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Preface

What is Born–Jordan quantization? And what is it supposed to be good for? Well,
it might very well be that Born–Jordan quantization and the associated operator
calculus provide us with the only physically correct quantization scheme, as
opposed to the Weyl quantization commonly used in physics. Already this fact is
sufficient to motivate a comprehensive mathematical study of the topic. Another
motivation is that very recent and ongoing work shows that the Born and Jordan
approach provides better results in the study of spectrograms in time–frequency
and signal analysis, by damping unwanted interference effects. To understand what
Born–Jordan operators are about one has to go back to the early years of quantum
mechanics, where a rule for quantizing monomials was proposed by Max Born and
Pascual Jordan in 1925 following Werner Heisenberg’s paper which inaugurated
what is nowadays called matrix mechanics; in this paper Heisenberg proposed the
idea of a quantum theoretical reinterpretation of the notion of classical observable.
One year later, Erwin Schrödinger proposed his eponymous equation describing the
time evolution of de Broglie’s wavefunctions, and showed that his approach led to
the same predictions as Heisenberg’s matrix mechanics, thus proving the unique-
ness of quantum mechanics as a new theory. The quantum rule proposed by Born
and Jordan was quickly superseded, mainly for mathematical reasons, by another
rule due to Hermann Weyl, which became de facto the preferred quantization in
physics, and thus leading to two different quantum mechanics: Heisenberg’s matrix
on the one side, and Schrödinger’s wavemechanics on the other side.

For all these reasons we believe that this new pseudo-differential calculus
deserves to be studied; the present work is an introduction to the topic, which is still
in its infancy. We do hope that it will trigger interest among researchers and
students. One more word: this book was primarily written for quantum physicists
and mathematicians interested in quantum mechanics. However, it might also be of
interest to specialists working in signal theory and time–frequency analysis: it
suffices to replace everywhere ħ with 1/2π and x with t.

I wrote the draft of this book in one week (sometimes during the spring 2015), it
was actually a skeleton, and a rickety one, but it contained, with a few exceptions,
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the main lines of the final version. But fine tuning and putting flesh on the bones
was a harder task. So it is both my duty and great pleasure to thank the following
mathematicians and physicists for encouragement and stimulating conversations:
Paolo Boggiatto (Turin), Elena Cordero (Turin), Glen Dennis (London), Hans
Feichtinger (Vienna), Serge de Gosson (Stockholm), Basil Hiley (London), Franz
Luef (Trondheim), Fabio Nicola (Turin), Luigi Rodino (Turin), Michael Ruzhansky
(London) and Ville Turunen (Esbo).

Special thanks to my beloved wife, Charlyne de Gosson, who has rearranged and
corrected the Bibliography, and to my colleague and friend, Glen Dennis, for
having read the manuscript with great attention and pointing out numerous typos
and errors.

This work has been funded by the grant P27773-N23 of the Austrian Fonds zur
Förderung der wissenschaftlichen Forschung (FWF).

Vienna, Argelès-sur-Mer, Stockholm Maurice A. de Gosson
Summer 2015
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Chapter 1
Introduction

1.1 From Quantum Theory to Quantum Mechanics

December 14, 1900, is usually regarded as the official date of birth of quantum
theory, because on that day Max Planck presented a memoir at a meeting of the
Physical Society of Berlin in which he solved the enigma of the blackbody spectrum
by introducing a new, fundamental, constant of Nature1:

We therefore regard—and this is the most essential point of the entire calculation—energy to
be composed of a very definite number of equal finite packages, making use for that purpose
of a natural constant h = 6.5 × 10−27 ergsec.

Planck was a Scientific of the old German school and had certainly not wanted
to challenge in such a drastic way the achievements of classical physics, which
was believed at that time to have attained a level of almost perfection. There was
still, however, one little unsolved problem that had already puzzled Planck’s teacher,
Gustav Kirchhoff. That problem concerned heat radiation inside a “black-body”,
which is an ideal absorber of radiation, for instance a hollow sphere with a tiny
hole. Any radiation which happens to go in through the hole will be trapped inside
and bounce around until it is finally absorbed. Kirchhoff had postulated in 1860 the
existence of a function depending only on temperature and frequency and describing
the emission of radiation of a heated black-body, but he hadn’t been able to find
any explicit form for such a function. Ultimately, at the very end of 19th century,
one was left with two formulas: Wien’s formula which was rather accurate on the
high-frequency side of the emission curve, and the so-called Rayleigh–Jeans law,
which agreed well with the predictions of classical thermodynamics in the infrared
range. Unfortunately both laws were totally incompatible outside their respective
domains of validity; all attempts to make them match had lamentably failed; even
worse Rayleigh–Jean’s law lead to catastrophic divergences for high frequencies
(the “ultraviolet catastrophe”). Planck, who was the successor of Kirchhoff at Berlin

1For much more on of the historical development of quantum theory and quantum mechanics see
the authoritative book by Jammer [4].
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2 1 Introduction

University, has started working on the puzzle from 1895, but the breakthrough did
not come before October 7, 1900, when Planck realized that he had to find a formula
which for large frequencies and small temperatures agrees with Wien’s formula,
but for small frequencies and large temperatures reduces to a proportionality of the
energy density with the temperature. He postulated the interpolation formula

(u/ν, T ) = Aν3

exp(Bν/T ) − 1

(later to be called “Planck’s law of radiation”) where A and B were constants to
be determined experimentally, and presented it at a meeting of the physical Soci-
ety on October 19, 1900. Planck’s formula seemed to be correct; it was checked
against experimental results which reported total agreement. This was a great suc-
cess: Planck’s formula agreed beautifully with the measurements of black-body radi-
ation. In 1918, Planck was awarded the Nobel Prize in physics for this discovery. His
discovery was the starting point of a new era in physics, which has led to tremendous
applications in practically every area of contemporary Science; it has also deeply
influenced the evolution of mathematics, particularly functional analysis and geom-
etry. In fact, Planck initiated what is today called “quantum theory”; it took however
another quarter of century before this theory got firm mathematical foundations and
earned the name of “quantum mechanics”. The first rigorous exposition of quantum
mechanics was written by Max Born and Pascual Jordan [1] in 1925; elaborating
on a paper by Werner Heisenberg, they proposed a “quantization rule” for classical
observables; this rule made possible the calculation of atomic spectra. In the sim-
ple case of a monomial in the position and momentum variables x and p Born and
Jordan’s rule read

xr ps −→ 1

s + 1

s∑

k=0

p̂s−k x̂r p̂k

where x̂ and p̂ areoperators satisfying the commutation rule x̂ p̂− p̂x̂ = ih/2πwhere
h is Planck’s constant. This paper was followed by another paper [2] with Heisen-
berg himself as a coauthor; this second foundational work developed a Hamiltonian
mechanics of the atom in a completely new quantum non-commutative format, the
“matrix mechanics”, still in use today. In the meantime, Louis de Broglie had pos-
tulated in his 1924 Ph.D. thesis the wave nature of electrons and suggested that all
matter has wave properties; in fact, he proposed that to a particle with mass m and
velocity v should be associated a wave with wavelength

λ = h

mv
.

DeBrogliewas awarded theNobel Prize for Physics in 1929 after experimental results
had shown his insight was right, and clearly demonstrated the wave-like behavior of
matter. De Broglie’s theory set the basis of “wave mechanics”; it is at this stage that
Erwin Schrödinger enters the scene. In the autumn of 1925 he was invited by Peter
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Debye to give a talk at a seminar in Zürich on de Broglie’s theory. Intrigued by a
question of Debye, who asked

. . .but if matter has wave properties, what is the equation governing these waves?

Schrödinger set out to find a “wave equation”. He left for holiday in a mountain
cabin in the Alps just before Christmas 1925, and when he returned on 9 January,
elaborating on the Hamilton–Jacobi theory, he had postulated the equation

∂2ψ

∂x2
+ 8π2m

h2
(E − V )ψ = 0

satisfied by a stationary matter wave; he later generalized his result to the time-
dependent case, which led him to the famous equation

i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
+ V (x)ψ

governing the evolution of the de Broglie waves. The paper [5] in Annalen der
Physik inwhichSchrödinger published his results set the foundations of an apparently
alternative quantummechanics, fundamentally different of that of Born, Heisenberg,
and Jordan. It was however soon proven that matrix mechanics and wavemechanics
were actually equivalent theories: they made the same physical predictions, and
one could pass from the one to the other using a simple procedure (see Casado
[3] for an account of this equivalence, which was first rigorously proved by John
von Neumann). So far, so good: Born, Heisenberg, Jordan, and Schrödinger had
created, using different approaches and methods, a new theory, quantum mechanics.
This theory is two-faced: one can work in either the Heisenberg picture (matrices)
or in the Schrödinger picture (waves). The success of this theory was, and still is,
undisputed. The story of the foundations of quantum mechanics did however not
end with these two theories. Hermann Weyl, who was at that time professor of
mathematics at the ETH Zürich, and deeply influenced by the Göttingen school,
published in 1926 a paper [6]. In this paper, soon followed by a monograph [7],
Weyl used group-theoretical methods to formalize quantum mechanics. He had kept
up a correspondence with Born and Jordan, which led him to try to combine the
Heisenberg and Schrödinger pictures of quantummechanics, using abstract methods.
Still,Weylwas aware of the fact thatwavemechanicswasmore suitable for physicists;
this led him to write in the introduction of his monograph

…[Schrödinger’s approach] seems to me less cogent, but it leads more quickly to the fun-
damental principles of quantum mechanics…

Weyl’s ideas were met with mixed feelings; while Heisenberg was quite enthusiastic
in his recension of Weyl’s monograph, Paul Ehrenfest spoke about Gruppenpest to
emphasize his opposition to Weyl’s group-theoretical arguments (but still showed
some interest in the new ideas). Without rejecting Weyl’s ideas Schrödinger was
sceptic and advised him to clarify the physical foundations of quantum mecahnics.
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Now, what is of particular interest to us, is that Weyl proposed the following very
general quantization rule: to a classical observable a(x, p) depending on the position
an momentum coordinates, one should associate an operator defined by

aWeyl (̂x, p̂) = 1

2π�

∫
e

i
�
(x x̂+p p̂)Fa(x, p)dpdx

where F is the Fourier transform; this operator is formally obtained by replacing the
variables x and p in the Fourier inversion formula by the non-commuting variables
x̂ and p̂ used by Born, Jordan, and Heisenberg. Some easy algebra shows that if we
quantize a classical Hamiltonian function

H = p2

2m
+ V (x)

using Weyl’s rule one obtains the operator

H (̂x, p̂) = − �
2

2m

∂2

∂x2
+ V (x)

which is the same as the one appearing in Schrödinger’s equation. So far, so good. The
rub comes from the following observation: if we apply Weyl’s rule to the monomials
xr ps considered by Born, Jordan, and Heisenberg, we get the correspondence

xr ps −→ 1

2s

s∑

k=0

(
s

k

)
p̂s−k x̂r p̂k

where the
(s

k

)
are the binomial coefficients; as is immediately seen by simple inspec-

tion, this rule is fundamentally different from Born and Jordan’s quantization rule, as
soon as r, s ≥ 2. Thus, if one wants to extend the Schrödinger picture to observables
which arearbitrary functions of the variables x and p one obtains twodifferent results
depending on which quantization rule one uses. This fact has the following unwanted
consequence: if one uses Weyl quantization, the Born–Jordan and Schrödinger pic-
tures are no longer equivalent, and we thus have two different quantum mechanics.
It turns out that Weyl quantization has become the preferred, not to say the only,
quantization procedure in modern quantummechanics. This has many historical rea-
sons we will not try to retrace; one of them is that the Weyl quantization rule is easy
to implement mathematically, while one does not see immediately how to apply the
Born–Jordan rule to arbitrary observables; as we will see in this book the general
formula for the Born–Jordan quantization is

aBJ (̂x, p̂) = 1

2π�

∫
e

i
�
(x x̂+p p̂)Fa(x, p)

sin(px/2�)

px/2�
dpdx

and this formula is far from being “obvious” ; in particular one does not see where
the term sin(px/2π�)/(px/2π�) comes from.
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1.2 What We Do in This Book

This book consists of three parts, which can be to a great extent be read independently.
The logical structure is linear: we have avoided as much as possible to refer, in a
given chapter, to results that will be proven in one of the subsequent chapters. This
being said, we have made every effort to make each chapter as self-contained as
possible.

Here is a short and concise description of the contents:

• Part 1 (Chaps. 2, 3, 4 and 5) is an introduction to Born–Jordan quantization from
the physicist’s point of view. In Chap. 2 we discuss the problem of quantization
in general, and mention the main conceptual difficulties. In Chap.3 we review the
theory of quantization ofmonomials, which is still a subject a current research, and
contains many technical subtleties. In Chap. 4, having the Schrödinger equation
in mind, we review the basic ideas of classical mechanics with an emphasis on
the symplectic formulation of the Hamiltonian approach. Finally, in Chap. 5, we
show that Born–Jordan quantization and the Schrödinger equation for arbitrary
observables can be motivated if one makes a simple physical assumption on the
short-timewavefunction. This will lead us to a quantization formula which is at the
basis of the mathematical theory of Born–Jordan quantization from the pseudo-
differential point of view.

• In Part 2 (Chaps. 6, 7, 8, 9, 10 and 11) we develop the mathematics of Born–Jordan
quantization. In Chap.6, we review Weyl quantization, from the point of view of
harmonic analysis. In addition to its intrinsic interest Weyl quantization is the eas-
iest way to access Born–Jordan quantization. In Chap.7 we introduce the “Cohen
class” and relatedobjects as theWigner and ambiguity functions. The results devel-
oped in this chapter are essential for the transition from Weyl quantization to the
more complicated Born–Jordan quantization. Chapter 8 is central; we give there a
rigorous definition of the Born–Jordan quantization procedure, by selecting a par-
ticular element of the Cohen class. The operator calculus thus defined is studied.
Chapter 9 is technical; therewe review the theory of Shubin’s parameter-dependent
pseudo-differential operators, which will allow us in Chap.10 to develop the the-
ory of Born–Jordan operators from the pseudo-differential viewpoint. Finally, in
Chap.11, we study the so important notion of weak value from the point of view
of Born–Jordan quantization, and discuss the so-called “reconstruction problem”.

• Part 3 is devoted to some topics which are mathematically more “advanced”. In
Chaps. 12 and 13 we introduce the theory of the metaplectic group and of its vari-
ants; we apply this theory to the study of symplectic covariance both in the Weyl
and the Born–Jordan case. Finally, in Chap.14 we study boundedness proper-
ties of Born–Jordan operators in some functional spaces (including Feichtinger’s
modulation spaces); this requires the introduction of new global symbol classes.
This last chapter is concurrent with ongoing research in functional analysis and
time-frequency analysis; it thus has a sketchy form.
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Part I
Born–Jordan Quantization:

Physical Motivation



Chapter 2
On the Quantization Problem

2.1 Introduction

In 1925 Max Born and Pascual Jordan set out to give a rigorous mathematical basis
to Werner Heisenberg’s newly born “matrix mechanics”. This led them led to state a
quantization rule for monomials; that rule associates to the product xr ps the operator

OpBJ(xr ps) = 1

s + 1

s∑

k=0

p̂s−k x̂r p̂k (2.1)

where x̂ and p̂ are operators satisfying the canonical commutation relation [̂x, p̂] =
i�. For historical and technical reasons we do not discuss here, Born and Jordan’s
rule was quickly superseded by a more general rule proposed by Hermann Weyl.
Elaborating on the Fourier inversion formula

a(x, p) = 1

2π�

∫
e

i
�

(x0x+p0 p) Fa(x0, p0)dp0dx0

Weyl defined the operator OpW(a) associated to an observable (or “symbol”) a by
formally replacing x and p by x̂ and p̂ in the formula above:

OpW(a) = 1

2π�

∫
e

i
�

(x0 x̂+p0 p̂)Fa(x0, p0)dp0dx0. (2.2)

McCoy showed in [15] Weyl’s rule leads to the formula

OpW(xr ps) = 1

2s

s∑

k=0

(
s

k

)
p̂s−k x̂r p̂k (2.3)

which is different from Born and Jordan’s rule as soon as r, s ≥ 2 (they however
coincide when r = s = 1, leading in both cases to the operator 1

2 (̂x p̂ + p̂x̂)).

© Springer International Publishing Switzerland 2016
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The Weyl rule was rediscovered and developed in the 1970s by mathematicians
working on the theory of pseudo-differential operators and partial differential equa-
tions. It turns out that the Weyl quantization rule is mathematically speaking: is very
attractive because of its simplicity; in addition it enjoys a very interesting symmetry
property (symplectic covariance; i.e. covariance under linear canonical transforma-
tions). It is also intimately related to the Wigner transform, which allows a phase
space representation of quantum mechanics. The resulting “Weyl–Wigner” formal-
ism is a well-studied topic in both mathematics and quantum mechanics. So far so
good. However, an inconsistency arises when Weyl quantization is used. It comes
from the following fact: it is conventional wisdom in physics that the Schrödinger and
Heisenberg pictures of quantum mechanics are equivalent (the Schrödinger picture
is based on Schrödinger’s equation which predicts the time-evolution of the quantum
state, and the Heisenberg picture views states as constant in time, and considers the
observable to evolve). But, and this has been unnoticed, for this equivalence to hold
wemust use the Born–Jordan scheme, and this because theHeisenberg picture breaks
down if we use any other quantization rule. That is, the Schrödinger and Heisenberg
pictures are inequivalent if one usesWeyl quantization (or any other ordering rule for
that). We are thus left with only one possible conclusion, which might be unwelcome
for many physicists: the right quantization rule for observables is that proposed in
1925 by Born and Jordan.

Fromamathematical point of view, theBorn–Jordan pseudo-differential operators
are obtained as follows. There are infinitely many ways to associate an operator to
a given symbol (or “classical observable”) a. For instance, one can use the Kohn–
Nirenberg prescription

AKNψ(x) = (
1

2π�

)n
∫∫

e
i
�

p(x−y)a(x, p)ψ(y)dn pdn y

which is very popular among mathematicians working in the theory of partial differ-
ential equations, or in time-frequency analysis. Or one can use theWeyl prescription,
which is given in pseudo-differential form by the formula

AWψ(x) = (
1

2π�

)n
∫∫

e
i
�

(x−y)pa( 12 (x + y), p)ψ(y)dn pdn y;

the latter is very popular among physicists for the reasons discussed above. There
is also the anti-normal ordering, which we just mention in passing (it is not widely
used). And then, there is the so-called Shubin prescription: for every real number τ
one associates a pseudo-differential operator Aτ to the symbol a by the formula

Aτψ(x) = (
1

2π�

)n
∫∫

e
i
�

(x−y)pa(((1 − τ )x + τ y), p)ψ(y)dn pdn y.

Obviously, choosing τ = 1 one recovers the Kohn–Nirenberg operator AKN, and
choosing τ = 1

2 one recovers the Weyl operator AW, so the Shubin operators are just
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a generalization of known schemes. Now, we define the Born–Jordan operator ABJ

with symbol a as the average

ABJ =
1∫

0

Aτ dτ

of all Shubin operators Aτ on the interval [0, 1]; this formula should be interpreted as

ABJψ(x) =
1∫

0

Aτψ(x)dτ

for ψ ∈ S(Rn). This definition leads to a completely new pseudo-differential cal-
culus, whose properties are different from those of the operators Aτ (and hence, in
particular, from those of the Weyl operator ÂW). For instance, as opposed to what
happens with Weyl or Shubin calculus, it is not obvious that every continuous opera-
tor S(Rn) −→ S ′(Rn) can be represented as a Born–Jordan operator ABJ; the usual
argument using Schwartz kernel theorem does not work here (put differently “there
might be quantum observables which have no classical analogue”). It also turns out
that in Born–Jordan quantization the zero operator can correspond to a non-zero
symbol; this particularity raises concerns about the uniqueness of “dequantization”;
these matters will be studied in detail.

2.2 The Ordering Problem

Already in the early days of quantum mechanics physicists were confronted with
the ordering problem for products of observables (i.e. of symbols, in mathematical
language). While it was agreed that the correspondence rule

x j −→ x j , p j −→ −i�∂/∂x j

could be successfully be applied to the position andmomentumvariables, thus turning
the Hamiltonian function

H =
n∑

j=1

1

2m j
p2

j + V (x1, .., xn) (2.4)

into the partial differential operator

Ĥ =
n∑

j=1

− �
2

2m j

∂2

∂x2
j

+ V (x1, .., xn) (2.5)
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it quickly became apparent that these rules lead to ambiguities when applied to more
general observables involving products of the variables x j and p j . For instance, what
should the operator corresponding to the magnetic Hamiltonian

H =
n∑

j=1

1

2m j

(
p j − A j (x1, .., xn)

)2 + V (x1, .., xn) (2.6)

be? Even in the simple case of the product x j p j = p j x j the correspondence rule led
to the a priori equally good answers−i�x j∂/∂x j and−i�(∂/∂x j )x j which differ by
the quantity i�; things became even more complicated when one came (empirically)
to the conclusion that the right answer should in fact be the “average rule”

x j p j −→ − 1
2 i�

(
x j

∂
∂x j

+ ∂
∂x j

x j

)
(2.7)

corresponding to the splitting x j p j = 1
2 (x j p j + p j x j ). To better understand the

issue, we have to go back a few years in time, to 1925. That year Heisenberg wrote
a seminal paper [13] which defined what we today call “matrix mechanics”; in an
attempt to understand Heisenberg’s ideas, and to put them on a firm mathematical
basis, Born and Jordan [1] wrote a comprehensive paper where they addressed the
ordering problem: assume that some quantization process associated to the canonical
variables x (position) and p (momentum) two operators x̂ and p̂ satisfying Max
Born’s canonical commutation rule x̂ p̂ − p̂x̂ = i�. A natural and simple choice (but
of course not the only possible one) is to choose the unbounded operators on R

n

x̂ = x, p̂ = −i�∂/∂x j .

What should then the operatorars (̂x, p̂) associated to themonomialars(x, p) = xr ps

be? Born and Jordan’s answer was

ars (̂x, p̂) = 1

s + 1

s∑

k=0

p̂s−k x̂r p̂k . (2.8)

They subsequently addressed the multi-dimensional case in a joint work [2] with
Heisenberg himself. In [8] we have analyzed in detail Born and Jordan’s argument,
and shown that their approach to Heisenberg’s matrix mechanics becomes effective
if and only if one uses the quantization rule (2.8) for monomials. Born and Jordan’s
derivation has actually been discussed by many authors (see for instance Fedak and
Prentis [10], Castellani [3], Crehan [5]), but to the best of our knowledge none has
taken up the logical need for the rule (2.8). Approximately at the same time Hermann
Weyl had started to develop his ideas about how to quantize the observables of a
physical system, and communicated them to Max Born and Pascual Jordan (see
Scholz [17] for a historical account). His basic ideas of a group theoretical approach
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were published twoyears later [19, 20].Avery interesting novelty inWeyl’s approach
was that he proposed to associate to an observable of a physical systemwhatwewould
call today a pseudo-differential operator inWeyl form. In fact, writing the observable
as an inverse Fourier transform

a(x, p) =
∫

ei(ps+xt) Fa(s, t)dsdt (2.9)

he defined its operator analogue by the formal substitution x −→ x̂ , p −→ p̂, which
yields

a(̂x, p̂) =
∫

ei( p̂s+x̂ t)Fa(s, t)dsdt; (2.10)

this is essentially the modern definition of a pseudo-differential operator in terms
of Heisenberg operators. Now, Weyl’s theory immediately yields the symmetrized
quantization rule

a(̂x, p̂) = 1

2
(̂x p̂ + p̂x̂)

(as does Born Jordan’s algebraic constructions) and one finds that more generally
(McCoy [15], 1932)

ars (̂x, p̂) = 1

2s

s∑

k=0

(
s

k

)
p̂s−k x̂r p̂k (2.11)

for a monomial ars(x, p) = xr ps .
We now make an essential observation. It turns out that Weyl’s quantization rule

(2.11) for monomials is a particular case of the so-called “τ -ordering” introduced by
Shubin [18]: for any real number τ one defines the operator

aτ
rs (̂x, p̂) =

s∑

k=0

(
s

k

)
(1 − τ )kτ s−k p̂s−k x̂r p̂k (2.12)

which is identical to Weyl’s prescription when one chooses τ = 1
2 . When τ = 0

one gets the “normal ordering” x̂r p̂s familiar from the elementary theory of partial
differential equations while τ = 1 yields the “anti-normal ordering” p̂s x̂r . We now
make the following fundamental observation: the Born–Jordan prescription (2.8) is
obtained by averaging (2.12) on the interval [0, 1]. In fact, noting that

1∫

0

(1 − τ )kτ s−kdτ = k!(s − k)!
(s + 1)!
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we get
1∫

0

aτ
rs (̂x, p̂)dτ = 1

s + 1

s∑

k=0

p̂s−k x̂r p̂k (2.13)

which is precisely (2.8).
In physics as well as in mathematics, the question of a “good” choice of quantiza-

tion is more than just academic. For instance, different choices may lead to different
spectral properties. The following example is due to Crehan [5]. Consider the Hamil-
tonian function

H(z) = 1
2 (p2 + x2) + λ(p2 + x2)3.

The term that gives an ordering problem is evidently (p2 + x2)3; Crehan then
shows that the most general quantization invariant under the substitution (x, p) �−→
(p,−x) is

Ĥ = 1

2
( p̂2 + x̂2) + λ( p̂2 + x̂2)3 + λ(3α�

2 − 4)( p̂2 + x̂2).

It is easy to see that the eigenfunctions of Ĥ are those of the harmonic oscillator
Ĥ0 = 1

2 ( p̂2 + x̂2) (they are thus the Hermite functions) and do not depend on the
choices of the parameters λ and α. However the corresponding eigenvalues do: they
are the numbers

EN = (N + 1
2 )� + λ�(2N + 1)3 + λ�(2N + 1)(3α�

2 − 4)

for N = 0, 1, 2, ..., which clearly shows the dependence of the spectrum on the
parameters α and λ, and hence of the chosen quantization. This example clearly
shows that the choice of a quantization is not just an academic problem, but has deep
consequences when one looks for the correct spectra in physics. There are more
subtle issues associated with the choice of quantization, and these will be discussed
later on in this book.

We note that the ordering problem for monomials is still not closed, as witnessed
by recent research (see for instance Domingo and Galapon [9]).

2.3 What Is Quantization?

In physics “quantization” refers to a mathematical procedure designed to describe a
quantum system using its formulation as a classical system. We have been loosely
talking about “quantization” as a process which allows one to associate an operator
acting on some function space to a function; the latter is supposed to represent a
dynamical variable, for instance energy, or position, or momentum; for a detailed
and interesting discussion of the historical development of quantization, see Mehra
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and Rechenberg’s treatise [16]. In the case of monomials the approach seems to be
more abstract, because we associate to expressions like xr ps a formal product of
operators x̂ and p̂. It would therefore be useful to have a solid working mathematical
definition of the notion of quantization. Let us immediately note that there is no
consensus in the literature about what a “good” definition should be. We are going
to give below a definition of quantization which is rather minimalistic, but sufficient
for our purposes (and probably also the most reasonable from a physical point of
view). But let us first explain what properties a quantization cannot satisfy; this will
give us the opportunity of debunking what we called “urban legends” in [8]. The first
of these properties is the so-called Dirac rule: any quantization a ↔ Op(a) should
satisfy the relation

[Op(a),Op(b)] = i�Op({a, b}) (2.14)

where {a, b} is the Poisson bracket of the two observables a, b. It is however well-
known (the Groenewold–van Hove theorem, see [11, 12]) that (2.14) cannot hold
for polynomials with degree > 2. Kauffmann gives in [14] an excellent analysis
of Dirac’s correspondence, and in [3] Castellani analyzes the (non-)existence of
quantization rules satisfying (2.14). The second quantization rule that cannot be
satisfied is von Neumann’s condition

Op(aN ) = (Op(a))N . (2.15)

In fact, Cohen [4] has proven that this condition would prohibit the existence of a
quasi-probability distribution ρ(x, p) satisfying the marginal conditions

∫
ρ(x, p)dn p = |ψ(x)|2,

∫
ρ(x, p)dn x = |Fψ(p)|2 (2.16)

and the average value formula

〈g(Op(a))ψ|ψ〉 =
∫

g(a)(x, p)ρ(x, p)dpdx . (2.17)

This would, among other unwanted consequences, prohibit the existence of the
Wigner distribution and of a Weyl type phase space quantum mechanics.

So, now that we know what a quantization cannot be, let us list a few properties
we would like a quantization to have.

Let us denote by Class(n) the vector space of all (real or complex) functions
defined on phase space R

2n; we do not assume any particular smoothness property
for the elements of Class(n) (which we call “observables”, or “symbols”). We will
denote by Quant(n) the complex vector space of all continuous linear operators
Â : S(Rn) −→ S ′(Rn). We call quantization any linear mapping

Op : Class(n) −→ Quant(n)
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having the following properties:

• Triviality axiom:

Op(1) = Id, Op(x j ) = x̂ j , Op(p j ) = p̂ j

(Id the identity operator);
• Self-adjointness: if a = a(x, p) is real, thenOp(a) is self-adjoint;more generally:

Op(a∗) = Op(a)†

where a∗ is the complex conjugate of a.

These two first properties are well-known, and very “reasonable”; the third axiom
seems a little bit artificial, but helps maintain a relatively small class of possible
quantizations:

• Reduced Dirac correspondence:

[x̂ j ,Op(a)] = i�Op({x j , a})
[ p̂ j ,Op(a)] = i�Op({p j , a})

for every a ∈ Class(n) and j = 1, ..., n.

It turns out that, at least as far as monomials or polynomials are concerned, the
property above allows one to give very explicit expressions for Op(a); in particular
one can prove the existence of a function f such that f (0) and

Op(xr ps) =
min(r,s)∑

j=0

f ( j)(0)

(
s

j

)(
r

j

)
j !� j p̂s− j x̂ r− j (2.18)

(see Domingo and Galapon [9]). This property makes it easy to connect quanti-
zation—in the general case—with the theory of the Cohen classes, which plays an
essential role in phase space quantum mechanics (and in its cousin, time-frequency
analysis). We will come back to this property in Chap.3.

A quantization scheme satisfying these three properties is called by some authors
a “generalized Weyl correspondence”; we will not use this terminology because it
gives the impression that the Weyl correspondence plays a privileged and central
role in quantization. While it is true that the Weyl correspondence is in a sense the
simplest quantization scheme, and that other quantization schemes can be studied in
terms of it, it is not necessarily the best one in physics, as our discussion below will
show.

http://dx.doi.org/10.1007/978-3-319-27902-2_3
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2.4 Motivation for Born–Jordan Quantization

As shortly argued above there are many reasons to believe that the Born–Jordan
ordering, which leads to the Born–Jordan pseudo-differential calculus is the correct
physical quantization scheme. We have shown in [7, 8] that the equivalence of the
Schrödinger and Heisenberg pictures of quantum mechanics (which is taken for
granted in quantum physics) requires that the “ observables” be quantized using
the Born–Jordan rule. In fact, close scrutiny of Born and Jordan’s argument shows
that their quantization rule (2.13) is not only sufficient, but also necessary for their
definitions to be mathematically consistent.

In the Schrödinger picture of quantummechanics (wavemechanics), the operators
are constant (unless they are explicitly time-dependent), and the states evolve in time:
ψ(t) = U (t, t0)ψ(t0) where

U (t, t0) = ei HS (t−t0)/� (2.19)

is a family of unitary operators (the propagator); the time evolution of ψ is thus
governed by Schrödinger’s equation

i�
∂ψ

∂t
= HSψ; (2.20)

HS is an operator associated with the classical Hamiltonian function H by some
“quantization rule”. In the Heisenberg picture (matrix mechanics), the state vectors
are time-independent operators that incorporate a dependency on time, while an
observable AS in the Schrödinger picture becomes a time-dependent operator AH(t)
in the Heisenberg picture; this time dependence satisfies the Heisenberg equation

i�
d AH

dt
= i�

∂ AH
∂t

+ [AH, HH]. (2.21)

Schrödinger [6] (and, independently, Eckart [5]) attempted to prove shortly after
the publication of Heisenberg’s result that wave mechanics and matrix mechanics
were mathematically equivalent. Both proofs contained flaws, and one had to wait
until von Neumann’s [7] seminal work for a rigorous proof of the equivalence of both
theories. We will not bother with the technical shortcomings of Schrödinger’s and
Eckart’s approaches here, but rather focus on one, perhaps more fundamental, aspect
which seems to have been overlooked in the literature. We observe that it is possible
to go from the Heisenberg picture to the Schrödinger picture (and back) using the
following simple argument: a ket

|ψS(t)〉 = U (t, t0)|ψS(t0)〉 (2.22)
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in the Schrödinger picture becomes, in the Heisenberg picture, the constant ket

|ψH〉 = U (t, t0)
†|ψS(t)〉 = |ψS(t0)〉 (2.23)

whereas an observable AS becomes

AH(t) = U (t, t0)
†ASU (t, t0); (2.24)

in particular the Hamiltonian is

HH(t) = U (t, t0)
†HSU (t, t0). (2.25)

Taking t = t0 this relation implies that HH(t0) = HS ; now in the Heisenberg picture
energy is constant, so the Hamiltonian operator HH(t) must be a constant of the
motion. It follows that HH(t) = HS for all times t and hence both operators HH
and HS must be quantized using the same rules. A consequence of this property is
that if we believe that Heisenberg’s “matrix mechanics” is correct and is equivalent
to Schrödinger’s theory, then the Hamiltonian operator appearing in the Schrödinger
equation (2.20) must be quantized using the Born–Jordan rule, and not, as is usual
in quantum mechanics, the Weyl quantization rule.

Now, why should we then choose the Born–Jordan quantization scheme, and
not, for instance, the Weyl correspondence? It turns out that Born and Jordan’s
argument only works if one uses the quantization scheme that they proposed. We
have explained this in detail in [8]; for completeness we reproduce here the argument
(with some simplifications). A close scrutiny of the arguments in Born and Jordan
[1] and its follow-up [2] by Born et al. shows that the key to their approach lies
in the differentiation rule for products of non-commuting variables. They actually
give two definitions, and prove thereafter that both coincide if and only if one makes
an essential assumption on the ordering of the quantization of monomials. The first
definition is algebraic: if

y =
s∏

m=1
y�m = y�1 y�2 · · · y�s (2.26)

is a product of non-commuting variables y� then, if k ∈ {�1, �2, ..., �s}, the derivative
of y with respect to yk is given by what they call a “differential quotient of first type”:

(
∂y

∂yk

)

1

=
s∑

r=1

δ�r k

s∏
m=r+1

y�m

r−1∏
m=1

y�m (2.27)

(δ�r k the Kronecker delta). In words: pick a factor xk in (2.26) and form the product
of all the following factors, and thereafter the product of the preceding factors (in
that order). When y is a monomial p̂s x̂r this rule yields
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(
∂

∂ p̂
( p̂s x̂r )

)

1

=
s−1∑

�=0

p̂s−1−� x̂r p̂� (2.28)

(
∂

∂ x̂
( p̂s x̂r )

)

1

=
r−1∑

j=0

x̂r−1− j p̂s x̂ j . (2.29)

The second definition (explicitly given in formula (3) of [2]) is similar to that of an
ordinary partial derivative:

(
∂y

∂yk

)

2

= lim
α→0

f (· · ·, yk + α, · · ·)
α

. (2.30)

With this definition formulas (2.28) and (2.29) become

(
∂

∂ p̂
( p̂s x̂r )

)

2

= s p̂s−1 x̂r

(
∂

∂ x̂
( p̂s x̂r )

)

2

= r p̂s x̂r−1.

Their next step consists in identifying both notions of partial derivative; more specifi-
cally they want that the quantization Ĥ (still to be defined) of a Hamiltonian function
satisfies the equalities

(
∂ Ĥ

∂ p̂

)

1

=
(

∂ Ĥ

∂ p̂

)

2

,

(
∂ Ĥ

∂ x̂

)

1

=
(

∂ Ĥ

∂ x̂

)

2

. (2.31)

They thereafter show quite explicitly (in the footnote (1) of [2]) that these equations
hold if the quantization Ĥ of H = ps xr is the self-adjoint operator given by

Ĥ = 1

r + 1

r∑

j=0

x̂r− j p̂s x̂ j = 1

s + 1

s∑

�=0

p̂s−� x̂r p̂�. (2.32)

They do not, however, show that it is the only possibility leading to a self-adjoint
operator Ĥ . This is however the case, as we have shown in [8].

To be complete, let us explain why Born and Jordan needed these constructions.
They assumed that the equations of motion for p̂ and x̂ are formally the same as in
Hamiltonian mechanics, namely

dx̂

dt
= ∂ Ĥ

∂ p̂
,

d p̂

dt
= −∂ Ĥ

∂ x̂
. (2.33)
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Pursuing this classical analogy, they require in addition that the Hamilton equations,
written in terms of Poisson brackets

dx

dt
= {x, H}, dp

dt
= {p, H}

should be replaced with the operator relations

dx̂

dt
= [̂x, Ĥ ], d p̂

dt
= [ p̂, Ĥ ];

to be consistent with the Hamilton equations (2.33) one must thus have

[̂x, Ĥ ] = i�
∂ Ĥ

∂ p̂
, [ p̂, Ĥ ] = i�

∂ Ĥ

∂ x̂
. (2.34)

This last step in Born and Jordan’s construction also requires that the operator Ĥ
must be given by the rule (2.32) above.
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Chapter 3
Quantization of Monomials

In this chapterwe begin by collecting some facts about the quantization ofmonomials
and polynomials, with a particular emphasis on the Weyl and Born–Jordan schemes.
We will also consider a non-standard rule, namely Shubin’s τ -ordering, which is
the key to the definition of Born–Jordan quantization for general observables. We
thereafter propose a simple but efficient definition of quantization. That definition,
due to Domingo and Galapon, is simple, because it relies on only three axioms
(in addition to the requirement of linearity), and it is efficient because it is easy to
generalize to the case of arbitrary observables, as we will see in the forthcoming
chapters.

3.1 Polynomial Algebras

3.1.1 General Considerations and Notation

The first contribution to the topic ofmonomial quantization is Born and Jordan’s sem-
inal paper [2]; the list of papers that has followed this work is huge, and still growing
(this book is not an exception!). Here is a short list of contributions, which is by no
means exhaustive: Agarwal and Wolf [1], Crehan [3], Domingo and Galapon [5],
Kerner and Sutcliffe [7], McCoy [8], Mehta [9], Misra and Shankara [10], Niederle
and Tolar [11], Przanowski and Tosiek [12], Shewell [14].

In what follows x and p denote two indeterminates and C[x, p] the polynomial
ring they generate: it consists of all finite formal sums a = ∑

r,s αrs xr ps where the
coefficients αrs are complex numbers; it is assumed that xr ps = ps xr hence C[x, p]
is a commutative ring. We identify C[x, p] with the corresponding ring of polyno-
mial functions. We will denote by C[̂x, p̂] the corresponding Weyl algebra: it is the

© Springer International Publishing Switzerland 2016
M.A. de Gosson, Born–Jordan Quantization, Fundamental Theories
of Physics 182, DOI 10.1007/978-3-319-27902-2_3
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complex (non-commutative) unital algebra1 generated by x̂ and p̂, two indetermi-
nates satisfying Born’s canonical commutation relation (CCR), written formally as

x̂ p̂ − p̂x̂ = i�1

where 1 is the unit ofC[̂x, p̂]; wewill commonly abuse notation bywriting i�1 ≡ i�;
see Gelfand and Fairlie [6] for a detailed study of the Weyl algebra C[̂x, p̂].

The following commutation formulas in C[̂x, p̂] are easily proven by induction
on the integers r and s. Using these formulas it is easy to see that every Â ∈ C[̂x, p̂]
can be written in any of the two forms below:

Â =
∑

r+s≤m

αrs x̂r p̂s =
∑

r+s≤m

βrs p̂s x̂r .

In standard quantum mechanics it is usual to choose for x̂ and p̂ the operators
defined by

x̂ψ = xψ, p̂ = −i�
∂ψ

∂x

where ψ is a differentiable function on the real line. This is not the only possible
choice; for instance in the theory of the phase space Schrödinger equations (and in
its variant, deformation quantization), one often uses instead the so-called “Bopp
shifts” x̃ and p̃, which are defined by the relations

x̃ψ =
(

x + 1

2
i�

∂

∂ p

)
ψ, p̃ψ =

(
p − 1

2
i�

∂

∂x

)
ψ

where ψ is this time a differentiable function on phase space R
2. It is immediate to

verify that [̃x, p̃] = i�1.
Let us begin by giving a very rough definition of quantization: a quantization of

C[x, p] is a linear mapping

Op : C[x, p] −→ W [̂x, p̂]

associating to each polynomial a(x, p) ∈ C[x, p]with real coefficients a self-adjoint

element Â = a(̂x, p̂) ∈ C[̂x, p̂]. Self-adjointness is taken here in the algebraic
sense: if

Â =
∑

r+s≤m

αrs x̂r p̂s ∈ C[̂x, p̂]

1It can be viewed, if one wants, as the universal enveloping algebra of the Heisenberg Lie algebra.
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then the adjoint Â† of Â is defined by

Â† =
∑

r+s≤m

α∗
rs p̂s x̂r ∈ C[̂x, p̂];

the fact that Â† ∈ C[̂x, p̂] follows either by repeated use of the CCR (see the
commutation formula (3.3) below): we have

Â† =
∑

r ′,s ′
βr ′s ′ x̂r ′

p̂s ′

where the new coefficients βr ′s ′ can be stepwise determined from the αrs .

3.1.2 Commutation Relations

Using Born’s canonical commutation relation

[̂x, p̂] = x̂ p̂ − p̂x̂ = i�

it is easy to prove by induction on the integers r and s various commutation relations.
Here are a few of them:

[̂xr , p̂s] = si�
r−1∑

�=0

x̂r−1−� p̂s−1 x̂� (3.1)

[̂xr , p̂s] = ri�
s−1∑

j=0

p̂s−1− j x̂ r−1 p̂ j (3.2)

[̂xr , p̂s] =
min(r,s)∑

k=1

(i�)kk!
(

r

k

)(
s

k

)
p̂s−k x̂r−k (3.3)

[̂xr , p̂s] = −
min(r,s)∑

k=1

(−i�)kk!
(

r

k

)(
s

k

)
x̂r−k p̂s−k . (3.4)

Notice that the relations (3.3) and (3.4) are obtained fromeachother by taking adjoints
and observing that the commutator is antisymmetric: we have [̂xr , p̂s]† = [ p̂s, x̂r ].

3.2 Some Common Orderings

We briefly discuss here theWeyl and Born–Jordan quantizations. The latter, given by
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OpBJ(ps xr ) = 1

s + 1

s∑

�=0

p̂s−� x̂r p̂�

is the equally weighted average of all the possible operator orderings, as opposed to
the Weyl correspondence

OpW(xr ps) = 1

2s

s∑

�=0

(
s

�

)
p̂s−� x̂r p̂�

or the symmetric ordering (Rivier [13])

Opsym(xr ps) = 1

2
( p̂s x̂r + x̂r p̂s)

which is the most symmetrical rule. All three rules coincide when s + r ≤ 2, but
they are different as soon as s ≥ 2 and r ≥ 2.

3.2.1 Weyl Ordering

By definition the Weyl quantization (or correspondence) OpW associates to a mono-
mial xr ps the expression (McCoy [8])

OpW(xr ps) = 1

2s

s∑

�=0

(
s

�

)
p̂s−� x̂r p̂�; (3.5)

equivalently, using the commutation relations (3.1)–(3.4),

OpW(xr ps) = 1

2r

r∑

�=0

(
s

�

)
x̂� p̂s x̂r−�.

Example 1 We have OpW(xp) = 1
2 (̂x p̂ + p̂x̂) and

OpW(x2 p2) = 1
4 (̂x2 p̂2 + 2x̂ p̂2 x̂ + p̂2 x̂2)

or, equivalently,

OpW(x2 p2) = 1
4 ( p̂2 x̂2 + 2 p̂x̂2 p̂ + x̂2 p̂2)

(the somewhat counterintuitive equality x̂ p̂2 x̂ = p̂x̂2 p̂ immediately follows from
the commutation relation [̂x, p̂] = i�).
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The definition above immediatelymakes apparent the self-adjointness of theWeyl
quantization of real polynomials: we have

OpW(xr ps)† = 1

2s

s∑

�=0

(
s

�

)
p̂� x̂r p̂s−� = OpW(xr ps),

and this formula immediately extends to polynomials by linearity.

Proposition 2 Let xr ps ∈ C[x, p]; we have the “normal” and “anti-normal”
expansions

OpW(xr ps) =
min(r,s)∑

�=0

(−i�)�
(

s

�

)(
r

�

)
�!
2�

x̂r−� p̂s−�; (3.6)

OpW(xr ps) =
min(r,s)∑

�=0

(i�)�
(

s

�

)(
r

�

)
�!
2�

p̂s−� x̂r−�. (3.7)

Proof Using the formulas (3.1)–(3.4) it is straightforward to show that OpW(xr ps)

can bewritten in any of the two forms above; notice that both formulas are easily seen
to be equivalent if one takes into account the self-adjointness property of OpW(xr ps)

since the adjoint of x̂r−� p̂s−� is precisely p̂s−� x̂r−�. �

Example 3 While by definition we have

OpW(x2 p2) = 1
4 (̂x2 p̂2 + 2x̂ p̂2 x̂ + p̂2 x̂2)

using formula (3.6) with r = s = 2 this is the same thing as

OpW(x2 p2) = x̂2 p̂2 − 2i�x̂ p̂ − 1
2�

2 (3.8)

as can be directly checked using by repeated use of the commutation relation [̂x , p̂] =
i�; similarly (3.7) yields

OpW(x2 p2) = p̂2 x̂2 + 2i� p̂x̂ − 1
2�

2. (3.9)

The assumption of linearity allows us to construct OpW(a) for arbitrary polyno-
mials a ∈ C[x, p]: if

a(x, p) =
∑

r+s≤m

αrs xr ps

then we have

OpW(a) =
∑

r+s≤m

αrsOpW(xr ps).



28 3 Quantization of Monomials

3.2.2 Born–Jordan Ordering

By definition, the Born–Jordan ordering of monomials is given by

OpBJ(xr ps) = 1

s + 1

s∑

�=0

p̂s−� x̂r p̂� (3.10)

or, equivalently,

OpBJ(xr ps) = 1

r + 1

r∑

j=0

x̂r− j p̂s x̂ j . (3.11)

The equivalence of both definitions follows from the commutation relations (3.1)–
(3.4).

Since the adjoint of p̂s−� x̂r p̂� is p̂� x̂r p̂s−� we have OpBJ(ps xr )† = OpBJ(ps xr ),
hence the Born–Jordan rule is, as is the Weyl rule, a physically acceptable quantiza-
tion scheme for monomials. It extends to polynomials by linearity: if

a(x, p) =
∑

r+s≤m

αrs xr ps

is an arbitrary element of C[x, p] then we define OpBJ(a) ∈ C[̂x, p̂] by

OpBJ(a) =
∑

r+s≤m

αrsOpBJ(xr ps).

The following result gives the normal and anti-normal expansions in theBorn–Jordan
scheme:

Proposition 4 Let xr ps ∈ C[x, p]; we have

OpBJ(xr ps) =
min(r,s)∑

�=0

(−i�)�
(

s

�

)(
r

�

)
�!

� + 1
x̂r−� p̂s−� (3.12)

OpBJ(xr ps) =
min(r,s)∑

�=0

(i�)�
(

s

�

)(
r

�

)
�!

� + 1
p̂s−� x̂r−�. (3.13)

Proof Similar to that of Proposition 2 in the Weyl case; also see [7]; observe that
one toggles between both expressions by taking the adjoints. �

Example 5 Setting r = s = 2 in (3.12) we get the normally ordered operator

OpBJ(x2 p2) = x̂2 p̂2 − 2i�x̂ p̂ − 2
3�

2; (3.14)

it is different from the expression (3.8) giving the normally orderedWeyl quantization
of x2 p2.
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Observe that both formulas (3.6) and (3.12) are particular cases of the formula

Op(α�)
(xr ps) =

min(r,s)∑

�=0

(−i�)�
(

s

�

)(
r

�

)
�!
α�

x̂r−� p̂s−� (3.15)

where (α�) is a sequence of real numbers. For instance, the choiceα� = �+1 leads to
the Born–Jordan rule, and the choice α� = 2� leads to the Weyl rule. These formulas
show explicitly that the Weyl and Born–Jordan rules differ as soon as r ≥ 2 and
s ≥ 2 (cf. Dewey [4]). We will give a more explicit formula below.

3.2.3 The Relation Between OpW(xr ps) and OpBJ(x
r ps)

We shortly address here the following question: “can we (easily) find the Born–
Jordan quantization of xr ps knowing its Weyl quantization, and vice versa?”. While
nothing is really very simple when it comes to such combinatorial matters, the two
following formulas have been proven by Domingo and Galapon [5]:

OpBJ(xr ps) =
1
2 min(r,s)∑

j=0

(i�/2)2 j

(2 j + 1)!
s!

(s − 2 j)!
r !

(r − 2 j)!OpW(xr−2 j ps−2 j )

and, conversely,

OpW(xr ps) =
min(r,s)∑

j=0

(i�) j B j (
1
2 )

j !
s!

(s − j)!
r !

(r − j)!OpBJ(xr−2 j ps−2 j );

in the second formula B j (
1
2 ) is the Bernoulli polynomial B j (x) evaluated at x = 1

2 ;
recall that B j (x) is defined by

text

et − 1
=

∞∑

j=0

B j (x)
t j

j !

or equivalently

B j (x) =
j∑

k=0

(
j

k

)
B j−k xk

where the B j−k are the Bernoulli numbers.
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Example 6 Choose r = s = 2. We have

OpW(x2 p2) = x̂2 p̂2 − 2i�x̂ p̂ − 1
2�

2

and

OpBJ(xr ps) = x̂2 p̂2 − 2i�x̂ p̂ − 2
3�

2.

This example clearly shows that Born–Jordan and Weyl quantizations are differ-
ent: subtracting the second equality from the first we obtain

OpW(x2 p2) − OpBJ(xr ps) = − 1
6�

2.

3.2.4 Shubin’s τ -Ordering

It turns out that the Weyl ordering is a particular case of what we call Shubin’s
τ -ordering, defined by

Opτ (xr ps) =
s∑

�=0

(
s

�

)
(1 − τ )�τ s−� p̂s−� x̂r p̂� (3.16)

(τ is an arbitrary real number); equivalently

Opτ (xr ps) =
r∑

�=0

(
r

�

)
(1 − τ )�τ s−� x̂� p̂s x̂r−�. (3.17)

Clearly, the choice τ = 1
2 immediately yields Weyl’s rule; the choices τ = 0 and

τ = 1 lead to the normal and antinormal rules

OpN(xr ps) = x̂r p̂s , OpAN(xr ps) = p̂s x̂r ,

respectively. What is less obvious—and very interesting, indeed—is that if we inte-
grate the right-hand side of (3.16) for τ going from 0 to 1, then we recover the
Born–Jordan rule

OpBJ(xr ps) = 1

s + 1

s∑

�=0

x̂� p̂s x̂r−�;

this easily follows from the property

1∫

0

τ s−�(1 − τ )�dτ = (s − �)!�!
(s + 1)! (3.18)
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familiar from the theory of the beta function. This essential remark will allow us to
define Born–Jordan quantization for arbitrary observables, by extending the formula

OpBJ(xr ps) =
1∫

0

Opτ (xr ps)dτ (3.19)

to arbitrary Hamiltonian functions.
It should be remarked that the τ -rule is itself unphysical for τ 
= 1

2 because it
does not associate to the real observable ps xr a self-adjoint operator; in fact

Opτ (xr ps)† = Op1−τ (xr ps)

as immediately follows from (3.16) or (3.17). The Born–Jordan rule is, in contrast,
physical since

OpBJ(xr ps)† = OpBJ(xr ps)

(this can be seen directly from its definition, or using the formula above).

3.3 General Quantization Axioms for Monomials

Quantization rules are a flourishing market; the monomial case is not an exception.
Very recently Domingo and Galapon [5] have proposed a very simple set of rules
and shown that it allows one to produce a general formula for the quantization of
arbitrary polynomials in terms of a certain function χ of the variables x, p. It turns
out the theory of Domingo and Galapon, in addition to being “minimalistic”, is the
gate to the quantization of arbitrary observables, as we will see in the forthcoming
chapters. We follow here almost verbatim their presentation.

3.3.1 The Domingo–Galapon Formula

We begin by recalling the notion of quantization for monomials following [5]:

Definition 7 A quantization of C[x, p] is a linear mapping Op : C[x, p] −→
C[̂x, p̂] having the following properties:

(A1) Op(1) = 1 (the identity), Op(x) = x̂ and Op(p) = p̂;
(A2) Op(a) is self-adjoint if a ∈ C[x, p] is a real polynomial;
(A3) The restricted Dirac correspondence

[̂x,Op(a)] = i�Op({x, a}) (3.20)

[ p̂,Op(a)] = i�Op({p, a}) (3.21)

holds for every a ∈ C[x, p].
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In the formulas above the curly brackets {·, ·} denote the Poisson bracket, familiar
from classical mechanics:

{a, b} = ∂a

∂x

∂b

∂ p
− ∂b

∂x

∂a

∂ p
;

hence the rules (3.20) and (3.21) mean that

x̂Op(a) − Op(a)̂x = i�Op

(
∂a

∂ p

)

and

p̂Op(a) − Op(a) p̂ = i�Op

(
−∂a

∂x

)
.

Domingo and Galapon [5] call such a quantization of C[x, p] a “generalized Weyl
transform”. The interest of their definition comes from the following result, which
characterizes all quantizations of C[x, p] satisfying the axioms (A1)–(A2)–(A3):

Proposition 8 Let Op : C[x, p] −→ C[̂x, p̂] be a quantization in the sense of
Domingo and Galapon. Then there exists a real function χ ∈ C∞(R2) with χ(0) = 1
such that

Op(xr ps) =
min(r,s)∑

�=0

�
��! f (�)(0)

(
s

�

)(
r

�

)
p̂s−� x̂r−� (3.22)

where f (�)(0) is the �th derivative of the function f (x) = eix/2χ(x) at x = 0.

Proof We are just going to indicate the main lines of the proof, and refer for details
to [5]. One begins by writing Âsr = Op(xs pr ) in polynomial form

Âsr =
min(r,s)∑

�=0

gs,r,��
� p̂s−� x̂r−�. (3.23)

The adjoint of this operator is

Â†
sr =

min(r,s)∑

�=0

�∑

k=0

g∗
s,r,kb∗

s−k,r−k,�−k�
� p̂s−� x̂r−�

the coefficients bs,r,� being given by

bs,r,� = (−1)�s!r !/�!
(s − �)!(r − �)! for � ≤ min(r, s)
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and bs,r,� = 0 for � > min(r, s). Since xs pr is real we have Â†
sr = Âsr and this

condition implies that

gs,r,� =
�∑

j=0

g∗
s,r, j b

∗
s− j,r− j,�− j . (3.24)

Applying axiom (A3) in the definition above yields the equalities

[̂x, Âsr ] = i�s Âs−1,r , [ p̂, Âsr ] = −i�r Âs,r−1;

writing

Âs−1,r =
min(s−1,r)∑

�=0

gs−1,r,��
� p̂s−1−� x̂r−�

Âs,r−1 =
min(s,r−1)∑

�=0

gs,r−1,��
� p̂s−� x̂r−1−�

this leads to the conditions

gs−1,r,� = s − �

s
gs,r,�, gs,r−1,� = r − �

r
gs,r,�.

Combining these two expressions we get

gs,r,� =
(

s

�

)(
r

�

)
g�,�,� (3.25)

and substituting this expression in (3.24) gives the recurrence relation

g�,�,�

�!�! =
�∑

k=0

g∗
k,k,k

k!k!
i�−k

(� − k)! for � ≤ min(r, s).

Now comes the crucial step: define a function f by the series

f (x) =
∞∑

�=0

g�,�,�

�!
x�

�! ;

since g�,�,� = �! f (�)(0) the recurrence formula above implies e−i x/2 f (x) =
eix/2 f (x)∗ hence the function χ(x) = e−i x/2 f (x) is real; moreover χ(0) = g0,0,0 =
1. Formula (3.22) follows, inserting (3.25) in the expression (3.23) for Âsr . �

Here are two examples.
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Example 9 Weyl ordering. Assume first that the functionχ is the identity:χ(x) = 1
for all x ∈ R. Then f (x) = eix/2 and f ( j)(0) = (i/2) j . Formula (3.22) becomes in
this case

Op(xr ps) =
min(r,s)∑

j=0

j !
(

s

j

)(
r

j

)
(i�) j

2 j
p̂s− j x̂ r− j

hence Op(xr ps) = OpW(xr ps) in view of formula (3.7).

Recall that the cardinal sine function sinc is defined by sinc(u) = (sin u)/u for
u 
= 0 and sinc(0) = 1.

Example 10 Born–Jordan ordering. Assume now χ(x) = sinc(x/2); then f (x) =
eix/2 sinc(x/2), and we have f (�)(0) = i�/(� + 1). Hence

Op(xr ps) =
min(r,s)∑

�=0

(i�)�
(

s

�

)(
r

�

)
�!

� + 1
p̂s−� x̂r−�

so that Op(xr ps) = OpBJ(xr ps) (formula (3.13).

The definition of quantization given above is very simple; in many texts one adds
supplementary restrictive assumptions, see for instance Niederle and Tolar [11] or
Przanowski and Tosiek [12]. We will not discuss such conditions here, because they
are actually unnecessary complications of the theory.

We also note that it is often required in texts on quantization that one should
in some way recover the classical observable by taking the “limit” � → 0. This
is automatically satisfied if one uses the Domingo–Galapon formula (3.22) which
implies that

lim
�→0

Op(xr ps) = p̂s x̂r

which can be written as

lim
�→0

Op(xr ps)
∣∣
x̂=x , p̂=p = xr ps; (3.26)

but this notation is of course, mathematically speaking, rather formal, to say the least.
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Chapter 4
Basic Hamiltonian Mechanics

In order to discuss wave mechanics and the Schrödinger equation in the next chapter
we need some basic aspects of classical mechanics in its Hamiltonian formulation.
For detailed accounts of Hamiltonian mechanics we refer to Abraham and Marsden
[1],Arnol’d [2], Calkin [4],Goldstein [8], deGosson [6, 7], Synge andTruesdell [12].
We begin by briefly discussing Hamilton’s equations of motion, and we thereafter
review the fundamental notions of generating function and Hamilton’s two-point
characteristic function, which are both related to action. In the last sectionwe address
the topic of short-time approximations to these functions; this topic is usually ignored
in the literature, a notable exception being the paper [9] by Makri and Miller, whose
results were independently later rediscovered in [7] using a different method. We
thereafter extend these results to the case of arbitrary Hamiltonian functions.

4.1 Hamiltonian Dynamics

A matter of terminology and notation: we will comply with the traditional denomi-
nation “canonical transformations” for phase space diffeomorphisms which respect

the symplectic structure determined by the matrix J =
(

0n×n In×n

−In×n 0n×n

)
. We will

occasionally also use the synonym “ symplectomorphism”, which is more common
in mathematical texts. Beware: in some physics texts a “canonical transformation”
has the slightly more general meaning of a transformation which preserves the form
of Hamilton’s equations (see Arnol’d [2], Sect. 45, Footnote 76).

Let H be a real-valued function; we assume for convenience that C∞(R2n × R),
but most of what follows remains true if we assume less stringent differentiability
conditions (see Abraham and Marsden [1] for a discussion of sufficient smoothness
requirements). The 2n ordinary differential equations

© Springer International Publishing Switzerland 2016
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dx j

dt
= ∂H

∂ p j
(x1, . . . , xn, p1, . . . , pn, t) (4.1)

dp j

dt
= −∂H

∂x j
(x1, . . . , xn, p1, . . . , pn, t) (4.2)

where j = 1, . . . , n are called the Hamilton equations associated with H ; they can
advantageously be written in compact form as

ż = J∇z H(z, t) (4.3)

where∇z is the gradient in the 2n variables x1, . . . , xn, p1, . . . , pn . This observation
reduces the study of the existence and uniqueness of the solutions of Hamilton’s
equations to that of first-order non-autonomous differential systems of ordinary dif-
ferential equations.

We will assume for simplicity that for every z0 = (x0, p0) belonging to some
open subset � of R2n Hamilton’s equations have a unique solution t �−→ z(t) =
(x(t), p(t)) such that z(0) = z0, defined for −T ≤ t ≤ T where T > 0.

Example 1 If the Hamiltonian is time-independent of the type

H(x, p) =
n∑

j=1

p2
j

2m j
+ V (x)

where the potential V is smooth and satisfies the estimate V (x) ≥ −a|x |2 for some
a > 0 then the solutions of the Hamilton equations exist for all times t and are unique
for given initial conditions.

We refer to Abraham andMarsden [1], Chap. 1, Sect. 2.1, for a general discussion
of global existence and uniqueness of solutions to Hamilton’s equations. When these
solutions are defined and unique for some time interval [−T, T ] and initial conditions
in � ⊂ R

2n one can define a “partial flow”: it is the family ( f H
t ) = ( f H

t )−T ≤t≤T

of diffeomorphisms of � such that the function z(t) = f H
t (z0) is the solution of

Hamilton’s equations with z(0) = z0. We are actually making here a slight abuse of
terminology because ( f H

t )−T ≤t≤T is, strictly speaking, a true flow (in the sense of the
theory of dynamical systems) only when the Hamiltonian H is time-independent.
When this is the case, then ( f H

t ) is just the phase space flow determined by the
Hamiltonian vector field

X H = J∂z H = (
∂x H,−∂p H

)

and we have the group property

f H
t f H

t ′ = f H
t+t ′ , f H

0 = I (4.4)
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when t, t ′ and t + t ′ are in the interval [−T, T ]; in particular each f H
t is a diffeomor-

phism such that ( f H
t )−1 = f H−t . In the general case (i.e. when H is time-dependent),

it is better to consider the time-dependent flow ( f H
t,t ′), defined by f H

t,t ′ = f H
t ( f H

t ′ )−1:
it is the mapping which takes the point (x ′, p′) ∈ � at time t ′ to the point (x, p) at
time t along the solution curve of Hamilton’s equation:

(x, p) = f H
t,t ′(x ′, p′).

An essential property of the mappings f H
t and f H

t,t ′ is that they are canonical trans-
formations (or symplectomorphisms); this means that the Jacobian matrix

D f H
t,t ′(z′) = ∂(x, p)

∂(x ′, p′)
=

(
∂x
∂x ′

∂x
∂ p′

∂ p
∂x ′

∂ p
∂ p′

)
(4.5)

satisfies the two equivalent conditions

D f H
t,t ′(z′)J (D f H

t,t ′(z′))T = J (4.6)

D f H
t,t ′(z′)T J (D f H

t,t ′(z′)) = J. (4.7)

In other words D f H
t,t ′(z′) is a symplectic matrix: a real 2n × 2n matrix S is said to

be symplectic if it satisfies anyone (and hence both) of the equivalent conditions
S J ST = J or ST J S = J . Symplectic matrices form a group Sp(n) which will be
studied in more detail in Chap.12 (see de Gosson [7] for an elementary study of
Hamiltonian mechanics from the symplectic point of view).

4.2 Free Canonical Transformations

4.2.1 Free Symplectic Matrices

Writing a symplectic matrix in block-form

S =
(

A B
C D

)

we will say that it is a “free” symplectic matrix if det B �= 0. Equivalently, the
equation (x, p) = S(x ′, p′) can be solved in x and x ′, which determines uniquely
the momenta p and p′. In fact, (x, p) = S(x ′, p′) is equivalent to the linear system

x = Ax ′ + Bp′, p = Cx ′ + Dp′;

http://dx.doi.org/10.1007/978-3-319-27902-2_12
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solving the first equation in p′ yields

p′ = B−1x − B−1 Ax ′

and inserting this solution is the second equation yields

p = DB−1x + (C − DB−1A)x ′.

This property can be made explicit using the generating function

W (x, x ′) = 1
2 DB−1x2 − B−1x · x ′ + 1

2 B−1Ax ′2 (4.8)

(see de Gosson [5, 7]). In fact,

(x, p) = S(x ′, p′) ⇐⇒
{

p = ∇x W (x, x ′)
p′ = −∇x ′ W (x, x ′) (4.9)

as can be checked by a direct calculation. More generally:

Definition 2 We will say that a canonical transformation (symplectomorphism) f
defined on a subset� of the phase spaceR2n is “free” if, given x ′ and x , the equation
(x, p) = f (x ′, p′) uniquely determines the momenta p′ and p.

The following criterion is a generalization of the condition det B �= 0 for free
symplectic matrices:

Lemma 3 A canonical transformation f defined on a subset � of R2n is free if and
only if the Jacobian matrix

D f (z′) = ∂(x, p)

∂(x ′, p′)

is a free symplectic matrix, that is if det(∂x/∂ p′) �= 0 on � for (x, p) = f (x ′, p′).

Proof In view of the implicit function theorem the equation (x, p) = f (x ′, p′) can
be solved locally in p′, for given x ′ and x , if and only if the Jacobian matrix ∂x/∂ p′
is invertible. �

We refer to the our book [5] for a detailed study, with complete proofs, of the
notion of free symplectic matrix. It is proven there, among other properties, that
every symplectic matrix can be written as a product of exactly two free symplectic
matrices.

4.2.2 Hamilton’s Two-Point Characteristic Function

The notion of generating functions extends to arbitrary free canonical transforma-
tions, in particular to Hamiltonian flows. We have the following important result,
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which will allow us to link the notion of action integral to Hamilton–Jacobi theory
discussed below:

Proposition 4 Let M be a real symmetric invertible n × n matrix, V = V (x, t) a
smooth potential function, and set

H(x, p, t) =
n∑

j=1

p2
j

2m j
+ V (x, t) (4.10)

(i) There exists ε > 0 such that f H
t,t ′ is a free canonical transformation for 0 <

|t − t ′| < ε; (ii) The function W (x, x ′, t, t ′) defined by

W (x, x ′, t, t ′) =
∫

γ

pdx − Hdt (4.11)

where the integral is calculated along the phase-space trajectory s �−→ f H
s,t ′(x ′, p′)

joining (x ′, p′) at time t ′ to (x, p) at time t is a generating function, that is:

(x, p) = f H
t,t ′(x ′, p′) ⇐⇒

{
p = ∇x W (x, x ′, t, t ′)
p′ = −∇x ′ W (x, x ′, t, t ′) .

Proof We prove (i) for n = 1; the general case is a straightforward generalization
([7], Sect. 4.4.1). The Hamilton equations for H are

ẋ = p/m , ṗ = −∂x V (x, t).

Set (x, p) = f H
t,t ′(x ′, p′); using a Taylor expansion at time t ′ we have, taking the

Hamilton equations into account,

x = x ′ + m−1 p′(t − t ′) + O((t − t ′)2)

p = p′ − ∂x V (x ′, t ′)(t − t ′) + O((t − t ′)2)

hence
∂x

∂ p′ = m−1(t − t ′) + O((t − t ′)2)

which is different from zero for t − t ′ �= 0 sufficiently small. For a proof of (ii) see
de Gosson [7], Sect. 4.4.1, Proposition 92. �

This result easily extends to the case of Hamiltonians of the type

H(x, p, t) =
n∑

j=1

1

2m j
(p j − A(x, t))2 + V (x, t) (4.12)

(see de Gosson [7], Sect. 4.4.1).
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Definition 5 The function W (x, x ′, t, t ′) defined by (4.11) is calledHamilton’s two-
point characteristic function, or a “free generating function” for the flow ( f H

t,t ′).

Here are two examples:

Example 6 Consider the free particle Hamiltonian in one dimension: H = p2/2m.
The Hamiltonian flow is defined by

(x, p) = f H
t,t ′(x ′, p′) = (x ′ + p′

m (t − t ′), p′) (4.13)

hence the integration path in the integral (4.11) is parametrized as γ(s) = (x ′ +
p′
m (s − t ′), p′) and we thus have

∫

γ

pdx − Hdt = p′2

2m
(t − t ′);

making the substitution p′ = m(x − x ′)/(t − t ′) yields the well-known value

Wf(x, x ′, t, t ′) = m
(x − x ′)2

2(t − t ′)
(4.14)

for Hamilton’s two-point characteristic function for the free particle.

The second example is in a sense more instructive, because it shows that Hamil-
ton’s two point function need not be defined for all times:

Example 7 Let H be the one-dimensional harmonic oscillator Hamiltonian:

H(x, p) = 1

2m
(p2 + m2ω2x2).

Then the generating function exists for all t − t ′ different from an integer multiple
of 2π/ω and is given by

W (x, x ′, t, t ′) = mω

2 sinω(t − t ′)
[
(x2 + x ′2) cos(ω(t − t ′)) − 2xx ′] . (4.15)

The explicit construction of W (x, x ′, t, t ′) can be quite complicated outside these
elementary cases. For instance, Binder constructs in [3] the two-point characteristic
function for the Kepler–Coulomb problem, associated with the Hamiltonian function

H = 1

2m
|p|2 − Ze2

|r|
and this leads to a quite intricate expression.
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4.3 The Action of a Dynamical System

The notion of action plays a central role in classical mechanics; it is related to
Hamilton’s two point characteristic function in a clever way. It can be geometrically
understood using the notion of Lagrangian manifold; see de Gosson [7] for a detailed
account of this interpretation.

4.3.1 The Poincaré–Cartan Invariant

Let H be an arbitrary (possibly time-independent) Hamiltonian function; the differ-
ential one-form

αH = pdx − H(x, p, t)dt (4.16)

where pdx = p1dx1 + · · · + pndxn is called the Poincaré–Cartan integral invari-
ant (or form). Note that αH is a differential form on the extended phase space
R

n
x × R

n
p × Rt whose restriction to the phase space R

n
x × R

n
p is the canonical

1-form β = pdx . The exterior derivative dβ of the latter is just the standard sym-
plectic form ω = dp ∧ dx (see Arnol’d [2]). The Poincaré–Cartan invariant has the
following property, which motivates the terminology “integral invariant”: let γ be
a loop in extended phase space, and denote by T (γ) the two-dimensional tube of
trajectories swept out by γ under the action of the Hamiltonian flow ( f H

t,t ′). Let γ′ be
any loop on T (γ) homotopic to γ. Then

∮

γ

αH =
∮

γ′

αH (4.17)

(this is an application of the multi-dimensional Stoke’s lemma, see Arnol’d [2],
Chap. 10 or de Gosson [7], Chap. 5).

The Poincaré–Cartan invariant plays an important role in various areas of Hamil-
tonianmechanics;wewill focus here on its relationwithHamilton–Jacobi’s equation,
which is a non-linear first-order partial differential equation.

4.3.2 The Action Functional

The notion of action functional is usually defined using the Lagrangian formalism
[2, 4, 8]; this approach has certain conceptual advantages and sometimes makes the
notion more tractable. We adopt here a slightly different point of view, using directly
the Hamiltonian formalism. Let x ′ and x be two arbitrary points in R

n . We assume
that the boundary condition problem
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ẋ = ∇p H(x, p, t) , ṗ = −∇x H(x, p, t) (4.18)

x(t ′) = x ′, x(t) = x (4.19)

has a unique solution s �−→ (x(s), p(s)); we denote by � the lift to the extended
phase space Rn

x × R
n
p × Rt : we have

�(s) = (x(s), p(s), s) , t ′ ≤ s ≤ t. (4.20)

Definition 8 The action functional is by definition the integral

S(x, x ′, t, t ′) =
∫

γ

pdx − Hdt (4.21)

of the Poincaré–Cartan invariant along the “ray” γ, which is the projection on the
space-time Rn

x × Rt of the path � defined by (4.20).

The idea in the definition above is the following: the point x ′ being given (at some
initial time t ′), select among all rays γ departing (with different initial momenta
p′) from x ′ at time t ′ the one which reaches the point x at time t . A little care
has to be taken when using the definition above: whereas the generating function
W (x, x ′, t, t ′) is defined for arbitrary points x, x ′ (for sufficiently small |t − t ′| > 0),
it can happen that the action functional does not even exist. This is due to the fact that
the Hamilton boundary-value problem (4.18)–(4.19) might not be solvable, or even
havemulti-valued solutions. This difficulty is related to the existence of “central fields
of extremals” (see Arnol’d [2], Maslov and Fedoriuk [11]). One can however prove
that the action functional always is defined if the points x and x ′ are close enough.
We will make the simplifying assumption that S(x, x ′, t, t ′) exists, is single-valued,
and infinitely differentiable in all its variables on the subset of (Rn

x ×Rt )×(Rn
x ×Rt )

where it is defined.

Proposition 9 For fixed x ′ and t ′, set φ(x, t) = S(x, x ′, t, t ′). (i) We have

dφ(x, t) = pdx − Hdt (4.22)

(ii) the function φ satisfies the Hamilton–Jacobi equation

∂φ

∂t
+ H(x,∇xφ) = 0. (4.23)

Proof The statement (i) is proven using property (4.17) of the Poincaré–Cartan inte-
gral invariant (see Arnol’d [2], Chap. 10, de Gosson [7], Chap. 5). To prove (ii), write

dφ(x, t) = ∇xφ(x, t)dx + ∂φ

∂t
(x, t)dt;
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it follows from (4.22) that

p = ∇xφ(x, t) ,
∂φ

∂t
(x, t) = −H(x, p, t)

and hence

∂φ

∂t
(x, t) + H(x,∇xφ) = ∂φ

∂t
(x, t) + H(x, p) = 0.

�

Here is an illustration:

Example 10 Consider (for n = 1) the Hamiltonian H = 1
2 p2x2. The Hamilton

equations ẋ = px2, ṗ = −p2x are easily solved noting that px is a constant of the
motion, and one finds

x(t) = x(t ′)ep(t ′)x(t ′)(t−t ′) , p(t) = p(t ′)e−p(t ′)x(t ′)(t−t ′). (4.24)

A given point x is reached after time t − t ′ if one chooses the initial momentum

p′ = p(t ′) = Log(x/x ′)
x ′(t − t ′)

(4.25)

and the final momentum is

p = p(t) = Log(x/x ′)
x(t − t ′)

.

Calculation of the integral (4.21) using the expressions (4.24) of x(t) and p(t) yields

∫

γ

pdx − Hdt = 1

2
p′2x ′2. (4.26)

Replacing p′ with its value (4.25) yields Hamilton’s characteristic function:

S(x, x ′, t, t ′) = (Log(x/x ′))2

2(t − t ′)
; (4.27)

it is defined for t �= t ′ and xx ′ > 0. One verifies by a straightforward calculation
that S satisfies the Hamilton–Jacobi equation (4.23).

We refer to Arnold [2], Calkin [4], Synge and Truesdell [12], for detailed accounts
of the Hamilton–Jacobi equation and its usefulness in solving Hamilton’s equations.
We are more interested here in the relation between this equation and the notion of
generating function introduced in the last section.
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Proposition 11 The solution of Hamilton–Jacobi’s problem

∂φ

∂t
+ H(x,∇xφ) = 0 , φ(x, t ′) = φ′(x) (4.28)

is given by

φ(x, t) = φ′(x ′) + S(x, x ′, t, t ′) (4.29)

where the point x ′ is determined by the condition (x, p) = f H
t,t ′(x ′, p′) with p′ =

∇xφ(x ′, t ′).

Proof See [2], Chap.10, de Gosson [7], Chap.5. �

4.4 Short-Time Action

While it is usually difficult to find explicit expressions for the action functional, one
can obtain in a rather straightforward way short-time approximations. These are, as
we will see in the next chapter, very useful in the study of Schrödinger’s equation.
We begin by showing that the “mid-point rules” frequently used in the theory of the
Feynman path integral are not good approximations.

In what follows we will generally use the notation

�t = t − t ′ , �t2 = (t − t ′)2.

We begin by pointing out the inappropriateness of the “mid-point rules” often used in
the theory of the Feynman path integral, and show that they lead to incorrect results
when used to approximate the action for small times.

4.4.1 On “Mid-Point Rules”

When the Hamiltonian function is of the type “kinetic energy plus potential” it is
common practice in the Feynman path integral literature to approximate the gener-
ating function S for small values of t − t ′ by expressions like

S1(x, x ′, t, t ′) = m
(x − x ′)2

2�t
− 1

2
(V (x) + V (x ′))�t (4.30)

or, alternatively,

S2(x, x ′, t, t ′) = m
(x − x ′)2

2�t
− V ( 12 (x + x ′))�t. (4.31)

http://dx.doi.org/10.1007/978-3-319-27902-2_10
http://dx.doi.org/10.1007/978-3-319-27902-2_5
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Suppose for instance that H is the harmonic oscillator Hamiltonian considered in
Example 7; expanding the terms sinω(t − t ′) and cosω(t − t ′) in Taylor series at
t = t ′ yields the correct approximation

S(x, x ′, t, t ′) = m
(x − x ′)2

2�t
− mω2

6
(x2 + xx ′ + x ′2)�t + O(�t2) (4.32)

to the exact generating function W = S given by formula (4.15). However, if we
apply the “rule” (4.30) we get

S1(x, x ′, t, t ′) = m
(x − x ′)2

2�t
− m2ω2

4
(x2 + x ′2)�t

and we thus have

S(x, x ′, t, t ′) − S1(x, x ′, t, t ′) = O(�t).

If we use instead the “rule” (4.31) we get

S2(x, x ′, t, t ′) = m
(x − x ′)2

2�t
− m2ω2

8
(x + x ′)2�t

and we have here

S(x, x ′, t, t ′) − S2(x, x ′, t, t ′) = O(�t).

The “mid-point rules” are thus incorrect even to first order, and should therefore
be avoided in any rigorous argument.

4.4.2 A Correct Short-Time Approximation

Assume that H is a classical Hamiltonian function of the physical type

H(x, p, t) =
n∑

j=1

p2
j

2m j
+ V (x, t). (4.33)

Proposition 12 The Hamilton characteristic two-point function for the flow deter-
mined by (4.33) is given, for small �t = t − t ′ �= 0 by the asymptotic expression

S(x, x ′, t, t ′) =
n∑

j=1

m j

(x j − x ′
j )
2

2�t
− V (x, x ′, t ′)�t + O(�t2) (4.34)
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where V (x, x ′, t ′) is the average

V (x, x ′, t ′) =
1∫

0

V (τ x + (1 − τ )x ′, t ′)dτ . (4.35)

Proof SeeMakri andMiller [9, 10]. In [7], Sect. 4.4.1, we gave an independent proof
along the following lines (we limit ourselves to the case n = 1): making the Ansatz

W = Wfree + W1�t + W2(�t)2 + · · ·

where Wfree is the generating function of the free particle Hamiltonian (Example 6),
one can determine the termsW1, W2, . . . by inserting this expression in theHamilton–
Jacobi equation

∂W

∂t
+ 1

2m

(
∂W

∂t

)2

+ V = 0.

This leads to the equation

W1 + (x − x ′)
∂W1

∂x
+ V = 0

and to similar equations for the lower order terms W2, W3 . . . One next observes that
the only smooth solution of the equation above is

W1(x, x ′, t ′) = − 1

x − x ′

x∫

x ′

V (x ′′, t ′)dx ′′ = −V (x, x ′, t ′)

where the second equality follows from the first by making the change of variables
x ′′ = τ x + (1 − τ )x ′. �

Example 13 Consider again the one-dimensional oscillator Hamiltonian

H(x, p) = 1

2m
(p2 + m2ω2x2).

We have here V (x) = 1
2mω2x2 and hence

V (x, x ′) = mω2

6
(x2 + xx ′ + x ′2).

Using formula (4.34) we recover the approximation (4.32) obtained using Taylor
series.
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We will write

H(x, x ′, p′, t ′) =
n∑

j=1

p′2
j

2m j
+ V (x, x ′, t ′)

and call the function H the “averaged Hamiltonian” .We are now going to generalize
Proposition 12 to arbitrary Hamiltonian functions.

4.4.3 The Averaged Hamiltonian H

Let us now consider the case where H is an arbitrary (time-dependent) Hamiltonian
function; we do thus not assume it has the form (4.33), or its generalization including
a vector potential. For instance, in dimension n = 1, it could be a monomial xr ps .
We now introduce the following averaged Hamiltonian function:

H(x, x ′, p′, t ′) =
1∫

0

H(τ x + (1 − τ )x ′, p′, t ′)dτ . (4.36)

Note that when H is of the classical type (4.33) then

H(x, x ′, p, t ′) =
n∑

j=1

p2
j

2m j
+ V (x, x ′, t) (4.37)

where V (x, x ′, t) is defined by formula (4.35) above. Also notice that definition
(4.36) can be rewritten as

H(x, x ′, p′, t ′) = 1

t − t ′

t∫

t ′

H(x ′ + v(s − t ′), p′, t ′)ds (4.38)

where v = (x −x ′)/(t − t ′) (make the change of variables τ = (s − t ′)/(t − t ′)). This
remark makes the physical interpretation of H clear: the number H(x, x ′, p′, t ′) is
the average value of the energy when a point located at x ′ at time t ′ proceeds to the
point x at time t with constant velocity v.

The following property of H is essential:

Lemma 14 The function H = H(x, x ′, p′, t ′) satisfies, for fixed x ′ and t ′, the partial
differential equation

n∑

j=1

(x j − x ′
j )

∂H

∂x j
+ H = H. (4.39)
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Proof Performing a partial integration in the integral

H =
1∫

0

H(τ x + (1 − τ )x ′, p′, t ′)dτ

yields

H = [
H(τ x + (1 − τ )x ′, p′, t ′)τ

]1
0

−
1∫

0

τ
d

dτ
H(τ x + (1 − τ )x ′, p′, t ′)dτ

that is

H = H(x, p, t) −
1∫

0

τ
d

dτ
H(τ x + (1 − τ )x ′, p′, t ′)dτ

so that there remains to show that

1∫

0

τ
d

dτ
H(τ x + (1 − τ )x ′, p′, t ′)dτ =

n∑

j=1

(x j − x ′
j )

∂H

∂x j
. (4.40)

Using the chain rule, the integral on the left-hand side is

(x j − x ′
j )

1∫

0

τ
∂H

∂x j
(τ x + (1 − τ )x ′, p′, t ′)dτ

=
n∑

j=1

(x j − x ′
j )

∂

∂x j

∫ 1

0
H(τ x + (1 − τ )x ′, p′, t ′)dτ

which proves (4.40). �

4.4.4 Short-Time Approximations: The General Case

We now prove the central result of this chapter; it is the key to our discussion of the
wavefunction in next chapter:

Proposition 15 Let H ∈ C∞(R2n × R) and assume that Hamilton’s two-point
characteristic function S(x, x ′, t, t ′) is defined for 0 < |t − t ′| < ε and x and x ′
close enough. Let
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S(x, x ′, t, t ′) =
∫

γ

pdx − Hdt (4.41)

where the path γ is the projection on space-time of the path

�(s) = (x ′ + v(s − t ′), p′, s) , t ′ ≤ s ≤ t

where v = (x − x ′)/(t − t ′) is the average velocity and p′ is determined by (4.18)–
(4.19).

(i) The function S has the second order expansion

S(x, x ′, t, t ′) = p′(x − x ′) − H(x, x ′, p′, t ′)�t + O(�t2) (4.42)

where H is defined by (4.36) and �t = t − t ′; when H is time-independent the
term O(�t2) cancels.

(ii) We have

S(x, x ′, t, t ′) = S(x, x ′, t, t ′) + O(�t2). (4.43)

Proof (i) Let us prove formula (4.42). We have, by definition of v,

∫

γ

pdx =
t∫

t ′

p′vds = p′(x − x ′). (4.44)

On the other hand, by definition of the integration path γ,

∫

γ

Hdt =
t∫

t ′

H(x ′ + v(s − t ′), p′, s)ds.

A first order Taylor expansion at s = t ′ yields

H(x ′ + v(s − t ′), p′, s) = H(x ′ + v(s − t ′), p′, t ′) + O(s − t ′)

and hence

t∫

t ′

H(x ′ + v(s − t ′), p′, s)ds =
t∫

t ′

H(x ′ + v(s − t ′), p′, t ′)ds + O(�t2)

= H(x, x ′, p′, t ′)(t − t ′) + O(�t2).
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It follows that

∫

γ

Hdt =
t∫

t ′

H(x ′ + v(s − t ′), p′, t ′)ds + O(�t2)

= H(x, x ′, p′, t ′)(t − t ′) + O(�t2)

hence formula (4.42) taking (4.44) into account. (ii) Let us next prove the asymptotic
formula (4.43). Writing

p(s) = p′ + (s − t ′) ṗ(t ′) + O((s − t ′)2)

we have, the path γ being defined as in (4.21),

∫

γ

pdx =
t∫

t ′

p′ ẋ(s)ds + O(�t2) = p′(x − x ′) + O(�t2)

hence, taking (4.44) into account,
∫

γ

pdx −
∫

γ

pdx = O(�t2). (4.45)

Let us next evaluate the difference

�(γ, γ) =
∫

γ

Hdt −
∫

γ

Hdt;

we will show that �(γ, γ) = O(�t2), which will prove (4.43). We have

�(γ, γ) =
t∫

t ′

H(x(s), p(s), s)ds −
∫ t

t ′
H(x ′ + v(s − t ′), p′, t ′)ds;

since

H(x(s), p(s), s) = H(x(s), p(s), t ′) + O(s − t ′)

we get

�(γ, γ) =
t∫

t ′

H(x(s), p(s), t ′)ds

−
t∫

t ′

H(x ′ + v(s − t ′), p′, t ′)ds + O(�t2).
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In view of formula (4.39) in Lemma 14 above, we have

t∫

t ′

H(x(s), p(s), t ′)ds =
n∑

j=1

t∫

t ′

(x j (s) − x ′
j )

∂H

∂x j
(x(s), x ′, p′, t ′)ds

+
t∫

t ′

H(x(s), x ′, p′, t ′)ds;

since x j (s)− x ′
j = O((s − t ′))2 and the partial derivatives ∂H/∂x j are bounded for

s in the interval [t ′, t] we have
t∫

t ′

(x j (s) − x ′
j )

∂H

∂x j
(x(s), x ′, p′, t ′)ds = O(�t2)

for j = 1, . . . , n, and hence

t∫

t ′

H(x(s), p(s), t ′)ds =
t∫

t ′

H(x(s), x ′, p′, t ′)ds + O(�t2). (4.46)

Writing

x(s) = x ′ + ẋ(t ′)(s − t) + O((s − t ′)2)

and observing that

v = x − x ′

t − t ′ = ẋ(t ′) + O((t − t ′)2)

we have

x(s) = x ′ + v(s − t) + O((s − t ′)2).

It follows that

H(x(s), x ′, p′, t ′) = H(x ′ + v(s − t), p′, t ′) + O((s − t ′)2)

and hence, integrating this expansion from t ′ to t ,

t∫

t ′

H(x(s), x ′, p′, t ′)ds =
t∫

t ′

H(x ′ + v(s − t), p′, t ′)ds + O(�t2)

so that �(γ, γ) = O(�t2), as we set out to prove. �
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For Hamiltonian functions of the classical type

H(x, p, t) =
n∑

j=1

p2
j

2m j
+ V (x, t) (4.47)

formula (4.42) reduces to the approximation (4.34). Let us check this for n = 1. We
have

H(x, x ′, t, t ′) = p2

2m
+ V (x, x ′, t, t ′)

where V is defined by the integral (4.35). There remains to check that

p(x − x ′) − p2

2m
= m

(x − x ′)2

2�t
+ O(�t2) (4.48)

where p is defined as follows: for �t = t − t ′ sufficiently, the point x is reached
at time t by the projection of a unique Hamiltonian trajectory s �−→ (x(s), p(s))
(t ′ ≤ s ≤ t) starting from the point x ′ at time t ′, and this trajectory fixes once for all
the initial and final momenta p′ and p. Writing x = x(t), x ′ = x(t ′), ẋ ′ = ẋ(t ′) we
have

x = x ′ + ẋ ′�t + O(�t2)

and, in view of Hamilton’s equation for the position coordinate,

ẋ ′ = 1

m
p′ = 1

m
p + O(�t)

and hence

x − x ′ = 1

m
p + O(�t2);

solving this equation in p and inserting the found value in p(x − x ′)− p2/2m yields
the approximation (4.48).

Example 16 Let us return to the monomial H = 1
2 p2x2 considered in Example 10.

We have

H(x, x ′, p′, t ′) = 1

6
p′2(x2 + xx ′ + x ′2).

Formula (4.42) yields, since H is time-independent,

S(x, x ′, t, t ′) = p′(x − x ′) − 1

6
p′2(x2 + xx ′ + x ′2)�t.
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Using the first formula (4.24) we have

x = x ′(1 + p′x ′�t) + O(�t2)

and hence

S(x, x ′, t, t ′) = 1

2
p′2x ′2�t.

Inserting the value (4.25) of the initial momentum p′ yields

S(x, x ′, t, t ′) = (Log(x/x ′))2

2�t
+ O(�t2)

that is S = S + O(�t2) as predicted by formula (4.43) in Proposition 15 (in fact we
have S = S here).

We are going to use these results to construct short-time approximations to the
wavefunction.
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Chapter 5
Wave Mechanics and the Schrödinger
Equation

While we have been concerned in Chap.3 with the quantization of monomials, we
now address the question of how we should quantize an arbitrary dynamical variable
(i.e. a Hamiltonian function). While Born and Jordan’s original argument was purely
algebraic, and strictly speaking limited to the case of polynomials, there is another
way to justify (both mathematically and physically) their quantization scheme. This
will be done by viewing the notion of wavefunction as the fundamental object, and
by imposing a natural physical condition on its short-time evolution. This will lead
us to the Schrödinger equation, provided that we use the Born–Jordan scheme in
quantizing the Hamiltonian function. This chapter thus gives a new justification
for the appropriateness of the use of Born–Jordan quantization. The main formula
expressing the quantification of the Hamiltonian is actually the starting point to the
pseudo-differential approach to Born–Jordan quantization as will be developed in
Chap.10.

5.1 Matter Waves

A quantum system is described by a quantum state |ψ〉; its position representation
〈x |ψ〉 ≡ ψ(x) is the wavefunction in configuration space R

n
x . We will follow here

Heisenberg’s point of view, in which the wavefunction is viewed as a collection of
potentialities (Peres [5], Shimony [6]).

5.1.1 The Free Particle

Consider a particle with mass m moving freely with velocity v = (vx , vy, vz) in
configuration spaceR

3. Following de Broglie’s matter wave postulate, to this particle
is associated a plane wave with phase

�(r, t) = k · r−ωt + C.
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Here C is an arbitrary constant, and the wave vector k and the frequency ω(k) are
defined by the relativistic equations

k = mv/� , ω = mc2/�

so that we have, writing r = (x, y, z),

�(r, t) = 1

�

(
p · r − mc2t

) + C

where p = mv = �k is the momentum vector. For small velocities the energy

mc2 = m0c2√
1 − (v/c)2

is approximated by m0c2+ 1
2m0v

2 with v = |v| hence we can write, neglecting terms
O(v4/c2),

�(r, t) = 1

�
φ(r, t) − m0c2

�
t

where φ is the action function:

φ(r, t) = p0 · r − p2
0

2m
t + C�

(p0 = m0v and p0 = |p0|). Now, there is no point in keeping the term m0c2t/�

(its presence affects neither the phase nor the group velocities) so we can take as
definition of the phase of the matter wave the function

�(r, t) = 1

�
(φ(r, t) + C)

and fix the constant C by requiring that, at initial time t = 0, the equation � = 0
determines the phase plane p · r = p0 · r0. This leads to the expression φ(r, t) =
Sr0,p0(r, t) where

Sr0,p0(r, t) = p0 · (r − r0) − p′2

2m
t (5.1)

showing that φ is the gain in action when the particle proceeds from r0 at time t = 0
to r at time t with constant velocity v0 = p0/m (we are writing m = m0). We
next observe that the momentum vector p0 is quite arbitrary, and as long as it has
not been measured, all the potentialities associated with the phase (5.1) are present.
We therefore define the wavefunction of the free particle by summing over all these
potentialities:



5.1 Matter Waves 59

ψr0(r, t) = (
1

2π�

)3
∫∫∫

e
i
�

Sr0 ,p0 (r,t)d3p0 (5.2)

where d3p = dpx dpydpz (we will see the reason for the normalizing prefactor in a
moment).

Observing that the function Sr0,p0(r, t) is a solution of the Hamilton–Jacobi equa-
tion for the free particle Hamiltonian

∂

∂t
Sr0,p0 + 1

2m

(∇r Sr0,p0

)2 = 0 (5.3)

with initial condition

Sr0,p0(r, 0) = p0 · (r − r0) (5.4)

one immediately verifies that, for fixed r′ and t ′ the wavefunction ψr0(r, t) satisfies
Schrödinger’s equation

i�
∂

∂t
ψr0 = − �

2

2m
∇2

r ψr0; (5.5)

moreover

lim
t→0

ψr0(r, t) = (
1

2π�

)3
∫∫∫

e
i
�

p0·(r−r0)d3p0

hence, by the properties of the Fourier transform

ψr′,t ′(r, 0) = δ(r − r0).

The wavefunction ψr0 thus represents a wave emanating at time t = 0 from a point-
like source placed at r0 = (x0, y0, z0).

The construction above extends mutatis mutandis to the case of an arbitrary num-
ber of degrees of freedom, and with arbitrary time origin t ′. Introducing generalized
coordinates x = (x1, ..., xn) and p = (p1, ..., nn) one replaces the phase (5.1) with

S(x, x ′, p′, t, t ′) = p′(x − x ′) −
n∑

j=1

p′2
j

2m j
(t − t ′); (5.6)

this function satisfies the Hamilton–Jacobi equation

∂S

∂t
+

n∑

j=1

1

2m j

(
∂S

∂x j

)2

= 0 , S|t=t ′ = p′(x − x ′).

It follows that the function
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ψx ′,t ′(x, t) = (
1

2π�

)n
∫

e
i
�

S(x,x ′,p′,t,t ′)dn p′ (5.7)

satisfies the Schrödinger equation

i�
∂ψx ′,t ′

∂t
= −

n∑

j=1

�
2

2m j

∂2ψx ′,t ′

∂x2
j

(5.8)

with initial datum

ψx ′,t ′(x, t ′) = δ(x − x ′).

5.1.2 The Free Propagator

We now introduce the following notation: we write

Kf(x, x ′, t, t ′) = ψx ′,t ′(x, t)

(the subscript f standing for “free”) and call the function Kf the free particle propa-
gator; in Dirac bra-ket notation

Kf(x, x ′, t, t ′) = 〈x, t |Ĥ |x ′, t ′〉

is thus a “matrix element”. The knowledge of Kf allows us to solve the Schrödinger
equation

i�
∂ψ

∂t
= −

n∑

j=1

�
2

2m j

∂2ψ

∂x2
j

(5.9)

for arbitrary initial condition ψ ′ at time t ′; in fact:

ψ(x, t) =
∫

Kf(x, x ′, t, t ′)ψ ′(x ′)dn x ′;

therefore Kf is also often called, especially in the mathematical literature, a dis-
tributional kernel. Notice that the condition ψ(x, t ′) = ψ ′(x) is equivalent to the
condition

lim
t→t ′ Kf(x, x ′, t, t ′) = δ(x − x ′). (5.10)

We next note that the integral in the right-hand side of (5.7) can be easily evaluated
using the theory of Fresnel integrals, and one finds the explicit expression
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Kf(x, x ′, t, t ′) =
(

M
2π i�(t−t ′)

)n/2
e

i
�

Wf (x,x ′,t,t ′) (5.11)

where M = m1 · · · mn and

Wf(x, x ′, t, t ′) =
n∑

j=1

m j

(x j − x ′
j )
2

2(t − t ′)
; (5.12)

one immediately recognizes Hamilton’s two-point characteristic function (4.14) for
the free particle. The prefactor in the right-hand side of formula (5.11) can be written

(
M

2π i�(t−t ′)

)n/2 = (
1

2π i�

)n/2
√
det(−W ′′

f ) (5.13)

where det(−W ′′
f ) is the Van Vleck determinant, i.e. the determinant of the Hessian

(= matrix of second mixed derivatives) of Wf ; in both formulas (5.11) and (5.13) the
argument of the square roots are chosen so that the initial condition (5.10) holds; this
is achieved by defining arg i = π/2 and

arg(t − t ′) =
{
0 if t − t ′ > 0
π if t − t ′ < 0

(5.14)

(see de Gosson [1, 2] for a detailed study of the “right choice” of argument, which
is closely related to the theory of the Maslov index). With this choice one has the
explicit expression

(
M

2π i�(t−t ′)

)n/2 = e−inπ/4im(t−t ′)
(

M
2π�|t−t ′ |

)n/2
(5.15)

the “Maslov index” m(t − t ′) being defined by

m(t − t ′) =
{
0 if t − t ′ > 0
2n if t − t ′ < 0

. (5.16)

5.2 The General Case

5.2.1 The Abstract Schrödinger Equation

For simplicity we limit ourselves here to time-independent Hamiltonian functions;
the results will be generalized later to the time-dependent case as well. We assume
that the time evolution of an initial wavefunction ψ ′(x) = ψ(x, t ′) is governed by a
strongly continuous one-parameter group (Ut ) of unitary operators acting on L2(Rn):

http://dx.doi.org/10.1007/978-3-319-27902-2_4
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ψ(x, t) = Ut−t ′ψ ′(x).

It follows from Stone’s theorem [7] on unitary operators that there exists a (generally
unbounded) self-adjoint operator Ĥ such that Ut = e−i Ĥ t/�; equivalently the one-
parameter group (Ut ) satisfies the operator equation

i�
d

dt
Ut = ĤUt . (5.17)

As a consequence, the wavefunction ψ satisfies the Schrödinger equation

i�
∂ψ

∂t
= Ĥψ, ψ(x, t ′) = ψ ′(x) (5.18)

where the operator Ĥ is sofar unknown. The next step consists in remarking that since
the Schwartz space S(Rn) is a (dense) subspace of L2(Rn) and L2(Rn) is a subspace
of S ′(Rn), the operators Ut are de facto continuous operators S(Rn) −→ S ′(Rn).
It follows (Schwartz’s kernel theorem, see e.g. Hörmander [3]) that there exists a
distribution K = K (x, x ′, t, t ′) such that

ψ(x, t) =
∫

K (x, x ′, t, t ′)ψ ′(x ′)dn x ′; (5.19)

in Dirac’s notation K (x, x ′, t, t ′) is just the matrix element 〈x, t |Ĥ |x ′, t ′〉. Since
ψ(x, t ′) = ψ ′(x ′) we must have, in addition,

lim
t→t ′ K (x, x ′, t, t ′) = δ(x − x ′). (5.20)

We will view, as in the free particle case, the propagator K as the wavefunction ψx ′,t ′

of a quantum system located at the point x ′ at initial time t ′:

K (x, x ′, t, t ′) = ψx ′,t ′(x, t).

We emphasize that we have so far rigorously justified the existence of a
“Schrödinger equation” satisfied by the matter wave, and that formula (5.19) prov-
ing the existence of a propagator is a purely mathematical consequence of Stone’s
theorem and of Schwartz’s kernel theorem. But there is no clue to what the operator
Ĥ should be; for this we will need to make a physical assumption.

5.2.2 The Approximate Wavefunction

Let us come back to the case of a point-like source located at a point x ′ in
n-dimensional configuration space R

n
x . We now assume that the classical motion
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is governed by an arbitrary Hamiltonian function; it can be a function of the classical
type

H(x, p, t) =
n∑

j=1

p2
j

2m j
+ V (x, t)

where the potential is smooth function in the variables x and t , but it can also be a
totally arbitrary function of the variables x , p, t : we do not suppose that H is of any
particular “ physical” type.

We would like to determine the corresponding wavefunction ψx ′,t ′ . A first guess
is that the phase of the wavefunction should be the “obvious” generalization

S(x, x ′, p′, t, t ′) = p′(x − x ′) − H(x, p′, t ′)(t − t ′)

of (5.6), in which case we could take as propagator the analogue

ψx ′,t ′(x, t) = (
1

2π�

)n
∫

e
i
�

S(x,x ′,p′,t,t ′)dn p′

of (5.7). However, this is not a very good guess; it is easy to see that such a wave-
function does not satisfy a linear evolution equation (see for instance the analysis in
de Gosson [1], especially Chap.8). What we shall do instead, is to postulate that the
correct phase S is, for small time intervals t − t ′, given by the expression

S(x, x ′, p′, t, t ′) = S(x, x ′, p′, t, t ′) + O((t − t ′)2) (5.21)

where

S(x, x ′, p′, t, t ′) = p′(x − x ′) − H(x, x ′, p′, t ′)(t − t ′) (5.22)

the function H being given by formula (4.36), that is

H(x, x ′, p, t ′) =
1∫

0

H(τ x + (1 − τ)x ′, p, t ′)dτ. (5.23)

Wewill see in amoment that this postulate will allow us to determine the Schrödinger
equation, but let us first discuss the validity of (5.21) on a simple example which
extends the case of the free particle. Let H be the harmonic oscillator Hamiltonian
in one dimension:

H(x, p) = p2

2m
+ 1

2
mω2x2.

http://dx.doi.org/10.1007/978-3-319-27902-2_4
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The corresponding exact propagator is well-known: choosing t ′ = 0 for simplicity,
it is

Kho(x, x ′, t) =
√

mω
2π i� sinωt e

i
�

W (x,x ′,t) (5.24)

where W (x, x ′, t) is given by formula (4.15):

W (x, x ′, t) = mω

2 sinωt

[
(x2 + x ′2) cosωt − 2xx ′] (5.25)

(it is essentially the Mehler formula [4, 8], and can be directly obtained by using the
metaplectic representation of the symplectic group we discuss in Chap.12 (also see
de Gosson [1, 2]). The argument of the square root is chosen so that Kho reduces in
the limit t → 0 to δ(x − x ′). For small values of t we have

√
mω

2π i� sinωt =
√

m
2π i�t + O(t2)

and W (x, x ′, t) = W (x, x ′, t, 0) is given by W = W + O(t2) where

W (x, x ′, t) = m
(x − x ′)2

2t
− mω2

6
(x2 + xx ′ + x ′2)t

(formula (4.32) in Chap.4). Combining these two formulas, we have Kho = K ho +
O(t2) where

K ho(x, x ′, t) =
√

m

2π i�t

× exp

[
i

�

(
m

(x − x ′)2

2t
− mω2

6
(x2 + xx ′ + x ′2)t

)]
;

using the Fresnel formula, as in the study of the free particle, we have

√
m

2π i�t exp
[

i
�

m (x−x ′)2
2t

]
= 1

2π�

∫
e

i
�

p′(x−x ′)e
i

2m�
p′2(x−x ′)dp′

and hence

K ho(x, x ′, t) = (
1

2π�

)n
∫

e
i
�

(p′(x−x ′)−H(x,x ′,p′,t))dp′

where

H(x, x ′, p′, t) = p2

2m
− mω2

6
(x2 + xx ′ + x ′2)t.

It follows, as in the case of the free propagator, that for small values of time t , the
harmonic oscillator propagator is obtained by integrating over all possible momenta

http://dx.doi.org/10.1007/978-3-319-27902-2_4
http://dx.doi.org/10.1007/978-3-319-27902-2_12
http://dx.doi.org/10.1007/978-3-319-27902-2_4
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for a wave with phase (5.22). We leave it to the reader, as a pleasant exercise, to
verify that the approximation formulas above cannot be obtained by using any of the
“mid-point rules” briefly discussed in Sect. 4.4.1.

5.2.3 Back to Schrödinger’s Equation

The postulate above amounts to assuming that the exactwavefunctionψx ′,t ′ is approx-
imated, for small time intervals t − t ′, by the function

ψ x ′,t ′(x, t) = (
1

2π�

)n
∫

e
i
�

S(x,x ′,p′,t,t ′)dn p′; (5.26)

since the true (but also unknown) phase S is approximated by S to order O((t − t ′)2)
we have

ψx ′,t ′(x, t) = ψ x ′,t ′(x, t) + O((t − t ′)2). (5.27)

Observe that this is tantamount to assuming that the exact propagator K for the
abstract Schrödinger equation

i�
∂ψ

∂t
= Ĥψ , ψ(x, t ′) = ψ ′(x). (5.28)

is approximated by

K (x, x ′, t, t ′) = (
1

2π�

)n
∫

e
i
�

S(x,x ′,p′,t,t ′)dn p′; (5.29)

in fact

K (x, x ′, t, t ′) = K (x, x ′, t, t ′) + O((t − t ′)2). (5.30)

We claim that this is enough to determine unambiguously the Hamiltonian operator
Ĥ . The following result is essential, because it justifies and extends, as we will see,
Born–Jordan quantization:

Proposition 1 Suppose that the propagator K satisfies the asymptotic formula
(5.30) where K is given by (5.29). Then the operator Ĥ is given by

Ĥψ(x) = (
1

2π�

)n
∫

e
i
�

p′(x−x ′) H(x, x ′, p′, t ′)ψ(x ′)dn p′dn x ′ (5.31)

where H is given by formula (4.36):

http://dx.doi.org/10.1007/978-3-319-27902-2_4
http://dx.doi.org/10.1007/978-3-319-27902-2_4
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H(x, x ′, p′, t ′) =
1∫

0

H(τ x + (1 − τ)x ′, p′, t ′)dτ ; (5.32)

Proof (i) We begin by observing that the knowledge of the propagator K determines
the operator Ĥ : we have

ψ(x, t) =
∫

K (x, x ′, t, t ′)ψ(x, t ′)dn x ′

and hence

i�
∂ψ

∂t
(x, t) = i�

∫
∂K

∂t
(x, x ′, t, t ′)ψ(x, t ′)dn x ′;

taking the abstract Schrödinger equation (5.18) into account, we get

Ĥψ(x, t) = i�
∫

∂K

∂t
(x, x ′, t, t ′)ψ(x, t ′)dn x ′.

Using (5.30) it follows that we have

Ĥψ(x, t) = i�
∫

∂K

∂t
(x, x ′, t, t ′)ψ(x, t ′)dn x ′ + O(t − t ′)

and hence, letting t → t ′,

Ĥψ(x, t ′) = i�
∫

∂K

∂t
(x, x ′, t, t)ψ(x, t ′)dn x ′.

Now, by definition (5.29) of K ,

∂K

∂t
(x, x ′, t, t ′) = (

1
2π�

)n i
�

∫
e

i
�

S(x,x ′,t,t ′) ∂S

∂t
(x, x ′, t, t ′)dn p′

Taking into account the definition (5.22) of the approximate phase S, we have,

∂S

∂t
(x, x ′, t, t ′) = −H(x, x ′, p′, t ′)

so that

∂K

∂t
(x, x ′, t, t ′) = (

1
2π�

)n 1
i�

∫
e

i
�

S(x,x ′,t,t ′) H(x, x ′, p′, t ′)dn p′.

Taking the limit t → t ′ and multiplying both sides by i� we finally get
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lim
t→t ′

[
i�

∂K

∂t
(x, x ′, t, t ′)

]
= (

1
2π�

)n
∫

e
i
�

p(x−x ′) H(x, x ′, p′, t ′)dn p′

which proves (5.31). �	
When the Hamiltonian function is of the usual type “kinetic energy plus potential”

the result above allows us to recover the usual text-book version of Schrödinger’s
equation:

Proposition 2 When the Hamiltonian function is of the classical type

H(x, p, t) =
n∑

j=1

p2
j

2m j
+ V (x, t) (5.33)

where V is a smooth potential, then the operator Ĥ is given by

Ĥ =
n∑

j=1

−�
2

2m j

∂2

∂x2
j

+ V (x, t). (5.34)

Proof We have here

H(x, x ′, p′, t ′) =
n∑

j=1

p2
j

2m j
+ V (x, x ′, t ′)

where V (x, x ′, t ′) is the averaged potential (4.35):

V (x, x ′, t ′) =
1∫

0

V (τ x + (1 − τ)x ′, t ′)dτ.

Formula (5.31) becomes, using the properties of the Fourier transform,

Ĥψ(x) =
n∑

j=1

−�
2

2m j

∂2ψ

∂x2
j

(x)

+ (
1

2π�

)n
∫

e
i
�

p′(x−x ′)V (x, x ′, t ′)ψ(x ′)dn p′dn x ′.

Since V (x, x, t ′) = V (x, t ′) we have,

http://dx.doi.org/10.1007/978-3-319-27902-2_4
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∫
e

i
�

p′(x−x ′)V (x, x ′, t ′)ψ(x ′)dn p′dn x ′ =
∫

V (x, x ′, t ′)ψ(x ′)
(∫

e
i
�

p′(x−x ′)dn p′
)

dn x ′

= (2π�)n
∫

V (x, x ′, t ′)ψ(x ′)δ(x − x ′)dn x ′

= (2π�)n V (x, t ′)

hence formula (5.34). �	
There remains to show that the quantization rule (5.31)–(5.32) reduces to the

Born–Jordan prescription

xr ps −→ 1

s + 1

s∑


=0

p̂s−
 x̂r p̂
 = 1

r + 1

r∑

j=0

x̂r− j p̂s x̂ j (5.35)

when H is the monomial xr ps .

Proposition 3 Let Hrs(x, p) = xr ps where r and s are non-negative integers. Then
the operator Ĥrs defined by (5.31)–(5.32) is the Born–Jordan quantization of Hrs:

Ĥrs = 1

r + 1

r∑

k=0

x̂r−k p̂s x̂ k . (5.36)

Proof We have

Hrs(x, x ′, p′) =
⎛

⎝
1∫

0

(τ x + (1 − τ)x ′)r dτ

⎞

⎠ p
′s

=
r∑

k=0

(
r

k

) ⎛

⎝
1∫

0

τ k(1 − τ)r−kdτ

⎞

⎠ xk x ′r−k p
′s .

As already noticed in Chap.3, Sect. 3.2.4, the integral in the formula above is the
beta function B(k + 1, r − k + 1) and hence

1∫

0

τ k(1 − τ)r−kdτ = k!(r − k)!
(r + 1)! .

It follows that

Hrs(x, x ′, p′) = 1

r + 1

r∑

k=0

xk x ′r−k p′s

http://dx.doi.org/10.1007/978-3-319-27902-2_3
http://dx.doi.org/10.1007/978-3-319-27902-2_3
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and the operator Ĥrs is thus given by

Ĥrsψ(x) = (
1

2π�

)n 1

r + 1

r∑

k=0

xk
∫

e
i
�

p′(x−x ′)x ′r−k p′sψ(x ′)dn p′dn x ′.

A straightforward calculation involving the Fourier inversion formula leads to

(
1

2π�

)n
∫

e
i
�

p′(x−x ′)x ′r−k p′sψ(x ′)dn p′dn x ′

= (i�)s ∂s

∂xs
(xr−kψ(x))

and hence

Ĥrsψ(x) = 1

r + 1

r∑

k=0

xk(i�)s ∂s

∂xs
(xr−kψ(x))

which is precisely (5.36). �	
We will revisit this summation over the parameter τ in Chap.10. We point out

that that the formula

Ĥψ(x) = (
1

2π�

)n
∫

e
i
�

p′(x−x ′) H(x, x ′, p′, t ′)ψ(x ′)dn p′dn x ′ (5.37)

where the averaged Hamiltonian H is given by

H(x, x ′, p′, t ′) =
1∫

0

H(τ x + (1 − τ)x ′, p′, t ′)dτ (5.38)

obtained in Proposition 1 is at the heart of the pseudo-differential theory of Born–
Jordan quantization we will study in Chap.10.
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Part II
Mathematical Aspects of Born–Jordan

Quantization



Chapter 6
The Weyl Correspondence

The Weyl correspondence, or Weyl quantization, is well-known both in harmonic
analysis and quantummechanics. It is part of the widerWeyl–Wigner–Moyal theory,
where an emphasis on phase space techniques is made. There are two compelling
reasons to study Weyl quantization before Born–Jordan quantization: it is easy to
express Born–Jordan operators in terms of Weyl operators, and Weyl quantization
is a particular cases of the Shubin τ -theory of pseudo-differential operators which
will be developed later in this book, and which leads to an alternative definition of
Born–Jordan quantization via an averaging process. For complementary material on
the Weyl correspondence we refer to de Gosson [4, 5], Wong [14] or, at a more
mathematically advanced level, Hörmander [8]. Littlejohn [9] gives an excellent
short introduction to the Weyl–Wigner–Moyal formalism for physicists.

6.1 Definitions and Basics

6.1.1 Notation and Terminology

We will use multi-index notation: α = (α1, ...,αn) ∈ N
n , |α| = α1 + · · · + αn ,

and for x = (x1, ..., xn) we write xα = xα1
1 · · · xαn

n and ∂α
x = ∂α1

x1 · · · ∂αn
xn

where
∂x j = ∂/∂x j . We denote by σ the standard symplectic form on the phase space
R

2n ≡ R
n × R

n: by definition σ(z, z′) = J z · z′ where

J =
(

0n×n In×n

−In×n 0n×n

)

is the “standard symplectic matrix”. Note that J 2 = −I2n×2n . Writing the phase
space variable as z = (x, p) we have

σ(z, z′) = px ′ − p′x .

© Springer International Publishing Switzerland 2016
M.A. de Gosson, Born–Jordan Quantization, Fundamental Theories
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We will use the notation x̂ j for the operator of multiplication by x j and p̂ j =
−i�∂/∂x j . These operators satisfy Born’s canonical commutation relations
[̂x j , p̂k] = i�δ jk .

The space of all C∞ complex-valued functions ψ on R
n such that for all multi-

indices α and β the function xα∂
β
x ψ is bounded is denoted by S(Rn) (it is the

Schwartz space of rapidly decreasing functions). It is a Fréchet space for the semi-
norms ||ψ||α,β = sup |xα∂

β
x ψ|. The dual S ′(Rn) of S(Rn) is the space of tempered

distributions.
The L2 scalar product of two complex functions ψ,φ on R

n is

〈ψ|φ〉 =
∫

ψ∗(x)φ(x)dn x;

the associated norm is ||ψ|| = 〈ψ|ψ〉1/2. Notice that we are using here the physicist’s
convention and notation: 〈ψ|φ〉 is linear in φ and antilinear in ψ (this choice is
consistent with Dirac’s bra-ket formalism).

6.1.2 Traditional Definition of Weyl Operators (in Physics)

We begin by giving the formal definition of Weyl operators used by physicists; it
goes back to Weyl’s foundational work [12, 13]. Let a be a function on phase space
R

2n; assuming that the Fourier transform

Fa(x, p) = (
1

2π�

)n
∫

e− i
�

(x0x+p0 p)a(x0, p0)d
n p0dn x0 (6.1)

and its inverse exist, we can write

a(x, p) = (
1

2π�

)n
∫

e
i
�

(x0x+p0 p) Fa(x0, p0)d
n p0dn x0. (6.2)

One then defines the Weyl operator Â = a(̂x, p̂) by making the formal substitution
x 	−→ x̂ , p 	−→ p̂ in the formula above. Thus:

Â = (
1

2π�

)n
∫

e
i
�

(x0 x̂+p0 p̂)Fa(x0, p0)d
n p0dn x0; (6.3)

here x0 x̂ and p0 p̂ should be understood as x0,1 x̂1 + · · · + x0,n x̂n and p0,1 p̂1 +
· · · + p0,n p̂n . Of course, by modern standards, this is not a priori a very satisfactory
definition, unless one is able to give a meaning to the exponential

M̂(z0) = e
i
�

(x0 x̂+p0 p̂). (6.4)
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The latter is sometimes called Weyl’s characteristic operator [2], and is usually
interpreted as the power series

M̂(z0) =
∞∑

k=0

1

k!
(

i

�

)k

(x0 x̂ + p0 p̂)k (6.5)

where each term of this sum is supposed to act as a partial differential operator
(see Cohen’s book [2] for a detailed study of the operator M̂(z0)). Needless to say,
the computational difficulties can become quite considerable because of the non-
commutativity of the operators x̂ and p̂. Nevertheless, using the Baker–Campbell–
Hausdorff formula

eA+B = e− 1
2 [A,B]eAeB = e

1
2 [A,B]eBeA

valid for A and B such that [A, [A, B]] = [B, [A, B]] = 0, we have, choosing
A = x0 x̂/� and B = p0 p̂/� and taking into account the canonical commutation
relation [̂x, p̂] = i�,

M̂(z0) = e− i
2�

p0x0e
i
�

p0 p̂e
i
�

x0 x̂ (6.6)

or, equivalently,
M̂(z0) = e

i
2�

p0x0e
i
�

x0 x̂ e
i
�

p0 p̂. (6.7)

Formula (6.7) allows us to “guess” what the action of M̂(z0) is like. Limiting our-
selves to the case n = 1 for notational simplicity, let ψ be a real analytic function.
Expanding eip0 p̂/� in a power series, we have, since i p̂/� = ∂x ,

e
i
�

p0 p̂ψ(x) =
∞∑

k=0

1

k! xk
0∂

k
x ψ(x)

whichwe recognize as the Taylor series ofψ(x +x0) at the point x . Since the operator
eix0 x̂/� is just multiplication by eix0x/� we thus have

M̂(z0)ψ(x) = e
i
�

(x0x+ 1
2 p0x0)ψ(x + x0). (6.8)

We will see below that this formula can be very simply—and rigorously—
recovered if one uses the more physically motivated notion of Heisenberg operator.

6.1.3 Traditional Definition of Weyl Operators
(in Mathematics)

In the mathematical literature—especially in the early times of the theory of pseudo-
differential operators [6, 8, 11]—it is customary to define the Weyl operator Â with
symbol a by the integral expression
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Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a( 12 (x + y), p)ψ(y)dn pdn y. (6.9)

While this definition immediately connects the theory of Weyl operators to the more
general theory of pseudo-differential operators, which are operators of the type

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a(x, y, p)ψ(y)dn pdn y,

it has certain technical disadvantages because of convergence problems for the inte-
gral. The latter is defined, for instance, if one choosesψ ∈ S(Rn) (which is not a very
stringent requirement) and if the symbol a decreases fast enough in the p variables,
typically satisfying an estimate of the type

|a(x, p)| ≤ C(x)(1 + |p|)−n−ε

for some ε > 0. When this is not the case, the integral in (6.9) can be viewed as a
distributional bracket, but one has still to be careful when manipulating it. When the
symbol belongs to some “nice” classes (e.g. the “Hörmander classes” Sm

ρ,δ [8]), there
is another clever way of giving a meaning to the non-convergent integral in (6.9); it
consists in viewing it as a so-called “oscillatory integral”. We refer to the literature
on pseudo-differential operators for this approach; see for instance Chazarain and
Piriou [1], Hörmander [8].

It is not immediately obvious why the “physical” definition (6.3) should coincide
with the definition (6.9). That this is indeed the casewill follow from the constructions
below.

6.2 Heisenberg and Grossmann–Royer Operators

Let us introduce two related unitary operators on L2(Rn): the Heisenberg opera-
tor (sometimes called the Heisenberg–Weyl operator), and the Grossmann–Royer
operator (sometimes called the parity operators).

6.2.1 Definition and Discussion

The Heisenberg operators are well-known objects from quantum mechanics: they
are unitary operators on L2(Rn) which can be used to define the Heisenberg group
(see de Gosson [4], Littlejohn [9]); we will give a dynamical description of these
operators below. The Heisenberg operators are closely related to the less known
Grossmann–Royer operators, which were defined independently by Grossmann [7]
and Royer [10] in the mid 1970s. Heisenberg and Grossmann–Royer operators are
in a sense Fourier transforms of each other, as we will see below.



6.2 Heisenberg and Grossmann–Royer Operators 77

Definition 1 Let z0 = (x0, p0) and ψ ∈ S ′(Rn). The Heisenberg operator T̂ (z0) is
defined by

T̂ (z0)ψ(x) = e
i
�

(p0x− 1
2 p0x0)ψ(x − x0) (6.10)

and the Grossmann–Royer operator by

T̂G R(z0)ψ(x) = e
2i
�

p0(x−x0)ψ(2x0 − x). (6.11)

The operator T̂ (z0) translates wavefunctions while boosting their momentum, and
the operator T̂GR(z0) is a reflection with respect to z0; it is easy to check by a simple
calculation that both operators are related by the formula

T̂GR(z0) = T̂ (z0)R∨T̂ (z0)
−1 (6.12)

where R∨ = T̂GR(0) is the reflection R∨ψ(x) = ψ(−x). It follows, in particular,
that T̂GR(z0) is an involution:

T̂GR(z0)T̂GR(z0) = I. (6.13)

One proves, using theLeibniz formula, that T̂ (z0) and T̂GR(z0) both are continuous
automorphisms of the Schwartz space S(Rn) and that their inverses are

T̂ (z0)
−1 = T̂ (−z0), T̂GR(z0)

−1 = T̂GR(z0)

(the second formula following from (6.13)). By duality, these operators extend to con-
tinuous automorphisms of the space S ′(Rn) of tempered distributions. It is moreover
clear that T̂ (z0) and T̂GR(z0) are unitary on L2(Rn):

||T̂ (z0)ψ|| = ||T̂GR(z0)ψ|| = ||ψ||.

The Heisenberg operators do not commute; they satisfy the relations

T̂ (z0)T̂ (z1) = e
i
�

σ(z0,z1)T̂ (z1)T̂ (z0) (6.14)

T̂ (z0 + z1) = e− i
2�

σ(z0,z1)T̂ (z0)T̂ (z1); (6.15)

the first formula is often viewed as an “exponentiated” version of the canonical
commutation relations. The Grossmann–Royer operators satisfy the product formula

T̂GR(z0)T̂GR(z1) = e− 2i
�

σ(z0,z1)T̂ (2(z0 − z1)) (6.16)

(see de Gosson [4, 5] for detailed proofs of these relations).



78 6 The Weyl Correspondence

In the two following examples we show that the Grossmann–Royer and Heisen-
berg operators can be used to define in a simple but non-standardway twowell-known
objects from phase space quantum mechanics:

Example 2 The Wigner transform. Let ψ ∈ S(Rn). By definition, the Wigner
transform of ψ is the function Wigψ ∈ S(R2n) defined by

Wigψ(z) = (
1

π�

)n 〈T̂G R(z)ψ|ψ〉. (6.17)

Using formula (6.11) the integral expression of the Wigner transform is

Wigψ(z) = (
1

2π�

)n
∫

e− i
�

pyψ(x + 1
2 y)ψ∗(x − 1

2 y)dn y. (6.18)

Similarly:

Example 3 The ambiguity function. Letψ ∈ S(Rn); the functionAmbψ ∈ S(R2n)

defined by

Ambψ(z) = (
1

2π�

)n 〈T̂ (z)ψ|ψ〉 (6.19)

is called the (radar) ambiguity function. Its integral expression is

Ambψ(z) = (
1

2π�

)n
∫

e− i
�

pyψ(y + 1
2 x)ψ∗(y − 1

2 x)dn y. (6.20)

The Wigner transform and the ambiguity function, and their extensions to pairs
of functions, will be studied in detail in Chap.7.

6.2.2 Symplectic Fourier Transform

There is another important relation between the operators T̂ (z0) and T̂GR(z0). Let us
first define the symplectic Fourier transform of a function or distribution on R

2n .

Definition 4 The symplectic Fourier transform aσ = Fσa, of a function a ∈ S(R2n)

is defined by Fσa(z) = Fa(J z) where J =
(

0 I
−I 0

)
is the standard symplectic

matrix and F the ordinary Fourier transform on R
2n . Explicitly:

Fσa(z) = (
1

2π�

)n
∫

e− i
�

σ(z,z′)a(z′)d2nz′ (6.21)

(recall that σ(z, z′) = J z · z′ is the standard symplectic form).

http://dx.doi.org/10.1007/978-3-319-27902-2_7
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As the ordinary Fourier transform, Fσ can be extended to a continuous auto-
morphism S ′(R2n) −→ S ′(R2n) whose restriction to L2(R2n) is unitary. The usual
Plancherel formula takes here the form

∫
a(z)b∗(z)d2nz =

∫
aσ(z)(bσ)∗(z)d2nz (6.22)

or, equivalently, ∫
a(z)b(z)d2nz =

∫
aσ(z)bσ(−z)d2nz. (6.23)

Moreover, since F2a(z) = a(−z) and J 2 = −I the symplectic Fourier transform is
involutive: F2

σ = Fσ and is hence equal to its own inverse: F−1
σ = Fσ . We note that

the symplectic Fourier transform satisfies the usual convolution formulas

Fσ(a ∗ b) = (2π�)n(Fσa)(Fσb) (6.24)

and
Fσ(ab) = (2π�)−n Fσa ∗ Fσb. (6.25)

Proposition 5 Let ψ ∈ S(Rn) (or, more generally, ψ ∈ S ′(Rn)). We have

T̂GR(z0)ψ(x) = 2−n Fσ[T̂ (·)ψ(x)](−z0) (6.26)

and
T̂ (z0)ψ(x) = 2n Fσ[T̂GR(·)ψ(x)](−z0). (6.27)

Proof (Cf. de Gosson [8], Ch.8). Formula (6.27) is equivalent to formula (6.26)
since the symplectic Fourier transform is involutive. To prove (6.26) it suffices to
consider the case ψ ∈ S(Rn) (the general case follows by duality and density). We
thus have to show that

T̂GR(z0)ψ(x) = (
1

4π�

)n
∫

e
i
�

σ(z0,z′)T̂ (z′)ψ(x)d2nz′. (6.28)

Denoting by A(x) the right-hand side of (6.28) we have, using the definition of the
symplectic Fourier transform,

A(x) = (
1

4π�

)n
∫

e
i
�

σ(z0,z′)T̂ (z′)ψ(x)d2nz′

= (
1

4π�

)n
∫

e
i
�

(p0x ′−p′x0+p′x− 1
2 p′x ′)ψ(x − x ′)d2nz′

= (
1

4π�

)n
∫ (∫

e
i
�

p′(x−x0− 1
2 x ′)dn p′

)
e

i
�

p0x ′
ψ(x)dn x ′.
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Now, F(1) = (2π�)n δ, and hence

∫
e

i
�

p′(x−x0− 1
2 x ′)dn p′ = (2π�)n δ(x − x0 − 1

2 x ′).

Setting y = 1
2 x ′ we get,

A(x) = 2−n
∫

δ(x − x0 − 1
2 x ′)e

i
�

p0x ′
ψ(x)dn x ′

=
∫

δ(y + x0 − x)e
2i
�

p0 yψ(x)dn y

= e
2i
�

p0(x−x0)ψ(−x + 2x0)

= T̂GR(z0)ψ(x)

which proves formula (6.26). �

An immediate consequence is that the Wigner distribution and the ambiguity
function introduced in the Examples 2 and 3 above are symplectic Fourier transforms
of each other:

Corollary 6 Let ψ ∈ L2(Rn). We haveAmbψ = FσWigψ andWigψ = FσAmbψ.

Proof It is a straightforward consequence of the Proposition above, using the defin-
itions (6.17) and (6.19) of the Wigner and ambiguity functions. �

6.2.3 Dynamical Interpretation of the Heisenberg Operator

It is not uninteresting to give a dynamical interpretation of the Heisenberg operator.
Consider, for fixed z0 ∈ R

2n , the function

H0(z) = σ(z, z0). (6.29)

We call this function the “displacement Hamiltonian”: the flow ( f 0t ) determined
by the Hamilton equations ż = J∂z H0(z) consists of the phase space translations
f 0t : z 	−→ z + t z0. Consider now the operator

Ĥ0 = σ(̂z, z0) = x0 p̂ − p0 x̂ (6.30)

obtained by formally replacing z = (x, p)with ẑ = (̂x, p̂)where x̂ j is multiplication
by x j and p̂ j = −i�∂x j : explicitly
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Ĥ0 =
n∑

j=1

x0, j p̂ j − p0, j x̂ j

which we write Ĥ0 = x0 p̂ − p0 x̂ . The solution of the corresponding Schrödinger’s
equation

i�∂tψ = Ĥ0ψ, ψ(·, 0) = ψ0 (6.31)

is formally given by the formula

ψ(x, t) = e− i
�

Ĥ0tψ0(x) = e− i
�

σ(̂z,z0)tψ0(x). (6.32)

One verifies by a direct calculation that one has explicitly

ψ(x, t) = e
i
�

(tp0x− 1
2 t2 p0x0)ψ0(x − t x0). (6.33)

Thus, T̂ (z0)ψ0 is the time-one solution of theSchrödinger equation (6.31). In operator
notation:

T̂ (z0) = e− i
�

σ(̂z,z0). (6.34)

Recall that we defined above theWeyl characteristic operator as being the operator

M̂(z0) = e
i
�

(p0 x̂+x0 p̂).

This operator is closely related to the Heisenberg operator function T̂ (z0)—it is in
fact just a variant thereof: since σ(J ẑ, z0) = x0 p̂ + p0 x̂ we have the simple relation

M̂(z0) = e
i
�

(x0 x̂+p0 p̂) = T̂ (−J z0). (6.35)

The properties of M̂(z0), including commutation relations, immediately follow from
those of T̂ (z0). Using the definition (6.10) of T̂ (z0) we recover the action (6.8) of
M̂(z0) on functions or distributions. In fact, changing (x0, p0) into (−p0, x0), we get

M̂(z0)ψ(x) = e
i
�

(x0x+ 1
2 p0x0)ψ(x + p0).

Notice that we did not have to make any analyticity assumption on ψ.

6.3 Weyl Operators: Harmonic Analysis

We are now able to define Weyl operators in a rigorous and convenient way.
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6.3.1 Definition of a Weyl Operator

Let a ∈ S ′(R2n), hereafter to be called “symbol” (or “classical observable1”, in the
physical literature). We denote by 〈〈·, ·〉〉 the distributional bracket on R

2n: if U is a
distribution on R

2n and φ a test function, then the complex number 〈〈U,φ〉〉 is the
value of the functional U at φ. In our case we will mostly have U ∈ S ′(R2n) and
φ ∈ S(R2n); as usual we will often abuse notation by writing

〈〈U,φ〉〉 =
∫

U (z)φ(z)d2nz.

Definition 7 The linear operator Â : S(Rn) −→ S ′(Rn) defined by

Âψ = (
1

π�

)n 〈〈a(·), T̂G R(·)ψ〉〉 (6.36)

is the Weyl operator with symbol a (or the pseudo-differential operator with Weyl
symbol a). In integral form:

Âψ(x) = (
1

π�

)n
∫

a(z0)T̂GR(z0)ψ(x)d2nz0. (6.37)

We will write Â = OpW(a) and sometimes use the notation Â
W eyl←→ a or a

W eyl←→ Â.

The right-hand side of (6.36) makes sense since for every z0 ∈ R
2n the function

T̂GR(z0)ψ is in S(R2n); this ensures that 〈〈a(·), T̂GR(·)ψ〉〉 is defined.We have chosen
as natural domain for a Weyl operator the Schwartz space S(Rn); in many cases Â
can be extended to larger classes of functions.

The following result connects the definition above with the traditional integral
definition (6.9) given above:

Proposition 8 If a ∈ S(R2n) and ψ ∈ S(Rn) then

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a( 12 (x + y), p)ψ(y)dn pdn y. (6.38)

Proof Formula (6.37) yields, using the definition (6.11) of the Grossmann–Royer
operator,

Âψ(x) = (
1

π�

)n
∫

a(z0)e
2i
�

p0(x−x0)ψ(2x − x0)d
2nz0.

1Strictly speaking, we should reserve the term “observable” to real symbols; we are thus committing
a slight abuse of terminology.
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Setting y = 2x − x0 and p = p0 we get

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a( 12 (x + y), p)ψ(y)dydp

which is precisely formula (6.38). �

6.3.2 Harmonic Analysis

Weyl operators can alternatively be defined in terms of the Heisenberg operator (and
this redefinition has many advantages, often leading to simpler formulas):

Proposition 9 Let a ∈ S ′(R2n), Â = OpW(a) and ψ ∈ S(Rn). (i) We have

Âψ = (
1

2π�

)n 〈〈aσ(·), T̂ (·)ψ〉〉 (6.39)

where aσ = Fσa is the symplectic Fourier transform of a; in integral notation

Âψ(x) = (
1

2π�

)n
∫

aσ(z0)T̂ (z0)ψ(x)d2nz0. (6.40)

Proof It is sufficient to prove (6.39) for a ∈ S(Rn); the general case follows by a
density argument. We have, using successively Parseval’s formula and the relation
(6.27),

〈〈a(·), T̂GR(·)ψ(x)〉〉 =
∫

aσ(z0)Fσ[T̂GR(·)ψ(x)](−z0)d
2nz0

= 2−n
∫

aσ(z0)T̂ (z0)ψ(x)d2nz0

= 2−n〈〈aσ(·), T̂ (·)ψ(x)〉〉

hence the formulas (6.40) and (6.39). �

Since we will use quite often aσ in this, and the forthcoming chapters let us give
it a name:

Definition 10 The function aσ = Fσa is called the covariant (or “twisted”) symbol
of Â = OpW(a).

Recall formula (6.34) that the Heisenberg operator can be written T̂ (z0) =
e−iσ(̂z,z0)/�. This suggests that T̂ (z0) is just the Weyl quantization of the function
e−iσ(z,z0)/�. This is indeed the case:

Proposition 11 The operator with Weyl symbol a0(z) = e−iσ(z,z0)/� is the
Heisenberg–Weyl operator T̂ (z0). Equivalently, the covariant symbol of T̂ (z0) is
(2π�)nδ(z − z0).
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Proof Let us set a0(z) = e−iσ(z,z0)/� and Â0 = OpW(a0). We have

Â0 = (
1

2π�

)n
∫

(a0)σ(z)T̂ (z)d2nz

where the covariant symbol (a0)σ is given by

(a0)σ(z) = (
1

2π�

)n
∫

e− i
�

σ(z,z′)e− i
�

σ(z′,z0)d2nz′

= (
1

2π�

)n
∫

e− i
�

σ(z−z0,z′)d2nz′

= (2π�)nδ(z − z0)

(the last equality because Fσ(1) = (2π�)nδ); hence

Â0 =
∫

δ(z − z0)T̂ (z)d2nz = T̂ (z0)

taking into account the fact that δ(z − z0) = δ(z0 − z). �

6.3.3 The Kernel of a Weyl Operator

The bijectivity of a Weyl operator is most easily proven using its (distributional)
kernel, since it allows us to invoke Schwartz’s kernel theorem. It also allows the
study of boundedness properties of Weyl operators on the Hilbert space L2(Rn).

Every linear operator A : S(Rn) −→ S ′(Rn) has a kernel K ∈ S ′(Rn × R
n)

provided it is continuous (in the weak ∗-star topology) from S(Rn) to S ′(Rn); this is
Schwartz’s kernel theorem briefly discussed in Sect. 5.2.1 of Chap.5. The Schwartz
kernel is a distribution K ∈ S ′(Rn × R

n) such that

〈Aψ,φ〉 = 〈〈K ,φ ⊗ ψ〉〉

for all φ,ψ ∈ S(Rn); as usual 〈〈·, ·〉〉 is the distributional bracket on the space
R

n × R
n . In integral notation:

Aψ(x) =
∫

K (x, y)ψ(y)dn y. (6.41)

The kernel K and the symbol a of aWeyl operator are related by two simple formulas:

Proposition 12 Let Â = OpW(a) have symbol a ∈ S ′(R2n) and kernel K ∈ S ′(Rn×
R

n). (i) We have

http://dx.doi.org/10.1007/978-3-319-27902-2_5
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K (x, y) = (
1

2π�

)n/2
(F−1

2 a)( 12 (x + y), x − y) (6.42)

where F−1
2 is the inverse Fourier transform in the second set of variables; in integral

form:

K (x, y) = (
1

2π�

)n
∫

e
i
�

p(x−y)a( 12 (x + y), p)dn p; (6.43)

(ii) Conversely

a(x, p) =
∫

e− i
�

py K (x + 1
2 y, x − 1

2 y)dn y. (6.44)

Proof (i) Formulas (6.42) and (6.43) are obvious, comparing (6.41) with the integral
representation (6.38) of Â. (ii) Formula (6.44) follows from (6.43) or (6.42) using
the Fourier inversion formula. �

We have been calling the association a
Weyl←→ Â between a symbol and the cor-

responding Weyl operator “Weyl correspondence”. This terminology is justified by

the following result which shows that a
Weyl←→ Â is indeed a bijection.

We denote by L(S(Rn),S ′(Rn)) the vector space of all continuous linear map-
pings S(Rn) −→ S ′(Rn).

Proposition 13 The mapping

OpW : S ′(R2n) −→ L(S(Rn),S ′(Rn))

is a vector space isomorphism. More precisely: (i) The Weyl correspondence a
Weyl←→

Â is linear and injective: If a
Weyl←→ Â and a′ Weyl←→ Â then a = a′. In particular

1
Weyl←→ Id (the identity operator on S ′(Rn)). (ii) Every A ∈ L(S(Rn),S ′(Rn)) can

be written A = OpW(a) for some (unique) a ∈ S ′(R2n).

Proof (i) The linearity is obvious. To establish the injectivity it suffices to show that if

Â
Weyl←→ a and Â = Id then a = 1. In viewof (6.41) the condition Â = Id is equivalent

to K (x, y) = δ(x − y), which requires (formula (6.43) that a( 12 (x + y), p) = 1

for all x, p that is a = 1. That 1
Weyl←→ Id is clear using a similar argument. (ii) The

surjectivity of the correspondence a
Weyl←→ Â is obvious in view of the discussion

above, using Schwartz’s kernel theorem: every operator A ∈ L(S(Rn),S ′(Rn)) has
a kernel K , and its Weyl symbol a is then given by formula (6.44); the uniqueness
of a follows from the injectivity property proven in (i). �
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6.4 Two Examples

6.4.1 The Weyl Quantization of Monomials

Physically speaking, any realistic “quantization” of classical observables should sat-
isfy the Schrödinger prescription: to a symbol a(z) = x j p j should correspond the
operator

Â = 1
2 (x̂ j p̂ j + p̂ j x̂ j ). (6.45)

Let us check that the Weyl correspondence Â
Weyl←→ a satisfies this requirement. We

have, taking a(z) = x j p j and hence

(2π�)n Âψ(x) = 1
2

∫
e

i
�

p(x−y)x j p jψ(y)dn ydn p

+ 1
2

∫
e

i
�

p(x−y)y j p jψ(y)dn ydn p.

Formula (6.45) follows in view of the obvious equalities

(
1

2π�

)n
x j

∫
e

i
�

p(x−y) p jψ(y)dn ydn p = x j p̂ψ(x)

(
1

2π�

)n
∫

e
i
�

p(x−y) p j y jψ(y)dn ydn p = p̂(x jψ)(x).

More generally, a similar argument shows that the Weyl quantization of an arbi-
trary monomial xr ps leads to the Weyl–McCoy formula (2.11):

OpW (xr ps) = 1

2s

s∑

�=0

(
s

�

)
p̂s−� x̂r p̂�. (6.46)

We will not perform the detailed calculations here since the result is a particular
case of the more general rule obtained using Shubin’s τ -pseudo-differential calculus
which we will study later on.

6.4.2 Physical Hamiltonians

Assume that H is a (possibly time-dependent) function of the type

H(z, t) =
n∑

j=1

1

2m j
(p j − A j (x, t))2 + V (x, t); (6.47)

http://dx.doi.org/10.1007/978-3-319-27902-2_2
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where the potentials A = (A1, ...,An) and V are twice continuously differentiable
in the x variables, and continuous in t . Let us show that Ĥ = Op(H) is the usual
quantum operator

Ĥ =
n∑

j=1

1

2m j

(
−i�

∂

∂x j
− A j (x, t)

)2

+ V (x, t). (6.48)

Since Op(p2
j ) = p̂2

j , Op(A j ) = A j and Op(V ) = V , we only need to bother about
the cross-products p jA j . Dropping the index j and assuming n = 1 we claim that

Op(pA)ψ) = − i�

2

[
∂

∂x
(Aψ) + A∂ψ

∂x

]
, (6.49)

from which (6.48) readily follows. Let us prove (10.18); it is sufficient to assume
n = 1. We have (formula (6.38))

Op(pA)ψ(x) = 1

2π�

∫
e

i
�

p(x−y) pA( 12 (x + y), t)ψ(y)dydp

=
∞∫

−∞

⎡

⎣ 1

2π�

∞∫

−∞
e

i
�

p(x−y) pdp

⎤

⎦A( 12 (x + y), t)ψ(x ′)dx ′.

In view of the Fourier inversion formula the expression between the square brackets
is −i�δ′(x − y) so that

Op(pA)ψ(x) = −i�

∞∫

−∞
δ′(x − y)A( 12 (x + y), t)ψ(y)dy

= −i�

∞∫

−∞
δ(x − y)

∂

∂y
(A( 12 (x + y), t)ψ(y))dy

= −i�

2

(
∂A
∂x

(x, t)ψ(x) + A(x, t)
∂ψ

∂x
(x))

)

which is formula (6.49).
Inmany physics texts quantization formulas of the type (6.48) are formally derived

using the monomial rule (6.46): one expands the vector potentialA in a Taylor series
at x = 0 and one then quantizes separately each term in the series obtained for the
product p jA. Such a procedure is of course only mathematically legitimate if one
assumes that the vector potential A is (a real) analytic function.

http://dx.doi.org/10.1007/978-3-319-27902-2_10
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6.5 L2-Boundedness of Weyl Operators

The following result is a rather elementary result giving a necessary and sufficient
condition for the L2-boundedness of a Weyl operator:

Proposition 14 Let Â = OpW(a) have kernel K . (i) We have a ∈ L2(R2n) if and
only if K ∈ L2(Rn × R

n); (ii) when this is the case Â is a bounded operator on
L2(Rn).

Proof (Cf. [5], Sect. 10.1). (i) Let us prove that

||a|| = (2π�)n/2 |||K |||

(||| · ||| the L2 norm on R
2n). In view of formula (6.44) the symbol a is, for fixed x ,

(2π�)n/2 times the Fourier transform of the partial function y 	−→ K (x+ 1
2 y, x− 1

2 y)

hence, by Plancherel’s formula,

∫
|a(x, p)|2dn p = (2π�)n

∫
|K (x + 1

2 y, x − 1
2 y)|2dn y. (6.50)

Integrating this equality with respect to x we get

∫
|a(x, p)|2dn pdn x = (2π�)n

∫ (∫
|K (x + 1

2 y, x − 1
2 y)|2dn y

)
dn x

= (2π�)n
∫

|K (x + 1
2 y, x − 1

2 y)|2dn xdn y

wherewe have applied Fubini’s theorem.Making the change of variables x ′ = x+ 1
2 y

and y′ = x − 1
2 y we have dn x ′dn y′ = dn xdn y hence

∫
|a(x, p)|2dn pdn x = (2π�)n

∫
|K (x ′, y′)|2dn x ′dn y′

and we thus have a ∈ L2(R2n) if and only if K ∈ L2(Rn × R
n). (ii) The L2-

boundedness of Â immediately follows, using the Cauchy-Schwarz inequality: writ-
ing

Âψ(x) =
∫

K (x, y)ψ(y)dn y

we have

| Âψ(x)|2 ≤
∫

|K (x, y)|2dn y
∫

|ψ(y)|2dn y
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and hence

|| Âψ|| =
∫

| Âψ(x)|2dx ≤ |||K |||||ψ||2

where |||K ||| is the L2 norm of the kernel K . �

Notice that the condition a ∈ L2(R2n) in the result above can be replaced with
aσ ∈ L2(R2n) since the symplectic Fourier transform is unitary: |||a||| = |||aσ|||,
and in this case we have

|||aσ||| = (2π�)n/2 |||K |||. (6.51)

The condition stated in the proposition above is sufficient, but not necessary. In
fact, if we assume that the Fourier transform of the symbol is absolutely integrable
we again have L2-boundedness:

Proposition 15 Let Â = OpW(a). If aσ ∈ L1(R2n) then Â is bounded on L2(Rn)

and the operator norm of Â on L2(Rn) satisfies

|| Â|| ≤ (
1

2π�

)2n ||aσ||L1(R2n). (6.52)

Proof Recall that the covariant symbol aσ is defined by aσ(z) = Fσa(z). In view of
the density of S(Rn) in L2(Rn) it suffices to assume that ψ ∈ S(Rn). Let us prove
the inequality (6.52); the boundedness of Â will follow. Rewriting formula (6.42) as

K (x, y) = (
1

2π�

)n/2
(F2a)( 12 (x + y), y − x),

let Fa = (F1 ⊗ F2)a be the Fourier transform of a; using the Fourier inversion
formula we have

F2a( 12 (x + y), y − x) = (
1

2π�

)n/2
∫

e
i
2�

(x+y)u F(u, y − x)dnu

and hence

K (x, y) = (
1

2π�

)n
∫

e
i
2�

(x+y)u Fa(u, y − x)dnu.

It follows that
∫

|K (x, y)|dx ≤ (
1

2π�

)n
∫

|Fa(u, y − x)|dnudn x
∫

|K (x, y)|dy ≤ (
1

2π�

)n
∫

|Fa(u, y − x)|dnudn y;

equivalently, setting η = y − x ,
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∫
|K (x, y)|dn x ≤ (

1
2π�

)n ||Fa||L1(R2n)

∫
|K (x, y)|dn y ≤ (

1
2π�

)n ||Fa||L1(R2n).

Set now C = (2π�)−n||aσ||L1 ; by Cauchy–Schwarz’s inequality we have

| Âψ(x)|2 ≤
∫

|K (x, y)|dn y
∫

|K (x, y)||ψ(y)|2dn y

≤ C2
∫

|K (x, y)||ψ(y)|2dn y

and hence
∫

| Âψ(x)|2dn x ≤ C2
∫ (∫

|K (x, y)|dx

)
|ψ(y)|2dn y

that is ∫
| Âψ(x)|2dn x ≤ C2

∫
|ψ(y)|2dn y

which is the estimate (6.52). �

The study of regularity properties ofWeyl operators on L2(Rn) has become some-
thing of an industry since the early 1990’s. Cordes [3] has proven the following rather
general property:

Proposition 16 Assume that the symbol a satisfies the conditions∂α
x ∂

β
pa ∈ L∞(R2n)

for all multi-indices α, β such that |α|, |β| ≤ [n/2]+1. Then the operator Â
Weyl←→ a

is bounded on the space L2(Rn).

The proof of this result is rather technical, so we will not reproduce it here. It
implies in particular that every a ∈ C∞(R2n) which is, together with all its deriva-
tives, bounded determines a bounded operator on L2(Rn).

6.6 Adjoints and Products

We determine the symbol of the formal adjoint of a Weyl operator. We also calculate
the symbol of the product of two Weyl operators.
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6.6.1 The (Formal) Adjoint of a Weyl Operator

The formal adjoint Â† of a continuous operator Â : S(Rn) −→ S(Rn) is defined by
the formula

〈 Âψ|φ〉 = 〈ψ| Â†φ〉 (6.53)

for all (ψ,φ) ∈ S(Rn) ×S(Rn). Let us determine explicitly the Weyl symbol of Â†.

Proposition 17 The formal adjoint Â† of the Weyl operator Â = OpW(a) is the
Weyl operator Â† = OpW(a∗). In particular, Â is formally self-adjoint if and only if
a is a real function.

Proof Expressing Â in terms of the Grossmann–Royer operators we have

〈 Âψ|φ〉 = (
1

π�

)n
∫ (∫

a(z0)T̂GR(z0)ψ(x)d2nz0

)∗
φ(x)dn x .

Let b be the Weyl symbol of Â†; we have

( Â†ψ|φ) = (
1

π�

)n
∫ (∫

b(z0)T̂GR(z0)ψ(x)d2nz0

)∗
φ(x)dn x .

Since 〈 Â†ψ|φ〉 = 〈ψ| Âφ〉 for all (ψ,φ) ∈ S(Rn) × S(Rn) we must have a∗ = b. �

The property that Â is formally self-adjoint if and only if a is a real function is
very important in the applications to quantummechanics, because the “quantization”
of a real observable should precisely lead to a self-adjoint operator.

6.6.2 Composition Formulas

Wenowassume that theWeyl operators Â = Op(a) and B̂ = Op(b) can be composed
and set Ĉ = Â B̂. Assuming that we can write

Ĉ = (
1

2π�

)n
∫

cσ(z)T̂ (z)d2nz

we ask: what is cσ? The answer is given by the following result:

Proposition 18 Let Â = Op(a) and B̂ = Op(b). (i) The product Ĉ = Â B̂ has
(when defined) Weyl symbol

c(z) = (
1

4π�

)2n
∫

e
i
2�

σ(z′,z′′)a(z + 1
2 z′)b(z − 1

2 z′′)d2nz′d2nz′′. (6.54)
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(ii) The covariant Weyl symbol of Ĉ is given by

cσ(z) = (
1

2π�

)n
∫

e
i
2�

σ(z,z′)aσ(z − z′)bσ(z′)d2nz′. (6.55)

Proof Assume that the Weyl symbols a, b of Â and B̂ are in S(R2n). We denote by
K ÂB̂ the distributional kernel of the product Â B̂. We have

K ÂB̂(x, y) = (
1

2π�

)2n
∫

e
i
�

((x−α)p+(α−y)p)

× a( 12 (x + α), ζ)b( 12 (x + y), ξ)dnαdnζdnξ.

In view of formula (6.44) we have

c(x, p) =
∫

e− i
�

pu K ÂB̂(x + 1
2u, x − 1

2u)dnu

and the symbol of Â B̂ is thus

c(z) = (
1

π�

)2n
∫

e
i
�

Qa( 12 (x + α + 1
2u), ζ)

× b( 12 (x + α − 1
2u), ξ)dnαdnζdnξ

where the phase Q is given by

Q = (x − α + 1
2u)ζ + (α − x + 1

2u)ξ − up

= (x − α + 1
2u)(ζ − p) + (α − x + 1

2u)(ξ − p).

Setting ζ ′ = ζ − p, ξ′ = ξ − p, α′ = 1
2 (α − x + 1

2u) and u′ = 1
2 (α − x − 1

2u) we
have

dnαdnζdnudnξ = 22ndnα′dnζ ′dnu′dnξ′

and Q = 2σ(u′, ξ′;α′, ζ ′), hence

c(z) = (
1

π�

)2n
∫

e
2i
�

σ(u′,ξ′;α′,ζ ′)a(x + α′, p + ζ ′)

× b(x + u′, p + ξ′)dnα′dnζ ′dnu′dnξ′;

formula (6.54) follows setting z′ = 2(α′, ζ ′) and z′′ = −2(u′, ξ′). (ii) Writing the
operators Â and B̂ in the form



6.6 Adjoints and Products 93

Â = (
1

2π�

)n
∫

aσ(z0)T̂ (z0)d
2nz0

B̂ = (
1

2π�

)n
∫

bσ(z1)T̂ (z1)d
2nz1

we have, using the property (6.15) of the Heisenberg operators

T̂ (z0)B̂ = (
1

2π�

)n
∫

bσ(z1)T̂ (z0)T̂ (z1)d
2nz1

= (
1

2π�

)n
∫

e
i
2�

σ(z0,z1)bσ(z1)T̂ (z0 + z1)d
2nz1

and hence

Â B̂ = (
1

2π�

)2n
∫

e
i
2�

σ(z0,z1)aσ(z0)bσ(z1)T̂ (z0 + z1)d
2nz0d2nz1.

Setting z = z0 + z1 and z′ = z1 this can be written

Â B̂ = (
1

2π�

)2n
∫ (∫

e
i
2�

σ(z,z′)aσ(z − z′)bσ(z′)d2nz′
)

T̂ (z)d2nz

hence (6.55). �

The function c defined by (6.54) is often called theMoyal (orGroenewold–Moyal)
starproduct, and is denoted by a �� b.
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Chapter 7
The Cohen Class

In this chapter we study the “Cohen class”, which is a family of particular phase space
quasi-distributions characterizedby two simple properties (continuity, and translation
covariance). These quasi-distributions are obtained from the Wigner transform by
convolving the latter with a suitable tempered distribution. The Cohen class is widely
used in time-frequency analysis and is being rediscovered in quantum mechanics.

7.1 The Wigner and Ambiguity Transforms

Recall (Examples2 and 3 of the last chapter) that the Wigner and ambiguity trans-
forms of a function were defined by

Wigψ(z) = (
1

π�

)n 〈T̂GR(z)ψ|ψ〉 (7.1)

Ambψ(z) = (
1

2π�

)n 〈T̂ (z)ψ|ψ〉 (7.2)

where

T̂GR(z0)ψ(x) = e
2i
�

p0(x−x0)ψ(2x0 − x)

T̂ (z0)ψ(x) = e
i
�
(p0x− 1

2 p0x0)ψ(x − x0).

are, respectively the Grossmann–Royer and Heisenberg operators. In this section we
extend these definitions to pairs of functions.

7.1.1 The Cross-Wigner Transform

It is convenient, having applications to Weyl calculus in mind, to give the following
non-standard definition of the (cross-)Wigner transform:

© Springer International Publishing Switzerland 2016
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Definition 1 Let (ψ,φ) ∈ S(Rn) × S(Rn). The function (ψ,φ) �−→ Wig(ψ,φ)
defined by

Wig(ψ,φ)(z) = (
1

π�

)n 〈T̂GR(z)φ|ψ〉 (7.3)

is called the cross-Wigner function (or transform) of (ψ,φ).

When ψ = φ we recover the usual Wigner distribution Wigψ.
The physical interpretation of the cross-Wigner transform is that of an interference

term in the Wigner distribution of the sum Wig(ψ,φ):

Wig(ψ + φ) = Wigφ + Wigφ + 2ReWig(ψ,φ).

We mention that the importance of these interference terms has been emphasized
and studied by Zurek [10] in the context of the sub-Planckian structures in phase
space. They also appear in the study of weak values, as we will see in Chap.11.

Using the explicit definition of the Grossmann–Royer operator one immediately
recovers the text-book formulas [3–6]

Wig(ψ,φ)(z) = (
1

2π�

)n
∫

e− i
�

pyψ(x + 1
2 y)φ∗(x − 1

2 y)dn y (7.4)

and

Wigψ(z) = (
1

2π�

)n
∫

e− i
�

pyψ(x + 1
2 y)ψ∗(x − 1

2 y)dn y (7.5)

which are often taken as definitions. It turns out that (ψ,φ) �−→ Wig(ψ,φ) is a
sesquilinear mapping L2(Rn) × L2(Rn) −→ L2(R2n) (see Proposition 6); i.e.

Wig(ψ1 + ψ2,φ) = Wig(ψ1,φ) + Wig(ψ2,φ)

Wig(ψ,φ1 + φ2) = Wig(ψ,φ1) + Wig(ψ,φ2)

and
Wig(λψ,φ) = λWig(ψ,φ), Wig(ψ,λφ) = λ∗Wig(ψ,φ)

for every complex number1 λ. The following complex conjugation property is also
obvious:

Wig(ψ,φ) = Wig(φ,ψ)∗ (7.6)

and hence, in particular, Wigψ is always a real function. Notice that Wigψ however
in general takes negative values. In fact, we have the following well-known result,

1In some physical texts the definition of the cross-Wigner transform is the complex conjugate of
ours. This leads to sesquilinearity properties which are in accordance with that of the inner product
〈·|·〉.

http://dx.doi.org/10.1007/978-3-319-27902-2_11
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which was proven by Hudson [7] in the case n = 1, and in the general case by
Janssen [8]: we have Wigψ ≥ 0 if and only if ψ is a generalized Gaussian, that is, a
function of the type

ψ(x) = Ce−M(x−x0)2

whereC is a complex coefficient and M a symmetricn×n matrix such thatRe M > 0.

Example 2 Let φ0(x) = (π�)−n/4e−|x |2/2� be the standard coherent state. We have

Wigφ0(x, p) = (π�)−ne− 1
�
(|x |2+|p|2).

One shows that the mapping (ψ,φ) �−→ Wig(ψ,φ), which is continuous from
S(Rn) × S(Rn) to S(R2n), extends to a continuous mapping

Wig : S ′(Rn) × S(Rn) −→ S ′(R2n)

(this property, which is certainly not obvious if one uses the traditional definition
(7.4) is easy to prove if one rewrites the definition (7.3) using distributional brackets
〈·, ·〉 in place of the L2 scalar product:

Wig(ψ,φ)(z) = (
1

π�

)n 〈(T̂GR(z)φ)
∗,ψ〉.

Similarly, using the fact that the map z �−→ T̂GR(z) is strongly continuous on S(Rn)

and weakly ∗-continuous on S ′(Rn), one proves that if ψ ∈ S ′(Rn) and φ ∈ S(Rn)

then Wig(ψ,φ) is continuous on R
2n (see de Gosson [4, 5]).

The physical interest of theWigner transform comes from the following result: for
every ψ ∈ L1(Rn)∩ L2(Rn) such that ψ̂ ∈ L1(Rn) (ψ̂ = Fψ, the Fourier transform
of ψ), we have

∫
Wigψ(x, p)dn p = |ψ(x)|2 ,

∫
Wigψ(x, p)dn x = |ψ̂(p)|2 (7.7)

(see for instance [3, 5]). In particular if
∫
Wigψ(z)d2nz = 1 then Wigψ can be

interpreted as a quasi-distribution (in the probabilistic sense) since the formulas
above imply that ||ψ|| = ||ψ̂|| = 1 so that |ψ|2 and |ψ̂|2 then play the role of
marginal (quasi-)probability densities. More generally:

Proposition 3 Let (ψ,φ) ∈ S(Rn) × S(Rn). We have

∫
Wig(ψ,φ)(z)dn p = ψ(x)φ∗(x) (7.8)

∫
Wig(ψ,φ)(z)dn x = ψ̂(p)φ̂∗(p) (7.9)

where ψ̂ = Fψ is the �-Fourier transform of ψ. Hence, in particular
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∫
Wig(ψ,φ)(z)d2nz = 〈φ|ψ〉. (7.10)

Proof Formula (7.10) immediately follows from any of the two formulas (7.8) and
(7.9). Let us prove (7.8). We have

∫
Wig(ψ,φ)(z)dn p = (

1
2π�

)n
∫ (∫

e− i
�

pyψ(x + 1
2 y)φ∗(x − 1

2 y)dn y

)
dn p

= (
1

2π�

)n
∫ (∫

e− i
�

pydn p

)
ψ(x + 1

2 y)φ∗(x − 1
2 y)dn y

=
∫

δ(y)ψ(x + 1
2 y)φ∗(x − 1

2 y)dn y

=
(∫

δ(y)dn y

)
ψ(x)φ∗(x)

hence formula (7.8). To prove (7.9) we proceed as follows: writing

∫
Wig(ψ,φ)(z)dn x = (

1
2π�

)n
∫ (∫

e− i
�

pyψ(x + 1
2 y)φ∗(x − 1

2 y)dn y

)
dn x

= (
1

2π�

)n
∫

e− i
�

py

(∫
ψ(x + 1

2 y)φ∗(x − 1
2 y)dn x

)
dn y

we notice that the integral between the brackets is a convolution product:

∫
ψ(x + 1

2 y)φ∗(x − 1
2 y)dn x = ψ ∗ (φ∗)∨

(here ∨ is the reflection operator x �−→ −x); formula (7.9) now follows using the
formulas

F(ψ ∗ (φ∗)∨) = (2π�)n FψF
[
(φ∗)∨

]

and F
[
(φ∗)∨

] = (Fφ∗). �

The result above holds for less stringent conditions on the functions ψ and φ;
for instance it suffices that ψ,φ ∈ L1(Rn) ∩ L2(Rn) as closer scrutiny of the proof
shows.

7.1.2 The Cross-Ambiguity Function

We have defined the cross-Wigner transform using the Grossmann-Royer operator; if
one uses the Heisenberg operator one obtains the cross-ambiguity transform, familiar
from radar theory (see Folland [3], Gröchenig [6]):
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Definition 4 Let (ψ,φ) ∈ S(Rn) × S(Rn). The function (ψ,φ) �−→ Amb(ψ,φ)
defined by

Amb(ψ,φ)(z) = (
1

2π�

)n 〈T̂ (z)φ|ψ〉 (7.11)

is called the cross-ambiguity function (or transform) of (ψ,φ). The function

Ambψ = Amb(ψ,ψ)

is called the ambiguity function of ψ.

Recalling that the Heisenberg operator is defined by

T̂ (z0)ψ(x) = e
i
�
(p0x− 1

2 p0x0)ψ(x − x0)

it follows that we have the explicit expression

Amb(ψ,φ)(z) = (
1

2π�

)n
∫

e− i
�

pyψ(y + 1
2 x)φ∗(y − 1

2 x)dn y. (7.12)

The cross-Wigner transform satisfies the conjugation relation Wig(ψ,φ) =
Wig(φ,ψ)∗ (formula (7.6)); this relation is not preserved for the cross-ambiguity
function; instead we have

Amb(ψ,φ)∗ = Amb(φ∨,ψ∨) (7.13)

as is easily verified using for instance (7.12); here ψ∨(x) = ψ(−x).
The fundamental relation between the cross-Wigner and the cross-ambiguity

transforms can be proven using formula (6.26) relating the Heisenberg and the
Grossmann–Royer operators (cf. Corollary 6 in Chap.6); we give here a direct proof.

Proposition 5 Let (ψ,φ) ∈ S(Rn) × S(Rn). We have

Amb(ψ,φ) = FσWig(ψ,φ) (7.14)

Wig(ψ,φ) = FσAmb(ψ,φ). (7.15)

Proof (This proof corrects the proof of Proposition 175(i) in [2], §9.3.1). It is suffi-
cient to prove formula (7.14) since Fσ is involutive. Set

A(z) = (2π�)2n FσWig(ψ,φ)(z);

by definition of Fσ and Wig(ψ,φ) we have

A(z) =
∫

e− i
�

σ(z,z′)
(∫

e− i
�

p′ yψ(x ′ + 1
2 y)φ∗(x ′ − 1

2 y)dn y

)
d2nz′

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
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=
∫

e− i
�

p′(y−x)e− i
�

px ′
ψ(x ′ + 1

2 y)φ∗(x ′ − 1
2 y)dn p′dn x ′dn y

=
∫ (∫

e− i
�

p′(y−x)dn p′
)

e− i
�

px ′
ψ(x ′ + 1

2 y)φ∗(x ′ − 1
2 y)dn x ′dn y.

Using the Fourier transform formula

∫
e− i

�
p′(y−x)dn p′ = (2π�)n δ(x − y)

we can rewrite A(z) as

A(z) = (2π�)n
∫

e− i
�

px ′
δ(x − y)ψ(x ′ + 1

2 y)φ∗(x ′ − 1
2 y)dn x ′dn y

= (2π�)n
∫

e− i
�

px ′
ψ(x ′ + 1

2 x)φ∗(x ′ − 1
2 x)dn x ′

hence FσWig(ψ,φ) = Amb(ψ,φ) as claimed. �

The cross-Wigner and cross-ambiguity functions both satisfy the important
“Moyal identities”:

Proposition 6 Denote by 〈〈·|·〉〉 the L2-scalar product on R
2n. (i) For all ψ,ψ′,

φ,φ′ in L2(Rn) × L2(Rn) we have

〈〈Wig(ψ,φ)|Wig(ψ′,φ′)〉〉 = (
1

2π�

)n 〈ψ|ψ′〉〈φ|φ′〉∗ (7.16)

and
〈〈Amb(ψ,φ)|Amb(ψ′,φ′)〉〉 = (

1
2π�

)n 〈ψ|ψ′〉〈φ|φ′〉∗. (7.17)

(ii) We have Wigψ ∈ L2(R2n) (resp. Ambψ ∈ L2(R2n)) if and only if ψ ∈ L2(Rn)

|||Wigψ||| = |||Ambψ||| = (
1

2π�

)n/2 ||ψ||

where ||| · ||| is the L2-norm on R
2n. In particular, Wig and Amb are continuous

mappings L2(Rn) × L2(Rn) −→ L2(R2n).

Proof Property (ii) immediately follows from (i) taking ψ = ψ′ = φ = φ′ in (7.16)
and (7.17), respectively. (i) Each of the two formulas (7.16) and (7.17) is deduced
from the other using Plancherel’s formula (6.22) for symplectic Fourier transforms.
Let us prove (7.16). We begin by noting that the scalar product

A = (2π�)2n〈〈Wig(ψ,φ)|Wig(ψ′,φ′)〉〉

is given by the expression

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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∫
e− i

�
p(y′−y)ψ∗(x + 1

2 y)ψ′(x + 1
2 y′)

×φ(x − 1
2 y)φ′∗(x − 1

2 y′)dn ydn y′dn xdn p.

The integral in p (interpreted as a distributional bracket) is

∫
e− i

�
p(y′−y)dn p = (2π�)nδ(y − y′)

and hence

A = (2π�)n
∫

ψ∗(x + 1
2 y)ψ′(x − 1

2 y)

×φ(x + 1
2 y)φ′∗(x − 1

2 y)dn ydn y′dn x .

Setting u = x + 1
2 y and v = x − 1

2 y we have dnudnv = dn xdn y hence

A = (2π�)n

(∫
ψ∗(u)ψ′(u)du

) (∫
φ(v)φ′∗(v)dv

)

= 〈ψ|ψ′〉〈φ|φ′〉∗

proving the identity (7.16). �

The Moyal identities (and their extensions to more general quasi-distributions)
play a very important role in many topics in harmonic analysis. We are going to see
below that it allows to prove a reconstruction formula, which we will later use when
we will deal with the notion of weak value in Chap.11.

7.1.3 A Reconstruction Formula

It is easy to see using the properties of the Fourier transform that the datum of the
Wigner transform Wigψ determines ψ up to a constant factor with modulus one
(it thus determines unambiguously the quantum state |ψ〉. In the case of the cross-
Wigner transform, one can prove an interesting inversion formula:

Proposition 7 Let φ, γ ∈ L2(Rn) be non-orthogonal: 〈φ|γ〉 �= 0. For every ψ ∈
S ′(Rn) we have

ψ(x) = 2n

〈φ|γ〉
∫

Wig(ψ,φ)(z0)T̂GR(z0)γ(x)d
2nz0. (7.18)

Proof Let us denote by χ(x) the right hand side of (7.18):

http://dx.doi.org/10.1007/978-3-319-27902-2_11
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χ(x) = 2n

〈φ|γ〉
∫

Wig(ψ,φ)(z0)T̂GR(z0)γ(x)d
2nz0.

This function is well-defined sinceWig(ψ,φ) ∈ L2(R2n) in view ofMoyal’s identity
(7.16). For every α ∈ S(Rn) we have

〈α|χ〉 = 2n

〈φ|γ〉
∫

Wig(ψ,φ)(z)〈α|T̂GR(z)γ〉d2nz.

Taking into account the formula

Wig(α, γ)(z) = (
1

π�

)n 〈T̂GR(z)γ|α〉

and the conjugation relation Wig(γ,α) = Wig(α, γ)∗ we thus have

〈α|χ〉 = (2π�)n

〈φ|γ〉
∫

Wig(ψ,φ)(z)W (α, γ)∗(z)d2nz

= (2π�)n

〈φ|γ〉 〈〈Wig(α, γ)|Wig(ψ,φ)〉〉

where 〈〈·|·〉〉 is the scalar product on L2(Rn). Using Moyal’s identity we get

〈α|χ〉 =
(

1

2π�

)n
(2π�)n

〈φ|γ〉 〈α|ψ〉〈φ|γ〉 = 〈α|ψ〉.

Since this identity holds for allα ∈ S(Rn)we haveχ = ψ almost everywhere, which
proves formula (7.18). �

This formula will be generalized later on when we study the notion of weak value
of an observable.

7.1.4 Relation with the Weyl Correspondence

The relation between the cross-Wigner and ambiguity transforms and the Weyl cor-
respondence comes from the following extremely important result, which is the
link between the Weyl correspondence and the phase space formalism of quantum
mechanics. We denote as usual by 〈·, ·〉 and 〈〈·, ·〉〉 the distributional brackets on R

n

and R
2n , respectively.

Proposition 8 Let a ∈ S ′(R2n) and Â = OpW(a). (i) We have

〈 Âψ,φ∗〉 = 〈〈a,Wig(ψ,φ)〉〉 (7.19)
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for all (ψ,φ) ∈ S(Rn) × S(Rn). In integral notation:

∫
Âψ(x)φ∗(x)dn x =

∫
a(z)Wig(ψ,φ)(z)d2nz. (7.20)

(ii) Similarly,

∫
Âψ(x)φ∗(x)dn x =

∫
aσ(z)Amb(ψ,φ)(−z)d2nz. (7.21)

Proof (i) In view of definition (6.36) we have, using Fubini’s theorem and definition
(7.3) of the Wigner function,

〈 Âψ,φ∗〉 = (
1

π�

)n
∫ (∫

a(z0)T̂GR(z0)ψ(x)d
2nz0

)
φ∗(x)dn x

= (
1

π�

)n
∫

a(z0)

(∫
T̂GR(z0)ψ(x)φ

∗(x)dn x

)
d2nz0

=
∫

a(z0)Wig(ψ,φ)(z0)d
2nz0

which is (7.19). (ii) Using Plancherel’s formula (6.23) we have

∫
a(z0)Wig(ψ,φ)(z0)d

2nz0 =
∫

Fσa(z0)FσWig(ψ,φ)(−z0)d
2nz0

which implies (7.21). �

Formula (7.19) can be taken as a definition of the Weyl operator Â = OpW(a): it
is the only operator S(Rn) −→ S ′(Rn) for which the equality (7.19) holds. We will
exploit this fact when we define the Born–Jordan operators.

When Â is self-adjoint on L2(Rn)we recover, takingψ = φ, the following familiar
result from quantum mechanics:

〈ψ| Â|ψ〉 =
∫

a(z)Wigψ(z)d2nz (7.22)

which clearly shows how theWigner transform indeed plays the role of a probability
quasi-distribution: if ψ is normalized to unity then 〈 Â〉ψ = 〈ψ| Â|ψ〉 is the mean
value of Â in the pure state |ψ〉 while the integral of Wigψ over R

2n is equal to
one—as would be the case for a true probability distribution.

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
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7.2 The Cohen Class

7.2.1 Definition and General Properties

The lack of positivity of the Wigner distribution Wigψ which makes its interpre-
tation as a true probability density problematic has led to a search for alternative
distributions Qψ. One of the most famous examples is Husimi’s distribution, which
is the convolution of theWigner transformwith a Gaussian function. More generally,
we will say following Gröchenig [6], §4.5, that:

Definition 9 Let Q : S(Rn) × S(Rn) −→ S ′(R2n) be a sesquilinear form. We say
that Q belongs to the Cohen class if we have

Q(ψ,φ) = Wig (ψ,φ) ∗ θ (7.23)

for some distribution θ ∈ S ′(R2n). The function θ is called a Cohen kernel.

The cross-Wigner transform trivially belongs to the Cohen class (take θ = δ, the
Dirac distribution on R

2n).
TheHusimi distribution is a typical (andwell studied) member of the Cohen class:

Example 10 The member of the Cohen class corresponding to the of choice of the
normalized phase space Gaussian

θ(z) = (π�)−ne− 1
�

|z|2

is called the Husimi distribution. Since θ(z) is the Wigner transform of the standard
coherent state φ0(x) = (π�)−n/4e−|x |2/2�

. (Example 2) the Husimi distribution is
always positive.

The following result gives a sufficient (but not necessary) condition for a sesquilin-
ear form to belong to Cohen’s class.

Proposition 11 Let Q : S(Rn) × S(Rn) −→ S(R2n) be a sesquilinear form and
set Qψ = Q(ψ,ψ). If Q is such that

Qψ(z − z0) = Q(T̂ (z0)ψ)(z) (7.24)

|Q(ψ,φ)(0, 0)| ≤ ||ψ|| ||φ|| (7.25)

for all ψ,φ in L2(Rn) then there exists a distribution θ ∈ S ′(R2n) such that Qψ =
Wigψ ∗ θ for all ψ ∈ S(Rn).

Proof (Gröchenig [6] proves this for � = 1/2π; we are following here de Gosson
[4]). The condition (7.25) means that the function (ψ,φ) �−→ Q(ψ,φ)(0, 0) is a
bounded sesquilinear form. Hence, by Riesz’s representation theorem, there exists a
bounded operator Â on L2(Rn) such that
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Q(ψ,φ)(0, 0) = 〈φ| Âψ〉.

In view of (7.24) we have

Qψ(z0) = Q(T̂ (−z0)ψ)(0)

= 〈 ÂT̂ (−z0)ψ, T̂ (−z0)ψ〉.

In view of Schwartz’s kernel theorem there exists a distribution K ∈ S ′(Rn × R
n)

such that
〈φ| Âψ〉 = 〈〈K ,ψ ⊗ φ∗〉〉

for all ψ,φ ∈ S(Rn) (〈〈·, ·〉〉 is the distributional bracket on R
2n). We thus have

Qψ(z0) = 〈〈K , T̂ (−z0)ψ ⊗ (T̂ (−z0)ψ)
∗〉〉

=
∫

K (x, y)T̂ (−z0)ψ(x)(T̂ (−z0)ψ(y))
∗dn xdn y.

By definition of the Weyl–Heisenberg operators we have

T̂ (−z0)ψ(x) = e
i
�
(−p0x− 1

2 p0x0)ψ(x + x0)

(T̂ (−z0)ψ(y))
∗ = e− i

�
(−p0 y− 1

2 p0x0)ψ∗(y + x0)

and hence

Qψ(z0) =
∫

e− i
�

p0(x−y)K (x, y)ψ(x + x0)ψ
∗(y + x0)d

n xdn y. (7.26)

On the other hand, for every θ ∈ S ′(R2n) we have

(Wigψ ∗ θ)(z0) =
∫

Wigψ(z0 − z)θ(z)d2nz

(the integral being interpreted in the distributional sense) hence, in view of the defi-
nition of the Wigner transform,

(Wigψ ∗ θ)(z0) = (
1

2π�

)n
∫

e− i
�
(p0−p)y′

ψ(x0 − x ′ + 1
2 y′)

×ψ∗(x0 − x ′ − 1
2 y′)θ(x ′, p′)dn pdn x ′dn y′

that is, calculating the integral in the p variables,

(Wigψ ∗ θ)(z0) = (
1

2π�

)n/2
∫

F−1
2 θ(x ′, y′)e− i

�
p0 y′

ψ(x0 − x ′ + 1
2 y′)

×ψ∗(x0 − x ′ − 1
2 y′)θ(x ′, p′)dn x ′dn y′
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where F−1
2 θ is the inverse Fourier transform of θ in the second set of variables.

Making the change of variables x ′ = − 1
2 (x + y), y′ = x − y we have dn x ′dn y′ =

dn xdn y and the equality above becomes

(Wigψ ∗ θ)(z0) = (
1

2π�

)n/2
∫

F−1
2 θ(x, x − y)

× e− i
�

p0(x−y)ψ(x + x0)ψ
∗(y + x0)d

n xdn y.

Comparing with formulas (7.26) we see that Qψ = Wigψ ∗ θ where θ is given by

K (x, y) = (
1

2π�

)n/2
F−1
2 θ(x, x − y)

that is

θ(x, p) = (2π�)n/2
∫

e− i
�

py K (x, x − y)dn y. �

Wehave studied the convolutionproduct Q(ψ,φ) = Wig(ψ,φ) ∗ θ forψ ∈ S(Rn)

and θ ∈ S(R2n) (in which case Qψ ∈ S(R2n)). It can of course also be defined under
less stringent conditions. Here is a simple result for Qψ = Q(ψ,ψ):

Proposition 12 The quasi-distribution Qψ = Wigψ ∗ θ is well-defined for ψ ∈
L2(Rn) and θ ∈ L1(Rn), and we have in this case Qψ ∈ L2(R2n).

Proof The condition ψ ∈ L2(Rn) implies that Wigψ ∈ L2(R2n) (Proposition 6),
hence Wigψ ∗ θ ∈ L2(R2n) by Young’s theorem. �

We refer to Boggiatto et al. [1] for a discussion of other conditions. For a general
analysis of existence theorems for convolution products, see Katznelson [9].

7.2.2 The Marginal Conditions

Wearemainly interested in quasi-distributions having the correctmarginal properties,
reproducing those of the Wigner distribution (see Proposition 3). This motivates the
following terminology:

Definition 13 An element Q of the Cohen class is said to satisfy the marginal con-
ditions if we have, for ψ ∈ L1(Rn) ∩ L2(Rn),

∫
Qψ(z)dn p = |ψ(x)|2,

∫
Qψ(z)dn x = |ψ̂(p)|2. (7.27)

Not every element of the Cohen class satisfies the marginal conditions: see Exam-
ple 15. Let us prove a necessary and sufficient condition for Q to satisfy the marginal
properties.
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Proposition 14 Let ψ ∈ S(Rn) and Qψ = Wigψ ∗ θ. Assume that the mappings
x �−→ θ(x, p) and p �−→ θ(x, p) are integrable. (i) We have

∫
Qψ(z)dn p = (|ψ|2 ∗ α)(x),

∫
Qψ(z)dn x = (|ψ̂|2 ∗ β)(p) (7.28)

where the functions α and β are defined by

α(x) =
∫

θ(x, p)dn p, β(p) =
∫

θ(x, p)dn x .

(ii) The marginal properties are satisfied if and only if the symplectic Fourier
transform θσ satisfies of the Cohen kernel θ exists and satisfies the conditions
θ̂(x, 0) = θ̂(0, p) = (2π�)−n; equivalently:

θσ(0, p) = θσ(x, 0) = (2π�)−n. (7.29)

Proof (i) In view of the first marginal property (7.7) satisfied by the Wigner distrib-
ution we have ∫

Wigψ(x − x ′, p − p′)dn p = |ψ(x − x ′)|2

and hence, using Fubini’s theorem,

∫
Qψ(z)dp =

∫ (∫
Wigψ(z − z′)θ(z′)d2nz′

)
dn p

=
∫ (∫

Wigψ(z − z′)dn p

)
θ(z′)d2nz′

=
∫

|ψ(x − x ′)|2
(∫

θ(z′)dn p′
)

dn x ′

which yields the first formula (7.28). The second formula is proven in a similar way
using the second marginal property (7.7) of the Wigner transform. (ii) It suffices to
show that the conditions (7.29) imply that α(x) = δ(x) and β(p) = δ(p). Let θ̂ be
the usual Fourier transform of the kernel θ; we have

θ̂(x, 0) = (
1

2π�

)n
∫

e− i
�

xx ′
θ(x ′, p′)dn p′dn x ′

= (
1

2π�

)n
∫

e− i
�

xx ′
(∫

θ(x ′, p′)dn p′
)

dn x ′

= (
1

2π�

)n
∫

e− i
�

xx ′
α(x ′)dn x ′
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hence the condition θ̂(x, 0) = (2π�)−n is equivalent to α(x) = δ(x). Similarly, we
have θ̂(0, p) = (2π�)−n ; since θσ(z) = θ̂(J z) the conditions θ̂(x, 0) = θ̂(0, p) =
(2π�)−n are equivalent to (7.29). �

Example 15 The Husimi distribution considered in Example 10 does not satisfy the
marginal conditions, because the functions θ̂(x, 0) and θ̂(0, p) are not constants (they
are themselves Gaussians, as is easily verified).

7.2.3 Generalization of Moyal’s Identity

An important property of the cross-Wigner transform is the Moyal identity (7.16). A
similar identity holds for Q provided that the Fourier transform of the Cohen kernel
satisfies a simple condition:

Proposition 16 Let Q be an element of the Cohen class. (i) We have

〈〈Q(ψ,φ)|Q(ψ′,φ′)〉〉 = 〈〈Wig(ψ,φ)|Wig(ψ′,φ′)〉〉 (7.30)

if and only the Fourier transform Fθ is such that |Fθ(z)| = (2π�)−n, i.e.,

|θσ(z)| = (2π�)−n. (7.31)

(ii) In particular, Moyal’s identity

〈〈Q(ψ,φ)|Q(ψ′,φ′)〉〉 = (
1

2π�

)n 〈ψ|ψ′〉〈φ|φ′〉∗ (7.32)

holds in this case.

Proof Formulas (7.30) and (7.32) are equivalent in view of Moyal’s identity (7.16).
The equality |Fθ(z)| = |Fσθ(z)| is obvious since Fσθ(z) = Fθ(J z). Let us prove
that the identity (7.30) holds if and only if |Fθ(z)| = (2π�)2n . Writing Q(ψ,φ) =
Wig(ψ,φ) ∗ θ and using Plancherel’s formula together with the formula

F Q(ψ,φ) = (2π�)n F Wig(ψ,φ)Fθ

we have, for all pairs of functions (ψ,φ) and (ψ′,φ′) in S(Rn),

〈〈Q(ψ,φ)|Q(ψ′,φ′)〉〉
= (2π�)2n〈〈F Wig(ψ,φ)Fθ(z)|F Wig(ψ′,φ′)Fθ(z)〉〉
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and hence

〈〈Q(ψ,φ)|Q(ψ′,φ′)〉〉 = (2π�)2n〈〈F Wig(ψ,φ)|F Wig(ψ′,φ′)|Fθ(z)|2〉〉.

The equality (7.30) is thus equivalent to |Fθ(z)|2 = (2π�)−2n which proves our
claim. �

In particular, choosing θ = δ, we recover the usual Moyal identity (7.16).
Notice that condition (7.31) does not imply the conditions (7.29), hence any Q

satisfying Moyal’s identity does not automatically satisfy the marginal conditions
(7.28).

We will see in next chapter a fundamental counterexample: the element of the
Cohen class determined by Born–Jordan quantization does not satisfy the Moyal
identity (but it still satisfies the marginal conditions).

7.2.4 A Representation Result

Here is an interesting result which show that the elements of the Cohen class can be
used construct pseudo-differential operators providedwe have sufficient smoothness.
We will see in Chap.10 that this result applies to the Born–Jordan case.

Proposition 17 Let a ∈ S ′(R2n) and Q be an element of the Cohen class. (i) If Q :
S(Rn)×S(Rn) −→ S(R2n) there exists a unique operator ÂQ : S(Rn) −→ S ′(Rn)

such that we have
〈 ÂQψ,φ∗〉 = 〈〈a, Q(ψ,φ)〉〉 (7.33)

for all (ψ,φ) ∈ S(Rn)×S(Rn). (ii) Let θ be the Cohen kernel of Q and set θ∨(z) =
θ(−z). The operator ÂQ is explicitly given by

ÂQ = (
1

2π�

)n
∫

aσ(z)θ
∨
σ (z)T̂ (z)d2nz (7.34)

where θ∨
σ is the symplectic Fourier transform of θ∨. (iii) Equivalently,

ÂQ = (
1

π�

)n
∫
(a ∗ θ∨)(z)T̂GR(z)d

2nz. (7.35)

Proof Observe that if φ,ψ ∈ S(Rn) then Q(ψ,φ) ∈ S(R2n), so that the right-hand
side in (7.33) is well defined when a ∈ S ′(R2n). We assume that a ∈ S(R2n) (the
general case follows by duality). Since by definition

〈 ÂQψ,φ∗〉 =
∫

a(z)(W (ψ,φ) ∗ θ(z))d2nz

http://dx.doi.org/10.1007/978-3-319-27902-2_10
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we must show that the operator

Â = (
1

2π�

)n
∫

aσ(z)θ
∨
σ (z)T̂ (z)d2nz (7.36)

is identical to ÂQ , that is

〈 ÂQψ,φ∗〉 =
∫

a(z)(W (ψ,φ) ∗ θ)(z)d2nz

for all φ,ψ ∈ S(Rn). In view of (7.36) we have

〈 ÂQψ,φ∗〉 = (
1

2π�

)n
∫

aσ(z0)

(∫
θσ(z0)T̂ (z0)ψ(x)φ

∗(x)dn x

)
d2nz0

= (
1

2π�

)n
∫

aσ(z0)θσ(z0)〈φ|T̂ (z0)ψ〉d2nz0.

In view of the definition (7.11) of the cross-ambiguity function

〈φ|T̂ (z0)ψ〉 = 〈T̂ (−z0)φ|ψ〉 = (2π�)nAmb(ψ,φ)(−z0)

and hence

〈 ÂQψ,φ∗〉 =
∫

aσ(z0)θ
∨
σ (z0)Amb(ψ,φ)(−z0)d

2nz0

=
∫

aσ(z0)(θσAmb(ψ,φ))(−z0)d
2nz0

where θ∨
σ (z) = θσ(−z). Using the Plancherel formula for the symplectic Fourier

transform, and using the relation Fσaσ = a this equality becomes

〈 ÂQψ,φ∗〉 =
∫

a(z0)Fσ(θσAmb(ψ,φ))(z0)d
2nz0

= (2π�)−n
∫

a(z0)(Fσθσ ∗ FσAmb(ψ,φ))(z0)d
2nz0;

and using the relation Fσθσ = θ this yields

〈 ÂQψ,φ∗〉 = (2π�)−n
∫

a(z0)(θ ∗ Wig(ψ,φ))(z0)d
2nz0

=
∫

a(z0)Q(ψ,φ)(z0)d
2nz0

as we set out to prove. �
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We will write
T̂Q(z) = θ∨

σ (z)T̂ (z); (7.37)

with this notation the operator (7.34) becomes

ÂQ = (
1

2π�

)n
∫

aσ(z)T̂Q(z)d
2nz. (7.38)
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Chapter 8
Born–Jordan Quantization

This chapter is in a sense the keystone of this book.Using the theory of theCohen class
previously studied we give a first working definition of Born–Jordan quantization by
selecting a particular Cohen kernel. We state and prove some important properties
of the associated Born–Jordan operators, and discuss some unexpected properties
of these operators; for instance we will show that Born–Jordan quantization is not
one-to-one: the zero operator is the quantization of infinitely many classical phase
space functions. Another approach, based on Shubin’s theory of pseudo-differential
operators, will be developed in the forthcoming chapters.

8.1 The Born–Jordan Kernel θBJ

Recall that the elements of the Cohen class are sesquilinear forms Q : S(Rn) ×
S(Rn) −→ S ′(R2n) related to the Wigner cross-transform by the formula

Q(ψ,φ) = Wig(ψ,φ) ∗ θ (8.1)

where θ (the “Cohen kernel”) is a tempered distribution on R
2n .

8.1.1 Definition and First Properties

Born–Jordan quantization corresponds to a very particular and interesting element
of the Cohen class, associated with what we call the “Born–Jordan kernel”:

Definition 1 The Born–Jordan kernel is the symplectic Fourier transform

θBJ = (
1

2π�

)n
FσχBJ (8.2)

© Springer International Publishing Switzerland 2016
M.A. de Gosson, Born–Jordan Quantization, Fundamental Theories
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of the function χBJ defined by

χBJ(x, p) = sinc
( px

2�

)
(8.3)

where sinc is the “cardinal sine” function.

The cardinal sine function1 is defined by

sinc x = sin x

x
for x �= 0 , sinc(0) = 1.

It follows that

∂α
z χBJ ∈ C∞(R2n) ∩ L∞(R2n)

for all multi-indices α ∈ N
2n .

The Born–Jordan kernel θBJ is a real function (this easily follows using the def-
inition of the symplectic Fourier transform and the fact that χBJ is an even real
function).

Notice that we could have chosen as well the usual Fourier transform to define
the Born–Jordan kernel:

θBJ = (
1

2π�

)n
FχBJ;

in fact, since σ(z, z′) = J z · z′ we have

FσχBJ(z) = (
1

2π�

)n
∫

e− i
�

J z·z′
χBJ(z

′)d2nz′

= (
1

2π�

)n
∫

e− i
�

zz′
χBJ(J z)d2nz

and hence FσχBJ = FχBJ since χBJ(J z) = χBJ(z).
The cardinal sine function is one of the well-studied special functions from classi-

cal real analysis; we list below a few of its properties. The definition above, together
with our previous discussion of the Cohen class motivates the introduction of the
following objects:

Definition 2 (i) We denote by WigBJ the element of the Cohen class corresponding
to the choice θ = θBJ:

WigBJ(ψ,φ) = Wig(ψ,φ) ∗ θBJ; (8.4)

1It is sometimes called the “unnormalized sinc function”, its “normalized” version being then
sin(πx)/πx for x �= 0; see formula (8.12).
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we call WigBJψ = WigBJ(ψ,ψ) the Born–Jordan quasi-distribution, or transform.
(ii) The function

AmbBJ(ψ,φ) = Amb(ψ,φ)χBJ (8.5)

is called the Born–Jordan cross-ambiguity transform.

Notice that by the properties of the symplectic Fourier transform and formulas
(7.14) in Proposition 5 in Chap.7, and (8.2) we have

AmbBJ(ψ,φ) = FσWigBJ(ψ,φ). (8.6)

In fact, by definition (8.2) of χBJ,

FσWigBJ(ψ,φ) = (2π�)n FσWigBJ(ψ,φ)FσθBJ

= Amb(ψ,φ)(x, p)χBJ(x, p).

Let us now prove that WigBJ satisfies the marginal conditions:

Proposition 3 The function WigBJψ = Wigψ ∗ θBJ satisfies, for ψ ∈ L1(Rn) ∩
L2(Rn), the marginal conditions

∫
WigBJψ(z)dn p = |ψ(x)|2 ,

∫
WigBJψ(z)dn x = |ψ̂(p)|2. (8.7)

Proof In view of Proposition 14 in Chap.7 we have to show that

θ̂BJ(0, p) = θ̂BJ(x, 0) = (2π�)−n.

Now, θBJ = (2π�)−n FχBJ hence θ̂BJ(z) = (2π�)−nχBJ(−z), that is θ̂BJ(z) =
(2π�)−n sinc(px/2�). The result follows since sinc(0) = 1. �

Note that, as for the usual cross-Wigner transform, we have the conjugation
identity

WigBJ(ψ,φ)∗ = WigBJ(φ,ψ) (8.8)

since θBJ is a real function, and hence

WigBJ(ψ,φ)∗ = Wig(ψ,φ)∗ ∗ θBJ = WigBJ(φ,ψ) ∗ θBJ.

It readily follows from the conjugation formula (7.13) that

AmbBJ(ψ,φ)∗ = AmbBJ(φ
∨,ψ∨) (8.9)

where ψ∨(x) = ψ(−x).

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
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8.1.2 The Moyal Identity Is Not Satisfied

Recall (Proposition16 in Chap.7) that an element of the Cohen class satisfies the
generalized Moyal identity

〈〈Q(ψ,φ)|Q(ψ′,φ′)〉〉 = (
1

2π�

)n 〈ψ|ψ′〉〈φ|φ′〉∗ (8.10)

if and only it is of the type Q(ψ,φ) = Wig(ψ,φ)∗θ where the Cohen kernel satisfies
|Fσθ(z)| = (2π�)n . In the Born–Jordan case we have

Fσθ(z) = FσθBJ(z) = sinc
( px

2�

)

hence WigBJ(φ,ψ) cannot satisfy the Moyal identity. One can actually see this with-
out invoking Proposition 16 in Chap.7 using the following indirect argument.2 Sup-
pose indeed that

〈〈WigBJ(ψ,φ)|WigBJ(ψ
′,φ′)〉〉 = (

1
2π�

)n 〈ψ|ψ′〉〈φ|φ′〉∗

for all ψ,φ, etc. Then, in particular

〈〈WigBJψ|WigBJψ〉〉 = (
1

2π�

)n |〈ψ|ψ〉|2

Using Plancherel’s formula and the definition (8.6) of the Born–Jordan cross-
ambiguity function, this equality can be rewritten

〈〈AmbBJψ|AmbBJψ〉〉 = (
1

2π�

)n |〈ψ|ψ〉|2

and using the formula (8.5) this is in turn equivalent to

〈〈(Ambψ)χBJ|(Ambψ)χBJ〉〉 = (
1

2π�

)n |〈ψ|ψ〉|2.

The Moyal identity (7.17) for the usual cross-ambiguity transform then implies that
we have

〈〈(Ambψ)χBJ|(Ambψ)χBJ〉〉 = 〈〈Ambψ|Ambψ〉〉

or, equivalently,
∫

|Ambψ(z)|2(1 − χBJ(z)
2)d2nz ≤ 0.

2I thank Fabio Nicola for having suggested this argument.

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
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Now,

χBJ(z)
2 = sinc (px/2�)2 ≤ 1

hence we must have Ambψ(z) = 0 for all ψ, which is not true. This contradiction
shows that WigBJ(φ,ψ) cannot satisfy the Moyal identity.

8.1.3 Some Properties of the sinc Function

Here are a few elementary properties of sinc. First, using the Taylor expansion of
sin x at the origin one immediately gets

sinc x =
∞∑

k=0

(−1)k x2k

(2k + 1)! , (8.11)

the series being convergent for all values of the real variable x ; its extension to the
complex domain defines an entire function of the variable ζ = x + iy. The integrals
of sinc and sinc2 over the real line are equal:

∞∫

−∞
sinc xdx =

∞∫

−∞
sinc2 xdx = π. (8.12)

The sinc function can be written in many ways as an infinite product; for instance

sinc(x) =
∞∏

k=1

(
1 − x2

k2π2

)
. (8.13)

It also satisfies the convolution identity

∞∫

−∞
sinc(π(x − y)) sinc(πy)dy = sinc(πx). (8.14)

The reciprocal (sinc x)−1 = x/sin x is defined for all x �= Nπ (N an integer); it
is an analytic function with a convergent series expansion

(sinc x)−1 =
∞∑

k=0

(−1)k−12(22k−1 − 1)

(2k)! B2k x2k (8.15)
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for |x | < π; the constants B2k are the Bernoulli numbers of order 2k; recall that the
Bernoulli numbers Bn are the real numbers defined by the power series

x

ex − 1
=

∞∑

n=0

Bn
xn

n! . (8.16)

8.2 Born–Jordan Operators

The results above allow us to give a first rather elegant definition of Born–Jordan
quantization.

8.2.1 Definition and First Properties

Recall that a Weyl operator Â = OpW(a) is linked to the cross-Wigner cross-
ambiguity transforms by the formulae

∫
Âψ(x)φ∗(x)dn x =

∫
a(z)Wig(ψ,φ)(z)d2nz (8.17)

and
∫

Âψ(x)φ∗(x)dn x =
∫

aσ(z)Amb(ψ,φ)(−z)d2nz. (8.18)

Since these formulas uniquely define the operator Â = OpW(a), this suggests
that we define Born–Jordan operators by replacing Wig(ψ,φ) and Amb(ψ,φ) with
WigBJ(ψ,φ) and AmbBJ(ψ,φ).

Definition 4 Let a ∈ S ′(R2n) be a symbol. The Born–Jordan operator ÂBJ =
OpBJ(a) is the unique operator S(Rn) −→ S ′(Rn) such that for (ψ,φ) ∈ S(Rn) ×
S(Rn)

〈 ÂBJψ,φ∗〉 = 〈〈a,WigBJ(ψ,φ)〉〉;

in integral notation

∫
ÂBJψ(x)φ∗(x)dn x =

∫
a(z)WigBJ(ψ,φ)(z)d2nz. (8.19)
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Equivalently,

∫
ÂBJψ(x)φ∗(x)dn x =

∫
aσ(z)AmbBJ(ψ,φ)(−z)d2nz. (8.20)

The equivalence of definitions (8.19) and (8.20) follows fromPlancherel’s formula
(6.23) and formulas (8.8)–(8.9):

∫
a(z)WigBJ(ψ,φ)(z)d2nz =

∫
aσ(z)FσWigBJ(φ,ψ)(−z)d2nz

=
∫

aσ(z)AmbBJ(ψ,φ)(−z)d2nz.

While to a given symbol there corresponds a unique Born–Jordan operator, the
converse is not true: the correspondence a −→ OpBJ(a) is not one-to-one; we will
discuss this important property in Sect. 8.3.1.

The following explicit result is the analogue in the Born–Jordan case of the con-
tinuous harmonic representation (6.40) of aWeyl operator in terms of the Heisenberg
operators or Weyl’s characteristic operator (defined by formula (6.4)):

Proposition 5 Let a ∈ S ′(R2n) and ψ ∈ S(Rn). We have

ÂBJψ(x) = (
1

2π�

)n
∫

aσ(z0)T̂BJ(z0)ψ(x)d2nz0 (8.21)

where T̂BJ(z0) = T̂ (z0)χBJ(z0), that is

T̂BJ(z0) = T̂ (z0) sinc
( p0x0

2�

)
; (8.22)

equivalently

ÂBJψ(x) = (
1

2π�

)n
∫

Fa(z0)M̂BJ(z0)(z0)ψ(x)d2nz0 (8.23)

where

M̂BJ(z0) = M̂(z0) sinc
( p0x0

2�

)
(8.24)

and M̂(z0) = e
i
�

(x0 x̂+p0 p̂) is Weyl’s characteristic operator.

Proof We assume that a ∈ S(R2n) (the general case follows by duality) and that
(ψ,φ) ∈ S(Rn) × S(Rn). Since by definition

〈 Âψ,φ∗〉 =
∫

a(z)WigBJ(ψ,φ)(z)d2nz

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
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we must show that the operator

Â = (
1

2π�

)n
∫

aσ(z)T̂BJ(z)d
2nz

satisfies the relation

〈 Âψ,φ∗〉 =
∫

a(z)WigBJ(ψ,φ)(z)d2nz (8.25)

for all φ and ψ in S(Rn). By definition of Â we have

〈 Âψ,φ∗〉 = (
1

2π�

)n
∫

aσ(z0)

(∫
T̂BJ(z0)ψ(x)φ∗(x)dn x

)
d2nz0

= (
1

2π�

)n
∫

aσ(z0)χBJ(z0)

(∫
T̂ (z0)ψ(x)φ∗(x)dn x

)
d2nz0

= (
1

2π�

)n
∫

aσ(z0)χBJ(z0)〈φ|T̂ (z0)ψ〉d2nz0.

Taking the definition (7.11) of the cross-ambiguity function into account, we have

〈φ|T̂ (z0)ψ〉 = 〈T̂ (−z0)φ|ψ〉 = (2π�)nAmb(ψ,φ)(−z0)

and hence

〈 Âψ,φ∗〉 =
∫

aσ(z0)χBJ(z0)Amb(ψ,φ)(−z0)d
2nz0.

Using the Plancherel formula (6.23) for the symplectic Fourier transform, we can
rewrite this equality as

〈 Âψ,φ∗〉 =
∫

a(z0)Fσ(χBJ(z0)Amb(ψ,φ))(z0)d
2nz0

where we have used the fact that Fσaσ = a since Fσ is an involution. In view of the
definition (8.2),

Fσ(χBJAmb(ψ,φ)) = (2π�)−n FσχBJ ∗ FσAmb(ψ,φ)

= (2π�)−n FσχBJ ∗ Wig(ψ,φ)

= θBJ ∗ Wig(ψ,φ)

the last equality in view of (8.4). Summarizing, we have

〈 Âψ,φ∗〉 =
∫

a(z0)WigBJ(ψ,φ)(z0)d
2nz0

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_8
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which we set out to prove. Formula (8.23) is equivalent to (8.21) since M̂(z0) =
T̂ (−J z0) and hence M̂BJ(z0) = T̂BJ(−J z0). �

We remark that a similar construction can actually be made for every element of
the Cohen class: if Q(ψ,φ) = Wig(ψ,φ) ∗ θ one defines as above a generalized
Heisenberg operator T̂θ(z0) and one then considers the operator

Âθ = (
1

2π�

)n
∫

aσ(z0)T̂θ(z0)d
2nz0.

8.2.2 The Relation Between Born–Jordan and Weyl
Operators

The following immediate consequence of Proposition 5 makes explicit the link
between the Weyl operator OpW(a) and the Born–Jordan operator OpBJ(a).

Corollary 6 Let a ∈ S ′(R2n). The Born–Jordan operator ÂBJ = OpBJ(a) is the
Weyl operator B̂ = OpW(b) with symbol b = a ∗ θBJ ∈ S ′(R2n) where θBJ is defined
by (8.2):

ÂBJ = OpW(a ∗ θBJ) (8.26)

that is

ÂBJ = (
1

π�

)n
∫

(a ∗ θBJ)(z)T̂GR(z)d2nz. (8.27)

Equivalently, the covariant Weyl symbol of ÂBJ is the function

bσ = aσχBJ (8.28)

that is

ÂBJ = (
1

2π�

)n
∫

aσ(z)χBJ(z)T̂ (z)d2nz.

Proof The formulas b = a ∗ θBJ and (8.28) are equivalent since they are symplectic
Fourier transforms of each other (see the definition (8.2) of θBJ). That a ∗ θBJ ∈
S ′(R2n) is clear. Taking into account the harmonic representation (6.37) of Weyl
operators formula (8.26) implies the representation (8.27). �

Notice that it follows from this result that Born–Jordan operators with symbol
a ∈ S ′(R2n) are de facto continuous operators S(Rn) −→ S ′(Rn) (they can be
represented as Weyl operators, and the latter are continuous S(Rn) −→ S ′(Rn)).

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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8.3 On the Invertibility of Born–Jordan Quantization

We are now in a position to make two fundamental remarks. The first remark is
actually a question: a Born–Jordan operator, being a continuous operator S(Rn) −→
S ′(Rn) is de facto aWeyl operator (Proposition 13 in Chap.6), and its covariantWeyl
symbol is given by formula (13). How about the converse of this property? Is it true
that every Weyl operator can be written as a Born–Jordan operator? The difficulty
obviously comes from the formula (8.28) itself: b being given, it is not at all obvious
that there exists a symbol a such that the equality (8.28) holds: we are confrontedwith
a division problem. This question is fundamental, because a negative answer would
imply that there are continuous operators S(Rn) −→ S ′(Rn) which are not Born–
Jordan operators, and can thus not be “dequantized” in the Born–Jordan quantization
scheme. The second remark is that it is not clear whether the Born–Jordan association

a
BJ−→ ÂBJ is injective (i.e. one-to-one).
The bijectivity of Born–Jordan quantization is a serious and difficult issue. We

will study a few non-trivial results below.

8.3.1 A Non-injectivity Result

We prove here a non-uniqueness result3; the question of invertibility, which is much
more subtle, will be addressed below.

Proposition 7 Let a ∈ S ′(R2n) and az0(z) = e−iσ(z,z0)/�. We have

OpBJ(a) = OpBJ(a + az0) (8.29)

for all z0 = (x0, p0) such that χBJ(z0) = 0, that is p0x0 = 2Nπ� (N ∈ Z), N �= 0.

Proof It suffices to prove that OpBJ(az0) = 0 if p0x0 = 2Nπ�. Recall from Propo-
sition 11 in Chap.6 that OpW(az0) is the Heisenberg operator T̂ (z0) whose covariant
symbol is (2π�)nδ(z − z0). It follows from formula (8.21) that

OpBJ(az0) =
∫

δ(z − z0) sinc
( px
2�

)
T̂ (z)d2nz

=
∫

δ(z − z0) sinc
( p0x0

2�

)
d2nz

= 0

hence the result. �

3I thank V. Turunen for having pointed out this result to me.

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_8
http://dx.doi.org/10.1007/978-3-319-27902-2_6
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Notice that 2Nπ� = Nh where h is Planck’s constant.
Observe that the set � of all z such that χBJ(z) = 0 consists of a family of

concentric 2n − 1 dimensional sheets in phase space (when n = 1 they are just
hyperbolas in the phase plane). The distance of the set � to the origin is easily
calculated and one gets

dist(�, 0) = √
4π�. (8.30)

It follows from (8.29) that we have OpBJ(a) = 0 for all symbols of the type

a(z) =
∑

z0∈�

λ(z0)e
−iσ(z,z0)/�

where � is any finite lattice of points z0 = (x0, p0) in R
2n such that p0x0/2π� ∈ Z

and λ : � −→ C. The applications of this result certainly deserves to be studied
further, both in quantum mechanics and in Gabor frame theory.

8.3.2 The Case of Monomials

We assume here n = 1. Recall from Chap.3 that C[x, p] is the polynomial ring
generated by the variables x and p, and that C[̂x, p̂] is the Weyl algebra generated
by x̂ and p̂.

We have called the operators ÂBJ = OpBJ(a) “Born–Jordan operators” and talked
about “Born–Jordan quantization”. This terminology is only justified if we prove
that if a(x, p) = xr ps where r and s are non-negative integers, then ÂBJ = OpBJ(a)

is the operator C[x, p] −→ C[̂x, p̂] defined by

ÂBJ = 1

s + 1

s∑

�=0

p̂s−� x̂r p̂�

or by any of the equivalent formulas listed in Chap.3. This is indeed the case, and can
be done at the expense of some rather complicated calculations involving the Fourier
transform of xr ps (cf. Sect. 6.4.1 where we briefly discussed the Weyl quantization
of monomials). We will therefore postpone the proof to Chap.10, where we use an
alternative pseudo-differential approach to Born–Jordan quantization making such
calculations much easier. What we do here, instead, is to show that Born–Jordan
operators—as defined in this chapter—are isomorphisms C[x, p] −→ C[̂x, p̂].

http://dx.doi.org/10.1007/978-3-319-27902-2_3
http://dx.doi.org/10.1007/978-3-319-27902-2_3
http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_10
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Proposition 8 The Born–Jordan quantization of polynomials is an isomorphism of
vector spaces

OpBJ : C[x, p] −→ C[̂x, p̂].

Proof We are following Cordero et al. [1]. Since the Weyl transform is an isomor-
phism C[x, p] −→ C[̂x, p̂], every Â ∈ C[̂x, p̂] can be written Â = OpW(b) for a
unique b ∈ C[x, p]. This allows us to define an endomorphism T of C[̂x, p̂] by the
formula

T (OpW(a)) = OpBJ(a) = OpW(a ∗ χBJσ).

Let us show that T is bijective; this will prove our assertion. First, it is clear that
T is injective: if T (OpW(a)) = 0 then χBJaσ is zero as a distribution, but this is
only possible if a = 0 since a is a polynomial, so that aσ is supported at 0, and
χBJ does not vanish in a neighborhood of 0. Let us now prove that T is surjective.
Since C[x, p] is spanned by the monomials b(x, p) = xr ps it is sufficient to show
that there exists a ∈ C[x, p] such that Fσb = χBJFσa; since Fσa(z) = Fa(J z) and
χBJ(J z) = χBJ(z), this is equivalent to the equation Fb(z) = χBJ(z)Fa(z). Since

Fb(z) = F(xr ⊗ ps) = 2π�(i�)r+sδ(r)
x ⊗ δ(s)

p

the Fourier transform of a is given by

Fa(x, p) = 2π�(i�)r+sχBJ(x, p)−1δ(r)
x ⊗ δ(s)

p .

Using the Laurent series expansion (8.15) of the sinc function we have

χBJ(x, p)−1 =
∞∑

k=0

ak(2�)−2k x2k p2k

where the coefficients are expressed in terms of the Bernoulli numbers Bn by

ak = (−1)k−1(22k − 2)B2k

(2k)! ;

the series is convergent in the open set |xp| < 2�π. It follows that

Fa(x, p) = 2π�

∞∑

k=0

ak(2�)−2k(x2kδ(r)
x )(p2kδ(s)

p )

= 2π�

nr,s∑

k=0

ak
(2�)−2kr !s!

(r − 2k)!(s − 2k)!δ
(r−2k)
x δ(s−2k)

p
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with nr,s = [ 12 min(r, s)] ([·] denoting the integer part). Setting

bk = ak
(2�)−2kr !s!

(r − 2k)!(s − 2k)!
and noting that

2π�δ(r−2k)
x δ(s−2k)

p = (i�)−(r+s−4k) F(xr−2k ps−2k)

we have

a(x, p) =
nr,s∑

k=0

bk(i�)−(r+s−4k)xr−2k ps−2k

and hence a ∈ C[x, p]. �

8.3.3 The General Case

As we have already mentioned above, the general question of the invertibility of
Born–Jordan quantization is difficult.We state here a few resultswhichwere obtained
in collaboration with Elena Cordero and Fabio Nicola in [1].

It is well-known from the elementary theory of distributions that the Fourier
transform of a compactly supported function (or distribution) is an entire analytic
function. This statement is actually a weak version of the Paley–Wiener–Schwartz
theorem (for a proof see e.g. Hörmander [2] or Vo-Khac Khoan [4]) which we state
below. We denote by B2n(r) the closed ball in R

2n centered at the origin and with
radius r , and by E ′(R2n) the space of compactly supported distributions on R

2n; we
have inclusion E ′(R2n) ⊂ S ′(R2n).

Proposition 9 Let a ∈ E ′(R2n) have support supp(a) ⊂ B2n(r). (i) The Fourier
transform Fa can be extended into an entire analytic function on C

2n and there
exists constants C > 0, N > 0, such that

|Fa(ζ)| ≤ C(1 + |ζ|)N e
r
�

| Im ζ|; (8.31)

where ζ = (ζ1, ..., ζ2n) and | Im ζ|2 = | Im ζ1|2 + · · · + | Im ζ2n|2. (ii) Every entire
analytic function a on C

2n satisfying an estimate of the type (8.31) is the Fourier
transform of some a ∈ S ′(R2n) such that supp(a) ⊂ B2n(r).

The result above remains true if we replace the Fourier transform F with the
symplectic Fourier transform Fσ.

The Paley–Wiener–Schwartz theorem suggests the following definition:



126 8 Born–Jordan Quantization

Definition 10 For r ≥ 0 we denote by Ar (2n) the subspace of S ′(R2n) consisting
of all tempered distributions a whose symplectic Fourier transform Fσa = aσ has
support supp(aσ) ⊂ B2n(r). Equivalently, a satisfies an estimate

|a(ζ)| ≤ C(1 + |ζ|)N e
r
�

| Im ζ| (8.32)

for some constants C > 0, N > 0.

Obviously A0(2) = C[x, p], the space of polynomials in the real variables x and
p. More generally, A0(2n) is the space of polynomials in the variables x1, ..., xn and
p1, ..., pn .

The following inversion result generalizes Proposition 8 about polynomials:

Proposition 11 The linear mapping S ′(R2n) −→ S ′(R2n) defined by

a �−→ (
1

2π�

)n
a ∗ θBJ (8.33)

(or aσ �−→ aσχBJ) restricts to an automorphism of Ar (2n) if and only if

0 ≤ r <
√
4π�. (8.34)

That is, the equation bσ = aσχBJ admits, for every b ∈ Ar (2n), a unique solution
a ∈ Ar (2n) if and only if condition (8.34) holds.

Proof (See Cordero et al. [1].) Let us first prove the sufficiency of condition (8.34).
Assume that 0 ≤ r <

√
4π�; it follows from the equality (8.30) that the ball

B2n(r) does not contain any zero of χBJ hence the equation bσ = aσχBJ admits the
solution aσ = bσ/χBJ for every b ∈ Ar (2n), and it is clear that aσ ∈ S ′(R2n). Since
supp(bσ) ⊂ B2n(r) we also have supp(aσ) ⊂ B2n(r), hence a ∈ Ar (2n). Condition
(8.34) is also necessary: assume in fact that r ≥ √

4π� and choose z0 = (x0, p0)

such that χBJ(z0) = 0. Then T̂BJ(z0) = 0 and supp(bσ) thus contains the points z0;
hence the mapping (8.33) is not injective. �

In the general case we have the following surjectivity result:

Proposition 12 The mapping (8.33) is a linear surjection S ′(R2n) −→ S ′(R2n):
for every b ∈ S ′(R2n) there exists (a non-unique) a ∈ S ′(R2n) such that

b = (
1

2π�

)n
a ∗ θBJ. (8.35)

The proof of this surjectivity result is due to F. Nicola (see Theorem 6 in Cordero
et al. [1]). It is highly non-trivial, and uses techniques from the theory of the division
of distributions (Hörmander [3]), rewriting the equation (8.35) as bσ = aσχBJ.

At the time of writing, it is unknown whether this result can be improved (for
instance, what can one say about the solution a of (8.35) if a is a continuous function?
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Chapter 9
Shubin’s Pseudo-Differential Calculus

In this rather technical chapter we study pseudo-differential calculus from the point
of view developed in Shubin [5] (also see Chap.14 in de Gosson [3] for a review
of the essentials of Shubin’s theory). Shubin’s operators are generalizations of Weyl
operators obtained by replacing the mid-point term 1

2 (x + y) in the formula

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a( 12 (x + y), p)ψ(y)dn pdn y

with the weighted average (1 − τ )x + τ y where τ is an arbitrary real parameter.
The theory of Shubin operators (which we will often call “τ -operators”) is a very
convenient tool easily leading to an alternative definition of Born–Jordan operators:
these are obtained by averaging the Shubin operators with the same symbol over the
unit interval. This allows us at the same time to recover the Born–Jordan transform
of a couple of functions without a direct recourse to the properties of the Cohen class.
Shubin operators do not have themselves the physical properties qualifying them as
a bona fide quantization (for instance, real observables do not lead to self-adjoint
operators in the Shubin scheme). This pseudo-differential calculus should thus be
viewed as a useful technical intermediary without direct physical significance.

9.1 Definition and First Properties

In what follows τ is a real parameter.

9.1.1 The Kernel of a τ -Operator

The integral formula (6.38) for a Weyl operator, which reads

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a( 12 (x + y), p)ψ(y)dn pdn y,

© Springer International Publishing Switzerland 2016
M.A. de Gosson, Born–Jordan Quantization, Fundamental Theories
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suggests the possibility of defining more general pseudo-differential operators by

Âτψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a((1 − τ )x + τ y, p)ψ(y)dn ydn p (9.1)

where τ is some (arbitrary but fixed) real parameter. Note that the Weyl operators
correspond to the choice τ = 1

2 . Here is a rigorous definition:

Definition 1 Let a ∈ S′(R2n). The τ -pseudo-differential operator (or simply
τ -pseudo-differential operator) with symbol a is the operator Âτ = Opτ (a) with
distributional kernel

Kτ (x, y) = (
1

2π�

)n/2
(F−1

2 a)((1 − τ )x + τ y, x − y) (9.2)

where F−1
2 is the inverse Fourier transform in the p variables; in integral notation

Kτ (x, y) = (
1

2π�

)n
∫

e
i
�

p(x−y)a((1 − τ )x + τ y, p)dn p. (9.3)

We will also use the notation Âτ
τ←→ a or a

τ←→ Âτ . Notice that, conversely,
the symbol is expressed in terms of the kernel by the formula

a(x, p) =
∫

e− i
�

py K (x + τ y, x − (1 − τ )y, p)dn p. (9.4)

In practice we will use the integral notation (9.1) for operators.

Example 2 Suppose we choose τ = 0. Then

Â0ψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a(x, p)ψ(y)dn ydn p

which we can rewrite as

Â0ψ(x) = (
1

2π�

)n/2
∫

e
i
�

px a(x, p)ψ̂(p)dn p.

This is the so-called “normal ordering” familiar from the theory of partial differential
equations. Similarly, the choice τ = 1 leads to the “ antinormal ordering”.

We will in a moment give alternative descriptions of τ -pseudo-differential oper-
ators by imitating the harmonic representation of Weyl operators; this will allow us
to recover in the next chapter the Born–Jordan machinery previously introduced by
other means.
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9.1.2 The Case of Monomials

Let us find the τ -pseudo-differential operator corresponding to the monomial sym-
bols xr

j ps
j considered in the Introduction. It is of course sufficient to consider the

case n = 1; we will write xr
j = xr and ps

j = ps .

Proposition 3 Let r and s be two non-negative integers. We have

Opτ (xr ps) =
r∑

k=0

(
r

k

)
τ k(1 − τ )r−k x̂ k p̂s x̂r−k (9.5)

or, equivalently,

Opτ (xr ps) =
s∑

k=0

(
s

k

)
(1 − τ )kτ s−k p̂k x̂r p̂s−k (9.6)

where x̂sψ = xsψ and p̂sψ = (−i�∂x )
sψ for ψ ∈ S(R).

Proof Let us set ar,s(z) = xr ps; we have using the binomial formula

ar,s(τ x + (1 − τ )y, p) =
r∑

k=0

(
r

k

)
τ k(1 − τ )r−k xk yr−k ps .

Setting br,s,k(z) = xk yr−k ps we have (in the sense of distributions)

Opτ (br,s,k)ψ(x) = xk

2π�

∞∫

−∞

⎡

⎣
∞∫

−∞
e

i
�

p(x−y) psdp

⎤

⎦ yr−kψ(y)dy.

Using the Fourier inversion formula

1

2π�

∞∫

−∞
e

i
�

p(x−y) psdp = (−i�)sδ(s)(x − y) (9.7)

we thus have
Opτ (br,s,k)ψ = xk(−i�)s∂s

x (xr−kψ).

Formula (9.5) follows inserting this expression in (3.23). To prove that this formula
is equivalent to (9.6) the easiest method consists in remarking that we have the
conjugation formula

FOpτ (a)F−1 = Op1−τ (a ◦ J−1)

http://dx.doi.org/10.1007/978-3-319-27902-2_3
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where F is the Fourier transform (this equality will be proven in Chap. 12 as a
particular case of “symplectic covariance”). Since we have ar,s(J−1z) = (−1)r xr ps

and, using the standard properties of the Fourier transform,

FOpτ (ar,s)F−1 = (−1)r p̂k x̂ s p̂r−k

formula (9.6) follows. �

Notice that the formulas (9.5) and (9.6) were proposed in Sect. 3.2.4 of Chap.3
(formulas (3.16) and (3.17)) as intermediaries leading to the Born–Jordan quantiza-
tion by averaging over τ from 0 to 1.

We will see (Corollary 15) that Shubin operators admit a continuous harmonic
analysis of the type

Âτ = (
1

π�

)n
∫

a(z)T̂GR,τ (z)d
2nz

or

Âτ = (
1

2π�

)n
∫

aσ(z)T̂τ (z)d
2nz

where T̂GR,τ (z) and T̂τ (z) are generalizations of the usual Grossmann–Royer and
Heisenberg operators. This can be proven directly at the expense of rather heavy
calculations; to avoid these complications we will use an indirect approach, using
the notion of τ -Wigner transform.

9.2 The τ -Wigner and Ambiguity Transforms

We extend the notions of cross-Wigner and ambiguity transforms to the case of
τ -dependent operators.

9.2.1 The Operators ̂Tτ (z0) and ̂TGR,τ (z0)

Recall (formula (6.10)) that the Heisenberg operator is defined for ψ ∈ S ′(Rn) and
z0 = (x0, p0) by

T̂ (z0)ψ(x) = e
i
�

(p0x− 1
2 p0x0)ψ(x − x0). (9.8)

Definition 4 The Heisenberg τ -operator T̂τ (z0) is defined by the formula

T̂τ (z0)ψ(x) = e
i
�

(p0x−(1−τ )p0x0)ψ(x − x0) (9.9)

http://dx.doi.org/10.1007/978-3-319-27902-2_12
http://dx.doi.org/10.1007/978-3-319-27902-2_3
http://dx.doi.org/10.1007/978-3-319-27902-2_3
http://dx.doi.org/10.1007/978-3-319-27902-2_3
http://dx.doi.org/10.1007/978-3-319-27902-2_6
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that is, equivalently,
T̂τ (z0) = e

i
2�

(2τ−1)p0x0 T̂ (z0). (9.10)

We have T̂1/2(z0) = T̂ (z0), and

T̂τ (z0)
−1 = T̂1−τ (−z0). (9.11)

It is immediate to check the relations:

T̂τ (z0)T̂τ (z1) = e
i
�

στ (z0,z1)T̂τ (z1)T̂τ (z0) (9.12)

T̂τ (z0 + z1) = e− i
2�

στ (z0,z1)T̂τ (z0)T̂τ (z1) (9.13)

(they follow from the relations (6.14) and (6.15) satisfied by the Heisenberg opera-
tors), where στ is the bilinear form defined by

στ (z0, z1) = 2(1 − τ )p0x1 − 2τ p1x0. (9.14)

Note that στ fails to be antisymmetric if τ �= 1
2 , so it is not in general a symplectic

form.
Recall (formula (6.11)) that the Grossmann–Royer operators are defined by

T̂GR(z0)ψ(x) = T̂GR(z0)ψ(x) = e
2i
�

p0(x−x0)ψ(2x0 − x).

Definition 5 The τ -Grossmann–Royer operator is defined by

T̂GR,τ (z)ψ = 2−n Fσ(T̂τ (·)ψ)∨ (9.15)

where ∨ is the reflection operator z 
−→ −z.

Example 6 When τ = 1
2 the operator T̂GR,τ (z) is the usual Grossmann–Royer oper-

ator: in view formula (6.27) we have

T̂GR,1/2(z0)ψ(x) = 2−n Fσ[T̂1/2(·)ψ(x)](−z0)

= 2−n Fσ[T̂ (·)ψ(x)](−z0)

= T̂GR(z0)ψ(x)

The operators T̂GR,τ (z) and T̂GR(z) are related by a convolution formula:

Proposition 7 We have, for τ �= 1
2 ,

T̂GR,τ (z)ψ = θ(τ ) ∗ T̂GR(z)ψ (9.16)

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
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where the function θ(τ ) : R
2n −→ C is defined by

θ(τ )(z) = 2n

|2τ − 1|n e
2i

�(2τ−1) px
. (9.17)

(The convolution product in (9.16) is calculated with respect to the z variable.)

Proof We have, by definition of Fσ and (9.10),

Fσ[T̂τ (·)ψ](z) = (
1

2π�

)n
∫

e− i
�

σ(z,z′)e
i
2�

(2τ−1)p′x ′
T̂ (z′)ψd2nz′

that is, using the convolution formula (6.24),

Fσ[T̂τ (·)ψ] = (2π�)−n(Fσa) ∗ Fσ(T̂ (·)ψ)

where a(z′) = ei(2τ−1)p′x ′/2�. Taking into account the general relation ( f ∗ g)∨ =
f ∨ ∗ g∨ where ∨ is the phase space reflection operator z 
−→ −z, this equality can
be rewritten

Fσ[T̂τ (·)ψ]∨ = (2π�)−n(Fσa)∨ ∗ Fσ(T̂ (·)ψ)∨;

now (Fσa)∨ = Fσa since a(−z′) = a(z′), hence

Fσ[T̂τ (·)ψ]∨ = (2π�)−n(Fσa) ∗ Fσ(T̂ (·)ψ)∨.

In view of the identity

Fσ(T̂ (·)ψ)∨(z0) = 2n T̂GR,τ (z0)ψ

(formula (9.15)) it is thus sufficient to prove that

Fσa(z) = 2n

|2τ − 1|n e
2i

�(2τ−1) px = θ(τ )(z). (9.18)

We have (the integrals being interpreted as distributional brackets)

Fσa(z) = (
1

2π�

)n
∫

e− i
�

σ(z,z′)e
i
2�

(2τ−1)p′x ′
dn p′dn x ′

= (
1

2π�

)n
∫

e− i
�

[px ′−p′x− 1
2 (2τ−1)p′x ′]dn p′dn x ′

= (
1

2π�

)n
∫

e
i
�

p′x
[∫

e− i
�

[(p− 1
2 (2τ−1)p′)x ′]dn x ′

]
dn p′

=
∫

e
i
�

p′xδ(p − 1
2 (2τ − 1)p′)dn p′.

Setting p′′ = p − 1
2 (2τ − 1)p′ in the last integral we get (9.18). �

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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9.2.2 The Associated Transforms

Boggiatto and his collaborators [1, 2] have introduced a τ -dependent Wigner trans-
form Wigτ (ψ,φ) (also see Toft [6]) defined by

Wigτ (ψ,φ)(z) = (
1

2π�

)n
∫

e− i
�

pyψ(x + τ y)φ∗(x − (1 − τ )y)dn y. (9.19)

We are going to see that Wigτ (ψ,φ) can be obtained using the τ -Grossmann–Royer
operator.

9.2.3 Definition of Wigτ and Ambτ

The (cross-)Wigner transform was defined in the previous chapter (formula (7.3))
in terms of the Grossmann–Royer operator. We define the τ -Wigner transform
Wigτ (ψ,φ) using the τ -Grossmann–Royer operator:

Definition 8 Let (ψ,φ) ∈ S(Rn) × S(Rn). The function (ψ,φ) 
−→ Wigτ (ψ,φ)

defined by
Wigτ (ψ,φ)(z) = (

1
π�

)n 〈T̂GR,τ (z)φ|ψ〉 (9.20)

is called the τ -cross-Wigner function (or transform) of (ψ,φ).

Using the explicit expression

T̂GR,τ (z)ψ = θ(τ ) ∗ T̂GR(z)ψ (9.21)

(formula (9.16)) valid for τ �= 1
2 , where

θ(τ )(z) = 2n

|2τ − 1|n e
2i

�(2τ−1) px (9.22)

we get the following relation between Wigτ (ψ,φ) and Wig(ψ,φ):

Wigτ (ψ,φ) = Wig(ψ,φ) ∗ θ(τ ). (9.23)

As is the case for Wig, the mapping Wigτ is a sesquilinear and continuous mapping
S(Rn) × S(Rn) −→ S(R2n), in fact an element of the Cohen class (see Definition
9 in Chap.7). When ψ = φ one writes Wigτ (ψ,ψ) = Wigτψ (the τ -Wigner quasi
distribution).

The following result gives the explicit expression of Wigτ (ψ,φ) (cf. formula
(9.19)):

Proposition 9 We have, for (ψ,φ) ∈ S(Rn) × S(Rn) and τ ∈ R,

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
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Wigτ (ψ,φ)(z) = (
1

2π�

)n
∫

e− i
�

pyψ(x + τ y)φ∗(x − (1 − τ )y)dn y (9.24)

for τ �= 1
2 and Wig1/2(ψ,φ) = Wig(ψ,φ).

Proof Let us set, for τ �= 1
2 ,

βτ (z) = (2π�)n e
2i px

�(2τ−1) .

We have

Wig(ψ,φ) ∗ βτ (z) =
∫

Wig(ψ,φ)(z − z′)βτ (z
′)d2nz′

and, by definition of βτ ,

Wig(ψ,φ)(z − z′)βτ (z
′) =

∫
e− i

�
pye

i
�

p′
(

y+ 2x ′
2τ−1

)

×ψ(x − x ′ + 1
2 y)φ∗(x − x ′ − 1

2 y)dn y.

Integrating this expression with respect to p′ yields
∫

Wig(ψ,φ)(z − z′)βτ (z
′)dn p′ =

∫
e− i

�
pyδ(y + 2x ′

2τ−1 )

×ψ(x − x ′ + 1
2 y)φ∗(x − x ′ − 1

2 y)dn y

that is
∫

Wig(ψ,φ)(z − z′)βτ (z
′)dn p′ =

∫
e− i

�
pyδ(y + 2x ′

2τ−1 )

×ψ(x + τ y)φ∗(x − (1 − τ )y)dn y

where we have used the identity

δ(y + 2x ′
2τ−1 )ψ(x − x ′ + 1

2 y)φ(x − x ′ − 1
2 y)∗

= δ(y + 2x ′
2τ−1 )ψ(x + τ y)φ∗(x − (1 − τ )y)dn y.

Integrating with respect to x ′ and noting the identity

∫
δ(y + 2x ′

2τ−1 )d
n x ′ =

(
|2τ−1|

2

)n
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we get

Wig(ψ,φ) ∗ βτ (z) =
(

|2τ−1|
2

)n

×
∫

e− i
�

pyψ(x + τ y)φ∗(x − (1 − τ )y)dn y

which is equivalent to (9.24). �

Note that formula (9.24) also makes sense for (ψ,φ) ∈ L2(Rn) × L2(Rn) or
(ψ,φ) ∈ S(Rn) × S ′(Rn) provided the integral is interpreted in the distributional
sense.

In particular, when τ = 1
2 , one recovers the usual cross-Wigner transform

Wig(ψ,φ). If τ = 0 we get

Wig0(ψ,φ)(z) = (
1

2π�

)n/2
e− i

�
pxψ(x)(Fφ)∗(p)

which is, when ψ = φ, the Rihaczek–Kirkwood distribution well-known from time-
frequency analysis (Gröchenig [4], Boggiatto et al. [1]); if τ = 1 one gets the
so-called dual Rihaczek–Kirkwood distribution R∗(φ,ψ).

Definition 5 and the theory of the (cross-)ambiguity transform developed in the
previous chapters suggest:

Definition 10 Let (ψ,φ) ∈ S(Rn) × S(Rn). The τ -cross ambiguity transform of
(ψ,φ) is the function S(Rn) × S(Rn) −→ S(R2n) defined by

Ambτ (ψ,φ) = FσWigτ (ψ,φ). (9.25)

Equivalently,
Ambτ (ψ,φ)(z) = (

1
2π�

)n 〈T̂τ (z)φ|ψ〉. (9.26)

The equivalence of the definitions (9.25) and (9.26) follows from the definition
(9.15) of T̂GR,τ (z).

The τ -cross-ambiguity transform is related to the usual cross-ambiguity transform
by a very simple formula:

Proposition 11 Let (ψ,φ) ∈ S(Rn) × S(Rn). We have

Ambτ (ψ,φ)(z) = e− i
�

(2τ−1)pxAmb(ψ,φ)(z); (9.27)

that is

Ambτ (ψ,φ)(z) = (
1

2π�

)n
e− i

�
(2τ−1)px

×
∫

e− i
�

pyψ(y + τ x)φ∗(y − (1 − τ )x)dn y.
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Proof These formulas actually follow directly from definition (9.10) of the operator
T̂τ (z) using the definition (7.11) of the usual cross-ambiguity function; we however
give here a direct independent proof. In view of the definition (9.9) of T̂τ (z0)we have

T̂τ (z0)φ(x) = e
i
�

(p0x−(1−τ )p0x0)φ(x − x0)

hence

〈T̂τ (z0)φ|ψ〉 =
∫

e− i
�

(p0x ′−(1−τ )p0x0)φ∗(x ′ − x0)ψ(x ′)dn x ′;

setting y = x ′ − τ x0 we get

〈T̂τ (z0)φ|ψ〉 = e− i
�

(2τ−1)p0x0

∫
e− i

�
p0 yφ∗(y − (1 − τ )x0)ψ(y + τ x0)d

n y

hence (9.27). �

Notice that we recover the usual cross-ambiguity function (7.11) and (7.12) for
τ = 1

2 . We will set
Ambτψ = Ambτ (ψ,ψ)

and call Ambτψ the τ -ambiguity function.

9.2.4 Properties of Wigτ and Ambτ

It is easily verified using (9.24) that the τ -cross-Wigner transform satisfies the con-
jugation relation

Wigτ (φ,ψ)∗ = Wig1−τ (ψ,φ);

in particular
(Wigτψ)∗ = Wig1−τψ

henceWigτψ = Wigτ (ψ,ψ) is generically real if and only if τ = 1
2 . HoweverWigτψ

satisfies for ψ ∈ L1(Rn) ∩ L2(Rn) the same marginal properties as Wigψ (cf. (7.7)):

∫
Wigτψ(z)dn p = |ψ(x)|2,

∫
Wigτψ(z)dn x = |Fψ(p)|2 (9.28)

(see Boggiatto et al. [1]); this can be seen as a particular case of the theory of the
Cohen.

In Weyl calculus the introduction of the Wigner transform Wigψ of a square
integrable function has the following very simple and natural interpretation: it is,
up to a constant factor, the Weyl symbol of the projection operator �ψ of L2(Rn) on

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7


9.2 The τ -Wigner and Ambiguity Transforms 139

the ray {λψ : λ ∈ C}. This interpretation extends to the τ -dependent case without
difficulty:

Proposition 12 Let ψ ∈ L2(Rn), ψ �= 0, and let �ψ be the orthogonal projection
operator on the ray spanned by ψ. (i) We have

�ψ = (2π�)n Opτ (Wigτψ).

(ii) The τ -symbol of the operator with kernel K = ψ ⊗ φ∗ is the function
(2π�)n Wigτ (ψ,φ).

Proof (i) Let φ ∈ L2(Rn); by definition �ψφ = 〈φ|ψ〉ψ that is

�ψφ(x) =
∫

ψ(x)ψ(y)∗φ(y)dn y

hence the kernel of �ψ is K (x, y) = ψ(x)ψ(y)∗. Using a partial Fourier inversion
formula, formula (9.2) expressing the kernel of �ψ in terms of its τ -symbol πψ can
be rewritten

πψ(x, p) =
∫

e− i
�

py K (x + τ y, x − (1 − τ )y)dn y

=
∫

e− i
�

pyψ(x + τ y)ψ∗(x − (1 − τ )y)dn y

= (2π�)n Wigτψ(x, p).

The assertion (ii) is proven in a similar way replacing ψ ⊗ ψ∗ with ψ ⊗ φ∗ in the
argument above. �

We also have the following extension of the usual Moyal identity (7.16); it can
actually be checked directly using Proposition 16 inChap.7: in fact, a straightforward
calculation shows that the Fourier transform of the Cohen kernel θ(τ ) is given, for
τ �= 1

2 , by

θ̂(τ )(z) = (
1

2π�

)n (2τ−1)n

|2τ−1|n e− i(2τ−1)
2�

px . (9.29)

and hence |θ̂(τ )(z)| = (2π�)−n , and it follows that Wτ (ψ,φ) satisfies the Moyal
identity. For the sake of self-containedness we give here a direct derivation:

Proposition 13 Let 〈〈·|·〉〉 be the scalar product on L2(R2n) and |||·||| the associated
norm. We have

〈〈Wigτ (ψ,φ)|Wigτ (ψ
′,φ′)〉〉 = (

1
2π�

)n 〈ψ|ψ′〉 〈φ|φ′〉∗ (9.30)

and
〈〈Ambτ (ψ,φ)|Ambτ (ψ

′,φ′)〉〉 = (
1

2π�

)n 〈ψ|ψ′〉 〈φ|φ′〉∗ (9.31)

http://dx.doi.org/10.1007/978-3-319-27902-2_7
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for all ψ,ψ′,φ,φ′ ∈ L2(Rn). Hence, in particular,

|||Wigτ (ψ,φ)||| = |||Ambτ (ψ,φ)||| = (
1

2π�

)n/2 ||ψ|| ||φ||. (9.32)

Proof Let us set
I = (2π�)2n 〈〈Wigτ (ψ,φ)|Wigτ (ψ

′,φ′)〉〉.

We have, using the explicit expression (9.24) of Wigτ (ψ,φ),

I =
∫

e− i
�

p(y−y′)ψ∗(x + τ y)ψ′(x + τ y)

× φ(x − (1 − τ )y′)φ′∗(x − (1 − τ )y′)dn xdn pdn ydn y′.

The integral in p is equal to (2π�)n δ(y − y′), hence

I = (2π�)n
∫

ψ∗(x + τ y)ψ′(x + τ y)

× φ(x − (1 − τ )y)φ′∗(x − (1 − τ )y)dn xdn y.

Setting u = x + τ y and v = x − (1 − τ )y we have dnudnv = dn xdn y and hence

I = (2π�)n
∫

ψ∗(u)ψ′(u)φ(v)φ′∗(v)dnudnv

= (2π�)n 〈ψ|ψ′〉〈φ|φ〉∗

which proves (9.30); formula (9.32) follows. Formula (9.31) follows from (9.30)
using Plancherel’s formula (6.22). �

We will see (formula (9.45)) that the (formal) adjoint Â†
τ of the τ -pseudo-

differential operator Âτ = Opτ (a) is given by the formula

Opτ (a)† = Op1−τ (a
∗). (9.33)

In particular, we do not have Â†
τ = Âτ when the symbol a is real (unless τ = 1

2 ).
Shubin pseudo-differential operators are therefore not suitable for physical quanti-
zation, where quantization should turn a real observable into a selfadjoint operator.
From the physical point of view these operators are only useful intermediates for the
definition of the physically consistent Born–Jordan quantization procedure we study
in the next chapter.

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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9.3 Back to Shubin’s Operators

The machinery developed above allows us to study in a rather neat and simple way
the main properties of Shubin operators defined at the beginning of this chapter.

9.3.1 Harmonic Decomposition of τ -Operators

The Shubin pseudo-differential operators and the τ -cross-Wigner transform are
related by the following formula, which is the analogue of formula (7.19) in Propo-
sition 8 in Chap.7:

Proposition 14 Let ψ,φ ∈ S(Rn), a ∈ S ′(R2n), and τ ∈ R. Let Âτ = Opτ (a). (i)
We have

〈 Âτψ,φ∗〉 = 〈〈a,Wigτ (ψ,φ)〉〉 (9.34)

where 〈〈·, ·〉〉 is the distributional bracket on R
2n; in integral notation

∫
Âτψ(x)φ∗(x)dn x =

∫
a(z)Wigτ (ψ,φ)(z)d2nz. (9.35)

(ii) Similarly,

∫
Âτψ(x)φ∗(x)dn x =

∫
aσ(z)Ambτ (ψ,φ)(−z)d2nz (9.36)

where aσ = Fσa is the covariant symbol of Âτ .

Proof (i) It suffices to assume that a ∈ S(R2n). By definition of Wigτ we have

〈〈a,Wigτ (ψ,φ)〉〉 = (
1

2π�

)n
∫

e− i
�

pya(x, p)ψ(x + τ y)

× φ∗(x − (1 − τ )y)dn ydn pdn x;

setting x ′ = x − (1 − τ )y and y′ = x + τ y we get

〈〈a,Wigτ (ψ,φ)〉〉 = (
1

2π�

)n
∫

e− i
�

p(x ′−y′)

× a((1 − τ )x ′ + τ y′, p)ψ(y′)φ∗(x ′)dn y′dn pdn x ′

hence the equality (9.34) in view of definition (9.2) and (9.3) of the kernel of the
Shubin operator Âτ = Opτ (a) (or, using the integral definition (9.1) of that operator).
(ii) Formula (9.36) follows from formula (9.35) using Plancherel’s formula (6.23)
and definition (9.25) of the τ -cross-ambiguity transform. �

http://dx.doi.org/10.1007/978-3-319-27902-2_7
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Formula (9.34) allows us to define Âτψ = Opτ (a)ψ for arbitrary symbols a ∈
S ′(R2n) and ψ ∈ S(Rn) in the same way as is done for Weyl pseudo-differential
operators: choose φ ∈ S(Rn); then Wigτ (ψ,φ) ∈ S(R2n) and the distributional
bracket 〈a,Wigτ (ψ,φ)〉 is thus well-defined; by definition Âτψ is given by (9.34),
and Âτ is a continuous operator S(Rn) −→ S ′(Rn).

The following consequence of Proposition 14, announced at the beginning of
this chapter, justifies a posteriori the introduction of the τ -Grossmann–Royer and
Heisenberg operators:

Corollary 15 Let Âτ = Opτ (a), a ∈ S′(R2n). We have

Âτ = (
1

π�

)n
∫

a(z)T̂GR,1−τ (z)d
2nz (9.37)

Âτ = (
1

2π�

)n
∫

aσ(z)T̂1−τ (z)d
2nz (9.38)

where aσ is the symplectic Fourier transform of a.

Proof It is sufficient to prove these formulas for a ∈ S(R2n), the general case
following by duality and continuity. Let φ and ψ be in S(Rn). In view of formula
(9.36) in Proposition 14 we have

∫
Âτψ(x)φ∗(x)dn x =

∫
aσ(z)Ambτ (ψ,φ)(−z)d2nz

hence, taking formula (9.27) in Proposition 11 into account,

∫
Âτψ(x)φ∗(x)dn x =

∫
aσ(z)e− i

�
(2τ−1)pxAmb(ψ,φ)(−z)d2nz.

Since, by definition (7.11),

Amb(ψ,φ)(z) = (
1

2π�

)n 〈T̂ (z)φ|ψ〉

this equality can be written

∫
Âτψ(x)φ∗(x)dn x = (

1
2π�

)n
∫

aσ(z0)e
− i

�
(2τ−1)p0x0〈T̂ (−z0)φ|ψ〉d2nz0;

Heisenberg operators being unitary we have

〈T̂ (−z0)φ|ψ〉 = 〈T̂ (z0)
†φ|ψ〉 = 〈φ|T̂ (z0)ψ〉

http://dx.doi.org/10.1007/978-3-319-27902-2_7
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and hence
∫

Âτψ(x)φ∗(x)dn x = (
1

2π�

)n
∫

aσ(z0)e
− i

�
(2τ−1)p0x0〈φ|T̂ (z0)ψ〉d2nz0

= (
1

2π�

)n
∫

aσ(z0)e
− i

�
(2τ−1)p0x0

×
(∫

φ∗(x)T̂ (z0)ψ(x)dn x

)
d2nz0

which can be rewritten as
∫

Âτψ(x)φ∗(x)dn x = (
1

2π�

)n

×
∫ (∫

aσ(z0)e
− i

�
(2τ−1)p0x0 T̂ (z0)ψ(x)d2nz0

)
φ∗(x)dn x;

since φ is an arbitrary element of S(Rn) we thus have

Âτψ(x) =
∫

aσ(z0)e
− i

�
(2τ−1)p0x0 T̂ (z0)ψ(x)d2nz0

=
∫

aσ(z0)T̂1−τ (z0)ψ(x)d2nz0

which proves (9.38). Formula (9.37) follows using Parseval’s formula and the rela-
tion (9.15). �

9.3.2 Products, Transposes, Adjoints

The τ -operators can be composed exactly in the same way as usual Weyl operators,
replacing the symplectic form σ in (6.55) by the bilinear form στ defined by (9.14):

Proposition 16 Let Âτ = Opτ (a) and Bτ = Opτ (b) with a, b ∈ S(R2n) (or, more
generally a ∈ S ′(R2n) and b ∈ S(R2n)). We have

Âτ Bτ = Cτ = Opτ (c)

where the symplectic Fourier transform of the symbol c is given by

cσ(z) = (
1

2π�

)n
∫

e
i
2�

σ1−τ (z−z′,z′)aσ(z − z′)bσ(z′)d2nz′ (9.39)

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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where στ is a bilinear form given by

σ1−τ (z0, z1) = 2τ p0x1 − 2(1 − τ )p1x0. (9.40)

(In formula (9.39) the integral should be viewed as a distributional bracket when
a ∈ S ′(R2n) and b ∈ S(R2n).)

Proof Writing

Âτ = (
1

2π�

)n
∫

aσ(z)T̂1−τ (z)d
2nz (9.41)

Bτ = (
1

2π�

)n
∫

bσ(z)T̂1−τ (z)d
2nz (9.42)

we have
Âτ Bτ =

∫
aσ(z0)bσ(z1)T̂1−τ (z0)T̂1−τ (z1)d

2nz0d2nz1

and hence, using formula (9.13),

Âτ Bτ =
∫

e
i
�

σ1−τ (z0,z1)aσ(z0)bσ(z1)T̂1−τ (z0 + z1)d
2nz0d2nz1.

Making the change of variables z = z0 + z1, z′ = z1, the composition formula (9.39)
follows. �

The transpose of an operator A : S(Rn) −→ S ′(Rn) is defined as follows: it is
the unique operator AT : S(Rn) −→ S ′(Rn) such that 〈Aψ,φ〉 = 〈AT φ,ψ〉 for
all ψ,φ ∈ S(Rn). The formal adjoint of A† of A is defined as usual by 〈Aψ|φ〉 =
〈ψ|A†φ〉; equivalently:

A†ψ = (AT ψ∗)∗ for all ψ ∈ S(Rn). (9.43)

Proposition 17 Let Âτ = Opτ (a). We have (i) ÂT
τ = Op1−τ (a

T ) where

aT (x, p) = a(x,−p). (9.44)

(ii) We have
Â†

τ = Op1−τ (a
∗) (9.45)

Proof Assume thata ∈ S(R2n). Using the integral representation (9.1) of Âτ wehave

〈 Âτψ,φ〉 = (
1

2π�

)n
∫

e
i
�

p(x−y)a((1 − τ )x + τ y, p)ψ(y)φ(x)dn yd2nz

〈 ÂT
τ φ,ψ〉 = (

1
2π�

)n
∫

e
i
�

p(x−y)a((1 − τ )x + τ y, p)φ(y)ψ(x)dn yd2nz.
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Formula (9.44) follows, swapping the variables x and y in the second equality.
The general case follows by continuity. (Alternatively one can use the harmonic
decomposition (9.37) of Âτ .) Formula (9.45) follows, using (9.43). �

References

1. P. Boggiatto, G. De Donno, A. Oliaro, Time-frequency representations of Wigner type and
pseudo-differential operators. Trans. Amer. Math. Soc. 362(9), 4955–4981 (2010)

2. P.Boggiatto,B.K.Cuong,G.DeDonno,A.Oliaro,Weighted integrals ofWigner representations.
J. Pseudo-Diff. Oper. Appl. (2010)

3. M. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics, vol. 7
(Springer Science & Business Media, 2011)

4. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2000)
5. M.A. Shubin, Pseudodifferential Operators and Spectral Theory (Springer, 1987) (original

Russian edition in Nauka, Moskva, 1978)
6. J. Toft, Multiplication properties in pseudo-differential calculus with small regularity on the

symbols. J. Pseudo-Diff. Oper. Appl. 1, 101–138 (2010)



Chapter 10
Born–Jordan Pseudo-Differential Operators

In Chap.7 we defined Born–Jordan quantization by using the properties of the Cohen
class. In this chapter we use the theory of Shubin operators and define the Born–
Jordan operator ÂBJ with symbol a as being the average over the interval [0, 1]
of the τ -operators Âτ with the same symbol. This definition is consistent with the
observations made in our discussion of the monomial case in Chap. 3 where we
showed that the Born–Jordan quantization of a monomial can be obtained by a
similar averaging procedure. We will prove that this alternative definition leads to
the same notion of operator as formerly; this will require some work relying on
previous results due to Boggiatto and his collaborators [1–3], who addressed the
problem of how to damp unwanted interference effects in time-frequency analysis.

10.1 Born–Jordan Pseudo-Differential Operators

We now study Born–Jordan operators using the Shubin pseudo-differential calculus
developed in the last chapter.

10.1.1 Definition and Justification

Everything in this chapter stems from the following definition:

Definition 1 Let a ∈ S ′(R2n) be an arbitrary symbol. The Born–Jordan operator
ÂBJ = OpBJ(a) is defined for ψ ∈ S(Rn) by:

ÂBJψ(x) =
1∫

0

Âτψ(x)dτ (10.1)

where Âτ = Opτ (a) is the τ -operator with symbol a.

© Springer International Publishing Switzerland 2016
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148 10 Born–Jordan Pseudo-Differential Operators

It immediately follows from this definition that, as in the Weyl case, the formal
adjoint of ÂBJ = OpBJ(a) is Â†

BJ = OpBJ(a
∗): we have

Â†
BJ =

1∫

0

Op1−τ (a
∗)dτ = OpBJ(a

∗).

In particular, the Born–Jordan operator ÂBJ is formally self-adjoint if and only if
its symbol is real.

To justify this definition (and terminology) we have to show that one recovers the
Born–Jordan quantization formulas for polynomials discussed in Chap. 3. That is,
we have to show that the definition (10.1) implies that we have

OpBJ(xr ps) = 1

s + 1

s∑

k=0

p̂s−k x̂r p̂k . (10.2)

In Proposition 1 of Chap.9 we showed that the τ -operator associated with the
monomial xr ps is given by any of the two equivalent expressions

Opτ (xr ps) =
s∑

k=0

(
s

k

)
(1 − τ )kτ s−k p̂k x̂r p̂s−k (10.3)

Opτ (xr ps) =
r∑

k=0

(
r

k

)
τ k(1 − τ )r−k x̂ k p̂s x̂r−k . (10.4)

Integrating in τ from 0 to 1 the equality (10.3) yields

OpBJ(xr ps) =
s∑

k=0

(
s

k

)
B(s − k + 1, k + 1) p̂k x̂r p̂s−k

where

B(u, v) =
1∫

0

tu−1(1 − t)v−1dt = �(u)�(v)

�(u + v)

is Euler’s beta function (Jeffreys [7]). Since

B(k + 1, s − k + 1) = k!(s − k)!
(s + 1)!

http://dx.doi.org/10.1007/978-3-319-27902-2_3
http://dx.doi.org/10.1007/978-3-319-27902-2_9
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we have

OpBJ(xr ps) = 1

s + 1

r∑

k=0

p̂k x̂r p̂s−k

which is the same thing as (10.2). Using formula (10.4) the same argument would
yield the alternative equality

OpBJ(xr ps) = 1

r + 1

r∑

k=0

x̂ k p̂s x̂r−k . (10.5)

An immediate consequence of the discussion above is that the Weyl and Born–
Jordan quantizations are identical for all quadratic Hamiltonians. Suppose in fact
that

H(z) =
∑

j

α j p2
j + β j x

2
j + 2γ j p j x j .

We immediately see that OpBJ(H) = OpW(H) when the γ j are all zero; when
there are cross-terms x j p j the claim follows using formula (10.2) (or (10.5)) with
r = s = 1; this shows that the Born–Jordan quantization of x j p j is 1

2 (x̂ j p̂ j + p̂ j x̂ j )

which is the same result as that obtained usingWeyl quantization (cf. formula (2.10)).
In both cases, the corresponding operator is thus formally given by

Ĥ = 1

2
(̂x, p̂)M (̂x, p̂)T

where M is the Hessian matrix of H . The quadratic case is important in the context
of the metaplectic group and will be discussed in Chap. 12: it shows that the “lift”
of a linear Hamiltonian flow to the metaplectic group leads to the same Schrödinger
equation, whether one uses the Weyl or the Born–Jordan scheme.

We will see later in this chapter that the usual “physical” Hamiltonians also have
the same quantizations in both the Weyl and Born–Jordan schemes, even when a
magnetic field is present.

10.1.2 Born–Jordan and Weyl Operators

The results above are of course not the end of the game, because we still have to
prove that the rule (10.1) leads to the same operators as those defined in Chap.7
using the Born–Jordan kernel.

Recall that the sinc function was defined in Sect. 8.1.

http://dx.doi.org/10.1007/978-3-319-27902-2_2
http://dx.doi.org/10.1007/978-3-319-27902-2_12
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_8
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Proposition 2 (i) Let a ∈ S ′(R2n) and ψ ∈ S(Rn). The Born–Jordan operator
ÂBJ = OpBJ(a) is given by

ÂBJψ = (
1

2π�

)n
∫

aσ(z)χBJ(z)T̂ (z)ψd2nz (10.6)

where the function χBJ is defined by

χBJ(z) = sinc(px/2�). (10.7)

(ii) The covariant Weyl symbol aBJ,σ of ÂBJ is given by the explicit formula

aBJ,σ(z) = aσ(z)χBJ(z). (10.8)

(iii) In particular the operator ÂBJ is a continuous operator S(Rn) −→ S ′(Rn) for
every a ∈ S ′(R2n).

Proof The statement (ii) immediately follows from formula (10.6) taking the har-
monic representation (6.40) of Weyl operators into account. The proof of formula
(10.6) goes as follows (cf. [6], Proposition 11). Recall (formula (9.38) in Corollary
1 in Chap.9) that we have

Âτψ = (
1

2π�

)n
∫

aσ(z)T̂1−τ (z)ψd2nz.

Integrating both sides of the equality with respect to τ ∈ [0, 1] we get

ÂBJ = (
1

2π�

)n
∫

aσ(z)

⎛

⎝
1∫

0

T̂1−τ (z)dτ

⎞

⎠ d2nz.

Using (formula 9.10), we have for px �= 0,

1∫

0

T̂τ (z)dτ =
⎛

⎝
1∫

0

e
i
2�

(2τ−1)px dτ

⎞

⎠ T̂ (z)

= sin(px/2�)

px/2�
T̂ (z)

= sinc
( px

2�

)
T̂ (z)

hence formula (10.6), noting that the equality holds by continuity for px = 0. (iii)
The statement follows from the fact that aBJ,σ ∈ S ′(Rn) since ∂α

z χBJ ∈ C∞(R2n) ∩
L∞(R2n) for all α ∈ N

2n . �

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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The proof of the following composition result immediately follows from the char-
acterization (10.8) above using Proposition 18 in Chap.6 (ii):

Proposition 3 Let ÂBJ = OpBJ(a) and B̂BJ = OpBJ(b) be two Born–Jordan pseudo-
differential operators ; we suppose that Ĉ = ÂBJ B̂BJ exists as an operatorS(Rn) −→
S ′(Rn). (i) The covariant symbol of the Weyl operator Ĉ = OpW(c) is given by the
formula

cWσ (z) =
∫

e
i
2�

σ(z,z′)aσ(z − z′)b(z′)χBJ(z − z′)χBJ(z
′)d2nz′ (10.9)

where χBJ is defined by (10.7). (ii) If we can factorize cWσ as cWσ (z) = χ(z)χBJ(z)
where χ ∈ S ′(Rn) then χ = cσ with Ĉ = OpBJ(c).

Note that neither χ nor c are uniquely defined by the relation cWσ (z) = χ(z)χBJ(z)
since χBJ(z) = 0 for infinitely many values of z.

10.2 The Born–Jordan Transform Revisited

In [1, 2] Boggiatto et al. consider the average of the τ -cross-Wigner transforms
Wτ (ψ,φ) over the interval [0, 1] that is

Q(ψ,φ)(z) =
1∫

0

Wigτ (ψ,φ)(z)dt. (10.10)

It immediately follows from (9.28) that the marginal properties hold for the distrib-
ution Qψ = Q(ψ,φ): if ψ ∈ L1(Rn) ∩ L2(Rn) and ψ̂ ∈ L1(Rn) then

∫
WigBJψ(z)dn p = |ψ(x)|2,

∫
WigBJψ(z)dn x = |ψ̂(p)|2. (10.11)

In fact, it is easy to verify, using Proposition 11 in Chap.7 that Q belongs to the
Cohen class. We have in fact the following essential result which shows that the
distribution of Boggiatto et al. is just the Born–Jordan distribution earlier defined in
Chap.8 in Definition 1):

Proposition 4 The quasi-distribution associated to (10.10) by

Qψ(z) =
1∫

0

Wigτψ(z)dτ

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_9
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_8
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is the Born–Jordan quasi-distribution (8.4), that is

Qψ = WigBJψ ∗ θBJ (10.12)

where θBJ is the Born–Jordan kernel.

Proof See Boggiatto et al. [1]. �

As expected from the Weyl and Shubin cases, the Born–Jordan operators can be
expressed in terms of their symbol and WigBJ(ψ,φ); we have already proved this
in Chap.7, but here is an independent alternative proof using the approach outlined
above:

Proposition 5 Let a ∈ S ′(R2n) be a symbol. The operator ÂBJ = OpBJ(a) and the
cross-Born–Jordan transform WigBJ(ψ,φ) are related by the formula

〈 ÂBJψ,φ∗〉 = 〈〈a,WigBJ(ψ,φ)〉〉 (10.13)

for all (ψ,φ) ∈ S(Rn) × S(Rn); in integral notation

∫
ÂBJψ(x)φ∗(x)dn x =

∫
a(z)WigBJ(ψ,φ)(z)d2nz. (10.14)

Proof In view of formula (9.34) we have

〈 Âτψ,φ∗〉 = 〈〈a,Wigτ (ψ,φ)〉〉;

integrating this equality from 0 to 1 with respect to the variable τ yields (10.13). �

10.2.1 Born–Jordan Versus Weyl

Born–Jordan and Weyl quantization are identical for “physical” Hamiltonians of the
type “kinetic energy plus potential”. Suppose in fact that

H(z) =
n∑

j=1

1

2m j
p2

j + V (x) (10.15)

then Ĥ = OpBJ(H) is given by

Ĥ = −
n∑

j=1

�
2

2m j

∂2

∂x2
j

+ V (x). (10.16)

http://dx.doi.org/10.1007/978-3-319-27902-2_8
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_9
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This can be seen by noting that OpBJ(p2
j ) = −�

2∂2/∂x2
j taking r = 0 and s = 2 in

formula (10.5) and then using definition (9.1):

Opτ (V )ψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)V (τ x + (1 − τ )y)ψ(y)dn ydn p

=
∫

V (τ x + (1 − τ )y)ψ(y)δ(x − y)dn y

= V (x)ψ(x);

integrating in τ from 0 to 1 yields OpBJ(V )ψ = V ψ and hence (10.16).
More generally the Born–Jordan and Weyl quantizations of the magnetic Hamil-

tonian

H(z, t) =
n∑

j=1

1

2m j

(
p j − A j (x, t)

)2 + V (x, t) (10.17)

also coincide. To show this we need the following intermediary result:

Lemma 6 Let A : R
n × Rt −→ R be a smooth function. Then

OpBJ(p jA)ψ = OpW(p jA)ψ = − i�

2

[
∂

∂x
(Aψ) + A ∂

∂x
ψ

]
. (10.18)

Proof It is sufficient to assume n = 1. Using definition (9.1) of Âτ = Opτ (a) we
have

Opτ (pA)ψ(x) = 1
2π�

∫
e

i
�

p(x−y) pA(τ x + (1 − τ )y, t)ψ(y)dydp

=
∞∫

−∞

[
1

2π�

∫ ∞

−∞
e

i
�

p(x−y) pdp

]
A(τ x + (1 − τ )y, t)ψ(y)dy.

In view of formula (9.7) the expression between the square brackets is −i�δ′(x − y)

hence

Opτ (pA)ψ(x) = −i�

∞∫

−∞
δ′(x − y)A(τ x + (1 − τ )y, t)ψ(y)dy

= −i�

∞∫

−∞
δ(x − y) ∂

∂y [A(τ x + (1 − τ )y, t)ψ(y)] dy

= −i�
[
(1 − τ ) ∂

∂x (Aψ) + τA ∂
∂x ψ

]
.

Formula (10.18) follows setting in the Weyl case τ = 1
2 and integrating from 0 to 1

in the Born–Jordan case. �

http://dx.doi.org/10.1007/978-3-319-27902-2_9
http://dx.doi.org/10.1007/978-3-319-27902-2_9
http://dx.doi.org/10.1007/978-3-319-27902-2_9
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It follows that both Weyl and Born–Jordan quantizations of a (time-dependent)
magnetic Hamiltonian (10.17) are the same. In fact, expanding the terms(

p j − A j (x, t)
)2

we get

H =
n∑

j=1

1

2m j
p2

j −
n∑

j=1

1

m j
p jA j +

n∑

j=1 j

A2
j + V .

We have seen above that the terms p2
j and A2

j + V have identical quantizations; in
view of formula (10.18) this also true of the cross-terms p j A j , leading in both cases
to the expression

Ĥ =
n∑

j=1

1

2m j

(
−i�

∂

∂x j
− A2

j (x, t)

)2

+ V (x, t) (10.19)

well-known from standard quantum mechanics.

10.3 Tensor Products of Observables

Let b and c be classical observables, defined on, respectively R
2n1 and R

2n2 . Writing
n = n1 + n2 their tensor product b ⊗ c is the observable on R

2n ≡ R
2n1 × R

2n2

defined by

(b ⊗ c)(z1, z2) = b(z1)c(z2)

(it is indeed an observable, because tensor products of tempered distributions are
themselves tempered distributions).

10.3.1 Weyl Operators

We now address the following question: for which quantizations Op do we have
Op(b⊗c) = Op(b)⊗Op(c)? Let us prove that this is the case forWeyl quantization:

Proposition 7 Let b ∈ S ′(R2n1) and c ∈ S ′(R2n2). We have b ⊗ c ∈ S ′(R2n) with
n = n1 + n2 and

OpW(b ⊗ c) = OpW(b) ⊗ OpW(c). (10.20)

Proof Using the harmonic representation (6.40) of Weyl operators in Sect. 6.3, the
operator Â = OpW(b ⊗ c) is given by

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
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Â = (
1

2π�

)n
∫

(b ⊗ c)σ(z0)T̂ (z0)d
2nz0;

now the symplectic Fourier transform respects (as does the usual Fourier transform)
tensor products: (b ⊗ c)σ = bσ ⊗ cσ so we have

Â = (
1

2π�

)n
∫

(bσ ⊗ cσ)(z0)T̂ (z0)d
2nz0. (10.21)

Split now the phase space variable z in two two components z1 ∈ R
2n1 and z2 ∈ R

2n2

so that z = (z1, z2), and denote by σ1 and σ2 the symplectic forms on R
2n1 and R

2n2 ,
respectively. We clearly have σ = σ1 ⊕ σ2, that is

σ(z, z′) = σ1(z1, z′
1) + σ2(z2, z′

2);

on the operator level this relation becomes, setting ẑ = (̂z1, ẑ2) and z′ = (z′
1, z′

2),

σ(̂z, z′) = σ1(̂z1, z′
1) + σ2(̂z2, z′

2).

It follows that the Heisenberg operator T̂ (z0) = e− i
�

σ(ẑ,z0) can be written as a tensor
product

T̂ (z0) = T̂ (z0,1) ⊗ T̂ (z0,2) (10.22)

where z0 = (z0,1, z0,2). Insertion in (10.21) then yields

Â = (
1

2π�

)n
∫

bσ(z0,1)cσ(z0,2)T̂ (z0,1) ⊗ T̂ (z0,2)d
2n1 z0,1d2n2 z0,2

that is Â = B̂ ⊗ Ĉ with

B̂ = (
1

2π�

)n1

∫
bσ(z0,1)T̂ (z0,1)d

2n1 z0,1

Ĉ = (
1

2π�

)n2

∫
cσ(z02)T̂ (z0,2)d

2n2 z0,2

where T̂ (z0,1) and T̂ (z0,2) are Heisenberg operators on R
2n1 and R

2n2 , respectively.
Remarking that B̂ = OpW(b) and Ĉ = OpW(c) concludes the proof. �

A similar result follows for the cross-ambiguity and Wigner transforms:

Proposition 8 Let ψ1,φ1 ∈ S(Rn1) and ψ2,φ2 ∈ S(Rn2); then ψ1 ⊗ ψ2 ∈ S(Rn)

where n = n1 + n2, and we have

Wig(ψ1 ⊗ ψ2,φ1 ⊗ φ2) = Wig1(ψ1,φ1) + Wig2(ψ2,φ2) (10.23)

Amb(ψ1 ⊗ ψ2,φ1 ⊗ φ2) = Amb1(ψ1,φ1) + Amb2(ψ2,φ2) (10.24)
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where Wig1 and Wig2 (resp. Amb1 and Amb2) are the cross-Wigner (resp. cross-
ambiguity) transforms on R

n1 and R
n2 .

Proof Formula (10.24) immediately follows from the splitting (10.22) of the Heisen-
berg operator using definition (7.11) of the cross-ambiguity transform. Formula
(10.23) is proven in a similar manner using definition (7.3) of the cross-Wigner
transform, noting that the Grossmann–Royer operator can be split as

T̂GR(z) = T̂GR(z1) ⊗ T̂GR(z2). (10.25)

�

10.3.2 The Born–Jordan Case

The situation is very different for Born–Jordan operators. It may very well happen
(as in the example in the previous subsection) that

OpBJ(b ⊗ c) �= OpBJ(b) ⊗ OpBJ(c). (10.26)

To see this, we recall that a Born–Jordan operator ÂBJ = OpBJ(a) can always be
written

ÂBJ = (
1

2π�

)n
∫

aσ(z) sinc
( px
2�

)
T̂ (z)d2nz (10.27)

where

sinc
( px

2�

)
= sin(px/2�)

px/2�
.

It follows that if b ∈ S ′(R2n1) and c ∈ S ′(R2n2) then the integrand in

OpBJ(b ⊗ c) = (
1

2π�

)n
∫

bσ(z1)cσ(z2) sinc
( p1x1+p2x2

2�

)
T̂ (z)d2n1 z1d2n2 z2

cannot in general be split into the product of a function depending only on z1 and
one depending only on z2, as in the Weyl case, because we have

sinc

(
p1x1 + p2x2

2�

)
�= sinc

( p1x1
2�

)
sinc

( p2x2
2�

)
.

This is of course not a peculiarity of the Born–Jordan quantization per se; the
same phenomenon happens when one deals with an arbitrary Cohen kernel which
fails to split under tensor products, i.e. such that θ(x, p) �= θ1(x1, p1)θ2(x2, p2).
This also shows how simple Weyl quantization is compared with all other schemes.

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
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10.3.3 Illustration: The “Angular Momentum Dilemma”

There is a little annoying practical fact which is being episodically discussed and
commented upon in the literature: the Weyl correspondence fails to transform the
square of the classical angular momentum to its accepted quantum analogue. In
fact, the Weyl quantization of the classical angular-momentum-squared is not just
the quantum angular momentum squared operator, but it further contains a constant
term 3

2�
2 (formula (10.32)). This extra term is actually physically significant, since

it accounts for the nonvanishing angular momentum of the ground-state Bohr orbit
in the hydrogen atom (see Dahl and Schleich [4]). This vexing fact already puzzled
Pauling in his textbook [8], and has been later taken up by Shewell [9], Dahl and
Springborg [5], and many others. We now come back to the angular momentum
dilemma,whichwe solve in two different ways usingBorn–Jordan quantization. This
dilemma can be stated as follows: how does one bring the fact that the orbital angular
momentum � = r × p in a Bohr orbit of the 1s state of the hydrogen atom is � into
accordance with the fact that the same angular momentum in conventional quantum
mechanics based on the Schrödinger picture is zero? In fact, writing r = (x1, x2, x3)
and p = (p1, p2, p3) we have

� = (x2 p3 − x3 p2, x3 p1 − x1 p3, x1 p2 − x2 p1) (10.28)

as the classical angular momentum vector. Consider now the square

�23 = x2
1 p2

2 + x2
2 p2

1 − 2x1 p1x2 p2 (10.29)

of the component �3 = x1 p2 − x2 p1; its Weyl quantization is

(�̂23)W = x̂2
1 p̂2

2 + x̂2
2 p̂2

1 − 1
2 (̂x1 p̂1 + p̂1 x̂1)(̂x2 p̂2 + p̂2 x̂2). (10.30)

It turns out that this is in contradiction with what quantum mechanics in the
Schrödinger picture predicts, and which is

(�̂23)QM = x̂2
1 p̂2

2 + x̂2
2 p̂2

1 − (̂x1 p̂1 p̂2 x̂2 + p̂1 x̂1 x̂2 p̂2). (10.31)

(This is obtained by formally expanding the square (̂x1 p̂2 − x̂2 p̂1)
2.) Using the

commutation relations [̂x1, p̂1] = i� twice, one shows that the expressions (10.30)
and (10.31) differ by the quantity 1

2�
2, and this leads to an overall difference of 3

2�
2

between these quantizations of �2:

(�̂2)W = (�̂2)QM + 3
2�

2 (10.32)

(cf. Shewell [9], formula (4.10); for a generalization to higher dimensions see Dahl
and Schleich [4]).
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Let us show that this contradiction disappears if we use the Born–Jordan quan-
tization of the classical quantity �2 in place of Weyl quantization. The two terms
x2
1 p2

2 and x2
2 p2

1 immediately yield x̂2
1 p̂2

2 and x̂2
2 p̂2

1 (as they would in any quantization
scheme), so let us focus on the cross-term a(z) = 2x1 p1x2 p2 (we are writing here
z = (x1, x2, p1, p2)). Using the standard formula giving the Fourier transform of a
monomial we get

aσ(z) = 2�
4(2π�)2δ′(z) (10.33)

where we are using the notation

δ(z) ≡ δ(x1) ⊗ δ(x2) ⊗ δ(p1) ⊗ δ(p2),

δ′(z) ≡ δ′(x1) ⊗ δ′(x2) ⊗ δ′(p1) ⊗ δ′(p2).

Expanding the function sin(px/2�) in a Taylor series at the origin, we get

χBJ(z) = 1 +
∞∑

k=1

(−1)k

(2k + 1)!
( px

2�

)2k

and hence, observing that (px)2kδ′(z) = 0 for k > 1,

aσ(z)χBJ(z) = aσ(z)

(
1 − (px)2

24�2

)
. (10.34)

Comparing the expressions defining respectively the Weyl and Born–Jordan quanti-
zations of a, it follows that the difference �(a) = OpW(a) − OpBJ(a) is given by

�(a)ψ =
(

1

2π�

)2 1

24�2

∫
aσ(z)(px)2T̂ (z)ψdz

= �
2

12

∫
δ′(z)(px)2T̂ (z)ψdz.

Using the elementary properties of the Dirac function we have

δ′(z)(px)2 = 2δ(z) (10.35)

and hence

�(a)ψ = �
2

6

∫
δ(z)T̂ (z)ψd4z = 1

6�
2ψ

the second equality because

δ(z)T̂ (z) = δ(z)e− i
�

σ(̂z,z) = δ(z).
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Since �2 = �21 + �22 + �23 a similar argument for the terms �21 and �22 shows that

(�̂2)W − (�̂2)BJ = 1
2�

2, (10.36)

hence, taking (10.32) into account:

(�̂2)QM = (�̂2)W − 3
2�

2 = (�̂2)BJ − �
2. (10.37)

Summarizing these observations, we are in the following situation: as observed by
Dahl and Springborg we have

〈ψ|(�̂2)W|ψ〉 = 3
2�

2 (10.38)

while

〈ψ|(�̂2)BJ|ψ〉 = �
2 (10.39)

which is the result obtained byDahl and Springborg [5] using an averaging procedure
over what they call a “classical subspace”. The Born–Jordan quantization procedure
thus allows us to recover the value of the Bohr orbital angular momentum �

2.
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Chapter 11
Weak Values and the Reconstruction Problem

The notions of weakmeasurements and values has become a very popular topic, with
many fascinating ramifications (e.g. time-symmetric quantummechanics, the theory
of mutually unbiased bases, superoscillations, retrocausality, to name a few). It is
also the subject of many ontological and philosophical debates, which are far from
being resolved, and which we do not address here. In this chapter we will discuss the
theory of weak values from amathematical—and hence rigorous—point of view, and
somewhat extend previous results of ours to the case of Born–Jordan quantization.
Wewill in particular focus on the reconstruction problem,which is related to the Pauli
conjecture about the determination of a state knowing its position and momentum.
We will see that in the Born–Jordan case, this question leads to a—yet!—unsolved
problem.

11.1 The Notion of Weak Value

The notion of weak value and weak measurement was introduced by Aharonov,
Albert, Bergmann, Lebowitz and further developed by Vaidman; a non-exhaustive
list of references is [1–8]. We begin by giving the definition of a weak values; we
there after discuss some motivations.

11.1.1 Motivation and Definition

Let Â be a self-adjoint operator having eigenvalues a1, a2, . . . with corresponding
eigenfunctions ψ1,ψ2, . . . . In an ideal measurement (or “von Neumann measure-
ment”, as it is also called) the expectation value of Â in a quantum state |ψ〉 is given
by the familiar expression

〈 Â〉ψ = 〈ψ| Â|ψ〉
〈ψ|ψ〉 ; (11.1)

© Springer International Publishing Switzerland 2016
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162 11 Weak Values and the Reconstruction Problem

if the sequence of eigenvalues lies in some interval [amin, amax] then we will have
amin ≤ 〈 Â〉ψ ≤ amax. In fact, if one performs the ideal measurement the outcome
will always be one of the eigenvalues λ j , and the probability of this outcome is
|λ j |2/||ψ j ||2 whereλ j is the coefficient ofψ j in theFourier expansionψ = ∑

j λ jψ j .
Moreover the system will be left in the state ψ j after the measurement yielding the
value a j (“wavefunction collapse”). Assuming that the coupling with the measuring
device is so small that the change of quantum state due to the interaction can be
neglected. The eigenvalues are then not fully resolved, and the system is left in a
superposition of these unresolved states. Now, if an appropriate post-selection is
made, this superposition can interfere to produce a measurement result which can
be significantly outside the range of the eigenvalues of the observable Â. This is
achieved by making the coupling with the measuring device so small that the change
of quantum state due to the interaction can be neglected. The post-selection can then
be accomplished by making an ideal measurement of some other observable B̂ and
selecting one particular outcome. Thus, the post-selected state |φ〉 is an eigenstate of
B̂ which can be expressed as a linear combination of the eigenstates of Â.

Definition 1 Let φ and ψ be square integrable functions. If 〈φ|ψ〉 �= 0 the weak
value of Â with respect to the states |φ〉 and |ψ〉 is the complex number

〈 Â〉φ,ψ
weak = 〈φ| Â|ψ〉

〈φ|ψ〉 =
∫

φ∗(x) Âψ(x)dn x∫
φ∗(x)ψ(x)dn x

. (11.2)

Observe that the complex number 〈 Â〉φ,ψ
weak really only depends on the states |φ〉 and

|ψ〉 since, by sequilinearity, we have 〈 Â〉λφ,λψ
weak = 〈 Â〉φ,ψ

weak for every complex number
λ �= 0. Also notice that we are loosely talking about the “quantum observable Â”
without specifying for themoment to which classical observable it is associated with;
the definition above is thus quite general.

Here is a suggestive description of the relation between the notion of weak value
and retrocausality. Assume that at a time tin an observable Â is measured and a
non-degenerate eigenvalue was found: |ψ(tin)〉 = | Â = a〉; similarly at a later time
tfin a measurement of another observable B̂ yields |φ(tfin)〉 = |B̂ = b〉. Let t be
some intermediate time: tin < t < tfin. Following the time-symmetric approach to
quantum mechanics (see the review in [4]), at this intermediate time the system is
described by the two wavefunctions

ψ(t) = U (t, tin)ψ(tin), φ(t) = U (t, tfin)φ(tfin) (11.3)

where U (t, t ′) is the unitary operator defined by the Schrödinger equation

i�
d

dt
U (t, t ′) = ĤU (t, t ′), U (t, t) = Id (11.4)
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and Ĥ is the quantum Hamiltonian (assumed to be time-independent); that is

U (t, t ′) = e−i Ĥ(t−t ′)/�. Notice that the wavefunction φ(t) travels backwards in time
since t < tfin. Consider now the superposition of the two states |ψ(t)〉 and |φ(t)〉;
obviously the expectation value 〈 Â〉ψ(t)+φ(t) of this superposition is given by (drop-
ping the reference to t)

〈 Â〉ψ+φ = ||φ||
||φ + ψ|| 〈 Â〉φ + ||ψ||

||φ + ψ|| 〈 Â〉ψ

+ 2

||φ + ψ||Re
(
〈φ|ψ〉〈 Â〉ψ,φ

weak

)

that is

〈 Â〉ψ+φ = ||φ||
||φ + ψ|| 〈 Â〉φ + ||ψ||

||φ + ψ|| 〈 Â〉ψ

+ 2

||φ + ψ||Re〈φ| Â|ψ〉.

This makes apparent the importance of the cross-term 〈φ(t)| Â|ψ(t)〉 appearing in
the definition (11.2) of weak values. This observation is the starting point of time-
symmetric quantummechanics, where the actual quantum state consists of twowave-
functions φ(t) and ψ(t) (see Aharonov and Vaidman [6, 8], Aharonov et al. [4]).

11.1.2 Weak Values and the Cohen Class:
The Phase Space Approach

Another way of making explicit the relation between interference effects and weak
values is to use the Cohen class formalism. Returning to the situation described
above, and dropping again for notational simplicity the reference to the time t , the
Wigner distribution of the state |ψ〉 + |φ〉 is

Q(ψ + φ) = Qψ + Qφ + 2ReQ(ψ,φ) (11.5)

where

Q(ψ,φ) = Wig(ψ,φ) ∗ θ (11.6)

for some θ ∈ S ′(R2n) (see Chap.7 for the definition of the Cohen class). It follows
that we can write

Re
(
〈φ|ψ〉〈 Â〉ψ,φ

weak

)
=

∫
Re(Q(φ,ψ)(z)a(z))d2nz

http://dx.doi.org/10.1007/978-3-319-27902-2_7
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where a is the symbol of the operator Â in the quantization corresponding to Q (see
Proposition 17 in Chap.7). These relations make obvious the fact that the weak value
is due to the interference term coming from the quasi-distribution Q via the classical
observable a such that Â = OpQ(a).

Proposition 2 Let Q be an element of the Cohen class such that Q : S(Rn) ×
S(Rn) −→ S(R2n). Assume that Â = OpQ(a) for some a ∈ S ′(R2n) and that
Â : S(Rn) −→ S(Rn). We have, for all (ψ,φ) ∈ L2(Rn) × L2(Rn):

〈 Â〉φ,ψ
weak = 1

〈φ|ψ〉
∫

a(z)Q(ψ,φ)(z)d2nz. (11.7)

Proof In view of Proposition 17 in Chap.7 the operator Â is related to Q by the
formula (7.33)

〈 Âψ,φ∗〉 = 〈〈a, Q(ψ,φ)〉〉

that is
∫

Âψ(x)φ∗(x)dn x =
∫

a(z)Q(ψ,φ)(z)d2nz

hence formula (11.7) since φ,ψ ∈ L2(Rn). �

11.2 A Complex Probability Density

Weak values can be interpreted as the average of the classical observable with respect
to a complex quasi-probability distribution; this approach was initiated in [12, 13].

11.2.1 A General Result Using the Cohen Class

We are going to see that the cross-term Q(ψ,φ) has a simple probabilistic interpre-
tation. We assume that Q satisfies the marginal properties

∫
Q(φ,ψ)(z)dn p = ψ∗(x)φ(x) (11.8)

∫
Q(φ,ψ)(z)dn x = ψ̂∗(p)φ̂(p). (11.9)

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
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This is the case if and only if the symplectic Fourier transform of the Cohen kernel
θ satisfies the two conditions:

θσ(0, p) = θσ(x, 0) = (2π�)−n. (11.10)

(Proposition 14 in Chap.7).

Proposition 3 Assume that 〈ψ|φ〉 �= 0. (i) The function ρ
φ,ψ
Q on R

2n defined by

ρ
φ,ψ
Q (z) = Q(ψ,φ)(z)

〈ψ|φ〉 (11.11)

is a complex probability distribution:

∫
ρ

φ,ψ
Q (z)d2nz = 1 (11.12)

and the corresponding (complex) marginals are given by

∫
ρ

φ,ψ
Q (z)dn p = φ∗(x)ψ(x)

〈φ|ψ〉 (11.13)

∫
ρ

φ,ψ
Q (z)dn x = φ̂(p)∗ψ̂(p)

〈φ|ψ〉 . (11.14)

Proof Since Q satisfies the marginal conditions we have

∫
ρ

φ,ψ
Q (z)dn p = 1

〈φ|ψ〉
∫

Q(ψ,φ)(z)dn p = φ∗(x)ψ(x)

〈φ|ψ〉
and similarly

∫
ρ

φ,ψ
Q (z)dn x = 1

〈φ|ψ〉
∫

Q(ψ,φ)(z)dn x = φ̂(p)∗ψ̂(p)

〈φ|ψ〉 .

It follows that
∫

ρ
φ,ψ
Q (z)d2nz = 1

〈φ|ψ〉
∫

φ∗(x)ψ(x)dn x = 1

hence ρ
φ,ψ
Q is indeed a (complex) probability density with marginals (11.13) and

(11.14). �

We can restate (11.7) in terms of the complex quasi-distribution ρ
φ,ψ
Q : let Â =

OpQ(a); the weak value (11.7) is then given by the formula:

http://dx.doi.org/10.1007/978-3-319-27902-2_7
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〈 Â〉φ,ψ
weak =

∫
ρ

φ,ψ
Q (z)a(z)d2nz (11.15)

which shows that in a sense the weak value 〈 Â〉φ,ψ
weak is the symbol a averaged by ρ

φ,ψ
Q .

Observe that the real and imaginary parts of the complex quasi-distribution ρ
φ,ψ
Q

satisfy the relations

∫
Reρφ,ψ

Q (z)d2nz = 1,
∫

Imρ
φ,ψ
Q (z)d2nz = 0.

The physical meaning of these formulas is the following (Aharonov and Vaidman
[7], Chap. 14): the readings of the pointer of the measuring device will cluster around

Re〈 ÂQ〉φ,ψ
weak =

∫
Re(a(z)ρφ,ψ

Q (z))d2nz

while

Im〈 ÂQ〉φ,ψ
weak =

∫
Im(a(z)ρφ,ψ

Q (z))d2nz

measures the average shift in the variable conjugate to the pointer variable.

Example 4 Assume that the Cohen kernel θ = δ (the Dirac distribution on R
2n).

Then Q(ψ,φ) = Wig(ψ,φ) is the usual cross-Wigner distribution, and we have

ρ
φ,ψ
Wig(z) = Wig(ψ,φ)

〈ψ|φ〉 (11.16)

so that

〈 ÂW〉φ,ψ
weak =

∫
a(z)ρφ,ψ

Wig(z)d
2nz. (11.17)

(see de Gosson and de Gosson [13]).

11.2.2 The Born–Jordan Case

We now specialize our discussion to the case

Q(ψ,φ) = WigBJ(ψ,φ) = Wig(ψ,φ) ∗ θBJ (11.18)



11.2 A Complex Probability Density 167

where θBJ is the Cohen kernel defined by

θBJ = (2π�)−n FσχBJ

χBJ(z) = sinc(px/2π�).

(Definitions 1 and 2 in Chap.8). Recalling that WigBJ(ψ,φ) satisfies the marginal
conditions (see formula (8.7)) we may apply the discussion above (see [14]). In this
case, the complex quasi-probability density (11.11) becomes

ρ
φ,ψ
BJ (z) = WigBJ(z)

〈φ|ψ〉 ; (11.19)

when ÂBJ = OpBJ(a) this leads to the expression

〈 ÂBJ〉φ,ψ
weak =

∫
a(z)ρφ,ψ

BJ (z)d2nz. (11.20)

Notice that for a given operator it matters which quantization scheme one uses.
While the Born–Jordan and Weyl quantizations are the same for the position and
momentum variables x j , pk , we get different results for 〈 ÂBJ〉φ,ψ

weak and 〈 ÂW〉φ,ψ
weak as

soon as one consider more complicated cases. Let us illustrate this on the example
of the squared angular momentum already considered in Sect. 10.3.3 of Chap.10.

Example 5 Consider �3 = x1 p2 − x2 p1. The Born–Jordan and Weyl quantizations
of the square �23 are related by

(�̂2)W − (�̂2)BJ = 1
2�

2. (11.21)

It follows that the weak values 〈(�̂2)BJ〉φ,ψ
weak and 〈(�̂2)W〉φ,ψ

weak satisfy

〈(�̂2)W〉φ,ψ
weak − 〈(�̂2)BJ〉φ,ψ

weak = 1
2�

2.

11.3 The Reconstruction Problem

In 1958 Wolfgang Pauli conjectured that one can reconstruct a quantum state |ψ〉
knowing its position and momentum; this conjecture was later disproved; see the
discussion inCorbett [10]. In fact, even the knowledge of the position andmomentum
probability densities |ψ(x)|2 and |ψ̂(p)|2 is not sufficient (see the discussion in
Lundeen et al. [16]). Mathematically this means that the knowledge of the marginal
of the quasi-distribution Wψ is not enough to determine Wψ. It turns out that,
however, the knowledge of the cross-Wigner distribution W (ψ,φ) and of one of
the two functions ψ or φ unambiguously determines the other. The relation of this
property with the notion of weak value is obvious in view of our previous discussion

http://dx.doi.org/10.1007/978-3-319-27902-2_8
http://dx.doi.org/10.1007/978-3-319-27902-2_8
http://dx.doi.org/10.1007/978-3-319-27902-2_8
http://dx.doi.org/10.1007/978-3-319-27902-2_10
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of the complex quasi-density ρ
φ,ψ
W . In this section we begin by presenting a general

procedure for the reconstruction problem for elements of the Cohen class satisfying
the Moyal identity. This method does not, however, apply to the Born–Jordan case;
the latter will be considered separately. We will see that it leads to an open problem.

11.3.1 A General Reconstruction Formula

The inversion formula is well-known when Q is the cross-Wigner transform [11,
15]; see formula (7.18) in Chap.7. We prove here a more general result valid for all
members of the Cohen class which satisfy the Moyal identity. In view of Proposition
16 in Chap.7 the generalized Moyal identity

〈〈Q(ψ,φ)|Q(ψ′,φ′)〉〉 = (
1

2π�

)n 〈ψ|ψ′〉〈φ|φ′〉∗ (11.22)

holds if and only if the symplectic Fourier transformof theCohen kernel of Q satisfies

|θσ(z)| = (2π�)−n (11.23)

(in which case Q automatically satisfies the marginal conditions (11.8)–(11.9) since
the conditions (11.10) are then verified).

Proposition 6 Assume that the element Q of the Cohen class satisfies the Moyal
identity (11.22). Let φ, γ ∈ L2(Rn) be two non-orthogonal states: 〈φ|γ〉 �= 0. Then

ψ(x) = 1

〈γ|φ〉
∫

Qσ(ψ,φ)(z0)T̂Q(z0)γ(x)d2nz0. (11.24)

Proof Let us set

χ(x) =
∫

Qσ(ψ,φ)(z0)T̂Q(z0)γ(x)d2nz0

and choose an arbitrary α ∈ S(Rn). We have

〈α|χ〉 =
∫

Qσ(ψ,φ)(z0)〈α|T̂Q(z0)γ〉d2nz0

=
∫

Qσ(ψ,φ)(z0)〈T̂Q(z0)γ|α〉∗d2nz0

= (2π�)n
∫

Qσ(ψ,φ)(z0)Qσ(α, γ)∗(z0)d2nz0

= (2π�)n〈〈Qσ(α, γ), Qσ(ψ,φ)〉〉.

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
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Applying Moyal’s formula to the last equality we get 〈α|χ〉 = 〈α|ψ〉〈γ|φ〉; since
this identity holds for all α ∈ S(Rn)we have χ = 〈γ|φ〉ψ almost everywhere, which
proves formula hence (11.24). �

Notice that if we choose in particular γ = φ then we get

ψ(x) = 1

||φ||2
∫

Qσ(ψ,φ)(z0)T̂Q(z0)φ(x)d2nz0. (11.25)

In particular, if Q(ψ,φ) is the cross-Wigner transform, then we get

ψ(x) = 1

〈γ|φ〉
∫

Amb(ψ,φ)(z0)T̂ (z0)γ(x)d2nz0. (11.26)

Using a symplectic Fourier transform together with formula (6.26) in Chap.6, we
recover the formula (7.18)

ψ(x) = 2n

〈φ|γ〉
∫

Wig(ψ,φ)(z0)T̂GR(z0)γ(x)d2nz0.

which was proven in Chap.7.

Example 7 For τ �= 1
2 the Cohen kernel

θ(τ )(z) = 2n

|2τ − 1|n e
2i

�(2τ−1) px (11.27)

has Fourier transform

θ̂(τ )(z) = (
1

2π�

)n (2τ − 1)n

|2τ − 1|n e− i(2τ − 1)
2�

px .

and hence |θ̂(τ )(z)| = (2π�)−n . It follows that the τ -cross-Wigner distribution
Wτ (ψ,φ) satisfies the Moyal identity.

11.3.2 The Born–Jordan Case: An Unsolved Problem

The reconstruction problem has unexpected difficulties in the Born–Jordan case.
We would like here to reconstruct ψ from the knowledge of the Born–Jordan
cross-transform WigBJ(ψ,φ), knowing φ. However, as already noticed in Chap.8
(Sect. 8.1.2) the Moyal identity does not hold for the quasi-distributionWigBJ(ψ,φ);
it is therefore not possible to apply Proposition 6, whose proof precisely relies on
the validity of the Moyal identity. We are thus led here to a problem which is, at
the time of writing, unsolved. This difficulty clearly shows that Born–Jordan quan-
tization has very peculiar features, which might be related to the fact that “real”

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_8
http://dx.doi.org/10.1007/978-3-319-27902-2_8
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quantum mechanics isn’t, aftre all, that simple (as opposed to the conventional Weyl
approach). It might very well be that the mathematical difficulty is related to a divi-
sion problem, as was the case when we studied the inveribility of the Born–Jordan
correspondence in Chap.8 (Sect. 8.3). Recall that WigBJ(ψ,φ) and Wig(ψ,φ) are
related by a convolution formula, namely

WigBJ(ψ,φ) = Wig(ψ,φ) ∗ θBJ

where θBJ is the Born–Jordan kernel. If we were able to “invert” this relation, and
prove that the usual cross-Wigner transform Wig(ψ,φ) can be expressed in some
way in terms of WigBJ(ψ,φ), we would be led back to the standard reconstruction
problem. But, for the moment being, this is an open problem.
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Part III
Some Advanced Topics



Chapter 12
Metaplectic Operators

Themetaplectic group is a unitary representationof the double cover of the symplectic
group; it is thus characterized by the exactness of the sequence

0 −→ Z2 −→ Mp(n) −→ Sp(n) −→ 0.

The interest of the metaplectic group comes from the fact that it is a maximal group
of symmetries forWeyl operators (“symplectic covariance”), and contains subgroups
under which Shubin and Born–Jordan operators are symplectically covariant.

The metaplectic representation of the symplectic group has a rather long history,
and is a subject of interest both for mathematicians and physicists. The germ of the
idea of the metaplectic representation is found in van Hove [16]. It then appears in
the work of Segal [14], Shale [15], and Weil [18]. The theory has been subsequently
developed by Buslaev [1], Maslov [12], Leray [11], Reiter [13], and the author [3,
4, 6, 10]. For somewhat different presentations of the theory see Folland [2] and
Wallach [17].

12.1 The Symplectic Group Sp(n)

For an extensive study of the symplectic group with complete proofs we refer to de
Gosson [6]. We recall that the standard symplectic form on the phase space R

2n is
defined by

σ(z, z′) =
n∑

j=1

p j x
′
j − p′

j x j = J z · z′

where J =
(

0n×n In×n

−In×n 0v

)
.

© Springer International Publishing Switzerland 2016
M.A. de Gosson, Born–Jordan Quantization, Fundamental Theories
of Physics 182, DOI 10.1007/978-3-319-27902-2_12
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174 12 Metaplectic Operators

Definition 1 The symplectic group Sp(n) is the group of all linear automorphisms
S of R

2n consisting of all linear automorphisms S such that σ(Sz, Sz′) = σ(z, z′)
for all (z, z′) ∈ R

2n × R
2n; equivalently ST J S = S J ST = J .

The group Sp(n) is a connected Lie group, invariant under transposition; it is
generated by the subset consisting of all free symplecticmatrices.Recall fromChap.4
that a 2n × 2n real matrix S is said to be free if we can write it in block-matrix form

S =
(

A B
C D

)
with det B �= 0. (12.1)

Since the inverse of S is

S−1 =
(

DT −BT

−CT AT

)
(12.2)

it follows that S is free if and only if S−1 is free. The notion of free symplectic matrix
allows a quite interesting description of a class of generators of the group Sp(n),
using the following result:

Proposition 2 Every S ∈ Sp(n) can be written as a product S = S1S2 of two free
symplectic matrices S1 and S2.

The proof of this result is unexpectedly difficult (except in the case n = 1, where
it is elementary); we refer to de Gosson [4, 6]. Defining the elementary symplectic
matrices

V−P =
(

I 0
P I

)
, ML =

(
L−1 0
0 LT

)
(12.3)

with P symmetric and L invertible, an easy calculation shows that every free sym-
plectic matrix (12.1) can be factorized as

S = V−DB−1 MB−1 J V−B−1 A. (12.4)

(In fact, the conditions ST J S = S J ST = J compel both P = DB−1 and Q = B−1A
to be symmetric, as a straightforward calculation of block-matrices show.) It follows
that:

Proposition 3 (i) The set of real 2n × 2n matrices

{VP , ML , J : P = PT , det L �= 0}

generates the symplectic groupSp(n). (ii) Symplectic matrices have determinant one.

Proof (i) In view of Proposition 2 and the factorization (12.4) every S ∈ Sp(n) can
be written S = S1S2 where

S1 = V−D1B−1
1

MB−1
1

J V−B−1
1 A1

S2 = V−D2 B−1
2

MB−1
2

J V−B−1
2 A2

http://dx.doi.org/10.1007/978-3-319-27902-2_4
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hence S is a product of symplectic matrices of the type VP , ML , J . (ii) We have
det S = det S1 det S2 and det S1 = det S2 = 1 since the determinants of the matrices
VP , ML , J obviously are equal to one. �

Let us now pursue our discussion of the notion of generating function initiated in
Chap.4.

Definition 4 The generating function of the free symplectic matrix (12.1) is the
quadratic form

W (x, x ′) = 1
2 DB−1x2 − B−1x · x ′ + 1

2 B−1Ax ′2. (12.5)

When the generating function is given, we will write S = SW .

W is called a generating function, because its datum completely defines S:

(x, p) = S(x ′, p′) ⇐⇒
{

p = ∇x W (x, x ′)
p′ = −∇x ′ W (x, x ′) ; (12.6)

in fact the relations p = ∇x W (x, x ′) and p′ = −∇x ′ W (x, x ′) are equivalent to

p = DB−1x − (B−1)T x ′, p′ = B−1x − B−1Ax ′;

solving these equations in x, p indeed yields

x = Ax ′ + Bp′, p = Cx ′ + Dp′.

The generating functions of SW and of its inverse S−1
W are given by:

S−1
W = SW ∗ , W ∗(x, x ′) = −W (x ′, x)

as is easily checked using (12.2).
We observe that, conversely, every real quadratic form

W (x, x ′) = 1
2 Px2 − Lx · x ′ + 1

2 Qx ′2 (12.7)

with P = PT , Q = QT , and det L �= 0, generates a free symplectic matrix, namely:

SW =
(

L−1Q L−1

P L−1Q − LT P L−1

)
(12.8)

(one can use the property ST
W J SW = SW J ST

W = J to prove that SW ∈ Sp(n)). For
instance, if W (x, x ′) = x · x ′ we have SW = J .

http://dx.doi.org/10.1007/978-3-319-27902-2_4
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12.1.1 The Metaplectic Representation of Sp(n)

The symplectic group is contractible to the maximal compact subgroup U (n), image
of the unitary group U (n, C) by the monomorphism

A + i B 
−→
(

A −B
B A

)
.

It follows that the fundamental group π1[Sp(n)] is isomorphic to the integer group
(Z,+) hence Sp(n) has covering groups Spq(n) of all orders q = 1, 2, ...,∞. Among
all these coveringgroups the double coverSp2(n)plays a very privileged role, because
it can be (faithfully) represented by a group Mp(n) of unitary operators acting on
L2(Rn).

Definition 5 The groupMp(n) ≡ Sp2(n) is called themetaplectic group.We denote
the natural covering projection by

π : Mp(n) −→ Sp(n).

The generic element of Mp(n) is denoted by Ŝ and we write S = π(Ŝ).

The generators of Mp(n) can be described in many way. The simplest (but not
necessarily the most tractable) is the following:

Proposition 6 The group Mp(n) is generated by Ĵ = i−n/2F (F the �-dependent
Fourier transform on L2(Rn)), and the operators V̂−P and M̂L ,m defined by

V̂−Pψ(x) = e
i
2�

Px2
ψ(x) (12.9)

M̂L ,mψ(x) = im
√| det L|ψ(Lx); (12.10)

where the integer m is chosen so that

mπ ≡ arg det L mod 2π.

The projections of these operators on Sp(n) are given by

π( Ĵ ) = J, π(V̂−P) = V−P , π(M̂L ,m) = ML ,m .

(see deGosson [6]). Anotherway is to define the analogue of free symplecticmatrices
in the metaplectic case (Leray [11], de Gosson [4, 6, 10]):

Proposition 7 (i) The metaplectic group Mp(n) is generated by the Fourier integral
operators ŜW,m : S(Rn) −→ S(Rn) associated to a generating function (12.7) by

ŜW,mψ(x) = im

(
1

2πi�

)n/2 √| det L|
∫

e
i
�

W (x,x ′)ψ(x ′)dn x ′ (12.11)
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where the integer m is defined by

mπ ≡ arg det L mod 2π. (12.12)

(ii) The operator ŜW,m is invertible with inverse

Ŝ−1
W,m = ŜW ∗,m∗ , W ∗(x, x ′) = −W (x ′, x), m∗ = n − m. (12.13)

(iii) The projection π(ŜW,m) is the free symplectic matrix SW generated by W .

As a consequence of the obvious relations

V̂−DB−1ψ(x) = e
i
2�

DB−1x2
ψ(x) (12.14)

M̂B−1,mψ(x) = im
√

| det B−1|ψ(B−1x); (12.15)

the operator ŜW,m can be factorized as a product

ŜW,m = V̂−DB−1 M̂B−1,m Ĵ V̂−B−1 A (12.16)

(cf. the corresponding formula (12.4) for free symplectic matrices).

12.2 The Weyl Representation of Metaplectic Operators

Metaplectic operators are Weyl operators in their own right. However, the determi-
nation of the Weyl symbol of such an operator is rather technical.

12.2.1 The Symplectic Cayley Transform

We will use the following notation:

Sp0(n) = {S ∈ Sp(n) : det(S − I ) �= 0}
Sym0(n) = {M ∈ Sym(2n, R) : det(M − 1

2 J ) �= 0}.

Let S ∈ Sp0(n); by definition the symplectic Cayley transform (introduced in de
Gosson [6–10]) of S is the symmetric matrix given by

M(S) = 1
2 J (S + I )(S − I )−1. (12.17)

The symmetry of M(S) is readily verified using the relation ST J S = S J ST = J ,
which is equivalent to S ∈ Sp(n). It is clear that the mapping M(·) is a bijection
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Sp0(n) −→ Sym0(2n, R) and that the inverse of that bijection is given by

S = (M − 1
2 J )−1(M + 1

2 J ). (12.18)

We have the properties
M(S−1) = −M(S) (12.19)

and, when in addition both S′ and SS′ are in Sp0(n):

M(SS′) = M(S) + (ST − I )−1 J (M(S) + M(S′))−1 J (S − I )−1. (12.20)

We begin by remarking that the matrix MS = 1
2 J (S + I )(S − I )−1 is symmetric;

this immediately follows from the conditions ST J S = J . Notice that for every M
with det(M − 1

2 J ) �= 0 the equation

M = 1
2 J (S + I )(S − I )−1

can be solved in S, yielding

S = (M − 1
2 J )−1(M + 1

2 J );

the relation S ∈ Sp(n) is then equivalent to M being real and symmetric.

12.2.2 A Factorization Result

We have seen that every Ŝ ∈ Mp(n) can be written (non-uniquely) as the product
ŜW,m ŜW ′,m ′ of two metaplectic operators. We will need the following refinement of
this property:

Lemma 8 The generating quadratic forms W and W ′ in the factorizations Ŝ =
ŜW,m ŜW ′,m ′ , S = SW SW ′ , can be chosen in such a way thatdet [(SW − I )(SW ′ − I )] �=
0, i.e. SW , SW ′ ∈ Sp0(n).

Proof We first remark that

det(SW − I ) = det(−B) det
[
B−1 A + DB−1 − B−1 − (BT )−1

]
(12.21)

(see Lemma 4 in de Gosson [5]). The next step consists in remarking that in view of
the factorization (12.16) we have

ŜW,m ŜW ′,m ′ = V̂−P M̂B−1,m Ĵ V̂−(P ′+Q)M̂(B ′)−1,m ′ Ĵ V̂−Q′ (12.22)

with P = DB−1, P ′ = D′(B ′)−1, Q = B−1A, Q′ = (B ′)−1A′. We next remark
that the right hand-side of (12.22) remains unchanged if we replace P ′ with P ′ +λI
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and Q with Q′ − λI . Choosing λ so that

det
[
P + Q − λI + B−1 − (BT )−1

] �= 0

det
[
P ′ + Q′ + λI − (B ′)−1 − (B ′T )−1] �= 0

we have det(SW − I ) �= 0 and det(SW ′ − I ) �= 0 in view of the equality (12.21). The

lemma follows replacing, if necessary, W (x, x ′)with W (x, x ′)− 1
2λx2 and W ′(x, x ′)

with W ′(x, x ′) + 1
2λx ′2. �

We remark that the symmetric matrix

W ′′ = B−1A + DB−1 − B−1 − (BT )−1 (12.23)

is the Hessian matrix of the generating quadratic form W .

12.2.3 Metaplectic Operators as Weyl Operators

It turns out that metaplectic operators with projection S ∈ Sp0(n) can be very simply
represented by the Heisenberg operators:

Proposition 9 Let Ŝ ∈ Mp(n) have projection S ∈ Sp0(n). Then

Ŝ = iν(Ŝ)
√| det(S − I )|

∫
T̂ (Sz)T̂ (−z)d2nz (12.24)

where the integer ν(Ŝ) corresponds to the choice (modulo 2) of an argument of
det(S − I ):

ν(Ŝ)π ≡ nπ + arg det(S − I ) mod 2π. (12.25)

When S = SW is a free symplectic matrix we have

ν(ŜW,m) ≡ m − Inert W ′′ mod 2 (12.26)

where Inert W ′′ is the number of negative eigenvalues of the Hessian matrix (12.23).

Proof See de Gosson [4, 6–8, 10]. �

An alternative characterization is given by:

Proposition 10 Let S ∈ Sp0(n). The operator

R̂ν(S) =
(

1

2π�

)
iν

√| det(S − I )
∫

T̂ (Sz)T̂ (−z)d2nz (12.27)
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can be written in the two following ways:

R̂ν(S) =
(

1

2π�

)n iν

√| det(S − I )|
∫

e
i
2�

MS z2 T̂ (z)d2nz (12.28)

and

R̂ν(S) =
(

1

2π�

)n iν

√| det(S − I )

∫
e− i

2�
σ(Sz,z)T̂ ((S − I )z)d2nz. (12.29)

Proof We have
1
2 J (S + I )(S − I )−1 = 1

2 J + J (S − I )−1

hence, in view of the antisymmetry of J ,

MSz2 = 〈
J (S − I )−1z, z

〉 = σ((S − I )−1z, z).

Performing the change of variables z 
−→ (S − I )−1z we can rewrite the integral in
the right-hand side of (12.28) as

∫
e

i
2 MS z2 T̂ (z)d2nz =

∫
e

i
2 σ(z,(S−I )z)T̂ ((S − I )z)d2nz

=
∫

e− i
2 σ(Sz,z)T̂ ((S − I )z)d2nz

hence (12.27). Taking into account the relation (6.15) we have

T̂ ((S − I )z) = e− i
2 σ(Sz,z)T̂ (Sz)T̂ (−z)

and formula (12.29) follows. �

12.3 The τ -Metaplectic Group Mpτ (n)

Metaplectic operators are Weyl operators, and hence be represented as Shubin oper-
ators.

12.3.1 The Operators Rτ

We will need the following well-known generalization of the Fresnel formula (see
e.g. Folland [2], Appendix A): let X be a real invertible matrix of dimension m; then:

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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∫
e−2πiuve2πi Xv2dv = | det X |−1/2e

iπ
4 sign X e−iπX−1u2

(12.30)

where sign X is the difference between the number of >0 and <0 eigenvalues of X .
Using this formula we set out to study the operators

Rτ (S) = √| det(S − I )|
∫

T̂τ (Sz)T̂τ (−z)d2nz (12.31)

defined for S ∈ Sp0(n). They are continuous mappings S(Rn) −→ S(Rn).

Proposition 11 Let S, S′ ∈ Sp0(n) and assume that SS′ ∈ Sp0(n) as well. (i) We
have

Rτ (SS′) = ei π
4 sign M(SS′) Rτ (S)Rτ (S′). (12.32)

(ii) The inverse of Rτ (S)−1 is given by the formula

Rτ (S)−1 = Rτ (S−1) = R1−τ (S)†. (12.33)

Proof (i) (Cf. the proof of Proposition 4.2 in de Gosson [8]). For brevity we write
M = M(S), M ′ = M(S′). In view of the composition formula for Weyl operators
the twisted symbol cσ of Rτ (S)Rτ (S′) is

cσ(z) = K
∫

e
i
�

[σ(z,z′)+φ(z,z′)]d2nz′

where the constant K and the phase φ are given by

K = | det(S − I )(S′ − I )|−1/2

φ(z, z′) = Mz2 − 2Mz · z′ + (M + M ′)z′2.

A straightforward calculation shows that

σ(z, z′) − 2Mz · z′ = −2J (S − I )−1z · z′

hence

σ(z, z′) + φ(z, z′) = −2J (S − I )−1z · z′ + Mz2 + (M + M ′)z′2.

It follows that

cσ(z) = K e
i
�

Mz2
∫

e− i
�

J (S−I )−1z·z′
e

i
�

(M+M ′)z′2
d2nz′. (12.34)
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Applying the Fresnel formula (12.30) with X = M + M ′ to (12.35) and replacing
K with its value we get

cσ(z) = | det[(M + M ′)(S − I )(S′ − I )]|−1/2e
iπ
4 sign(M+M ′)e

i
�

�(z) (12.35)

where the phase �(z) is given by

�(z) = [
M + (ST − I )−1 J (M + M ′)−1 J (S − I )−1

]
z2

= M(SS′)z2

(the second equality in view of formula (12.20)). Noting that by definition of the
symplectic Cayley transform we have

M + M ′ = J (I + (S − I )−1 + (S′ − I )−1)

it follows, using again property (12.20), that

det[(M + M ′)(S − I )(S′ − I )] = det[(S − I )(M + M ′)(S′ − I )]
= det(SS′ − I )

which concludes the proof of the product formula (12.32). (ii) Let us first show that
Rτ (S−1) = Rτ (S)−1. Let c be the symbol of the operator C = Rτ (S)Rτ (S−1); we
claim that cσ(z) = δ(z), hence C = I . Noting that det(S−1 − I ) = det(S − I ) �= 0,
formula (12.34) above shows that we have

cσ(z) = Le
i
�

Mz2
∫

e− i
�

J (S−I )−1z·z′
e

i
�

(M+M(S−1))z′2
d2nz′

where L = | det(S − I )|−1. Since M(S−1) = −M we have, setting z′′ = (ST −
I )−1 J z′,

cσ(z) = e
i
�

Mz2

| det(S − I )|
∫

e− i
�

J (S−I )−1z·z′
d2nz′

= e
i
�

Mz2
∫

e
i
�

zz′′
d2nz′′

hence cσ(z) = δ(z) by the Fourier inversion formula, which proves that C = I . Let
us finally show that Rτ (S−1) = R1−τ (S)†. We have

Rτ (S−1) = 1√| det(S−1 − I )|
∫

e
i
�

M(S−1)z2 T̂τ (z)d
2nz

= 1√| det(S − I )|
∫

e− i
�

M(S)z2 T̂τ (z)d
2nz
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hence, using formula (9.33) for the adjoint of a τ -operator,

Rτ (S−1)† = 1√| det(S − I )|
∫

e
i
�

M(S)z2 T̂1−τ (z)d
2nz = R1−τ (S)

which is the same thing as Rτ (S−1) = R1−τ (S)†. �

We make here an important remark: while the standard metaplectic operators
Ŝ = Rτ (S) ∈ Mp(n) are unitary, formula (12.33) shows that the operators Rτ (S) are
not, unless τ = 1

2 .

12.3.2 Definition of Mpτ (n)

We now consider the group Mpτ (n) is generated by the τ -metaplectic operators
Rν(SW )

τ (SW ).

Definition 12 Let τ be an arbitrary real number. Mpτ (n) is the group of operators
S(Rn) −→ S(Rn) generated by the operators Rν(SW )

τ (SW ).

For an arbitrary S ∈ Sp(n) the operator Rν
τ (S) ∈ Mpτ (n) is thus the product of

a finite number of Rν(SW )
τ (SW ) with SW ∈ Sp0(n). We have moreover the following

equivalent of the fact that each Ŝ ∈ Mp(n) can be written as the product of two
metaplectic operators of the type ŜW,m :

Proposition 13 Let S ∈ Sp0(n) and choose SW , SW ′ ∈ Sp0(n) such that S =
SW SW ′ . We have

Rν(SW )
τ (SW )Rν(SW ′ )

τ (SW ′) = Rν(S)
τ (SW SW ′) (12.36)

where the index ν(S) is given by the formula

ν(S) = ν(SW ) + ν(SW ′) + 1
2 sign M(SS′). (12.37)

Proof It follows from formula (12.32) in Proposition 11 that we have

Rν(SW )
τ (SW )Rν(SW ′ )

τ (SW ′) = eiφ Rτ (S)Rτ (S′)

φ = π

2
(ν(SW ) + ν(SW ′) + 1

2 sign M(SW SW ′))

hence the assertion. �

http://dx.doi.org/10.1007/978-3-319-27902-2_9
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Chapter 13
Symplectic Covariance Properties

Given an operator Â = Op(a) a natural question that arises is what happens to that
operator when one makes a change of variables in the symbol a. More precisely,
can we relate in an easy way the operators Â and Â� = Op(a ◦ �) when � is a
diffeomorphism ofR

2n? It turns out that this problem has no simple answer when one
considers arbitrary operators and arbitrary diffeomorphisms, even in the linear case.
However, if we restrict ourselves to Weyl pseudo-differential operators and linear
symplectic transformations, thenwe have a simple “symplectic covariance property”.
We begin by reviewing this “easy” case, and thereafter study what remains of it when
one replaces Weyl operators by Shubin and Born–Jordan operators.

13.1 Symplectic Covariance of Weyl Operators

A striking feature of Weyl calculus is that it is the only pseudo-differential operator
calculus for which the property of symplectic covariance holds; that is, for every
Ŝ ∈ Mp(n) we have

OpW(a ◦ S) = Ŝ−1OpW(a)Ŝ

where S = π(Ŝ) is the projection of Ŝ on the symplectic group Sp(n).

13.1.1 The Heisenberg and Grossmann–Royer Operators
Revisited

The key to all symplectic covariance results in Weyl pseudo-differential calculus is
the following simple result about Heisenberg and Grossmann–Royer operators. We

© Springer International Publishing Switzerland 2016
M.A. de Gosson, Born–Jordan Quantization, Fundamental Theories
of Physics 182, DOI 10.1007/978-3-319-27902-2_13
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are going to give a rather short dynamical proof here; for a purely calculatory proof
using the apparatus of generating functions see de Gosson [5], Sect. 8.1.3.

Proposition 1 Let Ŝ ∈ Mp(n) and S = π(Ŝ). We have

ŜT̂ (z0)Ŝ−1 = T̂ (Sz0) (13.1)

ŜT̂GR(z0)Ŝ−1 = T̂GR(Sz0) (13.2)

for every z0 ∈ R
2n.

Proof Recall from Chap.6, Sect. 6.2.3, that the Heisenberg operator is the time-one
solution of the Schrödinger equation

i�∂tψ = Ĥ0ψ , ψ(·, 0) = ψ0 (13.3)

where Ĥ0 is the displacement Hamiltonian H0(z) = σ(z, z0) whose flow consists
of the phase space translations ft : z �−→ z + t z0. Consider the unitary operator
U S

t = ŜT̂ (t z0)Ŝ−1; the function ψ = U S
t ψ0 is the solution of the Schrödinger

equation

i�
∂ψ

∂t
= (Ŝ Ĥz0 Ŝ−1)ψ

with ψ(·, 0) = ψ0. Now, Ĥ0 = e− i
�

σ(̂z,z0)t hence

Ŝ Ĥz0 Ŝ−1 = e− i
�

Ŝσ(̂z,z0)Ŝ−1t

A direct calculation shows that

Ŝσ(̂z, z0)Ŝ−1 = σ(̂z, Sz0)

hence we also have ψ(x, t) = T̂ (t Sz0). The equality (13.1) follows, taking t = 1.
Formula (13.2) follows from (13.1) using the relation (6.12). In fact, denoting by R∨
the reflection operator x �−→ −x ,

ŜT̂GR(z0)Ŝ−1 = ŜT̂ (z0)Ŝ−1R∨ ŜT̂ (z0)
−1 Ŝ−1

= T̂ (Sz0)R∨T̂ (Sz0)
−1

= T̂GR(Sz0)

(we have used here the obvious identity Ŝ−1R∨ Ŝ = R∨; see ([5], Chapter8,
Sect. 8.3.3). �

http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
http://dx.doi.org/10.1007/978-3-319-27902-2_6
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13.1.2 Weyl Operators

The following very important result easily follows from Proposition1:

Proposition 2 Let S ∈ Sp(n) and Ŝ ∈ Mp(n) such that S = π(Ŝ). For every
a ∈ S ′(R2n) we have

OpW(a ◦ S) = Ŝ−1OpW(a)Ŝ. (13.4)

Proof We first observe that if a ∈ S ′(R2n) then a ◦ S ∈ S ′(R2n); this is easily
checked using the invariance of the Schwartz space S(R2n) under linear changes of
coordinates. Let us set B̂ = Op(a ◦ S). In view of formula (6.40) we have

B̂ψ =
∫

aσ(Sz)T̂ (z)ψd2nz

(the integral being understood as usual in the distributional sense). Performing the
change of variables Sz �−→ z and taking into account the fact that det S = 1, we
have

B̂ψ =
∫

aσ(z)T̂ (S−1z)ψd2nz.

By formula (13.1) we have Ŝ−1T̂ (z)Ŝ = T̂ (S−1z) and hence

B̂ψ =
∫

aσ(z)Ŝ−1T̂ (z)Ŝψd2nz

= Ŝ−1

(∫
aσ(z)T̂ (z)d2nz

)
Ŝψ

which is precisely (13.4). �

The following very important result shows that one cannot expect other quanti-
zations to enjoy the full symplectic covariance property (13.4):

Proposition 3 Let a �−→ Op(a) be a continuous linear mapping from S ′(R2n) to
the space L(S(Rn),S ′(Rn)). Assume that:

(i) if a only depends on x ∈ R
n and a ∈ L∞(Rn), then Op(a) is multiplication by

a(x);
(ii) if S ∈ Sp(n) then Op(a ◦ S) = ŜOp(a)Ŝ−1.

Then a �−→ Op(a) is the Weyl correspondence: Op(a) = OpW(a).

Proof The result was already stated in Stein [9], and rigorously proven inWong [10],
Chap. 30. �

The property of symplectic covariance thus really singles out the Weyl corre-
spondence among all possible pseudo-differential calculi. We will see below that,

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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however, some partial symplectic covariance survives for Shubin and Born–Jordan
operators.

A straightforward consequence of Proposition1 are the following formulas satis-
fied by the cross-Wigner and ambiguity functions:

Corollary 4 Let ψ,φ ∈ S(Rn) and Ŝ ∈ Mp(n); We have

Wig(Ŝψ, Ŝφ)(z) = Wig(ψ,φ)(S−1z) (13.5)

Amb(Ŝψ, Ŝφ)(z) = Amb(ψ,φ)(S−1z). (13.6)

where S = π(Ŝ). and hence in particular

Wig(Ŝψ)(z) = Wigψ(S−1z). (13.7)

Proof In view of formula (7.19) in Proposition 8 we have

〈〈a,Wig(Ŝψ, Ŝφ)〉〉 = 〈 ÂŜψ, (Ŝφ)∗〉

since Ŝ is unitary we thus have

∫
Wig(Ŝψ, Ŝφ)(z)a(z)d2nz = 〈Ŝ−1 ÂŜψ,φ∗〉.

In view of (13.4) we have

〈Ŝ−1 ÂŜψ,φ∗〉 =
∫

Wig(ψ,φ)(z)(a ◦ S)(z)d2nz

=
∫

Wig(ψ,φ)(S−1z)a(z)d2nz

which establishes the equality (13.5) since ψ and φ are arbitrary. The formula (13.6)
follows, since Amb(ψ,φ) is the symplectic Fourier transform of Wig(ψ,φ):

Amb(Ŝψ, Ŝφ)(z) = Fσ(Wig(Ŝψ, Ŝφ))(z)

= Fσ(Wig(ψ,φ) ◦ S−1)(z)

= Fσ(Wig(ψ,φ))(S−1z)

= Amb(ψ,φ)(S−1z);

to go from the second to the third line we used the relation Fσ(a ◦ S−1) = Fσa ◦ S−1

which follows from the definition (6.21) of Fσ. �

Note that both (13.7) and (13.6) can also be directly proven using the covariance
formulas (13.1) and (13.2).

http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_7
http://dx.doi.org/10.1007/978-3-319-27902-2_6


13.1 Symplectic Covariance of Weyl Operators 189

13.1.3 Affine Covariance Properties

Let us denote by T (z0) the phase space translation operator z �−→ z + z0. It induces
a natural action of functions by the formula T (z0)a(z) = a(z − z0); this action can
be extended into an action on distributions in the obvious way.

Proposition 5 Let Â = OpW(a) with a ∈ S ′(R2n). Let T (z0)a(z) = a(z − z0). We
have

OpW(T (z0)a) = T̂ (z0)OpW(a)T̂ (z0)
−1. (13.8)

Proof We begin by noting that

Fσ(T (z0)a)(z) = e− i
�

σ(z,z0)aσ(z)

as immediately follows from the definition

aσ(z) = (
1

2π�

)n
∫

e− i
�

σ(z,z′)a(z′)d2nz′

of the symplectic Fourier transform and the bilinearity of the symplectic form σ. It
follows

OpW(T (z0)a) =
∫

aσ(z)e− i
�

σ(z,z0)T̂ (z)d2nz.

In view of the commutation relation (6.14) in Chap.6 we have

T̂ (z)T̂ (z0) = e
i
�

σ(z,z0)T̂ (z0)T̂ (z)

and hence

e− i
�

σ(z,z0)T̂ (z) = T̂ (z0)T̂ (z)T̂ (z0)
−1

so that

OpW(T (z0)a) =
∫

aσ(z)e− i
�

σ(z,z0)T̂ (z0)T̂ (z)T̂ (z0)
−1d2nz

= T̂ (z0)OpW(T (z0)a)T̂ (z0)
−1

which is formula (13.8). �

Formula (13.8) can also be proven using the relation

〈 Âψ,φ∗〉 = 〈〈a, W (φ,ψ)〉〉

together with the covariance formula (13.5) for the cross-Wigner transform.

http://dx.doi.org/10.1007/978-3-319-27902-2_6
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Formulas (13.4) and (13.8) are often summarized by saying that Weyl calculus
is covariant with respect to the inhomogeneous metaplectic group IMp(n) (IMp(n)

is the group of unitary operators generated by the metaplectic operators Ŝ ∈ Mp(n)

and the Heisenberg operators T̂ (z0), z0 ∈ R
2n; see [1, 2]).

13.2 The Case of τ -Operators

We are following rather closely our exposition in de Gosson [6].

13.2.1 A Covariance Result

Recall from the previous chapter that Mpτ (n) is the group generated by the operators

Rτ (S) = √| det(S − I )|
∫

T̂τ (Sz)T̂τ (−z)d2nz (13.9)

where S ∈ Sp0(n) (the set of symplectic transformations with no eigenvalue equal
to one), and the τ -Heisenberg operator

T̂τ (z0) = e
i
2�

(2τ−1)p0x0 T (z0). (13.10)

The operators Rτ (S) are continuous linear mappings S(Rn) −→ S(Rn), which are
non-unitary for τ �= 1

2 .
The following result generalizes formula (13.1) to these operators:

Proposition 6 Let S ∈ Sp0(n).

(i) We have the intertwining relation

Rτ (S)T̂τ (z)Rτ (S)−1 = T̂τ (Sz). (13.11)

(ii) For every Rν
τ (S) ∈ Mpτ (n) we have, for a ∈ S ′(R2n),

Rτ (S)Opτ (a)Rτ (S)−1 = Opτ (a ◦ S−1). (13.12)

Proof (i) It is equivalent to show that the operators

�τ (S) =
∫

T̂τ (Sz)T̂τ (−z)d2nz
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satisfy the relation

�τ (S)T̂τ (z) = T̂τ (Sz)�τ (S). (13.13)

Let ψ ∈ S(Rn); in view of formula (9.13) we have

�τ (S)ψ =
∫

e
i
�

σ(Sz,z)T̂τ ((S − I )z)ψd2nz;

since S − I is a linear automorphism, T̂τ ((S − I )z) : S(Rn) −→ S(Rn) hence
�τ (S)ψ ∈ S(Rn). The continuity of �τ (S) is straightforward to verify. Set

F(z, z0) = T̂τ (Sz)T̂τ (−z)T̂τ (z0)

G(z, z0) = T̂τ (Sz0)T̂τ (Sz)T̂τ (−z).

By repeated use of formula (9.13) we obtain

F(z, z0) = e− i
�

σ(Sz−z0,z−z0)T̂τ ((S − I )z + z0)

G(z, z0) = e− i
�

σ((S−I )z0+Sz0,z)T̂τ ((S − I )z + Sz0)

hence G(z − z0, z0) = F(z, z0). It follows that

∫
F(z, z0)d

2nz =
∫

G(z, z0)d
2nz

hence the equality (13.13). (ii) That the operators Rτ (S) satisfy the intertwining
relation (13.12) follows using the definition of Opτ (a). �

13.2.2 Application to the τ -Wigner Function

As we have seen above the cross-Wigner function W (ψ,φ) enjoys the symplectic
covariance property

W (Ŝψ, Ŝφ)(z) = W (ψ,φ)(S−1z). (13.14)

In the τ -dependent case this result must be modified as follows:

Proposition 7 Let S ∈ Sp0(n) and ψ,φ ∈ S(Rn). We have

Wτ (Rτ (S)ψ, R1−τ (S)φ)(z) = Wτ (ψ,φ)(S−1z). (13.15)

Proof Let Aτ = Opτ (a). Recall that

(Opτ (a)ψ|φ) = 〈〈a|Wτ (ψ,φ)〉〉

http://dx.doi.org/10.1007/978-3-319-27902-2_9
http://dx.doi.org/10.1007/978-3-319-27902-2_9
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(formula (9.34)). In view of the second equality (12.33) we have, using

(Rτ (S)Opτ (a)ψ|R1−τ (S)φ) = (R1−τ (S)†Rτ (S)Opτ (a)ψ|φ)

= (Opτ (a)ψ|φ)

= 〈〈a|Wτ (ψ,φ)〉〉.

On the other hand, using the intertwining property (13.12), we have

(Rτ (S)Opτ (a)ψ|R1−τ (S)φ) = (Opτ (a ◦ S)Rτ (S)ψ|R1−τ (S)φ)

= 〈a ◦ S, Wτ (Rτ (S)ψ, R1−τ (S)φ)〉
= 〈a, Wτ (Rτ (S)ψ, R1−τ (S)φ) ◦ S−1〉〉

(the last identity using the change of variables z �−→ S−1z and the fact that
det S = 1). Formula (13.15) follows. �

Notice that we recover the usual symplectic covariance formula (13.14) for the
cross-Wigner transform when τ = 1

2 .
It follows that our operators Rτ (S) coincide, up to an unimodular factor with

metaplectic operators when τ = 1
2 :

Corollary 8 For S ∈ Sp0(n) the operators R(S) = R1/2(S) are, up to a unimodular
factor iν(S) elements of the metaplectic group Mp(n).

Proof In [3, 4] we have shown that

Rν(S) = iν(S)

√| det(S − I )|
∫

e
i
�

M(S)z2 T̂ (z)d2nz (13.16)

where ν(S) is theConley–Zehnder indexwhichwe describe below. The result follows
since T̂1/2(z) = T̂ (z). �

The Conley–Zehnder index iCZ(S̃) is, loosely speaking, a Maslov-type intersec-
tion index measuring the number of intersections of a symplectic path S̃ : t �−→ St ,
0 ≤ t ≤ 1 joining the identity to S ∈ Sp0(n) with the variety {S : det(S − I ) = 0}
which plays the role of a “caustic”. More precisely, iCZ(S̃) associates to the path
t �−→ St an integer which only depends on the homotopy class (with fixed end-
points) of that path, and such that

sign det(S − I ) = (−1)n−iCZ(S̃). (13.17)

Equivalently,
1

π
arg det(S − I ) ≡ n − iCZ(S̃)mod2. (13.18)

http://dx.doi.org/10.1007/978-3-319-27902-2_9
http://dx.doi.org/10.1007/978-3-319-27902-2_12
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In [7] we have proven that when S is a free symplectic matrix SW then

iCZ(S̃W ) ≡ m + n − InertW ′′ mod2. (13.19)

For a detailed discussion of that index (including an extension to the case det
(S − I ) = 0 and its expression in terms of the Leray–Maslov index [8] see de
Gosson [2, 4].

In analogywith the definition ofMp(n) in terms of the basic metaplectic operators
ŜW,m we define a group Mpτ (n) of (non-unitary) operators as follows. Let SW ∈
Sp0(n) be a free symplectic matrix; we know from Lemma 8 in Chap.12 that every
S ∈ Sp(n) is the product of two such matrices. Let ŜW,m ∈ Mp(n) be anyone of the
two metaplectic operators covering SW , and define

Rν(SW )
τ (SW ) = iν(SW ) Rτ (SW ) (13.20)

ν(SW ) ≡ nπ + arg det(S − I )mod2π. (13.21)

The operators Rν(SW )
τ (SW ) are invertible, and

Rν(SW )
τ (SW )−1 = R−ν(SW )

τ (S−1
W ) = R−ν(SW )

τ (SW ∗) (13.22)

(the first equality in view of the first formula (12.33) in Proposition 11, and the
second since the free symplectic matrix S−1

W is generated by W ∗(x, x ′) = −W (x ′, x)

(formula (12.33) in Proposition 7).

13.3 The Case of Born–Jordan Operators

The intertwining properties for τ operators do not carry over to the Born–Jordan
case; it is meaningless to expect a relation like RBJ(S)T̂BJ(z) = T̂BJ(Sz)RBJ(S)

which would lead to a full symplectic covariance property. However, as we have
proven in [6] Born–Jordan operators enjoy a symplectic covariance property for
operators belonging to a subgroup of the standard metaplectic group Mp(n).

13.3.1 The Born–Jordan Metaplectic Group

Recall from the previous chapter that the metaplectic group Mp(n) is generated by
the modified Fourier transform Ĵ = i−n/2F , the multiplication operators

V̂−Pψ = ei Px2/2�ψ (P = PT )

http://dx.doi.org/10.1007/978-3-319-27902-2_12
http://dx.doi.org/10.1007/978-3-319-27902-2_12
http://dx.doi.org/10.1007/978-3-319-27902-2_12
http://dx.doi.org/10.1007/978-3-319-27902-2_12
http://dx.doi.org/10.1007/978-3-319-27902-2_12
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and the unitary scaling operators

M̂L ,mψ(x) = im
√| det L|ψ(Lx)

(det L �= 0, mπ = arg det L). The projections of these operators on Sp(n) are,
respectively, the symplectic matrices J and

V−P =
(

I 0
P I

)
, ML =

(
L−1 0
0 L2

)
.

Proposition 9 Let ÂBJ = OpBJ(a) with a ∈ S ′(R2n). We have

ŜOpBJ(a)Ŝ−1 = OpBJ(a ◦ S−1) (13.23)

for every Ŝ ∈ Mp(n) which is a product of a (finite number) of operators Ĵ and
M̂L ,m.

Proof It suffices to prove formula (13.23) for Ŝ = Ĵ and Ŝ = M̂L ,m . Let first Ŝ be
an arbitrary element of Mp(n); we have

ŜOpBJ(a) = (
1

2π�

)n
∫

aσ(z)�(z)ŜT̂ (z)d2nz

=
[(

1
2π�

)n
∫

aσ(z)�(z)T̂ (Sz)d2nz

]
Ŝ

where the second equality follows from the usual symplectic covariance property
ŜT̂ (z) = T̂ (Sz)Ŝ of the Heisenberg operators. Making the change of variables
z′ = Sz in the integral we get, since det S = 1,

∫
aσ(z)�(z)T̂ (Sz)d2nz =

∫
aσ(S−1z)�(S−1z)T̂ (z)d2nz.

Now, by definition of the symplectic Fourier transform we have

aσ(S−1z) = (
1

2π�

)n
∫

e− i
�

σ(S−1z,z′)a(z′)d2nz′

= (a ◦ S−1)σ(z).

Choosing Ŝ = M̂L ,m we have

�(M−1
L z) = sin(2πLp · (LT )−1x)

2πLp · (LT )−1x
= �(z);
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similarly �(J−1z) = �(z), hence in both cases

ŜOpBJ(a) =
(∫

(a ◦ S−1)σ�(z)T̂ (z)d2nz

)
Ŝ

= OpBJ(a ◦ S−1)Ŝ

whence formula (13.23). �

The proof above shows that the essential step consists in noting that �(S−1z) =
�(z) when S = J or S = ML . It is clear that this property fails if one takes any
operator S = VP with P �= 0, so we cannot expect to have full symplectic covariance
for Born–Jordan operators since the symplectic group Sp(n) is generated by the set
of all matrices J , ML and VP . Full symplectic covariance is anyway excluded since
this property is characteristic of Weyl calculus (Proposition 3), and can thus not be
satisfied by any other pseudo-differential calculus.

This suggests the following definition:

Definition 10 The Born–Jordan metaplectic group is the subgroup MpBJ(n) of
Mp(n) generated by the Fourier transform Ĵ and the unitary rescaling operators
M̂L ,m .

The Born–Jordan metaplectic group is the maximal group of symmetries for
Born–Jordan operators. The following easy result identifies MpBJ(n):

Proposition 11 The group MpBJ(n) consists of all unitary operators of the type

Ŝ = M̂L ,m or Ŝ = Ĵ M̂L ,m

and π(MpBJ(n)) is the subgroup of Sp(n) consisting of the symplectic matrices of
the type

ML =
(

L−1 0
0 LT

)
or J ML =

(
0 LT

−L−1 0

)
.

Proof Every Ŝ ∈ MpBJ(n) is a product of operators M̂L ,m and Ĵ hence π(MpBJ(n))

consists of all products of matrices ML and J ML . One easily verifies that every
element of π(MpBJ(n)) can only be of the type ML or J ML . The result follows. �

Notice that MpBJ(n) contains the group of orthogonal transformations O(n, R)

identified with a subgroup of O(2n, R) using the embedding

R −→ MR =
(

R 0
0 R

)
, R ∈ O(n, R).
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13.3.2 The Born–Jordan Wigner Transform Revisited

Recall that the Born–Jordan Wigner transform of (ψ,φ) ∈ S(Rn) is defined by

WBJ(ψ,φ)(z) =
1∫

0

Wτ (ψ,φ)(z)dt. (13.24)

In Proposition 5 in Chap.10 we showed that ÂBJ = OpBJ(a) is related to WBJ(ψ,φ)

by the formula
( ÂBJψ|φ) = 〈〈a, WBJ(ψ,φ)〉〉. (13.25)

This enables us to prove the following partial symplectic covariance result for the
Born–Jordan Wigner transform:

Proposition 12 Let (ψ,φ) ∈ S(Rn). For every Ŝ ∈ MpBJ(n) with projection S =
π(Ŝ) we have

WBJ(Ŝψ, Ŝφ)(z) = WBJ(ψ,φ)(S−1z). (13.26)

Proof We have

〈〈a, WBJ(Ŝψ, Ŝφ)〉〉 = ( ÂBJ(Ŝψ)|Ŝφ) = (Ŝ−1 ÂBJ(Ŝψ)|φ).

Since Ŝ−1 ÂBJ(Ŝψ) = OpBJ(a ◦ S) in view of the covariance formula (13.23) we thus
have

〈〈a, WBJ(Ŝψ, Ŝφ)〉〉 = (OpBJ(a ◦ S)|φ)

= 〈〈a ◦ S, WBJ(Ŝψ, Ŝφ)〉〉
= 〈〈a, WBJ(Ŝψ, Ŝφ) ◦ S−1〉〉

hence formula (13.26) since ψ and φ are arbitrary. �
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Chapter 14
Symbol Classes and Function Spaces

In this chapter we initiate the study of continuity properties for Born–Jordan oper-
ators. We will discuss the global symbol classes introduced by Shubin; they are
“global” in the sense that they satisfy growth estimates with an equal weighting
on the position and momentum variables. The use of these classes will allows us
to considerably simplify the study of regularity properties of Born–Jordan pseudo-
differential operators by reducing this study to the case of Shubin operators. If the
choice of good symbol classes is essential in any pseudo-differential calculus, so
is the choice of good functional spaces between which these operators act. These
spaces must reflect regularity and continuity properties of the operators. We will dis-
cuss some of them here (a special emphasis being made on Feichtinger’s modulation
spaces).

14.1 Shubin’s Symbol Classes

It is convenient—and natural in our context—to introduce Shubin’s symbol classes
(see Shubin [8], particularly §23). Their specificity lies in the fact that the Shubin
symbols satisfy global estimates in the phase space variable z = (x, p) (also see
Nicola and Rodino [12]). This is in strong contrast with the usual Kohn–Nirenberg
pseudo-differential calculus used in the theory of partial differential equations [2] or
time-frequency analysis [10].

In what follows we will use the weight function 〈·〉 on R
m defined by

〈u〉 =
√
1 + |u|2 , u ∈ R

m .
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14.1.1 The Shubin Symbol Classes �m
ρ and �

m,m′
ρ

We begin by defining good symbol classes; the following definition is due to Shubin
[13]:

Definition 1 Let m ∈ R and 0 < ρ ≤ 1. The symbol class �m
ρ (R2n) consists of all

complex functions a ∈ C∞(R2n) such that for every α ∈ N
2n there exists a constant

Cα ≥ 0 with
|∂α

z a(z)| ≤ Cα 〈z〉m−ρ|α| for z ∈ R
2n . (14.1)

We set
�−∞

ρ (R2n) =
⋂

m∈R
�m

ρ (R2n) = S(R2n). (14.2)

Obviously �m
ρ (R2n) and �−∞

ρ (R2n) are complex vector spaces for the usual oper-
ations of addition and multiplication by complex numbers. Moreover one easily
checks that

a ∈ �m
ρ (R2n) and b ∈ �m ′

ρ (R2n) =⇒ ab ∈ �m+m ′
ρ (R2n) (14.3)

a ∈ �m
ρ (R2n) and α ∈ N

2n =⇒ ∂α
z a ∈ �m−|α|

ρ (R2n). (14.4)

Thefirst implication is provedbyusing the generalizedLeibniz rule for the derivatives
of a product of functions; the second is obvious in view of the definition of �m

ρ (R2n).

Example 2 The reduced harmonic oscillator Hamiltonian H(z) = 1
2 (|x |2 + |p|2)

obviously belongs to �2
1(R

2n), and so does

H(z) =
n∑

j=1

1

2m j
(p2

j + m2
jω

2
j x

2
j ).

More generally any polynomial function in z of degree m is in �m
1 (R2n).

The following result shows that the class �m
ρ (R2n) is preserved by linear changes

of variables (this property does not hold for the usual Hörmander classes, or their
variants).

Proposition 3 Let a ∈ �m
ρ (R2n) and M a linear automorphism of R

2n. Then
a ◦ M ∈ �m

ρ (R2n).

Proof Let us first show that |a(Mz)| ≤ CM 〈z〉m for some constant CM ≥ 0. Diag-
onalizing the symmetric automorphism MT M using an orthogonal transformation
we have

λmin|z|2 ≤ |Mz|2 ≤ λmax|z|2
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where λmin > 0 and λmax > 0 are the smallest and largest eigenvalues of MT M . It
follows that

〈Mz〉m ≤ max(1,λmax) 〈z〉m

if m ≥ 0, and
〈Mz〉m ≤ min(1,λmin) 〈z〉m

if m < 0. We thus have |a(Mz)| ≤ CM 〈z〉m for some constant CM > 0. A similar
argument shows that for every multi-index α ∈ N

2n we have an estimate of the type

|∂α
z (a ◦ M)(z)| ≤ Cα,M 〈z〉m−ρ|α|

where Cα,M > 0. �

In practice we often work with operators of the type

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a(x, y, p)ψ(y)dn ydn p; (14.5)

their symbols are defined, not onR
2n ≡ R

n
x ×R

n
p but rather onR

3n ≡ R
n
x ×R

n
y ×R

n
p.

Here are a few examples:

Example 4 Shubin’s τ -operators

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a((1 − τ )x + τ y)ψ(y)dn ydn p

and generalized Feynman operators

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y) 1
2 (a(x, p) + a(y, p))ψ(y)dn ydn p

are of the type above. Born–Jordan operators ÂBJ = OpBJ(a) are also of the type
(14.5) with

aBJ(x, y, p) =
1∫

0

a((1 − τ )x + τ y)dτ .

It therefore makes sense to define a symbol class generalizing �m
ρ (R2n) by allow-

ing a dependence on the three sets of variables x , y, and p.

Definition 5 Let (m, m ′) ∈ R
2. The symbol class �m,m ′

ρ (R3n) consists of all func-
tions a ∈ C∞(R3n) having the following property: for every (α,β, γ) ∈ N

3n there
exists a constant Cαβγ ≥ 0 such that:

|∂α
p∂β

x ∂γ
y a(x, y, p)| ≤ Cαβγ 〈u〉m−ρ|α+β+γ| 〈x − y〉m ′+ρ|α+β+γ| (14.6)
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where u = (x, y, p). The class of all operators (14.5)with a ∈ �m,m ′
ρ (R3n) is denoted

by Gm
ρ (Rn). We set �m,0

ρ (R3n) = �m
ρ (R3n).

The consideration of the symbol class �m,m ′
ρ (R3n) will allow us to prove some

deep results about Born–Jordan operators.
We will see below that every Â ∈ Gm

ρ (Rn) is a τ -pseudo-differential operator. We
will use several times Peetre’s inequality

(1 + |ξ − η|2)s ≤ 2|s|(1 + |ξ|2)s(1 + |η|2)|s| (14.7)

valid for ξ, η ∈ R
m and s ∈ R (see for instance Chazarain and Piriou [2]).

14.1.2 Asymptotic Expansions of Symbols

Let us now briefly study the notion of asymptotic expansion of a symbol a ∈
�m

ρ (R2n); we are following closely the presentation in de Gosson [8], §14.1.3; for
details see Shubin’s treatise [13].

Definition 6 Let (a j ) j be a sequence of symbols a j ∈ �
m j
ρ (R2n) such that

lim j→+∞ m → −∞. Let a ∈ C∞(R2n). If for every integer r ≥ 2 we have

a −
r−1∑

j=1

a j ∈ �mr
ρ (R2n) (14.8)

where mr = max j≥r m j we will write a ∼
∑∞

j=1 a j and call this relation an asymp-
totic expansion of the symbol a.

The interest of the asymptotic expansion comes from the fact that every sequence
of symbols (a j ) j with a j ∈ �

m j
ρ (R2n), the degrees m j being strictly decreasing and

such that m j → −∞ determines a symbol in some �m
ρ (R2n), that symbol being

unique up to an element of S(R2n):

Proposition 7 Let (a j ) j be a sequence of symbols a j ∈ �
m j
ρ (R2n) such that m j >

m j+1 and lim j→+∞ m → −∞. Then:

(i) There exists a function a, such that a ∼

∞∑
j=1

a j .

(ii) If another function a′ is such that a′
∼

∞∑
j=1

a j , then a − a′ ∈ S(R2n).

Note that property (ii) immediately follows from the fact that we have

⋂
m∈R

�m
ρ (R2n) = S(R2n)
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14.1.3 A Reduction Result

It turns out that an operator (14.5) with symbol a ∈ �m,m ′
ρ (R3n) is a Shubin

τ -pseudo-differential operator—and this for every value of the parameter τ ! To prove
this important result we will need the following simple technical result:

Lemma 8 Let f be a linear map R
2n → R

n, and assume that the linear map
φ : R

2n → R
2n defined by φ(x, y) = ( f (x, y), x − y) is an isomorphism. Let

b ∈ �m
ρ (R2n). The function a defined by the formula

a(x, y, p) = b( f (x, y), p) (14.9)

is in the symbol class �m,|m|
ρ (R3n).

Proof It is clear that a ∈ C∞(R3n). The functions |x | + |y| and | f (x, y)| + |x − y|
give equivalent norms on R

2n . Using Peetre’s inequality (14.7) one easily shows that
that

(1 + | f (x, y)| + |p|)s

(1 + | f (x, y)| + |x − y| + |p|)s
� C(1 + |x − y|)|s| (14.10)

for all s ∈ R. The estimates (14.6) follow for a(x, y, p) with m ′ = |m|. �

Proposition 9 Let τ be an arbitrary real number. (i) Every pseudo-differential oper-
ator Â of the type (14.5) with symbol a ∈ �m,m ′

ρ (R3n) can be uniquely written in the
form Â = Opτ (aτ ) for some symbol aτ ∈ �m

ρ (R2n), that is

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)aτ ((1 − τ )x + τ y)ψ(y)dn ydn p;

the symbol aτ has the asymptotic expansion

aτ (x, p) ∼
∑

β,γ

1

β!γ!τ
|β|(1 − τ )|γ|

∂β+γ
p (i�∂x )

β(−i�∂y)
γa(x, y, p)|y=x .

(ii) In particular, choosing τ = 1
2 , there exists aW ∈ �m

ρ (R2n) such that Â =
OpW(aW).

Proof We are following with a few minor modifications Shubin’s original proof
([13], Theorem23.2; also see the presentation in deGosson [8], §14.5). For notational
simplicity we assume that � = 1. Let us set v = (1− τ )x + τ y and w = x − y, that
is, equivalently,

x = v + τw, y = v − (1 − τ ) w. (14.11)
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The symbol a can then be written

a(x, y, p) = a(v + τw, v − (1 − τ ) w, p). (14.12)

Expanding the right-hand side of (14.12) in a Taylor series at w = 0, we get a =
aN + rN where

aN (x, y, p) =
∑

|β+γ|≤N−1

(−1)|γ|

β!γ! τ |β| (1 − τ )|γ| (x − y)β+γ(∂β
x ∂γ

y a)(v, v, p)

(14.13)
and the remainder term rN is given by the formula

rN (x, y, p) =
∑

|β+γ|=N

cβγ(x − y)β+γ Iβγ(x, y, p) (14.14)

the cβγ being constants, and

Iβγ(x, y, p) =
1∫

0

(1 − t)N−1(∂β
x ∂γ

y a)(v + tτw, v − t (1 − τ )w, p)dt. (14.15)

In (14.13) the expression (∂
β
x ∂

γ
y a)(v, v, p) signifies that we have replaced x and y

with v = (1 − τ ) x + τ y in the expression ∂
β
x ∂

γ
y a(x, y, p). The expression

(∂β
x ∂γ

y a)(v + tτw, v − t (1 − τ )w, p)

in (14.15) should be understood in a similar way. We next note that the operator with
symbol

aβγ(x, y, p) = (x − y)β+γ(∂β
x ∂γ

y a)(v, v, p)

is the same as the one with symbol

bβγ(x, y, p) = i |β|+|γ|(∂β+γ
p ∂β

x ∂γ
y a)(v, v, p)

as is immediately seen using partial integrations and the relation

(x − y)β+γeip(x−y) = i−(|β|+|γ|)∂β+γ
p eip(x−y).

It follows from formula (14.13) that we have Â = ÂN + R̂N where ÂN is the operator
with τ -symbol

aN (x, p) =
∑

|β+γ|≤N−1

i |β|+|γ|

β!γ! (−τ )|β|(1 − τ )|γ|∂β+γ
p ∂β

x ∂γ
y a(x, y, p)|y=x
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and R̂N is the operator with symbol rN given by (14.14). Note that the operator R̂N

is a linear combination of a finite number of terms having symbols of the type

1∫

0

(∂β+γ
p ∂β

x ∂γ
y a)(v + tτw, v − t (1 − τ )w, p)(1 − t)N−1dt (14.16)

with |β + γ| = N . Let us now show that rN ∈ �m−2Nρ
ρ (R3n). For this it suffices

to show that this is true for the integrand in (14.16), with all estimates uniform in t
(note that this is obvious for each fixed t �= 0 and true for t = 0 by Lemma 8). Using
the trivial relations

v = (1 − τ )(v + tτw) + τ (v − t (1 − τ )w),

tw = (v + tτw) − (v − t (1 − τ )w)

it is easy to see that there exists a constant C > 0 independent of t ∈ [0, 1] such that

C−1 � |v + tτw| + |v − t (1 − τ )w|
|v| + |tw| � C

and we thus have the estimate

∣∣(∂β+γ
p ∂β

x ∂β
y a)(v + tτw, v − t (1 − τ )w, p)

∣∣

≤ C(1 + |v| + |tv| + |p|)m−2ρN (1 + |tw|)m ′+2ρN .

Since for m ′ + 2ρN ≥ 0 we have the inequality

(1 + |tw|)m ′+2ρN

≤ (1 + |v| + |tv| + |p|)m ′+2ρN (1 + |v| + |p|)−(m ′+2ρN ),

it is clear that if, in addition, m + m ′ � 0 and m − 2ρN � 0, then

∣∣(∂β+γ
p ∂β

x ∂β
y a)(v + tτw, v − t (1 − τ )w, p)

∣∣

≤ C ′(1 + |v| + |p|)−m ′−2ρN (1 + |v| + |tw| + |p|)m ′+m

≤ C ′(1 + |v| + |p|)m−2ρN (1 + |w|)m ′+m

≤ C ′(1 + |v| + |w| + |p|)m−2ρN (1 + |w|)m ′+2m+2ρN

where C ′ is independent of t. One estimates the derivatives in a similar way. Now,
let the symbol b′ ∈ �m

� (R2n) be such that

b′(x, p) ∼
∞∑

N=0

(bN (x, p) − bN−1(x, p)).
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Then, if Â′ has τ -symbol b′(x, p) it is clear that the kernel of the operator Â − Â′ is
in S(Rn × R

n). �

14.1.4 First Continuity Results

The following result shows that the symbol classes�m,m ′
ρ (R3n) lead to a neat operator

calculus; writing as above formally an operator Â as

Âψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a(x, y, p)ψ(y)dn ydn p

we have:

Proposition 10 (i) Every operator Â ∈ Gm
ρ (Rn) is a continuous operatorS(Rn) −→

S(Rn) and can hence be extended into a continuous operator S ′(Rn) −→ S ′(Rn).
(ii) If Â ∈ Gm

ρ (Rn), then Â† ∈ Gm
ρ (Rn). (iii) If Â ∈ Gm

ρ (Rn) and B̂ ∈ Gm ′
ρ (Rn) then

ÂB̂ ∈ Gm+m ′
ρ (Rn).

Proof (i) That we have a continuous extension Â : S ′(Rn) −→ S ′(Rn) follows from
the first statement by duality provided that the transpose ÂT is also in Gm

ρ (Rn). This
immediately follows from formula (9.44) in Proposition 17, using the estimates (14.1)
satisfied by the Shubin symbols. The proof of the continuity property Â : S(Rn) −→
S(Rn) is classical, and similar to the one one uses to prove the continuity of operators
with symbols in the Hörmander classes; we omit it here. (ii) follows from formula
(9.45) Proposition 17. The proof of (iii) is omitted; see Shubin [13], Theorem 23.6.�

The following boundedness results is important:

Proposition 11 (i) Let a ∈ �0
ρ(R

2n). For every τ ∈ R the Shubin operator Âτ =
Opτ (a) can be extended into a bounded operator on L2(Rn). (ii) Let a ∈ �m

ρ (R2n),
m < 0. Then Âτ = Opτ (a) can be extended into a compact operator on L2(Rn).

Proof The proof of both properties requires the anti-Wick formalism, which we do
not study here. See Shubin [13], Theorem 24.3 for property (i) and Shubin [13],
Theorem 24.4 for (ii). �

In ordinary pseudo-differential calculus one often expresses continuity results in
terms of the usual Sobolev spaces H s(Rn), defined by the condition

∫
|ψ̂(p)|2(1 + |p|2)sdn p < ∞.

Since the vocation of the operators studied in this chapter is to incorporate global
behavior, it is appropriate to introduce the following variant of these spaces:

http://dx.doi.org/10.1007/978-3-319-27902-2_9
http://dx.doi.org/10.1007/978-3-319-27902-2_9
http://dx.doi.org/10.1007/978-3-319-27902-2_9
http://dx.doi.org/10.1007/978-3-319-27902-2_9
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Definition 12 For s ∈ R the global Sobolev space Qs(Rn) consists of allψ ∈ S ′(Rn)

such that
Qs(Rn) = L2

s (R
2n) ∩ H s(R2n).

The norm on Qs(Rn) is defined by ||ψ||Qs = ||Lsψ|| where

Lsψ(x) = (
1

2π�

)n/2
∫

e
i
�

px 〈z〉s/2ψ̂(p)dn p.

The space Qs(Rn) can be equipped with an inner product making it into a Hilbert
space, and we have the equalities

⋂
s∈R

Qs(Rn) = S(Rn),
⋃

s∈R
Qs(Rn) = S ′(Rn) (14.17)

and that following regularity result holds:

Proposition 13 Every operator Â ∈ Gm
ρ (Rn) is a continuous operator Qs(Rn) −→

Qs−m(Rn).

In particular, using (14.17) we have Â : S(Rn) −→ S(Rn) and A : S ′(Rn) −→
S ′(Rn) (cf. Proposition 10, (i)).

We mention that the study of Qs(Rn) is best understood within the framework of
Feichtinger’s modulation spaces which will be introduced later in this chapter.

14.2 Modulation Spaces

Feichtinger’s [4–7] modulation spaces form a category of functional spaces which
plays a fundamental role in many theoretical and practical questions in analysis.
They were originally designed to study phase-space concentration problems in time-
frequency analysis, but their importance in quantum mechanics has been more
recently realized. In this section we review a subcategory; for a rather exhaustive
treatment see Gröchenig [10]; in de Gosson [8] (Chap.17) we have given a review of
modulation spaces from the point of view of theWigner formalism; we are following
this exposition here. We refer to Feichtinger’s review paper [7] for a comprehensive
description of recent research and advances in the topic.

14.2.1 The Modulation Spaces Mq
s

Recall that 〈z〉s = (1+ |z|2)s/2. We denote by Lq
s (R

2n) the space of all ψ ∈ S ′(R2n)

such that 〈·〉s ψ ∈ Lq(R2n); it is equipped with the norm
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||ψ||Lq
s
=

(∫
|〈z〉ψ(z)|qd2nz

)1/q

.

Definition 14 The modulation space Mq
s (Rn) consists of all ψ ∈ S ′(Rn) such that

Wig(ψ,φ) ∈ Lq
s (R

2n) for every “window” φ ∈ S(Rn). When q = 1 and s = 0 the
space M1

0 (R
n) = S0(Rn) is called the Feichtinger algebra.

One proves that S0(Rn) is an algebra both for pointwise product and for convolu-
tion, and that one has the inclusions

S(Rn) ⊂ S0(R
n) ⊂ C0(Rn) ∩ L1(Rn) ∩ L2(Rn). (14.18)

The modulation space Mq
s (Rn) is equipped with the family of norms defined by

||ψ||φ,Mq
s (Rn) = ||Wig(ψ,φ)||Lq

s
=

∫
|Wig(ψ,φ)(z)|q 〈z〉s d2nz. (14.19)

We have defined Mq
s (Rn) by requiring that W (ψ,φ) ∈ Lq

s (R
2n) for every window

φ. In fact, it suffices to verify this condition for one window. The two following
results summarize the main properties of Mq

s (Rn). The first is about the topological
properties of that space:

Proposition 15 (i) We have ψ ∈ Mq
s (Rn) if and only if we have Wig(ψ,φ) ∈

Lq
s (R

2n) for one (and hence every) window φ ∈ S(Rn). The topology of Mq
s (Rn) is

defined by using a single norm || · ||φ,Mq
s
; moreover all the norms obtained by letting

φ vary are equivalent. (ii) The modulation space Mq
s (Rn) is a Banach space for the

topology defined by the norm || · ||φ,Mq
s
. (iii) The Schwartz space S(Rn) is a dense

subspace of each of the modulation spaces Mq
s (Rn).

Proof See Gröchenig [10], Chapter11, especially Proposition 11.3.4. �

The second result show that Mq
s (Rn) is invariant under translations and metaplec-

tic transformations:

Proposition 16 (i) The space Mq
s (Rn) is invariant under the action of the Heisen-

berg operators T̂ (z); in fact there exists a constant C > 0 such that

||T̂ (z)ψ||φ,Mq
s

≤ C 〈z〉s ||ψ||φ,Mq
s
. (14.20)

(ii) Let Ŝ ∈ Mp(n). We have Ŝψ ∈ Mq
s (Rn) if and only if ψ ∈ Mq

s (Rn). In particular
Mq

s (Rn) is invariant under the Fourier transform.

Proof (i) We can choose T̂ (z0)φ as a window since T̂ (z0)φ ∈ S(Rn) if and only if
φ ∈ S(Rn). We have

Wig(T̂ (z0)ψ, T̂ (z0)φ)(z) = Wig(ψ,φ)(z − z0)
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hence it suffices to show that Lq
s (R

2n) is invariant under the phase space translations
T (z0) : z �−→ z + z0. We have

||T (z0)ψ||q
Lq

s
=

∫
|ψ(z − z0)|q 〈z〉qs d2nz

=
∫

|ψ(z)|q 〈z + z0〉qs d2nz

≤ 〈z〉s
∫

|ψ(z)|q 〈z〉qs d2nz

hence our claim; the estimate (14.20) follows. (ii) We have ψ ∈ Mq
s (Rn) if and only

if Wig(ψ,φ) ∈ Lq
s (R

2n) for one window φ ∈ S(Rn); if this property holds, then it
holds for all windows. In view of the symplectic covariance of the Wigner transform
we have

Wig(Ŝψ,φ) = Wig(Ŝψ, Ŝ(Ŝ−1φ))(z)

= Wig(ψ, (Ŝ−1φ))(S−1z)

hence Wig(Ŝψ,φ) ∈ Lq
s (R

2n) if and only if the function Wig(ψ, (Ŝ−1φ)) ◦ S−1 is in
Lq

s (R
2n). But this condition is equivalent to Wig(ψ, (Ŝ−1φ)) ∈ Lq

s (R
2n) since Ŝ−1φ

can be chosen as a window, hence Ŝψ ∈ Mq
s (Rn). �

This result in particular applies to the Feichtinger algebra S0(Rn) = M1
0 (R

n).
In fact, one can show (Gröchenig [10]) that S0(Rn) is the smallest Banach algebra
containing the space S(Rn) which is invariant under the action of the metaplectic
group Mp(n) and the Heisenberg operators.

The Shubin spaces Qs(Rn) are particular cases of modulation spaces:

Proposition 17 We have Qs(Rn) = M2
s (Rn) for every s ∈ R.

Proof See [1], Lemma 2.3. �

14.2.2 The Generalized Sjöstrand Classes

Let us set, for s ≥ 0,
〈〈(z, ζ)〉〉s = (1 + |z|2 + |ζ|2)s/2. (14.21)

Definition 18 The modulation space M∞,1
s (R2n) consists of all a ∈ S ′(R2n) such

that there exists a function φ ∈ S(R2n) for which

∫
sup

z∈R2n

|̃Wig(a,φ)(z, ζ)|〈〈(z, ζ)〉〉sdζ < ∞ (14.22)
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where W̃ig is the cross-Wigner transformonR
2n .One calls M∞,1(R2n) = M∞,1

0 (R2n)

the Sjöstrand class.

The space M∞,1(R2n) was introduced by Sjöstrand [14, 15] using very different
methods. It is easy to check that for every window φ ∈ S(R2n) the formula

||a||φ
M∞,1

s
=

∫
sup

z

[
|̃Wig(a,φ)(z, ζ)|〈〈(z, ζ)〉〉s

]
dζ < ∞ (14.23)

defines a norm on M∞,1
s (R2n). As is the case for the modulation spaces Mq

s (Rn)

condition (14.23) is independent of the choice of windowφ, andwhenφ runs through
S(R2n) the functions || · ||φ

M∞,1
s

form a family of equivalent norms on M∞,1
s (R2n). It

turns out that M∞,1
s (R2n) is a Banach space for the topology defined by any of these

norms; moreover the Schwartz space S(R2n) is dense in M∞,1
s (R2n).

The Sjöstrand classes M∞,1
s (R2n) contain many of the usual pseudo-differential

symbol classes and we have the important inclusion

C2n+1
b (R2n) ⊂ M∞,1

0 (R2n) (14.24)

where C2n+1
b (R2n) is the vector space of all functions which are differentiable up to

order 2n + 1 with bounded derivatives. In fact, for every window φ there exists a
constant Cφ > 0 such that

||a||φ
M∞,1

s
≤ Cφ||a||C2n+1 = Cφ

∑

|α|≤2n+1

||∂α
z A||∞. (14.25)

The generalized Sjöstrand classes are invariant under linear changes of variables:

Proposition 19 Let M be a real invertible 2n × 2n matrix. If a ∈ M∞,1
s (R2n) then

a ◦ M ∈ M∞,1
s (R2n), and there exists a constant CM > 0 such that for every window

φ and every a ∈ M∞,1
s (R2n) we have

||a ◦ M ||φ
M∞,1

s
≤ CM ||a||ψ

M∞,1
s

(14.26)

where ψ = φ ◦ M−1.

For a proof, see Proposition7 in de Gosson and Luef [9].
We are next going to show that M∞,1

s (R2n) is invariant under the action of the
metaplectic group Mp(2n) corresponding to the symplectic group Sp(2n) of the
symplectic space (R2n × R

2n,σ ⊕ σ).

Proposition 20 Let S̃ ∈ Mp(2n) and a ∈ S ′(R2n). We have a ∈ M∞,1
s (R2n) if and

only if S̃a ∈ M∞,1
s (R2n) and we have

||S̃a||S̃φ

M∞,1
s

≤ λs
max||Sa||φ

M∞,1
s

(14.27)
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where λs
max is the largest eigenvalue of ST S ∈ Sp(2n), S = �(S̃).

Proof Let S ∈ Sp(2n) be the projection of S̃ ∈ Mp(2n). We have, using the sym-
plectic covariance of the Wigner transform,

||S̃a||S̃φ

M∞,1
s

=
∫

sup
z∈R2n

[
|̃Wig(S̃a, S̃φ)(z, ζ)|〈〈(z, ζ)〉〉s

]
dζ

=
∫

sup
z∈R2n

[
|̃Wig(a,φ)(S−1(z, ζ))|〈〈(z, ζ)〉〉s

]
dζ

=
∫

sup
z∈R2n

[
|̃Wig(a,φ)(z, ζ))|〈〈S(z, ζ)〉〉s

]
dζ.

Now 〈〈S(z, ζ)〉〉 ≤ λmax〈〈z, ζ〉〉 hence

||S̃a||S̃φ

M∞,1
s

≤ λs
max

∫
sup

z∈R2n

[
|̃Wig(a,φ)(z, ζ))|〈〈z, ζ〉〉s

]
dζ

which is the inequality (14.27). �

The following result (Gröchenig [11]) shows that theWeyl correspondencea
Weyl←→

A is a continuous mapping M∞,1
s (R2n) −→ Mq

s (Rn):

Proposition 21 Let a ∈ M∞,1
s (R2n). The Weyl operator ÂW = OpW(a) is bounded

on Mq
s (Rn) for every q ∈ [1,∞], and there exists a constant C > 0 independent of

q such that following uniform estimate holds

|| ÂW||Op
Mq

s
≤ C ||a||M∞,1

s

for all a ∈ M∞,1
s (R2n) (|| · ||Op

Mq
s

is the operator norm on the Banach space Mq
s (Rn)).

The Sjöstrand class M∞,1(R2n) contains the Hörmander symbol class S0
0,0(R

2n).
The result above implies as a particular case a Calderón–Vaillancourt type result: if
a ∈ S0

0,0(R
2n) then Â = OpW(a) is bounded on L2(Rn).

For our purposes the following property is very important:

Proposition 22 Let a, b ∈ M∞,1
s (R2n). Then c = a��b ∈ M∞,1

s (R2n). In particular,
for every window of the type φ = Wigϕ where ϕ ∈ S(Rn), there exists a constant
Cφ > 0 such that

||a �� b||φ
M∞,1

s
≤ Cφ||a||φ

M∞,1
s

||b||φ
M∞,1

s
.

Since obviously a∗ ∈ M∞,1
s (R2n) if and only and a ∈ M∞,1

s (R2n) the property
above can be restated by saying that M∞,1

s (R2n) is a Banach ∗-algebra with respect
to the Moyal product �� and the involution a �−→ a∗.
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14.3 Applications to Born–Jordan Operators

We are going to prove the central result of this chapter, Proposition 24. It says that
if the symbol a belongs to the Shubin class �m

ρ (R2n) then the Born–Jordan operator
ÂBJ = OpBJ(a) is a Weyl operator with symbol also in �m

ρ (R2n).

14.3.1 A Fundamental Result

We are now going to show that every Born–Jordan operator with symbol in one of
the Shubin classes is a Weyl operator with symbol in the same class; for this we will
need the following elementary Lemma (F. Nicola):

Lemma 23 Let ξ and η be positive numbers and m ∈ R. We have

min{ξm, ηm} ≤ C(ξ + η)m (14.28)

where C = 1, when m ≤ 0 and C = 2−m when m ≥ 0.

Proof The case m ≥ 0 is straightforward: we have

min{ξm, ηm} ≤ ξm + ηm ≤ (ξ + η)m .

Suppose m < 0; if ξ ≤ η we have

min{ξm, ηm} = ηm ≤ 2−m(ξ + η)m;

the case ξ > η follows in the same way. �

Proposition 24 Let ÂBJ = OpBJ(a) with a ∈ �m
ρ (R2n). (i) For every τ ∈ R there

exists aτ ∈ �m
ρ (R2n) such that ÂBJ = Opτ (aτ ). (ii) In particular, every Born–Jordan

operator with symbol a ∈ �m
ρ (R2n) is a Weyl operator with symbol aW ∈ �m

ρ (R2n).

Proof Property (ii) follows from (i) choosing τ = 1
2 . (ii) Consider the τ -pseudo-

differential operator Aτ = Opτ (a):

Aτψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)a((1 − τ )x + τ y, p)ψ(y)dn ydn p

and set

aBJ(x, y, p) =
1∫

0

a((1 − τ )x + τ y, p)dτ . (14.29)
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We thus have

ABJψ(x) = (
1

2π�

)n
∫

e
i
�

p(x−y)aBJ(x, y, p)ψ(y)dn ydn p

which is of the type (14.5). Let us show that aBJ ∈ �m,m ′
ρ (R3n), i.e. that we have

estimates of the type

|∂α
x ∂β

y ∂γ
paBJ(x, y, p)| ≤ Cα,βγ〈(x, y, p)〉m−ρ|α+β+γ|〈x − y〉m ′+ρ|α+β+γ| (14.30)

for some m ′ ∈ R independent of α,β, γ. The result will follow using Proposition 9.
Let us set

bτ (x, y, p) = a((1 − τ )x + τ y, p);

we have
∂α

x ∂β
y ∂γ

pbτ (x, y, p) = (1 − τ )|α|τ |β|∂α+β
x ∂γ

pbτ (x, y, p)

hence, since a ∈ ∏m,m ′
ρ (R3n), we have the estimates

|∂α
x ∂β

y ∂γ
pbτ (x, y, p)| (14.31)

≤ Cα+β,γ(1 − τ )|α|τ |β|〈((1 − τ )x + τ y, p)〉m−ρ|α+β+γ|.

Now, by Peetre’s inequality (14.7) we have

〈((1 − τ )x + τ y, p)〉m−ρ|α+β+γ|

≤ C〈(x, p)〉m−ρ|α+β+γ|〈τ (x − y)〉|m|+ρ|α+β+γ|

as well as

〈((1 − τ )x + τ y, p)〉m−ρ|α+β+γ|

≤ C〈(y, p)〉m−ρ|α+β+γ|〈(1 − τ )(x − y)〉|m|+ρ|α+β+γ|

Combining these two inequalities we find

〈((1 − τ )x + τ y, p)〉m−ρ|α+β+γ|

≤ C min{〈(x, p)〉m−ρ|α+β+γ|, 〈(y, p)〉m−ρ|α+β+γ|}〈x − y〉|m|+ρ|α+β+γ|

This implies that

〈((1 − τ )x + τ y, p)〉m−ρ|α+β+γ|

≤ C ′m−ρ|α+β+γ|〈x − y〉|m|+ρ|α+β+γ|
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where we used the inequality (14.28). Together with (14.31) this inequality implies
(14.30) with m ′ = |m| after an integration on τ . �

Example 25 Let n = 1 and choose for a(x, p) the monomial x2 p2. We have

OpBJ(x2 p2) = 1
3 (̂x2 p̂2 + p̂x̂ p̂ + p̂2 x̂2)

and
Opτ (x2 p2) = τ 2 x̂2 p̂2 + 2τ (1 − τ ) p̂x̂ p̂ + (1 − τ )2 p̂2 x̂2).

An immediate calculation shows that

OpBJ(x2 p2) = Op1/2(
4
3 x2 p2).

14.3.2 Application: Some Boundedness Results

The following consequence of Proposition 24 is straightforward:

Proposition 26 Suppose that a ∈ �m
ρ (Rn). Then the Born–Jordan operator ÂBJ =

OpBJ(a) is a continuous operator ÂBJ : Qs(Rn) −→ Qs−m(Rn).

Proof In view of Proposition 24 we can write ÂBJ = Opτ (aτ ) with aτ ∈ �m
ρ (Rn). It

now suffices to apply Proposition 13. �

We also have the following L2-boundedness result:

Proposition 27 Let a ∈ �0
ρ(R

2n). Then ÂBJ = OpBJ(a) is a bounded operator on
L2(Rn).

Proof It suffices to apply Proposition 24 to Proposition 11, (i). �

Here is a rather general result, which shows the flexibility of Proposition 24; recall
that C2n+1

b (R2n) is the algebra of all complex functions a on R
2n whose derivatives

∂α
z a are bounded for |α| ≤ 2n + 1.

Proposition 28 Let a ∈ C2n+1
b (R2n). The operator ÂBJ = OpBJ(a) is bounded on

the modulation spaces Mq(Rn) = Mq
0 (Rn) for every q ≥ 1.

Proof Recall (formula (14.24)) that C2n+1
b (R2n) ⊂ M∞,1

0 (R2n). It follows from
Proposition 24 that there exists a symbol b ∈ M∞,1

0 (R2n) such that ÂBJ = OpW(b).
It now suffices to apply Proposition 21. �

We finally mention the following continuity result, which is a particular case of a
more general statement due to Elena Cordero (unpublished1):

1Private communication.
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Proposition 29 Let a ∈ Mq(R2n) = Mq
0 (R2n) and ÂBJ = OpBJ(a). For r ≥ 1 and

q ≥ 2 the operator ÂBJ extends into a bounded operator on Mr (Rn) = Mr
0(R

n) and
there exists a constant Cq,r > 0 such that

|| ÂBJψ||Mr ≤ Cq,r ||a||Mq ||ψ||Mr

for all ψ ∈ Mr (R2n).

We omit the proof; it is a particular case of previous results obtained by Cordero
and Nicola [3] in the Weyl case.
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