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Preface

This is a book discussing the Bogoliubov-de Gennes (BdG) method and its major
applications to superconductors. It was originally formulated by De Gennes in his
book Superconductivity of Metals and Alloys and is based on the BCS theory of
superconductivity, i.e., Cooper pair formation due to an effective pairing interaction
around the Fermi energy. It consists essentially of a coupled set of Schrödinger
equations, enabling a description of superconductivity with much information on
both quasiparticle and superconducting order parameter properties. The method
becomes particularly useful by providing insight into quasiparticle properties down
to the atomic scale, which can be detected by such local probes as scanning
tunneling microscopy. The understanding of quasiparticle properties is important
in uncovering the mechanism for superconductivity. Therefore, the BdG formalism
serves as a complementary approach to the Ginzburg–Landau theory, which is a
choice to describe the spatial variations of superconducting order parameter slowly
varying at a larger length scale.

The BdG theory was initially applied to understand the variation of super-
conducting order parameter in layered structures and quasiparticle states around
a single vortex core in conventional s-wave superconductors. At that time, the
BdG equations were solved analytically for some special cases. With significant
advance in computer power, the BdG method is now widely used to address the
local electronic structure in superconductors in much more complicated situations.
Its application has recently been expanded to unconventional superconductors like
high-temperature cuprates and topological superconductors. Due to its simplicity,
the BdG formalism can be easily accessed by undergraduate and graduate students
with the knowledge of quantum mechanics, who want to learn some interesting
superconducting phenomena by solving a generalized set of Schrödinger equations
through computer simulations. Throughout the book, we use the synonyms, BdG
method, BdG formalism, and BdG theory, interchangeably with the same meaning.

The book is organized into two parts. The first part is on the formalism itself and
consists of two chapters. The second part of the book, Chaps. 3–7, covers important
applications of the BdG method. Chapter 1 is on the derivation of the BdG equations
in the continuum model. Chapter 2 gives an alternative derivation of the equations in
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vi Preface

the tight-binding model, based on which a more realistic description of the normal-
state band structure can be incorporated. The structure of the equations and its
connection with the Abrikosov–Gorkov Green function method, as well as solutions
in the uniform case, are discussed in these first two chapters. Chapter 3 deals with
the local electronic structure around a single impurity in a superconductor. The
Yu-Shiba-Rusinov state around a magnetic impurity and Majorana mode from a
coupling to a spin chain in s-wave superconductors and impurity resonance states
in d-wave superconductors are discussed. Chapter 4 treats the influence on macro-
scopic properties by disorder effects in both s-wave and d-wave superconductors.
The localization of impurity-induced resonance states in a d-wave superconductor
is also discussed by using the one-parameter scaling analysis within the BdG
formalism. Chapter 5 deals with the magnetic field effects on the local electronic
structure of superconductors. The quasiparticle states around a single vortex core
and in the mixed-state of conventional and unconventional superconductors are
considered. The effect from a competing order on the quasiparticle states in a d-wave
vortex core is explored. In addition, the Fulde–Ferrell–Larkin–Ovchinnikov state
due to the spin Zeeman interaction of a magnetic field is also considered. In Chap. 6,
I discuss the transport properties of junctions formed with a superconductor.
The Andreev reflection on the differential conductance and its response to spin
polarization and topological superconductivity are explored. Chapter 7 covers the
topological effects with a focus on the periodicity of supercurrent in multiply
connected geometries at mesoscale and quantum size effects on the superconducting
properties in nanoscale superconductors. I would like to comment that the topics
chosen in the chapters on the applications of the BdG equations have a direct
relevance to the present frontiers of research in such emerging fields as iron-based
superconductors, topological superconductors, and cold atoms.

The author would like to thank C.-D. Gong and Z.D. Wang for introducing
him into the area of strongly correlated electron physics and superconductivity in
his undergraduate and graduate student ages, C.S. Ting for exposing him to the
phenomenology of high-temperature cuprate superconductors, and A.V. Balatsky
and A.R. Bishop for the help with nurturing new ideas in local electronic structure
and competing orders in strongly correlated electronic systems. The author wants to
thank C.-R. Hu, T.K. Lee, B. Friedman, I. Martin, I. Vekhter, M.J. Graf, D.N. Sheng,
Z.-Y. Weng, and Y. Chen for stimulating discussions and collaborations, on various
topics of superconductivity. The author is also indebted to excellent colleagues,
postdocs, and students in Los Alamos National Laboratory and Texas Center
for Superconductivity at the University of Houston for making his exploration
of superconductivity a great pleasure. I also want to thank Ms. Liesbeth Mol,
editorial director for the physical sciences at Springer, for her steadfast support and
enthusiasm, which made this project possible. The manuscript also benefited greatly
from valuable comments from the Series Editor and the skillful editing of Christian
Caron. Last but not least, I am enormously grateful to my wife Jian Xu for her love,
understanding, and support.

Los Alamos, NM, USA Jian-Xin Zhu
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Chapter 1
Bogliubov-de Gennes Equations
for Superconductors in the Continuum Model

Abstract In this chapter, a general introduction to the correlated electronic materi-
als as well as a brief account of superconductor discovery is given. The Bogoliubov-
de Gennes equations for superconductors are derived in the continuum. The
symmetry of the equations is discussed. Finally, a connection of the BdG equations
to the Green’s function method is made.

1.1 Introduction

In daily life, one is frequently encountered with the states of classical matter, and
transformation among these states or so called phases. For example, water can exist
in the forms of ice, liquid, and vapor. The transition between these forms can be
realized by varying temperature and pressure. These classical phenomena are the
outcomes of the collective motion of atoms and molecules, the understanding of
which constitutes the main subject of classical statistical physics.

In solid-state electronic materials, electrons are the major players. Since each
of them possesses charge �e (e > 0) and spin (an intrinsic degree of freedom),
the electronic states exhibit insulating, metallic, and even superconducting and
magnetic behaviors. The Mott-Hubbard-type insulating state occurs when the
Coulomb repulsion among valence electrons are too large as compared with their
kinetic energy (i.e., narrow electron energy band) in a pristine crystal [1, 2].
Therefore, these electrons have no nearby empty sites for them to hop to and they are
trapped around ions. In an Anderson insulator, the electrons are localized due to the
random distributed impurities in an impure metal, in which one can think of these
electrons as waves and these waves cannot propagate beyond the localization length
due to the wave-like interference effect [3–5]. Ideally, no conductivity exists in both
types of insulators. In the metallic state, they can sneak by all ions in the presence
of an electric field and conduct electricity. The difference between metallic and
insulating states is striking in real materials. For example, the resistivity in copper
is about 1:7 � 10�8 �m while the resistivity in undoped Sm2CuO4Cy is as large
as �1�m at low temperatures [6]. In the magnetic state, electronic spins can be
aligned into parallel, antiparallel, or other patterns.

More interestingly, in the superconducting state, electrons move throughout the
whole system with zero resistance. These unique properties have formed the basis

© Springer International Publishing Switzerland 2016
J.-X. Zhu, Bogoliubov-de Gennes Method and Its Applications, Lecture Notes
in Physics 924, DOI 10.1007/978-3-319-31314-6_1
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4 1 Bogliubov-de Gennes Equations for Superconductors in the Continuum Model

for operating electronic devices. Some of them have already been used in nowadays
power plants, computers, and wind turbines, to list a few. Therefore, a microscopic
understanding of the origin of these electronic states as well as how to control them
has significant implications to technological applications. For superconductivity, it
is now well accepted that the superconducting current arises from the formation
of Cooper pairs [7] mediated by some kind of bosons such as phonons, which
is originally proposed by Bardeen, Cooper, and Schrieffer (BCS) [8]. The single-
particle excitations in the superconducting state can not only provide insight into
the fundamental properties of superconductivity itself such as pairing nature but also
serve as new entities of significant technology implications as a response to defects
or magnetic field etc. The Bogoliubov-de Gennes (BdG) [9] approach, which is the
main focus of this text, is now a very powerful method to describe these single-
particle approximations in inhomogeneous superconductors. Before we proceed to
bring out the BdG mathematical formalism, it should be helpful for the readers to
be exposed with a quantum many-body framework in a more broad area of strongly
correlated electronic systems.

1.2 Quantum Many-Body Hamiltonian

A typical solid consists of the order of 1023 atoms. Each atom has the atomic number
of electrons. In addition to interacting with nuclei, these electrons are interacting
among themselves. In principle, one can start with a Hamiltonian to describe the
motions of both electrons and nuclei:

H D
X

i

p2i
2me

�
X

i;I

ZIe2

jri � RIj C 1

2

X

i;j

e2

jri � rjj C
X

I

P2I
2MI

C 1

2

X

I;J

ZIZJe2

jRI � RJ j :

(1.1)

Here the first and the fourth terms are the kinetic energy of the electrons and nuclei
while the second, third, fifth terms represent the potential energy due to the Coulomb
interaction between electrons and nuclei and among the electronic and nuclear
degrees of freedom themselves. The variables pi and PI denote the momentum
of each individual electron and nucleus, while the coordinates ri and RI are the
variables conjugate to pi and PI . The quantities me, MI , and ZI are the mass of
electron and nucleus, and the atomic number, respectively. Note that each electron
carries a negative charge �e (e > 0) and each nucleus carries a positive charge
ZIe. Therefore, the interaction between electrons and nuclei is attractive while that
among electrons or nuclei themselves is repulsive. A schematic drawing of this
many-particle problem for a frozen lattice of nuclei is shown in Fig. 1.1. Classically,
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MI

me

Fig. 1.1 Many-particle Hamiltonian of a solid consisting of electrons in a frozen lattice of nuclei

the equations of motion of the whole system are given by the Hamilton’s equations

Pri;˛ D @H

@pi;˛
; Ppi;˛ D �@H

@ri;˛
; (1.2)

for the electronic degrees of freedom, and

PRI;˛ D @H

@PI;˛
; PPI;˛ D � @H

@RI;˛
; (1.3)

for the nuclear degrees of freedom. These equations are precisely equivalent to the
Newton’s laws of motion. Here ˛ (D x; y; z) denotes the three components of a
vector in the cartesian coordinate system. Unfortunately, many important physical
properties of electronic phenomena in solids cannot be captured by the classical
mechanics and require a description within the quantum mechanics. There the
coordinates and momenta no longer commutate with each other. Instead they should
follow the Heisenberg uncertainty principles as represented by the commutators:

Œri;˛ ; pj;ˇ�� D i„ıijı˛ˇ and ŒRI;˛ ;PJ;ˇ�� D i„ıIJı˛ˇ : (1.4)

Here „ is the reduced Planck’s constant. The commutators by Eq. (1.4) indicate the
coordinates and momenta are now quantum mechanical operators. In the coordinate
representation, the momentum operator can be written as

pi D „
i
ri and PI D „

i
rI : (1.5)

Correspondingly, the operator form of the Hamiltonian (1.1) becomes

H D �
X

i

„2
2me

r2
i �

X

i;I

ZIe2

jri � RIj C 1

2

X

i;j

e2

jri � rjj

�
X

I

„2
2MI

r2
I C 1

2

X

I;J

ZIZJe2

jRI � RJ j : (1.6)
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As such, the evolution of a state of the whole system is described by a quantum
many-body wave-function, described by the Schrödinger equation1:

i„@�
@t

D H � ; (1.7)

where the many-body wave-function is the function of the variables .frig; fRIgI t/.
When there are no external potentials or when they are time independent, the wave
function can take the form

�.frig; fRIgI t/ D ˚.frig; fRIg/e�iEt=„ ; (1.8)

with the ˚.frig; fRIg/ satisfying the steady-state Schrödinger equation:

H ˚.frig; fRIg/ D E˚.frig; fRIg/ : (1.9)

Here E is the total energy of the many-particle system. Theoretically, the wave-
functions˚.frig; fRIg/ contain all information needed to describe every property of
the system. In practice, a direct solution of Eq. (1.9) is prohibitively difficult and a
hierarchy of theoretical approximations are in order. Notice that the only small term
in Eq. (1.6) is the kinetic energy of nuclear motion, which is smaller than that of
electronic motion by a factor of me=MI . Therefore, within the Born-Oppenheimer
approximation [10], the wave function for the entire system can be written as

˚˛n.frig; fRIg/ D �˛.frig W fRIg/un˛.fRIg/ : (1.10)

Here �˛.frig W fRIg/ are the wave-functions for the electrons with the nuclei
positions fRIg as a fixed set of parameters and satisfying the equation

�
�
X

i

„2
2me

r2
i �

X

i;I

ZIe2

jri � RIj C 1

2

X

i;j

e2

jri � rjj C 1

2

X

I;J

ZIZJe2

jRI � RJj
�
�˛.frig W fRIg/

D W˛.fRIg/�˛.frig W fRIg/ ; (1.11)

while un˛.fRIg/ are the wave-functions for the nuclear motion, and they satisfy the
equation

�
�
X

I

„2
2MI

r2
I C W˛.fRIg/� E

�
un˛.fRIg/ D 0 ; (1.12)

1For simplicity, the discussion is restricted to the non-relativistic limit. For a fully relativistic
description, the kinetic energy at least for the electronic degrees of freedom should be replaced
by the Dirac Hamiltonian.



1.2 Quantum Many-Body Hamiltonian 7

within the so-called “frozen phonon” approximation. By going beyond the Born-
Oppenheimer approximation, a perturbation theory can be developed for the
electron-phonon interactions, which are responsible for the inelastic scattering of
electrons in metals, polaron formation in ionic crystals, and pairing of electrons in
some metals and compounds. As such, it is important to focus on the electronic
dynamics as described by Eq. (1.11) with the nuclear positions fRIg as parameters.
It has no effect whether we solve for W including nucleus-nucleus repulsive
interaction or solve the following equation

�
�
X

i

„2
2me

r2
i �

X

i;I

ZIe2

jri � RI j C 1

2

X

i;j

e2

jri � rjj
�
�˛.frig W fRIg/

D E˛.fRIg/�˛.frig W fRIg/ ; (1.13)

and add the nucleus-nucleus repulsive interaction afterwards. Equation (1.13) must
be solved with the appropriate boundary conditions for the wave-functions. For
example, �˛.frig W fRIg/ must be vanishing when the electrons are infinitely far
away from an isolated atom or molecule, or must be satisfying the periodic boundary
condition for crystalline solids. Also since electrons are spin- 1

2
fermions, the wave-

functions �˛ must be antisymmetric with the interexchange of two electrons. Even
so, due to the inter-electron Coulomb repulsion, Eq. (1.13) cannot be solved directly
except for problems with few number of electrons. The difficulty in solving it
numerically grows exponentially with the increase in the number of correlated
electrons. This exponential problem will not be overcome for the cases involving
many correlated electrons, which are typical in solids, regardless of the fact that the
computational power is continuing to grow rapidly.

To approach this problem, two strategies are mostly taken. One is to directly
deal with Eq. (1.13) and map it onto a single-particle Hamiltonian while the other is
to dramatically reduce Eq. (1.13) to an effective quantum many-body Hamiltonian
so that electronic correlation effects can be qualitatively understood. The former
is borne out within density functional theory (DFT) [11], in which the problem is
made equivalent to solving the single-particle Kohn-Sham equations [12]:

�
� „2
2me

r2 C VKS;s.r/
�
 s;˛.r/ D Es;˛ s;˛.r/ ; (1.14)

with

VKS;s.r/ D �
X

I

ZIe2

jr � RIj C
Z

d3r0
e2n.r0/
jr � r0j C Vxc;s.r/ : (1.15)

In Eq. (1.14), s;˛ and Es;˛ are the Kohn-Sham eigenfunctions and the corresponding
eigenvalues for spin projection s. In the DFT framework, the electronic correlation
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MI

me

Fig. 1.2 Single-particle Hamiltonian of a solid consisting of electrons in a frozen lattice of nuclei

effects are encoded in the exchange-correlation potential Vxc;s.r/.2 A schematic
drawing of this single-particle problem is shown in Fig. 1.2. Since the single-particle
Kohn-Sham potential VKS;s is in turn determined by the Kohn-Sham eigenfunctions
via the local electron density n.r/ D P

s

PNs
˛D1 j s;˛.r/j2 with the total number

of Ne D N" C N# electrons occupying Ne lowest-lying spin-orbitals, the Kohn-
Sham equations (1.14) should be solved self-consistently. Although the mapping
from Eq. (1.13) to Eq. (1.14) is exact under the Hohenberg-Kohn theorem [13]
for the ground state, the construction of the functional itself is nontrivial. So far
the local density approximation (LDA) and its variants like generalized-gradient
approximation (GGA) are the most often used. The LDA- or GGA-based DFT
theory has been very successful in describing many materials for both ground-
state energies and band structures, suggesting weak electronic correlations in these
materials. However, the LDA-based DFT is not successful in describing other
important classes of materials with open d- and f -shell orbitals (i.e., with partially
occupied valence electrons occupying these orbitals). For example, LDA-based DFT
predicts such transition metal oxides as La2CuO4, MnO, and NiO to be metals
but they are insulators in reality. Similarly, for intermetallic f -electron systems
like lanthanides and actinides, the LDA-based DFT usually gives effective mass
of quasiparticles around the Fermi energy one or two orders of magnitude smaller
than the experimental values. This failure demonstrates that the LDA-based DFT
does not adequately address the electronic correlations in these materials, where the
electrons experience very strong Coulomb repulsion when they occupy these narrow
orbitals. The construction of more powerful exchange-correlation functionals for
these narrow band materials remains a challenge in the DFT community [14].

Instead in the latter strategic approach, the electronic correlations are addressed
directly by treating the competition between electron kinetic energy and inter-
electron potential energy in a quantum many-body manner but within a much
simplified low-energy model Hamiltonian [15, 16]. Some representative low-energy
models will be presented after we introduce the second quantization in the next
section.

2A spin index is introduced to allow for possible magnetic states. However, for simplicity of the
discussion, the spin-orbit coupling effect is neglected.
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1.3 Second Quantization

The direct treatment of the quantum many-body systems through the Schrödinger
wave-function method is cumbersome and is not practical. It is convenient to use the
second quantization to discuss the many identical interacting particles. As we recall,
in the first quantization, the physical observables become quantum mechanical
operators and the total energy is the expectation value of the Hamiltonian operator
against the many-particle wave-function, which is the summation of the contribu-
tions for the single-particle kinetic energy and two-particle potential energy. In the
second quantization, the wave-function itself becomes field operators, which can be
expressed in the particle occupation number representation. In this representation,
the many-particle state can be described by the occupation of identical particles in
each single-particle state and the statistics symmetry regarding the particle being of
Bose or Fermi character is protected in each step. This field quantization method
is not only essential for the description of particle creation and destruction in
the relativistic quantum field theory, but also powerful to describe the strongly
correlated electronic systems.

For the correlated electrons as described by the Schrödinger equation (1.13), the
Hamiltonian can be rewritten as

He D
X

i

h.ri/C 1

2

X

ij

vee.jri � rjj/ ; (1.16)

where the single-particle operator

h.ri/ D � „2
2me

r2
i �

X

I

ZIe2

jri � RIj ; (1.17)

and the two particle operator

vee.jri � rjj/ D e2

jri � rjj : (1.18)

Since electrons are fermions, the Hamiltonian (1.16) in the second quantized form
is given by Fetter and Walecka [17], Mahan [18]

OHe D
Z

dx O �.x/h.x/ O .x/C 1

2

Z Z
dxdx0 O �.x/ O �.x0/vee.x; x0/ O .x0/ O .x/ :

(1.19)

The first term on the right-hand side describes the non-interacting (also called
single-particle) part of electrons while the second term the electron-electron inter-
action. Here the variable x denotes both the real-space coordinates r and the spin
projection (usually along the z-axis) s, that is, x � .r; s/. Different from the
continuous variable r, the spin projection can only take the discretized values,
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s D ˙„=2.3 Therefore, a summation is implied in the integral over the spin index
in x. In Eq. (1.19), the field operator O �.x/ ( O .x/) creates (annihilates) an electron
at a coordinate x, and they satisfy the anticommutation rules as

f O .x/; O .x0/g D 0 ; (1.20a)

f O �.x/; O �.x0/g D 0 ; (1.20b)

f O .x/; O �.x0/g D ı.x � x0/ : (1.20c)

We note that the field operator O �.x/ is the hermitian conjugate of O .x/. Here the
curly brackets represent the anticommutator, i.e., for two operators OA and OB,

f OA; OBg D OA OB C OB OA : (1.21)

The ı-function is understood as Dirac-type for the continuous spatial coordinates
while as Kronecker-type for the discrete variables, that is,

ı.x � x0/ D ı.r � r0/ıss0 : (1.22)

More generally, if the single-particle Hamiltonian is non-local in the x coordinate
space, which is especially true when the spin-orbit coupling due to the relativistic
effect is included, the single-particle Hamiltonian takes the form of h.x; x0/. The
system Hamiltonian of correlated electrons is then written as

OHe D
Z Z

dxdx0 O �.x/h.x; x0/ O .x0/

C1

2

Z Z
dxdx0 O �.x/ O �.x0/vee.x; x0/ O .x0/ O .x/ : (1.23)

Similarly, for any single-particle operator having

O D
X

i

O.ri/ ; (1.24)

in the first quantization, its second quantized form is given by

O D
Z

dx O �.x/O.x/ O .x/ : (1.25)

3Later on, we will also interchangeably use the symbol � D˙1 for the spin variables, s D .„=2/� .
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or

O D
Z Z

dxdx0 O �.x/O.x; x0/ O .x0/ : (1.26)

for the non-local case. In addition, although the original electron-electron interaction
vee is repulsive, the second quantized Hamiltonian for the low-energy modeling
remains to have the similar form even if inter-particle interaction is attractive.

Depending on the specific form of the Hamiltonian to be studied, the field
operators can be expanded in terms of a complete set of basis functions, which
are usually the eigenstates of the single-particle part of the Hamiltonian.

In the jellium model, where an interacting electron gas is placed in a background
of the uniformly distributed positive charges, it is convenient to write the field oper-
ators as a linear combination of creation and annihilation operators corresponding
to plane waves

 �.r/ D 1p
V

X

k

eik�rck� ; (1.27a)

 ��.r/ D 1p
V

X

k

e�ik�rc�k� ; (1.27b)

where V denotes the volume of the gas, and the annihilation and creation operators
ci� and c�i� satisfy the anticommutation relation for fermions

fck� ; c
�

k0� 0g D ıkk0ı�� 0 ; (1.28a)

fck� ; ck0� 0g D fc�k� ; c
�

k0� 0g D 0 : (1.28b)

Accordingly, the second quantized Hamiltonian for the interacting electron gas is
given by

H D
X

k�

"kc�k�ck� C 1

2V

X

q¤0

X

kk0

X

�� 0

vee.q/c
�

kCq;�c�k0�q;� 0 ck0� 0ck� ; (1.29)

where

"k D „2k2
2me

; (1.30)

is the single-particle energy dispersion and

vee.q/ D 4�e2

q2
; (1.31)

is the Fourier transform of the long-ranged Coulomb repulsion.
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For the narrow band materials, the electronic correlations are significant. It is
convenient to represent the field operators in terms of local orbitals. Representative
examples of these local orbitals are Wannier orbitals or local atomic orbitals within
the tight-binding approximation (TBA) to the systems with large atomic distances.
If we consider only a single narrow band to be partially filled in a solid, the field
operators can be represented as

 �.r/ D
X

i

�.r � Ri/ci� ; (1.32a)

 �� .r/ D
X

i

��.r � Ri/c
�
i� ; (1.32b)

where �.r � Ri/ is the localized orbital at atomic site Ri, and the annihilation and
creation operators ci� and c�i� satisfy the anticommutation relation for fermions

fci� ; c
�

j� 0g D ıijı�� 0 ; (1.33a)

fci� ; cj� 0g D fc�i� ; c
�

j� 0g D 0 : (1.33b)

The Hamiltonian for the single-orbital Hubbard model is given by Hubbard [1]

H D �
X

ij

tijc
�
i�cj� C U

2

X

i�

ni�ni N� ; (1.34)

where N� D �� with � D C1 or " for spin up and � D �1 or # for spin down,

tij D �
Z

dr��.r � Ri/h.r/�.r � Rj/ ; (1.35)

is the hopping integral between two atomic sites,

U D e2
Z Z

drdr0
j�.r � Ri/j2j�.r0 � Ri/j2

jr � r0j : (1.36)

To derive this Hubbard model, the multi-center integral for the Coulomb interaction
has been neglected.

Similarly, within the TBA, the Anderson lattice model is defined as [19]

H D �
X

ij;�

tijc
�
i�cj� C

X

ij;�˛

.Vi�;j˛c�i� fj˛ C H.c./

C
X

i;˛

"
f
i f
�
i˛fi˛ C Uf

2

X

i

nf
i˛nf

i N̨ : (1.37)
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Here the localized f -orbitals with energy level "f
i is hybridized with the conduc-

tion band while the electrons within the localized f -orbital electrons experience
Hubbard-U repulsion. The quantity Vi�;j˛ is the hybridization strength and the index
˛ represents a two-component quantum state of the f -orbital.

These minimal models have been intensively used for understanding such
emergent phenomena as localization-delocalization, heavy fermion, magnetism and
superconductivity in transition metal oxides and intermetallic f -electron systems
in condensed matter physics community. The creation and annihilation operators
in the second quantization are also the central elements in the definition of
Green’s functions, which are used in quantum many-body theory. In particular,
the Green’s functions have been used as convenient quantities to evaluate the
dynamic self-energies within the dynamical mean-field theory (DMFT) [20] for
strongly correlated electronic systems, which maps the quantum lattice many-
body problem to an effective quantum impurity one (still strongly correlated!).
Recently, the LDA+DMFT approach [21–23] has been developed to investigate
strongly correlated electronic materials. The approach incorporates the merits from
both LDA and DMFT, and has been successful in giving a unified description of
electronic states from weak to strong coupling limits, on the aspects of quasiparticle
renormalization and magnetism. As for the phenomenology of superconductivity
and related ordering states, the above quantum many-body approaches also lay
down the foundations for the effective modeling description covered in the following
chapters.

1.4 Basic Properties of Superconductors

Superconductivity was discovered by H. Kamerlingh Onnes in 1911 on mercury.
Thereafter, it has also been discovered in other elemental solids like lead and
niobium, and other simple compounds. The highest temperature superconductor has
been Nb3Sn until the year of 1986, when the high temperature superconductivity
was discovered in copper-based oxides. In the copper-family of superconductors,
the highest temperature superconductor is the ceramic HgBa2Cu2Cu3O8Cı with
a transition temperature Tc � 130 degrees of Kelvin. In 2008, the iron-based
superconductors was discovered with a highest transition temperature of 55 K
obtained in SmO1�xFxFeAs. A chronicle for the discovery of superconductors is
shown in Fig. 1.3. The hallmarks of the superconductors are the zero resistivity
and perfect diamagnetism as they are cooled below a critical temperature Tc. For
all the superconductors discovered so far, the flux quantization experiments have
provided strong evidence that the superconductivity arises from the formation of
Cooper pairs [7] by electrons. However, the mechanism for glueing the electrons
can be very different from materials to materials. The Cooper pairs are mediated by
phonons, that is, lattice vibrational modes, in conventional superconductors while
they are via a more exotic process (e.g., the fluctuations of the electron spins) in
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Fig. 1.3 Timeline of the superconductor discovery. Image courtesy of U.S. DOE Office of Basic
Energy Sciences

unconventional superconductors. Accordingly, the pairing symmetry that describes
the relative orbital motion of the paired electrons can be different. An s-wave pairing
symmetry is commonly observed in conventional superconductors, while other
unconventional pairing symmetry like p-, d-, f - and s˙-wave can occur in uncon-
ventional superconductors. The latter includes Sr2RuO4, 3He, high-temperature
cuprates, heavy fermion inter-metallic compounds, and recently discovered iron-
based superconductors. On the one hand, the unconventional superconductors are
accompanied with multiple electronic phases, a typical feature of strongly correlated
electronic materials. On the other hand, although the BCS [8] theory, invoking
the electron-phonon coupling as a pairing mechanism, is originally developed for
the conventional superconductors, it seems that the quasiparticle properties in the
superconducting state can be described by the BCS theory for the unconventional
superconductors. This is the underlying basic assumption for the BdG [9] approach.

1.5 Derivation of the BdG Equations in the Continuum
Model

The BdG [9] approach relies on the assumption that there exist well-defined quasi-
particles in the superconductor. It has the advantage of providing information about
the one-particle excitations of the system. The quasiparticle excitation spectrum
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can be obtained, together with the corresponding quasiparticle amplitudes. The
BdG formalism is essentially correct in the weak-coupling regime, but also yields
qualitative results in situations of very strong coupling, as was pointed out by
Bishop et al. [24]. The interest in microscopic electronic structure calculations of
this type was revived by low-temperature scanning-tunneling-microscopy (STM)
experiments which provided extremely detailed, spatially resolved, excitation spec-
tra around a single impurity, near the interface/surface, and around a vortex core in
the presence of an Abrikosov flux lattice. An explanation of these results requires
the knowledge of the one-particle local density of states of the system, which is best
described in the framework of the BdG theory.

1.5.1 Derivation

We start with the second-quantized Hamiltonian for electrons experiencing an
effective two-particle attractive interaction:

H D
Z

dr �˛.r/h˛.r/ ˛.r/� 1

2

Z Z
drdr0Veff.r; r0/ �˛.r/ 

�

ˇ.r
0/ ˇ.r0/ ˛.r/ :

(1.38)

Here  �˛.r/ and  ˛.r/ are creation and annihilation field operators of an electron
with spin ˛ at position r. They obey the anti-commutation relation

f ˛.r/;  �ˇ.r0/g D ı.r � r0/ı˛ˇ ; (1.39)

f ˛.r/;  ˇ.r0/g D f �˛.r/;  �ˇ.r0/g D 0 : (1.40)

The single particle Hamiltonian is given by

h˛.r/ D Œ„i rr C e
c A.r/�2

2me
� e�.r/C ˛	BH.r/� EF ; (1.41)

with A.r/ and �.r/ the vector and scalar potentials. The magnetic field H.r/
has assumed to be along the z direction. The single particle energy is measured
relative to the Fermi energy EF. We have also chosen Veff.r; r0/ to be positive while
introduced a prefactor “�” to denote the attractive interaction in the second term
of Eq. (1.38). Of course, the symmetry relation Veff.r0; r/ D Veff.r; r0/ still holds.
The repeated spin index means the summation. Since we are most interested in the
electron pairing in a superconductor, we can perform a Hartree-Fock-like mean-
field approximation to the second term of Eq. (1.38) but in the particle-particle
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pairing channel.4 A caution should be taken that this assumption is reasonable
at low temperatures when the system is deep into the superconducting state,
and the superconducting phase fluctuation, which is important near the transition
temperature, is neglected. The mean-field Hamiltonian can then be written as
follows5:

Heff D
Z

dr �˛.r/h˛.r/ ˛.r/C
Z Z

drdr0Œ
.r; r0/ �".r/ 
�

#.r
0/C H.c.�

C
Z Z

drdr0j
.r; r0/j2=Veff.r; r0/ ; (1.42)

where the pair potential is given by


.r; r0/ D �Veff.r � r0/h #.r0/ ".r/i D Veff.r � r0/h ".r/ #.r0/i ; (1.43)


�.r; r0/ D �Veff.r � r0/h �".r/ �#.r0/i D Veff.r � r0/h �#.r0/ �".r/i : (1.44)

The effective Hamiltonian equation (1.42) is in a bi-linear form and can be
diagonalized exactly. By using the commutation relation for fermionic operators
OA, OB, OC

ŒA;BC�� D fA;BgC � BfA;Cg ; (1.45)

and the function property

Z
dx0f .x0/

dı.x � x0/
dx0

D �df .x/

dx
; (1.46)

we obtain the following relations

Œ ".r/;Heff �� D h".r/ ".r/C
Z

dr0
.r; r0/ �#.r
0/ ; (1.47a)

Œ 
�

".r/;Heff �� D �h�".r/ 
�

".r/ �
Z

dr0
�.r; r0/ #.r0/ ; (1.47b)

Œ #.r/;Heff �� D h#.r/ #.r/ �
Z

dr0
.r0; r/ �".r
0/ ; (1.47c)

Œ 
�

#.r/;Heff �� D �h�#.r/ #.r/C
Z

dr0
�.r0; r/ ".r0/ : (1.47d)

4We notice that the normal-state Hartree-Fock term can be absorbed into the chemical potential,
which will not modify the results qualitatively.
5Here we only consider the spin-singlet pairing, in which a spin-up electron is paired with a
spin-down electron. The spin-triplet pairing, in which electrons are paired with equal spin, can
be discussed similarly.
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Note that h�.r/ ¤ h.r/. Equations (1.47)(a)–(d) show that the electron field operator
can be expressed as a linear combination of electron- and hole-like quasiparticle
excitations, which enables us to perform a Bogoliubov canonical transformation [25,
26]:

 �.r/ D
X

n

Œun� .r/�n � �v�n� .r/��n � : (1.48)

Be reminded the summation is over the excitation states with positive energy. In the
expanded form for each individual spin projection, the transformation becomes

 ".r/ D
X

n

Œun
".r/�n � vn�

" .r/�
�
n � ;  

�

".r/ D
X

n

Œun�
" .r/�

�
n � vn

".r/�n� ; (1.49)

 #.r/ D
X

n

Œun
#.r/�n Cvn�

# .r/�
�
n � ;  

�

#.r/ D
X

n

Œun�
# .r/�

�
n Cvn

#.r/�n� : (1.50)

In the above transformation, the quasiparticle operators �n and ��n are also fermionic
operators obeying the anti-commutation relation

f�n; �
�
mg D ınm ; (1.51)

f�n; �mg D f��n ; ��mg D 0 : (1.52)

The anti-communication relation between the quasiparticle operators also ensures
the anti-communication relation for the original electron field operators given in
Eqs. (1.39) and (1.40).

The remaining task is to establish the eigen-equation for the quasiparticle wave
functions .u�.r/; v� .r//Transpose. Assume the diagonalized Hamiltonian to be

Heff D Eg C
X

n

En�
�
n�n ; (1.53)

where the excitation energy is positive and Eg is the ground state energy. We first
observe the following commutation relations

Œ��n ;Heff �� D �En�
�
n ; (1.54)

Œ�n;Heff �� D En�n : (1.55)

Upon the substitution of Eqs. (1.49) and (1.50), and with the aid of Eqs. (1.54) and
(1.55), we can compare the coefficients of these terms with �n and ��n and arrive at
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the following set of equations:

8
ˆ̂̂
<

ˆ̂̂
:

h".r/un
".r/C R

dr0
.r; r0/vn
#.r
0/ D Enun

".r/;
h#.r/un

#.r/C R
dr0
.r0; r/vn

".r
0/ D Enun

#.r/;R
dr0
�.r; r0/un

#.r
0/ � h�".r/v

n
".r/ D Env

n
".r/;R

dr0
�.r0; r/un
".r
0/ � h�#.r/v

n
#.r/ D Env

n
#.r/:

(1.56)

To see the structure of the above set of equations more clearly, we can write it into
a compact matrix form:

Z
dr0 OM.r; r0/ O�.r0/ D En O�.r/ ; (1.57)

where

OM.r; r0/ D

2

6664

h".r/ı.r � r0/ 0 0 
.r; r0/
0 h#.r/ı.r � r0/ 
.r0; r/ 0

0 
�.r; r0/ �h�".r/ı.r � r0/ 0

�.r0; r/ 0 0 �h�#.r/ı.r � r0/

3

7775

(1.58)

and

O�.r0/ D

0

BBB@

un
".r/

un
#.r/
vn
".r/
vn
#.r/

1

CCCA : (1.59)

From Eq. (1.58), we can see that in the absence of spin-orbit coupling and other
spin-flip scattering interactions, the set of equations as given by Eq. (1.58) is blocked
diagonalized into two subsets of equations:

(
h".r/uQn1" .r/C R

dr0
.r; r0/vQn1# .r
0/ D EQn1uQn1" .r/;R

dr0
�.r0; r/uQn1" .r
0/ � h�#.r/v

Qn1
# .r/ D EQn1vQn1# .r/;

(1.60)

and
(

h#.r/uQn2# .r/C R
dr0
.r0; r/vQn2" .r

0/ D EQn2uQn2# .r/;R
dr0
�.r; r0/uQn2# .r

0/� h�".r/v
Qn2
" .r/ D EQn2vQn2" .r/:

(1.61)

That is, the spin-up electron-like component of wave function u".r/ is coupled only
to the spin-down hole-like component of wave function v#.r/ while the spin-down
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electron-like component of wave function u#.r/ is coupled only to the spin-up hole-
like component of wave function v".r/. Each of these two subsets of equations
are now a 2 by 2 matrix equation in the Nambu space. By breaking the U.1/
gauge symmetry, this unusual space allows the emergence of superconducting
pairing state. The mathematical structure of these equations looks similar to those
describing the coupling between particles in conduction band and holes in the
valence band in semiconductor physics. However, we should be cautioned that the
origin of these equations in superconductors is really due to an effective electron-
electron pairing. To be clear, we have redefined the number of eigenstate index.
If the original set of eigen-equations as given in Eq. (1.56) has N number of
eigenvalues, each subset of eigen-equations will have N=2 number of eigenvalues.
In this decoupling, the diagonalized Hamiltonian as given in Eq. (1.53) can be
written as:

Heff D Eg C
X

Qn	
EQn	��Qn	�Qn	 ; (1.62)

with 	 D 1; 2. Correspondingly, the canonical transform can also be re-written as:

 ".r/ D
X

Qn
ŒuQn1" .r/�Qn1 � vQn2�" .r/��Qn2� ;  

�

".r/ D
X

Qn
ŒuQn1�" .r/��Qn1 � vQn2" .r/�Qn2� ;

(1.63)
 #.r/ D

X

Qn
ŒuQn2# .r/�Qn2 C vQn1�# .r/��Qn1� ;  

�

#.r/ D
X

Qn
ŒuQn2�# .r/��Qn2 C vQn1# .r/�Qn1� :

(1.64)

We now prove that the set of equations given by Eqs. (1.60) and (1.61) has the
following symmetry property: If .uQn1" ; v

Qn1
# /

Transpose is the eigenfunction of Eq. (1.60)

with eigenvalue EQn1, then .vQn1�# ;�uQn1�" /Transpose is also the eigensolution to Eq. (1.61)
with eigenvalue �EQn1. We take the complex conjugation to Eq. (1.60), which
yields to

(
h�".r/u

Qn1�
" .r/C R

dr0
�.r; r0/vQn1�# .r0/ D EQn1uQn1�" .r/;R
dr0
.r0; r/uQn1�" .r0/ � h#.r/vQn1�# .r/ D EQn1vQn1�# .r/:

(1.65)

Multiplying the second expression in the above set of equations by a minus sign on
both sides, we re-arrange the whole set of equations into

(
h#.r/vQn1�# .r/C R

dr0
.r0; r/.�uQn1�" .r0// D �EQn1vQn1�# .r/ ;R
dr0
�.r; r0/vQn1�# .r0/� h�".r/.�uQn1�" .r// D �EQn1.�uQn1�" .r// :

(1.66)
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Equation (1.66) is just identical to Eq. (1.61) with the equivalence:

 
uQn2# .r/
vQn2" .r/

!
�
 
vQn1�# .r/
�uQn1" .r/

!
; (1.67)

and EQn2 � �EQn1. This property has a significant consequence. It suggests that
we merely need to solve one set of equations, e.g., Eq. (1.60), instead of both
Eqs. (1.60) and (1.61), and obtain all information essential for the measurable. It
saves the computational time significantly, which is desirable for the real-space
inhomogeneous or disordered problems, even in a collinear spin-polarization. Note
again here that this simplification exists in the absence of the spin-orbit coupling
and other spin-flip scattering terms in the Hamiltonian. However, a more general
symmetry property, as will be shown in the next chapter, can be derived even in
the presence of these terms. We note that Eqs. (1.60) and (1.61) involve the pair
potential
.r; r0/. Substituting Eqs. (1.49) and (1.50) into Eq. (1.43), we arrive at


.r; r0/ D V.r � r0/h ".r/ #.r0/i

D V.r � r0/
0X

Qn
ŒuQn1" .r/v

Qn1�
# .r0/f .�EQn1/ � vQn2�" .r/uQn2# .r

0/f .EQn2/�

D V.r � r0/
X

Qn
uQn1" .r/v

Qn1�
# .r0/f .�EQn1/ : (1.68)

On the other hand,


.r; r0/ D �V.r � r0/h #.r0/ ".r/i

D �V.r � r0/
0X

Qn
Œ�uQn2# .r

0/vQn2�" .r0/f .�EQn2/C vQn1�# .r0/uQn1" .r
0/f .EQn1/�

D �V.r � r0/
X

Qn
uQn1" .r/v

Qn1�
# .r0/f .EQn1/ : (1.69)

Here we have used the symmetry property in the derivation, and the statistical
average

h��Qn	� Qm�i D ıQn Qmı	� f .EQn	/ ; (1.70)

and

h�Qn	� Qm�i D h��Qn	��Qm�i D 0 ; (1.71)
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where the Fermi distribution function

f .EQn	/ D 1

exp.EQn	=kBT/C 1
; (1.72)

with kB the Boltzmann constant and T the temperature. Notice the disappearance of
“0” above the summation symbol, meaning the summation is over both positive and
negative eigenvalues. Combination of Eqs. (1.68) and (1.69) gives


.r; r0/ D V.r � r0/
2

X

Qn
uQn1" .r/v

Qn1�
# .r0/ tanh

�
EQn1
2kBT

�
: (1.73)

For spin-singlet pairing, 
.r; r0/ D 
.r0; r/, and we can have a more symmetric
form of the expression


.r; r0/ D V.r � r0/
4

X

Qn
ŒuQn1" .r/v

Qn1�
# .r0/CuQn1" .r

0/vQn1�# .r/� tanh

�
EQn1
2kBT

�
: (1.74)

When there is no spin-polarization effect, Eqs. (1.60) and (1.61) are identical
and they recover the original formalism proposed by de-Gennes [9] for an s-wave
superconductor and that for an anisotropic superconductor [27]. Since a Bogoliubov
canonical transformation is involved in the development of the formalism, these sets
of equations are called the Bogoliubov-de Gennes equations.

1.5.2 Local Density of States

Once the solution to the BdG equations is obtained, the local density of states can
be evaluated according to

.r;E/ D
0X

n;�

�
jun
�.r/j2ı.E � En/C jvn

N� .r/j2ı.E C En/

�
; (1.75)

where ı.x/ is the Dirac delta function and can approximated numerically as

ı.x/ D 1

�

�

x2 C � 2
; (1.76)

with � a lifetime broadening parameter. In the absence of the spin-orbit coupling
and spin-flip scattering, Eq. (1.75) becomes

.r;E/ D
X

n

�
jun
".r/j2ı.E � En/C jvn

#.r/j2ı.E C En/

�
: (1.77)
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Equivalently, the thermalized local density of states can be written as

.r;E/ D
X

n

�
jun
".r/j2

�
�@f .E � En/

@E

�
C jvn

#.r/j2
�

�@f .E C En/

@E

��
: (1.78)

The local density of states is proportional to the local tunneling conductance as
measured by the scanning tunneling microscopy.

In the following discussion, unless specified otherwise the BdG equation (1.60)
will be mainly used. We will drop the spin subscript to u and v, and the quasiparticle
branch index, as well as the symbol tilde on the eigenstate index. We keep only the
spin index for the single-particle Hamiltonian itself.

1.5.3 Gauge Invariance

The choice of the vector potential A is not unique, since A0.r/ D A.r/ C r�.r/,
with � an arbitrary function, will give the same magnetic field as that determined
from A, that is, r�A0.r/ D r�A.r/ D H.r/. Thus A and A0 are equally acceptable
to describe the field H.r/. All physically measurable quantities will have the same
expectation values when calculated with A and A0.

Suppose that the eigenfunctions .u; v/ of the BdG equation with the vector
potential A are known. It can be easily proved that the eigenfunctions .u0; v0/ with
the vector potential A0 D A C r�.r/ differs from .u; v/ as

�
u0.r/
v0.r/

�
D
�

e�ie�.r/=„c 0

0 eie�.r/=„c

��
u.r/
v.r/

�
; (1.79)

while the pair potential is modified as


0.r; r0/ D 
.r; r0/e�ieŒ�.r/C�.r0/�=„c : (1.80)

1.6 Structure of a General Gap Matrix

The spin wavefunction of a singlet state is antisymmetric upon an interchange of the
particles (spin indices). It enables us to write the order parameter as

O
.k/ D d0.k/
�
0 1

�1 0
�

D d0.k/i O�2 D d0.k/ O�0 : (1.81)
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In terms of the spin up (") and spin down (#) wavefunctions of individual
electrons, the quantity

O�0 D i O�2 D
�
0 1

�1 0
�
; (1.82)

corresponds to the singlet wave function 1p
2
Œj"i j#i � j#i j"i�. The factor O�0 is

antisymmetric upon interchanging spin variables of the order parameter while d0.k/
is symmetric upon interchanging orbital variables of the order parameter, that is,
d0.�k/ D d0.k/. The singlet pairing symmetry has been discovered in most
of the conventional superconductors [28], high-temperature cuprates [29], iron-
based superconductors [30], and Ce-115 [31] and Pu-115 [32, 33] heavy fermion
superconductors.

For the triplet pairing state, the total spin is S D 1 for the two paired electrons and
accordingly there are three spin wavefunctions. Therefore, the pairing amplitude for
each of these spin states can be different and k-dependent. The order parameter may
then be written in the form:

O
.k/ D d.k/ � O� i O�2 D d.k/ � O� ; (1.83)

where the vector d measures the amplitude of the order parameter and the matrices

O�1 D i O�1 O�2 D
��1 0
0 1

�
; (1.84)

O�2 D i O�2 O�2 D
�

i 0
0 i

�
; (1.85)

and

O�3 D i O�3 O�2 D
�
0 1

1 0

�
: (1.86)

They correspond to the spin wavefunctions

O�1 ! �1p
2
Œj"i j"i � j#i j#i� (1.87)

O�2 ! ip
2
Œj"i j"i C j#i j#i� ; (1.88)
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and

O�3 ! 1p
2
Œj"i j#i C j#i j"i� : (1.89)

Now all three of these wavefunctions are symmetric upon interchanging the spin
indices. In an expanded form, the triplet order parameter is written as:

O
.k/ D
��dx.k/C idy.k/ dz.k/

dz.k/ dx.k/C idy.k/

�
: (1.90)

Recall that O
 must satisfy the Pauli antisymmetric property O
ˇ˛.�k/ D � O
˛ˇ.k/,
so we have d.�k/ D �d.k/. Also notice that the parity of spherical harmonics is
.�1/�l, the above behavior is in accord with our intuition for p-wave (l D 1) (or
more generally, odd angular momentum) pairing.

If the vector d.k/ has the form d.k/ D a.k/ On.k/, where a.k/ is a complex
number and On.k/ is a real unit vector, we then have the property

d.k/ � d�.k/ D 0 : (1.91)

This property leads to the constraint

O
�.k/ O
.k/ D jdj2 O1 C i O� � Œd.k/ � d�.k/�

D jdj2 O1 : (1.92)

We refer to a state where d has the property as given by Eq. (1.91) as the unitary
state because O
� O
 is then proportional to the unit matrix. A rigorous classification
of the symmetry properties of triplet superconductors was given by Blount [34], and
Ueda and Rice [35] based on the group theory.

For the p-wave pairing state, the most general gap structure would involve a sum
over all possible spin-orbital wavefunction products, each with its own complex
amplitude, which we may write as

O
 D
X

i;˛

D˛i O�˛ Oki : (1.93)

Here the indices ˛ and i denotes the three component in spin and orbitals spaces
with Okx D sin � cos�, Oky D sin � sin�, and Okz D cos � while �˛ already given
above. The matrix D˛i allows nine complex (equivalently, 18 real) coefficients and
suggests the possibility of 18 types of pairing states. So far, the spin triplet pairing
states has been discovered in 3He superfluid [36] and possibly in Sr2RuO4 [37] and
heavy-fermion UPt3 and UBe13 [38–40] superconductors. In superfluid 3He, two
phases are stabilized at zero magnetic field and very low temperatures, depending
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on pressure [41]. They can be represented by the D˛i matrices:

(B phase) W OD D 
0

0

@
1 0 0

0 1 0

0 0 1

1

A ; (1.94)

(A phase) W OD D 
0

0

@
0 0 0

0 0 0

1 i 0

1

A : (1.95)

The corresponding gap matrices are:

(B phase) W O
 D 
0

��Okx C iOky Okz
Okz Okx C iOky

�
; (1.96)

(A phase for d k Oz) W O
 D 
0

�
0 Okx C iOky

Okx C iOky 0

�
: (1.97)

The B-phase is also called the BW phase proposed by Balian and Werthamer [42].
In this phase, the single particle spectrum and the energy gap are isotropic; the
total spin and orbital angular momenta are each equal to 1; the spin susceptibility
is finite at zero temperature. The A-phase is also called the ABM-phase proposed
by Anderson, Brinkman, and Morel [43]. In this phase, the Sz channel is completely
suppressed and the spin susceptibility is very similar to that in the normal state.

1.7 Solution to the BdG Equations in Homogeneous Systems

Let us start with the non-spin-polarization situation. In homogeneous systems, there
exists the translational symmetry. In the limit of homogeneous electron gas, the
translation symmetry itself is continuous. Therefore, it would be convenient to
expand the BdG wave function in terms of plane waves:

�
u.r/
v.r/

�
D 1p

˝

�
uk

vk

�
eik�r ; (1.98)

where˝ is the volume of the entire system. Substitution of Eq. (1.98) into Eq. (1.60)
leads to

�kuk C
kvk D Ekuk ; (1.99a)


�kuk � �kvk D Ekuk ; (1.99b)
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where

�k D „k2

2me
� EF ; (1.100)

is the single-particle energy dispersion, while


k D
Z

dr0
.r; r0/e�ik�.r�r0/ ; (1.101)

is the Fourier transform of the real-space superconducting pair potential. Using
the definition of the pair potential 
.r; r0/ given by Eq. (1.74) into Eq. (1.101), we
obtain


k D 1

2˝

X

k0

Vkk0 ukv
�
k0 tanh

�
Ek0

2kBT

�
(1.102)

with the term

Vkk0 D
Z

dr0V.r; r0/e�ik�.r�r0/ cos.k � .r � r0// : (1.103)

retaining only the pairing interaction of allowed orbital harmonics. For an isotropic
s-wave pairing symmetry, we use the ansatz

Vkk0 D Vs ; (1.104)

and correspondingly


k D 
s ; (1.105)

which has no momentum dependence. For a d-wave pairing symmetry in a two-
dimensional system, we have the ansatz

Vkk0 D Vd cos.2�k/ cos.2�k0/ ; (1.106)

and correspondingly


k D 
d cos.2�k/ ; (1.107)

with �k being the azimuthal angle of k around the Fermi energy. We note that in the
summation on the right-hand-side of Eq. (1.102), both positive and negative energy
eigenvalues are still taken into account. The profile of the energy gap around the
Fermi surface for these two types of pairing symmetry is depicted in Fig. 1.4. For the
isotropic s-wave superconductors, the quasiparticle gap is uniform along the Fermi
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Fig. 1.4 A schematic drawing of quasiparticle excitation gap for an s-wave (a) and a dx2�y2 -wave
pairing superconductor (b)

surface. For the dx2�y2-wave superconductors, the quasiparticle gap is closed at some
special momentum directions ' D �

4
; 3�
4
; 5�
4
; 7�
4

. These gapless quasiparticles are
called nodal quasiparticles.

A little algebra yields the eigensolutions

�
uk

vk

�
D
 

u.0/k ei'k

v
.0/

k

!
(1.108)

corresponding to the eigenvalue

Ek D
q
�2k C j
kj2 : (1.109)

and

�
uk

vk

�
D
 

�v.0/k ei'k

u.0/k

!
(1.110)

corresponding to the eigenvalue �Ek. Here the BdG wave function amplitude is
given by

 
u.0/k

v
.0/

k

!
D

0
BBBB@

s
1
2

�
1C �k

Ek

�

s
1
2

�
1 � �k

Ek

�

1
CCCCA
; (1.111)
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and 'k is the phase angle of 
k. Therefore, we obtain the self-consistency equation
for the pair potential


s D 1

.2�/3

Z
dkVs


s

2Ek
tanh

�
Ek

2kBT

�
; (1.112)

for a three-dimensional s-wave superconductor with the quasiparticle excitation

energy Ek D
q
�2k C
2

s ; and


d D 1

.2�/2

Z
dkVd cos2.2'/


d

2Ek
tanh

�
Ek

2kBT

�
; (1.113)

for a two-dimensional dx2�y2-wave superconductor with the quasiparticle excitation

energy Ek D
q
�2k C .
d cos.2'//2.

We can convert the three-dimensional integral into

Z
dk !

Z 2�

0

d�
Z �

0

sin �d�
Z 1

0

k2dk ! 4�

Z 1

0

k2dk ;

when the integrand has the spherical symmetry; while we can convert the two-
dimensional integral into

Z
dk !

Z 2�

0

d�
Z 1

0

kdk ! 2�

Z 1

0

kdk ;

when the integrand has the cylindrical symmetry. Therefore, for a parabolic normal-
state single-particle energy dispersion, �k D „2k2

2me
� EF , the integral over momentum

amplitude k can be changed to the integral over the energy as

1

.2�/D

Z
dk !

Z
g.�/d� ; (1.114)

where D D 2 and 3 and g.�/ denotes the density of states for electrons of one spin
orientation, and is given by

g.�/ D 1

4�2

�
2me

„2
�3=2

�1=2 ; (1.115)

for the three-dimensional system, while

g.�/ D me

2�„2 � ; (1.116)
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Fig. 1.5 Density of states for a three-dimensional (a) and a two-dimensional (b) electron gas

for the two-dimensional system. These expressions of density of states are shown in
Fig. 1.5. In the BCS-type weak-coupling theory for superconductivity, the pairing
interaction is limited to a range of Œ�„!c;„!c� around the Fermi surface. The
cutoff !c is the Debye frequency of phonons in conventional superconductors. In
most strongly correlated superconductors,!c is the energy scale characterizing spin,
charge, or orbital fluctuations and is approximated by the width of a renormalized
narrow band. One should be cautioned that for the strongly correlated superconduc-
tivity, the description of retardation effect is beyond the scope of BCS-based BdG
theory.

Now the self-consistency equations (1.112) and (1.113), for the non-trivial
s ¤
0 and 
d ¤ 0, become

1 D
Z „!c

�„!c

d�g.�/Vs
1

2E
tanh

�
E

2kBT

�

� g.0/Vs

Z „!c

0

d�
1

E
tanh

�
E

2kBT

�
; (1.117)

for the s-wave superconductivity; and

1 D 1

2�

Z „!c

�„!c

Z 2�

0

d�d'g.�/Vd cos2.2'/
1

2E
tanh

�
E

2kBT

�

D g.0/Vd

2�

Z „!c

0

Z 2�

0

d�d' cos2.2'/
1

E
tanh

�
E

2kBT

�
; (1.118)

for the d-wave superconductivity. To derive the second line in each of the above two
equations, we use the assumption that the density of states changes slightly in the
range of Œ�„!c;„!c� around the Fermi surface and can be approximated by that at
the Fermi energy, i.e., g.0/. For the temperature T D 0 K, an analytical expression
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for the s-wave superconductors can be obtained


s.T D 0/ D „!c sinh�1
�

1

g.0/Vs

�
� 2„!c exp

�
� 1

g.0/Vs

�
; (1.119)

for g.0/Vs � 1; while for the d-wave superconductivity, the following numerical
solution needs to be found

1 D g.0/Vd

2�

Z „!c

0

Z 2�

0

d�d'
cos2.2'/q

�2 C
2
d.T D 0/ cos2.2'/

: (1.120)

The condition for the superconducting transition temperature is 
s D 0 for s-wave
superconductors while 
d D 0 for the d-wave superconductors, which leads to

1 D g.0/Vs

Z „!c

0

d�
1

�
tanh

�
�

2kBT

�
; (1.121)

and

1 D g.0/Vd

2

Z „!c

0

d�
1

�
tanh

�
�

2kBT

�
: (1.122)

In the condition of „!c=kBTc 	 1, we have

Tc D 2e�

kB�
„!c exp

�
� 1

g.0/Vs

�

D 1:13„!c exp

�
� 1

g.0/Vs

�
; (1.123)

and

Tc D 2e�

kB�
„!c exp

�
� 1

2g.0/Vd

�

D 1:13„!c exp

�
� 1

2g.0/Vd

�
: (1.124)

Here the Euler constant � � 0:5772 is used.
With the BdG solutions as given by Eqs. (1.108) and (1.110), we can find the

bulk density of states

s.E/

g.0/
D
(

Ep
E2�
2s

; E > 
s

0 ; E < 
s

(1.125)
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Fig. 1.6 Quasiparticle density of states for a uniform three-dimensional s-wave (a) and a uniform
two-dimensional d-wave (b) superconductor

for the uniform s-wave superconductors, and

d.E/

g.0/
D
( R 2�

0
d'
2�

Ep
E2�
2d cos2.2'/

; E > j
d cos.2'/j
0 ; E < j
d cos.2'/j

(1.126)

for the uniform d-wave superconductors. A schematic density of states for both
s-wave and d-wave superconductors is shown in Fig. 1.6. For the s-wave supercon-
ductors, a sharp gap feature is seen with vanishing density of states inside the energy
range of Œ�
s; 
s�, while for the d-wave superconductors, the density of states is
linear in energy inside Œ�
d; 
d�, due to the existence of nodal quasiparticles.

All the above discussions demonstrate that, in the homogeneous superconduc-
tors, the BdG equations can reproduce all the known results obtained through the
Bogoliubov-Valatin canonical transformation. However, as will be demonstrated in
later chapters, the BdG equations are more convenient to study the properties of
inhomogeneous superconductors.

1.8 Relation to the Abrikosov-Gor’kov Equations

We should also be aware that the Hamiltonian (1.42) can also be solved via the
Green’s function technique. We first define a two-component field operator in the
Nambu space [44, 45]:

O�.r; �/ D
 
 ".r; �/
 
�

#.r; �/

!
; (1.127)
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where

 �.r; �/ D eHeff �=„ �.r/e�Heff �=„ ; (1.128)

 �� .r; �/ D eHeff �=„ ��.r/e�Heff �=„ : (1.129)

are the field operators defined in the Heisenberg picture. Note that  ��.r; �/ ¤
Œ � .r; �/��. We can then introduce the Green’s function

G .r� I r0� 0/ D �hT� Œ O�.r; �/˝ O��.r0; � 0/�i
D ��.� � � 0/h O�.r; �/˝ O��.r0; � 0/i

C�.� 0 � �/h O��.r0; � 0/˝ O�.r; �/i : (1.130)

Here ˝ means the direct product of two vector fields. The bracket h: : : i means the
statistic average

h OOi D TrŒe�ˇ.Heff�˝/ OO� ; (1.131)

with the thermodynamic potential ˝ given by

e�ˇ˝ D TrŒe�ˇHeff � : (1.132)

The factor T� is a �-ordering operator, which arranges operators with earliest time �
to the right. The subscript � is affixed to T to distinguish T� from the temperature.
In expanded form, the Green’s function becomes

G .r� I r0� 0/ D
 

�hT� Œ ".r; �/ �".r
0; � 0/�i �hT� Œ ".r; �/ #.r0; � 0/�i

�hT� Œ 
�

#.r; �/ 
�

".r
0; � 0/�i �hT� Œ 

�

#.r; �/ #.r
0; � 0/�i

!
;

(1.133)

Since the trace is unchanged upon a cyclic variation of operators, we can easily
prove that the Green’s function is a function of the difference � � � 0, that is,

G .r� I r0� 0/ D G .r; r0I � � � 0/ ; (1.134)

with � � � 0 restricted in the range of Œ�ˇ; ˇ� and the factor ˇ D 1=kBT. Therefore,
the Fourier transform is given by

G .r; r0I i!n/ D
Z ˇ„

0

d�ei!n�G .r; r0I �/ ; (1.135)

G .r; r0I �/ D 1

ˇ

X

n

e�i!n�G .r; r0I i!n/ ; (1.136)
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where the Matsubara frequency !n D .2n C 1/�kBT=„ with n D �1; : : : ;�1; 0;
1; : : : ;1.

Using the equation of motion for  �.r; �/ and  ��.r; �/:

� „@ � .r; �/
@�

D Œ � .r; �/;Heff �� ; (1.137)

�„@ 
�
� .r; �/
@�

D Œ �� .r; �/;Heff �� ; (1.138)

and Eq. (1.47), we can obtain the equation of motion for the Green’s function

Z
dr00 OM.r; r00I �/G .r00� I r0� 0/ D ı.r � r0/ı.� � � 0/O1 ; (1.139)

with

OM.r; r0; �/ D
 
.� @

@�
� h".r//ı.r � r0/ �
.r; r0/
�
�.r0; r/ .� @

@�
C h�#.r//ıij

!
: (1.140)

for the spin-single pairing case, and subject to the self-consistency condition:


.r; r0/ D �V.r; r0/G12.r� ! � 0 C 0C; r0� 0/ ; (1.141)


�.r; r0/ D �V.r; r0/G21.r0� ! � 0 C 0C; r� 0/ : (1.142)

Equation (1.139) is the famous Abrisokov-Gorkov equations [46] for superconduc-
tivity in the continuum model. This set of equations is also the starting point for the
derivation of Ginzburg-Landau theory. When the order parameter varies slowly in
space, the approximate Ginzburg-Landau theory is simpler to solve than the original
Abrisokov-Gorkov theory.

The Abrikosov-Gorkov theory is closely related to the BdG theory. With the time
dependence of the quasiparticle operators:

�n.�/ D �ne�En�=„ ; (1.143)

��n .�/ D ��n eEn�=„ : (1.144)

and the canonical transformation, we can obtain for example:

G11.r; r0I �/ D ��.�/X
Qn

ŒuQn1
"
.r/uQn1�

"
.r0/f .�EQn1/e

�EQn1�=„ C vQn2�
"
.r/vQn2

"
.r0/f .EQn2/e

EQn2�=„�

C�.��/X
Qn

ŒuQn1�
"
.r0/uQn1

"
.r/f .EQn1e

�EQn1�=„ C vQn2�
"
.r0/vQn2

"
.r/f .�EQn2/e

EQn2�=„� ;

(1.145)
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and

G22.r; r0I �/ D ��.�/X
Qn

ŒuQn2�
#
.r/uQn2

#
.r0/f .EQn2/e

EQn2�=„ C vQn1
#
.r/vQn1�

#
.r0/f .�EQn1/e

�EQn1�=„�

C�.��/X
n

ŒuQn2
#
.r0/uQn2�

#
.r/f .�EQn2/e

EQn2�=„ C vQn1�
#
.r0/vQn1

#
.r/f .EQn1/e

�EQn1�=„� :

(1.146)

It is straightforward to obtain the Green’s function in the frequency domain

G11.r; r0I i!n/ D
Z ˇ„

0

d�ei!n�G11.r; r0I �/

D �
0X

Qn
ŒuQn1" .r/u

Qn1�
" .r0/f .�EQn1/

Z ˇ„

0

d�e.i!n�EQn1=„/�

CvQn2�" .r/vQn2" .r
0/f .EQn2/

Z ˇ„

0

d�e.i!nCEQn2=„/� �

D �
0X

Qn

� uQn1" .r/u
Qn1�
" .r0/

i!n � EQn1=„ f .�EQn1/.eˇ„.i!n�EQn1=„/ � 1/

CvQn2�" ..r/vQn2" .r
0/

i!n C EQn2=„ f .EQn2/.eˇ„.i!nCEQn2=„/ � 1/

�

D
0X

Qn

�uQn1" .r/u
Qn1�
" .r0/

i!n � EQn1=„ C vQn2�" .r/vQn2" .r
0/

i!n C EQn2=„
�
; (1.147)

and

G22.r; r0I i!n/ D
Z ˇ„

0

d�ei!n�G22.r; r0I �/

D �
0X

Qn
ŒuQn2�# .r/uQn2# .r

0/f .EQn2/
Z ˇ„

0

d�e.i!nCEQn2=„/�

CvQn1# .r/vQn1�# .r0/f .�EQn1/
Z ˇ„

0

d�e.i!nCEQn1=„/� �

D �
0X

Qn

� uQn2�# .r/uQn2# .r
0/

i!n C EQn2=„ f .EQn2/.eˇ„.i!nCEQn2=„/ � 1/
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CvQn1# .r/v
Qn1�
# .r0/

i!n � EQn1=„ f .EQn1/.eˇ„.i!n�EQn1=„/ � 1/
�

D
0X

Qn

�uQn2�# .r/uQn2# .r
0/

i!n C EQn2=„ C vQn1# .r/v
Qn1�
# .r0/

i!n � EQn1=„
�
: (1.148)

Here we have used the fact that

ei!nˇ„ D �1 : (1.149)

In addition, if we know the solution to the Abrikosov-Gorkov equations of motion
for the Green’s functions, the local density of states can be calculated as

".r;E/ D � 1

„� ImŒG11.r; rI i!n ! E=„ C i0C/�

D
0X

Qn
ŒjuQn1" .r/j2ı.E � EQn1/C jvQn2" .r/j2ı.E C EQn2/� ; (1.150)

and

#.r;E/ D 1

„� ImŒG22.r; rI �i!n ! �.E=„ C i0C//�

D
0X

Qn
ŒjuQn2# .r/j2ı.E � EQn2/C jvQn1# .r/j2ı.E C EQn2/� : (1.151)

Here we have used the following identity for the real frequency !

1

! ˙ i0C
D P

1

!

 i�ı.!/ ; (1.152)

with P denotes a Cauchy principal value. Therefore, we have demonstrated an
exact relation between the BdG theory and the Abrikosov-Gorkov theory.
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Chapter 2
BdG Equations in Tight-Binding Model

Abstract In this chapter, I give an alternative derivation of the Bogoliubov-
de Gennes equations for superconductors. It is based on a tight-binding model.
A general symmetry of the equations is discussed. A few physically measurable
quantities are derived in terms of the BdG eigenfunctions. The solutions to the BdG
equations in the uniform case are provided. Finally, I also make its connection to
the lattice Abrikosov-Gorkov equations.

2.1 Derivation of BdG Equations in a Tight-Bind Model

In the previous chapter, we have derived the BdG equations in the continuum model.
The continuum model is reasonable to describe weak-coupling superconductors,
especially when they have a wide-band metallic normal state. For the superconduc-
tors like high-temperature cuprates, the electronic band is quite narrow. Therefore,
as we are encountered in solid state physics [1], the tight-binding model, either
constructed from atomic orbitals or from Wannier orbitals, is appropriate to be used
for studying narrow band behaviors arising from electronic correlation effects.

We generalize the second-quantized Hamiltonian given by Eq. (1.38) to include
the spin-orbit coupling and spin-flip scattering interactions, in addition to the regular
potential scattering. The single-particle part of the Hamiltonian is of the form:

H0 D
Z Z

drdr0 �˛.r/h˛ˇ.r; r0/ ˇ.r0/ (2.1)

where h˛ˇ.r; r0/ is general enough to include the non-local and spin-flip effects. The
field operators are now expressed in the localized-state basis as

 ˛.r/ D
X

i

w.r � Ri/ci˛ ; (2.2a)

 �˛.r/ D
X

i

w�.r � Ri/c
�
i˛ ; (2.2b)
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where c�i˛ (ci˛) creates (annihilates) an electron of spin ˛ at site i, and w.r � Ri/

is a localized orbital around the atomic site Ri. The atomic orbitals or maximally
localized Wannier orbitals are most amenable to have a physical interpretation.
Substitution of these expressions into Eq. (2.1) gives

H0 D
X

ij;�� 0

c�i�hi�;j� 0 cj�

D �
X

i¤j;�� 0

ti�;j� 0 c�i�cj� 0 C
X

i�

�ic
�
i�ci� C

X

i;�� 0

˝i;�� 0c�i�ci� 0 : (2.3)

Here the summation over the site indices ij in the kinetic energy (and also the
nearest-neighbor interaction in Eq. 2.4 below) excludes those term with i D j. In
the kinetic energy, the spin-orbit term has also been included by identifying the
spin flip when an electron hops from one site to its nearest neighbor. The on-site
single particle energy is introduced to consider the disorder or such inhomogeneity
problems as those with a (non-magnetic) single impurity; while the third term
accounts for the magnetic impurity effects (with the internal dynamics of the
magnetic impurity neglected here).

We then follow the same ansatz for the extended Hubbard model [2], and write
down an effective model Hamiltonian for superconductivity:

H D H0 � 	
X

i�

c�i�ci� C U
X

i

�
ni" � 1

2

��
.ni# � 1

2

�
� V

2

X

i¤j

ninj

D
X

ij;�� 0

c�i�

�
hi�;j� 0 �

�
	C U

2

�
ıijı�� 0

�
cj� 0 C U

X

i

ni"ni# � V

2

X

i¤j

ninj :

(2.4)

Here ni D P
� ni� with ni� D c�i�ci� is the particle number operator on site

i. The on-site and nearest-neighbor electron-electron interaction strengths are,
respectively, U and V . Positive values of U and negative values of V represent the
repulsive interaction while negative values of U and positive values of V represent
the attractive interaction since we have assigned a minus sign before the nearest-
neighbor interaction term. Note that the single particle energy is measured with
respect to the chemical potential 	.

The derivation of the BdG equations for the on-site and nearest-neighbor pairing
interaction is similar to that for the continuum model in Chap. 1. To be distinct,
the above extended Hubbard model enables a description of possible competing
orders. We show one example here by considering on-site repulsion (U > 0), which
drives magnetic instability, and nearest-neighbor attraction (V > 0) for the d-wave
pairing superconductivity. Therefore, we retain the standard Hartree-Fock term for
the onsite repulsion and the anomalous Hartree-Fock terms for nearest-neighbor
attraction. The inclusion of an onsite repulsion in the mean-field approximation
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helps stabilize the d-wave pairing state, which comes from the nearest-neighbor
pairing interaction. The effective mean-field Hamiltonian with a singlet pairing
symmetry is now given by:

Heff D
X

ij;�� 0

c�i� Qhi�;j� 0 cj� 0 C
X

ij

Œ
ijc
�

i"c�j# C
�ij cj#ci"�C Econst : (2.5)

Here the effective single-particle Hamiltonian is given by

Qhi�;j� 0 D hi�;j� 0 �
�
	C U

2
� Uhni N�i

�
ıijı�� 0 ; (2.6)

the singlet-pairing potential


ij D V

2

�
hci"cj#i � hci#cj"i

�
; (2.7)


�ij D V

2

�
hc�j#c�i"i � hc�j"c

�

i#i
�
; (2.8)

and the constant energy term is given by

Econst D �Uhni"ihni#i C
X

ij

j
ijj2
V

: (2.9)

It is evident that the singlet pairing potential satisfies the symmetry properties:
ji D

ij. Also we note again that the single particle energy is measured with respect to
the chemical potential 	.

We then obtain the following commutation relations:

Œci";Heff �� D
X

j� 0

Qhi";j� 0 cj� 0 C
X

j


ijc
�

j# ; (2.10a)

Œc�i";Heff �� D �
X

j� 0

Qhj� 0;i"c�j� 0 �
X

j


�ij cj# ; (2.10b)

Œci#;Heff �� D
X

j� 0

Qhi#;j� 0 cj� 0 �
X

j


jic
�

j" ; (2.10c)

Œc�i#;Heff �� D �
X

j� 0

Qhj� 0;i#c�j� 0 C
X

j


�ji cj" : (2.10d)

Equations (2.10)(a)–(d) show that the electron field operator can be expressed as
a linear combination of electron- and hole-like quasiparticle excitations, which



40 2 BdG Equations in Tight-Binding Model

enables us to perform a Bogoliubov canonical transformation:

ci� D
0X

n

.un
i��n � �vn�

i� �
�
n / ; c�i� D

0X

n

.un�
i� �

�
n � �vn

i� �n/ ; (2.11)

where � D ˙1 denotes the up and down spin orientations. The operators ��n (�n)
create (annihilate) a Bogoliubov quasiparticle at state n. The prime sign above the
summation in the transformation means only those states with positive energy are
counted. The quasiparticle operators satisfy the anti-commutation relations:

f�n; �
�
mg D ınm ; (2.12)

f�n; �mg D f��n ; ��mg D 0 : (2.13)

These relations also guarantee the anti-commutation relations among the original
electronic field operators.

With the above canonical transformation, the Hamiltonian is diagonalized in the
following form:

Heff D
X

n

En�
�
n�n C E0const ; (2.14)

where the index n also includes the pseudo-spin state index. Upon substitution of
Eq. (2.11) into Eq. (2.10), and with the aid of the following commutation relations,

Œ��n ;Heff �� D �En�
�
n ; (2.15)

Œ�n;Heff �� D En�n ; (2.16)

we compare the coefficients of the terms with �n and ��n and arrive at

Enun
i" D

X

j� 0

Qhi";j� 0uj� 0 C
X

j


ijv
n
j# ; (2.17)

Enun
i# D

X

j� 0

Qhi#;j� 0un
j� 0 C

X

j


jiv
n
j" ; (2.18)

Env
n
i" D �

X

j� 0

� 0 Qh�i";j� 0v
n
j� 0 C

X

j


�ij un
j# ; (2.19)

Env
n
i# D

X

j� 0

� 0 Qh�i#;j� 0v
n
j� 0 C

X

j


�ji un
j" : (2.20)

This set of BdG equations can be cast into a matrix form:

X

j

OMij O�j D En O�i ; (2.21)
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where

OMij D

2

6664

Qhi";j" Qhi";j# 0 
ij
Qhi#;j" Qhi#;j# 
ji 0

0 
�ij �Qh�i";j" Qh�i";j#

�ji 0 Qh�i#;j" �Qh�i#;j#

3

7775 ; (2.22)

and

O�i D

0

BB@

ui"
ui#
vi"
vi#

1

CCA : (2.23)

This set of BdG equations is subjected to the self-consistency conditions:

ni" D
0X

n

Œjun
i"j2f .En/C jvn

i"j2f .�En/� ; (2.24)

ni# D
0X

n

Œjun
i#j2f .En/C jvn

i#j2f .�En/� ; (2.25)

and


ij D V

4

0X

n

Œ.un
i"v

n�
j# C un

j#v
n�
i" /C .un

i#v
n�
j" C un

j"v
�
i#/� tanh

�
En

2kBT

�
; (2.26)

where f .E/ is the Fermi-Dirac distribution function defined in Eq. (1.72).
From Eqs. (2.17)–(2.20), it is not difficult to prove the following theorem:

If .un
i"; v

n
i#; u

n
i#; v

n
i"/ is the solution to the BdG equations with eigenvalue En, then

.�vn�
i" ; u

n�
i# ; v

n�
i# ;�un�

i" / is the solution to the same equations with eigenvalue �En.
Using this symmetry property, we can also rewrite Eqs. (2.24)–(2.26) as

ni" D
X

n

jun
i"j2f .En/ ; (2.27)

ni# D
X

n

jvn
i#j2f .�En/ ; (2.28)

and


ij D V

4

X

n

Œun
i"v

n�
j# C un

j"v
�
i#� tanh

�
En

2kBT

�
: (2.29)
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In the absence of spin-orbit coupling and other spin-flip scattering terms, that is
Qhi";j# D Qhi#;j" D 0, the BdG equations become block-diagonalized into two sets of
equations:

(
EQn1uQn1i" D P

j
Qhi";j"uQn1j" CP

j
ijv
Qn1
j# ;

EQn1vQn1i# D �Pj
Qh�i#;j#vQn1j# CP

j

�
ji u
Qn1
j" ;

(2.30)

and
(

EQn2uQn2i# D P
j
Qhi#;j#uQn2j# CP

j
jiv
Qn2
j" ;

EQn2vQn2i" D �Pj
Qh�i";j"vn

j" CP
j 

�
ij u

n
j# :

(2.31)

This block-diagonalization structure leads to a distinct nature of the canonical
transformation:

ci" D
0X

Qn
.uQn1i"�Qn1 � vQn2�i" �

�

Qn2/ ; c�i" D
0X

Qn
.uQn1�i" �

�

Qn1 � vQn2i"�Qn2/ ; (2.32)

ci# D
0X

Qn
.uQn2i#�Qn2 C vQn1�i# �

�

Qn1/ ; c�i# D
0X

Qn
.uQn2�i# �

�

Qn2 C vQn1i#�Qn1/ : (2.33)

The block diagonalization and the symmetry property suggest that we merely need
to solve Eq. (2.30) subject to the self-consistency condition:

ni" D
X

Qn
juQn1i"j2f .EQn1/ ; (2.34)

ni# D
X

Qn
jvQn1i# j2f .�EQn1/ ; (2.35)

and


ij D V

4

X

Qn
ŒuQn1i"v

Qn1�
j# C uQn1j"v

Qn1�
i# � tanh

�
EQn1
2kBT

�
: (2.36)

Therefore, by reducing the diagonalization of a 4N by 4N matrix down to that of
a 2N by 2N matrix, the computational efficiency is improved significantly. Here N
would be NxNy for a two-dimensional lattice while NxNyNz for a three-dimensional
lattice with Nx, Ny, and Nz being the linear dimension of the system. When it is
obvious that no spin-flip effect occurs, the reduced set of BdG equations, Eq. (2.30),
will be used with the hat symbol on the energy eigenvalue index and the set index
dropped. It will be encountered frequently in the later discussions.
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It is straightforward for us to obtain the BdG equations for an s-wave supercon-
ductor in the lattice model. There we first replace U by �U (U > 0) so that the
Hamiltonian becomes

H D
X

ij;�� 0

c�i�

�
hi�;j� 0 � 	ıijı�� 0

�
cj� 0 � U

X

i

ni"ni# ; (2.37)

which leads to the BdG equations:

Enun
i" D

X

j� 0

Qhi";j� 0uj� 0 C
iiv
n
i# ; (2.38)

Enun
i# D

X

j� 0

Qhi#;j� 0un
j� 0 C
iiv

n
i" ; (2.39)

Env
n
i" D �

X

j� 0

� 0 Qh�i";j� 0v
n
j� 0 C
�ii un

j# ; (2.40)

Env
n
i# D

X

j� 0

� 0 Qh�i#;j� 0v
n
j� 0 C
�ii un

i" : (2.41)

Here

Qhi�;j� 0 D hi�;j� 0 � 	ıijı�� 0 ; (2.42)

and the self-consistency condition


ii D U

2

0X

n

Œun
i"v

n�
i# C un

i#v
n�
i" � tanh

�
En

2kBT

�
: (2.43)

In the absence of spin-orbit coupling and spin-flip scattering, the BdG equations
become

(
EQn1uQn1i" D P

j
Qhi";j"uQn1j" C
iiv

Qn1
i# ;

EQn1vQn1i# D �Pj
Qh�i#;j#vQn1j# C
�ii uQn1i" ;

(2.44)

and
(

EQn2uQn2i# D P
j
Qhi#;j#uQn2j# C
iiv

Qn2
i" ;

EQn2vQn2i" D �Pj
Qh�i";j"vn

j" C
�ii uQn2i# :
(2.45)

with


ii D U

2

X

Qn
uQn1i"v

Qn1�
j# tanh

�
EQn1
2kBT

�
: (2.46)
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Unless explicitly specified, we will focus on Eq. (2.44) with the tilde on the eigen-
energy index and set index dropped.

The tight-binding model, from which the BdG equations are derived, has
the origin from such strongly correlated models as the t-J model [3] for high-
temperature cuprates. The derived BdG equations in the tight-binding model have
been used not only for unconventional superconductors with narrow electron
band [4–9] but also for s-wave superconductors [10]. The calculated quantities range
from the local density states to the superfluid density, which will be discussed in
more details in later chapters.

2.1.1 Local Density of States and Bond Current in the Lattice
Model

From Eqs. (2.24), (2.25), we extract the expression for the local density of states:

i� .E/ D
0X

n

Œjun
i� j2ı.En � E/C jvi� j2ı.En C E/� : (2.47)

and the corresponding thermalized density of states

i� .E/ D �
0X

n

Œjun
i� j2f 0.En � E/C jvi� j2f 0.En C E/� : (2.48)

The bond current can be derived in the following way. The Heisenberg equation
of motion for hnii D hni"i C hni#i is:

i„@hnii
@t

D hŒni;H��i

D hf�
X

j¤i;�;� 0

Œ�t. j� 0; i�/c�j� 0 ci� C t.i�; j� 0/c�i�cj� 0 �gi ; (2.49)

where H is the system Hamiltonian given by Eq. (2.4). The electrical current
operator from site j to site i is then found to be:

OJij D e

i„
X

�;� 0

Œt.i�; j� 0/c�i�cj� 0 � t. j� 0; i�/c�j� 0 ci� � ; (2.50)

and the average bond current is given by:
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Jij D e

i„
X

�;� 0

0X

n

ft.i�; j� 0/Œun�
i� un

j� 0 f .En/C�� 0vn
i�v

n�
j� 0.1� f .En//��c.c.g : (2.51)

Using the symmetry property of the BdG equations, we can also write the
physical quantities in the following form:

ni� D
X

n

jun
i� j2f .En/ D

X

n

jvn
i� j2Œ1 � f .En/� ; (2.52)

Jij D e

i„
X

�;� 0

X

n

ft.i�; j� 0/un�
i� un

j� 0 f .En/ � c.c.g

D e

i„
X

�;� 0

X

n

ft.i�; j� 0/�� 0vn
i�v

n�
j� 0.1 � f .En//� c.c.g ; (2.53)

and

i� .E/ D �
X

n

jun
i� j2f 0.En � E/ D �

X

n

jvn
i� j2f 0.En C E/ : (2.54)

These new formulations are especially useful when we study the ferromagnetic
impurity or Zeeman effect because the wavefunction of quasiparticles can be solved
in a 2 � 2 spin space.

2.1.2 Optical Conductivity and Superfluid Density
in the Lattice Model

The BdG solutions can not only describe the local density of states, which is a
direct measure of single particle properties, but also the eigenfunctions can be used
to study the two-particle correlations. In particular, the optical superconductivity
reveals the information about the coherent peak [11], while the superfluid stiff-
ness [12] and its temperature dependence set a criterion for superconductivity. Both
quantities are directly measurable in experiments. Theoretically, the formulae for
these quantities, as derived from the BdG method, are also valid for inhomogeneous
superconductors.

The formula of the superfluid density in a lattice model was first derived by
Scalapino et al. [12, 13] in a Hubbard model. It was then used for calculations
in other models. In the following, we give the derivation for the model with the
Hamiltonian defined by Eq. (2.4) in the absence of spin-orbit coupling and other
spin-flip scattering, that is,

H D
X

ij;�

c�i�

�
�tij �

�
	C U

2
� Uimp

i

�
ıij

�
cj� C U

X

i

ni"ni# � V

2

X

i¤j

ninj :
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(2.55)

Here the impurity potential is represented by Uimp
i .

In the presence of an electric field pointing to the x-direction,

Ex.ri; t/ D �xei.q�ri�!t/ : (2.56)

The current density along the x-direction is defined as

Jx.ri; t/ D �xx.ri; !/Ex.ri; t/ ; (2.57)

where �xx.ri; !/ is the local conductivity. In the Coulomb gauge, which dictates
r � A D 0 and the scalar potential � D 0, the electric field can be expressed in terms
of a vector potential

Ax.ri; t/ D � i

!
Ex.ri; t/ : (2.58)

Therefore, the total Hamiltonian becomes

Ht D �
X

ij;�

Qtijc�i�cj� C
X

i�

.Uimp
i � U

2
� 	/c�i�ci� C U

X

i

ni"ni# � V

2

X

ij

ninj :

(2.59)
where

Qtij D tije
i�ij.t/ ; (2.60)

with the gauge phase �ij.t/ D eAij D eAx.ri; t/.xi � xj/. Hereafter the charge e for
electrons includes the sign. In the linear response limit, we expand this hopping term
up to the second order of Ax.ri; t/:

Qtij � tŒ1C i�ij C 1

2Š
.i�ij/

2� : (2.61)

The total Hamiltonian can then be rewritten as:

Ht D H � i
X

ij;�

�ij.t/tijc
�
i�cj� C 1

2

X

ij;�

�2ij.t/tijc
�
i�cj� : (2.62)

If we limit the hopping integral only between the nearest neighbors, we have

Ht D H � iea
X

i;�

Œ�Ax.ri; t/ti;iCOxc�i�ciCOx;� C Ax.riCOx; t/tiCOx;ic
�

iCOx;�ci� �

Ce2a2

2

X

i;�

ŒA2x.ri; t/ti;iCOxc�i�ciCOx;� C A2x.riCOx; t/tiCOx;ic
�

iCOx;�ci� �
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� H � iea
X

i;�

Ax.ri; t/Œ�ti;iCOxc�i�ciCOx;� C tiCOx;ic
�

iCOx;�ci� �

Ce2a2

2

X

i;�

A2x.ri; t/Œti;iCOxc�i�ciCOx;� C tiCOx;ic
�

iCOx;�ci� �

� H � ea
X

i

Ax.ri; t/J
P
x .ri/� e2a2

2

X

i

A2x.ri; t/Kx.ri/

D H C H0.t/ ; (2.63)

where the particle current and the local kinetic energy associated with the x-oriented
links are defined as

JP
x .ri/ D i

X

�

ŒtiCOx;ic
�

iCOx;�ci� � ti;iCOxc�i�ciCOx;� �

D it
X

�

Œc�
iCOx;�ci� � c�i�ciCOx;� � ; (2.64)

and

Kx.ri/ D �
X

�

Œti;iCOxc�i�ciCOx;� C tiCOx;ic
�

iCOx;�ci� �

D �t
X

�

Œc�i�ciCOx;� C c�
iCOx;�ci� � : (2.65)

The x-oriented current density operator is then found to be

JQ
x .ri/ D � ıH0.t/

ıAx.ri; t/
D eJP

x .ri/C e2Kx.ri/Ax.ri; t/ : (2.66)

Here we have set the lattice constant a D 1.
An alternative derivation of the current density operator is to start with the

electric polarization operator:

P D e
X

i

rini (2.67)

with its x-component

Px D e
X

i

xini : (2.68)
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The time-derivative is

JQ
x .ri/ D iŒHt;Px�

D ie
X

ij;�

xiŒQtijc�i�cj� � Qtjic�j�ci� �

D ie
X

ij;�

.xi � xj/Qtijc�i�cj�

D ie
X

ij;�

.xi � xj/tij.1C i�ij/c
�
i�cj�

D eJP
x .ri/C e2Kx.ri/Ax.ri; t/ : (2.69)

Now let us calculate the expectation value of the current density operator. In the
linear response theory, the statistical operator in the interaction picture is given by:

OI.t/ D OI.�1/� i

„
Z t

�1
ŒH0I.t0/; OI.�1/��dt0 : (2.70)

The expectation of a physical variable is found to be:

h OOi D TrŒ OI.�1/ OOI � � i

„
Z t

�1
Trf OI.�1/Œ OOI.t/;H

0
I.t
0/��gdt0 (2.71)

D h OOIi0 � i

„
Z t

�1
hŒ OOI.t/;H

0
I.t
0/��i0dt0 ; (2.72)

where

OOI D eiHt OOe�iHt ; (2.73)

and

H0I.t/ D eiHtH0.t/e�iHt : (2.74)

with the term proportional to A2.t/ in H0.t/ neglected. The particle current density
is then given by

hJP
x .ri/i D �i

Z t

�1
hŒJP

x .ri; t/;H
0
I.t/�i ; (2.75)

where the particle operator and the perturbation term in the Heisenberg picture with
respect to the unperturbed Hamiltonian H are given by, respectively,

JP
x .ri; t/ D eiHtJP

x .ri/e
�iHt : (2.76)
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We notice that the first term in H0.t/ can be rewritten as

� e
X

i;�

Ax.ri; t/J
P
x .ri/ D ie

!
JP

x .�q/�xe�i!t ; (2.77)

where the Fourier transform of the particle density operator is given by

JP
x .q/ D

X

i

e�iq�ri JP
x .ri/ : (2.78)

We then obtain

hJP
x .ri/i D e

!
Ex.ri; t/e

�iq�ri

Z t

�1
dt0ei!.t�t0/hŒJP

x .ri; t/; J
P
x .�q; t0/�i : (2.79)

Finally, the current density is found to be

hJQ
x .ri/i D e2

!
Ex.ri; t/e

�iq�ri

Z t

�1
dt0ei!.t�t0/hŒJP

x .ri; t/; J
P
x .�q; t0/�i

� ie2

!
hKx.ri/iEx.ri; t/ : (2.80)

The local conductivity is then given by

�xx.ri; !/ D hJQ
x .ri/i

Ex.ri; t/

D e2

!
e�iq�ri

Z t

�1
dt0ei!.t�t0/hŒJP

x .ri; t/; J
P
x .�q; t0/�i

� ie2

!
hKx.ri/i : (2.81)

To eliminate the atomic fluctuations, we take an average over the spatial variable ri

and obtain the conductivity

�xx.q; !/ D e2

N!

Z t

�1
dt0ei!.t�t0/hŒJP

x .q; t/; J
P
x .�q; t0/�i � ie2

!
hKxi :

where

hKxi D 1

N

X

i

hKx.ri/i : (2.82)
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Since the correlation function in Eq. (2.82) is only a function of the time difference
t � t0, we can express the conductivity as

�xx.q; !/ D e2

N!

Z 1

0

dtei!thŒJP
x .q; t/; J

P
x .�q; 0/�i � ie2

!
hKxi

D e2

i!

�
i

N

Z 1

�1
dt�.t/ei!thŒJP

x .q; t/; J
P
x .�q; 0/�i C hKxi

�

D e2

i!
Œ�˘xx.q; !/C hKxi� ; (2.83)

where we define the retarded correlation function of the particle current operator as

˘xx.q; t/ D � i

N
�.t/hŒJP

x .q; t/; J
P
x .�q; 0/�i ; (2.84)

with its Fourier transform

˘xx.q; !/ D
Z 1

�1
dtei!t˘xx.q; t/ : (2.85)

The frequency-dependent, uniform electrical conductivity is given by taking the
limit q ! 0:

�xx.!/ D e2

i!
Œ�˘xx.q D 0; !/C hKxi� : (2.86)

The dc conductivity is obtained by taking first the limit q ! 0 and then the limit
! ! 0.

�xx D � lim
!!0

e2

i!
Œ�˘xx.q D 0; !/C hKxi� : (2.87)

Be reminded that the order of these limits cannot be reversed.
Similarly the transverse conductivity can also be derived as:

�xy.q; !/ D e2

i!
Œ�˘xy.q; !/�: (2.88)

It is convenient to calculate the retarded correlation function in the Matsubara
formalism. First define the equivalent current-current correlation function in the
Matsubara formalism:

˘xx.q; �/ D � 1

N
hT� ŒJ

P
x .q; �/J

P
x .�q; 0/�i ; (2.89)

˘xx.q; i!n/ D
Z ˇ

0

d�ei!n�˘xx.q; �/ ; (2.90)
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where !n D 2n�T since the current density operator is regarded as a bosonic
operator acting as a composite particle. The Matsubara function is evaluated as best
one can. Then the desired retarded function is obtained by performing the analytical
continuation i!n ! ! C iı:

˘xx.q; !/ D ˘xx.q; i!n ! ! C iı/ : (2.91)

Technically, we always write the conductivity formula as:

�xx.q; !/ D e2

i.! C iı/
Œ�˘xx.q; !/C hKxi� ; (2.92)

and its uniform counterpart

�xx.!/ D e2

i.! C iı/
Œ�˘xx.q D 0; !/C hKxi� : (2.93)

If the numerator approaches a finite limit as ! ! 0, the real part of �xx.!/ will
contain a delta function contribution Dı.!/ with the “Drude weight” given by

D

�e2
� �

4�
D �hKxi C˘xx.q D 0; ! ! 0/ ; (2.94)

with � an effective density of the mobile charge carriers in units of their mass. This
implies a zero resistance state.

In a superconductor, the Meissner effect is the current response to a static, i.e.,
! D 0 and transverse gauge potential q � A.q; ! D 0/ D 0. In this case, the
electric field E D 0. When we only apply a transverse electric field along the x-
direction, we should have qxAx.q; ! D 0/ D 0, which requires qx D 0. Following
the same procedure as before, we can find the expectation value of the electrical
current operator

hJQ
x .ri/i D ie2Ax.ri/e

�iq�ri

Z t

�1
dt0hŒJP

x .ri; t/; J
P
x .�q; t0/�i

Ce2hKx.ri/iAx.ri/ : (2.95)

We then have

hJQ
x .ri/i

e2Ax.ri/
D ie�iq�ri

Z t

�1
dt0hŒJP

x .ri; t/; J
P
x .�q; t0/�i C hKx.ri/i : (2.96)
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By performing an average over the spatial variable ri to eliminate the atomic
fluctuations, we define an effective “Drude weight” as

Ds

�e2
D �s
4�

D �hKxi C˘xx.qx D 0; qy ! 0; ! D 0/ : (2.97)

The quantity Ds measures the superfluid density in units of the mass. The crucial
difference between � and �s is the order in which the momentum and frequency
approach zero.

For a superconductor, we perform the BdG transformation:

ci� D
X

n.En�0/
.un

i��n � �vn
i�
���n / : (2.98)

The kinetic energy can be found readily:

hKxi D � t

N

X

i;n;�

f f .En/Œu
n�
iCx;�un

i� C c.c.�C .1� f .En//Œv
n
iCx;� v

n�
i� C c.c�g : (2.99)

However, the re-expression of the current-current correlation function is much more
tedious. In the expansion form, the commutator:

ŒJP
x .q; t/; J

P
x .�q; 0/� D .it/2

X

i�

X

i0� 0

e�iq�.ri�ri0 /Œ OA C OB C OC C OD� ; (2.100)

where

OA D Œc�iCOx;� .t/ci� .t/; c
�

i0COx;� 0
ci0� 0 � ; (2.101)

OB D �Œc�iCOx;� .t/ci� .t/; c
�

i0� 0ci0COx;� 0 � ; (2.102)

OC D �Œc�i� .t/ciCOx;� .t/; c
�

i0COx;� 0
ci0� 0 � ; (2.103)

OD D Œc�i� .t/ciCOx;� .t/; c
�

i0� 0ci0COx;� 0 � ; (2.104)

with

c�iCOx;� .t/ci� .t/ D
X

n1;n2

Œ.un1�
iCOx;� �

�
n1
.t/ � �vn1

iCOx;� �n1 .t//.u
n2
i� �n2 .t/ � �v

n2�
i� ��n2 .t//�

D
X

n1n2

Œun1�
iCOx;�un2

i� ei.En1�En2 /t��n1�n2 � �un1�
iCOx;� v

n2�
i� ei.En1CEn2 /t��n1�

�
n2

��vn1
iCOx;�un2

i� e�i.En1CEn2 /t�n1�n2 C v
n1
iCOx;� v

n2�
i� e�i.En1�En2 /t�n1�

�
n2
� ;

(2.105)
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and

c�i� .t/ciCOx;� .t/ D
X

n1;n2

Œ.un1�
i� �

�
n1 .t/ � �vn1

i� �n1 .t//.u
n2
iCOx;� �n2 .t/ � �vn2�

iCOx;� �
�
n2 .t//�

D
X

n1n2

Œun1�
i� un2

iCOx;�ei.En1�En2 /t��n1�n2 � �un1�
i� v

n2�
iCOx;�ei.En1CEn2 /t��n1�

�
n2

��vn1
i� un2

iCOx;�e�i.En1CEn2 /t�n1�n2 C v
n1
i� v

n2�
iCOx;�e�i.En1�En2 /t�n1�

�
n2 � :

(2.106)

Using the following relations

hŒ��n1�n2 ; �
�
n3�n4 �i D .h��n1�n1i � h��n2�n2i/ın1n4ın2n3 ; (2.107)

hŒ��n1�n2 ; �n3�
�
n4
�i D �.h��n1�n1i � h��n2�n2i/ın1n3 ın2n4 ; (2.108)

hŒ��n1��n2 ; �n3�n4 �i D .ın1n4ın2n3 � ın1n3ın2n4 /.h��n1�n1i � h�n2�
�
n2i/ ; (2.109)

hŒ�n1�n2 ; �
�
n3
��n4 �i D .ın1n4ın2n3 � ın1n3ın2n4 /.h�n1�

�
n1

i � h��n2�n2i/ ; (2.110)

hŒ�n1�
�
n2 ; �

�
n3�n4 �i D �.h�n1�

�
n1i � h�n2�

�
n2i/ın1n3 ın2n4 ; (2.111)

hŒ�n1�
�
n2
; �n3�

�
n4
�i D .h�n1�

�
n1

i � h�n2�
�
n2

i/ın1n4ın2n3 ; (2.112)

we obtain

h OAi D
X

n1n2

Œun1�
iCOx;�un2

i� ei.En1�En2 /tun2�
i0COx;� 0

un1
i0� 0.h��n1�n1i � h��n2�n2i/

�un1�
iCOx;�un2

i� ei.En1�En2 /tv
n1
i0COx;� 0

v
n2�
i0� 0 .h��n1�n1i � h��n2�n2i/

C�� 0un1�
iCOx;� v

n2�
i� ei.En1CEn2 /tv

n2
i0COx;� 0

un1
i0� 0.h��n1�n1i � h�n2�

�
n2i/

��� 0un1�
iCOx;� v

n2�
i� ei.En1CEn2 /tv

n1
i0COx;� 0

un2
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and
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we find the current-current correlation function
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Using the symmetry relation of eigenstates for positive and negative eigenvalues
in the BdG equation, we can write the ˘xx in a simplified form:
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(2.122)
where En cover all eigenvalues from the BdG equation.

For the optical conductivity and charge stiffness, we set q D 0 and obtain:
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where A D A.q D 0/ and D D D.q D 0/.
For the superfluid density, we first set ! D 0 and obtain
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An alternative derivation of the optical conductivity and superfluid can be carried
out within the Green function method, which is left for the readers to explore as an
exercise. The above formulae for optical conductivity and superfluid density are
particularly useful for the study of inhomogeneous superconductors.

2.2 Solution to the BdG Equations in the Lattice Model
for a Uniform Superconductor

We consider the case in the absence of spin-orbit coupling and other spin-flip
scattering effect, and assume only a superconducting order is present in the system.
In the nearest-neighbor hopping approximation for the tight-binding model of a
cubic system, the normal-state single-particle energy dispersion is given by

�k D �2t.cos kxa C cos kya C cos kza/ ; (2.125)

for a three-dimensional cubic lattice, while

�k D �2t.cos kxa C cos kya/ ; (2.126)

for a two-dimensional square lattice. Here a is the lattice constant and t is the
nearest-neighbor hopping integral. From these dispersions, the normal-state density
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Fig. 2.1 Normal-state single-particle density of states for a two-dimensional (a) and three-
dimensional (b) system. Lattice size is chosen to be 400�400 for the 2D system and 200�200�200
for the 3D system. The intrinsic lifetime broadening � D 0:05 is used for the calculation

of states can be numerically evaluated. The results of normal-state density of states
are shown in Fig. 2.1. As one can see, for the 2D system, the DOS exhibits the
van Hove singularity. The strong energy dependence of this DOS will influence the
magnitude of the superconducting order parameter. For high-temperature cuprate
superconductors, the electrons are mostly confined into a two-dimensional Cu
square lattice and the energy dispersion for the low-energy Cu-3d electrons usually
includes the next-nearest-neighbor hopping

�k D �2t.cos kxa C cos kya/� 4t0 cos kxa cos kya : (2.127)

We consider a pristine 2D superconductor with an s-wave or dx2�y2 -wave pairing
symmetry. In this case, the system is invariant under a translation with a lattice
constant a of the square lattice, and the BdG wave functions take the Bloch
wavelike:
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ukeik�ri ; (2.128)
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which gives rise to
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�kuk : (2.130b)

Here

�k D �k � 	 (2.131)
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and


k D 
s (2.132)

for the s-wave pairing symmetry while
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for the d-wave pairing symmetry.
A little algebra yields to the eigensolutions
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corresponding to the eigenvalue �Ek. Here the BdG wave function amplitude is
given by
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and 'k is the phase angle of 
k. Therefore, we obtain the self-consistency equation
for the pair potential
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for a three-dimensional s-wave superconductor with the quasiparticle excitation

energy Ek D
q
�2k C
2

s ; and
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Fig. 2.2 Temperature dependence of the superconducting order parameter for an s-wave (a) and
dx2�y2 -wave (b) pairing symmetry for various values of chemical potential in a 2D tight-binding
lattice model with nearest-neighbor hopping. Lattice size is chosen to be 400 � 400 for the
calculations. The energy and temperature (kBT and kB is set to 1) are measured in units of t
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Fig. 2.3 Density of states for a pristine 2D superconductor with s-wave (a) and dx2�y2 -wave (b)
pairing symmetry. A square-lattice tight-binding model with normal-state single-particle energy
dispersion given by Eq. (2.127) is used. The parameter t D �0:3t and 	 D �t, and 
s D 
d D
0:2t are taken. Lattice size is chosen to be 4096�4096 and � D 0:001t is used for the calculations

for a two-dimensional dx2�y2-wave superconductor with the quasiparticle excitation

energy Ek D
q
�2k C Œ
d

2
.cos kxa � cos kya/�2. In Fig. 2.2, the temperature depen-

dence of superconducting order parameter for various values of chemical potential
is shown. The results show that the zero-temperature superconducting pair potential
and transition temperature are dependent on the location of the chemical potential,
at which the intensity of density of states is tuned. In the 2D tight-binding model
with nearest-neighbor hopping, the van Hove singularity occurs at the normal state
energy � D 0. In Fig. 2.3, we show the typical feature of density of states for a
2D superconductor described by a square-lattice tight-binding model. The normal-
state single-particle energy dispersion given by Eq. (2.127) with t0 D �0:3t and
a chemical potential 	 D �t are considered. For the s-wave pairing symmetry, a
well-shape characteristic as marked by the superconducting coherent peaks around
the Fermi energy at E D 0 is exhibited in the density of states. Instead, for
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the dx2�y2 -wave pairing symmetry, a V-shape characteristic is exhibited in the
density of states around the Fermi energy, which arises from the gapless nodal
quasiparticles. In addition, the normal-state van Hove singularity peak is shifted
by the superconducting gap opening.

2.3 Abrikosov-Gorkov Equations in the Lattice Model

Similar to the continuum model, we can also establish the Abrikosov-Gorkov theory
in the lattice model. Here we generalize it to include the effects of spin-orbit
coupling and spin-flip scattering. We first define a 4-component spinor field operator
in the Nambu space
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where the electronic operators
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are defined in the imaginary-time space and Heff is given by Eq. (2.5). Note that
c�i� .�/ ¤ Œci� .�/�

�. We then introduce the real-space Green’s function in the lattice
model as
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Therefore, in an expanded form, it becomes
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Since the trace is unchanged upon a cyclic variation of operators, we can easily
prove that the Green’s function is a function of the difference � � � 0, that is,

G .i� I j� 0/ D G .i; jI � � � 0/ ; (2.146)

with � � � 0 restricted in the range of Œ�ˇ; ˇ� and the factor ˇ D 1=kBT. Therefore,
the Fourier transform is given by
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where the Matsubara frequency !n D .2n C 1/�kBT=„ with n D �1; : : : ;�1; 0;
1; : : : ;1.

Using the equation of motion for ci� .�/ and c�i� .�/:
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and Eq. (2.10), we can obtain the equation of motion for the Green’s function
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for the spin-singlet pairing case, and subject to the self-consistency condition:
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In the absence of the spin-orbit coupling and spin-flip scattering, we can decouple
the equation of motion for the Green’s function into two sets:
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In this case, either one of the above two sets of equations of motion is sufficient to
solve the whole problem. More interestingly, there exists a close relation between
the Green’s function and the BdG eigenfunctions. Specifically, with the time
dependence of the quasiparticle operators:
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and the canonical transformation, we can obtain for the most general case the
following matrix elements of the Green’s function
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It is straightforward to obtain the Green’s function in the frequency domain
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0
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; (2.161)

and
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: (2.162)

Other matrix elements of the Green’s function can be evaluated in the same way,
which are left for exercise.
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In the absence of the spin-orbit coupling and spin-flip scattering, we can rewrite
the Green’s matrix elements as

G11.i; jI i!n/ D
0X

Qn

� uQn1i"uQn1�j"
i!n � EQn1=„ C

vQn2�i" v
Qn2
j"

i!n C EQn2=„
�
; (2.163)

and

G44.i; jI i!n/ D
0X

Qn

� uQn2�i# uQn2j#
i!n C EQn2=„ C vQn1i#v

Qn1�
j#

i!n � EQn1=„
�
: (2.164)

In summary, we have demonstrated that once we know the eigensolution of
the BdG equations, the Abrikosov-Gorkov Green’s function can be expressed
rigorously. Conversely, if we know the solution to the Abrikosov-Gorkov equations
of motion for the Green’s functions, the local density of states can be calculated as

i;".E/ D � 1

„� ImŒG11.i; iI i!n ! E=„ C i0C/�

D
0X

Qn
ŒjuQn1i"j2ı.E � EQn1/C jvQn2i" j2ı.E C EQn2/� ; (2.165)

and

i;#.E/ D 1

„� ImŒG44.i; iI �i!n ! �.E=„ C i0C//�

D
0X

Qn
ŒjuQn2i#j2ı.E � EQn2/C jvQn1i# j2ı.E C EQn2/� : (2.166)

The above expressions for the local density of states are the same as those given in
terms of the eigensolution to the BdG equations (2.47). As we will show in later
chapters, the Green’s function technique is very useful and convenient for some
situations.
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Chapter 3
Local Electronic Structure Around a Single
Impurity in Superconductors

Abstract In this chapter, I am going to discuss the local electronic structure around
a single impurity. Both the nonmagnetic and magnetic impurity scattering in con-
ventional s-wave and unconventional d-wave superconductors will be considered.
The local electron density of states and the existence of impurity bound or virtual
bound states will be explored. The possible realization of Majorana zero-energy
modes is discussed for the case of electrons coupled to a spin chain in an s-wave
superconductor. These results have a direct relevance to the STM measurements.
The results will also be compared with the T-matrix method.

3.1 Introduction

The local electronic structure around a single impurity in a superconductor can
provide unique information about the superconducting pairing symmetry [1].
The obtained local density of states can be directly measured by the scanning
tunneling microscopy (STM) nowadays. The STM technique has made a significant
stride in understanding the pairing symmetry of unconventional superconductors.
Theoretically, the study of local electronic structure around a single impurity is
also a very important step toward understanding the disorder effect on the bulk
superconductivity. The impurity scattering can be either static, which we usually
treat as the potential scattering, or dynamic like magnetic impurity or electronic
scattering off a local vibrational mode, both of which has internal degrees of
freedom. The dynamic scatters cause the inelastic scattering effect of electrons. Here
we limit the discussions on the elastic scattering off potential scatters and without
loss of generality, consider two-dimensional superconductors, which are described
by a tight-binding model on a square lattice.

3.2 Yu-Shiba-Rusinov Impurity States in an s-Wave
Superconductor

The condition for the existence of bound state and the spatial oscillations of
order parameter and electron density was first studied by Fetter [2] around a
spherical impurity in an s-wave superconductor. The existence of bound states due
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to resonance scattering in an s-wave superconductor was also considered in an
Anderson impurity model by Machida and Shibata [3], Shiba [4], and Machida [5].
For these cases of nonmagnetic impurity scattering, because the product of the bulk
superconducting order parameter and the density of states at the Fermi energy is
too small (of the order of 10�3), the bound state energy is essentially located near
the gap edge. However, the situation becomes very different in the presence of a
single magnetic impurity. The quasiparticle scattering off a classical spin was first
studied by Yu [6], Shiba [7], and Rusinov [8, 9], who predicted the existence of
in-gap bound states, with the energy depending on the exchange coupling between
the classical spin and conduction electrons.

The Hamiltonian for an s-wave superconductor with a single-site impurity can
be written as

H D
X

ij;�

Œ�tij �	ıij�c
�
i�cj� C

X

i

Œ
ic
�

i"c�j#CH.c.�C
X

�

.�I CJ�/c�0�c0� : (3.1)

In principle, as we discussed in earlier chapters, the pair potential 
i should
be determined self-consistently. However, at this moment, we neglect this self-
consistency and approximate this pair potential by that for the pristine system. As
such,

H0 D
X

ij;�

Œ�tij � 	ıij�c
�
i�cj� C

X

i

Œ
ic
�

i"c�j# C H.c.�

D
X

k�

�kc�k�ck� C
s

X

k

Œc�k"c��k# C H.c.� ; (3.2)

and

Himp D
X

�

.�I C J�/c�0�c0� : (3.3)

Here �I and J are the strength of the nonmagnetic and ferromagnetic impurity
scattering, respectively. Figure 3.1 shows the relative strength of potential in spin up
and down channels. In this case, it is particularly convenient to solve the problem
in the T-matrix method. By following procedure given in the previous chapter, the

−J

ε
I

ε
+J(a) (b)

I

Fig. 3.1 Relative strength of the impurity potential in spin up (a) and spin down (b) channels
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Abrikosov-Gorkov equations of motion for the Green’s function corresponding to
the Hamiltonian equation (3.1) is found to be:

X

j0

Œi!nıij0 O�0 � Ohij0 �G .j
0; jI i!n/ D ıij O�0 C OVimpıi0G .0; jI i!n/ ; (3.4)

Because of the non-spin-flip scattering considered here, the Green’s function has
been re-defined from Eq. (2.155) as

G .i; jI �/ D
 

�hT� .ci".�/c�j"/i �hT� .ci".�/cj#/i
�hT� .c

�

i#.�/c
�

i"/i �hT� .c
�

i#.�/cj#/i

!
; (3.5)

which is a 2 � 2 matrix in the Nambu space. In Eq. (3.4), the impurity scattering
matrix is written as

OVimp D �I O�3 C J O�0 ; (3.6)

with the identify matrix

O�0 D
�
1 0

0 1

�
; (3.7)

and the third component of the Pauli matrix

O�3 D
�
1 0

0 �1
�
: (3.8)

The single particle Hamiltonian is also a 2 � 2 matrix

Ohij D
��tij � 	ıij 
s


s tij C 	ıij

�
: (3.9)

On the other hand, we can also have the Abrikosov-Gorkov equations of motion
for the Green’s function corresponding to the Hamiltonian equation (3.2):

X

j0

Œi!nıij0 O�0 � Ohij0 �G0.j
0; jI i!n/ D ıij O�0 ; (3.10)

where G0.i; j0I i!n/ is the Fourier transform of

G0.i; jI �/ D
 

�hT� .ci".�/c�j"/i0 �hT� .ci".�/cj#/i0
�hT� .c
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i"/i0 �hT� .c
�

i#.�/cj#/i0

!
; (3.11)
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with subscript “0” for the statistical average and Heisenberg field operator ci� .�/

with respect to Eq. (3.2). Since the Hamiltonian equation (3.2) holds the spatial
translational invariance, we can find

G0.i; jI i!n/ D 1

NL

X

k

G0.kI i!n/e
ik�.ri�rj/ ; (3.12)

with

G0.kI i!n/ D
�

i!n � �k �
s

�
s i!n C �k

��1

D 1

.i!n � �k/.i!n C �k/�
2
s

�
i!n C �k 
s


s i!n � �k

�
: (3.13)

In a tight-binding model up to the next-nearest-neighbor hopping, the single particle
energy dispersion is given by Eq. (2.127) and

�k D �k � 	 : (3.14)

The wave vector in the square lattice is given by k D kxex C kyey with kx;y D 2�
NL

nx;y

and nx;y running from �Nx;y=2 to Nx;y=2 � 1, the lattice vector in the direct space is
given by ri D ixaex C iyaey with the integers ix;y running from�Nx;y=2 to Nx;y=2�1.
The unit vectors ex;y are along the bond direction of the square lattice and the NL D
NxNy.

From Eqs. (3.4) and (3.10), we can obtain the recursion relation:

G .i; jI i!n/ D G0.i; jI i!n/C
X

j0

G0.i; j
0I i!n/ OVimpıj00G . j0; jI i!n/

D G0.i; jI i!n/C G0.i; 0I i!n/ OVimpG .0; jI i!n/ : (3.15)

From Eq. (3.15), we can evaluate the Green’s function with site i at the impurity site

G .0; jI i!n/ D G0.0; jI i!n/C G0.0; 0I i!n/ OVimpG .0; jI i!n/ ; (3.16)

which leads to

G .0; jI i!n/ D Œ O�0 � G0.0; 0I i!n/ OVimp�G0.0; jI i!n/ : (3.17)

We then substitute Eq. (3.17) into Eq. (3.15) and arrive at

G .i; jI i!n/ D G0.i; jI i!n/C G0.i; 0I i!n/ OTimp.i!n/G0.0; jI i!n/ ; (3.18)
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where the T-matrix is given by

OT�1imp.i!n/ D Œ OV�1imp � G0.0; 0I i!n/�
�1 : (3.19)

With the matrix OVimp given by Eq. (3.6), we can determine the T-matrix to be

OTimp.i!n/ D 1

˘.i!n/

 
1

��ICJ � G 0
22.i!n/ G 0

12.i!n/

G 0
21.i!n/

1
�ICJ � G 0

11.i!n/

!
; (3.20)

where

˘.i!n/ D
�

1

�I C J
� G 0

11.i!n/

��
1

��I C J
� G 0

22.i!n/

�
� G 0

12.i!n/G
0
21.i!n/ :

(3.21)

Here we have abbreviated the Green’s function G0.0; 0I i!n/ as G 0.i!n/. The pole
of the T-matrix with

˘.i!n ! !c/ D 0 ; (3.22)

determines a true or virtual bound state induced by the impurity scattering.
Physically, the most direct measure of the possible existence of this kind of states is
through the calculation of local density of states (LDOS):

i.E/ D i".E/C i#.E/

D � 1
�

ImŒG11.i; iI i!n ! E C i0C/ � G22.i; iI �i!n ! �.E C i0C//� ;

(3.23)

which follows from the discussion in Chap. 2.
In Fig. 3.2, we show the energy dependence of LDOS around a single zero-ranged

potential scatter in an s-wave superconductor defined on a two-dimensional lattice.
The results are obtained within the T-matrix theory, where the self-consistency
on the superconducting pair potential is neglected. The lattice is described by a
tight-binding model with the hopping parameter included up to the next-nearest-
neighbors. As is shown, the shape of LDOS for the nonmagnetic impurity remains
similar to that for the pristine case (i.e., no impurity scattering). Its intensity on the
impurity site (see Fig. 3.2a) suppressed significantly while the LDOS intensity on
the nearest-neighboring site to the impurity shows almost no change compared to the
pristine case. However, in the presence of a ferromagnetic potential scatter, in-gap
quasiparticle states are induced. They are revealed as peaks in the LDOS inside the
superconducting gap (see Fig. 3.2b). The location of these in-gap states is dependent
on the exchange coupling strength. It first moves toward the Fermi energy with the
increased coupling strength and then crosses the Fermi energy when the coupling
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Fig. 3.2 Local density of states around a zero-ranged nonmagnetic ((a)–(b)) and magnetic ((c)–
(d)) potential scatter in an s-wave superconductor defined on a two-dimensional square lattice. The
left column is for the LDOS calculated at the impurity site while the right column is for the LDOS
calculated at a site nearest-neighboring to the impurity site. For the nonmagnetic potential scatter
((a)–(b)), we take "I D 1t (black), 2t (red), 10t (green), and 100t (blue) with J fixed at 0. For the
magnetic potential scatter ((c)–(d)), we take J D 0:01t (black), 0:5t (red), 1t (green), 2t (blue),
and 3t (maroon) with "I fixed at 0. Here we have used a tight-binding model up to next-nearest
neighbor hopping with t0 D �0:2t and 	 D �0:8t. The pair potential is taken as 
0 D 0:2t. The
broadening parameter is � D 0:005t

strength is further increased. In addition, the spectral weight of the particle and hole
in-gap states on the impurity site is nearly symmetric while noticeably asymmetric
on the nearest-neighboring sites.

As we have shown above, the T-matrix theory is quite convenient for the
study of local quasiparticle properties around a single-site impurity in a uniform
background of superconducting order parameter. Rigorously, the superconducting
order parameter can be modified near the impurity. In this case, one needs to
solve the BdG equations self-consistently. Since a single-site impurity breaks the
transitional invariance in space, a very large system size should be considered at
a first glance, which presents the computational challenge for diagonalization of
the system Hamiltonian. In practice, since the superconducting order parameter
around a single impurity varies at a length scale of the superconducting coherence
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length �, which is inversely proportional to the superconducting energy gap, we
can consider a finite area around the impurity. However, this is not generically
true for the quasiparticle states, which can be extended into a region further away
from the impurity site. To accommodate these conditions, one can use a supercell
technique. We now consider the single impurity problem as an example of how
to use the technique. Consider the supercell containing a single impurity located
at the center on a two-dimensional lattice. The cell size is Nx � Ny. Therefore,
the entire system now consists of a repeated stacking of these supercells. When
the supercell size is sufficiently large that the quasiparticle states induced by the
single impurity do not overlap between two nearest-neighboring supercells, the
physics from this superlattice should mimick the problem of a single impurity in
an otherwise pristine system. For the superlattice, we can apply Bloch theorem to
write the BdG wavefunction as

(
ui� D 1p

M
NuQi�eiK�.RCrQi/ ;

vi� D 1p
M

NvQi�eiK�.RCrQi/ ;
(3.24)

Here M D Mx � My with MxNx and MyNy the linear dimension of the entire system.
The symbol Qi labels the sites in a given unit cell. The Bravais lattice R D IxNxex C
IyNyey with Ix.y/ integers and ex.y/ unit vectors along the x and y-bond directions. To
simplify the discussion, we have taken the unit length a D 1. Subjecting the above
Block wave function to the periodic boundary condition leads to the wave vectors
corresponding to the supercell

K D Kxex C Kyey ; (3.25)

where Kx D 2�nx=MxNx and Ky D 2�ny=MyNy with nx D �Mx=2;�Mx=2 C
1; : : : ;Mx=2� 2;Mx=2� 1 and ny D �My=2;�My=2C 1; : : : ;My=2� 2;My=2� 1
for Mx and My even integers. Upon substitution of Eq. (3.24) into Eq. (2.44), we
obtain the BdG equations in a tight-binding model with hopping integrals up to the
next-nearest neighbors:

En.K/un
Qi".K/ D

X

ı

QhQi";iCı"eiK�rıun
QiCı".K/C
QiQiv

n
Qi#.K/ ; (3.26)

En.K/vn
Qi#.K/ D �

X

ı

Qh�Qi#;iCı#eiK�rı vn
QiCı".K/C
�QiQiu

n
Qi".K/ ; (3.27)

subject to the self-consistency condition:


QiQi D U

2M

X

K;n

un
Qi".K/v

n�
Qi# .K/ tanh

�
En.K/
2kBT

�
: (3.28)

Once the self-consistent solution is obtained, the local density of states in a given
supercell is then evaluated according to
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Qi.E/ D 1

M

X

K;n

Œjun
Qi".K/j2ı.E � En.K//C jvn

Qi#.K/j2ı.E C En.K/� :/ (3.29)

Figure 3.3 shows the self-consistent solution of a single impurity in an s-wave
superconductor. As we can see, in the presence of a unitary non-magnetic impurity,
the superconducting order parameter is indeed strongly suppressed at the impurity
site. However, no impurity bound states exist. Instead, in the presence of a ferro-
magnetic impurity, the superconducting order parameter is suppressed even with an
intermediate exchange coupling. In this case, the quasiparticle peaks with energies
inside the gap are exhibited in the local density of states. The results are qualitatively
consistent with those obtained within the T-matrix theory, suggesting the in-gap
states are of Yu-Shiba-Rusinov origin. Therefore, this example demonstrates that the
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Fig. 3.3 Self-consistent solution to a single impurity in an s-wave superconductor. The top row
displays the results of the spatial variation of the superconducting order parameter and the local
density of states for a nonmagnetic impurity. The bottom row displays those for a ferromagnetic
impurity. For the local density of states, only the results on the impurity site (red line) and on the
site nearest neighbor to the impurity site (black line) are plotted. The calculations are carried out
for an s-wave superconductor defined on a two-dimensional square lattice. The pairing interaction
is taken to be U D 1:5t and the temperature T D 0:01t. The supercell size has the dimension of 21
by 21. The nonmagnetic impurity potential strength �I D 100t while the ferromagnetic impurity
potential J D 1t. Here we have used a tight-binding model up to next-nearest neighbor hopping
with t0 D �0:2t and 	 D �0:8t. The broadening parameter is � D 0:01t
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fully self-consistent BdG approach can provide more insight into the local electronic
structure of a superconductor.

3.3 Majorana Fermion in an s-Wave Superconductor
with a Chain of Localized Spins

As we know, the conventional fermions come with a pair of the creation and
annihilation operators, .c�; c/, satisfying the Fermi-Dirac anti-commutation rela-
tions fc; c�g D 1. The operators c and c� are not self-adjoint but they are the
adjoint of each other. In contrast to these complex fermions, Majorana fermions
are real-valued fermions, that is, they are their own anti-particles and self-adjoint
with the property of c� D c. Although these particles may or may not exist in
nature as elementary particles, there is intensive interest in their realization in solid
state systems [10–13]. In particular, it is proposed that the Majorana fermions can
perform better than the complex fermions in keeping the quantum coherence and are
proposed as basic building units for quantum computation [14]. For the realization
of Majorana fermions in superconductors, a natural strategy is to use the zero-energy
or midgap Bogoliubov excitation modes. This observation follows from the particle-
hole symmetry of Bogoliubov quasiparticles as evident from the BdG equations:
The quasiparticle operators �.E/ and ��.E/ are related by

�.E/ D ��.�E/ : (3.30)

When the quasiparticle excitation energy is zero, we obtain � D ��, suggesting
that the particle is its own antiparticle. The search of midgap excitations with the
character of Majorana fermions has been made in chiral p-wave superconductors in
early years [15, 16] and more recently revived with new proposals [17]. A specific
system of interest is that a chain of magnetic atoms on surface of a conventional
s-wave superconductor. It has been shown [18–20] that when the magnetic atoms in
the chain form a spiral with the correct pitch, the Yu-Shiba-Rusinov states discussed
in previous section can give rise to an effective one-dimensional topological
superconductor with Majorana fermions bound to its ends. A schematic setup is
shown in Fig. 3.4. The model Hamiltonian is given by

H D
X

ij�

.�tij � ıij	/c
�
i�cj� C J

X

i2I

Si � .c�i�� �� 0ci� 0/

C
X

i

Œ
ic
�

i"c�i# C H.c.� : (3.31)

Here the s-wave superconducting pair potential is defined in the BCS mean-field
approximation
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Fig. 3.4 (a) Schematic picture of a chain of magnetic impurities adsorbed on the surface of an
s-wave superconductor. Suppression of the superconducting order parameter 
i from the self-
consistent BdG solution is also shown. (b) The tight-binding lattice with a row of magnetic atoms.
From [21]


i D Uhci"ci#i ; (3.32)

where U is an effective pairing interaction. The third term in the Hamiltonian
describes the exchange coupling with strength J of a chain of magnetic spins
with the superconducting electrons. We consider a two-dimensional lattice of the
dimension NL D Nx � Ny for the s-wave superconductor, which lies in the xy-
plane, and choose the chain of the magnetic atoms aligned along the x-direction.
For the case that the magnetic moments form a coplanar spiral at wave vector G, the
classical spin can be written as

Si D S.cos Gxi;� sin Gxi; 0/ ; (3.33)

where .xi; yi/ are the coordinate of site i. It represents the spin rotating in the x-y
plane. With a periodic condition along the x-direction, it is convenient to perform a
spin-dependent gauge transformation to superconducting electron operators:

ci� ! ci� D Qci� expŒ
i

2
�Gxi� ; (3.34)

which effectively aligns the local spin quantization axis for the conduction electrons
along the classical spin Si and leads to the Hamiltonian

H D
X

ij�

.�tije
� i
2 �G.xi�xj/ � ıij	/Qc�i� Qcj� C JS

X

i2I

Qc�i��x
�� 0 Qci� 0/

C
X

i

Œ
i Qc�i" Qc�i# C H.c.� � 1

U

X

i

j
ij2 : (3.35)

In the spin reference frame with spin quantized along the x-direction, the effective
hopping term becomes spin-dependent �tije�

i
2 �G.xi�xj/ and can be interpreted as the
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hopping with an effective spin-orbit coupling; while the last term in the first line of
the above Hamiltonian represents a uniform Zeeman field of the strength JS.

In the one-dimensional limit Ny D 1, the entire system is translationally invariant
and the pair potential
 is a constant. We can perform a canonical transformation

Qci� D 1p
NL

X

k

Qck�eikxi ; (3.36)

into the Block representation, where k is the wave vector in the first Brillouin zone
of the one-dimensional system. The Hamiltonian is then found as

H D
X

k�

�k� Qc�k� Qck� C JS
X

k�� 0

Qc�k��x
�� 0 Qck� 0

C
X

k

Œ
Qc�k"Qc��k# C H.c.� � Nx

U

2 ; (3.37)

where the spin-dependent energy dispersion in nearest-neighbor hopping model is
given by

�k� D �2t cosŒ.k C �G=2/a�� 	 (3.38)

with a being the lattice constant. In the normal state (
 D 0), the single-particle
energy dispersion of the system becomes

Ek D �k;C ˙
q
�k;� C J2S2 ; (3.39)

where

�k;˙ D 1

2
Œ�k" ˙ �k#� : (3.40)

For k D 0; � so that �k;� D 0, the quasiparticle has an excitation gap of JS, as
shown in Fig. 3.5. It implies that when the chemical potential lies inside the gap by
satisfying the condition

j	C 2t cos.Ga=2/j � JS ; (3.41)

there exists a single non-degenerate Fermi point in the right half of the Brillouin
zone. The Kitaev criterion [22] then tells that the system is a one-dimensional
topological superconductor upon turning on the small superconducting pair poten-
tial (
 ¤ 0). It turns out [23–25] that in the one-dimensional system, for
an optimized spin spiral pitch G, which minimizes the ground-state energy, the
condition Eq. (3.41) is always satisfied.
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Fig. 3.5 Normal-state energy
dispersion in the
one-dimensional electron
system coupled to the
one-dimensional spin chain.
From [21]
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For the two-dimensional superconductor, the translation invariance is broken
along the y-direction, that is, perpendicular to the spin chain, we can only rely on
the numerical simulations to solve the BdG equations

X

j

QHij�
n
j D En�

n
i ; (3.42)

where the matrix

QHij D

2

6664

Qhi";j" Qhi";j# 0 ıij
i
Qhi#;j" Qhi#;j# ıij
i 0

0 ıij

�
i �Qh�i";j" Qh�i";j#

ıij

�
i 0 Qh�i#;j" �Qh�i#;j#

3

7775 ; (3.43)

and the eigenvector � n
i D .un

i"; u
n
i#; v

n
i"; v

n
i#/

Transpose. Here the matrix normal-state
single-particle Hamiltonian matrix is given by

Qhij D
 

�tije�
i
2G.xi�xj/ � ıij	 JSıij

JSıij �tije
i
2G.xi�xj/ � ıij	

!
: (3.44)

For the bulk system, the closed boundary condition is applicable and the system
is still translationally invariant along the x-direction, which allows us to introduce a
mixed representation through the transformation

� n
i D 1p

Nx

X

kx

� Qniy.kx/e
ikxixa : (3.45)

The BdG equations can be block-diagonalized as
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X

jy

2

6664

Qhiy";jy".kx/ Qhiy";jy#.kx/ 0 ıiyjy
iyQhiy#;jy".kx/ Qhiy#;jy#.kx/ ıiyjy
iy 0

0 ıiyjy

�
iy

�Qh�iy";jy".kx/ Qh�iy";jy#.kx/

ıiyjy

�
iy

0 Qh�iy#;jy".kx/ �Qh�iy#;jy#.kx/

3

7775

0

BBBB@

uQnjy"
uQnjy#
vQnjy"
vQnjy#

1

CCCCA
D En

0

BBBB@

uQniy"
uQniy#
vQniy"
vQniy#

1

CCCCA

(3.46)

with

Qhiyjy .kx/

D
 
�tiyjy C .�2t cosŒ.kx C G=2/a�� 	/ıiyjy JSıiyjy

JSıiyjy �tiyjy C .�2t cosŒ.kx � G=2/a�� 	/ıiyjy

!
:

(3.47)

With the aid of these eigensolutions, the ground-state energy can be calculated as a
function of the free-parameter G, that is Eg.G/, for a given chemical potential, from
which the spin spiral pitch G� can be determined. The typical results are shown in
Fig. 3.6 [21]. The strong suppression of the s-wave superconducting order parameter

Fig. 3.6 Spatial variation of the superconducting order parameter 
iy obtained through the self-
consistent solution to the BdG equations (3.42) (a), the dependence of the ground-state energy on
the spiral pitch (b), and band structure on the longitudinal wave vector kx (c) for various values of
the chemical potential	 D 1:0; 2:6; 3:6. The system size is taken to be NL D Nx�Ny D 100�20.
The other parameter values are chosen as U D 3:6, JS D 2. The energies are measured in units of
nearest neighbor hopping parameter t D 1. From [21]
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(see Fig. 3.6a) is seen along the spin chain. This superconducting potential quantum
well can trap low-energy quasiparticle states. For the chosen chemical potential
values, the optimized spiral pitch G� has the values of �, 0 and in between (see
Fig. 3.6c), corresponding to the antiferromagnetic, ferromagnetic, and topological
spiral phases. In all these phases, distinctive Shiba states are obtained (see Fig. 3.6c).
These are described by the effective one-dimensional model and the Majorana zero-
energy edge modes can be induced in the system with open boundaries (i.e., at the
both ends of the spin chain).

3.4 Impurity Resonance State in a d-Wave Superconductor

The d-wave pairing symmetry, especially, dx2�y2-wave pairing symmetry, has been
observed in high-temperature cuprate superconductors [26, 27]. As we have dis-
cussed above, the s-wave superconductivity is not so sensitive to non-magnetic
impurity potential scattering, by showing no existence of in-gap states. However,
for a d-wave pairing symmetry, the local electronic structure can be quite distinct
in the immediate vicinity of an isolated non magnetic impurity [28–40]. It has been
theoretically predicted by Balatsky, Salkola and co-workers [31, 32] that, in a d-wave
superconductor, a single nonmagnetic impurity can generate quasiparticle resonance
states at subgap energies. This prediction has been confirmed by scanning tunneling
microscopy experiments [41].

To demonstrate this local properties, we can again employ the T-matrix theory as
explained in Sect. 4.2 except that the pair potential is now of the form


k D 
0

2
.cos kx � cos ky/ ; (3.48)

defined in a tight-binding model for a square lattice.
In Fig. 3.7, we show the energy dependence of LDOS around a single zero-ranged

potential scatter in a dx2�y2-wave superconductor defined on a two-dimensional lat-
tice. The results are obtained within the T-matrix theory, where the self-consistency
on the superconducting pair potential is neglected. The lattice is described by a
tight-binding model with the hopping parameter included up to the next-nearest-
neighbors. As is shown, the shape of LDOS for the nonmagnetic impurity can
change dramatically with the strength of the scattering potential. In particular, due
to the locally breaking of the particle-hole symmetry of the electronic states, the
spectral weight for the electron and hole component of quasiparticle resonance
peaks is biased. For the repulsive potential scatter, the LDOS resonance state has
a dominant hole component on the impurity site (see Fig. 3.7a) while a dominant
electron component on the nearest-neighboring site to the impurity (see Fig. 3.7b).
In contrast, for the attractive potential scatter, the LDOS resonance has a dominant
electron component on the impurity site (Fig. 3.7c) but a dominant hole contribution
on the nearest-neighboring sites (Fig. 3.7d).

To take into account the full self-consistency of the superconducting order
parameter, we use the supercell technique as discussed in Sect. 4.2. Now for
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Fig. 3.7 Local density of states around a zero-ranged nonmagnetic potential scatter in a d-wave
superconductor defined on a two-dimensional square lattice. The left column is for the LDOS
calculated at the impurity site while the right column is for the LDOS calculated at a site nearest-
neighboring to the impurity site. For the repulsive potential scatter ((a)–(b)), we take "I D 1t
(red), 2t (green), 10t (blue), and 100t (maroon). For the attractive potential scatter ((c)–(d)), we
take "I D �1t (red), �2t (green), �10t (blue), �100t (maroon). The DOS for the pristine system
("I D 0with black lines) is also shown. Here we have used a tight-binding model up to next-nearest
neighbor hopping with t0 D �0:2t and 	 D �0:8t. The pair potential is taken as 
0 D 0:2t. The
broadening parameter is � D 0:005t

the d-wave superconducting order parameter, the pairing interaction should be of
nearest-neighbor type on a square lattice. In the supercell technique, the BdG
equations [c.f. Eq. (2.30)] become:

En.K/un
Qi"
.K/ DX

ı

eiK�rı ŒQhQi";iCı"un
QiCı"

.K/C
Qi;QiCıv
n
QiCı#

.K/� ; (3.49)

En.K/vn
Qi#
.K/ D

X

ı

eiK�rı Œ�Qh�

Qi#;iCı#
vn

QiCı"
.K/C
�

QiCı;Qi
un

QiCı"
.K/� ; (3.50)

subject to the self-consistency condition:


QiQiCı D V

4M

X

K;n

Œun
Qi"
.K/vn�

QiCı#
.K/e�iK�rı C un

QiCı;"
.K/vn�

Qi#
.K/eiK�rı � tanh

�
En.K/
2kBT

�
:

(3.51)
The d-wave and the induced extended-s-wave OP components are then defined as
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d.i/ D 1

4
Œ
Ox.i/C
�Ox.i/�
Oy.i/�
�Oy.i/�; (3.52)


s.i/ D 1

4
Œ
Ox.i/C
�Ox.i/C
Oy.i/C
�Oy.i/� : (3.53)

Here Ox and Oy are the unit vectors along x- and y-bond direction of the square
lattice. We note that the expression for the LDOS is still the same as that given by
Eq. (3.29). In Fig. 3.8, the typical results are shown for a repulsive impurity with the
scattering strength in the unitary limit. The d-wave superconducting order parameter
is strongly suppressed near the impurity site while a subdominant (extended) s-wave
superconducting order parameter is induced around the impurity. In addition, the
LDOS near the impurity site exhibits a resonance peak close to the Fermi energy and
the spatial dependence of the LDOS at this resonance energy shows tails along the
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Fig. 3.8 Self-consistent solution to the BdG equations for a single impurity in a d-wave
superconductor. The top row displays the spatial variation of the d-wave (a) and induced s-wave
(b) components of the superconducting order parameter. The bottom row displays the local density
of states on the site nearest neighbor to the impurity site (c) and the spatial dependence of the
LDOS at the resonance energy Er D 0:014t (d). The calculations are carried out for the dx2�y2 -
wave superconductor defined on a two-dimensional square lattice. The pairing interaction is taken
to be V D 1:5t and the temperature T D 0:01t. The supercell size has the dimension of 35 by 35.
The nonmagnetic impurity potential strength �I D 100t. Here we have used a tight-binding model
up to next-nearest neighbor hopping with t0 D �0:2t and 	 D �0:8t. The broadening parameter
is � D 0:02t
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nodal direction of the dx2�y2 -wave order parameter. These results are fully consistent
with those obtained from the T-matrix theory.

Before closing this chapter, one remark is in order. All of the BdG equations
presented so far are derived within an effective BCS theory, which is believed to
describe reasonably well the quasiparticles in the superconducting dome even for
high-temperature cuprates. Actually, the phase diagram of high-temperature cuprate
superconductors is much more complicated with an antiferromagnetic Neel order in
its parent compound. These features are mostly discussed in the t-J model, which
is a low-energy model derived from the one-band Hubbard model in the localized
moment limit. Therefore, it should be appropriate to discuss the superconducting
phase within this model. The t-J model Hamiltonian defined on a two-dimensional
square lattice can be written as:

H D �
X

hiji�

tijc
�

i�cj� C
X

i2I

"ini � 	
X

i

ni

C J

2

X

hiji

ŒSi � Sj � 1
4

ninj�C W

2

X

hiji

ninj : (3.54)

Here the electrons are subjected to single occupancy constraint with Si the spin- 1
2

operator on site i. The quantity ni DP
� c�i�ci� is the electron number operator on site

i and "i is the on-site single-particle potential introduced to describe the impurity
scattering or more generally disorder effect. The superexchange interaction J > 0

ensures an antiferromagnetic state at zero doping. We have also included a direct
nearest-neighbor interaction term so that W D 0 and J=4 correspond to two versions
of the standard t-J model. This term will also adjust the magnitude of the resultant
d-wave OP, as will be shown below. Upon doping, the model can be solved within
the slave-boson mean-field (SBMF) method [42]. The electron operator as

ci� D b�i fi� ; (3.55)

where fi� and bi are the operators for a spinon (a neutral spin- 1
2

fermion) and a holon
(a spinless charged boson). These auxiliary degrees of freedom are subjected to the
constraint

b�i bi C
X

�

f �i� fi� � 1 ; (3.56)

arising from the single occupancy of electrons
P

� c�i�ci� � 1. In the SBMF method,
this constraint is enforced by introducing a term into the Hamiltonian

X

i

�iŒ1� b�i bi �
X

�

f �i� fi� � ; (3.57)

where �i is the site-dependent Lagrange multiplier in the presence of impurity
scattering potential. In addition, the spin and electron density operators are given
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by

Si D 1

2

X

�� 0

f �i�� �� 0 fi� 0 ; (3.58)

with � being the Pauli matrix, and

ni� D f
�
i� fi� : (3.59)

By applying the Wick theorem to the interaction terms, we derive a mean-field
Hamiltonian

HMF D
X

ij;�

Qhijf
�
i� fj� C

X

ij

Œ
ijf
�

i"f �j# CH.c.�C
X

i

�i.1� b�

i bi/ (3.60)

Here the single-particle Hamiltonian is given by

Qhij D �tijbib
�

j �
�

J

2
CW

�
�ij C ."i � 	� �i/ıij ; (3.61)

with the resonance valence bond order

�ij D 1

4

X

�

Œh f �i� fj� i C c.c.� ; (3.62)

and the pair potential


ij D J �W

2
Œh fi"fi#i � h fi#fj"i� : (3.63)

Due to the holon Bose condensation, which is now treated as a c-number, at low
temperatures, the quasiparticles are determined by the spinon degree of freedom
only. Without loss of generality, when we take the holon operator as a real number,
the application of the Hellmann-Feynman theorem gives rise to the constraints

b2i C
X

�

h f �i� fi� i D 1 ; (3.64)

and

�i D �
X

j

tij�ijbj=bi : (3.65)

Within these mean-field approximations, the BdG equations are derived to be

X

j

 Qhij 
ij



�
ij �Qh�

ij

! 
un

j

vn
j

!
D En

 
un

i

vn
i

!
: (3.66)
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The local electronic structure around a single nonmagnetic impurity in the t-J model
has been studied in the further simplification with a uniform bi [40, 43]. The results
from these studies are qualitatively consistent with those obtained from the above
phenomenological BCS model for d-wave superconductors. The full self-consistent
solution to the above BdG equations is left for readers to practise.
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Chapter 4
Disorder Effects on Electronic and Transport
Properties in Superconductors

Abstract In this chapter, we discuss the disorder effects. The disorder comprises of
a distribution of nonmagnetic impurities. As such, ensemble averaged effects will
be relevant. We focus on the suppression of superconductivity by considering the
response of superconducting order parameter, transition temperature, and superfluid
density in both s-wave and d-wave superconductors. Finally, we also discuss
the localization/delocalization of gapless quasiparticles in a disordered d-wave
superconductor within a single-parameter scaling approach.

4.1 Anderson Theorem for Disordered s-Wave
Superconductor

A remarkable feature of the isotropic s-wave superconductors is the insensitivity
of the superconductivity to the diluted nonmagnetic impurities. This robustness is
demonstrated by the Anderson theorem [1]. The theorem states that because the
superconductivity arises from the instability of the Fermi surface upon the pairing
of time-reversed electronic states, any perturbation should not affect the mean-field
superconducting order parameter and transition temperature as long as it does not
lift the Kramers degeneracy. We first discuss this theorem within the Abrikosov-
Gorkov theory [2]. For simplicity, we consider the zero-ranged interactions between
the conduction electrons and nonmagnetic impurities

U.r/ D u0
X

i2I

ı.r � Ri/ ; (4.1)

where u0 is the strength of the scattering potential while Ri is the position of
individual impurities. The Abrikosov-Gorkov equations are derived in Chap. 1 and
written as in the continuum limit

�
i!n C r2

2me
C EF � U.r/

�
G .r; r0I i!n/

C
Z

dr00
.r; r00/F �.r00; r0I i!n/ D ı.r � r0/ ; (4.2a)
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�
�i!n C r2

2me
C EF � U.r/

�
F �.r; r0I i!n/

C
Z

dr00
�.r; r00/G .r00; r0I i!n/ D 0 ; (4.2b)

Here !n D .2n C 1/�T with n any integer is the Matsubara frequency for electrons,
EF is the Fermi energy, and G and F � are the normal and anomalous Green’s
functions. The pair potential is given by


�.r; r0/ D V.r � r0/T
X

!n

F �.r; r0I i!n/ ; (4.3)

where �V.r � r0/ is the pairing interaction. After averaging over the impurity
configurations, the transitional invariance is restored so that we can write the above
system of equations in the momentum space

Œi!n � �p � G!n �G .pI i!n/C Œ
.p/C F!n �F
�.pI i!n/ D 1 ; (4.4a)

Œi!n C �p C G�!n �F
�.pI i!n/C Œ
�.p/C F �

!n
�G .pI i!n/ D 0 ; (4.4b)

where

�p D p2

2me
� EF ; (4.5)

and

G!n D niu20
.2�/2

Z
G .p0I i!n/dp0 ; (4.6a)

F �
!n

D niu20
.2�/2

Z
F �.p0I i!n/dp0 ; (4.6b)

with ni as the density of nonmagnetic impurities. We note that F �
!n D .F!n/

�. We
can solve Eq. (4.4) to obtain

G .pI i!n/ D � i!n � G!n C �p

�.i!n � G!n/
2 C �2p C j
�.p/C F

�
!n j2

; (4.7a)

F �.pI i!n/ D 
�.p/C F
�
!n

�.i!n � G!n/
2 C �2p C j
�.p/C F �

!n j2
: (4.7b)
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On substitution of Eq.(̇4.7) into Eq. (4.6), we find

G!n D niu20
.2�/2

Z �.i!n � G!n/

�.i!n � G!n/
2 C �2p0 C j
�.p0/C F

�
!n j2 dp0 ; (4.8a)

F �
!n

D niu20
.2�/2

Z

�.p0/C F

�
!n

�.i!n � G!n/
2 C �2p0 C j
�.p0/C F

�
!n j2 dp0 : (4.8b)

Here we have dropped the contribution to the integral from the term linear in �p in
the numerator of G .pI i!n/. The pair potential is subjected to the self-consistency:


�.k/ D T
X

i!n

Z
dp
.2�/2

V.k � p/F �.pI i!n/ : (4.9)

In the weak-coupling limit, the pairing interaction is limited to a small range near
the Fermi surface. As we discussed in the early chapter, for the s-wave pairing
symmetry, the pairing interaction is approximated as

V.k � p/ D Vs : (4.10)

From the structure of Eq. (4.8), we can write that for the s-wave pairing symmetry

G!n D �i!n�!n ; (4.11)

and

F!n D 
s�!n : (4.12)

This gives rise to

�!n D niu20
.2�/2

Z
1C �!n

.!2n C
2
s /.1C �!n/

2 C �2p
dp

D niu
2
0N.0/

Z
d�

2�

Z
1C �!n

.!2n C
2
s /.1C �!n/

2 C �2
d� (4.13)

D niu
2
0N.0/

Z
d�

2�

�.1C �!n/p
.!2n C
2

s /.1C �!n/
2

(4.14)

D 1

2�

1
p
!2n C
2

s

(4.15)
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where ��1 D 2�niu20N.0/ with N.0/ the density of states per electron spin at the
Fermi energy is the impurity scattering rate. Here we have used the integral

Z
dx

1C x2
D tan�1.x/ :

The self-consistency solution in the presence of impurity scattering can then be
found as


s D 2gs�T
X

i!n


sp
!2n C
2

s

; (4.16)

where gs D N.0/Vs=2. We note that when the summation over the Matsubara
frequency is performed, the cutoff frequency !c, which is related to the pairing
mechanism, should be introduced. Equation (4.16) indicates that the s-wave super-
conducting order parameter does not depend on the impurity scattering rate.

The Anderson theorem can also be shown through the BdG equations [3]. As
discussed in Chap. 1, the s-wave order parameter is given as


.r/ D Vs

X

n.En�0/
un.r/v�n .r/ tanh

�
En

2kBT

�
: (4.17)

At zero temperature, it is further simplified as


.r/ D Vs

X

n.En�0/
un.r/v�n .r/ : (4.18)

On the other hand, the BCS variational wave function that pairs electrons in time-
reversed states is given by

�BCSi D
Y

n

.an C bnc�n"c�Nn#/j0i : (4.19)

Here j0i stands for the filling Fermi sea, and c�n" creates an up-spin electron with

wave function �n.r/, and c�Nn# creates a down-spin electron in �n.r/�, where �n.r/
is an eigenfunction of the single-particle Hamiltonian. It thus restricts the trial wave
function to the subspace of either doubly occupied or empty levels. The coefficients
an and bn are subjected to the normalization condition janj2Cjbnj2 D 1. When
.r/
is independent of r, we have

un.r/ D an�n.r/ ; (4.20a)

vn.r/ D bn�n.r/ ; (4.20b)
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which leads to


.r/ D Vs

X

n

anb�n j�n.r/j2 : (4.21)

In the absence of a magnetic field, an, bn, and �n.r/ can be taken to be real. With
the above variational wave function, the energy is given by

EG D h�BCSjH j�BCSi

D
X

n

2�n � Vs

X

n¤m

anambnbm

Z
�2n.r/�

2
m.r/dr ; (4.22)

subject to the normalization condition for an and bn, where �n is the eigenvalue of
the state �n.r/. The an and bn can be written as an D sin �n and bn D cos �n. The
variational principle leads to the equation

�n tan.2�n/ D Vs

2

X

n¤m

sin.2�m/

Z
�2n.r/�

2
m.r/dr : (4.23)

We now define

tan.2�n/ D 
n

�n
; (4.24)

which implies

sin.2�n/ D 
np
�2n C
2

n

D 2anbn : (4.25)

Equation (4.23) now becomes


n D Vs

X

m¤n


m

2
p
�2m C
2

m

Z
�2n.r/�

2
m.r/dr : (4.26)

Using Eq. (4.21), we obtain


n D
Z

.r/�2n.r/dr ; (4.27)

once the condition m ¤ n is relaxed.
For a pristine system, 
n D 
.r/ D 
0. For disordered systems, �n.r/

is a complicated wave function. However, if we assume 
.r/ D Q
, then the
normalization condition

R
�n.r/2dr D 1 gives rise to
n D Q
, which is independent
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of n. With this condition, the gap equation (4.26) gives

Q
 D
Z

Vs

Q
N.�; r/p
�2 C Q
2

�2n.r/dr ; (4.28)

where we introduce the normal-state single-particle density of states for the
disordered system

N.�; r/ D
X

m

�2m.r/ı.� � �m/ : (4.29)

In weakly disordered system, N.�; r/ � N.0/, the gap equation (4.28) gives Q
 D

0. As such, the transition temperature is also insensitive to the disorder effect. This
is the Anderson theorem.

4.2 Suppression of Superconductivity in a Disordered
d-Wave Superconductor

For the dx2�y2 -wave pairing symmetry, the pairing interaction can be written as

V.k � p/ D Vd cos 2� cos 2�0 ; (4.30)

where the angle � D tan�1.kF;y=kF;x/ with kF;x.y/ the two components of the Fermi
wave vector. Correspondingly, the superconducting pair potential is of the form


.k/ D 
d cos 2� : (4.31)

This special form of the d-wave pairing symmetry leads to the breaking of the
scaling law for F!n and in particular F!n D 0. The self-consistency equation for
the d-wave pair potential then becomes


d D 2gd�T
X

i!n

Z
d�0

2�


d cos2.2�0/p
!2n .1C �!n/

2 C .
d cos.2�0//2
; (4.32)

where gd D N.0/Vs=2 and

�!n D 1

2�

Z
d�0

2�

1C �!np
!2n .1C �!n/

2 C .
d cos.2�0//2
: (4.33)

Equation (4.32) suggests that the nonmagnetic impurity scattering is pairing break-
ing and can suppress the transition temperature of the d-wave superconductivity.
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The transition temperature from the AG theory is then found [4–7] to be

ln

�
Tc

Tc0

�
D �

�
1

2

�
� �

�
1

2
C 1

4��Tc

�
: (4.34)

Here �.x/ is the digamma function and Tc0 is the transition temperature of a pure
system.

The impurity scattering also influences the superfluid density and the penetration
depth in a d-wave superconductor. For these quantities, one calculates the electro-
magnetic response tensor K , relating the current density j to an applied vector
potential A:

j D �K A : (4.35)

If the electromagnetic tensor is diagonal Kij D Kiiıij, the penetration depth �i for
the current flowing in the direction i is given by

��2i D .4�=c/Kii ; (4.36)

where c is the velocity of light. The AG theory for a disordered BCS d-wave
superconductivity then gives the response tensor [4]:

Kij D e2

c



vi.k/vj.k/

Z 1

0

d! tanh

�
!

2kBT

�
Re


2
k

. Q!2 �
2
k/
3=2

�
: (4.37)

Here h� � � i � 2.2�/�2
R

dSF=jv.k/j � � � represents an angular average over an
arbitrary Fermi surface in a two-dimensional metal, and v.k/ is the Fermi velocity.
The renormalized frequency Q! D ! � ˙0 with the impurity self-energy obtained
from the T-matrix approximation [8–13]

˙0 D � G0

.u0N.0//�1 � G2
0

; (4.38)

where � D ni=�N.0/ D 1=2� is the scattering rate with ni being the impurity
concentration, and G0 is the integrated diagonal Green’s function averaged over the
impurity configuration

G0 D �i


 Q!
. Q!2 �
2

k/
1=2

�
: (4.39)

Equation (4.37) can be decomposed into two parts

Kij.T/ D Kij.T D 0/C ıKij.T/ ; (4.40)
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where

Kij.T D 0/ D e2

c



vi.k/vj.k/

Z 1

0

d!Re

2

k

. Q!2 �
2
k/
3=2

�
; (4.41)

and

ıKij.T/ D �2e2

c



vi.k/vj.k/

Z 1

0

d!fFD.!/Re

2

k

. Q!2 �
2
k/
3=2

�
: (4.42)

In the impurity-dominated gapless regime, the renormalized frequency takes the
form [4] Q! ! i� C a!, where � is a constant dependent on the impurity
concentration and scattering strength, while the constant a � O.1/. At low
temperatures, it allows us to replace Q! by this limiting form, which gives rise to

ıKij.T/ D �e2

c

�2

2
�aT2



vi.k/vj.k/


2
k

.�2 C
2
k/
5=2

�
: (4.43)

For the dx2�y2-wave pairing symmetry, the angular average in the above equation
varies as ��2. It suggests that the coefficient of the T2-dependence in the penetration
depth is proportional to the inverse � but the T2 behavior is valid in a very narrow
temperature range � � .

The impurity scattering also affects the zero-temperature tensor Kij.T D 0/,
which is given by

Kij.T D 0/ D Kij.T D 0; � D 0/C e2

c



vi.k/vj.k/


2
k

.�2 C
2
k/
1=2

�
: (4.44)

The scaling relation between the zero-temperature superfluid density s / Kii and
the superconducting transition temperature based on the AG theory for a disordered
d-wave superconductor is shown in Fig. 4.1. It has been found that for high-
temperature cuprate superconductors, the experimentally observed Tc is much more
robust than one would expect from the AG theory, when it is measured against the
corresponding zero-temperature superfluid density. Originally, the failure has also
been ascribed to the mean-field nature of the BCS-type theory in view of the fact
that the normal state is a non-Fermi liquid in the optimally doped high-temperature
cuprates [15]. It turns out [14] that the discrepancy between the theory and the
experiment comes mainly from the inadequacy of the AG theory itself to determine
the suppression of the superconducting transition temperature for high-temperature
d-wave superconductors. In the AG theory, one crucial assumption in the derivation
of the transition temperature is that the spatial dependence of the superconducting
order is replaced by an averaged value, as shown in Fig. 4.2. This assumption is
only valid when the superconducting coherence � is much larger than the average
distance between impurities li. The superconducting coherence length is inversely
proportional to the maximal amplitude of the order parameter in the momentum
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Fig. 4.2 Schematic drawing of the spatial dependence of the superconducting order parameter
around impurities in a superconductor with a short coherence length (solid blue line). In the AG
theory, it is replaced with an averaged value (dashed red line)

space and has the following form:

�.T/ � �0.1 � T=Tc0/
�1=2 : (4.45)

For a superconductor with a short coherence length, the superconducting order
parameter can be recovered to the bulk value within a distance much shorter than li
(see solid blue line in Fig. 4.2). As such, the areas of the depressed order parameter
around impurities do not overlap, and the superconducting order parameter in most
areas of the system is not affected at all. Only when the depressed areas begin to
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overlap (�.T/ 	 li), the entire system can be affected as if the order parameter
is suppressed everywhere. This weakness of the AG theory can be fully overcome
by solving the BdG equations self-consistently, in which the inhomogeneity of the
superconducting order parameter is fully taken care of.

To be complete, let us re-derive the superfluid density within the lattice model.
The derivation follows closely that for the optical properties discussed in Chap. 2.
Again we calculate the superfluid stiffness for a current response to a vector poten-
tial of wave vector q and frequency ! along the x-direction in a two-dimensional
square lattice through the Kubo formula. By expanding the Hamiltonian to include
the interaction between electrons and an electromagnetic field, the time-dependent
Hamiltonian is given by

Ht D HBCS C H 0.t/ ; (4.46)

where the BCS Hamiltonian in the tight-binding model has already been discussed
in Chap. 2, and H 0.t/ describes the coupling of electrons to the external electro-
magnetic field up to the second order

H 0.t/ D �ea
X

i

Ax.ri; t/

�
JP

x .ri/C ea

2
Ax.ri; t/Kx.ri/

�
; (4.47)

where a is the lattice constant, Ax is the vector potential along the x-axis, and the
particle current density operator

JP
x .ri/ D �i

X

�;ı

Œti;iCıc�i�ciCı;� � H.c.� ; (4.48)

and the kinetic energy density operator

Kx.ri/ D �
X

�;ı

Œti;iCıc�i�ciCı;� C H.c� : (4.49)

The variable ı D Ox for the nearest-neighbor hopping model and ı D Ox; Ox ˙ Oy for
next-nearest-hopping model. The charge current density operator along the x-axis is
then found to be

JQ
x .ri/ � � ıH 0.t/

ıAx.ri; t/
D eJP

x .ri/C e2Kx.ri/Ax.ri; t/ : (4.50)

We then calculate the paramagnetic component of the electric current density to the
first order in Ax:

hJP
x .ri.i D �i

Z t

�1
hJP

x .t/;H
0.t0/��i0dt0 ; (4.51)
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while the diamagnetic part only to the zeroth order, that is, hKxi0. Here h� � � i0 stands
for the thermodynamic average with respect to the non-perturbedHBCS. The current
response is then obtained as

� JQ
x .ri/

e2Ax.ri/
D �ie�q�ri

Z t

�1
dt0hŒJP

x .q; t/; J
P
x .�q; t0/��i0 � hKx.ri/i0 : (4.52)

Please keep in mind that the variables t and t0 in the vector potential and the integral
boundary are the time.

We then perform a lattice average over the spatial variable ri to eliminate the
atomic-scale fluctuations, and define an effective “Drude weight” as a measure of
the superfluid density

s � Ds

�e2
D �hKxi0 C˘xx.q ! 0; ! D 0/ : (4.53)

Here the first term

Kxi0 D 1

NL

X

i

Kx;i (4.54)

with the local kinetic energy

Kx;i D �2t
X

n.En�0/

�
f .En/Œu

n�
iCOxun

i C c.c�C f .�En/Œv
n
iCOxv

n�
i C c.c�

�
: (4.55)

The second term is the current-current correlation function with a double sum over
lattice sites

˘xx.q ! 0I! D 0/ D 1

NL

X

i;j

˘ ij
xx.! D 0/ ; (4.56)

where

˘ ij
xx.! D 0/ D

X

n1.En1�0/;n2.En2�0/
Ai

n1;n2 ŒA
j�
n�1;n2CD j

n1;n2 �
f .En1 / � f .En2 /

En1 � En2

; (4.57)

with

Ai
n1;n2 D 2Œun1�

iCOxun2
i � un1�

i un2
iCOx� ; (4.58a)

Di
n1;n2 D 2Œv

n1
iCOxv

n2�
i � v

n1
i v

n2�
iCOx� : (4.58b)

Typical results from the solution to the BdG equations are shown in Fig. 4.3.
As the superconducting coherence length increases, the discrepancy between the
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Fig. 4.3 Normalized critical temperature versus the normalized zero-temperature superfluid
density obtained from a fully self-consistent solution to the BdG equations in a tight-binding
model. The dashed line denotes the results from the AG theory. From [14]

rigorous critical temperature and that from the AG theory diminishes. However, at a
very short coherence, the result from the AG theory deviates significantly from the
true Tc. In addition, the typical temperature-dependence of the superfluid stiffness
is shown in Fig. 4.4. The pileup of the impurity resonance states near the Fermi
energy in a disordered d-wave superconductor gives rise to the T2-dependence of
the superfluid stiffness at low temperatures. Increase of the impurity concentration
expands the temperature range for the T2 behavior of s before it turns into a T-
linear behavior.

4.3 Quasiparticle Localization in a Disordered d-Wave
Superconductor

In Sect. 3.4, we have shown that a single impurity in the unitary scattering limit
can produce a zero-energy quasiparticle resonance states. These states have a
long decay distance away from the impurity site. A natural question arises as to
whether the possible overlap of these states in an ensemble of unitary impurities can
create extended low-energy quasiparticle states. We consider this question by using
the one-parameter scaling analysis. The one-parameter scaling analysis [17, 18]
has been a popular method to study the electronic localization/delocalization in
Anderson disordered metals. Our discussion is based on the transfer matrix method
and follows that of MacKinnon and Kramer [19] for the disordered solids. To discuss
the two-dimensional d-wave disordered superconductors, we first consider a system
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Fig. 4.4 Temperature
dependence of the normalized
superfluid density calculated
from a full self-consistent
solution to the BdG equations
in a two-dimensional lattice
model with nearest-neighbor
hopping approximation. From
[16]
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of electrons defined on a quasi-one-dimensional strip. When the strip width goes to
infinity, the strip is expanded into a two-dimensional lattice. The geometry is shown
in Fig. 4.5.

We write down the Anderson Hamiltonian as

H D �
X

ij

tijc
�
i cj C

X

i

�ic
�
i ci : (4.59)

Here the site index i D .ix; iy/ with the two components defined in the coordinate
system shown in Fig. 4.5 and the variable �i is on-site potential for the disorder
effect. For simplicity of discussion, we have neglected the spin index for electrons.
By performing a canonical transformation,

ci D
X

n

�n
i �n ; (4.60)
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with �n is the quasiparticle operator, the problem becomes to solve the Schrödinger
equation

X

j

Hij�j D E�i : (4.61)

In the nearest-neighbor hopping approximation, the expanded form of the above
equation is

�ixC1;iy D �E�ix;iy C �ix;iy�ix;iy � �ix;iyC1 � �ix;iy�1 � �ix�1;iy : (4.62)

Here we have used the nearest-neighbor hopping parameter t D 1 and measured the
energy in units of t. We introduce a column vector to denote the coefficients of the
ix-th one-dimensional slice (along the y-direction),

O�ix D

0
BB@

�ix;1

�ix;2

� � �
�ix;M

1
CCA ; (4.63)

where M is the width of the strip. Equation (4.62) can then be cast into a matrix
form

� O�ixC1O�ix

�
D Tix

� O�ixO�ix�1

�
: (4.64)

Here the transfer matrix is given by

Tix D
��.E O1� OHix/ �O1

O1 O0
�
; (4.65)

where the OHix is the Hamiltonian for the ix-th slice of the quasi-one-dimensional
strip when it is not coupled to the rest. Equation (4.64) gives us a recursion formula
for the coefficients O�ix . That is, if we are given the initial coefficients O�0 and O�1, the
coefficient O�n can be obtained through the accumulated transfer matrix

Pn D
nY

ixD1
Tix : (4.66)

That is,

� O�nC1
O�n

�
D Pn

� O�1
O�0
�
: (4.67)
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The matrix Pn satisfies the Oseledec’s multiplicative ergodic theorem [20, 21]: For
any initial vector

� O�1
O�0
�
; (4.68)

there exits an orthonormal set of vectors vi (1 � i � 2M) such that

�i D lim
n!1

1

n
ln k Pnvi k (4.69)

exists. Due to the ergodicity of the system, the set of values f�ig are independent on
the initial values of the coefficients . O�1; O�0/Transpose, and thus they describe the global
properties of the system. The �i can be calculated as the log of the eigenvalues of

ŒPnP�n�
1
2n : (4.70)

The vector vi are now the eigenvectors of PnP�n and are indecent of n for large n.
In another word, the matrix ŒPnP�n�

1
2n converges to a limiting matrix when n !

1, which determines the modulus of the eigenvalues of Pn and the corresponding
eigenvectors. We note that the matrix Pn is not hermitian and the eigenvalues are
in general complex. The eigenvectors vi can also be called Lyapunov eigenvectors,
which determine the properties of electronic states of disordered systems.

With the above introduction, let us turn to the case of disordered d-wave
superconductors, where further technical details will be discussed on the calculation
of the localization length. In the presence of disorder, the BdG equations (2.30)
become

(
Enun

i D P
j hijun

j CP
j 
ijv

n
j ;

Env
n
i D �Pj h�ijvn

j CP
j

�
ji u

n
j ;

(4.71)

where the single particle Hamiltonian

hij D �tij C .�i � 	/ıij ; (4.72)

with �i the on-site potential and 	 the chemical potential. We assume the bond pair
potential
�ij to be real and neglect the depression effect of the impurity scattering to
take 
ij D 
. The above equation in the nearest-neighbor hopping approximation
is expanded as:

.E � .�ix;iy � 	//uix;iy D �tuixC1;iy � tuix�1;iy � tuix;iyC1 � tuix;iy�1
C
vixC1;iy C
vix�1;iy C
vix;iyC1
C
vix;iy�1 ; (4.73a)
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.E C .�ix;iy � 	//vix;iy D tvixC1;iy C tvix�1;iy C tvix ;iyC1 C tvix;iy�1
C
uixC1;iy C
uix�1;iy C
uix;iyC1
C
uix;iy�1 : (4.73b)

As for the normal state case (
 D 0), we introduce a column vector

O�ix D

0

BBBBBBBBBBB@

uix;1

uix;2

� � �
uix;M

vix;1

vix;2

� � �
vix;M

1

CCCCCCCCCCCA

: (4.74)

Now this vector has a dimension of 2M. Equations (4.73) can be recast into a matrix
form:

� O�ixC1O�ix

�
D Tix

� O�ixO�ix�1

�
; (4.75)

Here the transfer matrix is

Tix D
��.E O1� OHix/ �O1

O1 0

�
; (4.76)

where

OHix D
X

jy

��tıjy;iy˙1 C .�ix;iy � 	/ıjy;iy 
ıjy;iy˙1

ıjy;iy˙1 tıjy;iy˙1 � .�ix;iy � 	/ıjy;iy

�
: (4.77)

is the BdG Hamiltonian for the ix-slice when it is decoupled from the rest. The
transfer matrix for the entire strip is given by

Pn D
nY

ixD1
Tix ; (4.78)

connecting the coefficients at the left and right end of the strips

� O�nC1
O�n

�
D Pn

� O�1
O�0
�
: (4.79)
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The system transfer matrix satisfies the Oseledec’s multiplicative ergodic theorem.
It allows to determine the localization length through the eigenvalues of ŒPnP�n�1=2n

in the limit of n ! 1. Specifically, the matrix

˝ D ln.PnP�n/ ; (4.80)

leads to 4M eigenvalues �i (1 � i � 4M). Lyapunov exponents can then be defined
as

�i D lim
n!1

�i

2n
(4.81)

D lim
n!1

Q�i ; (4.82)

where Q�i are the eigenvalues of the matrix ln.PnP�n/1=2n. Since the matrix Pn is
symplectic, the eigenvalues of ˝ occur in pairs, which are of opposite sign. The
smallest positive Lyapunov exponent is the inverse of the quasi-one dimensional
localization length

� D 1

�2M
; (4.83)

when we label the exponents in a decreasing order. In practical calculations, the
eigenvalues of the matrix e˝ D PnP�n � e2�in rises exponentially with the length
of the strip. When the ratio of the eigenvalue closest to the unity from above
and the largest eigenvalue becomes comparable to the machine accuracy, this
closest to unity eigenvalue is lost. However, it is this eigenvalue that determines
the localization length. This difficulty can be overcome by following the Gramm-
Schmidt orthonormalization procedure, which is carried out for each column Bn;i of
the matrix Pn in succession:

NBn;i D .Bn;i �
X

j<i

. NBn;j � Bn;i/ NBn;j/=b.i/n ; (4.84a)

b.i/n D jBn;i �
X

j<i

. NBn;j � Bn;i/ NBn;jj ; (4.84b)

for 1 � i � 4M. Through this procedure, each column is orthonormalized to the
previous columns. The first column converges to the eigenvector corresponding
to the largest eigenvalue, the second column to the second largest and so on. The
Gramm-Schmidt transformation can be performed regularly (e.g., every fifth step)
but not necessarily at every stage of iteration.
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B
o

o

2

1 B1

2
B2’

Fig. 4.6 The action of the system transfer matrix on an arbitrary set of orthonormal vectors o1 and
o2 generates a new set of vectors of B1 and B2, which are orthogonalized by the Gramm-Schmidt
procedure. However, the area of the parallelogram formed by B1 and B2 vectors is preserved

Pictorially, we can think of having Pn acting on a set of orthonormal unit vectors
oi (1 � i � 4M) to generate a new set of vectors

Bi D Pnoi ; (4.85)

as shown in Fig. 4.6. They are just the columns of the transfer matrix itself. Notice
that B1 � B02 D B1 � B2 with B02 D NB2 � b.2/, and so on. The Gramm-Schmidt
orthogonalization procedure preserves the area of a parallelogram formed by two
vectors Bi and Bj. This process can be iterated successively through the entire strip,
and the eigenvalues are given by

en�1 D b.1/.n1/b
.1/.n2/ : : : ; (4.86a)

en�2 D b.2/.n1/b
.2/.n2/ : : : ; (4.86b)

� � � D � � � ; (4.86c)

en�2M D b.2M/.n1/b
.2M/.n2/ : : : ; (4.86d)

en�2MC1 D b.2MC1/.n1/b.2M/.n2/ : : : ; (4.86e)

� � � D � � � ; (4.86f)

en�4M�1 D b.4M�1/.n1/b.4M�1/.n2/ : : : ; (4.86g)

en�4M D b.4M/.n1/b
.4M/.n2/ : : : ; (4.86h)

where n D n1 C n2 C : : : . For the symplectic matrix Pn, the eigenvalues occur in
pairs,

n�1; n�2; � � � ; n�2M;
1

n�2M
; � � � ; 1

n�2
;
1

n�1
; (4.87)
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where we have arranged them in descending order. As such, we have the following
relation

n�2M D n

�
D ln b.2M/

n1 C ln b.2M/
n2 C : : : ; (4.88)

from which the localization length can be calculated iteratively

� D n

c.2M/
n

; (4.89)

with

c.2M/
n D ln b.2M/

n C c.2M/
n�1 : (4.90)

More generally, we can define a channel dependent localization length

�i D n

c.i/n

; (4.91)

with

c.i/n D ln b.i/n C c.i/n�1 ; (4.92)

for 1 � i � 2M. Since the spin carried by a quasiparticle in a superconductor is
conserved [23], these localization lengths can then be used to determine the spin
conductance for the strip with width M [24]:

gs.M; ni/ D
2MX

jD1
cosh�2 �j ; (4.93)

where �j D �j=M is the localization length in units of the strip width. In Fig. 4.7a,
gs is shown as a function of M and it monotonically decreases with the increase of
M at E D 0 for each selected impurity density, indicative of a localization in the
large M limit. In addition, as shown in Fig. 4.7b, all the data for various values of M
at different ni can be collapsed onto a single curve:

gs.M; ni/ D f

�
�.ni/

M

�
; (4.94)

so that the one-parameter scaling law is obeyed. The quantity �.ni/ is the thermo-
dynamic localization length which only depends on ni as shown in the inset of
Fig. 4.7b, and remains finite for all the disorder density ni, suggesting that all the
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Fig. 4.7 Spin conductance as a function of the strip width M for various values of impurity
concentration (a) and as a scaling function of M=� (b). Inset of (b): The thermodynamic
localization length as a function of impurity concentration ni. The energy of the quasiparticle state
is E D 0. From [22]

states are localized even in the unitary limit with the presence of the zero energy
resonance peak.

We remark that this scaling approach can also be applied to study the localization
and delocalization in disordered topological superconductors.
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Chapter 5
Local Electronic Structure in Superconductors
Under a Magnetic Field

Abstract In this chapter, the calculation of local electronic structure in the presence
of magnetic field is discussed. It starts with the continuum theory for a single
vortex and proceeds to the lattice version for the vortex lattices in both conventional
s-wave and unconventional d-wave superconductors. A generalization of the BdG
formulation for a topological superconductor will be briefly explored. For high-Tc

cuprates, the local induction of competing order around a magnetic vortex core is
examined. Finally, the Zeeman-field induced FFLO superconducting state is also
analyzed in depth.

5.1 Effect of the Magnetic Field

In Chap. 1, we have addressed the non-interacting electron part of the Hamiltonian
in the absence of static electric and magnetic field. Since the magnetic field effect
on the superconducting properties is unique, we give it an in-depth discussion here.
The second quantized Hamiltonian for electrons in the presence of a static magnetic
filed is

H0 D
Z

dr �˛.r/h˛.r/ ˛.r/ : (5.1)

Here the single-particle Hamiltonian

h˛.r/ D Œ„i rr C e
c A.r/�2

2me
C V.r/C ˛	BH.r/� EF ; (5.2)

where A.r/ is the vector potential giving rise to the magnetic field H.r/ (assumed
to be along the z-direction of the spin axis)

r � A.r/ D H.r/ ; (5.3)

V.r/ is the Coulomb potential contributed from the nuclear ions, and the third term
in Eq. (5.2) describes the coupling of electron spin moment to the magnetic field.

© Springer International Publishing Switzerland 2016
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The magnetic field has effects through both electron orbital and spin degrees of
freedom. For the purpose of this chapter, we neglect the effect of spin-orbit coupling.

In wide-band systems, where V.r/ varies slowly, the free-electron gas approxi-
mation is usually made and the continuum model is a choice to study the magnetic
field effect. For narrow-band systems, where the band structure effect is important,
the tight-binding model is more convenient. Therefore, it is helpful to obtain the
single-particle tight-binding Hamiltonian for the orbital effect of the magnetic field.
The derivation follows that by Luttinger [1]. In the presence of a magnetic field, we
expand the field operators as

 �.r/ D
X

Ri

a.r � Ri/e
�ie�i=„cci� : (5.4)

Here a.r � Ri/ are either maximally localized Wannier functions or atomic orbitals.
They are localized about the lattice site Ri and drop off rapidly as r goes away from
Ri. The operator ci� annihilates one electron of spin � at site i. The integral

�i D
Z r

Ri

A.�/ � d� ; (5.5a)

�
Z 1

0

.r � Ri/ � A.Ri C �.r � Ri//d� ; (5.5b)

is taken along the straight line path joining Ri to r. The exponential factor in
Eq. (5.4) has the effect of approximately removing the troublesome A � P and P � A
terms. We consider
�

PCeA.r/
c

�
a.r�Ri/e

�ie�i=„c D e�ie�i=„c

�
P�er�i

c
CeA.r/

c

�
a.r�Ri/ ; (5.6)

which leads to

�
P C eA.r/

c

�2
a.r � Ri/e

�ie�i=„c D e�ie�i=„c

�
P � er�i

c
C eA.r/

c

�2
a.r � Ri/ :

(5.7)

We then use the identities

r � r D 0 ; .A � r/r D A ; (5.8)

r � A.Ri C �.r � Ri// D �H.Ri C �.r � Ri// ; (5.9)
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while

Z 1

0

A.R C �.r � Ri// D �A.Ri C �.r � Ri//j10 �
Z 1

0

d��
dA.Ri C �.r � Ri//

d�
;

D A.r/�
Z 1

0

d�..r � Ri/ � r/A ; (5.10)

and prove that

r�i D A.r/C
Z 1

0

d��.r � Ri/ � H.Ri C �.r � Ri// : (5.11)

By substituting Eq. (5.4) into Eq. (5.1), and using the expressions Eq. (5.7) and
Eq. (5.11), one arrives at

H0 D
X

ij;�

Qhijc
�
i�cj� ; (5.12)

where the field-modified one-electron Hamiltonian is given by

Qhij D
Z

dra�.r � Ri/e
ie.�i��j/=„c

�
1

2me

�
P � e

c

Z 1

0
d��.r � Ri/ � H.Rj C �.r � Rj/

�2

CV.r/� EF

�
a.r � Rj/ : (5.13)

We may now invoke the fact that the function ai is localized, which allows us to
approximate r � Rj in the integral over � in the above integral, as long as the
magnetic fields are not varying too rapidly. This approximation leads to

Qhij D �ti¤je
i'ij C .�i � EF/ıij ; (5.14)

where

tij D �
Z

dra�.r � Ri/

�
p2

2me
C V.r/

�
a.r � Rj/ ; (5.15)

is the hopping integral in the absence of magnetic field, and the Peierls phase is
given by

'ij D � e

„c

Z Ri

Rj

A.�/ � �

D �2�
˚0

Z Ri

Rj

A.�/ � � : (5.16)
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Here the single-electron flux quantum is

˚0 D hc

e
(5.17)

with h the Planck constant. The phase factor modifying the hopping integral is called
as the Peierls substitution [2].

The spin Zeeman exchange interaction term can be easily found as

X

i�

�	BHic
�
i� ci� ; (5.18)

in the tight-binding model, where Hi is an effective magnetic field at site i.
We conclude this section by summarizing the BdG equations in the presence of

magnetic field:

( Qh� .r/un
� .r/C R

dr0
.r; r0/vnN� .r0/ D Enun
� .r/;R

dr0
�.r0; r/un
� .r
0/ � Qh�N� .r/vnN� .r/ D Env

nN� .r/;
(5.19)

in the continuum limit, and

(
Enun

i� D P
j
Qhij;�un

j� CP
j 
ijv

n
j N� ;

Env
n
i N� D �Pj

Qh�ij; N� vn
j N� CP

j

�
ji u

n
j� ;

(5.20)

in the tight-binding model.

5.2 Vortex Core State in an s-Wave Superconductor

5.2.1 Single Isolated Vortex

The study of the single vortex line of an s-wave superconductor based on the
BdG theory has been initiated with the seminal work by Caroli, de Gennes, and
Matricon [3–5] and later by Bardeen et al. [6], in which various approximations
were used. Later on, Shore et al. [7] and Gygi and Schlüter [8] obtained numerical
solutions for quasiparticle amplitudes in a vortex core starting with approximate
forms for the pair potential. It is important to note that, in these two calculations, the
pair potential used as input was modeled from the experimentally inferred coherence
length. The effect of the spatial dependence of the magnetic field was neglected,
which seems to be justified when the GL parameter � � �=� is large, where � and �
are the penetration depth and coherence length, respectively.

Here we consider a single vortex in a two-dimensional s-wave superconductor.
When the magnetic field is applied perpendicular to the 2D plane, the orbital effect
is dominant over the spin Zeeman effect. By introducing the polar coordinate system
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r D .r; �/, the pair potential should have the form


.r/ D 
.r/e�i� : (5.21)

It suggests that we can write the eigenfunctions as

 
un.r/

vn.r/

!
D
 

uj	ei.	�1=2/�
vj	ei.	C1=2/�

!
;

which leads to the BdG equations

Ej	uj	.r/ D „2
2me

�
�d2uj	.r/

dr2
� 1

r

duj	.r/

dr
C .	 � 1=2/2uj	.r/

r2

�
� EFuj	.r/

C
.r/vj	.r/ ; (5.22a)

Ej	vj	.r/ D � „2
2me

�
�d2vj	.r/

dr2
� 1

r

dvj	.r/

dr
C .	C 1=2/2vj	.r/

r2

�
C EFvj	.r/

C
.r/uj	.r/ : (5.22b)

Here the pair potential amplitude


.r/ D U

2

X

j	.jEj	j�!D/

uj	.r/vj	.r/ tanh
�

Ej	

2kBT

�
; (5.23)

is determined self-consistently, where U is an effective pairing interaction and !D is
the cutoff. The azimuthal quantum number j	j D 1

2 ;
3
2 ;

5
2 ; : : : .

We first focus on solutions to the BdG equations (5.22) by following the original
work by Caroli, de Gennes, and Matricon [3] and that in [9] in the assumption
that the pair potential is known with a shape schematically drawn in Fig. 5.1.
Equations (5.22) can be rewritten as:

„2
2me

�
�d2uj	.r/

dr2
� 1

r

duj	.r/

dr
C .	2 C 1=4/uj	.r/

r2

�
� EFuj	.r/C
.r/vj	.r/

D
�

Ej	 C 	„2
2mer2

�
uj	.r/ ; (5.24a)

� „2
2me

�
�d2vj	.r/

dr2
� 1

r

dvj	.r/

dr
C .	2 C 1=4/vj	.r/

r2

�
C EFvj	.r/C
.r/uj	.r/

D
�

Ej	 C 	„2
2mer2

�
vj	.r/ : (5.24b)

We now introduce a radius rc very close to the vortex core center, that is,

.	C 1=2/k�1F � rc � � :
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Δ

r

0

Δ(r)
0

Fig. 5.1 The amplitude of superconducting order parameter 
.r/ around a single vortex core line.
It vanishes at the core center r D 0 while rises to the bulk magnitude 
0 over a characteristic
length �. The quasiparticle states with energies (red lines) smaller than the superconducting gap

0 are bound near the vortex core center

For r < rc, 
.r/ approaches to zero and we can neglect it in Eqs. (5.24), and obtain
the solution as

 
u	.r/

v	.r/

!
D
0

@ACJ	� 1
2
Œ.kF C q/r�

A�J	C 1
2
Œ.kF � q/r�

1

A ; (5.25)

where kF is the Fermi wave number, q D E=„vF with vF D „kF=me, and J	 is the
Bessel function. Here we have used the approximation

�
k2F ˙ 2meE

„2
�1=2

� kF ˙ q : (5.26)

For r > rc, we use the fact that the Hankel function H	.kFr/ satisfies the Bessel
ordinary differential equation:

d2H	.kFr/

dr2
C 1

r

dH	.kFr/

dr
C
�

k2F � 	2

r2

�
H	.kFr/ D 0 ; (5.27)

to separate this fast oscillating component out of the wave function and write in the
form

 
u	.r/

v	.r/

!
D
 

RC.r/H Q	.kFr/C c.c

R�.r/H Q	.kFr/C c.c.

!
; (5.28)

where the functions R˙.r/ are varying slowly in space, and the quantum number
Q	 D p

	2 C 1=4. Substituting Eq. (5.28) into Eq. (5.24), we obtain

„2
2me

�
�H Q	

d2RC.r/
dr2

�
�
2H0Q	 C H Q	

r

�
dRC.r/

dr

�
C
.r/H Q	R�.r/
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D
�

E C 	„2
2mer2

�
H Q	RC.r/ ; (5.29a)

� „2
2me

�
�H Q	

d2R�.r/
dr2

�
�
2H0Q	 C H Q	

r

�
dR�.r/

dr

�
C
.r/H Q	RC.r/

D
�

E C 	„2
2mer2

�
H Q	R�.r/ : (5.29b)

In the limit that kFr 	 1, we neglect the terms HR00̇ and HR0̇ =r, and approximate
H0.kFr/ � ikFH from the asymptotic form of the Hankel function

H	.x/ D
�
2

�x

�1=2
exp

�
i

�
x C 	2

2x
� 	�

2
� �

4

��
; (5.30)

for the limit r ! 1. Equation (5.29) then becomes

�i
„2kF

me

dRC.r/
dr

C
.r/R�.r/ D
�

E C 	„2
2mer2

�
RC.r/ ; (5.31a)

i
„2kF

me

dR�.r/
dr

C
.r/RC.r/ D
�

E C 	„2
2mer2

�
R�.r/ : (5.31b)

For E � 
0 and kFr 	 	, we can treat the right-hand-side of Eq. (5.31)
perturbatively. To proceed, we write the envelope functions in the form

 
RC.r/
R�.r/

!
D
 

ei'

e�i'

!
e�K : (5.32)

Substitution of Eq. (5.32) into Eq. (5.31) gives

„vF

�
1

2

d'

dr
C i

dK

dr

�
C
.r/e�i' D E C 	„2

2mer2
; (5.33a)

„vF

�
1

2

d'

dr
� i

dK

dr

�
C
.r/ei' D E C 	„2

2mer2
: (5.33b)

Through addition and subtraction of Eqs. (5.33a) and (5.33b), we find

„vF

2

d'

dr
C
.r/ cos ' D E C 	„2

2mer2
; (5.34a)

„vF
dK

dr
�
.r/ sin' D 0 : (5.34b)
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We further write the solution for ' and K up to the leading order of E C 	„2
2mer2

:

' D '0 C '1 ; (5.35a)

K D K0 C K1 : (5.35b)

It can be easily found that

'0 D �

2
; (5.36a)

K0 D .„vF/
�1
Z r

0

.r0/dr0 : (5.36b)

Upon substitution of Eq. (5.35) together with Eq. (5.36) into Eq. (5.34), we arrive at

„vF

2

d'1
dr

�
.r/'1 D E C 	„2
2mer2

; (5.37a)

K1 D 0 ; (5.37b)

where we have used the approximation sin'1 � '1. Equation (5.37a) has the solution

'1.r/ D �
Z 1

r
e

2
„vF

Œ
R r
0 
.r

0/d0�R r0

0 
.r00/d00�
�
2q C 	

kFr02
�

dr0

D �
Z 1

r
e2K0.r/�2K0.r0/

�
2q C 	

kFr02
�

dr0 : (5.38)

On the other hand, for r < rc, we can write

'1.r/ D a�1=r C a0 C a1r C : : : ;

and


.r/ D d
.r/

dr
jrD0r C : : : ;

and substitute them into Eq. (5.37a). By comparing the coefficients for the r�2 term,
we have

a�1 D � 	

kF
;

so that

d'1
dr

D 2q C 	

kFr2
� 2	
.r/

„kFvFr
; (5.39)
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for r < rc. We can then obtain

'1.rc/ D �
Z 1

rc

e2K0.r/�2K0.r0/

�
2q C 	

kFr02
�

dr0

� �
Z 1

0
e�2K0.r0/

�
2q C 	

kFr02
�

dr0 �
Z rc

0

d'1
dr0 dr0

� 2qrc � 	

kFrc
� 2

Z 1

0
e�2K0.r0/

�
q � 	
.r0/

„kFvFr0
�

dr0 : (5.40)

The final form of the wave function for r > rc is then

 
u	.r/

v	.r/

!
D QAe�K0.r/

 
ei �4Ci

'1
2 H Q	.kFr/C c.c

e�i �4 �i
'1
2 H Q	.kFr/C c.c.

!
: (5.41)

This wave function must be joined smoothly at r D rc with that from the region
r < rc given by Eq. (5.25). Using the asymptotic form of the Bessel function

J	.x/ D
�
2

�x

�1=2
exp

�
x C 	2

2x
� 	�

2
C �

4

�
; (5.42)

for x 	 1 together with that of the Hankel function, Eq. (5.30), we obtain

'1.rc/ D 2qrc � 	

kFrc
: (5.43)

Comparison of Eq. (5.43) with Eq. (5.40) leads to

Z 1

0
e�2K0.r0/

�
q � 	
.r0/

„kFvFr0
�

dr0 D 0 : (5.44)

That is,

E	 D 	

kF

R1
0 e�2K0.r0/ 
.r0/

r0 dr0
R1
0 e�2K0.r0/dr0

D 	

kF

d
.r/

dr
jrD0g.kF/ ; (5.45)

where the dimensionless function g.kF/ depends on the shape of 
.r/ and is close
to one. Using the approximation d
.r/

dr jrD0 � 
0
�

with the coherence length � D
„vF=2
0, the energies of the vortex core bound states are given by

E	 D 	

20
EF

: (5.46)
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These are the Caroli-de Gennes-Matricon vortex core levels. The lowest bound state
energy corresponds to j	j D 1

2 .
More rigorous solution to the BdG equations can only be obtained through

numerical solution, which also determines the pair potential self-consistently [10,
11]. The radial functions are expanded in terms of the set of Bessel functions
normalized in a disc of radius R:

 
uj	.r/

vj	.r/

!
D
X

i

0

@ cji�i	� 1
2
.r/

dji�i	C 1
2
.r/

1

A ; (5.47)

where

�im.r/ D
p
2

RJm.˛im/
Jm.˛imr=R/ ; i D 1; 2; : : : ;N (5.48)

with m D 	
 1
2 and ˛im is the ith zero of Jm.x/. The BdG equations are now solved

separately in each subspace of fixed angular momentum 	, which amounts to solve
a 2N �2N matrix eigenvalue problem. Once the self-consistency solution is obtained,
the local density of states as derived in Chap. 1 can be computed.

Typical results are shown in Figs. 5.2 and 5.3. As the temperature decreases, the
vortex core size, as defined by d
.r/

dr jr!0, shrinks, as originally predicted by Kramer
and Pesch [13]. In addition, at very low-temperatures, the pair potential also exhibits
Friedel-like oscillation, which is mainly contributed from the vortex core states.
These vortex core states are displayed clearly in the local density of states probed
near the core center. For a large zero-temperature coherence length, these core levels
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Fig. 5.2 Spatial variation of the pair potential
.r/ as a function of distance away from the vortex
core center, determined self-consistently, for kF� D 70 (a) and 16 (b) for various temperatures.
From [11] for (a) and [12] for (b)
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Fig. 5.3 Local density of states as a function of energy and distance from the vortex core center
at T D 0:13Tc and kF� D 70 (a), and T D 0:05Tc and kF� D 8 (b). From [11] for (a) and [12] for
(b)

Fig. 5.4 Image of dI=dV on 2H-NbSe2 as a function of voltage bias (horizontal axis) and position
along a line that intersects a vortex (vertical axis). From [14]

are close in energy and the discretization is thermally smeared, while for a short
coherence length, the discretization of the levels is evident. The first experimental
evidence for the Caroli-de Gennes-Matricon vortex core states comes from a series
of scanning tunneling experiments on a layered hexagonal compound 2H-NbSe2 at
low temperatures [14–16]. A spatial image of tunneling conductance across a vortex
is shown in Fig. 5.4. There a tunneling conductance peak is observed at the vortex
core center.

Recently, the STM experiments have also been carried out in a vortex core
of a proximity-induced s-wave superconductor in Bi2Te3 thin films [17, 18]. The
evolution of local tunneling conductance spectra with film thickness has led to a
conjecture [18] that the zero-bias conductance peak observed at the core center
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reveals the existence of Majorana bound states. This conjecture has been supported
by a very recent theoretical study [19] by solving a generalized set of BdG
equations [20, 21]:

 OHTI.r/ O
.r/
O
�.r � OH �

TI .r/

! 
Ou.r/
Ov.r/

!
D E

 
Ou.r/
Ov.r/

!
: (5.49)

Here the normal-state effective Hamiltonian of the TI

OHTI D � O�z � ivF

�
e�i�Osz

�
@rOsx C 1

r
@� Osy

�
C @zOsz

�
O�x � EF ; (5.50)

with Osi and O�i the Pauli matrices for spin and orbital degrees of freedom, and the
Dirac mass

� D ��0 � 1

2me

�
@2r C 1

r
@r C 1

r2
@2� C @2z

�
; (5.51)

in the cylindrical coordinates with the quantity 2�0 describing the bulk gap of the
topological insulator. The proximity-induced superconducting gap has the form

O
 D ei�
0Osx ; (5.52)

where the superconducting gap 
0 is kept as a constant. We note that the BdG
wave function ŒOu.r/; Ov.r�Transpose is a total eight-component vector spanned in a
spin-orbital-Nambu space. The BdG quasiparticle wave function around an isolated
vortex takes the form

 
us�

j .r/

vs�
j .r/

!
D
 

ei. j�s=2C1=2/ Nus� .r/

ei. jCs=2�1=2/ Nvs� .r/

!
; (5.53)

where the superscripts s (˙1) and � (=1,2) on u and v are spin and orbital indices.
The coefficients .Nus� .r/; Nvs� .r// can be expanded in terms of the Bessel orthonormal
functions in the radial direction [11] while the Gauss-Lobatto functions in the z-
direction [22]. Numerically, the authors of [19] has used a varying Fermi energy to
simulate the thickness dependence of the local density of states around the vortex
core. It was found that the local density of states profile evolves from a V-shape to
a Y-shape as the Fermi energy level is tuned toward the bulk gap center, in a good
agreement with the experimental results.
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5.2.2 High Field Limit

The quasiparticle states of a superconductor in the low field limit can be sufficiently
described by considering a single isolated vortex. In the high field limit, a vortex
lattice is formed as a regular array [23], in which vortices are closely packed.
In this limit, the single isolated vortex description is not adequate. Quasiparticle
excitations of a superconductor in the high field limit are interesting in the possibility
of Landau level quantization, which plays an important role in quantum Hall effect
in a semiconductor two-dimensional electron gas.

Different from the single isolated vortex case, in the high magnetic field limit,
the vector potential must be treated explicitly in the BdG equations (5.19) with h.r/
given by Eq. (5.1). For the extreme type-II superconductors, we can assume the
vector potential is entirely determined by the external magnetic field. In the Landau
gauge with the vector potential

A D H.�y; 0; 0/ ; (5.54)

the pair potential for a triangular Abrikosov lattice has the form


.r/ D 
.T ;H/
X

n

ei�a2;xn2=a4ei2�nx=a4�.y=lBC�nlB=a4/2 ; (5.55)

where the position vector r D .x; y/. The unit vectors in the direct space of a
triangular vortex lattice are

a1 D .a1;x; a1;y/ D a4.1; 0/ ; a2 D .a2;x; a2;y/ D a4.
1

2
;

p
3

2
/ : (5.56)

The magnetic length lB D p„c=eH. This form of the pair potential and the
explicit appearance of the vector potential in the BdG equations break the rotational
symmetry existing for the single isolated vortex. The BdG wave functions can be
expanded as

 
u.r/

v.r/

!
D
X

n;q

 
unq

vnq

!
�n;q.r/ : (5.57)

Here �n;q are the eigenfunctions to the single-particle Hamiltonian Eq. (5.1) in
the magnetic sublattice representation for a vector potential chosen in the Landau
gauge [24]:

�n;q D 1
p
2nnŠ

p
� lB

s
a2;y
LxLy

X

m

e
i
�a2;x
2a

4

�imqya2;y ei.qxC�m=a4/x�.y=lBCqxlBC�mlB=a4/2=2

�Hm.y=lB C qxlB C �mlB=a4/ ; (5.58)
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where q D .qx; qy/ is the quasimomenta in the first magnetic Brillouin zone defined
by the reciprocal vectors

Q1 D .a2;y;�a2:x/=l2B ; Q2 D .0; 2a4/=l2B ; (5.59)

Lx and Ly are the linear dimensions of the system, and Hn.x/ is the Hermite
polynomial of order n. Substitution of Eq. (5.57) into Eq. (5.19) yields

�nun;q C
X

m


nm.q/vm;q D En;qun;q ; (5.60a)

��nvn;q C
X

m


�mn.q/um;q D En;qvn;q : (5.60b)

Here the normal-state Landau levels are given by

�n D .n C 1

2
/„!c � EF ; (5.61)

with the cyclotron frequency !c D eH=mec, and the matrix element for the pair
potential is


nm.q/ D 
.T ;H/p
2

.�1/m
2nCm

p
nŠmŠ

X

k

ei�a2;xk2=a4C2ikqya2;y�.qxlBC�klB=a4/2

�HnCmŒ
p
2.qx C �k=a4/lB� : (5.62)

Therefore, the BdG equations are now solved in a 2Nc � 2Nc subspace for separate
values of quasi momentum q. Due to the complex structure of the pair potential
matrix elements, accurate solutions can only be obtained through numerical simu-
lations [25–30]. The numerical results show that when the magnetic field is close to
the upper critical field Hc2, gapless quasiparticle states can occur at discrete locations
of the Fermi surface. We note that the gapless quasiparticle states in the s-wave
superconductors are induced from the Cooper pair motion in the high magnetic
field. Their existence can be detected by the de Haas-van Alphen oscillations at
high magnetic field and low temperatures [31–34].

5.3 Vortex Core States in a d-Wave Superconductor

The study of vortex cores states in a d-wave superconductor finds its immediate
relevance when high-temperature cuprates are found to have a d-wave pairing sym-
metry. A novel feature from a d-wave pairing symmetry is that the superconducting
gap function experiences a continuous sign change at some special points of the
Fermi energy, showing the existence of nodal quasiparticles. Similar to the previous
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section, here we first consider the quasiparticle core states in a single isolated vortex
in the continuum model and for a vortex lattice in the tight-binding model.

5.3.1 Single Isolated Vortex

We begin with the BdG equations (5.19). The non-local nature of d-wave pair-
ing introduces further complications. We introduce the center-of-mass coordinate
system

NR D r C r0
2

; s D r � r0 ; (5.63)

to rewrite the equations as

hRu.R/C
Z

.R � s=2; s/v.R � s/ds D Eu.R/ ; (5.64a)

�h�Rv.R/C
Z

�.R � s=2; s/u.R � s/ds D Eu.R/ : (5.64b)

Here we have used a new label R D r so that the single-particle Hamiltonian
becomes

hR D „2
2me

�
pR C eA.R/

c

�
� EF ; (5.65)

and

NR D R � s
2
; s D r � r0 : (5.66)

The pair potential in the center-of-mass coordinate system is given by


. NR; s/ D V.s/
X

n

Œun. NR C s=2/v�n . NR � s=2/C un. NR � s=2/v�n . NR C s=2/ tanh
�

En

2kBT

�
;

(5.67)

with the energy summation subjected to a cutoff ˝c in the continuum limit. The
pairing interaction is parametrized as

V.s/ D Vdg.'/ı.s � a/=a ; (5.68)

with s D .s; '/ in the polar coordinates and a as a length scale for nonlocal pairing
interaction. For the dx2�y2-wave pairing symmetry, the angular dependent function

g.'/ D cos2.2'/ : (5.69)
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This form of the pair interaction suggests that the d-wave order parameter depends
on the relative coordinate s only through its polar angle. Therefore, we can expand
it as


. NR; s/ D 
. NR; � I '/ D
X

p;l

eip� eil'
pl.R/ ; (5.70)

where NR D . NR; �/. In this representation, p represents the winding number of
the superconducting phase around the vortex and l represents the orbital angular
momentum of the relative motion of two paired electrons. For the dx2�y2 -wave
pairing symmetry, the order parameter near the single vortex should be contributed
dominantly from a linear combination of components with p D 1, and l D ˙2 at
equal weight 
. NR; � I '/ D ei� Œei2'
1;2. NR/C e�i2'
1;�2. NR/�.

For the case of singe isolated d-wave vortex, we neglect the vector potential
A, which is reasonable for extreme type-II superconductors. We can then follow
the same procedure used for the single isolated s-wave vortex to solve the BdG
equations (5.64) through the expansion of the wave function as

 
uj	.R/

vj	.R/

!
D
X

i

0

@ cji�i	� 1
2
.R/

dji�i	C 1
2
.R/

1

A ; (5.71)

where

�im.R/ D
p
2

R0Jm.˛im/
Jm.˛imR=R0/ ; i D 1; 2; : : : ;N (5.72)

with m D 	 
 1
2 and ˛im is the ith zero of Jm.x/, and R0 is the radius of a disk.

The resultant equations can be solved via exact diagonalization with the order
parameter obtained through an iteration procedure. Figure 5.5 shows the variation
of the dominant component of the superconducting order parameter and the local
tunneling conductance at the vortex center [35]. Due to the spatial anisotropy of the
dominant dx2�y2-wave component, other subdominant order parameter components
are also induced near the vortex core (see Fig. 5.5a). The calculations [35] also show
that for a short coherence length kF�0 with �0 D „vF=�
0 (
0 is controlled by the
pairing interaction strength Vd), the profile for the dx2�y2 -wave order parameter is
quite universal and it follows the form 1=R2 instead of tanh.R=� 0/ with � 0 a fitting
parameter. In addition, a broad peak shows up near the Fermi energy in the local
tunneling conductance at the vortex core center (see Fig. 5.5b). For the dx2�y2 -wave
vortex core, even for a very short coherence (e.g., kF�0 D 2:5 for Fig. 5.5a), no clear
splitting of the core level is obtained, which is in sharp contrast with the case of
the s-wave vortex core. This is a clear indication that the nodal quasiparticles pre-
existing for the dx2�y2 -wave pairing even at zero field play an important role in the
nature of vortex core states.
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Fig. 5.5 Dominant order
parameter component around
a d-wave vortex (a) and the
theoretically obtained
tunneling conductance at the
vortex core center. The
system size is kFR0 D 120.
The other parameter values
are kFa D 2, ˝c=EF D 0:3,
Vd=EF D 1:6, and T D 0.
From [35]
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5.3.2 Quasiparticle States in a Mixed-State of d-Wave
Superconductors

The order parameter profile for a single dx2�y2-wave vortex core has also been
studied by solving the BdG equations within the tight-binding model [36]. The
use of tight-bind model enables one to incorporate band structure of normal-state
superconductors, which is especially appropriate for high-Tc cuprates. As in the case
of s-wave superconductors, when the magnetic field is much larger than the lower
critical field Hc1, a vortex lattice is formed also in the d-wave superconductors. The
quasiparticle spectrum in the mixed-state within the tight-binding model has been
first studied by Wang and MacDonald [37] for a pure dx2�y2-wave superconductor.
It was shown that the local density of states at the d-wave vortex core exhibits a
single broad peak at zero energy. The results are supported by the study of the single
dx2�y2-wave vortex line discussed above in the continuum model.

In this high-field limit, we again need to treat the magnetic field effect explicitly,
which is described in the BdG equations (5.20). In the mixed state, the magnetic field
effect is included through the Peierls phase factor 'ij D � 2�

˚0

R ri
rj

A.r/ �dr, where ˚0 D
hc=e (e > 0) is the single-electron flux quantum. We still assume the superconductor
under consideration is in the extreme type-II limit where the Ginzburg-Landau
parameter � D �=� goes to infinity so that the screening effect from the supercurrent
is negligible. Therefore, the vector potential A can be approximated by the solution
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Fig. 5.6 Schematic drawing
of a magnetic unit cell with
linear dimensions of Nx and
Ny. The red lines form a
closed path around the unit
cell

r � A D H Oz, where H is the magnetic field externally applied along the c axis. The
enclosed flux density within each plaquette is given by

P
� 'ij D � 2�Ha2

˚0
.

We choose a Landau gauge to write the vector potential as A D .�Hy; 0; 0/, where
y is the y-component of the position vector r. By considering a rectangular lattice,
we introduce the magnetic translation operator Tmnr D r C R, where the translation
vector R D mNxaOex C nNyaOey with Nx and Ny the linear dimension of the unit cell of
the vortex lattice, as shown in Fig. 5.6. Note that the original crystal lattice is a. To
ensure different Tmn to be commutable with each other, we have to take the strength
of magnetic field so that the flux enclosed by each unit cell has a single-particle flux
quantum, i.e, ˚0, which is equivalent of two superconducting flux quanta each with
hc=2e.

Under this condition, we can decouple the translation operator Tmn into two
consecutive operations

Tmn D T0nTm0 : (5.73)

As such, we have

A.Tm0r/ D A.r/ D A.r/C r�1 ; (5.74)

which gives

�1 D 0 ; (5.75)

and

A.T0nr/ D �HyOex � H.nNya/Oex D A.r/C r�2 ; (5.76)

which gives

�2 D �HnNyax : (5.77)

Therefore, the transformation Tmn leads to the transformation of the superconduct-
ing pair potential as:


.Tmnr/ D e�
i4�
˚0
Œ�HnNya.xCmNxa/�e�

i4�
˚0
�0

.r/

D ei�.r;R/
.r/ ; (5.78)
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where the phase accumulated by the order parameter upon the translation is

�.r;R/ D �4�
˚0
Œ�HnNya.x C mNxa/�

D �4�
˚0

A.R/ � r C 4mn� ; (5.79)

when NxNya2H D ˚0. If we perform a successive application of four transformations
along a closed path around the magnetic unit cell, as shown by the red lines in
Fig. 5.6,

.0; 0/ ! .Nxa; 0/ ! .Nxa;Nya/ ! .0;Nya/ ! .0; 0/ ; (5.80)

the accumulated phase on the superconducting order parameter is 4�, which
corresponds to two superconducting flux quanta.

From this property, we can obtain the magnetic Bloch theorem for the wavefunc-
tion of the BdG equations:

 
uk;� .Tmn Qr/
vk;� .Tmn Qr/

!
D eik�R

 
ei�.r;R/=2uk;� .Qr/

e�i�.r;R/=2vk;� .Qr/

!
: (5.81)

Here Qr is the position vector defined within a given unit cell and k D 2� lx
MxNx

Oex C
2� ly
MyNy

Oey with mx;y D 0; 1; : : : ;Mx;y � 1 are the wavevectors defined in the first Brillouin
zone of the vortex lattice and MxNx and MyNy are the linear dimension of the whole
system. The vortex carrying the flux quantum hc=2e is the generic feature of the
pairing theory for superconductivity. Comparing with the zero-field case but with the
similar kind of supercell technique, we can see that the magnetic field also modifies
the matching conditions between two neighboring unit cells. Similar type of the
magnetic Bloch theorem can also be derived in the symmetry gauge for the vector
potential. Typical numerical results are shown in Fig. 5.7 [37]: The d-wave order
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Fig. 5.7 Amplitude of a d-wave order parameter in a magnetic unit cell (a) and the local density
of states at the vortex core center. From [37]
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parameter as defined by


d.i/ D 1

4
Œ
i;iCOx C
i;i�Ox �
i;iCOy �
i;i�Oy� ; (5.82)

is strongly suppressed at the vortex core. The local density of states at the vortex
center exhibits a broad peak, which is clearly centered at the Fermi energy. No clear
core level splitting is seen. These results are fully supported by the study of a single
isolated d-wave vortex core in the continuum model discussed above.

The quasiparticle states near the vortex core can be probed by scanning tunneling
microscopy. The unique feature of a pure d-wave pairing symmetry on the mix-
state quasiparticles state can also be detected by nuclear magnetic resonance
spectroscopy, which is essentially a site-selective probe. The correlation function
between the two spin operators at equilibrium is

S˛ˇij .t � t0/ D hS˛i .t/Sˇj .t0/i : (5.83)

Its Fourier transform defines the dynamical structure factor

S˛ˇij D
Z 1

�1
ei!tS˛ˇij .t/dt

D 2�„
Z

X

	�

e�E	=kBTı.E	 � E� C „!/h	jS˛i j�ih�jSˇj j	i ; (5.84)

where the partition function is given by

Z D
X

	

e�E	=kBT : (5.85)

If we define the response function

R˛ˇij .t � t0/ D �i�.t � t0/hŒS˛i .t/; Sˇj .t0/�i ; (5.86)

where ŒA;B� denotes a commutator. Its Fourier transform is given by

R˛ˇij .! C i�/ D
Z 1

1
dtei.!Ci�/tR˛ˇij .t/

D 1

Z

X

	�

.e�E	=kBT � e�E�=kBT /h	jS˛i j�ih�jSˇj j	i
.E	 � E�/C „! C i�

; (5.87)

where � is an infinitesimal. Comparison of Eqs. (5.84) and (5.87) leads to the relation

S˛ˇij .!/ D � 2

1 � e�„!=kBT
ImR˛ˇij .!/ : (5.88)
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In the limit of ! ! 0, we have

S˛ˇij .! ! 0/ D � 2

„!=kBT
ImR˛ˇij .! ! 0/ : (5.89)

This spin response function can be calculated conveniently in the Matsubara
formalism. We are interested in the correlator between

SCi D Sx
i C Sy

i D c�i"ci#

and

S�i D Sx
i � iSy

i D c�i#ci"

and write down

RC�ii .�/ D �hT� .SCi .�/S�i .0//i ; (5.90)

Using the Wick decoupling scheme and performing the Fourier transform, we obtain

RC�ii .i!n/ D
X
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un
i v

n0

i Œu
n
i
�vn0

i
� � vn

i
�un0

i
�
�
f .En/� f .�En0/

i!n C En C En0

; (5.91)

from which we arrive at the spin-relaxation rate:
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�@f .E/

@E

�
jEDEnı.En C En0/ ; (5.92)

where J is the strength of the coupling between the nuclear spin and the electron
spin density on the lattice.

Figure 5.8 shows the temperature dependence of the spin relaxation rate on a
few selected probing sites [38]. The results indicate that in the presence of vortices,
1=T1 follows 1=T1 � T at low temperatures, which deviates from the T3 behavior
at zero field. This T-linear behavior arises from the low-energy states around the
vortices. In addition, the temperature range for the T-linear behavior is expanded.
This result is in sharp contrast with the 1=T1 / e�
1=T for the s-wave vortex lattice
case at low temperature, where
1 � 
20=EF [38]. Its magnitude of 1=T1 is also much
larger than that for the zero-field case, suggesting a significant contribution from the
gapless vortex-core states.
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Fig. 5.8 Position of probing sites V, A, B, C, S in the square vortex lattice, where the nearest-
neighbor vortex is located in the 45ı direction from the x-axis (due to the choice of symmetric
gauge) (a), and the temperature dependence of spin relaxation rate. Line U shows the zero-field
case. The line N is for the normal state at T > Tc. From [38]

For high-temperature cuprates, low temperature STM experiments observed a
double-peak structure around zero bias in the local differential tunneling conduc-
tance at the vortex core center [40, 41]. The discrepancy between the theory and
the experiment stimulated interesting theoretical proposals on the quasiparticles
in the vortex core of high-Tc cuprates, including the mixed dx2�y2 C idxy-wave
pairing symmetry [35, 42], the Landau-level quantization [43], as well as competing
order [39, 44–46]. Here we discuss the quasiparticle spectrum within a competing
spin-density-wave scenario. Other competing scenarios [47] can be discussed within
the same framework.

Beyond the tight-binding model with only a d-wave pairing term, we introduce a
Hubbard on-site repulsion

HU D U
X

i

Oni" On# ; (5.93)

where Oni� is the local density operator and U is the strength of the on-site repulsion
between two electrons with opposite spin polarization. By assuming that the on-site
repulsion is solely responsible for the antiferromagnetism, we have a mean-field
decoupling

HU;MF D
X

�

mi N� Oni� ; (5.94)
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where mi� D Uni� is the spin-dependent Hartree-Fock potential. The extended BdG
equations can then be derived as:

X

j

 
Hij;� 
ij


�ij �H �
ij; N�

! 
un

j�

vn
j N�

!
D En

 
un

i�
vn

i N�

!
; (5.95)

where .un
i� ; v

n
i N� / is the quasiparticle wavefunction corresponding to the eigenvalue

En, the single particle Hamiltonian Hij;� D �tijei'ijıiCı;j C .mi; N� � 	/ıij. Notice that
the quasiparticle energy is measured with respect to the Fermi energy. The self-
consistent conditions read:

mi� D U
X

n

jun
i� j2f .En/ ; (5.96)

and


ij D V

4

X

n

.un
i"v

n�
j# C vn�

i# un
j"/ tanh

�
En

2kBT

�
; (5.97)

where V is the strength of d-wave pairing interaction and the Fermi distribution
function f .E/ D 1=.eE=kBT C 1/. Here the summation is also over those eigenstates
with negative eigenvalues thanks to the symmetry property of the BdG equation: If
.un

i"; u
n
i#; v

n
i"; v

n
i#/

Transpose is the eigenfunction of the 4 � 4 equation in the spin space

with energy En, then .vn
i"
�;�vn

i#
�; un

i"
�;�un

i#
�/Transpose up to a global phase factor is

the eigenfunction with energy �En.
For the optimally high-Tc cuprates, since there is no static spin-density-wave

(SDW) order at zero field. One can choose the relative strength of Hubbard repulsion
and the d-wave pairing interaction such that the antiferromagnetic SDW order
is strongly suppressed while the system is only dominated by a pure d-wave
superconducting order, which is uniform in real space. As such, the competing
nature of the system will be uncovered by suppressing the superconducting order
in the form of vortices when a magnetic field is applied. Representative results are
shown in Fig. 5.9. With an appropriately chosen strength of the Hubbard repulsion,
the SDW order is nucleated at the vortex core center, where the d-wave order
parameter is depressed (see the left column of Fig. 5.9). More interestingly, with the
SDW order localized at the vortex core center, the near-zero-energy broad peak in
the local density of states for a pure d-wave vortex is suppressed with the amplitude
of the SDW order (see the left column of Fig. 5.9). The exhibited double-peak
structure in the LDOS is consistent with the STM tunneling conductance measured
at the vortex core center.
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Fig. 5.9 Left column: Spatial variation of the d-wave order parameter (a), staggered spin-density-
wave order Ms D .�1/i.ni" � ni#/ (b), and charge density ni D ni" C ni# (c) in a magnetic unit
cell of size 42 � 21 for V D 1:0 and U D 2. Right column: The local density of states measured
at the vortex core center for various values of Hubbard interaction U D 0 (a), 2 (b), and 3 (c). The
filling factor defined as

P
i ni=NxNy D 0:84. From [39]

5.4 Fulde-Ferrell-Larkin-Ovchinikov State due to a Zeeman
Magnetic Field

As we mentioned at the beginning of the chapter, the magnetic field also influences
the superconductivity especially with the spin-singlet pairing through the spin
Zeeman interaction. This effect is especially important for a low-dimensional
system, where the orbital effect of magnetic field when aligned appropriately can
be completely quenched. In this section, we will focus on the spin Zeeman effect by
neglecting the orbital effect of the magnetic field.

The modification of superconductivity by the external magnetic field through the
Zeeman coupling was first studied by Clogston and Chandrasekhar [48, 49]. It is
concerned with the bound on the paramagnetic upper critical field by considering
the Zeeman interaction alone, that is the Pauli limit, and the nature of the phase
boundary. The paramagnetic pair-breaking effect comes from the Zeeman splitting
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of the single electron energy bands. When a magnetic field is applied in the normal
state, electron band is split into spin-up and spin-down sheets to gain the magnetic
energy; while in the superconducting state, this paramagnetism is eliminated by
the formation of spin-singlet Cooper pairs. Qualitatively, the destruction of the
superconducting state by the Pauli paramagnetic pair breaking occurs when the
normal-state paramagnetic energy

EP D 1

2
�nH2

P ; (5.98)

takes over the superconducting condensation energy

Ec D 1

2
N.0/
2BCS.T/ : (5.99)

Here the normal-spin susceptibility is given by

�n D 1

2
g2	2BN.0/ ; (5.100)

with g being the gyromagnetic ratio,	B being the Bohr magneton, and N0 the density
of states at the Fermi energy per spin polarization. The quantity 
BCS is the zero-
field BCS energy gap. A little algebra yields

HP.T/ D p
2
BCS.T/=jgj	B : (5.101)

On the other hand, if one assumes a second-order phase transition and the
superconducting order parameter is always uniform in real space, the solution of the
BdG equations (5.19) or (5.20) in the Pauli limit (that is, ignoring the orbital effect)
will lead to an upper critical field, which will decrease with decreasing temperature
below a critical temperature TC. This transition line is metastable, which suggests
that the transition below TC (with the line defined by HP.T/) becomes the first
order. The phase diagram between the Zeeman field and the temperature is shown
in Fig. 5.10.

A more unusual state was proposed by Fulde and Ferrell [50], and by Larkin
and Ovchinnikov [51], where the pairing state is formed with a finite Cooper pair
momentum at a larger Zeeman field. If the normal state is transitioned into this finite-
momentum pairing (inhomogeneous in real space) state, the upper critical field can
be enhanced. Specifically, the Cooper pairs are formed between electrons at .k;"/
and those at .�k C q;#/, as shown in Fig. 5.11. The shifted momentum q due to the
Zeeman field is estimated to be q � 2	BH=„vF . The state originally proposed by
Fulde and Ferrell has the form


.r/ D 
eiq�r ; (5.102)
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Fig. 5.10 The H-T phase diagram of a two-dimensional superconductor in the pure Pauli limit,
which can be realized by applying the field parallel to the plane. Below TC .� 0:56Tc/, the
transition becomes first order. The broken line represents the metastable transition line. From [52]

Fig. 5.11 Schematic picture of BCS pairing state .q D 0) (a) and FFLO pairing state .k ";�kC
q #/ (b). The inner and outer circles represent the Fermi surface of spin-up and spin-down electron
bands. From [52]

with the amplitude of the order parameter remaining homogeneous. Note that the
functionals 
eiq�r and 
e�iq�r are degenerate for a given q, its equal weight linear
combination can lift this degeneracy


.r/ D 
.eiq�r C e�iq�r/ D 2
 cos.q � r/ : (5.103)

Larkin and Ovchinnikov suggested this form of the order parameter can lead to an
even more stable superconducting state in the presence of a larger Zeeman field.
Nowadays, this finite-momentum pairing state is called FFLO state [52, 53].

The interest in the FFLO state is recently revived by the observation of a so-called
“Q” phase in heavy-fermion CeCoIn5 compound [54], which has a dx2�y2 -wave
pairing symmetry at zero field. The problem has recently been numerically studied
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Fig. 5.12 Spatial variation of a d-wave order parameter in the Pauli limit of an external magnetic
field (a) and the local density of states (b, c) at the sites marked on the contour plot (upper right
panel) of equal magnitude of order parameter. The pairing interaction Vd D 1:0, the exchange
field h D H	B D 0:15, the chemical potential 	 D �0:4 in a nearest-neighbor hopping model.
From [55]

by solving the BdG equations (5.20) with a d-wave pairing symmetry. Figure 5.12
shows the d-wave order parameter variation as well as the local density of states at
several representative sites of the system [55]. The d-wave order parameter at low-
temperatures is stabilized into a square lattice in the form of 
0Œcos qxx C cos qyy�
(see Fig. 5.12a). The spatial variation, especially the sign change of the d-wave order
parameter in the real space gives rise to in-gap states exhibited in the local density
of states (see Fig. 5.12b, c).

We note that just as interesting quasiparticle states in the mixed state of a
superconductor arise from the vortex formation, novel quasiparticle states in the
FFLO state through a large external Zeeman field are also due to the variation of
order parameter, that is, the collective motion of Cooper pairs. In addition, the BdG
formalism is also very powerful in studying the interplay between the Zeeman field
and impurities.
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Chapter 6
Transport Across
Normal-Metal/Superconductor Junctions

Abstract In this chapter, transport properties in hybrid structures involving a
superconductor are discussed. The transport quantities are expressed in terms of
reflection coefficients within the framework of the Blonder-Tinkham-Klapwijk
theory. These coefficients are evaluated in the scattering theory. The enhancement
of conductance from Andreev reflection process is revealed, and its suppression
due to the spin polarization is examined. Finally, the possible revelation of chiral
Majorana modes through the tunneling differential conductance in a normal-metal-
ferromagnetic insulator-s-wave superconductor junction is discussed.

6.1 Blonder-Tinkham-Klapwijk Scattering Formalism

In a phase-coherent normal-superconducting hybrid structure, electrons are not only
intrinsically coherent in the superconducting part but also retain phase memory
all through the normal conducting region. Therefore, the transport properties
are determined in detail by the quasiparticle states produced by elastic scatter-
ing from inhomogeneities and boundaries. In the presence of superconductivity,
a scattering process known as the Andreev reflection [1] occurs: As shown
schematically in Fig. 6.1, an electron incident from the normal conductor with
an energy below the superconducting quasiparticle energy gap cannot drain off
individually into the superconductor. It is instead coherently reflected from the
normal-metal/superconductor (NS) interface as a hole by transferring a charge
�2e to the superconductor. This process goes beyond the lowest-order description
within the tunneling Hamiltonian model for the NS junction, which predicts that
the tunneling conductance is proportional to the density of states. In 1982, Blonder,
Tinkham, and Klapwijk [2] (BTK) pointed out that the contribution to the subgap
conductance from the Andreev reflection can be significant, and further developed
a scattering theory of transport through an NS interface with the arbitrary barrier
strength.

© Springer International Publishing Switzerland 2016
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Fig. 6.1 Schematic drawing
of the scattering process for
an incident electron beam
impinged upon a
normal-metal superconductor
interface

S

electron

hole
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electron

electron−like QP

N

We now discuss the derivation of the BTK formula. The time-dependent BdG
equations can be directly generalized from Eq. (1.60)

h".r/f .r; t/C
Z

dr0
.r; r0/g.r0; t/ D i„@f .r; t/
@t

; (6.1a)

Z
dr0
�.r0; r/f .r0; t/ � h�#.r/g.r; t/ D i„@g.r; t/

@t
: (6.1b)

Now the time dependence of the potentials is included implicitly. From the above
equation, we derive the continuity equation for BdG quasiparticles. We multiply
Eq. (6.1a) on both sides from the left by f �.r; t/ while Eq. (6.1b) by g�.r; t/ such
that

f �.r; t/h".r/f .r; t/C
Z

dr0f �.r; t/
.r; r0/g.r0; t/ D i„f �.r; t/
@f .r; t/
@t

;

Z
dr0g�.r; t/
�.r0; r/f .r0; t/ � g�.r; t/h�#.r/g.r; t/ D i„g�.r; t/

@g.r; t/
@t

:

We then take the complex conjugation to the above two expressions

�f .r; t/h�".r/f
�.r; t/ �

Z
dr0f .r; t/
�.r; r0/g�.r0; t/ D i„f .r; t/

@f �.r; t/
@t

;

�
Z

dr0g.r; t/
.r0; r/f �.r0; t/C g.r; t/h#.r/g�.r; t/ D i„g.r; t/
@g�.r; t/
@t

:

Combine the above two sets of equations together, we arrive at

@j f .r; t/j2
@t

C r � J1 D S1 ; (6.4)

@jg.r; t/j2
@t

C r � J2 D S2 ; (6.5)
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where

J1 D ReŒ f �.r; t/vef .r; t/� ; (6.6)

J2 D �ReŒg�.r; t/vhg.r; t/� ; (6.7)

with the mechanical velocity of electron and hole as

ve D .p C eA/=me ; vh D .p � eA/=me : (6.8)

The source term are respectively given by

S1 D 2

„ ImŒ f �.r; t/
.r; r0/g.r0; t/� ; (6.9)

and

S2 D 2

„ ImŒg�.r; t/
�.r0; r/f .r0; t/� : (6.10)

The total particle density is defined as the probability density for finding an electron
or a hole at a particular time t and position r,

P.r; t/ D 2
X

n

f .En/Œj f n.r; t/j2 C jgn.r; t/j2� : (6.11)

Correspondingly, the quasiparticle current density is given by

JP D 2
X

n

f .En/ŒJn
1 C Jn

2� ; (6.12)

and the source term

SP D 2
X

n

f .En/ŒS
n
1 C Sn

2� : (6.13)

The charge density is defined as follows

Q.r; t/ D �2e
X

n

f f .En/j f n.r; t/j2 C Œ1 � f .En/�jgn.r; t/j2g : (6.14)

Correspondingly, the electrical current density should be

JQ D �2e
X

n

f f .En/Jn
1 C Œ1 � f .En/�Jn

2g ;

D �2e
X

n

f f .En/ReŒ f n�.r; t/vef n.r; t/�
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�Œ1 � f .En/�ReŒgn�.r; t/vhgn.r; t/�g ;

D �2e„
m

X

n

f f .En/ImŒ f n�.r; t/.r C ieA=„c/f n.r; t/�

�Œ1 � f .En/�ImŒgn�.r; t/.r � ieA=„c/gn.r; t/�g ; (6.15)

and the source term is

SQ D �2e
X

n

f f .En/S
n
1 C Œ1 � f .En/�S

n
2� : (6.16)

The vector potential A.r/ entering the BdG equations is in turn related to the
electrical current distribution JQ.r/ by Maxwell’s equation

r � .r � A/ D 4�

c
JQ : (6.17)

It should be pointed out that the two-fold spin degeneracy has been included
explicitly. At a first glance, the current are not conserved. However, if we take
into account the self-consistency condition about the pair potential, we can check
that the source term SQ is zero. For this reason, in non-self-consistent theory the
current is evaluated in the normal region (where the current is conserved since
the pair potential is zero) and the current in the superconducting region is inferred
indirectly. Obviously, the source term SP can never become zero, which is allowed
by the mother nature itself in the superconductivity. We refer to [2–4] for more
discussion of these definitions. The present current expression has been used to
study the transport properties through a superconducting point contact [5].

The BTK transport theory is based on the assumption that the electrons are
ballistically accelerated without scattering before they hit the NS interface. In
addition, one assumes that the distribution functions of all incoming particles are
given by equilibrium Fermi-Dirac functions, apart from the energy shift due to the
voltage bias. It is convenient to choose the electrochemical potential of the electrons
in the superconductor as the reference since it remains a well-defined quantity even
when the quasiparticle populations are far from equilibrium. With this convention,
all incoming electrons from the superconductor side have the distribution function
fFD.E/, while those coming in from the normal-metal side have the distribution
function fFD.E �eV/. Since the current must be conserved, we can evaluate it in any
plane for an actual two-dimensional or three-dimensional geometry. For a planar
junction, we can always first calculate the current for a given incident direction of
electron beams, with angle � , as shown in Fig. 6.1, from which the total current can
be obtained by integrating over the transverse momentum. Assuming the current
flow along the x-direction, which is perpendicular the NS junction, we can write the
current as

I.�;V/ D 2N.0/evF;xA

Z 1

�1
Œ f!.E/� f .E/�dE : (6.18)
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Here A is the cross-sectional area of the interface, N.0/ is the one-spin density of
states at the Fermi energy at �F , and vF;x D vF cos � . With the assumption about the
incoming populations, it follows that

f!.E/ D fFD.E � eV/ ; (6.19)

while

f .E/ D A.E/Œ1 � f!.E/�C B.E/f!.E/C ŒC.E/C D.E/� fFD.E/ : (6.20)

Here the probabilities A.E/, B.E/, C.E/, and D.E/ are for normal reflection,
Andreev reflection, transmission through the interface with a wave vector on the
same side of the Fermi surface and that crossing the Fermi surface. We have
represented the current incident from the superconducting side in terms of the
summation of C.E/ and D.E/. Substituting Eqs. (6.19) and (6.20) into Eq. (6.18),
we arrive at

I.�;V/ D 2N.0/evF;xA

Z 1

�1
Œ fFD.E�eV/�fFD.E/�Œ1CA.E/�B.E/�dE : (6.21)

Here we have used the symmetry that the probabilities A.E/, B.E/, C.E/, and D.E/
are even functions of E, and fFD.�E/ D 1 � fFD.E/. The quantity 1C A.E/� B.E/
can be referred as the transmission coefficient for electrical current. It shows that
while the ordinary reflection (described by B.E/) reduces the current, the Andreev
reflection (described by A.E/) increases the current by giving one electron to form a
Cooper pair together with the incident electron. From Eq. (6.21), we can also obtain
the differential conductance for a given incident direction of electrons as:

GNS.�;V/ D @I.�/

@V
D 2N.0/e2vF;xA

Z 1

�1

�
� fFD.E � eV/

@E

�
Œ1C A.E/� B.E/�dE :

(6.22)
At zero temperature, we have

� @fFD.E � eV/

@E
D ı.E � eV/ ; (6.23)

which leads to

GNS.�;V/ D 2N.0/e2vF;xA Œ1C A.eV/� B.eV/� : (6.24)

Equations (6.22) and (6.24) represent the BTK scattering formalization for the
transport across the NS junction, while the BdG equations provide a framework
to evaluate the reflection probability quantitatively. Interestingly, the BTK formula
can also be considered as the revised version of the Landauer-Büttiker formula [6, 7]
for an NS junction. The latter has been extensively used to describe the quantum
coherent transport in mesoscopic normal conductors. We first point out that the
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original BTK theory is applicable to a junction with translational invariance along
the NS interface. A more general Landauer-Büttiker-like theory has been devel-
oped [8–12] to describe the quantum phase-coherence transport through normal-
metal superconductor hybrid structures. With this generalized theory, the zero-bias
conductance anomaly observed in the differential conductance of a semiconductor
in contact with a conventional s-wave superconductor [13–15] has been interpreted
as a combined consequence of multiple impurity scattering inside the semiconductor
and the Andreev reflection at the interface [11, 16]. The generalized scattering
formalism can also be cast into the random matrix theory [17] to study the excess
conductance of semiconductor-superconductor junctions, where the elastic impurity
scattering in the normal region is important.

In this chapter, we consider no impurity scattering at the NS interface and
instead focus on the consequence of superconducting pairing symmetry on the
conductance. Part of the motivation comes from the observation of zero-bias
conductance peak (ZBCP) when electrons are tunneling into the ab-oriented thin
films of high-temperature superconductors [18–21]. This ZBCP cannot be explained
by conventional tunneling theories. Although the feature was originally analyzed
based on the conventional s-wave tunneling model by introducing the spin-flip
scattering of the tunnel electrons from magnetic impurities speculated to exist in the
insulating barrier, the mechanism is inconsistent with the experimentally observed
nonlinear splitting of the ZBCP with the magnetic field and the absence of the
ZBCP in the tunneling conductance of c-axis-oriented YBaCuO/Pb junctions. Now
it has become clear [22–25] that the ZBCP observed in high-temperature cuprates
originates instead from the d-wave pairing symmetry.

6.2 Tunneling Conductance Through
a Normal-Metal/Superconductor Junction

Without loss of generality, we consider a two-dimensional normal-metal
/superconductor junction. The setup is relevant to the high-temperature cuprates,
where the superconductivity emerges mainly in the two-dimensional copper-oxide
plane. As we have derived in Chap. 1, the motion of quasiparticles in a normal-metal
superconductor junction can be described by the BdG equation (1.60)

He.r/u.r/C
Z

dr0
.r; r0/v.r0/ D Eu.r/ ; (6.25a)

�H �
e .r/v.r/C

Z
dr0
�.r0; r/u.r0/ D Ev.r/ : (6.25b)

Here .u.r/; v.r// is the quasiparticle wave function of the BdG equations. He.r/ D
�„2r2

r =2me C V.r/� EF is the single-particle Hamiltonian, where V.r/ is the usual
static potential, and EF is the Fermi energy. Therefore, the excitation energy is
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measured with respect to the Fermi energy EF. Again we have dropped the spin
indices to the quasiparticle wave function for the case without spin-polarization and
spin-flip scattering. 
.r; r0/ is the pair potential, the dependence of which on r and
r0 cannot be reduced to a dependence on the difference of the two coordinates, that
is, r�r0, for an inhomogeneous case. By introducing the center-of-mass coordinates
R D .rCr0/=2 and the relative coordinates s D r�r0, we can write the pair potential
in terms of R and r

Q
.R; s/ � 
.r; r0/ : (6.26)

By performing the Fourier transform with respect to the relative coordinate s, we
can write the pair potential in the mixed representation

Q
.R;k/ D
Z

ds Q

�

R C s
2
;R � s

2

�
e�ik�s : (6.27)

This shows clearly that for an unconventional superconductor like that with d-
wave pairing symmetry, the pair potential depends not only on the center-of-mass
coordinate R but also on the relative wave vector k, which in the weak-coupling
theory is fixed on the Fermi surface such that only its direction OkF D kF=kF is a
variable, where kF is the magnitude of the Fermi wave vector.

An investigation of the BdG equations shows that u.r/ and v.r/ oscillate on the
scale of the superconducting coherence length �0 D „vF=2
0, which is much larger
than the inverse Fermi wave vector k�1F . Here vF is the Fermi velocity and 
0 is
the maximum value of the pair potential in the bulk region of the superconductor.
Therefore, we can introduce a new set of wave functions

� Nu.r/
Nv.r/

�
D e�ikF �r

�
u.r/
v.r/

�
; (6.28)

to divide out the fast oscillation. The substitution of Eq. (6.28) into Eq. (6.25) leads
to the Andreev equations [1, 26]:

E Nu.r/ D �i.„2=me/kF � r Nu.r/C Q
.r; OkF/ Nv.r/ ; (6.29a)

E Nv.r/ D i.„2=me/kF � r Nv.r/C Q
�.r; OkF/Nu.r/ : (6.29b)

when we retain only terms of the lowest order in .kF�0/
�1. We show this by looking

at
Z

dr0
.r; r0/ Nv.r0/e�ik�.r�r0/ D
Z

ds Q
.r � s=2; s/ Nv.r � s/e�ik�s : (6.30)
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Assuming that Nv.r/ is a slowly varying function as is Q
.R; s/ in the first argument

Q
.r � s=2; s/ � Q
.r; s/ � s � rr Q
.r; s/=2 ;
Nv.r � s/ � Nv.r/� s � rr Nv.r/ ;

we have
Z

ds Q
.r � s=2; s/ Nv.r � s/e�ik�s D
Z

dsŒ Q
.r; s/ � s � rr Q
.r; s/=2�Œ Nv.r/ � s � rr Nv.r/�

�
Z

ds Qı.r; s/ Nv.r/e�ik�s

�
Z

ds
s
2

� rr Q
.r; s/e�ik�s

�
Z

ds Q
.r; s/s � rr Nv.r/e�ik�s

D Q
.r;k/ � iŒrr Nv.r/C Nv.r/
2

rr� � rk Q
.r;k/ : (6.31)

Here we have used the identities
Z

dsrr
s
2

� Q
.r; s/ Nv.r/e�ik�s D Nv.r/
2

rr �
Z

ds Q
.r; s/se�ik�s

D Nv.r/
2

rr �
Z

dsirke�ik�s Q
.r; s/

D i
Nv.r/
2

rr � rk Q
.r;k/ ;

and similarly

Z
ds Q
.r; s/s � rr Nv.r/e�ik�s D rr Nv.r/ �

Z
ds Q
.r; s/se�ik�s

D irr Nv.r/ �
Z

dsirke�ik�s Q
.r; s/

D irr Nv.r/ � rk Q
.r;k/ :

Therefore, it is clear that the second term of the sum in Eq. (6.31) is down by a
factor of .kF�0/

�1 as compared with the first term. If we restrict ourselves to the
terms in lowest order of the small parameters, we are left with Eq. (6.29), a first-
order differential equation in which k is treated as a parameter. Since Q
.r;k/ is
defined only for k around the Fermi wave vector, we can replace the k-dependence
of Q
.r;k/ by one on the direction OkF.
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From now on we assume that the edge interface is specular, runs along the y-
direction, and the transport direction is normal to the interface (i.e., along the x-axis)
(see Fig. 6.1 for the setup). In this case, Nu, Nv, and Q
 spatially depend only on the
variable x since the system is translational invariant along the interface. The Andreev
equations then reduce to the form:

E Nu.x/ D �i.„2=me/kFx
d Nu.x/

dx
C Q
. OkF; x/ Nv.x/ ; (6.32a)

E Nv.x/ D i.„2=me/kFx
d Nv.x/

dx
C Q
. OkF; x/Nu.x/ : (6.32b)

Here we have assumed the superconducting pair potential to be real. We further
choose the interface at x D 0. The region x < 0 is occupied by the normal conductor
while the region x > 0 is occupied by the superconductor. At the NS interface,
quasiparticles (e.g., electron like excitations) are partially reflected as electron-like
and hole-like excitations due to the non-zero pair potential in the superconductor.
When the wave vectors of electron-like and hole-like excitations are different, the
pair potentials experienced by electron-like and hole-like excitations should be
different for an unconventional superconductor. We denote the incident and reflected
wave vectors by kC D .kx; ky/ and k� D .�kx; ky/, respectively. The pair potential
then takes the form

Q
.k˙; x/ D
�
0 ; x < 0

0 ; 0 � x

(6.33)

for the s-wave superconductor, while

Q
.k˙; x/ D
�
0 ; x < 0

0 cos.2�˙/ ; 0 � x

(6.34)

for the dx2�y2-wave superconductor. Here �˙ D � 
 ˛ with � the incident angle of
electron excitations injected from the normal conductor and ˛ the disorientation
angle of the crystalline axis along which the dx2�y2 -wave superconducting pair
potential reaches the maximum. Both � and ˛ are measured relative to the positive
x-axis. In addition, to capture the essential interfacial scattering at the interface, we
include a ı-function potential

V.x/ D Hı.x/ : (6.35)

The metallic contact and the tunnel junction correspond to the two limiting cases of
the barrier strength H D 0 and H ! 1.

In the condition of an electron beam incident from the normal conductor at an
angle � , the solution to the Andreev equations (6.29),

�.x/ D
� Nu.x/

Nv.x/
�
;
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is given by

�I.x/ D
�
1

0

�
eiqex C a

�
0

1

�
eiqhx C b

�
1

0

�
e�iqex ; (6.36)

for x < 0, and

�II.x/ D c

�
uCei�C

vC

�
eike;Cx C d

�
v�ei��

u�

�
e�ikh;�x (6.37)

for x  0. Here the wave vectors are determined from the energy dispersion:

qe;h D kfx ˙ meE

„2kFx
; (6.38)

ke.h/;C D kFx ˙
me

q
E2 � j Q
.kC/j2

„2kFx
; (6.39)

ke.h/;� D kFx ˙
me

q
E2 � j Q
.k�/j2

„2kFx
: (6.40)

For a given pair potential, these wave vectors are schematically described in Fig. 6.2.
The coherence factors in the superconducting regions are

u2˙ D 1

2

�
1C

q
E2 � j Q
.k˙/j2

E

�
; (6.41)

v2˙ D 1

2

�
1 �

q
E2 � j Q
.k˙/j2

E

�
; (6.42)

respectively. The characteristic phases are given by

�˙ D cos�1
�

cos 2.� 
 ˛/

j cos 2.� 
 ˛/j
�
: (6.43)

Imposing the boundary conditions at the interface

�II.0/ D �I.0/ ; (6.44a)

� 0II.0/� � 0I .0/ D
�
2meH

„2
�
� 0I .0/ ; (6.44b)
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Fig. 6.2 Schematic diagram of energy versus momentum at the normal-metal/superconductor
interface

and carrying out the algebraic reduction, we obtain

a D u�vC
.1C Z2/uCu�ei�C � Z2vCv�ei��

; (6.45)

and

b D � .iZ C Z2/.uCu�ei�C � vCv�ei��/

.1C Z2/uCu�ei�C � Z2vCv�ei��

; (6.46)

where Z D meH=„2kF cos � D Z0= cos � with Z0 D meH=„2kF. The corresponding
normal and Andreev reflection probabilities are then given by B.E; �/ D jb.E; �/j2,
and A.E; �/ D ja.E; �/j2, respectively. Therefore, the differential conductance can
be determined upon the substitution of Eqs. (6.45) and (6.46) into Eq. (6.24). For
the normal-metal/normal-metal junction, that is, the superconductor in the region
x  0 replaced by the normal metal, the Andreev and normal reflection amplitudes
are given by

a D 0 ; (6.47)

and

b.E; �/ D �Z.1C iZ/

1C Z2
; (6.48)
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which leads to the differential conductance

GNN.E; �/ D 2N.0/e2A
vF;x

1C Z2
: (6.49)

For the 2D model we are considering, we shall take an average over the incident
angle

NGNS.E/ D 1

�

Z �=2

��=2
d�GNS.E; �/

D 2N.0/e2A vF

�

Z �=2

��=2
d� cos �Œ1C A.E; �/� B.E; �/� ; (6.50)

for the NS junction, and

NGNN.E/ D 1

�

Z �=2

��=2
d�GNN.E; �/

D 2N.0/e2A vF

�

Z �=2

��=2
d�

cos �

1C Z2

D 2N.0/e2A vF

�

�
2� Z20q

1C Z20

ln

q
1C Z20 C 1

q
1C Z20 � 1

�
; (6.51)

for the NN junction. Therefore, we can define a normalized differential conductance

gNS.E/ D
NGNS.E/
NGNN.E/

D 1

N

Z �=2

��=2
d� cos �Œ1C A.E; �/� B.E; �/� ; (6.52)

where

N D 2 � Z20q
1C Z20

ln

q
1C Z20 C 1

q
1C Z20 � 1

: (6.53)

This normalized conductance is useful to the comparison with the standard transport
measurement across the NS junction. For the orifice model of the point contact
spectroscopy, we can set a specific incident angle and do not perform an average. In
this case, we can still define a normalized conductance but now for a given incident
angle � .

gNS;PCS.E; �/ D .1C Z2/Œ1C A.E; �/� B.E; �/� : (6.54)
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In the following, we discuss a few representative cases of the transport across the
NS junction.

s-Wave NS Junction For the s-wave NS junction, the superconducting pair
potential has no momentum dependence and as such is independent of the incident
angle. Therefore, we have

u2˙ D u20 D 1

2

�
1C

q
E2 � j Q
0j2

E

�
; (6.55)

and

v2˙ D v20 D 1

2

�
1 �

q
E2 � j Q
0j2

E

�
; (6.56)

In addition, �˙ D 0. The Andreev reflection and normal reflection amplitudes are
given by

a D u0v0
u20 C .u20 � v20/Z2

; (6.57)

and

b D �.Z2 C iZ/.u20 � v20/
u20 C .u20 � v20/Z2

; (6.58)

respectively. These expressions suggest that, for the contact case Z0 D 0, when
the energy E is smaller than the superconducting gap Q
0, A.E/ D jaj2 D 1 and
B.E/ D jbj2 D 0, explaining the double of the conductance as compared with
that for the NN junction. In the tunneling limit Z0 ! 1, we have A.E/ D 0 and
B.E/ D 1 so that the conductance is zero for E < Q
0. The numerical results of
the differential conductance for the NS junction with s-wave pairing symmetry are
shown in Fig. 6.3. The Andreev reflection is suppressed with increased interface
barrier strength in the s-wave NS junction and the resulting differential conductance
has the profile of the s-wave density of states in the tunneling limit.

d-Wave NS Junction As we have mentioned before, for the NS junction with
an unconventional pairing symmetry, the energy experienced by electronic-like and
hole-like excitations are sensitive to both the relative crystalline orientation between
the normal metal and the superconductor and the incident angle. To demonstrate
this, we consider the dx2�y2 -wave pairing symmetry of the superconductor, choosing
˛ D �=4 and � D �=4.1 This angle of the relative crystalline orientation

1The results for ˛ D � D 0 are very similar to the s-wave NS junction.
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Fig. 6.3 Differential conductance for a normal-metal/s-wave superconductor junction for various
values of interface barrier strength. The energy is measured in units of the superconducting pair
potential. The incident angle is chosen to be � D 0

corresponds to the square lattice of copper-oxide plane of high-temperature cuprates
interfaced with the normal metal along the [110] direction.These angles determine
Q
.kC/ D Q
0 while Q
.k�/ D � Q
0. The BdG wave function amplitudes u˙ and v˙

are still given by the formula similar to the s-wave case presented above. However,
we have now the characteristic phase �C D 0 while �� D � due to the sign change
of the pair potential experienced by electron-like and hole-like excitations. In this
case, the Andreev and normal-state reflection amplitudes are found as

a D u0v0
u20 C Z2

; (6.59)

and

b D � iZ C Z2

u20 C Z2
: (6.60)

These expressions suggest that for the perfect contact Z0 D 0, the Andreev reflection
is still complete with A.E/ D 1 and B.E/ D 0 for E < 
0. Even more interestingly,
for the tunneling limit Z0 ! 1, as E ! 0, A.E/ ! 1 while B.E/ ! 0, indicating a
conductance anomaly. The numerical results on the differential conductance for the
d-wave NS junction are shown in Fig. 6.4 for ˛ D � D �=4. It shows clearly that
the zero-energy conductance peak appears in the limiting case of tunneling barrier.
This anomaly is solely due to the sign change of dx2�y2 -wave superconducting order
parameter under the above condition. This existence of the zero-bias conductance
peak has been used to identify the dx2�y2-wave pairing symmetry in the high-
temperature cuprates.
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Fig. 6.4 Differential conductance for a normal-metal/d-wave superconductor junction for various
values of interface barrier strength. The energy is measured in units of the superconducting pair
potential. The crystalline orientation between the normal metal and the d-wave superconductor and
the incident angle is chosen to be ˛ D �=4 and � D �=4, respectively

6.3 Suppression of Andreev Reflection
in a Ferromagnet/s-Wave Superconductor Junction

In the Andreev reflection process, the incoming electron and the Andreev reflected
hole occupy energy bands with opposite spins. For the case of normal metals,
due to the spin degeneracy of the energy levels, no spin effects occur with
the Andreev reflection. However, in a metallic ferromagnet, the energy band is
split. The interplay of superconductivity and ferromagnetism in hybrid struc-
tures has been a very interesting topic. A lot of works have focused on the
changes of the critical temperature of the superconductor in s-wave superconduc-
tor/ferromagnet multilayers [27–34], the Josephson critical current in superconduc-
tor/ferromagnet/superconductor junctions [35–38], and the magnetic coupling in
ferromagnet/superconductor/ferromagnet multilayers [39, 40]. In tunneling regime,
the Andreev reflection is unimportant [41]. However, in the contact regime, the spin
splitting effect on the Andreev reflection in ferromagnet/superconductor cannot be
ignored [42–44]. To model the spin splitting effect on the Andreev reflection in
a ferromagnet/s-wave superconductor junction, we consider the Stoner model, in
which the motion of conduction electrons inside the ferromagnet can be described
by an effective single-particle Hamiltonian with an exchange interaction while
the influence of the magnetization of the ferromagnet on the orbital motion of
conduction electrons is neglected. As we have discussed in previous chapters, in the
absence of spin-flip scattering, the spin-dependent (four-component) BdG equations
are decoupled into two sets of (two-component) equations, one for the spin-up
electron and spin-down hole quasiparticle wave functions .u"; v#/T , while the other
for spin-down electron and spin-up hole quasiparticle wave functions .u#; v"/T . The
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set of BdG equations for .u"; v#/T can be written as:

ŒHe.r/� h.r/�u".r/C
Z

dr0
.r; r0/v#.r0/ D Eu".r/ ; (6.61a)

�ŒH �
e .r/C h.r/�v#.r/C

Z
dr0
�.r0; r/u".r0/ D Ev#.r/ : (6.61b)

Compared with the case of a NS junction considered in the previous section
[cf. Eq. (6.25)], an exchange field h.r/ D h0�.�x/ in the ferromagnet is now
introduced. The set of BdG equations for .u#; v"/T is obtained by simply changing
the sign before h.r/ in Eq. (6.61). Following the same procedure as given in the
previous section, we have the solution to the Andreev equations as:

�I.x/ D
�
1

0

�
eiqex C r#"

�
0

1

�
eiqhx C r""

�
1

0

�
e�iqex ; (6.62)

for x < 0, and

�II.x/ D c

�
uCei�C

vC

�
eike;Cx C

�
v�ei��

u�

�
e�ikh;�x (6.63)

for x  0. Here the wave vectors are determined from the energy dispersion:

qe";h# D
r

k2Fx ˙ 2me

„2 .E C h0/ ; (6.64)

ke.h/;C D kFx ˙
me

q
E2 � j Q
.kC/j2

„2kFx
; (6.65)

ke.h/;� D kFx ˙
me

q
E2 � j Q
.k�/j2

„2kFx
: (6.66)

Since the Andreev reflection for the s-wave NS junction is most pronounced in
the contact case, we consider the barrier strength H D 0. Therefore, the boundary
conditions now become:

�II.0/ D �I.0/ ; (6.67a)

� 0II.0/ D � 0I .0/ : (6.67b)

The important difference between the NS and FS junctions are now revealed by the
momentum difference in the ferromagnet. To show this, we expand the boundary
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conditions:

�
uCei�Cc C v�ei��d

vCc C u�d

�
D
�
1C r""

r#"

�
; (6.68a)

and

�
uCei�Cc � v�ei�� d

vCc � u�d

�
D
 

qe"

kFx
.1 � r""/
qh#

kFx
r#"

!
; (6.68b)

which gives

r#" D 4u�vC Nqe"
.1C Nqe"/.1C Nqh#/uCu�ei�C � .1 � Nqe"/.1 � Nqh#/vCv�ei��

; (6.69)

and

r"" D �.1 � Nqe"/.1C Nqh#/uCu�ei�C C .1C Nqe"/.1 � Nqh#/vCv�ei��

.1C Nqe"/.1C Nqh#/uCu�ei�C � .1 � Nqe"/.1 � Nqh#/vCv�ei��

: (6.70)

Here the normalized wave vectors in the ferromagnet are given by

Nqe".h#/ D
p
1˙ Nh ; (6.71)

with Nh D 2meh0=„2kFx D Nh0= cos � .
We can follow the similar discussion on the NS junction and write down the

differential conductance for the FS junction, for a given incident angle, as:

gFS;PCS D 1

2
˙� Œ1C .Nqh N�=Nqe�/jr N�� j2 � jr�� j2� ; (6.72)

which has been normalized to the conductance for the NN junction. The pre-
factor Nqh N�=Nqe� before the Andreev reflection amplitude takes care of the fact that
the electron and hole have different velocity in the ferromagnet. In Fig. 6.5, the
differential conductance is shown for a ferromagnet/s-wave superconductor junction
for various values of the exchange interaction strength in the ferromagnet. The
suppression of subgap conductance is seen clearly with the increase of exchange
coupling strength. Experimental study has also been extended to ferromagnet/high-
Tc superconductor junctions [45]. The corresponding theory with a dx2�y2 -wave
pairing symmetry has also been developed along the same line discussed above
but with an emphasis on the zero-bias conductance [46] and the Fermi wave vector
mismatch between the ferromagnet and superconductor [47].
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Fig. 6.5 Differential conductance for a ferromagnet/s-wave superconductor junction for various
values of exchange interaction strength in the ferromagnet. The energy is measured in units of
the superconducting pair potential. The crystalline orientation between the normal metal and the
s-wave superconductor and the incident angle is chosen to be ˛ D 0 and � D 0, respectively

6.4 Transport Properties Through
a Topological-Insulator/Superconductor Junction

So far, we have discussed the transport properties across the junctions involving
conventional metals and ferromagnets. There is another class of quantum materials,
so-called topological insulators (TI). They are insulating in bulk but host a gapless
surface states with a Dirac-like linear dispersion [48, 49]. Like in graphene,
the Dirac-like linear dispersion has a fundamental implication to various new
phenomena. In TI, the surface states are topologically protected by time-reversal
symmetry, and are robust against nonmagnetic disorder and perturbations. More
interestingly, topological superconductivity can be induced in TIs through chemical
doping [50] or proximately induced at the TI/superconductor interfaces [51–53].
Therefore, the transport through the topological superconductor junctions should
be very interesting. Especially, the possible existence of Majorana fermions in
the condensed matter systems is of significant implication to the technology like
quantum computers and other electronic devices [54–58]. The property of the anti-
particle of an Majorana fermion being itself holds a key to quantum coherence
protection.

Here we consider a Dirac-normal-metal/ferromagnet insulator/s-wave topologi-
cal superconductor junction. The Dirac-BdG equations can be written as:

0

BBB@

H"".r/ H"# 0 
.r/
H#".r/ H##.r/ 
.r/ 0

0 
�.r/ �H�"".r/ H�"#.r/

�.r/ 0 H�#".r/ �H�##.r/

1

CCCA

0
BB@

u".r/
u#.r/
v".r/
v#.r/

1
CCA D E

0
BB@

u".r/
u#.r/
v".r/
v#.r/

1
CCA : (6.73)
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Here the single-particle Hamiltonian matrix in the spin-space is given by

OH D Oh.r/C OM.r/ ; (6.74)

where the Dirac-like Hamiltonian for the topological surface state is

Oh.r/ D vF. px�y � py�x/� EFŒ�.�x/C�.x � d/� (6.75)

with EF is the Fermi energy, the potential for the ferromagnetic insulator is

OM D m � ��.x/�.d � x/ ;

D
�

mz mx � imy

mx C imy �mz

�
: (6.76)

with m being the magnetization vector and the � the Pauli matrices. The pair
potential for the s-wave superconductor is given by


.r/ D 
�.x � d/ : (6.77)

The quasiparticle energy is measured with respect to the Fermi energy EF D „vFkF

with vF and kF being the Fermi velocity and wave vector.
When a beam of electrons is incident from the Dirac-like normal metal with an

angle � , the wave function is given by

�I.x/ D

0

BB@

1

iei�

0

0

1

CCA eikxx C a

0

BB@

0

0

1

�ie�i�

1

CCA eikxx C b

0

BB@

1

�ie�i�

0

0

1

CCA e�ikxx ; (6.78)

for x < 0;

�II.x/ D ce;C

0

BB@

1

�e;C
0

0

1

CCA eikC

e;xx C ce;�

0

BB@

1

�e;�
0

0

1

CCA eik�

e;�x

Cch;C

0

BB@

0

0

1

�h;C

1

CCA eikh;Cx C ch;�

0

BB@

0

0

1

�h;�

1

CCA eikh;�x ; (6.79)
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for 0 � x � d. Here

kx D kF cos � ; (6.80)

ky D kF sin � ; (6.81)

ke;˙ D � my

„kF
˙ i

„kF

q
m2

z C .„vFky � mx/2 ; (6.82)

kh;˙ D my

„kF

 i

„kF

q
m2

z C .„vFky C mx/2 ; (6.83)

�e;˙ D � mz

�„vF.ike;˙ C ky/C .mx � imy/
; (6.84)

�h;˙ D � mz

„vF.ikh;˙ � ky/C .mx C imy/
: (6.85)

For the wave function in the topological superconducting region, we would like
to give a more expanded discussion because the BdG equations become a set of 4�4
coupled matrix equations. We first write the wave function in the form

�.x; y/ D �.x/eikyy

D

0

BB@

u0;"
u0;#
v0;"
v0;#

1

CCA eiqxxCikyy : (6.86)

On substitution of Eq. (6.86) into Eq. (6.73), we arrive at the matrix equations

0

BB@

E C EF �„vF.�iqx � ky/ 0 �

�„vF.iqx � ky/ E C EF �
 0

0 �
 E � EF „vF.iqx � ky/

�
 0 „vF.�iqx � ky/ E � EF

1

CCA

0

BB@

u0;"
u0;#
v0;"
v0;#

1

CCA D 0 ;

(6.87)
which leads to the eigenvalue equation

Œ.E C j˘ j C EF/.E � j˘ j � EF/�
2�Œ.E � j˘ j C EF/.E C j˘ j � EF/�
2� D 0 :

(6.88)
In the above equation, we have denoted

˘ D i„vF.qx � iky/ D ij˘ je�i� ; (6.89)

with � D tan�1.qx=ky/. Equation (6.88) can be decoupled as

.E C j˘ j C EF/.E � j˘ j � EF/�
2 D 0 ; (6.90)
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and

.E � j˘ j C EF/.E C j˘ j � EF/�
2 D 0 ; (6.91)

which gives four eigenvalues

E1;2 D ˙
p
.�j˘ j � EF/2 C
2 ; (6.92)

E3;4 D ˙
p
.j˘ j � EF/2 C
2 ; (6.93)

respectively.
We now derive the eigenfunctions corresponding to the above eigenvalues. We

first write Eq. (6.87) in an expanded form

.E C EF/u0;" C˘u0;# �
v0;# D 0 ; (6.94a)

˘�u0;" C .E C EF/u0;# �
v0;" D 0 ; (6.94b)

�
u0;# C .E � EF/v0;" �˘�v0;# D 0 ; (6.94c)

�
u0;" �˘v0;" C .E � EF/v0;# D 0 : (6.94d)

These wavefunctions are also subjected to the normalization condition:

ju0;"j2 C ju0;#j2 C jv0;"j2 C jv0;#j2 D 2 : (6.95)

Here we have used an unusual normalization factor “2” to be consistent with the
intensity of the incident beam. Since there are four unknowns but five equations,
we use only Eqs. (6.94a)–(6.94c) together with the normalization condition. From
Eqs. (6.94a) and (6.94b), we can express u0;" and u0;# in terms of v0;" and v0;#. A
little algebra yields:

u0;" D 


.E C EF/2 � j˘ j2 Œ.E C EF/v0;# �˘v0;"� ; (6.96a)

u0;# D 


.E C EF/2 � j˘ j2 Œ.E C EF/v0;" �˘�v0;#� ; (6.96b)

Substitution of Eqs. (6.96a) and (6.96b) into Eq. (6.94c) gives

v0;" D � ij˘ jei� Œ�
2 C .E C EF/
2 � j� j2�

�
2.E C EF/C .E � EF/Œ.E C EF/2 � j˘ j2� v0;#

D
�

iei�v0;# ; for E3;4 ;
�iei�v0;# ; for E1;2 ;

(6.97)
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which in turn gives

u0;# D
�

iei�u0;" ; for E3;4 ;
�iei�u0;" ; for E1;2 ;

(6.98)

We can then substitute Eqs. (6.97) and (6.98) back into Eq. (6.96a) and obtain:

u0;" D 


.E C EF/� j˘ jv0;# ; (6.99)

for E3;4, while

u0;" D 


.E C EF/C j˘ jv0;# ; (6.100)

for E1;2. Substituting these relations into the normalization condition Eq. (6.95), we
are able to arrive at

�
u.3;4/
0;"

�2
D 1

2

�
1C j˘ j � EF

E3;4

�
; (6.101a)

�
v
.3;4/

0;#

�2
D 1

2

�
1 � j˘ j � EF

E3;4

�
; (6.101b)

and

�
u.1;2/
0;"

�2
D 1

2

�
1 � j˘ j � EF

E1;2

�
; (6.101c)

�
v
.1;2/

0;#

�2
D 1

2

�
1C j˘ j � EF

E1;2

�
: (6.101d)

Eigenfunctions as given by Eq. (6.101) suggest that for an incident wave from the
normal metal with energy E, the transmitted wave function should have the form

�III.x/ D te

0

BB@

u0
iu0ei�

iv0ei�

v0

1

CCA eikxx C th

0

BB@

v0
�iv0ei�

�iu0ei�

u0

1

CCA e�ikxx (6.102)
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for x  d, where the coherence factors

u0 D
s
1

2

�
1C

p
E2 �
2

E

�
; (6.103a)

v0 D
s
1

2

�
1 �

p
E2 �
2

E

�
: (6.103b)

Here we have used the Andreev approximation to take the x-component of the wave
vector to be the same as that projected from kF, that is, qx D kx D kF cos � with
� � � .

We can now impose the boundary conditions

�I.x D 0/ D �II.x D 0/ ; (6.104)

at x D 0, and

�II.x D d/ D �III.x D d/ ; (6.105)

at x D d. A straightforward but tedious algebra yields the reflection amplitudes

a D 1C e2i�

.M11 � ie�i�M12/ � .iei�M21 C M22/
; (6.106a)

b D .M11 � ie�i�M12/ei2� C .iei�M21 C M22/

.M11 � ie�i�M12/� .iei�M21 C M22/
; (6.106b)

where

M11 D D�1Œ�iei� ei.kh;CCke;C/d.1C �h;C/.�h;C C �h;� � �e;C/

C.u20 � v20/e
i.kh;CCke;�/d.1C �h;C/.�h;C C �h;� � �e;�/

C.u20 � v20/e
2i�ei.kh;�Cke;C/d.1C ��/.�h;C C �h;� � �e;C/

Ciei�ei.kh;�Cke;�/d.1C �h;�/.�h;C C �h;� � �e;�/� ; (6.107a)

M12 D D�1Œiei� ei.kh;CCke;C/d.1C �h;C/.1C �e;C/

�.u20 � v20/e
i.kh;CCke;�/d.1C �h;C/.1C �e;�/

�.u20 � v20/e
2i�ei.kh;�Cke;C/d.1C �h;�/.1C �e;C/

�iei�ei.kh;�Cke;�/d.1C �h;�/.1C �e;�/ ; (6.107b)

M21 D D�1Œ�iei� ei.kh;CCke;C/d.�e;C C �e;��h;C/.�h;C C �h;��e;C/

C.u20 � v20/e
i.kh;CCke;�/d.�e;C C �e;��h;C/.�h;C C �h;��e;�/
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C.u20 � v20/e
2i�ei.kh;�Cke;C/d.�e;C C �e;��h;�/.�h;C C �h;��e;C/

Ciei�ei.kh;�Cke;�/d.�e;C C �e;��h;�/.�h;C C �h;��e;�/� ; (6.107c)

M22 D D�1Œiei� ei.kh;CCke;C/d.�e;C C �e;��h;C/.1C �e;C/

�.u20 � v20/e
i.kh;CCke;�/d.�e;C C �e;��h;C/.1C �e;�/

�.u20 � v20/e
2i�ei.kh;�Cke;�/d.�e;C C �e;��h;�/.1C �e;C/

�iei�ei.kh;�Cke;�/d.�e;C C �e;��h;�/.1C �e;�/� ; (6.107d)

with

D D 2iu0v0ei�ei.ke;CCke;�/d

.�e;C � �e;�/.�h;C � �h;�/
: (6.108)

With these coefficients, the differential conductance can be calculated as
GS.�/ D 1 C jaj2 � jbj2. Also we can evaluate the differential conductance when
the superconductor is set into the normal state, which has the expression

GN.�/ D 1

cosh2.�ed/C tan2 � sinh2.�ed/.ky � mx=„vF/2=�2e
; (6.109)

where

�e D
q

m2
z C .„vFky � mx/2=„vF : (6.110)

The normalized differential conductance can be calculated according to

� D
R �=2
��=2 GS.�/ cos �d�
R �=2
��=2 GN.�/ cos �d�

: (6.111)

When mx D 0, the differential conductance is reduced to [55]:

GS.�/ D GN Œ1C GN j� j2 � .1 � GN/j� j4�
j1C .1 � GN/ei'� 2j2 ; (6.112)

where

ei' D mz cos � C iEF sin �

mz cos � � iEF sin ��
; (6.113)

and

� D 


E C p
E2 �
2

: (6.114)
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In the insulating limit, GN ! 0, the pole of Eq. (6.112) leads to the bound state
energy

Eb D � 
EF sin �sgn.mz/q
E2F sin2 � C m2

z cos2 �
: (6.115)

These states are the manifestation of chiral Majorana mode (CMM) [51], which
has a dispersion along the interface between the ferromagnetic insulator and
conventional s-wave superconductor. However, these states are localized in the
direction perpendicular to the interface.

Equation (6.115) suggests that the conductance is contributed mainly by these
bound states in the tunneling limit. The representative results of the conductance
are reported by Tanaka and co-workers [55]. As shown in Fig. 6.6, the bound
state energy is dispersive as a function of the incident angle. In addition, the
slope in the energy near the vertical incident angle � D 0 becomes more flat
when the ferromagnetic exchange interaction increases (see Fig. 6.6a). The flatted
band of bound states near � D 0 will then make dominant contribution to the
integrated conductance. Therefore, the zero-bias conductance peak is enhanced with
increased mz (see Fig. 6.6b). These results are remarkable in view of the fact that
the ferromagnetic exchange interaction in ferromagnet/conventional superconductor
junctions suppresses the zero-bias differential conductance. Interesting results from
the topological nature of the superconductor have also been found in thermal
transport properties [59].
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Fig. 6.6 Chiral Majorana mode energy dispersion Eb as a function of the incident angle � (a) and
integrated tunneling conductance � in N/FI/S junctions (b). The parameter .mz=EF/kFd D 1 is
fixed and mx D my D 0. The other variation parameter mz=EF D 1; 0:5; 2 for curves a, b, and c,
respectively. From [55]
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Chapter 7
Topological and Quantum Size Effects
in Superconductors at Reduced Length Scale

Abstract The periodicity of persistent currents in multiply connected geometries
arising from the Aharonov and Bohm effect is studied for both s-wave supercon-
ducting ring and d-wave superconducting cylinder. The loop geometry of a d-wave
superconductor is also considered. The solutions of the BdG equations suggest
that the hc=e-periodicity is a generic property in s-wave superconductor ring at the
mesoscale and in unconventional superconductors. Finally, the theoretical approach
to solving the BdG equations is also provided for nanoscale superconductors. The
quantum size effects are showcased with the oscillation of transition temperature.

7.1 Persistent Current in a Mesoscopic s-Wave
Superconducting Ring

In classical electrodynamics, the Maxwell equations determine directly the behavior
of electromagnetic fields E and B, while the scalar and vector potentials merely play
an auxiliary role through the relation

E D �r'.r/ ; B.r/ D r � A.r/ ;

in the static case. Therefore, the equation of motion of an electron is determined
through the Lorentz force

F D �e

�
E C v

c
� B

�
;

where v is the electron velocity. However, in quantum mechanics, the scalar
and vector potentials enter the Schrödinger equation explicitly and have a direct
consequence. In 1959, Aharonov and Bohm (AB) [1] showed that a charged particle
can be deflected even when the classical force is absent. This AB effect has now
been very well demonstrated by a persistent equilibrium current circulating in an
isolated mesoscopic normal-metal ring pierced by an AB flux˚ D H

A�l [2, 3]. This
current always has a periodicity of ˚0 D hc=e, where ˚0 is the single electron flux
quantum. In a superconductor, electrons form Cooper pairs from an effective pairing
interaction near the Fermi surface. The flux quantization with ˚0=2 has been used
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Fig. 7.1 Schematic drawing
of a one-dimensional
superconducting ring of
circumference L threaded by
a magnetic flux ˚

as a powerful proof for the formation of electron pairs in a macroscopic multiply
connected geometries [4–8]. However, we must keep in mind that the Cooper pairs
are well defined in momentum space rather than in real space, which makes them
distinct from particles with a charge �2e. Therefore, there is no reason for one to
expect that the persistent current in a superconducting ring should have a periodicity
of ˚s D ˚0=2, in particular, when the system is at a mesoscale.

We study this problem by considering a one-dimensional mesoscopic s-wave
superconductor ring pierced by a magnetic flux, as shown in Fig. 7.1. Since the flux
is restricted to the central hollow region, no magnetic field is experienced by the
electrons. The BdG equations are still given by Eq. (5.19) but with no spin Zeeman
term and r � A D 0 on the ring arm. That is, the single-particle Hamiltonian in 1D
has the form

Qh.x/ D 1

2me

�„
i

d

dx
C eA.x/

c

�2
� EF : (7.1)

Here we have used the spatial coordinate x D 2��=L, where � is the azimuthal
angle, varying between 0 and L. In general, the detailed shape of the ring does
not matter. Before we discuss the BdG equations, we first take a look at the wave
function to the single-particle Hamiltonian with the Schrödinger equation

Qh.x/ Q'.x/ D � Q'.x/ : (7.2)

The eigenfunction Q'.x/ satisfies a periodic boundary condition

Q'.x C L/ D Q'.x/ : (7.3)

We introduce a singular gauge transformation

Q'.x/ D e�ie�.x/=„c'.x/ (7.4)
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Using the identity

�„
i

d

dx
C eA.x/

c

�
Q'.x/ D e�ie�.x/=„c

�„
i

d

dx
C e

c
.A.x/� �0.x//

�
'.x/ ; (7.5)

and

�„
i

d

dx
C eA.x/

c

�2
Q'.x/ D e�ie�.x/=„c

�„
i

d

dx
C e

c
.A.x/� �0.x//

�2
'.x/ ; (7.6)

we obtain

�„
i

d

dx
C e

c
.A.x/� �0.x//

�2
'.x/ D �'.x/ : (7.7)

The choice of the gauge

�0.x/ D A.x/ ; (7.8)

leads to

� „2
2me

d2'.x/

dx2
D �'.x/ : (7.9)

Solving Eq. (7.8) yields

�.x/ D
Z x

0

A.x0/dx0 : (7.10)

Therefore, the boundary condition for the new wave function becomes

'.x C L/ D eie�.xCL/=„c'.x C L/

D e
ie
„c

R xCL
x A.x0/dx0

e
ie
„c

R x
0 A.x0/dx0

'.x/

D ei2�˚=˚0'.x/ : (7.11)

Here we have used the identity

Z xCL

x
A.x0/dx0 D ˚ : (7.12)
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This obervation enables us to apply a singular gauge transformation also to the
BdG equations and obtain

�
h.x/ 
.x/

�.x/ �h�.x/

��
u.x/
v.x/

�
D E

�
u.x/
v.x/

�
; (7.13)

with the periodic boundary condition

u.x C L/ D ei2�˚=˚0u.x/ ; (7.14a)

v.x C L/ D e�i2�˚=˚0v.x/ ; (7.14b)


.x C L/ D ei4�˚=˚0
.x/ : (7.14c)

Here the single-particle Hamiltonian is

h.x/ D � „2
2me

d2

dx2
� EF : (7.15)

If the electron wave vector is k and the wave vector for the collective drift
motion (superfluid motion) of the paired electrons is q, the initial Cooper pairing
.k ";�k #/ will occur between electron states .k C q ";�k C q #/. This allows us
to write the wave function and pair potential as


.x/ D 
e2iqx (7.16a)

u.x/ D uk;qei.kCq/x ; (7.16b)

v.x/ D vk;qei.k�q/x ; (7.16c)

A little algebra yields the solution to the BdG equation (7.13) [9]:

Ek̇;q D .„k/
„q

me
˙
q

E2A C
2 D .„k/
„q

me
˙ E.0/k;q ; (7.17)

with the corresponding eigenfunctions .uCk;q; v
C
k;q/ D .u.0/k;q; v

0
k;q/ while .u�k;q; v�k;q/ D

.v
.0/
k;q ;�u0k;q/. Here

E.0/k;q D
q

E2A C
2 ; (7.18)

EA D „2
2me

.k2 C q2/� EF ; (7.19)
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and

 
u.0/k;q

v
.0/
k;q

!
D

0

BBBB@

s
1
2

�
1C EA

E
.0/
k;q

�

s
1
2

�
1 � EA

E
.0/
k;q

�

1

CCCCA
: (7.20)

The order parameter is then determined by


 D g

4

X

k




E.0/k;q

�
tanh

�
E.0/k;q C „2kq=me

2kBT

�
C tanh

�
E.0/k;q � „2kq=me

2kBT

��
: (7.21)

Here the energy cutoff jEAj � „!D is implied in the summation. The boundary
condition (7.14) on the wave functions gives

k D �

L
nk ; (7.22)

and

q D �

L

�
nq C ˚

˚s

�
; (7.23)

subject to the constraint that nk C nq is an even integer and the superconducting
flux quantum ˚s D ˚0=2. In addition, from Eq. (6.15), the charge current is now
given by

IQ D 2„e

me

X

k

.k C q/Œ f .ECk;q/u
.0/
k;q

2 C f .E.�/k;q /v
.0/
k;q

2
� ; (7.24)

where f .E/ is the Fermi-Dirac distribution function.
The drift momentum q defines a superfluid velocity vs D „q=me. Equation (7.17)

suggests that when the superfluid velocity vs D vd with vd D 
=„vF being
the Landau depairing velocity, the gap in the excitation spectrum is closed. The
quantity also defines a depairing flux ˚d=˚s D .kFL=2�/.
=EF/. This tells us that
even if the superconducting gap is not depressed, a gapless quasiparticle state can
be induced by the magnetic flux. The numerical results do confirm this intuitive
analysis. As shown in Fig. 7.2 (left panel), for a fixed value of ring circumference,
when the ration of 
=EF is tuned such that ˚d=˚s < 1, the supercurrent is only
a function of magnetic flux with a normal-state period ˚0. In addition, the self-
consistency solution also shows that the order parameter can be suppressed by an
application of the magnetic flux (see Fig. 7.2 (right panel)).

Before we turn to the discussion on the case with a d-wave pairing symmetry, we
show a derivation of flux-modified boundary condition for electrons in the 1D ring
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Fig. 7.2 Supercurrent at a fixed amplitude of s-wave order parameter (left panel) and the self-
consistently obtained order parameter as a function of magnetic flux ˚=˚s in a mesoscopic ring at
T D 0 K. For the left panel, the values of
0=EF D 3:0� 10�3 (a); 4:0� 10�3 (b); 6� 10�3 (c).
For the right panel, the pairing interaction strength is first tuned to give the zero-flux gap value as
used for the left panel before it is used for the self-consistent calculations for the flux dependence.
The other parameters used are L D 1000 nm, and kF D 400�=L, „!D D 300K. Adapted from [9]

Fig. 7.3 Schematic drawing of a one-dimensional superconducting ring of circumference L
threaded by a magnetic flux ˚ in a tight-binding model

within a tight-binding model, as shown in Fig. 7.3. The single-particle Hamiltonian
is given by:

H D �
X

i¤j

tije
i�ij c�i cj C

X

i

�ic
�
i ci ; (7.25)
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where �ij D � 2�
˚0

R i
j A.x/dx and � is the on-site energy level. Here we have dropped

the spin degrees of freedom. Introducing a canonical transformation

ci D
X

n

'n
i �n ; (7.26)

with �n being the quasiparticle operator, and within the nearest-neighbor hopping
approximation, the Hamiltonian can be diagonalized as

H' D E' ; (7.27)

where

H D

0

BBBBB@

�1 �tei�1 0 0 : : : 0 �te�i�N

�te�i�1 �2 �te�i�2 0 : : : 0 0

0 �te�i�2 �3 �tei�3 : : : 0 0

: : : : : : : : : : : : : : : : : : : : :

�tei�N 0 0 0 : : : �t�i�N�1 �N

1

CCCCCA
; (7.28)

and the eigenvectors 'Transpose D .'1; '2; '3; : : : 'N/. Here the accumulated phase
for electrons hopping from site j to i has been abbreviated as �i;iC1 D �i and �N;1 D
�N . By performing a uniform transformation

U D

0

BBBBB@

ei
PN�1

iD1 �i

ei
PN�1

iD2 �i

: : :

ei�N�1

1

1

CCCCCA
; (7.29)

the eigenequation equation becomes

NH N' D E N' ; (7.30)

where

NH DD

0
BBBBB@

�1 �t 0 0 : : : 0 �te�i
PN

iD1 �i

�t �2 �t 0 : : : 0 0

0 �t �3 �t : : : 0 0

: : : : : : : : : : : : : : : : : : : : :

�tei
PN

iD1 �i 0 0 0 : : : �t �N

1
CCCCCA
; (7.31)
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and

N' D U�' : (7.32)

Note that the total phase accumulated across the entire ring is
PN

i �i D 2�˚=˚0.
Equation (7.31) suggests that the phase factors appearing in the Hamiltonian can be
removed by using a modified periodic boundary condition:

N'NC1 D N'1 ! N' 0NC1 D ei2�˚=˚0 N' 01 : (7.33)

For the BdG equations in the tight-binding model, we can perform the unitary
transformation

�
U

U�
�

to get the modified periodic boundary conditions for the eigenfunctions. The same
procedure can also be applied to the cylindrical geometry, which can be regarded as
a stacked array of rings of same radius).

7.2 Persistent Current in Multiply Connected Mesoscopic
d-Wave Superconducting Geometries

7.2.1 Cylindrical Geometry

For a dx2�y2-wave pairing symmetry as appropriate to high-temperature cuprates,
the pair potential experiences a sign change across the nodal directions and the
gapless nodal quasiparticles exist even at zero magnetic field. The question on the
periodicity of the supercurrent in a multiply connected geometry with the hollow
threaded by a magnetic flux is also intriguing. We first consider the simpler case
of a cylindrical geometry as shown in Fig. 7.4. We define the x-y coordinate system

Fig. 7.4 Schematic drawing of a hollow d-wave superconducting cylinder. A magnetic flux ˚
threads along the cylinder axis. The vectors a and b denotes the crystalline axes of an essentially
two-dimensional system
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to coincide with the crystalline axes, which are perpendicular and parallel to the
cylinder axis, respectively. By following the same discussion as in the previous
section but now in the tight-binding model, the BdG equations are given as

X

j

 
Hij 
ij


�ij �H �
ij

! 
un

j

vn
j

!
D En

�
un

i

vn
i

�
; (7.34)

subject to the flux-modified boundary condition

 
un

ixCNx;iy

vn
ixCNx;iy

!
D
�

ei2�˚=˚0 0

0 e�i2�˚=˚0

� 
un

ix;iy

vn
ix;iy

!
: (7.35)

Here .un
i ; v

n
i / with i denoting the coordinates .ix; iy/ are the eigenfunctions corre-

sponding to eigenvalues En. The single particle Hamiltonian is given by

Hij D �tij � 	ıij ; (7.36)

where tij and	 are the hopping integral and chemical potential, respectively. We take
a next-nearest-neighborhopping approximation with t and t0 representing the nearest
neighbor and next-nearest neighbor hopping integrals, respectively. The BdG wave
function has the form

�
ui

vi

�
D
�

ei.kCq/�ri 0

0 ei.k�q/�ri

��
uk;q

vk;q

�
: (7.37)

Corresponding to the energy eigenvalues

E.˙/k;q D Zk;q ˙ E.0/k;q ; (7.38)

the electron and hole components of the quasiparticle amplitude are given by
.uk;q; vk;q/ D .u.0/k;q; v

.0/
k;q/ and .v.0/k;q;�u.0/k;q/ with

ju.0/k;qj2 D 1

2

�
1C Qk;q

E.0/k;q

�
; jv.0/k;qj2 D 1

2

�
1 � Qk;q

E.0/k;q

�
: (7.39)

The quantities Qk;q D Œ�kCq C�k�q�=2, Zk;q D Œ�kCq � �k�q�=2, and E.0/k;q D ŒQ2
k;q C

j
kj2�1=2. In the tight-binding approximation, up to the next-nearest neighbor, the
conduction electrons have the normal state dispersion,

�k D �2t.cos kx C cos ky/� 4t0 cos kx cos ky � 	 : (7.40)
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The d-wave superconducting gap dispersion is given by


k D 2
d�.k/ ; (7.41)

where �.k/ D cos kx � cos ky, and 
d is determined self-consistently:


d D Vd

4NL

X

k

�2.k/
d

E.0/k;q

�
�

tanh

�E.0/k;q C Zk;q

2kBT

�
Ctanh

�E.0/k;q � Zk;q

2kBT

��
; (7.42)

where NL D N � N. Rigorously, the bond order parameters along the x and y
directions do not follow the relation 
x D �
y in the presence of magnetic
flux. Here we have imposed the restriction of 
x D �
y to enforce a rigorous
d-wave symmetry. Notice that 
d is now a function of ˚=˚0. From the boundary
condition given by Eq. (7.35), we can find the components of wave vectors kx D
2�.nx � m=2/=Nx, qx D 2�.˚=˚0 C m=2/=Nx, while ky D 2�ny=Ny, and qy D 0,
where nx.y/ and m are integers. In particular, m is determined by minimizing jqxj for
a given value of magnetic flux ˚ . The electron filling factor and the single nearest-
neighbor bond current flowing around the cylinder are computed via,

ne D 2

NL

X

k

Œ f .E.C/k;q /ju.0/k;qj2 C f .E.�/k;q /jv.0/k;qj2� ; (7.43)

I D 4te

NL

X

k

Œ f .E.C/k;q /ju.0/k;qj2 C f .E.�/k;q /jv.0/k;qj2�

�.1C 2t0 cos ky=t/ sin.kx C qx/ ; (7.44)

respectively. A factor of 2 has been included to account for the spin degeneracy.
These physical quantities can be numerically evaluated and are reported in [10]. It
is found that the order parameter and supercurrent are sensitive to both the system
size and electron filling factor. We expect that the current profile should also be
dependent on the crystalline orientation with respect to the magnetic flux direction.
When the crystalline axes are mis-oriented by 45ı away from the cylinder axis, the
supercurrent flows along the quasiparticle nodal direction, the study of which is left
to readers as an exercise.

7.2.2 Square Loop Geometry

For the smooth multiply geometries, the amplitude of the superconducting order
parameter remains homogeneous and the breaking down of the hc=2e-periodicity in
the supercurrent arises mainly from the competition between the linear dimension of
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Fig. 7.5 Schematic drawing
of a square loop carved out of
a two-dimensional
superconductor. A magnetic
flux threads through the hole

the system and the superconducting coherence length, which is a typical mesoscopic
effect. For unconventional superconductors, the sign change of the superconducting
order can have more significant consequence in systems with sharp boundaries like
surfaces and interfaces. Near these boundaries, zero-energy modes can be induced.
Recently, the periodicity of supercurrent in a square loop has been investigated by
solving the BdG equations in real-space within a tight-binding model. The geometry
is schematically shown in Fig. 7.5. In this case, it is more convenient to treat
directly the Peierls phase factor from the local hopping of electrons in the geometry.
Specifically, the vector potential entering Peierls phase given by Eq. (5.16)

'ij D �2�
˚0

Z i

j
A.�/ � � (7.45)

can take the form

A.r/ D ˚

2�.x2 C y2/
.y;�x; 0/ ; (7.46)

which ensures the electrons in the arms of the square loop experience only the AB
effect.

Figure 7.6 display results from a representative study [11] by solving the
BdG equations within a tight-binding model. Energy spectrum is symmetric with
respect to the reversal ˚ ! �˚ . Due to the low-energy quasiparticles within the
superconducting gap maximum, there are bands inside the gap maximum and they
are dispersive with the varying magnetic flux through the AB effect. In addition, the
small gap open near the Fermi energy comes from the quantum size effect of the
loop. Noticeably, the spectra in the flux region˚ 2 Œ0; ˚0=4� are distinct from those
in the region ˚ 2 Œ˚0=4;˚0=2�, which leads to very different energy parabolas
at ˚ D 0 and ˚ D ˚0=2. Consequently, the ˚0=2-periodicity is broken down
in the supercurrent. Instead only the ˚0-periodicity is generically satisfied, and
should be regarded as a fundamental property of loops formed by unconventional
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Fig. 7.6 Quasiparticle energy spectrum (a) and supercurrent (b) as a function of the magnetic flux
in a square 40 � 40 loop with a hole of 14 � 14 unit cells of the original square lattice, obtained
by solving the BdG equations self-consistently in a tight-binding model with a nearest-neighbor
hopping approximation. The dx2�y2 -wave pairing interaction 0:3t is chosen, where t is the nearest-
neighbor hopping integral. Adapted from [11]

superconducting materials. This periodicity is also shown to survive against the
impurity scattering and the change in the loop geometry. This example showcases
further the power of the BdG theory when compared with the Ginzburg-Landau
theory at a mesoscale.
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7.3 Quantum Size Effects in Nanoscale Superconductors

Nanoscale metal and semiconductor systems like quantum dots and wires are inter-
esting not only for their unique physical properties but also for their huge potential
of technological applications. In these systems, the energy level discretization due to
the quantize size effects is one of the key properties. For nanoscale superconductors,
the quantum size effects not only set a quantum limit to superconductivity [12, 13],
but also are responsible for many new phenomena such as shell effects [14–
17], which enhance the superconducting energy gap, as well as the oscillation of
superconducting transition temperature [18, 19].

Theoretically, the BdG formalism is especially powerful in addressing these
quantum size effects. The key idea is to expand the BdG eigenfunctions in terms
of the complete set of normal-state single-particle eigenfunctions of the nanoscale
systems themselves [20–25]. This approach has also been briefly discussed for the
disorder effect and high-field effects in previous chapters. As examples, we consider
the continuum model of BdG formalism for s-wave superconducting quantum wires
and dots, as shown in Fig. 7.7. For convenience of the discussion, we write the BdG
equations for an s-wave superconductor

�
h.r/ 
.r/

�.r/ �h�.r/

��
un.r/
vn.r/

�
D En

�
un.r/
vn.r/

�
; (7.47)

where the single-particle Hamiltonian is given by

h.r/ D �„2r2

2me
C Vc.r/� EF ; (7.48)

and the self-consistency condition is


.r/ D g
X

n.En>0/

un.r/v�n .r/ tanh

�
En

2kBT

�
: (7.49)

Fig. 7.7 Schematic drawing
of a superconducting
quantum wire (a) and a
quantum dot (b). The
variables Lx, Ly, and Lz are
the linear dimension of these
systems
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For nanoscale superconductors, the confinement effect is described by the potential
Vc.r/. For a superconducting quantum wire, the confinement is two-dimensional
(e.g., in the x-y plane shown in Fig. 7.7a); while for a superconducting quantum
dot, it is three-dimensional (i.e., in all three directions shown in Fig. 7.7b). In the
hard-wall approximation, V.r/ is

V.r/ D
�
0 ; for 0 � x � Lx ; 0 � jyj � Ly ;

1 ; otherwise ;
(7.50)

for the wire; while

V.r/ D
�
0 ; for 0 � x � Lx ; 0 � jyj � Ly ; 0 � jzj � Lz ;

1 ; otherwise ;
(7.51)

for the dot. The corresponding eigenfunctions and eigenvalues for the single-particle
Hamiltonian are

w˛.r/ D eikzz

p
2�

s
2

Lx

s
2

Ly
sin

�
nx�x

Lx

�
sin

�
ny�y

Ly

�
; (7.52)

for

�˛ D „2
2me

��
nx�

Lx

�2
C
�

ny�

Ly

�2
C k2z

�
; (7.53)

with ˛ denoting the quantum numbers .nx; ny; kz/ for the quantum wire; while

w˛.r/ D
s
2

Lx

s
2

Ly

s
2

Lz
sin

�
nx�x

Lx

�
sin

�
ny�y

Ly

�
sin

�
nz�z

Lz

�
; (7.54)

for

�˛ D „2
2me

��
nx�

Lx

�2
C
�

ny�

Ly

�2
C
�

nz�

Lz

�2�
; (7.55)

with ˛ denoting the quantum numbers .nx; ny; nz/ for the quantum dot. We note that
the eigenfunctions and eigenvalues for a harmonic potential confinement are also
available analytically.
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The BdG wavefunctions are then expanded as

un.r/ D
X

˛

un;˛w˛.r/ ; (7.56a)

vn.r/ D
X

˛

vn;˛w˛.r/ : (7.56b)

Insertion of Eq. (7.56) into Eq. (7.47) leads to

�˛un;˛ C
X

ˇ


˛ˇvn;ˇ D Enun;˛ ; (7.57a)

X

ˇ


�̨̌ un;ˇ � �˛vn;˛ D Envn;˛ ; (7.57b)

where

�˛ D �˛ � EF ; (7.58)

and


˛ˇ D
Z

w�̨.r/
.r/wˇ.r/dr : (7.59)

We note that for a generally irregular wire or dot geometry, there are off-diagonal
matrix elements for the single-particle Hamiltonian.

Figure 7.8 displays the numerical results on the superconducting transition
temperature with the linear dimension of a square-cross-sectioned quantum wire of
Pb, Sn, and Al [22]. It shows clearly the oscillation of transition temperature with the
cross-section size. The pronounced resonance feature of the transition temperature is
related to the tuning of the density of states in the confinement system. The relative
Tc difference between the neighboring peak and valley values is increased with
decreasing cross-section size. It also shows that the bulk transition temperature is
approached when the linear dimension of the cross-section is several times longer
than the bulk superconducting coherence. These results are qualitatively similar to
those for cylindrical Al and Sn nano wires [26, 27], suggesting a robust nature of
quantum confinement effects. In addition, the same method has also been applied
to calculate the local electronic structure in superconducting quantum wires, from
which the quasiparticle interference due to the order parameter inhomogeneity is
uncovered [25]. Furthermore, the interplay between the quantum confinement and
magnetic field can also be studied in the same framework, which is left for readers
as an exercise.
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Fig. 7.8 The Lx dependent superconducting critical temperature for Pb, Sn, and Al square-
cross-section nano wires. Calculations are with the Debye temperature 96, 195, 375 K and the
dimensionless coupling strength gN.0/ D 0:39; 0:25; 0:18 for Pb, Sn, and Al, respectively. The
wire length Lz D 500 nm. From [22]
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Additional Reading

The following list includes many references for further reading, which helps shape
the treatment of several topics in the present book. Their individual features are
briefly commented.

M. Tinkham: Introduction to Superconductivity (McGraw Hill, New York, 1975
(1st ed.) & 1996 (2nd ed.)). An excellent account of BCS and Ginzburg-Landau
theory for superconductivity phenomenology.

P. G. de Gennes: Superconductivity of Metals and Alloys (W. A. Benjamin,
New York, 1966; Addison-Wesley, New York, 1989). A pioneering work on the
BdG treatment of inhomogeneous superconductivity.

J. R. Schrieffer: Theory of Superconductivity (W. A. Benjamin, New York, 1964).
A good account of the BSC theory.

J. B. Ketterson, S. N. Song: Superconductivity (Cambridge University Press,
Cambridge, 1999). A balanced account of phenomenological and microscopic
theories for uniform and nonuniform superconductors.

G. D. Mahan: Many-Particle Physics (Kluwer Academic/Plenum Publishers,
New York, 1981 (1st ed.), 1990 (2nd.), 2000 (3rd.)). An exhaustive book on
the Green’s function method, other techniques of many-body theory, and their
applications to solids and liquids. It also contains the Eliashberg theory of super-
conductivity with retardation effects.

A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski: Methods of Quantum Field
Theory in Statistical Physics (Englewood Cliffs, New Jersey, 1963). Introductory
book on the Green’s function method to the theory of superconductivity.

Carlos A. R. Sá de Melo (Ed.): The Superconducting State in Magnetic Fields
(World Scientific, Singapore, 1998). A collection of excellent review articles on the
magnetic field effects on superconductivity.

© Springer International Publishing Switzerland 2016
J.-X. Zhu, Bogoliubov-de Gennes Method and Its Applications, Lecture Notes
in Physics 924, DOI 10.1007/978-3-319-31314-6
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R. P. Huebener, N. Schopohl, G. E. Volovik (Eds.): Vortices in Unconventional
Superconductors and Superfluids (Springer, New York, 2002). It contains many
good articles on the special topics of vortices in superconductors and superfluids.

R. D. Parks (Ed.): Superconductivity (Dekker, New York, 1969). The treatise
contains a comprehensive account of superconductivity as it stood in 1968.
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