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Preface

In the undergraduate program of Electricity and Magnetism emphasis is given to the
introduction of fundamental laws and to their applications. Many interesting and
intriguing subjects can be presented only shortly or are postponed to graduate
courses on Electrodynamics. In the last years I examined some of these topics as
supplementary material for the course on Electromagnetism for the M.Sc. students
in Physics at the University Sapienza in Roma and for a series of special lectures.
This small book collects the notes from these lectures.

The aim is to offer to the readers some interesting study cases useful for a deeper
understanding of the Electrodynamics and also to present some classical methods to
solve difficult problems. Furthermore, two chapters are devoted to the
Electrodynamics in relativistic form needed to understand the link between the
electric and magnetic fields. In the two final chapters two relevant experimental
issues are examined. This introduces the readers to the experimental work to
confirm a law or a theory. References of classical books on Electricity and
Magnetism are provided so that the students get familiar with books that they will
meet in further studies. In some chapters the worked out problems extend the text
material.

Chapter 1 is a fast survey of the topics usually taught in the course of
Electromagnetism. It can be useful as a reference while reading this book and it also
gives the opportunity to focus on some concepts as the electromagnetic potential
and the gauge transformations.

The expansion in terms of multipoles for the potential of a system of charges is
examined in Chap. 2. Problems with solutions are proposed.

Chapter 3 introduces the elegant method of image charges in vacuum. In Chap. 4
the method is extended to problems with dielectrics. This last argument is rarely
presented in textbooks. In both chapters examples are examined and many prob-
lems with solutions are proposed.

Analytic complex functions can be used to find the solutions for the electric field
in two-dimensional problems. After a general introduction of the method, Chap. 5
discusses some examples. In the Appendix to the chapter the solutions for

vii

http://dx.doi.org/10.1007/978-3-319-39474-9_1
http://dx.doi.org/10.1007/978-3-319-39474-9_2
http://dx.doi.org/10.1007/978-3-319-39474-9_3
http://dx.doi.org/10.1007/978-3-319-39474-9_4
http://dx.doi.org/10.1007/978-3-319-39474-9_5


two-dimensional problems are derived by solving the Laplace equation with
boundary conditions.

Chapter 6 aims at introducing the relativistic transformations of the electric and
magnetic fields by analysing the force on a point charge moving parallel to an
infinite wire carrying a current. The equations of motion are formally the same in
the laboratory and in the rest frame of the charge but the forces acting on the charge
are seen as different in the two frames. This example introduces the transformations
of the fields in special relativity.

In Chap. 7 a short historic introduction mentions the difficulties of the classical
physics at the end of the 19th century in explaining some phenomena observed in
Electrodynamics. The problem of invariance in the Minkowsky spacetime is
examined. The formulas of Electrodynamics are written in covariant form. The
electromagnetic tensor is introduced and the Maxwell equations in covariant form
are given.

Chapter 8 presents a lecture by Feynman on the capacitor at high frequency. The
effects produced by iterative corrections due to the induction law and to the dis-
placement current are considered. For very high frequency of the applied voltage,
the capacitor becomes a resonant cavity. This is a very interesting example for the
students. The students are encouraged to refer to the Feynman lectures for further
comments and for other arguments.

The energy and momentum conservation in the presence of an electromagnetic
field are considered in Chap. 9. The Poynting’s vector is introduced and some
simple applications to the resistor, to the capacitor and to the solenoid are presented.
The transfer of energy in an electric circuit in terms of the flux of the Poynting’s
vector is also examined. Then the Maxwell stress tensor is introduced. Some
problems with solutions complete the chapter.

The Feynman paradox or paradox of the angular momentum is very intriguing. It
is very useful to understand the dynamics of the electromagnetic field. Chapter 10
presents the paradox with comments. An original example of a rotating charged
system in a damped magnetic field is discussed.

The need to test the dependence on the inverse square of the distance for the
Coulomb’s law was evident when the law was stated. The story of these tests is
presented in Chap. 11. The most sensitive method, based on the Faraday’s cage,
was introduced by Cavendish and was used until the half of last century. After that
time the test was interpreted in terms of a test on a non-null mass of the photon. The
theory is shortly presented and experiments and limits are reported.

Chapter 12 introduces the problem of the magnetic monopoles. In a paper Dirac
showed that the electric charge is quantized if a magnetic monopole exists in the
Universe. The Dirac’s relation is derived. The properties of a magnetic monopole
crossing the matter are presented. Experiments to search the magnetic monopoles
and their results are mentioned.

In the Appendix the general formulas of the differential operators used in
Electrodynamics are derived for orthogonal systems of coordinates and the
expressions for spherical and cylindrical coordinates are given.
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Chapter 1
Classical Electrodynamics: A Short Review

The aim of this chapter is to review shortly the main steps of Classical Electrody-
namics and to serve as a fast reference while reading the other chapters. This book
collects selected lectures on Electrodynamics for readers who are studying or have
studied Electrodynamics at the level of elementary courses for the degrees in Physics,
Mathematics or Engineering. Many text books are available for an introduction1 to
Classical Electrodynamics or for more detailed studies.2

1.1 Coulomb’s Law and the First Maxwell Equation

Only two kinds of charges exist in Nature: positive and negative. Any charge3 is a
negative or positive integer multiple of the elementary charge e = 1.602 × 10−19

Coulomb, that is equal to the absolute value of the charge of the electron.
The law of the force between two point charges was stated4 by Coulomb in 1785.

In vacuum the force F21 on the point charge q2, located at r2, due to the point charge
q1, located at r1, is:

F21 = 1

4πε0
q1q2

r2 − r1
|r2 − r1|3 (1.1)

1For instance: D.J. Griffiths, Introduction to Electrodynamics, 4th Ed. (2013), Pearson Prentice
Hall; R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. II; E.M.
Purcell, Electricity and Magnetism, Berkeley Physics Course, Vol II, McGraw-Hill
2For instance: J.D. Jackson, Classical Electrodynamics, 3rd Ed. (1999), John Wiley & Sons Inc.,
and the books cited in the following chapters.
3Quarks have charge 1

3 e or
2
3 e but are confined in the hadrons. The charge quantization is examined

in Chap.12.
4A short historic note on the discovery of the Coulomb’s law is given in Chap. 11.2.
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2 1 Classical Electrodynamics: A Short Review

with the permittivity constant ε0 = 8.564 × 10−12 F/m (Farad/meter). The force on
the charge q1 is F12 = −F21 as required by Newton’s third law.

It is experimentally proved that in a system of many charges the force exerted
on any charge is equal to the vector sum of the forces acted by all the other charges
(superposition principle).

If F is the net electrostatic force on the point charge q located at r, the electric
field E0 in that position is defined5 by the relation:

E0 = lim
q→0

F
q

.

The electric field E(r), due to a point charge Q located in the frame origin, is:

E0(r) = 1

4πε0

Q

r2
r̂ (1.2)

and from the superposition principle the electric field at a point r due to a system of
point charges qi , located at ri , is equal to the vector sum of the fields produced at the
position r, by all the point charges:

E0(r) = 1

4πε0

i=N∑

i=1

qi
(r − ri )
|r − ri |3 .

For a continuous distribution with charge density ρ(r′) = dQ/dτ over a volume
τ , the electric field is:

E0(r) = 1

4πε0

∫

τ

(r − r′)
|r − r′|3 ρ(r′) dτ ′.

The electric field (1.2) of a charge Q is radial and then it is conservative, so the
field can be written as the gradient6 of a scalar electric potential V0 that depends on
the position:

E0 = −grad V0 = −∇V0 (1.3)

For a point charge at the origin the potential is:

V0(r) = 1

4πε0

Q

r
+ C

with an arbitrary additive constant C that becomes null if V0(∞) = 0 is assumed.
From the superposition principle for the electric field, the electric field of a system

5The limit is needed to avoid the point charge q modifies the field due to charges induced in
conductors or from the polarization of the media.
6In the book the nabla operator will be used for the differential operators: grad f = ∇ f , div v =
∇ · v and curl v = ∇ × v.
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of charges is also conservative, and the potential at a given point, is equal to the sum
of the potentials at that point from all the charges in the system. Thus it follows:

V0(r) = 1

4πε0

i=N∑

i=1

qi
|r − ri | + C V0(r) = 1

4πε0

∫

τ

ρ(r′)
|r − r′| dτ ′ + C (1.4)

where C is an arbitrary constant. For a confined distribution of charges the potential
can be fixed null at infinity and thus C = 0.

The closed curve line integral of E0 is null and, for the Stokes’s theorem, the field
E0 is irrotational:

∇ × E0 = 0

that is the local form to state the electric field is conservative.
The Gauss’s law7 is very relevant in electrostatics. It states that the flux ΦS of

E0 through a closed surface S is equal to the total charge inside the surface, divided
by ε0:

ΦS(E) =
∫

S
E0 · n̂ dS′ = Q

ε0
(1.5)

with n̂ the outward-pointing unit normal at each point of the surface, and the charges
outside the surface do not contribute to the flux ΦS .

From this law theCoulomb’s theorem: near the surface of a conductorwith surface
charge density σ(x, y, z), the electric field is equal to:

E0 = σ

ε0
n̂

with n̂ the versor with direction outside of the conductor at that point. If ρ(r) is the
charge density in the volume τ enclosed by S, the total charge is Q:

Q =
∫

τ

ρ(r′) dτ ′ (1.6)

and substituting this expression in the relation (1.5) and using the divergence theorem,
we find the first Maxwell equation in vacuum:

∇ · E0 = ρ

ε0
(1.7)

that is the differential (or local) expression of the Gauss’s law.

7See also Chap.11.1.

http://dx.doi.org/10.1007/978-3-319-39474-9_11
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After the substitution of the relation (1.3) in the last equation, the Poisson’s equa-
tion for the potential is found:

∇2V0 = − ρ

ε0
.

For a given distribution of charges and for fixed boundary conditions, due to the
unicity of the solution, the solution of Poisson’s equation is given by (1.4).

1.2 Charge Conservation and Continuity Equation

Charge conservation in isolated systems is experimentally proved. The charge in a
volume τ , enclosed by the surface S, changes only if an electric current I , positive
if outgoing, flows through S. So:

− dQ

dt
= I (1.8)

and I is the flux of the electric current density J = ρv, with v the velocity of the
charge, through the surface S:

I =
∫

S
J · n̂ dS′ (1.9)

with n̂ the outward-pointing unit normal to the element of surface dS′ of the closed
surface. By substituting the relations (1.6) and (1.9) in Eq. (1.8) and applying the
divergence theorem, the continuity equation is found:

∂ρ

∂t
+ ∇ · J = 0 (1.10)

that is the local expression of the charge conservation.

1.3 Absence of Magnetic Charges in Nature and the Second
Maxwell Equation

The field lines of the magnetic induction B are always closed. This is easily seen by
tracking with a small magnetic needle the field lines of B around a circuit carrying a
current. Indeed in Nature no source (magnetic monopole) of magnetic field has ever
been observed.8 Thus the flux ΦS(B) through a closed surface S is always null:

8Chapter12 is devoted to the theory and the search of magnetic monopoles.

http://dx.doi.org/10.1007/978-3-319-39474-9_12
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ΦS(B) =
∫

S
B · n̂ dS′ = 0 . (1.11)

By applying the divergence theorem to this relation the second Maxwell equation
can be found:

∇ · B = 0

where the null second member corresponds to the absence of magnetic sources.

1.4 Laplace’s Laws and the Steady Fourth Maxwell
Equation

H.C. Oersted in 1820 discovered that an electric current produces a magnetic field.
This observation led physicists to write the laws of magnetism in a short time.

The force acting on the element dl of a circuit carrying a current I , in the direction
of dl, located in a magnetic field B, is:

dF = I dl × B (Second Laplace’s formula)

from which the force on a point charge q moving with velocity v in a magnetic
field B:

F = qv × B (Lorentz’s force).

The contribution to the field B0(r) in vacuum at a point P(r), given by dl′, an
element of a circuit, with a current I flowing in the direction of dl′, located at r′, is:

dB0(r) = μ0

4π

I dl′ × (r − r′)
|r − r′|3 (First Laplace’s formula) (1.12)

called Biot and Savart law, with μ0 the permeability constant of free space (μ0 =
4π · 10−7 H/m (Henry/meter)).

The field B0(r) from a circuit is:

B0(r) = μ0

4π

∮
I dl′ × (r − r′)

|r − r′|3 .

By integrating along a closed line the last formula the Ampère’s law can be found:

∮
B0 · dl = μ0

i=N∑

i=1

Ii

with the algebraic sum of all the currents Ii enclosed by the loop. Then applying the
Stoke’s theorem and the relation (1.9), the differential law is derived:
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∇ × B0 = μ0J (1.13)

that is the steady-state fourth Maxwell equation in vacuum.

1.5 Faraday’s Law and the Third Maxwell Equation

Faraday’s law of induction says that the induced electromotive force f in a circuit
is equal to the negative of the rate at which the flux of magnetic induction Φ(B)

through the circuit is changing:

f = −dΦ

dt
(Faraday-Neumann-Lenz law) (1.14)

with f the closed line integral of an induced non conservative electric field Ei :

f =
∮

Ei · dl . (1.15)

The induction is observed in different situations. If the shape of the circuit is
changed or some of its parts move in a steady magnetic field, the electromotive force
and the induced electric field Ei can be related to the Lorentz’s force acting on the
free charges in the conductor. This is the case of a flux of magnetic field lines cut by
parts of the circuit. Differently if the sources of the magnetic field (circuits carrying
currents or permanent magnets) move while the circuit is at rest, the induced electric
field is determined by the (relativistic) transformations of the fields E and B between
different reference frames as discussed in Chaps. 6 and 7. But when the circuit and
the sources of the field are at rest and the magnetic field changes (for instance due to
the change of the current in one of the circuits used as sources) the induction effect
implies a new physical phenomenon. By applying to the (1.15) the Stokes’s theorem
and substituting that in the first member of Eq. (1.14) while at the second member is
written the flux of B, as given in (1.11), the third Maxwell equations is found:

∇ × Ei = −∂B
∂t

.

Thus in general the electric field is the superposition of the irrotational field Ee

from the electric charges and a non irrotational electric field Ei induced by the rate
of change of the magnetic field:

E = Ee + Ei .

http://dx.doi.org/10.1007/978-3-319-39474-9_6
http://dx.doi.org/10.1007/978-3-319-39474-9_7
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1.6 Displacement Current and the Fourth Maxwell
Equation

Taking the divergence of the Eq. (1.13), while the first member is always null because
∇ ·∇×v = 0 is null for any vector v, the second member∇ ·J is null only in steady-
state situations. To solve this fault Maxwell suggested to replace the charge density
ρ in the continuity equation (1.10) with the expression for ρ from the first Maxwell
equation (1.7). The result is the sum of two terms with always a null divergence:

∇ ·
(

ε0
∂E
∂t

+ J
)

= 0 .

Replacing J in the (1.13) with the sum of the two terms, the Eq. (1.13) becomes:

∇ × B = μ0

(
J + ε0

∂E
∂t

)

that is the correct fourth Maxwell equation with both members having a null diver-
gence also for time varying fields and currents. The term added to the current density
J at the second member, is the displacement current density JS:

JS = ε0
∂E
∂t

associated to the rate of change of the electric field E.

1.7 Maxwell Equations in Vacuum

The four Maxwell equation in vacuum are:

∇ · E0 = ρ

ε0
(I ) ∇ · B0 = 0 (I I )

∇ × E0 = −∂B0

∂t
(I I I ) ∇ × B0 = μ0J + μ0ε0

∂E0

∂t
(I V ).

1.8 Maxwell Equations in Matter

In the presence of an external electric field the atomic and molecular dipoles in
the media are polarized. The electric polarization P is the average dipole moment
per unit volume. Charges due to the polarization are present on the surface of the
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dielectrics with charge density σP = P · n̂, with n̂ the outward-pointing unit normal
vector to the surface, and in the volume with density ρP = −∇ · P. So in the first
Maxwell equation (1.7) the polarization charges have also to be taken into account:

∇ · E = ρ + ρP

ε0
.

By introducing the displacement vector D = ε0E + P this equation becomes:

∇ · D = ρ

where only the free charges are present.
The magnetization of the media can be described by the vector magnetization

M that is the average magnetic moment per unit volume. The microscopic currents,
associated to themagnetization, flowon the surfacewith current densityJms = M×n̂,
with n̂ the outward-pointing unit normal vector to the surface, and in the volumewith
current density Jmv = ∇ × M.

The current density Jmv has to be added to the free current density J in the fourth
Maxwell equation (1.13):

∇ × B = μ0(J + Jmv)

and defining the magnetic field H:

H = B − μ0M
μ0

the steady fourth equation becomes:

∇ × H = J

with only the free current at the second member.
In matter the four Maxwell equations are:

∇ · D = ρ ∇ · B = 0

∇ × E = −∂B
∂t

∇ × H = J + ∂D
∂t

.

Of course to find the fields the constitutive relations D = D(E) and H = H(B)

have to be known. In homogeneous and isotropic media these relations are:

D = εE P = ε0(κ − 1)E ε = ε0κ

with ε the permittivity and κ the dielectric constant of the medium, and:
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B = μH M = (κm − 1)H μ = μ0κm

with μ the permeability and κm the relative permeability of the medium.

1.9 Electrodynamic Potentials and Gauge Transformations

The Maxwell equations are four first-order equations that, with assigned boundaries
conditions, can be solved in simple situations. It is often convenient to introduce
potentials, that while are defined to satisfy directly the two homogenous equations,
are determined by only two second-order equations.

In an isotropic and homogeneous medium with permittivity ε and permeabilityμ,
the four Maxwell equations are:

∇ · E = ρ

ε
(I ) (1.16)

∇ · B = 0 (I I ) (1.17)

∇ × E = −∂B
∂t

(I I I ) (1.18)

∇ × B = μJ + εμ
∂E
∂t

(I V ) . (1.19)

Electrodynamic Potentials

The divergence of a curl is always null (∇ · ∇ × v = 0), so the second equation is
satisfied if B is the curl of a vector potential A:

B = ∇ × A . (1.20)

With this definition the third equation becomes:

∇ ×
(
E + ∂A

∂t

)
= 0

and since the sum of the two terms has a null curl, it can be the gradient of a scalar
potential V with a change of sign as in electrostatics:

E + ∂A
∂t

= −∇V

and thus, in terms of the potentials, the electric field is:
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E = −∇V − ∂A
∂t

. (1.21)

Thus homogeneous equations are used to introduce a vector potential A and a
scalar potential V that have to be determined.

Gauge Transformations

The vector potentialA is determined up to the gradient of a scalar function ϕ. Indeed
under the transformation:

A → A′ = A + ∇ϕ (1.22)

the fieldB, given by the relation (1.20), since∇×∇ϕ is always null, is left unchanged:

B′ = ∇ × A′ = ∇ × A + ∇ × ∇ϕ = ∇ × A = B .

It is easy to see that in order for the field E (1.21) to be also unchanged, the scalar
potential has to transform as:

V → V ′ = V − ∂ϕ

∂t
. (1.23)

Indeed we find:

E′ = −∇V ′ − ∂A′

∂t
= −∇V + ∇ ∂ϕ

∂t
− ∂A

∂t
− ∂∇ϕ

∂t
= −∇V − ∂A

∂t
= E .

The relations (1.22) and (1.23) are the gauge transformations of the electrodynamic
potentials.

Equations of the Electrodynamic Potentials

To determine the potentials A and V we have to consider the two inhomogeneous
Maxwell equations. Substituting the relations (1.20) and (1.21) in these equations
we get9 the two coupled equations:

∇2A − με
∂2A
∂t2

− ∇(∇ · A + με
∂V

∂t
) = −μJ (1.25)

∇2V + ∂

∂t
∇ · A = −ρ

ε
. (1.26)

9Remind the relation:
∇ × ∇ × v = ∇(∇ · v) − ∇2v (1.24)

.
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Lorentz Gauge

The freedom in the definition of the potentials from the gauge transformations (1.22)
and (1.23) gives the possibility to choose A and V in order they satisfy the Lorentz
condition:

∇ · A + με
∂V

∂t
= 0 (1.27)

useful to decouple the two Eqs. (1.25) and (1.26).
If not satisfied by A and V , this relation can be satisfied by two new potentials

A′ and V ′ that are gauge transformed of A and V by the (1.22) and (1.23). The
(1.27) for the new potentials gives an equation for the scalar function ϕ used in the
transformation:

∇2ϕ − με
∂2ϕ

∂t2
= −

(
∇ · A + με

∂V

∂t

)
(1.28)

that, with assigned boundaries conditions, at least in principle, can be solved. Since
this gauge transformation is always possible, we can assume that the potentials satisfy
the (1.27). We say we choose to work in the Lorentz gauge.

Gauge transformations of potentials which satisfy the Lorentz condition, give
new potentials which observe the Lorentz condition if the function ϕ satisfies the
equation:

∇2ϕ − με
∂2ϕ

∂t2
= 0 .

Uncoupled Equations and Retarded Potentials

With theLorentz conditions the twoEqs. (1.25) and (1.26) are decoupled and become:

∇2A − με
∂2A
∂t2

= −μJ (1.29)

∇2V − με
∂2V

∂t2
= −ρ

ε
(1.30)

or with the d’Alambertian operator:

� = ∇2 − με
∂2

∂t2

in a more compact form:

�A = −μJ �V = −ρ

ε
.

The equations forA and V are four second-order scalar equations. Their particular
solutions are the retarded potentials:
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A(r, t) = μ

4π

∫
J(r′, t − |r− r′|

v )

|r − r′| dτ ′ + C (1.31)

V (r, t) = 1

4πε

∫
ρ(r′, t − |r− r′|

v )

|r − r′| dτ ′ + C ′ (1.32)

with the constants C and C ′ null if the potentials are zero at infinity.
The potentials at the point r at time t depend on the values of the sources at r′

at time t ′ = t − (|r − r′|)/v, where Δt = (|r − r′|)/v is the time interval for the
electromagnetic signal propagates from the source at r′ to the point of observation
at r with velocity v = 1√

με
.

To get the solutions of the Eqs. (1.29) and (1.30), homogeneous solutions have to
be added to the particular solutions (1.31) and (1.32). It is evident that the homoge-
neous solutions are waves that propagate. At large distance only the homogeneous
solutions are present because the particular solutions vanish as 1/r .

Coulomb Gauge

Another possible choice is the Coulomb gauge with the condition:

∇ · A = 0

thus the Eq. (1.26) becomes the Poisson’s equation:

∇2V = −ρ

ε

with the instantaneous Coulomb potential as solution:

V (r, t) = 1

4πε

∫

τ

ρ(r, t)
|r − r′| dτ ′ (1.33)

while the Eq. (1.25) becomes:

∇2A − με
∂2A
∂t2

= −μJ + με∇
(

∂V

∂t

)
. (1.34)

The instantaneous potential (1.33) does not take into account the propagation time
of the electromagnetic signal and seems in contrast with the time interval required
to propagate the information from the source to the position where the signal is
observed. Actually the observable quantities are the fields E and B which depend
also on the non instantaneous potential A given by the Eq. (1.34) thus their changes
are also delayed with respect to the changes of the sources.
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This gauge is also called transverse gauge. Indeed the density current J can
be written as the sum10 of a longitudinal or irrotational component Jl , (such that
∇ × Jl = 0), and a transverse or solenoidal component Jt , (∇ · Jt = 0). From the
continuity equation for the current we have that the term:

ε∇
(

∂V

∂t

)

in Eq. (1.34) is equal to the longitudinal component of the density current. Thus with
only the transverse component Jt at the second member, the equation is:

∇2A − με
∂2A
∂t2

= −μJt

and the vector potential A depends only on the transverse component of the current
density and is parallel to that.

The gauge ∇ · A = 0 is useful in the absence of sources (ρ = 0 and J = 0). In
this gauge, called radiation gauge, V = 0 or constant and the Eq. (1.25) becomes
the wave equation:

∇2A − με
∂2A
∂t2

= 0

while the fields are given by the relations:

E = −∂A
∂t

B = ∇ × A .

1.10 Electromagnetic Waves

In the absence of electric charges in a non conducting homogeneous and isotropic
infinite medium, of permittivity ε and permittivity μ, the Maxwell equations are:

∇ · E = 0 (I ) ∇ · B = 0 (I I )

∇ × E = −∂B
∂t

(I I I ) ∇ × B = με
∂E
∂t

(I V )

and non null solutions are possible for time-varying fields E and B.
Taking the curl of the third equation, and substituting the fourth in the right hand

side, by the first equation and the relation (1.24) the equation for the field E is:

10For this subject see J.D. Jackson, Classical Electrodynamics, cited, Sect. 6.5.

http://dx.doi.org/10.1007/978-3-319-39474-9_6
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∇2E − με
∂2E
∂t2

= 0 .

From the curl of the fourth equation after the third is substituted at the right hand
side, a similar equation is found for the field B:

∇2B − με
∂2B
∂t2

= 0 .

In the radiation gauge the same equation is found for the vector potentialA. These
are the equations for electromagnetic waves propagating in themediumwith speed v:

v = 1√
εμ

= 1√
ε0μ0

1√
κκm

� c√
κ

= c

n
(κm � 1)

where n is the refractive index of the crossed medium while:

c = 1√
ε0μ0

is the speed of light in vacuum.

Plane Electromagnetic Waves

The plane electromagnetic waves have the fields E and B with same components
over a plane surface. If this surface is parallel to the place yz the components depend
only on the x component and on the time and the wave equations become:

∂2E
∂x2

− με
∂2E
∂t2

= 0
∂2B
∂x2

− με
∂2B
∂t2

= 0 .

The most general solution is a function of the type:

f = f1(x − vt) + f2(x + vt) with v = 1√
με

that corresponds to the superposition of a wave f1(x − vt) travelling in the positive
direction of the x axis and of a wave f2(x + vt) travelling in the opposite direction
with phase velocity ±v. For these two waves the fields E and B have the same
components on the planes given by the relation:

x = ±vt + const

and the fields are:

E = E0 f (x ∓ vt) B = B0 f (x ∓ vt).
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Substituting these relations in the Maxwell equations it is easy to find:

E = B × v

so in a plane wave the fields E and B are orthogonal each other and also to the
direction of propagation v̂. These waves are transverse waves.

For a monochromatic wave of frequency ω propagating in the k̂ direction, the
most general solution for the fields is of the type:

f (r, t) = Aei(k·r−ωt) + Bei(k·r+ωt)

where the wave vector k is:

k = ω

v
v̂ = 2π

λ
v̂

and λ is the wavelength.



Chapter 2
Multipole Expansion of the Electrostatic
Potential

The potential of a localized charge distribution at large distance can be expanded as
a series of multipole terms.1 The terms of the series depend on the charge spatial
distribution in the system and have different dependence from the distance. In this
chapter we will first examine the electric dipole, the simplest system after the point
charge. We will write the dipole potential and obtain the expressions of the elec-
trostatic energy, the force and the torque acting on the dipole in an external field.
Then we will derive the first terms of the multipole expansion for the potential from
a charge distribution. Finally we will write the general expression for the multipole
expansion together the formula for the expansion in terms of spherical harmonics.

2.1 The Potential of the Electric Dipole

The electric dipole is a rigid system of two point charges of opposite sign +q and
−q separated by the distance δ. It is characterised by the dipole moment p = qδ

with δ oriented from the negative to the positive charge.
The potential generated by the electric dipole at point P at position r from its

center, is the sum of the potentials of the two point charges:

V (P) = 1

4πε0

(
q

r+
− q

r−

)
= q

4πε0

(
r− − r+
r+r−

)

where r+ and r− are the distances of P from +q and −q respectively (see Fig. 2.1).
When r � δ first order approximation can be used:

1For this subject see for instance: D.J. Griffiths, Introduction to Electrodynamics, 4th Ed. (2013),
Section 3.4, Pearson Prentice Hall; W.K.H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, 2nd Ed. (1962), Sections 1.7–8, Addison-Wesley.

© Springer International Publishing Switzerland 2016
F. Lacava, Classical Electrodynamics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-39474-9_2
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Fig. 2.1 The potential of the
electric dipole at a point P at
distance r , is the sum of the
potentials of the two opposite
point charges. The distances
of the point P from the two
charges in the approximation
r � δ are r+ = r − δ

2 cos θ

and r− = r + δ
2 cos θ

r− � r + δ

2
cos θ r+ � r − δ

2
cos θ r− − r+ � δ cos θ

with θ the angle between r and δ, and:

r+r− = r2 − δ2

4
cos2 θ � r2

and the potential at a large distance from the dipole becomes:

V (P) = 1

4πε0

qδ cos θ

r2
= 1

4πε0

p · r
r3

.

For increasing r this potential decreases as 1/r2 function, faster than the 1/r depen-
dence of the point charge potential.

2.2 Interaction of the Dipole with an Electric Field

We can consider the interaction of an electric dipole p with an external electric field
E that in general can be non-uniform.

For the force F, the Fx component of the total force on the dipole is the sum of
the x-component of the forces on the two point charges:

Fx = −qEx (x, y, z) + qEx (x + δx , y + δy, z + δz)

with E(x, y, z) the electric field at the position of the charge −q and E(x + δx , y +
δy, z + δz) that at the position of +q respectively.
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Writing the second term as:

Ex (x + δx , y + δy, z + δz) = Ex (x, y, z) + ∇Ex · δ

Fx becomes:
Fx = q∇Ex · δ = (p · ∇)Ex .

Similar expressions can be derived for Fy and Fz and therefore we have:

F = (p · ∇)E = ∇(p · E) (2.1)

where we have used relation2 (p · ∇)E = ∇(p ·E) − p× (∇ ×E) = ∇(p ·E) with
∇ × E = 0 for the electrostatic field.

The potential energy of the dipole is equal to the sum of the potential energies of
the two point charges:

U = −qV (x, y, z) + qV (x + δx , y + δy, z + δz) = qdV = q∇V · δ = −p · E.

The work δW = −dU done by the electric field when the dipole is displaced by ds
by a force F and is rotated by δθ around an axis θ̂ by a torque M, is:

δW = F · ds + M · dθ = −dU = −∇U · ds − ∂U

∂θ
δθ

and from the potential energy expression:

F = ∇(p · E) M = p × E (2.2)

where the expression for F is that already found in (2.1).

Supplemental problems are available at the end of this chapter as additional mate-
rial on the interaction between two dipoles.

2.3 Multipole Expansion for the Potential of a Distribution
of Point Charges

The potential V0(P) at the point P(x, y, z) due to a distribution of N point charges
qi (see Fig. 2.2), is equal to the sum of the potentials at P from each charge of the
system (principle of superposition of the electric potentials):

2Note that, since ∇ is a vector operator, we can get the relation used in the formula by substituting
∇ to B in the vector relation A × (B × C) = B(A · C) − (A · B)C.
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Fig. 2.2 The distribution of
point charges. The position
of the point P relative to the
point charge qi is ri = r− di

V0(P) =
i=N∑

i=1

V0i (P) = 1

4πε0

i=N∑

i=1

qi
ri

(2.3)

where ri is the distance between P and the i th charge.
If the distance between P and the system of the charges is much larger than the

dimensions of the system, it is useful to approximate the potential at P as done for
the electric dipole.

In the reference frame with origin in close proximity to the point charges system,
we can write:

r = ri + di and ri = r − di

where di and r are the vector positions of the charge qi and point P , respectively,
and ri the vector from the i th charge to P . Then:

1

ri
= 1

|r − di | = 1

[(r − di ) · (r − di )] 1
2

= 1

[r2 − 2r · di + d2i ] 1
2

= 1

r
· 1

[1 + (d2i − 2r·di )
r2

] 1
2

.

If we define α = d2
i − 2r·di

r2 , since r � di , α is very small and the fraction in the last
equation can be expanded in a power series:

1

[1 + α] 1
2

= 1 − 1

2
α + 3

8
α2 − 15

48
α3 + · · ·

and keeping terms only to second order in α:

1

ri
= 1

r
·
(
1 − 1

2

(d2
i − 2r · di )

r2
+ 3

8

(d2
i − 2r · di )2

r4

)



2.3 Multipole Expansion for the Potential of a Distribution of Point Charges 21

and neglecting terms with higher power than di/r squared we get:

1

ri
= 1

r
+ (di · r̂)

r2
+ 1

r3

[
3

2
(di · r̂)2 − 1

2
d2
i

]
. (2.4)

Using this relation in Eq.2.3, the potential in the point P becomes:

V0(P) = 1

4πε0

i=N∑

i=1

qi
r

+ 1

4πε0

i=N∑

i=1

qidi · r̂
r2

+ 1

4πε0

i=N∑

i=1

qi
r3

[
3

2
(di · r̂)2 − 1

2
d2
i

]

that can be written as:

V0(P)= 1

4πε0

1

r

i=N∑

i=1

qi+ 1

4πε0

1

r2

i=N∑

i=1

qidi · r̂+ 1

4πε0

1

r3

i=N∑

i=1

qi

[
3

2
(di · r̂)2 − 1

2
d2
i

]
.

If we define the total charge of the system:

QTOT =
i=N∑

i=1

qi (2.5)

the electric dipole moment:

P =
i=N∑

i=1

qidi (2.6)

and the electric quadrupole moment relative to the direction r̂:

Qquadr =
i=N∑

i=1

qi

[
3

2
(di · r̂)2 − 1

2
d2
i

]
(2.7)

the potential of the system of point charges at the point P can be written in the form:

V0(P) = 1

4πε0

QTOT

r
+ 1

4πε0

P · r̂
r2

+ 1

4πε0

Qquadr

r3
.

This relation represents the multipole expansion for the potential of the system
of point charges, truncated to the second order. The first term depends on the total
charge QTOT of the system and behaves as the 1/r potential of a point charge; the
second term is related to the dipole moment P of the system and behaves as the 1/r2

potential of an electric dipole; the third term depends on the quadrupole moment and
decreases as 1/r3. The contribution of these terms to the total potential decreases at
higher terms.



22 2 Multipole Expansion of the Electrostatic Potential

If the total charge QTOT is equal to zero, the most relevant term is the dipole term,
and if also this term is null, the potential is determined by the quadrupole moment.
If also this term is zero the multipole expansion should be extended to include terms
of higher order.

For a continuous distribution of charge limited to a volume τ , described by the
densityρ(r′), the summation in (2.5), (2.6) and (2.7) has to be replaced by an integral:

QTOT =
∫

τ

ρ(r′) dτ ′

P =
∫

τ

r′ ρ(r′) dτ ′

Qquadr =
∫

τ

ρ(r′)
[
3

2
(r′ · r̂)2 − 1

2
(r ′)2

]
dτ ′ .

The measurement of the terms in the potential expansion of a charged structure
gives information on the distribution of the charge.

Molecules, inwhich the centers of the positive andnegative charge donot coincide,
have a permanent electric dipole moment. The dipole moment for molecules of H2O
in its vapour state is 6.1 × 10−30 Cm, for HCl is 3.5 × 10−30 Cm and for CO is
0.4× 10−30 Cm. In atoms and molecules, also with a null dipole moment, the action
of an external field may separate the centers of positive and negative charges and
produce an induced electric dipole. Uncharged atoms and molecules can therefore
have dipole-dipole or dipole-induced dipole interactions.

2.4 Properties of the Electric Dipole Moment

When the total charge of a system is null, the dipole moment is independent from
the point (or the reference frame) chosen for the calculation of the moment, and
the dipole moment becomes an intrinsic feature of the system.3 Indeed if the vector

a = −−→
O ′O determines the position of the origin O of the first reference frame in a

new frame with origin O ′ (see Fig. 2.3) we can write: d′
i = a + di , and the dipole

moment P′ is:

P′ =
i=N∑

i=1

qid′
i =

i=N∑

i=1

qi (a + di ) =
(
i=N∑

i=1

qi

)
a +

i=N∑

i=1

qidi = QTOT a + P = P

because QTOT = 0.

3This is a general property of the first non null term in the multipole expansion.
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Fig. 2.3 Position of the
point charge relative to two
different frames

Fig. 2.4 Example of a
charge distribution
symmetric relative to a point

If a system of charges has a symmetry center, then the dipole moment is null. For
instance for the system of three charges in Fig. 2.4:

P =
i=3∑

i=1

qidi = qr + q(−r) + (−2q)0 = 0 .

2.5 The Quadrupole Tensor

A rank two tensor can be associated to the quadrupole moment.
The Eq. (2.7):

Qquadr = 1

r2

i=N∑

i=1

qi

[
3

2
(di · r)2 − 1

2
d2
i r

2

]
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can be written as:

Qquadr = 1

r2

i=N∑

i=1

qi

⎡

⎣3

2

⎛

⎝
μ=3∑

μ=1

xμdiμ

⎞

⎠ ·
(

ν=3∑

ν=1

xνdiν

)
− 1

2
d2
i

μ=3∑

μ=1

ν=3∑

ν=1

xμxνδμν

⎤

⎦

where δμν is the Kronecker delta (δμν = 1 if μ = ν, and δμν = 0 when μ �= ν).
Assuming the sum over any index that appears twice in:

Qquadr = 1

r2

i=N∑

i=1

qi

[
3

2
diμxμdiν xν − 1

2
d2i δμν xμxν

]
= 1

r2

i=N∑

i=1

qi

[
3

2
diμdiν − 1

2
d2i δμν

]
xμxν

we can finally write:

Qquadr = 1

r2
Qμνxμxν

where we have introduced a symmetric rank two tensor, the quadrupole tensor Qμν

given by:

Qμν =
i=N∑

i=1

qi

[
3

2
diμdiν − 1

2
d2
i δμν

]
.

The quadrupole term in the multipole expansion can be then expressed in the form:

1

4πε0

1

r5
Qμνxμxν . (2.8)

2.6 A Bidimensional Quadrupole

As an example we can calculate the potential at large distance from the quadrupole4

formed by four point charges as shown in Fig. 2.5.
The total charge is zero and the dipole moment is null because the point charges

are placed symmetrically with respect to the origin. The first non null term in the
multipole expansion is the quadrupole term.

4Note that thewordsdipole,quadrupole, etc. are used in twoways: to describe the charge distribution
and secondly to designate the moment of an arbitrary charge distribution.
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Fig. 2.5 The bidimensional
electric quadrupole

For the tensor Qμν it is easy to find Qxx = Qyy = Qzz = Qxz = Qzx = Qyz =
Qzy = 0 and the only non null components are Qxy = Qyx = 3

2qd
2.

Then from (2.8) the potential at a point P(x, y, z) is:

V0(x, y, z) = 3qd2

4πε0

xy

(x2 + y2 + z2)
5
2

that is zero in any point on the z axis.

Appendix

Higher Order Terms in the Multipole Expansion of the
Potential

We have already seen the multipole expansion of the potential limited to the second
order. To get the general expression5 with all the terms of the expansion, we write
the potential at a point P(r) = P(x, y, z) from a continuous charge distribution,
limited in space, described by the density ρ(r′) = ρ(x ′, y′, z′). The distance of the
point P from the elementary volume dτ ′ in the point r′ is:

|r − r′| = Δr =
√

(x − x ′)2 + (y − y′)2 + (z − z′)2 .

5For this expansion see for instance: W.K.H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, 2nd Ed. (1962), Section 1.7, Addison-Wesley.
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We set the origin of the frame inside the volume of the charge distribution or nearby.
For a distance r large compared with the dimensions of the volume, we can expand
the distance |r − r′| as a Taylor series:

1

|r − r′| = 1

r
+ x ′

α

[
∂

∂ x ′
α

(
1

Δr

)]

x ′
α=0

+ 1

2! x
′
αx

′
β

[
∂2

∂x ′
α∂x ′

β

(
1

Δr

)]

x ′
α=x ′

β=0

+ · · ·

· · · + 1

n! x
′
αx

′
βx

′
γ . . .

[
∂n

∂x ′
α∂x ′

β∂x ′
γ . . .

(
1

Δr

)]

x ′
α=x ′

β=x ′
γ ...=0

where we assume the sum over α, β, γ, . . . = 1, 2, 3, with x1 = x, x2 = y, x3 = z.
The potential due to the charge distribution is:

V0(r) = 1

4πε0

∫

τ

ρ(r′)
|r − r′|dτ ′ (2.9)

and by substituting the expression for 1/|r − r′| given before, we get:

V0(r) = 1

4πε0

1

r

∫

τ

ρ(r ′)dτ ′ + 1

4πε0

[
∂

∂ x ′
α

(
1

Δr

)]

x ′
α=0

∫

τ

x ′
αρ(r ′)dτ ′

+ 1

4πε0

1

2!

[
∂2

∂x ′
α∂x ′

β

(
1

Δr

)]

x ′
α=x ′

β=0

∫

τ

x ′
αx

′
β ρ(r ′)dτ ′ + · · ·

+ 1

4πε0

1

n!

[
∂n

∂x ′
α∂x ′

β∂x ′
γ . . .

(
1

Δr

)]

x ′
α=x ′

β=x ′
γ ...=0

∫

τ

x ′
αx

′
βx

′
γ . . . ρ(r ′)dτ ′.

In this expression we can recognise the terms corresponding to the total charge, to
the dipole and to the quadrupole moments that we have already seen and then the
general form of the 2n-pole.

Expansion in Terms of Spherical Harmonics

The multipole expansion of the potential from a charge distribution limited in space,
can be also expressed in series of spherical harmonics.6

If r′ gives the position of a point inside a sphere of radius R, and r that of a point
outside, we canwrite for 1/|r − r′| the expansion in terms of the spherical harmonics
Ylm (θ, ϕ):

6For an exhaustive presentation see J.D. Jackson, Classical Electrodynamics, cited, Chapters3
and 4.
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1

|r − r′| = 4π
∞∑

l=0

m=l∑

m=−l

1

2l + 1

(r ′)l

r l+1
Y ∗
lm

(
θ ′, ϕ′) Ylm (θ, ϕ) .

If the charge distribution ρ(r ′) is confined inside the sphere of radius R we can
substitute this expansion in (2.9) and we get:

V0(r)= 1

4πε0

{
4π

∞∑

l=0

m=l∑

m=−l

1

2l + 1

1

rl+1

[∫
Y ∗
lm

(
θ ′, ϕ′) (r ′)lρ(r′) dτ ′

]
Ylm (θ, ϕ)

}

and introducing the multipole moments:

qlm =
∫

Y ∗
lm

(
θ ′, ϕ′) (r ′)lρ(r′) dτ ′

we get the expansion:

V0(r) = 1

4πε0

{
4π

∞∑

l=0

m=l∑

m=−l

1

2l + 1

1

rl+1
qlm Ylm (θ, ϕ)

}
.

Exercise With the formulas for the first spherical harmonics reported below, write
the first three terms of the multipole expansion in spherical coordinates and compare
with those expressed in cartesian coordinates.

l = 0 Y00 = 1√
4π

l = 1 Y11 = −
√

3

8π
sin θ eiϕ

Y10 =
√

3

4π
cos θ

l = 2 Y22 = 1

4

√
15

2π
sin2 θ e2iϕ

Y21 = −
√

15

8π
sin θ cos θ eiϕ

Y20 =
√

5

4π

(
3

2
cos2 θ − 1

2

)
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with the relation:
Yl−m (θ, ϕ) = (−1)mY ∗

lm (θ, ϕ) .

Problems

2.1 Find the dipole moment of the system of four point charges q at (a, 0, 0), q at
(0, a, 0), −q at (−a, 0, 0) and −q at (0,−a, 0).

2.2 Write the potential for the system of three point charges: two charges +q in the
points (0, 0, a) and (0, 0,−a), and a charge −2q in the origin of the frame. Find
the approximate form of this potential at distance much larger than a. Compare the
result with the potential from the main term in the multipole expansion.

2.3 Two segments cross each other at the origin of the frame and their ends are at
the points (±a, 0, 0) and (0,±a, 0). They have a uniform linear charge distribution
of opposite sign. Write the quadrupole term for the potential at a distance r � a.

2.4 Calculate the quadrupole term of the expansion for the potential from two con-
centric coplanar rings charged with q and −q and with radii a and b.

2.5 Write the interaction energy of two electric dipoles p1 and p2 with their centers
at distance r .

2.6 Using the result of the previous problem write the force between the electric
dipoles p1 and p2 at distance r . Then consider the force when the dipoles are coplanar
oriented normal to their distance and they are parallel or antiparallel. Determine also
the force when the dipoles are on the same line and oriented in the same or in the
opposite direction.

2.7 Two coplanar electric dipoles have their centers a fixed distance r apart. Say θ

and θ ′ the angles the dipoles make with the line joining their centers and show that
if θ is fixed, they are at equilibrium when

tan θ ′ = −1

2
tan θ .

Solutions

2.1 The dipole moment of the system has components:

px =
4∑

1

qi xi = 2qa py =
4∑

1

qi yi = 2qa pz =
4∑

1

qi zi = 0 .
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The dipole moment is p = (2qa, 2qa, 0) with module p = 2q
√
2a. This is the

moment of an elementary dipole with opposite charges 2q located in the centers of
the positive and the negative charges which are distant

√
2a.

2.2 In spherical coordinates the potential depends only on the distance r from the
origin and on the angle θ . Adding the potentials from the three charges we have:

V (r, θ) = 1

4πε0

[
−2q

r
+ q

[r2 − 2ra cos θ + a2] 1
2

+ q

[r2 + 2ra cos θ + a2] 1
2

]

and expanding in power series as in (2.4) we find:

V (r, θ) = 1

4πε0

qa2

r3
(
3 cos2 θ − 1

)
. (2.10)

In the multipole expansion for the system of the three charges the first non null term
is the quadrupole moment. It is easy to find the components: Qxz = Qyz = Qxy = 0,
Qxx = Qyy = −qa2 and Qzz = 2qa2 so that the potential is:

V (x, y, z) = 1

4πε0

1

r5
(
Qxx x

2 + Qyy y
2 + Qzzz

2
)

= 1

4πε0

qa2

r5
(
2z2 − x2 − y2

)

that is the formula (2.10) written in cartesian coordinates.

2.3 For the given charge distribution it is easy to see that Qxz = Qyz = Qxy = 0
and by simple calculations we find:

Qxx = 1

3
qa2 Qyy = −1

3
qa2 Qzz = 0

so that the quadrupole potential is:

V (x, y, z) = 1

4πε0

qa2

3

(x2 − y2)

(x2 + y2 + z2)
5
2

.

2.4 We consider the two rings on the plane z = 0 with their centers in the origin.
The total charge of the system is zero and, for the symmetry of the charge distribution
with respect to the origin, also the dipole moment is null. The quadrupole term is the
first non null term. It is evident that Qxz = Qyz = 0 and by simple integrals we can
get:

Qxx = Qyy = q

4
(a2 − b2) Qzz = q

2
(b2 − a2) Qxy = 0



30 2 Multipole Expansion of the Electrostatic Potential

so that the first term of the potential expansion is:

V (x, y, z) = 1

4πε0

q(a2 − b2)

4

(x2 + y2 − 2z2)

(x2 + y2 + z2)
5
2

.

2.5 The interaction energy of the two dipoles is equal to the potential energy of p2
in the field of p1. Saying r the vector from the center of p1 to that of p2, we can write:

U21 = −p2 ·E1(r) = p2 · ∇V1 = p2 · ∇
(

1

4πε0

p1 · r
r3

)
= 1

4πε0
p2 ·

[∇(p1 · r)
r3

+ (p1 · r)∇ 1

r3

]

and since:

∇(p1 · r) = p1 ∇ 1

r3
= −3

r
r5

(note that ∇ 1

rn
= −n

r
rn+2

)

we get:

U21 = U12 = 1

4πε0

[
p1 · p2
r3

− 3
(p1 · r)(p2 · r)

r5

]
(2.11)

that is symmetric in p1 and p2.

2.6 From the solution of the previous problem and from the formula (2.2) for the
force on a dipole in an electric field we get:

F2 = −∇U21 = ∇(p2 · E1(r))

= − 1

4πε0

[
(p1 · p2)∇ 1

r3
− 3(p1 · r)(p2 · r)∇ 1

r5
− 3

∇[(p1 · r)](p2 · r)]
r5

]

and then:

F2 = 1

4πε0

[
3
(p1 · p2)r + p1(p2 · r) + (p1 · r)p2

r5
− 15

(p1 · r)(p2 · r)r
r7

]
.

This formula is symmetric in p1 and p2 but r is directed from p1 to p2 so we get F1

changing r to −r and we have F1 = −F2 as expected.
For two coplanar parallel dipoles normal to the line joining their centres:

with same direction(↑ ↑) : F2 = 3

4πε0

p1 p2
r4

r̂ a repulsive force

with opposite direction(↑ ↓) : F2 = − 3

4πε0

p1 p2
r4

r̂ an attractive force
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Fig. 2.6 Coplanar dipoles
p1 and p2 with their centers
at fixed distance r and
orientations θ and θ ′ with
respect to r

for the dipoles on the same line

with same direction(→ →) : F2 = − 6

4πε0

p1 p2
r4

r̂ an attractive force

with opposite direction(→ ←) : F2 = 6

4πε0

p1 p2
r4

r̂ a repulsive force.

2.7 For the two coplanar dipoles shown in Fig. 2.6 the interaction energy (2.11)
becomes:

Uint = 1

4πε0

p1 p2
r3

[
cos(θ ′ − θ) − 3 cos θ cos θ ′

]
.

At fixed θ we find the minimum of this energy solving the equation:

∂U

∂θ ′ = 1

4πε0

p1 p2
r3

[
− sin(θ ′ − θ) + 3 cos θ sin θ ′

]
= 0 .

The solution is:

tan θ ′ = −1

2
tan θ

with the condition
∂2U

∂θ ′2 = 1

4πε0

p1 p2
r3

[
2 cos θ cos θ ′ − sin θ sin θ ′

]
> 0 .

For θ = π/2 the minimum is at θ ′ = −π/2, for θ = 0 at θ ′ = 0 and for θ = π at
θ ′ = −π .



Chapter 3
The Method of Image Charges

The potentials and the electric field in the presence of point charges and conductors
are determined solving the Poisson equation and sometimes thismay be very difficult.
However in some particular configurations the equipotential surfaces of the conduc-
tors can be reproduced adding to the real point charges some image charges inside
the conductors.1 Using this technique the solution can be easily written as the sum of
well known potentials of point charges. After the introduction of the image charges
method, some relevant examples will be presented: (i) the point charge in front of
a conductive plane, (ii) the point charge near a conductive sphere, (iii) a conductive
sphere immersed in a uniform external electric field, (iv) a charged wire parallel to
a cylindrical conductor. Additional examples will be available in the problems.

3.1 The Method of Image Charges

In a system of point charges and conductors at fixed potentials, Poisson equation has
to be solved using as boundary conditions the potentials on the conductor surfaces.

Sometimes by adding to the system of real charges some point charges, called
image charges, placed in suitable positions inside the conductors, the sum of the
potentials due to both real and image charges can generate equipotential surfaces
with the same shapes and potentials of the conductors.

Outside the space of the conductors the Poisson equation for the system of real
and image charges depends on the real charges and has the same potentials of the
real problem boundary conditions at the geometrical surfaces of the conductors. In
the two cases therefore we have the same equation with the same conditions on the

1For the image charges method see also: J.D. Jackson, Classical Electrodynamics, cited, Sects. 2.1,
2; R.P.Feynman, R.B.Leighton, M.Sands, The Feynman Lectures on Physics, Vol. II, Sects. 6.7–9;
L.D.Landau - E.M.Lifšits, Electrodynamics of continuous media, Chap. I, Sect. 3, with problems;
D.J. Griffiths, Introduction to Electrodinamics, 4th Ed. (2013), Sect. 3.2, Pearson Prentice Hall. The
method is examined also in J.C. Maxwell, A treatise on Electricity & Magnetism, Vol. I, Chap. XI.

© Springer International Publishing Switzerland 2016
F. Lacava, Classical Electrodynamics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-39474-9_3

33
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surfaces of the conductors, thus, given the uniqueness of the solution, the solution
for the point charges (real and image) is also the solution of the problem with the real
charges and the conductors. Outside the conductors the potential is then given by the
sum of the potentials due to real and image charges. Inside the conductors voltages
are constant and equal to the values on the surfaces.

It is worth noting that, outside the conductors, the sum of the potentials of the real
charges represents the particular solution of the Poisson equation while the sum of
the potentials from image charges is the solution of the associated Laplace equation.

3.2 Point Charge and Conductive Plane

A point charge q at a distance d from an infinite grounded conductive plane, shown
in Fig. 3.1, represents the simplest example of the image charges method. The z axis
can be defined as the line passing on the point charge and perpendicular to the plane
located at z = 0. The Poisson equation for the point charge configuration has to be
solved with boundary condition the null potential on the plane and as a consequence
the electric field perpendicular to the plane.

Consider instead the electric field given by a charge q located at (0, 0, d) and by
the image charge −q at (0, 0,−d), mirror image of the charge q with respect to the
xy plane.

The potential by the two charges at the point P(x, y, z) is:

V0(x, y, z) = q

4πε0

{
1√

r2 + (z − d)2
− 1√

r2 + (z + d)2

}
(3.1)

Fig. 3.1 Point charge near an infinite conductive plane at ground. Vector sum of the fields from
the two point charges
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where r2 = x2 + y2 and the components of the electric fields are:

E0x(x, y, z) = −∇xV = q

4πε0

{
x

(r2 + (z − d)2)
3
2

− x

(r2 + (z + d)2)
2
3

}

E0y(x, y, z) = −∇yV = q

4πε0

{
y

(r2 + (z − d)2)
3
2

− y

(r2 + (z + d)2)
2
3

}

E0z(x, y, z) = −∇yV = q

4πε0

{
z − d

(r2 + (z − d)2)
3
2

− z + d

(r2 + (z + d)2)
2
3

}
.

The potential and the field components on the plane z = 0 are:

V0(x, y, z = 0) = 0 E0x(x, y, z = 0) = 0 E0y(x, y, z = 0) = 0

E0z(x, y, z = 0) = − q

4πε0

2d

[r2 + d2] 3
2

.

As expected by symmetry the potential is null and the field is normal to the plane.
The z-component of the field can be written in the form:

E0z(x, y, z = 0) = − 2
q

4πε0

1

[r2 + d2]
d

[r2 + d2] 1
2

= − 2 E∗ cos θ

where the two charge contributions are evident (see Fig. 3.1) given the strength of
the fields of the two charges in a point on the plane:

E∗ = q

4πε0

1

[r2 + d2] .

The potential of the two charges for z > 0 is a solution of the Poisson equation
and on the plane we have the same configuration required for the point charge and
the conductive plane: null potential and normal field. Then the potential V0(x, y, z),
given in (3.1), for z > 0 is also the solution for the problem of the point charge near
the conductive plane.

From the Coulomb theorem the charge density induced on the conductive plane is:

σ(r) = ε0 E0z(r, z = 0) = − q

2π

d

[r2 + d2] 3
2

(3.2)

and its integral:

∞∫

0

σ(r) 2πrdr = −q d
1

(d2 + r2)
1
2

∣∣∣∣
∞

0

= − q
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is equal to −q, the image charge located at z = −d, as expected from the Gauss
theorem: the total flux out of the point charge has to enter the plane.

In the position of the charge q, the electrostatic field from the charge induced
on the plane is equal to the field from the image charge, consequently the charge is
attracted by the plane with a force:

F = 1

4πε0

q2

(2d)2
. (3.3)

The electrostatic energy for the system of the point charge and the conductive
plane is limited only at z > 0 and therefore is one half of the interaction energy of
the two opposite charged points.

3.3 Point Charge Near a Conducting Sphere

An interesting case is that of a point charge q at a distance d from the center of a
conductive sphere with radius r < d.

First we consider a grounded sphere as in Fig. 3.2. A charge is induced on the
spherical surface and the field outside the sphere is determined by both the point
charge and the induced charge distribution. To reproduce this field, we can introduce
an image charge q′ inside the sphere located, by symmetry, on the line from the point
charge to the center of the sphere and at a distance x from the center of the sphere.2

The potential from the charges q and q′ has to be zero on the spherical surface:

V0(r) = 1

4πε0

{
q

R1
+ q′

R2

}
= 0 .

2For a more elegant solution we remind that the spherical surface is the locus of all points for which
the distances from two given points are in a constant ratio.
Defining R1 and R2 the distances of the points on the sphere from the point charges q and q′, the
relation for a null potential on the spherical surface is:

V0(r) = 1

4πε0

(
q

R1
+ q′

R2

)
= 0

from which the condition:
R2

R1
= −q′

q
= const

equal, as pointed out, to that for a spherical surface. Using the ratios of the two distances from the
points A and B in Fig. 3.2 and given the radius r of the sphere, we can find the distance x of the
charge q′ from the center of the sphere:

R2(A)

R1(A)
= R2(B)

R1(B)

r + x

d + r
= r − x

d − r

R2

R1
= r

d
x = r2

d

and the value of q′:
q′ = −q

r

d
.
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Fig. 3.2 Point charge near a grounded conductive sphere

From R2
1 = d2 + r2 − 2rd cos θ and R2

2 = r2 + x2 − 2xr cos θ :

V0(r) = 1

4πε0

{
q

[d2 + r2 − 2rd cos θ ] 1
2

+ q′

[r2 + x2 − 2xr cos θ ] 1
2

}
= 0

and replacing q′ = −yq we have:

V0(r) = q

4πε0

{
1

[d2 + r2 − 2rd cos θ ] 1
2

− y

[r2 + x2 − 2xr cos θ ] 1
2

}
= 0

which gives:
(y2d2 + y2r2 − r2 − d2) = 2r(y2d − x) cos θ .

This relation has to be verified for any cos θ value, then the two expressions in
parentheses have to be zero and therefore y2 = x

d and for x the two solutions: x1 = d

and x2 = r2

d . The solution x1 = d adds a charge q′ = −q to the charge q with a null
potential everywhere, which represents a trivial solution. For the second solution an
image charge q′ = −q r

d is placed at a distance x = r2

d from the center of the sphere.
Outside the sphere the potential will be the sum of the potentials from both the

charge q and the image charge q′, with q′ representing the total charge induced on
the sphere. Inside the conductor the potential will be zero as on the surface.

If the sphere is insulated and initially uncharged, after the point charge q is brought
near by, the total charge on the sphere has still to be zero.With the charge q′, a charge
q′′ = −q′ has also to be present on the sphere. To have an equipotential surface this
charge has to be uniformly distributed on the surface and the potential is that from
the same charge located in the center of the sphere:

V0 = 1

4πε0

q′′

r
.
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If on the isolated sphere is already present a charge Q and a charge q′ is induced,
a charge q′′ = Q − q′ has to be uniformly distributed on the surface and determines
the potential as in the previous configuration.

For a conductive sphere at the potential V0, fixed by a generator, a second charge
q′′ = 4πε0rV0, located in the center, has to be added to the image charge q′.

In all these configurations the force between the point charge and the conductive
sphere is equal to the sum of the forces between the charge q and the charges q′
and q′′.

3.4 Conducting Sphere in a Uniform Electric Field

Two point charges of opposite sign produce a uniform electric field close to their
midpoint. To solve the case of a sphere of radius R in a uniform electric field E0,
the conductive sphere is placed between two opposite point charges at large distance
with respect to the radius of the sphere and then the point charges are moved to an
infinite distance.

Consider the center of the sphere in the origin of the axis, a charge q on the z axis
at the distance −d and symmetrically a charge −q at distance d as in Fig. 3.3. The
two charges produce an induced charge on the spherical surface. From the result for
a sphere in presence of a point charge, we know that the effect of the induced charge
can be taken into account adding two image charges q1 and q2 in the points z1 and
z2 inside the sphere, with:

q1 = −q
R

d
z1 = −R2

d
q2 = q

R

d
z2 = R2

d
.

Fig. 3.3 Point charges to simulate a sphere in a uniform electric field
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In the point P outside the sphere, at distance r from the origin and at an angle θ

with the z axis (see the Fig. 3.3), the potential V is the sum of the potential V ′ from
the charges at large distances and of the potential V ′′ from the two image charges.

In the limit d → ∞ the two charges have to produce a uniform field E0 so that
their potential has to be:

V ′ = −E0z = −E0 r cos θ .

and the two image charges q1 and q2 become an electric dipole of infinitesimal
dimension with dipole moment:

D =
(

−q
R

d

)(
−R2

d

)
+

(
q
R

d

)(
R2

d

)
= 2q

R3

d2

where the charge q has to be determined.
The potential V ′′ from this dipole is:

V ′′ = 1

4πε0

D · r
r3

= 1

4πε0
2 q

R3

d2
cos θ

r2

so that the total potential is:

V (r, θ) = −E0 r cos θ + 1

4πε0
2 q

R3

d2
cos θ

r2
.

Requiring a null potential on the surface of the sphere (at r = R), we get for q
and D:

q = 2πε0d
2E0 D = 4πε0R

3E0

and the total potential3 becomes:

3The potential can also be calculated directly as the sum of the four potentials of the point charges.
The potential V ′ from the two charges at large distances is:

V ′
0(r, θ) = q

4πε0

{
1

[d2 + r2 + 2rd cos θ] 1
2

− 1

[d2 + r2 − 2rd cos θ] 1
2

}

V ′
0(r, θ) = q

4πε0d

⎧
⎨

⎩
1

[
1 + ( rd )2 + 2r

d cos θ
] 1
2

− 1
[
1 + ( rd )2 − 2r

d cos θ
] 1
2

⎫
⎬

⎭

Moving the two charges to an infinite distance, in the limit d → ∞, ( rd ) is infinitesimal and the
potential can be expanded in series:

V ′
0 = q

4πε0d

{
1 − 1

2

[( r

d

)2 + 2r

d
cos θ

]
− 1 + 1

2

[( r

d

)2 − 2r

d
cos θ

]}
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V (r, θ) = −E0

(
r − R3

r2

)
cos θ

that is null on the surface of the sphere (r = R).
In spherical coordinates the components of the electric field are:

E0r = −∂V

∂r
= E0

(
1 + 2

R3

r3

)
cos θ

(Footnote 3 continued)
and becomes:

V ′
0 = − q

2πε0

{ r

d2
cos θ

}
= − q

2πε0

z

d2

where z = r cos θ .
From the electric field E0:

E0 = − ∂V ′

∂z
= q

2πε0

1

d2

we get the value of the charge q to get a field E0: q = 2πε0d2E0
and the potential is

V ′
0 = −E0z = −E0r cos θ.

We consider now the potential V ′′ from the two image charges (see Fig. 3.3). The distances d1
and d2 of the point P from the two charges, are:

d1 =
[
1

d2

(
r2d2 + R4 + 2rR2d cos θ

)] 1
2

d2 =
[
1

d2

(
r2d2 + R4 − 2rR2d cos θ

)] 1
2

.

So that the potential is:

V ′′
0 (r, θ) = − qR

4πε0

{
1

[r2d2 + R4 + 2rR2d cos θ] 1
2

− 1

[r2d2 + R4 − 2rR2d cos θ] 1
2

}

V ′′
0 (r, θ) = − qR

4πε0dr

⎧
⎪⎪⎨

⎪⎪⎩

1
[
1 + R4

r2d2
+ 2R2

rd cos θ
] 1

2

− 1
[
1 + R4

r2d2
− 2R2

rd cos θ
] 1

2

⎫
⎪⎪⎬

⎪⎪⎭
.

In the limit d → ∞, ( Rd ) becomes infinitesimal and the potential expanded in power series is:

V ′′
0 (r, θ) = − qR

4πε0dr

{
1 − 1

2

[
R4

r2d2
+ 2R2

rd
cos θ

]
− 1 + 1

2

[
R4

r2d2
− 2R2

rd
cos θ

]}

that can be simplified in the form:

V ′′
0 (r, θ) = q

2πε0

{
R3

d2r2
cos θ

}
= E0

R3

r2
cos θ

where we have used the q found before.
The total potential at the point P is:

V (r, θ) = V ′ + V ′′ = −E0

(
r − R3

r2

)
cos θ .
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E0θ = −1

r

∂V

∂θ
= −E0

(
1 − R3

r3

)
sin θ

E0ϕ = − 1

r sin θ

∂V

∂ϕ
= 0 .

For r → R E0θ = 0 and only the radial component E0r = 3E0 cos θ is non null,
as expected for an electric field normal to the conductive spherical surface. From this
component and the Coulomb theorem, we get the density of the induced charge on
the spherical surface:

σ(θ) = 3 ε0 E0 cos θ .

3.5 A Charged Wire Near a Cylindrical Conductor

An infinite wire, with linear charge density λ is placed, at a distance d, parallel to
the axis of an infinite charged cylindrical conductor of radius R < d with a linear
density −λ.

We can imagine to write the potential outside the cylinder as the superposition of
the potentials from the real wire and from an image wire, with charge −λ, located
at a distance x < R from the axis of the cylinder, as in Fig. 3.4. The potentials V (r1)
and V (r2) due to the two wires with respect to the potential, that we can assume zero,
on a line4 at the same distance r0 from both wires, are:

V (r1) = − λ

2πε0
log

r1
r0

V (r2) = λ

2πε0
log

r2
r0

where r21 = r2 + d2 − 2rd cos θ and r22 = r2 + x2 − 2rx cos θ .

At the point r(r, θ) the potential is:

V (r, θ) = V (r1) + V (r2) = − λ

4πε0
log

r21
r22

= − λ

2πε0
log

r1
r2

. (3.4)

The lateral surface of the cylinder has to be equipotential and the electric field has
to be normal to this surface, that is with a radial direction with respect to the axis of
the cylinder. This means that the component Eθ (R, θ) has to be zero for any value
of θ .

4This line can be any line, parallel to the two wires, that lies on the plane with respect to which the
two wires are symmetrical.
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Fig. 3.4 Charged wire near a cylindrical conductor

The component Eθ (r, θ) is:

Eθ (r, θ) = −1

r

∂V

∂θ
= λ

4πε0

[
d sin θ

r2 + d2 − 2rd cos θ
− x sin θ

r2 + x2 − 2rx cos θ

]

and in the limit r → R, from Eθ (R, θ) = 0 we get the equation:

[R2 + x2]d − [R2 + d2]x = 0

with the solutions:

x = d (a solution of no interest) and x = R2

d
.

By substituting in (3.4) this last value for x, we get the potential of the cylinder:

V (R) = − λ

4πε0
log

r21
r22

= − λ

2πε0
log

d

R
.

We have to underline that as a general result the two wires with opposite charge
density produce cylindrical equipotential surfaces.

Problems

3.1 For a point charge q at distance d from the infinite conductive plane at ground,
find: (a) the force acting on the charge by integrating the force from the distribution
σ(r) given by (3.2) and compare the result with (3.3); (b) the work tomove the charge
q to infinity and compare this work with the potential energy between the charge q
and its image charge.
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Fig. 3.5 Figure a for the
Problem 2, b for 3, c for 9,
d for 10, e for 11

3.2 Determine the image charges useful to describe the electrostatic field for a point
charge q near the corner between two perpendicular conductive planes at ground (see
Fig. 3.5a). Write the potential, the field and the force acting on the charge.

3.3 A hemispherical bump, of radius R, is present on an infinite conductive plane
at ground. A charge q is located outside of the hemisphere as in Fig. 3.5b. Find the
charge images to describe the field.

3.4 Consider a small dipole at distance d froman infinite conductive plane at ground.
Find the force acting on the dipole. Determine the force when the dipole is parallel
or normal oriented relative to the plane. Give also the torque acting on the dipole at
a fixed distance from the plane.

3.5 Consider a point charge q at distance a from the center of thin conductive
spherical surface, of inner radius R > a, at ground. Calculate the potential and the
induced charge density on the inner surface of the conductor.

3.6 Achargedwire, with linear density λ, is parallel to a conductive grounded plane.
Consider how to write the potential in the half space with the wire.

3.7 An infinite wire with linear charge density λ, is parallel to the axis of a conduc-
tive cylindrical surface of infinite length, with linear charge −λ. The radius of the
conductor is R and the distance of the wire from its axis is a < R. Say how to find
the electric field inside and outside of the cylindrical surface.

3.8 An infinite uncharged conductive cylinder is located in a uniform electric field
E0 perpendicular to its axis. Write the electric field and the charge density induced
on the cylinder.
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3.9 Find the capacitance per unit length of a capacitor formed by two infinite cylin-
drical conductors of radius Rwith parallel axes at distance c (c > 2R) as in Fig. 3.5c.
The configuration studied here is a particular case of the next problem.
Result:

C = πε0

log c+√
c2−4R2

2R

= 2πε0

log
(
ξ + √

ξ 2 − 1
) = 2πε0

acosh ξ

where: ξ =
(

c2

2R2
− 1

)
. Note that: acosh ξ = ln

(
ξ +

√
ξ 2 − 1

)
.

3.10 Determine the capacitance of two conductive cylinders of radii a and b with
their parallel axes at a distance c > a + b (see Fig. 3.5d).
Result:

C = 2πε0

acosh ξ
where ξ = c2 − a2 − b2

2ab
.

3.11 Calculate the capacitance of a condenser with the two cylindrical electrodes
of radii a and b with parallel axes at a distance c < |a− b| (see Fig. 3.5e). Note that
c = 0 for the usual coaxial cylindrical condenser.
Result:

C = 2πε0

acosh ξ
where ξ = a2 + b2 − c2

2ab
.

Solutions

3.1 (a) We have to consider only the component of the force along the direction
normal to the plane. An elementary ring of radius between r and r + dr attracts the
charge with a force:

dF = 1

4πε0

qσ(r)2πrdr

(d2 + r2)

d

(d2 + r2)
1
2

.

By using the expression (3.2) for σ(r) and integrating on the whole plane we find:

F = − q2

4πε0

d2

2

∫ ∞

0

dr2

(r2 + d2)3
= − 1

4πε0

q2

(2d)2

that is the force (3.3) between the charge q and its image charge.
(b) to move the charge to an infinite distance we have to balance with an external
force Fext the force F applied on the charge by the conductive plane. The work is:

W =
∫ ∞

d
Fextdr = q2

4πε0

∫ ∞

d

1

(2x)2
dx = 1

2

1

4πε0

q2

(2d)
.
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Fig. 3.6 Point charge near a
conductive corner

This energy is one half the interaction energy between the charge and its image
charge. As pointed out in the text the electrostatic energy for the charge near the
conductive plane is one half of that of two opposite charge at the same distance.

3.2 Reminding the case of a point charge near a conductive plane, we can realize
that by setting three image charges as in Fig. 3.6, the orthogonal planes are at a
null potential. Then the conductive planes which form the corner are at ground. The
potential outside of the conductive corner is the sum of the potentials of the four
point charges. The field is the vector sum of the fields of the four charges and the
force on the charge q is the vector sum of the forces from the three images charges.

3.3 For a point charge near a conductive sphere, adding a image charge q′ =
−q(R/d), at distance R2/d from the center, between the charge q and the center
of the spherical surface, the potential on the sphere is null. If we add this charge the
hemispherical bump that lies on the sphere is at ground. Adding two more image
charges q′′ = −q and q′′′ = −q′ symmetric to q and q′ relative to the plane, both the
bump and the plane are at a null potential as demanded in the problem (see Fig. 3.7).

3.4 We have to introduce an image dipole symmetric to the dipole with respect to
the plane as in Fig. 3.8. The two dipoles are coplanar and their interaction energy
was found in Problem 2.7. Now θ ′ = −θ , p = pimag and r = 2d so the interaction
energy is:

U = 1

4πε0

p2

(2d)3

[
cos 2θ − 3 cos2 θ

] = − 1

4πε0

p2

(2d)3

[
1 + cos2 θ

]
.

The force on the dipole is:

F = − ∂U

∂(2d)
= − 3p2

4πε0

[
1 + cos2 θ

(2d)4

]

http://dx.doi.org/10.1007/978-3-319-39474-9_2
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Fig. 3.7 Hemispherical
bump on a conductive plane

Fig. 3.8 Electric dipole in
front of a grounded
conductive plane

and the torque:

M = −∂U

∂θ
= − 1

4πε0

p2

(2d)4
sin 2θ

M < 0 for 0 < θ < π/2 and M > 0 for π/2 < θ < π .
For the dipole oriented parallel and normal to the plane the attractive forces are:

Fparallel = − 3

4πε0

p2

(2d)4
n̂ Fnormal = − 6

4πε0

p2

(2d)4
n̂

where n̂ is the normal versor out of the plane.
The force between two dipoles was found also in Problem 2.6. Here the image dipole
pimag replaces p1, the real dipole p is p2 and r, going from pimag to p, has length 2d.
So the force on the dipole is:

F = 1

4πε0

[
3
(pimag · p)r + p(pimag · r) + (pimag · r)p

r5
− 15

(pimag · r)(p · r)r
r7

]
.

http://dx.doi.org/10.1007/978-3-319-39474-9_2
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From θ ′ = −θ , p = pimag and noting that:

pimag p r cos θ + pimag p r cos θ ′ = 2 pimag p r cos2 θ = 2 p2 r cos2 θ

the force acting on the dipole becomes:

F = p2

4πε0

[
3 cos 2θ − 9 cos2 θ

(2d)4

]
n̂ = − 3p2

4πε0

[
1 + cos2 θ

(2d)4

]
n̂ .

3.5 This problem is the inverse of that with a point charge q at distance d from the
center of a conductive sphere. There, to get a null potential on the spherical surface,
we have added an image charge q′ = −qR/d inside the sphere at distance a = R2/d
from the center. It is evident that if a charge q is inside the sphere, at distance a from
the center, we can get the spherical surface at null potential adding outside of the
sphere an image charge q∗ = −qd/R at distance d = R2/a from the center of the
sphere.
The inner charge q induces a charge −q on the inner surface of the conductor. For an
uncharged conductor, a charge q has to be uniformly distributed on the outer surface
of the conductor. Therefore the potential of the conductor is:

V = 1

4πε0

q

R
.

For the Coulomb’s theorem the charge density induced on the inner surface, in a
point with the radius at an angle θ with respect to the line from the center of the
conductor to the charge q, is:

σ(θ) = −ε0Er = − q

4π

R2 − a2

R
(
R2 + a2 − 2Ra cos θ

) 3
2

(3.5)

where Er is the radial component of the sum of the fields from the charges q and q∗
on the inner surface. The charge densities at θ = 0 and θ = π are:

σ(θ = 0) = − q

4π

R + a

R (R − a)2
σ(θ = π) = − q

4π

R − a

R (R + a)2
.

It is easy to verify that the integral of the charge density (3.5) is equal to total induced
charge −q on the inner surface.
Outside of the spherical surface, at a distance r > R from the center, the potential is
generated by the charge q uniformly distributed on the outer surface:

V = 1

4πε0

q

r
.
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3.6 The problem is a simple extension of the point charge and the conductive plane.
An image wire with charge density λ′ = −λ can be set symmetric to the real wire
with respect to the plane. The potential and the field in the half space with the wire
are given by the superposition of the potentials and the fields of the two wires.

3.7 For a charged wire with linear density λ at distance d > R from the axis of
a conductive cylinder, the surface of the cylinder is equipotential if we place an
image wire, with opposite linear charge, inside the cylinder at distance a = R2/d
from the axis. From this result we can infer that for a charged wire with density λ at
distance a < R from the axis of the cylindrical surface, we can write the field inside
the cylindrical surface by setting an image wire with charge density −λ at distance
d = R2/a > R from the axis.
The charge per unit length on the inner surface of the cylindrical surface is −λ.
Its distribution can be found from the component of the electric field normal to the
surface. On the outer surface of the cylindrical conductor the charge is null, thus also
the electric field is null outside the conductor.

3.8 The problem is similar to that of conductive sphere in a uniforme electric field. If
we dispose the axis of the cylinder on the z axis, the field E0 = E0x̂ can be produced
by two wires on the xz plane, parallel to the axis of the cylinder: one with density λ

at x = −d and the other with density −λ at x = d. It easy to show that in the limit
d → ∞ the two wires produce nearby the z axis a uniform electric field:

E0 = λ

πε0d
x̂ . (3.6)

The potential and the cylindrical components of this field are:

V = −E0x = −E0r cos θ E0r = E0 cos θ E0θ = −E0 sin θ Ez = 0 .

To have an equipotential cylindrical surface, from the result for a charged wire near a
conductive cylinder, we have to add two image wires: one with charge density −λ at
x = −R2/d and the other with charge density λ at x = R2/d. In the limit d → ∞ the
distance between the image wires become infinitesimal and for r > R they produce
a potential:

V ′(r, θ) = −λ

2πε0
log

(
1 − 2x

r
cos θ

)
� λ

πε0

x

r
cos θ = λ

πε0d

R2

r
cos θ (3.7)

to which is associated a field E′ with components:

E′
r = λ

πε0d

R2

r2
cos θ E′

θ = λ

πε0d

R2

r2
sin θ.
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By substituting in these two expressions the density λ found from the relation (3.6),
for r > R the total field Etot = E0 + E′ has components:

Etotr = E0

(
1 + R2

r2

)
cos θ Etotθ = −E0

(
1 − R2

r2

)
sin θ .

For r = R the component Etotθ is zero, as expected for the cylindrical equipotential
surface, and from the value of Etotr the Coulomb’s theorem gives the charge density
induced on the conductive cylinder:

σ = 2ε0E0 cos θ .

3.9 We apply the solution for a charged wire parallel to the axis of a conductive
cylinder. Considering the Fig. 3.9, if the wire f1, with linear charge density λ, is
at distance d from the axis of the cylinder C2, to get the cylindrical surface of C2

equipotential we have to introduce an image wire f2 with charge−λ, at distance R2/d
from the axis of C2. The potential of C2 is:

V2 = − λ

2πε0
log

d

R
.

Symmetrically to have the equipotential surface of C1 in presence of the wire f2 with
charge density −λ at distance d from its axis, we have to add just the image wire f1
with charge density λ at distance R2/d from the axis of C1. The potential of C1 is
V1 = −V2 and the potential difference between the two cylindrical surfaces is:

ΔV = V1 − V2 = λ

πε0
log

d

R
.

Fig. 3.9 Conductive cylinders of same radius with parallel axis
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If the distance of the axis of the cylinders is c, for the distance d we can write the
relation:

c = d + R2

d
and we get: d = c + √

c2 − 4R2

2

thus we get:

ΔV = λ

πε0
log

c + √
c2 − 4R2

2R

and the capacitance:

C = λ

ΔV
= πε0

log c+√
c2−4R2

2R

We can write ΔV also in the form:

ΔV = V1 − V2 = λ

2πε0
log

(
ξ +

√
ξ 2 − 1

)
where: ξ = c2

2R2
− 1.

and the capacitance per unit length:

C = λ

ΔV
= 2πε0

log
(
ξ + √

ξ 2 − 1
) = 2πε0

acosh ξ
.

3.10 We have to find the relative position of two parallel wires fa, with charge
density−λ, and fb,with chargedensityλ,whichproduce twocylindrical equipotential
surfaces Ca and Cb with radii a and b and with their axes at distance c. Looking at
Fig. 3.10: if the wire fb is at distance da from the axis of Ca, the wire fa has to be
at distance a2/da from the axis of Ca. Symmetrically if the wire fa is at distance db

Fig. 3.10 Conductive cylinders of different radii with parallel axis at distance c > a + b
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from the axis of Cb, the wire fb has to be at distance b2/db from the axis of Cb. The
potentials of the two cylindrical surfaces are:

Va = − λ

2πε0
log

da
a

Vb = λ

2πε0
log

db
b

.

We have to determine da and db. If d is the distance of the two wire, we can write
the system: ⎧

⎪⎪⎨

⎪⎪⎩

d + a2

da
+ b2

db
= c

d = da − a2

da

d = db − b2

db

and solving we find:

db = c2 + b2 − a2 + √
(c2 − a2 − b2)2 − 4a2b2

2c

da = c2 + a2 − b2 + √
(c2 − a2 − b2)2 − 4a2b2

2c
.

The potential difference becomes:

Vb − Va = λ

2πε0
log

(
db
b

· da
a

)
= λ

2πε0
log

c2 − a2 − b2 +
√

(c2 − a2 − b2)2 − 4a2b2

2ab

that can be rewritten as:

Vb − Va = λ

2πε0
log

(
ξ +

√
ξ 2 − 1

)
= λ

2πε0
acosh ξ where ξ = c2 − a2 − b2

2ab
.

Finally the capacitance per unit length is:

C = 2πε0

log
(
ξ + √

ξ 2 − 1
) = 2πε0

acosh ξ
.

If the two radii are equal (a = b) this result becomes that of the previous problem.

3.11 We have to find two parallel opposite charged wires that produce the two
equipotential cylindrical surfaces Ca and Cb, inside each other, with radii a and b
(a > b) and their axes at distance c < a − b. A charged wire f1 has to be located
inside the inner cylinder and a wire f2 outside the outer one as in Fig. 3.11. To get Ca

equipotential f1 and f2 have to be respectively at distance a2/da and da from the axis
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Fig. 3.11 Cylindrical conductors of radii a and b, inside each other, with distance of the axis
c < |a − b|

of Ca. At the same time to have equipotential Cb the two wires have to be distant
b2/db and db from the axis of Cb. To find da and db we can write the system:

⎧
⎨

⎩
c = a2

da
− b2

db
= da − db

da − a2

da
= db − b2

db

with solutions:

da = a2 − b2 + c2 + √
(a2 + b2 − c2)2 − 4a2b2

2c

db = a2 − b2 − c2 + √
(a2 + b2 − c2)2 − 4a2b2

2c
.

The potentials of Ca and Cb are:

Va = − λ

2πε0
log

da
a

Vb = − λ

2πε0
log

db
b

and the difference is:

Va −Vb = λ

2πε0
log

a

da

db
b

= λ

2πε0
log

a2 + b2 − c2 + √
(a2 + b2 − c2)2 − 4a2b2

2ab
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that can be written in the form:

Va − Vb = λ

2πε0
log

(
ξ +

√
ξ 2 − 1

)
where: ξ = a2 + b2 − c2

2ab
.

The capacitance per unit length of the two cylindrical conductors is:

C = λ

ΔV
= 2πε0

log
(
ξ + √

ξ 2 − 1
) = 2πε0

acosh ξ
. (3.8)

For two cylindrical conductors of different radius (a 	= b) which are coaxial
(c = 0) the capacitance (3.8) becomes that of a simple cylindrical capacitor
C = 2πε0/ log(a/b).



Chapter 4
Image Charges in Dielectrics

The method of image charges is extended to systems with dielectric media. In some
problems it is easy to find the solution for the Poisson equation with the boundary
conditions on the fields derived from the constitutive relations. First we consider a
point charge near a planar surface separating two dielectric media. Then we study
the case of a dielectric sphere embedded in a different dielectric where a uniform
electric field is present. More examples are examined in the problems at the end of
the Chapter.

4.1 Electrostatics in Dielectric Media

The field in an isotropic and uniform dielectric is provided by the solution of the
Poisson equation provided that the permittivity ε0 of the empty space is replaced
with the permittivity ε of the medium:

ΔV (x, y, z) = −ρ(x, y, z)

ε
.

The solutions are those for the empty space but with the potential and the fields
reduced by the factor κ = ε/ε0, the dielectric constant of the medium.

In the presence of different dielectric media the problem becomes more compli-
cated: the fields E and D are not continuous at the interfaces between the media,
so that the fields are not differentiable and the Poisson equation cannot be written
across these surfaces. The recipe is to solve the Poisson equation inside each of the
dielectrics (i, j, ...) with the boundary conditions on the fields E(i) and D(i) derived
by the Maxwell equations and the relationsD(i) = ε(i)E(i). These are that the parallel
component of the electric field E and the normal component of the displacement
field D are continuous at the (uncharged) interfaces between the media i and j:
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E(i)
‖ = E(j)

‖ D(i)
⊥ = D(j)

⊥ (4.1)

In this chapter we apply the method of image charges in presence of two dielectric
media1 in order to satisfy the Poisson equation with the boundary conditions.

4.2 Point Charge Near the Plane Separating Two
Dielectric Media

A point charge q is located at distance d apart from a plane separating two dielectric
media. The z axis can be fixed normal to the plane placed at z = 0 and passing on
the charge. The dielectric constants are κ1 for z > 0 and κ2 for z < 0. We have to
find a solution for the potential in each of the two media requiring that the boundary
conditions (4.1) are satisfied on the plane of separation. The solution seen for a point
charge in front of a conductive plane, suggests to write the potential in the semispace
z > 0 assuming all of the space of constant κ1 and adding2 an image charge q′ on the
z axis at z = −d (see Fig. 4.1). For the potential in the semispace z < 0 we consider
all the space of constant κ2 and we position only an image charge q′′ at z = d.

For z > 0 we have to find the solution of the Poisson equation: while the potential
due to q is the particular solution, the potential from the charge q′ is a solution of
the homogeneous (Laplace) equation. For z < 0 we need the solution of the Laplace
equation and this can be given by potential of the charge q′′ at z > 0.

For a point P at z > 0 and at a distance r from the z axis, the potential is:

V1 = 1

4πε1

(
q

R1
+ q′

R2

)

where R1 = [
(z − d)2 + r2

] 1
2 and R2 = [

(z + d)2 + r2
] 1

2 .

The cylindrical components z and r of the electric field are:

E(1)
z = −∂V1

∂z
= 1

4πε1

[
q(z − d)

R3
1

+ q′(z + d)

R3
2

]

E(1)
r = −∂V1

∂r
= 1

4πε1

[
qr

R3
1

+ q′r
R3
2

]
.

1For the image charges method in dielectrics media see also: J.D.Jackson, Classical Electrody-
namics, cited, Sect. 4.4; L.D.Landau–E.M. Lifšits, Electrodynamics of continuous media, Chap. II,
Sect. 7, with problems.
2This choice includes the possibility of the same dielectric filling all the space. In fact in this case
the charges have to be q′ = 0 and q′′ = q, as we will find in the general solution for q′ and q′′.
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Fig. 4.1 Image charges for a point charge q in front of a plane separating two dielectric media. For
the field in the semispace z > 0 an image charge q′ is located at z = −d in a space of dielectric ε1;
for the field in z < 0 only an image charge q′′ at z = d in a space of dielectric ε2

For a point P at z < 0 the potential is:

V2 = 1

4πε2

(
q′′

R3

)

with R3 = [
(z − d)2 + r2

] 1
2 and the components of the field are:

E(2)
z = −∂V2

∂z
= 1

4πε2

q′′(z − d)

R3
3

E(2)
r = −∂V2

∂r
= 1

4πε2

q′′r
R3
3

.
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In every point of the plane separating the two dielectric media, the fields have to
satisfy the boundary relations (4.1) E(1)

‖ = E(2)
‖ and D(1)

⊥ = D(2)
⊥ that in this problem

become E(1)
r = E(2)

r and ε1E(1)
z = ε2E(2)

z .
For z = 0 R1 = R2 = R3, and from the previous relations we find:

q + q′

ε1
= q′′

ε2
q − q′ = q′′

and finally the values for the image charges:

q′ = −q
ε2 − ε1

ε2 + ε1
q′′ = q

2ε2
ε2 + ε1

.

The field lines for ε2 > ε1 and ε2 < ε1 are sketched in Fig. 4.2. It is easy to verify
from the found components of the fields E and D, the known law of refraction for
the field lines:

tan θ1

tan θ2
= ε1

ε2

where θ1 and θ2 are the angles between the fields and the normal to the separating
plane.

For ε2 = ε1 the same dielectric medium is present in the two semispaces. The
point charge is embedded in a dielectric that fills all the space and from the previous
relations we have: q′ = 0 and q′′ = q as expected (see the footnote in a previous
page).

The polarization surface charge density on the two sides of the plane between the
two media, is found by the relation σP = P · n̂ where P = ε0(κ − 1)E is the induced
polarization and n̂ is the versor, out of the dielectric, normal to the plane:

σ
(1)
P = −ε0(κ1 − 1)E(1)

z = qd

2πR3

ε1 − ε0

ε1

ε2

ε2 + ε1

σ
(2)
P = ε0(κ2 − 1)E(2)

z = − qd

2πR3

ε2 − ε0

ε2 + ε1

where R = R1 = R2 = R3.
The total surface polarization charge density and the total polarization charge are:

σP = qd

2πR3

ε0

ε1

ε1 − ε2

ε1 + ε2
Qpol = q

ε0

ε1

ε1 − ε2

ε2 + ε1

and are � 0 for ε1 � ε2.
For ε2 � ε1 the dielectric at z < 0 becomes a conductor and from the previous

formulas q′ = −q, the components of the electric field E(2) go to zero and the field
lines are normal to the plane of separation (E(1)

r = 0 and θ1 = 0).
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Fig. 4.2 Field lines for a
point charge in front of a
plane separating two
dielectric media: top for
ε2 > ε1, bottom for ε2 < ε1

The force on the charge q due to the polarization charge on the plane at z = 0 can
be written as the force between the charge q and the image charge q′ in the dielectric
with ε1:

F = − 1

4πε1

q2

(2d)2

ε2 − ε1

ε2 + ε1
.

This force is attractive if ε2 > ε1 and repulsive if ε2 < ε1.

4.3 Dielectric Sphere in an External Uniform Electric Field

A sphere of dielectric with permittivity ε2, of radius R, is embedded in a dielectric
medium with permittivity ε1, where it is already present an external uniform electric
field E = Eẑ. We suppose, as proved correct a posteriori by the solution, that inside
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the sphere the electric field E′ is uniform and with the same direction of the external
field E, while outside the field is the superposition of the uniform field E and of a
field produced by the polarization of the dielectric media. Furthermore we assume
this last field is that produced by an image electric dipole p = pẑ placed at the center
of the sphere.

We position the center of the sphere in the origin of the frame. The potential
associated to the external field E is:

Ve = −Ez = −E r cos θ

and, in spherical coordinates, the net potential outside the sphere is:

V (r, θ) = −E r cos θ + 1

4πε1

p cos θ

r2
. (4.2)

with p to be determined. The components of the field are:

Er = −∂V

∂r
= E cos θ + 1

2πε1

p cos θ

r3
Eθ = −1

r

∂V

∂θ
= −E sin θ + p sin θ

4πε1r3
.

(4.3)

Inside the sphere the potential is:

V ′ = −E′ z = −E′ r cos θ

and the components of the field are:

E′
r = −∂V ′

∂r
= E′ cos θ E′

θ = −1

r

∂V ′

∂θ
= −E′ sin θ .

From the boundary conditions (4.1) for the fields E and D on the surface of the
sphere (at r = R), we get two independent equations:

E‖ = E′
‖ =⇒ Eθ = E′

θ → E − 1

4πε1

p

R3
= E′

D⊥ = D′
⊥ =⇒ ε1Er = ε2E

′
r → ε1E + 1

2π

p

R3
= ε2E

′

and solving the system we find:

E′ = 3ε1
2ε1 + ε2

E p = ε2 − ε1

2ε1 + ε2
ε1 4πR

3 E . (4.4)

If ε2 > ε1 (see Fig. 4.3a): p > 0, the dipole has the same orientation of E; inside
the sphere the field is E′ < E, that is a lower field due to the field EP produced by
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Fig. 4.3 Charge of polarization, image dipole p, E′ internal electric field, EP field from the polar-
ization charges in a dielectric sphere of permittivity ε2 embedded in a dielectric of permittivity ε1
with an external electric field E: a ε2 > ε1, b ε2 < ε1

the polarization charges, opposite to E. Outside the sphere, the field lines tend to
converge around the sphere.

For ε1 > ε2 (see Fig. 4.3b): p < 0, the dipole is opposite to E; inside the sphere
E′ > E, the strength of the field is larger due to the field EP, from the polarization
charges, that adds to the field E; outside the sphere the field lines tend to diverge
from the sphere.

If ε1 = ε2, the same dielectric fills the space, and the relations (4.4) clearly give
p = 0 and E′ = E.

Replacing the values of p and E′ from (4.4) in (4.2) and (4.3) we get the potential
and the field components outside the sphere:

V (r, θ) = −
(
1 + ε1 − ε2

2ε1 + ε2
· R

3

r3

)
E r cos θ

Er(r, θ) =
(
1 + 2

ε2 − ε1

2ε1 + ε2
· R

3

r3

)
E cos θ

Eθ (r, θ) = −
(
1 + ε1 − ε2

2ε1 + ε2
· R

3

r3

)
E sin θ.
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At the surface of the sphere (r → R) the potential is:

V (R, θ) = − 3ε1
2ε1 + ε2

E R cos θ

and the components of the electric field:

Er(R, θ) =
(

3ε2
2ε1 + ε2

)
E cos θ Eθ (R, θ) = − 3ε1

2ε1 + ε2
E sin θ .

The total charge density of polarization on the surface is:

σp = 3ε0
ε2 − ε1

2ε1 + ε2
E cos θ = σ cos θ where σ = 3ε0

ε2 − ε1

2ε1 + ε2
E.

For a dielectric sphere of permittivity ε placed in an external field E0 in vacuum,
we substitute ε2 = ε, ε1 = ε0 and we get:

p = ε − ε0

2ε0 + ε
ε04πR

3E0 > 0 E′ = 3ε0
2ε0 + ε

E0 < E0

σp = σ cos θ σ = 3ε0
ε − ε0

2ε0 + ε
E0 > 0 .

For a spherical cavity in a dielectric with permittivity ε in an external field E,
ε1 = ε, ε2 = ε0 and we find:

p = ε0 − ε

2ε + ε0
ε4πR3E < 0 E′ = 3ε

2ε + ε0
E > E

σp = σ cos θ σ = 3ε0
ε0 − ε

2ε + ε0
E < 0 .

Problems

4.1 Determine the electric field produced by a charged infinite wire parallel to the
plane separating two different dielectric media. Write the force acting on the wire.

4.2 Consider the problem of an infinite wire with linear charge density λ in a dielec-
tric of permittivity ε1 parallel, at distance d, to the axis of a cylinder of infinite length
and radius R < d, composed by a medium of permittivity ε2. Find the force acting
on the wire.
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4.3 Find the field for an infinite wire with linear charge density λ, placed at distance
h < R parallel to the axis of a infinite long cylinder, of radius R and permittivity
ε2, embedded in an other medium with permittivity ε1. Give the force acting on the
wire.

4.4 Study the case of a cylinder of permittivity ε2, embedded in a medium of per-
mittivity ε1, where in its absence an electric field is present that is uniform and with
direction normal to the axis of the cylinder. Assume, as seen for the dielectric sphere,
that the field inside the cylinder is uniform and oriented as the external field at large
distance.

Solutions

4.1 We say z = 0 the plane separating the dielectric with ε1 in the semispace z > 0
from that with ε2 at z < 0. Then we position the infinite wire f with linear charge
density λ at distance d on the line (z = d, x = 0) as shown in Fig. 4.4. From the
solution for a point charge near the plane of separation, we can infer to write the
field in the medium with ε1 as the superposition of the field from the wire f and of
a field due to an image wire f1 with linear charge density λ1, located symmetric to
f with respect to the plane. Furthermore we write the field in the other dielectric (at
z < 0) as produced by an image wire f2 with density λ2 located at z = d in the same
position of f .

The potential at a point P in the semispace z > 0 depends on its distances r and r1
from the wires f and f13 and is:

V (P) = − λ

2πε1
log

r

r0
− λ1

2πε1
log

r1
r0

= − λ

4πε1
log

(z − d)2 + x2

r20
− λ1

4πε1
log

(z + d)2 + x2

r20
.

The components of the electric field at z > 0 are:

E(1)
x = −∂V

∂x
= λ

2πε1

x

(z − d)2 + x2
+ λ1

2πε1

x

(z + d)2 + x2
E(1)
y = −∂V

∂y
= 0

E(1)
z = −∂V

∂z
= λ

2πε1

(z − d)

(z − d)2 + x2
+ λ1

2πε1

(z + d)

(z + d)2 + x2
.

For a point P in the semispace z < 0 the potential is:

V ′ = − λ2

2πε2
log

r2
r0

= − λ2

4πε2
log

(z − d)2 + x2

r20

3We can assume a reference potential at a point on the plane so that the distance r0 is the same for
the two wires.
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Fig. 4.4 Charged wire near the plane, at z = 0, separating two dielectric media. At top the wire f
with charge density λ and the image wire f1 with charge density λ1 for the field in the semispace
z > 0; at bottom image wire f2 with density charge λ2 for the field in the semispace z < 0

with r2 the distance of P from the wire f2. The components of the field are:

E(2)
x = −∂V ′

∂x
= λ2

2πε2

r

(z − d)2 + x2
E(2)
y = −∂V ′

∂y
= 0

E(2)
z = −∂V ′

∂z
= λ2

2πε2

(z − d)

(z − d)2 + x2
.

The boundary conditions for the fieldsE andD on the plane give the relations between
the charge densities:

E(1)
‖ = E(2)

‖ =⇒ E(1)
x = E(2)

x → λ + λ1

ε1
= λ2

ε2

D(1)
⊥ = D(2)

⊥ =⇒ ε1E
(1)
z = ε2E

(2)
z → λ − λ1 = λ2
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and from these, the values for λ1 and λ2 are:

λ1 = ε1 − ε2

ε1 + ε2
λ λ2 = 2ε2

ε1 + ε2
λ.

For the same dielectric filling all the space ε1 = ε2 thus λ2 = λ and λ1 = 0.
The force per unit length on the wire due to the polarization is equal to the force

from the wire f1:

F = λ2

2πε1

1

2d

ε1 − ε2

ε1 + ε2

attractive for ε1 < ε2.

4.2 We locate the axis of the cylinder on the z axis and the wire f with linear charge
density λ at distance d from the axis. The solution for the dielectric sphere in an
external uniform field suggests to take into account the effect of the polarization
for r > R with two image wires f1 and f2, parallel to the z axis, respectively with
charge densities λ1 and λ2. The former is located between the wire f and the axis at
a distance x < R from the axis, the latter on the axis of the cylinder. To describe the
field inside the cylinder we can position an image wire f3 with charge density λ3 in
the same place of the wire f . See Fig. 4.5.
The potential at a distance r > R from the axis is:

V = − 1

4πε1

[
λ log

(
r2 + d2 − 2rd cos θ

r20

)
+ λ1 log

(
r2 + x2 − 2rx cos θ

r20

)
+ λ2 log

r2

r20

]

and inside the cylinder is:

V ′ = − 1

4πε2

[
λ3 log

(
r2 + d2 − 2rd cos θ

r20

)]
.

The electric field components outside are:

Er = 1

2πε1

[
λ

r − d cos θ

r2 + d2 − 2rd cos θ
+ λ1

r − x cos θ

r2 + x2 − 2rx cos θ
+ λ2

1

r

]

Eθ = 1

2πε1

[
λ

d sin θ

r2 + d2 − 2rd cos θ
+ λ1

x sin θ

r2 + x2 − 2rx cos θ

]

and inside:

E′
r = 1

2πε2

[
λ3

r − d cos θ

r2 + d2 − 2rd cos θ

]
E′

θ = 1

2πε2

[
λ3

d sin θ

r2 + d2 − 2rd cos θ

]
.
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Fig. 4.5 Wire f with linear charge density λ external to a cylinder of dielectric permittivity ε2
embedded in a medium of permittivity ε1: top wire f and image wires f1 and f2 for the field outside
the cylinders; bottom image wire f3 for the field inside the cylinder

From the continuity of the tangent component of the electric field: Eθ = E′
θ on the

surface of the cylinder for any value of θ , we have:

x = R2

d
and

λ

ε1
− λ3

ε2
+ λ2

ε1
= 0 .
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From the continuity of the normal component of the displacement field: Dr =
D′

r → ε1Er = ε2E′
r for any value of θ , and from the previous relations, finally

we get:

λ1 = ε1 − ε2

ε2 + ε1
λ λ2 = −λ1 λ3 = 2ε2

ε2 + ε1
λ .

If ε1 = ε2: λ3 = λ and λ1 = λ2 = 0 .
The force per unit length on the wire is the sum of the forces exerted by the wires f1
and f2:

F = λ

2πε1

(
λ1

d − x
+ λ2

d

)
= λ2

2πε1

ε1 − ε2

ε1 + ε2

R2

d(d2 − R2)

repulsive for ε1 > ε2.

4.3 We locate the axis of the cylinder on the z axis. The result of the previous problem
suggests to write the field inside the cylinder (at r < R) with an image wire f1 with
charge density λ1 at distance d > R from the axis to be determined (see Fig. 4.6).
For the field outside we can introduce an image wire f2 with charge density λ2 in the
position of the wire f and a second image wire f3 with charge density λ3 on the axis
of the cylinder.
The potential inside the cylinder (at r < R) is:

V = − 1

4πε2

[
λ log

(
r2 + h2 − 2rh cos θ

r20

)
+ λ1 log

(
r2 + d2 − 2rd cos θ

r20

)]

and outside (r > R):

V ′ = − 1

4πε1

[
λ2 log

(
r2 + h2 − 2hd cos θ

r20

)
+ λ3 log

r2

r20
+

]
.

The components of the electric field inside are:

Er = 1

2πε2

[
λ

r − h cos θ

r2 + h2 − 2rh cos θ
+ λ1

r − d cos θ

r2 + d2 − 2rd cos θ

]

Eθ = 1

2πε2

[
λ

h sin θ

r2 + h2 − 2rh cos θ
+ λ1

d sin θ

r2 + d2 − 2rd cos θ

]

and outside:

E′
r = 1

2πε1

[
λ2

r − h cos θ

r2 + h2 − 2rh cos θ
+ λ3

1

r

]
E′

θ = 1

2πε1

[
λ2

d sin θ

r2 + h2 − 2rh cos θ

]
.

From the continuity of the tangent component of the electric field Eθ = E′
θ on the

lateral surface for any value of θ we find:



68 4 Image Charges in Dielectrics

Fig. 4.6 Wire f with linear charge density λ inside a cylinder of permittivity ε2 embedded in a
medium of permittivity ε1: top wire f and image wire f1 for the field inside the cylinder; bottom
image wires f2 and f3 for the field outside

d = R2

h
and

λ

ε2
− λ2

ε1
+ λ1

ε2
= 0.

From these relations and from the continuity of the normal component of the dis-
placement field for any value of θ : Dr = D′

r → ε2Er = ε1E′
r we find:

λ2 = 2ε1
ε1 + ε2

λ λ1 = λ3 = ε2 − ε1

ε1 + ε2
λ .

If the same medium fills the space ε1 = ε2: λ2 = λ, λ1 = λ3 = 0.
The force per unit length on the wire is that exerted by the wire f1:
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F = λλ1

2πε2

1

d − h
= λ2

2πε2

ε2 − ε1

ε1 + ε2

h

R2 − h2

repulsive for ε2 > ε1 (wire pushed to the center).

4.4 The problem is similar to Problem 4.2 for the dielectric sphere in an external
uniform field. The solution is also suggested by the solutions of the Problem 4.2 and
of the Problem 3.7.
We choose as z axis the axis of the cylinder of radius R. We can consider the uniform
field due to two wires with opposite charge densities (of absolute value λ), located
symmetric with respect the z axis, at distance d � R: with density λ at x = −d and
−λ at x = d as shown in Fig. 4.7. To these wires are associated two parallel image
wires, in the dielectric ε1, with opposite charge densities: λ′ at x = −δ and −λ′ at
x = δ.
The field outside the cylinder is the superposition of the uniform field E, produced
by the wires at large distance in the limit d → ∞, and of the field Eim from the image
wires. Inside the cylinder, as proved correct by the result, the field E′ has the same
direction of the uniform external field.
The potential of the image wires at distance r from the axis of the cylinder is:

Vim = − λ′

4πε1

(
log

r2 + δ2 − 2rδ cos θ

r20
− log

r2 + δ2 + 2rδ cos θ

r20

)

with: λ′ = ε1 − ε2

ε2 + ε1
λ from the result of Problem 4.2,

and in the limit δ 	 r the potential and the components of the electric field Eim

become:

Vim = λ′

πε1

δ

r
cos θ Eimr = λ′

πε1

δ

r2
cos θ Eimθ = λ′

πε1

δ

r2
sin θ .

Fig. 4.7 Wires with linear charge density λ to produce the external field E and relative images
wires with density λ′ for a dielectric cylinder embedded in another dielectric medium

http://dx.doi.org/10.1007/978-3-319-39474-9_3
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The components of the field E are:

Er = E cos θ Eθ = −E sin θ .

The components for the electric field outside the cylinder are:

Eest,r = Er + Eimr = E cos θ + λ′

πε1

δ

r2
cos θ

Eest,θ = Eθ + Eimθ = −E sin θ + λ′

πε1

δ

r2
sin θ

and inside:
E′
r = E′ cos θ E′

θ = −E′ sin θ .

From the continuity of the tangent component of the electric field and of the normal
component of the displacement field on the surface of the cylinder, we have the
equations:

E′ = E − λ′

πε1

δ

R2
ε2E

′ = ε1E + λ′

π

δ

R2

with the solution for E′ and λ′δ:

E′ = 2ε1
ε2 + ε1

E λ′δ = (ε2 − ε1)

ε2 + ε1
ε1πR

2E .

The components of the electric field outside the cylinder are:

Eest,r = E

[
1 − ε1 − ε2

ε2 + ε1

R2

r2

]
cos θ

Eest,θ = −E

[
1 + ε1 − ε2

ε2 + ε1

R2

r2

]
sin θ .

Note that the two image wires form a sort of dipole of image wires of moment4:

p = 2(−λ′)δ = 2
(ε2 − ε1)

ε2 + ε1
ε1πR

2E .

4The negative sign in the formula for p comes from the choice of a positive λ to produce a field E
oriented as the z axis.
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It is possible to get the same result if we start considering a dipole of wires image
of the wires at distance d in the limit d → ∞. To have a field E from the distant
wires the density has to be λ = πε1dE and then from the result of Problem 4.2, the
moment of the dipole of image wires is:

p = (−λ′)2δ = (ε2 − ε1)

ε2 + ε1
λ 2

R2

d
= 2

(ε2 − ε1)

ε2 + ε1
(πε1E)R2

that is the result already found.



Chapter 5
Functions of Complex Variables
and Electrostatics

A useful and elegant indirect approach to solve some two-dimensional problems in
Electrostatics, comes from the analytic functions of a complex variable. The real and
imaginary parts of these functions are solutions of the Laplace’s equation and if they
satisfy the boundary-values of the problems, they offer the solutions to these prob-
lems. After a brief introduction to the analytic functions, some interesting examples
are discussed: the potentials for a quadrupole, a wedge, the edge of a thin plate and
a wire. At the end of the chapter the same potentials are derived from the direct
solution of the Laplace’s equation.

5.1 Analytic Functions of Complex Variable

The functions of complex variables are studied in the courses of mathematics and
mathematical methods of physics. Some notions useful to apply these functions to
the solution of some electrostatic problems will be briefly discussed.

A complex number can be represented in the Cartesian plane O(x, y) with a
correspondence between the complex number z = x + iy and the position of the
point P with coordinates (x, y), see Fig. 5.1.

A complex number can also be expressed using polar coordinates (ρ, ϕ):

z = ρeiϕ z = ρ(cosϕ + i sin ϕ)

so that x = ρ cosϕ and y = ρ sin ϕ.
A function f (z) of the complex variable z can always be written in the form

f (z) = u + iv with u = u(x, y) and v = v(x, y) two real functions of the real
variables x and y.

© Springer International Publishing Switzerland 2016
F. Lacava, Classical Electrodynamics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-39474-9_5
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Fig. 5.1 A complex number z = x + iy represented by a point on the complex plane

Fig. 5.2 Functions u(x, y) = x2 − y2 = A (solid line) and v(x, y) = 2xy = B (dashed line)

As an example, the function f (z) = z2 can be written as:

f (z) = (x + iy)2 = (x + iy)(x + iy) = x2 − y2 + i2xy

with u(x, y) = x2 − y2 and v(x, y) = 2xy (see Fig. 5.2).
From the theory of the functions of complex variable it is known that a function

f (z) = u(x, y) + iv(x, y) is differentiable in a simply connected domain if the
Chauchy-Riemann or monogenity equations:

∂u

∂x
= ∂v

∂y

∂u

∂y
= − ∂v

∂x
(5.1)

are satisfied with u(x, y) and v(x, y) two continuous functions with continuous
partial derivatives.
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A function which satisfies these equations is called analytic or holomorphic func-
tion and the existence of its first derivative implies the existence of the derivatives at
any order and, as a direct consequence, the function can be expanded in power series.
Moreover the integral of the function along a closed path on the complex plane is
null and as a consequence its integral along a an arbitrary line depends only on the
extremes of the paths (γ1 �= γ2):

∮
f (z) dz = 0

∫

γ1

f (z) dz =
∫

γ2

f (z) dz .

Taking the derivative of the first relation in (5.1) with respect to x(y) and of the
second relation with respect to y(x) and adding (subtracting) the two relations, we
get:

∂2u

∂x2
+ ∂2u

∂y2
= 0

∂2v

∂x2
+ ∂2v

∂y2
= 0

and then the functions u(x, y) and v(x, y) of any analytic function, satisfy the
Laplace’s equations:

Δu = 0 Δv = 0 .

If one of the two functions u or v is given, the other is obtained from (5.1) up to
an arbitrary constant. Indeed if u is known, we can write:

dv = ∂v

∂x
dx + ∂v

∂y
dy = −∂u

∂y
dx + ∂u

∂x
dy

which can be integrated to find v.
The vectors:

u
(

∂u

∂x
,
∂u

∂y

)
and v

(
∂v

∂x
,
∂v

∂y

)

respectively normal to u(x, y) = const and v(x, y) = const ′, as a consequence of
(5.1), are normal:

u · v = 0

and thus also the curves u(x, y) = const and v(x, y) = const ′ are locally normal to
each other in their intersection point.
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5.2 Electrostatics and Analytic Functions

For a system of N conductors of known geometry and with fixed potentials Vi (i =
1, . . . , N ), in order to find the potential V (x, y, z) at each point in space, we have to
solve the Laplace’s equationΔV = 0 in the region outside the conductors, assuming
the potential at the surfaces of the conductors as boundary conditions. This is the
Dirichelet’s problem.

The functions u(x, y) and v(x, y), associated to an analytic function, are solutions
of the Laplace’s equation and can be the solution for the potential when the charge
distributions depend on two coordinates only and are conformal in all the planes
normal to the third axis. These are two-dimensional electrostatic problems.

Indeed, if for the systemof the examined conductors it is possible to find a function
u(x, y) (or v(x, y)) with the value Vi on the surface of the i th conductor, then, for
the uniqueness of the solution of the Laplace’s equation, u(x, y) (or v(x, y)) is the
function that describes the potential in the space outside the conductors.

The equipotential curvesu(x, y) = Vi (or v(x, y) = Vi ) describe the equipotential
borders of the conductors and the equipotential surfaces outside the conductors are
given by the same function by changing the value of the potential. Moreover the field
lines are described by the family of curves v(x, y) (or u(x, y)) normal in each point
to u(x, y) (or v(x, y)).

The subject of this chapter is presented in the Feynman Lectures on Physics1 with
an interesting introduction. A very short but effective presentation is given by Pauli
in his Electrodynamics.2

5.3 The Function f (z) = zµ

5.3.1 The Quadrupole: f (z) = z2

Let us consider the function f (z) = z2 in Electrostatics. This function describes
the electric field between the four polar expansions of a quadrupole as sketched in
Fig. 5.3.

If the functions u(x, y) = x2 − y2 = ±A are the equipotential surfaces of the
poles, the equipotential surfaces inside the quadrupole are similarly described by
x2 − y2 = A′ with |A′| < A and the field lines are represented by the function
v(x, y) = 2xy = B with different values for B (positive or negative). This is evident
from Figs. 5.2 and 5.3.

1R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. II, Sects. 7.1.2.
2W. Pauli, Electrodynamics, Sect. 12.2.
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Fig. 5.3 Positive and
negative poles in an electric
quadrupole and electric field
lines

In order to get the potential from the function u(x, y), this has to be multiplied by
a constant C = V/d2 with ±V being the potentials of the polar expansions and d
their distance from the center.3

The electric field is:

E = −∇
(
V

d2

(
x2 − y2

))
E :

(
−2V

d2
x,

2V

d2
y

)

focusing in the horizontal direction a positive particle crossing the quadrupole while
defocusing it in the vertical direction (Fig. 5.3).

The field for a quadrupole rotated by 45◦ can be obtained simply by exchanging
the functions u and v. It is easy to see that he function v describes the field in the
corner formed by two conductive planes crossing each other on the z axis at a 90◦
angle.

5.3.2 The Conductive Wedge at Fixed Potential

Consider the more general function:

f (z) = zμ = ρμeiμϕ = ρμ(cosμϕ + i sinμϕ) ,

its imaginary part:
v = ρμ sinμϕ (5.2)

3The function u = x2 − y2 is also the potential for the electric field at the center of a quadrupole
composed by four charged wires parallel to the z axis: two with linear charge density λ which cross
the plane xy in the points (a, 0) and (−a, 0), and two with linear charge density−λ located at (0, a)

and (0,−a). The field is that between the poles of the quadrupole if a = d
√

(λ/πε0V ).
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Fig. 5.4 Charged wedge of
opening angle α

gives the solution for the potential4 outside a conductive wedge with an opening
angle α (see Fig. 5.4) extended to infinity along the direction orthogonal to the ρ, ϕ

4The formula (5.2) is only a mathematical one, in order to describe a potential it has to be multiplied
by a constant C having dimension [Vl−μ] and then an arbitrary constant can be added:

V = Cρμ sinμϕ + VC (5.3)

where VC is the voltage of the conductive wedge while the constant C depends on the strength of
the field near the wedge. We can fix the potential V1 at distance ρ1 on the field line ϕ = 2π − α

2 ,
μϕ = π

2 , the bisector of the angle external to the wedge (note that we cannot choose a null potential
at an infinite distance because the charge extends to infinity). We get:

C = (V1 − VC )ρ
−μ
1

and the formula for the potential becomes:

V = (V1 − VC )

(
ρ

ρ1

)μ

sinμϕ + VC .

On the bisector line we can write:

V − VC
ρμ

= V1 − VC
ρ

μ
1

and if we fix also the potential V2 at distance ρ2, from:

V2 − VC
ρ

μ
2

= V1 − VC
ρ

μ
1

we find the potential to be applied to the wedge:

VC = ρ
μ
2 V1 − ρ

μ
1 V2

ρ
μ
2 − ρ

μ
1

and the value of the constant C :

C = V2 − V1
ρ

μ
2 − ρ

μ
1

.

The voltage of the wedge is therefore determined by the voltage difference V2 − V1 between two
points at distances ρ2 and ρ1 from the edge, that is by the strength of the electric field near the
conductive wedge (C > 0 for a negative charge and C < 0 for a positive charge). For a conductive
charged semispace (see in the following) μ = 1 and if positive/negative C = ∓E0.
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Fig. 5.5 Special configurations for the function zμ:a cornerwithα = π/2,b cornerwithα = 3π/2,
c plate (α = π)

plane:
V = Cρμ sinμϕ + VC . (5.4)

For the equipotential conductor it has to be:

V (ϕ = 0) = V (ϕ = 2π − α)

and from this:
μ = π

2π − α
. (5.5)

Special configurations are:

α = π
2 μ = 2

3 corner with inner right angle (Fig. 5.5a),
α = 3

2π μ = 2 corner with outer right angle (Fig. 5.5b),
α = π μ = 1 conductive plate (semispace) (Fig.5.5c).

The cylindrical components of the electric field are:

Eρ = −∇ρV = −∂V

∂ρ
= −μCρμ−1 sinμϕ

Eϕ = −∇ϕV = − 1

ρ

∂V

∂ϕ
= −μCρμ−1 cosμϕ

with Eρ = 0 for ϕ = 0 and ϕ = (2π − α) as required for the two equipotential
conductive planes. For ϕ = 0 and Eϕ = −μCρμ−1 (opposite to ϕ̂), the electric field
enters normal into the plane at ϕ = 0, while for ϕ = (2π − α) and Eϕ = μCρμ−1

(oriented as ϕ̂), the field enters normal into the plane at ϕ = 2π − α.
The surface charge density can be obtained using the Coulomb theorem:

σ = − ε0μCρμ−1 .

The charge per unit length at distances <ρ can be calculated from the Gauss
theorem. Considering the flux through the cylindrical surface of radius ρ and axis
the edge of the wedge, we have:
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Q(ρ)

ε0Δz
=

∫ 2π−α

0
E · n̂ dS

Q(ρ)

Δz
= ε0

∫ 2π−α

0
Eρ ρdϕ = ε0

∫ 2π−α

0
−μCρμ−1 sinμϕ ρdϕ = −2ε0Cρμ .

Corner with inner right angle (Fig. 5.5a):

α = π
2 μ = 2

3 f (z) = z
2
3 V = Cρ

2
3 sin( 23ϕ) + VC σ = − 2

3ε0Cρ− 1
3

Eϕ = − 2
3Cρ− 1

3 for ϕ = 0 and Eϕ = 2
3Cρ− 1

3 for ϕ = 3
2π .

Q(ρ)

Δz
= −2ε0Cρ

2
3 .

Corner with outer right angle (Fig. 5.5b):
this is one quarter of the quadrupole (the first quadrant).

α = 3
2π μ = 2 f (z) = z2 V = Cρ2 sin(2ϕ) + VC σ = −2ε0Cρ

Eϕ = −2Cρ for ϕ = 0 and Eϕ = 2Cρ for ϕ = 3
2π .

Q(ρ)

Δz
= −2 ε0Cρ2.

Conductive plate (semispace) (Fig. 5.5c):

α = π μ = 1 f (z) = z V = Cρ sin(ϕ) + VC σ = −ε0C
Eϕ = −C for ϕ = 0 and Eϕ = C for ϕ = π ,

Q(ρ)

Δz
= − 2ε0Cρ.

For a positive charged plateC = −E0 (see footnote) we have Eϕ = E0 for ϕ = 0,
Eϕ = −E0 for ϕ = π , and the charge density σ = ε0E0.

5.3.3 Edge of a Thin Plate

For α = 0 the wedge becomes the edge of a thin conductive plate. In this caseμ = 1
2

and the function f (z) becomes:

f (z) = z
1
2 = ρ

1
2 ei

ϕ

2 = ρ
1
2

(
cos

(ϕ

2

)
+ i sin

(ϕ

2

))
. (5.6)

The potential V = Cρ
1
2 sin( ϕ

2 )+ VC is V = VC for ϕ = 0 and ϕ = 2π , while for
ϕ = π is:

V = Cρ
1
2 + VC .
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The components of the electric field are:

Eρ = −1

2
Cρ− 1

2 sin
(ϕ

2

)

Eϕ = −1

2
Cρ− 1

2 cos
(ϕ

2

)

with Eρ = 0 forϕ = 0 andϕ = 2π , and Eϕ = − 1
2Cρ− 1

2 forϕ = 0 and Eϕ = 1
2Cρ− 1

2

for ϕ = 2π .
The function (5.6) can easily be written in terms of Cartesian coordinates:

f (z) = ρ
1
2

{√
1 + cosϕ

2
+ i

√
1 − cosϕ

2

}

=

⎧
⎪⎨

⎪⎩

⎡

⎣
(
x2 + y2

) 1
2 + x

2

⎤

⎦

1
2

⎫
⎪⎬

⎪⎭
+ i

⎧
⎪⎨

⎪⎩

⎡

⎣
(
x2 + y2

) 1
2 − x

2

⎤

⎦

1
2

⎫
⎪⎬

⎪⎭

with the equipotential surfaces given by:

⎡

⎣
(
x2 + y2

) 1
2 − x

2

⎤

⎦

1
2

= A

and the field lines by:
⎡

⎣
(
x2 + y2

) 1
2 + x

2

⎤

⎦

1
2

= B

with different values for the constants A and B (see Fig. 5.6).

5.4 The Charged Wire: f (z) = log z

The field due to an infinite charged wire aligned with the z axis is given by the
function:

f (z) = log z .

By substituting z = ρ eiϕ we have:

f (z) = log ρ + iϕ .
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Fig. 5.6 Equipotential
curves (dotted) and electric
field lines (solid) near the
edge of a thin charged plate
(thick line)

The real part, multiplied by a factor accounting for charge density and units, gives
the well known logarithmic potential of the charged wire:

V (ρ) = − λ

2πε0
log ρ

while the imaginary part ϕ = const represents the equations of the electric field
lines.

5.5 Solution of the Laplace’s Equation
for Two-Dimensional Problems: Wire and Corners

It is interesting to find the potentials for the two-dimensional charge configurations
examined in this chapter: the wire and the conductive corners. We have to solve the
Laplace’s equation with the potentials on the conductors5 as boundary values.

Using polar (cylindrical) coordinates, as suggested by the symmetry of the prob-
lem, the Laplace equation is:

1

ρ

∂

∂ρ

(
ρ

∂V

∂ρ

)
+ 1

ρ2

∂2V

∂ϕ2
= 0 .

5This paragraph is based on the more detailed presentation given in Jackson, Classical Electrody-
namics, cited, Sect. 2.11.
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This can be solved using the separation of variables. By substituting:

V (ρ, ϕ) = R(ρ)Φ(ϕ)

and upon multiplication for ρ2/Φ we have the equations:

ρ
∂

∂ρ

(
ρ

∂R

∂ρ

)
= A2R

∂2Φ

∂ϕ2
= −A2Φ

For A2 < 0 the solutions are exponential in ϕ and not acceptable for our problems,
therefore we can have only A2 ≥ 0. It is easy to show that the solutions are:

for A2 = 0 R(ρ) = a0 + b0 log(ρ) and Φ(ϕ) = A0 + B0ϕ

for A2 > 0 R(ρ) = c ρ A + d ρ−A and Φ(ϕ) = a cos Aϕ + b sin Aϕ .

For a full symmetry around the z axis only the solution A2 = 0 is valid and
B0 = 0 because the function does not depend on ϕ. For instance this is the case
for the field between the two conductive surfaces of a cylindrical condenser. The
potential becomes:

V = A0 (a0 + b0 log ρ)

with the known coefficient A0b0 = − λ
2πε0 and A0a0 an additive constant potential.

For a conductive wedge of angle α we have to consider the solutions for A2 ≥ 0.
To include in the solution the point at ρ = 0 we have to set b0 = 0 and d = 0. Then
the most general solution is:

V = a0A0 + a0B0ϕ + c ρ A (a cos Aϕ + b sin Aϕ) .

In order to get the same potential V0 for any value of ρ at ϕ = 0 and at ϕ = 2π−α,
we have to put a = 0, a0B0 = 0, a0A0 = V0 and A = nπ

2π−α
= nμ where μ is the

coefficient defined in (5.5).
The solution is reduced to:

V = V0 +
∞∑

n=1

Vnρ
nμ sin nμϕ .

It is evident that the solutions with n > 1 are of no interest for a simple conductive
wedge. Therefore for n = 1 we have A = μ = π/(2π − α) and finally the solution
is:

V = V0 + V1ρ
μ sin μϕ

that is the formula (5.4) with the coefficient (5.5).
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Problems

5.1 Show the sum:

f (z) = −
∑

j

λ j

2πε0
log(z − z j )

yields the potential for a system of wires with linear charge density λ j , parallel to
the z axis and crossing the plane xy in the points (x j , y j ).

5.2 Verify that the function:

f (z) = λδ

2πε0

1

z

gives the potential at large distance due to two opposite charge parallel wires. Be
λ the linear charge density and δ the distance of the wires. The two wires are a
two-dimensional analog of an electric dipole.

Remind the power series:

log (1 + z) = z − z2

2
+ z3

3
− z4

4
+ · · · |z| < 1.

5.3 Use the formula in problem 1 to show that the field inside a quadrupole is that
produced near the axis of a quadrupole by fourwires: twowith linear charge density λ

at (a, 0) and (−a, 0) on the complex plane, and two with −λ at (0, ia) and (0,−ia).

Solutions

5.1 From z = ρeiϕ , the position of the point P , and z j = ρ j eiϕ j that of the j th
wire, we have:

z − z j = ρeiϕ − ρ j e
iϕ j = r j e

iα j

with:

r2j = ρ2 + ρ2
j − 2ρρ j cos(ϕ − ϕ j ) tg α j = ρ sin ϕ − ρ j sin ϕ j

ρ cosϕ − ρ j cosϕ j

where r j is the distance of the point P from the wire j th. The complex potential
becomes:

f (z − z j ) = − λ j

2πε0
log r j e

iα j .

Taking the real part of this potential due to wire j th and summing on all the wires
we get:
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V = −
∑

j

λ j

2πε0
log r j .

5.2 Locate the wire with charge density λ at (0, δ/2) and that with−λ at (0,−δ/2).
From the previous problem the complex potential is:

f (z) = − λ

2πε0

[
log

(
z − δ

2

)
− log

(
z + δ

2

)]
.

We can write:

log

(
z − δ

2

)
− log

(
z + δ

2

)
= log

(
1 − δ

2z

)
− log

(
1 + δ

2z

)

replacing z = ρeiϕ and reminding the power series for log(1 + z) we get:

log

(
1 − δe−iϕ

2ρ

)
− log

(
1 + δe−iϕ

2ρ

)

 −δe−iϕ

ρ
= −δ

z
.

The complex potential is:

f (z) = λ

2πε0

δ

z
= λ

2πε0

δe−iϕ

ρ
.

Its real part gives the potential for the two wires:

V (ρ, ϕ) = λ

2πε0

δ cosϕ

ρ

already seen in the solution of the Problem 3.8 (formula 3.7).

5.3 The complex potential from the four wires is:

V (z) = − λ

2πε0

[
log(z − a) + log(z + a) − log(z − ia) − log(z + ia)

]

= − λ

2πε0

[
log(a − z) + log(a + z) − log(ia − z) − log(ia + z)

]

that expanded in a power series neglecting terms of third order or higher becomes:

V (z) = − λ

2πε0

[
−2z2

a2
− iπ

]

http://dx.doi.org/10.1007/978-3-319-39474-9_3
http://dx.doi.org/10.1007/978-3-319-39474-9_3
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and removing the constant term we get:

V (z) = λ

πε0

z2

a2
= λ

πε0a2
[
(x2 − y2) + i2xy

]

where the real part, for λ/πε0a2 = V0/d2 as anticipated in a footnote, gives the
potential V (x, y) of the quadrupole, with distance d of the poles from the axis, at
voltage V0.



Chapter 6
Relativistic Transformation of E and B Fields

The invariance of the electric charge and the coordinate transformations in special
relativity determine the transformation laws for the electric charge and current den-
sities. Changing densities implies different electric and magnetic fields in reference
frames in uniform motion relative to one another. The example of a charged particle
moving parallel to a wire carrying a current is presented. From this and other exam-
ples it is possible to derive the relativistic transformations for electric and magnetic
fields.

6.1 From Charge Invariance to the 4-Current Density

The charge Q is the same in all reference frames: the charge is a relativistic invariant
and therefore it is a scalar. This is a direct consequence of the invariance1 of the
elementary charge e value in all inertial frames because a charge Q is always a
multiple of the elementary charge.

Many experiments2 have established limits of the order of 1 part over 1021 on the
relative difference between the charge of the proton and the charge of the electron in
atoms and molecules where electrons are moving with velocities greater than 0.01c
while protons in nuclei are moving with velocities about 0.3c. Further evidence
for charge invariance comes from the validity of the Lorentz force when applied to
particle accelerators that confinemoving charged particles into near circular orbits by

1The elementary electric charge e, the velocity of the light c and the Planck constant h are three
scalar quantities, therefore these three constants are the same in all reference frames. The reason has
probably to be searched in some symmetry beyond the Electrodynamics and the Standard Model
of elementary particles.
2See for instance J.D. Jackson, Classical Electrodynamics, cited, Sect. 11.9.

© Springer International Publishing Switzerland 2016
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Fig. 6.1 The charge dQ in the small volume dτ0 at rest in S0. The frame S moves relative to S0
with velocity −v along the x axis

using magnetic fields.3 All these considerations support the invariance of the electric
charge under Lorentz transformations.

Consider4 two inertial reference frames: S(x, y, z), that we assume at rest, and
S0(x0, y0, z0) inmotionwith uniformvelocity v, along the x axis, relative to S(x, y, z)
as in Fig. 6.1. The charge dQ inside a small volume dτ0 = dx0dy0dz0 is at rest in
the frame S0. In this frame the charge density is:

ρ0 = dQ

dτ0
= dQ

dx0dy0dz0
.

In the frame S, in motion with velocity −v along x relative to S0, the distances
transverse to the motion do not change: dy = dy0, dz = dz0 while along x we

have dx = dx0
√
1 − v2

c2 . Therefore, because of the Lorentz contraction, the charge
density in S is:

ρ = dQ

dτ
= dQ

dxdydz
= dQ

dx0dy0dz0

1√
1 − v2

c2

= ρ0√
1 − v2

c2

= ρ0γ

3The formula for the Lorentz force predicts the orbit curvature from non relativistic velocities up to
γ = 6500, namely (c − v)/c ∼ 1.2 · 10−8, for protons in the LHC collider and γ = 2 ×105

((c − v)/c ∼ 1.25 · 10−13) for electrons in the LEP200 collider. Anyway, due to the synchrotron
radiation losses and to the corrections to the energy and to the path of the beams, the limit on the
relativistic charge invariance is modest (δq/q � 10−9).
4The approach used in this chapter can be found also in other textbooks: C. Mencuccini
and V. Silvestrini, Fisica 2, Elettromagnetismo-Ottica, Sect. 5.8, Zanichelli Ed.; R.P. Feynman,
R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. II, Sect. 13.6; E.M. Purcell, Elec-
tricity and Magnetism, Berkeley Physics Course, Vol II, Chapter V, McGraw-Hill; F. Lobkowicz
and A.C. Melissinos, Physics for Scientists & Engineers, Vol. II, Sect. 13.2.
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with:

γ = 1√
1 − v2

c2

.

In the frame S the charge moves with a velocity v and it is seen as a current with
current density J = ρv = ρ0vγ . We can realize that J0 = ρc and J are the time and
space components of a 4-vector current density5 J = (ρc, J) = (ρ0cγ, ρ0vγ ):

J =
⎛

⎝ ρ0c√
1 − v2

c2

,
ρ0v√
1 − v2

c2

⎞

⎠ (6.1)

with norm |J |2 = J 2
0 − |J|2 = ρ2

0c
2. In the frame S0 where the charge is at rest, the

4-current density has components: (ρ0c, 0).
The transformations of the 4-current density from a reference frame S to a frame S′

in motion along x with velocity V, can be found easily6 using the transformmatrix L:

L =

⎛

⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ β = V

c
γ = 1√

1 − V 2

c2

.

Writing J = (ρc, Jx , Jy, Jz) and J ′ = (ρ ′c, J ′
x , J

′
y, J

′
z) as column matrices, and

taking the product J ′ = L J :

⎛

⎜⎜⎝

ρ ′c
J ′
x
J ′
y

J ′
z

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

ρc
Jx
Jy
Jz

⎞

⎟⎟⎠ (6.2)

for the transformations of charge and current densities we get the relations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ ′ = (ρ − V
c2 Jx )γ

J ′
x = (Jx − ρV )γ

J ′
y = Jy
J ′
z = Jz

.

5Note that (6.1) can be found as J = ρ0u where u is the 4-vector velocity (7.13) similarly to the
4-momentum of a particle p = m0u given by the relations (7.14).
6For the coordinates x ′ = (ct ′, x ′, y′, z′) and x = (ct, x, y, z) the product x ′ = L x gives ct ′ =
(ct − βx)γ, x ′ = (x − βct)γ, y′ = y, z′ = z. See also next chapter.

http://dx.doi.org/10.1007/978-3-319-39474-9_7
http://dx.doi.org/10.1007/978-3-319-39474-9_7
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Fig. 6.2 The wire carrying a
current and the charge Q
with velocity V parallel to
the wire

Switching from the S0 frame where the charge is at rest and the 4-current density is
J = (ρ0c, 0) to the S frame, the transformation (6.2) with V = −v, gives the charge
and current density J = (ρ0cγ, ρ0vγ ) already given in (6.1).

6.2 Electric Current in a Wire and a Charged
Particle in Motion

An infinite wire placed along the x axis carries a current flowing in the positive
direction. A particle with charge Q moves parallel to the wire, at distance r , with
velocityV = (−V, 0, 0) as shown in Fig. 6.2. The magnetic field, due to the current,
produces a Lorentz force FL = QV × B on the moving particle which gives to the
particle a radial acceleration. In the frame moving along the x axis with the same
velocity of the particle, the particle is at rest and so a Lorentz force cannot be present.
For the principle of relativity we have to foresee the presence of an electrostatic field
that gives the same acceleration to the particle at rest.

Definingn the number of charges per unit volumeandv (−v, 0, 0) the drift velocity
of the electrons in the wire, the 4-current positive and negative densities,7 observed
in the laboratory frame S where the neutral wire is at rest, are J+(nqc, 0, 0, 0) and
J−(−nqc, nqv, 0, 0). The total current density is:

J = J+ + J− = (0, nqv, 0, 0) . (6.3)

7The negative charges are the free electrons and the positive charges are the charges left after the
electrons are freed from the atoms.
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Upon the transformation (6.2) from the laboratory frame S to the frame S′ where the
charge Q is at rest, with β = − V

c , we find:

J ′ = J ′
+ + J ′

− = (nqv
V

c
γ, nqvγ, 0, 0) . (6.4)

Thus in the frame S′ in addition to the current density J′ = nqvγ x̂, that produces a
magnetic field, there is a charge density ρ ′ = nqv V

c2 γ that generates an electrostatic
field.

It is interesting to compare how the motion of the particle is described in the two
frames.
Laboratory frame (wire at rest). If Σ is the area of the cross section of the wire,
there is a current I = JΣ = nqvΣ which at distance r produces a magnetic field:

B = μ0

2π

JΣ

r
= μ0

2π

nqvΣ

r
(6.5)

and, for the Lorentz force, the equation of motion for the charge Q is:

dpr
dt

= QV B = μ0

2π

nqvΣ

r
QV (6.6)

with pr the radial component of the momentum.
Frame with the charge at rest. In this system, as seen before, the wire has a charge
density ρ ′ = nqv V

c2 γ , that is a linear charge density λ′ = ρ ′Σ , which produces a
radial electric field:

E ′ = 1

2πε0

λ′

r
= 1

2πε0

nqvΣ

r

V

c2
γ (6.7)

and the equation of motion8 is:

dpr
dt ′

= QE ′ = 1

2πε0

nqvΣ

r

V

c2
Qγ = μ0

2π

nqvΣ

r
QV γ (6.8)

where we have used the relation 1/c2 = μ0ε0.
Observing that the proper time interval of the charge dt ′ is related to dt by the

relation dt = dt ′γ , the Eq. (6.6) becomes:

dpr
dt ′

= μ0

2π

nqvΣ

r
QV γ

that coincides with Eq. (6.8).

8The radial component of the momentum is the same in the two frames because it is normal to their
relative velocity V .
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In the two reference frames S and S′ the Eqs. (6.6) and (6.8) are the equivalent of
the covariant equation of motion (7.15):

dpμ

dτ
= f μ

that we will see in the next chapter.
From this example we get the transformation for a magnetic field B⊥ transverse

to the relative motion of the two frames. From (6.4), (6.5) and (6.7) we have:

B⊥ =⇒ B ′
⊥ = μ0

2π

J ′Σ
r

= B⊥γ E ′
⊥ = 1

2πε0

λ′

r
= V B⊥γ . (6.9)

Note that the fields depend on the charge and current densities that are different in
the two frames.

6.3 Transformation of the E and B Fields

As seen in the example of the current in a wire and the charge Q, the 4-current
density in the frame S is J = J+ + J− = (0, nqv, 0, 0) and only an electric current
is present. In a frame S′, inmotionwith velocity V x̂ relative to S, the 4-current density
is J ′ = J ′

+ + J ′
− = (−nqv V

c γ, nqvγ, 0, 0) and a current density and a non null
charge density are both observed in the wire. This implies that the magnetic field B⊥
in S is seen in S′ as the superposition of amagnetic field B ′

⊥ and of an electric field E ′
⊥

as in (6.9). In a similar way if in S we have a non null charge density J = J+ + J− =
(nqc, 0, 0, 0), the 4-current density in S′ is J ′′ = J ′′

+ + J ′′
− = (nqcγ,−nqV γ, 0, 0)

and thus a charge density and a current density are both present, so that an electric
field E in S is seen in S′ as an electric field E ′′ plus a magnetic field B ′′. This
can be seen for instance in the parallel plate condenser in motion considered in
Problem 6.1 where we have:

E =⇒ E ′
‖ = E‖ B ′

‖ = 0 E ′
⊥ = E⊥γ B ′

⊥ = V

c2
E⊥γ

while in the case of a solenoid in motion along its axis, in Problem 6.2, we find only:
B ′

‖ = B‖.
From these considerations and from the analysis of the forces applied to the

charges it is possible to find the transformation laws for the fields E and B from one
frame to another frame in relative motion with velocity V (β = V

c ). These are:

⎧
⎪⎨

⎪⎩

E ′
x = Ex

E ′
y = γ (Ey − cβBz)

E ′
z = γ (Ez + cβBy)

⎧
⎪⎨

⎪⎩

B ′
x = Bx

B ′
y = γ (By + β

Ez

c )

B ′
z = γ (Bz − β

Ey

c )

(6.10)

http://dx.doi.org/10.1007/978-3-319-39474-9_7
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or in terms of the components parallel and transverse to the velocity V:

{
E′

‖ = E‖
E′

⊥ = γ (E⊥ + V × B⊥)

{
B′

‖ = B‖
B′

⊥ = γ (B⊥ − 1
c2V × E⊥) .

In next chapter these transformations will be derived on the basis of more general
principles.

It is evident that the mixture of the electric and magnetic fields changes when
considered in different frames. Indeed the two fields are different components of the
same field, the electromagnetic field. This will be evident when the tensorial nature
of the electromagnetic field will be introduced in next chapter.

In this chapter the transformations of the electric and magnetic field have been
derived from the charge invariance and the relativistic transformation of the coordi-
nates. Historically Einstein was led to the special theory of relativity to get a coherent
description of phenomena in electrodynamics differently interpreted when observed
in different frames.

6.4 The Total Charge in Different Frames

From the expressions of the 4-current density (6.3) and (6.4) the wire seems neutral
in the laboratory frame but charged in the frame with the charge Q in motion. It
seems Qw = 0 in the laboratory while Q′

w �= 0 in the charge rest frame, in evident
contrast with the invariance of the charge.

Consider the charge present in the wire taking into account also the drift motion
of the electrons with velocity v. In the laboratory the 4-current densities are:

J+(nqc, 0, 0, 0) J−(−n′qcγ ′, n′qvγ ′, 0, 0)

where n′ is the density of the free electrons in their rest frame (only the drift velocity
is considered) and:

γ ′ = 1√
1 − v2

c2

.

The total 4-current density is:

J = J+ + J− = (qc(n − n′γ ′), n′qvγ ′, 0, 0) . (6.11)

The 4-current density in the rest frame of the charge moving parallel to the wire is:

J ′ =
[
nqcγ − n′qc

(
1 − vV

c2

)
γ ′γ, nqV γ + n′q(v − V )γ γ ′, 0, 0

]
.
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The positive charge density in the laboratory frame S is ρ+ = nq and the charge
in an element of length l of the wire is Qw+ = nqΣl. In the charge Q rest frame
S′ the positive charge density is ρ ′+ = nqγ and the charge in the same element
of wire is Q′

w+ = nqγΣl ′ with l ′ = l/γ the length seen in S′. So that we find
Q′

w+ = nqΣl = Qw+, the positive charge is the same in the two frames.
The negative charge density in the frame of the free electrons at rest is ρ− = −n′q

and the charge in an element of wire of length le in this frame is Qw− = −n′qΣle.
In the rest frame of the charge Q the negative density is:

ρ ′
− = −n′q

(
1 − vV

c2

)
γ γ ′

and the charge in the same wire element, seen of length l ′e by the charge in motion, is:

Q′
w− = −n′q

(
1 − vV

c2

)
γ γ ′Σl ′e .

For the length l ′e we can write: l ′e = le/γ ′′ with γ ′′ relative to the transformation from
the rest frame of the free electrons to the frame of the charge.

From the addition-velocity formula the velocity of the charge relative to the elec-
trons is:

V ′′ = V − v

1 − vV
c2

thus we have:

γ ′′ = 1√
1 − V ′′2

c2

=
(
1 − vV

c2

)
γ γ ′

and for the negative charge Q′
w−:

Q′
w− = −n′q

(
1 − vV

c2

)
γ γ ′Σ

le
γ ′′ = −n′qleΣ = Qw−

therefore the negative charge in the frame of the charge in motion is equal to the
charge in the frame of the free electrons at rest.

Of course if the wire in the laboratory is neutral we have Qw+ = Qw− and this
relation is valid in any other frame. The neutral wire implies n = n′γ ′.

Due to the Lorentz contraction, the length of an element of a chargedwire changes,
but the charge density changes inversely and thus in any frame the charge in the same
element of wire is the same. The charge is an invariant, but passing from a frame to
another the charge density and the current density change and also the electric and
magnetic fields which depend on these densities as seen for instance in (6.5) and
(6.7).
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Problems

6.1 Determine in the laboratory frame the electric field between the rectangular
parallel plates of a charged condenser moving with a velocity parallel to a side of the
plates or with a velocity normal to the plates. Is there any magnetic field?

6.2 Find the magnetic field inside a long solenoid with a current I in its turns, which
moves with velocity V in the direction of its axis.

6.3 Find the force per unit length between two infinite parallel wires carrying the
same current, in terms of an electrostatic force as seen for a charge moving parallel
to a current in a wire.

6.4 A rectangular loop, with sides a and b and cross section Σ , carries a current
with density J . This loop moves in the laboratory with velocity V parallel to the side
b. Find the densities of charge and current in the four sides of the loop. Calculate the
electric dipole moment seen in the laboratory.

Solutions

6.1 We consider a condenser with parallel rectangular plates with sides a and b at
a negligible distance with respect to these dimensions. When a charge Q is present
on the plates, the electric field between the plates is:

E0 = σ

ε0
= Q

abε0
.

If the condenser in the laboratory moves with velocity V in the direction of
the side b, due to the Lorentz contraction, the area of the plates is S′ = ab′ with
b′ = b

√
1 − V 2/c2 and the electric field is:

E ′
0 = σ ′

ε0
= Q

ab′ε0
= Q

abε0

1√
1 − V 2/c2

= E0γ .

In the laboratory to the surface charge density σ ′ is associated a surface current
density J ′

s = σ ′V with opposite direction on the two plates. It is easy to find the
magnetic field between the plates:

B = μ0 J
′
s = μ0σ

′V = V

c2
γ E0

normal to the velocity and parallel to the plates. If V = V x̂ is the velocity of the
condenser in the laboratory and E0 = E0y ŷ is the electric field in the rest frame of
the condenser, the electric and the magnetic fields in the laboratory are:
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E ′
0y = E0yγ B ′

0z = −β

(
E0y

c

)
γ β = −V

c

in agreement with (6.10).
If the velocity is normal to the plates, in the two frames the surface charge density

σ is the same and also the electric field E ′
0 = E0 = σ/ε0 as in (6.10).

It is easy to see that no magnetic field is observed in the laboratory. We can divide
a plate in rings with center on an axis normal to the plates. Then we consider the
magnetic field at a point P on this axis produced by the motion of the charge dq
present on an element of one of the rings. The field dB′ produced9 by the moving
charge dq at a point on the axis is:

dB′ = μ0

4π
dq

V × r
r3

with r the vector fom the charge dq to the point P and V the velocity of the charge.
The element of the ring symmetric relative to the axis gives an opposite dB′, thus
the total magnetic field from each ring is null.

6.2 Assume as x axis the axis of the solenoid. In the solenoid rest frame, the current
density in the turns is J = I/Σ with Σ the area of the cross section of the wires,
the current density is J (0, 0, Jy, Jz) and the magnetic field inside the solenoid is:

Bx = μ0 I nwith n = N

l
N the number of turns, l the length of the solenoid.

In the laboratory the 4-current density is J ′(0, 0, Jy, Jz) because the transverse com-
ponents are unchanged in the Lorentz transformation, but due to the Lorentz con-
traction, the cross section is Σ ′ = Σ/γ and the length is l ′ = l/γ . The magnetic
field in the laboratory is:

B ′
x = μ0 I

′n′ = μ0Σ
′ J ′ N

l ′
= μ0

Σ

γ
J
N

l
γ = Bx

and no other field is present. As a general result in the Lorentz transformations we
have for the component of the magnetic field parallel to the relative velocity of the
frames: B‖ =⇒ B′

‖ = B‖.

6.3 The force acting on a charge Q moving with velocity V parallel to a wire
carrying a current, in the frame of the charge is given in Eq. (6.8). To apply this
formula to an electron drifting in the second wire we have to replace Q = −q and
V = v (currents in the wires with same orientation). The force on a segment of wire
of length l in the laboratory is the force on all the electrons in a segment l ′ in their
rest frame, and for the Lorentz contraction l = l ′

√
1 − β2. The number of drifting

9From Biot and Savart law (1.12).

http://dx.doi.org/10.1007/978-3-319-39474-9_1
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electrons in this segment is N = n′l ′Σ = n′lγΣ . From (6.8) the force on a segment
of length l of the second wire is:

dPtot
r

dt ′
= − μ0

2π

nq2v2n′γ 2Σ2l

r
.

We have seen dt = dt ′γ and for a neutral wire n = n′γ ′ = n′γ because γ ′ = γ ,
thus the force per unit length is:

F

l
= 1

l

d Ptot
r

dt
= − μ0

2π

n2q2v2Σ2

r
= − μ0

2π

i2

r

where i = nqvΣ is the current in the wires. This is the well known result in terms of
Biot and Savart law and Lorentz force. For two same direction currents the force is
attractive. If the currents are in opposite directions V = −v and the force becomes
repulsive.

6.4 The loop is shown in Fig. 6.3. We have to find for each side the 4-current density
J ′ seen in the laboratory. We apply the transformation (6.2) with β = −V/c to the
4-current density J in the rest frame of the loop:

side 1: J1 (0, 0, J, 0) J ′
1 (0, 0, J, 0)

side 2: J2 (0, J, 0, 0) J ′
2 (−βγ J, γ J, 0, 0)

side 3: J3 (0, 0, −J, 0) J ′
3 (0, 0, −J, 0)

side 4: J4 (0, −J, 0, 0) J ′
4 (βγ J,−γ J, 0, 0) .

The charge densities in the laboratory frame are:

ρ ′
1 = ρ ′

3 = 0 ρ ′
2 = −βγ J/c = V γ J/c2 ρ ′

4 = βγ J/c = −V γ J/c2

Fig. 6.3 At left the rectangular loop with current density J moving with velocity V ; at right the
charge density observed in the laboratory
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and the current densities:

J ′
1 = J J ′

2 = γ J J ′
3 = −J J ′

4 = −γ J .

The charge q ′
2 = ρ ′

2b
√

(1 − β2)Σ = V JbΣ/c2 is seen in the side 2 and the charge
q ′
4 = ρ ′

4b
√

(1 − β2)Σ = −V JbΣ/c2 is seen in the side 4.
An electric dipole is seen in the laboratory with moment:

p = −q ′
2a ŷ = − V

c2
JabΣ ŷ

transverse to the motion of the loop.
In its rest frame the loop produces only a magnetic field. In the laboratory is

observed the superposition of a different magnetic field from the current in the loop
and of an electric field from the electric dipole.



Chapter 7
Relativistic Covariance of Electrodynamics

The Maxwell equations accounted for all the electricity and magnetism phenomena
and predicted the electromagnetic waves but were in contrast with the Galileian
relativity. The inconsistency was solved by Einstein’s theory of special relativity.
After a short introduction to 4-vectors, 4-tensors and differential operators with
their covariant and contravariant components, the equations of Electrodynamics are
written in covariant form, that is the same in all the inertial frames. The introduction of
the electromagnetic tensor with its Lorentz transformations clarifies the link between
the electric and magnetic fields.

7.1 Electrodynamics and Special Theory of Relativity

The Maxwell equations, written in 1859, unified electricity and magnetism, were
able to account for all known phenomena of electromagnetism and at the same
time predicted the electromagnetic waves later observed by Hertz in 1888. A non
negligible difficulty was that, as opposed to the laws of Classical Mechanics, the
Maxwell equations and the equation of the electromagnetic waves are not invariant
with respect to Galileian transformations.1

1For two inertial frames S′ and S related by a Galileian transformation:

x ′ = x − vt y′ = y z′ = z t ′ = t

x = x ′ + vt ′ y = y′ z = z′ t = t ′

∂

∂x ′ = ∂

∂x

∂

∂t ′
= ∂

∂t
+ v

∂

∂x

∂2

∂x ′2 − 1

c2
∂2

∂t ′2
= 0 →

(
1 − v2

c2

)
∂2

∂x2
− 1

c2
∂2

∂t2
− 2v

∂

∂x

∂

∂t
= 0 .
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Since all the experiments proved the validity of the Maxwell equations, one pos-
sibility was that the Galileian relativity was wrong2 and the hypothesis was done of a
preferred reference frame where the Maxwell equations and the wave equation were
correct. At the same time it was necessary to suppose the existence of medium, called
ether, at rest in that frame, in which the electromagnetic waves were propagated as
the sound in air, independently from the speed of the source. On the contrary in free
space the velocity of propagation in the equation of the electromagnetic waves is
the same in all the reference frames and is determined by the values of the vacuum
permittivity ε0 and of the permeability μ0 which are the same in all the reference
frames. This is in evident disagreement with the Galileian law of composition of the
velocities.

All the experiments to observe the presence of the ether failed. In particular the
Michelson andMorley experiment of 1887 excluded the possibility of amotion of the
Earth relative to the rest frame of the ether. These experiments are usually presented
in the textbooks on special relativity.

Furthermore some inconsistencies were present in the explanation of phenomena
with sources of electric or magnetic fields in motion as for instance for a conductive
loopmoving in thefield of amagnet.3 Such inconsistencies and the failure in detecting
the ether are both mentioned in the introduction of Einstein’s famous paper on the
electrodynamics of moving bodies.4

Einstein’s theory of special relativity is based on two postulates:

(1) The postulate of relativity: the laws of nature and the results of all the experiments
are the same in all the reference frames in uniformmotion relative to one another
(the inertial frames).

(2) The postulate of constancy of the speed of the light in free space: the speed of
light c is the same in all the reference frames and it is independent from the
motion of the source.

The special theory of relativity is introduced in the courses of mechanics where
the kinematics and the dynamics are presented. After the heuristic introduction given
in the previous chapter, in the present chapter we show that in the framework of the
special theory of relativity the electrodynamics is a theory coherent and correct with
the same equations holding in all the inertial frames.5 In the four dimensional space

2For more details see for instance J.D. Jackson: Classical Electrodynamics, cited, Chap.11.
3In the frame of the magnet the electromotive force can be explained with the Lorentz force acting
on the charges inside the loop and moving with the loop in the field of the magnet. In the frame
of the loop the Lorentz force cannot act because the loop is at rest and the electromotive force
is associated to the rate of change of the magnetic flux enclosed by the circuit. In relativity this
incoherence is removed because an electric field arises from the transformation of the magnetic
field of the magnet to the loop reference frame.
4A. Einstein: On the Electrodynamics of Moving Bodies.
5This subject can be found in many Electrodynamics textbooks as for instance L.D. Landau-E.M.
Lifšits,The classical theory of fields, Chapters III and IV, or J.D. Jackson,ClassicalElectrodynamics,
cited, Chap.11. In these two books with an introduction to the theory of relativity, the Kinematics
and the Dynamics are also considered.
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the nature of the electric and magnetic fields, as components of the electromagnetic
field, will be evident.

7.2 4-Vectors, Covariant and Contravariant Components

In a frame S in the four-dimensional Minkowski space, a point event is determined
by the coordinates of the position r(x, y, z), where it occurs in the three dimen-
sional space, and by the time t when it occurs. t and r are the time and space
components of the 4-vector position x with components xμ = (x0, x1, x2, x3) =
(ct, x, y, z) = (ct, r) where μ = 0, 1, 2, 3. Similarly for an arbitrary 4-vector a =
aμ = (a0, a1, a2, a3).

For the second postulate of the relativity the speed of light c is the same in all the
reference frames and it is independent from the motion of the source.

Consider two systems S and S′, in relative uniform motion, which have the origin
and the axes coincident at the time t = t ′ = 0. If at that time a light spherical wave
is emitted at the origin of the axes, at any later time this wave has to be seen in both
reference frames as a spherical wave that propagates with speed c. Thus it has to be:

s2 = c2t2 − (x2 + y2 + z2) = c2t ′2 − (x ′2 + y′2 + z′2) = 0 .

Similarly the distance ds between two points in the space-time has to be the same
in all the inertial frames. For the two frames S and S′ we have:

(ds)2 = c2(dt)2 −
[
(dx)2 + (dy)2 + (dz)2

]
= c2(dt ′)2 −

[
(dx ′)2 + (dy′)2 + (dz′)2

]
.

(7.1)

In the four dimensional space the inner or scalar product of the two 4-vectors A
and B is defined by the relation:

A · B = gμν A
μBν (7.2)

where gμν is themetric tensor that determines the metric of the space-time. As usual
in this relation we assume the sum over any index that appears twice.

In particular we can write the norm for ds:

(ds)2 = ds · ds = gμνds
μdsν (7.3)

and comparing this with the relation (7.1), for themetric tensor gμν we have: g00 = 1,
gμν = −1 per μ = ν = 1, 2, 3; gμν = 0 per μ �= ν.
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The tensor gμν can be written as a matrix:

gμν =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ . (7.4)

From the above definitions we have the scalars:

s2 = s · s = gμνx
μxν = c2t2 − (x2 + y2 + z2)

a2 = a · a = gμνa
μaν = a20 − (a2x + a2y + a2z )

a · b = gμνa
μbν = a0b0 − (axbx + ayby + azbz) .

A scalar is a quantity which is unchanged by the transformation from one frame
to another. It is also called a Lorentz invariant.

If we say xμ and x ′μ the components of the 4-vector x in S and S′ we can write:

dx ′μ = ∂x ′μ

∂xν
dxν .

For a 4-vector A it is defined the contravariant vector Aμ with components
(A0, Ax , Ay, Az) that are transformed from S to S′ according to the rule:

A′μ = ∂x ′μ

∂xν
Aν . (7.5)

From the relations:

dxμ = ∂xμ

∂x ′ν
∂x ′ν

∂xρ
dxρ

it follows:
∂xμ

∂x ′ν
∂x ′ν

∂xρ
= ∂xμ

∂xρ
= δμ

ρ .

The factors
∂x ′μ

∂xν

in the relation (7.5) are the elements of a 4× 4 matrix, Lμ
ν , that can be found from

the Lorentz transformation of the coordinates. For the transformation of the 4-vector
x(ct, x) we have:

x ′μ = Lμ
νx

ν (7.6)
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and, if the x ′ axis of S′ is moving with velocity v = βcx̂ over the x axis of S and the
three axis of the two frames are coincident at time t = t ′ = 0, the matrix Lμ

ν is6:

Lμ
ν =

⎛

⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ β = v

c
γ = 1√

1 − v2
c2

. (7.7)

The 4-vector x can be written as a column vector and the transformation (7.6)
becomes a product of matrices:

⎛

⎜⎜⎝

ct ′
x ′
y′
z′

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

ct
x
y
z

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

(ct − βx)γ
(x − vt)γ

y
z

⎞

⎟⎟⎠ .

For the 4-vector A is also defined the covariant vector Aμ with the components
that are transformed from S to S′ by the relation:

A′
μ = ∂xν

∂x ′μ Aν . (7.8)

The scalar product of the two 4-vectors A and B can be also written in the form:

A · B = A′
μB

′μ = ∂xρ

∂x ′μ
∂x ′μ

∂xν
AρB

ν = δρ
ν AρB

ν = AνB
ν . (7.9)

In particular for the norm of ds:

(ds)2 = dxμdx
μ

and comparing with the relation (7.3) the result:

dxμ = gμνdx
ν

ormore generally, from the (7.2) and (7.9) it follows the relation between the covariant
and contravariant components of the 4-vector A:

A · B = AμB
μ = gμν A

νBμ Aμ = gμν A
ν .

6In this simple case the Lorentz transformations are:

ct ′ = (ct − βx)γ x ′ = (x − vt)γ y′ = y z′ = z β = v

c
γ = 1√

1 − β2
.
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So the covariant components of the 4-vector A are Aμ (A0,−Ax ,−Ay,−Az).

As for the 4-vector, by the relations (7.5) and (7.8), it is possible to define the
contravariant tensor of rank 2:

F ′μν = ∂x ′μ

∂xα

∂x ′ν

∂xβ
Fαβ,

the covariant tensor of rank 2:

F ′
μν = ∂xα

∂x ′μ
∂xβ

∂x ′ν Fαβ,

and the mixed tensors of rank 2:

F ′
μ

ν = ∂xα

∂x ′μ
∂x ′ν

∂xβ
Fα

β F ′μ
ν = ∂x ′μ

∂xα

∂xβ

∂x ′ν F
α
β.

Tensors of higher rank can also be defined.
If f is a scalar function, its differential d f is also a scalar, and from:

d f = ∂ f

∂xμ
dxμ

being dxμ a contravariant vector, it follows that ∂ f
∂xμ is a covariant 4-vector. Thus it

is usual to write ∂μ f = ∂ f
∂xμ and it is evident that ∂μ = ∂

∂xμ is a covariant differential
operator:

∂μ = ∂

∂xμ

(
1

c

∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)
=

(
1

c

∂

∂t
,∇

)
.

Similarly from:

d f = ∂ f

∂xμ

dxμ

it follows that ∂ f
∂xμ

is a contravariant 4-vector and ∂μ = ∂
∂xμ

is a contravariant differ-
ential operator:

∂μ = ∂

∂xμ

(
1

c

∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
=

(
1

c

∂

∂t
,−∇

)
.

Like the product AμBμ, the D’Alambertian operator:

∂μ∂μ = 1

c

∂

∂t

1

c

∂

∂t
−

(
∂

∂x

∂

∂x
+ ∂

∂y

∂

∂y
+ ∂

∂z

∂

∂z

)
= 1

c2
∂2

∂t2
− ∇2 = �

is also a scalar and has the same form in all the Lorentz reference frames.
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7.3 Relativistic Covariance of the Electrodynamics

In the three dimensional space, the equation F = ma is a vector equation. It is the
same in all the inertial frames related by a translation, a rotation or a Galileian
transformation. The components of F and a are changed after transformations in
different frames, but the three scalar equations between the same type components
of the two members of the vector equation, are valid in any reference frame because
the two components are transformed in the same way.7 We say that, in the three
dimensional space, a vector equation is in covariant form. From this property of
invariance for the vector relations the invariance of the Classical Mechanics with
respect to the Galileian transformations is derived.

The first postulate of special theory of relativity demands that the laws of Physics
be the same in any inertial frame of reference. The equations of Electrodynamics are
not invariant with respect to Galileian transformations but with respect to Lorentz
transformations. To prove the Lorentz invariance of the Electrodynamics it is suffi-
cient that, for all its equations, the two members are transformed in the same way.
This condition is satisfied if the two members have the same tensor properties: they
are both scalar, 4-vectors or tensors of equal rank. This means that the equations have
to be written in covariant form.

We will show that all the equations of the Electrodynamics can be written in a
covariant form and this will prove the Lorentz invariance of Electrodynamics.

7.4 4-Vector Potential and the Equations
of Electrodynamics

In the Lorentz gauge the equations for the potentials A and V in free space, seen in
Chap.1, are:

∇2A − 1

c2
∂2A
∂t2

= −μ0 J (1.29)

∇2V − 1

c2
∂2V

∂t2
= − ρ

ε0
. (1.30)

Defining the 4-vector potential A = Aμ(V/c,A), considering the 4-current den-
sity J = Jμ(ρc, J), given by the Eq. (6.1), and the relation:

1

ε0
= μ0

1

μ0ε0
= μ0c

2

7The vector equation exists by itself in the space and of course it is independent from the frame.
When considering the equation in a frame we take the projections of both members of the vector
equation along the three axes of the frame. The projections are different in the different frames but
the vector equation is the same, it is therefore written in covariant form.

http://dx.doi.org/10.1007/978-3-319-39474-9_1
http://dx.doi.org/10.1007/978-3-319-39474-9_6
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it is easy to see that the two equations are the four components of the equation:

∂μ∂μAν = μ0 J
ν or �A = μ0 J

for ν = 0, 1, 2, 3.
This last equation is an equality between two 4-vectors. Changing the reference

frame this 4-vector equation is unchanged, it is the same in all inertial frames. The
components of same type of the two 4-vectors are transformed in the same way,
therefore the equality between the four components is conserved. This equation is
written in covariant form and since this equation corresponds to the four fundamental
Eqs. (1.29) and (1.30), that summarize all the Electrodynamics, this is sufficient to
prove the relativistic covariance of the Electrodynamics.

7.5 The Continuity Equation

The continuity Eq. (1.10):

∂ρ

∂t
+ ∇ · J = 0

1

c

∂ρc

∂t
+ ∂ Jx

∂x
+ ∂ Jy

∂y
+ ∂ Jz

∂z
= 0

can be written in covariant form as a simple scalar product:

∂μ J
μ = 0 .

7.6 The Electromagnetic Tensor

Consider now the fields E and B. From B = ∇ × A, taking the x component, we
have:

Bx = ∂Az

∂y
− ∂Ay

∂z

that can be written as the component of a rank 2 tensor:

F32 = ∂3A2 − ∂2A3 = −∂Ay

∂z
+ ∂Az

∂y
= ∂Az

∂y
− ∂Ay

∂z
= Bx .

Similarly for F13 = By and F21 = Bz .
Then it is possible to introduce the antisymmetric tensor Fμν :

Fμν = ∂μAν − ∂ν Aμ . (7.10)

http://dx.doi.org/10.1007/978-3-319-39474-9_1
http://dx.doi.org/10.1007/978-3-319-39474-9_1
http://dx.doi.org/10.1007/978-3-319-39474-9_1
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Varying the indexes μ, ν = 1, 2, 3 we have the components of the field B as we
have seen, but if one of the indexes is the time index 0, we have the components of
the electric field. For instance for F01 it is:

F01 = ∂0A1 − ∂1A0 = 1

c

∂Ax

∂t
+ 1

c

∂V

∂x
= − Ex

c
.

Replacing the index 1 with 2 or 3, we get the y and z components of the electric
field.

Fμν is the electromagnetic tensor. Its elements are the components of the E and
B fields:

Fμν =

⎛

⎜⎜⎝

0 − Ex
c − Ey

c − Ez

c
Ex
c 0 −Bz By
Ey

c Bz 0 −Bx
Ez

c −By Bx 0

⎞

⎟⎟⎠ .

It is evident now why the fields E and B are closely connected in the frame
transformations: they are the components of the same tensor. As shown in the next
paragraph, the components of this tensor are mixed when transformed in different
reference frames, and as a consequence the components of the fields E and B are
mixed. In a reference frame only the electric field E or the magnetic field B could be
observed, while in other frames a combination of the two fields appears as we have
seen in the previous chapter.

7.7 Lorentz Transformation for Electric
and Magnetic Fields

To transform the E and B fields we have to transform the components of the rank 2
electromagnetic tensor:

F ′μν = Lμ
ρL

ν
σ F

ρσ .

If we consider the simple transformation (7.7), for E ′
y there are only two non null

terms:

E ′
y

c
= F ′20 = L2

ρL
0
σ F

ρσ = L2
2L

0
0F

20 + L2
2L

0
1F

21 = γ
Ey

c
− βγ Bz

and the transformation is:
E ′
y = γ (Ey − vBz) .

For B ′
y :

B ′
y = F ′13 = L1

ρL
3
σ F

ρσ = L1
0L

3
3F

03 + L1
1L

3
3F

13 = βγ
Ez

c
+ γ By
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B ′
y = γ

(
By + v

c2
Ez

)
.

Repeating the exercise for all the components of the E and B fields we get the
transformations (6.10):

⎧
⎪⎨

⎪⎩

E ′
x = Ex

E ′
y = γ (Ey − cβBz)

E ′
z = γ (Ez + cβBy)

⎧
⎪⎨

⎪⎩

B ′
x = Bx

B ′
y = γ (By + β

Ez

c )

B ′
z = γ (Bz − β

Ey

c )

(7.11)

that, in terms of the components parallel and transverse to the relative velocity v of
the two frames, can be written as:

{
E′

‖ = E‖
E′

⊥ = γ (E⊥ + v × B⊥)

{
B′

‖ = B‖
B′

⊥ = γ (B⊥ − 1
c2 v × E⊥)

.

7.8 Maxwell Equations

7.8.1 Inhomogeneous Equations

The first and the fourth Maxwell equation in covariant form are:

∂μF
μν = μ0 J

ν . (7.12)

For ν = 1 we have:
∂μF

μ1 = μ0 J
1

∂F01

∂x0
+ ∂F11

∂x1
+ ∂F21

∂x2
+ ∂F31

∂x3
+ = μ0 J

1

but F11 = 0 and it follows:

1

c

∂F01

∂t
+ ∂F21

∂y
+ ∂F31

∂z
= μ0 J

1 − 1

c2
∂Ex

∂t
+ ∂Bz

∂y
− ∂By

∂z
= μ0 Jx

that is the x component of the fourth equation:

(∇ × B)x = μ0 Jx + μ0ε0
∂Ex

∂t
.

Similarly the y and z components are derived for ν = 2 and 3.

http://dx.doi.org/10.1007/978-3-319-39474-9_6
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For ν = 0 the Eq. (7.12) becomes:

∂μF
μ0 = μ0 J

0

∂F00

∂x0
+ ∂F10

∂x1
+ ∂F20

∂x2
+ ∂F30

∂x3
= μ0 J

0 1

c

∂Ex

∂x
+ 1

c

∂Ey

∂y
+ 1

c

∂Ez

∂z
= μ0ρc

because F00 = 0. By substituting μ0c2 = 1/ε0 this relation can be written:

∇ · E = ρ

ε0

that is the first Maxwell equation.

7.8.2 Homogeneous Equations

The second and the third equation are four scalar equations that are written in the
form:

∂γ Fμν + ∂μFνγ + ∂νFγμ = 0

where the three indexes μ, ν, γ are one of the four possible combinations of indexes
with no equal indexes. For two equal indexes the equation is null.

For the three space indexes the equation is:

∂ x F yz + ∂ y Fzx + ∂ z Fxy = 0

∂Bx

∂x
+ ∂Bx

∂x
+ ∂Bx

∂x
= 0 ∇ · B = 0

that is the second equation. For the indexes x , y and 0:

∂ x F y0 + ∂ y F0x + ∂0Fxy = 0

− ∂

∂x

Ey

c
+ ∂

∂y

Ex

c
− 1

c

∂Bz

∂t
= 0 (∇ × E)z = −∂Bz

∂t

the component z of the third equation is found and similarly the x and y components
can be derived.
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7.9 Potential Equations

By substituting in the Maxwell equation (7.12) the expression for the electromag-
netic tensor Fμν = ∂μAν − ∂ν Aμ given in (7.10), the four coupled equations for the
potentials in covariant form are found:

∂μ∂μAν − ∂μ(∂ν Aμ) = μ0 J
ν ∂μ∂μAν − ∂ν(∂μA

μ) = μ0 J
ν

where:

∂μA
μ = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
+ 1

c2
∂V

∂t
= ∇ · A + 1

c2
∂V

∂t

is a scalar or Lorentz invariant, thus if the Lorentz gauge ∂μAμ = 0 is chosen in a
reference frame, the choice is valid in all the reference frames.

In the Lorentz gauge the uncoupled equations for the potentials in covariant form
become:

∂μ∂μAν = μ0 J
ν → �Aν = μ0 J

ν

already seen in Sect. 7.4.

7.10 Gauge Transformations

The gauge transformations for the potentials (1.22) and (1.23):

A′ = A + ∇ϕ V ′ = V − ∂ϕ

∂t

in covariant form are:

A′μ = Aμ − ∂μϕ

and the Eq. (1.28) to find the potentials satisfying the Lorentz gauge is:

�ϕ = ∂μA
μ .

http://dx.doi.org/10.1007/978-3-319-39474-9_1
http://dx.doi.org/10.1007/978-3-319-39474-9_1
http://dx.doi.org/10.1007/978-3-319-39474-9_1
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7.11 Phase of the Wave

Introducing the wave 4-vector kμ (ω/c,k), the phase of a monochromatic wave is:

kμx
μ = ωt − k · r = −(k · r − ωt)

that is a scalar relativistic invariant equal in all the reference frames.
For an electromagnetic wave the norm of the wave vector is null:

kμk
μ = ω2

c2
− k · k = 0 .

7.12 The Equations of Motion for a Charged Particle
in the Electromagnetic Field

We have to remind here some formulas from the introductory courses on special
relativity.

The 4-velocity is:

uμ = dxμ

dτ

(
c
dt

dt
γ,

dxi

dt
γ

)
= (cγ, vγ ) (7.13)

where dτ = dt/γ is the proper time. The 4-momentum is pμ = m0uμ:

pμ (m0cγ,m0vγ ) =
(E
c
,p

)
(7.14)

where E is the energy of the particle. The 4-vector force is:

f μ =
(
F · v
c

γ,Fγ

)

and the equations of the motion are:

dpμ

dτ
= f μ . (7.15)

The force acting on a point charge in the electromagnetic field

F = qE + qv × B
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is the space component of the 4-force:

f μ = qFμνuν .

By substituting this relation in the (7.15) we have:

dpμ

dτ
= qFμνuν .

The x component of this equation is:

dp1

dτ
= qF10u0 + qF12u2 + qF13u3

dpx
dt

= qEx + qBzvy − qByvz

that is the x projection of the three dimension vector equation:

dp
dt

= F = qE + v × B

while the time component of this relativistic equation:

dp0

dτ
= qF01u1 + qF02u2 + qF03u3

dE
dt

= qExvx + qEyvy + qEzvz

is equal to the power, the change of the energy E per unit time, due to the action of
the electric field:

dE
dt

= qE · v .



Chapter 8
The Resonant Cavity

The displacement current in the fourth Maxwell equation can be neglected in steady
or quasi steady conditions, but it is relevant in fast processes and produces new
phenomena if connected to the electromagnetic induction. Themost relevant of these
are the electromagnetic waves. An elegant and intriguing example of the transition
from low to high frequency is the capacitor. As shown by Feynman in one of his
lectures1 at very high frequency, the capacitor becomes a resonant cavity. This chapter
aims to introduce shortly this example.

8.1 The Capacitor at High Frequency

Consider a capacitor with parallel circular plates of radius R at distance h as in
Fig. 8.1. If a sinusoidal voltage with angular frequency ω is applied to the plates, the
electric field inside the capacitor is:

E = E0e
iωt

and its field lines are perpendicular to the plates. A displacement current density is
associated to this electric field:

ε0
∂E

∂t
= ε0(iω)E0e

iωt

with the same direction of the field E .
According to the fourth Maxwell equation, a magnetic field B, with circular field

lines around the axis of the capacitor, is present between the plates. The line integral

1R.P. Feynman, R.B. Leighton, M. Sand, The Feynman Lectures on Physics, Vol. II, Chap.23. We
suggest to read the Chaps. 16 and 17 on the electromagnetic induction.

© Springer International Publishing Switzerland 2016
F. Lacava, Classical Electrodynamics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-39474-9_8
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Fig. 8.1 Electric and magnetic field lines in the condenser

of B, along a circular field line of radius r , is equal to μ0 times the flux of the
displacement current through the area inside the circle:

2πr B = μ0πr
2(ε0

∂E

∂t
) = μ0ε0πr

2(iω)E0e
iωt (8.1)

so we find:
B(r) = iω

r

2c2
E0e

iωt

where we have used the relation μ0ε0 = 1/c2.
According to the third Maxwell equation, the magnetic field changing in time

induces an electric field E2 parallel to the axis of the condenser. This field is added
to the electric field applied between the plates hereafter called E1. Thus the total
electric field should be:

E = E1 + E2.

From Faraday’s law: ∮
E · dl = −dΦ(B)

dt

the line integral along a path as in Fig. 8.2 gives2:

− hE2(r) = − d

dt

∫ r

0
B(r ′)hdr ′ (8.2)

2The induced electric field is null on the axis of the capacitor and the contour integral of E1 is
clearly null.
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Fig. 8.2 Closed path for the
line integral of the field E2

E2(r) = d

dt

∫ r

0

iωr ′

2c2
E0e

iωt dr ′ =
∫ r

0

(iω)2

2c2
E0e

iωt r ′dr ′

and after integration:

E2(r) = 1

22

(
iωr

c

)2

E0e
iωt = − 1

22

(ωr

c

)2
E0e

iωt

that is a negative contribution to be added to E1. The electric field becomes:

E =
[
1 − 1

22

(ωr

c

)2
]
E0e

iωt

with a strength decreasing for increasing distances r from the axis of the capacitor.
The correction to the electric field E1 is negligible if ωR/2c � 1 equivalent to
periods:

T � π
R

c

where πR/c is about the time of propagation of the electromagnetic signal over a
distance comparable with the dimensions of the plates. This condition is fulfilled
for slow voltage changes applied to the terminals of the capacitor, because these
variations can be considered instantaneously propagated over the whole plates of
the capacitor. This is the condition of quasi steady state in which the displacement
current can be neglected.

A displacement current is also associated to the field E2 and to this current is
associated a field B2 that, similarly to (8.1), has a circular integral:

2πr B2 = μ0ε0

∫ r

0

(
∂E2

∂t

)
2πr ′dr ′ .



116 8 The Resonant Cavity

By substituting the expression found for E2, after integration, we find:

B2 = 1

22
1

4

(iωr)3

c4
E0e

iωt .

From Faraday’s law, an electric field E3 is associated to the field B2 and, as for
the field E2 seen in (8.2), its closed path integral is:

−hE3(r) = − d

dt

∫ r

0
B2(r)hdr = − d

dt

(
−i

ω3

c4
1

16
E0e

iωt

) ∫ r

0
r3hdr

and from this:

E3(r) = 1

2242

(
iωr

c

)4

E0e
iωt .

To this field E3 is associated a field B3 as it was for B2 associated to E2:

B3 = 1

22426

(iωr)5

c6
E0e

iωt .

Iterating up to the fifth term, for the electric field we have:

E(r, t) =
[
1 − 1

(1!)2
(ωr

2c

)2 + 1

(2!)2
(ωr

2c

)4 − 1

(3!)2
(ωr

2c

)6 + 1

(4!)2
(ωr

2c

)8]
E0e

iωt

and it is easy to see that this expression is the beginning of a series of corrections
with alternate signs that, when extended to infinity, becomes:

E(r, t) =
[ ∞∑

n=0

(−1)n
1

(n!)2
1

22n

(ωr

c

)2n
]

E0e
iωt

where the expression in brackets is the Bessel function3 of first kind J0 shown in
Fig. 8.3. So we can write the electric field in the form:

E(r, t) = J0(z) E0e
iωt z = ωr

c
. (8.3)

Similarly, the first five terms for the magnetic field give:

B(r, t) =
[
1

2

iωr

c2
+ 1

224

(iωr)3

c4
+ 1

22426

(iωr)5

c6
+ 1

2242628

(iωr)7

c8
+ 1

2242628210

(iωr)9

c10

]
E0e

iωt .

3See for instance: I.M.Gradshteyn and I.M.Rizhik,Table of Integrals, Series, andProducts, 8.441, 1.
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Fig. 8.3 J0(z) (solid line) and J1(z) (dotted line) Bessel functions of first kind

Adding all the terms we get:

B(r, t) = i

c

[
1

2

ωr

c

∞∑

n=0

(−1)n
1

22n

(ωr

c

)2n 1

n!
1

(n + 1)!

]
E0e

iωt .

and, since the expression in brackets is the Bessel function4 of first kind J1, shown
in Fig. 8.3, the field B becomes:

B(r, t) = i

c
J1(z) E0e

iωt = 1

c
J1(z) E0e

i(ωt+ π
2 ) z = ωr

c
. (8.4)

Taking the real part of expressions (8.3) and (8.4), the fields E and B are:

E(r, t) = J0(z) E0 cos(ωt) (8.5)

B(r, t) = 1

c
J1(z) E0 cos(ωt + π

2
) . (8.6)

The fields E and B are sinusoidal functions of the time and, for a fixed ω value, the
amplitudes of E and B are determined by the functions J0 and J1 and depend only
on the distance r from the axis of the capacitor as sketched in Fig. 8.4. As shown
in Fig. 8.3, these functions can be positive, negative or null, so at the same time but
at different distances r , the electric and the magnetic fields can also have opposite

4Gradshteyn-Rizhik, 8.441, 2.
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Fig. 8.4 Strength of the electric field between the plates of the condenser at high frequency

directions. Moreover E and B have a difference in phase equal to π/2 so that when
the first has its maximum the second is null and vice versa.

8.2 The Resonant Cavity

For a given angular frequency ω, the field E is null at the distances r = zc/ω from
the axis, where z are the values for which the J0(z) function is null. The first three
of these values are: z = 2.4048, 5.5201, 8.6537.

If we connect the plates with a conductive cylindrical surface at the radius corre-
sponding to the first zero:

r1 = 2.4048
c

ω

the electric field across this surface is null, then the voltage difference is null and
there is no current on this surface. If we remove the connections between the plates
and the external sinusoidal generator, andwe remove the parts of the plates at a radius
larger than r1, inside the metallic cylindrical box that we have built, there can be still
present an electromagnetic fieldwith E and B given by (8.5) and (8.6). Indeedwe can
repeat all the considerations done in the previous paragraph with the only difference
that, in order to have the charge on the plates changing its sign periodically, there
has to be a current IC flowing from a plate to the other one, through the cylindrical
lateral surface as shown in Fig. 8.5. This current is equal to the total displacement
current IS flowing between the plates inside the box:

IS =
∫ r1

0
ε0

(
∂E

∂t

)
2πr ′dr ′ = ε0Ee

i(ωt+ π
2 )

∫ r1

0
J0

(ωr

c

)
2πr ′dr ′ .
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Fig. 8.5 Conduction current IC and displacement current IS in the resonant cavity

Fig. 8.6 Resonant cavity of the collider e+e− ADONE, 3.1GeV center of mass energy, operating
in years 1970 at the INFN Laboratori Nazionali in Frascati, Italy

IC is a sinusoidal current with angular frequency ω, with the same phase of the
magnetic field (8.4), and closes the loop of the current so that for r > r1 the magnetic
field is null.

Inside the box the fields E and B are sinusoidal and in quadrature: at a given time
only the electric field is present and after a quarter of period only the magnetic field
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is non null. Thus the electromagnetic energy oscillates between two states: in the first
state it is only associated to the electric field and the system behaves as a capacitor
while in the second only the magnetic field is present and the system is equivalent
to an inductance. The metallic cylinder behaves as a resonant LC circuit: we have
built a resonant cavity.

We have fixed the angular frequency ω, while by fixing the radius r1 of the plates
of the resonant cavity, the resonance frequency would be determined by the relation
ω = 2.4048 c/r1.

The resonance frequencies are very high: for r1 = 10 cm the frequency is about
1GHz.

In real resonant cavities the plates and the lateral surfaces have a resistance and the
equivalent circuit of the cavity has to include with the inductance and the capacitor
also a resistor so that the amplitudes of the fields are damped. Anyway it is possible
to restore the energy dissipated in the system to keep steady oscillating fields inside
the cavity.

For comments and furthers details we suggest to read the Feynman’s lecturewhere
it is also shown how a low frequency circuit with a capacitor and an inductance has
to transform into a resonant cavity at high frequency.

Resonant cavities as the one in Fig. 8.6 are used for instance in circular particle
accelerators: at each turn the particles entering the cavity in phase with the E field,
are accelerated and their energy is increased.



Chapter 9
Energy and Momentum
of the Electromagnetic Field

When the electromagnetic field accelerates the charged particles and the particles
radiate electromagnetic waves, energy and momentum are exchanged between par-
ticles and field. In isolated systems with charges and electromagnetic field, energy
and momentum are conserved.

Considering the work and the force applied by the field on the charges, the expres-
sions for the densities of energy and momentum of the electromagnetic field can be
determined. The Poynting’s vector is associated to energy and momentum fluxes and
the conservation laws for energy and momentum in the presence of an electromag-
netic field are derived.

9.1 Poynting’s Theorem

The electromagnetic field and the electric charges can exchange energy: the electric
field does work accelerating the charges and the charges can radiate electromagnetic
energy. In all these processes the energy is conserved. The Poynting’s theorem states
the conservation of energy for the electromagnetic field interacting with charges.

Consider a volume τ , surrounded by the closed surface Σ , with the electromag-
netic field and the charges inside. If n is the number of q charges per unit of volume
and v their velocity, the force df applied by the electromagnetic field on the charges
in a small volume dτ is: dτ is:

df = q(E + v × B)ndτ . (9.1)

The work dL on the charges inside dτ in a time interval dt is:

dL = df · ds = df · v dt = nq(E + v × B) · v dt dτ = nqv · E dt dτ = J · E dt dτ

© Springer International Publishing Switzerland 2016
F. Lacava, Classical Electrodynamics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-39474-9_9
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where J = nqv is the density current and (v × B) · v = 0 (the Lorentz force is normal
to the velocity).

The power per unit volume transferred from the field to the medium enclosing the
charges, is:

dL

dτdt
= w = J · E .

From the fourth Maxwell equation we get:

J = ∇ × H − ∂D
∂t

and we can write:

J · E = E · ∇ × H − E · ∂D
∂t

.

Reminding the vector relation:

∇ · (E × H) = H · ∇ × E − E · ∇ × H

we have:

J · E = −∇ · (E × H) + H · ∇ × E − E · ∂D
∂t

and using the third Maxwell equation:

∂B
∂t

= −∇ × E

J · E = −∇ · (E × H) − E · ∂D
∂t

− H · ∂B
∂t

.

If we assume linear relations between the fields for the considered medium: D =
εE and B = μH, we find:

J · E = −∇ · (E × H) − ∂

∂t

(
1

2
E · D + 1

2
H · B

)
. (9.2)

In this equation we have the density of electromagnetic energy:

u = 1

2
E · D + 1

2
H · B

thus the Eq. (9.2) becomes:

− ∂u

∂t
= J · E + ∇ · (E × H) . (9.3)
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The electromagnetic energy in a finite volume τ is:

U =
∫

τ

u dτ =
∫

τ

(
1

2
E · D + 1

2
H · B

)
dτ

and the integral of (9.3) over the volume τ is:

− dU

dt
=

∫

τ

[∇ · (E × H) + J · E] dτ . (9.4)

If we introduce the Poynting’s vector:

S = E × H

the relation (9.4) becomes:

− dU

dt
=

∫

τ

∇ · S dτ +
∫

τ

J · E dτ (9.5)

and applying the Gauss-Green theorem we have:

− dU

dt
=

∫

Σ

S · n̂ dΣ +
∫

τ

J · E dτ . (9.6)

The Poynting’s vector S is the flux of energy through a unitary normal surface.
The last formula represents the Poynting’s theorem which states the conservation

of energy for the electromagnetic field interacting with charges: the decrease, in
the time unit, of the electromagnetic energy inside a volume is equal to the flux of
electromagnetic energy, associated to the Poynting vector, through the closed surface
around the volume plus the power transferred to the charges inside the volume.

Equation (9.3) can be written as:

− ∂u

∂t
= ∇ · S + J · E (9.7)

that is the local form of the Poynting’s theorem.
For an electromagnetic wave propagating in direction v̂, the energy that flows

through a unit normal surface in a unit time is that in a cylinder with unitary base
and height v, the velocity of the electromagnetic field, thus we have:

S = uvv̂ (9.8)

where u is the energy density in the wave.
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9.2 Examples

9.2.1 Resistor

Consider a cylindrical resistor or a piece of resistive wire, of radius r and length l,
of uniform resistivity, with its axis along the z axis as in Fig. 9.1a.

A uniform current I flows inside the resistor in the−ẑ direction. From the Ampère
theorem on the lateral surface of the cylinder there is a magnetic field1:

2πrH = −I H = − I

2πr
ϕ̂ .

Nearby the lateral surface the electric field is equal to the electric field inside the
resistor. If we assume a uniform voltage drop along the resistor, the electric field
E is:

E = − V

l
ẑ .

So at the surface of the cylinder there is a Poynting’s vector:

S = E × H = − V

l

I

2πr
r̂

that integrated on the whole lateral surface Σ gives the flux of energy entering the
resistor: ∫

Σ

S · r̂ dΣ = S 2πrl = −V I .

The power dissipated in the resistor2 is just the flux of energy of the electromag-
netic field through its lateral surface (the minus sign implies that the flux of S is
entering the cylinder).

9.2.2 Solenoid

Consider the case of a solenoid of radius r and length l � r, with nS turns per unit
length. If a current I(t) flows in the solenoid, the inner magnetic field is B(t) =
μ0nSI(t)ẑ. For the Faraday-Neumann law, on the lateral surface of the solenoid there
is an electric field:

1We use cylindrical coordinates.
2This is correct for any component with a current I flowing inside and a voltage drop V .
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Fig. 9.1 Poynting’s vector on the lateral surfaces: of a resistor with a flowing current (a), of a
solenoid with a variable current (b), of a condenser during the discharge (c)

∮
E · dl = −dΦ(B)

dt
2πrE = −πr2

∂B(t)

∂t
E = − r

2

∂B(t)

∂t
ϕ̂

and a Poynting’s vector:

S = E × H = EϕBz

μ0
r̂ = −nSI(t)

r

2

∂B(t)

∂t
r̂ = − r

2
H(t)

∂B(t)

∂t
r̂

as in Fig. 9.1b.
The flux of the Poynting’s vector through the lateral surface Σ of the solenoid,

when the current (I = 0 at t = 0) and the field change, is:

∫ t

0

∫

Σ

S · n̂ dΣ dt = −(2πrl)
r

2

∫ t

0
H

∂B

∂t
dt = −πr2l

HB

2
= −πr2l

μ0ns
2I2

2
= −1

2
LI2

where we have used the formula L = μ0nS
2lπr2 for the solenoid inductance in the

infinite length approximation.
The magnetic energy inside the solenoid enters through the lateral surface as a

flux of electromagnetic energy associated to the Poynting’s vector (the minus sign
accounts for the entering flux).
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9.2.3 Condenser

Suppose we have a condenser with parallel circular plates of radius r at distance δ.
Initially the condenser is charged. While it is discharged, the electric field E = Ezẑ
between the plates, changes and there is a displacement current:

JS = ε0
∂Ez

∂t
ẑ .

From the line integral of the magnetic field B around a circular closed curve of
radius r, coaxial with the condenser, for B we find:

∮
B · dl = 2πrB = μ0πr2JS B = μ0ε0

2
r
∂Ez

∂t
ϕ̂ .

As shown in Fig. 9.1c, on the lateral surface of the condenser we have the Poynt-
ing’s vector:

S = E × H = −Ez
Bϕ

μ0
r̂ = −ε0

r

2
Ez

∂Ez

∂t
r̂

with a total flux:

Φ(S) = −ε0
r

2
Ez

∂Ez

∂t
2πrδ = −πr2δε0

1

2

∂E2
z

∂t
.

The integral of the flux over the time interval in which the electric field changes
from the initial value Ei = V/δ to zero, is the total energy going through the lateral
surface:

∫ ∞

0
Φ(S) dt = πr2δ

ε0E2
zi

2
= 1

2
(ε0πr2δ)

(
V

δ

)2

= 1

2

(
ε0πr2

δ

)
V 2 = 1

2
CV 2

(9.9)
and it is equal to the electrostatic energy initially stored in the condenser.3

3We get the same result if we consider the discharge of the condenser with a resistor R. The charge
Q as a function of the time is:

Q = Q0e− t
τ

where τ = RC, and the electric field can be written:

E = σ

ε0
= 1

ε0

Q0

πr2
e− t

τ .

The Poynting’s vector is:

S = 1

τ

(
Q0

πr2

)2 r

2ε0
e− 2t

τ

and its integral over the lateral surface during the discharge gives the electrostatic energy initially
in the condenser as in (9.9).
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9.3 Energy Transfer in Electrical Circuits

The Poynting’s vector describes the flux of energy of the electromagnetic field and
it is usually considered for the electromagnetic waves while the energy transfer in
the electrical circuits is associated to the electrical currents. The previous examples
instead clearly show that the flux of the Poynting’s vector accounts also for the energy
transfer in the components of the electrical circuits and even in quasi steady or steady
conditions. The power dissipated in a resistor and the energy stored in a capacitor
or in an inductor, flow inward (or outward) through the sides of the components.
This surprising and apparently strange description is correct and consistent with the
Maxwell equations.

After all, the transfer of energy in electrical circuits, associated to the flux of
the electric and magnetic fields, is to be expected because also in electrostatics and
magnetostatics the energy is located in the space around the charges and the electric
currents. While moving, the charges drag the fields around them and also the energy
associated to their fields.

A. Sommerfeld4 has solved the problem of an infinitely long straight resistive
wire carrying a steady current with a return path through a hollow coaxial conductive
cylinder surrounding the wire5 and has shown that the electromagnetic energy flows
in the space between the two conductors and is dissipated in the wire. A qualitative
but clear and effective description of the energy transfer from a battery to a resistive
load has been given by Galili and Goihbarg.6 It is useful to shortly report here their
analysis.

Consider the circuit as sketched in Fig. 9.2a. The terminals of the battery are
electrically connected to the terminals of the resistorR by two cylindrical conductors.
These twoconductors, at constant voltages, are charged anda surface charge is present
on their surface. The inner electric fieldE is clearly null while outside there is a radial
field En due to the surface charge. Inside the resistor, the applied voltage generates
a uniform non null electric field Eτ parallel to the axis while a radial field is present
on the lateral surface due to the surface charge as in the two conductors. This radial
field reverses by 180◦ along the outer part of the resistor.

In the battery is present an electrostatic field from the anode to the cathode and
all the chemical processes can be accounted by an electromotive field,7 opposite to
the electrostatic field and slightly larger, that, pushing the positive charges from the
cathode to the anode and the negative charges in the opposite direction, generates
the current in the circuit. When an electrical current flows in the circuit, around the
battery, the conductors and the resistor, there is also a magnetic field with circular
field lines coaxial with these components.

4A. Sommerfeld, Electrodynamics, (1952), Academic Press, New York, pp. 125–130.
5See Problem 9.2 of this chapter.
6I. Galili and E. Goihbarg, Energy transfer in electrical circuits: a qualitative account, American
Journal of Physics 73, pp. 141–144, (2005).
7Other generators are based on thermal, luminous or mechanical phenomena but the electromotive
field description is still valid.
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Fig. 9.2 The circuit with the battery, the conductors and the resistor: up the surface charge and
the external electric field are shown; down the electric field, the magnetic field and the Poynting’s
vector S along the lateral surfaces of the circuit (Figures reproduced with permission from I. Galili
and E. Goihbarg, cited. Copyright 2005, American Association of Physics Teachers.)

Consider the energy flux as shown in Fig. 9.2b. Inside the two conductors the
electric field is null: the Poynting’s vector is null and there is no energy flux. Instead
a non null Poynting’s vector is present around the lateral surface of the conductors
as a consequence of the magnetic field and of the radial electric field. This vector is
parallel to the conductors and accounts for the energy transfer from the terminals of
the battery to the terminals of the resistor. At the surface of the resistor the electric
field is the sumof the parallel fieldEτ and of the normal fieldEn andwith themagnetic
field give a Poynting’s vector transferring the flux of energy from the outside of the
conductors to the surface of the resistor. Inside the resistor the electric field Eτ ,
parallel to the resistor axis, and the magnetic field give a radial Poynting’s vector
that transfers the energy in the resistor. In conclusion, the energy flows from the
battery outside of the conductors without any loss, while the current is carried inside
the conductors with no energy transfer. Then the energy enters through the sides of
the resistor and it is absorbed and converted into heat inside it. While the energy is
carried in non conductors (air), the current is carried inside the conductors.
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9.4 The Maxwell Stress Tensor

Consider a volume τ , enclosed by a surface Σ , and inside it an electromagnetic field
interacting with electric charges q in motion. We have seen in (9.1) that the force
applied by the electromagnetic field to a small volume dτ is:

df = q(E + v × B) n dτ

where n is the number of charges per unit volume and v is their velocity.
Substituting ρ = nq and J = nqv the force df becomes:

df = (ρE + J × B) dτ .

The force on the matter in the finite volume τ is:

F =
∫

τ

df =
∫

τ

(ρE + J × B) dτ

and since from the first and the fourth Maxwell equations we have:

ρ = ∇ · D J = ∇ × H − ∂D
∂t

the force can be written:

F =
∫

τ

[
E (∇ · D) + (∇ × H) × B − ∂D

∂t
× B

]
dτ .

From the relation:

∂(D × B)

∂t
= ∂D

∂t
× B + D × ∂B

∂t

we have:
∂D
∂t

× B = ∂(D × B)

∂t
− D × ∂B

∂t

and the force F becomes:

F =
∫

τ

[
E (∇ · D) + (∇ × H) × B − ∂(D × B)

∂t
+ D × ∂B

∂t

]
dτ .

Using the third Maxwell equation and adding the null term H(∇ · B) finally we
can write:

F +
∫

τ

∂(D × B)

∂t
dτ =

∫

τ

[E (∇ · D) − D × (∇ × E) + H(∇ · B) − B × (∇ × H)] dτ
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where in the right-hand side of the equation the fields E and D and the fields H and
B enter into the equation in the same way.

Consider first the x component:

Fx +
∫

τ

∂(D × B)x

∂t
dτ (9.10)

=
∫

τ

{Ex (∇ · D) − [D × (∇ × E)]x + Hx(∇ · B) − [B × (∇ × H)]x} dτ .

An explicit calculation of the two terms for the electric field:

Ex (∇ · D) − [D × (∇ × E)]x

gives:

= Ex

(
∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

)
− Dy

(
∂Ey

∂x
− ∂Ex

∂y

)
+ Dz

(
∂Ex

∂z
− ∂Ez

∂x

)

= ε
∂

∂x

(
E2

x − E2
y − E2

z

2

)
+ ε

∂

∂y

(
ExEy

) + ε
∂

∂z
(ExEz)

and a similar expression can be written for the two terms of the magnetic fields:

μ
∂

∂x

(
H2

x − H2
y − H2

z

2

)
+ μ

∂

∂y

(
HxHy

) + μ
∂

∂z
(HxHz) .

Defining the variables:

Txx = 1

2
ε(E2

x − E2
y − E2

z ) + 1

2
μ(H2

x − H2
y − H2

z )

Txy = εExEy + μHxHy

Txz = εExEz + μHxHz

the Eq. (9.10) becomes:

Fx + ∂

∂t

∫

τ

(D × B)x dτ =
∫

τ

(
∂Txx

∂x
+ ∂Txy

∂y
+ ∂Txz

∂z

)
dτ (9.11)

=
∫

Σ

(
Txxnx + Txyny + Txznz

)
dΣ
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where we have used the Gauss-Green theorem and we have defined n̂ (nx, ny, nz) the
ouward-pointing unit vector normal to the element of surface dΣ .

Similarly for the y and z components of the force F:

Fy + ∂

∂t

∫

τ

(D × B)y dτ =
∫

Σ

(
Tyxnx + Tyyny + Tyznz

)
dΣ (9.12)

with:

Tyy = 1

2
ε(E2

y − E2
z − E2

x ) + 1

2
μ(H2

y − H2
z − H2

x )

Tyx = εEyEx + μHyHx

Tyz = εEyEz + μHyHz

and:

Fz + ∂

∂t

∫

τ

(D × B)z dτ =
∫

Σ

(
Tzxnx + Tzyny + Tzznz

)
dΣ (9.13)

with:

Tzz = 1

2
ε(E2

z − E2
x − E2

y ) + 1

2
μ(H2

z − H2
x − H2

y )

Tzx = εEzEx + μHzHx

Tzy = εEzEy + μHzHy .

The terms Tij are the components of the tensor:

Tij = EiDj + HiBj − 1

2
δij(εE2 + μH2) (9.14)

= ε[EiEj + v2BiBj − 1

2
δij(E

2 + v2B2)]

which is clearly symmetric.
We can introduce the vector g = D × B and its integral G:

G =
∫

τ

g dτ .

The equation of the Mechanics for the force F applied to the matter is:

F = dPMech

dt

where PMech is the total momentum of the matter inside the volume τ .
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The Eq. (9.11) becomes:

dPMech
x

dt
+ dGx

dt
=

∫

Σ

N∑

i=1

Txini dΣ

and similar equations can be written for the components y and z.
If we consider a volume τ expanded up to regions where the fields E and B are

null, the right-hand side is null and we get:

d

dt
(PMech

x + Gx) = 0

and thus:
PMech + G = const .

Since for an isolated system with charges and electromagnetic fields the sum
of these two vectors is conserved, if PMech is the total momentum of the charged
particles in motion, we have to conclude that the vector G is the total momentum of
the electromagnetic field inside the volume τ . As a consequence the vector g is the
momentum density of the electromagnetic field (momentum per unit volume).

The three Eqs. (9.11), (9.12) and (9.13) can be written as:

d

dt
(PMech

x + Gx) =
∫

Σ

(
Txxnx + Txyny + Txznz

)
dΣ

d

dt
(PMech

y + Gy) =
∫

Σ

(
Tyxnx + Tyyny + Tyznz

)
dΣ

d

dt
(PMech

z + Gz) =
∫

Σ

(
Tzxnx + Tzyny + Tzznz

)
dΣ .

The terms TijnjdΣ in the integrals are the contributions to the total force applied
to the charged system in the volume τ , along the directions x, y and z, across any
small element dΣ , oriented with normal n̂(nx, ny, nz), of the surface Σ surrounding
the volume τ . This is the reason why, in analogy with the stress tensor in Mechanics
of the continuous systems, the tensor Tij is called Maxwell stress tensor.

From D = εE and B = μH we can find the relation between the momentum
density g and the Poynting’s vector S:

g = D × B = μεE × H = E × H
v2

= S
v2

= u

v
v̂ (9.15)

where we have used relation (9.8).
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The momentum of the electromagnetic field crossing a normal unit surface in a
time unit is:

prad = gv = S
v

. (9.16)

We have seen that S is the energy through the same surface in the time unit, so
we have that the (9.16) corresponds to the relation between the momentum and the
energy hν of the photon in Quantum Mechanics:

pγ = h ν

c
.

9.5 Radiation Pressure on a Surface

Consider an electromagnetic wave incident normally on a fully absorbing surface of
area Σ . The average pressure applied by the radiation to the surface is:

pΣ = F

Σ
= 1

Σ

dPMech

dt
= − 1

Σ

dPrad

dt
= |gv| = |E × H|

v
= |S|

v
(9.17)

where we have considered that the momentum change for the absorbing plane is
opposite to the momentum change of the radiation, and that gv is the momentum
carried by the radiation through a normal unit surface per unit time.

For a perfectly reflective surface, the final momentum of the radiation is exactly
opposite to the initial one. Thus the change in momentum is twice that for the fully
absorbing surface and the pressure is:

p′
Σ = F ′

Σ
= 1

Σ

dPMech

dt
= − 1

Σ

dPrad

dt
= 2|gv| = 2

|E × H|
v

= 2
|S|
v

. (9.18)

The pressure of the electromagnetic wave on the absorbing wall can be also
calculated from the Maxwell stress tensor. We assume a plane linearly polarized
monochromatic wave, moving in the ẑ direction, with the field components:

Ex = E0 cos(kz − ωt) By = B0 cos(kz − ωt) E0 = B0v

incident on the fully absorbing half-space at z ≥ 0. Then we consider a cylindrical
volume, of negligible height, crossed by the plane z = 0 that is parallel to the two
basis as in Fig. 9.3. The force applied by the wave can be calculated from the relations
(9.11), (9.12) and (9.13).
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Fig. 9.3 Cylinder for the
calculation of the pressure
applied by a plane wave on a
fully absorbing wall

Only the z component of the vector D × B is non null:

∂

∂t
(D × B)z = −εE0B0 2ω sin(kz − ωt) cos(kz − ωt)

but its time average is zero. The components of the stress tensor at z > 0 are null
because the fields E and B are null. For z < 0 Txx, Tyy, Txy, Tyz and Tzx are zero and
the only non null component is Tzz:

Tzz = −1

2
εE2

x − 1

2
μH2

y = −εE2
0 cos2(kz − ωt)

that averaged over the time gives:

T zz = −1

2
εE2

0 .

From these components for Tij and from the relations (9.11) and (9.12) we find
Fx = Fy = 0while insertingT zz in the (9.13) and integrating over the external surface
of the cylinder we find a non null contribution only for z < 0 (where n̂z = −1) and for
the force applied to the cylinder that, in the limit of an infinitesimal height, coincides
with the absorbing surface, we get:

Fz = −T zzΣ = ε

2
E2
0Σ = uΣ

and the average pressure: pΣ = Fz

Σ
= u = |S|

v

equal to (9.17).
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9.6 Angular Momentum

An angular momentum dL can be associated to the momentum gdτ of the electro-
magnetic field in the small volume dτ . If r is the vector from the pole Ω to the
volume dτ , the angular momentum is:

dL = r × g dτ . (9.19)

The angular momentum of the electromagnetic field in a volume τ is the integral
of dL:

L =
∫

τ

r × g dτ . (9.20)

This is the angular momentum associated to the motion of the field. For the
electromagnetic radiation there is also a spin, the intrinsic angular momentum. For
a circular polarised monochromatic plane wave of frequency ν = ω/2π this is:

L = ± S
ω

with the sign + or − for a clockwise or counterclockwise polarization.8

We remind that in Quantum Mechanics the spin of the photon, relative to a direc-
tion, is quantized and is ±� with � = h/2π , where h is the Planck constant, while
for the electron the spin is ±1/2 �.

In the next chapter we will see examples of the angular momentum of the elec-
tromagnetic field.

9.7 The Covariant Maxwell Stress Tensor

The tensor Tij defined in (9.14) is the space part of the 4-dimension symmetric tensor9

Tμν :

Tμν = εc2
[

FμρFν
ρ − 1

4
gμνFρσ Fρσ

]

= Tμν =

⎛

⎜⎜⎝

−u − Sx
c − Sy

c − Sz

c−Sx
c Txx Txy Txz

−Sy

c Tyx Tyy Tzz

− Sz

c Tzx Tzy Tzz

⎞

⎟⎟⎠

8See for instance: F.S. Crawford Jr, Waves, Berkeley Physics Course, Vol. 3, (1965), McGraw-Hill,
Sect. 7.4.
9For more details see for instance: J.D. Jackson, Classical Electrodynamics, cited, Sect. 12.10; L.D.
Landau-E. M. Lifšits, The Classical Theory of Fields, Chapter IV, Sect. 33.
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also called energy-momentum tensor of the electromagnetic field. The space com-
ponents correspond to the stress tensor Tij, T 00 is equal to −u where u is the energy
density of the electromagnetic field, T 0i = Ti0 = −Si/c for i = 1, 2, 3 are propor-
tional to the components of the Poynting’s vector.

The force per unit volume:

f μ = FμνJν

(
E · J

c
, ρE + J × B

)

is related to the stress tensor by the covariant expression:

f μ = ∂νTμν .

For μ = 0 this relation gives Eq. (9.7):

E · J = −∂u

∂t
− ∇ · S

and for μ = i = 1, 2, 3 the equations:

f i + ∂gi

∂t
= ∂Tix

∂x
+ ∂Tiy

∂y
+ ∂Tiz

∂z

which are the local expressions of the integral Eqs. (9.11), (9.12), (9.13).

Problems

9.1 A battery of voltage V is connected to a resistor R with a coaxial cable. This
cable is composed by two coaxial hollow cylinders of radii a and b (b > a) as in
figure. Find the Poynting’s vector in the coaxial cable. Show that the total flux of this
vector in the cable is equal to the power dissipated in the resistor (Fig. 9.4).

9.2 Sommerfeld has given the solution for a wire of radius a and conductivity σ ,
surrounded by a cylindrical hollow conductor with inner radius b and an infinite outer
radius. An electrical current, with uniform density J , flows in the central conductor

Fig. 9.4 The coaxial cable
connecting the battery to the
resistor
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from z = −∞ to z = +∞ and returns in the outer conductor. The wire lies on the z
axis.

Find the solution for the field and consider the Poynting’s vector or proceed
through the following steps:

(a) define the boundaries conditions for the electric field in the space between the
two conductors;
(b) verify that the solution of the Laplace equation in the space between the conduc-
tors is:

V (r, z) = − J

σ

log r
b

log a
b

z

(c) find the charge densities over the surfaces of the conductors;
(d) write the Poynting’s vector between the two conductors;
(e) consider the Poynting’s vector inside the central conductor.

9.3 In the solar system a space vehicle might be propelled by the pressure of the
solar radiation on a large fully reflective sail. Determine the minimal area of the sail
to push a satellite of mass mv = 300 kg when it is distant from the Sun as the Earth
where the solar radiation power is 1.35 kW/m2. (MSun = 1.99 · 1030 kg, distance
Sun-Earth dSE = 1.5 · 1011 m, GGravit. = 6.67 · 10−11 Nm2/kg2)

9.4 Find the force on the plates of a charged parallel plate condenser by using the
stress tensor.

9.5 Calculate the pressure on the turns of a long solenoid with a constant current.

Solutions

9.1 The inner conductor is at voltage V while the outer is at ground. Say λ the
linear charge density on the inner conductor, and −λ that on the outer one. Consider
a cylindrical surface of length l and of radius r (a < r < b) coaxial with the cable.
The axis of the cylinders is the z axis. From the Gauss theorem we get the electric
field inside the cable:

E · 2πrl = λl

ε0
→ E = λ

2πε0

1

r
r̂ .

From the voltage between the two conductors we can get λ:

V =
∫ b

a
E dr = λ

2πε0

∫ b

a

1

r
dr = λ

2πε0
log

b

a
λ = 2πε0V

log b
a
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and the electric field becomes:

E = V

log b
a

1

r
r̂ .

A current I = V/R is flowing in the conductor from the battery to the resistor.
The field has circular field lines around the axis. From the Ampère law we get the
field B at a radius r:

B · 2πr = μ0I B = μ0

2π

V

R

1

r
ϕ̂ .

The field E and B are perpendicular in any point between the coaxial surfaces and
the Poynting’s vector is:

S = |E × B|
μ0

ẑ = 1

2π

1

log b
a

V 2

R

1

r2
ẑ

oriented in the direction of the axis from the battery to the resistor. The total flux of
this vector through a cross section normal to the axis, is:

Φ(S) =
∫ b

a
2πrSdr =

∫ b

a
2πr

1

2π

1

log b
a

V 2

R

1

r2
dr = 1

log b
a

V 2

R

∫ b

a

1

r
dr

= 1

log b
a

V 2

R
log r|ba = V 2

R
.

The flux of energy between the cylindrical surfaces is just the power dissipated
in the resistor.

9.2 (a) Nearby the surface of the wire, the outside z component of the electric field
has to be equal to the inside z component that is Ez = σJ . Near the surface of the
external conductor, at r = b, Ez = 0 because inside this conductor the field is null.
The radial component of the electric field can be non null on the surface of the wire
and on the inner surface of the external conductor.
(b) It is easy to verify that the function V (r, z) is a solution of the Laplace equation
ΔV = 0. The component Ez is:

Ez(r, z) = −∂V

∂z
= J

σ

log r
b

log a
b

.

Thus for r = a Ez = J/σ while for r = b Ez = 0 as requested by the boundary
conditions. The radial component of the electric field is:

Er(r, z) = −∂V

∂r
= J

σ

z

log a
b

1

r
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that for r = a gives:

Er(a, z) = J

σ

z

log a
b

1

a

and for r = b:

Er(b, z) = J

σ

z

log a
b

1

b
.

(c) From the Coulomb’s theorem the surface charge densities on the conductors
are:

at r = a σ = εEr(a, z) = ε
J

σ

z

log a
b

1

a

at r = b σ = −εEr(b, z) = −ε
J

σ

z

log a
b

1

b
.

The electric field lines and the equipotential surfaces inside the conductors are
shown in the Fig. 9.5.
(d) The magnetic field due to the current in the wire is:

H = r

2
Jϕ̂ r < a

Fig. 9.5 The resistive wire with a coaxial hollow conductor. The dotted lines are electric field lines;
the full lines represent the equipotential surfaces (only outside the wire) and also the Poynting’s
vector field lines
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H = a2

2r
Jϕ̂ a < r < b

H = a2

2r
Jϕ̂ b < r < ∞ .

The Poynting’s vector S = E × H is normal to the field H and to the field E thus
its field lines are the curved lines determined by the crossing of the rz planes with the
equipotential surfaces, as shown in figure. These curves show the energy flux from
the generator to the wire.
(e) Inside the wire the electric field has only the component Ez. Thus the Poynting’s
vector S = E × H has radial direction oriented to the center of the wire. It gives the
flux of energy dissipated in the core of the resistive wire.

9.3 The solar power per unit area is just the time averaged Poynting’s vector S =
1.35 kW/m2. From (9.18) we have the average force per unit surface:

F = 2
Δprad

Δt
= 2 gc = 2S

c
.

The force on the sail of area Σ has to be larger than the gravitational force from
the Sun:

2S

v
Σ > G

MSunmv

d2
SE

and so we get: Σ > 19.66 · 104 m2.

9.4 Assume the z axis normal to the plates of area Σ and a cylinder of very small
height across the inner side of the upper plate as in Fig. 9.6. Inside the plate the
electric field is null while between the plates it is E0 (0, 0, E0z). Inside the plate the
Tij are null and between the plates the only non null components of Tij are:

Txx = −1

2
ε0E2

0z Tyy = −1

2
ε0E2

0z Tzz = 1

2
ε0E2

0z .

The normal to the upper plate is n̂ (0, 0,−1). From relations (9.11), (9.12), (9.13),
we have:

Fx = 0 Fy = 0 Fz = −
∫

Σ

Tzz dΣ = −
∫

Σ

1

2
ε0E2

0z dΣ = −1

2
ε0E2

0zΣ = −ueΣ
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Fig. 9.6 The cylinder across
the inner side of the plate of
the condenser to calculate
the force on the plate

where ue is the density of electrostatic energy. The same result can be found10 by
writing the force over the charge σΣ of one plate in the field E0z = −σ/2ε0 of the
other plate (Fig. 9.6):

F = − σ

2ε0
σΣ = −1

2
ε0E2

0zΣ .

9.5 We choose as z axis the axis of the solenoid and we consider a small cylinder of
base dΣ and infinitesimal height across the surface of the solenoid.
n̂ (− cos θ,− sin θ, 0) is the normal of the inner side. Inside the solenoid themagnetic
field is H0 (0, 0, H0z) and the only non null components of Tij are:

Txx = −1

2
μ0H2

0z Tyy = −1

2
μ0H2

0z Tzz = 1

2
μ0H2

0z

Outside the solenoid the field and the Tij are null.
From the relations (9.11), (9.12), (9.13) applied to the volume of the small cylinder

for the components of the force on inner dΣ we get:

dFx = 1

2
μ0H2

0z cos θ dΣ dFy = 1

2
μ0H2

0z sin θ dΣ dFzz = 0

so the normal force and the pressure on dΣ are:

dF = μ0H2
0z dΣ p = 1

2
μ0H2

0z = um

where um is the density of magnetic energy.

10The force can be also calculated from the principle of virtual work.
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For a constant current the magnetic force can be derived from the magnetic
energy11:

Fmagn =
[

dUm

ds

]

i=const

.

For the solenoid the magnetic energy is:

Um = 1

2
Li2 with L the inductance: L = n2μ0Σ l

where n is the number of turns per unit length, l the length and Σ = πr2 the area
of the cross section of the solenoid. For a virtual expansion of the the radius of the
solenoid we have:

Fmagn dr = d

(
1

2
μ0n2i2πr2l

)
= μ0 n2i2πrl dr

p = Fmagn

2πrl
= 1

2
μ0n2i2 = 1

2
μ0H2

z = um .

11This formula can be found from the principle of virtual work. In a electrical network with a
generator, a solenoid and a resistor, the sum of the work δLext from an external force and of the
work δLgen = fidt of the generator of electromotive force f , which keeps constant the current i, has
to be equal to the sum of the changes of the magnetic energy δUm and of the energy δWR = i2Rdt
dissipated in the resistor. We can write:

δLext + δLgen = δUm + δWR where: Um = 1

2
Li2.

At the same time the equation of the circuit is:

f − dΦ(B)

dt
= Ri Φ(B) = Li.

We find:

δLext + id(Li) + i2Rdt = δ

(
1

2
Li2

)
+ i2Rdt

and from Fmagn = −Fext

δLext = Fext · ds = −Fmagn · ds = −δUm → Fmagn =
[

dUm

ds

]

i=const
.



Chapter 10
The Feynman Paradox

The Feynman paradox or paradox of the angular momentum is very intriguing. An
insulating disk, with charged spheres at its edges, is at rest in the steady magnetic
field produced by a solenoid at its center. The system is isolated, but if the magnetic
field vanishes, the disk begins to rotate in apparent contrast with angular momentum
conservation. This chapter presents the analysis of the process. The conservation of
the angular momentum is verified by taking into account the angular momentum of
the electromagnetic field. Then, an original example of two cylindrical shells with
opposite charges immersed in a damped magnetic field is examined.

10.1 The Paradox

In his lectures1 on the induction laws, Feynman presents the following paradox.
Consider a thin plastic disk (see Fig. 10.1) supported by a concentric shaft with
excellent bearings so that it is quite free to rotate in the horizontal plane. Some metal
spheres are uniformly distributed near the edge of the disk. Each sphere has a charge q
and is insulated by the plastic disk. Fixed and coaxial with the disk there is a solenoid
that carries a steady current provided by a small battery. The system is isolated and at
rest. If with no intervention from the outside2 the current is interrupted, the magnetic

1R. P. Feynman, R. B. Leighton, M. Sand, The Feynman Lectures on Physics, Vol. II, Sect. 17.4.
We suggest to read the two Chaps. 16 and 17 on the electromagnetic induction.
2This can be determined by a suitable device mounted on the disk or the solenoid could be done
with a superconducting wire initially at very low temperature but later, the exchange of heat with
the ambient, increases the temperature over the transition temperature, so that the wire becomes
resistive and the current is brought to zero.

© Springer International Publishing Switzerland 2016
F. Lacava, Classical Electrodynamics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-39474-9_10
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Fig. 10.1 The disk with the
charged spheres and the
solenoid at the center

field inside the solenoid vanishes and for the induction law an electric field E is
generated. This field has a field line tangent to the circle centered on the axis of the
system and passing on the small spheres. Thus on each sphere is applied a force
tangent to the circle and going in the same direction and so a net torque is applied to
the disk that begins to rotate.

If RSol is the radius of the solenoid, R the distance of the spheres from the center,
and B the initial magnetic field inside the solenoid, the field E is given3 by the
Faraday-Neumann law:

∮
E · dl = −dΦ

dt
2πRE = −πR2

Sol

dB

dt
E = −R2

Sol

2R

dB

dt

and the net torque relative to the axis of the system isM = R × NqE.
From the equation of the rotation the final angular momentum L is:

L = Nq
R2
Sol

2
Bin (10.1)

where Bin is the initial magnetic field inside the solenoid.
But we could also say that the system is isolated and for the conservation of the

angular momentum that initially is null, the disk should not rotate.
Feynman asks which of the two arguments is correct: the disk begins to rotate or

not? He also warns that: the solution is not easy, nor is it a trick, and adds: when you
figure it out, you will have discovered an important principle of electromagnetism.

3The return flux of B in the region with a distance from the axis between RSol and R can be neglected
in the approximation of a solenoid of length l � RSol .
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Fig. 10.2 Point charge Q at the center of a small bar magnet of momentm. Electric and magnetic
fields with the associated Poynting’s vector in a point and their field lines

10.2 A Charge and a Small Magnet

In the lecture4 on the Poynting’s vector, Feynman proposes the case of a point charge
near the center of a small bar magnet both at rest. The relative electricE andmagnetic
B fields are static and clearly the electric andmagnetic energy densities do not change
with time. But the Poynting’s vector E × B/μ0 is not null and has circular field lines
centred on the line of the bar magnet as shown in Fig. 10.2.

This can appear strange because we have to conclude that while the electromag-
netic energy is conserved, there is a steady circular flow of this energy around the
line of the magnet. Moreover, as seen in the previous chapter in relation (9.15), a
flow of momentum is associated to the flow of the Poynting’s vector, then there is
also an angular momentum of the electromagnetic field relative to the axis. This is
not strange at all because the Ampère currents in the magnet (the spinning electrons
inside) or the current in the solenoid seen at the beginning of this chapter, circulate
in one of the two possible directions and the charges, carried in the currents, drag
with them their electric fields.

In the Feynman paradox the initial presence of the magnetic field of the solenoid
and of the electric field of the charged spheres, determines a flow of the Poynting’s
vector and then an associated angular momentum of the electromagnetic field. When
the magnetic field vanishes, the initial angular momentum of the electromagnetic

4The Feynman Lectures on Physics, cited, Vol. II, Sect. 27.5.

http://dx.doi.org/10.1007/978-3-319-39474-9_9
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field is transferred (in part) to the disk that begins to rotate and the energy of the
magnetic field is (in part) transformed into kinetic energy.5

10.3 Analysis of the Angular Momentum Present
in the System

An interesting analysis of the Feynman paradox is given by Bettini6 in the approx-
imation of the solenoid with a vanishing small magnetic dipole at the center of the
disk. The total flux of the fieldB at distances from the axis smaller thanR, the distance
of the spheres, can be easily calculated by observing that it is equal in modulus but
opposite to the flux at larger distances when this is evaluated over the plane normal
to the dipole and passing through its center. The field B on this plane at a distance r
from the axis is:

B = − μ0

4π

m

r3

and the flux for r > R is:

Φ(r>R)(B) =
∫ ∞

R
B(r)2π r dr = −μ0

2R
m .

Then the flux for r < R is:

Φ(r<R)(B) = −Φ(r>R)(B) = μ0

2R
m

and from this relation, the electromotive field Ee associated to the change of dipole
moment m, from the Faraday-Neumann law, is:

2πREe = −dΦ(r<R)

dt
= −μ0

2R

dm

dt
.

The equation for the angular momentum L of the system with the N charges at
distance R is:

dL
dt

= R × NqEe = μ0

4π

1

R
Nq

dm
dt

5The balance of energy and angular momentum between the field and the rotating system will be
clear in the example examined in next section.
6A. Bettini, A Course in Classical Physics 3—Electromagnetism, Springer 2016, Sect. 10.5.
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that, when integrated over the time interval needed for the dipole moment of the
magnet to become null, gives the final angular momentum of the system:

L = μ0

4π

1

R
Nq m . (10.2)

It is not easy to find directly the angular momentum of the electromagnetic field but
it is possible to get it from a calculation of the angular momentum transferred to the
system while the system with the charges is assembled. Initially only the magnetic
dipole is present and the spheres on the disk are uncharged. Then the charges are
carried on the spheres from an infinite distance. To carry a charge dq along a radial
direction in the plane of the disk, an external force dFext has to contrast the force dF
on the charge from the fields present in the system:

dFext = −dF = −dq(E + v × B)

where E is the force due to the charges already carried on the small spheres and
B is the field from the magnetic dipole. To the force dFext is associated an applied
external torque7:

dMext = r × dFext = −dq r × (v × B) = dq (r · v) B .

The angular momentum transferred to the system to carry dq in a radial direction
from infinite to the distance R, being vdt = dr, is:

dL =
∫

dMext dt =
∫ R

∞
dq B rdr = −μ0m

4π

∫ R

∞
dq

1

r3
rdr = μ0m

4π

dq

R

and summing over all the chargesNq deposited on the sphereswe get the total angular
momentum transferred to the system during the formation:

L = μ0m
4π

Nq

R

that is equal to the angular momentum (10.2). Since the disk is at rest, this angular
momentum has to be associated to the electromagnetic field of the system composed
by the charges and the magnetic dipole. This angular momentum remains stored in
the space around the system.

7The contribution of the electrostatic force to the torque dMext is null.
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Fig. 10.3 The two insulating cylindrical shells with opposite sign surface charge densities in the
magnetic field B(t)

10.4 Two Cylindrical Shells with Opposite Charge
in a Vanishing Magnetic Field

An easy example of the Feynman paradox is the charged insulating cylindrical shell
coaxial with an opposite charged wire in a vanishing magnetic field that is suggested
as a problem at the end of this chapter. Here we want to examine the case of a
rigid system of two charged insulating coaxial cylindrical shells, of radii R1 and
R2, with R2 > R1, and length l � R2, as shown in Fig. 10.3. The electric charges
are deposited on the shells, with surface density σ1 = λ/2πR1 and σ2 = −λ/2πR2

where λ > 0 is the charge per unit length. The two shells are inside a solenoid8 of
radius R � R2, coaxial with the shells and of length l′ � R. Initially the current
flowing in the solenoid produces a uniform magnetic field Bin parallel to the axis.
Then the current decreases slowly and vanishes. As a consequence also the magnetic
field B inside the solenoid decreases and, for the Faraday-Neumann law, at distance
r from the axis there is an induced electric field Ein, tangent to the circle of radius r
and centered on the axis, given by:

2πrEin = −πr2
dB

dt
Ein = − r

2

dB

dt

so that the fields on the shells at distances R1 and R2 are:

E1 = −R1

2

dB

dt
E2 = −R2

2

dB

dt
.

8The solenoid and the two shells can be considered isolated. An internal device can decrease to
zero the current in the solenoid.
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Thus on each element dΣ of the cylindrical shells is applied a force dF = σEindΣ

tangent to the surface and there is a torque dM = R × dF relative to the axis. For a
unit length of the shells the net torques are:

M1 = R1λE1 M2 = −R2λE2

and after substitution with the fields expressions:

M2 + M1 = λ

2

(
R2
2 − R2

1

) dB
dt

.

When the system begins to rotate with angular velocity ω (negative for our system)
the charges deposited on the two surfaces, are equivalent to two surface currents
directed as ϕ̂:

i1 = λl

2π
ω i2 = − λl

2π
ω

and between the two cylindrical charged surfaces a magnetic field9 appears:

Ba = −μ0
λω

2π
.

While ω changes a self-induced electric field Ea is present on the outer shell:

Ea 2πR2 = −d

dt

[
π

(
R2
2 − R2

1

)
Ba

]

Ea = (
R2
2 − R2

1

) 1

2R2
μ0

λ

2π

dω

dt

and on the element dΣ2 of the outer shell is applied a force:

dF ′
2 = σ2dΣ2Ea

9As shown at the end of the chapter, the field Ba is a consequence of the motion of the electrostatic
field between the two rotating shells when seen in the laboratory frame.

From the fourth Maxwell equation, the equation for Ba is:

∇ × Ba = μ0J + μ0ε0
∂Ei

∂t
ϕ̂ ∇ × Ba = μ0J − μ0ε0

r

2

∂2B

∂t2
ϕ̂

that after integration gives:

Ba(r) =
[
−μ0

λω

2π
+ μ0ε0

4

[
r2 − R2

1

] ∂2B

∂t2

]
ẑ .

The last term is null if dB/dt = const but can be neglected if, for usual charges and dimensions,
the frequency of rotation is � 1011/B(Tesla).
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and the net axial torque, per unit length of the outer surface, is:

M ′
2 = − λ

2

(
R2
2 − R2

1

)
μ0

λ

2π

dω

dt
.

Thus the equation of the angular momentum L = Iω, per unit length of the rigid
system, is:

dL

dt
= M2 + M1 + M ′

2

I
dω

dt
= λ

2

(
R2
2 − R2

1

) dB
dt

− λ

2

(
R2
2 − R2

1

)
μ0

λ

2π

dω

dt

that can be written as:

I
dω

dt
+ λ

2

(
R2
2 − R2

1

)
μ0

λ

2π

dω

dt
= λ

2

(
R2
2 − R2

1

) dB
dt

and integrating over the time that the external magnetic field Bin takes to become
null, we get the relation:

Iωfin + λ

2

(
R2
2 − R2

1

)
μ0

λ ωfin

2π
= −λ

2

[
R2
2 − R2

1

]
Bin (10.3)

Iωfin − λ

2

(
R2
2 − R2

1

)
Bfin
a = −λ

2

[
R2
2 − R2

1

]
Bin (10.4)

where Bfin
a is the final self-induced magnetic field.

The relation (10.4) is the expression of the conservation of the angular momentum
when the initial and final angular momenta of the electromagnetic field are taken into
account.

From the relation (10.3) the final angular velocity ωfin is:

ωfin = −
λ
2

[
R2
2 − R2

1

]
Bin

I + λ
2

(
R2
2 − R2

1

)
μ0

λ
2π

and, as expected, it is negative and depends on the moment of inertia of the rigid
system.

To understand the meaning of the Eq. (10.4) we have to consider the electric and
magnetic fields present while the system begins to rotate.

Inside the outer cylindrical shell (at r < R2) there are:

• the magnetic field of the external solenoid B = Bẑ,
• the electric field induced10 by the change of B:

10This field can be found from the thirdMaxwell equation. In cylindrical coordinates the components
are:
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Ein = − r

2

dB

dt
ϕ̂ .

Between the two cylindrical shells (R1 < r < R2) there are:

• the electrostatic field from the two surface charges:

Es = λ

2πε0

1

r
r̂ ,

• the self induced magnetic field:

Ba = Baẑ = −μ0
λω

2π
ẑ ,

• the self induced electric field11:

Ea = 1

2

(
r − R2

1

r

)
μ0

λ

2π

dω

dt
ϕ̂ .

Thus the Poynting’s vector is:

S = E × B
μ0

= (Es + Ein + Ea) × (B + Ba)

μ0

with six components:

(Footnote 10 continued)

1

r

∂Ez

∂ϕ
− ∂Eϕ

∂z
= 0

∂Er

∂z
− ∂Ez

∂r
= 0

1

r

[
∂

∂r
(rEϕ) − ∂Er

∂ϕ

]
= − ∂Bz

∂t
.

Since Er , Eϕ e Ez cannot depend on z and on ϕ, from the first two equations we get Ez = const = 0,
and from the third equation we find:

1

r

∂

∂r
(rEϕ) = − ∂Bz

∂t
that integrated gives: Eϕ = − r

2

dBz

dt
+ C

r

where the constant C has to be null since Eϕ(r = 0) = 0, then:

Eϕ = − r

2

dBz

dt
.

11To find this self induced electric field Ea we have to solve the same equation seen in the previous
note replacing B with the field Ba and since this is limited into the space between the two shells we
have to determine the constant C imposing Ea is null on the shell at r = R1. So it follows:

Ea = 1

2

(
r − R2

1

r

)
μ0

λ

2π

dω

dt
.
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S = Es × B
μ0

+ Es × Ba

μ0
+ Ein × B

μ0
+ Ea × Ba

μ0
+ Ein × Ba

μ0
+ Ea × B

μ0

S = Sϕ1ϕ̂ + Sϕ2ϕ̂ + Sr1r̂ + Sr2r̂ + Sr3r̂ + Sr4r̂

the first two with direction ϕ̂ and the other four with radial direction r̂.
We have to examine now the variation of the energy of the electromagnetic field

of the system by analysing the energy flux through the cylindrical shells at R1 and R2.
The first radial component S1r r̂:

S1r r̂ = Ein × B
μ0

= − r

2

dB

dt

B

μ0
r̂

corresponds to the energy flux, with radial direction, that escapes from the shell of
radius R2 while B vanishes. The outgoing energy per unit time over a length l of a
cylindrical surface of radius r is:

−dU1

dt
= S1r r̂ · r̂ 2πrl =

(
− r

2

dB

dt

B

μ0

)
2πrl = − 1

μ0

r

4

dB2

dt
2πrl

and the total energy out from the surface of radius R2 when B is null, is:

− ΔU1 = 1

4

B2
in

μ0
2πR2

2l = (πR2
2l)

1

2

B2
in

μ0
(10.5)

that is just the magnetic energy initially inside the cylinder of length l and radius R2.
The second radial component S2r r̂:

S2r r̂ = Ea × Ba

μ0
= −1

2

(
r − R2

1

r

)
μ0

λω

2π

λ

2π

dω

dt
r̂

corresponds to a flow of energy with radial direction entering the solenoid. The
energy entering per unit time over a length l of the cylindrical shell of radius R2 is:

−dU2

dt
= S2r r̂ · r̂ 2πR2l = −1

2

(
R2
2 − R2

1

R2

)
μ0

λω

2π

λ

2π

dω

dt
2πR2l

dU2

dt
= 1

2

(
R2
2 − R2

1

) 1
2
μ0

λ2

2π

dω2

dt
l

and the total energy flowed through the surface of radius R2 is:

ΔU2 = π
(
R2
2 − R2

1

)
l
1

2
μ0

(
λω

2π

)2

= π
(
R2
2 − R2

1

)
l
1

2

B2
a

μ0
(10.6)
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that is the magnetic energy located at the end between the cylindrical shells for a
length l. This energy is due to the magnetic field produced by the currents associated
to the rotation of the two charged shells.

Then there is the flow of the component Sr3r̂:

Sr3r̂ = r

2

1

μ0

dB

dt

(
λω

2π

)
r̂

that has to be integrated over the cylindrical surfaces of radii R1 and R2:

−dU3

dt
= 2π l

μ0

(
R2
2 − R2

1

2

)
dB

dt

(
λω

2π

)

and the flow of the component Sr4r̂:

Sr4r̂ = 1

2

(
r − R2

1

r

)
B
d

dt

(
λω

2π

)
r̂

to be integrated only over the surface of radius R2 (Sr4 is null at r = R1):

−dU4

dt
= 2π l

(
R2
2 − R2

1

2

)
d

dt

(
λω

2π

)
B

μ0
.

The sum of these two terms is:

dU3

dt
+ dU4

dt
= −2π l

μ0

(
R2
2 − R2

1

2

)
d

dt

(
λω

2π
B

)
= π l

(
R2
2 − R2

1

) · 1
2

d

dt
(2BaB)

1

μ0

and is given by the superposition of the fields B and Ba in the magnetic energy
density while the fields are changing. This term integrated over the time from the
initial state, when ω = 0 and Ba = 0, up to the final state, when B = 0, gives a net
null contribution to the magnetic energy inside the two cylindrical shells.

Finally we have to consider the components Sϕ1ϕ̂ and Sϕ2ϕ̂ of the Poynting’s
vector:

Sϕ1ϕ̂ = Es × B
μ0

= − λ

2π

1

ε0μ0

1

r
B ϕ̂

Sϕ2ϕ̂ = Es × Ba

μ0
= λ

2πε0

1

r

λω

2π
ϕ̂

both with circular field lines around the axis of the system. From (9.16) a flow of
momentum:

p = Sϕ

c
ϕ̂

http://dx.doi.org/10.1007/978-3-319-39474-9_9
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is associated to each of these components, with the same field lines of Sϕϕ̂ and
momentum density:

g = Sϕ

c2
ϕ̂ .

The momentum of the electromagnetic field in a volume dτ = r dr dϕ dz is:

dp = Sϕ

c2
ϕ̂ r dr dϕ dz .

and the associated angular momentum is:

dL = r × g dτ .

In our case, due to the symmetry, there is a non null axial angular momentum that
can be found by integration over the volume of height l, from R1 to R2 and for
0 < ϕ < 2π .

For the component Sϕ1ϕ̂ we get an angular momentum per unit length of the
cylindrical system:

L1 = 1

l

R2∫

R1

2π∫

0

l∫

0

Sϕ1

c2
rdrdϕdz = 1

l

R2∫

R1

2π∫

0

l∫

0

1

c2

(
− λ

2πε0

Bin

μ0

1

r

)
rdrdϕdz

that, reminding c2 = 1/ε0μ0, results exactly:

L1 = −λ

2

(
R2
2 − R2

1

)
Bi . (10.7)

That is the initial angular momentum of the electromagnetic field between the cylin-
drical shells per unit length, and is at the second member of the Eq. (10.3). Similarly
for the component Sϕ2ϕ̂ we get:

L2 = λ

2

(
R2
2 − R2

1

)
μ0

λ ωfin

2π
= −λ

2

(
R2
2 − R2

1

)
Bfin
a (10.8)

that is the final angular momentum of the electromagnetic field between the cylin-
drical shells per unit length, in the first member of the Eq. (10.4).

Comments

• From the equation for the motion of the rotating system and the Faraday-Neumann
law we have found the relation (10.4). This is the expression of the conservation
of the total angular momentum of the system: when the external magnetic field Bin
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decreases and becomes null, the initial angular momentum (10.7) of the electro-
magnetic field (magnetic field Bin and electrostatic field Es), is transferred to the
rigid system ofmoment of inertia I and to the final angularmomentum (10.8) of the
electromagnetic field (magnetic field Bfin

a and electrostatic field Es) that is present
between the two shells as a consequence of the rotation. At the same time the initial
magnetic energy that was inside the cylindrical shell of radius R2 escapes from the
outer shell (10.5) and between the two charged shells enters the magnetic energy
(10.6) associated to the self induced magnetic field Bfin

a that appears between the
two shells.

• The final angular momentum (10.8) of the electromagnetic field is due to the
rotation of the electrostatic field between the shells. The initial angular momentum
(10.7) cannot be associated to the motion of the fields because the shells are at
rest. As for the angular momentum in the system with a magnetic dipole and a
point charge, the initial angular momentum of the present system is given to the
electromagnetic field when assembling the system.

• Every point between the two shells can be considered as the origin of a frame S at
rest in the laboratory, with the z axis parallel to the axis of the system, the y axis in
the radial direction and the x axis to form with the other two a right handed frame.
Then we consider the frame S′ that at time t = t′ = 0 has the origin and the axis
coincident with those of S, but moves with the rotating system. At time t = t′ = 0
the axis x′ is in motion relative to x axis with velocity vx = −ωr. In the system S′
the only non null component of the electric field is E′

y:

E′
y = λ

2πε0

1

r
.

At the initial time the system S is in motion relative to S′ with velocity v′
x = ωr

and transforming the field E′
y from S′ to S, from the relations (7.11) we find:

Ex = 0 Ey = γE′
y Ez = 0

Bx = 0 By = 0 Bz = γ

(−v′
x

c2
E′
y

)

with

γ = 1√
1 − β2

β = ωr

c
.

By substituting the expressions of v′
x and of E′

y in Bz we find:

Bz = γ
(
− μ0

2π
ωλ

)
.

http://dx.doi.org/10.1007/978-3-319-39474-9_7


156 10 The Feynman Paradox

In the limit ωr � c this field becomes Ba and so it is evident that this field
originates from the motion of rotation of the electrostatic field seen in the laboratory
frame.

The Poynting’s vector:

Sϕ2ϕ̂ = Es × Ba

μ0

is also a consequence of the rotation of the electrostatic field seen in the laboratory.
We can associate to this vector a momentum density in the direction ϕ̂:

g = S

c2
= 1

c2
EyBz

μ0
= − 1

μ0
γ 2

E′
y
2

c3
β = −ε0γ

2
E′
y
2

c
β

and an energy density12:

u = 1

2
ε0E

2
y + 1

2

1

μ0
B2
z = 1

2
ε0E

′
y
2
γ 2 + 1

2

1

μ0
γ 2

E′
y
2

c2
β2 = 1

2
ε0E

′
y
2
γ 2 (1 + β2) .

Problem

10.1 An insulating cylindrical shell, of radius rc and length l, has its axis on the z
axis where lies also an infinite longwirewith linear charge density−λ (see Fig. 10.4).
The cylindrical shell has moment of inertia I and a uniform surface charge density
σ = λ/2πrc. The system, initially al rest, is embedded in an external magnetic field
Bext ẑ that at the time t = 0 begins to decrease slowly to zero.

Determine the final angular velocity of the cylindrical shell:

(a) from the equation for the motion of the shell,
(b) from the conservation law of the angular momentum of the system.

12In the frame S′ the electrostatic energy density is:

u′ = 1

2
ε0E

′
y
2

and from the previous relations it is easy to verify the relation:

u′2 = u2 − g2c2

similarly to the case of a particle of mass m at rest in S′:

E ′2 = (mc2)2 = E2 − p2c2 .
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Fig. 10.4 The charged wire
with the opposite charged
coaxial cylindrical shell in
the vanishing magnetic field

This problem has been extensively considered by many authors. See the article
by J. Belcher and Kirk T. MacDonald: Feynman Cylinder Paradox,

http://www.physics.princeton.edu/~mcdonald/examples/feynman_cylinder.pdf
where relativistic corrections are considered. Many references on the Feynman
paradox can be found in this paper.

Solution

10.1 (a) From the equation of motion and the Faraday’s law.
While the magnetic field decreases, there is an induced electric field Ei tangent

to a circle of radius rc concentric with the shell, that can be found by the Faraday’s
law:

f = −dΦ(B)

dt
2πrcEi = −πr2c

dB

dt
Ei = − rc

2

dB

dt
ϕ̂ .

The force applied to an element dΣ of the lateral surface of the cylinder is:

dF = σEi dΣ

and its torque relative to the z axis is:

dM = rc × dF = rc × σEi dΣ = −rc × σ
rc
2

dB

dt
ϕ̂ dΣ .

The total torque is:

M = − r2c
2

dB

dt
(2πrclσ) ẑ

http://www.physics.princeton.edu/~mcdonald/examples/feynman_cylinder.pdf
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and the equation of motion is:

I
dω

dt
= − r2c

2

dB

dt
(2πrclσ) = − r2c

2

dB

dt
(λl)

that integrated gives:

I ′ω = −λ

2
r2

(
Bfin − Bext

)
Bfin = μ0

λω

2π
I ′ = I

l

where Bfin is the magnetic field generated by the rotation of the charged shell (see
point b).

The final angular velocity is:

ω = λr2c Bext

2

1

I ′
[
1 + μ0λ2r2c

4πI ′

] .

(b) From the conservation of the angular momentum.
With the system at rest, the electric field and the Poynting’s vector in the space at

r < rc are:

E = − λ

2πε0

1

r
r̂ Sin = λ

2πε0

1

r

Bext

μ0
ϕ̂ .

The momentum density associated to Sin from (9.15) is:

gin = Sin
c2

= λ

2π

1

r
Bextϕ̂

and the initial angular momentum of the electromagnetic field per unit length is:

Lin

l
=

∫ rc

0
r × gin 2πrdr = λBext

2
r2c ẑ .

At the end the shell is rotating with an angular velocity ω and the surface charge
becomes a surface current:

i = λl

T
= λl

2π
ω

and for r < rc there is a magnetic field:

Bfin = μ0
λω

2π
ẑ .

The final momentum density of the electromagnetic field is:

gfin = Sfin
c2

= λ

2π

1

r
Bfinϕ̂

http://dx.doi.org/10.1007/978-3-319-39474-9_9
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and the angular momentum per unit length is:

Lfin

l
=

∫ rc

0
r × gfin 2πrdr = μ0

λ2r2c
4π

ω ẑ .

The angular momentum conservation gives:

I ′ω + μ0
λ2r2c
4π

ω = λBext

2
r2c

and thus the final angular velocity is:

ω = λr2c Bext

2

1

I ′
(
1 + μ0λ2r2c

4πI ′

) .



Chapter 11
Test of the Coulomb’s Law and Limits
on the Mass of the Photon

In 1785 Charles Augustin de Coulomb measured the forces between electric charges
and deduced1 the law that governs them. For two point charges the force is propor-
tional to the product of the charges and inversely proportional to the square of their
distance apart. The dependence on the inverse square of the distance seems almost
obvious to the reader of an introductory textbook on Electricity because usually he
has already encountered this dependence in the gravitational force. This was not
the case for the physicists who contributed to the formulation of the Electrostatics.
Indeed they performed many tests on its validity and gave limits on a possible devia-
tion ε from the second power of the distance. Similar tests were performed until the
half of ’900. More recently physicists started to interpret the tests of the Coulomb’s
law in terms of limits on the mass of the photon.

A short review of the subjects of this chapter can be found in the Jackson’s
book.2 For some topics we refer to the original papers. A.S. Goldhaber and M.M.
Nieto have written a paper3 on the limits for the masses of the photon and the
graviton. This is an update of a previous paper of these authors4 that is useful to

1The dependence on the inverse square of the distance was already found by John Robinson in
1769. In 1767 Joseph Priestley wrote in a book that he had repeated an experiment, already done
by Benjamin Franklin, showing that there is no charge inside a charged closed metallic box. From
this result he deduced that the repulsion force between same sign charges has to be proportional to
the inverse square of the distance. The results by Robinson and Priestley remained unknown to the
scientific community. See note at page 283 of the paper by A.S. Goldhaber andM.M. Nieto, (1971),
and Segrè’s book mentioned in the following of this chapter. See also D. Halliday and R. Resnick,
Physics for students of Science and Engineering, Part II, 28.4-5, 2nd Ed., J. Wiley & Sons, 1960.
2J.D. Jackson, Classical Electrodynamics, cited, Sects. 1.2, 12.8.
3A.S. Goldhaber and M.M. Nieto, Photon and Graviton Mass Limits, Reviews of Modern Physics,
82, 939–979, (2010).
4A.S. Goldhaber and M.M. Nieto, Terrestrial and Extraterrestrial Limits on The Photon Mass,
Reviews of Modern Physics, 43, 277–296, (1971).
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consider. For the historical part on the birth of Electrostatics we suggest the E.
Segrè’s book.5

11.1 Gauss’s Law

To introduce the first tests of the Coulomb’s law we recall and comment the Gauss’s
law.

In order to demonstrate the Gauss’s law one has to start considering a point charge
inside a closed surface S. The flux of the field E = E r̂ from the charge through an
element dS of the surface is dΦ = E · n̂ dS with n̂ the external versor normal to dS.
Since dSn = r̂ · n̂ dS = r2dΩ , we can write:

dΦ = 1

4πε0

Q

r2
dSn = 1

4πε0

Q

r2
r2dΩ . (11.1)

After the term r2 at the numerator cancels out with the same term at denominator
and integrating over the solid angle, the total flux through thewhole closed surface, is:

Φ(E) = Q

ε0
.

But the simplification done in (11.1) is not trivial at all becausewhile the termat the
numerator comes from a correct mathematical relation, the term at the denominator
is a consequence of the Coulomb’s law. If this would depend not on r−2 but on r−(2+ε)

in the result for Φ we should find a dependence on r and the Gauss’s theorem would
be wrong. Also the geometrical principle of conservation of the number of field lines
coming out from a charge would not be valid. Moreover the first Maxwell equation
would lose its validity and at the same time all the consequences of the Gauss’s law
would be incorrect as for instance the well known property that in a conductor the
charges are distributed on the external surface.

11.2 First Tests of the Coulomb’s Law

The law for the force between two charges was found by Coulomb using a torsion
balance. However, in his treatise6 Maxwell observes that the measurement errors
with this apparatus might be not negligible. A more accurate test of the Coulomb’s

5E.Segrè, From falling bodies to radio waves. Classical physicists and their discoveries. W.H.
Freeman & Company, New York, 1984.
6J.C. Maxwell, A Treatise on Electricity and Magnetism, 1873, Cap. II, Sect. 74a, b.
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Fig. 11.1 Cavendish’s
experiment to test the inverse
square of the distance
dependence for the force
between point charges. Top
the drawing done by
Cavendish, bottom the
drawing redone by Maxwell
(Figures reproduced from H.
Cavendish, edited by J.C.
Maxwell, cited, by
permission of the Cambridge
University Press.)

law can be performed with the following experiment used by Cavendish to prove the
law of inverse square of the distance. Ametallic globe was surrounded by two hollow
metallic hemispheres that when closed formed a spherical surface concentric with
the globe but isolated from that (see Fig. 11.1). Initially the globe was electrically
connected to the hemispheres by a conductivewire.After having deposited an electric
charge on the hemispheres, the wire was removed and the hemispheres were opened
and taken away. At that point the residual charge on the globe was measured with
an electrometer but was found smaller than the minimal charge detectable by that
instrument. The minimal measurable charge was then measured by depositing on
the globe known fractions of electrical charge. From the results of this experiment,
Cavendish was able to prove that the dependence of the electrostatic force on the
inverse square of the distance was different from a power 2 by a quantity |ε| ≤ 0.02.
This result of course is also expected from the Gauss’s law, not stated at that time,
for the positioning of an excess charge placed on an isolated conductor.
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The experimentwas performed byCavendish in 1773, that is well before Coulomb
presented his law, however Cavendish was7 “an extraordinary experimenter and a
major physicist but his eccentricities were equally extraordinary, ... His relations
with other scientists were reduced to a minimum, ...”, so he did not publish his result
that became known only about a hundred years later when Maxwell, at that time
Cavendish Professor at Cambridge, undertook the publication8 of the Cavendish’s
electrical work.Maxwell repeated the Cavendish’s experiment at the Cavendish Lab-
oratory inCambridgewith somedifferences andmore accurate instruments and found
for the deviation from the square power |ε| ≤ 5 × 10−5.

11.3 Proca Equations

In 1936 Alexandre Proca, under the influence of de Broglie, added a mass term to
the Lagrangian density9 of the electromagnetic field:

L = −1

4
FμνF

μν − μ0 JμA
μ + 1

2
μ2

γ AμA
μ (11.2)

where
μγ = mγ c

�

is the inverse of the Compton length of the photon with a non null mass mγ , while

Fμν = ∂μAν − ∂ν Aμ (11.3)

are the fields E and B in terms of the potentials:

E = −∂A
∂t

− ∇V B = ∇ × A (11.4)

and are equivalent to the second and the third Maxwell equations.
The first term in the Lagrangian density (11.2) is the energy density of the elec-

tromagnetic field, the second is the term of interaction of the field with the charges
and the currents while the last is the mass term of the photon.

From the Euler-Lagrange equations for the fields with the density given in (11.2)
the first and the fourth Proca equations can be derived as shown in the Appendix of
this Chapter. Thus the Maxwell equation modified by Proca after the introduction of
the mass term for the photon are:

7See E. Segrè, cited, p. 115.
8H. Cavendish, edited by J.C. Maxwell, The Electrical Researches of the Honourable Henry
Cavendish, 1771–1781, Cambridge University Press, 1879.
9The Lagrangian density is written in SI units.
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∇ · E = ρ

ε0
− μ2

γ V (11.5)

∇ · B = 0 (11.6)

∇ × E = −∂B
∂t

(11.7)

∇ × B = μ0(J + ε0
∂E
∂t

) − μ2
γA . (11.8)

These equations are different from theMaxwell equations because of the presence
of the pseudo-charge−μ2

γ V ε0 in the first equation and the pseudo-current−μ2
γA/μ0

in the fourth one. These terms vanish if μγ = 0, a null mass for the photon, and the
Proca equations reduce to Maxwell equations.

The fields given by (11.3) and (11.4) are invariant under a gauge transformation:

Aμ → A′μ = Aμ + ∂μΛ A → A′ + ∇Λ V → V ′ = V − ∂Λ

∂t

that leaves unchanged the Maxwell equations but not the Proca equations (11.5) and
(11.8).

The charge conservation is expressed in local form by the continuity equation:

∇ · J + ∂ρ

∂t
= 0

that is included in the non homogeneous Maxwell equations. For a massive photon
from (11.5) and (11.8), we get the relation:

∇ · J + ∂ρ

∂t
= μ2

γ

μ0

(
∇ · A + 1

c2
∂V

∂t

)
(11.9)

that is the conservation equation for the sum of the charge and the pseudo-charge:

∇ ·
(
J − μ2

γ

A
μ0

)
+ ∂

∂t

(
ρ − μ2

γ V ε0
) = 0 .

In order for the charge conservation to be separately valid, from (11.9) it follows
that also the pseudo-charge has to be conserved and for the potentials the following
relation has to be valid:

∇ · A + 1

c2
∂V

∂t
= 0 .

This relation is just the condition for the Lorentz gauge and it implies that in the
gauge transformations the scalar function Λ must satisfy the equation:
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∇2Λ − 1

c2
∂2Λ

∂t2
= 0 .

Finally, for a non null mass of the photon, the equations for the potentials are:

�Aμ − μ2
γ A

μ = −Jμ

→ �V − μ2
γ V = − ρ

ε0
�A − μ2

γA = −μ0J .

For a point charge q, in the stationary case, from the last equation for the potential
V or from the first Proca equation (11.5) we get the solution:

V (r) = q

4πε0

e−μγ r

r
.

This ‘Yukava’ potential represents for the electrostatic force a new possible devi-
ation from the inverse square of the distance. This point was clear only later, when
Yukawa wrote the equation for a scalar particle, the meson π discovered afterwards,
that with its mass justifies the short range of the strong nuclear interaction.

11.4 The Williams, Faller and Hill Experiment

In 1936, in a test similar to the Cavendish’s experiment, Plinton and Lawton10 found
a limit |ε| ≤ 1 × 10−9 for the deviation from the inverse square of the distance.
Afterwards the last experiment of this type was performed by Williams, Faller and
Hill published11 in 1971. Their experimental apparatus, sketched in Fig. 11.2, con-
sisted of five concentric icosahedrons with an external diameter of about 1.5 m.
A 4 MHz radio frequency, 10 kV peak-to-peak voltage was applied to the resonant
circuit formed by the outer shells (4 and 5 in figure) and a high-Q water cooled coil.
After the intermediate shell 3, the voltage difference across the inductor between the
inner shells 1 and 2, was measured by a battery-powered lock-in amplifier located
inside the innermost shell and then isolated from the outer of the apparatus.

Considering a spherical surface of radius r between conductors 1 and 2 and an
approximated12 potential V0eiωt in the volume inside shell 4, from Eq. (11.5) and
Gauss’s law, the electric field is:

10S.J. Plinton and W.E. Lawton used two conductive concentric hollow spheres of radii 2.5 and
2.0 ft, both initially at ground. After the outer sphere was connected to a 3000V generator with a
130 cycles/minute frequency, and the difference of voltage between the two spheres was measured
by detecting the current between them with a galvanometer.
11E.R. Williams, J.E. Faller and H.A. Hill, Physical Review Letters, 26, 721 (1971).
12A detailed solution is given in the paper.
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Fig. 11.2 The Williams, Faller and Hill experiment setup (Reprinted figure with permission from
E.R. Williams, J.E. Faller and H.A. Hill, cited. Copyright 1971 by American Physical Society.
http://dx.doi.org/10.1103/PhysRevLett.26.721)

E(r) = 1

4πε0
(
q

r2
− 1

3
μ2

γ V0e
iωt r)r̂

where q is the total charge on the inner shell 1. Then if C is the capacitance between
conductors 1 and 2, the voltage across the inductor L connecting these two shells is:

http://dx.doi.org/10.1103/PhysRevLett.26.721
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ΔV = q

C
− 1

6
μ2

γ V0e
iωt (R2

2 − R2
1)

that is applied to the LC circuit formed by the two shells and the inductor. The
proportionality to V0 for the term with the photon mass suggests to apply an high V0

voltage.
The measurements put a limit |ε| ≤ (2.7 ± 3.1) × 10−16 for the deviation from

the inverse square of the distance, while if interpreted in terms of a non null photon
mass the limit was mγ ≤ 1.6 · 10−50 kg.

11.5 Limits from Measurements of the Magnetic Field
of the Earth and of Jupiter

E. Schrödinger proposed a method to get a limit on the photon mass from measure-
ments of the Earth’s static magnetic field.

The magnetic field B(r) generated by a magnetic dipole of moment D = Dẑ, at
the position r, from the fourth Proca equation (11.8) is:

B(r) = μ0

4π

De−μγ r

r3

[(
1 + μγ r + 1

3
μ2

γ r
2

) (
3ẑ · r̂ r̂ − ẑ

) − 2

3
μ2

γ r
2ẑ

]
(11.10)

while the field due to the same magnetic dipole from the fourth Maxwell equation
(μγ = 0 in (11.8)) is:

B(r) = μ0

4π

D

r3
(
3ẑ · r̂ r̂ − ẑ

)
.

In the magnetic field in (11.10) there is a component proportional to − 2
3μ

2
γ r

2ẑ
antiparallel to the dipole D. As evident from the ratio of this term and the coefficient
of the main dipole component:

2
3μ

2
γ r

2

(
1 + μγ r + 1

3μ
2
γ r

2
)

its relative contribution to the field increases with the radius r . The measurements
performed on the terrestrial surface (at r = RT ) allowed for a long time to set the
best limit on the photon mass. This limit was then improved in 1968 by Goldhaber
and Nieto,13 who considered the contributions from different origins.

Later the same measurement at a larger radius was done by the Pioneer10 probe
in the Jupiter magnetic field and the new limit was mγ ≤ 4 × 10−52 kg. A more
sensitive measure could be performed in the solar magnetic field with r the distance
from the Sun.

13See A.S. Goldhaber and M.M. Nieto, cited, 1971.
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Fig. 11.3 The Lakes’s experiment setup (Reprinted figure with permission from R.Lakes, cited.
Copyright 1998 by American Physical Society. http://dx.doi.org/10.1103/PhysRevLett.80.1826)

11.6 The Lakes Experiment

In 1998 Lakes14 proposed a very creative method to measure in a laboratory experi-
ment the mass of the photon in the cosmic magnetic potential.

Before introducing this method, remind that, for the equation ∇ × B = μ0J,
a coil carrying a current I is the source of a field B, and has a dipole moment
md = πr2 I with I = JΣ , where Σ is the cross section of the wire and r is the
radius of the coil. If the coil is embedded in an external magnetic field Bext , a torque
τ d = md × Bext acts on the coil as a consequence of the energy density of the
magnetic field that is proportional to B2. Then in analogy with the coil, since the
equations are formally the same, if we consider an iron toroid, wound with turns
carrying a current, since ∇ × A = B, the flux of B inside the toroid, Φ = BΣ ′ (Σ ′
the cross section of the toroid), becomes the dipolar source of a field A. This source
has a dipole moment mdA = πr2Φ parallel to the axis of the toroid, and if the toroid
is embedded in the cosmic potential Aamb, there is a torque acting on the toroid of
momentum τ d A = md A × μ2

γAamb. The factor μ2
γ in the torque is a consequence

of the fact that the contribution of the potential A to the energy density is μ2
γ A

2/2
while that of the field B is B2/2, as evident from (11.2).

In the experiment (see Fig. 11.3) a toroid with turns carrying a current, was sus-
pended by the wire of a Cavendish balance to measure the torque generated by the
cosmic magnetic potentialAamb. To a first approximation |Aamb| ≈ |B|R where R is

14R. Lakes, Physical Review Letters, 80, 1826 (1998). A more precise experiment of this type was
later performed by J. Luo et al., Physical Review Letters, 90, 081801–1, (2003).

http://dx.doi.org/10.1103/PhysRevLett.80.1826
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the radius of a cylinder with axis in the direction of B, thus even though the cosmic
magnetic field is very small, this potential might be very large since R is of the order
of galactic or extragalatic dimensions.

From the galactic magnetic field (≈1µG) and its reversal position toward the
center of the Milky Way (≈600 pc, 1 pc = 3.08 × 1016 m) the potential would be
Aamb ≈ 2× 109 Tm. This has to be compared with the potential ≈200 Tm from the
terrestrial magnetic field and ≈10 Tm from the Sun. If the ambient cosmic vector
potential were 1012 Tm, corresponding to the Coma cluster of galaxies (0.2µG over
1300kpc diameter), the limit would be15 mγ ≤ 10−55 kg.

11.7 Other Measurements

For a non nullmass of the photon, the electromagneticwaves should have a frequency
dependent speed and limits on the photon mass could be found by measurements of
the dispersion of the electromagnetic waves. The best limit from this method was
deduced by N.M. Kroll with measurements on the Schumann16 resonances. These
are low-frequency standing electromagnetic waves traveling through the atmosphere
between the Earth’s surface and the ionosphere, which are two conductive layers
of a waveguide. If these surfaces were planar and parallel, for a special mode the
speed could be independent from the frequency and equal to c also for a non null
mass of the photon. But these two surfaces are two concentric spherical surfaces
and there is a dispersion relation of the special mode which depends on an effective
mass m2

γ e f f = g m2
γ where the dilution factor g is equal to the ratio (�1%) of the

distance Earth surface—ionosphere (about 60 km) to the sum of the radii of the Earth
(6400 km) and of the ionosphere. Considering the low frequencies of the Schumann
resonances (the lowest is equal to 8Hz),Kroll17 deduced the limitmγ � 4×10−49 kg.

At present the strongest and most controlled limit on the photon mass has been
found by D.D. Ryutov in measurements on the solar wind. In the model of solar wind
supported by experiments, the plasma moving radially from the Sun, carries with
itself the field lines of themagnetic field and, due to the Sun rotation, these lines wind
up like anArchimedes spiral and at large distance have almost an azimuthal direction.
If the photon has a non null mass, to maintain this configuration, a real current of
plasma J should balance the pseudo-current −μ2

γA/μ0 in the Proca equation (11.8).

15See A.S. Goldhaber and M.M. Nieto, cited, 2010, and J. Luo et al., cited, 2003.
16J.D. Jackson, Classical Electrodynamics, cited, Sects. 8.9 and 12.9.
17Since the mass energy has to be smaller than the total energy of the wave, from the mγ c2 < hν,
for the lowest Schumann frequency equal to 8 Hz, considering the dilution factor, the mass limit is
mγ < 6 × 10−49 kg.
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Table 11.1 Experimental limits for the photon mass mγ and its Compton wavelength λ̄C =
�/mγ c[λ̄C (m) = 3.52 × 10−45/m(kg)]
Experimental method mγ (kg) � λ̄C (m) �
Dispersion relation for
Shumann resonances (Kroll)

4 × 10−49 8 × 105

Williams, Faller and Hill
experiment

2 × 10−50 2 × 107

Jupiter magnetic field 7 × 10−52 5 × 108

Measurements in the plasma of
the solar wind

2 × 10−54 2 × 1011

As a consequence in the local magnetic field an acceleration of the plasma J × B
should be observed. The measurements of density, speed and pressure of the plasma
beyond the Pluto orbit allow to exclude this current and provide an upper limit
mγ � 2 × 10−54 kg that is the best limit on the photon mass.

11.8 Comments

Thedaily test of the classical Electromagnetism inmany applications and the achieve-
ments of the Quantum Electrodynamics in the prediction of phenomena with high
accuracy (more than six orders of magnitude) support a null mass of the photon as
usually assumed. This tacit assumption implies the hypothesis that an effective mass
may be determined only by the uncertainty principle:

mγ ≈ �

ΔtUniv. · c2 = 2 × 10−59 kg

where ΔtUniv. is the age of the Universe. The fully experimental measurements
mentioned in this chapter are the most sensitive to photon mass and are reported
in Table11.1. Lower limits can be derived from the measurements with theoretical
hypothesis. A.S. Goldhaber and M.M. Nieto (2010) provide an exhaustive review on
the theory and the experiments. A full and updated report on the photon mass limits
can be found in the Particle Data Group tables.18

18K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014), and update in http://
pdg.lbl.gov/index.html.

http://pdg.lbl.gov/index.html
http://pdg.lbl.gov/index.html
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Appendix: Proca Equations from the Euler-Lagrange
Equations

The Proca equations can be derived from the Euler-Lagrange equations for the fields:

∂μ

(
∂L

∂ (∂μAν)

)
− ∂L

∂Aν
= 0

using the Lagrangian density of the electromagnetic field with a term to account for
a non null mass of the photon:

L = −1

4
FμνF

μν − μ0 JμA
μ + 1

2
μγ

2AμA
μ .

For the first term of the equation we find:

∂L
∂ (∂μAν)

= −1

4

∂

∂ (∂μAν)

[
FαβF

αβ
] = −1

4

∂

∂ (∂μAν)

[
gαρgβσ F

ρσ Fαβ
]

= −1

4

∂

∂ (∂μAν)

[
gαρgβσ (∂ρ Aσ − ∂σ Aρ)(∂αAβ − ∂β Aα)

]

= −1

4
gαρgβσ

[
(δρ

μδσ
ν − δσ

μδρ
ν )(∂αAβ − ∂β Aα) + (δα

μδβ
ν − δβ

μδα
ν )(∂ρ Aσ − ∂σ Aρ)

]

= −1

4

[
gαμgβνF

αβ − gανgβμF
αβ + gμρgνσ F

ρσ − gνρgμσ F
ρσ

]

= −1

4

[
Fμν − Fνμ + Fμν − Fνμ

] = −Fμν

and for the second:

∂L
∂Aν

= −μ0 Jν + 1

2
μγ

2 ∂

∂Aν
[gμα A

α Aμ] = −μ0 Jν + 1

2
μγ

2[gμν A
μ + gνα A

α] = −μ0 Jν + μγ
2Aν

thus the Lagrange equation becomes:

∂μFμν − μ0 Jν + μγ
2Aν = 0

or in the usual form:
∂μF

μν = μ0 J
ν − μγ

2Aν .

This equation corresponds to the two non homogeneous Proca equations (11.5)
and (11.8) and for μγ = 0 gives the covariant expression (7.12) of the non homoge-
neous Maxwell equations.

http://dx.doi.org/10.1007/978-3-319-39474-9_7


Chapter 12
Magnetic Monopoles

In the absence of electric charges and currents the Maxwell equations are clearly
symmetric in the electric and magnetic fields. This symmetry would be conserved
in the presence of field sources if, in addition to the electric charges and currents,
magnetic charges (monopoles) and currents would exist.

In 1931 Dirac showed that the existence in nature of one magnetic monopole
could account for the electric charge quantization. Probably the high mass of the
monopoles did not allow their production and observation in experiments performed
at the particle accelerators so far.

Modern Grand Unification Theories (GUT) of the fundamental interactions pre-
dict the existence of massive magnetic monopoles. These magnetic monopoles are
too massive to be produced at the present or future accelerators, but if produced
in the early Universe, should be observed as relics because the magnetic charge
conservation should prevent their decay in other particles.

12.1 Generalized Maxwell Equations

Under the hypothesis of the existence ofmagnetic charges and currents with densities
ρm and jm , similar to the electric charges and currents with densities ρe and je,
Maxwell equations1 would be:

∇ · D = 4πρe (12.1)

∇ · B = 4πρm (12.2)

1Gaussian units are used in this chapter.

© Springer International Publishing Switzerland 2016
F. Lacava, Classical Electrodynamics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-39474-9_12
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− ∇ × E = 4π

c
jm + 1

c

∂B
∂t

(12.3)

∇ × H = 4π

c
je + 1

c

∂D
∂t

. (12.4)

In addition to these equations, a continuity equation2 must be formulated to include
the conservation of the magnetic charge:

∇ · jm + ∂ρm

∂t
= 0

similar to the continuity equation for the electric charge:

∇ · je + ∂ρe

∂t
= 0

and a law of interaction of the magnetic charge g with the fields3:

F = g
[
B − v

c
× E

]
(12.5)

similar to the Lorentz force:

F = q
[
E + v

c
× B

]
. (12.6)

12.2 Generalized Duality Transformation

The generalized duality transformation:

E = E′ cosϕ + H′ sin ϕ D = D′ cosϕ + B′ sin ϕ

H = −E′ sin ϕ + H′ cosϕ B = −D′ sin ϕ + B′ cosϕ

2This equation determines the sign of jm in Eq. (12.3).
3This relation, as for the Lorentz force, can be derived directly from the relativistic transformation
of the electric and magnetic fields from a frame where the magnetic charge is at rest to a frame
where it moves with velocity v.
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leaves invariant the quadratic forms of the fields: the Poynting’s vector, the energy
density and the Maxwell stress tensor. If a similar transformation is applied to the
sources:

ρe = ρ ′
e cosϕ + ρ ′

m sin ϕ je = j′e cosϕ + j′m sin ϕ

ρm = −ρ ′
e sin ϕ + ρ ′

m cosϕ jm = −j′e sin ϕ + j′m cosϕ

also the Maxwell equations (12.1–12.4) and the Lorentz forces (12.5) and (12.6) are
invariant: the fields E′,D′,H′,B′ satisfy the same equations of the fields E,D,H,B.
This transformation represents a rotation of an angle ϕ in a two dimensional frame
with the electric charge and the magnetic charge as axes. The electric and magnetic
charges of a particle are determined by the value of the angle ϕ. If the ratio of the
magnetic charge to the electric charge is the same for all particles, it is possible to fix
the angle ϕ to have always ρm = 0 and jm = 0. With this choice the Eqs. (12.1–12.4)
take the usual form of the Maxwell equations in the absence of magnetic charges.

Under the assumption ϕe = 0 for the electron (that is qe
m = 0), any other particle

could have a different angle ϕp given by:

tan ϕp = −q p
m

q p
e

.

A body with Np protons and Nn neutrons would have a magnetic charge:

Qm = Npq
p
m + Nnq

n
m

and considering the negligible contribution (<1 gauss) to the magnetic field of the
Earth, where Np � Nn � 1051, the very low upper bound on the magnetic charges
of the proton and the neutron is:

q p
m, qn

m < 2 × 10−24 e (in Gaussian units).

Therefore it is possible to conclude that the particles of the ordinary matter have
either no magnetic charges or the same angle ϕ and the usual convention of taking
qm = 0 for all the particles is justified.

For ϕ = π/2 the transformation gives:

E → H H → −E D → B B → −D

ρe → ρm ρm → −ρe je → jm jm → −je

ε → μ μ → ε
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and then it yields the Maxwell equations but with the electric and magnetic field and
the relative sources swapped. This transformation can be used to get the properties
of the magnetic poles from those of the electric charges.

12.3 Symmetry Properties for Electromagnetic Quantities

The electric charge is scalar with respect to Lorentz transformations and rotations,
then it is natural to assume that it is invariant (even) under space and time inversions.
The same properties need to be valid for the charge density ρe, while the current
density is a vector (polar) and is odd under time inversion.

The energy density is invariant under space and time reflections, so the fields E
and D and the fields B and H have the same properties with respect to the space
and time inversions. This means that ε and μ have to be scalar and even under time
reversal.

Since the field E is the ratio of a force to a charge, it follows that the field E is a
polar vector and is even under time reversal. This is coherent with the first Maxwell
equation. From the third Maxwell equation it follows that the field B is a pseudo
vector (an axial vector) and is odd under time reversal. The second equation gives
the properties of the magnetic charge density ρm : it is pseudo scalar and is odd under
time reversal. The third equation implies that jm is also a pseudo vector and it is even
under time reversal. These properties are collected in Table12.1.

Since ρm and ρe have opposite symmetry properties, an evident symmetry viola-
tion with respect to space inversion and time reflection would be present in particles
(dioni) with both electric and magnetic charges. It is known that an extremely small
violation of these symmetries has been observed in the weak interaction but not in
the electromagnetic interaction.

Table 12.1 Properties of symmetry for electromagnetic quantities under space inversion (S. I.) and
time inversion (T. I.)

S. I. T. I.

E , D Polar vector Even

H , B Axial vector Odd

ρe Scalar Even

je Polar vector Odd

ρm Pseudoscalar Odd

jm Axial vector Even
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12.4 The Dirac Monopole

In 1931 Dirac in a brilliant theoretical paper4 introduced the concept of magnetic
monopole to explain the quantization of the electric charge. We shortly summarize
his theory.

In quantum mechanics the motion of a particle is described by a wave function
ψ = Aeiγ with A and γ functions of x, y, z, t . It is possible to add to γ a phase β,
function of x, y, z, t , that in general is not an exact integral so that its derivatives
do not satisfy the conditions of integrability. Since it is demonstrated that the change
of phase β along a closed curve has to be the same for all functions (particles), this
change has to depend on the field of force in which the particle moves. Indeed, the
derivatives of the phase β can be related to the components of the electromagnetic
field and its change for a closed curve is equal to the flux of the electromagnetic field
through any surface that has the closed curve as a boundary. But the condition on the
phase can be relaxed, and for some functions vanishing in some points, the change
in phase can be different by multiples of 2π from that of the other functions. The
points where these functions vanish have to lie along lines called nodal lines. In three
dimensions, the flux connected to a close curve is that of the magnetic field and the
flux integrated over a closed surface, for all functions (particles), is equal to 2π�c/e
times an integer determined by the nodal lines entering the closed surface. The end
point P of a nodal line is a point of singularity in the magnetic field or a magnetic
monopole g, while the other end point is at infinity. The magnetic flux coming out in
P arrives from infinity along the nodal line and returns from the pole to infinity as a
radial magnetic field. The line can be regarded as a solenoid of infinitesimal radius
with the magnetic flux inside or as a string composed of small magnetic dipoles from
infinity to the pole.

The magnetic flux from a pole g in a closed surface is 4πg and, from the previous
considerations, has to be equal to n · 2π�c/e, thus the relation between the magnetic
charge (monopole) and the electric charge is:

ge = n
1

2
�c (12.7)

4P.A.M. Dirac, Quantised singularities in the electromagnetic field, Proc. Roy. Soc., A 133, 60
(1931). The introduction is particularly interesting because Dirac presents some considerations on
the evolution of the mathematics applied to theoretical physics and then he shortly reviews the
studies on the negative energy states, inspired to his previous paper Electrons and protons, Proc.
Roy. Soc., A 126, 360 (1930). Following the suggestion by J.R. Oppenheimer, one year before
the discovery of the positive electron by C.D. Anderson (Science, 76, 238 (1932)), he introduces
the idea of anti-electrons, of production and annihilation of electron-antielectron pair, and he also
proposes the existence of the antiproton as the antiparticle of the proton. For a comment on the
Dirac’s paper see the article by E. Amaldi and N. Cabibbo cited in a following note.
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with n = 0, ± 1, ± 2, ... and the relation between the elementary magnetic charge gD
(Dirac monopole) and the electric charge e is:

gD = 1

2

�c

e
= 1

2

(
�c

e2

)
e = 137

2
e . (12.8)

In the Gaussian unit system the electric and the magnetic charges have the same
dimensions. To the elementary electric charge e = 4.8 × 10−10 e.s.u., in the unra-
tionalized e.m.u. corresponds an elementary magnetic charge gD = 3.29 × 10−8

oersted·cm2. In SI units gD = 4.12 × 10−15 Weber.
The Dirac theory renewed the interest for the search of free magnetic charges and

many theoretical and experimental studies5 followed the 1931 paper.

12.5 Magnetic Field and Potential of a Monopole

The radial field from a magnetic monopole, located at the origin of the frame, is:

B = g

r2
r
r

. (12.9)

The monopole can be described6 as the end point of a nodal line from infinity to the
origin along the negative z axis, and its vector potential can be derived as the integral
of the potentials7 of all the elementary dipoles dm = g dl, from infinity to the origin:

A(r) =
∫ 0

∞
g dl × r

r3
. (12.11)

From this integral, the spherical components of the vector potential A are:

Ar = 0 Aθ = 0 Aϕ = g

r

(1 − cos θ)

sin θ
= g

r
tan

θ

2
.

5After the first paper, in 1948 Dirac published a detailed analysis of the theory of the magnetic
monopole (Physical Review, 74, 817 (1948)). An extensive review article on the theory and the
searches of themagnetic monopole was done by E. Amaldi,On theDiracMagnetic Poles, published
in the volumeOld and new problems in Elementary Particles, in honour of G. Bernardini, edited by
G. Puppi, Academic Press, NewYork, (1968). This reviewwas updated in 1972 by E. Amaldi andN.
Cabibbo, On the Dirac Magnetic Poles, in Aspects of Quantum Theory, a volume in honour of P.M.
Dirac, edited by Abdus Salam and E.P.Wigner, Cambridge, University Press, 1972. An introduction
to the argument can be found in J.D. Jackson, Classical Electrodynamics, cited, Chap.6.
6See for instance E. Amaldi, cited, p. 45.
7The potential of a magnetic dipole m located in the origin is:

A(r) = m × r
r3

. (12.10)

.
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This potential is singular along the integration line (θ = π ). Its curl is:

∇ × A = B + B f

where B is the radial field (12.9) with a flux 4πg outgoing uniformily through any
spherical surface centered at the origin, and B f is a fictitious field associated to
the magnetic flux −4πg entering the same sphere along the negative z axis. This
can easily be seen by computing the circular integral of A along a circle of radius
ρ = r sin θ around the z axis:

∮
A · dl =

∫
(∇ × A) · n̂ dS =

∫
B · n̂ dS =

∮
Aϕρdϕ = 2πg(1 − cos θ) .

(12.12)
For θ → 0 the circle of radius ρ → 0 is located around the positive z axis and the
flux inside is null; for θ → π the circle of radius ρ → 0 is around the negative z axis
and the entering8 flux is 4πg corresponding to a field B f with components:

B f
x = 0 B f

y = 0 B f
z = 4πg δ(π − θ) .

Thus the magnetic field B is given by the relation:

B = ∇ × A − B f (12.13)

where the field −B f cancels the singularity on the nodal line.

12.6 Quantization Relation

We have seen that the magnetic monopole located at a point P can be considered
as the end point of a nodal line L (see Fig. 12.1). In the Coulomb gauge its vector
potential A is defined by the equations:

∇ × A = B ∇ · A = 0 (12.14)

where B is the radial field given by the relation (12.9) andA(P, L) can be calculated
from (12.11).

Formally the equations (12.14) are identical to the usual equations for a magne-
tostatic field b:

∇ × b = 4π

c
j ∇ · b = 0

8Here the sign is positive because associated to the direction of the circular path of the integral that,
at θ = π , is opposite to the direction of the outgoing flux.
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Fig. 12.1 Two nodal lines L
and L ′ from infinity to the
monopole to calculate the
vector potential

and thus the integral (12.11) has the same functional form of the Biot and Savart law:

b = 1

c

∫
I dl × r

r3
. (12.15)

The analogy between the two sets of equations can be used9 to derive the Dirac
relation (12.7). By substituting 4π j/c with the radial field B given by (12.9), we
have a current flux 4π jr2 = gc = Φ( j) = I and the nodal line is equivalent to a
wire carrying a current I equal to gc that from infinity reaches the monopole. To
this nodal line is associated a vector potential A(P, L). But it is possible to assume
a second nodal line L ′, as in Fig. 12.1, which from infinity goes to the point P and to
this line is associated a vector potentialA(P, L ′). If we consider the circuit composed
by the line L ′ and the line −L , we have a loop with a current I = gc and, from the
similarity between the relations (12.15) and (12.11), the field b associated to this
current is:

b = A(P, L ′) − A(P, L).

From magnetostatics we know that b can be the gradient of a scalar potential U :

b = −∇U

where U = U0 + 4πmI/c = U0 + 4πmg is a multiple-valued function with m =
0,±1,±2, ... the number of times the path, chosen for the calculation of U from

9The quantization proof reported here, was given by E. Fermi (Acc. Naz. Lincei, Fondazione Done-
gani Conferenze, 1950, p. 117) and is reported in the paper by E. Amaldi, cited, p. 47.
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infinity to the point where we want b, circles around the loop composed by the two
nodal lines. Thus from the previous relations the result:

A(P, L ′) = A(P, L) − ∇U

that is a gauge transformation corresponding to the arbitrary choice of the nodal line
and to its non observability.

In a semiclassical approximation the quantumwave function of a charged particle
in a potential A is:

Ψ = Ψ0e
ie
�c

∫
A·ds

whereΨ0 is the the wave function of the free particle. After the gauge transformation
the new wave function is:

Ψ → Ψ ′ = Ψ e− ie
�c

∫ ∇U ·ds = Ψ e− ie
�c U = Ψ e− ie

�c (U0+4πgm)

and this function has the same value only if:

e

�c
· 4πgm = 2πn with n = 0,±1,±2, ...

that is just the Dirac relation (12.7).

12.7 Quantization from Electric Charge-Magnetic Dipole
Scattering

Consider the scattering of a particle,10 with charge e and velocity v, in the radial
field B (12.9) of a magnetic monopole. The Lorentz force (12.6), normal to v and B,
acts on the particle and for a large impact parameter b, the deflection of the charge
is negligible, and the momentum transferred to the particle is:

Δp⊥ = 2eg

cb
.

The change of its angular momentum is:

ΔLe = 2eg

c

10This argument was proposed by A.S. Goldhaber, Physical Review, 140 B, 1407 (1965). For the
calculation of ΔLe see also J.D. Jackson, Classical Electrodynamics, cited, Section6.13.
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in the direction of the velocity and is independent of the impact parameter and of the
velocity. Since the angular momentum is quantized, the change has to be equal to an
integer multiple of � and this gives the Dirac condition (12.7).

From the conservation of the angularmomentum in the isolated system, the change
of the angular momentum Lem of the electromagnetic field has to be opposite to that
of Le.

The angular momentum Lem of the fieldE of the electric charge and the fieldH of
the magnetic monopole, can be found by the integral of the momentum r × g where
g is the electromagnetic momentum density (9.20). Lem is independent of the origin
because the total momentum of the fields in the isolated system is null. The result11

is:
Lem = eg

c
n̂

where n̂ is a versor with direction from the charge to the monopole. Of course also
this angular momentum has to be quantized but in order to get the Dirac condition it
has to be equal to an half-integer multiple of � in some disagreement with the unitary
spin of the photon.

12.8 Properties of the Magnetic Monopoles

12.8.1 Magnetic Charge and Coupling Constant

The condition (12.7) with n = 1 gives the elementary magnetic charge gD (Dirac
monopole) (12.8):

gD = �c

2e
= 1

2

e

αe
= 137

2
e = 68.5 e

where αe is the fine structure constant. From this the adimensional magnetic coupling
constant to the electromagnetic field

αg = g2D
�c

= 1

4

(
�c

e

)2 1

�c
= αe

4
= 34.25

that is �1 and so a perturbative approximation cannot be used in computations of
processes with magnetic monopoles.

11The result was first given by J.J. Thompson, Elements of the Mathematical Theory of Electricity
and Magnetism, Cambridge, University Press, 1900–1904, and can be found in E. Amaldi, cited,
p. 16, and in J.D. Jackson, Classical Electrodynamics, cited, Section6.13.

http://dx.doi.org/10.1007/978-3-319-39474-9_9
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12.8.2 Monopole in a Magnetic Field

Amagnetic monopole gD in a magnetic field B is accelerated by the force (12.5) and
after a path of length l its energy increase isWm = gDBl or in numbersWm(keV) =
20.50 · B(gauss) · l(cm). For a cosmicmagnetic field B � 3μG and a path of cosmic
length l � 1 kpc the energy is Wm � 1.8 × 1011 GeV.

12.8.3 Ionization Energy Loss for Monopoles in Matter

The energy loss due to ionization −dE/dx for a particle of charge ze in the matter
is given by the Bethe and Bloch formula12:

− dE

dx
= k z2

Z

A

1

β2

[
1

2
ln

(
2 mec2 β2 γ 2

I 2

)
− β2

]
(12.16)

where k = 4πNAr2e mec2 = 0.307 MeVcm2/g and I � Z × 10 eV is the average
excitation energy of the atoms in the crossed medium.

This expression is the weighted sum of all the energies transferred, per unit path,
by the electric field E of the charged particle to the electrons of the crossed medium.
For a monopole13 of magnetic charge ngD the force acting on the electrons is the
Lorentz force from the B field of the monopole. This field is proportional to ngD and
in the (12.6) is multiplied by a factor β thus the force acting on the atomic electrons
is that from a charge but replacing ze with ngDβ. By this substitution in (12.16), the
energy loss due to ionization for a monopole is:

− dE

dx
= k

(ngD
e

)2 Z

A

[
1

2
ln

(
2 mec2 β2 γ 2

I 2

)
− β2

]
. (12.17)

The differences between this relation and the (12.16) are evident. For γ � 1 a
monopole crossing the matter leaves a huge ionization as that of a heavy nucleus of
charge Ze = ngD = n 68.5e, thus the range of a monopole is much shorter than that
for a same momentum charged particle. The factor 1/β2, important for the energy
loss of the charged particles at small β, is missing. Of course these differences in
ionization can be exploited in detectors for the direct search of magnetic monopoles.
In Fig. 12.2 the ionization energy losses in air for a proton and a Dirac monopole
(n=1) are compared.

12Terms for the density effect and the shell correction have to be added to this simple formula. See
the Section Passage of Particles Through Matter in K.A. Olive et al. (Particle Data Group), Chin.
Phys. C, 38, 090001 (2014).
13For this subject and its application to the present experiments, see: C. Bauer et al.,Nucl. Instr. and
Methods in Physics Research A 545 (2005) 503–515. For more details see: L. Patrizii andM. Spurio,
Status of searches for magnetic monopoles, Annual Review of Nuclear Physics, 2015, 65:279–302.
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Fig. 12.2 Ionization energy
losses in air for a proton and
a Dirac monopole,
normalized to the value of a
minimum ionizing charged
particle (Reprinted figure
from C. Bauer et al., cited.
Copyright 2005, with
permission from Elsevier.)

12.9 Searches for Magnetic Monopoles

In a magnetic field a monopole is accelerated and its energy increases while the tra-
jectory is deflected but it is not helicoidal as for charged particles. Its huge ionization
can be detected in scintillation detectors, in gaseous detectors or in nuclear track
detectors (NTD). Moreover a monopole crossing a superconducting coil induces an
electromotive force and a current that can be detected by a SQUID. Similarly, pass-
ing samples of materials through the coil, monopoles trapped inside could also be
observed.

In spite of its unique properties very different from those of the usual particles, no
signal of magnetic monopole has been observed so far. In the following we shortly
report the main results. An extensive review of the properties, the detectors and the
results of the searches on magnetic monopoles is given in the paper by L. Patrizii
and M. Spurio.14 A periodically updated review of the searches can be found in The
Review of Particle Physics by the Particle Data Group.15

14L. Patrizii and M. Spurio, cited; see also G. Giacomelli and L. Patrizii, Magnetic Monopoles
Searches, arXiv:hep-ex/0506014v1, 7 June 2005. For the first searches see E. Amaldi, cited, 1965,
updated by E. Amaldi and N. Cabibbo, cited, 1972.
15K.A. Olive et al. (Particle Data Group), cited, updated in url: http://pdg.lbl.gov.

http://pdg.lbl.gov
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12.9.1 Dirac Monopoles

The mass of the monopole is not predicted by the theory. The Dirac relation (12.8)
and the naive assumption that the classical radius of the monopole rg = g2/mgc2 is
equal to classical radius of the electron re = e2/mec2, give:

mg =
(g
e

)2
me =

(
1

2

�c

e2

)2

me � 4700 me = 2.4 GeV/c2

a large mass but much smaller than the present experimental limits.
Direct searches of monopoles produced in experiments at the accelerators (ee,

p p̄, pp and ep colliders) have set upper limits on the production cross section of
monopoles for masses below one TeV. These limits, based on the assumption of
monopole-antimonopole pairs production, are model dependent. A recent paper by
the ATLAS Experiment16 at the LHC collider has given the upper limits on the
monopole production cross section in proton-proton collisions at 7TeV in the center
of mass: from σMM < 145 fb for a 200GeV monopole mass to σMM < 16 fb for a
1200GeV mass.

Indirect searches of monopole production can be performed inmaterials deployed
near to the interaction points at the colliders or in proton beams interacting in ferro-
magnetic targets. Themonopoles can be extracted by amagnetic field and observed in
a superconducting magnetic coil. The MoDAL experiment based on this technique
and on the detection of monopoles in tiles of nuclear track detector is at present
running nearby an intersection point at LHC.

The present limits on the monopole production cross section as a function of
the mass of the monopole, measured by experiments at accelerators are reported in
Fig. 12.3.

12.9.2 GUT Monopoles

Grand Unification Theories (GUT) of the electroweak and strong interactions predict
the quantization of the electric charge and the production of magnetic monopoles of
large mass (>1016 ÷ 1017 GeV) in the phase transition corresponding to the sponta-
neous symmetry breaking that originated the known interactions at temperature of
the order of 1015 GeV and at an age of the Universe about 10−35 s. The present-day
abundance of these monopoles would exceed by many orders of magnitude the crit-
ical energy density of the Universe. The subsequent cosmological inflation would
have reduced their abundance to values that would make difficult the detection. Mag-
netic monopoles of intermediate mass (∼1010 GeV) could have been produced in a
phase transition at temperature of the order of 109 GeV at a time 10−23 s.

16Aad et al., Physical Review Letters, 109, 261803 (2012).
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Fig. 12.3 Cross section upper limits (95% C.L., except 90% for FNAL E882) versus the mass
from searches at colliders. Dashed lines are for indirect searches of monopoles trapped in beam
pipe or detector materials (Reprinted figure with permission from L. Patrizii and M. Spurio, cited,
Copyright 2015 by Annual Reviews.)

Fig. 12.4 Upper limits (90% C.L.) versus β for flux of GUT monopoles with magnetic charge gD
(Reprinted figure with permission from L. Patrizii and M. Spurio, cited, Copyright 2015 by Annual
Reviews.)
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The very massive GUT monopoles are beyond the possibility of production at
existing or foreseen accelerators, but, due to the magnetic charge conservation, the
lightest magnetic monopoles, expected to be stable and produced in the early Uni-
verse, should be present as cosmic relics in the present Universe. Their kinetic energy
would be affected by the Universe expansion and by the interaction with galactic and
extragalactic magnetic fields.

Considering that the acceleration of the monopoles in the galactic magnetic field
would subtract energy to this magnetic field, an upper limit (Parker limit) on the flux
of monopoles can be derived from the condition that this energy has to be at most
equal to that generated by the dynamo effect connected to the rotation of the Galaxy:
Φ ∼ 10−15 cm−2 s−1 sr−1.

An upper limit on the monopole flux can be found also from the condition that
the contribution Ωmon of the magnetic monopoles to the mass of the Universe has
to be smaller than the critical density. For masses ∼1017 GeV it follows Φ < 1.3 ×
10−13 Ωmon β cm−2 s−1 sr−1 where Ωmon can be assumed <0.1.

A direct search of magnetic monopoles was performed in the ’90s by theMACRO
experiment at the Laboratorio Nazionale del Gran Sasso. The experiment was com-
posed by many tipes of detectors and had an acceptance ∼104 m2 sr for an isotropic
flux. The non observation of any signal from a monopole set an upper limit on the
flux equal to Φ = 1.4 × 10−16 cm−2 s−1 sr−1 for monopoles of β > 4 × 10−5.
The results from searches of GUT monopoles are given in Fig. 12.4.



Appendix A
Orthogonal Curvilinear Coordinates

Given a symmetry for a system under study, the calculations can be simplified by
choosing, instead of a Cartesian coordinate system, another set of coordinates which
takes advantage of that symmetry. For example calculations in spherical coordinates
result easier for systems with spherical symmetry.

In this chapter we will write the general form of the differential operators used in
electrodynamics and then give their expressions in spherical and cylindrical coordi-
nates.1

A.1 Orthogonal curvilinear coordinates

A system of coordinates u1, u2, u3, can be defined so that the Cartesian coordinates
x , y and z are known functions of the new coordinates:

x = x(u1, u2, u3) y = y(u1, u2, u3) z = z(u1, u2, u3) (A.1)

Systems of orthogonal curvilinear coordinates are defined as systems for which
locally, nearby each point P(u1, u2, u3), the surfaces u1 = const , u2 = const ,
u3 = const are mutually orthogonal.

An elementary cube, bounded by the surfaces u1 = const , u2 = const , u3 =
const , as shown in Fig.A.1, will have its edges with lengths h1du1, h2du2, h3du3
where h1, h2, h3 are in general functions of u1, u2, u3. The length ds of the line-
element OG, one diagonal of the cube, in Cartesian coordinates is:

ds =
√

(dx)2 + (dy)2 + (dz)2

1The orthogonal coordinates are presented with more details in J.A. Stratton, Electromagnetic The-
ory, McGraw-Hill, 1941, where many other useful coordinate systems (elliptic, parabolic, bipolar,
spheroidal, paraboloidal, ellipsoidal) are given.

© Springer International Publishing Switzerland 2016
F. Lacava, Classical Electrodynamics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-39474-9
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Fig. A.1 The elementary
cube in coordinates
u1, u2, u3

and in the new coordinates becomes:

ds =
√

(h1du1)2 + (h2du2)2 + (h3du3)2 .

The coefficient h1, h2, h3 can be determined from these two expressions and the
relations (A.1).

The volume of the cube is dτ = h1h2h3du1du2du3.
We consider a scalar function f = f (u1, u2, u3) and a vector A with the compo-

nents A1, A2, A3, relative to the directions û1, û2 and û3, which are functions of u1,
u2, u3.

A.2 Gradient

The differential operator gradient of a scalar function f is the vector grad f = ∇ f
defined by the relation:

d f = grad f · dl = ∇ f · dl

where d f is the differential of f along an elementary displacement dl having com-
ponents (h1du1, h2du2, h3du3) and has is maximum value when dl is in the same
direction of grad f . Moreover we can write:

d f = ∂ f

∂u1
du1 + ∂ f

∂u2
du2 + ∂ f

∂u3
du3

and comparing the two formulas:

(grad f )1h1du1 + (grad f )2h2du2 + (grad f )3h3du3 = ∂ f

∂u1
du1 + ∂ f

∂u2
du2 + ∂ f

∂u3
du3
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the gradient components in the new coordinates result:

(grad f )i = 1

hi

∂ f

∂ui
.

A.3 Divergence

To find the general formula for the operator divergence of a vector (div A = ∇ ·A),
we apply the Gauss’ theorem to the elementary cube in Fig.A.1. The flux dφ of the
vector A out of the cube surface is equal to the divergence of the vector multiplied
by the volume of the cube:

dφ(A) = div A dτ . (A.2)

The flux out of the cube face OBHC on the surface u1 = const is2:

−A1(u1) h2(u1)du2 h3(u1)du3 = −A1h2h3du2du3

and the flux out of the face AFGJ on the surface u1 + du1 = const ′ is:

A1(u1 + du1) h2(u1 + du1)du2 h3(u1 + du1)du3 .

Series expansion at the first order of the three factors of the last expression gives:

(
A1 + ∂A1

∂u1
du1

) (
h2 + ∂h2

∂u1
du1

)(
h3 + ∂h3

∂u1
du1

)

and neglecting second order terms this flux becomes:

A1h2h3du2du3 + ∂

∂u1
(A1h2h3) du1du2du3 .

The total flux on the two opposite faces is:

∂

∂u1
(A1h2h3) du1du2du3

2The flux can be approximated by the value of the component A1 at the face center multiplied by
the face area.
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and adding the similar fluxes out of the other faces, for the flux (A.2) out of the cube
we find:

dφ(A) =
(

∂

∂u1
(A1h2h3) + ∂

∂u2
(A2h1h3) + ∂

∂u3
(A3h1h2)

)
du1du2du3

= div A h1h2h3du1du2du3

from which we obtain the formula for the divergence:

div A = 1

h1h2h3

(
∂

∂u1
(A1h2h3) + ∂

∂u2
(A2h1h3) + ∂

∂u3
(A3h1h2)

)
.

A.4 Curl

To write the general formula for the operator curl (curl A = ∇ × A), we use the
Stoke’s theorem:

∮
A · dl =

∫
curl A · n̂ dS .

We consider the circulation of the vector A over the curve defined by the loop
OBHCO of the elementary cube. The contribution frompaths OB and HC , neglect-
ing second order terms, is:

A2(u3) h2(u3)du2 − A2(u3 + du3) h2(u3 + du3)du2 = − ∂

∂u3
(A2h2)du2du3 .

Similarly from paths BH and CO we have:

A3(u2 + du2) h3(u2 + du2)du3 − A3(u2) h3(u2)du3 = ∂

∂u2
(A3h3)du2du3

and adding the two contributions, accounting for the Stoke’s theorem, we have:

(curl A)1h2h3du2du3 =
[

∂

∂u2
(A3h3) − ∂

∂u3
(A2h2)

]
du2du3

from which:

(curl A)1 = 1

h2h3

[
∂

∂u2
(A3h3) − ∂

∂u3
(A2h2)

]
.
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Similar expressions can be found for the other two components of the curl, there-
fore we can write:

(curl A)i = 1

h jhk

[
∂

∂u j
(Akhk) − ∂

∂uk
(A jh j )

]
.

A.5 Laplacian

The Laplacian operator can be written as Δ = div grad = ∇ · ∇ = ∇2, and using
the formulas found for the divergence and the gradient, we get:

Δ f = 1

h1h2h3

[
∂

∂u1

(
h2h3
h1

∂ f

∂u1

)
+ ∂

∂u2

(
h3h1
h2

∂ f

∂u2

)
+ ∂

∂u3

(
h1h2
h3

∂ f

∂u3

)]
.

A.6 Spherical Coordinates

⎧
⎪⎨

⎪⎩

x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2

⎧
⎪⎨

⎪⎩

u1 = r

u2 = θ

u3 = ϕ

⎧
⎪⎨

⎪⎩

h1 = 1

h2 = r

h3 = r sin θ

grad f :

(grad f )r = ∂ f

∂r
(grad f )θ = 1

r

∂ f

∂θ
(grad f )ϕ = 1

r sin θ

∂ f

∂ϕ

div A:

div A = 1

r2
∂

∂r
(r2Ar ) + 1

r sin θ

∂

∂θ
(sin θ Aθ ) + 1

r sin θ

∂Aϕ

∂ϕ
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curl A:

(curl A)r = 1

r sin θ

[
∂

∂θ
(sin θ Aϕ) − ∂Aθ

∂ϕ

]

(curl A)θ = 1

r sin θ

∂Ar

∂ϕ
− 1

r

∂

∂r
(r Aϕ)

(curl A)ϕ = 1

r

[
∂

∂r
(r Aθ ) − ∂Ar

∂θ

]

Δ f :

Δ f = 1

r2
∂

∂r

(
r2

∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂ϕ2

Sometime it is useful to replace the first term in the Laplacian with the relation3:

1

r2
∂

∂r

(
r2

∂ f

∂r

)
= 1

r

∂2

∂r2
(r f )

A.7 Cylindrical Coordinates

⎧
⎪⎨

⎪⎩

x = r cos ϕ

y = r sin ϕ

z = z

ds2 = dr2 + r2dϕ2 + dz2

⎧
⎪⎨

⎪⎩

u1 = r

u2 = ϕ

u3 = z

⎧
⎪⎨

⎪⎩

h1 = 1

h2 = r

h3 = 1

3This relation can be easily derived:

1

r2
∂

∂r

(
r2

∂ f

∂r

)
= 1

r2

(
2r

∂ f

∂r
+ r2

∂2 f

∂r2

)
= 1

r

(
∂ f

∂r
+ ∂ f

∂r
+ r

∂2 f

∂r2

)

= 1

r

∂

∂r

(
f + r

∂ f

∂r

)
= 1

r

∂

∂r

∂

∂r
(r f ) = 1

r

∂2

∂r2
(r f )
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grad f :

(grad f )r = ∂ f

∂r
(grad f )ϕ = 1

r

∂ f

∂ϕ
(grad f )z = ∂ f

∂z

div A:

div A = 1

r

∂

∂r
(r Ar ) + 1

r

∂Aϕ

∂ϕ
+ ∂Az

∂z

curl A:

(curl A)r = 1

r

∂Az

∂ϕ
− ∂Aϕ

∂z

(curl A)ϕ = ∂Ar

∂z
− ∂Az

∂r

(curl A)z = 1

r

[
∂

∂r
(r Aϕ) − ∂Ar

∂ϕ

]

Δ f :

Δ f = 1

r

∂

∂r

(
r
∂ f

∂r

)
+ 1

r2
∂2 f

∂ϕ2
+ ∂2 f

∂z2
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