as additional
de-aliasing product and the variances obtained from the
Kalman filter serve as input for a Tikhonov regularization.
The appropriate signal amplitudes are found in an optimal
sense by determining a global regularization parameter using
an empirical L-curve criterion to minimize the norm of the
residuals and unknowns. It is worth mentioning that the gen-
eration of monthly RBF solutions is generally independent,
i.e. it is not necessary to generate daily RBF solutions first,
as the information for the Tikhonov regularization can also
be taken from other sources, e.g. geophysical models or
GRACE.

In general, the RBF method turns out to be stable even in
case of poor ground track and sample coverage. Moreover,
several observation types (gravity, geometry) from multiple,
both space-born and terrestrial, sensor systems can be com-
bined and commonly integrated. Global as well as regional
gravity field solutions can be computed.

4 Comparison and Validation

For comparison and validation of results from GFZ RL05 and
RBF, corresponding time-series spanning ten years (2003–
2012) are analyzed. The monthly and weekly RL05 solutions
have been smoothed with the DDK2 decorrelation filter
(Kusche et al. 2009). The DDK2 filter has been chosen as

a good compromise between signal preservation and noise
suppression. Its corresponding filter radius of approx.340km
matches well the spatial resolution where the level of
mm-geoid accuracy is reached for RL05 (Dahle et al. 2014).
As mentioned in Sect. 3, the RBF solutions are already
regularized and therefore no additional smoothing has to be
applied.

First, the average monthly degree variances of both
approaches are compared (Fig. 2). In order to do so, the
RBF solutions, obtained as grids, have been converted
into the spectral domain by spherical harmonic analysis. It
becomes obvious that the RBF solutions have less power in
the long wavelengths. A possible reason might be that in the
RBF processing only GRACE K-band observations are used
whereas GPS observations, which are essential for solving
for the low degrees in the dynamic method, are omitted so far.
Expanding the RBF method by GPS observations, i.e. adding
orbital information in form of the equation of motion, could
help in future to overcome this issue. To avoid systematic
effects caused by these low degree deficiencies, the potential
coefficients from degree 2 till 6 of the RBF solutions have
been replaced by corresponding coefficients taken from
EIGEN-6C for all further comparisons presented in this
work. In the medium wavelengths (around 1,000 km spatial
resolution), both methods deliver almost identical results
indicating that GRACE has generally its highest sensitivity
in this part of the gravity field spectrum. Looking at the
shorter wavelengths, the RBF solutions show a potentially
higher spatial resolution, as the smoothing applied to the
RL05 solutions is damping the power in the higher degrees
not only suppressing noise but likely also signal.

In order to compare the noise level of the different time-
series, the root mean square (RMS) of equivalent water
height (EWH) values located within central Sahara (where
almost no mass variability is expected) have been computed
(Fig. 3). The RL05 monthly time-series has the lowest noise
level, but the monthly RBF solutions are very comparable
for most epochs. The largest RMS values can be seen for the
RL05 weekly solutions whose noise level is rather randomly
distributed. The daily RBF solutions are strongly correlated
with their monthly counterpart, although with sometimes
larger peaks. Both RBF time-series show systematic varia-
tions possibly caused by seasonal changes of the variance
of the WGHM model entering the prediction step of the
daily solutions and subsequently also affecting the monthly
ones. The mean noise level of all four time-series lies within
1–2 cm of EWH.

In Figs. 4 and 5, resp., basin averages of monthly RL05
and RBF solutions for Amazon and Bangladesh are plot-
ted. Correlations between RL05 and RBF are very high
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Fig. 2 Average monthly degree
variances over the period
2003–2012 in terms of water
column [mm] for RBF solutions
(dashed dark grey), RBF
solutions with degrees 2 till 6
from EIGEN-6C (solid dark grey)
and RL05 solutions (solid light
grey)
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Fig. 3 RMS of EWH values
[mm] in central Sahara for RL05
monthly (green) and weekly
(blue) solutions and RBF
monthly (orange) and daily
(purple) solutions
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(Amazon: 98%, Bangladesh: 95%), and the correlations
with (unsmoothed) monthly WGHM model output are also
relatively good (see Table 2) with RL05 performing slightly

better. Amplitude differences between RL05 and RBF are
generally rather small. WGHM obviously shows more pro-
nounced year to year variations of the amplitudes. In case of
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Fig. 4 Basin averages in terms
of EWH [mm] in the Amazon
basin for RL05 (green) and RBF
(orange) monthly solutions and
WGHM (blue)
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Fig. 5 Basin averages in terms
of EWH [mm] in Bangladesh for
RL05 (green) and RBF (orange)
monthly solutions and WGHM
(blue)

Year

E
q

u
iv

al
en

t 
W

at
er

 C
o

lu
m

n
 [

m
m

]

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

-400

-200

0

200

400

RL05 monthly
RBF monthly
WGHM

the Amazon basin, RL05 seems to better reflect these vari-
ations, whereas in Bangladesh RL05 and RBF amplitudes
are almost similar. The basin averages of both submonthly
time-series fit very smoothly to the corresponding monthly
solutions (not shown).

The comparable correlations of RL05 and RBF w.r.t.
WGHM become also visible in Fig. 6, where the differences

Table 2 Correlations between monthly EWH time-series from
GRACE and WGHM over the period 2003–2012

Basin GRACE Correlation (%)

Amazon RL05 89
RBF 86

Bangladesh RL05 93
RBF 90
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Fig. 6 Correlations between
RBF and WGHM minus
correlations between RL05 and
WGHM; blue areas indicate
higher correlations for RBF, red
areas higher correlations for
RL05

Fig. 7 Amplitude differences
between RBF and WGHM minus
amplitude differences between
RL05 and WGHM in terms of
EWH [mm]; blue areas indicate
smaller differences for RBF, red
areas smaller differences for
RL05

of these correlations are spatially plotted. Accordingly, these
differences are close to zero in most regions and none of the
two approaches outperforms the other in a global sense. More
interesting conclusions can be drawn from Fig. 7 showing the
spatial distribution of the difference of amplitude differences
at each 1ı � 1ı grid point between RL05/RBF and WGHM.
Amplitudes of the RBF solutions are much closer to WGHM
in many regions, most prominently in the Amazon basin.
From this, it can be concluded that the RBF approach is
capable to better localize hydrological mass variations and
suffers less from leakage effects and smearing of signal
caused by smoothing.

It has to be stated that the WGHM model, like other
hydrology models, cannot be considered as absolute truth
and in several other publications GRACE data has been

used to validate or even calibrate hydrology models (e.g.
Werth et al. 2009). However, the focus of this work is on a
relative comparison of different GRACE time-series rather
than comparing GRACE with hydrology models. Further-
more, the discussion of Fig. 7 aims at the capability of the
GRACE solutions to localize hydrology signals and in this
context WGHM should perform better than GRACE and
thus represent a suitable validation. The fact that stochastic
a priori information from WGHM has entered the RBF
solutions as described in Sect. 3 also does not affect the
localization of hydrology signals in the solutions, i.e. better
results for RBF can be considered as reasonable.

Further validation against independent data is done by
comparing vertical deformations from GPS and the GRACE
time-series. The GPS data used is obtained from CODE
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Fig. 8 Vertical deformations
[mm] at IGS Station BRAZ
(15:85ıS, 47:88ıW) from GPS
and monthly GRACE solutions
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Fig. 9 Vertical deformations
[mm] at IGS Station NOVM
(54:85ıN, 82:91ıE) from GPS
and monthly GRACE solutions
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Fig. 10 Vertical deformations
[mm] at IGS Station KELY
(66:85ıN, 50:94ıW) from GPS
and monthly GRACE solutions
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Table 3 Correlations between monthly vertical deformation time-
series from GRACE and GPS over the period �T

IGS station �T GRACE Correlation (%)

BRAZ 2003–2009 RL05 90
RBF 90

NOVM 2007–2011 RL05 89
RBF 90

KELY 2003–2011 RL05 96
RBF 94

Reprocessing (Steigenberger et al. 2011) and consists of
daily coordinate time-series of IGS stations. This original
data is transformed to vertical deformations, smoothed and
averaged to monthly values. The RL05 and RBF models are
also converted to vertical deformations according to Tesmer
et al. (2011). As variations in the GPS time-series reflect
also atmospheric effects, the GAA-product (Flechtner et al.
2014) has been re-added to the GRACE solutions. Results
are exemplarily shown for the GPS stations BRAZ (Brasilia,

Brazil), NOVM (Novosibirsk, Russia) and KELY (Kanger-
lussuaq, Greenland) in Figs. 8, 9 and 10. The corresponding
correlations are listed in Table 3. Again, RL05 and RBF
solutions give very similar results and both are well in phase
with mass variations derived from GPS.

Finally, the benefit of GRACE time-series with higher
temporal resolution is illustrated in Fig. 11. It shows EWH
variations in an area of approx. (500 � 500) km2 size around
the epicenter of the December 26th, 2004 Sumatra-Andaman
earthquake. The event by itself is visible in all time-series,
but the actual epoch of the earthquake cannot be captured
exactly by the monthly solutions as these are 30-day aver-
ages. However, this becomes somewhat possible by ana-
lyzing the weekly and particularly the daily solutions. The
latter capture the sudden mass change in the vicinity of the
earthquake exactly at the actual epoch of this event and
might allow for an improved description of the characteristics
of such events. Although this is still work in progress, the
daily Kalman solutions impart a viable enhancement, e.g. for
applications which demand a higher temporal resolution.
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Fig. 11 Averages in terms of
EWH [m] in an area around the
epicenter of the 2004
Sumatra-Andaman earthquake
(2ı � 6ıN, 94ı � 98ıE) for
monthly RL05 and RBF
solutions, weekly RL05 solutions
and daily RBF solutions; the
actual day of the earthquake is
denoted by the black circle
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5 Summary and Conclusions

Two methods of gravity field recovery from GRACE have
been compared: (1) the dynamic method, with GFZ RL05
used here as example, and (2) the RBF method.

The former is a standard method for gravity field pro-
cessing, well-established over years, and therefore can be
regarded as benchmark in case of global gravity field solu-
tions. Its drawbacks are a relatively high computational
effort, a limited spatial resolution as smoothing is required
and the fact that only global solutions can be obtained.

The latter method is a new alternative approach based
on inversion of integral equations with a comparatively low
computational effort. The conversion of GRACE K-band
observations to in-situ gravitational observations works well,
as the results from the RBF method are in generally very
good agreement with results from GFZ RL05. Furthermore,
this approach can be used for both global and regional
applications. A higher temporal resolution can be achieved
by employing a Kalman filter. Considering the fact that the
RBF solutions are directly given in form of gridded gravity
functionals with no further smoothing needed, they appear
to be more user-friendly than the standard GRACE SDS
solutions. The constraining by WGHM of course adds infor-
mation to the spectral density of the RBF solutions but does
not predefine their spatial distribution. They are thus forced
to comply with those phenomena that most likely occur on

short time scales where dominant mass redistributions of
the Earth system obviously stem from continental, oceanic
and atmospheric hydrology. It is then arguable that the RBF
method is less suitable to derive secular trends or large-
scale mass anomalies, but for short-term or even singular
events such as megathrust Earthquakes it provides reasonable
results. On the contrary, the post-filtering of the standard
spherical harmonic solutions, which is effectively a bandpass
filter, directly affects the signals’ localization by annihilating
higher resolution. Dealing with this leakage is a challenge
with equal incertitude.

Results from both approaches have been validated against
independent data. According to amplitude differences w.r.t.
the WGHM model, the RBF method has a potentially higher
spatial resolution and shows a better localization of mass
change signals. Comparisons with in-situ GPS vertical defor-
mations show slightly better results for GFZ RL05 than for
RBF. The RBF daily solutions clearly depict the event of
the 2004 Sumatra-Andaman earthquake proving that they are
capable to provide additional information compared to the
standard monthly or weekly solutions.

To answer the question posed in the title of this
manuscript, it can be concluded that the results are
not the same, but very similar. As they are based on
the same background models, the appearing differences
should be caused by the different approaches themselves
indicating that each approach has particular strengths and
weaknesses.
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The Effect of Pseudo-Stochastic Orbit
Parameters on GRACEMonthly Gravity Fields:
Insights from Lumped Coefficients

U. Meyer, C. Dahle, N. Sneeuw, A. Jäggi, G. Beutler, and H. Bock

Abstract

The official GFZ RL05 monthly GRACE gravity models were processed in a two-step
approach. In the first step the orbits were determined. In the second step corrections to
the gravity field parameters were estimated, while the orbits were kept fixed. This led
to a significant de-noising of the resulting monthly models, but accidentally also to a
regularization, i.e., the estimated gravity field coefficients were biased towards the a priori
model. We compare the GFZ RL05 models to a revised version RL05a that was determined
in a common estimation of orbit and force model parameters. A large number of gravity
field coefficients is significantly affected. We relate this effect to the one-hourly stochastic
accelerations estimated for orbit determination, and to ignoring the correlations.

In the main part of this paper we study the interaction between pseudo-stochastic orbit
parameters and gravity field coefficients. To explain this interaction we make use of a
time-wise approach to gravity field determination. We apply the linear perturbation theory
developed by Hill for circular orbits to compute lumped coefficients of the inter-satellite
range-rate observations. We illustrate that the pseudo-stochastic orbit parameters act as a
high-pass filter on the lumped coefficients spectra of the range-rates. Because the lumped
coefficients are related to the spherical harmonics coefficients via a summation over all
degrees, the whole range of gravity field coefficients is affected.

This result is of relevance for all approaches to gravity field estimation from orbit
observations, where dynamic orbits are introduced a priori and the arc-specific parameters
are kept fixed.

Keywords

GRACE • Satellite gravimetry • Time-wise approach

U. Meyer (�) • A. Jäggi • G. Beutler • H. Bock
Astronomical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern,
Switzerland
e-mail: ulrich.meyer@aiub.unibe.ch

C. Dahle
GFZ German Research Centre for Geosciences, Potsdam, Germany

N. Sneeuw
Institute of Geodesy, University of Stuttgart, Stuttgart, Germany

1 Introduction

Gravity field estimation using observations of, e.g., the
GRACE satellite mission is a non-linear parameter estima-
tion process. It is common practice to solve it as a generalized
orbit determination problem. The ‘true’ solution is found,
possibly iteratively, provided that linearization errors are
small and all parameters of the physical model are deter-
mined in one common parameter estimation procedure.

A priori information of the physical models (in particular
of the a priori gravity field) may affect the resulting gravity
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Fig. 1 Weighted standard deviations over the oceans for different sets
of monthly solutions

field, if the above principles are violated, e.g., when orbit
determination and gravity field estimation are artificially sep-
arated. In this case dynamic orbit parameters absorb residual
gravity signals and the solution is biased towards the a priori
model. This happened to the official GFZ RL05 monthly
gravity fields (Dahle et al. 2012) and was first reported by
Meyer et al. (2013). Meanwhile the findings were confirmed
independently, and, as a consequence, GFZ has produced a
new release RL05a, where orbit and gravity field parameters
are estimated together (Flechtner et al. 2013).

The processing strategy of GFZ RL05 was motivated by a
significant de-striping effect when the orbits of the GRACE
satellites and the spherical harmonics coefficients (SHC)
were estimated separately. The noise, e.g., evaluated by the
standard deviation of the gridded time variable signal over
the oceans (weighted by the cosine of the latitude), drops
dramatically in comparison to monthly solutions, where
the SHC are estimated together with the orbits (RL05a,
see Fig. 1). The idea of separating orbit and gravity field
estimation is not new. It has been adopted, e.g., by Luthcke
et al. (2006) who reported a comparable de-striping effect.

A number of experiments were performed at the Astro-
nomical Institute of the University of Bern (AIUB) in order
to understand this apparent gain in quality, where the pro-
cessing strategy of GFZ was emulated using the Celestial
Mechanics Approach (CMA; Beutler et al. 2010a,b). We
found that the gain is related to the following two-step
mechanism:
– solving in the first step for hourly pseudo-stochastic orbit

parameters (e.g., empirical piecewise constant accelera-
tions) while using a good a priori gravity model, i.e.,
a model already including trends and periodic seasonal
variations up to a degree of, e.g., 30, and

– introducing in the second step the orbits from the first step
for the estimation of the SHC of the gravity field. The
orbit parameters are kept fixed and the correlations with
the force model parameters are thereby lost.

This procedure obviously regularizes the monthly solutions,
where the quality of the a priori gravity model and the
spacing of the pseudo-stochastic orbit parameters are the
relevant style elements.
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Fig. 2 Difference degree variances between monthly solutions (March
2008) and the time variable a priori field (EIGEN-6C), evaluated at the
mid-epoch of the monthly models

We found furthermore that pseudo-stochastic orbit param-
eters, e.g., equally spaced by 1 h, greatly improve the con-
sistency between the a priori gravity model and a monthly
solution. The whole spectrum of degree variances is affected
(Fig. 2). Subsequently, an explanation for this effect is pre-
sented. We make use of a representation of the inter-satellite
range-rates in the time domain and interpret the use of
pseudo-stochastic orbit parameters as a rather special high-
pass filtering.

The Fourier coefficients of the range-rates are linked to
the SHC of the gravity field (Sneeuw 2000) via a summation
over degree l . This ‘lumping’ process explains the impact of
the low frequency Fourier coefficients, dampened by signal
absorption through the pseudo-stochastic orbit parameters,
on the whole spectrum of SHC.

2 The Time-Wise Approach:
Gravitational Potential Along
the Orbit

A representation of the disturbing gravity field potential in
osculating elements was already presented by Kaula (1966),
the idea of time-wise orbit analysis for gravity field determi-
nation originates from Wagner (1983). We make use of an
alternative formulation proposed by Sneeuw (2000), where
the gravitational potential is written as a function of the
orbital elements radius r , the inclination I , the argument of
latitude u, and the argument of longitude � D ˝ � � (with
˝ the longitude of the ascending node and � the Greenwich
sidereal time):

V.r; I; u; �/ D GM

r

LX

mD0

LX

kD�L

LX

lDmax.m;jkj/

�aE
r

�l

� NFlmk.I /

� NClm cos mk C NSlm sin mk
� NSlm cos mk C NClm sin mk

� l�m even

l�m odd

: (1)
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aE is the mean equatorial radius of Earth and GM the prod-
uct of constant of gravity and Earth’s mass. The summations
run over degree l and order m of the normalized spherical
harmonics coefficients NClm and NSlm (the maximum degree
and order being L), as well as over the index k stemming
from the inclination functions NFlmk.I /, see Sneeuw (1992).
The angles  mk D ku C m� comprise the position of the
satellite.

If we confine ourselves to circular orbits (close to reality
for the GRACE satellites), the radius r and the inclination
functions NFlmk.I / are constant. In this case Eq. (1) takes the
form of a Fourier series

V. mk/ D
LX

mD0

LX

kD�L
AVmk cos mk C BV

mk sin mk (2)

with constant Fourier coefficients AVmk and BV
mk . These

coefficients are called lumped coefficients1 because they can
be derived from the SHC via a summation over degree l :

AVmk D
LX

lDmax.m;jkj/
NHV

lmk

� NClm
� NSlm

� l�m even

l�m odd

(3)

BV
mk D

LX

lDmax.m;jkj/
NHV

lmk

� NSlmNClm
� l�m even

l�m odd

: (4)

The transfer between the two spectral representations of the
gravity potential is accomplished via the transfer coefficients
(Sneeuw 2000)

NHV
lmk D GM

r

�aE
r

�l NFlmk.I /: (5)

We can assign frequencies P mk D k Pu C m P� to the lumped
coefficients, and if we write the repeating frequency of the
orbits Pu=j P�j as integer ratio ˇ=˛, with ˇ orbital revolutions
within ˛ sidereal days, we find the corresponding Fourier
frequencies !j D Pu=ˇ � j D Pu=ˇ.kˇ �m˛/.

3 Spectral Representations of Orbit
Perturbations and Inter-Satellite
Range-Rates

The derivation of a spectral representation of inter-satellite
range-rates, the main observation type of the GRACE mis-
sion, is detailed in Sneeuw (2000). We will only outline
the general procedure and quote ready to use formulas for
orbit perturbations and range-rates, because all expressions

1Not to be confused with the lumped coefficients introduced by Good-
ing (1971) for resonant analyses.

in Sneeuw (2000) are derived in complex notation and
the transformation to real-valued expressions for computer-
coding is not trivial.

First we define an orbital frame centered at and co-rotating
with the satellite. Its axes are always pointing in along-track
(x), cross-track (y) and radial (z) direction of the satellite.
We then apply the gradient operator r to Eq. (1) and derive
gravitational accelerations in the orbital frame.

To relate the gravitational accelerations to orbit pertur-
bations a perturbation theory is needed. For the case of
circular orbits the linear system of differential equations with
constant coefficients originally developed by Hill (1878)
for the description of the lunar orbit around the Earth is a
convenient choice. With these equations orbit perturbations
�x, �y and �z are determined relative to a reference point
that moves with constant angular velocity n D p

GM=r3

along a circular orbit. The linear differential equations hold
only approximately for the GRACE orbits, but they have the
big advantage of being solvable analytically.

Their general solution consists of the solution of the
homogeneous equations and a particular solution of the
inhomogeneous equations. From the latter one the spectral
transfer of orbit perturbations in the orbital frame is derived.
We quote the expressions for the along-track and radial
perturbations, because they are needed to compute range-
rates:

NH�x
lmk D .3n2 C P 2mk/k � 2n P mk.l C 1/

P 2mk.n2 � P 2mk/

� GM

a2E

�aE
r

�lC2 NFlmk.I / (6)

NH�z
lmk D 2nk � .l C 1/ P mk

P mk.n2 � P 2mk/
GM

a2E

�aE
r

�lC2 NFlmk.I /: (7)

The spectral transfer becomes singular in case of resonance.
Resonance occurs whenever P mk D 0, or P mk D ˙n, i.e.,
m=k D ˇ=˛, or m=.k ˙ 1/ D ˇ=˛.

The lumped coefficients A�z
mk and B�z

mk of radial orbit
perturbations �z can be computed from the SHC by multi-
plication with the spectral transfer NH�z

lmk and summation over
degree l according to Eqs. (3) and (4). For along-track orbit
perturbations�x the SHC are arranged as follows:

A�xmk D
LX

lDmax .m;jkj/
NH�x

lmk

� NSlmNClm
� l�m even

l�m odd

(8)

B�x
mk D

LX

lDmax .m;jkj/
NH�x

lmk

� � NClmNSlm
� l�m even

l�m odd

: (9)

Finally, the derivation of transfer coefficients of inter-
satellite ranges �� is straightforward under the assumption
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that both satellites follow each other with a certain time lag �
(corresponding to a separation angle � D � n) on the same
circular orbit. The perturbation in the range is calculated
by projecting both radial (�x) and along-track (�z) orbit
perturbations onto the line of sight between the satellites.
A derivation can be found in Sneeuw (2000), an alternative
formulation in Visser (2005). We only quote the resulting
transfer coefficients

NH��
lmk D 2 cos� sin.�

P mk
n
/ NH�x

lmk

C 2 sin � cos.�
P mk
n
/ NH�z

lmk: (10)

The summation of lumped coefficients A��mk and B��

mk corre-
sponds to Eqs. (3) and (4).

To derive the transfer coefficients for range-rates � P�
the time derivative has to be computed. Since only  mk is
time dependent ( P mk is considered to be constant along the
circular orbit), this eventually results in

NH� P�
lmk D 2 P mk sin � cos.�

P mk
n
/ NH�z

lmk

� 2 P mk cos� sin.�
P mk
n
/ NH�x

lmk : (11)

In this case the summation of lumped coefficients A� P�
mk and

B
� P�
mk corresponds to Eqs. (8) and (9).

4 Application to GRACE

Now, we have the tools at hand to calculate the lumped
coefficients of the range-rates from SHC of the gravity field.
We will study the impact of the pseudo-stochastic orbit
parameters on the spectra of the lumped coefficients on
the basis of the monthly gravity fields of the year 2008.
Therefore we have to determine mean orbital elements r ,
I and orbital frequencies Pu and P� from the corresponding
GRACE orbits. As we only want to present a proof of
concept, we ignore the subtle differences between the fixed
orbits and the orbits resulting from a common estimation of
arc specific and force model parameters.

In Fig. 3 mean orbital elements for GRACE A and the
differences to GRACE B are presented throughout the whole
year 2008. Instead of orbital frequencies the repeat ratio Pu= P�
is shown. The separation angle � can be calculated from the
distance between both satellites. In August an orbit maneuver
caused a jump in the orbital elements of GRACE B.

Let us first have a look at an example month (March
2008), and take the differences between the SHC of the GFZ
RL05a solution (where the arc-specific parameters were pre-
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eliminated, and the correlations with gravity field parameters
are correctly modeled), and the corresponding solution GFZ
RL05 (where they were deleted from the normal equations,
and the correlations are lost). In the triangle plot of SHC
(Fig. 4) one sees differences in the very low degrees, which
are intuitively correlated with the low frequency stochas-
tic accelerations, and at high orders, where the SHC are
probably dominated by noise. But one also sees vertical
stripes throughout the whole range of orders, slightly more
pronounced near resonant orders (15, 31, 46, 61). Even
the alternation between even and odd degrees elaborated in
the formulas of the lumped coefficients approach is clearly
visible along these stripes.

Along the mean, circular orbit of GRACE A at the 15th
of March we compute the transfer coefficients [Eqs. (6),
(7), and (11)], and consequently the lumped coefficients of
the inter-satellite range-rates from the differences between
the two sets of SHC (Fig. 4). The difference for C20 is
ignored, because this coefficient is not well determined
from GRACE range-rate observations. Figure 5 shows the

amplitudes
q
.A

� P�
mk/

2 C .B
� P�
mk/

2 of the lumped coefficients,
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ordered by index k and order m. Most of the signal is
concentrated in a small band of coefficients.

Now, we compute the corresponding frequencies P mk D
k Pu C m P� for each of the lumped coefficients and mark
all coefficients with frequencies below 24=day (frequency
of the stochastic accelerations) in Fig. 5. The dominance of
the low frequency lumped coefficients is striking. Arranging
the lumped coefficients by frequency, the corresponding
amplitude spectrum is derived and shown in Fig. 6. The
significant part of the signal is concentrated at frequencies
below 24=day. Comparable results are obtained for all the
other sets of RL05 and RL05a monthly gravity fields from
2008 (not shown).

To be more flexible concerning the orbit parametrization
we compute monthly models for the whole year 2008 with
the CMA with processing strategies corresponding to GFZ
RL05 and RL05a. Gravity field coefficients are only set up to
a maximum degree and order of 60 to minimize the influence
of noisy higher order SHC on the resulting amplitude spectra,
presented in Fig. 7 (left). To also visualize the characteristics
of the transfer coefficients NH� P�

lmk they are applied to a set of
SHC all equal to one, and the resulting spectra are provided
in Fig. 7 (right).

As the spectra (Figs. 6 and 7, left) were computed from
the differences in the SHC between monthly solutions that
were estimated, either separately, or together with the arc
specific parameters, they show the signal absorbed by the
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sponding transfer coefficients (right). The y-axis in the left hand plots
corresponds to Fig. 6, the y-axis in the right hand plots is scaled by a
factor of 5 � 1011. Note that the amplitude at orbital resonance is far
beyond the scale in all of the figures

orbit parameters, when the correlations with the force model
parameters are ignored. One could conclude, that these spec-
tra support the idea of a high-pass filter of the range-rates by
the one-hourly stochastic accelerations. But the characteris-
tics of the transfer coefficients (Fig. 7, right) reveal that most
of the signal has to be expected below the 24/day frequency
anyway.

We therefore performed one more experiment, where the
stochastic accelerations were estimated at 15 min instead of
1-h intervals. A zoom into the resulting amplitude spec-
tra that focuses on the frequency range beyond 24/day is
presented in Fig. 8. Now we observe considerably higher
amplitudes at frequencies up to 96/day. We take this as a
strong indication in favor of the predicted high-pass filtering
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Fig. 8 Comparison of the effects of stochastic accelerations estimated
at either 15 min (red) or 60 min (black) intervals. The two frequencies
are marked by green vertical lines. In comparison to Fig. 7 the y-range
was zoomed in by a factor of 4

effect. The signal visible beyond the frequency of 96/day
must be attributed to the ever present noise in the estimated
SHC which is amplified at multiples of the orbit frequency
(and is of course also part of the signal visible at lower
frequencies). Note as well, that the SHC, from which we
started, were estimated along the true, slightly elliptical
GRACE orbits and that any deviation from the circular orbits
of the linear perturbation theory, applied for the derivation of
the spectral transfer of the range-rates, tends to broaden the
peaks and to fill up the computed spectra.

5 Summary and Conclusions

It was shown how monthly gravity field solutions are regular-
ized by the introduction of satellite orbits fixed at some point
of the estimation process of the SHC. The key parameters are
the pseudo-stochastic parameters adjusted during the deter-

mination of the dynamic orbits and the quality of the a priori
gravity model used for the orbits. The mechanism governing
the process is a high-pass filter of the orbit perturbations
represented by the pseudo-stochastic orbit parameters, inten-
sified by breaking the correlations between orbit and gravity
field parameters. This correlation could be illustrated by the
introduction of a spectral presentation of the inter-satellite
range-rates via lumped coefficients. Our theory explains how
the signal absorbed by the pseudo-stochastic orbit parameters
and visible in the spectra of the lumped coefficients of the
range-rates influences the degree variances of the entire SH
spectrum via the inversion of the lumping-effect (summation
over degree l).

As speudo-stochastic parameters are common in precise
orbit determination, every approach to gravity field estima-
tion, where dynamic orbits are introduced as observations
and the orbit parameters are kept fixed, will suffer from the
described mechanism.
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On an Iterative Approach to Solving
the Nonlinear Satellite-Fixed Geodetic
Boundary-Value Problem

Marek Macák, Karol Mikula, Zuzana Minarechová, and Róbert Čunderlík

Abstract

The paper deals with an iterative treatment of solving the nonlinear satellite-fixed geodetic
boundary-value problem (NSFGBVP). To that goal we formulate the NSFGBVP consisting
of the Laplace equation in 3D bounded domain outside the Earth. The computational
domain is bounded by the approximation of the Earth’s surface where the nonlinear
boundary condition (BC) with prescribed magnitude of the gravity vector is given and by a
spherical boundary placed approximately at the altitude of chosen satellite mission on which
the Dirichlet BC for disturbing potential obtained from the satellite only geopotential model
is applied. In case of local gravity field modelling, we add another four side boundaries
where the Dirichlet BC is prescribed as well. The concept of our iterative approach is
based on determining the direction of actual gravity vector together with the value of the
disturbing potential. Such an iterative approach leads to the first iteration where the classical
fixed gravimetric boundary-value problem with the oblique derivative BC is solved and
the last iteration represents the approximation of the actual disturbing potential and the
direction of gravity vector. As a numerical method for our approach, the finite volume
method has been implemented. The practical numerical experiments deal with the local
and global gravity field modelling. In case of local gravity field modelling, namely in the
domain above Slovakia, the disturbing potential as a direct numerical result is transformed
to the quasigeoidal heights and tested by the GPS-levelling. Results show an improvement
in the standard deviation for subsequent iterations in solving NSFGBVP as well as the
convergence to EGM2008. The differences between the last and the first iteration, which
represent the numerically obtained linearization error, reach up to 10 cm. In case of global
gravity field modelling, our solution is compared with the disturbing potential generated
from EGM2008. The obtained numerical results show that the error of the linearization can
exceed several centimeters, mainly in high mountainous areas (e.g. in Himalaya region they
reach 20 cm) as well as in areas along the ocean trenches (varying from �2:5 to 2:5 cm).
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1 Formulation of the Nonlinear
Satellite-Fixed Geodetic
Boundary-Value Problem

The nonlinear geodetic boundary-value problem (BVP) has
been of interest of many scientists and researches. A unique-
ness theorem for the fixed gravimetric BVP (FGBVP) was
first given by Backus (1968). Later Koch and Pope (1972)
presented a uniqueness proof for the nonlinear geodetic BVP.
The free nonlinear BVP exactly solved by metric continu-
ation was discussed by Grafarend and Niemeier (1971) as
well as by Grafarend et al. (1989). Then Bjerhammar and
Svensson (1983) used the general implicit function theorem
and gave a solution of the existence and uniqueness problem
in the nonlinear case. Expanding the nonlinear boundary
condition into a Taylor series, based upon some reference
potential field approximating the geopotential, was shown by
Heck (1989). Sacerdote and Sansó (1989) further developed
the idea used by Bjerhammar and Svensson for an iterative
solution and they found explicit convergence conditions.
They calculated the respective constant governing the con-
vergence in the ideal case of a spherical boundary. Finally, we
should mention authors Georgio Díaz, Jesús Díaz and Otero
who showed the existence and uniqueness of a viscosity
solution for the Backus problem (Díaz et al. 2006, 2011).

Let us consider the non-homogeneous elliptic equation of
second order outside the Earth

�W.x/ D 2!2; (1)

where W.x/ is the actual gravity potential and ! is the spin
velocity of the Earth. The norm of gradient of the gravity
potential W.x/ is

jrW.x/j D g.x/; (2)

where g.x/ denotes the magnitude of so-called total gravity
vector. When g.x/ is prescribed on the Earth’s surface,
Eq. (1) with BC (2) represents the nonlinear geodetic BVP
for the actual gravity potential W.x/.

The actual gravity field can be expressed as a sum of the
selected model field and the remainder of the actual field
(Hofmann-Wellenhof and Moritz 2005), for corresponding
potentials we can write

W.x/ D U.x/ C T .x/; (3)

where U.x/ is the normal gravity potential and T .x/ the
disturbing potential. When the model field is generated by
a massive ellipsoid rotating with the Earth with the same

spin velocity !, its constant surface potential is equal to
geopotential W0 and its mass is the same as the mass of the
Earth, then the disturbing potential T .x/ outside the Earth
will satisfy the Laplace equation �T .x/ D 0. It follows from
the fact that T .x/ does not have any centrifugal component
since the centrifugal component of the Earth is the same as
the centrifugal component of the chosen model.

Now let us consider the bounded domain ˝ depicted in
Fig. 1. Such a domain is set in the external space above
the Earth where the bottom surface � � @˝ , where @˝

denotes a boundary of ˝ , represents a part of the Earth’s
surface and the upper part of the boundary is at altitude of the
chosen satellite mission. On the lower part of the boundary
the nonlinear BC coming from (2) is given. On the upper
spherical part of the domain as well as on the side boundaries,
the Dirichlet-type BC (Eymard et al. 2001) obtained from
satellite gravity missions is prescribed. That allows us to
fix our solution to the satellite data. It is worth noting that
another BC (Neumann or Newton BC) derived from satellite
gravity missions suitable for the elliptic equation of second
order might be taken into account as well.

Then our nonlinear satellite-fixed geodetic BVP
(NSFGBVP) for the disturbing potential T .x/ is formulated
in the following form

�T .x/ D 0 x 2 ˝; (4)

jr.T .x/ C U.x//j D g.x/ x 2 �; (5)

T .x/ D TSAT .x/ x 2 @˝ � �: (6)

where TSAT is the disturbing potential generated from a cho-
sen satellite only model based on the spherical harmonics.
It is worth to note that we are looking for a solution in a
bounded domain ˝ , so we do not deal with its regularity at
infinity. The influence of BC applied on side boundaries has
been studied by Fašková et al. (2010).

In general, one can write the norm of the gradient of the
gravity potential in the form

jrW.x/j D rW.x/

jrW.x/j � rW.x/: (7)

By inserting (7) in Eq. (5), we obtain

r.T .x/ C U.x//

jr.T .x/ C U.x//j � r.T .x/ C U.x// D g.x/ (8)

and if we denote

v.x/ D r.T .x/ C U.x//

jr.T .x/ C U.x//j ; (9)
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Fig. 1 Sketch of the
computational domain ˝ for (a)
global numerical experiment, (b)
local numerical experiment. The
dotted boundary � represents the
part of the Earth’s surface, ' and
� denote latitude and longitude
and H denotes the height above
WGS84

we can rewrite the BC (5) as

v.x/ � r.T .x// D g.x/ � v.x/ � r.U.x// x 2 �: (10)

Since the unit vector v.x/, defining the direction of the
actual gravity vector, is unknown and depends on T .x/, BC
(10) is still nonlinear, but its form allows to use an iterative
approach for determining v.x/ and T .x/ such that (4)–(5) is
fulfilled. The iterative procedure for solving NSFGBVP will
be defined as follows

�T nC1.x/ D 0 x 2 ˝; (11)

vn.x/ � r.T nC1.x// D g.x/ � vn.x/ � r.U.x// x 2 �;

(12)
T nC1.x/ D TSAT .x/ x 2 @˝ � �; (13)

for n D 0; 1; 2; : : :, where

vn.x/ D r.T n.x/ C U.x//

jr.T n.x/ C U.x//j ; (14)

and we start the iterations by choosing T 0.x/ D 0, i.e.
W 0.x/ D U.x/ and correspondingly for v0.x/ we get

v0.x/ D r.U.x//

jr.U.x//j D s.x/; (15)

where s.x/ represents the direction of the normal gravity
vector. One can see that in every iteration we solve the
geodetic BVP for T nC1.x/ with prescribed oblique derivative
vector vn.x/. In the first step we solve the linearized fixed
gravimetric BVP (FGBVP) (Koch and Pope 1972; Holota
1997, 2005; Čunderlík et al. 2008; Fašková et al. 2010) with
the oblique derivative given by

s.x/ � r.T 1.x// D g.x/ � �.x/ D ıg.x/; (16)

where �.x/ D jr.U.x//j and denotes a magnitude of
the normal gravity vector and ıg.x/ denotes the gravity
disturbance. In further iterations we improve the direction of
the unit vector v.x/. Such a process reduces the linearization
error. Since we solve the problem iteratively, we need a
stopping criterion. To that goal we use a difference of two
successive iterations and stop the procedure, if in each point
the inequality

jT n.x/ � T nC1.x/j < "; (17)

holds, where " means a user-specified small real number. The
last iteration represents our approximation of the disturbing
potential T .x/ and direction of gravity vector v.x/ in (4)–(5),
and the sum T nC1.x/ C U.x/ represents the approximation
of actual gravity potential W nC1.x/ in every point of the
computational domain ˝ .

2 Numerical Solution of the Nonlinear
Satellite-FixedGeodetic
Boundary-Value Problem

We can see that in each step of our iterative process (11)–(13)
we deal with the oblique derivative BVP defined as

�T .x/ D 0 x 2 ˝; (18)

v.x/ � r.T .x// D g.x/ � v.x/ � r.U.x// D ˛.x/; x 2 �;

(19)

T .x/ D TSAT .x/ x 2 @˝ � �: (20)

To solve (18)–(20), we have chosen the finite volume method
(FVM), (Eymard et al. 2001). In FVM we divide the com-
putational domain ˝ into finite volumes p, multiply the
Laplace equation by minus one and integrate the resulting
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Fig. 2 Brief illustration of the
computational grid for an
approximation of the oblique
derivative. (a) Tijk denotes the
value of the disturbing potential
in the center of volume.
TW S ; TES ; TEN ; TW N are values
of the disturbing potential in the
vertices. Vectors t1 and t2 denote
independent tangent vectors to �

and n the normal vector to � . (b)
xijk denotes position vector of the
center of volume and
xW S ; xES ; xEN ; xW N are values
of the position vectors of the
vertices

equation over each finite volume with a use of the divergence
theorem that turns the volume integral into the surface
integral,

�
Z

p

�T dxdyd z D �
Z

@p

rT:n d�; (21)

from where we get the weak formulation of the Eq. (18) in
the finite volume p

�
Z

@p

@T

@n
d� D 0: (22)

Let q 2 N.p/ be a neighbour of the finite volume p,
where N.p/ denotes all neighbours of p. Let Tp and Tq be
approximate values of T in p and q, epq be a boundary of
the finite volume p common with q, npq be its unit normal
vector oriented from p to q, m.epq/ is the area of epq . Let xp

and xq be representative points of p and q respectively and
dpq their distance. If we approximate the normal derivative
along the boundary of the finite volume p by

@T

@npq

� Tq � Tp

dpq

; (23)

we obtain from (22) and (23) the following equation for every
finite volume p

X
q2N.p/

m.epq/

dpq

.Tp � Tq/ D 0; (24)

which forms together the linear system of algebraic equa-
tions. The term m.epq/

dpq
defined on sides of the finite volume p

is referred to as the transmissivity coefficient (Eymard et al.

2001). Then we define indices i D 1; : : : ; n1, j D 1; : : : ; n2

and k D 1; : : : ; n3 in the direction of the longitude �,
latitude ' and height h, where n1, n2 and n3 denote the
numbers of discretisation intervals in zonal, meridional and
height’s direction, respectively. In this way we obtain the
linear system of equations that can be written in the form

Pi;j;kTi;j;k�Wi;j;kTi�1;j;k�Ei;j;kTiC1;j;k�Ni;j;kTi;j C1;k�
�Si;j;kTi;j �1;k � Ui;j;kTi;j;kC1 � Di;j;kTi;j;k�1 D 0;

(25)

where Pi;j;k; Wi;j;k; Ei;j;k; Ni;j;k; Si;j;k; Ui;j;k and Di;j;k are
transmissivity coefficients and their derivation can be found
in Macák et al. (2012).

The system (25) must be accompanied by the boundary
conditions. In case of the Dirichlet BC, we prescribe the
value of Tq on the boundary, while in case of the oblique
derivative BC, a special treatment is needed. For the bottom
boundary, when k D 1, we add new finite volumes p signed
by index k D 0. Then we split the gradient of T .x/ in (19)
into one normal and two tangential directions

rT D .rT:n/n C .rT:t1/t1 C .rT:t2/t2 D @T

@n
n C @T

@t1
t1 C @T

@t2
t2;

(26)

where n is the unit normal vector and t1, t2 are linearly
independent unit tangent vectors to � � @˝ � R3. So the
BC (19) is transformed into the form

@T

@n
.n:v/ C @T

@t1
.t1:v/ C @T

@t2
.t2:v/ D ˛: (27)

Then we approximate the normal and tangential derivatives
according to notations depicted in Fig. 2
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@T

@n
� TD � TP

jxD � xP j ;
@T

@t1
� TEN � TW S

jxEN � xW S j ;

@T

@t2
� TW N � TES

jxW N � xES j ;

where we have denoted values Ti;j;k�1 and Ti;j;k by TD and
TP , respectively. Values TEN ; TW S ; TW N ; TES are obtained
as follows

TW N D Ti;j;k C Ti;j�1;k C Ti;j;k�1 C Ti;j�1;k�1 C Ti�1;j;k C Ti�1;j�1;k C Ti�1;j;k�1 C Ti�1;j�1;k�1

8
;

TEN D Ti;j;k C Ti;j�1;k C Ti;j;kC1 C Ti;j�1;kC1 C Ti�1;j;k C Ti�1;j�1;k C Ti�1;j;kC1 C Ti�1;j�1;kC1

8
;

TW S D Ti;j;k C Ti;jC1;k C Ti;j;k�1 C Ti;jC1;k�1 C Ti�1;j;k C Ti�1;jC1;k C Ti�1;j;k�1 C Ti�1;jC1;k�1

8
;

TES D Ti;j;k C Ti;jC1;k C Ti;j;kC1 C Ti;jC1;kC1 C Ti�1;j;k C Ti�1;jC1;k C Ti�1;j;kC1 C Ti�1;jC1;kC1

8
;

and xD; xP ; xEN ; xW S ; xW N ; xES are their corresponding
position vectors, see Fig. 2. More details can be found in
Macák et al. (2012). Then the final discrete form of the
oblique derivative BC is given by

v � r.T .x// � TD � TP

jxD � xP j .n:v/ C TEN � TW S

jxEN � xW S j.t1:v/ C

C TW N � TES

jxW N � xES j .t2:v/ D ˛:

3 Numerical Experiments

The local numerical experiment was performed in the
domain above Slovakia bounded by ' 2 h47:0ı; 50:5ıi and
� 2 h16:0ı; 23:0ıi. The bottom boundary was created using
heights generated from SRTM30 PLUS (Becker et al. 2009)
and the upper boundary was at the height of 240 km above
WGS84, corresponding to an average altitude of the satellite
orbit. The number of finite volumes was 1;000 in height, 630

in meridional and 840 in zonal directions, i.e. the resolution
with respect to latitude and longitude was 30" � 20". We
started our computations by solving the linearized FGBVP
where the surface gravity disturbances were applied on
the bottom boundary � . They were generated from an
available dataset of terrestrial gravity data in Slovakia
(Grand et al. 2001) while ellipsoidal heights of gravimetric
measurements were computed from levelling heights using
EGM2008 (Pavlis et al. 2012). On the upper and side
boundaries, the disturbing potential generated from the
GOCO03s satellite-only model (Mayer-Gürr et al. 2012) was
prescribed. Computations were performed on 30 processors

Table 1 Statistics of residuals [m] between our NSFGBVP solution
and quasigeoidal heights obtained by GPS/levelling at 61 points in the
area of Slovakia

1st iter. 5th iter. 8th iter. 10th iter. EGM2008

Min. value 0.151 0.209 0.229 0.248 0.301

Mean value 0.284 0.325 0.348 0.352 0.437
Max. value 0.422 0.459 0.476 0.493 0.584

St. deviation 0.055 0.049 0.047 0.046 0.043

using 78 GB of distributed memory taking approximately
5 h of total CPU time per processor. To reach the prescribed
stopping criterium " D 10�3 [m2 s�2], ten iterations were
needed. Results are presented in Table 1 and Fig. 3. One
can observe an improvement in the standard deviation for
subsequent iterations in solving NSFGBVP (Table 1) as
well as the convergence to EGM2008. The differences
between the 10th and 1st iteration, which represent the
numerically obtained linearization error, reach up to
10 cm.

The global numerical experiment dealt with the high-
resolution global gravity field modelling in the computa-
tional domain ˝ bounded by the bottom boundary approx-
imating the real Earth’s surface created by using heights
generated from SRTM30 PLUS and by a surface at height of
240 km above WGS84 corresponding to the average altitude
of satellite orbit. The number of divisions was 4320�2160�
600 leading to the resolution 50 � 50� 400 m. Again we
start with the linearized FGBVP consisting of gravity dis-
turbances interpolated from the DTU10-GRAV gravity field
model (Andersen 2010) and applied on the bottom boundary.
On the upper boundary the disturbing potential generated
from GOCO03s was prescribed. The stopping criterium was
� D 10�3 [m2 s�2] and again, ten iterations were needed.
The FVM solutions obtained in each iteration are compared
with EGM2008. Statistical characteristics of residuals are
presented in Table 2. Figure 4 depicts differences between
the 10th and 1st iteration. They represent the numerically
obtained linearization error in the linearized FGBVP. One
can observe that our iteration approach improves solution
mainly in areas of high mountains (e.g. in Himalaya region
they reach 20 cm) as well as in areas along the ocean trenches
(varying from �2:5 to 2:5 cm).
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Fig. 3 (a) Quasigeoidal heights �Œm	 obtained by solving the NSFGBVP, (b) Differences in �Œm	 between 10th and 1st iteration. Red crosses
denote the distribution of 61 GPS/leveling points

Table 2 Statistics of residuals [m2 s�2] between the disturbing potential obtained by solving NSFGBVP and the disturbing potential generated
from EGM2008 in the global experiment

Min. value Mean value Max. value St. dev.

Iter. 1st 10th 1st 10th 1st 10th 1st 10th

Total �2.150 �1.985 0.004 0.001 6.143 4.158 0.501 0.419

Sea �0.705 �0.632 �0.021 �0.011 1.131 1.019 0.206 0.199
Land �2.150 �1.985 0.035 0.029 6.143 4.158 0.855 0.768

Fig. 4 Differences in T [m2 s�2] between 10th and 1st iteration, representing the numerically obtained linearization error

4 Summary and Conclusions

We have presented an iterative approach to solving the
nonlinear satellite-fixed geodetic boundary-value problem
(NSFGBVP) defined in this paper. The NSFGBVP has been
solved by the finite volume method, where the direction of

the actual gravity vector as well as the disturbing potential
are updated in each iteration. In the first iteration, the lin-
earized FGBVP is solved together with the oblique deriva-
tive problem. Next iterations treat its numerically obtained
linearization error. The obtained numerical results show that
the error of the linearization can exceed several centimeters,
mainly in high mountainous areas and along ocean trenches.
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This indicates that for precise gravity field modeling it is nec-
essary to deal with the nonlinear geodetic BVPs avoiding the
linearization error. Presented numerical experiments show
that the proposed iterative approach converges while the
study of its convergence from theoretical point of view will
be a task of our future research.
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An OpenCL Implementation of Ellipsoidal
Harmonics

Otakar Nesvadba and Petr Holota

Abstract

The technology progress today makes it possible to treat most of the problems of physical
geodesy by means of numerical arrangements hardly imaginable earlier. Nevertheless,
considering an evaluation of spheroidal (spherical and ellipsoidal) harmonic functions in
our typical tasks, we still observe a huge performance gap between our demands and
capabilities of common CPUs. Methods used for calculating associated Legendre functions
are mostly recursive and thus sequential. Therefore, it is challenging, but feasible, to arrange
the processing of Legendre functions in a way that reduces memory utilisation and admits
massive parallelism. Following this aim, we developed a streaming-parallel algorithm for
computing oblate spheroidal harmonic functions and their derivatives. The algorithm is
free of assumptions concerning the function arguments, maximal degree/order or number
of computation points and can be utilised on any data type, like a vector or scalar float,
double or even integer numbers. Besides, it solves floating-point issues in the numerical
treatment of Legendre functions. We demonstrate its Open Computing Language (OpenCL)
implementation on a general-purpose graphics processing unit (GPGPU), which is ideal
for its inexpensive computational power of some TFlops. Added performance benchmarks
lead to the conclusion that our implementation on a single GPGPU device substantially
outperforms recent multi-core CPUs, free of any precision penalty. Furthermore, thanks
to the OpenCL standard, we can benefit from an excellent portability and scalability over
heterogeneous parallel platforms. Let us note finally, that the topic presented is a matter of
importance in many other application fields, not only in physical geodesy.
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1 Introduction

In the past decade of the computer industry, we can observe
a departure from serial (single-core) execution in favour of
parallel processors. Such a transition, that affects almost all
categories of computers, recently resulted in the emergence
of heterogeneous computing. Heterogeneous computers can
be characterised as a combination of a complex CPU (central
processing unit) with a computational accelerator, usually
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GPGPU (general-purpose graphics processing unit), recog-
nised as a simple but highly-parallel processor.

Our primary motivation is to demonstrate an evaluation of
truncated series of spherical and spheroidal (ellipsoidal) har-
monics as an ideal application of heterogeneous computing.
We believe, this application can be very useful for a broad
geoscience community.

In this paper we treat the spheroidal harmonics from
a numerical point of view, focusing on the optimisation
of recursive algorithms and the adoption of the streaming
processing schema in particular. In Sect. 3 we demonstrate
an OpenCL implementation of the varying degree recursive
formula algorithm for ALFs (associated Legendre functions)
of the first and second kind, gradually advancing our accom-
plishments. Consequently, in Sect. 4, we introduce the most
efficient implementation for spheroidal harmonic synthesis
based on the Clenshaw summation algorithm. Finally, in
Sect. 5, we make an insight into its overall performance on
GPGPU and CPU devices.

1.1 Oblate Spheroidal Coordinates

Let us start with oblate spheroidal coordinates .u; ˇ; �/ of
parameter E � 0, well-known in geodesy as ellipsoidal
coordinates (polar radius u, reduced latitude ˇ and geodetic
longitude �), cf. Torge (2001, Sect. 4.2.2). Nevertheless, for
practical reasons, in the following we will use a slightly
different coordinate notation .�; �; �/, where

� D sin ˇ , ˇ 2 h� �
2
; �

2
i ) � 2 h�1; 1i (1)

and � is related to u by the following equation

� D ap
E2 C u2

, u 2 h0; 1/ ) � 2 .0; e�1i . (2)

Here we have introduced a particular oblate spheroid of a
linear eccentricity E and polar radius b > 0.1 Its equatorial
radius is therefore a D p

E2 C b2 and eccentricity e D E
a

.
Relation of �; �; � to Cartesian coordinates is given by

.x1; x2; x3/ D a
� .

p
1 � �2 cos �;

p
1 � �2 sin �; �

p
1 � �2e2/ .

Note explicitly that we admit a special case E D 0, where
spheroidal coordinates become spherical, so that � D a

u .

1In this study we are considering GRS 80 (or WGS 84) parameters
E D 521 854:0097 m, a D 6378137 m, b2 D a2 � E2 as in Moritz
(1984).

1.2 Oblate Spheroidal Harmonic Function

Let us define a spheroidal harmonic function

Yn;m.�; �; �/ D Qn;m.i u
E

/ Pn;m.�/ exp.im�/ (3)

of degree n 2 N0 and order m 2 N0, m � n, where exp is
the exponential function, Pn;m, Qn;m are associated Legendre
functions (ALFs) of the first and second kind and i D p�1.
Recall that from Eq. (2) it follows that u

E
D p

e�2��2 � 1.

ALFs of the First Kind The Pn;m values can be obtained
from

Pn;m.�/ D 2�n.2n/Š

nŠ.n�m/Š

.1��2/
m
2

�m�n 2F1

�
m�n

2
; m�nC1

2
I 1�2n

2
I ��2

�
, (4)

where 2F1 represents Gauss’ hypergeometric function, see
e.g. Bateman and Erdélyi (1953, Chap. II) or Abramowitz
and Stegun (1964, Sect. 15). In the special case n D m

Eq. (4) becomes

Pm;m.�/ D .2m/Š

2mmŠ
.1 � �2/

m
2 . (5)

ALFs of the Second Kind Similarly, referring to Hobson
(1931, Sect. V), Bateman and Erdélyi (1953, Sect. 3.2) or to
Holota (2001) we can found that

Qn;m.z/ D .�1/m2n nŠ.nCm/Š

.2nC1/Š
.z2 � 1/� nC1

2 �

� 2F1

�
nCmC1

2
; n�mC1

2
I n C 3

2
I 1

1�z2

�
. (6)

Note that n C 3
2

� nCmC1
2

� n�mC1
2

D 1
2

> 0, so the series

2F1

�
nCmC1

2
; n�mC1

2
I n C 3

2
I 1

1�z2

�
D

1X

j D0

kj

�
1

1�z2

�j

, (7)

where kj D kj �1
.nCm�1C2j /.n�m�1C2j /

4j.nC 1
2 Cj /

, k0 D 1, converges

absolutely for any j 1
1�z2 j < 1.

1.3 Normalised Spheroidal Harmonic
Function

Just for technical reasons, let us replace Pn;m.�/ by

pn;m.�; �/ D �nC1Hn;mPn;m.�/ , (8)

where the constants Hn;m 2 R � f0g represent particular
normalisation factors for the given n and m.2

2Usually we suppose Hn;m D
q

.2 � ı0;m/.2n C 1/
.n�m/Š

.nCm/Š
.
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Similarly, instead of Qn;m.i u
E

/ we will use

qn;m.�/ D ��n�1
Qn;m.i u

E
/

Qn;m.i b
E

/
) qn;m 2 .0; 1/ . (9)

Thus, in our notation we introduce a normalised oblate
spheroidal harmonic function

Y n;m.�; �; �/ D qn;m.�/ pn;m.�; �/ exp.im�/ , (10)

which differs from Yn;m.�; �; �/ in Eq. (3) just by the con-
stant factor Hn;m

Qn;m.i b
E /

.

Remark In the special case E D 0 we have qn;m.�/ D 1

for any n; m and �, hence a normalised spheroidal harmonic
function becomes a normalised spherical harmonic function

Y n;m.�; �; �/ D pn;m.�; �/ exp.im�/ . (11)

2 Recursive Formula for Legendre
Functions

2.1 Associated Legendre Functions
of the First Kind

When treating ALFs of the first kind numerically, the most
convenient way is to employ LFRF (varying-degree recursive
formula for ALFs), see e.g. Hobson (1931), Abramowitz and
Stegun (1964, Sect. 8.5), Holmes and Featherstone (2002).
Therefore, in the pn;m.�; �/ notation one can write

pn;m.�; �/ D � �
2n � 1

n � m

Hn;m

Hn�1;m

pn�1;m.�; �/ �

� �2 n C m � 1

n � m

Hn;m

Hn�2;m

pn�2;m.�; �/ . (12)

The LFRF algorithm given by Eq. (12) with the seed values

pm�1;m.�; �/ D 0 , (13)

pm;m.�; �/ D �mC1.1 � �2/
m
2 Hm;m.2m � 1/ŠŠ , (14)

enables us to get any pn;m for n � m.
Although a simple recursive formula is available for

calculation of Eq. (14), in this study we would prefer the
explicit expression based on Eq. (5), since it allows parallel
LFRF processing independent of m.

2.2 Associated Legendre Functions
of the Second Kind

The same recurrent relations as for Pn;m are also valid for
Qn;m, cf. Hobson (1931) and Abramowitz and Stegun (1964).
Nevertheless, as it has been already discussed in Sona (1995),
the LFRF is useless in this case, because of exponentially
growing errors. On the other hand, from the same discussion
it is clear that the reverse evaluation of the LFRF should
work. This “backward” LFRF approach has been mentioned
for instance in Abramowitz and Stegun (1964, note in 8.15)
and further discussed in Gil and Segura (1998), Nesvadba,
2009, Numerical problems in evaluating high degree and
order associated Legendre functions, EGU, Vienna, Nes-
vadba (2011) or Fukushima (2013).

Following the references above we can write

qn�2;m.�/ D
p

1 � �2e2

p
1 � e2

2n � 1

2n � 1 C hn;m

qn�1;m.�/ C

C �2 hn;m

2n � 1 C hn;m

qn;m.�/ , (15)

where hn;m constants are defined as

hn;m D i
E

b
.n � m/

Qn;m.i b
E

/

Qn�1;m.i b
E

/
) hn;m 2 h0; 1/ . (16)

By applying the LFRF to Qn;m.i b
E

/ in Eq. (16), one can show
that the following recursive formula holds for any n � m

hn;m D e2

1 � e2

.n C m/.n � m/

2n C 1 C hnC1;m

. (17)

Therefore, Eqs (15) and (17) represent a recursive computa-
tion scheme for any qn;m.�/, n � m. Recall that the equations
are valid also in the case of e D 0, where hn;m D 0 and
qn;m.�/ D 1 for any n; m and �.

Moreover, if n D m � 1 is allowed, Eq. (15) can serve as
a “check-out” formula, since qm�1;m.�/ D 1 holds for any
m; � and e, cf. Nesvadba (2011).

Hypergeometric Series for qn;m In order to get the seed
values of Eq. (15), we have to return to Eq. (9) and after some
algebra involving Eq. (6) we obtain

qn;m.�/ D 2F1. nCmC1
2

; n�mC1
2

I n C 3
2
I e2�2/

2F1.
nCmC1

2
; n�mC1

2
I n C 3

2
I e2/

. (18)
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Similarly, Eq. (16) transforms to

hn;m D e2.nCm/.n�m/

.1�e2/.2nC1/

2F1.
nCmC1

2
; n�mC1

2
I 2nC3

2
I e2/

2F1.
nCmC1

2
; n�mC1

2
I 2nC1

2
I e2/

. (19)

The numerical evaluation of Eqs (18) and (19) follows
directly from Eq. (7). In the summation it is sufficient just to
replace the infinity with some moderate jmax.3

3 LFRF Implementation in OpenCL

Among many programming frameworks which are suitable
for LFRF implementation we have chosen OpenCL (Open
Computing Language). Nevertheless, in the following we
will abstract from OpenCL technical details as much as
possible, in order to allow an easy re-implementation in other
frameworks like CUDA (compute unified device architec-
ture) or C++ AMP (accelerated massive parallelism).

3.1 Open Computing Language

OpenCL, Khronos Group (2012), is recognised as the indus-
try standard for heterogeneous parallel programming and
computations. Since the standard has been adopted by most
of the hardware vendors, the OpenCL framework is truly
cross-platform. OpenCL hardware abstraction layer is able
to utilise any OpenCL-enabled hardware (device), including
a broad range of CPUs, GPGPUs or even DSPs (digital signal
processors) or FPGAs (field-programmable gate arrays).

OpenCL Execution Model OpenCL relies on a host–device
execution model. It means, there are always two kinds of pro-
grams in OpenCL. A host-side program and device programs
called compute kernels. The compute kernels are written
in a device-independent programming language based on
ISO/IEC 9899:1999 standard augmented with additional
keywords, data types and functions to support memory
address spaces, SIMD (single instruction multiple data)
vectors, atomic operations, synchronisation primitives, etc.

The OpenCL kernels are naturally parallel, i.e. they usu-
ally run in many simultaneous threads (work items) on a
device. A global worksize, i.e. the total number of work
items, is organised into smaller units, the so-called work-
groups, which allow utilisation of a local memory and easy
work-item synchronisation. We will refer the reader to the
Khronos Group (2012) OpenCL documentation for further
information since the details are often complicated.

The host layer of OpenCL provides an application inter-
face (API) for accessing devices and coordination of the

3For instance jmax < 100 for �2e2 < 0:007 and n < 22;000.

computation across devices. Within the host program one
can compile OpenCL kernels for particular OpenCL device,
pass the machine code and data to the device and execute it
(asynchronously with the host program) by means of device
execution queues. An implementation of the host program is
not a subject of this text.

3.2 LFRF Algorithm for pn;m

The LFRF algorithm given by Eq. (12) seems to be very
efficient. If the coefficients 2n�1

n�m

Hn;m

Hn�1;m
and nCm�1

n�m

Hn;m

Hn�2;m
are

precalculated, one elementary LFRF step – defined as an
evaluation of a single pn;m in Eq. (12) – costs just 5 opera-
tions (four multiplications and one addition). Nevertheless,
at the same time it might be strongly inefficient in a memory
access,4 because each LFRF step costs two memory reads
and possibly one memory write (of the result).

In order to increase the memory efficiency of the LFRF
algorithm it is vital to rearrange it as follows. Let us define
coefficients In;m

Im;m D Hm;m

mY

lD1

.2l � 1/; In;m; D 1
n�m

Hn;m

Hn�1;m
; n > m (20)

and the integers ˛n, ˇn;m (please, do not confuse it with ˇ)

˛n D 2n C 1 , ˇn;m D .n C m/.n � m/ . (21)

In the following relations, for simplicity, we omit the second
index m and the arguments �; �. From Eqs (12–14) we get

pm D �mC1.1 � �2/
m
2 Im , pm�1 D 0 , (22)

pn D ��˛n�1Inpn�1 � �2ˇn�1InIn�1pn�2 , (23)

˛n D ˛n�1 C 2 , ˇn D ˇn�1 C ˛n�1 . (24)

The algorithm represented by Eqs (22)–(24) utilises less
memory at the expense of a slightly increased computation
overhead. One LFRF step now involves 6 multiplications
and 3 additions, but only one set of the coefficients In;m is
required.

Enhanced LFRF Algorithm with Extended Exponent Since
we are working mostly with ISO/IEC 60559 floating-point

4Typical cost of a global memory access is equal to the cost of 200–600
Flops (Floating-point operations) on our GPGPU device, cf. Advanced
Micro Devices (2011).
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(FP) numbers in our LFRF implementation, a FP underflow
and FTZ (flush to zero) might occur with an attenuation of
pm;m for m > 0 and �2 ! 1, as can be clearly seen from
Eq. (14), cf. Jekeli et al (2007).

The underflow is dangerous, because the seed values of
Eq. (23) are affected, resulting in pn D 0 for any n � m. The
underflow problem can be overcome neither by a different
Hn;m nor by a normalisation related to pm;m as suggested
in Holmes and Featherstone (2002). Our approach does not
rely on the extended-range FP arithmetics like in Lozier and
Smith (1981) or Wittwer et al (2008), nor on the quadruple
precision FP numbers. Instead we use a FP arithmetic with
a dynamic exponent extension discussed in Nesvadba, 2008,
Towards the numerical evaluation of high degree and order
associated Legendre functions as in EGM08, GGEO, Chania,
similar to the approach by Fukushima (2012).

According to ISO/IEC 60559, the FP number is defined
as .�1/s�2� , where � is the mantissa (f bits wide binary
fraction), � is the exponent (g bits wide integer in two’s
complement) and s 2 f0; 1g is the sign bit. We extend the FP
number with an exponent extension � (z bits wide integer in
two’s complement) that allows interpretation of the extended
number as .�1/s�2�C	� . A constant parameter 	 is chosen
to set up a reasonable computational range (band), as we will
keep the exponent � loosely within the limits j�j � 	.5 Any
FP number with � < 0 is treated as subnormal (please, do not
confuse it with a synonym to “denormal” in ISO/IEC 60559).
It means, it will not appear in the evaluation of numerical
quantities of Eq. (10), nevertheless, if � is shared among
pn�1; pn�2, it still may act in Eqs (22)–(23).

Implementation in OpenCL Because the LFRF steps are
strictly sequential, we will assume that one usually needs
to compute pn;m values for (many) different arguments �; �.
In this case the implementation of the streaming LFRF
algorithm in OpenCL is pretty straightforward, see Listing 1.

When the pnm_lfrf_sto kernel is submitted to
a device, a global worksize L must be specified. The
get_global_id function at line 3 in Listing 1 maps
each work item to the unique index i 2 f0; 1; � � � ; L � 1g.
One-dimensional arrays (vectors) Rho and Tau serve as
an input of �i and �i parameters. The Pnm array of a size
L � .N � m C 1/ acts as an output buffer for pn;m.�i ; �i /

organised row-wise, so that each row addresses pn;m of
particular n; m.6 The work items fill up the Pnm array
synchronously from pmC1;m for pN;m, where N and m are

5For instance, double precision FP numbers with 	 D 256 provide the
“operational band” 2˙256 � 10˙77, still allowing to track the numbers
as small as 2�549755814000 � 10�165492990300 (for z D 32).
6Array addressing becomes clear from the source code. Note that the
index formula at lines 14 and 25 is used just for a better code readability;
the production version of the kernel utilises memory pointers.

1 __kernel pnm_lfrf_sto(__global const FPv *Tau,
2 __global const FPv *Rho, __global FPv *Pnm,
3 __global Iv *Zeta, const long m, const long N)
4 {
5 int i=get_global_id(0); int L=get_global_size(0);
6 const FPv tau = Tau[i];
7 const FPv rho = Rho[i];
8 FPv pn = Pnm[i]; // initial Pmm value
9 FPv pn1 = FPv(0.0); long l;

10 FPt alpha = 2*m+1; // alpha_l == 2l+1
11 FPt beta = 0; //beta_l,m = (l-m)*(l+m)
12 for(l=m+1; l<=N && (Zeta[i]); l++) {
13 FPv In = rho*sqrt((1+2.0/alpha)/(beta+alpha));
14 FPv pnt = tau*alpha*(pn*=In) - pn1*In;
15 beta += alpha; alpha += 2;
16 Pnm[i+(l-m)*L] = (FPv) (0.0);
17 Iv sowf = ((fabs(pnt)>ldexp(1.0,chi))? 2 : 0);
18 pn1 = ldexp(pn*beta, -chi*sowf);
19 pn = ldexp(pnt, -chi*sowf); // pnt*2^(-2*chi)
20 Zeta[i] += sowf;
21 }
22 for( ; l<=N; l++) {
23 FPv In = rho*sqrt((1+2.0/alpha)/(beta+alpha));
24 FPv pnt = tau*alpha*(pn*=In) - pn1*In;
25 beta += alpha; alpha += 2;
26 pn1 = pn*beta; // modif.p_l-2,m of the next step
27 Pnm[i+(l-m)*L] = pn = pnt;
28 }
29 }
30 __kernel void pmm_sto(__global const FPv *Tau,

__global const FPv *Rho, __global FPv *Pnm,
__global Iv *Zeta, const long m, const FPt Im)

31 {
32 const int i=get_global_id(0);
33 // NOT allowed fabs(Tau[i])>=1 || Rho[i]<=0 here
34 FPv pm = log2(Rho[i])*(m+1)+m*0.5*(log2(1-Tau[i])
35 +log2(1+Tau[i]));
36 Zeta[i] = 2*(convert_Iv_rtz(pm)/(2*chi));
37 Pnm[i] = Im*exp2(pm-(FPv)(chi*Zeta[i]));
38 }

Listing 1 OpenCL implementation of the LFRF algorithm for pn;m.
Arguments �i ; �i are provided in the input vectors Tau and Rho,
resulting pn;m.�i ; �i / are saved to the Pnm array. The vector Zeta
keeps exponent extensions �i , which can be initialised together with
the first row of Pnm array by pmm_sto kernel.

constant parameters of the kernel. The first row of Pnm
should be initialised with pm;m.�i ; �i / values before, that
could be done by the pmm_sto kernel.

The LFRF loop at lines 10–19 in Listing 1 is dedicated to
processing of subnormal pn;m, which are presented always
as zero at the output, see line 14. Within the evaluation of
Eq. (23) the subnormality of pn;m is tested. In the event
of a soft overflow, i.e. in case when � > 	 occurs at line
15, the context variables pn and pn1 are rescaled by 2�2	

in combination with � increment, see the lines 16–18 in
Listing 1. The consequent loop at lines 20–26 processes
ordinary LFRF just in the case of � D 0.

Presented LFRF implementation enables us to employ
SIMD execution paths by means of abstract data types FPv,
FPt and Iv. For instance, to apply 4-way SIMD scheme we
simply define FPt as double, FPv as double4 and Iv as
int4 at the kernel compile time. Each work item processes
a vector data now, multiplying achieved parallelism by the
factor of four. For maximal streaming efficiency, however,
the pn, pn1 vectors should share � in all the elements.
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The LFRF coefficients In;m (for the given Hn;m) are calcu-
lated “on the fly”, that is still faster, despite the consumption
of 6 Flops including expensive fdiv and sqrt instructions, than
a memory read. Nevertheless, further optimisation is possible
by way of a local memory, see Sect. 4.2.

3.3 LFRF Algorithm for qn;m

Referring to Eqs (15)–(17), we can implement the LFRF
algorithm almost immediately. Nevertheless, for technical
reasons it is more convenient to rearrange it as

qn�1 D
p

1 � �2e2˛nJnqn C �2e2ˇnC1JnJnC1qnC1 , (25)

where Jn;m coefficients are defined by

Jn;m D 1p
1 � e2

1

˛n C hnC1;m

. (26)

Consequently we have Jn�1 D .
p

1 � e2˛n�1 C e2ˇnJn/�1.

Implementation in OpenCL The implementation of a back-
ward LFRF algorithm for qn;m in Listing 2 is very similar to
that of the forward LFRF. Therefore, we enjoy it to demon-
strate an adoption of parallelism extended to parameter m.

Within the qnm_lfrf_sto kernel execution, each work
item is parameterised with �i and mj , see the code at lines
3–6 and 22–24. Stress that the parallelism in m is done
on a workgroup level now, so that all the work items in a
workgroup share the same mj , j 2 f0; : : : ; W � 1g, where
W � L is the total number of scheduled workgroups. The
differences in mj result in varying execution times between
the workgroups, however, there is no need to take care
about it.7

One can easily imagine, there are plenty of processing
schemes possible on our kernels.

4 Spheroidal Harmonic Synthesis

All the tools for the numerical treatment of spheroidal har-
monics have been provided in previous paragraphs. In order
to demonstrate them in practice we consider one of the most
essential applications: the evaluation of a linear combination
of Y n;m, or the so-called spheroidal harmonic synthesis.

7An inactive workgroup (all the work items in the workgroup do not
issue instructions) releases allocated compute resources, enabling an
immediate execution of another job waiting in a device queue.

1 __kernel void qnm_lfrf_sto(__global const FPv *Rho,
2 __global FPv *Qnm, __global FPv *Qnm1,
3 __global const long *M, const long n,
4 __global const FPt *Hnm)
5 {
6 int i=get_global_id(0); int L=get_global_size(0);
7 const int j = get_group_id(0);
8 const FPv rho2e2 = e2*Rho[i]*Rho[i];
9 const long m = M[j];

10 FPt alpha = 2*n+1; // alpha_l== 2l+1
11 FPt beta = (n-m)*(n+m); //beta_l,m
12 FPt hn = beta*e2/(1-e2)/Hnm[j] - alpha;
13 FPv qn = Qnm[i], qn1 = Qnm1[i];
14 for(long l=n-1; l>=m; l--) {
15 FPt Jn = 1.0/sqrt(1-e2)/(alpha+hn);
16 hn = beta*Jn*e2/sqrt(1-e2);
17 FPv qnt = sqrt(1-rho2e2)*alpha*(qn*=Jn)+ qn1*Jn;
18 qn1 = rho2e2*beta*qn;
19 alpha -= 2; beta -= alpha;
20 Qnm[i+(n-l)*L] = qn = qnt;
21 }
22 }
23 __kernel void qnm_sto(__global const FPv *Rho,
24 __global FPv *Qnm, __global const long *M,
25 const long n)
26 {
27 const int i = get_global_id(0);
28 const long m = M[get_group_id(0)];
29 const FPv rho2 = Rho[i]*Rho[i];
30 FPt aj=0.5*(n+m+1), bj=0.5*(n-m+1), cj=n+1.5;
31 FPv kjr=1.0, nom=1.0, kj=1.0, denom=1.0;
32 for(int j = 1; j < jmax; j++) {
33 FPt rk = e2*aj*bj/(cj*j);
34 nom += kjr *= rk*rho2;
35 denom += kj *= rk;
36 aj += 1.0; bj += 1.0; cj += 1.0;
37 //if((kjr<=tol*nom)&&(kj<=tol*denom)) break;
38 }
39 Qnm[i] = nom/denom;
40 }

Listing 2 OpenCL implementation of the backward LFRF given
by Eq. (25). Kernel qnm_lfrf_sto computes qn;m.�i / from degree n
for degree m (m may differ between workgroups) and write them to the
Qnm array. Seed vectors Qnm, Qnm1 can be initialised with the kernel
qnm_sto. For the demonstration purposes, the coefficients Jn;m and
hn;m respectively are, again, calculated “on the fly” (at lines 12–13) with
the aid of the seed constants hn;m (line 9) provided in input vector Hnm.

Our intention is to calculate a sum

Sm.�; �/ D
NX

nDm

Cn;m pn;m.�; �/ qn;m.�/ , (27)

where Cn;m 2 R represent a set of the given coefficients.
If we recall Eqs (23) and (25), it is obvious that the

directions of the LFRF processing for pn;m and qn;m are
opposite. This is a substantial disadvantage, as it forces us to
save one result, e.g. pn;m, temporarily to the memory, to be
read back later in the qn;m multiplication. Such a constraint
would break the advantage of parallel processing down to a
limit given by the memory bandwidth.

4.1 Clenshaw Summation

To overcome the problem, let us recall a Clenshaw sum-
mation. The Clenshaw summation, originally proposed in
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Clenshaw (1955), is well-known in applications of spherical
harmonics, see e.g. Tscherning and Poder (1982) and Holmes
and Featherstone (2002). Using these references we can
write

NX

nDm

Cnpn D smpm , (28)

where pm is given by Eq. (14) and sm is obtained from

sn�1 D ��˛nInsn � �2ˇnC1InInC1snC1 C Cn�1 , (29)

starting with sN D CN , sN C1 D 0. Note again, we are
omitting the second index m and the arguments �; �.

As it can be seen from Eqs (25) and (29), the Clenshaw
summation and backward LFRF computation schemes are
similar. Therefore, we can easily compose the summation of
Cnpn with the qn multiplication as follows

ˇnC1 D ˇnC2 � ˛nC1 ; ˛n D ˛nC1 � 2; (30)

qn�1 D
q

1 � �2e2˛nJnqn C �2e2ˇnC1JnJnC1qnC1; (31)

sn�1 D ��˛nInsn � �2ˇnC1InInC1snC1 C Cn�1qn�1: (32)

The seed values qN and qN C1 are computed from Eq. (18),
enabling us to put sN D qN CN , sN C1 D 0. Finally, we get

Sm D
NX

nDm

Cnpnqn D smpm , (33)

where pm can be determined from Eq. (22).

Remark on the Accuracy of the Sum In case of Cn coef-
ficients decreasing in magnitude with increasing n, e.g. in
Kaula’s rule for Earth’s gravity potential, the backward sum-
mation induces lower cancellation errors, see e.g. Goldberg
(1991). Thus the Clenshaw summation provides a more
accurate result in comparison with the forward sum of
Cnpnqn. It can be shown, cf. Nesvadba (2011), that with a
proper computation arrangement an overall achieved relative
accuracy of Sm is better than 10�13 for double or 10�6 for
single precision FP, even in the case of N D 21;600.

4.2 OpenCL Implementation
of the Clenshaw Summation

The advantage of the Clenshaw summation is that the LFRF
computation performs in a work item private memory space.
Moreover, as we share ˛n and ˇn, one step of the algorithm
involves 18 Flops only. However, the global memory would
be heavily accessed still, in order to get Cn, In and Jn every
step. Considering that these coefficients are shared by all the
concurrent work items in a workgroup, the most convenient
way in OpenCL is to copy the coefficients to a local memory.

1 __kernel void cspqnm_block(__global FPv *CBuff,
2 __global const FPv *Tau, __global const FPv *
3 Rho, const long m, const long n,
4 __global const FPt *Cnm, __global const FPt *Jnm)
5 {
6 int i=get_global_id(0); int L=get_global_size(0);
7 int wi=get_local_id(0); int wL=get_local_size(0);
8 const FPv tau = -Tau[i]; // private argument
9 const FPv rho = Rho[i]; // private argument

10 const FPv r2e2 = rho*rho*e2;
11 const FPv sigma = sqrt(1.0 - r2e2);
12 __local FPt In[BLOCK], Jn[BLOCK], Cn[BLOCK];
13 long dim = (n-m > BLOCK) ? BLOCK : n-m;
14 for(long j = wi; j < dim; j+=wL) {
15 In[j] = sqrt(((2*n-2*j+1))/((2*n-2*j-1)*(n-j+m)
16 *(n-j-m))); // I_n,m for std.norm
17 Jn[j] = Jnm[n-j-m]; // local copy of J_n,m
18 Cn[j] = Cnm[n-j-m]; // local copy of C_n,m
19 }
20 barrier(CLK_LOCAL_MEM_FENCE); // synchronise WG
21 FPv sn, sn1, qn, qn1;
22 load_context(CBuff, i, L, sn,sn1,qn,qn1);
23 FPt alpha = 2*n-1;
24 FPt beta = (FPt)(n-m-1)*(n+m-1);
25 #pragma unroll 8
26 for(ulong k = 0; k < dim; k++) {
27 FPv in = rho*In[k];
28 FPv snt = tau*alpha*(sn*=in) + sn1*in;
29 FPv qnt = sigma*alpha*(qn*=Jn[k]) + qn1*Jn[k];
30 sn1 = beta*sn; // s_l+1 * beta_l
31 qn1 = r2e2*beta*qn; //q_l*J_l*beta_l*rho2*e2
32 alpha -= 2; beta -= alpha;
33 sn = -snt + Cn[k]*(qn=qnt); //S+=C_l-1,m*q_l-1,m
34 }
35 save_context(CBuff, i, L, sn,sn1,qn,qn1);
36 }

Listing 3 OpenCL kernel cspqnm_block for processing blocks of
the Clenshaw summation. Arguments are provided in vectors Rho and
Tau, context vector CBuff serves as the input of the LFRF seed
values as well as the output of the results. Coefficients Jn;m; Cn;m are
provided on input, In;m are calculated once during the initialisation
phase (line13).

Our implementation of the Clenshaw summation is illus-
trated in Listing 3. First of all, the sequence of sn is aggre-
gated to short blocks, e.g. 512 steps each. All the work items
in the workgroup collaboratively load the local memory with
the coefficients Cn; In; Jn of the respective block, see the
code at lines 10–16. The barrier command at line 17
synchronises the work items and thus warrants the local
memory consistency within the workgroup. The so-called
context of the Clenshaw summation loop, i.e. a work item
private variables sn, sn1, qn, qn1, is temporarily saved at
line 32 and restored at line 19. The sn are, therefore, com-
puted sequentially block by block with the cspqnm_block
kernel. The computation of the partial sum is finalised after
the last block according to Eq. (33) (though the respective
implementation is omitted from Listing 3).

FP Overflow in the Clenshaw Summation The problem of
underflow in pn is now turned into the overflow in sn. Never-
theless, the solution based on the FP numbers with extended
exponent is still the same. Moreover, our implementation
benefits from the block aggregation, where the exponent
extension is processed outside of the cspqnm_block ker-
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nel by examination (and possibly modification) of the context
after each block. The respective exponent extension �, nec-
essary for the correct scale of Cn in Eq. (32), is propagated
to the kernel indirectly, through the rescaled qn, qn1 at line
30. Finally, the exponent extension of sm is adjusted with �

of the computed pm.

5 Results and Conclusions

5.1 Performance

In order to demonstrate our implementation we conduct three
different approaches to the calculation of Eq. (27):
– the LFRF approach to pn (pnm_lfrf_sto kernel) com-

bined with calculations of qn based on Eq. (18),
– opposite LFRFs for pn and qn (qnm_lfrf_sto kernel)

multiplied and summed up in the memory,
– the Clenshaw summation implemented by means of the

local memory blocks (cspqnm_block kernel).
– Besides, there are examples of a spherical harmonic syn-

thesis (cspqnm_block with e2 D 0 setting).
As a measure of the processing speed in Eq. (27) we

will use “sn” units per second. The “sn” unit is defined
as an evaluation of one elementary synthesis step, i.e. the
calculation of sn or Cnpnqn. Stress that the performance
within our implementation is not sensitive to N , thus we can
see the sn/s measure as an invariant, independent on n; m; �

and (almost) on � parameters.
Computations were performed on the CPU and on

the GPGPU device, both using the same code on the
platform OpenCL 1.2 AMD-APP (923.1), Catalyst 13.4,
GNU/Linux. As we can see from Table 1, all the tested
kernels performs very well on the GPGPU. It becomes clear
that the most efficient in Eq. (27) evaluation is the Clenshaw
summation algorithm, mainly due to successfully masked
memory latencies. Referring to the hardware documentation,
Advanced Micro Devices (2011), one ideal “sn” step of
Eqs (30)–(32) in double precision consume at least 28
clock cycles. A confrontation with Table 1 thus reveals,
that our implementation of the cspqnm_block kernel
gained about 75% of the peak machine performance. The
device becomes saturated with the kernel at L D 6;144

for FPv as double2 and FPv as float4, respectively.
Therefore, one can deduce that the GPGPU keeps the
kernel active in 16 simultaneous wavefronts per compute
unit (CU).8

8The cspqnm_block kernel occupancy factor reaches 69% on our
GPGPU, constrained mainly with the local memory size per CU.

Table 1 Sm performance comparison for various computing kernels

OpenCL device GPU AMD Radeon CPU Intel Core i5
6970 HD “Cayman” “Sandy Bridge”

Clock frequency 880 MHz 3 200 MHz

Double precision 24 CU: 768 PE 2 CU: 8 PE (AVX)
double4 FPv 675 GFlops, 180 GB/s 52 GFlops, 18 GB/s
pnm_lfrf_sto, 0.4 Gsn/s 4.4 Msn/s
qnm_sto, jmaxD100

pnm_lfrf_sto, 1.9 Gsn/s 27 Msn/s
qnm_lfrf_sto

cspqnm_block 18.0 Gsn/s 0.47 Gsn/s
block=512

cspqnm_block 29.3 Gsn/s 0.70 Gsn/s
block=512, e2=0

Single precision 24 CU: 1536 PE 2 CU: 16 PE (AVX)
float4 FPv 2.7 TFlops, 180 GB/s 102 GFlops, 18 GB/s

cspqnm_block 44.9 Gsn/s 1.3 Gsn/s
block=64

cspqnm_block 67.5 Gsn/s 1.5 Gsn/s
block=64, e2=0

Energy efficiency, double4 FPv
OpenCL device GPU AMD Radeon CPU Intel Core i5
Input power 220 W 85 W

cspqnm_block 320 Msn/J 20 Msn/J
block=512

Spheroidal Harmonic Synthesis Truncated series of
Cn;mY n;m can be evaluated with an important computational
aid of Eq. (27).9 A total number of sn units required for
a full spheroidal harmonic synthesis for given .�; �; �/ in
dependence on maximal degree N and � is estimated by

T .N; �/ D .N C 1/2.2
p

1 � �2 � 1 C �2/ C 2.N C 1/ ,
(34)

where the approximate relation m D n cos ˇ for a sufficient
maximal order in the expansion was borrowed from Jekeli
et al (2007). By applying the mean value theorem to � in
Eq. (34) we can see that the enhanced LFRF run in a mean
by 10% faster.10 Dependence on � is not taken into account
in Eq. (34), however, one can decrease N accordingly to the
particular �, the respective Cn;m and the target accuracy.

As an example of the capabilities of our implementa-
tion performing on the single GPGPU device, we run a
synthetic benchmark of the spheroidal harmonics synthesis

9As Eq. (27) should be applied on Cn;m 2 C in the spheroidal harmonics
applications, we substitute it by two separate Sm calculations.
10Run-time criterion �N;m ¤ 0 (or resulting �m;m ¤ 0 in Clenshaw
summation) based on the extended exponent approach is used for
a decision about the maximal m relevant in particular synthesis. A
little slowdown in enhanced LFRF caused by the exponent extension
processing completely diminish with the higher orders cancellation.



An OpenCL Implementation of Ellipsoidal Harmonics 203

for N D 21;600. According to Eq. (34), one full synthesis
needs to perform at maximum 467 Msn, that agrees well with
observed rates: 38 Hz in double and 95 Hz in single precision
FP. Regular grid computations show even better results. For
instance, a spheroidal harmonics series of N D 21;600 in
double precision can be expanded to a global spheroidal grid
with a spatial resolution of 10 arcsecond within 30 minutes.

5.2 Summary

– The Clenshaw summation implemented in the OpenCL
framework proved to be a very efficient way to an oblate
spheroidal harmonic synthesis. The synthesis of Y n;m

derivatives has been developed too. It relies on sn1 and
qn1 variables, unfortunately, we are not able to provide
more details here due to the given page limit.

– Our implementation is platform and device independent,
however on the GPGPU we gained about 40 times faster
evaluation in comparison with a common CPU device. As
a bonus, the computations offloaded to the GPGPU are
about 16 times more energy efficient.

– The hypergeometric series approach to qn;m, e.g. Thong
and Grafarend (1989) and Sebera et al (2012), seems to
be 20–100 times slower (in dependence on n; m, see
also Fukushima 2013). Our implementation on GPGPU
in comparison with the “traditional” approach on CPU is,
therefore, accelerated by a factor of thousands.

– Spherical harmonics are obtained from the same code, just
with e2 D 0 setting. Synthesis then performs about 40%
faster, nevertheless, we do not recognise it as a significant
handicap of the oblate spheroidal (e > 0) case.

– In our experience, the OpenCL framework proves to be
convenient and very useful for numerical tasks contain-
ing computationally intensive parallel algorithms, like in
linear algebra, numerical integration, etc.
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A Remark on the Computation
of the Gravitational Potential of Masses
with Linearly Varying Density

Maria Grazia D’Urso

Abstract

The potential of a polyhedral body with linearly varying density has been given two different
expressions in Holstein (Geophysics 68:157–167, 2003) and Hamayun et al. (J Geodesy
83:1163–1170, 2009) although in both papers the derivation is started from the same surface
integral obtained by transforming the original volume integral via the Gauss theorem.
Conversely, we prove that a suitable modification of the approach exploited by Hamayun
et al. (J Geodesy 83:1163–1170, 2009) yields the formula derived by Holstein (Geophysics
68:157–167, 2003). Furthermore, an additional expression of the surface integral, which is
also proved in this paper, allows us to derive a variant of the linear part of the potential,
i.e. the integral multiplying the gradient of the density contrast, which filters the null
contribution of faces containing the observation point. The new formula is specialized to
the case of a prism.

Keywords

Gravitational potential • Linear density variation • Polyhedron • Singularities

1 Introduction

The computation of the gravity effects (potential, gravity
and tensor gradient fields) is usually carried out for mass
distributions in which a constant density is assumed. This
considerably simplifies the computation of the integrals,
extended to the domain occupied by the given mass, which
are intrinsic to the definition of the gravity effects.

However, the constant density assumption is not always
realistic in geological structures, e.g. for modeling the com-
paction in sedimentary basins.

Preliminary studies on this issue (Chai and Hinze 1988;
García-Abdeslem 1992, 2005; Gallardo-Delgado et al. 2003)
have concerned the simple case of the right rectangular

M.G. D’Urso (�)
DICeM - Department of Civil and Mechanical Engineering, University
of Cassino and of Lazio Meridionale, Via G. Di Biasio 43, 03043
Cassino (FR), Italy
e-mail: durso@unicas.it

parallelepiped (prism) since it represents a versatile tool for
modeling complex mass distributions.

The case of polyhedral bodies has been addressed more
recently since this simplifies geometric modelling of com-
plex bodies (Pohánka 1988; Hansen 1999; Holstein 2003;
Hamayun et al. 2009; Zhou 2009; D’Urso 2015a).

In this last paper the author has applied to the case of
polyhedral bodies with linearly varying density a recent
approach (D’Urso 2012, 2013, 2014, 2015b; D’Urso and
Trotta 2015) for computing the gravity effects of bodies with
uniform density and for consistently taking in account the
relevant singularities.

Significantly, the same approach has been successfully
applied to the solution of problems in geophysics (D’Urso
and Marmo 2013), in geomechanics (Sessa and D’Urso
2013; D’Urso and Marmo 2015), in heat transfer (Rosati and
Marmo 2014) and in elasticity (Marmo and Rosati 2015).

The aim of this paper is to illustrate the advantages of the
formula presented in D’Urso (2015a) for the evaluation of the
linear part of the potential, i.e. the integral multiplying the

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_138
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gradient of the density contrast, with respect to those derived
by Holstein (2003) and Hamayun et al. (2009).

In particular the formula derived by Holstein (2003)
is originated by a transformation of the volume integral
expressing the linear part of the potential to a surface integral
by means of Gauss theorem.

Though starting from the same surface integral, the for-
mula derived later by Hamayun et al. (2009) appears to be
quite different and the authors state in the introduction that in
comparison to the formula for the potential given by Holstein
(2003), the main advantage of adopting the computational
strategy developed by Pohánka (1988, 1998) is that our
expression does not have the singular terms.

Thus Hamayun et al. (2009) supplement formula (53) of
their paper by a small positive number in order to avoid
undefined operations occurring when an edge of a face does
contain the origin of the reference frame local to the face.

We prove that a suitable modification of the approach
exploited by Hamayun et al. (2009), based upon a further
application of Gauss theorem in the plane to transform the
surface integral to a line integral, yields the formula derived
in Holstein (2003) by transforming the surface integral via
Stokes theorem.

Thus we agree with Holstein (2003) that also for the linear
part of the potential, the Pohánka-type exclusion zone is
unnecessary, as already shown in Holstein and Ketteridge
(1996) and Holstein et al. (1999), for the constant density
case.

It is also shown that a suitable application of the Gauss
theorem allows us to consistently take into account the
singularity of the field appearing in the volume integral
representing the linear part of the potential and to derive a
novel expression of the related surface integral.

This last one exhibits the remarkable property of filtering
the null contribution of the faces containing the observation
point. A similar idea was presented in Holstein (2002b) for
the constant density case.

Finally, the novel part of the formula proved in this paper
is specialized to the case of a prism with a vertex coincident
with the observation point.

2 Gravitational Potential
of a Polyhedral Body
with Linearly Varying Density

Let us consider an arbitrary bounded domain ˝ whose con-
tinuous mass distribution has a density ı.s/ varying linearly
as function of a gradient g and of the position vector s of an
arbitrary point belonging to it. Hence

ı.s/ D ıo C g � s (1)

where ıo is a constant reference density evaluated at the
origin O of a three-dimensional (3D) cartesian reference
frame .O; x; y; z/ in which the coordinates of s are assigned.

Denoting by p the position vector of an arbitrary point P ,
the gravitational potential U induced at P by the mass of ˝

is defined by the Newton integral:

U.P / D U.p/ D G

Z

˝

ı.s/
Œ.p � s/ � .p � s/�1=2

dV.s/ (2)

where G is the gravitational constant.
Substituting in the previous formula the expression (1) for

ı.s/, adding and subtracting the quantity g�p, setting r D s�p
and r D .r � r/1=2 one has

U.P / D G.ıo C g � p/

Z

˝

dV

r
C Gg �

Z

˝

r
r

dV D

D G.ıo C g � p/Uc.P / C Gg � UUU l.P /

(3)

where the suffixes .�/c and .�/l have been used to denote the
constant and linear contributions to U.P /, respectively.

For polyhedral bodies the computation of Uc.P / has been
addressed by several authors see e.g. D’Urso (2012, 2013,
2014) for a comprehensive list of references.

In these papers the author has exploited a novel approach
for computing the gravity effects of bodies with uniform
density and for consistently taking into account the relevant
singularities. The approach has been subsequently extended
in D’Urso (2015a) to the case of polyhedral bodies with
linearly varying density.

Thus, it is interesting to compare the expressions con-
tributed in this last paper with the already available ones.
Due to space limitations we shall limit ourselves to compare
the expressions of UUU l in D’Urso (2015a) with those due to
Holstein (2003) and Hamayun et al. (2009). In the sequel
they will be denoted as UUU Dur

l and UUU HH
l respectively.

According to Pohánka (1998), Holstein (2003), and
Hamayun et al. (2009) the integral UUU l in (3) can be
expressed as

UUU HH
l .P / D

Z

˝

r
r

dV D
Z

˝

grad r dV D
Z

F r.˝/

r n dA (4)

where the last equality follows from Gauss theorem. For a
polyhedral body the previous expression specializes to

UUU HH
l .P / D

NFX
iD1

ni

Z

Fi

.ri �ri /
1=2dAi D

NFX
iD1

ni

Z

Fi

ri dAi (5)

where NF denotes the number of faces of the polyhedral
body, the vector ri spans the i th face Fi of the boundary
F r.˝/ of ˝ and ni is the outward unit normal to Fi .
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To derive an alternative expression for UUU l which takes into
account the singularity at r D o intrinsic to the integrand
in (4) we briefly report the approach contributed in D’Urso
(2014); it stems from the identity

div
r ˝ r

r
D divŒr2r� ˝ r

r3
D 3r

r
C Œr2r� div

r
r3

(6)

and from the properties divŒr=r3� D 0 if r 6D o and

Z

˝

'.r/div
r
r3

dV D
�

0 if o 62 ˝

m.o/'.o/ if o 2 ˝
(7)

where ' is a continuous scalar field and m represents the
measure, expressed in radians, of the solid angle of the
intersection between ˝ and a spherical neighborhood of the
singularity point o. To sum up, div.r=r3/ represents the Dirac
delta function � at o D’Urso and Russo (2002).

Thus, integrating (6) over ˝ one has

UUU Dur
l .P / D

Z

˝

rdV

r
D 1

3

Z

˝

div
r ˝ r

r
dV �

� 1

3

Z

˝

r2r�.o/dV D 1

3

Z

F r.˝/

.r � n/r
r

dA

(8)

where the first volume integrand has a removable singularity,
allowing the integral to be defined even if r D o occurs
inside or on the boundary of ˝ . Similarly, the second volume
integral also has a removable singularity in the integrand,
making it safe to apply Gauss’ theorem. Together with
result (7), we arrive at the final integral in Eq. (8).

Its expression specializes to polyhedral bodies as

UUU Dur
l .P / D 1

3

NFX
iD1

di

Z

Fi

ri

.ri � ri /1=2
dAi D 1

3

NFX
iD1

di

Z

Fi

ri

ri

dAi

(9)

di being the distance between the point P and the face Fi .
The main advantage of the previous expression with

respect to (5) is that the integral pertaining to each face is
scaled by the factor di so that a face containing the observa-
tion point does provide a null contribution to UUU l ; hence, it is
easy to test whether to omit all calculations for a face.

Nevertheless, it will be shown that formulas obtained by
the specialization of (5) and (9) as function of the vertices of
each face are very closely related.

To this end we denote by Pi the orthogonal projection of
the observation point P on Fi and assume Pi as origin of a
2D reference frame local to the face, see D’Urso (2014).

Furthermore, we decompose the vector ri as sum of a
vector r?i orthogonal to the face Fi and a vector rki parallel
to it by setting

ri D r?i C rki D .ri � ni /ni C rki D dini C TFi���i (10)

where the vector ���i D .�i ; �i / represents the position vector
of a generic point of the i th face with respect to Pi .

The linear operator TFi maps the 2D vector ���i to the
3D one rki (D’Urso 2013, 2014) and fulfills the property
Tt

Fi
TFi D I2D where .�/t denotes transpose and I2D is the

2D identity operator.

3 Two Alternative Approaches
for Computing the Linear
ContributionUUU l to the Gravitational
Potential

The surface integral (5) is transformed to a line integral by
Hamayun et al. (2009) by using the Gauss theorem in the
plane of the generic face. In this way the authors derive a
formula which appears to be considerably different from the
one previously derived in Holstein (2003) in spite of the
fact that also this last author uses formula (5) as starting
point.

Closer inspection shows that the differences are only
notational. The same underlying functions are used in both
cases, in similar combinations.

Furthermore, Hamayun et al. (2009) supplement formula
(53) of their paper by a small positive number, originally
introduced by Pohánka (1988, 1998), in order to avoid
undefined operations when the observation does belong to
an edge of a face.

In this respect they seem to be unaware of the fact that
Holstein (2003) had already proved that the potential and the
first gradient were free from singularities and that the gravity
gradient tensor was undefined on facet surfaces, though UUU l

has a continuous second gradient
In order to reconcile the two approaches we substitute (10)

in (5); setting f .���i ; di / D .���i � ���i C d 2
i /1=2 we get

UUU Ham
l D

NFX
iD1

ni

Z

Fi

f .���i ; di /dAi (11)

where the suffix .�/Ham has been used to remind of the fact
that we are using the same approach exploited by Hamayun
et al. (2009), i.e. the Gauss theorem, to transform the previ-
ous surface integral to a line integral.
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Fig. 1 3D and 2D notation for vertices and edges on the generic face

To this end we apply the differential identity (Tang 2006)

div
h
f .���i ; di /���i

i
D 3f .���i ; di / � d 2

i

f .���i ; di /
(12)

which provides, upon application of Gauss theorem

UUU Ham
l D 1

3

NFX
iD1

ni

"
d 2

i

Z

Fi

dAi

f .���i ; di /
C

Z

F r.Fi /

f .���i ; di /ˇi dsi

#

D 1

3

NFX
iD1

Œd 2
i ni Ic;Fi C ni �l;Fi �

(13)

where ˇi D ���i � ���.si / and ���.si / is the 2D unit vector which
is normal to F r.Fi / at the abscissa si and points outside Fi .

The integral Ic;Fi is required as well for computing Uc

in (3), see, e.g., Holstein et al. (1999) for a comparison of
different expressions and D’Urso (2012, 2013).

For a polyhedral body the 2D unit normal ���.si / in (13) is
constant on each side of Fi so that

�l;Fi D
NEiX
jD1

Œ���ij � ���ij �

Z

Ej

.rij � rij /1=2dsij (14)

where Ej denotes the j th edge of Fi , NEi the number of
edges defining F r.Fi /, rij .���ij / the 3D (2D) vector spanning
Ej and ���ij the unit vector orthogonal to the j th edge.

Denoting by tij the unit vector directed along the j th
edge, oriented counter-clockwise around the normal ni , see

e.g. Fig. 1, and setting hij D tij � ni we observe that

���ij � ���ij D TFi ���ij � TFi���ij D rkij � hij D rij � hij (15)

since r?ij � hij D 0.
Hence UUU Ham

l in (13) does coincide with the expression V2

that Holstein (2003) obtained in formula .A � 6/ of his paper
by using Stokes theorem instead of Gauss one.

For this reason we use the apex .�/HH in (13) and write

UUU HH
l D 1

3

NFX
iD1

Œd 2
i ni Ic;Fi C ni �

HH
l;Fi

� D 1

3

NFX
iD1

ŒUUU l1 C UUU HH
l2

�

(16)

where

� HH
l;Fi

D
NEiX
jD1

rij � hij

Z

Ej

.rij � rij/
1=2dsij D

NEiX
jD1

.rij � hij/I.l;Fi /j

(17)

In order to facilitate the comparison with the previous
formula we specialize formula (9) by using the approach
deducible from Holstein (2003). It is based on the identity

curl.' u/ D grad' � u (18)

where ' .u/ is a scalar (constant) vector field, (Tang 2006).
Actually, by virtue of Stokes theorem one has:

Z

Fi

grad' � ni dAi D �
Z

F r.Fi /

' tdsi (19)

where t is the unit vector tangent to the boundary of Fi .
On the other hand we infer from (9) and (10)

UUU Dur
l D 1

3

NFX
iD1

h
d 2

i ni Ic;Fi C di

Z

Fi

rki
.ri � ri /1=2

dAi

i
(20)

and the last integral becomes, on account of (19),

��� Dur
l;Fi

D
Z

Fi

rki
ri

dAi D
Z

Fi

ni � .ri � ni /

ri

dAi D

D
Z

Fi

ni � Œgradri � ni �dAi D �ni �
Z

F r.Fi /

ri t dsi

(21)

Thus for a polyhedral body, we finally have

��� Dur
l;Fi

D
NEiX
jD1

hij

Z

Ej

.rij � rij /1=2dsij D
NEiX
jD1

hij I.l;Fi /j (22)
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and (20) becomes

UUU Dur
l D 1

3

NFX
iD1

Œd 2
i ni Ic;Fi C di���

Dur
l;Fi

� D 1

3

NFX
iD1

ŒUUU l1 C UUU Dur
l2

�

(23)

Numerical experiments have proved that the previous for-
mula and (16), which is quite similar, yield the same result.

4 Comparative Assessment of the Two
Formulas for ComputingUUUHH

l;2

andUUU Dur
l;2

A comparison of (16) and (23) shows that UUU HH
l and UUU Dur

l

differ only for the second addend. However, as anticipated
soon after formula (9), UUU Dur

l2
leads to a control structure

of the calculations in which an entire face can be omitted,
analogously to UUU l1 , whenever it contains the observation
point.

In the homogeneous density case this property had already
been noted in Holstein (2002b), see section “Formula Alter-
natives” of his paper.

Conversely, this has not yet been established in the lin-
early variable case although formulas (19)–(21) in Holstein
(2003) had been organized to exhibit the di factor.

It is also worth noting that the integral I.l;Fi /j in (17)
and (22) hides a singularity, holding when the observation
point is aligned with an edge, although it will be shown in
the next section that the singularity is removable.

This is not surprising since we know from the very
beginning that the integral UUU l is well defined. This can be
proved either by a limiting process of the integral extended
to a domain with an exclusion zone embodying the singu-
larity, as outlined in Holstein (2003), or, more elegantly, by
distribution theory as in (6) and (7).

Nevertheless, the well posedness of the integral defin-
ing UUU l does not exclude that some harmless indeterminate
subexpressions have to be properly coped with in order to
actually evaluate it.

This can happen in the first reduction, from a 3D to a 2D
integral, or in the second one, from a 2D to a line integral.
The former case characterizes the approach by Holstein
(2003) and Hamayun et al. (2009) since they ignore the
singularity at r D o in the transformation (4) leading to the
surface integral.

Conversely, a removable singularity affects the line inte-
gral stemming from the second reduction carried out in this
paper since Stokes theorem has been applied in (19) to the
singular scalar field ' D 1=.ri � ri /

1=2.
In order to express I.l;Fi /j as function of the basic input

data of the polyhedral body, i.e. the coordinates of the

vertices defining the generic face Fi , we write

rij .	j / D rj C 	j .rjC1 � rj / 	j 2 Œ0; 1� (24)

so that, being 	j D sij = lj and lj the edge length, it turns out

I.l;Fi /j D lj

Z 1

0

.pj 	2
j C 2qj 	j C tj /1=2d	j D lj Il;Ej

(25)

where it has been set pj D .rjC1 � rj / � .rjC1 � rj /, qj D
rj � .rjC1 � rj /, tj D rj � rj D jrj j2.

Denoting by uj D pj C 2qj C tj and

LNj D ln kj D ln
hpj C qj C p

pj

p
pj C 2qj C tj

qj C p
pj tj

i

(26)

the integral in (25) is provided by

Il;Ej D pj tj � q2
j

2pj

LNj C .pj C qj /
p

uj � qj
p

tj

2
p

pj

(27)

an expression whose numerical properties will be discussed
in the next section. It can be usefully compared with formulas
(17) and (30) in Holstein (2003).

The well-posedness of I.l;Fi /j depends upon the radicands
and the arguments of the logarithm in (26). To this end we
first observe that

pj D l2
j > 0 tj � 0 uj D rjC1 � rjC1 D jrjC1j2 � 0

(28)

so that the radicands in (26) and (27) turn out to be positive
unless jrjC1j D o or jrj j D o. In this case, however, P

belongs to Fi and, as detailed below, the contribution of the
j th edge to � HH

l;Fi
and ��� Dur

l;Fi
is null.

Moreover, both the numerator and the denominator of the
logarithm in (26) are positive when the observation point
does not belong to the j th edge. In the opposite case at least
one of them can vanish but, as stated above, the computation
of the logarithm is not required. Actually, invoking the
definition of pj , qj , tj in (25) one has

kj D rjC1 � .rjC1 � rj / C lj jrjC1j
rj � .rjC1 � rj / C lj jrj j D rjC1 � tij C jrjC1j

rj � tij C jrj j
(29)

Should rjC1 � tij or rj � tij be both negative, the numerically
more stable expression in Holstein and Ketteridge (1996) can
be usefully resorted to.

By definition of scalar product one infers that both the
numerator and the denominator are non-negative unless
di D 0 and the observation point is aligned with the j th
edge. Actually, under these assumptions, either jrjC1j
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or jrj j can vanish or, if both of them are non-zero, at
least one between the numerator and the denominator can
vanish.

All the previous cases imply that either rj or rjC1 is the
null vector or that rj and rjC1 are parallel. Accordingly, LNj

in (26), and hence .Il;Fi /j in (25), tends to C1 or �1 with
an infinitesimally low rate.

This has no effect on � HH
l;Fi

since rij � hij D 0 in this case
and the product .rij �hij /Il;Ej D 0 in (17) tends to zero, what
excludes the necessity of computing LNj in (26).

The role played by rij �hij for ensuring the well-posedness
of � HH

l;Fi
is played by di for ��� Dur

l;Fi
. Actually, kj ! 0

or kj ! C1 depending on the fact that the numerator
or the denominator in (26) vanish; in both cases LNj D
ln kj is an infinite of arbitrarily low degree. This means
that

lim
di!0

di LNj D lim
di!0

di ln kj D 0 (30)

stating that the j th edge of Fi gives a null contribution to the
quantity ��� Dur

l;Fi
in (22).

Thus, irrespective of whether kj is zero or undefined
through a zero divisor, one can skip the evaluation of the
contribution of the edges belonging to a face characterized
by di D 0.

We remark that the parameter kj is reminiscent of the
parameter 
 D lj =.jrjC1j C jrj j/ introduced by Strakhov
et al. (1986) and extensively used in Holstein (2002a, 2003)
although 
 2 Œ0; 1� while kj 2 Œ0; C1/.

5 Specialization ofUUU Dur
l2

to a Prism

Let us now specialize the general formula (23) for UUU Dur
l2

to the case of a right rectangular parallelepiped (prism)
whose sides are parallel to the axes of a Cartesian reference
frame.

We have selected UUU Dur
l2

instead of UUU HH
l2

because this
last one requires longer calculations in this case. Actually,
for an observation point coincident with a vertex of the
parallelepiped, which is the case addressed in this section,
UUU HH

l2
has to be computed for all the six faces of the prism

while just the three faces which do not contain the origin are
needed for UUU Dur

l2
.

In any case the computation of UUU Dur
l2

and UUU HH
l2

depends
essentially upon the evaluation of the integral (25). Due to
space limitations the evaluation of I.l;Fi /j is detailed only
for the face F1, i.e. the one orthogonal to the x axis and not
containing the origin. For this reason we have shown in Fig. 2
the vertices which define the first face.

2

34

1
P

z

y

x

c

b

a
c_1

_1h

Fig. 2 Geometry of the prism and vertices of the first face

Thus, the position vectors of the vertices are r1 D
.a; 0; 0/, r2 D .a; b; 0/, r3 D .a; b; c/, r4 D .a; 0; c/ so
that

r2 � r1 D .0; b; 0/ r3 � r2 D .0; 0; c/

r4 � r3 D .0; �b; 0/ r1 � r4 D .0; 0; �c/
(31)

Accordingly, one infers from (25)–(27)

p1 D b2 q1 D 0 u1 D 0 t1 D a2

p1 C 2q1 C t1 D a2 C b2 .p1t1 � q2
1/=.2p1/ D a2=2

(32)

for the first edge of the first face

p2 D c2 q2 D 0 u2 D b2

t2 D a2 C b2 p2 C 2q2 C t2 D a2 C b2 C c2

.p2t2 � q2
2/=.2p2/ D .a2 C b2/=2

(33)

for the second edge of the first face

p3 D b2 q3 D �b2 u3 D b2 C c2

t3 D a2 C b2 C c2 p3 C 2q3 C t3 D a2 C c2

.p3t3 � q2
3/=.2p3/ D .a2 C c2/=2

(34)

for the third edge of the first face

p4 D c2 q4 D �c2 u4 D c2

t4 D a2 C c2 p4 C 2q4 C t4 D a2

.p4t4 � q2
4/=.2p4/ D a2=2

(35)

for the fourth edge of the first face.
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Hence, setting ld D p
a2 C b2 C c2, formula (27) yields

.Il;F1/1 D a2

2
ln

b C p
a2 C b2

a
C b

p
a2 C b2

2

.Il;F1/2 D a2 C b2

2
ln

c C ldp
a2 C b2

C cld

2

.Il;F1/3 D a2 C c2

2
ln

p
a2 C c2

�b C ld
C bld

2

.Il;F1/4 D a2

2
ln

a

�c C p
a2 C c2

C c
p

a2 C c2

2

(36)

Due to the symmetry of the problem at hand .Il;F2 /j

is obtained from .Il;F1/j , .j D 1 : : : 4/ by setting in the
formula above the ordered triple fb; c; ag in place of fa; b; cg.
In turn .Il;F2/j transforms to .Il;F3/j by means of the
substitution fb; c; ag ! fc; a; bg.

Being also h11 D .0; 0; �1/, h12 D .0; 1; 0/, h13 D
.0; 0; 1/, h14 D .0; �1; 0/ and d1 D a, d2 D b, d3 D c,
the expression of UUU Dur

l;2 in (23) can be finally computed.

6 Conclusions

The expression of the potential contributed by Hamayun
et al. (2009) has been suitably reformulated in order to prove
its equivalence with that derived in Holstein (2003).

Furthermore, the volume integral representing the linear
part of the potential has been transformed by Gauss theorem
to a surface integral which is different from the expres-
sion jointly used by Holstein (2003) and Hamayun et al.
(2009).

When specialized to polyhedral bodies, one obtains the
linear part of the potential as sum of two quantities one of
which, namely UUU l1 in (23), coincides with existing solutions.

However, differently from the solution in Holstein (2003),
also UUU Dur

l2
is expressed as the product of two terms, one of

which is the distance di existing between the generic face and
the observation point P. Hence, the expression (23) extends
to the linear part of the potential a property already known in
the constant density case (Holstein 2002b).

Since the same property is already known to hold for Ic;Fi ,
which is required for computing Uc in (3), we can conclude
that the potential U.P / can be given an expression that
factors the vanishing pre-multiplier for faces containing P .
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The Observation Equation of Spirit Leveling
in Molodensky’s Context

B. Betti, D. Carrion, F. Sacerdote, and G. Venuti

Abstract

Spirit leveling and surface gravity observations can be expressed as orthometric height
differences plus corrections which require the knowledge of the Earth crust density. For
leveling increments we can write observation equations in a linearized form, according
to the standard Molodensky approach, i.e., intrinsic geodesy, depending on normal height
differences plus a correction term. This term is a function of the gravity anomaly at the
surface level, thus not requiring any assumption on the crust density, and of the curvature of
the normal field force lines, which can not be neglected for leveling profiles directed along
meridians. The present work shows how to derive these observation equations. An example
is presented to verify the effectiveness of the new approach.

Keywords

Normal correction • Normal heights • Spirit leveling observation equation

1 Introduction

National height systems are referred to an official vertical
datum and adopt different coordinate types, such as ortho-
metric, dynamic or normal heights. A complete review of
all the systems in use can be found, for instance, in Jekeli
(2000) and Meyer et al. (2006). When derived from leveling
measurements, all these heights need to be properly corrected
using gravity information. Orthometric heights have a pre-
cise geometric meaning, being defined as the lengths of the
plumb lines from the Earth’s surface to the geoid, which are
both physical surfaces. Yet, the computation of orthomet-
ric corrections requires the knowledge of the Earth’s crust
density, which can be established only approximately. Their
derivation is illustrated in Heiskanen and Moritz (1967), in

B. Betti • D. Carrion • G. Venuti (�)
DICA, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milan, Italy
e-mail: giovanna.venuti@polimi.it

F. Sacerdote
DICEA, Università degli Studi, Firenze, Via Santa Marta 3, Florence,
Italy

Chapter 1 of Sansò and Sideris (2013) and discussed in
detail in Sansò and Vaníček (2006). Dynamic heights are
simply proportional to geopotential numbers and, contrary
to orthometric heights, have no direct physical meaning;
the computation of the corresponding corrections is quite
simple and requires only gravity data on the Earth’s surface.
Normal heights are defined as the separation between the
ellipsoid and the telluroid, whose points satisfy the relation
U.PT / D W.PS /, where W is the geopotential, U is the
normal potential, PS is on the Earth’s surface, PT is on
the telluroid and lies on the ellipsoidal normal through PS .
Therefore, for a given latitude and longitude .'; �/, the
normal height h� is implicitly related to the ellipsoidal height
h by the equation U.'; �; h�/ D W.'; �; h/. Owing to this
definition, normal heights have a geometric meaning, but
the surfaces involved are not defined in terms of physical
quantities. The most direct formula for their computation

is h� D C

�
, where C is the geopotential number and �

is the average of the normal gravity, along the ellipsoidal
normal, between the reference ellipsoid and the telluroid. The
computation, therefore, requires gravity values on the Earth’s
surface only. Even in the case of normal heights it may be
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interesting to look for the expression of a correction term,
enabling us to compare directly normal height differences to
leveling measurements. Such a term, called normal correc-
tion, is already presented in Heiskanen and Moritz (1967).
The formula is derived in analogy to that of orthometric
height differences by substituting the normal gravity field to
the actual one and approximating lengths along the line of
force of the normal potential with those along the normal to
the reference ellipsoid. Our approach is different. We start
from leveling observations and derive the related observation
equations by linearizing the actual gravity field according
to Molodensky’s approach. Normal height differences come
into the formulas as a result and prove to be the natural height
coordinates to be used in connection with spirit leveling and
surface gravity data. Moreover, the normal correction term,
which is different from the one in Heiskanen and Moritz
(1967), comes out to depend on the gravity anomaly on the
ground and on the curvature of the normal field force lines,
which cannot be neglected especially for leveling profiles
directed along meridians.

We derive the new observation equations and review the
ones presented in Heiskanen and Moritz (1967) highlighting
the differences in Sect. 2.

A first check of the new equations has been performed
along a leveling line in the western Alps already used for
altimetry tests by Gentile et al. (2011) and Barzaghi et al.
(2014). The results are reported in Sect. 3, followed by some
concluding remarks in Sect. 4.

2 Spirit Leveling and Surface Gravity
Observation Equation

The introduction of normal heights has to be framed within
Molodensky’s approach in the linearization of the gravity
field boundary value problem. The same coordinates come
out when modeling the spirit leveling increments, by express-
ing the actual potential as the sum of normal plus anomalous
one, and the gravity acceleration as the normal counterpart
plus the gravitational disturbance, as we show hereafter in
more detail. We start from the infinitesimal leveling incre-
ment (cf. Sansò and Sideris 2013, Chapter 1):

ıL D n � dr D � g
g

� dr D �dW

g
(1)

where n is the unit vector tangent to the gravity field plumb
lines, dr is the infinitesimal vector between two points in
space along the leveling line, g is the gravity vector and g is
its modulus. We set

dW D dU C dT (2)

where W; U; T are the actual, the normal and the anomalous
gravity potential, respectively. Furthermore,

1

g
D 1

� C ıg
eD 1

�
� ıg

�2
(3)

where � is the modulus of the normal gravity vector, and
ıg D g � � is the gravity disturbance. Hence, neglecting
higher order terms

�dW

g
D �dU

�
C ıg

�2
dU � dT

�
: (4)

The contribution of these three terms in the integral along the
leveling line lAB will be separately investigated.

As for the first term, we have:

�
Z

lAB

dU

�
D �

Z

lAB

�

�
� dr D

Z

lAB

e� � dr (5)

where e� does not coincide with the ellipsoidal normal �,
due to the curvature of the normal gravity force lines, whose
expression in geodetic coordinates is (cf. Sansò and Sideris
2013, Chapter 1)

k D 1

�.M C h/

@�

@'
(6)

where h is the ellipsoidal height, M D a.1 � e2/

.1 � e2sin2'/3=2
is

the reference ellipsoid meridian curvature radius, a is the
ellipsoid semi-major axis and e its eccentricity. We write
the unit vector e� at a point P as the sum of the constant
unit vector �, orthogonal to the reference ellipsoid, plus an
additive vector ı depending on h and practically directed
along the meridian:

e� .h/ D � C ı eD � C ıe' (7)

where e' is the unit vector tangent to the meridian and

ı D kh D 1

�.M C h/

@�

@'
h (8)

By substituting Eq. (7) in Eq. (5) and using Eq. (8) we obtain:

Z

lAB

�dU

�
D

Z

lAB

� � dr C
Z

lAB

ı � dr D

D hB � hA C
Z

lAB

1

�

@�

@'
hd' (9)
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where we have used the relation

e' � dr D .M C h/d': (10)

As for the second term in Eq. (4) we have:

Z

lAB

ıg

�2
dU D

Z

lAB

ıg

�

�

�
� dr D

D �
Z

lAB

ıg

�
.� C ı/ � dr eD �

Z

lAB

1

�

@T

@h
dh: (11)

As in fact
ıg

�
is at the most of the order of 10�4, the term

Z

lAB

ıg

�
ı � dr is clearly negligible while

ıg

�
� � dr is equal to

@T

@h
dh.

As for the third term in Eq. (4), an integration by parts
yields:

�
Z

lAB

dT

�
D �

�

T

�

�B

A

�
Z

lAB

T

�2
d� D

D �A � �B �
Z

lAB

T

�

1

�

@�

@'
d' �

Z

lAB

T

�

1

�

@�

@h
dh D

D �A � �B �
Z

lAB

�
1

�

@�

@'
d' �

Z

lAB

T

�

1

�

@�

@h
dh (12)

where � D T

�
is the height anomaly, that is the difference

between the ellipsoidal and the normal height of a point.
Adding up Eqs. (9), (11) and (12), one obtains the spirit

leveling observation equation between the two extreme
points A and B , along the line lAB:

�ABL D .hB � �B/ � .hA � �A/ C

C
Z

lAB

.h � �/
1

�

@�

@'
d' �

Z

lAB

1

�

�

@T

@h
� 1

�

@�

@h
T

�

dh D

D h�
B � h�

A C
Z

lAB

h� @�

@'

1

�
d' �

Z

lAB

�g

�
dh D

D h�
B � h�

A C NC1 C NC2 (13)

where h� D h � � is the normal height, and the fundamental
equation of the physical geodesy

�g D �@T

@h
C 1

�

@�

@h
T (14)

has been used.

Equation (13) gives the correction term that must be
applied to the observed leveling differences to obtain normal
height differences.

The contribution of the first integral can add up to a value
of 5 cm for a 30 km long path in the direction of the meridian,
at a height h D 2;000 m, as can be derived by the following
numerical expression for ı [cf. Eq. (8)]:

h

M C h

1

�

@�

@'
eD 5 � 10�3 h

M C h
sin2' (15)

obtained from the approximation of Cassinis’ formula (cf.
Sansò and Sideris 2013, Chapter 1) for the normal gravity
vector modulus:

�.'; h/ eD 978:0327715.1C5:27448 �10�3sin2'/�0:30877h

(16)

The second integral, as
�g

�
can reach a maximum value

of about 10�4, can give a contribution of about 20 cm for a
height difference of 2;000 m.

Similar considerations show that even a large uncertainty,
say 10 m, in the height along the leveling line, has a negligi-
ble effect on the numerical evaluation of the correction terms.

It is worth making a comparison with the model for
normal height differences (Heiskanen and Moritz 1967):

h�
B � h�

A D �ABL C

C
Z

lAB

g � �0

�0

ıL C �A � �0

�0

h�
A � �B � �0

�0

h�
B (17)

derived in analogy with the formula for orthometric height
differences:

HB � HA D �ABL C
C

Z

lAB

g � �0

�0

ıL C gA � �0

�0

HA � gB � �0

�0

HB (18)

where �0 is a conventional normal gravity at a given latitude,
for instance 45ı.

We start defining the orthometric height H of a point P

in terms of the corresponding geopotential number. This is
obtained by integrating the actual potential differential along
the plumb line through the point P , from the geoid PG to the
Earth’s surface itself:

CP D W.PG/ � W.P / D �
Z P

PG

dW D
Z P

PG

gdH D

D H
1

H

Z P

PG

gdH D Hg (19)
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Fig. 1 IGM leveling lines used for a first check of the new observation equation

and therefore
H D C

g
(20)

In the same manner, by referring to the normal potential
and disregarding the normal potential plumb lines curvature,
that is by considering

��

�
eD �; (21)

one can define the normal height of the point P. We have:

CP D W.PG/ � W.P / D U.PE/ � U.PT / D

D �
Z PT

PE

dU eD
Z PT

PE

�dh D h� 1

h�

Z PT

PE

�dh D h��

(22)

and therefore:
h� D CP

�
: (23)

While Eq. (20) requires the knowledge of the gravity
along the plumb line from the geoid to the Earth’s surface,
which in turn depends on the unknown crust density, Eq. (23)
does not. On the other hand, although the normal height has a
geometric meaning, it does not refer to physical surfaces. As
it will be used in the following, we recall also the dynamic
height:

h
dyn
P D CP

�0

(24)

which is the easiest to compute, but has no geometrical
meaning.

Equations (17) and (18) can be easily obtained in the
following way. Let us consider two points A and B on the
Earth’s surface. The difference of their dynamic heights can
be written as the difference of orthometric or normal heights
plus a correction term.

We have:

h
dyn
B � h

dyn
A D CB � CA

�0

D WA � WB

�0

D

D �
Z B

A

dW

�0

D
Z B

A

g

�0

ıL D
Z B

A

g � �0 C �0

�0

ıL D

D �ABL C
Z B

A

g � �0

�0

ıL : (25)

On the other hand,

h
dyn
B � h

dyn
A D CB

�0

� CA

�0

D
Z B

BG

g � �0 C �0

�0

dH �
Z A

AG

g � �0 C �0

�0

dH D

D HB � HA C
Z B

BG

g � �0

�0

dH �
Z A

AG

g � �0

�0

dH D

D HB � HA C gB � �0

�0

HB � gA � �0

�0

HA (26)

where AG and BG are on the geoid and the integrals are
computed along the plumb lines between AG and A and
BG and B . Finally, by comparing Eqs. (25) and (26) one
finds Eq. (18). With the same approximation of Eq. (21),
substituting in Eq. (26) the normal potential to the actual one
as in Eq. (22) one obtains Eq. (17).

3 Tests on theWestern Alps

A first assessment of the new observation equation was
performed on the leveling line displayed in Fig. 1, which is
located in the Italian western Alps. This line is divided in two
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Fig. 2 Leveling differences along line 155

Fig. 3 Gravity anomalies along line 155

branches: lines 155 and AF, respectively marked with circles
and triangles. In the following, for the sake of brevity, we
will show only the results related to branch 155. This line,
starting at about 250 m, reaches about 2,600 m. Its length is
about 120 km and it contains about 130 benchmarks. A small
number of benchmarks, all in the part of the line directed
from East to West, are coupled with observed gravity data
(cf. Fig. 1). The missing values were predicted from the
Italian gravity model (cf. Barzaghi et al. 2014). Leveling
differences, reported in Fig. 2, and surface gravity values
(observed and predicted) were used to compute the normal
height of each benchmark by discretizing Molodensky’s
observation equation (13). Gravity anomalies along the line
are plotted in Fig. 3. In the test area, due to the presence of
the Ivrea body, �g undergoes high variations, much higher
than the global standard deviation of 30 mGal (cf. Pavlis N.,
Global Gravitational Models, in Sansò and Sideris 2013), as
well as than the Italian one of about 64 mGal (cf. Barzaghi
et al. 2007). The correction terms behavior is plotted in
Fig. 4. The term accounting for the normal field force line
curvature, NC1, as reported in Table 1, has a range of about
3 mm along the line and a total value of 40 mm; the main
part of it, almost 37 mm out of 40 mm, is related to the
part of the leveling line lying along the meridian. The term

Fig. 4 Normal correction terms in Molodensky’s observation equation
along line 155. NC1 is the term accounting for the normal vertical
curvature, NC2 is the term depending on the gravity anomaly

Table 1 Statistics of the new equation correcting terms: NC1 is the
term depending on the normal vertical lines curvature, NC2 is the term
depending on the gravity anomaly. NC D �NC1 C NC2 is the total
correcting term

Mean [mm] Std [mm] Total amount [mm]

NC1 0:3 0:5 40:5

NC2 0:4 3:2 46:6

NC 0:05 3:3 6:0

depending on the gravity anomaly, NC2, has a much higher
variation than the first one: its range is almost 20 mm and its
total amount is of 46.6 mm. Normal heights computed with
the new equation were compared against those derived by
using the definition of Eq. (23) and the classical formula in
Eq. (17). The differences, whose maximum value is around
0.2 mm, are reported in Fig. 5. Although not significantly
different from zero, they have an interesting behavior: they
increase more along that portion of line 155 which is directed
along the meridian, showing the effect of the neglected
curvature of the normal field force lines, both in the definition
and in the classical observation equation. A final analysis was
performed on the difference between orthometric heights,
computed by Eq. (18) and normal heights computed by
Eq. (13). The difference should be approximately expressed
in terms of Bouguer anomaly as follows:

h� � H eD �gBouguer

�
H (27)

The residual between the left and the right-hand side of
Eq. (27) are plotted in Fig. 6. Apart from a bias of almost
17 cm, the differences standard deviation is equal to 7 mm
showing a good agreement despite large variations of
Bouguer anomalies in the test area. We have not investigated
the reason of this bias, which is probably contained in the
geopotential number attributed to the starting point of the
leveling line, but this is not central to the present work. A last
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Fig. 5 Differences between normal heights computed with the new
equation (h*_lev_M) and those computed using the definition (h*_def)
or the classical equations (h*_lev_HM)

Fig. 6 Line 155: residual between the left and the right-hand side of
Eq. (27)

remark is worth about the use of normal heights. As already
shown in Barzaghi et al. (2014), the misclosure error of the
leveling loop of Fig. 1, which amounts to 7 cm without any
correction, can be reduced to 3.7 cm by applying orthometric
corrections and to 2.7 cm by applying normal corrections
either the classical or the new ones. Beyond the effectiveness
of corrections, this result shows also the advantage of using
observation equations not requiring any assumption on the
Earth’s crust density.

4 Conclusions

A new formulation of spirit leveling observation equation
in the framework of Molodensky’s approach has been pre-
sented. Normal height differences come naturally into the
linearized equation, proving to be the proper coordinates to
be used in connection with spirit leveling and surface gravity

data when no assumptions on crust density are required. The
formula involves two correction terms, one depending on the
curvature of the normal gravity field force lines, the other
on the gravity anomaly. The contribution of the first term
is not negligible for leveling lines directed along meridians,
while the second term is particularly relevant for lines at
high altitude, especially in zones with large gravity anomaly
values, like in the western Alps. The first term highlights
the dependence on latitude of the normal correction as
already observed by other authors, such as Marti (2002)
and Filmer et al. (2010). Normal heights derived by using
the new formula are practically equivalent to those derived
by using the definition or the classical normal correction;
the systematic behavior of the differences is due to the
approximation of lengths of arcs of the normal gravity field
force lines with segments along the ellipsoidal normal, both
in the normal height definition and in the classical normal
correction. Moreover, despite the large variation of Bouguer
anomalies in the test region, the approximate relation in
Eq. (27) is essentially satisfied, but for a bias, whose origin
should be better investigated.
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Reference StationWeighting and Frame
Optimality in Minimally Constrained Networks

C. Kotsakis

Abstract

The aim of this paper is to present a general solution of the weight choice problem
for the reference stations in minimally constrained network adjustment. Our treatment is
based on the optimization of the accuracy of the estimated network coordinates over all
possible choices of minimum constraints on the reference stations. The optimal criterion
considers the joint effect of the data and datum noise on the estimated coordinates and it
is implemented over an arbitrary subset of the network stations. The final solution leads
to a flexible treatment of the datum choice problem by allowing the weight matrix of the
reference stations to be tuned to various options regarding the frame quality in the adjusted
network.

Keywords

Data noise effect • Datum choice problem • Datum noise effect • Frame optimization •
Minimum constraints • Network adjustment

1 Introduction

The datum choice problem (DCP) is a fundamental issue in
geodetic network adjustment with coordinate-based models.
It is linked to the optimal estimation of a set of coordinates
from a singular system of normal equations that are obtained
by the network data analysis within a linearized least squares
(LS) setting (e.g. Dermanis 1985; Schaffrin 1985; Teunissen
1985). The usual treatment of the DCP requires that a set
of external constraints is used to complement the missing
datum information in the available data. Several options exist
for the selection and the implementation of those constraints
into the network adjustment procedure, each of which has
its own merits for the final estimated solution. In this study
we concentrate on the so-called minimum constraints (MCs)
which treat the datum defect of the geodetic network without

C. Kotsakis (�)
Department of Geodesy and Surveying, Aristotle University
of Thessaloniki, Thessaloniki 54124, Greece
e-mail: kotsaki@topo.auth.gr

interfering with its estimable characteristics from the avail-
able data (Sillard and Boucher 2001).

These datum constraints are typically applied over a
number of reference stations that are included in the network
analysis and have a priori known coordinates with respect to
the user’s desired reference frame. Their general expression
is given in terms of the linear system

E
�
x � xext

� D 0 (1)

which corresponds to the well known inner constraints or,
more precisely, partial inner constraints since only a part
of the network stations is involved in the datum defini-
tion process (Meissl 1969; Blaha 1971). The above con-
straints enforce the harmonization of the (non-estimable)
frame parameters of the geodetic network with the respective
frame parameters implied by the known coordinates xext

of the reference stations. The matrix E stems from the
usual Helmert transformation model using only the rows that
correspond to the datum defect of the underlying network
(Sillard and Boucher 2001).
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The use of Eq. (1) offers a restrictive optimality for
the estimated coordinates in the desired frame. In fact, the
fundamental property of the network solution under these
constraints is the minimization of the propagated data noise
on the estimated coordinates of the reference stations. This
suggests that there are two limitations which Eq. (1) is not
able to handle in network adjustment problems, namely:
1. the optimal control of the propagated data noise on other

network stations (apart from the reference stations), and
2. the optimal control of the random errors in the a priori

reference coordinates xext and their propagated effect
(hereafter called datum noise effect) on the network solu-
tion.
Both of these issues are crucial in the context of the

optimal datum choice for minimally constrained networks
and they have to be treated in a more general setting than
the one provided by the classic inner constraints in Eq. (1).
Specifically, the use of a weight matrix for the reference
stations according to the extended form of inner constraints

EP
�
x � xext

� D 0 (2)

enables us to overcome the aforementioned limitations
within a zero-order optimization scheme for geodetic
networks. This result has been established in Kotsakis
(2013) where the choice problem for the weight matrix P
was tackled on the basis of the joint minimization of the data
and datum noise effects over all network stations.

The aim of this paper is to present a useful extension
of the previous result by considering the minimization of
the data/datum noise effects over an arbitrary subset of
the network stations. This generalization provides a flexible
treatment of the DCP by allowing the weight matrix of the
reference stations to be tuned to various options regarding
the frame quality of the adjusted network. Essentially, we
formulate herein an MC-based scheme for geodetic network
adjustment under an optimality principle for the estimated
coordinates of any desired group of the network stations.

2 Problem Formulation

The general problem that is treated herein can be briefly
described as follows. Our starting point is a singular system
of normal equations (NEQ)

N .X � Xo/ D u (3)

which is obtained from the linearized LS adjustment of a
geodetic network. It is considered that the rank defect of the
above system is solely caused by the datum deficiency in the
used data. Without loss of generality, we assume that any
nuisance parameters have been eliminated beforehand from

the NEQ system, so that the term X � Xo contains only the
unknown corrections to the approximate coordinates of the
network stations.

The total coordinate vector in Eq. (3) is partitioned as

X D
�

x
x0

�
(4)

where x refers to the reference stations that are included in
the network and x0 corresponds to the new stations whose
coordinates represent the primary unknowns of the estima-
tion problem at hand.

The rationale of our study relies on the exact inversion
of the NEQ system using the datum information that is
contained in the known coordinates of the reference stations.
The usual datum choice is provided by the system of (partial)
inner constraints in Eq. (1). The corresponding solution is
obtained through the general formula (Koch 1999)

bX D Xo C �
N C HTH

��1 �
u C HTc

�
(5)

where the constraint matrix H and the vector c are given by
the following expressions

H D �
E 0

�
(6)

c D E
�
xext � xo

�
(7)

The covariance (CV) matrix of the above solution has the
form (Koch 1999)

(8)

and it corresponds to a generalized inverse of the normal
matrix with minimum trace over the reference stations.1 This
is a well known result in network optimization theory upon
which the use of inner constraints was introduced in geodetic
practice (Blaha 1971); see also Grafarend (1974) and Schmitt
(1982).

The CV matrix from Eq. (8) reflects only the data noise
effect in the estimated coordinates, thus ignoring the influ-
ence of random errors in the known coordinates xext of the

1The minimum-trace property of the error CV submatrix †
Ox in Eq. (8)

is equivalent to a simple (unweighted) LS fit of the adjusted network
to the known coordinates xext of the reference stations using the
Helmert transformation model that involves only the non-estimable
frame parameters of the underlying network.
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reference stations. The latter introduce a datum-related noise
in the estimated solution which reflects the uncertainty of the
(non-estimable part of the) coordinate system itself for the
adjusted network. The optimal control of this datum noise
effect, concurrently with the data noise effect, is an important
issue for the minimally constrained network adjustment,
however it cannot be handled through the classic inner
constraints.

An additional concern stems from the fact that the
minimum-trace property of the previous CV matrix refers
only to its part related to the reference stations. The
coordinates of the new stations are not estimated in
an optimal way under the choice of Eq. (1). A worthy
enhancement, therefore, is to look for an MC matrix Q
to replace the classic inner-constraint matrix E, so that the
revised datum constraints

Q
�
x � xext� D 0 (9)

yield the best accuracy for the estimated coordinates at the
new stations (or any selected subset of network stations) with
respect to the desired frame which is realized by the reference
stations.

A similar version of the above problem was presented
in Kotsakis (2013) for the case of the joint minimization
of the data/datum noise effects over all network stations.
The theoretical investigation in that study showed that the
MC matrix should have the factorized form Q D E P,
with P being a suitable weight matrix for the reference
stations.

Herein we treat the case of minimizing the data/datum
noise effects over an arbitrary subset of the network stations.
The optimal MC matrix should again have the same factor-
ized form while the weight matrix of the reference stations
will have a more general structure than the one given in
Kotsakis (2013).

3 General Expressions for the CVMatrix
of a MC Solution

Before we proceed with the optimal datum choice in min-
imally constrained networks (more specifically, the optimal
choice of the weight matrix for the reference stations), it is
instructive to review the various CV matrices involved in the
accuracy assessment of the estimated network coordinates.

In general, the total CV matrix of a MC solution can be
expressed as a sum of two components

†total
bX D †obs

bX C †mc
bX (10)

which contain the contributions from separate error sources,
that is the data and datum noise effects, respectively. Their

analytic forms are derived through straightforward covari-
ance propagation to Eq. (5) and they are given by the general
expressions

†obs
bX D �

N C HTH
��1

N
�
N C HTH

��1
(11)

and

†mc
bX D �

N C HTH
��1

HT†cH
�
N C HTH

��1
(12)

The previous equations are valid for any network solution
that is determined by an arbitrary set of MCs

H .X � Xo/ D c (13)

where the pseudo-observation vector c is associated with a
prior CV matrix †c.

Taking into account well known algebraic identities from
the MC theory in singular NEQ systems (e.g. Kotsakis 2012),
the following equivalent expressions can be also used

†obs
bX D �

N C HTH
��1 � QET

�
H QET

	�1� QEHT
	�1 QE (14)

and

†mc
bX D QET

�
H QET

	�1

†c

� QEHT
	�1 QE (15)

where Ẽ denotes the inner-constraint matrix for the entire
network which, in accordance to the partition of Eq. (4), is
expressed as

QE D �
E E0 �

and N QET D 0 (16)

For more details and the mathematical proofs of the pre-
ceding equations see Kotsakis (2012, 2013). Note that, for
simplicity, the a priori variance factor is assumed to be equal
to one.

The CV matrix †obs
bX is always singular and it contains the

effect of the data noise on the MC solution. It corresponds
to a reflexive generalized inverse of the normal matrix N and
its rank defect is equal to the datum defect of the network
observational model. The trace minimization of this matrix
was used as a criterion for solving the DCP in the context
of network optimization theory (e.g. Blaha 1971; Schmitt
1982), thus leading to the classic type of inner constraints
for geodetic network adjustment.

The CV matrix †mc
bX is also singular and it reflects the

datum noise effect in the MC solution. In fact, it quantifies
the accuracy of the estimated coordinates due to random
errors in the pseudo-observation vector c. From a geodetic
viewpoint, it is a necessary component for the realistic accu-
racy assessment of frame realizations obtained via minimally
constrained networks on a number of reference stations. In
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such cases the general MCs of Eq. (13) should be formulated
in the partitioned form

�
Q 0

�

„ ƒ‚ …
H

�
x � xo

x0 � x0o
�

„ ƒ‚ …
X�Xo

D Q
�
xext � xo�

„ ƒ‚ …
c

(17a)

or equivalently

Q
�
x � xext

� D 0 (17b)

where Q is an arbitrary MC matrix to be applied to the
reference stations, which will be optimally determined in the
next section.

Note that the vector c is often set to zero by selecting the
approximate coordinates of the reference stations to be equal
to their a priori known values in the desired frame. This does
not eliminate the datum noise effect which should be always
accounted in terms of the matrix †mc

bX (see Eq. 12 or 15) using
the auxiliary covariance expression

†c D Q†ext
x QT (18)

where †ext
x corresponds to the prior CV matrix of the refer-

ence station coordinates xext.

4 Optimal Datum Choice in MC
Networks: A General Formulation

For the purpose of this study, the optimal datum choice
is linked to the minimization of an objective functional
that quantifies the accuracy of the estimated coordinates at
(all or part of) the network stations. A standard option for
this functional is the trace of the total CV matrix †total

bX
which was analytically described in the previous section.
Hence, the DCP is formulated in terms of the optimization
problem

min
Q

t r
�

S †total
bX ST

	
(19)

or, more explicitly

min
Q

t r
�

S †obs
bX ST C S †mc

bX ST
	

(20)

where Q is the sought MC matrix and S corresponds to
a “selection matrix” for the participating stations in the
optimality principle. Note that the MCs are applied only
to the reference stations (see Eq. 17) while the optimality
principle may refer to any subset of network stations.

Considering the partition scheme in Eq. (4), some exam-
ples of the selection matrix are S D �

I 0
�
, S D �

0 I
�
,

S D I which can be used for the accuracy optimization of
the estimated coordinates at the reference stations, at the new
stations, or at all network stations, respectively.

The MC matrix that satisfies the optimality principle in
Eq. (20) can be derived from the equation

@tr
�

S†obs
bX ST

	

@Q
C

@tr
�

S†mc
bX ST

	

@Q
D 0 (21)

The dependence of†obs
bX and†mc

bX on the matrix Q stems from
Eqs. (14) and (15) taking also into account the relationships
in Eqs. (17) and (18). After some lengthy derivations the
solution of the last equation is obtained as

Q D E
�
† C †ext

x

��1
(22)

where the matrix † is defined by the formula

(23)

(the above partitioning is compatible with the one introduced
in Eq. 4). The proof of the above result for the case S D
I is given in Kotsakis (2013) whereas the proof for an
arbitrary selection matrix S ¤ I can easily be obtained as
a straightforward extension of the derivations given in that
paper.

4.1 General Remarks

The optimal weight matrix for the reference stations in MC
network adjustment has the general form

P D �
† C †ext

x

��1
(24)

where †ext
x is the CV matrix of their prior coordinates and

† is an auxiliary matrix obtained by Eq. (23). We underline
that the last expression stems from a formal optimization
scheme which has led to the factorized form of Eq. (22),
thus proving that the weighted inner constraints is indeed the
appropriate tool to ensure special optimal properties for the
realized frame in a minimally constrained network.

The weight matrix P depends on two components each of
which has a distinct role in the MC network adjustment. The
first component is responsible for minimizing the propagated
data noise on the estimated coordinates of a group of network
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stations that is specified by the selection matrix S. The sec-
ond component, on the other hand, is related to the filtering
of the random errors in the known reference coordinates from
the final network solution. This dual role of the weight matrix
is dictated by the joint presence of the data and datum noise
effects, both of which influence in their own way the frame
quality in the adjusted network.

4.2 Minimization of the Data Noise Effect

If we ignore the random errors in the known reference
coordinates (i.e. †ext

x D 0) then the weighted MCs take the
form

E †�1
�
x � xext

� D 0 (25)

and the resulting network solution will have the minimum
data noise effect at the stations specified by the selection
matrix S which is hidden in the weight matrix †�1; see
Eq. (23).

If the selection matrix involves only the reference stations
of the underlying network, that is S D �

I 0
�
, then it can be

shown that Eq. (25) is reduced to the form

E ETE
�
x � xext� D 0 (26)

which, due to the invertibility of the matrix E ET, is equiva-
lent to

E
�
x � xext

� D 0 (27)

In this special case, therefore, we reproduce the classic
(unweighted) inner constraints whose optimality is solely
related to the minimization of the data noise effect at the
reference stations.

4.3 Minimization of the Datum Noise Effect

If we consider the datum noise minimization in the MC
solution without accounting for the data noise effect, that is

min
Q

t r
�

S†mc
bX ST

	
(28)

then the optimal datum choice will be provided by the
weighted MCs

E
�
†ext

x

��1 �
x � xext

� D 0 (29)

In this case the weight matrix of the reference stations is
independent of the selected stations that participate in the

optimality principle. In contrast to the data noise effect,
the minimization of the datum noise effect, over all or part
of the network, requires a fixed weighting of the reference
stations in terms of their prior CV matrix. In fact, if we take
into account Eqs. (15)–(18) then we obtain the covariance
decomposition formulae

†mc
bX D QET†™

QE (30)

and

†™ D �
QET

��1
Q †ext

x QT
�
EQT

��1
(31)

where the matrix †™ describes the accuracy with which the
(non-estimable) frame parameters are defined in the mini-
mally constrained network. The datum noise minimization
is equivalent to the trace minimization of †™ (see Kotsakis
2013) and it will not be affected by the selection matrix S
that appears in Eq. (28).

5 Conclusions

The weight choice problem of the reference stations in
minimally constrained networks has been investigated in this
paper. Our treatment is based on the optimization of the total
accuracy (considering both the data and datum noise effects)
of the estimated coordinates over all possible choices of MCs
on the reference stations. As a result of this procedure, we
obtained a weighted type of MCs which encompasses the
classic (unweighted) inner constraints as a special option
within a more general setting for the datum choice problem.

In contrast to Kotsakis (2013) the current treatment allows
the accuracy optimization of the minimally constrained solu-
tion over an arbitrary subset of network stations and not nec-
essarily over the entire network. Hence, the weight matrix of
the reference stations is not generally unique since it depends
on the network stations that participate in the optimality
principle of Eq. (20). It is noted that the use of (the inverse of)
the prior CV matrix of the known reference coordinates as a
weight matrix is warranted only for minimizing the datum
noise effect in the estimated network coordinates – it does
not contribute to the optimal control of the data noise effect
over all or part of the network.

A useful extension of the present study is the treatment
of the weight choice problem for the reference stations in
the case of non-minimal datum constraints. In our current
approach the matrix E refers only to the non-estimable
frame parameters and the implementation of the datum
constraints Q .x � xext/ D 0 does not affect any estimable
frame characteristics in the underlying network. The case
where the constraint matrix Q refers also to estimable frame
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parameters (e.g. scale in the case of GNSS networks) is more
complicated since several properties that have been used in
this paper’s algebraic derivations will simply not hold true.
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Atmospheric Loading andMass Variation
Effects on the SLR-Defined Geocenter
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Abstract

The geocenter time series can conveniently be inferred by evaluating satellite orbit
perturbations in a dynamical model. We base our approach on nearly 30 years of Satellite
Laser Ranging (SLR) observations to the LAGEOS satellites and recent model standards.
We model station deformations by atmospheric pressure loading and we model orbit
perturbations by mass variations in the atmosphere. Both effects on the geocenter realization
are analyzed.

Keywords

Atmospheric mass variations • Atmospheric pressure loading • Geocenter • SLR

1 Introduction

Satellite Laser Ranging (SLR) contributes to the determina-
tion of the International Terrestrial Reference Frame (ITRF)
besides the other space geodetic techniques as Global Posi-
tioning Service (GPS), Doppler Orbitography and Radiopo-
sitioning Integrated by Satellite (DORIS), and Very Long
Baseline Interferometry (VLBI). The SLR data are gathered
within the International Laser Ranging Service (ILRS, Pearl-
man et al. (2002)). In the most recent ITRF realization, the
ITRF2008 (Altamimi et al. 2011), SLR is the only one to
define the origin of the reference frame which by definition
coincides with the center of mass of the Earth system or the
geocenter. The sensitivity of SLR to the geocenter can also be
exploited to monitor variations of the geocenter. First results
are reported by Watkins and Eanes (1997), a recent series is
published by Cheng et al. (2013). A general observation is
that the geocenter shows seasonal variations with amplitudes
in the millimeter range.

R. König (�) • F. Flechtner • J.-C. Raimondo • M. Vei
GFZ German Research Centre for Geosciences, c/o DLR
Oberpfaffenhofen, 82234 Wessling, Germany
e-mail: koenigr@gfz-potsdam.de

Geocenter time series show amongst other model defi-
ciencies mass redistributions in the Earth system, mass
redistribution phenomena include among others atmospheric
pressure field variations and non-tidal mass transport in the
oceans and atmosphere. The atmosphere acts in two ways.
Atmospheric pressure loading (APL) changes the coordi-
nates of the stations that realize the Terrestrial Reference
Frame (TRF). And the atmospheric mass redistributions
contribute to the changing gravity field. The atmospheric
mass variations act also on the oceans which in turn lead to
mass variations within Earth’s water and land mass. Those
effects are available in form of the so-called GRACE Atmo-
sphere and Ocean Dealiasing (AOD) products (Flechtner and
Dobslaw 2013). It should be noted that these models are
forward models in GRACE data evaluation, not the result of
GRACE observations, and not perfect models.

Depending on the approach of how the geocenter time
series are being determined the variations are given either
with respect to the center of the TRF or with respect to the
center of the gravity field model. We evaluate SLR data by
Precise Orbit Determination (POD) by our software system
EPOS-OC (see Zhu et al. (2004)). In a differential orbit and
parameter improvement process all dynamic, geometric and
measurement models are set up to estimate the parameters
describing the orbit, parameters for mitigating the influence
of model errors, and those parameters we are interested in.

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_60
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Fig. 1 Comparison of dynamic and geometric geocenter solutions

For the geocenter the degree one terms of the gravity field
are solved for, thus the results are relative to the center of the
TRF.

Kar (1997) recommends to infer geocenter motion rather
from a geometric solution than using degree one terms
because non-zero degree one terms result in a rotating ref-
erence system where corrections are needed to account for
the centrifugal, Euler, and Coriolis accelerations. For the
following analysis these accelerations are neglected. In order
to assess the possible error contribution from that both the
dynamic and the geometric approaches are compared in a
short test period of 2 years, the results are displayed in Fig. 1.
For the geometric approach EPOS-OC estimates bias, annual
and semi-annual periodic motions of the TRF per year. So
a one-to-one comparison of both approaches is not possible
because of the different number of solved for parameters.
Also Kar (1997) points out that the one-to-one relationship
of the geometric and dynamic approach is difficult to achieve
in real world applications. Figure 1 reveals similarities in the
seasonal behaviour but also discrepancies when looking at
monthly differences which show standard deviations of 1.8,
2.0, and 2.9 mm in X, Y, and Z respectively. There are no
significant differences between the annual amplitudes of the
dynamic and the geometric solutions.

For the solution a datum has to be chosen. Cheng et al.
(2013) fix the coordinates of the SLR ground stations to
a certain reference frame. We are going to apply Helmert
conditions that care for the datum defect. The choice of a
consistent datum in SLR applications over long time periods
is practically impossible. Therefore we put some efforts in
qualifying our datum choice for determining geocenter time
series.

Once the proper datum is found the geocenter time series
is compared to cases when APL is applied to the TRF and
when AOD mass variations are applied to the gravity field.

2 Data

LAGEOS launched in 1976 (ILRS 2013) is a cannon ball
satellite in an orbit with a semi-major axis of 12,270 km, an
inclination of 109:8ı, and an eccentricity of 0.004. Its twin
LAGEOS-2 launched in 1992 orbits with a semi-major axis
of 12,160 km, an inclination of 52:6ı, and an eccentricity
of 0.014. We use SLR data to LAGEOS from 1983 to 2011
for this analysis, and SLR data to LAGEOS-2 from 1992 to
2011. The orbital fits of the operational analysis is shown in
Fig. 2. It becomes clear that the quality of the data steadily
improves from the early years until about the advent of
LAGEOS-2. From then on the RMS of orbital fits size around
the centimeter. For LAGEOS 1,750,000 Normal Points are
evaluated, for LAGEOS-2 1,165,000. For the LAGEOS data
evaluation before the advent of LAGEOS-2, 15-day arcs are
used, from then on 7-day arcs. So in the early years the mean
number of NPs per arc lies around 2,200, later on it lies
around 1,400 per satellite with a light but steady increase
over time.

The APL concerns deformations of the solid Earth due
to atmospheric pressure. It is computed in-house for all the
sites of this study based on the theory of Farrel (1972).
Input surface pressure fields come from the European Centre
for Medium-Range Weather Forecasts (ECMWF 2013). For
actual periods the ECMWF operational data are used, thus
those data that are input for the generation of the GRACE
AOD products. As these data have only been archived since
the beginning of the GRACE mission, for our purpose the
archive needs to be expanded back in time. This is done via
the re-analysis data ERA-40 (ECMWF 2013) covering mid
1957 to mid 2002 and alternatively ERA-Interim (ECMWF
2013) covering 1979 up to date.

Site displacements due to APL exhibit sub-daily to sea-
sonal signals with amplitudes up to 20 mm. An example is
shown in Fig. 3 for station Maidanak. Maidanak is located
in the middle of Asia. Therefore the effect of APL is quite
pronounced. Figure 3 also shows a comparison of the in-
house derived displacements with those generated indepen-
dently by Petrov and Boy (2004) with a good agreement
between the two.

The GRACE AOD products provide short term mass
variations from atmosphere and ocean. Hydrological mass
redistributions are not included on purpose because hydro-
logical models are of lower quality. Within the GRACE
project the AOD products thus serve to take off the sig-
nals from atmosphere and ocean that otherwise corrupt the
signal from hydrology. GRACE gravity field time series
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show therefore mainly variations due to the hydrological
cycle (Schmidt et al. 2008). This is demonstrated in Fig. 4
where the sensitivity level of GRACE is displayed versus the
various signals in the frequency domain. Figure 4 also shows

the sensitivity level of LAGEOS. In comparison to the signal
curves it becomes clear that LAGEOS is also sensitive to
the atmospheric and oceanic signals in the very low degrees.
Thus again if atmospheric and oceanic signals are taken
off LAGEOS may also sense hydrology in the very long
wavelengths.

3 Approach

The geocenter is estimated via the dynamic approach by
evaluating SLR data to LAGEOS and LAGEOS-2 with
EPOS-OC. The standards mostly follow the Conventions
2010 (Petit and Luzum 2010) of the International Earth
Rotation and Reference Systems Service (IERS 2013). In
particular we take for the gravity field model the static part
of EIGEN-6C (Förste et al. 2011), for the a priori station
coordinates the ILRS adoption SLRF2008 (ILRS 2013) of
the ITRF2008, and for the Earth orientation parameters the
“EOP 08 C04 (IAU2000)” series (IERS 2013).

The solved for parameters of interest are the station
coordinates and the degree one to five spherical harmonic
coefficients of the gravity field. The degree one and two
spherical harmonics are stacked to monthly solutions, the
degree three to five spherical harmonics and the station coor-
dinates are stacked to global solutions. The degree two coef-
ficients are also solved for monthly because over these time
spans considerable variations are taking place (see Cheng
and Tapley (2004)) that, if not modelled, could contamine the
degree one results. The C(1,1), S(1,1), and C(1,0) parameters
represent the dynamic geocenter solution and correspond to
X-axis, Y-axis, and Z-axis offsets respectively of a geometric
solution.

The datum defect of this approach is six, three translations
and three rotations are free. There is no defect in scale for
it is provided by the highly precise SLR range observations.
Therefore we apply three no-net-translation and three no-net-
rotation conditions (NNRT), i.e. the Helmert conditions, for
the station coordinates to the solution. At this point it must
be noted that a common datum for all the 15-day and 7-day
solutions can practically not be found as the composition of
the station network changes considerably over time.

4 Results

A first time series of geocenter estimates is given in Fig. 5.
For this no APL and no AOD is applied. For the datum the
NNRT conditions are applied to 8 stations out of all which
show a good performance in terms of number of observations
and of quality. Figure 5 shows some evident systematics
for the early years that is the period before the advent of
LAGEOS-2.
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Fig. 5 Basic geocenter time series

In order to check whether these systematics depend on the
choice of the datum, a second solution is generated where
the NNRT conditions are applied not only to 8 but to all 122
stations that showed up in the analysis period of 29 years.
Figure 6 displays the differences of this new geocenter time
series to the previous one. Indeed the significant impact of
the choice of the datum becomes evident. The early years
of the analysis period are characterized by varying biases,
later on when both satellites are present the bias gets stable.
Therefore a reliable solution becomes available from 1993
onwards.

Next the APL derived from ERA-40 data is applied to the
solutions, the difference with respect to the solution without
APL is given in Fig. 7. The analysis period is restricted to the
years 1983–2001 (the ERA-40 data end shortly after) in order
to have a common datum for the following comparisons. In
this way the results will be based on the same datum and
therefore differences between different results will not suffer
from a datum-induced bias. Figure 7 shows seasonal signals
also in the differences, and significant biases or significant
trends can not be observed.

Alternatively also APL derived from ERA-Interim data
is applied to the solutions. Table 1 compiles the statistics
for 109 monthly values spanning the years 1993–2001 for
all cases when APL is applied from the two data bases and
when no APL is applied. In summary the application of APL
does not introduce any biases or trends to the geocenter
time series. There is hardly any difference between the
application of APL based on ERA-40 or on ERA-Interim
data. It is obvious that the application of APL removes some
signal, in particular the yearly amplitudes of the C(1,0) series
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Fig. 6 Differences of geocenter time series with different datums
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get damped by approximately 1.7 mm (though statistically
hardly at the significance level). Sośnica et al. (2013) also
report a reduction in the Z amplitude by 1.1 mm. Figure 8
makes the signal reduction obvious by zooming into two
geocenter time series when APL is applied or not. For
these 2 years standard deviations of the differences are
0.4/0.5/1.4 mm for C(1,1)/S(1,1)/C(1,0) respectively.

To see the impact of AOD on geocenter determination, the
same period as before, namely 1993–2001, is analyzed where
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Table 1 Comparison of geocenter series with APL from ERA-40 and
from ERA-Interim and with AOD from AOD1B RL04 to a series
without APL and without AOD for the years 1993–2001

No APL APL APL AOD
No AOD ERA-40 ERA-Interim AOD1B RL04

Mean [mm]

C(1,1) 5:3˙0:4 5:3˙0:4 5:3˙0:4 5:1˙0:4

S(1,1) �0:4˙0:4 �0:4˙0:4 �0:4˙0:4 �0:2˙0:3

C(1,0) 3:6˙1:0 3:3˙1:0 3:4˙1:0 3:0˙1:0

Trend [mm/a]

C(1,1) 0:3˙0:2 0:3˙0:2 0:3˙0:2 0:4˙0:2

S(1,1) �0:3˙0:1 �0:2˙0:1 �0:2˙0:1 �0:3˙0:1

C(1,0) 0:7˙0:4 0:7˙0:4 0:7˙0:4 0:7˙0:4

Annual amplitude [mm]

C(1,1) 2:2˙0:6 2:2˙0:6 2:2˙0:6 2:3˙0:6

S(1,1) 3:8˙0:4 4:1˙0:4 4:1˙0:4 3:4˙0:4

C(1,0) 10:6˙1:2 8:9˙1:2 8:9˙1:2 11:1˙1:2

Semi-annual amplitude [mm]
C(1,1) 0:3˙0:6 0:3˙0:6 0:3˙0:6 0:4˙0:6

S(1,1) 0:9˙0:4 0:8˙0:4 0:8˙0:4 0:9˙0:4

C(1,0) 3:5˙1:2 4:1˙1:2 4:1˙1:2 3:5˙1:1
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Fig. 8 Blow up of geocenter time series with and without APL

the AOD1B RL04 products are adopted. The AOD1B RL04
products are taken from Flechtner et al. (2008), a series that
extends back in time to serve the pre-GRACE era. Recent
GRACE AOD1B RL05 products (Flechtner and Dobslaw
2013) start in 2001 only. Table 1 is augmented to give also
the statistics for the AOD case for comparison. It seems
that now the amplitudes get slightly amplified when AOD is
considered. However this statement is below the significance
level. Figure 9 provides a close up of the same 2 years as in
Fig. 8 of geocenter estimates where AOD is or is not applied.
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For these 2 years standard deviations of the differences are
0.3/0.4/0.7 mm for C(1,1)/S(1,1)/C(1,0) respectively. So the
variations are a factor of up to 2 smaller compared to the APL
case.

An overlap between AOD1B RL04 and RL05 products is
given for the year 2001 only. To check for a bias between the
two products, geocenter solutions for the year 2001 only are
generated with either AOD1B RL04 or RL05 applied. As the
same data base is used, the datum choice does not introduce
any bias. For 12 monthly differences non-significant
biases result with values of 0.0˙0.1/�0.4˙0.1/0.2˙0.3
for C(1,1)/S(1,1)/C(1,0) respectively. So there seems to be
no bias between the solutions when the AOD1B RL05 or
AOD1B RL04 products are applied.

5 Conclusions

29 years of LAGEOS and 20 years of LAGEOS-2 data up to
2011 are processed in order to derive a geocenter time series
via the dynamic method in form of monthly C(1,1), S(1,1)
and C(1,0) coefficients. The fixing of the datum introduces
a bias, from 1993 onwards with the advent of LAGEOS-
2 a stable solution is achieved. The geocenter time series
shows annual amplitudes of 2–4 mm in C(1,1) and S(1,1)
and 9–11 mm in C(1,0). The results in C(1,1) and S(1,1)
are well in agreement e.g. with the geometric solutions by
Cheng et al. (2013) and Sośnica et al. (2013) but about
50% larger in C(1,0). In order to investigate the impact
of atmospheric loading, site displacements derived from
ECMWF pressure fields are adopted for the solution. This
reduces the amplitudes of the geocenter time series in the
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millimeter range. Biases by using APL based either on ERA-
40 or on ERA-Interim data are not observed. Also the impact
of atmospheric mass variations on the geocenter solution is
examined. The impact of AOD is some factors smaller than
that of APL but with a tendency to increase the amplitudes.
Biases between the use of AOD1B RL04 and RL05 products
are not observed.
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Radargrammetric Digital Surface Models
Generation fromHigh Resolution Satellite SAR
Imagery: Methodology and Case Studies
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Francesca Fratarcangeli, and Mattia Crespi

Abstract

The goal of this paper is to investigate the potential of high resolution SAR satellite imagery
for DSMs generation using the radargrammetric technique. This study is methodological,
devoted to illustrate both the fundamental advantages of this approach and also its
drawbacks. As for photogrammetry, the achievable accuracy level of a radargrammetric
generated DSM is strictly related both to the image orientation and to the image matching
procedure. A rigorous orientation model based only on metadata information and an
innovative matching strategy have been developed, so that a complete suite for the DSMs
generation through radargrammetry has been embedded in SISAR, a scientific software
developed at the Geodesy and Geomatic Division of the University of Rome “La Sapienza”.
Here we discuss the results coming from two COSMO-SkyMed SpotLight stereo pairs
(ascending and descending) acquired over the area of Como (Northern Italy), characterized
by a mixed land cover (flat urban area, steep forested mountain slopes). Three DSMs
(ascending, descending and merged) have been generated and compared with a LiDAR
DSM; the accuracy of the merged product is around 7 m, better than the accuracy of the
ascending and descending DSMs (around 8–10 m).

Keywords

Digital surface models • High resolution SAR • Methodology • Radargrammetry • Stereo

1 Introduction

Synthetic Aperture Radar (SAR) satellite systems may give
important contributions in terms of Digital Surface Models
(DSMs) generation, considering their complete indepen-
dence from logistic constraints on the ground and weather
conditions. Starting from the SAR data, two different meth-
ods may be used to generate DSMs: the well-known inter-
ferometric and the radargrammetric one. In particular, the
radargrammetric approach was first used in the 1950s; then

A. Nascetti (�) • P. Capaldo • F. Pieralice • M. Porfiri •
F. Fratarcangeli • M. Crespi
Geodesy and Geomatic Division - DICEA - University of Rome
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it was less and less used, due to the quite low amplitude
resolution of SAR imagery, if compared to their high phase
resolution (Leberl 1990). Only in the last years the impor-
tance of the radargrammetric approach is rapidly growing
due to the new high-resolution imagery (up to 1 m GSD)
(Raggam et al. 2010; Balz et al. 2013; Gutjahr et al. 2014).
Therefore, here we focus on the present potential of high
resolution SAR satellite imagery for DSMs generation with
a radargrammetric stereo-mapping approach, so that the goal
of this paper is methodological, devoted to illustrate both
the fundamental advantages of this approach and also its
drawbacks. As regards the pros, it is worth to mention the
independence from image coherence, unlike interferometric
approach, which can be guaranteed only with an extremely
short (tens of seconds) revisit time, the parsimony (it can
work with just a couple of images), and therefore the short
time required for imagery collection (from tens of minutes

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
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to few hours), also thanks to the mentioned independence
from illumination and weather. Concerning the cons, the well
known deformations of SAR imagery may cause remark-
able difficulties with complex morphologies and have to be
duly accounted for the acquisition planning. The achievable
accuracy level of a DSM generated through radargrammetry
is strictly related both to the image orientation and match-
ing processes. Generally, SAR stereo restitution has been
modelled utilizing two Doppler equations and two range
equations (Chen and Dowman 1996, 2001) and the optimum
geometric configuration is when the target is observed in
opposite-side view; however it causes large geometric and
radiometric disparities hindering the image matching proce-
dure. A good compromise is to use a same-side configuration
stereo pair with a base to height ratio ranging from 0.25 to 2
(commonly between 0.35 and 0.70), to increase the efficiency
in the correlation image process.

A rigorous orientation model based only on metadata
information and an innovative matching strategy have been
developed. A complete suite for the DSMs generation
through the radargrammetric approach has been embedded
in SISAR (Software per Immagini Satellitari ad Alta
Risoluzione), a scientific software developed at the
Geodesy and Geomatic Division of the University of Rome
“La Sapienza” in the IDL (Interactive Data Language,
www.exelisvis.com) environment. In order to demonstrate
the radargrammetric mapping potential of high resolution
SAR satellite imagery, several tests were carried out
using data with different acquisition modes (SpotLight,
StripMap) and coming from different platforms (COSMO-
SkyMed, TerraSAR-X, RADARSAT-2). Here, for the sake
of brevity, we can discuss only the results related to the
COSMO-SkyMed imagery acquired on the Como area
(Northern Italy), characterized by mixed morphology and
land cover. Sections 2 and 3 summarize the fundamentals of
radargrammetric orientation and matching, also underlying
the crucial role of the orientation model within matching,
whereas Sect. 4 discusses the results regarding Como area;
in the end, some conclusions and possible future prospects
are outlined.

2 Radargrammetric Orientation Model

The radargrammetry technique performs a 3D reconstruc-
tion based on the determination of the sensor-object stereo
model, in which the position of each point on the object
is computed as intersection of two radar rays coming from
different positions and therefore with two different incidence
angles. Actually, these radar rays can be simply modelled as
two segments of measured lengths centered in two different
positions (along two different satellite orbits), so that the
intersection generating each object point is one of the two

possible intersections between two circumferences centered
in the two different positions and laying into two planes
orthogonal to the two different satellite orbits, whose radii
are equal to the segment measured lengths. Consequently, the
model is based on two standard equations. The first equation
of (1) represents the general case of zero-Doppler projection:
in zero-Doppler geometry the target is acquired on a heading
that is perpendicular to the flying direction of satellite; the
second equation of (1) is the slant range constrain. The cou-
ple of equations in a local Cartesian system reads (Capaldo
et al. 2011):

8
ˆ̂
<̂

ˆ̂
:̂

VXS � .XS � XP / C VYS � .YS � YP / C
VZS � .ZS � ZP / D 0
q

.XS � XP /2 C .YS � YP /2 C .ZS � ZP /2

� .DS C CS � I / D 0

(1)

where
XP ; YP ; ZP are the coordinates of the ground point

P (time independent)
XS; YS ; ZS are the coordinates of the satellite sen-

sor (time dependent)
vSX; vSY ; vSZ are the components of the satellite sen-

sor velocity (time dependent)
DS is the so-called near range
CS is the column spacing
I is the column position of point P on the

image
The relationship between image coordinate J and the

time t , can be expressed by a linear relation

t D t0 C 1

PRF
J (2)

in which the start time of the acquisition (t0) and the Pulse
Repetition Frequency (PRF), the sampling frequency in
azimuth direction, are involved.

Starting from the few state vector available in metadata,
the orbit segment must be reconstructed using some kind of
interpolation in order to compute the satellite position for
each line. Here, it was adopted the Lagrange polynomials:
these interpolation is sufficiently accurate to model the short
orbital segment and its well-known problems at the edges
do not affect the modelling since the images are acquired in
the central part of the orbital segment. Additionally, using a
standard divide and conquer algorithm it was possible to find
in a rapid and accurate way the epoch when satellite orbit is
perpendicular to the line of sight between the sensor and the
ground point. In recent studies has been proven that, given
the high precision of the electronic metadata parameters and
the high accuracy of position and velocity state vectors, the
orientation can be performed with high accuracy without the
refinement of Ground Control Points (GCPs) (Capaldo et al.

http://www.exelisvis.com/docs/using_idl_home.html
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2011). This fact represents a significant advantage of high
resolution SAR imagery with respect to the optical ones,
whose precise orientation requires at least a few GCPs.

Furthermore, the presented radargrammetric orientation
model can be conveniently parameterized using the Rational
Polynomial Coefficients (RPCs), recognized as a suitable
model for high resolution SAR imagery (Zhang and Zhu
2008; Zhang et al. 2010). In particular, a tool for RPCs gen-
eration, based on a so-called terrain independent scenario, is
implemented in SISAR (Capaldo et al. 2012) and it has been
used to reduce the computational effort of matching process,
indeed the Rational Polynomial Functions (RPFs) provide a
direct mathematical relationship (rapid and easy to compute)
to convert ground to image coordinates (see Sect. 3.2).

3 SAR Image Matching

The development of a fully automatic, accurate and reliable
image matching method that adapts to different images
and scene contents is a challenging problem. Dissimilarities
between SAR images due to occlusion, geometric distor-
tions, radiometric differences and speckle noise must be
taken into account and this is one of the reasons why many
different image matching approaches have been developed
in recent years. Hereafter the basic features of our origi-
nal matching procedure, presently under patenting by the
University of Rome “La Sapienza”, are outlined.

3.1 Area Selection and Filtering

At the beginning of the image matching procedure, it is
mandatory to select an area of interest and a coarse height
range (approximate maximum and minimum terrain ellip-
soidal heights), in order to reduce the object space and to
remarkably decrease the processing time.

Moreover, SAR imagery are affected by a particular form
of noise called speckle and that they exhibit a grainy appear-
ance (salt-and-pepper) hindering target recognition and cor-
rect matching. In order to reduce speckle, three different kind
of well-known (but never applied to high-resolution SAR
imagery) adaptive spatial filters (Lee, Kuan, GammaMap)
have been considered for a preprocessing enhancement.
Nevertheless, thanks to a number of tests, it was highlighted
that these spatial filters significantly increase the number of
points at the expense of vertical accuracy, since they mitigate
the speckle but smooth the image features.

Starting from this experimental awareness, an original
filtering procedure dynamic filtering has been developed, in
order to maximize not only the number of points, but also
their quality. Unlike the traditional preprocessing techniques,
the image filtering is done directly during the matching

procedure; the leading idea is to find all the possible matched
point using the raw imagery and, only after, apply speckle
spatial filters (i.e. Lee, Kuan, GammaMap) to search points
in areas where the previous search failed. This allows to
operate at several pyramidal levels (with different resolution)
independently and in different ways, e.g. making one or more
filtering cycles.

3.2 ImageMatching Strategy

The image matching strategy is based on an hierarchical
solution with a geometrical constrain, and the corresponding
points (actually, so-called primitives) are searched using
an area based matching criterion and analysing the signal-
to-noise ratio (SNR) (Ma et al. 2004). In this sense, the
peculiarity of the proposed algorithm is to use the image ori-
entation model (re-parameterized in form of RPCs) to limit
the search area of the corresponding primitives, allowing a
fast and robust matching. Primitives are searched directly
in the object space re-projecting and re-sampling the stereo
images on a regular grid in the ground geometry, that is in
the ground reference system. In fact starting from a ground
point with a selected height, the orientation model provides
point image coordinates and thus it is possible to back-
transfer the SAR radiometric information from slant-range to
ground geometry. Therefore it is important to underline that
the effectiveness of the matching algorithm is strictly related
to the orientation model accuracy, since the strategy is based
on geometrical constrains.

From the practical point of view, after images prepro-
cessing and area selection, a 3D grid is generated in ground
geometry, with several layers slicing the entire height range.
Starting from this 3D grid, by means of the orientation
model, the two images are re-projected on each layer creating
two voxel sets (one for left and one for right image). Through
this process (see Fig. 1), the two generated voxel sets contain
the geometrically corrected radiometric information in the
same ground reference system. At this point, for each hor-
izontal position (X,Y) of the 3D grid, the main objective is to
identify the correct height comparing the two voxel sets. This
correct height corresponds to the best matching of the two
voxels (for left and right image) at the same height; therefore,
to this aim, the search can be conveniently carried out along
vertical paths.

During the algorithm development different primitive
models have been considered (i.e. Area Based Matching or
Feature Based Matching), and the experimental results have
highlighted that a normalized cross-correlation (NCC) linked
with a signal-to-noise ratio analysis is the more efficient and
accurate method. Overall, for each horizontal position (X,Y),
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Fig. 1 Geometrical constrain and voxel generation

the search of the corresponding primitives consists of the
following steps:
– compute the NCC values along the vertical search path
– find the maximum NCC value along the vertical search

path (see Fig. 2)
– analyse the NCC profile and compute the vertical Signal-

to-Noise Ratio (SNR) according to the formula:

SNRv D 1 C �max

1 C �
(3)

where �max and � are respectively the maximum and
mean value of NCC along the vertical search path; note
that this search mainly examines the correspondence of
primitives in West-East direction for each horizontal layer,
that is orthogonally to the direction of the orbits of the
considered SAR satellite

– to strength the matching a second search is performed
moving the correlation windows in North-South direction
in the selected horizontal layer (see Fig. 2), starting from
the height corresponding to the found NCC maximum
value; accordingly to the same formulation [Eq. (3)] a
second value SNRp is computed

– if �max and both SNRv and SNRp are higher than the
respectively chosen thresholds, the primitives are con-
sidered matched and the height value for the horizontal
position (X,Y) is finally determined
At the end of this process, after investigating and finding

all the corresponding primitives for each (X,Y) position,
an irregular DSM (point cloud) in (X,Y,Z) coordinates is
obtained.

Fig. 2 Search paths

3.3 Pyramidal Approach

The described matching strategy is used in a coarse-to-
fine hierarchical solution, following a standard pyramidal
scheme based on a multi-resolution imagery approach. The
well known advantage of this technique is that at lower
resolution it is possible to detect larger structures whereas
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Fig. 3 Coarse-to-fine approach

Table 1 Como stereopairs characteristics

ASC stereopair DESC stereopair

Date 7/8/11 17/6/11 24/6/11 28/6/11

Area (km) 10 � 10 10 � 10 10 � 10 10 � 10

Inc. Ang. (deg) 28.9 50.8 27.8 55.4

Orbit Asc Asc Desc Desc

Look side Right Right Right Right
B/H 0.6 0.8

at higher resolutions small details are progressively added to
the already obtained coarser DSM. The procedure is started
choosing a suitable image multi-looking considering the
original image resolution.

In this way, at each pyramid step, an intermediate DSM
is extracted and it is modeled by the triangular irregular
network (TIN) using a 2D Delauney triangulation method.
Further, DSM is interpolated on a regular grid in the ground
reference system, becoming the input for the next pyramid
level. Correspondingly, for each horizontal position (X,Y),
the height coming from the DSM obtained in the previous
pyramid step is selected as starting point for the vertical
search path, whereas at the first iteration just a plane with
a mean elevation is set as reference DSM. In this respect it
is worth to underline that, differently from other approaches
Raggam et al. (2010), no external DSMs (for example SRTM
DEM or ASTER DEM) are needed to guide matching.

As long as the resolution and pyramid level increase,
and the DSM approaches the final solution, the mentioned
discretization of the entire height range is correspondingly
refined, so that the height step between the layers of the 3D
grid and also the number of the considered layers decrease
(Fig. 3).

4 Experimental Results

Several stereo pairs, with different image types (SpotLight,
StripMap) coming from different SAR sensors (COSMO-
SkyMed, TerraSAR-X, RADARSAT-2), have been processed
and accuracy evaluations have been performed, comparing
the generated DSMs with more accurate reference DSMs
usually coming from airborne LiDAR. These comparisons
and quality assessment have been carried out using the scien-
tific software DEMANAL (K. Jacobsen, Leibniz University
of Hannover, Germany). Here, for the sake of brevity, we
can discuss only the results related to the COSMO-SkyMed
SpotLight imagery (a descending and an ascending same-
side stereo pair), with a GSD of 1 m, acquired over the area
of Como (Northern Italy), characterized by mixed land cover
(flat urban area, steep forested slopes) (Table 1).

Three DSMs have been generated (ascending, descending
and merged), estimating the heights on a 3 � 3 m grid by a
standard kriging interpolation and they have been compared
with LiDAR DSM with a posting of 1 � 1 m and a height
accuracy of 0.25 m. In particular, the merged DSM (Fig. 4)
has been generated using a combination of the point clouds
that have been previously filtered, removing the matched
points with lower correlation. The accuracy (RMSE) ranges
from 8–10 m for the ascending and the descending DSMs.
The accuracy of descending DSM is worse than the accuracy
of ascending one and it is due to the lower quality of
radiometric information in one of the descending image. In
particular, one image presents some small zones affected by
SAR artefact that hinder the matching procedure. The accu-
racy decreases to 7 m in the merged product (Table 2), with
remarkably leptokurtic error distribution. The improvement
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Fig. 4 Como merged DSM

Table 2 Como DSMs accuracy assessment [m]

DSM BIAS ST. DEV. RMSE LE95

Asc. �2.07 7.69 7.96 22.32

Desc. �1.98 10.76 10.94 34.18
Merged �1.80 7.30 7.52 19.71

of accuracy in the merged DSM is around 0.5 m, with respect
to the accuracy of the ascending DSM since the accuracy of
the descending one is corrupted by the images radiometric
low quality. It is evident both the impacts of acquisition
configuration (ascending vs. descending, causing different
foreshortening and layover) and the benefit of considering
different acquisition configuration over areas characterized
by steep slope. Even if in this case, due to the mentioned
poor radiometry of one descending image, the merged DSM
accuracy improvement is limited the use of at least two stereo
pairs acquired under different look sides can be an effective
strategy to mitigate the SAR distortion problems, obtaining a
more dense point cloud.

5 Conclusions and Future Prospects

The paper discusses the present potential of high resolu-
tion satellite SAR imagery for DSMs generation with a
radargrammetric stereo-mapping approach and presents the
main features of the radargrammetric procedure defined and
implemented in SISAR package. It outlines the orientation
model and, with more attention, it focuses on the original
matching strategy, presently patent pending by the University
of Rome “La Sapienza”. It is based on area based primitive
model and on an hierarchical solution with geometrical
constrain. The leading idea has been to search the corre-
sponding primitives directly in the object space, re-projecting
and re-sampling the stereo images into a 3D ground grid.
The correspondences are looked analysing the signal-to-
noise ratio (SNR) along two perpendicular search paths.
Moreover, a specific speckle dynamic filtering technique has
been designed and embedded into the radargrammetric pro-
cedure, based on three standard speckle filters (Lee, Kuan,
GammaMap).
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The complete radargrammetric processing chain has been
developed and implemented using the IDL development
environment. In order to demonstrate its mapping potential,
several tests were carried out using high resolution SAR
satellite imagery with different acquisition mode (Spotlight,
Stripmap) and coming from different platforms (COSMO-
SkyMed, TerraSAR-X, RADARSAT-2). A homogeneous
DSM assessment procedure has been considered in the
different tests, based on the comparison with a reference
ground truth using the scientific software DEMANAL.
Summarizing the main results of other tests, the DSMs
vertical accuracy is strictly related to the terrain morphology
and land cover. In case of limited SAR distortions (layover
and foreshortening) the observed RMSE values range from
3 to 4 m over bare soil and forest to 6–7 m in more complex
urban areas. Otherwise, with strong SAR distortions, as the
considered area of Como, the accuracy becomes worse and
the terrain morphology may be conveniently reconstructed
using at least two same-side stereo pairs with different
acquisitions (ascending and descending).

Finally, it was demonstrated that radargrammetric stereo-
mapping approach appears a valuable tool to supply topo-
graphic information and it is likely to become an effective
complement/alternative to InSAR technique, since it may
work using a couple of images with a good performance even
over areas (forested or vegetated areas) characterized by low
coherence values.

Although the experimental results have demonstrated that
StereoSAR approach has the capability to give good and
encouraging results, there are still a lot of challenging issues
which need to be considered for further improvements.
Hereafter we propose some ideas for the future:
– efficiency improvement in urban areas: to model the

complicated urban morphology, specific algorithms must
be investigated, also accounting for remarkable features as
double bounces or building shadows; in this respect, some
preliminary investigations applying semiglobal matching
(Hirschmuller 2008)

– accounting for polarimetric information: studying algo-
rithms and techniques for optimizing DSMs generation
from full SAR polarimetric data through radargrammetry;
in particular, the potential of polarimetric imagery and
their derived products (i.e. span, entropy, H-A classifica-
tion maps) should be investigated in order to enhance the
image matching

– interferometry and radargrammetry tight integration: the
two techniques should be considered to exploit the 3D
mapping potential of high resolution satellite SAR data:

radargrammetric DSMs can be used within the InSAR
processing chain to simplify the unwrapping process in
order to avoid areas affected by phase jumps
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Principles and Applications of Polarimetric SAR
Tomography for the Characterization
of Complex Environments

Laurent Ferro-Famil, Yue Huang, and Eric Pottier

Abstract

Despite its widely recognized capabilities for mapping and characterizing large areas, 2-D
Synthetic Aperture Radar (SAR) imaging meets serious limitations over volumetric media,
due to its incapacity to discriminate scattering contributions in the elevation direction.
This paper proposes some methods for characterizing complex volumetric environments
using polarimetric SAR tomography, a 3-D imaging technique based on the use of
diversely polarized electromagnetic waves acquired from different trajectories. The use of
polarimetric diversity permits to both improve the tomographic separation between different
components of complex volumetric media and to characterize the EM behavior of the
observed environments. A set of spectral estimation techniques, adapted to tomographic
focusing, are tested against signal models accounting for the statistical complexity of hybrid
volumetric environments. Due to their statistical adaptivity, their robustness to mismodeling
and their accuracy, spectral estimators based on weighted subspace fitting criteria are
selected and extended to the polarimetric case. The effectiveness of the proposed approaches
is assessed over real data and for three different applications, related to urban area 3-D
mapping using a minimal set of images, tropical forest structure characterization using low
frequency waves, and under-foliage concealed vehicle imaging.
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1 Introduction

A SAR is an active device used to form 2-D maps of the
electromagnetic (EM) reflectivity of environments, with a
resolution generally ranging from some decimeters to some
meters, which are well adapted to environmental cartogra-
phy, physical parameter estimation and change monitoring.
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Due to its intrinsic 2-D nature, single-channel SAR imaging
meets strong limitations over volumes, as it cannot separate
and characterize contributions from scatterers located at
different elevations. Volumetric environments are generally
considered as media distributed in the elevation direction
and penetrated by EM waves over a vertical path larger
than a wavelength, and may be modeled as a superposition
of several layers, characterized by continuous or discrete
densities of reflectivity and by their extinction properties,
which all depend on the incident wave frequency (Treuhaft
and Siqueira 2000). Data measured by SAR systems oper-
ated with one or several modes of diversity, like frequency,
polarization, space, may be used to emphasize the response
of specific components of a volume (Mougin et al. 1999) or
characterize scattering phenomena which can be related to
some of the physical properties of the observed environment
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(Askne et al. 1997). In particular, the polarimetric response
of a medium or object is known to be tightly related to
some key physical properties, like its structure, orientation,
dielectric properties (Cloude 2009) and has been widely used
for the analysis of vegetated and built-up areas (Freeman
and Durden 1998; Papathanassiou and Cloude 2001; Cloude
2009). Nevertheless such approaches generally rely on strong
assumptions and have limited domains of validity and pre-
cisions. SAR tomography (TomSAR) is a natural solution
to this problem as it is based on the use of more than
two SAR acquisitions which are combined in order to form
an additional synthetic aperture in the elevation direction.
This 3-D SAR imaging mode has been successfully applied
to the characterization of natural (Neumann et al. 2009;
Tebaldini 2009; Tebaldini and Rocca 2012; Huang et al.
2011) and artificial (Fornaro and Serafino 2006; Budillon
et al. 2011; Zhu and Bamler 2012; Sauer et al. 2011; Huang
and Ferro-Famil 2009) environments, using ground-, air- and
space-borne sensors, operated at various frequency bands
(Tebaldini and Ferro-Famil 2013). The geometrical configu-
ration of a TomSAR measurement may be characterized in
terms of its height ambiguity, related to the spacing between
acquisition tracks, and its Fourier vertical resolution, which
depends on the extent of the aperture in elevation. Hence,
for a regularly spaced array with a given ambiguous height,
i.e. baseline, the vertical Fourier resolution improves with
the number of images, although it may be affected by
range decorrelation over natural environments (Gatelli et al.
1994). Realistic and unambiguous TomSAR data sets being
generally composed of a moderate, or small, number of
acquisitions, 3-D focusing using classical Fourier imaging
techniques may lead to a poor vertical resolution. As it is
shown in this paper, SAR tomography may be considered
as a spectral estimation problem, and a wide variety of
techniques may be used to focus data in the vertical direc-
tion with a substantially improved resolution (Fornaro and
Serafino 2006; Budillon et al. 2011; Zhu and Bamler 2012;
Sauer et al. 2011; Huang et al. 2012). The combination of
SAR tomography with polarimetric diversity permits to both
improve the performance of SAR tomography in terms of
separation between different components of complex volu-
metric media and to further characterize the EM behavior
of the observed environments through the estimation of
scattering mechanisms (Sauer et al. 2011; Huang and Ferro-
Famil 2009; Huang et al. 2012; Tebaldini 2009; Tebaldini
and Rocca 2012; Aguilera et al. 2013; Minh et al. 2014; Frey
and Meier 2011; Neumann et al. 2009). Part 2 presents the
basic principles of SAR tomography and introduces polari-
metric TomSAR (PolTomSAR) signal models corresponding
to different kinds of observed media. Polarimetric spectral
estimation techniques approaches are then introduced and
compared in the frame of 3-D High Resolution (HR) focus-
ing. In part 3 are shown some application results, obtained

with PolTomSAR data sets acquired in various configura-
tions and dealing with urban area mapping with a minimal
data set, tropical forest structure characterization and under-
foliage concealed vehicle imaging.

2 Basics of Polarimetric SAR
Tomographic Imaging

2.1 Geometrical Configuration

SAR tomographic (TomSAR) imaging is based on the acqui-
sition of M SAR signals along slightly shifted trajectories
ti , as illustrated on Fig. 1. After focusing, compensating and
co-registering the acquired signals, M 2-D SAR images are
obtained, si .x; r/, where x and r represent azimuth and slant
range coordinates, respectively. As shown on Fig. 1, due to its
intrinsic cylindrical ambiguity, classical 2-D SAR imaging is

a

b

Fig. 1 Geometry of a TomSAR measurement. (a) Tomographic acqui-
sition, (b) tomographic vs 2-D SAR resolution cells



Principles and Applications of Polarimetric SAR Tomography for the Characterization of Complex Environments 245

not well adapted to the characterization of volumetric media.
For a given focusing position .x0; r0/, and considering a
simplified rectangular azimuth-range impulse response, the
focused SAR results from the coherent integration of the
reflectivity density a.r/, with r D .x; y; z/, of the measured
medium, as:

si .x0; r0/ D
Z

C.x0;r0/

a.r/ ej ki :rdr i D 1 : : : M (1)

where ki stands for the two-way wavenumber of the i th

acquisition and C.x0; r0/ represents one resolution cell with a
cylindrical slice shape, whose limits are given by jx � x0j <
ıx
2

, jr � r0j < ır
2

, and zvmin < z < zvmax , with ıx and ır ,
the SAR resolution in azimuth and range, respectively, and
zvmin ; zvmax , the upper and lower limits of the observed volu-
metric medium. Depending on the nature of the environment
under observation, the reflectivity density of an environment
may be described by a sum of discrete contributions gener-
ated by a set of point-like scatterers, a.r/ D P

i ai ı.r �
ri /, or under the form of a continuous function, having a
stochastic behavior conferred by the speckle phenomenon,
i.e. that may be assimilated to a spatially modulated white
noise, with E.a.r// D 0 and E.a.r/a�.rCdr// D �.r/ı.dr/

(Bamler and Hartl 1998). Assuming that a.r/ represents a
continuous reflectivity density which is a function of the
elevation position only, i.e. that ıx and ıy have sufficiently
low values and variations in these directions within a resolu-
tion cell may be neglected, the cross-correlation between two
images, �ij D E.si s

�
j / may be expressed as:

�ij.x0; r0/ D
Z

C.x0;r0/

�ij.z/e
j.kzi �kzj /zdz (2)

where the geometry-dependent vertical wavenumber, kzi ,
accounts for variations of the interferometric phase from one
image to the other. The derivation of (2) from (1) is based
on the fact that ai;j .r/ are spatially white random processes,
i.e. E.ai .r/a�

j .r C dr// D �ij.r/ı.dr/, where j�ij.r/j �p
�i .r/�j .r/ is the temporarily stable backscatter coefficient

common to both measurements (Askne et al. 1997). The
purpose of TomSAR imaging, illustrated on Fig. 1, is to
improve the vertical resolution of the SAR measurement in
order to characterize the volumetric backscatter coefficient
�.z/ in a more accurate way. To do so, �ij is computed for all
the available image pairs, and the resulting set of coefficients
are processed using (2) in the frame of a classical problem
of spectral estimation, for which a series of solutions can
be applied (Gini and Lombardini 2005; Stoica and Moses

a

b

c

Fig. 2 First airborne tomographic SAR experiment. Courtesy of
Dr. Andreas Reigber, DLR, Germany. (a) HH SAR image, (b) single-
polarization tomogram along a path, (c) polarimetric tomogram jhh�vvj
jhvj jhh C vvj

2005; Fornaro and Serafino 2006; Budillon et al. 2011; Zhu
and Bamler 2012; Sauer et al. 2011; Huang et al. 2012). The
first airborne TOMSAR experiment was conducted by the
DLR using their ESAR sensor at L band over the test site
of Oberpfaffenhofen, Germany (Reigber and Moreira 2000).
The data set consists of 14 SAR images acquired over quasi-
parallel tracks within a short period of time. Some results of
this pioneer work, presented in Fig. 2, show that tomography
can be used to reliably locate scatterers in elevation, estimate
building heights and image forest canopies.
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2.2 Polarimetric SAR Tomography

Polarimetric SAR measurements are generally performed
using an orthogonal polarization basis, whose elements may
be used at both the emission and reception of SAR signals. In
the case of horizontally or vertically polarized antennas, the
fully polarimetric response for a given resolution cell may
be represented using a scattering matrix, given, in the .h; v/

basis, by:

S D
�
Shh Shv

Svh Svv

�
2 C

2�2 (3)

where Spq, with p; q D h or v represents the scattering
coefficient when the EM signal is emitted through the polar-
ization channel q and received on channel p. Polarimetric
SAR systems generally have collocated or quasi-collocated
antenna systems and in this case the scattering matrix is
symmetric, i.e. Shv D Svh (Lee and Pottier 2008). Tomo-
grams computed over different polarimetric channels may
be combined to appreciate the 3-D polarimetric behavior of
the media under observation, as schematically represented
in Fig. 1 and shown in Fig. 2. Specific types of scattering
mechanism are associate to colors: blue represents single-
bounce reflection over rough surface, i.e. ground or building
roofs, red can be associated to double-bounce reflections,
characteristic of ground-tree trunk or dihedral-like objects,
whereas green indicates scattering by anisotropic particles
and can be associated to forest canopy in this case. The study
presented in Reigber and Moreira (2000) demonstrated for
the first time the potential of polarimetric diversity for the
3-D characterization of volumetric media. As this is shown
in the following, PolTomSAR may be used not on only
to identify basic scattering mechanism, but also to further
discriminate different components of complex media and
estimate some of their geo-physical parameters.

2.3 Tomographic Signal Models

In order to be estimated with numerical techniques, the
density of reflectivity, a.x; r; z/, used in the SAR signal
formulation of (1), is generally associated with a set of
discrete contributions, called sources. Discrete media, like
urban environments where a resolution cell contains a low
number of dominant contributions, are well modeled using a
small number of sources. Oppositely, natural media having
a continuous density of reflectivity, like forests, require an
infinite number of sources to be modeled adequately.

2.3.1 Single-Polarization TomSAR Signal
Models

Considering an azimuth-range resolution cell that contains
ns backscattering contributions from scatterers located at

different heights and assuming no decorrelation between the
different acquisitions, the data vector measured by M SAR
acquisitions, y 2 C

M�1, can be formulated as follows:

y.l/ D
nsX

iD1

si a.zi / C n.l/ D A.z/s C n.l/ (4)

where l D 1; : : : ; L indicates one of the L independent
realizations of the signal acquisition, also called looks.
The source signal vector, s D Œs1; : : : ; sns �

T , contains
the unknown complex reflection coefficient of the ns

scatterers, and n 2 CM�1 represents the complex additive
noise, assumed to be Gaussianly distributed and to be
white in time and space, i.e. n � N .0; �2

n I.M�M// and
E.n.l/n�.k// D �2

n I.M�M/ıl;k . The interferometric phase
information associated to a source located at the elevation
position z above the reference focusing plane is given by
the steering vector a.z/ D Œ1; exp.jkz2z/; : : : ; exp.jkzM z/�T ,
where kzj is the two-way vertical wavenumber between the
master and the j th acquisition tracks. The steering matrix
A.z/ consists of ns steering vectors corresponding each to
a backscattering source A.z/ D Œa.z1/; : : : ; a.zns /� with
z D Œz1; : : : ; zns �

T , the vector of unknown source heights.
Considering now interferometric decorrelation between
different acquisitions, the initial model in (4) may be
reformulated as a sum of contributions from random sources
(Gini and Lombardini 2005):

y.l/ D
nsX

iD1

xi .l/ ˇ a.zi / C n.l/ (5)

where ˇ represents the element-wise product between two
vectors and xi 2 CM�1 accounts for both the reflection
coefficient of the i th source, si and its potential variations
between the M acquisitions or over the L realizations.
Depending on the type of scatterer under observation, the
composite signal y.l/ may follow different behaviors, that
are linked to the statistical properties of the source signal xi

(Huang et al. 2012).
For distributed scatterers, characterized by a scattering

response having a random behavior conferred by the speckle
effect, the received signal component yui .l/ may be rep-
resented using an Unconditional Model (UM) (Stoica and
Nehorai 1990), which accounts for the random nature of the
source signal using a multiplicative term given by xi .l/ D
si xui .l/ 2 CM�1, with xui .l/ � N .0; Ci / (Gini and
Lombardini 2005). The reflectivity of the source is given by
�i D jsi j2, whereas the .M � M / covariance matrix Ci

describes the interferometric coherence for a source. This
kind of source signal is well adapted to the modeling of
scattering over natural environments, like rough surfaces,
ground and natural volumes.
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Deterministic scatterers have a highly coherent EM
response and their response, yci .l/, may be represented using
a Conditional Model (CM) (Stoica and Nehorai 1990), which
considers a frozen source signal over all the observations,
xi .l/ D si 1.M�1/ This behavior is generally related to
specular scattering mechanisms and can be observed over
coherent scatterers like calibrators, facets facing the radar,
double-bounce reflections over dihedral-like objects having
smooth surfaces (like ground-trunk interactions and double
bounce reflections between an object and the ground), or may
be linked to resonant behaviors over quasi-periodic media
(Ferro-Famil et al. 2005; Ferro-Famil and Pottier 2007).

Hybrid scatterers consist of a mixture of coherent and
distributed scatterers (Ferro-Famil et al. 2005; Ferro-Famil
and Pottier 2007) and may be modeled as y.l/ D yc.l/ C
yu.l/ (Sauer et al. 2011), where each component, conditional
or unconditional, is composed of several contributions. This
type of signals can be frequently encountered when dealing
with intermediate-resolution SAR images.

2.3.2 PolTomSAR Signal Models
The polarimetric scattering matrix, introduced in (3), can be
vectorized using, for instance, the Pauli basis matrix set (Lee
and Pottier 2008), in order to build a strictly equivalent target
vector, v D 1p

2
ŒShh C Svv; Shh � Svv; 2Shv� D s k where

� D jsj2 D v�v represents the polarimetric span (Lee and
Pottier 2008), or reflectivity, of the scatterer response, and
k D Œk1; k2; k3�T 2 C3�1 represents a unitary polarimetric
target vector, i.e. k�k D 1. In a PolTomSAR configurations,
M polarimetric SAR signals are acquired and denoted vj ,
with j D 1; : : : ; M the track index. A 3M element PolTom
received signal, yP , is then formed by stacking the TomSAR
responses for each polarization channel yP D ŒyT

1 yT
2 ; yT

3 �T 2
C3M�1 where yp 2 CM�1, with p D 1; 2 or 3, represents
the TomSAR response for the pth polarimetric channel, i.e.
Œyp�j D Œvj �p . Using this convention of representation, the
polarimetric steering vector of the ith source is given by
a.zi ; ki / D ki ˝ a.zi / and may be parametrized using 5
real coefficients. The corresponding steering matrix writes
A.z; K/ D Œa.z1; k1/; : : : ; a.zns ; kns /� 2 CM�ns with K D
Œk1; : : : ; kns �. Similarly to the single polarization expression
given in (4), the received PolTomSAR signal yP .l/ may be
formulated as

yP .l/ D A.z; K/s.l/ C n.l/ 2 C
3M�1 (6)

with s.l/ 2 C
ns�1, a realization of the complex response

of the i th source. Diverse model assumptions given for
single-polarization signals, can be similarly used for in the
PolTomSAR case.

2.4 Tomographic Focusing Techniques

In order to preserve the compactness of this paper, the pre-
sentation of the different tomographic focusing techniques
is restricted in the following to the general description of
their principles and performance. More details and references
to specific studies may be found in Gini and Lombardini
(2005), Huang et al. (2012), Stoica and Moses (2005) and
Sauer et al. (2011). The objective of tomographic focusing
is to estimate the reflectivity, scattering vector and height
�; ki ; zi of each source using from the covariance matrix of
the received signal R D E.yy�/ D ARxxA� C �2

nIM�M

In practice, for a locally Gaussian statistical behavior, a
maximum likelihood estimate of R may be computed from L

independent locations surrounding the pixel under analysis,
as OR D 1

L

PL
lD1 y.l/y�.l/ and may be used instead of

R to perform tomography. The number of sources, ns , is
in general unknown and needs to be estimated from the
measured data. Some commonly used Model Order selection
techniques based on statistical approaches, e.g. ITC, MDL,
AIC (Wax and Ziskind 1991), may be used to determine
Ons . Once ns is determined, eigenstructure matrices can be
estimated from the sample covariance matrix OR D OEs

O�s
OE�

s C
OEn

O�n
OE�

n where OEs and OEn are represent the estimated signal
and noise subspaces, respectively.

2.4.1 Single Polarization Tomography
Single Polarization (SP) tomography can be derived from the
data covariance matrix OR using spectral estimation techni-
ques. Some examples of mono- and multi-dimensional esti-
mators are given in the following.

Mono-dimensional Estimators
These approaches determine Oz, an estimate of the elevation
of the scatterers under observation, as the coordinates of the
Ons largest local maxima of an continuous objective function
P.z/, Oz D arg max

z;loc
P.z/ The Fourier Beamformer (FB) and

Capon’s method, also called the adaptive beamformer, are
non-parametric spectral estimation techniques, i.e. they do
not require to estimate the number of sources, and their
objective function is given by the continuous estimate of
the reflectivity, obtained by height-varying linear filtering
as PB;C .z/ D O�B;C .z/ D h�

B;C .z/ ORhB;C , with h�
B.z/ D

a�.z/=
p

M and h�
C .z/ D R�1a=.a�R�1a/ (Stoica and Moses

2005). The selection of discrete sources from peaks of the
reflectivity spectrum confers to the FB and Capon estima-
tion techniques an important sensitivity to the acquisition
configuration, and in particular to the presence of spurious
sidelobes related to an irregular baseline sampling. The FB
is known to show a low resolution and may then overlook
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some closely spaced scatterers, whereas Capon’s technique
possesses an improved resolution but a reduced radiometric
accuracy. MUSIC is a subspace-based mono-dimensional
technique (Stoica and Moses 2005), whose objective func-
tion is a measure of the orthogonality between a steering
vector a.z/ and the estimated noise subspace OEn and is given
by: PM .z/ D 1=jja�.z/ OEnjj2 An estimate of the reflectivity
vector Os can be obtained from Oz using a Least Squares (LS)
approach (Stoica and Moses 2005; Gini and Lombardini
2005). Nonparametric approaches like FB and Capon, are
generally used to globally appreciate the structure of a volu-
metric medium and the main trends of the continuous reflec-
tivity distribution in elevation. For the analysis of discrete
spectral components, they may fail to discriminate closely
spaced scatterers due either to their limited resolution, or
to the presence of side lobes that may induce an erroneous
estimation of the source location. MUSIC generally presents
better resolution and performance for the analysis of discrete
sources, but, like all parametric methods, MUSIC is sensitive
to data modeling errors, and in particular those related to the
estimated number of sources Ons . Moreover, MUSIC is known
to perform badly in the presence of correlated scatterers, due
to the singularity of the the source signal covariance matrix
(Stoica and Nehorai 1990). One of the main advantages of
such techniques resides in the low numerical complexity of
the mono-dimensional optimization they are based on.

Multi-dimensional Estimators
Maximum Likelihood (ML) techniques aim to estimate
.Oz; O� ; O�2

n/, the set of parameters maximizing L.z; � ; �2
n /,

the data likelihood function, where the index u; c indicate
the statistical model, UM or CM, under consideration. The
optimization being separable in Oz and O� , highly concentrated
expressions have been derived in both cases (Ottersten
et al. 1993; Stoica and Nehorai 1990). Weighted Subspace
Fitting (WSF) techniques are based on the comparison of
the eigenstructure of the data covariance matrix with the
model accounting for a number of steered sources plus
noise: for a correct height vector guess, A.z/ should be
orthogonal to the noise space and parallel to the signal one.
Two weighted LS fitting cost functions have been presented
in the literature Viberg et al. (1995), QNSF.z/ D jj OE�

nA.z/jj2W
and QSSF.z/ D jj OEs � A.z/Tjj2W where NSF and SSF
respectively stand for Noise and Signal Subspace Fitting.
The linear transformation matrix T can be replaced by
its LS estimate and the source heights are found using
OzWSF D arg min

z
QWSF.z/ where the suffix WSF indicates

ones of the methods, NSF or SSF, mentioned above.
The weighting matrix, W, aims to correct for potential
discrepancies between the considered model and real data
as well as for errors occurring during the estimation of the
data covariance matrix. It has been shown in Viberg et al.

(1995), that any hermitian positive semi definite weighting
matrix W yields consistent parameter estimates, and that
a consistent estimate of W permits to obtain minimum
variance estimates, which asymptotically reach the Cramer-
Rao lower bound (Ottersten et al. 1993). The parametric
methods presented in this section require a ns-dimensional
minimization. Compared with mono-dimensional ones, these
methods are more robust and generally lead to global optima,
but at an expensive computational cost. WSF techniques may
reach the same level of accuracy than ML techniques at a
reduced computational cost and are susceptible to better
adapt to complex scattering configurations.

2.4.2 Fully Polarimetric Tomography
Similarly to the SP case, Fully Polarimetric (FP) tomography
can be performed from the data covariance matrix ORP D
1
L

LP
lD1

.yP .l/y�
P .l// using mono- and multi-dimensional FP

spectral estimators, whose objectives are to estimate the
source locations in elevation, Oz, their polarimetric target
vectors, OK, and their reflectivities � .

Mono-dimensional Estimators
The elevation and scattering mechanisms of the different
scatterers are estimated as the coordinates of the Ons largest
local maxima of a polarimetric objective function P.z; k/,
obtained by replacing the steering vector a by its FP expres-
sion a.z; k/ in the FB, Capon and MUSIC criteria mentioned
in the preceding section. The optimization of the resulting
cost functions with respect to the polarimetric target vector
can be performed efficiently using an eigendecomposition.
This important aspect maintains the complexity of the focus-
ing a value close to the one obtained in the SP case. These
methods are computationally efficient but may reach some
of the limitations mentioned in the SP case.

Multi-dimensional Estimators
The FP-ML and FP-WSF estimators may be formulated from
the SP expressions by replacing the SP steering matrix A.z/

by A.z; K/. The optimization of the corresponding criteria
requires, for Ons sources, a search of the optimal parameters
over a 5 Ons-dimensional space, and general implies an exces-
sive computational burden. Some computationally optimized
methods have been proposed for the ML techniques in Wax
and Ziskind (1991); Ottersten et al. (1993), whereas an
analytical solution proposed in Huang et al. (2012) permits
to maintain the computational cost of the FP-NSF to the one
of the SP case. Compared with SP tomography, polarimetric
tomography can localize scatterers more accurately due to
the additional power of discrimination brought by polariza-
tion diversity, and the physical properties of the observed
media can be further characterized from their scattering
mechanism.
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2.4.3 Performance Assessment
The performance of the aforementioned tomographic estima-
tors is investigated with a data set of M D 5 SAR images,
simulated with a regular spacing in elevation �kz D 0:1,
with SNR D 20dB and L D 256 independent realizations.
The simulation considers two sources with height difference
�h and whose statistical behavior is steered by the cor-
relation coefficient �. Coherent scatterers are obtained for
� D 1, whereas distributed ones correspond to � D 0 and
hybrid scatterers have 0 < � < 1. Figure 3a illustrates the
interesting resolution properties of the WSF estimators for
uncorrelated scatterers, as they work well for �h � 0:4m,
while the performance of MUSIC and Capon’s techniques
degrade significantly for �h < 2m and �h < 4m,
respectively. Figure 3b shows that the NSF estimator pro-
vides the most accurate estimate for uncorrelated or partially
correlated signals (� < 0:95), whereas the SSF estimator
copes well with highly correlated signals (� � 0:95). MUSIC
cannot deal with highly correlated sources due to its extreme
sensitivity to the quasi-singularity of Rxx. Similar simulations
are run in the FP case, with 3-element scattering vectors,
k1 and k2, separated by an angular distance, �, defined

as cos � D jk�
1k2j

jjk1jjjjk2 jj . Figure 3c shows that polarization
diversity between two scatterers improves height resolution,
especially for the FP-Capon estimator which reaches the
same resolution than MUSIC when � > 60ı. The FP-NSF
estimator performs best for any polarization similarity value.

3 Applications

The potential of PolTomSAR techniques for the 3-D char-
acterization of complex environments is illustrated in the
following with three very different applications.

3.1 Urban Remote Sensing Using aMinimal
TomSAR Configuration

Dense urban environments may generate complex SAR
responses. As depicted in Fig. 4a, diverse scattering
patterns, like double bounce reflection due to wall-ground
reflections, surface scattering from roofs and from the
ground, volumetric scattering due to potential vegetation,
can be encountered over such volumetric media, and may
fall into a single SAR resolution cell. The test data set for
this application was acquired over Dresden, Germany, by
the DLR ESAR sensor at L band. It consists of three fully
polarimetric SAR images with an intermediate resolution
of 1.5 m � 3 m, measured over a short period of time.
Unlike other approaches, based on the use of time series
of numerous SAR acquisitions (Fornaro and Serafino 2006;

Budillon et al. 2011; Zhu and Bamler 2012), this applications
deals with the minimum number of images required to
perform tomography and may be considered as an extreme
case of 3-D imaging using coherent SAR data processing.
The vertical Fourier resolution being particularly coarse,
around 10m, the accurate mapping of building shapes
requires the use of HR estimation techniques. Here again,
this application differentiates itself from those based on
time series analysis, for which sparse signal reconstruction
techniques are well adapted (Budillon et al. 2011; Zhu
and Bamler 2012), since the number of available images,
equal to three, is comparable to the number of dominant
responses that can be expected within a resolution cell. Over
the different spectral estimators presented above, the model-
adaptive FP-NSF technique proposed in Huang and Ferro-
Famil (2009) and Huang et al. (2012) was found to be the
most suitable for such an extreme configuration as it fully
exploits polarimetric diversity in order to further separate
closely spaced scatters and can benefit from the high level
of coherence over natural environments in order to reduce
potential biases induced by the observed vegetation covers.
The results depicted in Fig. 4 indicate that over buildings and
bare ground, PolTomSAR gives results that are comparable
to Lidar measurements. Over parts covered by vegetation,
associated to green colors in Fig. 4b, significant differences
may be found due to the penetration of EM waves through the
canopy of trees. The 3-D view of a specific set of buildings
is given in Fig. 4f. One may note the very good matching
between Lidar and PolTomSAR profiles, excepted for a gap
between the four oriented buildings and the main one, which
appears filled in the PolTomSAR reconstruction. This effect
is due to the side looking geometry of a SAR acquisition,
which unlike Lidar measurements is performed at incidence
angles far away from nadir. The resulting projection of the
scattering contributions in slant range occupies the space
between the buildings.

3.2 Tropical Forest Characterization
at P Band

This application deals with a six-image P-band data set,
acquired over the tropical forest test area of Paracou, French
Guiana, by the ONERA SETHI sensor, in the frame of the
TropiSAR campaign whose objectives concerned the estima-
tion of tropical forest biomass using SAR Minh et al. (2014).
A tropical forests is considered here as a widespread canopy
lying over a potential vegetation layer on the ground and the
ground itself. From a spectral estimation point of view, the
canopy is modeled as a continuous spectrum, whereas the
ground is an impenetrable medium that possesses an isolated
localized phase center and is characterized by a discrete
spectrum. It has been verified in Huang et al. (2011) that, in
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Fig. 3 Tomographic
performance simulation results.
(a) TomSAR height rmse vs �h,
� D 0, (b) TomSAR height rmse
vs �, �h D 4m, (c) PolTomSAR
height rmse vs �.ı/, � D 0
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252 L. Ferro-Famil et al.

Fig. 5 Forest structure
characterization using
PolTomSAR and comparison
with Lidar measurements. (a)
Color-coded PolSAR image and
path, (b) FP span tomogram
along the path, (c) Lidar zg ,
(d) estimated zg , (e) Lidar ztop,
(f) estimated ztop
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the presence of both CM and UM responses, the performance
of tomographic estimators optimized for one of the models
degrade due to their lack of adaptation. A novel hybrid
tomographic approach proposed in Huang et al. (2011) in
order to deal with mixed spectra, which provides robust
estimates for both tree top heights, ztop, and the underlying
ground topography, zg , is presented here. This technique
estimates the ground component using a high-performance
parametric approach, e.g. the WSF estimator, and localizes
the tree top by applying an energetic criterion on the response
of the Capon focusing technique, well adapted to the analysis
of continuous media, i.e. here the canopy (Tebaldini 2009).
The results shown in Fig. 5b indicate that this hybrid PolTom-
SAR approach provides tree top and the ground elevation
estimates that are similar to the LiDAR ones. In Fig. 5b,
a comparison led at a local scale and over a larger area,
shows that the estimated ztop and zg match well with the
Lidar ones in terms of texture and mean values, excepted
for some overestimated areas, where topographic effects
strongly affect the measured signals.

3.3 Under-Foliage Concealed Object
Imaging

This application considers the detection of vehicles located
under a temperate forest cover and observed by an airborne
sensor at L band. The conditions of the experiment are
sketched in Fig. 6a which indicates a selected profile con-
taining the responses of a truck outside the forest cover and
another hidden below the forest canopy. As it can be seen
from the PolSAR image, the under-foliage truck response
cannot be directly discriminated from the surrounding forest
one using 2-D imaging. The data set for this study consists
of 27 PolSAR images acquired by the DLR’s ESAR sensor
at L band. As shown in Fig. 6b, the reflectivity estimated
by Capon’s method permits to appreciate both the shape
of the hidden vehicle and the canopy profile, as previ-
ously mentioned in Nannini et al. (2008), but considering
the complex structure of such objects, HR approaches are
required to both discriminate their closely spaced scattering
features in the vertical direction and extract their response.
The TomSAR response of an under-foliage object is con-
sidered as a deterministic component embedded within a
speckle affected environment and hence is associated to a
series of complex scattering centers. Such complex features
require the use of statistically adaptive spectral analysis
techniques, as it has been shown in Huang and Ferro-Famil
(2009) and Huang et al. (2012). A 3-D reflectivity tomogram
of the area, performed over azimuth bins and for varying
range positions using the SP-SSF approach is displayed in
Fig. 6c. Limiting the reconstruction height to 4 m above the
terrain permits to isolate the under-foliage truck response,

with a reconstructed shape similar to the uncovered one,
and with a slightly higher reflectivity than the one of the
surrounding environment. A 3-D reconstruction of scattering
mechanisms, i.e. Single Bounce reflection, Anisotropic Scat-
tering and Double Bounce reflection, is performed using the
FP-NSF estimator and common polarimetric analysis techni-
ques (Lee and Pottier 2008). This approach permits to visu-
alize the corresponding scattering pattern and shows that the
truck outside the forest generates a strong double bounce
reflection due to the ground-truck interaction. The shape of
the truck beneath the canopy is precisely reconstructed with
scattering mechanisms oscillating between SB and AS due to
sidelobe effects from the canopy repines. Using PolTomSAR
techniques, the under-foliage truck can be well described
both in terms of shape and scattering patterns.

4 Conclusion

This paper has presented some principles of polarimetric
SAR tomography, a technique able to characterize 3-D envi-
ronment using electromagnetic waves. Some high resolution
tomographic focusing techniques have been introduced and
their advantages and drawbacks have been discussed. Some
extensions handling polarimetric diversity have been given
and the performance of different estimators have been com-
pared. A set of studies dealing with real data, related to urban
area and forest remote sensing or to the imaging of under-
foliage objects, have been presented in order to illustrate
the potential of this imaging mode for a wide variety of
applications.
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Re-gridding andMerging Overlapping DTMS:
Problems and Solutions in HELI-DEM

Ludovico Biagi and Laura Carcano

Abstract

Neighboring or partly overlapping Digital Terrain Models (DTMs) that are stored as grids
with similar resolutions and accuracies must be merged to produce a unified model: a
reference frame transformation and a re-gridding on a common output grid have to be
applied. A direct approach foresees firstly the reference frame transformation of the input
DTMs, then their re-gridding by interpolation on the final grid. In the individual re-gridding
of a DTM, no smoothing is required, because the input data are not raw observations but
the nodes of an already smoothed model. Furthermore, re-gridding of huge amount of
data could be required: therefore an efficient numerical method should be applied. A iso-
determined interpolation approach based on local bicubic surfaces is investigated in this
paper. In particular, the problem of an ill conditioned interpolation due to critical spatial
distributions of the input elevations is discussed and different techniques to overcome
the problem are compared. Finally, different approaches are discussed to average partly
overlapping DTMs in their overlaps.

Keywords

Bicubic interpolation • DTM • Ill conditioning • Re-gridding • Regularization

1 Introduction

Elevation data are numerically stored in Digital Elevation
Models (DEM, EI Sheimy et al. 2005; Li et al. 2005),
that can be realized by sampling elevations for a certain
number of significant points and by storing the sample of
3D dimensional coordinates. Different data models can be
adopted, such as contour lines, grids (or elevation matri-
ces) and Triangular Irregular Networks (TIN): this paper is
focused on grid models.

Gridded DEMs are georeferenced regular matrices of (xi,
yi) nodes, whose elevations Hi are stored. The horizontal
coordinates of the nodes can be either in a cartographic

L. Biagi (�) • L. Carcano
Politecnico di Milano, DICA, Geomatics Laboratory at Como Campus,
Via Valleggio 11, IT-22100 Como, Italy
e-mail: ludovico.biagi@polimi.it

projection (x: East, y: North) or geographic (x: œ, y: ®).
Typically, the horizontal spacing between nodes (the grid
resolution �x and �y) is equal in x and y directions: this is
not a strict requirement but quite a standard. The correct geo-
referencing of a grid requires the knowledge of the reference
frame and coordinates system; then, additional metadata are
needed: typically the grid origin (i.e. the coordinates of the
lower left node), �x, �y and the total number of rows and
columns are stored.

DEM refers to the generic family of elevation models, that
are distinguished in Digital Surface Models (DSMs), which
represent the actual surface (including buildings, woods, etc.)
and Digital Terrain Models (DTMs) which represent the
elevation of bare soil: our focus is on DTMs. Stored eleva-
tions are typically orthometric heights: when the acquisition
technique produces ellipsoidal heights, these are converted
into orthometric.

Section 1.1 poses the general problems of regridding and
merging of DTMs. In Sect. 2, HELI-DEM specific needs are

N. Sneeuw et al. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association
of Geodesy Symposia 142, DOI 10.1007/1345_2015_128
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discussed. In the following sections, the methods and the
results will be discussed.

1.1 The Addressed Problems

DTMs have to be merged that are georeferenced in different
reference frames and originally gridded in different coor-
dinates systems, with different resolutions and accuracies:
they have to be transformed to a common reference frame
and coordinates system and must be re-gridded on the output
grid. Moreover, a proper merging technique has to be applied
where they overlap.

A reference frame transformation is a three dimensional
transformation of the X, Y, Z (or ®, œ, h) coordinates
of a point. However, a point of a DTM is a node of an
horizontal grid for which the relevant elevation is stored:
therefore, the reference frame transformation is applied only
to the horizontal coordinates of the node. The output of the
transformation of the whole DTM is a list of transformed
horizontal nodes and their terrain elevations. The nodes are
again almost regularly distributed but no more on an exactly
oriented grid. Moreover, a re-gridding could be needed with
a different resolution or in a different coordinates system.
Therefore, an interpolation of the elevations is needed from
the input to the output nodes. To transform and re-grid a
DTM, two opposite approaches are possible.
1. A transformation of reference frame and coordinates

system is applied to the input nodes, that are then used
to interpolate elevations on the output grid. This approach
will be called Direct Transformation.

2. The nodes of the output grid are back transformed to
the input reference frame and coordinates system. The
elevations of the input grid are interpolated on these
horizontal coordinates, then the interpolated elevations
are assigned to the relevant nodes of the output grid. This
approach will be called Inverse Transformation.
In merging overlapping input DTMs, their preliminary

cross-validation (Buckley and Mitchell 2004) is needed to
check biases and anomalies. Even in most favorable cases,
local differences exist and should be filtered. Two opposite
approaches are possible.
1. The input DTMs are transformed to the output refer-

ence frame and coordinate system: a unified transformed
dataset is created and is interpolated on the output grid.
This approach will be called Merging by Interpolating a
Unified Database (Merg-IUD).

2. Each input DTM is individually re-gridded on the output
grid: the individual interpolations are averaged in the
overlapping nodes. This approach will be called Merging
by Averaging Individual Interpolations (Merg-AII).

Note that a Direct Transformation can be combined with
both the merging approaches. On the contrary, the inverse
transformation necessarily implies Merg-AII.

This paper studies the Direct Transformation approach
and compares the two merging approaches, in order to better
understand their advantages and disadvantages for HELI-
DEM project goals.

1.2 HELI-DEMProject: Data Acquisition
and Preliminary Analyses

HELI-DEM project (HELvetia-Italy Digital Elevation
Model, Biagi et al. 2011, www.helidem.eu) is funded by
“PO Italia-Svizzera 2007–2013 Fondo Europeo di Sviluppo
Regionale”: its main aim is the estimation of a unified DTM
for the alpine and subalpine area between Italy (Piedmont,
Lombardy) and Switzerland (Ticino and Grisons Cantons),
with a resolution of about 20 m, by properly merging the
available DTMs. In particular, four neighboring DTMs have
been acquired for the project.
1. The regional Lombardy DTM: it is in Roma40 reference

frame (Donatelli et al. 2002), Gauss Boaga projection. It
has an horizontal resolution of 20 m, vertical standard
deviation (ZS) of about 10 m (LE95 D 20 m) in the
mountains.

2. Two DTMs are available for Piedmont: both are
in ETRF89-IGM95, UTM projection. They have
respectively: the former horizontal resolution of 50 m,
ZS � 2.5 m (LE95 D 5 m), the latter horizontal resolution
of 5 m, ZS � 1 m (LE95 D 2 m).

3. The SwissTopo DTMCH25 is available for Switzerland,
gridded in geographic ETRF89 coordinates. It has reso-
lution of 1

00

(about 28 m in ® and 20 m in œ), ZS � 3 m
(LE95 D 6 m) in mountain areas.
The input DTMs will be used to produce a unified output

DTM that will be georeferenced in ETRF2000 (Boucher and
Altamimi 2011) and will cover the alpine area contained in
the geographic rectangle with boundaries œ D 7.80ı East and
œ D 10.70ı East in longitude, ¥ D 45.10ı North e ¥ D 46.70ı
North in latitude. The output DTM will be gridded in geo-
graphical coordinates with a spatial resolution of 2 � 10�4

degrees, about 15 m in longitude and 22 m in latitude. The
output grid will be composed of 8,000 rows and 14,500
columns, for a total of 116 M of nodes.

The four input DTMs that will be merged have been
already cross-validated. In particular, shifts and biases
between them have been investigated in the overlap borders:
the results are satisfactory and have been extensively
reported in Biagi et al. (2012), Biagi et al. (2013), Carcano
(2014).

www.helidem.eu
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Input DTMs have been already transformed to ETRF2000
and are now stored as lists of geographic horizontal coordi-
nates and terrain elevations, to be interpolated on the nodes
of the final grid: in total, about 350 � 106 elevations are
available.

2 Re-gridding by Bicubic Surfaces

To grid observations, firstly a parametric models has to be
chosen: the parameters are then estimated by the input set.
Many approaches and models exist: a first classification can
be in interpolation and approximation (Davis 1975; Chris-
takos 1992). In interpolation, a model is estimated that passes
through all the observations. In approximation, statistical
methods are applied to estimate a smoother model from the
observations.

When raw observations are used to estimate a digital
model, approximation must be adopted because this allows
the filtering of observations errors and outliers: one example
is discussed in Biagi and Negretti (2004). On the contrary,
in re-gridding, the input data are the nodes of a model that
has been already filtered and checked against observation
errors. In this case, actual details of the model can be lost in
the approximation smoothing: therefore, interpolation should
provide better results. Furthermore, often the re-gridding
of huge amount of data is required: therefore an efficient
numerical method should be applied.

Typically, GIS software (O’Sullivan and Unwin 2003)
implements either splines or polynomial surfaces (Kidner
2003) to interpolate grid nodes: these standard approaches
will be investigated for a re-gridding application.

Particularly, we will focus on the use of the well known
and classical bilinear and bicubic surfaces. Previous works
(see for example Rees 2000) state the better accuracy of
bicubic surfaces. In any case preliminary tests have been
performed also on our case study to compare bilinear and
bicubic surfaces.

Several grids (case studies corresponding to different
type of terrain) have been extracted from Lombardia DTM.
Each one of them is re-gridded on nodes that are exactly
in the middle of the original nodes. The output grid is
back interpolated on the nodes of the original grid. Re-
gridding is performed by adopting both bilinear and bicubic
interpolations. The original and the final grids are compared
(Table 1): synthetically, in flat areas no significant differences
exist, while in rough terrain bicubic provides better results.
Our project involves mainly mountainous areas: therefore
bicubic polynomial surface will be adopted.

In the following, a small case study will be used for
the tests. An output grid of 400 � 500 (2 � 105) nodes has
to be interpolated: the grid is centered on œ D 9.22ı East,

Table 1 Internal checks

Bias (m) Std (m) Max (m) Min (m)

Bilinear 0.1 2 52 �56

Bicubic 0.0 1 36 �35

A gridded DTM is interpolated on new nodes in the middle of the
original nodes. The output grid is back interpolated on the nodes of the
original grid. Comparisons between bilinear and bicubic interpolations.
Statistics of the differences between original and twice interpolated data

¥ D 45.86ı North (Triangolo Lariano area, near Como Lake,
Fig. 1) and has the afore mentioned resolution of 2 � 10�4

degrees. Terrain elevations have mean equal to 660 m, stan-
dard deviation of 345 m, minimum and maximum respec-
tively of 197 and 1,679 m. Both Lombardia and SwissTopo
DTMs are available in this test area: their differences have
zero mean, standard deviation of 20 m and maximum of
100 m.

A bicubic surface is given by

H .x; y/ D a00 C a10x C a01y C a20x2 C a11xy

Ca02y2 C a30x3 C a21x2y C a12xy2

Ca03y3 C a31x3y C a22x2y2 C a13xy3

Ca32x3y2 C a23x2y3 C a33x3y3

(1)

At least .xi ; yi ; Hi / sixteen observations are needed
to estimate aij parameters: the system can be written as
follows

z D

2
664

H1

H2

: : :

Hn

3
775 D A� D

2
664

1 x1 y1 : : : x3
1y3

1

1 x2 y2 : : : x3
2y3

2

: : : : : : : : : : : : : : :

1 xn yn : : : x3
ny3

n

3
775

2
66664

a00

a10

a01

: : :

a33

3
77775

(2)

If 16 observations are used, the parameters are estimated by
the solution of the iso-determined system

� D A�1z (3)

If more observations are used, a redundant system is built and
can be solved by Least Squares (LS, Koch 1987) approach.

� D N�1AT Q�1z; N D AT Q�1A (4)

The estimated parameters are used to estimate elevations in
any inner point P D .xP ; yP /. By applying (3) bicubic
surface acts as interpolator, while (4) produces an approxi-
mation. Let consider the bicubic interpolation of a gridded
DTM: to estimate the height in P, the 16 nodes of the 4
rows � 4 columns around it are used. Before estimation, a
normalization of the coordinates is needed, like for example
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�i D .qi � qP /=.qmax � qmin/, where qi stands either for x
or y: this is needed for a decent conditioning of the system.
Moreover, with the coordinates normalization

bH P .0; 0/ Dba00 (5)

In our re-gridding case, the input points are almost regularly
placed, but are not exactly gridded. To interpolate, the 16
nearest points of the input dataset are selected around each
output node: considering their regular placement, system
(3) is generally solved without any instability problem.
However, in few cases, the system is ill conditioned and
badly invertible. In these cases the polynomials may lead
to extreme and unstable results. The problem can be easily
checked by computing the condition number of A (Press
et al. 1992). According to the so called Singular Value
Decomposition (SVD), the following holds

A D UƒVT (6)

where U and V are orthonormal, ƒ is diagonal: its elements
œi are called singular values and are real numbers. In case A
has full rank, all œi are positive. In case A is singular or ill
conditioned, some œi are zero or almost zero. The Condition
Number (in the following CN) of A is defined as the ratio
between the maximum and the minimum œi: in particular, on
our case study, CN exceeds 102, 103 and 105 respectively in
82.5%, 0.025% and 0.01% (20) of the nodes.

When A is ill conditioned, the interpolation can fail, lead-
ing to anomalous estimates. In particular CNs exceeding 105

provide very critical interpolations, that can easily identified
by a simple visual inspection. No outliers appear for smaller
CNs: however, interpolation problems could remain that are
not evident.

2.1 Regularization of the System and Tests

To regularize the system, a threshold on CN can be set and
different regularization approaches can be adopted: two of
them have been implemented and will be compared.

More observations can be added to the nearest 16: a
redundant system is built and is solved by LS. In this case,
an iterative approach is implemented: at each step a new
observation (the nearest that has not yet been included) is
added to the observations vector, N matrix is recomputed
and its condition number is checked against a threshold.
Iterations stop when the resulting system is well conditioned.
This approach will be called Regularization by Redundant
Observations (Reg-RO).

A different solution is based on the SVD of A: in case the
matrix is ill conditioned, some .�i =�max/

�1 tend to infinite.
To solve the system, the relevant .�i /

�1 are set to zero: in

Table 2 Internal checks on interpolation approaches

Bias (m) Std (m) Max (m) Min (m)

BI – Obs 0.3 6.4 92.6 �1,031

Reg-RO – Obs 0.3 5.3 39.3 �56.8

Reg: BI-RO-1 0.0 0.5 6.3 �3.7

Reg: BI-RO-2 148.9 581.3 2,714 �127.0

Reg: RO-AE 0.1 0.5 4.3 �2.5

(SwissTopo) EB-Obs 0.3 5.0 �25.2 37.2

Input data are used to produce output grid by three approaches: iso-
determined bicubic interpolation (BI), regularized bicubic by Redun-
dant Observations (Reg-RO), regularized bicubic by Annihilating
Eigenvectors (Reg-AE). The output grid is back-interpolated on the
input nodes: the original and the final elevations are compared. First five
lines: Lombardy tests. BI-Obs: BI results, differences in the input points
between original and back interpolated elevations. Reg-RO – Obs: Reg-
RO results, same differences. Reg: BI-RO-1: differences between BI
and Reg-RO in the (858) regularized nodes with 102.5 � CN < 105. Reg:
BI-RO-2: differences between BI and Reg-RO in the (20) regularized
nodes with 105 � CN. Reg: RO-AE: differences between Reg-RO and
RegAE interpolations in all the regularized nodes. SwissTopo tests: only
BI-Obs is reported

this way the inverse of ƒ is filled, and A�1 is computed.
This approach will be called Regularization by Annihilating
Eigenvectors (Reg-AE).

Note that both Reg-RO and Reg-AE lead to approxima-
tion because the resulting surface no longer passes for the
input observations. Both of them have been implemented
and tested on the case study. A threshold CN D 102.5 has
been set on A: the threshold is clearly over-conservative
but allows to test the regularization effects in an acceptable
number of nodes (878, 0.45% of the total). Reg-RO threshold
(CN of N) is set to 105. In Reg-RO, one, two and three
redundant observations are added respectively in 170, 608,
100 cases, while in Reg-AE one, two and three eigenvectors
are annihilated respectively in 856, 19, 3 cases. This was in
some way expected, because annihilation is selective on the
less significant eigenvalues, while redundant observations
are added simply on a distance criterion.

To verify the effect of regularization, an internal check
is possible. The output grid is back-interpolated on the
input nodes: the original and the final elevations can be
compared. Moreover, a morphometric analysis is possible (Li
et al. 2005). Without regularization, roughness parameters
increase for nodes with high CN: on the contrary, after the
regularization, they are homogeneous between regularized
and not regularized output nodes. Comparisons (Table 2)
clearly show that the regularization improves critical inter-
polations, without over-smoothing the input dataset. Reg-
RO and Reg-AE provide consistent results and only ten
regularized interpolations deviate more than 5 m from the
corresponding iso-determined interpolations.

In case of SwissTopo input data, the maximum CN is
smaller than 102.5: indeed, SwissTopo nodes never present a
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Fig. 1 Case study: merging of two datasets to produce a unified DTM. 3-D shaded model obtained by averaging the individual interpolations of
Lombardy and SwissTopo dataset. Angles in degrees, clockwise from North direction

critical spatial configuration with respect to the output nodes.
The statistics of interpolation are similar to those provided by
the regularization on Lombardy dataset.

3 Comparisons BetweenDifferent
Methods to Merge Overlapping DTMS

Input DTMs should be merged: in this section, Merg-IUD
and Merg-AII are compared. To test Merg-IUD, one dataset
has been formed and used by unifying the Lombardy and
SwissTopo datasets. At first, the conditioning of the interpo-
lation is analyzed. CN exceeds 102.5, 105, 107, 109 respec-
tively in 99.5%, 83.25%, 24.75% and 0.62% (1,256) of the
nodes. The problem is clearly due to the spatial pattern of
the unified Lombardy and SwissTopo datasets. Moreover,
local differences between the heights of the two DTMs exist
and in this case must be filtered. Therefore, at least 32
observations are used to estimate each node by LS. About
12,000 (6%) nodes require a further regularization (threshold
CN � 105). The output grid contains significant artifacts and
presents artificial roughness, that are clearly due to the local
differences between the two input datasets, that are not
efficiently smoothed. A smoother solution could be obtained
by increasing the minimum number of input points: however,
as an alternative, we would test the results provided by Merg-
AII.

Two DTMs have been re-gridded (Reg-RO) from Lom-
bardy and SwissTopo input datasets: their differences are
spatially correlated and rather smooth: they have mean equal
to 2.1 m and standard deviation equal to 20 m. 21 differences
exceed 100 m and the maximum is 123 m. The two DTMs
are averaged to produce a final grid (Fig. 1): the result
does not present artifacts and its roughness is consistent
with those of the individual interpolations. Therefore, in our
case study, Merg-AII provide less instabilities and smoother
results.

4 Conclusions

To apply a reference frame transformation on a DTM, two
opposite approaches can be adopted. In the Direct Trans-
formation, the input DTM is transformed and the trans-
formed nodes are used to interpolate the output grid. In the
Inverse transformation, the horizontal positions of the output
nodes are back transformed on the input grid, and eleva-
tions are interpolated in their horizontal positions. In both
the approaches, re-gridding is required. In this paper, iso-
determined interpolation based on local polynomial surfaces
has been investigated. Indeed, in our particular application,
no smoothing is required because the input data are the nodes
of a model and not raw observations.
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To produce a unified DTM, neighboring and partly
overlapping DTMs are transformed to a common grid and
merged: to merge, two different approaches are possible. In
Merg-IUD, the input datasets are unified and then are used
to grid the output DTM while in Merg-AII, an individual
interpolation of each dataset is followed by the average of
the results.

The first part of the paper compares bilinear and bicu-
bic interpolations: on our case study, the latter provides
better results. Then, the problems of bicubic are discussed
in the Direct Transformation. In particular, critical spatial
horizontal distributions of the input nodes can cause an ill
conditioning of the interpolation systems and, consequently,
sparse outliers and irregularities. To regularize, redundant
observations can be added and a least squares system is
solved; alternatively, the not significant eigenvectors of the
system can be identified and annihilated by SVD analysis.
On a test case study, both the approaches provide satisfactory
and consistent results and do not over-smooth the input
dataset.

In the second part, Merg-IUD and Merg-AII are com-
pared: the former approach provides unsatisfactory results
and no further investigations seem to be needed on it. More
analyses will be performed on Merg-AII: a particular focus
will be given to its combination with the Inverse Transforma-
tion, that in a future work will be implemented and compared
with the direct one.
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Single-Epoch GNSS Array Integrity:
An Analytical Study

A. Khodabandeh and P.J.G. Teunissen

Abstract

In this contribution we analyze the integrity of the GNSS array model through the so-
called uniformly most powerful invariant (UMPI) test-statistics and their corresponding
minimal detectable biases (MDBs). The model considered is characterized by multiple
receivers/satellites with known coordinates where the multi-frequency carrier-phase and
pseudo-range observables are subject to atmospheric (ionospheric and tropospheric) delays,
receiver and satellite clock biases, as well as instrumental delays. Highlighting the role
played by the model’s misclosures, analytical multivariate expressions of a few leading test-
statistics together with their MDBs are studied that are further accompanied by numerical
results of the three GNSSs GPS, Galileo and BeiDou.

Keywords

Array model • GNSS misclosures • Integrity • Minimal detectable bias (MDB) •
Uniformly most powerful invariant (UMPI) test-statistic

1 Introduction

The notion of the GNSS array model, here, refers
to an array of antennas tracking the multi-frequency
carrier-phase/pseudo-range observables in the presence
of atmospheric effects. The coordinates of antennas and
satellites are assumed to be known. The definition presented
is rather general in the sense that even the medium-scale
control networks can also be considered as an array.
Examples of such are the continuously operating reference
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station (CORS) networks sending corrections to the RTK-
and/or PPP-RTK users (de Jonge 1998; Odijk et al. 2014),
a set of antennas mounted on rigid platforms improving
the position/attitude of points in its vicinity (Teunissen 2010,
2012), and the ground based augmentation systems (GBASs)
supporting safe flight procedures such as landing, departure
and surface operations at an airport (Khanafseh et al. 2012;
Giorgi et al. 2012). Despite their different applications,
all of the aforementioned arrays are, however, utilized for
the purpose of the same functionality, that is, providing
accurate corrections for the users. Ensuring the integrity and
reliability of the corrections, even at the pre-analysis level,
is therefore of great importance, see e.g., Teunissen (1998);
Teunissen and de Bakker (2012).

Integrity monitoring and quality control of the GNSS
array model is the topic of this contribution. We confine
our study to the single-epoch scenario as it is indeed the
ultimate goal of the near real-time applications and, at the
same time, brings us conservative thresholds of the reliability
measures of the corresponding multi-epoch scenario. Our
strategy commences with the model’s misclosures. Although
the GNSS misclosures can be treated as diagnostic tools in
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their own right, we make use of certain linear functions of
them to formulate the UMPI test-statistics which give rise to
the highest probability of the detection for a class of critical
regions. For an overview of the underlying principles of
the UMPI test, see Arnold (1981), and for its applications
to hypothesis testing in linear models, see e.g. Teunissen
(2000).

The test-statistics to be studied are (1) the array-, antenna-
and satellite-detectors in which the overall/local validity
of the model is tested, (2) the celebrated w-test-statistic
for the purpose of outlier identification and (3) the atmo-
spheric detectors well suited to the small-scale arrays. The
detectability of the tests is formulated via the corresponding
MDBs where the associated numerical illustrations, empha-
sized on the three GNSSs GPS, Galileo and BeiDou, are also
given.

2 Array Model and the GNSS
Misclosures

Consider a single antenna, say antenna r (r D 1; : : : ; n), that
tracks s number of commonly-viewed satellites on frequency
j (j D 1; : : : ; f ). One can then put the corresponding undif-
ferenced carrier-phase observations on each frequency, as the
s-vectors �r;j (j D 1; : : : ; f ), into a higher-dimensioned
vector �r D Œ�T

r;1; : : : ; �T
r;f �T . Doing the same to the pseudo-

range observations pr and collecting observations of all n

antennas, the final sf � n matrices of carrier-phase and
pseudo-range data of the array can be, respectively, formu-
lated as

˚ D Œ�1; : : : ; �n�; P D Œp1; : : : ; pn�

The satellite-/receiver-dependent biases are, respectively,
canceled out by applying the between-receiver single-
differenced (SD) operator Dn and the between-satellite
SD operator Ds (Teunissen 1997). The multivariate
representation of the double-differenced (DD) observation
equations of the array model, under the null hypothesis Ho,
reads then

Ef.If ˝ DT
s /˚ Dng D .ef ˝ DT

s g/ �T Dn � .� ˝ Is�1/

�DT
s � Dn C .� ˝ Is�1/ Z

Ef.If ˝ DT
s /P Dng D .ef ˝ DT

s g/ �T Dn C .� ˝ Is�1/

�DT
s � Dn

(1)

DfvecŒ.If ˝ DT
s /˚ Dn�g D DT

n Dn ˝ Q� ˝ DT
s W �1

s Ds

DfvecŒ.If ˝ DT
s /P Dn�g D DT

n Dn ˝ Qp ˝ DT
s W �1

s Ds

(2)

where the s-vector g contains functions mapping the slant
tropospheric delays (STDs) onto the zenith tropospheric
delays (ZTDs) � D Œ�1; : : : ; �n�T . The s � n matrix � is
introduced as � D Œ�1; : : : ; �n�, with �r being the s-vector of
the (first-order) slant ionospheric delays of antenna r . The f -
vector � contains the ionospheric coefficients �j D �2

j =�2
1,

with �j being the wavelengths positioned on the f � f

diagonal matrix �. The matrix Z contains the integer-valued
DD ambiguities. The f � f positive-definite matrices Q�

and Qp are the cofactor matrices of the phase and pseudo-
range observable-type. The s�s diagonal matrix Ws captures
the satellite elevation dependency of the observations. I and
e, respectively, denote the identity matrix and the vector of
ones, where the subscripts indicate their size. The operator ˝
denotes the Kronecker product. Ef:g and Df:g are the math-
ematical expectation and dispersion operators, respectively.
The operator vecŒ:� vectorizes the associated matrix.

Using model (1) and (2), we are interested to check the
validity of the model against unaccounted effects. To do
so, we therefore work with the conditioned equations of
(1) and the corresponding misclosures. The idea to employ
the conditioned equations rather than the commonly-used
observation equations is motivated by the desire to charac-
terize the intrinsic behavior of the array model in relation
to the possible misspecifications. This is indeed realized by
forming the GNSS misclosures showing the contribution of
the observations to the redundancy of the model.

2.1 GNSS-Based Decoupled Misclosures

Although the misclosures of (1) can be formed in many dif-
ferent ways, we form those that are group-wise uncorrelated
and at the same time have easy interpretations. The GNSS-
based decoupled misclosures, in case of the ambiguity-float
scenario, are introduced as follows (cf. Appendix)

i: Frequency-differenced misclosures:

M1 D Œ.DT
f �/?T

DT
f ˝ c2

d j� NgT Ws� P Dn

ii: Atmosphere-free misclosures:

M2 D Œ�?T ˝ .DT
s g/?T

DT
s � P Dn

(3)

where .:/? denotes the orthogonal complement basis matrix.
We introduce the s-vector Ng D g C .cd�=c2

� /es, in which
the satellite-domain (co)variance-type scalars c2

d j� , cd� and

c2
� are computed as

c2
� D eT

s Wses

ŒeT
s Wses �ŒgT Wsg��ŒgT Wses �2

cd� D �gT Wses

ŒeT
s Wses �ŒgT Wsg��ŒgT Wses �2

; c2
d j� D 1

eT
s Wses

(4)
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With regard to (3), M1 and M2, respectively, contribute to the
model’s redundancy of size .f � 2/ and .f � 1/.s � 2/ per
baseline. After fixing ambiguities, similar expressions can be
obtained for the phase and phase-and-code misclosures.

2.2 Atmosphere-Aided Decoupled
Misclosures

The GNSS-based misclosures, presented in (3), contain the
complete information needed to check and to study the
quality of the observation matrices ˚ and P in (1). One may,
however, strengthen the model by using a-priori atmospheric
information, i.e. the spatial dependency of the atmospheric
delays. In case of not-too-large arrays, the differential atmo-
spheric delays, with amount of uncertainty, would thus play
the role of pseudo-observables as

EfDT
s � DngDDT

s � Dn; with DfDT
s � DngD	2

� DT
n Dn˝DT

s W �1
s Ds

EfDT
n �g D DT

n �; with DfDT
n �g D 	2

� DT
n Dn

(5)

with 	2
� and 	2

� being the a-priori ionospheric and tropo-
spheric variances, respectively.

Appending the preceding equations to (1) does increase
the redundancy of the model by comparing the GNSS-
based estimators of the differential atmospheric delays with
their pseudo-observable ones (s redundant observations per
baseline). This, in a similar way to (3), provides us with the
atmosphere-aided misclosures.

3 UMPI Test-Statistics and Their MDBs

Given the GNSS decoupled misclosures introduced in the
previous section, we are now in a position to form various
test-statistics.

Theorem 1 (UMPI Test-Statistic and Its MDB) Let the
alternative hypothesis Ha be related to the null hypothesis
Ho as EfvecŒY �jHag D EfvecŒY �jHog C CY r, where the
q-vector of misspecifications r is linked to the observations
by the full-rank design matrix CY . Given a representation
for the model’s misclosures as M D BT vecŒY � under Ho,
the UMPI test-statistic Tq and its MDB are respectively
given by

Tq D t rfQ�1
MM PCM MM T g
t rfPCM g (6)

jjrjj D
s

vq;˛;


d T
Y C T

M Q�1
MM CM dY

; r D jjrjjdY (7)

where QMM D DfM g and CM D BT CY , with the projector
PCM D CM .C T

M Q�1
MM CM /�1C T

M Q�1
MM . The scalar �q;˛;


is the �2-noncentrality parameter to be determined by the
power of the test 
 and the probability of false alarm ˛.
The operator t rf:g denotes the trace of a matrix, whereas
jj:jj2 D .:/T .:/ is the squared-norm of a vector.

Proof see Appendix. ut
The above theorem shows how the multivariate represen-
tation of the UMPI test-statistic is realized through the
model’s misclosures and the type of misspecifications, i.e.
CY . We remark that the test-statistic Tq follows central and
noncentral F -distribution under Ho and Ha, respectively,
that is, TqjHo � F.q; 1; 0/ and TqjHa � F.q; 1; �/,
with the first two arguments q; 1 being the degrees of
freedom and � the noncentrality parameter.

As to the GNSS array model, one may formulate a rather
general structure for the misspecification design matrix CY

at the undifferenced level. The following structure has been
adopted in this study

Ef QY jHag D Ef QY jHog C .Cf ˝ Cs/ r C T
n (8)

where the full-rank matrices Cf , Cs and Cn specify the
type of misspecification r in the frequency-, satellite- and
antenna-domain, respectively. The role of the atmosphere-
corrected observation matrix QY can be taken by QP and Q̊ or
both of them, in which we define

QP D P � .ef ˝ g/� � .� ˝ Is/�
Q̊ D ˚ � .ef ˝ g/� C .� ˝ Is/�

(9)

MDB-Parametrization In general there is no unique solu-
tion for the MDB of the misspecifications of a multi dimen-
sional type. This issue can be properly circumvented through
an MDB-parametrization as follows

r D jjvecŒr�jj .df ˝ ds/ d T
n (10)

with df , ds and dn being, respectively, the frequency-,
satellite- and antenna-domain vectors such that their resultant
vector dn ˝ df ˝ ds is of length 1, i.e. a direction vector.

In the following, a few important test-statistics, together
with their MDBs, will be specialized by setting Cf , Cs and
Cn in (8) to certain structures.

3.1 Array-, Antenna-
and Satellite-Detectors

First one needs to check the validity of the array model
against any type of misspecification that might potentially
occur. The stated validity can be either of an overall type
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or of a local type. The overall validity of the model is tested
through the array-detector characterized by the following set-
ting

array-detector: Cf 7! If ; Cs 7! Ds; Cn 7! Dn

(11)

Depending on the a-priori atmospheric variances 	2
� and

	2
� , several expressions can be formulated. In case of

atmosphere-fixed scenario, i.e. 	2
� D 0 and 	2

� D 0, the
array-detector can be shown to take the following form (cf.
Appendix)

Tq D 1

q
trfŒQ�1

p ˝ WsP
?
es

� QP PDn
QP T g

C1

q
trfŒQ�1

� ˝ WsP
?
es

� Q̊ PDn
Q̊ T g (12)

with the projectors P ?
es

D Is � c2
d j� ese

T
s Ws and PDn D In �

.1=n/eneT
n . The degrees of freedom q is determined upon

choosing the following scenarios

codeless data .Q�1
p D 0/ W ) q D f .s � 1/.n � 1/

phaseless data .Q�1
� D 0/ W ) q D f .s � 1/.n � 1/

code+phase data W ) q D 2f .s � 1/.n � 1/

(13)

The corresponding MDB, in accordance with (7), reads

jjvecŒr�jj

D �
1
2
q;˛;
q

Œd T
f .Q�1

p CQ�1
� /df �Œd T

s DT
s WsP ?

es
Dsds�Œd T

n DT
n PDn

Dndn�

(14)

Clearly a judgment on the size of the MDB cannot be easily
made since it depends on the three vectors df , ds and dn.
Keeping fixed two vectors out of which however, one can
still gain information on the sensitivity of the MDB to the
contributing factors like the number of frequencies/satellites
and the quality of the observables. This idea leads to locally
validate the model by testing observations of a particu-
lar antenna and/or those of a particular satellite. We can
therefore characterize the antenna-/satellite-detector upon
the following setting

antenna-detector: Cf 7! If ; Cs 7! Ds; Cn 7! un
r

satellite-detector: Cf 7! If ; Cs 7! us
i ; Cn 7! Dn

(15)

where un
r denotes the canonical n-vector containing zeros

except the rth element equal to one. The canonical vector

us
i is defined similarly. With this setting, in an analogous way

to (11) and (12), expressions of the stated test-statistics as
well as their MDBs can be obtained. For the atmosphere-
fixed case, the degrees of freedoms of the antenna-/satellite-
detector are q D f .s � 1/ and q D f .n � 1/, respectively.

3.2 w-Test-Statistic and theMDB of Single
Outliers

We now focus our attention to the well-known w-test-statistic
employed for the purpose of identification of a single erro-
neous observation (Baarda 1968). The structure of CY is then
set to

w-test-statistic: Cf 7! uf
j ; Cs 7! us

i ; Cn 7! un
r (16)

Similar to the array-detector, depending on the scenarios
considered, several expressions can be given to the w-test-
statistic. The structures of the corresponding MDB do how-
ever follow the same pattern. Let us, for the moment, con-
sider STDs rather than ZTDs in the model. The code-outlier
MDB can be shown to read as

jjvecŒr�jjSTD D �
1
2

1;˛;
 � Œ n
n�1

�
1
2 � Œwi .1 � Œ wi

Nw � 1
s
/�� 1

2

�Œ
	2

pj

1�.	2
Opj

=	2
pj

/
�

1
2

(17)

Four contributing elements show up themselves in the above
MDB that are described in the following:

Noncentrality Parameter �1;˛;� Given the fixed probabil-
ity of false alarm ˛, the �2-noncentrality parameter increases
as the power of the test 
 increases. In other words, for a
given fixed model and a fixed ˛, the higher the power of the
test is sought, the larger the MDB becomes.

Antenna-Specific Part Œn=.n � 1/�
1
2 This clearly shows

that an increase in the number of antennas n could decrease
the size of the outlier MDB considerably, would one, in the
beginning, consider a limited number of antennas (e.g. n D 2

or n D 3). However, the stated MDB does not significantly
decrease in size by adding an extra antenna when dealing
with an array of a large number of antennas.

Satellite-Specific Part Œwi .1 � Œ wi

Nw � 1
s
/�� 1

2 This term
depends on three factors, namely, 1) the elevation-dependent
weight wi of an individual satellite, say i , 2) the mean value
of wi (i D 1; : : : ; s) denoted by Nw, and 3) the number
of common satellites s. In this study, we make use of the
exponential elevation weighting strategy to form the diagonal
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Fig. 1 Satellite-specific part of the outlier MDBs as function of the satellite elevation for different satellite configuration. The overall satellite
configuration has been characterized by the weight mean value ‘ Nw’

elements of matrix Ws , i.e. wi (Euler and Goad 1991)

wi D Œ1 C 10 exp.� i

10ı /��2; i D 1; : : : ; s (18)

where i is the elevation of satellite i [degree] with respect
to the reference antenna. Note that the elevation-dependent
weight wi should not be confused with the w-test-statistic.

Figure 1 depicts the satellite-specific part as function of
the elevation of an individual satellite. The graphs have
been presented for different values of Nw reflecting the over-
all configuration of the satellites with respect to the array
(0:4 � Nw � 0:8). This has been done for two cases, the
case where the number of satellites is s D 3 (left-panel)
and the other one with s D 5 (right-panel). As shown,
the size of the MDB of an outlier, occurred in a single
observation of satellites of low elevation (e.g. 10ı � i �
20ı), is governed by the elevation of the corresponding
satellite only, irrespective of the number/configuation of the
satellites. In case of satellites of a higher elevation, the
scenario would change as the number of satellites starts
taking an active role as well. Considering a limited number
of common satellites, it is interestingly observed that the
MDB does not generally decrease as the elevation of the
corresponding satellite increases (see the red thick line in
Fig. 1, left-panel). In this case, in addition to the satellite
elevation, the overall satellite configuration would also con-
tribute to the size of the MDB. The stated contribution
does however get insignificant once the number of satellite
increases (see Fig. 1, right-panel). In the situations where
the number of satellites is large enough (e.g. more than
5), one can therefore simply consider the elevation of each
satellite individually to analyze the corresponding outlier
MDB.

Frequency-Specific Part Œ� 2
pj

=.1 � .� Opj
=�pj

/2/�
1
2 In

addition to the variance of an individual pseudo-range
observable-type 	2

pj
, this term is also dependent on the

variance of the adjusted observable-type denoted by 	2
Opj

.
This quantity in turn is a function of the a-priori atmospheric
variances, the quality of the other pseudo-range observable-
types through Qp and the ionospheric vector �.

Figure 2 shows the frequency-specific part as function of
the inter-station distance for the three GNSSs GPS, Galileo
and BeiDou. In order to link the inter-station distance to
the ionospheric variance 	2

� , use has been made of that
given in Schaffrin and Bock (1988). The graphs have been
plotted for the troposphere-fixed case 	2

� D 0 (top-panel)
as well as the troposphere-float case 	2

� ! 1 (bottom-
panel). As shown, the frequency-specific part behaves almost
unchanged up to a certain inter-station distance (in this study
around 100 [km]). In contrast to the single-frequency data
(red dots), the MDB associated with the multi-frequency data
does not significantly change as the inter-station distance
increases (troposphere-fixed case). Because of the dispersive
nature of the ionospheric effects (i.e. dependency on the
frequencies), the GNSS-based misclosures would, in addi-
tion to the atmosphere-aided ones, also contribute to the
w-test-statistic, whereas they do vanish in case of single-
frequency data (cf. (3)). It is also important to note that
there is no redundancy in the single-frequency troposphere-
float scenario, thus giving rise to infinite MDBs. The single-
frequency case is therefore excluded from the graphs of the
bottom-panel. We remark, due to a generally better precision
of the Galileo’s signals, that the associated results illustrate
a superior performance to those of GPS and BeiDou. The
pseudo-range zenith-referenced standard deviation is taken
as 25 [cm] for GPS/BeiDou, and as 20 [cm] for Galileo .
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Fig. 2 Frequency-specific part of the code-outlier MDBs [m] as function of the inter-station distance [km] for three GNSSs GPS, Galileo, and
BeiDou
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Fig. 3 Reduction-factors (ambiguity-float) of the code-outlier MDB
(dashed lines) due to mapping the slant tropospheric delays (STDs) to
their zenith counterparts (ZTDs) compared to the rule-of-thumb formula
(red thick line) over time (a GPS data-set). Different colors have been
used for different satellites

Similar to the satellite-specific part, as the model gets
stronger (i.e. 	2

Opj
� 0), one can only consider the quality of

that individual observable-type on frequency j (i.e. 	2
pj

). As
an example, for an array of 4 antennas with the probability of
false alarm ˛ D 0:01, the code-outlier MDB is about 79 [cm]
(
 D 0:8) and 89 [cm] (
 D 0:9). In case of phase-slip MDB
of two successive epochs, the MDB is about 3:9 [mm] (
 D
0:8) and 4:4 [mm] (
 D 0:9). The zenith-referenced standard
deviations of the pseudo-range and carrier-phase observables
are, respectively, set to 	pj D 20 [cm] and 	�j D 1 [mm].

3.2.1 MDB Reduction-Factor: From
the STD-BasedModel to the ZTD-Based
Model

As stated so far, the MDB given in (17) refers to the STD-
based model. One can now ask to what extent the MDB
decreases by mapping the STDs to their ZTDs. Following
the same procedure as before, the MDB of the ZTD-based
model can be formulated that reveals the gain in terms of the
reduction of the MDB. Although in addition to the number
of frequencies/satellites, the stated reduction-factor does also
depend on the tropospheric mapping functions g and the
elevation-dependent weight matrix Ws (see Fig. 3), one can
however present a rule-of-thumb expression as its rough
value, namely (ionosphere-fixed scenario)

Before ambiguity-fixing
jjvecŒr�jjSTD
jjvecŒr�jjZTD

� Œ1 C 1
f �1

. s�2
s�1

/�
1
2

After ambiguity-fixing
jjvecŒr�jjSTD
jjvecŒr�jjZTD

� 1

(19)

According to the above equations, before fixing ambiguities
the reduction-factor is mostly governed by the number of
frequencies f but not too much by the number satellites s. As
the number frequency increases, the gain in terms of MDB
reduction gets less. After fixing ambiguities, the reduction-
factor becomes almost 1 meaning that the code-outlier MDB
remains almost unchanged by even strengthening the model
through mapping the tropospheric delays to their ZTDs.
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Fig. 4 Upper bounds of the reduction-factor of the ionospheric MDB
due to excluding zenith tropospheric delays (ZTDs) from the underlying
model for three GNSSs GPS (green bars), Galileo (blue bars), and
BeiDou (red bars)

3.3 Atmospheric Detectors and Their MDBs

In most applications dealing with the small-scale arrays,
one needs to check as to whether there are significant dis-
persive/nondispersive effects or not. Taking the atmosphere-
fixed scenario as the null hypothesis, the atmospheric detec-
tors are defined as

tropospheric-detector: Cf 7! ef ; Cs 7! g; Cn 7! Dn

ionospheric-detector: Cf 7! �; Cs 7! Ds; Cn 7! Dn

(20)

Despite the complexity of the atmospheric MDBs, we can
evaluate them in a relative sense. For instance, one can
analyze the reduction of the ionospheric MDB when the
differential ZTDs are assumed to be a-priori known via the
following bounds (codeless data)

1 � jjvecŒr�jj�
jjvecŒr�jj � Œ1 C N�2

	2
�

�
1
2 (21)

with N� D .1=f /
Pf

j D1 �j and 	2
� D .1=f /

Pf
j D1.�j � N�/2.

The ionospheric MDBs with and without ZTDs are denoted
by jjvecŒr�jj� and jjvecŒr�jj, respectively.

According to (21), the detectability of the differential
ionosphere can get better at most Œ1 C . N�=	�/2�

1
2 times, if

one excludes the differential ZTDs from the model. For the
current systems, the stated value is around 3 (cf. Fig. 4).

4 Concluding Remarks

In this contribution, the UMPI test-statistics as well as their
MDBs, associated with the array model, were studied. With
the aid of the GNSS decoupled misclosures, a few impor-
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tant examples such as the array-detector, w-test-statistic and
the ionospheric-detector were discussed. In particular, we
showed that as the model gets stronger, one can simply, in
case of outlier’s MDB, analyze the single-channel/frequency
scenario instead.

Acknowledgements P.J.G. Teunissen is the recipient of an Australian
Research Council Federation Fellowship (project number FF0883188).

Appendix

Proof of (3) The model’s misclosures, forming the condition
equations, can be formulated through pre-multiplying the
corresponding observation vector by an orthogonal comple-
ment basis matrix of the design matrix (Teunissen 2000). In
case of the single-epoch ambiguity-float scenario, the carrier-
phase observations are all reserved to determine the DD
ambiguities, thus leaving the code observations to contribute
to the redundancy of the model. Given the observations
Eq. (1), the code-only design matrix A, together with its
orthogonal complement basis matrix B , can therefore be
expressed as (per baseline)

A 7! Œ ef ˝ DT
s g ; � ˝ Is�1 � )

BT 7!
�

.DT
f �/?T DT

f ˝ c2
d j� gT Ds.D

T
s W �1

s Ds/
�1

�?T ˝ .DT
s g/?T

�
(22)

from which (3) follows. That the misclosures M1 and M2 are
mutually uncorrelated follows from the identities DT

s Ng D
DT

s g, and .DT
s g/?T DT

s g D 0. ut
Proof of Theorem 1 Equation (6) is indeed another expres-
sion of the UMPI test-statistic Tq presented in Teunissen
(2000). In terms of the model’s misclosures M , Tq and its
MDB-squared jjrjj2 read

Tq D 1

q
M T Q�1

MM PCM M (23)

jjrjj2 D �q;˛;


d T
Y C T

M Q�1
MM CM dY

(24)

To complete the proof, we thus need to show

tr.Q�1
MMPCM MMT / D M T Q�1

MMPCM M;

tr.PCM / D q
(25)

The first expression follows from the trace-property
tr.UV/ D tr.VU/ for any matrices U and V of an appropriate
size, and the fact that the trace of a scalar is equal to the
scalar itself. The second expression follows from the equality
between the trace of a projector and its rank, that is

tr.PCM / D rank.PCM / D q; (26)

since rank.CM / D q. ut
Proof of (12) In case of the atmosphere-fixed scenario, no
differential atmospheric delays are to be estimated, i.e. � D
0 and g D 0. This yields �? D If and .DT

s g/? D Is�1.
According to (3), the frequency-difference misclosures M1

vanishes, and the vectorized version of the atmosphere-free
misclosures M2 takes the following form

M Qp D ŒDT
n ˝ If ˝ DT

s �vecŒ QP � (27)

with the variance matrix (cf. (2))

QM
QpM

Qp
D DT

n Dn ˝ Qp ˝ DT
s W �1

s Ds (28)

Upon choosing the array-detector structure (11), matrix CM

of M Qp , introduced in Theorem 1, reads then

CM
Qp

D DT
n Dn ˝ If ˝ DT

s Ds (29)

Similar expressions are formulated for the carrier-phase
observations Q̊ , in case the ambiguities are fixed to their
integers. The structures of M Q� , QM

Q�M
Q�

and CM
Qp

are thus

identical to those of QP . Substituting M D ŒM T
Qp ; M T

Q� �T ,

QMM D
"

QM
QpM

Qp
0

0 QM
Q�M

Q�

#
; CM D

"
CM

Qp
0

0 CM
Q�

#
;

(30)

an application of Theorem 1 gives (cf. (6))

Tq D
trfQ�1

M
QpM

Qp
PCM

Qp
M QpM T

Qp g C trfQ�1
M

Q�M
Q�
PCM

Q�
M Q�M T

Q� g
trfPCM

Qp
g C t rfPCM

Q�
g

(31)

The proof follows then from

PCM
Q�

D PCM
Qp

D In�1 ˝ If ˝ Is�1; (32)

and

trfQ�1
M

QpM
Qp
M QpM T

Qp g D trfŒQ�1
p ˝ WsP

?
es

� QP PDn
QP T g;

trfQ�1
M

Q�M
Q�
M Q�M T

Q� g D trfŒQ�1
� ˝ WsP

?
es

� Q̊ PDn
Q̊ T g

(33)

with the projectors P ?
es

D W �1
s Ds.D

T
s W �1

s Ds/
�1DT

s , and
PDn D Dn.DT

n Dn/�1DT
n .

The proof of (14), (17), (19) and (21) goes along the same
lines as the proof of (12). ut



Single-Epoch GNSS Array Integrity: An Analytical Study 271

References

Arnold SF (1981) The theory of linear models and multivariate analysis,
vol 2. Wiley, New York

Baarda W (1968) A testing procedure for use in geodetic networks.
Technical Report, Publications on Geodesy, New Series, vol 2, no.
5. Netherlands Geodetic Commission, Delft

Euler HJ, Goad CC (1991) On optimal filtering of GPS dual frequency
observations without using orbit information. J Geod 65(2):130–143

Giorgi G, Henkel P, Gunther C (2012) Testing of a statistical approach
for local ionospheric disturbances detection. In: Proceedings of the
IEEE-ION Position Location and Navigation Symp (PLANS), 2012.
IEEE, USA, pp 167–173

de Jonge PJ (1998) A processing strategy for the application of the
GPS in networks. PhD Thesis, Publication on Geodesy, 46, Delft
University of Technology, Netherlands Geodetic Commission, Delft

Khanafseh S, Pullen S, Warburton J (2012) Carrier phase ionospheric
gradient ground monitor for GBAS with experimental validation.
Navigation 59(1):51–60

Odijk D, Teunissen PJG, Khodabandeh A (2014) Single-frequency
PPP-RTK: theory and experimental results. IAG Symp 139:167–173

Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-
band phase observations. Bull Géod 62(2):142–160

Teunissen PJG (1997) GPS double difference statistics: with and with-
out using satellite geometry. J Geod 71(3):137–148

Teunissen PJG (1998) Minimal detectable biases of GPS data. J Geod
72(4):236–244

Teunissen PJG (2000) Testing theory: an introduction. Series on Math-
ematical Geodesy and Positioning. Delft University Press, Delft

Teunissen PJG (2010) Integer least-squares theory for the GNSS com-
pass. J Geod 84(7):433–447

Teunissen PJG (2012) A-PPP: Array-aided precise point positioning
with global navigation satellite systems. IEEE Trans Signal Process
60(6):2870–2881

Teunissen PJG, de Bakker PF (2012) Single-receiver single-channel
multi-frequency GNSS integrity: outliers, slips, and ionospheric
disturbances. J Geod 87(2):161–177



Part IX

Inverse Modeling, Estimation Theory VIII
Hotine-Marussi: Geodetic Data Analysis



Global to Local Moho Estimate Based on GOCE
Geopotential Model and Local Gravity Data

R. Barzaghi, M. Reguzzoni, A. Borghi, C. De Gaetani, D. Sampietro,
and A.M. Marotta

Abstract

Collocation approach has been applied to get a global Moho model in spherical approxi-
mation based on a GOCE geopotential model. A simple single layer model, with known
density contrast, has been considered and a linearized relationship between the spherical
harmonic coefficients of the anomalous potential and those of the Moho depth has been
derived. This allows the covariance propagation from gravity to Moho depth. The derived
covariance functions are then used in the collocation estimate of the global Moho depth. In
order to be as close as possible to the considered model, reductions for the gravity signal
related to topography/bathymetry have been applied. Simulated and real data tests have
been performed and the obtained global solution has been compared with Moho estimates
available in literature.

The obtained global Moho has been then used as a starting solution for a regional
refinement assuming planar approximation. In this second step the computation has been
performed in the Central Mediterranean area, based on collocation, local gravity and
topography/bathymetry data.

Keywords

Moho • Gravity data • GOCE model • Collocation

1 Introduction

The Mohorovičić discontinuity (Moho) separates the lower
crust from the upper mantle (Turcotte and Schubert 1982).
This discontinuity causes seismic wave refraction and reflec-
tion and can be thus investigated via seismic methods (Parker
1973; Lebedev et al. 2013). Seismic methods can give
accurate estimates that are, however, obtained along sections

R. Barzaghi (�) • M. Reguzzoni • A. Borghi • C. De Gaetani
DICA, Politecnico di Milano, Milano, Italy
e-mail: riccardo.barzaghi@polimi.it
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GReD, Politecnico di Milano, Milano, Italy

A.M. Marotta
Dip. “Ardito Desio”, Università degli Studi di Milano, Milano, Italy

which are usually sparse and not homogeneously distributed
on the Earth.

The mean density variation between the lower crust and
the upper mantle is usually set at 0.4 g/cm3 (Anderson 1989),
even though this value has been recently revised and raised
to values ranging from 0.448 to 0.485 g/cm3 (Tenzer et
al. 2012; Sjöberg and Bagherbandi 2011). The gravimetric
signal that is related to the Moho has, at the Earth surface,
a strong signature and a standard deviation that can range
from 50 to 100 mGal. So, also gravity can be used to
estimate this surface provided that proper constraints are
used to overcome the intrinsic non-uniqueness of the related
inverse gravimetric problem (Tarantola 2005; Sampietro and
Sansó 2012). Gravity data are densely and homogeneously
distributed on the Earth and can thus give valuable infor-
mation on the Moho structure. Global geopotential models
can be profitably used to this purpose. Particularly, satellite
dedicated gravity missions (Reigber et al. 1999; Tapley et al.
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of Geodesy Symposia 142, DOI 10.1007/1345_2015_15
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2004; Albertella et al. 2002) allowed the estimate of reliable
satellite only models that can be used in combination with
ground based gravity data (Shin et al. 2007) for estimating
the Moho depths.

Note that, Moho estimates can be also obtained using both
gravity data and seismic derived Moho depths (Eshagh et al.
2011).

In this work, a method for the inversion of gravity to get
the Moho depth based on collocation is presented (Krarup
1969; Tscherning 1985; Moritz 1989). To this aim, the
gravity signal related to the Moho discontinuity is expressed,
at global scale, as a linearized functional of the Moho
depth variation with respect to a suitable mean depth sphere.
Furthermore, in order to guarantee uniqueness, it is assumed
to have a single layer model with a known constant density
contrast (Barzaghi and Sansò 1988). This global estimate,
which can be also integrated with known Moho depths
coming from seismic analyses, can be then used to refine
the estimated Moho depths at local scale, following a similar
scheme (Barzaghi et al. 1992; Knudsen 1993; Arabelos et al.
2007) and taking into account detailed density and local
gravity information.

2 TheMethodology

Assume to have a single layer model in spherical approxima-
tion (see Fig. 1).

The sphere having radius R2 is considered to be the mean
Earth sphere while the Moho depth is ranging around an
internal sphere of radius R1. Thus the Moho topography is
described as R1 C ıR1(� ,�). We further assume that

�
�

ıR1 .�; �/ d� D 0 (1)

where ¢ is the unit sphere and (™,œ) are, respectively, co-
latitude and longitude.

Assume also that the anomalous potential T(P) outside the
external sphere is given by the mass contained in the volume
bounded by R1 C ıR1(� ,�) and R2, having density contrast
ı�12 D �1 � �2, being �1 the crust density and �2 the mantle
one. In these hypotheses and referring to Fig. 1, we can write

T .P / D G
�
V

ı�12.Q/

rPQ
dvQ D

D G
�
�

d�Q

� R2

R1CıR1
drQ r2Q

ı�12.Q/

rPQ
D

D G
�
�

d�Q

� R2

R1
drQ r2Q

ı�12.Q/

rPQ
C

Fig. 1 The single layer model describing the Moho

CG
�
�

d�Q

� R1

R1CıR1
drQ r2Q

ı�12.Q/

rPQ
D

D T .P /C ıT .P / (2)

where G is the gravitational constant.

In our analysis we only consider the second term which
allows the estimation of ıR1(� ,�). This can be written in the
following form

ıT .P / D

D G
�
�

d�Q

� R1

R1CıR1
drQr

2
Q

ı�12.Q/

rPQ
Š

Š Gı�12

rP

�
�

d�Q

� R1

R1CıR1
drQr

2
Q

C1X

nD0

rnQ

rnP
Pn

�
cos PQ

�

D Gı�12

rP

�
�

d�Q

C1X

nD0

1

rnP

h
RnC3
1 � .R1 C ıR1/

nC3i

.nC 3/

�Pn
�
cos PQ

�

(3)
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using the standard expansion of 1/rPQ in terms of Legendre
polynomials (Mac Millan 1958). In this equation, we made a
further simplification by considering a mean constant density
contrast ı�12 instead of the varying density contrast ı�12(Q).
If we now linearize the term

.R1 C ıR1/
nC3 Š RnC3

1

�
1C .nC 3/

ıR1

R1

�
(4)

we obtain

ıT .P / D �Gı�12R1
�
�

d�QıR1.Q/

C1X

nD1

�
R1

rP

�nC1

�Pn
�
cos PQ

�
(5)

where now the series starts from n D 1 by virtue of (1).
Using the decomposition formula which allows express-

ing the Legendre polynomials in terms of spherical harmon-
ics (Mac Millan 1958), we obtain

ıT .P / D �Gı�12R1
�
�

d�QıR1.Q/

C1X

nD1

�
R1

rP

�nC1

�Pn
�
cos PQ

� D

D �Gı�12R1
�
�

d�QıR1.Q/

C1X

nD1

�
R1

rP

�nC1

� 1

2nC 1

nX

mD�n
Ynm.P /Ynm.Q/ D

D �4�Gı�12R1
C1X

nD1

nX

mD�n

1

2nC 1

�
R1

rP

�nC1

� ıR.1/nmYnm.P / (6)

where

ıR.1/nm D 1

4�

�
�

d�QıR1.Q/Ynm.Q/ (7)

By evaluating this function on any external sphere of radius
Re>R2, we finally have

ıT 0.P / D
C1X

nD1

nX

mD�n
ıT 0nmYnm.P /D ıT .P /jP2Re D

D �4�Gı�12R1
C1X

nD1

nX

mD�n

1

2nC 1

�
R1

Re

�nC1

� ıR.1/nmYnm.P / (8)

which implies

ıT 0nm D �4�Gı�12R1
2nC 1

�
R1

Re

�nC1
ıR.1/nm (9)

3 The Covariance Propagation Law
for the Collocation Estimation
of theMoho

The geodetic applications of collocation formula are based
on the covariance propagation law to the linear functional
of the anomalous potential (Moritz 1989). This rule allows
defining the covariance function of any geodetic observation
which can be expressed as a linear(ized) functional of the
anomalous potential. In the same way, the propagation law
can be applied to (8) and (9) which express the observed
ıT 0(P) values as a linear functional of ıR1(P).

Since, due to Eq. (8), ıT 0(P) is given by

ıT 0.P / D
C1X

nD1

nX

mD�n
ıT 0nmYnm.P / (10)

it follows (Moritz 1989) that its auto-covariance function
CıT 0ıT 0 .P;Q/ can be defined as

CıT 0ıT 0 .P;Q/ D
X

n

�2n
�
ıT 0

�
Pn

�
cos PQ

�

�2n
�
ıT 0

� D
nX

mD�n

�
ıT 0nm

�
2 (11)

Based on that and applying covariance propagation law, one
can get the cross-covariance CıR1ıT 0 .P;Q/ as

CıR1ıT 0 .P;Q/ D
C1X

nD1

�
� 2nC 1

4�Gı�12R1

��
Re

R1

�nC1

� �2n
�
ıT 0

�
Pn

�
cos PQ

�
(12)

Both covariances are needed to compute the collocation
estimate of ıR1(P) which is expressed by

ıbR1.P / D CıR1ıT 0
�
CıT 0ıT 0 C �2�I

	�1
ıT 0 (13)

The ıbR1 estimate can be then computed following the
standard collocation procedure. Given the observed ıT 0(P)
values on any sphere Re>R2, the empirical covariance is
computed and then fitted using the model (11). In this way,
�2

n(ıT 0) and �2
¤ (the variance of the noise associated to the

observed ıT 0) are estimated. Having defined the �2
n(ıT 0)

values, the cross-covariance between ıT 0(P) and ıR1(P) can
be derived too, taking (12) into account. This allows the
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Table 1 The statistics of the differences between predicted and known
Moho depths

Mean (km) ¢ (km) Min (km) Max (km)

SIMULATION A 0.005 0.057 �0.528 0.541

SIMULATION B 0.004 1.403 �13.570 22.742

computation of formula (13) that gives the wanted estimate
of the Moho depth, i.e. bRMoho D R1 C ıbR1.

4 Input Data and Results

Two simulations have been set up to prove the method feasi-
bility. The estimated GEMMA Moho depth (Reguzzoni et al.
2013; Reguzzoni and Sampietro 2015) has been assumed as
the known surface for computing a synthetic potential signal
on the external sphere Re D R2 C 50 km D (6,371 C 50) km,
assuming a constant density contrast ı�12 D �0:4 g=cm3.
The simulated potential has been computed either using Eq.
(8) (SIMULATION A), with ıR(1)

nm coming from harmonic
analysis of the known ıR1(� ,�) function (up to degree
n D 180), and a quadrature formula of the integral over the
given layer (Reguzzoni et al. 2013) (SIMULATION B). The
two data sets have been used for computing the empirical
covariances that are needed to set the auto- and cross-model
covariances to be used in Eq. (13). The estimated depths have
then been compared with the known Moho surface and the
statistics are shown in Table 1.

From these values, it can be concluded that the method
is able to retrieve the given Moho depth in a quite accurate
and precise way. SIMULATION A is clearly better than
SIMULATION B because in that case only linear terms
were considered in generating the potential signal. However,
it must be underlined that in SIMULATION B absolute
differences higher than 3¢ are around 2%. Also, they are
in areas, such as the Andes, where the Moho structure is
complex and sharp variations occur. Since the devised model
is based on a linearization, such high frequencies cannot be
retrieved properly. In these areas, local investigations are then
needed and second order refinements are to be estimated
starting form the global smooth solution and local data.
Naturally, this is a close loop simulation that only proves that
the mathematical and the numerical formulations are sound,
provided that the hypotheses on the model are fulfilled.

Real data have then been analysed taking into account
the GOCE model obtained via direct approach (Pail et al.
2011-release R4). The anomalous potential signal implied
by this model has been evaluated at 50 km altitude and
up to degree 180, according to what has been done in the
simulations. Corrections have then been computed to come
as close as possible to the model given in Sect. 2. It must
be underlined that only major corrections have been taken

into account (we recall that, in our mind, this is only the
first step in the Moho estimating procedure which can be
then refined using detailed density and gravity information
at local level). As for the topography/bathymetry compen-
sation, the ETOPO1 DTM (Amante and Eakins 2009) has
been considered at a grid step of 300. The potential effect
of the masses above sea level has been computed at 50 km
altitude assuming a constant 2.67 g/cm3 density. This has
been done following the quadrature formula method used in
the simulation. In the same way, the bathymetry effect has
been evaluated using a 1.9 g/cm3 seawater density contrast.
The potential signal coming from the positive topography
has been then removed from the GOCE model signal while
the bathymetry effect has been added. Ice sheets from the
ETOPO1 model have been also compensated, removing the
potential signal of ice masses above sea level with a standard
0.98 g/cm3 water density and adding the signal of those
below sea level (mainly in Antarctica) with a 1.92 g/cm3

density contrast. The derived data set has been then used in
the devised collocation procedure assuming that, after the
above-mentioned reductions, these data can be considered
as the ıT 0(� ,�) signal in Eq. (8). The empirical covariance
function of this signal has been evaluated and fitted with
the model covariance coming from the harmonic analysis
of ıT 0(� ,�) itself. The plot of the empirical and the model
covariance is given in Fig. 2

Collocation formula (13) has been then applied with
Re D (6,371 C 50) km, ı�12 D .2:9 � 3:3/ g=cm3 D
�0:4 g=cm3 and R1 D (6,371�23)km (the mean depth at
�23 km for the Moho has been assumed based on literature;
Bassin et al. 2000).

The estimated Moho depths have been computed on an
equal-area 1ı � 1ı grid and are displayed in Fig. 3.

Furthermore, the estimated depths have been interpolated
on two sections in areas of expected strong Moho variations.

These two sections are across the Andes (section at
constant latitude ®D �23ı; Fig. 4a) and the Himalaya region
(section at constant latitude ®D 33ı; Fig. 4b). The obtained
values (labelled as Pred) have been plotted together with
three other existing Moho models, i.e. the CRUST2 (Bassin
et al. 2000), the model by Meier et al. (2007) and the
GEMMA estimate (Reguzzoni and Sampietro 2015).

The new estimated Moho is coherent with these models
along these sections, particularly with the CRUST2 model.
In Table 2, the statistics over the whole global grid of the
residuals among all these models are listed.

As one can see from Table 2, the differences between the
Moho model based on collocation and the other considered
models are statistically equivalent with those between them.

This predicted global Moho depth has been then consid-
ered as a starting point for a local estimate in the Central
Mediterranean. In the area 35ı<®< 49ı, 4ı<œ< 20ı,
local gravity data (Barzaghi et al. 2007) have been selected
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Fig. 2 The empirical and the model covariance of the reduced GOCE data

Fig. 3 The predicted Moho depth
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Fig. 4 (a) The Andes section (b) The Himalaya section

Table 2 The statistics of the differences among the considered Moho
models

Model difference Mean (km) ¢ (km) Min (km) Max (km)

Pred-GEMMA 2.723 4.563 �35.833 20.775

Pred-CRUST2 2.116 5.392 �31.257 27.125

Pred-MEIER 4.307 5.917 �19.871 31.676

GEMMA-CRUST2 �0.607 5.937 �30.662 38.920

GEMMA-MEIER 1.584 7.000 �30.338 61.857

CRUST2-MEIER 2.191 5.938 �21.233 49.712

Table 3 The statistics of the differences between the collocation based
and the ESC Moho

Model difference Mean (km) ¢ (km) Min (km) Max (km)

Local solution-ESC �2.7 10.7 �25.7 21.2

and the Bouguer topographic/bathymetric reduction has
been applied based on SRTM/DTM (www2.jpl.nasa.gov/
srtm/) and NOAA bathymetry (www.ngdc.noaa.gov/mgg/
bathymetry). The Bouguer gravity anomalies have been then
used in a local collocation approach in planar approximation,
as described in Barzaghi et al. (1992).

The use of planar approximation for Moho estimation
is justified by the dimension of the area. At regional scale
(regions of the order of 10ı � 10ı) the spherical and planar
solution are known to be practically the same, showing
differences smaller than 0.5 km (Sampietro 2011).

In this preliminary test, the global solution has been
only used to define the mean depth H and for mapping the
estimated © value, i.e. the depth anomaly with respect to H
(the density contrast has been set to ı�12 D �0:4 g=cm3).
The obtained estimate is plotted in Fig. 5.

Although this solution has, as expected, a higher fre-
quency pattern with respect to the global solution, it is still
quite poor if compared with e.g. the ESC estimate (Grad et al.
2009) as it is clearly seen in Table 3.

Thus, it seems that a more refined data reduction for local
crustal density anomalies is required in order to get a more
detailed and reliable solution.

5 Remarks and Conclusions

The global Moho estimate derived from a properly reduced
GOCE potential model proved to be effective. Based on
a simple single layer model in spherical approximation,
collocation method can provide a feasible Moho surface
that is, from a first preliminary comparison, statistically
equivalent to other Moho estimates from literature. This
estimate can be thus assumed as a reference surface for
local refinements. In this paper this has been done partially,
i.e. using the global solution for only defining the mean
depth H and as a reference surface for mapping the local
estimate. In the future, a deeper interaction between the
global and the local procedure will be studied and devised.
In estimating the global solution, a potential signal that is
coherent with a known DTM/bathymetry is defined. This
gravity signal and the related DTM/bathymetry can be used
in reducing the data in the local area. Furthermore, a residual
terrain correction can be computed with respect to the used
DTM/bathymetry (i.e. the local gravity observations are
reduced for the global Moho effect and a coherent residual
terrain effect). In this way, reduced gravity data can be
obtained that reflect high frequency structures of the Moho.
Further refinements, always at local scale, can be obtained by
using density anomaly information thus hopefully improving
the final estimate. Also, since collocation allows the joint
use of gravity and depth estimates, refinements could be
obtained in a joint estimate based on gravity/Moho depth
data.

www2.jpl.nasa.gov/srtm/
www2.jpl.nasa.gov/srtm/
www.ngdc.noaa.gov/mgg/bathymetry
www.ngdc.noaa.gov/mgg/bathymetry
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Fig. 5 The final Moho estimated
depth based on local data

References

Albertella A, Migliaccio F, Sansò F (2002) GOCE: the Earth gravity
field by space gradiometry. Celest Mech Dyn Astron 83(1–4):1–15

Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief
model: procedures, data sources and analysis. NOAA Technical
Memorandum NESDIS NGDC-24

Anderson DL (1989) Theory of the Earth. Blackwell,
Boston/Oxford/London/Edinburgh/Melbourne

Arabelos DN, Mantzios G, Tsoulis D (2007) Moho depths in the Indian
ocean based on the inversion of satellite gravity data. In: Ip W-H,
Chen Y-T (eds) Advances in geosciences, vol 9, solid Earth, ocean
science & atmospheric sciences. World Scientific, Singapore, pp 41–
52

Barzaghi R, Sansò F (1988) Remarks on the inverse gravimetric
problem. Geophys J R Astron Soc 92(3):505–511, The Universities
Press, Belfast

Barzaghi R, Gandino A, Sansò F, Zenucchini C (1992) The collocation
approach to the inversion of gravity data. Geophys Prospect 40:429–
451

Barzaghi R, Borghi A, Carrion D, Sona G (2007) Refining the estimate
of the Italian quasi-geoid. Bollettino di Geodesia e Scienze Affini,
n 3

Bassin C, Laske G, Masters G (2000) The current limits of resolution
for surface wave tomography in North America. EOS Trans AGU
81:F897

Eshagh M, Bagherbandi M, Sjöberg L (2011) A combined global Moho
model based on seismic and gravimetric data. Acta Geodaetica et
Geophysica Hungarica 46(1):25–38



282 R. Barzaghi et al.

Grad M, Tira T, ESC Working Group (2009) The Moho depth map of
the European plate. Geophys J Int 176:279–292

Knudsen P (1993) Integrated inversion of gravity data. Final report of
Norsk hydro R&D project, Kort og Matrikelstyrelsen, Copenhagen.
ISBN 8774500872

Krarup T (1969) A contribution to the mathematical foundation of phys-
ical geodesy. Meddelelse No. 44, Geodætisk Institut, København

Lebedev S, Adam JMC, Meier T (2013) Mapping the Moho with seis-
mic surface waves: a review, resolution analysis, and recommended
inversion strategies. doi:10.1016/j.tecto.2012.12.030

Mac Millan WD (1958) The theory of the potential. Dover Publications,
New York

Meier U, Curtis A, Trampert J (2007) Global crustal thickness from
neural network inversion of surface wave data. Geophys J Int
169:706–722

Moritz H (1989) Advanced physical geodesy. Wichmann, Karlsruhe
Pail R, Bruinsma SL, Migliaccio F, Förste C, Goiginger H, Schuh WD,

Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts
M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning
CC (2011) First GOCE gravity field models derived by three
different approaches. J Geod 85(11):819–843. doi:10.1007/s00190-
011-0467

Parker RL (1973) The rapid calculation of potential anomalies. Geophys
J R Astron Soc 31:447–455

Reguzzoni M, Sampietro D (2015) GEMMA: An Earth crustal model
based on GOCE satellite data. International Journal of Applied Earth
Observation and Geoinformation, vol 35, Part A, pp 31–43. doi:10.
1016/j.jag.2014.04.002

Reguzzoni M, Sampietro D, Sansò F (2013) Global Moho from the
combination of the CRUST2.0 model and GOCE data. Geophys J
Int 195(1):222–237. doi:10.1093/gji/ggt247

Reigber C, Casper R, Päffgen W (1999) The CHAMP geopotential
mission. In: IAA 2nd international symposium on small satellites for
Earth observation, Berlin, pp 25–28

Sampietro D (2011) GOCE exploitation for Moho modeling and
applications. In: Proceedings of the 4th international GOCE user
workshop, vol 31, Munich, ESA Publication, SP-696

Sampietro D, Sansó F (2012) Uniqueness theorems for inverse gravi-
metric problems. In: VII Hotine-Marussi symposium on mathemati-
cal geodesy. Springer, Berlin/Heidelberg, pp 111–115

Shin YM, Xu H, Braitenberg C, Fang J, Wang Y (2007) Moho undula-
tions beneath Tibet from GRACE-integrated gravity data. Geophys J
Int 170(3):971–985

Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho
density contrast with a tentative application by EGM2008 and
CRUST2.0. Acta Geophys 58:1–24

Tapley BD, Bettapur S, Watkins M, Reigber C (2004) The gravity
recovery and climate experiment: mission overview and early results.
Geophys Res Lett 31(9):L09607

Tarantola A (2005) Inverse problem theory and methods for model
parameter estimation. SIAM, Philadelphia

Tenzer R, Hamayun, Novák P, Gladkikh V, Vajda P (2012) Global
crust-mantle density contrast estimated from EGM2008, DTM2008,
CRUST2.0, and ICE-5G. Pure Appl Geophys 169(9):1663–1678.
doi:10.1007/s00024-011-0410-3

Tscherning CC (1985) Local approximation of the gravity potential by
least squares collocation. In: Schwarz KP (ed) Proceedings of the
international summer school on local gravity field approximation,
Beijing, Publ. 60003, University of Calgary, Calgary

Turcotte DL, Schubert G (1982) Geodynamics: applications of contin-
uum physics to geological problems. Wiley, New York

http://dx.doi.org/10.1016/j.tecto.2012.12.030
http://dx.doi.org/10.1007/s00190-011-0467
http://dx.doi.org/10.1007/s00190-011-0467
http://dx.doi.org/10.1016/j.jag.2014.04.002
http://dx.doi.org/10.1016/j.jag.2014.04.002
http://dx.doi.org/10.1093/gji/ggt247
http://dx.doi.org/10.1007/s00024-011-0410-3


An Overview of Adjustment Methods for Mixed
Additive andMultiplicative Random Error
Models
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Abstract

Geodetic adjustment theory has been developed on the basis of a linear or nonlinear Gauss-
Markov model, in which the random errors of measurements are always assumed to be
independent of the true values of measurements themselves and naturally added to the
functional model. However, modern geodetic instruments and geodetic imaging systems
have clearly shown that the random errors of such measurements consist of two parts: one
is of local nature and has nothing to do with the quantity under observation, and the other
is proportional to the true value of measurement. From the statistical point of view, these
two types of errors are called additive and multiplicative errors, respectively. Obviously,
the conventional geodetic adjustment theory and methods for Gauss-Markov models with
additive errors cannot theoretically meet the need of processing measurements contaminated
by mixed additive and multiplicative random errors. This paper presents an overview of
parameter estimation methods for processing mixed additive and multiplicative random
errors. More specifically, we discuss two types of methods to estimate parameters in a
mixed additive and multiplicative error model, namely, quasi-likelihood and least-squares-
based methods. From this point of view, we extend the conventional adjustment theory
and methods and give a solid theoretical foundation to process geodetic measurements
contaminated by mixed additive and multiplicative random errors. Finally, we further
discuss parameter estimation with prior information.

Keywords

Generalized estimating equation • Least squares • Multiplicative and additive errors •
Quasi-likelihood

Y. Shi (�)
School of Geomatics, Xi’an University of Science and Technology,
Xi’an 710054, PR China
e-mail: shiyun0908@hotmail.com

P. Xu
Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto
611-0011, Japan
e-mail: pxu@rcep.dpri.kyoto-u.ac.jp

J. Peng
School of Land Science and Geomatics, China University of
Geosciences, Beijing, PR China

1 Introduction

Geodetic adjustment theory has been developed by assuming
the following model of measurements:

y D f.ˇ/ C �

E.y/ D f.ˇ/

D.y/ D W�1�2

9
=

;
; (1)

where y is a vector of measurements, f.ˇ/ is the mathe-
matical or functional model which describes the physical
or geometrical relationships between the measurements, ˇ
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is the real-valued vector of unknown parameters to be esti-
mated, � is the random error vector of the measurements.
Very often, we also assume that � is of zero mean and
variance-covariance matrix W�1�2, with W being a given
weight matrix of measurements and �2 an unknown positive
scalar (the variance of unit weight), E.�/ and D.�/ stand
for the expectation and variance-covariance matrix of the
measurements, respectively. The most important feature of
adjustment model (1) is that the random errors � are added
to the functional model f.ˇ/. In other words, the sizes or
magnitudes of random errors are independent of the true
values of measured quantities.

However, in geodetic practice, we know that this assump-
tion is not necessarily always true. For example, we know
that the accuracy of an EDM, VLBI and/or GPS baseline is
proportional to the length of the baseline itself, namely,

�2
L D a2 C b2L2; (2)

(see e.g., Ewing and Mitchell 1970; MacDoran 1979; Seeber
2003; Petrov et al. 2010), where both a and b are constants.
Physically, the constant a may be more specific to the local
environment of stations and b more to the path of propagation
of light/electronic waves (see e.g., Xu et al. 2013). From
the statistical point of view, the accuracy formula (2) is
equivalent to the following representation of random errors:

�L D �a C L �b; (3)

where �L is the random error of L, and �a and �b stand
for the random errors of mean zero and variances a2 and
b2, respectively, if �a and �b are assumed to be statistically
independent. The error representation (3) clearly indicates
that the random error �L is proportional to the measured
baseline. In geodetic practice, both �a and �b are generally
assumed to be normally distributed. For other modern space
observation technology such as SLR (see e.g. Pearlman
et al. 2002; Seeber 2003) and DORIS (see e.g. Willis et al.
2010), since they essentially utilize electromagnetic waves
for observation and go through the same physical media as
VLBI and GPS, we conjecture that errors of SLR and DORIS
baselines should also show multiplicative error behavior,
which will be a topic of research in the future.

Modern geodetic technology also fully utilizes coherent
imaging systems such as Synthetic Aperture Radar (SAR)
images and Light Detection And Ranging (LiDAR). As
is well known, SAR images are contaminated by speckle
noise (see e.g. Goodman 1976; Ulaby et al. 1986; Oliver
1991; López-Martínez et al. 2011) and the corresponding
observational equation can be represented as follows:

yij D sij .1 C �ij /; (4)

where yij is the measurement, sij the true (or noiseless) value
of the signal and �ij the random error with zero mean and
variance �2. Intensity measurements of SAR type are usu-
ally assumed to have a gamma-distribution. Other imaging
systems would also produce Gaussian multiplicative random
errors (see e.g., Tian et al. 2001). Range measurements of
LiDAR are also shown to be contaminated by multiplicative
speckle errors (see e.g., Flamant et al. 1984; Wang and Pruitt
1992; Hill et al. 2003).

The paper is organized as follows. Section 2 will first
define mixed additive and multiplicative error models. In
Sects. 3 and 4, we will discuss two important classes of
methods for parameter estimation in mixed additive and
multiplicative error models, namely, quasi-likelihood and
least squares (LS). Computational algorithms will be briefly
given. If the reader is interested in other methods such as
cumulant moment and variational methods, he may refer to,
Swami (1994) and Aubert and Aujol (2008), for example.
Actually, variational methods assume gamma-distributions
for intensity measurements and then add an extra smoothness
or regularized term to the log-likelihood of the gamma-
distributions for de-speckling or de-noising multiplicative
random errors, as can be seen in Xu (1999) and Aubert and
Aujol (2008). We will then extend the bias-corrected LS
method to the case with prior information in Sect. 5. Finally,
we will then finish our paper with some concluding remarks
in Sect. 6.

2 Mixed Additive andMultiplicative
Error Models

We will now extend the conventional Gauss-Markov adjust-
ment model (1) to account for both additive and multiplica-
tive errors. The new starting model of adjustment becomes

y D f.ˇ/ ˇ .1 C �m/ C �a

E.y/ D f.ˇ/

E.�m/ D 0; D.�m/ D †m

E.�a/ D 0; D.�a/ D †a

9
>>=

>>;

; (5)

where y and f.ˇ/ have been defined in (1), ˇ stands for
the Hadamard product of matrices and/or vectors, 1 for the
vector with all its elements being equal to unity, both of the
random errors �m and �a are of mean zero and variance-
covariance matrices †m and †a, respectively. Since the
random vector �m is multiplied to the true value of mea-
surements f.ˇ/, �m has been naturally called multiplicative
errors. As in the case of the additive error model (1), �a

in (5) is additive. Accordingly, �a is called additive errors.
To illustrate additive and multiplicative random errors, we
simulate the random errors of baselines, with the constants a

and b set to 0.05 m and 10 ppm, respectively. The generated
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Fig. 1 Illustration of the additive and multiplicative random errors of baselines: the upper panel – the additive errors; the middle panel – the
multiplicative errors; and the lower panel – the mixed additive and multiplicative errors

errors with the lengths of baselines are illustrated in Fig. 1.
It is obvious from the simulated random errors in the upper
panel of Fig. 1 that the additive random errors uniformly
scatter over different lengths of baselines. The multiplicative
errors in the middle panel of the same figure show a clear
trend of fan shape, with the amplitudes of errors increasing
with the increase of lengths of baselines.

Assuming that �m and �a are statistically independent and
applying the error propagation law to each of the measure-
ments y, we have

�2
yi

D f 2
i .ˇ/�2

mi C �2
ai ; (6)

where �2
yi

is the variance of the ith measurement of y, and
�2

mi and �2
ai are the ith diagonal elements of †m and †a,

respectively. It is obvious from (6) that the larger the true
value of measurement fi .ˇ/, the noisier the corresponding
measurement yi . When applying the same error propagation
law to the measurement vector y, we can obtain the variance-
covariance matrix of the measurements y as follows:

†y.ˇ/ D Dfˇ†mDfˇ C †a; (7)

where Dfˇ is a diagonal matrix with its ith diagonal element
being equal to fi .ˇ/. The elements of †y.ˇ/ are obviously
the functions of the parameters ˇ. For simplicity, we will use

†y to denote the variance-covariance of y. If necessary, we
can also readily take the correlation between �m and �a into
account, which will not be discussed in this paper, however.

If f.ˇ/ is linear, then the error model (5) becomes

y D .Aˇ/ ˇ .1 C �m/ C �a

E.y/ D Aˇ

E.�m/ D 0; D.�m/ D †m

E.�a/ D 0; D.�a/ D †a

9
>>=

>>;

; (8)

where A is a given design matrix, which will be assumed to
be of full rank. The model (5) will be called mixed additive
and multiplicative error models in the remainder of this
paper. In accordance with (8), we can rewrite Dfˇ as Daˇ ,
whose diagonal elements are equal to aiˇ, where ai is the ith
row of the matrix A.

3 The Quasi-LikelihoodMethod

The quasi-likelihood method was first proposed by Wed-
derburn (1974). It has since become a statistical method
to estimate the parameters in the model of type (4) and
widely applied in many areas of science and engineering.
Actually, the multiplicative error model (4) has been better
known in statistics as the generalized linear model and
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well documented in statistical books (see e.g. McCullagh
and Nelder 1989; Heyde 1997, chapter 5.3), if the function
of signal sij can be represented linearly by a number of
unknown parameters ˇ.

Wedderburn (1974) started with a set of independent
measurements yi .i D 1; 2; : : : ; n/, with expectations yi

and variances �2
i .y/, and then defined the quasi-likelihood

function QLF.yi ; yi / as follows:

@QLF.yi ; yi /

@yi

D yi � yi

�2
i .yi /

; (9)

where the variance of each yi is assumed to be the function of
yi . By letting the expression (9) equal zero over all the mea-
surements yi , Wedderburn (1974) was then able to estimate
the unknown parameters from the measurements y. If yi

can further be represented linearly by a number of unknown
parameters ˇ and if the measurements y are assumed to be
correlated, then (9) can be rewritten as follows:

@QLF.ˇ/

@ˇ
D AT †�1

y .ˇ/.y � Aˇ/; (10)

where †y.ˇ/ is the variance-covariance matrix of y whose
elements are all the functions of the unknown parameters
ˇ. The quasi-likelihood function is proved to be equal to
the maximum likelihood function, if the distribution of yi

is exponential. In general, quasi-likelihood is different from
maximum likelihood, however.

Although Wedderburn (1974) defined the quasi-likelihood
function QLF.yi ; yi / through the differential equation (9),
QLF.yi ; yi / is really not required for parameter estimation.
Actually, all what we need for parameter estimation is the
expression on the right hand side of (9), which is completely
defined by yi , its expectation yi and its variance �2

i .yi /.
When the quasi-likelihood method is applied to the mixed
additive and multiplicative error model (8), we have the
system of normal equations:

AT †�1
y . Ǒ

ql /.y � A Ǒ
ql / D 0; (11)

where Ǒ
ql stands for the quasi-likelihood estimate of ˇ.

Obviously, the system of normal equations (11) is nonlinear
and can generally be solved by using numerical methods.
Very often, one can use the Gauss-Newton method to find
the solution to (11). The quasi-likelihood estimator Ǒ

ql is
asymptotically unbiased (see e.g., McCullagh 1983) and its
variance-covariance matrix, denoted by D. Ǒ

ql /, is then given
approximately by

D. Ǒ
ql / D .AT †�1

y A/�1: (12)

It is seen from (11) that the equation system (11) has com-
pletely defined the quasi-likelihood estimator Ǒ

ql , no matter
whether we can or cannot solve for the quasi-likelihood func-
tion QLF.y; ˇ/ through the differential equation of type (9).
The system of normal equations clearly indicates that an esti-
mator can simply be constructed through a system of equa-
tions. As a result of this, the system of equations like (11)
has been called generalized estimating equations (see e.g.,
Crowder 1995; Desmond 1997; Heyde 1997; Kukusha et al.
2010; Fitzmauric 1995).

4 Least-Squares-BasedMethods

Although quasi-likelihood has become a standard method
for parameter estimation in multiplicative error models, its
associated quasi-likelihood function may hardly be derived
for a general nonlinear function f.ˇ/. Even if such a func-
tion can indeed be found by solving the corresponding
differential equations, it may not be connected with any
physically meaningful distribution function. As a result,
Xu and Shimada (2000) alternatively proposed LS-based
methods to estimate the unknown parameters in the mixed
additive and multiplicative error model (8). In this section,
we will briefly discuss the ordinary LS, the weighted LS
and bias-corrected weighted LS methods. If the reader is
interested in the error analysis of adjusted measurements and
the corrections of measurements and/or the estimation of the
variance of unit weight in multiplicative error models, she/he
is referred to Shi et al. (2014).

4.1 The Ordinary LSMethod

When applying the ordinary LS method to estimate the
unknown parameters ˇ in the model (8), we have the fol-
lowing optimization objective function:

min W F1.ˇ/ D .y � Aˇ/T .y � Aˇ/: (13)

The solution to (13) is the ordinary LS estimate of ˇ, which
is denoted by Ǒ

LS and given by

Ǒ
LS D .AT A/�1AT y: (14)

The variance-covariance matrix of Ǒ
LS is then given as

follows:

D. Ǒ
LS / D .AT A/�1AT †yA.AT A/�1; (15)

where †y is the variance-covariance matrix of the measure-
ments y.
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If we assume that the signal within a small area of pixels
in a coherent image with multiplicative noises is identical,
namely, sij remains unchanged in such a small area, then
all the corresponding measurements yij are of the same
variances. In other words, the weights of measurements yij

are all equal to each other. As a result, the estimate of sij

is simply equal to the mean value of all yij in the area.
Actually, it is exactly the local mean filter for de-noising
images contaminated by multiplicative noises.

4.2 TheWeighted LSMethod

When applying the weighted LS method to the model (8), we
have the following minimization problem:

min W F2.ˇ/ D .y � Aˇ/T †�1
y .y � Aˇ/: (16)

To derive the weighted LS estimate of ˇ, we can differentiate
F2.ˇ/ of (16) with respect to ˇ and let it be equal to zero.
After some lengthy derivations, we can finally obtain the
system of normal equations as follows:

.AT O†�1

y A/ Ǒ � AT O†�1

y y � G1.A Ǒ � y/ D 0; (17)

where

G1 D

2

6
6
6
6
6
4

.A Ǒ � y/T O†�1

y Dae1 †m
ODaˇ

O†�1

y

.A Ǒ � y/T O†�1

y Dae2 †m
ODaˇ

O†�1

y

:::

.A Ǒ � y/T O†�1

y Daet †m
ODaˇ

O†�1

y

3

7
7
7
7
7
5

;

Daei is a diagonal matrix with its kth diagonal element
being equal to .akei /, ei is the ith natural basis vector of
dimension t , ODaˇ is the estimate of Daˇ by replacing ˇ with
its corresponding weighted LS estimate Ǒ . Following Xu
et al. (2013), we can solve for the weighted LS estimate of ˇ

through the following iteration procedures:

Ǒ
kC1 D .AT O†�1

yk A/�1fAT O†�1

yk y C G1k.A Ǒ
k � y/g; k D 0; 1; : : :

(18)

where O†yk and G1k stand for computing O†y and G1 at the
point of Ǒ

k.
It is obvious from (17) that the weighted LS estimate Ǒ

is nonlinear and is expected to be biased. Xu et al. (2013)
derived the bias of Ǒ in the mixed additive and multiplicative
error model (8), which is denoted by b. Ǒ / and is simply
listed as follows:

b. Ǒ / D E.bˇ/ D N�1g2; (19)

where N D AT †�1
y A and g2 is given by

g2 D

2

6
6
6
4

trfDae1†mDaˇ†�1
y g

trfDae2†mDaˇ†�1
y g

:::

trfDaet †mDaˇ†�1
y g

3

7
7
7
5

:

By limiting themselves to the linear term of Ǒ with
respect to the random errors �m and �a, Xu et al. (2013)
also derived the first order approximation of the variance-
covariance matrix of the weighted LS estimate Ǒ , which is
denoted by D1. Ǒ / and given as follows:

D. Ǒ / D .AT †�1
y A/�1: (20)

After taking the bias (19) into account, we obtain the approx-
imate mean squared error (MSE) matrix of Ǒ as follows:

M. Ǒ / D D. Ǒ / C b. Ǒ /Œb. Ǒ /�T

D .AT †�1
y A/�1 C .AT †�1

y A/�1g2gT
2 .AT †�1

y A/�1;

(21)

where M. Ǒ / stands for the MSE matrix of Ǒ .

4.3 The Bias-CorrectedWeighted LS
Method

Bias analysis in Xu and Shimada (2000) and Xu et al. (2013)
clearly indicates that the bias of the weighted LS estimate
is solely caused by the non-zero term of derivatives of the
variance-covariance matrix †y with respect to ˇ. Thus both
works propose deleting the corresponding term in the normal
equations, namely the third term on the right hand side of the
normal equations (17), to remove the bias from the weighted
LS estimate Ǒ . As a result, they are able to construct the bias-
corrected weighted LS estimate of ˇ.

When the same idea is applied to the mixed additive and
multiplicative error model (8), they derive the bias-corrected
weighted LS estimate of ˇ, which is denoted by Ǒ

bc and
solved through the following system of normal equations:

.AT O†�1

y A/ Ǒ
bc � AT O†�1

y y D 0; (22)

where Ǒ
bc is the bias-corrected WLS estimate of ˇ. Equiva-

lently, Ǒ
bc can be formally rewritten as follows:

Ǒ
bc D .AT O†�1

y A/�1AT O†�1

y y; (23)
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which is unbiased up to the second order approximation
(Xu et al. 2013). The variance-covariance matrix of Ǒ

bc is
denoted by D. Ǒ

bc/ and given by

D. Ǒ
bc/ D .AT †�1

y A/�1: (24)

Because the matrix O†y depends on Ǒ
bc , (23) is actually a

nonlinear system of equations and can, in general, be solved
numerically. If the Gauss-Newton method is used to solve
for the bias-corrected weighted LS estimate, we have the
following iterative formula:

Ǒ kC1

bc D Ǒ k

bc�.AT O†�1

yk A/�1AT O†�1

yk .A Ǒ k

bc�y/; k D 0; 1; : : :

(25)

(see also McCullagh 1983; McCullagh and Nelder 1989;
Dennis and Schnabel 1996; Xu et al. 2013).

We should like to note that given some approximate
values, say ˇ0, †m0 and †a0, we can then replace O†y of (22)
with †y0 (computed at ˇ0, †m0 and †a0), which is exactly
the conventional practice of adjustment of geodetic networks
such as EDM, VLBI and GPS baselines. In other words, the
conventional weighted LS adjustment of baseline networks
can be interpreted as a special case of the bias-corrected
weighted LS method with given approximate values. Never-
theless, the effectiveness of using approximate values would
depend on how far away these approximate values deviate
from their true values, as also pointed out and demonstrated
in Xu et al. (2013).

5 Mixed Additive andMultiplicative
Random Error Models with Prior
Information

In this section, we will extend the parameter estimation
in mixed additive and multiplicative random error models
to the case with prior information. Prior information will
only be assumed in the form of the first two moments
on the unknown parameters ˇ, i.e. its prior mean � and
prior variance-covariance matrix. Bearing the concept of
additive and multiplicative random errors in mind, we will
accordingly assume two types of prior variance-covariance
matrices. As in the case of Gauss-Markov models with addi-
tive random errors, the first type of prior variance-covariance
matrices is assumed to be independent of ˇ and symbolically
denoted by †0. If prior information on ˇ is obtained from
measurements contaminated by multiplicative errors other
than the measurements y in the mixed additive and multi-
plicative error model (8), then the prior variance-covariance
matrix will surely be dependent on ˇ, as can be readily seen
in (24), for example. Thus, the second type of prior variance-
covariance matrices is assumed to be the functions of ˇ and

denoted by †ˇ . Of course, prior information can also be
presented in the form of prior distributions. In this case,
one can use Bayesian inference to estimate the unknown
parameters. For more information, the reader is referred to
Xu (1999).

If the model (8) is combined with the first type of prior
variance-covariance matrices, namely, †0, then the corre-
sponding generalized (weighted) LS objective function will
become

min W F3.ˇ/ D .y � Aˇ/T †�1
y .y � Aˇ/ C .ˇ � �/T †�1

0 .ˇ � �/:

(26)

According to the bias analysis in Xu and Shimada (2000) and
Xu et al. (2013), we know that †y will create a bias in the
solution to (26). Since the prior variance-covariance matrix
†0 is independent of ˇ, it will not contribute extra terms to
the bias of the solution. By following the same rationale as
in Sect. 4.3, we can ignore the dependence of †y on ˇ as if it
were independent of ˇ and, as a result, readily construct the
bias-corrected estimator of ˇ with prior information, denoted

by Ǒ p0

bc , as follows:

Ǒ p0

bc D .AT O†�1

y A C †�1
0 /�1.AT O†�1

y y C †�1
0 �/: (27)

The first order accuracy of Ǒ p0

bc is then given by

D. Ǒ p0

bc/ D .AT †�1
y A C †�1

0 /�1: (28)

If the second type of prior information is combined with
the measurements from the model (8), we should then have
the following optimization problem:

min W F4.ˇ/ D .y � Aˇ/T †�1
y .y � Aˇ/ C .ˇ � �/T †�1

ˇ .ˇ � �/:

(29)

Obviously, both of †y and †ˇ will now directly contribute
terms to the bias of the optimal solution to the optimization
problem (29), according to Xu and Shimada (2000) and Xu
et al. (2013). In the similar manner to (27), we can construct
the bias-corrected estimator of ˇ with prior mean � and prior

variance-covariance matrix †ˇ , which is denoted by Ǒ p1

bc and
simply listed as follows:

Ǒ p1

bc D .AT O†�1

y A C O†�1

ˇ /�1.AT O†�1

y y C O†�1

ˇ �/; (30)

which is unbiased up to the second order approximation, and
its first order accuracy is given by

D. Ǒ p1

bc/ D .AT †�1
y A C †�1

ˇ /�1: (31)

As in the case of the bias-corrected weighted LS
estimation, the bias-corrected stochastic inference (or LS
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collocation) with prior information in mixed multiplicative
and additive error models is essentially of the same form as
in the case of purely additive error models, as correctly
pointed out by one of the reviewers. However, unlike
stochastic inference in additive error models, the bias-
corrected stochastic inference with prior information in
mixed multiplicative and additive error models requires

that Ǒ p1

bc of (30) be computed iteratively, since the

right hand side of (30) contains the unknowns Ǒ p1

bc

as well. Nevertheless, if one would simply apply the
conventional principle of stochastic inference to mixed
multiplicative and additive error models, one would end
up with a biased estimator, which would not be of
the same form as in the case of purely additive error
models.

In the one-dimensional case, namely,

yij D .1 C "mij /sij C "aij ;

then the bias-corrected LS estimate of sij with prior informa-
tion can be rewritten as follows:

Osij D �ij C �2
�

�2
ms2

0ij C �2
a C �2

�

.yij � �ij /; (32)

where �ij is the prior mean of sij , �2
� is the prior variance

of �ij , s0ij is some approximate value of sij , and �2
m and

�2
a are the variances of the multiplicative and additive errors

"mij and "aij , respectively. By properly choosing the values
of �ij , �2

�, s0ij , �2
m and �2

a , one can then construct the filter
by Kuan et al. (1985) for image de-noising.

6 Concluding Remarks

Geodetic adjustment has been developed on the basis of
Gauss-Markov models with additive random errors. The
most important feature of such a Gauss-Markov model with
additive random errors is that the accuracy of a measurement
has nothing to do with the true value of the measurement.
However, geodetic practice has clearly demonstrated that
random errors of EDM, VLBI and GPS baselines indeed
change with the length of a baseline. In other words, random
errors of such types usually consist of two parts: one behaves
more or less constant and may reflect only random effects
of local nature, while the other is proportional to the length
of the baseline and could, very likely, reflect total effect
of the propagation path between the two stations. Such
error characteristics are part of modern geodetic coherent
imaging systems such as SAR and LiDAR. Obviously, the
conventional adjustment theory that has been developed on

the assumption of additive random errors cannot theoretically
meet the need to process geodetic measurements that are
contaminated by multiplicative and/or mixed additive and
multiplicative random errors.

In this paper, we have briefly reviewed two types of
methods for parameter estimation in mixed additive and
multiplicative error models, namely, quasi-likelihood and
least-squares-based methods, with or without prior informa-
tion. Quasi-likelihood, though theoretically connected with
distributions, can be used directly for parameter estimation
without any assumption on distributions. If there exist mul-
tiple solutions to the generalized estimating equations, no
criterion is available for quasi-likelihood to pick up the right
solution, however. The LS-based methods have a clearly
defined objective function. Thus the sense of optimality of
LS-based estimates is well defined. For the linear model (8),
quasi-likelihood, the ordinary and bias-corrected weighted
LS methods can all warrant an unbiased estimate of the
unknown parameters, while the weighted LS method will
generally lead to a biased estimate. Quasi-likelihood and the
bias-corrected weighted LS method are more efficient than
the ordinary LS method. We have also extended the bias-
corrected LS estimate to the case with prior information,
which can either be given in the form of prior mean and
a parameter-free or a parameter-dependent prior variance-
covariance matrix.

Acknowledgements This work is partially supported by the National
Foundation of Natural Science of China (Nos.41204006, 41374016) and
the project SKLGED2013-4-8-E, and the Grant-in-Aid for Scientific
Research (C25400449). The authors thank the reviewers and the editor
very much for their constructive comments, which help clarify some
points of the paper.

References

Aubert G, Aujol J-F (2008) A variational approach to removing multi-
plicative noise. SIAM J Appl Math 68:925–946

Crowder M (1995) On the use of a working correlation matrix in
using generalised linear models for repeated measures. Biometrika
82:407–410

Dennis Jr. JE, Schnabel RB (1996) Numerical methods for uncon-
strained optimization and nonlinear equations. SIAM classics in
applied mathematics. SIAM, Philadelphia

Desmond AF (1997) Optimal estimating functions, quasi-likelihood
and statistical modelling. J Stat Plan Inference 60:77–123

Ewing CE, Mitchell MM (1970) Introduction to geodesy. Elsevier,
New York

Fitzmauric GM (1995) A caveat concerning independence estimating
equations with multivariate binary data. Biometrics 51:309–317

Flamant PH, Menzies RT, Kavaya MJ (1984) Evidence for speckle
effects on pulsed CO2 lidar signal returns from remote targets. Appl
Optics 23:1412–1417

Goodman JW (1976) Some fundamental properties of speckle. J Opt
Soc Am 66:1145–1150

Heyde CC (1997) Quasi-likelihood and its applications. Springer,
New York



290 Y. Shi et al.

Hill AC, Harris M, Ridley KC, Jakeman E, Lutzmann P (2003) Lidar
frequency modulation vibrometry in the presence of speckle. Appl
Optics 42:1091–1100

Kuan DT, Sawchuk AA, Strand TC, Chavel P (1985) Adaptive noise
smoothing filter for images with signal-dependent noise. IEEE Trans
Pattern Anal Mach Intell PAMI-7:165–177

Kukusha A, Malenkoa A, Schneeweissb H (2010) Optimality of quasi-
score in the multivariate mean-variance model with an application to
the zero-inflated Poisson model with measurement errors. Statistics
44:381–396

López-Martínez C, Fàbregas X, Pipia L (2011) Forest parameter estima-
tion in the Pol-InSAR context employing the multiplicative.additive
speckle noise model. ISPRS J Photogram Remote Sens 66:597–607

MacDoran PF (1979) Satellite emission radio interferometric earth
surveying series — GPS geodetic system. Bull Géod 53:117–138

McCullagh P (1983) Quasi-likelihood functions. Ann Stat 11:59–67
McCullagh P, Nelder J (1989) Generalized linear models, 2nd edn.

Chapman and Hall, London
Oliver CJ (1991) Information from SAR images. J Phys D Appl Phys

24:1493–1514
Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser

ranging service. Adv Space Res 30:135–143
Petrov L, Gordon D, Gipson J, MacMillan D, Ma C, Fomalont E,

Walker R, Carabajal C (2010) Precise geodesy with the very long
baseline array. J Geodesy 83:859–876

Seeber G (2003) Satellite geodesy, 2nd edn. de Gruyter, Berlin
Shi Y, Xu PL, Peng JH, Shi C, Liu JN (2014) Adjustment of

measurements with multiplicative errors: error analysis, estimates

of the variance of unit weight, and effect on volume estimation
from LiDAR- type digital elevation models. Sensors 14:1249–1266.
doi:10.3390/s140101249

Swami A (1994) Multiplicative noise models: parameter estimation
using cumulants. Signal Process 36:355–373

Tian H, Fowler B, Gamal El (2001) Analysis of temporal noise in
CMOS photodiode active pixel sensor. IEEE J Solid State Circuits
36:92–101

Ulaby F, Kouyate F, Brisco B, Williams T (1986) Textural information
in SAR images. IEEE Trans Geosci Remote Sens 24:235–245

Wang JY, Pruitt PA (1992) Effects of speckle on the range precision of
a scanning lidar. Appl Opt 31:801–808

Wedderburn R (1974) Quasi-likelihood functions, generalized linear
models, and the Gauss-Newton method. Biometrika 61:439–447

Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten
M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010)
The international DORIS service, toward maturity. In: Willis P (ed)
DORIS: scientific applications in geodesy and geodynamics. Adv
Space Res 45(12):1408–1420

Xu PL (1999) Despeckling SAR-type multiplicative noise. Int J Remote
Sens 20:2577–2596

Xu PL, Shimada S (2000) Least squares estimation in multiplicative
noise models. Commun Stat B 29:83–96

Xu PL, Shi Y, Peng JH, Liu JN, Shi C (2013) Adjustment of geodetic
measurements with mixed multiplicative and additive random errors.
J Geodesy 87:629–643



Cycle Slip Detection and Correction for
Heading Determination with
Low-Cost GPS/INS Receivers

Patrick Henkel and Naoya Oku

Abstract

Precise attitude determination with low-cost GPS receivers requires integer ambiguity
resolution and reliable cycle slip correction. In this paper, a tree search of cycle slips is
proposed, which combines double difference GPS carrier phases from all visible satellites,
gyroscope and acceleration measurements, and a priori information on the baseline length
between both GPS receivers. The proposed method was verified in both a slalom drive with
high vehicle dynamics and a drive below trees with shadowed GPS signals: The residuals of
the fixed phase measurements were reduced to less than 15 cm throughout the measurement
period.

Keywords

Attitude determination • Cycle slip correction • Integer ambiguity resolution

1 Introduction

The availability of mass-market GPS receivers with carrier
phase tracking has led to a wide range of new applications of
RTK and attitude determination. However, the measurements
of low-cost GPS receivers differ in three aspects from the
measurements of geodetic receivers: First, code multipath
is much larger due to the small size of the patch antennas.
It can be 10m even in open-sky conditions, which is a
challenge for ambiguity resolution. Secondly, half cycle
slips occur much more frequently and at multiple satellites
simultaneously. Today, cycle slip detection and correction
can be performed reliably for geodetic receivers with inertial
sensors: Du and Gao (2012) differenced the carrier phase
measurements between two satellites and two subsequent
epochs such that clock offsets, ambiguities, biases and
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München, Germany
e-mail: patrick.henkel@tum.de
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Advanced Navigation Solutions - ANAVS, Friedrichshafener Str. 1,
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atmospheric delays are eliminated (except for the drift which
is in general negligible for periods of less than 1 s). This
leaves the change in position and the cycle slips as unknowns.
The change in position is predicted by an inertial sensor.
Thus, cycle slips can be determined on a satellite by satellite
basis by simple rounding. Du and Gao (2012) applied a
cascaded approach to two dual-frequency Novatel OEM4
receivers, i.e. the widelane cycle slips were determined first.
Subsequently, the extra-widelane cycle slips were resolved
and, finally, the L1 and L2 cycle slips were derived from the
widelane and extra-widelane cycle slips.

Dai et al (2009) proposed a cycle slip detection and
correction method for triple frequency GNSS receivers. They
used two triple frequency geometry-free phase combinations
and performed an integer least-squares estimation using the
LAMBDA method of Teunissen (1995).

Colombo et al (1999) also proposed a cascaded cycle slip
detection for dual frequency receivers. The widelane cycle
slips were fixed as described by Du and Gao (2012). The
individual L1 and L2 cycle slips were then directly fixed
with the help of the widelane cycle slips. They used an
Ashtech receiver and high-grade IMU with a gyroscope drift
of only 3ı/h, and were able to correct 99:1% of cycle slips
for data gaps of 5 s.
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of Geodesy Symposia 142, DOI 10.1007/1345_2015_14
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Fig. 1 Residuals of fixed phase
solution during initialization: the
residuals are clearly smaller than
the wavelength and are drift-free,
which indicates a correct integer
ambiguity resolution. The biases
of up to 2 cm arise from a small
bias in the baseline length
constraint due to antenna phase
center offsets
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These methods can not be used for low-cost single-
frequency mass-market GNSS receivers and inertial sensors:
The receivers show half cycle slips, i.e. jumps of integer
multiples of �=2 D 9:5 cm, and substantial phase and code
multipath. The measurement model must be strengthened,
e.g. by including baseline a priori information as described
by Henkel and Kiam (2013).

A third difference between low-cost and geodetic
GNSS receivers is that the receiver clock offsets are
in the order of milliseconds instead of nanoseconds
(see Henkel and Gunther 2013), which implies that the
satellite movement within the time span of the differential
receiver clock offset is no longer negligible. A synchroniza-
tion correction is required to preserve the integer property of
the double difference (DD) ambiguities.

Therefore, we include the receiver clock offset explicitly
in our model for the DD carrier phase measurements. As the
baseline is short for attitude determination, atmospheric and
orbital errors can be neglected and we obtain

�
�'k1 .t C ı�1/ � �'l1.t C ı�1/

�

� �
�'k2 .t C ı�2/ � �'l2.t C ı�2/

�

D kx1.t C ı�1/� xk.t C ı�1 ���k1 /k
� kx1.t C ı�1/� xl .t C ı�1 ���l1/k
� kx2.t C ı�2/� xk.t C ı�2 ���k2 /k
C kx2.t C ı�2/� xl .t C ı�2 ���l2/k
C �Nkl

12 C �=2�Nkl
12 .t/Cm'kl12

.t C ı�1; t C ı�2/

C "'kl12
.t C ı�1; t C ı�2/; (1)

with the carrier wavelength �, the undifferenced phase mea-
surement 'kr of receiver r and satellite k, the receiver clock

offset ı�r , the receiver position xr , the satellite position xk ,
the DD integer ambiguity N kl

12, the DD half cycle slip �N kl
12,

the DD phase multipath m'kl
12

and the DD phase noise "'kl
12

.
The synchronization correction is given by

��'kl12.t C ı�1; t C ı�2/ (2)

D .ek1 .t C ı�1//
T
�
x1.t C ı�1/ � xk.t C ı�1 ���k1 /

�

� .el1.t C ı�1//
T
�
x1.t C ı�1/� xl .t C ı�1 ���l1/

�

� .ek1 .t C ı�2//
T �x1.t C ı�2/� xk.t C ı�2 ���k2 /

�

C .el1.t C ı�2//
T
�
x1.t C ı�2/� xl .t C ı�2 ���l2/

�
:

We linearize the norms in (1), apply the synchronization
correction of (2) and a cycle slip correction to write the
linearized corrected DD phase and code measurements in
matrix-vector notation as

�
�'12
�12

�
D Hb12 C AN12 C

�
m'12

m�12

�
C
�
"'12
"�12

�
(3)

withH and A being the implicitly defined DD geometry and
ambiguity coefficient matrices, and b12 being the baseline
between both receivers. The integer least-squares estimation
of the DD integer ambiguities and baseline coordinates is
improved by some a priori information l on the baseline
length, which leads to the constrained integer least-squares
estimation problem:

minb122R3�1;N122ZK�1 k
�
�'12
�12

�
�Hb12 � AN12k2˙�1

'12

s: t: kb12k ŠD l: (4)

A solution to this problem was developed in Teunissen (2006,
2010). Figure 1 shows the fixed phase residuals of this
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estimator for DD phase measurements from two u-blox LEA
6T GPS receivers mounted on the roof of a car. The residuals
are clearly smaller than the wavelength and are drift-free,
which indicates a correct integer ambiguity resolution. The
biases of up to 2 cm arise most likely from a bias in the
baseline length constraint due to antenna phase center offsets.

2 Initial Calibration of Inertial Sensors

We start with a rough alignment by transforming the mea-
sured acceleration as and angular rotation rate !s from the
sensor-fixed (s-) frame to the body-fixed (b-) frame (aligned
with longitudinal and transversal axis of car), i.e.

ab
rough D C b

s a
s D R1.�

b
s /R2.�

b
s /R3. 

b
s /a

s

!b
rough D C b

s !
s D R1.�

b
s /R2.�

b
s /R3. 

b
s /!

s; (5)

where the roll angle �b
s , the pitch angle �b

s and the yaw
angle  b

s are approximated from the mounting of the sen-
sor on the body and Ri is the rotation around the i -th
axis. Subsequently, we average !b

rough in static conditions to
determine the biases bb

! , which are then subtracted from the
measurements:

!b D !b
rough � bb

!: (6)

The acceleration measurements are also averaged over time
in static conditions to reduce the noise. The obtained Nab

is expressed in terms of the Euler angles �, � ,  and the
gravitational acceleration g, i.e.

Nab D C b
n Nan � R1.�/R2.�/R3. /.0; 0; g/

T C b Nab C � Nab

D g � .� sin �; cos � sin �; cos � cos�/T C b Nab C � Nab ;

(7)

with the bias b Nab and noise � Nab . The biases and misalignment
errors �� and �� between GPS and INS sensors are deter-
mined by least-squares estimation once the car is moving, i.e.

min
��;��;b

Nab

k Nab � g �
0

@
� sin.� C��/

cos.� C��/ sin.� C��/

cos.� C��/ cos.� C��/

1

A � b Nabk2

(8)

The roll and pitch angles can then be derived from (7)
without the need of knowing g as

� D atan
�
. Nab
y � b Nab

y
/=. Nab

z � b Nab
z
/
�

(9)

� D atan
�
�. Nab

x � b Nab
x
/=
q
. Nab
y � b Nab

y
/2 C . Nab

z � b Nab
z
/2
�
:

We initialize the heading from the GPS fixed solution.
Once the Euler angles and a rough estimate of the absolute
position (longitude �, latitude ') is available from GPS,
the coordinate frame transformation from the b-frame to the
ECEF e-frame is determined as

C e
b D C e

nC
n
b (10)

with

C e
n D

0

@
� sin ' cos� � sin� � cos' cos�
� sin ' sin� cos� � cos' sin�

cos' 0 � sin'

1

A (11)

and C n
b D .C b

n /
�1 D .R1.�/R2.�/R3. //

�1. The rotation
matrix C b

e D .C e
b /

�1 is then transformed to a Quaternion as
described in Jekeli (2001):

q D 1

kŒqa; qb; qc; qd 	k � Œqa; qb; qc; qd 	T (12)

with the four quaternion elements qa, qb , qc and qd .

3 Integration of Orientation
with Quaternions

Jekeli (2001) derived the time-derivative of C b
e as

PC b
e D C b

e ˝
e
be; (13)

which represents a differential equation with unknown C b
e .

The skew-symmetric matrix ˝e
be is given by

˝e
be D

0

@
0 �!3 !2
!3 0 �!1

�!2 !1 0

1

A ; (14)

where the angular rotation rates !i of the e-frame w.r.t. the
b-frame are obtained from (6) by subtracting the earth rota-
tion rate, i.e.

.!1; !2; !3/
T D !b � C b

e � .0; 0; !E/
T DW !b

be: (15)

The differential equation of (13) shall be solved with Quater-
nions. Jekeli (2001) transformed the 3 � 3 matrix equation
of (13) to the 4 � 1 vector equation

Pq D 1

2
Aqq; (16)

with the quaternion q and the matrix of angular velocitiesAq .
The latter one is given by
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Aq D

0

BB
@

0 !1 !2 !3
�!1 0 !3 �!2
�!2 �!3 0 !1
�!3 !2 �!1 0

1

CC
A : (17)

We performed the integration of the Quaternion with the
third order Runge-Kutta method (see Jekeli 2001), i.e. the
Quaternion at time tnC1 is given by

q.tnC1/ D q.tn C h/ (18)

D q.tn/C h �
�
1

6
ıq0 C 2

3
ıq1 C 1

6
ıq2

�
;

where h D 2ıt denotes the integration time and ıq0, ıq1 and
ıq2 denote the coefficients given by

ıq0 D 1

2
Aq.tn/q.tn/

ıq1 D 1

2
Aq.tn C h

2
/ .q.tn/C h=2ıq0/

ıq2 D 1

2
Aq.tn C h/ .q.tn/� hıq0 C 2hıq1/ : (19)

Once the integrated quaternion is determined, it is trans-
formed back to a rotation matrix.

4 Cycle Slip Detection and Correction

The fixed double DD carrier phase measurement for satellite
pair fk; lg is modeled as

�.'kl
12 � LN kl

12/ D eklb12 C �=2�N kl
12 C "kl

12; (20)

with the single difference ekl between the unit vectors point-
ing from the satellites to the receiver, the baseline vector b12
between both receivers, the carrier wavelength �, the fixed
DD integer ambiguity N kl

12, the unknown DD cycle slip (CS)
�N kl

12 and the DD phase noise "kl
12. Solving (20) for �N kl

12

yields

� LN kl
12 D

�
1

�=2

�
�.'kl

12 � LN kl
12/ � ekl ObIMU

12

�	
; (21)

where Œ�	 denotes the rounding operator and ObIMU denotes the
baseline estimate of the IMU that was obtained in four steps:
First, the IMU was initialized with the validated GPS attitude
solution of the last GPS measurement epoch. Subsequently,
the orientation was integrated using IMU measurements
between the epochs of the last and current GPS measurement.
The integration was performed with quaternions as described

in the previous section. In a third step, the quaternions
were transformed to Euler angles and, finally, the horizontal
baseline estimate was obtained from the heading  IMU and
baseline length a priori information l as

ObIMU
12 D l � .sin. IMU/; cos. IMU//

T : (22)

The cycle slip correction of (21) might be erroneous if the
initial calibration of the IMU was erroneous.

In this case, the cycle slip correction (CSC) can be
improved by jointly estimating the CSC and baseline coordi-
nates using fixed DD phase measurements from all available
satellites, the IMU baseline estimate of (22) and the baseline
length a priori information, i.e.

min
b12;�N12

kz12 �Hb12 �A�N12k2˙�1
'

s: t: kb12k D l;

(23)

with the combined GPS/INS measurement vector

z12 D
 
�.'12 � LN12/

ObIMU
12

!

; (24)

andH being the redefined .KC3/�3DD geometry matrix,
A.�=2/ is the extended .K C 3/ � q CSC coefficient matrix
for q DD cycle slips, and l describes the a priori information
on the baseline length. The minimization of (23) includes
a search of �N12 inside a predefined search space volume

2 and an iterative computation of b12 for each integer can-
didate vector �N12. We use the orthogonal decomposition
of Teunissen (1995) to rewrite the sum of squared errors
of (23) as

kz12 �Hb12 � A�N12k2˙�1
z12

D k� ON12 ��N12k2˙�1
ON12

C k Lb12.�N12/� b12k2˙�1
Lb12

C kP?NA P
?
H z12k2˙�1

z12
; (25)

with P?
H being the projector on the orthogonal complement

of the range space ofH and NA D P?
H A. The first term on the

right side was further developed by Teunissen (1995):

k� ON12 ��N12k2˙�1

� ON12

D
kX

lD1

.�N l
12 �� ON lj1;:::;l�1

12 /2

.�
� ONlj1;:::;l�1

12
/2

;

(26)

with � ON lj1;:::;l�1
12 being the l-th conditional cycle slip esti-

mate. Setting (26) into (25), defining the search space volume

2 as an upper bound on (25), adding the baseline length



Cycle Slip Detection and Correction for Heading Determination with Low-Cost GPS/INS Receivers 295

constraint as a zero term, and solving for the k-th ambiguity
yields:

.�Nk
12 �� ONkj1;:::;k�1

12 /2

�2
� ONkj1;:::;k�1

12

� 
2 � kP?NA P
?
H z12k2˙�1

z12
(27)

�
k�1X

lD1

.�N l
12 �� ON lj1;:::;l�1

12 /2

.�
� ONlj1;:::;l�1

12
/2

� min
b12;�

�
k Lb12.N12/ � b12k2˙�1

Lb12

C � � .kb12k2 � l2/
�

with the Lagrange multiplier �.
We set the partial derivative of the last term w.r.t. b12 to zero
and solve it for b12 to obtain

Ob12.�/ D .˙�1
Lb12 C �1/�1˙�1

Lb12
Lb12.N12/ (28)

Setting Ob12.�/ into the length constraint finally results in a
root finding problem:

f .�/ D k Ob12.�/k2 � l2 ŠD 0: (29)

As the roots of f .�/ can not be found in closed form, we use
the iterative Newton method. The Lagrange parameter � is
given at the .nC 1/-th iteration by

�.nC1/ D �.n/ � f .�/=
@

@�
f .�/

ˇ
ˇ
ˇ
ˇ
�D�.n/

(30)

with

@

@�
f .�/ D 2. Ob12.�//T @

@�
. Ob12.�//: (31)

Let Q.�/ D ˙�1
z12 C � � 1, then

Ob12.�/ D . Q.�//�1˙�1
z12

z12; (32)

and

@

@�
. Ob12.�// D @

@�
. Q�1.�//˙�1

z12 z12

D � Q�1.�/
@

@�
. Q.�// Q�1.�/˙�1

z12
z12

D � Q�1.�/ Q�1.�/˙�1
z12

z12: (33)

5 Measurement Analysis

In this section, the proposed cycle slip detection and correc-
tion method is verified with real data. We used the following
measurement setup:
• measurement period:

week number: 1738, TOW 2 f159;156 s; 159;812 sg
• measurement location (area of test drive):

longitude 2 f11:41869ı; 11:42815ıg
latitude 2 f47:99410ı; 47:99723ıg

• measurement equipment:
– 2 LEA 6T GPS receivers, 5 Hz, u-blox
– 2 single frequency patch antennas, u-blox
– 1 MPU 9150 inertial sensor, 100 Hz, Invensense

• installation:
– mounting of GPS antennas on roof of car
– alignment of baseline between antennas with longitu-

dinal axis of car
– baseline length: Nl D 1:32m, �Nl D 1 cm
Figure 2 shows selected sections of the test drive. In

the first two sections, the car was passing below trees and
between two buildings. The code and carrier phase signals
of all visible satellites are temporarily affected by significant
multipath. The last subfigure shows a slalom drive with high
receiver dynamics.

Figure 3 shows the fixed double difference phase residuals
before cycle slip detection and correction over time. In the
upper left corner, a skyplot shows the satellite geometry.
We applied an elevation mask of 20ı. At 176, 241 and 401 s,
the car was passing below trees or between two buildings,
which resulted in phase jumps of more than 10 half cycles.
The largest residuals correspond to the satellites of lowest
elevation. Numerous additional slips of f�2;�1; 0;C1;C2g
cycles can be observed in between the major jumps.

Figure 4 shows the fixed double difference phase residuals
after cycle slip detection and correction (CSC) using only
GPS measurements in (23). The residuals are substantially
lower than in Fig. 3 but there remain numerous undetected
cycle slips.

Figure 5 shows the fixed double difference phase residuals
after GPS/INS-based cycle slip detection and correction. The
residuals of all satellites are substantially reduced to less
than 15 cm. Variations of the residuals of more than 1 cm
correspond mainly to the double difference phase multipath.
The subplot in the lower right corner shows the fixed phase
residuals only for the three satellites of highest elevation. One
can observe three sections with severe multipath.
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Fig. 2 Selected sections of the
test drive: the first two sections
are in a high multipath
environment. The last section is
characterized by high receiver
dynamics. (a) 136–156 s: passing
below trees, (b) 172–177 s:
passing between two buildings,
(c) 330–404 s: slalom drive

Fig. 3 Fixed phase residuals
before cycle slip detection and
correction: The residuals are
jumping by more than 10 half
cycles at 176, 241 and 401 s,
where the car was passing below
trees or between two buildings.
The largest residuals correspond
to the satellites of lowest
elevation. The satellite geometry
is shown in the skyplot (20ı

elevation mask) in the upper left
corner. Numerous additional
slips of f�2;�1; 0;C1;C2g
cycles can be observed in
between the major jumps
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Figure 6 shows a comparison of the heading estimates
with GPS-only CSC and with GPS/INS combined CSC. In
the first 100 s, the car was standing. The noise of the heading
estimates is in the order of 0:1ı only. In the test drive, the
heading with GPS-only CSC differs by up to 30ı from the
heading with GPS/INS combined CSC, as the GPS-only CSC
can not correct for all cycle slips in heavy multipath environ-
ments. The enlarged periodic heading variations between 330
and 380 s indicate high receiver dynamics and correspond to
the slalom drive. The GPS-only based CSC corrects at 341 s
its erroneous ambiguities and, thus, follows the combined
GPS/INS solution. The enlarged heading between 390 and
405 s shows some ripples in the heading estimate for the
GPS/INS CSC. In this section, the car was passing below
a tree and all code and carrier phases were affected by
substantial multipath.

The reliability of the GPS/INS combined CSC depends
on the drift of the IMU. We re-initialize the IMU at every

GPS measurement epoch after cycle slip correction with
the GPS solution. Consequently, the drift of the IMU only
between two subsequent GPS measurement epochs (0.2 s) is
relevant. Figure 7 shows the difference between the heading
of the IMU without continuous GPS-based calibration and
the heading of the GPS/INS-combined solution. We can
observe a slight continuous drift of less than 0:5ı with
temporarily increased variations. The increased variations of
up to 1ı=0:2 s are most likely caused by heading errors of
the GPS/INS-combined solution (in multipath environments)
and not by changes of the IMU’s drift. A cycle slip correction
can still be performed reliably.

The proposed CSC of (27) jointly determines the baseline
coordinates and integer cycle slips using both GPS DD
carrier phases and the IMU-predicted baseline. It finds the
optimized trade-off between minimizing the GPS measure-
ment residuals and minimizing the IMU-predicted baseline
residuals. We compare the performance of this optimized
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Fig. 4 Fixed phase residuals
after GPS-based cycle slip
detection and correction: the
residuals are substantially
reduced but there remain
numerous undetected cycle slips
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Fig. 5 Fixed phase residuals
after GPS/IMU-based cycle slip
detection and correction: the
residuals of all satellites are
reduced to less than 15 cm. The
“noise” in the residuals
corresponds to the double
difference phase multipath. The
subplot in the lower right corner
shows the fixed phase residuals
only for the three satellites of
highest elevation. One can
observe three sections with
severe multipath
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Fig. 6 Heading determination
with GPS/INS combined cycle
slip correction (marked in blue)
and GPS-only (marked in orange)
cycle slip correction: the noise
level of both heading estimates is
in the order of 0:1ı in static
conditions and increases to 1ı in
high multipath environments (e.g.
passing below a tree between 395
and 405 s). The periodic
variations between 330 and 380 s
indicate high receiver dynamics.
The GPS-based heading
temporarily differs from the
GPS/INS-based heading due to
some uncorrected half cycle slips
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approach to the performance of an integer least-squares CSC
estimation with the baseline vector considered known and
fixed from the IMU. This alternative approach also combines
GPS and INS measurements. However, the integer least-

squares estimation only of the CSC does not guarantee
a final baseline estimate to be close to the one from the
IMU. Figure 8 shows that the heading of the integer least-
squares estimation can differ by up to 20ı from the combined
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Fig. 7 Drift of heading of
inertial sensor without continuous
GPS-based calibration: the
change of the heading between
two subsequent epochs is in
general less than 0:5ı. The
largest variation of 1ı=0:2 s
occurs during the passing below
trees, where the coupled
GPS/INS was itself more noisy.
A cycle slip correction can still
be performed reliably
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Fig. 8 Cycle slip correction with
GPS/INS: the heading of the
integer least-squares cycle slip
estimation with fixed IMU
baseline differs by up to 20ı from
the heading of the combined
cycle slip and baseline estimation
using both GPS and IMU
measurements. This indicates that
a pure integer least-squares
estimation is not sufficient. As
the combined estimator finds an
optimized trade-off between
minimizing the squared
measurement residuals and
minimizing the baseline vector
residuals, it finds the correct
cycle slip correction with highest
success rate
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solution. This shows again the need for the proposed cycle
slip detection and correction method, which combines all
available measurement and a priori information and mini-
mizes the sum of the measurement residuals and a priori
information residuals.

The reliability of cycle slip detection and correction can
also be verified by adding artificial cycle slips to the raw
phase measurements. We have tested all f�2;�1; 0;C1; 2g
cycle slip combinations for f1; 2; 3g simultaneous cycle slips
at a moment of high receiver dynamics (t D 342 s), and
observed that all cycle slip combinations were correctly
found.

6 Conclusion

In this paper, a method for reliable cycle slip detection and
correction was proposed for low-cost GPS receivers with
high receiver dynamics in challenging environments. It com-
bines double difference GPS carrier phases from all visible

satellites, gyroscope and acceleration measurements, and a
priori information on the baseline length. It performs a tree
search for finding the cycle slip corrections. The estimator
was first tested by a simulation of artificial cycle slips. It
turned out to be extremely powerful if the IMU was properly
calibrated, i.e. it was able to correct simultaneous cycle slips
at all visible satellites. Subsequently, the proposed method
was verified in a test drive with two low-cost GPS receivers
and a low-cost 9-axes INS. The residuals of the fixed phase
measurements after cycle slip correction remained less than
15 cm in both a slalom drive with high receiver dynamics and
passages below trees.
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Adjusting the Errors-In-Variables Model:
Linearized Least-Squares vs. Nonlinear Total
Least-Squares

Burkhard Schaffrin

Abstract

It has long been known that the Errors-In-Variables (EIV) Model is a special case of the
nonlinear Gauss–Helmert Model (GHM) and can, therefore, be adjusted by standard least-
squares techniques in iteratively linearized GH-Models, which is the approach by Helmert
(Adjustment Computations Based on the Least-Squares Principle (in German), 1907) and –
later – by Deming (Phil Mag 11:146–158, 1931; Phil Mag 17:804–829, 1934).

Apart from the fact that there are, at least, two other nonlinear models that are equivalent
to the above GH-Model, thus allowing two more classical least-squares approaches based
on iterative linearization, it was the seminal paper by Golub and van Loan (SIAM J Numer
Anal 17:883–893, 1980) in which they proved that a purely nonlinear approach can be
followed as well, thereby avoiding any model linearization. They called such an approach
“Total Least-Squares adjustment” by which any normal equations may be replaced by a
simple eigenvalue problem, as long as only diagonal dispersion matrices are involved.

Here, an attempt will be made to show the differences and parallels in various algorithms,
even in the fully weighted case, which obviously all generate the same results, but without
necessarily showing equal efficiency in doing so, as is well known since the publications by
Schaffrin and Wieser (J Geodesy 82:415–421, 2008), Fang (Weighted Total Least-Squares
solutions with applications in geodesy, 2011), and Mahboub (J Geodesy 86:359–367, 2012).

Keywords

Errors-In-Variables Models • Total Least-Squares • Equivalent nonlinear models •
Linearized Least-Squares

1 Introduction

The Errors-In-Variables (EIV) Model has recently seen a
lot of attention since, in accordance with Golub and van
Loan (1980), it can be treated in its nonlinear form by a
least-squares approach that they coined “Total Least-Squares
adjustment”. It eventually leads to a (generalized) eigenvalue
problem that needs to be solved in lieu of the sequence of

B. Schaffrin (�)
Division of Geodetic Science, School of Earth Sciences, The Ohio
State University, Columbus, OH, USA
e-mail: schaffrin.1@osu.edu

normal equations that would result from a traditional “Least-
Squares adjustment” within iteratively linearized models.
The latter approach dates, at least, back to Helmert (1907),
but has as well been used by Deming (1931, 1934) for
the approximation of curves and, more recently, by Neitzel
(2010) to determine the parameters of a similarity transfor-
mation.

In contrast, the nonlinear Total Least-Squares (TLS)
approach which, in its original formulation, could tolerate
only “element-wise weighting” and thus only diagonal
weight matrices, has since been generalized in several steps
by Schaffrin and Wieser (2008), Fang (2011), and Mahboub
(2012) to now accept any positive-definite weight matrices.
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of Geodesy Symposia 142, DOI 10.1007/1345_2015_61
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This development will be presented in the following Sect. 2,
thereby showing how the more specialized algorithms can be
derived from the more general ones by simplification.

Moreover, it should be noted that progress has also been
made towards the use of positive-semidefinite dispersion
matrices in TLS adjustment, which may be handled as
described by Schaffrin et al. (2014). These cases are quite
relevant whenever the random error matrix needs to show a
certain pattern or structure after the adjustment. Due to the
limited space, these advanced methods will not be discussed
below.

Instead, attention will be paid to a triplet of classical non-
linear models that all can be constructed to be equivalent to
the EIV-Model and, furthermore, may undergo a sequence of
Least-Squares adjustments via iterative linearization which,
in the end, converge to the very same TLS solution. This will
be the theme in Sect. 3 although many details have to be left
out; for those, see Schaffrin (2015).

2 Nonlinear TLS Adjustment
in an EIV-Model

2.1 Fang’s Algorithm

Let the EIV-Model be defined by

y D .A � EA/
„ ƒ‚ …

n�m

� C ey; rkA D m < n; (1a)

e W D
�

ey

eA WD vecEA

�

�
0

@

�

0

0

�

; �2
o

2

4

P �1
y

n�n

0

0 P �1
A

nm�nm

3

5 DW �2
o P �1

1

A

(1b)

where

y is the n � 1 observation vector;
A is the n � m (random) coefficient matrix with full column

rank (aka “data matrix”);
EA is the n � m (unknown) random error matrix associated

with A;
� is the m � 1 (unknown) parameter vector;
ey is the n � 1 (unknown) random error vector associated

with y;
eA is the nm � 1 vectorial form of the matrix EA;
Q is the n .m C 1/ � n .m C 1/ block-diagonal pos.- def.

cofactor matrix;
P WD Q�1 is the corresponding block-diagonal pos.- def.

weight matrix;
�2

o is the (unknown) variance component (unit- free);
Cov

˚

ey; vecEA

� D 0 for the sake of simplicity.

The model generalizes the one used by Schaffrin and
Wieser (2008) where a Kronecker product structure for

QA D P �1
A D Qo ˝ Qx (2)

was assumed, as well as the one used by Golub and von Loan
(1980) who only allowed diagonal cofactor matrices with

Qo WD Im; Qx WD Qy D Diag
�

p�1
1 ; :::::::; p�1

n

� D P �1
y :

(3)

The objectives of a nonlinear Total Least-Squares (TLS)
adjustment are now based on the principle

eT
y Pyey C eT

APAeA D min : s:t: .1a/ ; (4)

which can be given the equivalent form of a Lagrange target
function, namely:

�
�

ey; eA; �; �
� WD eT

y Pyey C eT
APAeAC

C 2�T
�

y � A� � ey C �

�T ˝ In

�

eA

� D stationary:

(5)

Consequently, the Euler-Lagrange necessary conditions
result in the following system of nonlinear “normal
equations”:

1

2

@�

@ey

D Py Qey � b� PD0 (6a)

1

2

@�

@eA

D PA QeA C
	

b�
T ˝ In




b� PD0; (6b)

1

2

@�

@�
D ��

A � QEA

�T
b� PD0; (6c)

1

2

@�

@�
D y � Ab� � Qey C

	

b�
T ˝ In




QeA PD0; (6d)

which still needs to be reduced by partial elimination since
the sufficient condition is fulfilled as

1

2

@2�

@

�

ey

eA

�

@
h

eT
y

ˇ

ˇ

ˇ eT
A

i
D

�

Py 0

0 PA

�

is pos:-def: (7)

Now, (6a, b) are transformed to provide the residual vectors
through

Qey D Qy
b� and QeA D �QA

	

b� ˝ In




b� (8a)
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so that (6d) can be rewritten as

y � Ab� D
�

Qy C
	

b� ˝ In


T

QA

	

b� ˝ In



�

� b� DW Q1 � b�;

(8b)

with Q1 D Q1

	

b�



being nonsingular, thus leading to

b� D Q�1
1

	

y � Ab�



(9)

and, together with (6c), to the system
"

Q1

�

A � QEA

�

�

A � QEA

�T
0

# "

b�
b�

#

D
"

y � QEA
b�

0

#

(10)

Obviously, the estimated parameter vector is now obtained as
in Fang (2011, p.27) via

b� D
h
�

A � QEA

�T
Q�1

1

�

A � QEA

�
i�1�

A � QEA

�T
Q�1

1 �
�
	

y � QEA
b�




(11)

and allows updates for Q1, b�, and ẽA, from which a new
estimate b� results.

The Total Sum of weighted Squared Residuals (TSSR)
may now readily be computed from

QeT
y Py QeyCQeT

A PA QeADb�
T

�

QyC
	

b� ˝ In


T

QA

	

b� ˝ In



�

b� D
D b�

T
Q1

b� D b�
T

	

y � Ab�



DW TSSR

(12)

so that a suitable variance component estimate may be
obtained through

b�
2
o D b�

T
	

y � Ab�



= .n � m/ D TSSR= .n-m/ (13)

as the redundancy in model (1a, b) is still n-m.
Alternatively, system (10) can be given the asymmetric

form

"

Q1 A
�

A � QEA

�T
0

# "

b�
b�

#

D
�

y

0

�

(14)

which would then provide the estimated parameter vector
through

b� D
h
�

A � QEA

�T
Q�1

1 A
i�1�

A � QEA

�T
Q�1

1 y (15)

and should lead to a similar iteration as before. Note that
(15) also appears as formula (21) in Xu et al. (2012), but

essentially represents a variant of Fang’s algorithm; also, cf.
Fang (2013) where further alternatives are presented.

2.2 Mahboub’s Algorithm

On the other hand, combining (9) with (6c) leads to the
following sequence of identities:

AT Q�1
1

	

y � Ab�



DATb�D QET
A

b�D
	

b�
T ˝ Im




vec
� QET

A

� D
D

	

b�
T ˝ Im




� .K QeA/ D
	

Im ˝b�
T




QeA D
D �

�
	

Im ˝b�

T

QA

	

b� ˝ In



�

b� DW �R1 � b� D
D �R1 � Q�1

1

	

y � Ab�



(16)

where K denotes a nm � nm ”commutation matrix” that is
also known as “vec-permutation matrix”; for more details,
see Magnus and Neudecker (2007).

Obviously, (16) translates into the estimated parameter
vector

b� D ��

AT C R1

�

Q�1
1 A

��1 �

AT C R1

�

Q�1
1 y (17a)

with R1 D R1

	

b�;b�



and, from (16), with

R1
b� D � QET

A
b� (17b)

without necessarily implying that R1 D � QET
A . Therefore, the

sequence of solutions to (15) may differ from the sequence
of solutions to (17a) when iteratively updating Q1, b�, and R1,
before a new parameter vector estimate b� can be found; yet
the ultimate convergence points will be the same.

Again, the TSSR can be computed from (12) which will
lead to the variance component estimate in (13).

2.3 A New Variant of Mahboub’s Algorithm

After giving (16) the form

AT Q�1
1

	

y � Ab�



D �
�
	

Im ˝b�

T

QA

	

Im ˝b�


�

b�;

(18a)

the estimated parameter vector may as well be obtained

from

b� D
h

AT Q�1
1 A �

�
	

Im ˝b�

T

QA

	

Im ˝b�


��1

AT Q�1
1 y

(18b)
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thus allowing updates for Q1 and b�. This algorithm will be
further explored in the near future.

2.4 The Schaffrin–Wieser Algorithm

This algorithm was designed for the somewhat more special
case where the cofactor matrix QA can be split into a
Kronecker product, thereby indicating that all columns have
cofactor matrices proportional to each other. This implies

QA D Qo ˝ Qx ) Q1 D Qy C
	

b�
T

Qo
b�




� Qx (19)

and thus
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b� ˝ Qx




b� D �vec
	

Qx
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T
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D vec QEA:

(21)

(20) and (21) together generate the identity
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suggesting the iteration
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with
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h
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� Qx

i�1

�
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y � Ab�



(22c)

while (12) and (13) generate first the TSSR and then a
suitable variance component estimate.

2.5 The Golub-van-Loan Algorithm

Now, the condition (19) is further specialized to

Qx WD Qy ) Q1 D
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� Qy (23a)

and
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so that (22a) becomes
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and this, from (24a, b), becomes
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(24c)

(24a) and (24c) allow the problem to be rephrased as a
generalized eigenvalue problem, specifically as:

�

AT Q�1
y A AT Q�1

y y

yT Q�1
y A yT Q�1

y y

�
"

b�

� 1

#

D
�

Qo 0

0 1

�
"
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� 1

#

� �2
min

(25)

with the variance component estimate

b�
2
o D �2

min= .n � m/ (26)

The original situation, treated by Golub and van Loan
(1980), was characterized by the further specializations

Qo WD Im and Qy WD Diag
�

p�1
1 ; :::::::::; p�1

n

� D P �1

(27)

which, in turn, lead to the standard eigenvalue problem

�

AT PA AT Py

yT PA yT Py

�
"

b�

� 1

#

D
"

b�

� 1

#

� �2
min (28)

whose solution provides the Total Least-Squares Solution

(TLSS).
In the next section, a few equivalent models will be

presented for which, traditionally, an identical weighted
LEast-Squares Solution (LESS) would have been found after
iterative linearization.
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3 Traditional Models, Equivalent
to the EIV-Model

3.1 The Nonlinear Gauss–Helmert Model

Here, the new vectors

Y WD vec Œ yj A� and e WD vec
�

ey

ˇ

ˇ EA

�

(29)

are introduced. Then,

bN
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(30a)
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D �2
o Q

�

; (30b)

with the nonlinear vector-valued vector function

bN W R.nC1/.mC1/�1 ! Rn; (30c)

due to the term EA � �, forms an equivalent Gauss–Helmert
Model that would traditionally be linearized for an iterative
Least-Squares adjustment.

The truncated Taylor series, following Pope (1972), then
reads:
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(31)

with suitable approximations �o and �o WD Y � 0� where 0�
here denotes a “stochastic zero vector” of size n .m C 1/�1.
This leads first to
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then to
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and eventually to the linearized Gauss–Helmert Model:
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Note that the weighted LEast-Squares Solution (LESS) is
now being formed through the normal equations
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with
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(35b)

and the residual vectors through
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Looking at the next and all the following iteration steps,
it becomes clear that this represents one specific iterative
solver of Fang’s TLS normal equations (11).

For more details, see Fang (2011, ch. 4.4), Snow (2012,
ch. 4), and the forthcoming OSU-Report by Schaffrin (2015),
as well as Neitzel (2010) for a specific application.

3.2 The Nonlinear Gauss–MarkovModel

In this case, the expectation of the data matrix A is introduced
as a new n � m ”parameter matrix”

„A WD A � EA with �A WD vec„A; (36)

leading to the equivalent Gauss-Markov Model

y D .� ˝ In/T � �A C ey DW aN .�; �A/ C ey;

ey � �

0; �2
o Qy

�

; (37a)
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with the nonlinear vector-valued vector function

aN W R.nC1/m ! Rn (37b)

due to the term „A � �. The linearization of model
(37a, b) with respect to the approximations �o and
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� D vec

	

A � 0�
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and finally to the linearized Gauss–Markov Model
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After a number of further manipulations, the weighted LESS
for model (39a, b) can be shown to fulfill the “normal
equations”
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D Qy C .�o ˝ In/T QA .�o ˝ In/ (40c)

which nicely corresponds to (35a, b). More details can be
found in the forthcoming OSU-Report by Schaffrin (2015).

3.3 TheModel of Direct Observations
with Nonlinear Constraints

Now, the expectation of the observation vector y is intro-
duced as just another parameter vector �y of size n�1 so that
the new model combines the direct observation equations
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(41a)

with the nonlinear constraints

�y � „A � � D 0 (41b)

which might be linearized into

�
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.o/
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A
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5 D 0: (42)

In the already mentioned OSU-Report by Schaffrin (2015), it
will be shown how the resulting iterative LESS’s do converge
to the Total Least-Squares Solution.

For another take on this model, refer to Donevska et al.
(2011) who stress the equivalence to orthogonal regression
as applied by Deming (1931, 1934).

4 Conclusions

It has been clarified that the TLS approach towards the EIV-
Model requires a nonlinear treatment of the nonlinear model.
A number of different algorithms have been presented to
generate the Total Least-Squares Solution from a certain
set of nonlinear normal equations. A triplet of conventional
nonlinear models has also been considered, suggesting that
the LEast-Squares Solutions from iterative linearization do
converge to the nonlinear TLS-Solution in all three cases.
Most of the details, however, will be published in a forth-
coming OSU-Report, due to the space restrictions for these
Proceedings.
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Multivariate GNSS Attitude Integrity: The Role
of Affine Constraints

Gabriele Giorgi and Peter J.G. Teunissen

Abstract

In this work we analyze the integrity properties of an affine-constrained estimator applied
to arrays of GNSS antennas. GNSS pseudorange and carrier phase measurements from
multiple antennas whose relative positions are known are cast in a linearly-constrained
observation model. The linear constraints are inherent to an affine transformation that is
applied to the baseline coordinates. The affine transformation yields enhanced redundancy,
thus improving the model integrity properties with respect to the unconstrained model. The
extent of the improvement is measured in terms of internal and external reliability.

Keywords
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1 Introduction

GNSS carrier phase attitude determination enables precise
estimations of a body orientation in space, see e.g.
Bar-Itzhack et al. (1998), Cohen (1992) and Giorgi (2011).
In order to derive the orientation of the body with respect to
a reference frame, an array of GNSS antennas is employed.
The distances between antennas are surveyed a priori, such
that the coordinates of each baseline are known in a local
reference frame (e.g., a frame integral with the body). The
estimation of the orientation of the local frame with respect
to the frame in which the GNSS measurements are expressed
is the aim of attitude determination.

Carrier phase-based attitude estimations are character-
ized by a much higher estimation precision than code-
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only processing, but the carrier phase measurements are
inherently ambiguous by an unknown number of integer
cycles (Strang and Borre 1997; Teunissen and Kleusberg
1998). These have to be resolved to their correct inte-
ger value. Application of Integer Least-Squares (ILS) to
resolve the integer ambiguities guarantees the highest possi-
ble success rate among the admissible integer estimators, see
Teunissen (1993) and Teunissen (1999). ILS methods have
been recently studied in the context of nonlinear constrained
models such as the GNSS-based attitude estimation problem
(Giorgi 2011; Giorgi et al. 2012; Teunissen 2007). The
baselines formed by the GNSS antenna array can be re-
parameterized in terms of an attitude matrix. An admissible
attitude matrix is orthonormally-constrained (OC) (Shuster
1993). If these constraints are integrated in the estimation of
the whole parameter space, i.e., the attitude matrix and the
integer ambiguities, a nonlinear estimation problem has to
be solved. It is shown in Giorgi et al. (2011) and Teunissen
(2007) how to solve for the OC GNSS attitude model, and it
is demonstrated how the rigorous inclusion of the orthonor-
mality constraint largely enhances ambiguity resolution.

A model of intermediate strength between the uncon-
strained (UC) and the OC approaches is obtained by oper-
ating the re-parameterization of the baselines in terms of
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the attitude matrix, but neglecting the associated nonlinear
constraints. This yields an affine-constrained (AC) GNSS
attitude model, as introduced in Giorgi and Teunissen (2013)
and Teunissen (2012). This model has the advantage that
it avoids the computational complexity of the OC GNSS
attitude model, while it still has a significantly improved
ambiguity resolution performance over its unconstrained
counterpart.

More than improving the ambiguity resolution perfor-
mances, the AC attitude model is characterized by enhanced
integrity properties with respect to the UC model. Due to
the affine-transformation of a parameter subset, a larger
observations-to-unknowns redundancy enables smaller min-
imum detectable biases (MDBs), i.e., the minimum bias
magnitude that can be detected, and smaller bias-to-noise
ratios (BNRs), i.e., a measure of the influence of undetected
errors on the parameter estimation. The MDBs and BNRs
are used to measure the internal and external reliability
of the observation model, respectively. It is shown in this
contribution the impact that adopting the AC model over the
UC model has on the model integrity properties.

This contribution is structured as follows. Section 2
introduces a theorem on the integrity properties of affine-
constrained linear models.

Section 3 formulates the GNSS functional and stochas-
tic model in multivariate form, for one-, two- and three-
dimensional antenna arrays, tracking GNSS signals on an
arbitrary number of frequencies with two or more antennas.

Section 4 analyzes the impact of the affine constraints
on the model internal and external reliability. The MDBs
and BNRs are given in analytical form, and the difference
between the UC and AC approaches is analyzed from a
theoretical as well as a numerical standpoint.

2 Reliability and Constraints:
A Theorem

The Minimal Detectable Bias (MDB) and the Bias-to-Noise-
Ratio (BNR) are two important diagnostic measures that
describe the model reliability after statistical testing, see
Baarda (1968) and Teunissen (2006). Let the m-vector of
observables y be distributed under the hypothesis H as
y � N.E.yjH/; Qyy/, and consider the null-hypothesis H0

U
and the alternative hypothesis Ha

U,

E.yjH0
U/ D Ax and E.yjHa

U/ D Ax C cyr (1)

in which A 2 R
m�n and cy 2 R

m are given (full rank)
matrices, and x and r are unknown parameters. The suffix
‘U’ has been used to discriminate this pair of hypotheses
from their constrained counterparts,Ho

C and Ha
C, respectively

(see 3).

In Chapter 4 of Teunissen (2006) it is shown that the MDB
and BNR of uniformly most powerful invariant (UMPI)
testing H0

U against Ha
U are given as

MDBU D
r

�0

jjP ?
A cy jj2Qyy

;

BNRU D MDBU jjPAcy jjQyy

(2)

with noncentrality parameter �0, the weighted squared-norm
jj:jj2Qyy

D .:/T Q�1
yy .:/ and the orthogonal projector PA D

A.AT Q�1
yy A/�1AT Q�1

yy .
The following theorem shows how the MDBs and BNRs

change when both the null- and alternative hypothesis are
strengthened with the same constraints.

Theorem (Constraints, MDBs and BNRs) Let the
hypotheses of (1) be constrained as

E.yjH0
C/ D Ax; KT x D 0

E.yjHa
C/ D Ax C cyr; KT x D 0

(3)

with given full rank constraint matrix K 2 R
n�p .p � n/.

Then the unconstrained MDBs and BNRs of (1) are related
to their constrained counterparts of (3) as

MDB2
U

MDB2
C

D 1 C jjP ?
L c Ox jj2QOx Ox

jjP ?
A cy jj2Qyy

(4)

BNR2
U

BNR2
C

D MDB2
U

MDB2
C

"
1 � jjP ?

L c Ox jj2QOx Ox

jjPAcy jj2Qyy

#�1

(5)

with basis matrix L spanning the null space of KT , and

P ?
L D I � L.LT Q�1

Ox Ox L/�1LT Q�1
Ox OxD Q Ox OxK.KT Q Ox OxK/�1KT

c Ox D Q Ox OxAT Q�1
yy cy

Q Ox Ox D .AT Q�1
yy A/�1

(6)

Proof From the definition of the MDB and its geometric
interpretation (Teunissen 2006), we have

MDB2
U

MDB2
C

D
jjP ?

ALcy jj2Qyy

jjP ?
A cy jj2Qyy

D 1 C
.jjPAcy jj2Qyy

� jjPALcy jj2Qyy
/

jjP ?
A cy jj2Qyy

(7)

With
Q Ox Ox D .AT Q�1

yy A/�1

PA D AQ Ox OxAT Q�1
yy

PAL D AL.LT Q�1
Ox Ox L/�1LT AT Q�1

yy

PL D L.LT Q�1
Ox Ox L/�1LT Q�1

Ox Ox

(8)

it follows that

jPAcy jj2Qyy
D jjc Oxjj2QOx Ox

jjPALcy jj2Qyy
D jjPLc Ox jj2QOx Ox

(9)
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Substitution of (9) into (7) proves the result. The derivation
of the BNR-ratio goes along similar lines. ut

This theorem shows how the MDBs and BNRs improve
(i.e. get smaller) when constraints are added to both the null-
and alternative hypothesis. Such improvement will be absent
if jjP ?

L c Ox jj2QOx Ox
D 0, i.e. if c Ox D 0 or P ?

L c Ox D 0. The first
case occurs if the solution for x under Ha

U is invariant for the
modelling bias, i.e. when cy is orthogonal to the range space
of A. The second case occurs when KT c Ox D 0, i.e. when the
effect of the modeling bias on x is not felt in the constraint.

In the following we will apply the above theorem to the
multivariate GNSS affine-constrained model.

3 Multivariate GNSS Observation
Models

Consider an array of r C 1 GNSS antennas forming r

independent baselines. The 2mf DD GNSS pseudorange
and carrier phase observations obtained by simultaneously
tracking m C 1 satellites on f frequencies, are cast in
the columns of a 2mf � r observation matrix Y . The DD
multivariate UC GNSS observation model is formulated as

E.Y / D GB C NX ; D.vecY / D P ˝ Qyy

with B 2 R
3�r ; X 2 Z

mf �r (10)

The coordinates of the baselines forming the array are cast in
the columns of matrix B , whereas X contains the integer-
valued unknown ambiguities (the array is assumed small
enough to neglect the atmospheric delays). The entries of the
2mf � 3 matrix G are the differenced line-of-sight vectors,
and the 2mf � mf matrix N contains the wavelengths.

The matrices P and Qyy of the dispersion D.vecY / are
given as P D 1

2
DT

r Dr D 1
2
.Ir C ere

T
r / and Qyy D 2˙ ˝

DT
mDm, with cofactor matrices ˙ D blockdiagŒ˙P ; ˙˚ �,

˙P D diag
�
�2

p1
; � � � ; �2

pf

�
, ˙˚ D diag

�
�2

�1
; � � � ; �2

�f

�
containing the undifferenced code and phase variances, and
where DT

t D Œ�et ; It � is an t � .t C 1/ differencing matrix.
We define a local frame in which the baseline coordinates

are invariant, and introduce a q�r matrix F whose entries are
the local baseline coordinates. Parameter q denotes the rank
of matrix F : q D 1 for configurations of r antennas aligned
in the same direction, q D 2 for configurations of r coplanar
antennas and q D 3 for configurations of r non-coplanar
antennas. The transformation between the local coordinate
system and the reference system in which the observations
are collected is defined by a rotation matrix R as

B D RF I R 2 O
3�q ; F 2 R

q�r (11)

The attitude matrix belongs to the class of 3 � r orthonormal
matrices O, i.e., matrix R fulfill the nonlinear constraints
defined by RT R D Iq . Substitution of relationship (11) into
model (10) gives the OC attitude model:

E.Y / D GRF C NX ; D.vecY / D P ˝ Qyy

with R 2 O
3�q I X 2 Z

mf �r (12)

The solution of the OC model is inherently more complex
than the UC model, due to the nonlinear constraints. The
solution of model (12) has been given in Giorgi (2011),
Giorgi et al. (2012), Giorgi et al. (2011), Teunissen (2007),
and will not be discussed any further in this work.

A model of intermediate complexity is obtained by adopt-
ing the transformation (11), but disregarding the nonlinear
constraints. The AC GNSS attitude model is then formulated
as (Teunissen 2012)

E.Y / D GRF C NX ; D.vecY / D P ˝ Qyy

with R 2 R
3�q I X 2 Z

mf �r (13)

Hence, the orthonormality constraint R 2 O
3�q has been

replaced by the constraint R 2 R
3�q . Note that the trans-

formation (11) allows to reduce the number of unknown
parameters in (13) for those antenna configurations in which
the span of the baselines is smaller than their number (q < r).

Since model (13) is linear, a classic ILS solution can be
derived, as shown in Giorgi et al. (2011), Teunissen (2007)
and Teunissen (2012).

3.1 Alternative Hypotheses

Models (10) and (13) will be treated as our null hypotheses
H0

uc and H0
ac, respectively. In order to check for errors and/or

biases in the observation vector, or model misspecifications,
we introduce two alternative functional models that will
be compared to the representations (10) and (13). These
alternative hypotheses are

Ha
uc W E.Y / D GB C NX C C�; D.vecY / D P ˝ Qyy

Ha
ac W E.Y / D GRF C NX C C�; D.vecY / D P ˝ Qyy

(14)

The scalar � 2 R denotes the error/bias magnitude, whereas
matrix C defines the observation(s) affected by the error. We
assume that matrix C can be expressed as the (outer) product
between two vectors: C D cdT , in which the 2mf -vector c

can be used to specify which observable is biased, and the
r-vector d can be used to select the antenna of the biased
observable. Thus, for instance, if the i th observable, of the
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j th satellite, of the kth antenna is assumed biased, then c

and d are chosen as c D .I2f ˝ DT
m/.u2f

i ˝ umC1
j / and

d D DT
r urC1

k , in which un
i denotes a canonical unit vector

of dimension n, with the 1 in its i th slot.
In the following section we analyze the integrity proper-

ties of the UC and AC observation models.

4 Integrity Properties

The MDBs and BNRs of models (10)–(13) tested against the
corresponding alternative hypotheses in (14) follows from
(2) as

MDBuc D q
�0

��2
O�uc

D q
�0

dT P �1d NNcT
N; NG

Q�1
yy

NNcN; NG

BNRuc D MDBuc

q
d T P �1d

�
cT Q�1

yy PN c C cT Q�1
yy P NGc

�
(15)

and

MDBac D q
�0

��2
O�ac

D q
�0

��2
O�uc

CdT PS P �1d NcT
N P NG NcN

BNRac D MDBac

�
q

d T P �1dcT Q�1
yy PN c C d T P ?

S
P �1dcT Q�1

yy P NGc

(16)

with

NNcN; NG D ŒI � P NG� NcN D ŒI � P NG� ŒI � PN � c
NG D ŒI � PN � G

P NG D NG � NGT Q�1
yy

NG��1 NGT Q�1
yy

PN D N
�
N T Q�1

yy N
��1

N T Q�1
yy

PS D I � P ?
S

D I � P �1F T .FP�1F T /�1F

(17)

Matrix PS is the projector of rank r � q that projects onto the
null space of the body frame baseline matrix F . This matrix
reduces to the zero-matrix when the number of baselines r

equals their span q.
Application of the Theorem given in Sect. 2 to the UC and

AC observations models yields the following ratios between
MDBs and between BNRs:

! D MDBuc

MDBac
D

s
1 C d T PSP �1d

d T P �1d

NcT
N

Q�1
yy P NG NcN

NcT
N
Q�1

yy P ?
NG

NcN

(18)

and

� D BNRuc
BNRac

D !s
1� dT PS P �1dcT Q�1

yy P NGc

dT P �1d.cT Q�1
yy PN cCcT Q�1

yy P NG c/
(19)

with P ?
NG

D I � P NG . For q D r the MDBs and BNRs of
the two models UC and AC are equal. However, for q < r

the AC model is characterized by smaller MDBs and BNRs,
or equivalently, the AC model is capable of detecting the
same error magnitude with a larger power of detection. The
extent of the improvement, quantified by the ratios ! and
� , depends on the number of baselines (r), their relative
geometry (PS ), the measurement quality Qyy, and the given
satellite geometry distribution (G). Note that the ratios in
(18)–(19) are independent from a geometrical scaling of the
whole GNSS antenna array.

4.1 Numerical Example

We provide in this section a numerical example of the
improvement obtained in terms of MDBs and BNRs ratios
in two single-constellation case studies. We study both GPS
and Galileo signals, assuming 4 to 10 satellites for each case,
tracked on frequency L1, L2 and L5 (GPS), and E1-E5a-E5b-
E5-E6 (Galileo), by an array of 4 coplanar antennas. The
local baseline coordinates are

F D
�
1 0 0:5

0 1 1

	
(20)

The DD observation noise (Qyy) is composed by using the
variances reported in Table 1, and the GPS and Galileo
simulated satellite positions are illustrated in the skyplots of
Figs. 1 and 2. The DD observations are formed by differenc-
ing with respect to satellite ‘1’.

Table 2 reports several values of ratio ! as function of the
number of satellites and channels (frequencies) tracked by
the antenna array. We assume an error occurring on the third
receiver, relative to a single satellite (first DD observation)
on frequency L5. The improvement obtained with the AC
GNSS model with respect to the UC model is rather large.
In the weakest measurement scenario, i.e., only 5 satellites
tracked on the single-frequency L5, the minimum detectable
bias is twice as large for the UC model compared to the AC
model. Stronger scenarios, i.e., higher number of satellites
and/or multifrequency observations, are characterized by
lower values, although in many cases sensibly larger than the
unit.

Table 1 Standard deviations of GPS and Galileo undifferenced pseu-
dorange and carrier phase (˚) observables

L1 L2 L5 E1 E5a E5b E5 E6

�P (cm) 25 25 15 20 15 15 7 15
�˚ (mm) 1.0 1.3 1.3 1.0 1.3 1.3 1.3 1.2
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Fig. 1 GPS simulated
constellation, skyplot
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The same interpretation applies to the corresponding ratio
� between BNRs, given in Table 3 as function of the number
of satellites and channels. The improvement obtained by
adopting the AC model is amplified with respect the MDBs
ratio, with BNRs ratios as large as three for the weakest
scenario. The impact of an undetected error in the parameter
estimation is thus largely reduced when adopting the AC
model.

The second case study focuses on a simulated Galileo
constellation. Galileo signals are more precise than GPS
signals (cfr. Table 1), and will generally provide smaller
absolute values for the MDBs and BNRs. However, we
analyze here the relative performance between the UC and

AC models, rather than the absolute improvement obtained
by employing more precise observations.

Tables 4 and 5 reports the ratios between MDBs and
BNRs for the Galileo scenario, relative to the detectability
of an outlier on the third receiver, first observation at fre-
quency L5. The larger gain associated to the AC model is
again obtained in weaker scenarios, when limited number of
satellites and/or single-frequency observations are available,
with MDBs twice as large and BNRs three times as large
when using the UC model. The extent of the improvement is
then comparable to the one of the GPS case study, although
with slight differences due to the satellite geometry and to the
different accuracy between signals within the same GNSS.
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Fig. 2 Galileo simulated
constellation, skyplot
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Table 2 Ratio ! for GPS-only satellites, as function of number of
satellites and frequencies available

# sat L5 L1 C L5 L2 C L5 L1 C L2 C L5

4 – 1.58 1.58 1.32

5 2.06 1.38 1.38 1.24

6 1.10 1.07 1.07 1.05
7 1.06 1.04 1.04 1.03

8 1.06 1.04 1.04 1.03

9 1.06 1.04 1.04 1.03

19 1.06 1.04 1.04 1.03

The ratio ! refers to the detectability of an outlier on the third receiver,
first observation at frequency L5

Overall, the strengthening of the observation model
obtained by imposing linear constraints yields an effective
reduction of the MDBs and BNRs, thus proving the

Table 3 Ratio � for GPS-only satellites, as function of number of
satellites and frequencies available

# sat L5 L1 C L5 L2 C L5 L1 C L2 C L5

4 – 2.31 2.31 1.93

5 3.02 2.03 2.03 1.81

6 1.61 1.56 1.56 1.54
7 1.55 1.52 1.52 1.51

8 1.55 1.53 1.53 1.51

9 1.55 1.52 1.52 1.51

10 1.55 1.52 1.52 1.51

The ratio � refers to the presence of an outlier on the third receiver, first
observation at frequency L5

advantage of affine-constrained models in terms of reliability
for those configurations of antennas whose relative positions
can be modeled as spatially invariant.
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Table 4 Ratio ! for Galileo-only satellites, as function of number of
satellites and frequencies available

E1 C E5 E5a C E5b E1 C E5a
# sat E5 E1 C E5 E5a C E5 CE6 CE5 C E6 CE5 C E6

4 – 2.32 1.86 1.60 1.35 1.40

5 1.44 1.34 1.28 1.24 1.17 1.18

6 1.34 1.27 1.23 1.20 1.14 1.15
7 1.35 1.28 1.24 1.20 1.14 1.16

8 1.17 1.14 1.13 1.11 1.09 1.09

9 1.16 1.14 1.12 1.11 1.08 1.09

10 1.14 1.12 1.11 1.09 1.07 1.08

The ratio ! refers to the detectability of an outlier on the third receiver,
first observation at frequency E5

Table 5 Ratio � for Galileo-only satellites, as function of number of
satellites and frequencies available

E1 C E5 E5a C E5b E1 C E5a
# sat E5 E1 C E5 E5a C E5 CE6 CE5 C E6 CE5 C E6

4 – 3.39 2.72 2.34 1.97 2.05

5 2.11 1.95 1.88 1.81 1.71 1.73

6 1.96 1.85 1.80 1.75 1.67 1.69

7 1.98 1.87 1.81 1.76 1.68 1.69

8 1.72 1.68 1.65 1.63 1.59 1.60
9 1.70 1.67 1.64 1.62 1.58 1.59

10 1.67 1.64 1.62 1.60 1.57 1.58

The ratio � refers to the detectability of an outlier on the third receiver,
first observation at frequency E5

5 Conclusions

In linear models, linear constraints on parameter subsets
potentially enable improved error detection, thanks to an
implicit enhanced observations-to-unknowns redundancy. A
consistent improvement in terms of integrity properties can
be obtained by adopting the affine-constrained model over
the unconstrained formulation. The improvement was cap-
tured analytically by expressing the ratio between minimum
detectable biases (and bias-to-noise ratios) obtained in the
linearly-constrained and unconstrained models.

The theorem finds a direct application in arrays of GNSS
antennas whose relative distances do not vary. Following
a re-parameterization of the baseline coordinates in terms
of an attitude matrix, the observation model becomes lin-
early constrained when disregarding the orthonormality of
the attitude matrix. The GNSS attitude model with affine

constraints yields enhanced internal and external reliability,
as demonstrated with several numerical examples that pro-
vide evidence of the improved performance of the affine-
constrained model in terms of minimum detectable biases
and bias-to-noise ratios.
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Integrating Geological Prior Information into
the Inverse Gravimetric Problem: The Bayesian
Approach

L. Rossi, M. Reguzzoni, D. Sampietro, and F. Sansò

Abstract

It is well known that the inverse gravimetric problem is generally ill-posed and therefore its
solution requires some restrictive hypotheses and strong numerical regularization. However,
if these initial assumptions are improperly used, the final results could be theoretically
and physically admissible but far from the actual mass density distribution. In this work,
a Bayesian approach to estimate the mass density distribution from gravity data coupled
with a-priori geological information is presented. It requires to model the masses in voxels,
each of them characterized by two random variables: one is a discrete label defining the
type of material (or the geological unit), the other is a continuous variable defining the mass
density (considered constant inside the single voxel). The a-priori geological information is
translated in terms of this model, providing for each class of material the mean density and
the corresponding variability and for each voxel the a-priori most probable label. Basically
the method consists in a simulated annealing aided by a Gibbs sampler with the aim to
find the MAP (maximum a posteriori) of the posterior probability distribution of labels
and densities given the observations and the a-priori geological model. Some proximity
constrains between labels of adjacent voxels are also introduced into the solution.

The proposed Bayesian method is here tested on two simulated scenarios. In particular
the first is an example of bathymetry recovering, while the second a salt dome shape
estimation. These experiments show the capability of the method to correct the possible
inconsistencies between the a-priori geological model and the gravity observations: 86%
and 60% of wrong voxels have been corrected in the first and second test respectively.

Keywords

Bayesian approach • Inverse gravimetric problem • Monte Carlo Markov Chain method

L. Rossi (�) • M. Reguzzoni
DICA, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133
Milano, Italy
e-mail: lorenzo1.rossi@polimi.it

F. Sansò
DICA, Politecnico di Milano, Como Campus, via Valleggio 11,
22100 Como, Italy

D. Sampietro
GReD s.r.l., via Cavour 2, 22074 Lomazzo, Italy

1 Introduction

The intrinsic indetermination of the inverse gravimetric prob-
lem is well known and the description of the whole set of
possible internal masses, given the external gravity potential,
has been fully described on a purely mathematical ground
(e.g. Parker 1975; Sampietro and Sansò 2012). However, in
order to obtain realistic solutions, some constraints should be
added in the solution of the inverse gravimetric problem. For
instance the solution can be derived from the “experience”
of an operator assisted by fast forward algorithms (Parker
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1973; Caratori Tontini et al. 2009; Gordon et al. 2012) and
from generic geological information by means of trial and
error procedures.

Another possible solution could be to add severely con-
straints in terms of mass contrast leading to search for the
geometry of discontinuity surfaces (Barbosa et al. 1997,
1999; Fedi and Rapolla 1999; Fedi 2006). This approach is
commonly called non-linear inverse problem due to the non
linearity of the functional relating gravity observations and
geometrical parameters of the sources. On the contrary in the
so-called linear inversion (Last and Kubik 1983; Guillen and
Menichetti 1984; Barbosa and Silva 1994) there is a linear
relation in terms of Newtonian integral between the mass
density and the functional of the external gravity potential,
which is usually described as a summation on volume ele-
ments (voxels). Considering the linear problem the relation
between data and unknowns is univocal when the number of
voxel is conveniently taken smaller than the number of obser-
vations. However this relation is highly unstable because,
as the dimension of voxels decreases, we are approaching
the continuous setting, where non-uniqueness is large, as
recalled above. Therefore the solution is usually obtained by
imposing proper constraints. This can be done either under
deterministic models (Medeiros and Silva 1996) or stochastic
ones (Tarantola and Valette 1982; Tarantola 2002). In any
case this approach is reconducted to the optimization of
some non-linear, often quadratic, functionals of the gravity
observations and the unknown mass distribution. This opti-
mization can be obtained by Monte Carlo Markov Chain
methods, including simulated annealing (Nagihara and Hall
2001; Roy et al. 2005), as it is very well known in literature.
Naturally the relation between sources and observations, i.e.
the forward model, can be conveniently reckoned using a
Fourier approach that greatly speeds up the computational
time.

This paper is in the flow of the above way of reason-
ing, but trying to incorporate also the interactive approach
mentioned at the beginning by modelling the geological
information in a Bayesian mode as prior probability. This is
already present in geophysical literature even coupling gravi-
metric and magnetic observations (e.g. Bosch 1999, 2004;
Bosch and McGaughey 2001; Mosegaard and Tarantola
2002; Bosch et al. 2006; Guillen et al. 2008). In particular we
propose here an approach similar to the one shown in Guillen
et al. (2008) in which a field of discrete variables (namely
geological units) is introduced as an additional unknown,
with some prior information. As it will be explained in the
following, the main differences with respect to Guillen et al.
(2008) are in the way the prior information is formalized
and in the algorithm used to find the solution of the inverse

problem. Note that this work represents only a preliminary
study, mainly focused on the mathematical formalization
of the problem and that the improvement of the method is
still a matter of investigation. Wishing to estimate a MAP
(Maximum A Posteriori) of our posterior distribution, we are
facing an optimization problem with part of the variables
which are discrete. The proposed solution resorts to an
application of a Gibbs sampler combined with a simulated
annealing (Smith and Roberts 1993; Sansò et al. 2011), as it
can be found in a large part of literature; here the application
of the method to the image analysis, with the seminal paper
by Geman and Geman (1984), is worth being mentioned.

A remark however can be put forward already in this intro-
duction, namely that while image analysis deals only with
“local” observations, i.e. observations that solely depend on
the pixel to be updated in the Gibbs sampler, in our case any
variation of density at any point will instead affect all the
observable gravity anomalies wherever they are.

2 Problem Formalization

Similarly to Guillen et al. (2008) the inversion algorithm
is developed assuming that some geological information is
available in the studied region. In details, we suppose to
know a list of all the possible geological units present in
the area and their approximate geometrical distribution (e.g.
from geological sections). We also suppose to know for each
geological unit the most probable density and its variability
(e.g. from literature). However, while in Guillen et al. (2008)
only the boundaries of the geological units can be modified,
in case merging separated portions of features or removing
isolated ones, in the proposed method the formalization of
the prior probability allows a more general solution to the
problem, e.g. the possibility to generate new features.

In the following we formalize these assumptions in a
Bayesian scheme: we start from the Bayes theorem in the
usual form (Bayes 1763; Box and Tiao 2011):

P .xjy/ _ L .yjx/ P .x/ (1)

where y is a vector of observable quantities, while x is a
vector of body parameters. The investigated volume is split
into voxels, Vi , with index i D 1; 2; : : :; N ; each voxel will
carry two parameters .�i ; Li / where �i is the voxel mass
density and Li is a “label” attributing to Vi the presence of a
certain geological unit chosen from the a-priori archive (e.g.
water, sediment, salt, rock of a given type, etc.). So �i is
a continuous variable and Li a discrete one among the M

integers denoting the various materials.
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Crucial is the way in which the prior probability P .x/

is supplied, namely the shape of the distribution P .x/ D
P .L1; �1I L2; �2I : : :I LN ; �N /. We assume that:

P .x/ D
NY

iD1

P .�i jLi / � P .L/ D

D
NY

iD1

P .�i jLi / � P .L1; L2; : : :; LN / (2)

meaning that, once a label Li D ` has been chosen for Vi ,
the corresponding density will follow the law P .�i jLi D `/,
which in our case is a normal distribution:

P .�i jLi D `/ � N
�
�`; �2

`

�
(3)

with the mean �` and the variance �2
` given by geological lit-

erature. In this respect a comprehensive set of rock properties
can be found for instance in Christensen and Mooney (1995).
As for the prior P .L/ � P .L1; L2; : : :; LN /, we assume to
have a Gibbs distribution (Azencott 1988):

P .L/ _ e�E .L/ (4)

where the energy E .L/ depends only on the values `o
i of Li

provided by the geological model, as well as from cliques
(Geman and Geman 1984) of order two expressing the fact
that the value of Li is more likely to be equal to the value
of the labels of the nearest neighbour voxels according to the
following rules:

P .Li D `jL�i / _ e
��s2.Li ;`

o
i /��

P
j2�i

q2.Li ;Lj /
(5)

where � , � are parameters to be empirically tuned,

s2
�
Li ; `o

i

� D s2
i D

(
0 if Li D `o

i

˛i if Li ¤ `o
i

(6)

q2
�
Li ; Lj

� D q2
ij D

(
ai if Li D Lj

aij if Li ¤ Lj

(7)

with Vj 2 �i and �i is the neighbourhood of the voxel Vi

defined by the cliques of order two, as mentioned above.
Note that given the geological model it is possible to

create a table of proximity of geological units and then,
by tuning ˛i , ai and aij , to create a hierarchy of the most
probable values for Li . For example supposing to have
three units, ` D f1; 2; 3g, and a proximity table as the

Fig. 1 Example of proximity table. The geological unit 1 can be close
to unit 2, but not to unit 3

one presented in Fig. 1, this translates into the following
definition:

s2
i D

8
<̂

:̂

0 if Li D `o
i

˛ if Li is a geological neighbour of `o
i

ˇ if Li is not a geological neighbour of `o
i

(8)

q2
ij D

8
<̂

:̂

a if Li D Lj

b if Li is a geological neighbour of Lj

c if Li is not a geological neighbour of Lj

(9)

with ˇ > ˛ > 0 and c > b > a.
Summarizing, the geological information enters into the

solution providing the set of the possible geological units (i.e.
the possible labels) with their mean density and its variabil-
ity, the neighborhood relationship between the different geo-
logical units and the most probable value `o

i of each voxel.
All these data can be derived from basin geological studies
(e.g. geological sections or maps) or through geophysical
techniques.

Two remarks are in order: the first is that L, with prior
P .L/, is indeed a Markov random field (MRF), see Rozanov
(1982). The second is that the final result of our optimization
will depend from the chosen value of all the constants, which
have to be tuned on the specific example.

As always for a MRF, the characteristics, namely the
conditional distributions (5), determine a joint distribution
P .L/ such that:

log P .L/ / �1

2
�

NX

iD1

s2
�
Li ; `o

i

� � 1

2
�

NX

iD1

X

j 2�i

q2
�
Li ; Lj

�
:

(10)

The logarithm of the posterior distribution (1) will be writ-
ten as:

log P .xjy/ D log P .�; Lj�go/ _

_ �1

2
.�go � A�/T C�1

�g .�go � A�/ C
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� 1

2
.� � �/

T C�1
� .� � �/ � 1

2
�

NX

iD1

s2
�
Li ; `o

i

�C

� 1

2
�

NX

iD1

X

j 2�i

q2
�
Li ; Lj

�
(11)

where we recall that �go is the vector of observed gravity
anomalies, C�g its noise covariance matrix, A is the forward
modelling operator from densities to gravity anomalies, �

and � the vectors of components �i and �i D � .`i /, C� the
corresponding covariance matrix and s2

�
Li ; `o

i

�
, q2

�
Li ; Lj

�

given by (6) and (7). This is the target function we want to
maximize with respect to �i and Li .

The maximization of (11), due to the fact that some
variables are discrete, is never an easy task, as we know
from other important problems in geodesy, e.g. the GNSS
initial phase ambiguity fixing (De Lacy et al. 2002). The idea,
mutuated from image analysis, is to apply a Gibbs sampler,
chained with a simulated annealing (Casella and Robert
1999). In order to apply it to both the variables .�i ; Li /,
which are functions of the voxel Vi , we have simplified
the problem by considering �i as a discrete variable too. In
practice we have substituted the normal distribution (3) with
a discrete distribution on K values, e.g. on five argumental
values taken at the average �`, and at �`˙�`, �`˙2�` respec-
tively. Of course to each argument the proper probability is
assigned, according to the normal law. Once this is done, the
Gibbs sampler is applied by drawing one couple .�i ; Li / at
a time, holding fixed all the other values and following a
simple updating routine. The probabilities of the sampling
are computed from (11) letting �i run over its K values and
`i run over 1; 2; : : :; M ; in this way we have a table of K�M

knots with their probabilities.
Actually the probability of x is modulated by introducing

a “temperature” parameter T :

PT .x/ _ e
1
T log P .xjy/ (12)

and T is slowly reduced at each step (e.g. by 5% of its value).
In this way starting from a very large T , we obtain a sequence
of samples converging in probability to the point x where the
maximum of log P .xjy/ is achieved (Azencott 1988).

3 Numerical Experiment

In order to assess the effectiveness of the presented Bayesian
approach, which is able to consider also qualitative geolog-
ical information, two simple experiments are carried out.
They consist in recovering the mass density distribution
of 3D synthetic models from their gravitational field. The
density of each voxel is assumed to be equal to the mean

density of the associated geological unit and moreover the
model is assumed constant along one planar direction, i.e.
all the vertical cross sections in this direction are equal.
From this reference model the two inputs of the inversion
algorithm, i.e. the gravitational signal and the approximate
geological model, are simulated. In particular the latter is
obtained by slightly modifying the labels of the reference
model. The inversion algorithm is therefore applied and the
result is compared with the reference model in a closed-loop
test.

In this work we will present two numerical examples:
the first simulates the recovering of a bathymetry, while the
second consists in recovering the shape of a salt dome.

In the bathymetry model only two geological units
are considered, water and bedrock, defined by �w D
1;000 kg m�3, �w D 5 kg m�3 and �b D 2;900 kg m�3,
�b D 50 kg m�3 respectively. The investigated area is a
square of 30 km side and has a depth of 5 km. A vertical cross
section of the synthetic model, displayed in terms of “labels”,
is represented in Fig. 2a. The volume is modelled by means
of 1,200 rectangular prisms, each of them of dimensions
1:5 km (x) � 5:0 km (y) � 0:5 km (z) and its gravitational
observations are simulated by means of Nagy equations
(see Nagy 1966) in a noiseless scenario. In particular the
observations are generated on a regular grid at an altitude of
250 m and with a spatial resolution of 1 km, thus simulating
the result of an aerogravimetric flight. As explained above,
the geological model is simulated by slightly modifying the
reference model as shown in Fig. 2b. The two parameters
� and � are empirically set to the values of 0:833 and
0:733 respectively and finally the values of the labels are
randomly initialized from a uniform distribution (i.e. drawn
with an infinite temperature in the simulating annealing). The
solution is obtained in about 5;000 iterations and about 4 h
on a common personal computer. A vertical cross section of
the resulting synthetic model is depicted in Fig. 2c showing
how the error in the geological model is properly corrected.
In fact 86% of the wrong labels are corrected and the error
on density has a standard deviation of 216 kg m�3.

In the salt dome experiment three geological units are
considered: salt dome (�dome D 2;000 kg m�3, �dome D
50 kg m�3), salt (�salt D 2;700 kg m�3, �salt D 50 kg m�3)
and sediments (�sed D 3;000 kg m�3, �sed D 50 kg m�3).
The volume is modelled by means of 2,400 voxels, each of
them with size of 0:4 km (x) � 0:1 km (y) � 0:3 km (z). The
investigated area has a planar size of 3 km � 2 km and has a
depth of 6 km. The geological units of a vertical cross section
of the synthetic model are shown in Fig. 3a. The gravitational
signal is simulated using point masses into a white noise
scenario (noise standard deviation ��g D 1 mGal). The sim-
ulated geological model is shown in Fig. 3b. In Fig. 4 three
examples of the prior distribution are depicted, thus showing
its dependence from the function s2 and q2 defined in (8)
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(a) (b)

(c)

Fig. 2 Vertical cross sections representing the geological units (“labels”) of the bathymetry test. (a) reference model; (b) geological model;
(c) solution

Fig. 3 Vertical cross sections
representing the geological units
(“labels”) of inputs to the salt
dome test. (a) reference model;
(b) geological model
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(b)

(a)

(c)

Fig. 4 Vertical cross sections representing the relative frequency of
each geological unit (“labels”) obtained from 2,000 realizations of the
prior distribution. Each row is computed assuming different values of
the prior parameters. (a) � D 0:6, � D 0:03, s2 D f0; 1; 10g 8 i and

q2 D f0; 1; 10g 8 i; j ; (b) � D 0:6, � D 0:03, s2 D f0; 0:5; 5g 8 i and
q2 D f0; 0:5; 5g 8 i; j ; (c) � D 0:6, � D 0:03, s2 D f0; 0:01; 0:1g 8 i

and q2 D f0; 0:5; 2g 8 i; j
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(a) (b)

Fig. 5 Vertical cross sections representing the solution of the salt dome test. (a) geological units; (b) density

and (9). These sample distributions are obtained by counting
the occurrences of each geological unit for each voxel and
then computing the corresponding relative frequencies over
2;000 samples. From these three examples it can be noticed
that the s2 function controls the “certainty” of the geological
unit of each voxel (the closer are the numerical values of the
parameters ˛ and ˇ in (8), the more non-informative is the
prior), while q2 is related to the “certainty” of the geological
unit boundaries (the closer are the numerical values of a, b

and c in (9), the more unreliable are the boundaries). As for �

and � , they are constants that practically controls the relative
weight in the prior (2) between the density information and
the geometrical one.

The solution is carried out by computing the prior fixing
� D 0:03, � D 0:6, ˛ D 1, ˇ D 10, a D 0, b D 1

and c D 10, see Fig. 4a, in about 2 h and 200 iterations
and it is shown in Fig. 5. In this case the algorithm is able
to recover about 60% of the wrong voxels and the error on
density has a standard deviation of 244 kg m�3. It can be
seen from the salt dome experience that the algorithm is
able to properly recover the shallowest part of the investi-
gated volume, while the deepest one still present uncorrect
features. This is probably due to the fact that the functions
s2 and q2 are defined in the same way for the whole region,
while a dependence at least on the vertical coordinate should
be included.

4 Conclusions and FutureWorks

In the present paper a Bayesian approach to invert gravity
data with the support of a given geological model has
been studied. The method works properly at least in the
performed preliminary test scenarios. Actually, the two main
limiting factors are the choice of all the parameters playing
a role in the formulation of the a-priori probability and the
computational time.

In this respect it would be useful, in order to limit the
impact of user decisions on the solution, to implement a
semi-automatic determination of the optimal numerical val-

ues of the s2 and q2 functions and of the � and � parameters.
These parameters in fact can modulate how close/far the final
solution is from the geological model and from the gravity
observations.

The order of magnitude of these parameters, as seen
from the numerical experiments, is strongly linked with the
extension of the investigated volume, with the total number
of voxels and with the “certainty” of the geological model. A
further foreseen improvement is to consider possible depen-
dences of s2 and q2 from the voxel position, thus allowing
the prior to be more informative where the geological model
is considered more reliable (e.g. in presence of borehole
logging).

Last but not least, the algorithm needs to be numerically
optimized in order to increase the model resolution. This step
will imply a relevant growth of the total number of variables,
thus increasing the total computational burden.
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Effects of Different Objective Functions
in Inequality Constrained and Rank-Deficient
Least-Squares Problems

Lutz Roese-Koerner and Wolf-Dieter Schuh

Abstract

Rank-deficient estimation problems often occur in geodesy due to linear dependencies
or underdetermined systems. Well-known examples are the adjustment of a free geodetic
network or a finite element approximation with data gaps. If additional knowledge about
the parameters is given in form of inequalities (e.g., non-negativity), a rank-deficient and
inequality constrained adjustment problem has to be solved.

In Roese-Koerner and Schuh (J Geodesy, doi:10.1007/s00190-014-0692-1) we proposed
a framework for the rigorous computation of a general solution for rank-deficient and
inequality constrained least-squares problems. If the constraints do not resolve the manifold
of solutions, a second minimization is performed in the nullspace of the design matrix. This
can be thought of as a kind of pseudoinverse, which takes the inequality constraints into
account.

In this contribution, the proposed framework is reviewed and the effect of different
objective functions in the nullspace optimization step is examined. This enables us to aim
for special properties of the solution like sparsity (L1 norm) or minimal maximal errors
(L1 norm). In a case study our findings are applied to two applications: a simple bivariate
example to gain insight into the behavior of the algorithm and an engineering problem with
strict tolerances to show its potential for classic geodetic tasks.

Keywords

Convex optimization • Inequality constrained least-squares • L1 norm • L2 norm •
L1 norm • Nullspace minimization • Rank defect

1 Introduction

Geodesists often encounter rank-deficient optimization prob-
lems. This can be either due to underdetermined equation
systems (e.g., resulting from a second order design of a
geodetic network with more weights to be estimated than
entries in the criterion matrix) or due to external parameters,
which cannot be estimated from the observations (e.g., a

L. Roese-Koerner (�) • W.-D. Schuh
Institute of Geodesy and Geoinformation, University of Bonn, Bonn,
Germany
e-mail: roese-koerner@geod.uni-bonn.de; schuh@geod.uni-bonn.de

datum defect). These cases do not result in one unique but
in a manifold of solutions. If the situation gets even more
complicated and additional knowledge about the parameters
in form of linear inequality constraints is given, no closed
formulas exist. Inequalities for nonnegative quantities like
run-time delay in GPS, SAR or VLBI or e.g., slope con-
straints in surface fitting are typical constraints.

In the unconstrained case, usually a second objective
function is introduced to the problem to enforce a unique
solution despite the rank defect. A classic choice would be
to minimize the length of the solution vector with respect
to the L2 norm (cf. Gill et al. 1991, pp. 230–234). While
unconstrained problems with a rank defect are well studied,
little is known about the inequality constrained case.
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The special case of non-negative least-squares with a
possible rank defect and additional inequalities was solved
by Schaffrin (1981). However, this method cannot be gener-
alized easily. Werner and Yapar (1996) proposed a method
for computing a rigorous general solution of inequality
constrained problems with a rank defect. Unfortunately,
their method is solely suited for small-scale problems as
it involves arbitrarily testing of subsets of the constraints,
which becomes a limiting factor in the multivariate case.
Additional work by Xu et al. (1999) is focused on the
stabilization of ill-conditioned linear complementarity prob-
lems. Dantzig (1998) described a method to compute one
arbitrary particular solution despite a possible rank defect
for problems with a linear or quadratic objective function.
However, no description of the manifold of solutions is
given.

All these algorithms are either tailor-made for special
problems or yield only one of an infinite number of particular
solutions or are restricted to small-scale problems. There-
fore, in Roese-Koerner and Schuh (2014) we developed a
framework for the rigorous computation of a general solution
of inequality constraint least-squares problems. Based on
this framework, here we set out to compute a solution
with desirable properties like e.g., sparsity, exploring the
opportunities which result from the choice of the objective
function in the second minimization step.

2 Inequality Constrained Estimation

In the following, we focus on a linear Gauss-Markov model
(GMM)

`̀̀ C v D Ax: (1)

n � 1 vector `̀̀ contains the observations and n � 1 vector
v the corresponding residuals. A is the design matrix and
x comprises the m parameters to be estimated. Following
the least-squares principle, the (weighted) sum of squared
residuals shall be minimized

˚.v/ D vT †††�1v : : : min : (2)

††† is the possibly fully populated variance-covariance matrix
of the observations. The objective function shall be mini-
mized with respect to p inequality constraints which have
to be fulfilled strictly. Linear inequality constraints can be
formulated as

BT x � b: (3)

m�p matrix B is called constraint matrix and p �1 vector b
is the corresponding right-hand-side of the constraints. The

constraints can be subdivided in active constraints Ba; ba,
which hold as equality constraints at the optimal solution Qx
and inactive constraints Bi ; bi , which hold as strict inequali-
ties

BT
a x D ba; BT

i x < bi : (4)

Minimizing (2) subject to (3) will be referred to as the
inequality constrained least-squares (ICLS) problem, which
can be expressed as a quadratic program (QP) in standard
form

INEQUALITY CONSTRAINED LEAST-SQUARES

objective funct.: ˚.x/ D vT †††�1v . . . Min

constraints: BT x � b

optim. variable: x 2 Rm:

(5)

A QP is a convex optimization problem with a quadratic
objective function and linear constraints. As QPs are well
studied, there is a variety of existing algorithms to solve them
efficiently. Therefore, it can be beneficial to reformulate the
described problem as a QP. As it is not known beforehand
which constraints will be active in the optimal solution, only
iterative algorithms exist. Most of them can be subdivided
into two classes: simplex methods (e.g. Dantzig’s simplex
method for quadratic programming, Dantzig 1998, pp. 490–
498) and interior-point methods (e.g., primal-dual methods,
Boyd and Vandenberghe 2004, pp. 609–613).

3 Rank-Deficient ICLS Problems

In the following, we focus on determining a unique rigorous
general solution of the ICLS problem (5) with a rank-
deficient design matrix A,

Rg.A/ D r < m; d D m � r: (6)

The proposed framework consists of three major parts. First,
inequality constraints are not taken into account, a gen-
eral solution of the rank-deficient unconstrained problem is
computed, and a transformation of parameters is performed
(described in Sect. 3.1). The next step depends on whether
the manifold of solutions and the feasible set intersect. In
case of an intersection (case 1, Sect. 3.2), there is still a
manifold and a second minimization procedure is carried
out in the nullspace. If there is no such intersection (case 2,
Sect. 3.3), Dantzig’s method is used to compute a particular
solution of the original problem. The resulting particular
solution can be shown to be unique if no active constraint is
parallel to the manifold. In turn, an active parallel constraint
calls for a nullspace optimization.
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3.1 Transformation of Parameters

As described in Roese-Koerner and Schuh (2014), the intro-
duction of linear inequality constraints can result in a shift
and/or a restriction of the manifold but never in a rotation.
Therefore, it is instructive to first compute a general solution
of the unconstrained ordinary least-squares (OLS) problem

QxOLS.���/ D xOLS
P C Xhom ���: (7)

Subsequently, the constraints (3) can be reformulated with
respect to the d free parameters ���, the particular solution
xOLS

P and the homogenous solution Xhom,

BT
�
xOLS

P C Xhom ���
� � b: (8)

With the substitutions BT
���

WD BT Xhom and b��� WD
b � BT xOLS

P , (8) reads

BT
��� ��� � b���: (9)

If these constraints are contradictory (as it can be examined
by solving a feasibility problem, cf. Boyd and Vandenberghe
2004, pp. 579–580), there is no intersection of manifold
and feasible set and we proceed as described in Sect. 3.3.
Otherwise, we proceed as described in Sect. 3.2.

3.2 Case 1: Intersection

In case of an intersection, we aim for the rigorous compu-
tation of a unique particular solution. Therefore, a second
optimization problem is introduced (e.g., minimizing the
length of the solution vector with respect to the norm Lp).
As this minimization takes place in the nullspace of design
matrix A, the value of the objective function (2) of the
original problem does not change

NULLSPACE OPTIMIZATION PROBLEM

objective funct.: ˚NS

�
xICLS

P .���/
�

. . . Min

constraints: BT
���

��� � b���

optim. variable: ��� 2 Rd .

(10)

The minimization yields optimal free parameters Q���, whose
insertion in (7) results in

QxICLS
P D xOLS

P C Xhom
Q���; (11)

which is a unique particular solution that fulfills all con-
straints.

3.3 Case 2: No Intersection

If manifold and feasible region are disjunct and there is no
active parallel constraint, the constraints have resolved the
manifold. Therefore, it is sufficient to compute one particular
solution of the constraint problem – e.g., with Dantzig’s
simplex method for QPs. It can be shown that

QxICLS D xICLS
P (12)

is the unique solution. Instead, if at least one active constraint
is parallel to the manifold, there is a shift of the manifold and
a second objective function has to be introduced, as described
in Sect. 3.2.

A more detailed description of the framework is provided
in Roese-Koerner and Schuh (2014).

4 Nullspace Optimization

In this section, the choice of the (second) objective function
˚NS in the nullspace optimization problem (10) is discussed.
As the whole minimization takes place in the nullspace of the
design matrix, the value of the original objective function (2)
will not change. Nonetheless, choosing a suitable second
objective function for a particular problem can be helpful to
achieve properties like sparsity of the parameter vector.

Two different parts of the objective function can be
distinguished, which will be examined in some detail: the
functional relationship and the norm, with respect to which
the minimization (or maximization) shall be performed.

4.1 Functional Relationship

The functional relationship strongly depends on the appli-
cation. However, there are two main concepts which are
applicable to a big variety of problems.

First, the length of the parameter vector x can be mini-
mized. This can e.g., be beneficial if not absolute coordinates
but coordinate differences are estimated, which should be
close to the initial coordinates.

More sophisticated approaches include a weighted mini-
mization of the length of the parameter vector. For example
if prior knowledge about the magnitude of the parameters
is given. Prominent examples are Kaula’s rule of thumb
in gravity field estimation or the demand for a decay of
the amplitudes of higher frequencies in signal processing
to achieve a square integrable function. A mathematical
example for the minimization of the length of the parameter
vector is provided in Sect. 5.1.



328 L. Roese-Koerner and W.-D. Schuh

The second main concept is to maximize the distance to
the constraints

jjBT x.���/ � bjj : : : max (13a)

”jjBT xP C BT Xhom��� � bjj : : : max : (13b)

This could be beneficial, if the constraints constitute a kind
of outermost threshold. One of the main advantages of the
use of inequality constraints is, that they do not influence
the result, if they are not active. Therefore, it is usually not
possible to provide a buffer to the boundary of the feasible
set without losing estimation quality (shown by an increased
value of the original objective function). However, due to
the optimization in the nullspace of A, we are in the unique
position to apply such a buffer without deteriorating the
estimate. In Sect. 5.2 an application is described, in which
this type of functional relationship is applied.

4.2 Norms

In the following, we will point out some general aspects
of different norms and their influence on the most classical
functional relationship: the length of the solution vector.
Lp norms

jjxjjp WD �
x

p
1 C x

p
2 C : : : C xp

m

�1=p
; p D 1; 2; : : : ; 1

used in adjustment theory include the L1 norm, the L2 norm
and the L1 norm (cf. Jäger et al. 2005; Boyd and Vanden-
berghe 2004, pp. 125–128 and p. 635, respectively).

Most often, the length of a vector is minimized with
respect to the L2 norm (also known as Euclidean norm).
This is a quite natural choice, which can easily be visualized
geometrically. However, as the influence of one element on
the norm decreases if its absolute value becomes smaller, a
minimization with respect to the L2 norm will seldom result
in a sparse vector. This can be verified by examining the blue
L2 norm unit sphere depicted in Fig. 1.

A naive choice to achieve maximal sparsity of a vector
would be a minimization with respect to the L0 norm (e.g.,
the number of nonzero elements). However, a minimization
with respect to the L0 norm is a combinatorial problem and
computationally very demanding. Therefore, e.g., Candes
et al. (2006) approximated the L0-minimization-problem by
the L1-minimization-problem in the context of compressed
sensing. They showed, that a minimization with respect to
the L1 norm in most cases yields sparse results, too. This is
used in many compressed sensing algorithms. Minimization
with respect to the L1 norm is a convex optimization problem
and can be formulated as linear program (cf. Dantzig 1998,

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5
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1.5
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L∞

Fig. 1 Two dimensional unit spheres of L1 (orange), L2 (blue) and
L1 norm (green). The L1 diamond evolves from the summation of x

and y value, while for the L1 square, only the value of the biggest
quantity is decisive. Figure modified and extended from Tibshirani
(1996)

pp. 60–62). As can be seen in Fig. 1, the corners of the orange
L1 norm unit sphere coincide with the coordinate grid. This
is equivalent to the statement, that one parameter is zero
there, yielding a sparse solution.

Application of the L1 norm (also called Chebyshev
norm) results in a parameter vector with minimal maxi-
mal value, that is usually not sparse. See Fig. 1 for the
corresponding unit sphere. The L1 norm is often applied,
when trying to maximize the distance to the constraints (cf.
Sect. 4.1), in order to maximize the minimal buffer to the
boundary.

5 Case Studies

The effect of a nullspace optimization will be demonstrated
in two examples: a very simple bivariate one and a more
sophisticated network adjustment problem.

5.1 Case Study 1: Bivariate Example

In this case, a least-squares estimate of the two summands of
a weighted sum is to be calculated

`i C vi D x1 C 2x2 (14)
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Fig. 2 Contour lines of the objective function of example 1. Red lines
represent constraints, the infeasible region is shaded. The dashed black
line indicates the manifold of solutions. The green cross is the L1 norm
solution, the black circle the L2 solution. For comparison the solution
using a pseudoinverse (blue star) is shown, too. Appropriately scaled
unit spheres are depicted in orange (L1) and light blue (L2)

subject to the constraints

x1 � 2; x2 � 10 (15)

using the framework described in Sect. 3. A contour plot
of the objective function and the constraints is given in
Fig. 2. Red lines represent constraints, the infeasible region
is shaded and the dashed black line indicates the manifold of
solutions. We assume the observations

`̀̀T D �
23:2 16:4 12:9 8:2 13:7

�
; (16)

to be uncorrelated. The observation equations read

`̀̀ C v D

2

6
6
66
4

1 2

1 2

1 2

1 2

1 2

3

7
7
77
5

�
x1

x2

�
D Ax; (17)

with a clearly rank-deficient design matrix A. Setting up the
normal equations and applying the Gauss-Jordan algorithm
yields a general OLS solution

x.�/ D
�

14:88

0

�
C

� �2

1

�
� D xP C Xhom�: (18)

As there is an intersection of manifold and feasible set (cf.
Fig. 2), the constraints are reformulated with respect to the
free parameter � and a second optimization problem in the

nullspace of the design matrix has to be solved. We chose to
examine the different effects of minimizing the length of the
parameter vector with respect to the L1 or L2 norm

2D EXAMPLE: NULLSPACE OPTIMIZATION

objective funct.: jjxP C Xhom�jjp . . . Min

constraints: BT
� � D

� �2

1

�
� �

� �12:88

10

�
D b�

optim. variable: � 2 R.

.

Depending on the chosen norm this results in either

QxICLS;L2

P D
�

2:00

6:44

�
or QxICLS;L1

P D
�

0:00

7:43

�
: (19)

As expected, utilization of the L1 norm in the nullspace
optimization step yields in a sparse solution without an
increase in the sum of squared residuals of the original
problem.

5.2 Case Study 2: Network Adjustment

The second case study is based on an engineering problem.
We assume that some prefabricated building material shall be
fitted between other elements so that the parts can be welded
together. In order to make welding possible, tolerances have
to be fulfilled strictly.

Figure 3 depicts the test case. Twenty-six distance mea-
surements (black lines) are performed between the ten points
P1 to P10 (black dots). Their 20 coordinates are the param-
eters to be estimated in a GMM (1). As no datum is defined,
estimating absolute values of the coordinates is a rank-
deficient problem.

Points P 3 to P 6 are located at the left-hand side of the
gap the new part is supposed to fill, and the points P 7 to P10

are located on its right-hand side. P1 and P 2 are external
points to stabilize the network. It shall be determined if
the new part fits between both lines of points. This can be
achieved by setting up the 16 linear constraints

y7;8;9;10 � y3;4;5;6 � 5:03 m (20)

and the 16 linear constraints

y7;8;9;10 � y3;4;5;6 � 5:00 m; (21)

resulting in a rank-deficient ICLS problem in form of (5).
While the first constraints guarantee, that the new part is not
allowed to be wider than 5.03 m, the latter assure, that it is not
smaller than 5.00 m (otherwise the gap would be too big for
welding). The constraints force the estimated points to align
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Fig. 3 Example 2: Distance measurements (black lines) are performed
between points P1 to P10 (black dots). A particular OLS solution (blue
diamonds) and the ICLS solution (red circles) with maximal minimal
distance to the constraints are shown

almost parallel to the x axis (cf. red circles in Fig. 3). If more
than two of the 32 constraints mentioned above are active, the
new part will not meet the tolerances. Incompatible elements
can be detected via an analysis of the Lagrange multipliers
(cf. Roese-Koerner et al. 2012).

If the manifold is not resolved through the introduction
of constraints, a nullspace optimization has to be performed.
This can be used to maximize the minimal distance to the
constraints

˚NS;1 DjjBT x.���/ � bjj1 : : : max : (22)

Using the Chebyshev norm is always beneficial if tolerances
instead of standard deviations are given. The optimization
problem was solved using the CVX software (Grant and
Boyd 2008). Results are shown in Fig. 3. In the chosen
scenario, no constraint is active. Therefore, the new part will
fit in the gap and welding is possible.

Figure 4 shows the welding boundary for the existing
parts (gray area), the new part (black area) and the “gaps”
at its left-hand (Fig. 4a) and right-hand (Fig. 4b) side. Please
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Fig. 4 Boundary for the existing parts (gray area), the new part (black
area) and the “gaps” at the left-hand (a) and right-hand (b) side of the
new part. The axes are scaled differently and there is a breach in the y

axis, so most of the new part is not shown. Adjusted coordinates of the
above mentioned ICLS estimate with maximal minimal distance to the
constraints (red circles) are compared with those of an ICLS estimate
with ˚NS;L2 as nullspace objective function (blue circles)

note the different scales in x and y direction and the breach
in the y axis. Adjusted coordinates of the ICLS estimate with
˚NS;1 (red circles) are compared with those of an ICLS
estimate with

˚NS;L2 D jjxjjL2 : : : min (23)

as nullspace objective function (blue circles).
While both estimates provide a decision if the new part

will fit, only the adjustment with maximal minimal distance
to the constraints allows to determine how well the new part
will fit. This can be seen in Fig. 4, where for this estimate the
minimal distance to the constraints is at least 2.5 mm at each
side (namely for the points 5, 6, 8 and 10). In contrast, the
blue points 3 and 10 are exactly on the boundary. So there is
clearly a benefit in choosing a suited objective function for
the nullspace optimization.

Due to space limitations we restricted ourselves to a
brief description of the application and the figurative results
presented in Figs. 3 and 4. Further information (e.g., the
observations and the functional and stochastic model) as well
as quantitative results can be obtained from the authors.
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6 Conclusion

A framework for the computation of a rigorous general
solution of rank-deficient ICLS problems has been reviewed.
It has been shown that it is possible to obtain a solution with
certain predefined optimality properties, if the manifold of
solutions is not resolved by the constraints. As this results
from a minimization process in the nullspace of the design
matrix, the sum of squared residuals remains unchanged.
Therefore, the described approach can be beneficial for
practical applications as useful properties, like e.g., sparsity
or maximal minimal distances, can be obtained without
sacrificing estimation quality.
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